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CHAPTER I 

INTRODUCTION 

1.1. Introduction to an Alternative Survey Technique 

Survey estimates are affected by two main sources of error. The first type of error 

is sampling error that results from taking a sample instead of enumerating the whole 

population. The second type of error is non-sampling error that cannot be attributed to 

sample-to-sample variability. Non-sampling error has two different errors which is 

random error and nonrandom error. Random error, which results from reducing the 

reliability of measurements, can be minimized over repeated measurements. But 

nonrandom error that is bias in survey data is difficult to cancel out over repeated 

measurements. Deming (1960) and Cochran (1977) have discussed the sources of non­

sampling error and its effects on sampling estimates. The main sources of non-sampling 

error in any survey are non-response bias and response bias. Non-response bias arises 

from subjects' refusal to respond and response bias arises from giving incorrect 

responses. When open or direct surveys are about sensitive matters, for example, 

gambling habits, addiction to drugs and other intoxicants, alcoholism, proneness to tax 

evasion, induced abortions, drunken driving, history of past involvement in crimes, and 

homosexuality, non-response bias and response bias become serious because people 

usually do not wish to give correct information. A survey technique that encourages 

truthful answers but makes people comfortable was necessary instead of open or direct 

surveys. Warner (1965) developed such an alternative survey technique that is called to 

randomized response technique. Warner's randomized response survey technique is 

designed to eliminate evasive answer bias and keep Respondents' confidentiality. Since 

Warner presented the randomized response technique, many variants of the Warner 
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model have been presented. One of the variants is the unrelated randomized response 

model presented by Greenberg et al. (1969). 

In the article by Campbell and Joiner (1973), Tom Hettmansperger, a statistics 

professor, surveyed his class to estimate the proportion of regular "pot" smokers on the 

campus. He applied the unrelated question randomized response model to students in 

his class. The sensitive question was, "Do you smoke pot at least once a week?" The 

unrelated question was, "Is the last digit of your student ID number odd?" After finished 

the survey, he estimated that 41 % of his students used pot at least once a week. The 

students verified voluntarily the proportion of regular "pot" smokers in the classroom. 

The students found that 38% of the students in the class were regular pot smokers. 

It turned out that the estimated proportion is quite close to the true proportion, so this is 

a good example to show that the randomized response survey technique works well. 

Validation checks for randomized response technique have also been attempted 

by Abernathy et al. (1970), Bradburn and Sudman (1979), Tracy and Fox (1981), 

Danermark and Swensson (1987), Duffy and Waterton (1988) and Kerkvliet (1994). 

These researchers did the comparison of RR interview and direct interview based on 

statistical measures of efficiency and respondents' protection. Tracy and Fox ( 1981) 

conducted a field-validation of a quantitative randomized response model. They 

compared self-reports of arrests obtained in a direct question condition with estimates 

obtained from randomized response. True scores regarding the number of official 

arrests from criminal history records were available as a validation criterion. Table 1.1 

show that constant bias and especially systematic bias were much more substantial in 

the direct question condition than in randomized response. 
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TABLE 1.1 

Two or More Arrests Case in the TRACY AND FOX ( 1981) 

Two or more Arrests Mean Reported Arrests Mean Official Arrests 

RR technique 

Direct question 

Sample size (n) 

84 

40 

2.7286 

1.5500 

1.2. Objectives and Brief Summary of the Study 

3.2024 

3.3500 

It is the objective of this dissertation to develop new randomized response models 

that increase the cooperation of the respondents, decrease the variances of the 

randomized response estimators and investigate the properties of the randomized 

response models. 

In Chapter II, the literature of randomized response models is briefly reviewed in 

two different sections. One section is in terms of literature review on qualitative 

randomized response models and the other section is in terms of literature review on 

quantitative randomized response models. 

In Chapter III, a new stratified randomized response model that is more efficient 

than the Hong et al. (1994) stratified randomized response model is presented. In this 

research, a drawback of the Hong et al. model under their proportional sampling 

assumption is pointed out. The proposed stratified randomized response model has an 

optimal allocation and large gain in precision. Hence, it is shown that the estimator 

based on the proposed method is more efficient than the Warner (1965), the Mangat and 

Singh (1990) and the Mangat (1994) estimators under the conditions presented in both 
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the case of completely truthful reporting and that of not completely truthful reporting by 

respondents. 

In Chapter IV, a mixed randomized response model is introduced. It consists of 

Warner's model and Simmons' model. The proposed model is a variation of Lanke's 

(1975) idea. Mangat et al. (1997) and Singh et al. (2000) found a privacy problem and 

presented several strategies as an alternative one for the Moors' model, but their models 

may lose a large portion of information and require a high cost to obtain confidentiality 

for the respondents. 

Our proposed model has the advantage of simplicity over the previous models 

while keeping the confidentiality of the interviewee. Furthermore, the mixed model will 

be extended to a stratified mixed RR model. 

In Chapter V, a new quantitative randomized response technique is presented. 

The proposed technique will use a Hopkins' randomizing device to derive a 

multinomial distribution for sensitive categories. After obtaining the observed estimates 

for sensitive category proportions which also include the random responses from the 

Hopkins' randomizing device, we derive the true estimates of the proportions for the 

sensitive categories. For contingency tables, a Pearson product-moment correlation 

between two different sensitive questions will be derived. 
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CHAPTER II 

REVIEW OF THE RANDOMIZED RESPONSE MODEL 

2.1. Literature Review on Qualitative Randomized Response Model 

In initiating the work on Randomized Response Technique, Warner (1965) 

presented a two related question model for estimating the population proportion of 

people who possess a sensitive trait in a given population. To apply the Warner model, a 

simple random sample of n people will be drawn with replacement from the population 

and each person will be interviewed. Before the interviews, each interviewer is 

furnished with an identical spinner (randomization device) which points to Statement 1 

with probability P , and to Statement 2 with probability 1- P . Without reporting the 

outcome of the spinner to the interviewer, the interviewee answers one of the following 

statements: 

Statement 1: I belong to the sensitive trait group. 

Statement 2: I do not belong to the sensitive trait group. 

depending on the outcome directed by the randomization device. Warner equated the 

proportion of respondents who answer "Yes" to Statement 1 or to Statement 2: 

(2.1.1) 

where X is the proportion of "Yes" responses, TC s is the proportion of people with the 

sensitive trait. Under the assumption that the total number of "Yes" responses is known 

from the sample and P(-:f:. 0.5) is set by a researcher, the maximum likelihood estimator 

of ns is 

A X -(1-P) 
1Cw=----

2P-1 
(2.1.2) 
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Warner (1965) has shown that n w 1s an unbiased estimator of n s and the 

variance of n w is 

(2.1.3) 

where n is the total number of units in the sample. 

Greenberg et al. (1969) developed the theoretical framework for the unrelated 

question RR model even if Horvitz et al. ( 1967) developed this model. Contrary to the 

Warner model, the unrelated question RR model has one question that asks about very 

sensitive trait and the other question ask about an innocuous or non-sensitive trait. 

Greenberg et al. (1969) proposed two models; the case of unknown n 1 , the 

proportion of people with an innocuous trait, and the case of known n 1 • Let's explain 

the unrelated question RR model for the case of unknown n 1 • Using simple random 

sampling with replacement, two samples with sizes n1 and n2 are independently drawn 

from the population. Each interviewee in the i sample is required to use a 

randomization device with two outcomes with preassigned probabilities, f'; and 1- f'; , 

for i = 1, 2. Without reporting the outcome of the spinner to the interviewer, the 

interviewee answers "Yes" or "No" to one of the following statements: 

Statement A: I belong to the sensitive trait group. 

Statement B: I belong to the innocuous trait group. 

depending on the outcome from the randomization device. 
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I do not belong to 

the sensitive trait 

group. 

I belong to the 

sensitive trait 
group. 

Figure 1.1. Warner's Randomizing Device 
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The proportion of respondents who answer "Yes" to Statement A or to Statement 

Bas follows: 

for i = l, 2. (2.1.4) 

where I'; is the proportion of "Yes" responses, n s is the proportion of people with the 

sensitive trait. Under the assumption that the total number of "Yes" responses is known 

from the sample and F; is set by the researcher, the unbiased estimator for n s is 

A (1 - p2 )~ - (1 - ~ )l\ 
nu =--------

~ -P2 
(2.1.5) 

Since Var(Y;) = I'; (1- f;) / n; and ~ and l\ are independent, they derived the 

variance of le u : 

(2.1.6) 

Consider the simple case when n 1 , the true proportion in group G in the 

population, is known. A simple random sample with replacement of size n is drawn 

from the population and each interviewee is asked to report only "yes" or "no" 

regarding belonging to the sensitive trait group (chosen with probability P) or to the 

innocuous trait group ( chosen with probability 1- P ). The probability of a "yes" 

response is 

(2.1.7) 

The unbiased estimator for n s is 

A Y - (l-P)n 1 

JrUK = p 
(2.1.8) 
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The variance of ft uK is 

TT (" ) - Y(I-Y) 
var nuK - . 

nP 2 
(2.1.9) 

Moors ( 1971) presented a variation of unrelated question randomized response 

model which has the advantage that, even when questions having known distributions 

are not available, the simplicity of the known n 1 model can be achieved if one of the 

samples in unrelated question randomized response model were used exclusively to 

estimate an unknown n 1 • 

The Moors model has a characteristic that one of the two independent samples 

would be used to estimate the proportion of people who possess the innocuous trait by 

way of the direct question. Setting P2 = 0 in (2.1.5) gives the Moors (1971) model. The 

unbiased estimator for n s is 

(2.1.10) 

Setting P2 = 0 in (2.1.6), the variance of ft uM is 

(2.1.11) 

Mangat and Singh ( 1990) proposed a two-stage randomized response model that 

1s a variation of the Warner model. In this model, each interviewee in the simple 

random sample with replacement of n respondents is provided with two random 

devices. The random device R1 consists of two statements. The one statement is that "I 

belong to the sensitive trait group" (with probability M ), and the other statement is that 

"Go to random device R2 "(with probability 1-M ). The random device R2 also 
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consists of two statements which are "I belong to the sensitive group" and "I do not 

belong to the sensitive group" with known probabilities P and 1 - P , is the same as 

used by Warner (1965). They derived that the proportion of respondents who answer 

"Yes" for the sensitive question and the negative of the sensitive question is 

(2.1.12) 

where O is the proportion of "Yes" responses. 

It is assumed that the total number of "Yes" responses is known from the sample 

and M andP (t: 0.5) are set by the researcher. The maximum likelihood estimator is 

A B-(1-M)(l-P) 
7f = . 

ms 2P-1+2M(l-P) 
(2.1.13) 

Mangat and Singh (1990) showed that the variance of an unbiased estimator frms 

IS 

Var(fr )= 1r8 (1-1r 8 ) + (1-M)(l-P)[l-(1-M)(l-P))] 
ms n n[2P-1+2M(l-P)] 2 

(2.1.14) 

and the mean square error of fr ms in the case of less than completely truthful "Yes" 

answer to the sensitive statement and to the negative form of the statement is 

MSE(fr ) = 1r s~ (1- 1r s~) + (1-M)(l- P)[l- (1-M)(l- P)] + [:,r (T - l)]2 
ms n n[2P-1+2M(l-P)]2 s ' 

+ 1r 8M(T-T,)[1 + 1r s (n-l){M(T-T,) + 4M~ (1-P) + 2~ (2P-1)} 

- 2(1-M)(l - P)- 2:,r 8 n{2M (1- P) + 2P-1} ][ n{2P -1 + 2M (1-P)} 2 r1 (2.1.15) 

where T and~ are the probabilities that a respondent with the sensitive trait will report 

truthfully at the first stage and second stage. 
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Mangat (1994) proposed another RR model which has the benefit of simplicity 

over that of Mangat and Singh (1990). 

The probability of a "Yes'' response for this model is given by 

(2.1.16) 

where Y M is the proportion of "Yes" responses and P is the probability of selecting the 

sensitive question. 

Mangat (1994) showed that the variance of an unbiased estimator fem is 

(2.1.17) 

and the mean square error of ic m in the case of less than completely truthful "Yes" 

answer to the sensitive statement and to the negative form of the statement is 

(2.1.18) 

where T,. is the probability that a respondent with the sensitive trait will report truthfully. 

This section briefly reviewed the literature of qualitative randomized response 

techniques including the original Warner model and other randomized response models. 
) 

2.2. Literature Review on Quantitative Randomized Response Model 

Greenberg et al. ( 1971) have proposed the unrelated question randomized 

response design for estimating the mean and the variance of the distribution of a 

quantitative variable. The RR technique is similar to the unrelated question RR 

technique of Horvitz et al. (1967) in terms of a survey procedure that a respondent could 
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be asked one of two questions depending on the outcome of some randomization 

device. For example, an interviewee to perform a randomization device with two 

outcomes with pre-assigned probabilities P and 1 - P will answer one of the following 

questions: 

Sensitive question: How many abortions have you had during your lifetime? 

Non-sensitive question: How many magazines do you subscribe to? 

Two independent samples of sizes n1 and n2 are employed. Unbiased estimators 

for the means of the sensitive and non-sensitive distributions, µA and µ 8 respectively, 

are 

(2.2.1) 

(2.2.2) 

where T, and ~ are sample means computed from the responses in the two samples; 

and Pj is the selection probability for the sensitive question in the j th sample 

The variance of this estimate is given by 

A (1- P2 ) 
2 Var(~) + (1- P1 ) 

2 Var(~ ) 
Var(µ)-----------

A - (P2 -~)2 
(2.2.3) 

where Var(~)=:. [a~ +Pj(a~ -a~)+P/1-P)(µA -µ8 )2]. 
J 

Only one sample is required if µ 8 and a 8 are known in advance. Furthermore, it 

can be derived the result as a substantial reduction in the variance of fl A by an empirical 

investigation from the qualitative unrelated question randomized response technique. 

12 



Equations (2.2.1) and (2.2.3) simplify to 

" T -(I-P)µB 
µA= p (2.2.4) 

and 

T, ( " ) _ Var(T) var µA - 2 • p 
(2.2.5) 

Eriksson (1973) has presented a discrete quantitative RR technique which 

modified the quantitative unrelated question RR technique by Greenberg et al. (1971). 

Eriksson used a deck of cards which consist of two different types of cards. The first 

type card is a red card and the second type of cards is a card with a designated number 

(Bi). If a respondent possesses a red card then she or he should answer the sensitive 

question (A). Otherwise, if a respondent possesses the second type of cards then she or 

he should say the designated number ( Bi ). The randomization device with two types of 

cards with preassigned probabilities P and 1- P will give each respondent one of the 

following statements: 

Statement 1: Give a truthful answer for A. 

Statement 2: Just say the designated number Bi . 

k 

The proportion of cards with designated number Bi is pi such that 1-P = L pi . 

Mean and variance for a designated number Bi are as follows: 

= 'f B _!?..!_ 
µB ft i I-P 

a2 = 'f (B. -µ )2 _!?..!__ 
B £..J I B I p 

i=I -

13 
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(2.2.6) 

(2.2.7) 



Figure 2.1. Hopkin' s Randomizing Device 
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Suppose that there is an arbitrary sample of n respondents in the survey. The 

unbiased estimator of µ A at randomized response is given by 

(2.2.8) 

where ~ is the mean response of all n respondents. The variance of fl A is given by 

A a~ l-P[a~ 2 2] Var(µ A) = - + -- --+ a A + (µ A - µ s) · 
n nkP P 

(2.2.9) 

Instead of using a card type device, Liu and Chow (1976) proposed the Hopkins' 

randomizing device which consists of a jar containing red color balls and green color 

balls. Each of the green balls has a discrete number mark, such as 0,1,2, · · ·, m. 

We denote g; to be the number of green balls with i figure and r denote the 

number of red balls. So the total number of balls in the device is r + f, g; = r + g . The 
i=O 

proportion of red to green balls, and of green balls with different number, will be 

predefined. A respondent is asked to turn the device upside down, shake the device 

thoroughly, and turn it right side up to allow one of the balls to appear in the window of 

the device. If a respondent possesses a red ball then she or he should answer a sensitive 

question (A). Otherwise, if a respondent possesses a green ball with i figure then she 

or he should say a designated number i . To protect the respondents' privacy, 

interviewers stand on the opposite side of the window of the device. Therefore 

interviewers do not know whether the respondents have been asked to respond to the 

sensitive question or whether the respondents are responding with the number on a 

green ball. Let n; represent the true proportion of respondents belonging to a sensitive 

trait category i . 
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Liu and Chow (1976) derived the unbiased estimator of n; like this: 

A 

ft.= (r+ g;)P; _b_ 
I 

(2.2.10) 
r r 

where P; is estimate of the probability that a respondent randomly selected from a 

population will give an answer i . Suppose that there is an arbitrary sample of n 

respondents in the survey. Then the estimate of variance and covariance for ft; are 

2 A A 

A (r + g •) P. (1- P.) 
v(n;)= 'z' ' 

r n 
(2.2.11) 

and 

2 A A 

(r+g.) pp 
C A ( A A ) - - I I } av n.,n. - 2 

' 1 r n 
(2.2.12) 

respectively. 
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TABLE 2.1 

Randomized Response Models Introduced in the Literature Review 

Authors I Year Qualitative/Quantitative Characteristic 

Warner, S. L. (1965) Qualitative RR Model Original RR Model 

Greenberg, B.G. et. AL (1969) Qualitative RR Model Unrelated Question 

Greenberg, B.G. et. AL (1969) Quantitative RR Model 

Eriksson, S.A. (1973) Quantitative RR Model 
Card with a discrete 
figure 

Liu, P.T., and Chow, L.P. (1976) Quantitative RR Model 
Hopkins' 
randomizing device 

Mangat, N.S. and Singh, R. (1990) Qualitative RR Model 
Two-Stage RR 
Model 

Mangat, N.S. (1994) Qualitative RR Model 

17 



CHAPTER III 

A STRATIFIED WARNER'S RANDOMIZED RESPONSE MODEL 

3.1. Introduction 

Warner ( 1965) did the pioneering work of a randomized response (RR) technique 

which minimizes underreporting of data relative to socially undesirable or incriminating 

behavior. Researchers such as Horvitz et al. (1967), Greenberg et al. (1969), Chaudhuri 

and Mukerjee (1988), Kuk (1990), Mangat and Singh (1990), Scheers (1992), Tracy and 

Mangat (1996), Singh et al. (2000) and Chaudhuri (2001) made further efforts to protect 

a respondent's privacy and increase response rates. 

Common to these RR techniques is a sample drawn from the population by 

simple random sampling with or without replacement. Here randomized response is 

developed for a stratified random sampling. Stratified random sampling is generally 

obtained by dividing the population into non-overlapping groups called strata and 

selecting a simple random sample from each stratum. There are several reasons to apply 

randomized response to stratified random sampling. A randomized response using a 

stratified random sampling might give some clue to solve a limitation of randomized 

response which is the loss of individual characteristics of the respondents. By using the 

previous randomized response techniques, a group characteristic not individual data is 

obtained. A RR technique using a stratified random sampling gives the group 

characteristics related to each stratum estimator. For example, if strata are sex and age 

group, individual estimators for sex and age group answers can be obtained. The second 

reason to use stratified samples is that a researcher can be protected from the possibility 
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of obtaining a really bad sample. Furthermore an administrative convenience reduces 

the cost of a stratified random sampling compared to a simple random sampling. 

3.2. A Drawback of the Previous Stratified Randomized Response Model 

Hong et al. (1994) suggested a stratified RR technique under the assumption that 

n; = n(N; / N) where n; and N; are the sample size and the population size of stratum 

i , and n and N are the size of the whole sample and the size of the whole population. 

They applied the same randomization device that consists of a sensitive question 

(S) card with probability P and its negative question (S) card with probability 1- P to 

every stratum. Under the proportional sampling assumption, it may be easy to derive the 

variance of the proposed estimator but may cause a high cost because of the difficulty in 

obtaining a proportional sample from some strata. To rectify this problem, a stratified 

randomized response technique using an optimal allocation is presented. It will be 

shown that a stratified randomized response technique using an optimal allocation is 

more efficient than a stratified randomized response technique using a proportional 

allocation. 

3.3. Proposed Model 

In the proposed model, the population is partitioned into strata, and a sample is 

selected by simple random sampling with replacement in each stratum. To get the full 

benefit from stratification, we assume that the number of units in each stratum is 

known. An individual respondent in the sample of stratum i is instructed to use the 

randomization device R; which consists of a sensitive question (S) card with 

probability ~ and its negative question (S) card with probability 1- ~ . The respondent 
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should answer the question by "Yes" or "No" without reporting which question card she 

or he has. This protects the respondent's privacy. So a respondent belonging to the 

sample in different strata will use different randomization devices, each having different 

pre-assigned probabilities. Let ni denote the number of units in the sample from stratum 

k 

i and n denote the total number of units in samples from all strata so that n = L ni . 
i=l 

Under the assumption that these "Yes" and "No" reports are made truthfully and 

~ (:;t 0.5) is set by the researcher, the probability of a "Yes" answer in a stratum i for 

this procedure is 

for i = 1,2, · · · , k (3.3.1) 

where Z; is the proportion of "Yes" answer in a stratum i, n s, is the proportion of 

respondents with the sensitive trait in a stratum i and I'; is the probability that a 

respondent in the sample in a stratum i has a sensitive question (S) card. 

The maximum likelihood estimate of n s, is 

A 

A Z. -(1-P) 
'J'C = I I 

s, 
2P -1 

for i = 1,2, · · · , k (3.3.2) 
I 

where ii is the proportion of "Yes" answer in a sample in the stratum i and n s, is the 

proportion of respondents with the sensitive trait in a sample of the stratum i. 

Since each ii is a binomial distribution B(n;, Zi), the estimator n s is unbiased for 

n s, with 

T ! ( A ) 'J'C S (1 - 'J'C S ) ~ (1- ~ ) var 'TC = · ' + ----''---'--
s, n; n;(2P; -1) 2 

(3.3.3) 
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Since the selections in different strata are made independently, the estimators for 

individual strata can be added together to obtain an estimator for the whole population. 

The maximum likelihood estimate of TC s is easily shown to be 

A _ '{-, A _ '{-, [ti -c1-PJ] 
TC s - L, W.TC s - L, W. 

i=l I 
i i=I 1 2P; -1 

(3.3.4) 

where we denote N to be the number of units in the whole population , Ni to be the 

total number of units in the stratum i and w; = (N; / N) for i = 1,2, · · ·, k so that 

k 

w= LW; =1. 
i=l 

Theorem 3.3.1. The proposed estimator ft s is unbiased for population proportion TC s . 

Proof. As each estimator ft s, is unbiased for TC s, , the expected value of ft sis 

The estimator ft s of TC s is unbiased. 

Theorem 3.3.2. The variance of an estimator ft s is given by 

A '{-, w. 2 
[ p (l - p)] 

Var(TCs)= L,-' TCs,Cl-TCs,)+ ' 1
2 • 

i=I ll; (2P; -1) 
(3.3.5) 

Proof. Since each unbiased estimator ft s, has its own variance, the variance of ft s using 

(3.3.3) and corollary 1. in Sec. 5.9 of Cochran (1977) is 

A ('{-, A ) '{-, 2 A '{-, w. 2 
[ P; (1- P; ) ] Var(TC s) = Var L, W;TC s, = L, w; Var(TC s,) = L..._, TC s, (l-TC s) + _ 2 

i=l i=l i=l n; (2P; 1) 

which proves the theorem. 
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Information on n s, is usually unavailable. But if prior information on n s, is 

available from past experience then it helps to derive the following optimal allocation 

formula. 

Theorem 3.3.3. The optimal allocation of n to nl' n2, · · ·, nk-i and nk to derive the 

k 

minimum variance of the fr s subject to n = L n; is approximately given by 
i=l 

[ 
p (1- P.) ]1/2 

w 1C (1 - 1C ) + I I 

ni ; s, . s, (2P; -1)2 
--------------

Lk [ P(l-P)]112 
w 1C (1 - 1C ) + I I 

i=l i s, s, (21'; -1)2 

(3.3.6) 
n 

Proof. For minimum variance for fixed total sample size in Sec. 5. 9 of Cochran ( 1977), 

[ ]
1/2 

I'; (1- I';) 
n. oc N. ns (1- ns ) + 2 

I I ' ' (2P; - 1) 

Thus 

[ 
P.(1-P.)]112 [ P.(l-P)]1,2 

N 1C (1 - 1C ) + I I w 1C (1 - 1C ) + I I 

n;..:.. i s, s, (2P; -1)2 =--; _s, ___ s' __ (2_P_;_-_1_)2 __ 

n - k [ P. (1- P.) ]112 k [ p (1- P.) ]112 . 
~ N n (1- n ) + , , ~ w n (1- n ) + , , ft i s, s, (21'; -1)2 ft i s, s, (21'; -1)2 

The proportion of the total sample size which is allocated to each sample is 

[ 
P. (1- P.) ]1/2 

w 1C (1 - 1C ) + I I 

i s, s, (2P; _ 1)2 
--------------

k [ P(l-P)J112 
~w n (1-n )+ ' ' ft i s, s, (2P; -1)2 

n 
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Corollary 3.1. If we insert (3.3.6) into the following inequality: 

then we can easily show 

Proof. Suppose k = 3 . It means that n = n1 + n2 + n3 • Let 

A= (1 ) fl (1 - }l ) B n -n + = 
s, s, (2/l -1)2 ' 

and C = n (1- n ) + _P_3 (_1-_P_3_) 
s, s, (2P3 -1)2 . 

By (3.3.6), we can derive the following ones: 

n1 _ w;JX. 
;;- w2-JB 

Thus 

We can use the above equations to show 
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= -' n -n + ' ' n [L3 w. 2 
{ 1 p O _ p) }](L3 ) 

i=l ll; S, ( S,) (21'; -1) 2 i=l i • 

By the mathematical induction, we can prove 

On using (3.3.8), we derive the minimal variance of an estimator ft s in the 

following theorem. 

Theorem 3.3.4. The minimal variance of the estimator ft s is given by 

[ 
1/2]2 ,.. _ 1 k P; (1 - I'; ) 

Var(n 5 )-- LW;{n5,(l-n5,)+ 2 } • 
ll i=l (21'; -1) 

(3.3.9) 

Proof. From (3.3.8), we can derive the following equation: 

k w. 2 P(l-P) 1 k P(l-P) . [ 1/2]2 
-' n 1-n + ' ' =- w n 1-n + ' ' f,' n; { '· ( ,.) (2P, -1)'} n f,' ;{ '· ( ,) (2P, -1)'} 
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Inserting the right side of equation into (3.3.5), 

,.. Lk w. 2 
[ P(l-P)] Var(n ) = -' n (1- n ) + ' ' 

s . s, s, (2P - l) 2 ,=1 n; i 

1 k P(l-P) 
=- w n 1-n + ' ' [ 

1/2]2 
n f.' ;{ ,,( ,,) (2P,-1)'} 

which proves the Theorem. 

Theorem 3.3.5. The unbiased estimator of the variance Var(n s) is given by 

,.. 1 k " l " P;(l-~) [ { 1/2]2 
v n =-- w n -n + 

( ') n - k f.' ; '• ( ,,) (2P, -1)' } · (3.3.10) 

Proof. Substituting n; -1 for n; in (3.3.5). Then 

vn - n n +' ' ( ,.. Lk w,2 [ 1 P(l-P)] 
s)- i=l n; -1 s, ( - s) (2P; -1)2 

and applying it to (3.3.6) and (3.3.8). Then 

-'- n 1-n + ' ' n -1 = w [ 
k w. 2 

{ p (1- p) }]( k ) [ k fi'n;-l s,C s) (2P;-l)2 fi'(; ) fi' ; ]

2 

P(l-P) 
n 1-n + ' ' s, ( s) (2P; -1)2 . 

From the above equation, 

[ 
k w. 2 

{ p (1- p) }] 1 [ k -'- n 1-n + ' ·' =-- w i -1 s, ( s) (2P -1)2 - k i ; 
r=l ni i n 1=l 

]

2 

P(l-P) 
n 1-n + ' ' s, ( s) (2P; - l)2 · 

Hence, 

,.. 1 k ,.. l ,.. ~ (1 - ~ ) [ 
1/2 ]2 

( ,) n-k ~ ;{ ,,( ,,) (2P,-1)'} · v n =-- w n -n + 
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3.4. Efficiency Comparison 

3.4.1. Efficiency Comparison with the Hong et al. Model 

Hong et al. ( 1994) derived the unbiased maximum likelihood estimator of n s : 

A _ ~ A . _ ~ . ( Y; - (1- P) ) n H - L,; w.n s - L,; w. 
i=I ' ' i=I ' 2P -1 

(3.4.1.1) 

A 

where I'; is the proportion of "Yes" answer in a sample in the stratum i . For its 

variance, 

1 k P(l-P) 
Var(n H) = - I[w;ns (1-ns )]+ 

n i=I ' ' n(2P -1) 

=- wn 1-n + 1 [ k { P(l - P) }] 
n ~ ; s/ s) (2P-1)2 . (3.4.1.2) 

under the assumption that n; = n(Nj N). 

From (3.3.9), we can get the variance of an estimator of our proposed stratified 

randomized response technique. 

Suppose I';= P for all i. Then (3.3.9) becomes 

[ 
1/2]2 A 1 k P(l-P) 

Var(ns)=- Iw;{ns;Cl-ns;)+ 2 } 
n i=I (2P-1) 

(3.4.1.3) 

We can do a mathematical comparison as follows: 

P(l-P) . 
We denote L,. = ns (1-ns ) + 2 • We can do the followmg: 

; ; (2P- l) 
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which is always positive. Therefore, Var(n H )-Var(n s) > 0. 

The relative efficiency of two variances is 

Since the value of the RE. is more than one, our proposed stratified RR technique 

is more efficient than the Hong et al. (1994) stratified RR technique when P; = P for all 

i. In a case that F; -=f:. P for all i, it is difficult to derive the mathematical condition of 

the relative efficiency comparison from (3.3.9) and (3.4.1.2). We resort to the empirical 

study on the percent relative efficiency (RE). Suppose that there are two strata in a 

population and P2 > ~ from (3.3.9). Then the percent relative efficiency is 

Var(n ) 
Percent RE= H x 100. 

Var(ns) 
(3.4.1.4) 

If the value of the percent RE is more than 100 then our proposed model is more 

efficient than the Hong et al. (1994) model. But if the percent RE is less then 100, then 

the Hong et al. model is more efficient than the proposed model. Since a sample size n 

is cancelled out in the percent RE, we do not have to change the sample size in the 
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percent RE. Suppose that we can get prior information on 1C s, , n s, , w,, w2 , 1C s . Under 

the condition P2 > ~ , Table 3.1 shows that the values of the percent relative efficiency 

are more than 100 for all parameter values tabled. We obtain the values of the percent 

relative efficiency from changing n s,, n s,, w,, w2 , n = 1000 and P2 • Since the Warner 

model is symmetric in terms of P , the values of the percent relative efficiency are also 

symmetric in terms of P . We just showed the cases from P = 0.6 to P = 0.9 by 0.1 

increments. We dealt with the empirical study of the percent relative efficiency of 

Var(nn)/Var(ns)in the case of two strata. In section 3.4.3, we will think about more 

than two strata cases in terms of efficiency. We will verify that we will have the same 

result in more than two strata as that for two strata in the population. From the two cases 

presented in this paper, we may conclude that our stratified randomized response 

technique is more efficient than the stratified randomized response technique presented 

by Hong et al. (1994). 
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TABLE 3.1. 

The Percent Relative Efficiency of Var(fr H) I Var(it s) When n = 1000 . 

p =P., 
0.6 0.7 0.8 0.9 
p2 p2 p2 p2 

7C s, 7C s, WI w2 7C s 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 140.2 160.2 127.2 147 123.5 134.3 107.5 112.5 
0.6 0.4 0.1 159.1 192.8 138.8 170.1 133.1 149.5 110.1 117 
0.4 0.6 0.11 210.4 296.6 166.9 235.8 155.6 188.2 115.3 126.4 
0.3 0.7 0.115 245.9 383 .. 1 184.3 283.8 168.8 213.1 118 131.5 

0.18 0.23 0.7 0.3 0.195 139.4 158.3 125.4 142.6 120 128.3 105.6 109.2 
0.6 0.4 0.2 157.8 189.5 136 162.9 127.9 140.4 107.6 112.5 
0.4 0.6 0.21 207.4 287.3 161.6 219 146.1 169.9 111.6 119.5 
0.3 0.7 0.215 241.5 367.4 177.1 258.3 156.6 188.1 113.6 123.1 

0.28 0.33 0.7 0.3 0.295 138.8 157.1 124.2 140.1 118.1 125.3 104.8 107.8 
0.6 0.4 0.3 156.9 187.4 134.3 158.8 125.1 135.8 106.5 110.6 
0.4 0.6 0.31 205.4 281.5 158.3 209.7 141.3 161.2 109.9 116.4 
0.3 0.7 0.315 238.6 357.7 172.8 244.7 150.5 176.5 111.6 119.5 

0.38 · 0.43 0.7 0.3 0.395 138.5 156.4 123.6 138.7 117.1 123.8 104.4 107.2 
0.6 0.4 0.4 156.4 186.2 133.4 156.8 123.8 133.7 106 109.7 
0.4 0.6 0.41 204.3 278.5 156.7 205.1 139 157.2 109.1 115.1 
0.3 0.7 0.415 237 352.7 170.6 238.1 147.6 171.3 110.7 117.9 

0.48 0.53 0.7 0.3 0.495 138.4 156.3 123.5 138.4 116.9 123.5 104.3 107 
0.6 0.4 0.5 156.3 186 133.2 156.3 123.5 133.2 105.8 109.5 
0.4 0.6 0.51 204.1 277.9 156.3 204.2 138.5 156.4 108.9 114.8 
0.3 0.7 0.515 236.7 351.7 170.2 236.9 147 170.3 110.6 117.6 

0.58 0.63 0.7 0.3 0.595 138.6 156.6 123.8 139.1 117.3 124.2 104.5 107.3 
0.6 0.4 0.6 156.5 186.6 133.6 157.4 124.1 134.2 106.1 109.9 
0.4 0.6 0.61 204.7 279.7 157.2 206.8 139.7 158.5 109.3 115.5 
0.3 0.7 0.615 237.7 354.8 171.5 240.7 148.6 173.2 111 118.5 

0.68 0.73 0.7 0.3 0.695 139 157.5 124.5 140.8 118.5 126.1 105 108.1 
0.6 0.4 0.7 157.2 188.2 134.8 160.2 125.9 137.1 106.7 111.1 
0.4 0.6 0.71 206.2 284.1 159.5 213.3 143 164.3 110.4 117.4 
0.3 0.7 0.715 239.9 362.2 174.6 250.5 152.9 181.1 112.3 120.8 
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P=~ 
0.6 0.7 0.8 0.9 
p2 p2 p2 p2 

nsl ns, WI w2 ns 0.7 0.8 I 0.8 0.9 I 0.9 o.95 I o.93 0.95 

0.78 0.83 0.7 0.3 0.795 139.6 159 125.9 144 120.8 129.9 106 109.9 
0.6 0.4 0.8 158.3 190.8 136.9 165.4 129.4 143.1 108.1 113.5 
0.4 0.6 0.81 208.7 291.5 163.6 225.8 149.5 176.4 112.7 121.6 
0.3 0.7 0.815 243.5 374.8 180.1 269.3 161.4 197.8 115.1 126 

0.88 0.93 0.7 0.3 0.895 140.6 161.3 128.1 149.5 125.3 137.8 108.4 114.1 
0.6 0.4 0.9 159.8 194.8 140.2 174.6 136 155.6 111.5 119.7 
0.4 0.6 0.91 212.3 303 170.3 248.8 162.5 203.9 118.2 132.3 
0.3 0.7 0.915 248.8 394.6 189.3 305.2 178.9 237.4 121.9 139.6 

3.4.2. Efficiency Comparison with Variations of the Warner Model 

We will do an efficiency comparison of our stratified randomized response 

technique and two-stage randomized response technique that was presented by Mangat 

and Singh ( 1990) by a way of variance comparison. 

Theorem 3.4.1. Suppose that there are two strata m the population and 

P = ~ = P2 =t 0.5. The proposed estimator fr s will be more efficient than the Mangat 

and Singh ( 1990) estimator fr ms under the following condition: 

(3.4.2.1) 

M (1- P) M (1- P) (l ) -1 
[{ }

2 ] 

> (2P-1)(2P-1+2M(l-P)) - (l-2P)(2P-1+2M(l-P))2 [w1 -w1 ] 

where n 5 =tn 5 • 
I 2 
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On using (2.1.14) and (3.3.9), we check an efficiency of ft s with respect to ft,ns. 

(1-M)(l-P){l-(1-M)(l-P))} 1 [r2 { P(l-P) }1' 2]
2 

+ -- w. re (l-re )+---
n{2P-1+2M(l-P)}2 n i=I' s, s, (2P-l) 2 

Inserting res = w1re s + w2re s into Var(ft mJ , then we can derive the following 
l 2 

equation: 

+ (l-M)(l-P){l-(1-M)(l-P))} 1 [~ { l P(l-P) }1' 2]
2 

n{2P-l+2M(l-P)}2 n fi' w; res, ( -res)+ (2P-1) 2 

,.. ,.. w1res +w2res -2w1w2resres (1-M)(l-P){l-(1-M)(l-P))} 
Var(re )-Var(re )= 1 

' 
1 2 +-----------

ms s n n{2P-l+2M(l-P)}2 

2w1(1-w1)[ l P(l-P)] 112 [ P(l-P)] 112 
n resi ( -res)+ (2P-1)2 res, (l-res)+-(2-P---l)-z 

Since 

w1res1 +w2res, -2w1w2res1res, -(W1 2res1 +w2 2res, )= w1(1-w1)(res1 +res, -2res1res), 
n n n 

We can derive the following equation: 
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w(l-w)(n -n )2 
l T ( A ) l T ( A ) 1 I s, s, var n,,,s - var 1C s = 

n 

(l-M)(l-P){l-(1-M)(l-P))} P(l-P) 
+-----------

n{2P-1+2M(l-P)}2 n(2P-l)2 

After some algebra, we can derive the following: 

w (l- w )(n - n )2 

lf ( A ) l f ( A ) 1 J S, Sz var n,,,s - var 1Cs = 
n 

M[M(l-P) 2 -l+3P-2P 2 ] 
Since 

n(2P-1) 2 [2P-1 + 2M (l-P)]2 

M[M(l-P) 2 -l+3P-2P 2 ] 

n(2P-1) 2[2P-1 + 2M (l-P)]2 

1 [ M(l-P) ] 2 M(l-P) 
=-;; (2P-l)(2P-l + 2M(l-P)) n(l-2P)[2P-l +2M(l-P)]2 

w (1- w )(n - n ) 2 
lT ( A ) lT ( A ) __ 1 __ 1 _s, __ s_, _ var n,,,s - var 1Cs = 

n 

1 M(l-~ M(l-~ [ ]

2 

- n (2P-1)(2P-1+2M(l-P)) + n(l-2P)[2P-1+2M(l-P)]2. 

If Var( 'it ms) - Var( 'its ) > 0 then the proposed estimator 'its will be more efficient 

than that of Mangat and Singh (1990). 
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In a case of n s ':f:. n s , 
I 2 

(,r 7r ) 2+ 7r (1 7r )+ 7r (1 7r )+ [{ P(l-P)}1
'
2 { P(l-P)}112 ]

2 
s, - s, s, - s, (2P-l)2 - s, - s, -(2-P---1)-2 

M(l-P) M(l-P) l -1 
[{ }

2 ] 

> (2P-1)(2P-1+2M(l-P)) - (l-2P)(2P-1+2M(l-P))2 [w1 ( -w1 )] • 

If prior information on n s , n s , w1 , w2 and n can be roughly obtained and 
I 2 

Mand P = ~ = P2 * 0.5 are chosen by the researcher, then we can easily check the 

relative efficiency of Var(1r ms)/ Var(.i s) . Suppose we have prior information on n s, , 

ns , w1 , w2 and n. Then we set four different P's and three different M's to verify 
2 

the relative efficiency of .is with respect to .i ms in Table 3.2. Under the condition 

(3.4.2.1), Table 3.2 shows that the proposed estimator .is is more efficient than the 

Mangat and Singh (1990) estimator .i ms. Warner (1965) mentioned that a P close to 1 

( or close to 0) is adequate to insure cooperation from respondents but a value of P 

close to 0.5 conveys less information from each interview. Thus four different P 's and 

three different M's we used in Table 3.2 are adequate to insure cooperation. From the 

Table 3.2, we can make several observations. The first observation is that every value in 

Table 3.2 is much bigger than one, indicating that the relative efficiency of the proposed 

method is considerably higher than that of Mangat and Singh (1990). The second 

observation is that the value of relative efficiency increases as P and M increase, 

except for P = 0.35 with M = 0.3 , P = 0.4 with M = 0.3 , and P = 0.4 with M = 0.2 

in every case. The third observation is that when M = 0.3 and P = 0.3, the value of 
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relative efficiency is unusually high in every case. An additional observation is that 

there is little reduction in relative efficiency as 1r s increases. 

In the empirical investigation, we do not change sample size n in the Table 3 .2 

because n is cancelled out in the ratio of Var(i ms) I Var(i s) . Through these results, we 

have demonstrated that the proposed estimator fr s be more efficient than that of Mangat 

and Singh (1990) under (3.4.2.1) in a case of two strata in the population. When 

M = 0.1, the Figure 3 .1 shows that the relative efficiency of i s with respect to i ms 

increases as P increases, but there is little reduction of the relative efficiency as 1r s 

increases. 

0.3 

p 

7 

6 

5 

4 
R E. 

3 

2 

0 

o.,, 

Figure3.1. The Relative Efficiency of Var(im,) /Var(i8 ) When M = 0.1 
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TABLE 3.2. 
The Relative Efficiency of Var(n ms)/ Var(n s) When n = 1000 and P = P., = P2 :;t: 0.5 . 

1C s, 1C s, WI w2 1C s 

0.28 0.33 0.9 0.1 0.285 

0.28 0.33 0.8 0.2 0.29 

0.28 0.33 0.7 0.3 0.295 

0.28 0.33 0.6 0.4 0.3 

0.28 0.33 0.5 0.5 0.305 

0.28 0.33 0.4 0.6 0.31 

0.28 0.33 0.3 0.7 0.315 

0.28 0.33 0.2 0.8 0.32 

0.28 0.33 0.1 0.9 0.325 

M 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

0.1 
0.2 
0.3 

p 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 

1.7554 1.8195 1.9215 2.0918 2.4089 3.1502 6.2893 
3.6179 4.06 4.8498 6.506 11.421 57.19 25.18 
10.612 14.834 26.721 104.82 412.23 11.283 1.5667 

1.7518 1.8165 1.919 2.0897 2.4072 3.1488 6.2877 
3.6038 4.0477 4.8385 6.495 11.408 57.15 25.172 
10.559 14.777 26.645 104.61 411.7 11.276 1.5666 

1.748 1.8134 1.9165 2.0877 2.4055 3.1473 6.2861 
3.5897 4.0354 4.8273 6.484 11.395 57.11 25.165 
10.506 14. 72 26.569 104.4 411.17 11.269 1.5664 

1.7441 1.8102 1.9139 2.0855 2.4037 3.1458 6.2844 
3.5756 4.023 4.816 6.473 11.381 57.07 25.157 
10.453 14.663 26.493 104.19 410.65 11.261 1.5663 

1.7401 1.8069 1.9112 2.0834 2.402 3.1443 6.2828 
3.5614 4.0105 4.8047 6.4619 11.368 57.03 25.149 
10.401 14.607 26.417 103.98 410.12 11.254 1.5661 

1.7359 1.8035 1.9085 2.0811 2.4002 3.1427 6.2811 
3.5472 3.9981 4.7934 6.4508 11.355 56.99 25.142 
10.349 14.551 26.341 103.77 409.6 11.247 1.5659 

1.7316 1.8001 1.9057 2.0789 2.3983 3.1412 6.2794 
3.533 3.9856 4.7821 6.4397 11.342 56.95 25.134 
10.297 14.495 26.266 103.57 409.08 11.239 1.5657 

1.7272 1.7965 1.9028 2.0766 2.3964 3.1396 6.2778 
3.5187 3.973 4.7707 6.4286 11.328 56.91 25.127 
10.246 14.439 26.191 103.36 408.56 11.232 1.5655 

1.7227 1.7928 1.8998 2.0742 2.3946 3.138 6.2761 
3.5044 3.9605 4.7593 6.4174 11.315 56.871 25.119 
10.195 14.384 26.117 103.15 408.04 11.225 1.5653 

Prior information on n s , n s , w1 , w2 , n s = w1n s + w2n s , n , M and P satisfy the 
l 2 · l 2 

condition (3.4.2.1). 
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If we set M = 0 in the two-stage RR model presented by the Mangat and Singh 

( 1990), then the Mangat and Singh (1990) method reduces to the W amer (1965) model. 

Theorem 3.4.2. Suppose there are two strata in the population and P = ~ = P2 1:- 0.5 . 

The proposed estimator ft s is more efficient than the Warner (1965) estimator ftw. 

Proof. Suppose M = 0 in the Mangat and Singh (1990) model. We can show that 

From the condition (3.4.2.1) when M = 0, 

2 P(l - P) P(l - P) 
n -n + n 1-n + - 1r 1-n + >0 [{ }

1/2 { }1/2 ]2 
( s1 s) s1 ( s) (2P-l)2 s, ( s) (2P-1)2 

where 1r s 1:- n s . 
l 2 

w (1- w )(n - n ) 2 

Var(ftw)-Var(ft 5 ) =-1--1--5-1 
--

5-' -

n 

w1(1-w1 )[{ l P(l-P)}u2 { l P(l-P)}u2]
2 

O 
+--n--. 7rs1( -ns)+ (2P-1)2 - 1rs,( -ns)+ (2P-1)2 > . 

The proposed estimator ft s is always more efficient than the Warner estimator 

ftw When 7r 51 'F 1f s,. 

We showed that the proposed estimator is more efficient than that of the W amer 

(1965). Mangat (1994) also showed that his estimator is more efficient than that of 

Warner (1965) if 7r s > 1-{P /(2P-l) }2 which always holds for P > II 3 . The 

following theorem is to compare two different estimators under his condition with 

respect to efficiency. 
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Theorem 3.4.3. Suppose that n s > 1-{ P /(2P-1)} 2 and assume that there are two 

strata in the. population and P = ~ = P2 -=t:- 0.5 . The proposed estimator ft s will be more 

efficient than the Mangat ( 1994) estimator ft m under the following condition: · 

> - 1- wn +wn (1 _ P) [( p ) 2 
] 

W1 (1- W1 )P 2P - 1 { ( I s, 2 s)} 
(3.4.2.2) 

where n s. -=t:- n s • 
I 2 

Proof. Assume ns >1-{P/(2P-1)}2, n=n1 +n2 and P=~ =P2 -=t:-0.5. By using 

(2.1.16) and (3.3.9), 

TT (") TT (") ns(l-ns) (l-7r8 )(1-P) 1[~ { (l ) P(l-P)}1
'

2
]

2 

Var Jr m - Var Jr s = + - - L,J W; Jr s. - Jr s. + 2 . 
n nP . n i=1 • • (2P -1) 

TT (") TT (") ns(l-ns) P(l-P) var n - var n s = + 
m n n(2P-1) 

We can derive 

P(l-P) = (1-P) [(l-ns)-(-p-)2]· 
n(2P-1) 2 nP 2P-1 

Since n s = w1n s, + w~n s, , we derive the following: 
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(1-P) P 2 1 2 P(l-P) 
- -- - 1- w n +w n -- w n 1-n + [ ] [ 1/2 ]2 

nP (2P-1) { (' '• . ' ,.)) n f,, ,{ ,,( ,.) (2P-J)'} 

2 2 2 2 = (wins, +w21rs, )-(w1 ns, +w2 1rs, )-2w1w21rs,ns, + P(l-P) 

n n(2P-1)2 

1 2 P(l - P) (1- P) P 2 
-- w n 1-n + - -- - 1- w n +w n [ 

1/2]2 [ ] 
n ~ ' { '• ( ,.) (2P- I)' } nP ( 2P-1) { ( ' '• . ' ,,) ) . 

w (1-w )[ 2P(l-P)] 
Var(n m) - Var(n s ) = 1 1 1r s + 1C s - 2n s 1C s + 2 

n ' ' ' ' (2P -1) 

2w1(l-w1)[ l P(l-P)] 112 [ l P(l-P)J"2 
---n-- 1rs, ( -ns, )+ (2P-1)2 1rs, ( -ns, )+ (2P-1)2 

(1 - P) [( p ) 2 
] - -{l-(w11rs +w21rs )} . 

nP 2P-1 ' ' 

w (1- w ) [ 2P(l - P)] Var(n )-Var(n s) = 1 1 1r s + 1C s - 2n s 1C s + 2 
m n I 2 I 2 (2P -1) 

- n -n + + n -n · + w1 (1- w1) [{ 1 P(l - P) } { 1 P(l - P) }] 
n s, ( s) (2P-1)2 s, ( s) (2P-1)2 

w1(1-wi) l P(l-P) l P(l-P) [{ }
1/2 { }1/2]2 

+ n ns, ( -ns)+ (2P-1)2 - ns, ( -ns,)+ (2P-1)2 

(1- P) [( p ) 2 
] - -{l-(w11rs +w21Cs )} . 

nP 2P-1 ' ' 
. I 

Therefore 
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w (1- w )(n - n )2 
u (A) u (A) __ 1~~1~_s,~_s_2_ var nm -var ns = 

n 

By the assumption n s > 1-{P /(2P-l)} 2 , 

To show that the proposed estimator ii s is more efficient than the Mangat ( 1994) 

estimator, Var(n,J- Var(n s) should be positive. Using this fact, we can derive the 

following condition: 

> - 1- wn +wn (1- P) [( p J2 
] 

wi(l - W1 )P 2P - 1 . { ( 1 s, 2 s)} 

where n s, -.:f:. n s, . 

We showed that our proposed estimator will be more efficient than the previous 

three estimators under the conditions (3 .4.2.1) and (3 .4.2.2) by a variance comparison in 

a case of two strata in the population. 
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3.4.3. Cost and Efficiency of Stratification 

We need think about more than two strata cases in terms of efficiency. Cochran 

(1977) showed that the variance for the mean of a stratified random sample decreases as 

the number of strata increases. So we want to show that the variance of an estimator in 

our RR model decreases as the number of strata increases. 

Suppose that k strata of equal size are created such that w; = 1 / k . Inserting 

w; = 1 / k into equation (3.3.9), then 

(3.4.3.1) 

Let f(k) = k\ [ t~n s, (1-n s) + (P; (1- F; )/(2F; -1) 2 )r where k is a positive 

integer. We want to show that f (k )- f (k + 1) ~ 0. 

1 [ k ]
2 1 [k+l ]

2 

f ( k) - f ( k + 1) = - ~ L( ft s , P ) - ~. L( ft s , P ) 
k2 ft ' I (k + 1) 2 ft ' I 

As the number of strata increases, it may be possible to divide a heterogeneous 

population into subpopulations, each of which is more homogeneous. So we may get 

- L L(n s, , P;) - - L L(n s, , P;) ~ 0. [ 1 ( k A ) 1 ( k+[ A )~ 

k i=I k + 1 i=l 

By this assumption, f(k) is a monotone decreasing function of k. Thus the 

variance of an estimator decreases as the number of strata increases. Therefore, the 

variance of our proposed estimator will be smaller as the number of strata increases. 
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Next question we have is how much the value of a variance will decrease as the 

number of strata increases. Kish (1965) answered our question by quoting the following 

model R 2 I I 2 + (1- R 2 ) where R 2 is the portion of the variance affected by the 

stratification and / is the number of strata. By this model, he wrote "the variance 

approaches to (1- R 2 ) after the creation of a moderate number of strata". Thus, little 

reduction in variance will be expected beyond an adequate number of strata in the 

population. We can tell that the cost of the survey affected by an increase of the number 

of strata is the limitation of a stratified random sampling method. Thus our proposed 

model has the same limitation. We recommend that when a researcher wants to increase 

the number of strata in a population, she or he should consider carefully whether the 

decrease of the variance (increase in precision) is worth the extra cost involved in 

increasing the number of strata. However, since a researcher may get a gain in precision 

in the estimates of the sensitive trait proportion in the population and can compare the 

target groups in which she or he is interested, a stratified RR model is an advantageous 

model compared to the RR model using simple random sampling. 

3.5. Less Than Completely Truthful Reporting 

k 

We denote T,. to be the weighted probability T, = L w;T,; where T,; is the 
i=l 

probability that a respondent with the sensitive trait will report truthfully in a sample 

stratum i . We assume that the respondents with the non-sensitive trait will report 

truthfully. The probability of a "Yes" answer in a stratum i for this procedure is given 

by 

z; = P;n s; T, + (1- I>; )n s; (1- T,) + (1- I>; )(1- n s; ) where i=l,2,···,k (3.5.1) 
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A biased estimator fr; of 1r 8 in the population has the following bias and 

vanance: 

k k 

Bias(fr;) = E{fr; -fr8 )= L w;E(fr;, -fr8,)= LW/Z-81 (T,. -1). (3.5.2) 
i=l 1=1 

[ 
1/2]2 

Var(fr;)=_!_ ±w,{1r81 T,.(l-1rs,T,.)+ ~(l-~~} 
n l=l (2~ -1) 

(3.5.3) 

The mean square error of fr; is given by 

[ 
1/2]2 

MSE(fr;) = _!_ ± wi{1r81 T,. (l-1rs,T,.) + ~ (l ~ ~~} +{± w;1rs, (T, -l)f. (3.5.4) 
n 1=1 (2Pj 1) ,=1 f 

The following theorem compares the efficiency of the proposed estimator fr; and 

the Mangat and Singh (1990) estimator fr.:Uin a situation ofless than completely truthful 

reporting. 

Theorem 3.5.1. Suppose there are two strata in the population and P = ~ = P2 :;t: 0.5. 

The proposed estimator fr; will be more efficient than Mangat and Singh (1990) 

estimator fr.:U if 

P(l-~ P(l-~ 1r T -Jr T 2 + 1r T I-1r T + - 1r T I-1r T + [{ }
1/2 { }1/2]2 

( s, r S2 ,) S1 ,( s., ,) ( 2P-l)2 s, ,( s, ,) (2P-1)2 

2P(l - P) (1-M)(l - P){l -(1-M)(l-P)} 
>---

(2P -1)2 w 1 (1-w 1 ){2P -1 + 2M (1-P) }2 

-1r8M(T-T,)[l +1r8 (n-l){M(T-I:,)+4MT,(l-P)+2T, (2P-1)} 

- 2(1-M)(l - P)- 21r 8 n{2M (1- P) + 2P- l}] [ w 1 (1- w 1 ){2P -1 + 2M (1- P)} 2 ]-1 . 

(3.5.5) 
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Proof. From (2.1.15), we can get the mean square error of n;.s from Mangat and Singh 

(1990): 

MSE(n' ) = n sT,. (l-n sT,.) + (1-M)(l-P)[l-(1-M)(l-P)] +[n (T -l)]2 
ms n n[2P-l+2M(l-P)] 2 s,. 

+n sM(T-T,. )[l +n s (n-l){M (T-T,.) +4MT,. (l-P)+ 2T,. (2P-l)} 

-2(l-M)(l-P)-2n sn{2M (1-P)+ 2P-1} ][n{2P-1 +2M (l-P) }2 r 1 

where T and T,. are the probabilities that a respondent with the sensitive trait will report 

truthfully at the first stage and second stage. From (3.5.4), the mean square error of n; 

lS 

MSE(ns')=_!_[~w.{nsT(l:-n T.)+ P;(l-P;~}
112

]

2 

+{~wns (T -1)}
2 

,L.J , , r s, 1 ( 2P _ 1) ,L.J 1 , r n ,=1 ; ,=1 

[ 

1/2 

MSE(n' )-MSE(ns') = w1 (1-w1 ) (ns T -ns T.) 2 +{(ns T (l-n T.)+ P(l-P~) 
ms n I r 2 , I ,. sli 1 (2P- l) 

-(n T(l-n T)+ P(l-P) J1
'
2

}
2
]- 2w1(l-w)P(l-P) + (l-M)(l-P){l-(1-M)(l-P)} 

s, ' s, ' (2P-l) 2 n(2P-l)2 n{2P-1+2M(l-P)}2 

+n sM(T-T,. )[l +n s (n-l){M (T-T,. )+4MT,. (l-P) +2T,. (2P-l)} 

-2(1-M)(l-P)-2n sn{2M (1-P)+ 2P-1} ][n{2P-1 +2M(l-P) }2 ]-1 • 

The proposed estimator n; will be more efficient than the Mangat and Singh 

(1990) estimator n;.s if MSE(n;) < MSE(n:,,s). 
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[{ P(]-P)} 1
'

2 
{ P(l-P)} 112

]
2 

(re s, T, - re sJ , ) z + re s,T, (l - rc s,,TJ + (2P-1)2 - re s, T, (1- rc sJ , ) + (2P-1)2 

2P(l - P) (1- M )(1- P) {1- (1- M )(1- P)} 
>---

(2P-1)2 WI (1- WI ){2P-1 + 2M (1- P)} 2 

-re 5 M (T-T, )[l +re 5 (n-l){M (T-T, )+4MT, (1-P) + 2T, (2P-l)} 

-2(1-M)(l-P)-2rc 5 n{2M (1-P) + 2P-1} ][w1 (1- w1 ){2P-1 + 2M (1-P) }2 ] - 1 

which proves (3.5.5). We derive the following one from MSE(iC:,,s )-MSE(n; ) > 0. 

If a researcher could obtain prior information on re s, , re s, , w1 , w2 , n and M , then 

a researcher can check a relative efficiency of MSE(n:,J / MSE(n ;) with prior 

information of T and T, . 

250 

200 

150 

RE 
100 

50 

0 

Figure 3.2. The Relative Efficiency of MSE(n:,J / MSE(n ;) 

When T=0.8 ,T, =0.7 , M =0.3 and n=2000. 
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Under pnor information on 1C s, , 1C s, , w1 , w2 , M and differing levels of 

n, P, T and T,. satisfying (3.5.1), Table 3.3 shows that the proposed estimator n; is 

more efficient than the Mangat and Singh ( 1990) estimator n ;.s in the case with two 

strata in terms of the relative efficiency, MSE(n;,s) / MSE(n;). 

When T = 0.8, T, = 0.7, M = 0.3 and n = 2000, Figure 3.2 shows that the value of 

relative efficiency is decreasing as 1C s increases, but the value of the relative efficiency 

is increasing as P increases. Table 3.3 and Fig. 3.2 show that our proposed estimator is 

more efficient than that of Mangat and Singh (1990) under condition (3.5.1). In a case 

of M = 0 in (2.1.15), MSE(n;.J reduces to MSE(n:). So an efficiency comparison of 

the proposed estimator and that of Warner (1965) in a situation of less than completely 

truthful reporting is given by the following theorem. 

Theorem 3.5.2. The proposed estimator n; is more efficient than the Warner (1965) 

estimator n: in the case of two strata in the population and P = ~ = P2 i= 0.5. 

Proof. The proof is similar to that of Theorem 4.2. 

Suppose M = 0 in the equation (2.1.15) of the Mangat and Singh (1990) model. It is 

shown that MSE(n;J = MSE(n:). From the condition (3.5.1) when M = 0, 

[{ P(l-P)}112 { P(l-P)}112 ]
2 

(1C s, T, -1{ s, T,.)2 + 1C slr (1-TC si; T,) + (2P -1) 2 - 1C s, T, (1-TC s,TJ + -(2-P---1)-2 

2P(l - P) P(l - P) 
> --------

(2P-1)2 w1(1-w1)(2P-1) 2 

where 1C 5 i=1C 5 • 
I 2 
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The difference of two mean square errors of n; and n: is 

[ { 

1/2 

MSE(ft')-MSE(ft')= wJl-wi) (n T-n T) 2 + (n T(l-n T.)+ P(l-P)) 
w s n s, r s, r SI r sli ' (2P-1)2 

-(n T (l-n T )+ P(l-P) J1
'

2
}

2
]+[1-2w1 (l-w1 )]P(l-P) >O, 

s, r 82 r (2P -1)2 n(2P -1)2 

It means that the proposed estimator is always more efficient than that of Warner 

in a situation of less than completely truthful reporting when there are two strata in the 

population. 

Remark. The mean square error of our proposed estimator can be compared with that 

of Mangat (1994): 

S A, nsT. (1- nsT) (1- ns )(1- P)[l - (1- ns )(1- P) - 2nsT] [ns (T -1)] 2 

M E(n ) = ' r + r + r 

"' nP 2 nP 2 P 

for an efficiency comparison in a case of less than completely truthful reporting. 

We showed that our proposed estimator is more efficient than the Warner and the 

Mangat and Singh estimators under the condition reference in the case with two strata in 

the population when the respondents are not completely truthful reporting in their 

answers. Using Cochran's result for a stratified random sampling, we can insist that our 

proposed estimator should be more efficient than the Warner and the Mangat and Singh 

(1990) estimators in a case of less than completely truthful reporting. 
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3.6. Discussion 

This paper presented a new stratified randomized response model. We showed 

that our model is more efficient than the Hong et al. (1994) stratified randomized 

response model. In both situations of the completely truthful reporting and less than 

completely truthful reporting, we showed that the proposed randomized response model 

is more efficient than the Warner (1965), the Mangat and Singh (1990) and the Mangat 

(1994) randomized response model with the condition presented. With prior information 

satisfying the conditions (3.4.2.1) and (3.5.1), we showed the relative efficiency of the 

proposed estimator with respect to the Mangat and Singh (1990) estimator. Tables 3.2, 

3.3 and Figures 3.1, 3.2 show that the relative efficiency is very high under the 

condition reference. Furthermore, the proposed method is more useful than the 

previous methods in that a stratified randomized response method helps to solve the 

limitation of randomized response that is the loss of individual characteristics of the 

respondents. Therefore, the proposed method has several advantages compared to the 

previous randomized response methods. 
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CHAPTERIV 

A MIXED RANDOMIZED RESPONSE MODEL 

4.1. Introduction 

For socially undesirable questions, direct measurement of valid information on 

human populations is difficult because of non-sampling errors, that is, refusal to 

respond and untruthful reporting. The randomized response (RR) survey technique that 

Warner ( 1965) proposed for the first time is designed to encourage cooperation and 

truthful replies to questions involving socially undesirable activities. A common 

objective of all randomized response variants of the Warner model is the protection of 

privacy while improving accuracy by reduction in response bias. Researchers such as 

Horvitz et al, (1967), Greenberg et al. (1969), Moors (1971), Lanke (1975, 1976), 

Anderson (1976), Leysieffer and Warner (1976), Greenberg et al. (1977), Flinger et al. 

(1977), Chaudhuri and Mukerjee (1988), Kuk (1990), Ljungqvist (1993), Mangat et al. 

(1993), Nayak (1994), Mangat et al. (1997), Singh et al. (2000) made an effort to 

protect a respondent's privacy and increase response rates by deriving the optimal 

design of RR model. The researchers compared RR designs based on statistical 

measure of efficiency and respondents' protection. 

4.2. A Privacy Problem of the Moors' Model 

Mangat et al. (1997) and Singh et al. (2000) pointed out the privacy problem of 

the Moors model. They assumed that a respondent belongs to the sensitive trait group 

but does not belong to the innocuous trait group. Suppose that the respondent is 

independently chosen in two samples drawn from the population using simple random 
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sampling with replacement. If the respondent chosen in the first sample must answer 

Question A, then his or her answer should be "Yes". By this assumption, the respondent 

is also chosen in the second sample. So if the respondent in the second sample must 

answer Question B, then his or her answer should be "No". Thus, the respondent 

common to both samples answered "Yes" when he or she had Question A and "No" 

when having Question B. Hence, interviewer can determine that the respondent belongs 

to the sensitive trait group. The privacy of the respondent is not protected in the Moors' 

model. As an alternative model of the Moors model, Mangat et al. (1997) proposed a 

random group method. The method can protect respondents' privacy but there is an 

efficiency problem. Mangat et al. ( 1997) mentioned that the variance yielded by the 

random group method is greater than that for the Moors model. Singh et al. (2000) 

proposed two different models as alternatives for the Moors model. But these two 

models have a common weak point. This weak point is that although their models using 

simple random sampling without replacement might be more efficient than the Moors 

model while keeping the confidentiality of a respondent, those models lead to a high 

cost survey since those alternative models need larger sample sizes than the Moors 

model using simple random sampling with replacement. Thus these drawbacks with the 

previous alternative models for the Moors model motivate the authors to propose 

another alternative model that will rectify the problems presented in the above models. 

4.3~ Proposed model 

4.3.1. A Background of Deriving a New RR Model 

Fox and Tracy (1986) described the choice of a nonsensitive question like this; 

"The respondent reporting sensitive information is provided very little protection from a 
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small n, , largely defeating the purpose of using a randomized response. Whenever n, 

approaches o , the conditional probability of having the sensitive attribute given a "Yes" 

answer, P(A I Yes), is uncomfortably high." Lanke (1975) demonstrated that under the 

condition P(A I Yes)< constant, the standard deviation of the unrelated question RR 

model when n, is known is a decreasing function of n, . Hence, under this condition, 

the RR design of n, = 1 yields the minimum value of the variance for the proposed 

estimator and helps to minimize the risk of suspicion when the respondent possessing a 

sensitive trait responds "Yes". Furthermore, the respondent possessing a innocuous trait 

feels more comfortable to answer "Yes" in the design of n, = 1 . Despite these 

advantages of choosing n, = 1 , Greenberg et al. ( 1977) disagreed with the idea of 

Lanke (1975) because the expected overall benefit of randomized response technique 

will be zero in the case of the randomized response design of n, = 1 . But this does not 

affect to our mixed RR model. The reason will be discussed in detail in Section 4.3.3. 

4.3.2. A Mixed Randomized Response Model 

In this proposed model, a single sample with size n is selected by simple random 

sampling with replacement from the population. Each respondent from the sample is 

instructed to answer a direct question about "I am a member of the innocuous trait 

group". If a respondent answers "Yes", then she or he is instructed to go to a 

randomization device R1 consisting of the two statements. One statement is "I am a 

member of the sensitive trait group", and the other one is "I am a member of the 

innocuous trait group" with preassigned probability of selections of ~ and 1-~ 

respectively. If a respondent answers "No", then the respondent is instructed to use a 
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randomization device R2 consisting of the two statements. One statement is "I am a 

member of the sensitive trait group", and the other one is "I am not a member of the 

sensitive trait group" with preassigned probabilities P and 1- P respectively. Thus the 

Warner model requires that the innocuous question be the same at both steps in the 

process. To protect respondents' privacy, the respondents should not disclose the 

question they answered from either randomization RI or R2 to the interviewer. The 

proportion of "Yes" answer from the respondents using randomization device R1 is 

(4.3.2.1), 

Since the respondent using a randomization device R1 already responded "Yes" 

from the initial direct innocuous question, n 1 is equal to one. Therefore, ( 4.3 .2.1) 

becomes ~ = ~n s + (1- ~) . The estimate of n s , in terms of sample proportions of 

"Yes" responses, ~ , becomes 

,. YI -(1- ~) 
'/CUY = (4.3.2.2) 

For its variance, 

(4.3.2.3) 

where n1 is the number of people responding "Yes" when respondents in a sample n 

were asked the direct innocuous question. An unbiased estimate of Var(n uY) is 

(4.3.2.4) 
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Direct 
Question 

Random Device 1 

Population 

Were you born 

in Oklahoma? 

No 

Random Device 2 

1. Do you belong to a sensitive group? 1. Do you belong to a sensitive group? 

2. Were you born in Oklahoma? 2. Don't you belong to a sensitive group? 

Figure 4.1. A Mixed Randomized Response Model 
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The proportion of "Yes" answer from the respondents using a randomization 

device R2 is 

X = Pn s + (1- P)(l-n s ) = (2P - l)n s + 1-P . (4.3.2.5) 

The estimator of n s, in terms of sample proportions of "Yes" responses, X , 

becomes 

A X -(1-P) 
nw = _2_P ___ l_ (4.3.2.6) 

with 

(4.3.2.7) 

where n2 is the number of people responding "No" when respondents in a sample n 

had the direct question. An unbiased estimate of Var(nw) is 

( A)- X(l-X) _nwO-nw) P(l-P) 
V lrw - 2 - + 2 • 

(n 2 - l)P n 2 -1 (n 2 -1)(2P -1) 
(4.3.2.8) 

Then the estimator of n s , in terms of sample proportions of "Yes" responses, ~ 

and X, as 

n n 
for 0<-1 and - 2 <1 (4.3.2.9) 

n n 

with 
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Since the previous researchers showed that the unrelated question RR model is 

generally more efficient than the W amer model, we allocate more respondents to the 

unrelated question RR model in a mixed RR model than to the Warner model in a 

mixed RR model. Then. we can make the variance of the estimator in our mixed RR 

model smaller. 

Theorem 4.3.2.1. The proposed estimator ft m is unbiased for population proportion n s • 

Proof. As both ft ur and ft w are unbiased estimators, the expected value of ft m is 

An estimator ft m of n s is unbiased. 

Theorem 4.3.2.2. When the Warner model and unrelated question RR model are 

equally protective, the variance of ftw can be expressed for every ~ and n 1 = 1 as: 

(4.3.2.11) 

Proof. Lanke (1976) derived a unique value of Pas 

for every ~ and every n 1 

such that the Warner model and unrelated question RR model are equally confidential to 

respondents : Pw (A I Yes)= PuK (A I Yes) for every n s • 

Since there is a n 1 = 1 in the mixed randomized response model, 
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Inserting P = (2 - ~ )-1 into ( 4.3 .2. 7). Then we can derive the following one: 

which proves the Theorem. 

Theorem 4.3.2.3. The variance of an estimator ft m is given by 

(4.3.2.12) 

where n=n1 +n2 and A=n1 /n. 

Proof. Suppose n=n1 +n2 • Using(4.3.2.10)and(4.3.2.ll)equations, 

we can derive Var(ftm): 

where A=n1 /n. 
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Theorem 4.3.2.4. The unbiased variance of an estimator ft s is given by 

(4.3.2.13) 

Proof. Using (4.3.2.4), (4.3.2.8) and (4.3.2.11) equations, we can derive the following 

one: For n = n1 + n2 , 

= (3_)2 [(1- ft m ){F'ift m + (l - F'i) }] + (!!2)2 [ft m (l- ft,J + 1- F'i 
2

] 

n (n1 - l)F'i n n2 -1 (n2 - l)F'i 

= 1 
2 

[n:F'i(l-ftm){F'iftm +(1-F'i)} + n:{E'i 2 ftm(l-ftm)+(l-F'i)}] 
( nF'i ) n1 - 1 n2 - 1 

which proves the Theorem. 

4.3.3. A Validation of a Mixed RR Model. 

We can determine the estimate of 1C, from a direct question before performing 

the randomization devices R1 and R2 by asking a direct question about an innocuous 

trait. If the researcher avoids selecting the innocuous trait direct question so that all 

respondents answer "Yes" to it, then the criticism by Greenberg et al. (1977) in terms of 

n, = 1 does not apply to our mixed RR model. From Greenberg et al. (1977) we obtain 
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the expected overall benefit (EOB1 ) from the unrelated question RR model when n I is 

known. The expected overall benefit is 

(4.3.3.1) 

We will derive the expected overall benefit of the Warner model from the 

respondent hazard concept of Greenberg et al. ( 1977). They defined the hazard for a 

respondent from a sensitive group S as the probability that the respondent in S is 

perceived as belonging to S , 

H 8 = P(Yes I S)P(S I Yes)+P(No I S)P(S I No). 

Similarly, they defined the hazard for a respondent from a nonsensitive group S 

is the probability that the respondent in S is perceived as belonging to S , 

H 8 = P(Yesl S)P(S I Yes)+P(No I S)P(S I No)~ 

From the Warner model, we can derive the following: 

P(YesiS)=P(NoiS)=P, P(NoiS)=P(YesiS)=l-P, 

Pn (1-P)n 
P(S I Yes)= s , and P(S I No)= s 

Pn s + (1- P)(l - n s ) (1- P)n s + P(l - n s) 
(4.3.3.2) 

Therefore, 

H s = P(Yes I S)P(S I Yes)+ P(No I S)P(S I No) 

(4.3.3.3) 

57 



H s = P(Yes I S)P(S I Yes)+ P(No I S)P(S I No) 

P(l - P)n s P(l - P)n s = +------~ 
Pn s + (l-P)(l-11: s) (1-P)n s + P(l-11: s) 

(4.3.3.4) 

They explained the limited hazard. It is likely to be closer to the actual concern 

felt by a respondent as the probability that a respondent in a sensitive group S answer 

"Yes" and is perceived as belonging to S , LH s = P(Yes I S)P(S I Yes) , and the 

probability that a respondent in a sensitive group S answer "Yes" and is perceived as 

belonging to S, LH s = P(Yes I S)P(S I Yes). Hence, 

LH = p271: s and LH - = P(l- P)n s 

s Pn s + (1 - P)(l - 11: s ) s Pn s + (1- P)(l -11: s ) 
(4.3.3.5) 

The expected overall benefit for the Warner model is 

= 11: [l - P 211: s ]-(l -11: )[--P_(_l -_P_)_n s __ ] 
s Pn s + (1- P)(l -11: s ) s Pn s + (1- P)(l -11: s ) 

(4.3.3.6) 

The expected overall benefit for a mixed RR model is 

n n n n 
EOB = - 1 EOBI + - 2 EOB2 = - 1 11: S (l - ~ )(l -11: I)+ - 2 11: s (l - P) • (4.3.3.7) 

n n n n 

Since there is a 11: 1 = 1 in the unrelated question RR model part from our mixed 

RR model, 

EOB=!!J_EOB1 +~EOB2 =~11:s(l-P). (4.3.3.8) 
n n n 
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Since n2 /n is an estimate of 1-n 1 , E(n2 /n) = 1-n 1 • If Pi = P, the expected 

overall benefit for the proposed mixed RR model is close to the expected overall benefit 

for unrelated question RR model when n 1 is known. Thus, we can conclude that the 

expected overall benefit of a n 1 = 1 design in our mixed RR model will not be zero. So a 

n 1 = 1 design in our mixed RR model may not be criticized by arguments such as these 

presented in Greenberg et al. (1977). 

4.4. Efficiency Comparison 

An efficiency comparison of our mixed randomized response technique and the 

Moors (1971) model by a variance comparison was done. From (4.3.2.12), we get 

' 
From the optimization of unrelated question RR model, Moors (1971) derived the 

optimized Moors model: 

(4.4.1) 

where y; = Pins + (1- Pi )n 1 • 

We compute the relative efficiency, Var(nuM )/Var(nm)' which is the proposed 

model based on estimator nm with respect to the Moors ( 1990) model based on 

estimator n UM . The percent relative efficiency of Var(n UM) I Var(n m) is 

{Jy; (1- ¥;) + (1- Pi )~n I (1- n I) }2 
Percent RE= 2 x 100 

Pi n s (1- n s ) + (1- Pi ) [ AFi (1- n s ) + (1 - 1)] 
(4.4.2) 

where ¥; =Pins + (1- Pi )n 1 • 
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If the percent RE is more than 100, then our proposed model is more efficient 

than the Moors ( 1971) model. Otherwise, the Moors model is more efficient than the 

proposed model. Since it is difficult to derive the mathematical condition of the relative 

efficiency from (4.3.2.12) and (4.4.1), an empirical investigation on the relative 

efficiency is presented in Table 4.1. 

In Table 4.1 , we allocated a sample size n to n, and n2 by a way of estimating 

n, since we asked a direct question about an innocuous trait to each respondent in a 

sample chosen from the population and deduced A , which is the proportion of "Yes" 

answers to the direct question. Since n does not affect the computation of the percent 

RE, we did not change the sample size n = I 000 . 
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Figure 4.2. The Percent Relative Efficiency of Var(nuM )/Var(n,,,) When n s = 0.2. 
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TABLB4.l. 

The Percent Relative Efficiency of Var(n UM) I Var(n m) . 

n =1000 The percent R.E. 

1C s 1C I n1 n2 I'i. =.1 pl =.2 pl = .3 pl = .4 Pi = .5 Pi = .6 pl = .7 I'i. = .8 Pi. = .9 

0.1 0.9 900 100 261.3 216 188.3 168.8 153.6 141.1 130.1 120 110.1 
0.7 700 300 243.1 214.8 192.1 173.1 156.7 142.2 129.1 117.2 106.6 
0.5 500 500 183 167.9 154.2 141.7 130.3 119.8 110.3 102.1 96.45 
0.3 300 700 113.3 106.9 100.8 95.15 89.96 85.38 81.76 79.9 82.23 
0.1 100 900 39.67 39.51 39.59 40 40.91 42.61 45.68 51.43 63.68 

0.2 0.9 900 100 266.5 220.7 192 171.3 155.3 142 130.4 119.9 109.9 
0.7 .. 700 300 245.7 218.3 195.8 176.6 160 145.3 132 120 109.2 
0.5 500 500 184.7 170.8 158 146.3 135.5 125.6 116.7 108.9 102.8 
0.3 300 700 114.9 110 105.4 101.2 97.43 94.27 92 91.14 92.83 
0.1 100 900 41.49 43.18 45.14 47.49 50.42 54.21 59.37 66.84 78.63 

0.3 0.9 900 100 272.4 226.2 196.3 174.6 157.5 143.3 131.1 120.1 109.8 
0.7 700 300 248.3 222.1 199.9 180.6 163.6 148.4 134.6 122.1 110.5 
0.5 500 500 186.5 173.8 161.9 150.8 140.4 130.6 121.6 113.3 106 
0.3 300 700 116.5 113 109.7 106.7 103.8 101.4 99.41 98.18 98.11 
0.1 100 900 43.25 46.59 50.1 53.91 58.17 63.09 68.98 76.36 86.13 

0.4 0.9 900 100 278.9 232.7 201.7 178.7 160.4 145.3 132.2 120.6 110 
0.7 700 300 251.1 226.2 204.4 185 167.6 151.8 137.3 124 111.6 
0.5 500 500 188.2 176.9 165.9 155.3 145.1 135.3 125.9 116.8 108.2 
0.3 300 700 118 116 113.9 111.7 109.6 107.4 105.3 103.3 101.5 
0.1 100 900 44.95 49.78 54.62 59.57 64.74 70.26 76.27 83 90.74 

0.5 0.9 900 100 286.2 240.5 208.4 184 164.4 148.1 134 121.6 110.4 
0.7 700 300 254.1 230.8 209.6 190.2 172.3 155.8 140.5 126.1 112.7 
0.5 500 500 190 180 170 160 150 140 130 120 110 
0.3 300 700 119.6 118.9 117.9 116.6 114.9 112.8 110.4 107.5 104 
0.1 100 900 46.59 52.79 58,78 64.65 70.47 76.3 82.15 88.05 94.01 

0.6 0.9 900 100 294.6 250 217 191.1 170 152.1 136.8 123.2 111.1 
0.7 700 300 257.2 235.7 215.5 196.3 178.1 160.8 144.4 128.9 114.1 
0.5 500 500 191.8 183.3 174.3 165 155.2 145 134.4 123.4 111.9 
0.3 300 700 121.1 121.7 121.8 121.2 120 118 115.2 111.3 106.3 
0.1 100 900 48.19 55.65 62.65 69.28 75.59 81.57 87.16 92.24 96.61 
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n=lOOO The percent RE. 

1Cs 1(1 n1 n2 pl =.l Pi= .2 Pi= .3 Pi =.4 Pi= .5 Pi =.6 Pi_ = .7 Pi_ = .8 Pi_ = .9 

0.7 700 300 260.5 241.3 222.3 203.6 185.3 167.3 149.7 132.6 116 
0.5 500 500 193.7 186.7 178.9 170.4 161 150.8 139.6 127.4 114.2 
0.3 300 700 122.7 124.6 125.6 125.9 125.1 123.2 120 115.3 108.7 
0.1 100 900 49.74 58.38 66.28 73.58 80.29. 86.36 91.67 96 98.97 

0.8 0.9 900 100 315.2 277.1 244.2 215.6 190.5 168.2 148.3 130.5 114.5 
0.7 700 300 264 247.5 230.4 212.9 194.9 176.4 157.6 138.5 119.2 
0.5 500 500 195.6 190.2 183.9 176.4 167.8 157.7 146.2 132.8 117.5 
0.3 300 700 124.2 127.4 129.5 130.6 130.4 128.7 125.4 120 111.8 
0.1 100 900 51.25 60.99 69.73 77.62 84.7 90.89 96.01 99.74 101.5 

0.9 0.9 900 100 328.2 297.6 268.1 240 213.2 187.7 163.5 140.9 119.7 
0.7 700 300 267.7 254.5 240.2 224.9 208.3 190.3 170.8 149.4 125.9 
0.5 500 500 197.5 194 189.3 183.4 176 166.9 155.6 141.6 123.7 
0.3 300 700 125.7 130.2 133.4 135.4 136.1 135.1 132.1 126.4 116.8 
0.1 100 900 52.72 63.51 73.02 81.48 88.95 95.35 100.5 103.9 104.7 

We obtained the value of the percent relative efficiency for 1C 1 = 0.1, 0.3, 0.5, 

0.7, 0.9 and for different cases of 1Cs and ~. From 1Cs, ~ and 1C1 ~ 0.5 in Table 4.1, 

the value of the percent relative efficiency is more than 100 except for the case when 

1C s = 0.1. Furthermore, for 1C s ~ 0.4 and 1C 1 ~ 0.3 , the value of the percent relative 

efficiency is more than 100 for all values of~. Figure 4.2 shows that our mixed model 

is always more efficient than the Moors model if the "Yes" proportion from the 

innocuous trait direct is more than half percent. Under the condition A= (n1 /n) > 0.5, 

we can conclude that the mixed randomized response model is a good alternative 

strategy of the Moors model while keeping the confidentiality of interviewee. 
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4.5.A Mixed Randomized Response Model Using Stratification 

4.5.1. A mixed stratified RR model 

A stratified Warner's randomized response model was presented in Chapter III. 

So we apply a stratified randomized response technique to the proposed mixed model. 

The assumptions for a stratified mixed model are the same as those in Chapter III. 

Thus, the population is partitioned into k strata, and a sample is selected by simple 

random sampling with replacement within each stratum. 

Assume that the number of units from each stratum is known. An individual 

respondent in a sample of each stratum is instructed to answer a direct statement "I am a 

member of the innocuous trait group". Respondents should answer the direct statement 

by "Yes" or "No". 

If a respondent answers "Yes", then she or he is instructed to go to a 

randomization device Shi consisting of the two statements. The one statement is "I am a 

member of the sensitive trait group", and the other one is "I am a member of the 

innocuous trait group" with preassigned probabilities, Qh and 1- Qh respectively. 

If a respondent answers "No", then the respondent is instructed to go to a 

randomization device S hz consisting of the two statements. The one statement is "I am a 

member of a sensitive trait group", and the other is "I am not a member of a sensitive 

trait group" with preassigned probabilities, Ph and 1- Ph respectively. 

To protect respondents' privacy, respondents should not disclose the question 

they had from Shi or S hz to the interviewer. Suppose we denote mh as the number of 

units in the sample from stratum h and n as the total number of units in samples from 

all strata. 
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Let mh1 be the number of people responding "Yes" when respondents in a sample 

mh were asked the direct question and mh2 be the number of people responding "No" 

when respondents in a sample mh were asked the direct question such that 

k 

n = 2i (mh1 + mh2). Under this assumption that these "Yes" or "No" reports are made 
h=I 

truthfully, and Qh and PJt= 0.5) are set by a researcher, then the proportion of "Yes" 

answer from the respondents using a randomization device Shi is 

for h = 1,2, .. · , k . (4.5.1) 

where ~h is the proportion of "Yes" answer in a stratum h , n s, is the proportion of 

respondents with the sensitive trait in a stratum h , n 1 is the proportion of respondents ,, 

with the innocuous trait in a stratum h , and Qh is the probability that a respondent in 

the sample stratum h is asked a sensitive question. 

Since the respondent performing a randomization device R1 respond~d "Yes" to 

the direct question about the innocuous question, n 1, is equal to one. 

( 4.5. l) becomes ~h = Qhn s, + (1- Qh). The estimator of n s, is 

for h = 1,2, .. · ,k . (4.5.2) 

where ~h is the proportion of "Yes" answer in a sample in the stratum h and ituY, is 

the proportion of respondents with the sensitive trait in a sample from the stratum h . 
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Since each ~h is a binomial distribution, B(mhl'Y1h) , the estimator ftuK, is 

unbiased for n s with 
I, 

Qh (l - n s,, )[Qhn s, + (1- Qh )] (1- n s,, )[Qhn s, + (1- Qh )] 
= =---------- (4.5.3) 

The proportion of "Yes" answer from the respondents performing a 

randomization device S hz is 

where X h is the proportion of "Yes" answer in a stratum h , n s, is the proportion of 

respondents with the sensitive trait in a stratum h , and Ph is the probability that a 

respondent in the sample stratum h has a sensitive question card. 

The maximum likelihood estimate in this case is 

for h=l,2,···,k (4.5.5) 

where X h is the proportion of "Yes" answer in a sample from stratum h and ft w, is the 

proportion of respondents with the sensitive trait in a sample from stratum h . 

Since each X h is a binomial distribution B(mh, X h) , the estimator fews,, is 

unbiased for n s, . For its variance, 

(4.5.6) 
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By the theorem 4.3.2.1, 

(4.5.7) 

Then the estimator ofns,,, in terms of sample proportions of "Yes" responses, ~h 

m m 
for O <-h1 and ____!!3._ < 1 (4.5.8) 

mh mh 

By the theorem 4.3.2.1, the proposed estimator ftmS, is unbiased for population 

proportion n s, . By the theorem 4.3.2.3, 

Var(ft ) = va{mhi ft + mh2 ft )= (mh1 )
2 
Var(ft ) +(mh2 )

2 
Var(ft ) mSh UYh W1, UYh W11 

mh . mh mh . mh 

(4.5.9) 

By the theorem 4.3.2.4, an unbiased estimate of Var(ftms,) is given by 

(4.5.10) 

Since the selections in different strata are made independently, the estimators for 

individual strata can be added together to obtain an estimator for the whole population. 

The estimator of n s is shown to be 

(4.5.11) 
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where N is the number of units in the whole population, N h is the total number of units 

N k 

in the stratum hand wh = _h for h = l,2, · · ·, k so that w = L wh = l. 
N h=l 

Theorem 4.5.1. The proposed estimator it ms is unbiased for the sensitive proportion n s 

of the population. 

Proof. As each estimator it ms,, is unbiased for n s,, , the expected value of it ms is 

An estimator it ms of n s is unbiased. 

Theorem 4.5~2. The variance of an estimator itms is given by 

V, (" )=~wh2 [ (l- ) (l-Qh){AhQh(l-ns,)+(l-Ah)}] 
ar nmS _£.J ns, ns, + 2 

h=l mh Qh 
(4.5.12) 

Proof. Since each unbiased estimator it s has its own variance and strata are 
m h 

independent, the variance of itms using (4.5.9) and Corollary 1. in Sec. 5.9 of Cochran 

(1977) is 

= t wh2[ns, (l-ns) + (l-Qh){AhQh(l-~s)+(l-Ah)}] 

h=l mh mhQh 

which proves the theorem. 
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Theorem 4.5.3. The unbiased estimator of the variance Var(.ims) is given by 

v(.imS)= f w< [nmS, (l-.imS,){ mh~ + mh2~ }+ (l-~h){mh1
2
Qh(l:.ims,,) + mh2~ }] 

h=t mh mh1 1 mh2 1 Qh mh1 1 mh2 1 

(4.5.13). 

Proof. The proof is similar to theorem 4.5.2. 

In order to do the optimal allocation of a sample size n , we need to know 
') 

Ah = mh1 / mh and n s,, . Information on Ah = mh1 / mh and n s, is usually unavailable. But 

if prior information about them is available from past experience or a pilot survey then 

it helps to derive the following optimal allocation formula. 

Theorem 4.5.4. The optimal allocation n to m1 , m2, · · ·, mk-t and mk to derive the 

k 

minimal value of variance of an estimator .i ms subject to n = L mh is approximately 
h=I 

given by 

[ 
(1- Qh ){AhQh (1- n s,) + (1- Ah) }]1

'
2 

mh wh n s, (1- n s,) + Qh 2 

=--------------------,-----
~ [ (1- Qh ){AhQh (1- n s,) + ,(1- Ah) }]1

'
2 

£.J wh n s,, (1- n s,) + 2 

~ ~ . 

(4.5.14) 
n 

Proof. Suppose that mh = mh1 + mh2 and Ah = mhJmh . For minimum variance for fixed 

total sample size in Sec. 5.9 of Cochran (1977), 

Thus 
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The portion of the total sample size which should be allocated to each sample is 

(4.5.14). 

Corollary 4.1. If we insert ( 4.5 .13) into the following inequality: 

[Lk wh
2
. { _ (l-Qh){AhQh(l-7r 5,,)+(1-Ah)}}](Ik ) n s (1 n s ) + 2 m. 

h I, Q I 

~~ h ~ 

(4.5.15) 

then we can easily show 

Using ( 4.5 .16), we derive the minimal variance of an estimator ft ms in the following 

theorem. 
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Theorem 4.5.5. The minimal variance of the estimator ff mS is given by 

u (" )=_!_[~ { (1- ) (l-Qh){AhQh(l-ns,,)+(l-Ah)}}112]2 
var '/rmS L.JWh 1r8, 'lrs,, + 2 

ll h=I Qh 

k 

where n= Lmh, mh =mh1 +mh2 and Ah =mh1/mh. 
h=I 

Proof. By using (4.5.12), (4.5.14) and (4.5.16), Var(ffms) reduces to (4.5.17). 

4.5.2. An Efficiency Comparison of a Stratified RR Model 

(4.5.17) 

We will do an efficiency comparison of a stratified mixed randomized response 

technique and the mixed randomized response model by comparing Var(ff ms ) and 

Var(ffm): From (4.5.17), we get 

k 

where n = L mh , mh = mh1 + mh2 and Ah = mhJmh . 
h=I 

From (4.3.2.12), we get the variance of fem: For n = n1 + n2 and A= nJn, 

The following theorem is an efficiency comparison of a stratified mixed 

randomized response model and a mixed randomized response model. 
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Theorem 4.5.6. Suppose there are two strata in the population and Ah = mhjmh . The 

it ms of a stratified mixed RR is more efficient than the estimator it m of a mixed model 

Using (4.5.17) and (4.3.2.12), the efficiency of ff • .s with respect to fem is given by 

l 7 ( A ) - l 7 ( A ) = 1l' s (l - 1l' s ) + (1 - P., ) [ AP, (1- 1l' s ) + (1 - A)] 
Var 1l' m Var 1l' mS 2 

n nP., 

1 [L2 { (1- P., ){AP, (l-1l' s,,) + (1- ;\,) }}1
'
2]2 

- - w h 1l' s (1 - 1l' s ) + 2 
h h p 

ll h=I I 

Inserting1l' s = W 11l' s, + W 21l' s, such that 1l' s, ct 1l' s, into the above equation, then we 

can derive: 

(1- P., ) [ AP, (1 - 1l' s ) + (1 - ;\,)] 
+ 2 

nP., 

1 [~ { (1-~){A~(l-n5.)+(l-l)}}1
'

2
]

2 

- - £..J w,. n s (1- n s ) + 2 
ll h=I ' • ~ 

-(w/1l' s, + w/1l' s, )-_!_[t w/{(1- P., ){AP, (1-~ s,,) + (1- ;\,) }}] 
n n ~ P., 

[ ]

1/2 

2 w (1 - w ) TI2 (1- P., ){ AP, (1 - 1l' s ) + (1 - A) } 
_ I I 1l' (1 _ 1l' ) + 1, 

s. s, p2 
ll h=I I 
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_ _!_[f w/{A(l- ~)(1-n s,, )}]-_!_[f w/{(l-P1 )~1-A)}] 
n h=I ~ n h=I P 1 

2w1w2 TI2 [ (1-~){~(l-ns )+(l-A)}] 1
'

2 

- n (1-n )+ '' 
n sh sh p2 

h=l 1 

2w1w2 TI2 [ (l-~){~(1-ns )+(l-A)}]112 

- n (1-n )+ h n sh s,, P 2 
·h=l 1 

2w1w2 TI2 [ (1-~){~(l-ns )+(l-A)}J1
'

2 

- n (1-n ) + '' n sh s,, P 2 
h=l 1 

Var(.i )-Var(.i )= w1w2 [n (1-n )+n (1-n )+ 2(l-~)(l-A) 
m mS n s, s, s, s, p 2 

1 
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(1 - P., ) { AP, (1 - n s ) + (1 - 1) } 
Let A = n s (1 - n s ) + 2 ' and 

I I p 
I 

(1 - P., ){ AP, (1 - n s ) + (1- 1) } 
B = n s (1 - n s ) + 2 ' 

2 2 p 
I 

Then we can derive the following one: 

,... ,... w w [ 2(1-P )(1-A) 
Var(n )-Var(nmS)=-1 - 2 1T: 8 (l-n 8 )+n8 (l-n 8 )+ 1

2 
m n I 2 2 1 p 

I 

l(l-P.,)(2-ns -ns )] w w r1,. ,-;;)2 ] + , , + _1 _2 l~v A - "'B - A - B . 
P., n 

Hence 

Var(fr.,)-Var(frms) = w1w2 (JA-.JB)2 > 0 
n 

where 1T: 8 '#1T: 8 • 
I 2 

Since Var(fr,ns )-Var(fr s) > 0, then the estimator fr ms of a stratified mixed RR is 

more efficient than the estimator fr m of a mixed model. 

In Table 4.1, we showed that the mixed RR model is more efficient than the 

Moors ( 1971) model where n 1 > 0.5 . We will derive the mathematical condition for the 

efficiency of a stratified mixed RR model and the Moors model. From (4.4.1), we get 

the optimized Moors model: 
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Theorem 4.5.7. The estimator ftms of a stratified mixed RR model is more efficient 

than the estimator ft uM of the Moors model if 

~YI (1- YI)+ ~n; 1 (1- n: 1 ) 

--------.=================>~ 
(1- Qh){AhQh (1-n: s,) +(1- Ah)} 

11:s (1-n:s )+------2-----
, ,, Qh 

k 

~n:1(1-n:1) + L wh 
h=I 

(4.5.18) 

Proof. Assume Ah =mhJmh and~ =~n:s +(1-~)n:1. Using (4.5.17) and (4.4.1), we 

check the efficiency of ft ms with respect to ft uM . 

A A 1 {~Yl(l-~) +(l-~)~n:/(1-n:/)}
2 

Var(n: UM) - Var(n: mS) = - ....;.._-· -----,-. ----'-----
n . ~ 

1 [~ { (1- Qh ){AhQh (1- n: s,) + (1- Ah) }}1
'

2 
]

2 

- - £.J wh n: s, (1- n: s,) + 2 • 

ll h=I Qh 

~~ (1- YI) + (1- ~ )~n: 1 (1- n: 1) 
Let L=----------~ 

~ 

Then· 
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If Var(fr uM) - Var(fr mS) > 0, then the estimator fr ms of a stratified mixed RR is 

more efficient than the estimator fr uM of the Moors model. Since L + M is positive, 

if L-M >0 then Var(fruM)-Var(frmS)>O. Suppose L-M >0. 

Hence, 

> p.[ ./"' (I - "') + (1- ) (l-Q,,){A,,Q,,(l-n 8,)+(l-A,,)}l 
1rs 1rs + 2 

II h Qh' 

If prior information on n s, n 1 , wh, n s, , Qh, ~ and A,, satisfy the following 

condition: 

~~ (1- YI) + ~'TC 1 (1- n 1) 
-----------,;:==================>~ 

(l - Q,,) { A,h Qh (1- n s, ) + (1- A,h)} 
'TC s, (l- 'TC s,,) + ______ Q_,,2 _____ _ 

k 

~n1 (l-n 1 ) + L wh 
h=I 

then the estimator fr ms of a stratified mixed RR is more efficient than the estimator 

fr uM of the Moors model. 

Suppose that prior information on ns , ns , w,, w2 , n s, n 1 , w,,, n s and Ah can 
I 2 h 

be roughly obtained and a researcher sets ~ and Qh. Then we can do the efficiency 

comparison of a mixed stratified RR model and the Moors model ( 1971) under 

condition (4.5.18). In this paper, we use the percent relative efficiency of 

Var(fr uM) I Var(fr mS) which is a stratified mixed model based on estimator fr ms with 

respect to the Moors ( 1990) model based on estimator fr uM . 
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The percent relative efficiency is 

Var(n ) 
Percent RE= uM x 100 . 

Var(nmS) 
(4.5.19) 

Hence, if the percent RE is more than 100, then our proposed model is more 

efficient than the Moors ( 1971) model. Otherwise, that is, if the percent RE is less than 

or equal to 100 then the Moors model is more efficient than the proposed model. 

Values of the percent RE for different sets of prior information are presented in the 

Table 4.2. Since Ah is the proportion of "Yes" for the direct question of an innocuous 

attribute in the stratum h , we set TC 1 = A1 = A2 and ~ = Q1 for the convenience of the 

efficiency comparison in the Table 4.1. For fixed w1 = 0.6 and w 2 = 0.4, we changed 

the values of TC s, and TC s, and increased the value of TC 1 from 0.2 to 0.8 by 0.2 

increments. We did not change the sample size n = 1000 in Table 4.2 because n does 

not affect the computation of the percent RE. For different cases of ~ = Q1 and Q2 , we 

compared the efficiency of a stratified mixed RR model and the Moors ( 1971) model. 

The observation in Table 4.2 is that, under the condition (4.5.18), the values of the 

percent relative efficiency are more than 100. This shows that the estimator nms of a 

stratified mixed RR model is more efficient than the estimator n uM of the Moors model. 

Figure 4.3 shows the result from Table 4.2 when P1 = Q1 = 0.5 and Q2 = 0.8. We 

examined the relative efficiency for a case with two strata. For a case with more than 

two strata, we may derive similar conclusions in terms of efficiency as those for two 

strata. 
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TABLE4.2. 

The Percent Relative Efficiency of Var(n uM) I Var(n mS) when n = 1000 . 

~=QI 
0.1 0.2 0.3 0.4 

Q2 Q2 Q2 Q2 

1rs, ns, w, w2 1rs n1 0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 

0.08 0.13 0.6 0.4 0.1 0.2 122.7 147.7 101.3 121.5 107.7 122 112.9 125.6 
0.4 235.8 283 188.3 224.6 192.5 217.1 193.6 215.1 
0.6 335.7 400.9 259.8 307.5 256.8 288.4 251.8 279.2 
0.8 397.5 470.2 293.8 343.3 280 312.6 270 298.9 

0.18 0.23 0.6 0.4 0.2 0.2 125.4 150.8 105.8 126.7 114.9 129.5 122.1 134.8 
0.4 238.5 286 192.2 229 197.6 222 198.6 218.6 
0.6 339.3 404.9 263.9 311.9 260.7 291.4 253.2 277.9 
0.8 404 477.5 299.2. 348.8 283.3 .314.4 268.6 293.8 

0.28 0.33 0.6 0.4 0.3 0.2 128 154 110.2 131.8 121.5 136.7 130.5 143.3 
0.4 241.2 289.2 196.2 233.5 202.9 227.4 204.1 223.3 
0.6 343.1 409.5 268.4 316.9 265.5 295.7 256.3 279.3 
0.8 411.2 485.9 305.5 355.7 288 318.2 269.6 292.5 

0.38 0.43 0.6 0.4 0.4 0.2 130.7 157.1 114.4 136.8 127.9 143.7 138.4 151.5 
0.4 243.9 292.6 200.3 238.3 208.6 233.4 210.3 229.3 
0.6 347.2 414.4 273.4 322.8 271.2 301.6 261.1 283.3 
0.8 419.2 495.6 313 364.2 294.5 324.4 273.1 294.5 

0.48 0.53 0.6 0.4 0.5 0.2 133.3 160.3 118.5 141.8 134.1 150.6 146.3 160 
0.4 246.8 296.1 204.5 243.5 214.7 240.1 217.4 236.7 
0.6 351.6 419.9 278.9 329.6 278.2 309.1 267.9 290 
0.8 428.2 506.7 321.9 374.9 303.2 333.4 279.5 300.3 

0.58 0.63 0.6 0.4 0.6 0.2 135.9 163.5 122.6 146.7 140.3 157.7 154.3 169 
0.4 249.8 299.9 209 249.1 221.4 247.9 225.8 246 
0.6 356.3 426 285.1 337.5 286.7 318.8 277.3 300.1 
0.8 438.4 519.5 332.6 388.1 314.9 346.2 289.7 310.6 

0.68 0.73 0.6 0.4 0.7 0.2 138.4 166.7 126.6 151.7 146.5 165.1 163 179.1 
0.4 252.9 303.9 213.7 255.2 229 256.9 236.1 258 
0.6 361.3 432.8 292.1 346.7 297.2 331.2 290.2 314.8 
0.8 449.8 534.5 345.7 404.8 330.8 364.3 305.4 327.5 

0.78 0.83 0.6 0.4 0.8 0.2 141 169.9 130.6 156.8 153.1 173 172.7 190.9 
0.4 256 308.1 218.6 261.8 237.5 267.6 249 273.9 
0.6 366.7 440.3 300 357.6 310.2 347.5 308.3 336.5 
0.8 462.8 552.1 361.9 426.4 353 390.7 330.4 355.8 

0.88 0.93 0.6 0.4 0.9 0.2 143.6 173.2 134.6 162 159.9 181.7 184 205.7 
0.4 259.4 312.7 223.9 269.2 247.4 280.5 266 296.2 
0.6 372.6 448.6 309 370.5 326.9 369.3 335.2 370.8 
0.8 477.8 573.1 382.3 455 385.9 431.8 374.3 408.4 
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~ =QI 
0.5 0.6 0.7 0.8 0.9 

Q2 Q2 Q2 Q2 Q2 

1C s 1C I 0.8 0.9 0.86 0.9 0.95 0.96 0.95 0.96 0.95 0.96 

0.1 0.2 107.9 121.7 100.8 106.9 102.4 104.3 ** ** ** ** 
0.4 177.5 200 158.2 167.5 151.2 153.9 125.3 128 102.5 105.2 
0.6 226.6 255 198.4 209.9 185.5 188.8 149.3 152.4 116 119 
0.8 242.2 272.3 212.6 224.7 199.3 202.7 160.8 164.1 123.8 126.9 

0.2 0.2 118.5 131.6 112.5 118.1 113.8 115.4 103.8 105.5 ** ** 
0.4 182 201.7 162.5 170.4 153.1 155.1 129 131 108 110 
0.6 225.6 249.3 196.1 205.3 178.9 181.2 145.7 147.9 116.5 118.5 
0.8 237.1 261.2 205.2 214.5 186.5 188.8 151.6 153.7 120.3 122.2 

0.3 0.2 127.5 140.4 121.6 127.1 122 123.4 111 112.5 100.9 102.5 
0.4 187 205.2 166.9 174.1 155.7 157.5 131.8 133.5 110.7 112.4 
0.6 226.9 248 196.1 204.1 176.5 178.4 144.4 146.1 116.8 118.4 
0.8 235.2 255.8 201.6 209.3 180 181.8 147.1 148.7 118.6 120.1 

0.4 0.2 135.9 148.9 129.7 135.2 129 130.4 116.5 117.9 104.4 105.8 
0.4 192.8 210.4 172 178.9 159.3 160.9 134.6 136.1 112.7 114.2 
0.6 230.3 249.9 198.2 205.5 176.7 178.3 144.7 146.2 117.4 118.8 
0.8 236.1 254.6 200.9 207.6 177.2 178.7 145.1 146.4 118 119.2 

0.5 0.2 144.1 157.7 137.5 143.2 135.9 137.3 121.6 123 107.2 108.7 
0.4 199.7 217.4 178.1 185 164.l 165.7 138 139.5 114.7 116.1 
0.6 235.9 255 202.4 209.5 179.2 180.7 146.3 147.7 118.4 119.6 
0.8 239.9 257.3 202.8 209 177.1 178.5 144.8 146 118 119.1 

0.6 0.2 152.8 167.4 145.8 152 143.7 145.2 127.1 128.7 110.1 111.7 
0.4 208.3 226.8 185.9 193.1 170.9 172.5 142.6 144.2 117 118.4 
0.6 244.4 263.9 209.3 216.5 184.4 185.9 149.6 151 120 121.2 
0.8 247.4 264.5 207.8 213.9 179.9 181.2 146.4 147.5 118.8 119.8 

0.7 0.2 162.4 179 155.4 162.5 153.5 155.3 134.2 136 113.6 115.4 
0.4 219.4 239.8 196.4 204.5 180.8 182.7 149.4 151.2 120.2 121.8 
0.6 256.9 278.2 220.2 228.1 193.5 195.2 155.5 157 122.7 124 
0.8 260.2 278.1 217.4 223.7 186.6 187.9 150.3 151.4 120.6 121.6 

0.8 0.2 174 193.7 167.7 176.3 167.6 170 144.8 147.2 118.8 121.1 
0.4 234.4 258.8 211.6 221.5 197 199.4 160.8 163.1 125.6 127.7 
0.6 276.2 301.5 238.1 247.6 210.3 212.4 166.4 168.4 127.7 129.3 
0.8 282.7 303.4 235.4 242.7 200.7 202.2 158.8 160.2 124.3 125.5 

0.9 0.2 188.9 214.8 185.3 197.3 192.5 196.4 164.9 169 129.5 133.5 
0.4 256.3 289.3 236.3 250.5 228.7 232.8 184.9 188.9 137.7 141.3 
0.6 308.2 343.8 271.1 285.3 247 250.7 192.3 195.6 140 142.8 
0.8 327.2 357.4 275.1 286.1 236.6 239 181.7 183.8 134.7 136.5 

** does not satisfy condition (4.5.18). 
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Figure 4.3. The Percent Relative Efficiency of Var(nUM )/Var(nmS) 

When~ =Q1 =0.5 and Q2 =0.8. 

In Chapter III, it was showed that the variance of an estimator in a stratified 

Warner's RR model decreases as the number of strata increases. We can apply it to our 

stratified mixed RR model. Suppose that k strata of equal size are created such that 

w; = 1 / k . Inserting w; = 1 / k into equation ( 4.5.17), then 

A (1- Qh) {A,i, Qh (1 - Jr s) + (1- Ai,)} 
where L(n s, , Qh, Ah) =n s, (1- Jr s) + Q 2 

h 
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Let f (k) = ~ [± ~ L(fr s,, , Qh, Ah) ]
2 

where k is a positive interger. 
k h~l 

We want to show thatf(k)- f(k+ 1) ~ 0. Then 

As the number of strata increases, it may be possible to divide a heterogeneous 

population into subpopulations, each of which is more homogeneous. So we may get 

By this assumption, f(k) is a monotone decreasing function of k. Thus the 

variance of an estimator decreases as the number of strata increases. For a case with 

more than two strata, we may get the same result in terms of efficiency as those for two 

strata. 

4.6. Discussion 

A privacy problem of Moors (1971) model discussed by Mangat et al. (1997) and 

, Singh et al. (2000) motivated the authors to present a mixed randomized response 

model. We showed that the proposed model could rectify the privacy problem of the 

Moors' model. Furthermore, the mixed model can be more efficient than the Moors 

model if the "Yes" proportion from the innocuous trait direct is more than half percent. 

We extended the mixed model to a stratified mixed RR model. We showed that a 
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stratified mixed RR model is more efficient than a mixed RR model in the case with 

two strata in the population. We derived condition (4.5.18) which makes the stratified 

mixed RR model more efficient than the Moors model. We conclude that our mixed RR 

model and stratified mixed RR model are a good alternative models to the Moors model 

while keeping respondents' confidentiality. 

81 



CHAPTERV 

A NEW MULTINOMIAL DISTRIBUTION APPROACH TO QUANTITATIVE 

RANDOMIZED RESPONSE MODEL 

5.1. Introduction 

Since the introduction of the randomized response technique by Warner (1965), 

the theory and technique for randomized response (RR) technique have been 

considerably developed. Abul-Ela et al.(1967) extended Warner's dichotomous RR 

technique to a polychotomous RR technique but the Abul-Ela et al. RR technique had a 

drawback. The drawback is that the complexity of the estimation procedure increases as 

the number of categories in the polychotomy increases. There has been much research 

on enhancing RR techniques for polichotomies. In particular, Greenberg et al. (1971) 

adapted the unrelated question qualitative RR technique of Horvitz et al. (1967) to 

produce the unrelated question quantitative RR technique. A number of quantitative RR 

techniques have been proposed since Greenberg's quantitative RR technique. 

Bourke and Dalenius (1976) presented some new ideas in the realm of 

randomized response. They pointed out that Greenberg's quantitative RR technique 

leads to the loss of useful information on the sensitive trait because of the unrelated or 

nonsensitive question in the quantitative RR technique. To deal with the disadvantage of 

Greenberg's quantitative RR technique, Eriksson (1973) and Liu and Chow (1976) 

presented discrete quantitative RR techniques which modified the Greenberg 

quantitative RR technique. Kim and Flueck (1978) and Himmelfarb and Edgell (1980) 

developed the additive model approach to RR technique. Pollock and Bek (1976) and 

Eichhorn and Hayre (1983) introduced the multiplicative RR technique which is the 
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method where a respondent multiplies his or her answer to the sensitive question by a 

random number from a known distribution. Therefore a validation check for RR 

technique has also been attempted by Abernathy et al. (1970), Bradburn and Sudman 

(1979), Tracy and Fox (1981), Danermark and Swensson (1987), Duffy and Waterton 

(1988) and Kerkvliet (1994). These researchers compared RR interviews and direct 

interviews based on a statistical measure of efficiency and respondents' protection. 

5.2. Proposed Model 

5.2.1. The Estimation of Proportions in a Multinomial Distribution 

Our RR technique utilizes the Hopkins' device to estimate a multinomial 

distribution for a sensitive variable ( A ). Thus our new quantitative RR technique 

follows the same procedure as Liu and Chow's (1976) RR technique. There are two 

different colors of balls, red and green, in the device. Each of the green balls has a 

discrete number marked on it, 0,1,2, · · · , k + l. Suppose that all green balls consist of a 

set of non-sensitive categories, B = { BI' B2 , • • ·, B k+1 }, such that all the values of A are 

included. 

With t different interviewees performing the Hopkins' device, each interviewee 

belongs to one of k + l mutually exclusive and exhaustive categories 

T = {T1 , T2 , • • ·, Tk+1 } which consist of sensitive categories A = { A1 , A2 , • • ·, Ak+1 } and non-

sensitive categories B = { B1 , B2 , • • ·, B k+l } • Let ti denote the number of observations in a 

k+l 

category 'I'; so that t = L f; . We let ai be the number of observations in a category Ai 
i=l 

k+l 

so that a = Lai and bi be the number of observations in a category Bi so that 
i=l 
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k+I 
b = I,bi . We assume that ~ = ti is the sum of Ai = ai and Bi = bi . Thus we are 

i=l 

attempting to estimate Pa1, Pa2, . .. , Pa<k+I) the proportions in the population who are in 

sensitive categories A1 , A2, · · ·, Ak+i . Based on green balls with number in the Hopkins' 

device, we can derive the proportions in the population who are in categories 

Let P,1, P,2 , ••• , P,<k+I) denote the proportions in the population who are in 

categories T1, T2, · · ·, Tk+1 . When t different interviewees finish performing the Hopkins' 

device, we can derive b the total number of people who are in B = {B1 , B2 , • • ·, Bk+I} by 

b ~ tg/(r+ g) where bis an integer. The condition b ~ tg/(r+ g) does not influence 

the result of the column B in Table 5.1 when t is a large enough number. 

We can also derive bl'b2, ... ,bk in the same way that bi~ tgj(r+ gJ where b;is 

an integer. Thus, we can get bk+i = b - (b1 + b2 + ... +bk) . 

TABLE 5.1. 

The Number of Observations for Three Different Variables. 

T A B 

Category 1 y;_ = ti A1 =a1 B1 =b1 
Category 2 T2 =t2 A2 =a2 B2 =b2 
Category 3 T3 = t3 ~ =a3 B3 =b3 

Category k Tk =tk Ak =ak Bk =bk 

Category k+ 1 Tk+I = tk+I Ak+1 = ak+1 Bk+I =bk+I 
Total t a b 
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Then we can define a multinomial distribution of T , A and B as follow: 

T = (T, ,T2 , •• • ,Tk) - MULT (t, P,,,P12 , ••• , P,k) 

(5.2.1) 

Suppose that T = A+ B and respondents give truthful answers to one of two 

different questions. From the moment generating functions of T, A and B or directly 

from the marginal probability mass function's, we can compute moments. 

where h = 1,2, ... , k + 1. (5.2.2) 

(5.2.3) 

Since E(Ah) = aPah, 

p = tP,h - bPbh = tP,h - bPbh 
ah a t-b 

(5.2.4) 

Let Pah denote the estimate of Pah and P,h denote the estimate of P,h . Since 

p = tP,h - b(g) g) 
ah f-b 

(5.2.5) 

which is an unbiased estimator of Pah. The estimate of variance is 

(5.2.6) 

The estimate of covariance is 

where ht:- i. (5.2.7) 
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5.2.2. A Random Transformation to the True Estimate 

In the previous section, we assumed that respondents report truthfully. But in a 

case of untruthful reporting, we need to derive an estimator for population proportion 

Pah with the prior information from (5.2.5), (5.2.6) and (5.2.7) when a respondent reports 

untruthfully. Let Rii denote the probability that a person of category i announces 

himself or herself as one of category j . Suppose that respondents report truthfully 

when they have a non-sensitive question. Then we can apply the lying model of 

Mukhopadhyay (1980) to the sensitive question. Assume that there is a sensitive 

category A, for i = 1,2,3,4 such that ~ has no social stigma and that there is more 

social stigma as i increases. Intuitively, we can stipulate the following: 

R,2 = R,3 = Rl4 = R23 = R24 = R34 = 0 , Ru = 1, R21 + R22 = 1, 

(5.2.8) 

Let 1r1 represent the true proportion of respondents who belong to a sensitive 

category i and P01 represent the observed proportion of respondents who belong to a 

sensitive category i . Under the these assumptions, we can derive the following: 

~=~~+~~+~~+~~=~~+~~+~~ 

Pa3 = R13tr1 + R231r 2 + R33tr 3 + R43tr 4 = R33tr 3 + R..43tr 4 (5.2.9) 

Then 
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pal 1 R21 R31 R41 1rl 

pa2 0 R22 R32 R42 1r2 
P= = 

pa3 0 0 R33 R43 1r 3 

pa4 0 0 0 R44 1r 4 

1 R21 R31 R41 1rl 

0 l-R21 R32 R42 1r 2 
(5.2.10) 

0 0 l-R31 -R32 R43 1r3 

0 0 0 1- R41 - R42 - R43 1r 4 

We can extend the four-category sensitive case to the k -category sensitive case. 

Assume that there is a sensitive category Ai for i = 1,2, ... , k such that ~ has no 

social stigma and Ai is more social stigma as i increases. Like (5.2.8), we can stipulate 

the following: 

Rii = 0 if i < j where i, j = 1,2, ... , k 

k LRii = 1 for i = 1,2, ... ,k. 
j=I 

Like (5.2.9), we can derive the following: 

k 

paj = L Rijn i for j = 1,2, ... , k . 
i=I 

Then 

1 R21 R<k-1)1 Rk1 
pal 0 l-R21 R<k-1)2 Rk2 
pa2 

P= k-2 
0 0 0 1- LR(k-l)j Rk<k-1> 

pa(k-1) j=l 
k-1 

Pak 0 0 0 0 1-LRkj 
j=I 
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(5.2.11) 

(5.2.12) 

1rl 

1r 2 

(5.2.13) 

1r k-1 

1r k 



We can rewrite it like this: 

P=Rn 

nk_1 nk Y and 

1 R21 Rck-1)1 Rk1 

0 l-R21 R<k-1)2 Rk2 

R= k-2 

0 0 0 1-LR<k-l)j Rk<k-1) 
j=l 

k-1 
0 0 0 0 1-LRkj 

j=l 

If R is nonsingular, we can derive the true proportions for sensitive categories: 

The Maximum Likelihood estimator of n = (n I n 2 • • • n k-l n k Y is given by 

where fa is a estimate vector of P , provided that the vector ft satisfies ft; ~ 0 for all i 

4 

and Lft; =l. 
i=l 

The estimate of covariance of ft is 

tP,;(1-P,) 

(t-b) 2 

tfa,/',j 
(t-b)2 

if i = j 
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5.3. Large Sample Multiple Comparisons for RR Model 

We are interested in investigating a multiple contrast method for sensitive 

category proportions of multinomial populations. Let n ;° be the true proportion of 

respondents who belong to a sensitive category j in the i th multinomial population 

k+I 

( i = l,2, ... , m and j = 1,2, ... , k + l ) such that L n ;° = 1 for all i . From Goodman 
j=l 

m 

(1964 ), defining a contrast to be <p = La ijn ;° where La ii = 0 for all j . Let a <i) 
i j i=l 

denote the total number of observations in all sensitive categories in the i th 

multinomial population and ayi denote the number of observations in a sensitive 

category Ai in the ith multinomial population. Then a<i) = a;i) + a~i) + ... + a1~1 for all 

i. We denote ay> /a<i) by Pt. The Maximum Likelihood (ML) estimator of n;° is 

P;°. Then the ML estimator of <p = Laiin;° is <p = Laiip;°. The variance of p~i)is 
ij ij 

n ;° (1- n ;° ) /au> , and the variance of <p is 

(5.3.1) 

These two variances can be estimated by pt (1- pt)/ au> and 

(5.3.2) 

When the aij have been specified a priori and a <i> ~ oo , the probability will 

approach 1 - a that 

(5.3.3) 
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here Z a/z is the 100(1-a) th percentile of the unit normal distribution. 

If the Pearson X 2 test statistics leads to failure of the rejection of the null 

hypothesis H O : n t = n t = · · · = n j"') = n j which means that m multinomial populations 

are homogeneous, all simultaneous confidence intervals would include zero. But if the 

test leads to rejection of this null hypothesis, we can use the multiple contrast method of 

Goodman (1964) to determine which particular contrasts are significantly different from 

zero. First, we need the test of homogeneity using the Pearson X 2 test statistics for m -

sample multinomal. 

Example 1. Suppose that we apply our new RR technique to three different female 

sample groups to research abortion and we obtain the three sensitive categories from 

three female groups. We assume that the result of the experiment is Table 5.3. First, we 

want to test the null hypothesis HO : n ?) = n J2) = n t = n j • We used the Pearson X 2 test 

statistics for 3 multinomial samples. The test statistics is 

3 3 ( a (i) - e .. ) 2 

x2 = LL } A l) =11.88>9.49=X.~s(4). 
i=l j=1 eij 

(5.3.4) 

TABLE 5.2 

The Proportions of Respondents Who Belong to Each Sensitive Category. 

A1 A2 A3 
Groupl n<1) 

I 
n<1) 

2 
n<1) 

3 1 

Group2 n<z) 
I 

n<z) 
2 

n<z) 
3 1 

Group3 n<3) 
I 

n<3) 
2 

n<3) 
3 1 

n1 nz n3 1 
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TABLE 5.3 

Observed and Estimated Expected Outcomes for a Three-sample. 

Observed outcomes (Estimated Expected 
Outcomes) 

~ ~ ,\ Total 

Female 55(57) 10(10.8) 10(7.2) 75 
Groupl 
Female 75(76) 21(14.4) 4(9.6) 100 
Group2 
Female 60(57) 5(10.8) 10(7.2) 75 

- Group3 
Total 190 36 24 250 

H O can be rejected at a = 0.05 level. Thus we want to know which particular 

·contrasts are significantly different from zero. Applying the LSD multiple contrast 

method to three female group proportions, then the 95% set of confidence intervals 

about two different proportions is given by 

(5.3.5) 

where h * i and Pt is the MLE of nJ°. The following nine contrast comparisons 

are as follows: 

-0.1567 < 7C (I) - 7C (2) 
I I < 0.1234 Not Significant 

-0.2016 < 7C (1) -1C (3) 
1 1 <0.0683 Not Significant 

-0.1834 < 1C (2) -1C (3) 
1 1 <0.0834 Not Significant 

-0.1806 < 7C (I) - 7C (2) 
2 2 <0.0273 Not Significant 

-0.016 < 7C (1) -1C (3) 
2 . 2 < 0.1493 Not Significant 
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0.0497 < n<2) -n<3) 
2 2 <0.2369 Significant 

0.0045 < n°l -n<2l 
3 3 < 0.1821 Significant 

-0.1088 < n<1) _n<3) 
3 3 < 0.1088 Not Significant 

-0.1821 < n<2) -n<3) 
3 3 <-0.0045 Significant 

From the above information, these three pairwise contrasts n ;3) < n ?) , n ?) < n ;1) 

and n ?) < n ;3l are significant! y different. Except for the three pairwise contrasts, the 

other six contrasts are not significantly different from zero. 

5.4. Correlation between Two Different Sensitive Questions 

Fox and Tracy (1984) considered estimating the correlation between two sensitive 

variables which are surveyed under the quantitative RR technique by Greenberg et al. 

(1971). In this paper, we will consider estimating the correlation between two sensitive 

variables which is based on a new quantitative RR technique. For an interview· 

involving two sensitive questions, a researcher prepares two Hopkins' devices which 

have different ratios of red balls and green balls with designated numbers. An 

interviewee will face two devices so that she or he will use different device for each 

sensitive question independently. For each question, the respondent will shake the 

device and will get a ball. If the ball is red then the respondent should answer the 

sensitive question. Otherwise, if the ball is green with a designated number then the 

respondent will just say the number on the green ball. For two different questions, we 

are going to use the multivariate randomized response design of Bourke (1981). We 

denote (}ii to be the probability that a respondent gives the i th category for the first 
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question and the j th category for the second question. Let l';j denote the true 

proportion of respondents who fall in the i th category for the first question and the j th 

category for the second question. Suppose that the first question has / categories and 

the second question has J categories. For the conditional probability P[k l Ii j] that a 

respondent of category i and category j announces himself or herself as one of 

category k and category l , we have 

l J 

(J ij = L L P[ k I I i j]Aij (5.4.1) 
i=l j=I 

where i .. is the true proportion that a respondent belongs in the i th category for the ,, 

first question and belongs in the j th category for the second question. Since two 

devices are independently performed by a respondent, we can write 

P[k l Ii j] = ~[k I i]P2[l I j]. Therefore (5.4.1) can be rewritten like this: 

l J 

(Jij = LL~[k I i]P2[l I j]Aij • (5.4.2) 
i=I j=I 

By Bourke (1981), we can express the vectors (J<2l and i<2l so that (Jij is the rth 

element of the vector (J <2l and A;)s the c th element of the vector i<2> , where 

r = [+(k-1)[, C = j+(i-1)]. (5.4.3) 

We can express a matrix M <2> so that P[k l Ii j] = P[k I i]P[l Ii] is in the ( r, c) 

position of the matrix M <2> • The M <2> is the Kronecker product of two matrixes M I and 

M 2 so that P[k Ii] is a element of M I and P[l I j] is a element of M 2 • Therefore the 

vector (J <2> can be expressed as follows: 

(5.4.4) 
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If M 1 ® M 2 is nonsingular, we can derive A<2> from (5.4.4) as follows: 

(5.4.5) 

If e<2> is the asymptotic Maximum Likelihood estimator of (]<2> then we can 

estimate 

(5.4.6) 

Using these cell proportions i<2> , we can consider the product moment correlation 

between two sensitive variables ( A <1> and A <2> ). From the interview, we can directly 

estimate the Pearson product-moment correlation between two different variables 

( r<l) = A <1> + B<1> and r<2> = A <2> + B<2> ). When r<l) is a row variable and T<2> is a 

column variable, we let A(r;) denote a value assigned to the i th row category, and 

A( c j) denote a value assigned to the j th column category. 

For I x J contingency table 

I J 

~~A,,, (A(fi )-A(r) \( A(c,. )-A(c)) 
p = Cov(T 0>,r<2>) = -.===~=I =-f:'=1 =' =====/\:======== 

r ~Var(T<1>)~Var(T<2>) { 1 }{ 1 } 
fi'A;)A(ri )-A(r))2 ti'A+j (A(c)-A(c) )2 

(5.4.7) 

J I I J 

where Ai+= LAij, and A+j = LAij, andA(r) = LAi+A(r;) and A(c) = LA+jA(c). 
j=I i=I i=I j=I 
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other. 

The estimator is 

t ± iij (A(r; )-A(fr) XA(c j )-A(i)) 
i=I j=I ~=-;::================= 

{ t, .t (A(r; )-A(t) )' }{ t,t, (A(c1 )-A(C) )'} 

i=l j=l 

(5.4.8) 

Since A ci) and B<l) are independent, and A <2) and B<2l are independent. Then 

Var(T<1l) = Var(A (I))+ Var(B<'l) and Var(T< 2l) = Var(A <2)) + Var(B< 2l). 

Suppose A <1) and B <2) , A <2) and B <1) , and B <1) and B <2) are uncorrelated each 

Then the covariance of two variable T ci) and T <2) is 

Cov(T<'l, T<2)) = Cov(A o) + B<l), A <2) + B<2l) 

= Cov(A ci), A <2)) + Cov(A <1), B<2l) + Cov(B 0 ), A cz)) + Cov(B<1l, B<2l) 

= Cov(A<1l, A<2l). 

The product moment correlation between two sensitive variables A <1) and A <2) is 

p = Cov(A ci), A <2) ) = Cov(T (!), T <2l ) 

· A ~Var(A <1l)~Var(A <2)) ~Var(T 0))-Var(B<'l)~Var(T<1l)- Var(B<'l) 

I J 

LL Au (A(r; )-A(r) XA(c j )-A(c)) 
i=l j=l =-;::========================= 

{ t, A;, (A(r, )-A(i') )' -Var(B'" )}{ t. A., (A(c 1 )-A(c) )' -Var(B"' )} 
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From (2.2.6), (2.2.7) and (5.2.1), we can derive the mean and variance of a 

designated number i : 

~- gi 
µB=~ll-P (5.4.10) 

where the proportion of green balls with designated number i is g; such that 

1- P = Ii g; . The estimator of p A is 
i=l 

i=l j=l (5 4 11) YA=-;:::====================== • • 

{t-tjA(r,)-A(h)' -Var(B"' )Ht,x.J (A(c)-A(~)' -Var(B"' l} 

i=l j=I 

If the value of :A equals zero then it means that two sensitive variables A (I) and 

A <2l are independent. The farther the absolute value of rA is from zero, the stronger the 

relationship between two sensitive variables A (I) and A <2) correlate with each other. 

TABLE 5.4 

The Number of Respondents Who Belongs to Two Different Sensitive Categories. 

Observed Outcomes 

A(c1)=1 A(c2)=2 A(c3)=3 Total 

A(r1)=1 45 9 6 60 

A(r2)=2 18 5 2 25 

A(r3)=3 10 3 2 15 

73 17 10 100 



Example 2. Suppose that we use our new RR technique to know the correlation 

between two different sensitive variables and we set the three sensitive categories from 

each of two sensitive variables. We assume that the result of the experiment is Table 

5.4. From (5.4.1) and (5.4.2), the proportion that a respondent of category i and 

category j announces himself or herself as one of category k and one of category l is 

(5.4.12) 
i=l j=l i=l j=l 

From (5.4.4), the probability (}ii can be expressed as follows: 

(}11 (~ [111] ~ [112] ~ [1 I 3]) ® (P2 [111] P2 [112] P2 [1 I 3]) Au 

(}12 (~[111] ~[112] ~[1 I 3]) ® (P2 [2 I 1] P2 [2 I 2] P2 [2 I 3D A12 

(}13 (~[111] ~[112] ~[1 I 3]) ® (P2 [3 I l] P2 [3 I 2] P2 [3 I 3]) A13 

(}21 (~[211] ~[212] ~[2 I 3]) ® (P2 [l I l] P2 [1 I 2] P2 [1 I 3]) A21 

(}(2) = 
(}22 

=M<2i 1(2) = (~[211] ~[212] ~[2 I 3]) ® (P2 [2 I 1] P2 [2 I 2] P2 [2 I 3]) A22 

(}23 (~[211] ~[212] ~[2 I 3]) ® (P2 [3l 1] P2 [3 I 2] P2 [3 I 3]) A23 

(}31 (~[3 I l] ~[3 I 2] PJ3 I 3]) ® (P2 [1 I l] P2 [1 I 2] P2 [1 I 3]) A31 

(}32 . (~ [3 I 1] ~ [3 I 2] ~ [3 I 3]) ® (P2 [211] P2 [212] P2 [2 J 3]) A32 

(}33 (~[3 I 1] ~[3 I 2] ~[3 I 3]) ® (P2 [3 I 1] P2 [3 I 2] P2 [3 I 3]) A33 

(5.4.13) 

By rewriting M <2l in terms of M 1 and M 2 , we get 

(5.4.14) 

From Table 5.4, we can derive each (}ii as follows: 

(} (Z) = (.45 .09 .06 .18 .05 .02 .1 .03 .02 Y . 
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Suppose that 

M, =[i 
.1 

.11 [I .2 
.21 .9 .1 and M 2 = 0 . 8 .1 . 

0 .8 0 0 .7 

1 .2 .2 .1 .02 .02 .1 .02 .02 

0 .8 .1 0 .08 .01 0 .08 .01 

0 0 .7 0 0 .07 0 0 .07 

M=[i 
.1 

.11 [I .2 
.21 

0 0 0 .9 .18 .18 .1 .02 .02 

.9 .1 ® 0 .8 .1 = 0 0 0 0 .72 .09 0 .08 .01 

0 .8 0 0 .7 0 0 0 0 0 .63 0 0 .07 

0 0 0 0 0 0 .8 .16 .16 

0 0 0 0 0 0 0 .64 .08 

0 0 0 0 0 0 0 0 .56 

Since M is ~onsingular and (}ij is known, we can derive the true proportion A;j that 

a respondent belongs in the i th category for the first question and belongs in the j th 

category for the second question. By finding the inverse matrix of M, we get 

;t<2i =M-1e<2i =(.385 .091 .079 .168 .06 .028 .109 .042 .036)7. 

Suppose that two different sensitive questions are independent each other and the 

first sensitive variable ( A <1l) and the first non-sensitive variable ( B<2l ), the second 

sensitive variable ( A <2>) and the first non-sensitive variable ( B<1> ), and the first non­

sensitive variable ( B<1>) and the second non-sensitive variable ( B<2>) are uncorrelated 

each other. From (5.4.9), the product moment correlation between two sensitive 

variables A <IJ and A <2> is 

3 3 

I I ;tij (AC 1i ) - A(r) XAC c j ) - A(c)) 
i=l j=l 

PA=-;:::=============================================== { t A-;, (A( r, ) - A(r) )' - Var(B '" ) Ht. A.jA( c ;l-A(c) )' - Var(B "' )} 
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If a researcher uses two Hopkins' devices which have different ratios of red balls 

and green balls with a designated number then she or he can derive the variances of a 

designated number i, that is, Var(B 0>) and Var(B<2>). 

Suppose that we get Var(B<1>) = .567 and Var(B< 2>) = .479 from the randomized 

response technique. Then we can easily compute the correlation between two sensitive 

variables. The correlation is 

= .0404 = .845 . 
PA ~ {6076-.567}{.5353-.479} 

It means that the relationship between two sensitive variables A <1> and A <2> 

correlated strongly each other. Through Example 2, we discover the important fact that 

if researchers choose two sensitive issues highly correlated then they may obtain more 

useful information, for example, like the correlation between abortion and alcohol 

abuse, in addition to get a reliable data. 

5.5. Discussion 

A multinomial distribution approach to a new RR technique using a Hopkins' 

device will be introduced. Eriksson (1973) and Liu and Chow (1976) have presented a 

quantitative randomized response technique which is modified by Greenberg et al. 

(1971). But the result of their researches focused on estimating the proportions which 

are the observed estimates of sensitive category proportions. Furthermore they did not 

apply their randomized response models to the multivariate randomized response design 

for a sensitive variable. It is advantageous to treat ordinal data in a quantitative manner 

by assigning ordered scores to the categories. In a new quantitative RR technique, we 

derived the true proportion estimates of the sensitive categories based on the observed 
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estimates of sensitive category proportions. We applied a multiple contrast method by 

Goodman (1964) to a randomized response technique. Through a multiple contrast 

method for a randomized response technique, we might be able to investigate the 

sensitive trait in a target group population in detail. A Pearson product-moment 

correlation between two sensitive variables was presented in this research. Since 

researchers often deal with categorical data of sensitive issues in a real life, the Pearson 

product-moment correlation is more appropriate than the correlation between two 

sensitive variables presented by Fox and Tracy (1984). Through the Pearson product­

moment correlation presented in this research, researchers may get more useful 

information of the relationship between two different sensitive questions in the same 

interview. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

The purpose of this dissertation was to develop a new randomized response 

technique which is more efficient than the previous randomized response techniques 

while keeping the respondents' confidentiality, and to investigate the properties of that 

randomized response technique. Under the assumption of respondents' truthful 

reporting, it was shown that a stratified Warner randomized response model was more 

efficient than the Warner ( 1965) RR model, Mangat and Singh (1990) RR model, and 

Mangat (1994) RR model under the conditions given in this dissertation. In terms of the 

untruthful reporting case, we showed that a stratified Warner randomized response 

model was more efficient than the Warner (1965) RR model, Mangat and Singh (1990) 

RR model under the conditions given in this dissertation. 

Furthermore, a mixed randomized response model was more efficient than Moors 

(1971) RR model and rectified the privacy problem of the Moors model. The author 

extended the mixed RR model to a stratified mixed RR model. It was concluded that a 

stratified mixed RR model was more efficient than the mixed RR model. 

The last goal was accomplished in Chapter 5. For obtaining ordinal data in a 

quantitative manner, a multinomial distribution approach to a new RR technique using a 

Hopkins' randomizing device was introduced. Using the new quantitative RR model, 

the author tried to investigate the relationship between two sensitive variables by a way 

of presenting a multiple contrast method and derive the Pearson product-moment 

correlation between the two sensitive questions. 
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6.2. Future Work 

Bayesian analyses of randomized response models are given in Winkler and 

Franklin (1979), Pitz (1980), O'Hagan (1987), Oh(l994), and Unnikrishnan and Kunte 

(1999). Bayesian methods are attractive in randomized response models because they 

incorporate useful prior information where only partial information is available. Most of 

research on the Bayesian approach to randomized response models focuses on 

dichotomous and polychotomous responses. Research is needed on a Bayesian approach 

to a quantitative randomized response model since researchers more often deal with 

sensitive issues of a quantitative character in practical fields. A Bayesian approach to a 

quantitative randomized response model will be useful and practical. 
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TABLE3.3. 
The Relative Efficiency of MSE(ft:,,s) I MSE(ft;). 

For n s = 0.1 such that n s, = 0.08, n s, = 0.13, w1 = 0.6 and w 2 = 0.4 
p 

M n T Tr 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

0.3 100 0.9 0.9 14.9033 16.3782 19.2583 24.924 37.8001 79.488 504.855 445.089 

0.9 0.8 13.806 15.4362 18.3895 24.0418 36.7535 77.7779 496.508 439.525 

0.9 0.7 12.2865 14.0746 17.0939 22.6969 35.1352 75.1151 483.508 430.919 

0.8 0.9 14.8983 16.383 19.2755 24.9611 37.8786 79.6998 506.498 446.802 

0.8 0.8 13.608 15.242 18.1897 23.8206 36.4752 77.3137 494.333 438.295 

0.8 0.7 11.954 13.7304 16.7198 22.2576 34.5434 74.0377 477.778 426.89 

0.7 0.9 15.0049 16.5086 19.4332 25.1784 38.2285 80.4797 511.74 451.688 

0.7 0.8 13.5111 15.1599 18.1221 23.7712 36.4584 77.4018 495.683 440.19 

0.7 0.7 11.7074 13.4844 16.4646 21.9764 34.1965 73.4848 475.438 425.897 

0.3 500 0.9 0.9 12.7037 14.4189 17.3923 22.9773 35.4427 75.5921 485.892 .432.787 

0.9 0.8 9.17993 10.9691 13.8324 18.993 30.297 66.5341 438.68 399.439 

0.9 0.7 7.02853 8.59921 11.1095 15.6337 25.562 57.5283 388.498 361.979 

0.8 0.9 12.5427 14.3065 17.3398 23.0159 35.6667 76.4187 493.445 441.516 

0.8 0.8 8.49684 10.2425 13.0317 18.0561 29.0677 64.4295 428.808 394.17 

0.8 0.7 6.24512 7.7 10.034 14.2558 23.554 53.614 366.503 345.938 

0.7 0.9 12.855 14.7257 17.923 23.8886 37.1709 79.9665 518.459 465.798 

0.7 0.8 8.11689 9.88196 12.6977 17.7667 28.8817 64.6387 434.342 403.064 

0.7 0.7 5.64971 7.04007 9.27965 13.3464 22.3391 51.5436 357.34 342.186 

0.3 1000 0.9 0.9 10.7713 12.5753 15.5354 20.9484 32.8893 71.2344 464.105 418.335 

0.9 0.8 6.89792 8.45062 10.9328 15.408 25.2333 56.888 384.921 359.432 

0.9 0.7 5.35671 6.58655 8.57586 12.202 20.2441 46.4072 320.467 306.456 

0.8 0.9 10.4733 12.3528 15.4135 20.9884 33.2709 72.7487 478.448 435.307 

0.8 0.8 5.97555 7.42373 9.74985 13.9631 23.2582 53.376 367.894 350.134 

0.8 0.7 4.42992 5.48332 7.20348 10.3679 17.4494 40.699 286.825 280.741 

0.7 0.9 10.9662 13.0483 16.4202 22.5443 36.0254 79.3924 526.178 482.373 

0.7 0.8 5.45595 6.90628 9.24624 13.5031 22.9393 53.6892 377.317 366.012 

0.7 0.7 3.72361 4.67124 6.23777 9.15339 15.7524 37.6689 272.775 274.766 

0.3 2000 0.9 0.9 8.34561 10.0803 12.8505 17.8391 28.7716 63.8867 425.921 392.151 

0.9 0.8 5.08696 6.27613 8.2041 11.726 19.5534 45.0749 313.15 301.385 

0.9 0.7 4.28556 5.2154 6.72805 9.50277 15.6979 35.99 250.095 242.593 

0.8 0.9 7.87559 9.70875 12.6284 17.8815 29.4073 66.5605 452.165 424.057 

0.8 0.8 3.97469 4.99 6.66136 9.75911 16.7417 39.8394 286.571 286.239 

0.8 0.7 3.26691 3.97316 5.13911 7.30996 12.2306 28.6014 204.405 205.75 

0.7 0.9 8.59533 10.7781 14.2473 20.4842 34.1781 78.4245 539.706 512.402 

0.7 0.8 3.34426 4.33706 5.9982 9.1241 16.2738 40.2798 301.187 312.25 

0.7 0.7 2.48955 3.05745 4.01926 5.85544 10.1214 24.6724 185.301 197.218 
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For ns =0.2 such that 'lrs =0.18, ns =0.23, w1 =0.6 andw2 =0.4. 
I 2 

p 

M n T T, 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

0.3 100 0.9 0.9 10.5836 12.3917 15.3462 20.7374 32.619 70.7659 461.731 416.741 

0.9 0.8 8.61811 10.3726 13.1733 18.2144 29.2537 64.6719 429.176 393.255 

0.9 0.7 7.05313 8.63519 11.1629 15.7182 25.715 57.9076 391.321 364.894 

0.8 0.9 10.499 12.3358 15.3297 20.7858 32.8057 71.4102 467.495 423.355 

0.8 0.8 8.11826 9.83661 12.578 17.5121 28.3243 63.0649 421.538 389.076 

0.8 0.7 6.40599 7.89535 10.2816 14.5932 24.0812 54.7309 373.491 351.871 

0.7 0.9 10.722 12.6379 15.7547 21.4287 33.9251 74.0742 486.426 441.853 

0.7 0.8 7.84683 9.57839 12.339 17.3073 28.2008 63.2548 425.918 395.989 

0.7 0.7 5.91662 7.35531 9.66696 13.8554 23.0992 53.0614 366.095 348.788 

0.3 500 0.9 0.9 7.31231 8.95134 11.5659 16.273 26.5978 59.8395 404.074 376.66 

0.9 0.8 4.84503 5.98172 7.82918 11.2124 18.7503 43.3887 302.904 293.257 

0.9 0.7 4.18937 5.09623 6.57279 9.2839 15.3432 35.2127 245.129 238.429 

0.8 0.9 6.91835 8.63625 11.3786 16.3228 27.1964 62.3559 428.974 407.221 

0.8 0.8 3.80273 4.77222 6.37261 9.34716 16.0705 38.3704 277.259 278.517 

0.8 0.7 3.20202 3.891 5.02943 7.15109 11.9652 27.9998 200.411 202.252 

0.7 0.9 7.54533 9.58109 12.8303 18.6915 31.6007 73.4582 511.933 491.903 

0.7 0.8 3.21377 4.16047 5.7495 8.74919 15.6312 38.8053 291.407 303.759 

0.7 0.7 2.44905 3.00321 3.94256 5.73757 9.91224 24.1676 181.726 193.861 

0.3 1000 0.9 0.9' 5.42448 6.77228 8.94798 12.9066 21.6761 50.2064 349.551 336.257 

0.9 0.8 3.78861 4.61663 5.97293 8.47805 14.1102 32.6907 230.337 227.343 

0.9 0.7 3.62866 4.34496 5.50574 7.62742 12.3485 2i7593 189.676 182.122 

0.8 0.9 4.85197 6.29303 8.64233 12.9575 22.6114 54.3733 392.547 390.957 

0.8 0.8 2.59443 3.19776 4.21722 6.1586 10.657 25.9577 194.344 205.642 

0.8 0.7 · 2.5747 3.04093 3.04093 5.23515 8.4669 19.2209 134.759 135.635 

0.7 0.9 5.7121 7.64492 10.8051 16.6274 29.7008 72.915 536.055 542.355 

0.7 0.8 1.91656 2.47611 3.46069 5.40714 10.0782 26.5157 214.105 242.965 

0.7 0.7 1.77012 2.07931 2.61182 3.64766 6.10469 14.6783 111.791 124.88 

0.3 2000 0.9 0.9 3.76852 4.72862 6.31445 9.26366 15.9335 38.0688 275.334 276.909 

0.9 0.8 3.14316 3.74968 4.73948 6.56209 10.6496 24.1049 166.864 163.607 

0.9 0.7 3.32099 3.92384 4.89193 6.64376 10.4986 22.9214 151.349 139.951 

0.8 0.9 3.03938 4.09542 5.8898 9.31577 17.2616 44.3152 342.962 367.066 

0.8 0.8 1.85619 2.19784 2.785 3.9244 6.6197 15.9958 121.819 135.174 

0.8 0.7 2.23047 2.56444 3.10615 4.09743 6.30589 13.5225 89.3825 85.7445 

0.7 0.9 4.10403 5.82906 8.76777 14.3939 27.484 72.2307 568.889 616.465 

0.7 0.8 1.124 1.40639 1.9398 3.06537 5.93685 16.6527 146.491 184.18 

0.7 0.7 1.39757 1.56144 1.84633 2.40663 3.75266 8.51893 63.4547 73.2192 
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For n s = 0.3 such that n s, = 0.28, n s, = 0.33, w1 = 0.6 and w2 = 0.4. 

p 

M n T T, 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

0.3 100 0.9 0.9 8.24574 9.97469 12.7337 17.7001 28.5826 63.5414 424.087 390.869 

0.9 0.8 6.18657 7.63204 9.9525 14.1524 23.4081 53.3476 365.183 345.2 

0.9 0.7 5.12837 6.31768 8.24594 11.769 19.601 45.1427 313.457 301.666 

0.8 0.9 8.06168 9.83423 12.66 17.7452 28.8946 64.7677 435.828 404.964 

0.8 0.8 5.45753 6.81202 8.99768 12.973 21.777 50.4113 350.752 337.176 

0.8 0.7 4.31491 5.34844 7.03894 10.1539 17.1362 40.0989 283.656 278.807 

0.7 0.9 8.40077 10.3286 13.3988 18.9222 31.0372 70.0679 474.774 444.134 

0.7 0.8 5.05034 6.40312 8.59669 12.6051 21.5249 50.6936 358.809 350.772 

0.7 0.7 3.69613 4.63643 6.19145 9.08693 15.6433 37.4279 271.232 273.471 

0.3 500 0.9 0.9 4.8508 6.07912 8.07521 11.7294 19.8703 46.4994 327.569 319.227 

0.9 0.8 3.59097 4.35867 5.61722 7.94432 13.183 30.4907 214.9 212.783 

0.9 0.7 3.53298 4.21798 5.32671 7.35064 11.8481 26.5069 180.238 172.334 

0.8 0.9 4.28865 5.60286 7.76683 11.7779 20.8259 50.8243 372.831 377.591 

0.8 0.8 2.40637 2.94588 3.86127 5.61231 9.68927 23.6275 177.885 190.236 

0.8 0.7 2.48342 2.91711 3.62988 4.95253 7.94383 17.8817 124.457 124.776 

0.7 0.9 5.12791 6.93747 9.92798 15.4917 28.094 70.0877 523.931 539.112 

0.7 0.8 1.73359 2.22689 3.10404 4.85591 9.10227 24.1935 198.196 229.032 

0.7 0.7 1.68211 1.9577 2.43336 3.36093 5.56749 13.2923 101.125 113.776 

0.3 1000 0.9 0.9 3.42849 4.29262 5.72856 8.41538 14.5288 34.9392 255.108 259.785 

0.9 0.8 3.03932 3.61069 4.5418 6.25393 10.0882 22.6914 156.175 152.53 

0.9 0.7 3.27207 3.85812 4.7978 6.49528 10.223 22.2072 145.709 133.714 

0.8 0.9 2.70794 3.66236 5.30196 8.46588 15.879 41.366 325.535 354.879 

0.8 0.8 1.7579 2.06246 2.58713 3.60808 6.03075 14.4883 110.335 123.375 

0.8 0.7 2.1839 2.5004 3.01222 3.94559 6.01701 12.7557 83.1931 78.7813 

0.7 0.9 3.75674 5.38231 8.17959 13.5877 26.2895 70.1012 560.836 617.917 

0.7 0.8 1.02867 1.2726 1.74153 2.74591 5.34241 15.151 135.436 173.637 

0.7 0.7 1.35274 1.49859 1.75247 2.25244 3.4555 7.72372 57.034 66.09 

0.3 2000 0.9 0.9 2.39672 2.93289 3.84281 5.58378 9.63836 23.5039 177.003 189.401 

0.9 0.8 2.73 3.1826 3.91076 5.23112 8.14287 17.5479 115.015 106.868 

0.9 0.7 3.13479 3.66682 4.51303 6.02726 9.31519 19.7394 125.159 109.561 

0.8 0.9 1.56127 2.18542 3.32121 5.63592 11.3498 32.0099 274.555 327.986 

0.8 0.8 1.39429 1.55684 1.83948 2.39539 3.73102 8.46114 62.9895 72.7049 

0.8 0.7 2.02631 2.2789 2.67967 3.39462 4.94066 9.81363 58.6356 50.0153 

0.7 0.9 2.76207 4.19865 6.77458 11.9608 24.6374 70.1145 600.616 711.228 

0.7 0.8 ** ** ** 1.46921 2.97897 9.18777 91.4463 131.657 

0.7 0.7 1.17944 1.25455 1.38587 1.64591 2.27572 4.52761 30.794 36.2661 

**does not satisfy the condition (3.5.1). 
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For n s = 0.4 such that n s, = 0.38, n s, = 0.43, w, = 0.6 and w2 = 0.4. 

p 

M n T T,. 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

0.3 100 · 0.9 0.9 6.78214 8.35519 10.8685 15.4 25.3552 57.471 391.007 367.209 

0.9 0.8 4.91572 6.08281 7.97882 11.4492 19 .1777 44.4298 310.353 300.438 

0.9 0.7 4.27934 5.22619 6.76968 9.60663 15.953 36.7829 257.093 250.755 

0.8 0.9 6.49248 8.12044 10.7259 15.4332 25.8023 59.3808 410.111 390.865 

0.8 0.8 4.02209 5.0503 6.7414 9.87316 16.9269 40.2431 289.116 288.337 

0.8 0.7 3.37099 4.12251 5.36409 7.67681 12.9202 30.3667 217.752 219.343 

0.7 0.9 6.94502 8.81062 11.7983 17.2013 29.123 67.8301 473.797 456.391 

0.7 0.8 3.51638 4.52713 6.2108 9.36619 16.5554 40.6009 300.814 309.088 

0.7 0.7 2.67804 3.30924 4.37386 6.3973 11.0762 26.9563 201.309 212.063 

0.3 500 0.9 0.9 3.56898 4.47356 5.97288 8.77097 15.121 36.2669 263.748 267.153 

0.9 0.8 3.092 3.68518 4.65361 6.43773 10.4411 23.6275 163.636 160.691 

0.9 0.7 3.29419 3.89034 4.84776 6.58046 10.3937 22.6841 149.765 138.543 

0.8 0.9 2.88958 3.88029 5.57123 8.81409 16.3676 42.1899 328.395 354.017 

0.8 0.8 1.836 2.1701 2.74455 3.85992 6.50004 15.6907 119.507 132.813 

0.8 0.7 2.2165 2.54685 3.08275 4.06353 6.24892 13.3914 88.4889 84.9292 

0.7 0.9 3.87228 5.48872 8.25535 13.5765 26.0119 68.6977 544.428 594.262 

0.7 0.8 1.12088 1.39668 1.91804 3.01895 5.82985 16.3287 143.657 180.897 

0.7 0.7 1.39326 1.55541 1.83735 2.3919 3.72433 8.4433 62.8459 72.5461 

0.3 1000 0.9 0.9 2.51595 3.09292 4.06947 5.93258 10.2581 25.0016 187.627 199.395 

0.9 0.8 2.76084 3.22681 3.97829 5.34463 8.3671 18.1652 120.179 112.895 

0.9 0.7 3.14673 3.68432 4.54038 6.0744 9.41101 20.0124 127.544 112.509 

0.8 0.9 1.70883 2.37213 3.5671 5.97997 11.8845 33.0567 279.516 329.064 

0.8 0.8 1.43902 1.61946 1.93283 2.54832 4.02476 9.24369 69.2699 79.6205 

0.8 0.7 2.04369 2.30383 2.71789 3.45927 5.06972 10.1746 61.7258 53.743 

0.7 0.9 2.86528 4.30717 6.87787 12.0244 24.5336 69.1586 586.676 687.627 

0.7 0.8 ** ** 1.04621 1.6345 3.28369 9.95526 97.1088 137.053 

0.7 0.7 1.20094 1.28492 1.43167 1.72207 2.42483 4.93503 34.1781 40.1759 

0.3 2000 0.9 0.9 1.83303 2.16601 2.73857 3.85036 6.48226 15.6453 119.162 132.46 

0.9 0.8 2.58244 2.97678 3.6042 4.72729 7.16652 14.9004 93.0833 81.3431 

0.9 0.7 3.07054 3.57724 4.37942 5.80684 8.88498 18.5582 115.172 97.5411 

0.8 0.9 0.94308 1.35961 2.16576 3.90087 8.4036 25.4712 235.552 304.413 

0.8 0.8 1.22518 1.31912 1.48318 1.80758 2.5919 5.3903 37.946 44.5067 

0.8 0.7 1.95441 2.17753 2.52683 3.13981 4.43848 8.42374 46,825 35.8139 

0.7 0.9 2.2122 3.51392 5.9147 10.8859 23.3857 69.5414 624.675 779.858 

0.7 0.8 ** ** ** ** 1.80979 6.14586 68.0847 108.11 

0.7 0.7 1.10159 1.14433 1.21924 1.36794 1.72919 3.02558 18.2168 21.5661 

**does not satisfy the condition (3.5.1). 
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