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CHAPTER! 

INTRODUCTION 

Fraud in business is a matter of grave social and economic concern. "The U.S. 

Chamber of Commerce estimates that the annual cost of fraud exceeds $100 billion" 

[Glover and Aono 1995, 3]. Fraudulent financial reporting is a critical problem for 

external auditors, both because of the potential legal liability for failure to detect false 

financial statements and because of the damage to professional reputation that results 

from public dissatisfaction about undetected fraud. Current professional standards 

maintaining that the auditor is not responsible for detecting management fraud because 

of the inherent limitations of the audit process do not serve to prevent litigation against 

the auditor or significant payments by the auditor in cases of management fraud. 

Between 1990 and 1993, the (then) Big 6 alone paid out over $1 billion to settle cases 

related to fraud. According to a 1992 Big 6 joint statement entitled "The Litigation 

Crisis in the United States: Impact on the Accounting Profession," litigation expenses 

equal approximately 11 percent of audit revenues [Glover and Aono 1995]. The 

Private Securities Litigation Reform Act of 1995 was partly motivated by the 

expanding litigation risk faced by auditing practitioners. One provision of the Reform 

Act requires that audits include procedures designed to provide reasonable assurance 
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of detecting illegal acts that would have a direct and material effect on the 

determination of financial statement amounts [King and Schwartz 1997]. 

Increasing pressure to reduce fraudulent financial reporting over the past 30 

years has resulted in new laws, commission reports, and standards. Public concern for 

fraud detection bega1;1 during the early 1970s with the famous Equity Funding case. 

Such concern eventually led to the Senate's Metcalf Commission and the American 

Institute of Certified Public Accountants' (AICPA) Cohen Commission. Various 

recommendations made by these commissions were eventually adopted by the 

Financial Accounting Standards Board (FASB) and the Auditing Standards Board 

(ASB). During the mid-1980s, the savings and loan debacle created a new wave of 

public concern. Congressional inquiry led to the formation of the Treadway 

Commission whose charge was to prescribe effective recommendations to guide the 

ASB 's development of standards to help prevent and detect fraud. 

In 1988, the ASB issued nine new "expectation gap" standards, Statement on 

Auditing Standards (SAS) 53 through 61. They were designed to (1) outline clearly 

the external auditor's role concerning fraud, (2) enhance overall audit procedures for 

detecting and preventing fraud, and (3) enhance communications between the auditor 

and management, the audit committee and the public [Glover and Aono 1995]. The 

SAS 53 was designed to narrow the gap between clients' expectations regarding the 

auditor's responsibility to detect fraud during an audit and what that responsibility 

actually is [Levy 1989]. However, in 1996, the U.S. General Accounting Office's 

(GAO) report The Accounting Profession, Major Issues: Progress and Concerns 
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identified responsibilities for fraud as a major unresolved issue. The GAO contended 

that an expectation gap still exists for auditor responsibilities and performance related 

to detection of fraud [Carmichael 1997]. 

In 1996, the ASB issued SAS 82 Consideration of Fraud in a Financial 

Statement Audit in hopes of closing the seemingly ever-present expectation gap. The 

standard provides expanded operational guidance on the auditor's consideration of . 

material fraud in conducting a financial statement audit. The revised standard makes 

it clear that the auditor's responsibility is framed by the concepts of materiality and 

reasonable assurance. The auditor should consider a compendium of risk factors or 

"red flags" [McConnell and Banks 1997]. While the standard clarifies the auditor's 

role, it does not increase the auditor's responsibility to detect fraud [Mancino 1997]. 

Concern for fraud detection is not limited to the U.S. financial reporting 

environment. In New Zealand, General Auditing Standard AS-210 requires the 

auditorto assess the risk of fraud and error at the planning stage of an audit. The 

auditor must design audit procedures to obtain reasonable assurance that material 

fraud or error is detected [Carslaw 1996]. In the United Kingdom, the purpose of SAS 

110 Fraud and E"or is to establish standards and provide guidance on the auditor's 

responsibility to consider fraud and error in an audit. It specifically requires auditors 

to take into account the risk that fraud may cause material misstatements in the 

financial statements. Warning signs that may indicate increased risk of fraud or error 

are also included in the standard [McAlpine 1995]. 
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Users want auditors to assume more responsibility for the detection of fraud. 

A "clean" audit opinion is far from a warranty or certification that fraud has not 

occurred. An audit under generally accepted auditing standards (GAAS) is not a 

proper vehicle for fraud detection [Levy 1989]. Detection of fraud is not a primary 

objective of a financial statement audit and auditors are not particularly well trained to 

uncover sophisticated fraud [Johnston 1995]. There are a number of reasons auditors 

do not detect fraud. Some frauds are well beyond the scope of the audit. Some are too 

well concealed; others are too small. Frauds that tend to involve upper levels of 

management are not normally detected by traditional audit procedures [Wells 1990, 

1992]. Two concepts that are integral to the GAAS audit make disclosure of certain 

frauds more difficult. They are the auditor's reliance on internal controls and the 

concept of materiality. The schemes that are most difficult to detect are those 

expressly designed to work within the :framework of existing controls. There is no 

"cookbook" approach to detecting fraud [Levy 1985]. 

Although the number of :fraudulent financial statements is small in relation to 

the number of audits performed, cost-effective methods are needed to improve their 

detection and deterrence. The combination of downward pressure on audit fees and 

demands that auditors take more responsibility for detecting misstatements in their 

clients' financial information has led auditors to seek audit procedures that are both 

efficient and effective. CP As have increased their use of analytical procedures in an 

effort to improve audit efficiency and effectiveness. The Treadway Commission 

recommended that the ASB require the use of analytical review procedures (ARPs) on 
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all audits to improve the detection of fraudulent financial reporting [Wheeler and Pany 

1996]. However, the question still remains unresolved as to exactly what types of 

errors or irregularities are detected effectively through these procedures [Blocher 

1992]. 

Despite the past efforts of researchers, there is a need for more detailed 

investigation of the precise cababilities of audit practice in detecting fraud [Humphrey 

et al 1993]. Better fraud detection depends on improved audit procedures that may 

result, in part, from expanded research on "red flag" conditions that indicate the 

potential for fraud [Elliott & Jacobson 1986]. 

Practical evidence is needed to better understand the error detection 

capabilities and cost savings potential of ARPs. Analysis of ratios of account balances 

is a widely applied attention-direction procedure. Yet little is known of the ability of 

ratio analysis to identify material monetary error in actual accounting data [Kinney 

1987]. Failing to detect fraud when it occurs (i.e., Type II error) is much more costly 

to CPA firms than detecting fraud when it does not occur (i.e., Type I error). Type I 

errors lead to inefficient audits while Type II errors lead to potential litigation [Hansen 

et al 1996]. Additional research is needed in the areas of actual use of ARPs in the 

audit and the specific techniques being used in order to understand better how ARPs 

can be used best in the future [Tabor and Willis 1985]. 

In a discussion ofKinney's [1979] study, Lev [1979] posited that" ... perhaps 

some information can be obtained from proven cases of errors or irregularities, such as 

bankruptcies and fraud" [Lev 1979, 167]. This comment was made more than twenty 
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years ago, yet only a small number of studies have used such an approach. The 

Committee of Sponsoring Organizations (COSO) of the Treadway Commission 

sponsored a descriptive research study by Beasley et al [1999] that provides a 

comprehensive analysis of fraudulent financial reporting occurrences investigated by 

the SEC subsequent to the issuance of the 1987 Treadway Commission Report.1 

In the Fall 1997 issue of The Auditor's Report, the American Accounting 

Association (AAA) encourages auditing practitioners and faculty to engage in research 

directed toward assisting auditors in preventing and detecting fraud. The report 

suggests examining data on prior fraud litigations to find "lessons" for auditors to 

follow. It posits the following question - "can analytical procedures be better used to 

detect fraud warning signals?" [Landsittel and Bedard 1997, 4]. SAS 82 has little 

guidance on the role of analytical procedures in fraud detection. Ratio analysis may 

serve such a purpose. Research in this area would have been helpful to the ASB Task 

Force in going beyond generic guidelines to offer more specific direction to auditors 

[Landsittel and Bedard 1997]. 

One can conclude from the ab~ve discussion that there is a strong need for 

auditing research approaches that enable the auditing practitioner to identify 

indications of potential fraud. This researcher chooses to accept the AAA's challenge 

and to pursue such exploration. The approach taken is not within the mainstream of 

current auditing research. Instead, this study will examine fraud within the context of 

chaos theory and its unique methodology. Financial statements are the product of a 

1 Findings from this study are discussed in Chapter N. 
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dynamicaJ system which has a feedback loop whereby the output of one period is the 

starting point for the subsequent period. According to chaos theory, such dynamical 

systems may be deterministic yet appear random and unpredictable. Prior research 

indicates that most dynamical systems are actually non-linear thereby rendering linear 

models ineffectual. Chaos theory methodology has various tools for measuring the 

· non-linearity of a system. The objective of this research study is to use these tools to 

examine financial ratios of both fraudulent and non-fraudulent firms for evidence of 

non-linearity or the lack thereof. The findings will provide evidence as to the 

predictability of fraud and whether the pursuit of such should be based on a linear or a 

non-linear model. The development of such a model is beyond the scope of the 

current research study. 

The remainder of this dissertation is organized as follows. Chapter II provides 

a review of the relevant research concerning ARPs and ratio analysis. Chapter ID is 

an introduction to chaos theory and the terminology and concepts applicable to the 

ensuing research. A literature review of the use of chaos theory in the various 

research realms of the physical sciences, the social sciences and accounting is then 

presented. Chapter IV discusses various methodological issues, including sample 

selection, ratios chosen for inclusion in the study, and the unique tests that will be used 

to analyze the data. Chapter V presents the analysis and results of the empirical 

examinations performed for this study. Chapter VI presents the conclusions of the 

study, its inherent limitations and implications for future research. 
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CHAPTERII 

LITERATURE REVIEW 

Introduction 

During the past thirty years, there has been wide-spread public concern for 

fraud detection. Both the government and the accounting profession have responded 

as evidenced by the creation of new laws, commission reports as well as accounting 

and auditing standards. The concern for fraud has also impacted accounting 

academicians, who have directed their research efforts accordingly. The purpose of 

this chapter is to review the relevant literature. The next section discusses analytical 

review procedures research, while the subsequent section explores the :findings of ratio 

analysis research. 

Analytical Review Procedures (ARPs) 

ARPs have been posited to be a useful tool for identifying irregularities and/or 

fraud [Thornhill 1995]. ARPs is the name used for a variety of techniques the auditor 

can utilize to assess the risk of undetected error in :financial records. These procedures 

involve the analysis of trends, ratios, and reasonableness tests derived from an entity's 

financial and operating data. Ratio analysis can identify and explain a company's 
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financial strengths and weaknesses as well as changes in its long-term trends of 

financial position, results of operations and cash flows. The primary function of ratios 

is to act as indicators or red flags to point to areas of acceptable or unacceptable 

results or conditions. While these analytical procedures are well known and widely 

used, there is a general lack of understanding of how they are properly applied and 

how much reliance should be placed on them. 

An outline is presented in Table 1 ·ofthe major empirical studies examining the 

use of ARPs for the detection of errors and/or irregularities in financial statements that 

were conducted during the period 1979 - 2000. Summarized conclusions include the 

following: 

• Percent of errors identified by ARPs ranged from 15% to 500/o [Blocher 

and Cooper 1988, Calderon and Green 1994, Hylas and Ashton 1982, 

Kreutzfeldt and Wallace 1986, Wright and Ashton 1989]. 

• Some studies found ARPs not effective when done at an aggregate level 

[Blocher 1992, Kinney 1987] while others found ARPs not effective when 

applied to quarterly data [Wheeler and Pany 1996]. 

• Wide range of ARPs is generally applied extensively and include both 

financial and operating data [Blocher 1992, Blocher and Cooper 1988, 

Daroca and Holder 1985, Holder 1983]. 

• There is a predominant use of simple, quantitative ARPs [Daroca and 

Holder 1985, Kinney 1979, Tabor and Willis 1985, Wright and Ashton 

1989]. 
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TABLE I 

ANALYTICAL REVIEW PROCEDURES RESEARCH 

Bernardi 
(1994) 

Blocher (1992) 

Blocher and 
Cooper (1988) 

Calderon and 
Green (1994] 

Coglitore and 
Berryman 
(1988) 

Hylas and 
Ashton (1982) 

Objectives of Study 

examined influence of client integrity 
and competence, auditor's prior belief 
of existence of fraud, auditor 
cognitive style on fraud detection 

examined to what extent ARPs are 
used by various groups to detect 
management fraud, how effective 
ARPs are in detecting fraud, 
differences in usage of trend analysis, 
ratio analysis, and modeling among 
groups, experience, cognitive skills, 
differences in decision processes 
among groups 

examined how ARPs are used and if 
effective in detecting materially 
seeded errors; used vernal protocal 
analysis 

examined internal control, personnel 
most likely to commit fraud, 
personnel actions, initial signal of 
fraud, transaction cycle, business 
types 

identified cases where ARPs would 
have revealed unusual relationships 
or changes in relationships and lead 
to detection of material misstatement 

examined initial event signaling 
error, cause of error, industry type, 
entity size 

10 

Summary of Results 

auditors insensitive to client integrity 
and competence data; prior 
expectations influence detection; 
managers detect fraud at a higher rate 

use of ARPs vruy significantly; 4 of 
24 fraud cases detected by ARPs; 
trend analysis used extensively; other 
ARPs used more extensively by 
external auditors and controllers; 
internal auditors observed more fraud 
cases but not detected by ARPs; 
external auditors used a risk-based 
approach; ARPs not expected to be 
effective when done at aggregate level 

all auditors used ratio and trend 
analysis; detected <.5 of the errors; 
balance sheet relationships perform 
better 

professional/managerial involved in 
455 of cases; ARPs were initial signal 
in 15% of cases; fraud most prevalent 
in revenue/expenditure cycles 

properly employed ARPs would 
reveal a number of misstatements 

27.1% of errors signaled by ARPs; 10 
errors thought intentional, 2 signaled 
by ARPs; 33% of errors caused by 
client personnel inexperience 



TABLE 1· 

ANALYTICAL REVIEW PROCEDURES RESEARCH 

Kaminski et al 
[1998] 

Kinney [1987] 

Loebbecke et 
al [1989] 

Persons [1995] 

Wheeler and 
Pany [1996] 

Wright and 
Ashton [1989] 

Objectives of Study 

examined 21 financial ratios of fraud 
versus non-fraud finns for the fraud 
year -/+ 3 years 

examined 3 investigation rules: 
simple percentage change, statistical 
standardized change, pattern analysis 
of cross-sectional changes 

examined detailed information about 
one material irregularity selected by 
participant; determined presence of 
indicators per SAS 53 

examined variables for estimating 
models of fraudulent financial 
reporting, model estimation method, 
and assessment of models' predictive 
ability 

examined effects of 8 common errors 
on 15 ARPs (8 ratios, 7 accounts); 
examined 6 models and five 
investigation rules 

examined types of errors, income 
effects, causes of errors, initial events 
identifying adjustments, internal 
control strength, ordering bias 
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Summary of Results 

certain financial ratios were 
significantly different; number of 
significant ratios increased in the 
fraud year+ time period 

analysis more effective on 
disaggregated data; patterns of 
deviations from expectation over 
several related ratios help identify 
errors 

73% were management frauds; 
substantive tests were most effective 
at revealing irregularities; 
encountering a material irregularity 
was a rare event 

fraud finns are smaller, have higher 
financial leverage, lower capital 
turnover, higher proportion of current 
assets than nonfraud finns; models 
tested outperform naive strategy 

the ARPs did not signal veiy well 
applied in isolation to quarterly data; 
lowest error rates where substantive 
test would be direct recomputation 

16% of adjustments signaled by 
ARPs; ARPs signal more larger 
adjustments; 30% of adjustments 
signaled by ARPs were identified in 
review phase; 80% of adjustments 
signaled by ARPs resulted from 
simple comparison with prior year's 
balances 



• Substantive tests are most effective at revealing irregularities [Loebbecke 

et al 1989]. 

• Prior period adjustments are a reasonable indicator of current year's error 

[Kinney 1979] and from 33% to 50% of errors caused by client personnel 

inexperience [Hylas and Ashton 1982, Kreutzfeldt and Wallace 1986]. 

• Only a few studies looked exclusively at detecting fraud [Bernardi 1994, 

Blocher 1992, Calderon and Green 1994, Loebbecke et al 1989, Persons 

1995]. 

Much of this research addressed the effectiveness of analytical procedures. 

Three general approaches have been followed:" ... (1) ex post analyses of errors 

discovered in actual audits, (2) application of analytical procedures to simulated 

accounting data seeded with errors, and (3) application of analytical procedures to 

actual accounting data seeded with errors" [Wheeler and Pany 1996, 559]. As the 

previous summary indicates, the conclusions reached by these approaches have been 

quite disparate. 

Of the fraud studies, only two looked exclusively at financial ratios. Persons 

[1995] found that financial leverage, capital turnover and asset composition were 

significant factors influencing the likelihood of fraudulent reporting. Kaminski et al 

[2000] provides additional empirical support that some financial ratios for fraudulent 

firms are statistically different from those of non-fraudulent firms. 2 Such findings 

2 Further findings are discussed in Chapter IV. 
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indicate that further exploration of the differences in financial ratios of fraudulent 

versus non-fraudulent firms is warranted. This study undertakes such exploration and 

seeks additional empirical support of these differences. 

Ratio Analysis 

Whittington [1980] identified two principal uses of financial ratios. There is 

the traditional normative use of comparing a firm's ratio with a standard. There is also 

the positive use in estimating empirical relationships. Such relationships are then used 

for predictive purposes (e.g., forecasting future financial variables, predicting 

corporate failure). 

In the past decades, financial ratios have been the topic of a numb_er of 

empirical studies that can be grouped into four research streams. A brief discussion of 

these research streams follows and is summarized in Table 2. 

One group of studies focuses on the development of empirically-based 

classifications or taxonomies of financial ratios. Such studies are also concerned with 

removing ratio redundancy by identifying a small critical set of independent financial 

ratios which contain most of the information in a more extensive set of ratios. Pinches 

et al [1973, 1975] used factor analysis to reduce 48 ratios to seven factor patterns. 

Their sample consisted of221 industrial firms for the period 1951-1969. They also 

found that the composition of the groupings were reasonably stable over time. Similar 

studies were conducted by Stevens [1973], Libby [1975], Short [1978], Johnson 

[1979] and Laurant [1979]. Gombola and Ketz [1983] investigated the impact of cash 
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TABLE2 

RATIO ANALYSIS RESEARCH STREAMS 

Author Year 

1. RATIO CLASSIFICATION STUDIES 

Gombola and Ketz 

Johnson 

Laurant 

Libby 

Pinches et al 

Stevens 

1983 

1979 

1979 

1975 

1973 
1975 

1973 

Objective 

investigated impact of cash :flow ratios 
on factor patterns 

examined cross-sectional stability of 
:financial ratio patterns 

investigated efficiency and effectiveness 
of :financial ratio analysis 

reduced fourteen ratios to five with 
minimal loss of predictive ability 

used factor analysis to identify seven 
factor patterns and their stability over. 
nineteen-year period 

reduced twenty variables to six and 
accounted for 82% of the total variance 

2. RATIO ANALYSIS AND BANKRUPTCY PREDICTION 

Altman 

Altman et al 

Beaver 

Dambolena and Khowy 

Persons 

1968 

1977 

1966 
1968 

1980 

1995 

14 

identified statistically useful ratios for 
bankruptcy prediction 

developed Zeta analysis for banlauptcy 
prediction 

developed univariate model for 
banlauptcy prediction 

developed discriminant function to 
classify failed vs non-failed firms with 
78% accuracy five years prior to failure 

used step-wise logistic model to identify 
factors associated with fraudulent 
reporting 



Author Year 

3. BEHAVIORAL DECISION MAKING 

Anderson 1988 

Bouwman et al 1987 

Choo 1989 

Frishkoff et al 1985 

Gibson 1983 
1985 
1987 

Shivaswamy and Matsumoto 1993 

4. STATISTICAL LIMITATIONS OF RATIO ANALYSIS 

Deakin 1976 

EZ7.31l1el et al 1987 

Frecka and Hopwood 1983 

So 1987 

Tippett 1990 

15 

Objective 

examined differences between expert and . 
novice analysts 

investigated behavior of chartered 
financial analysts and their use of ratio 
analysis 

examined differences between expert and 
novice analysts 

compared findings of protocol analysis 
with results of questionnaire surveys on 
use of accounting data in financial 
analysis 

examined useful financial ratios for 
accountants, bankers, and financial 
analysts 

investigated correlation between 
behaviorally-useful and statistically-
useful ratios 

examined cross-sectional distributions of 
eleven ratios for normality 

examined statistical properties of 
financial ratios 

examined the effects of outliers on cross­
sectional distributions of ratios 

proposed using non-nonnal stable 
Paretian distribution to describe financial 
ratios 

examined two standard stochastic 
processes to model financial ratios and 
concluded that ratios are log-nonnally 
distributed and a non-linear function of 
time 



flow measurement upon the classification patterns of financial ratios. They found that 

40 ratios could be reduced to eight factors, seven of which were substantially similar 

to those found by Pinches et al [1973, 1975]. The cash flow ratios did load on a 

separate and distinct factor, capturing additional information not provided by the other 

ratio groups. For a c_omparison of individual ratios and their groupings as used in 

prior studies, see Chen and Shimerda [1981]. 

Another group of empirical studies utilizes ratios derived :from the financial 

statements of failed and non-failed firms. The purposes of these studies are to obtain 

discriminant functions with the smallest classification error or logit functions with the 

best possible fit and to utilize such functions in the prediction of corporate failures. 

Beaver [1966, 1968] was among the first to use financial ratios to predict corporate 

failure. Using a paired-sample design with size and industry type as the bases for 

pairing, Beaver found overwhelming evidence of differences in the ratios of failed and 

non-failed firms. Using a univariate dichotomous classification technique to test the 

predictive power of ratios, Beaver found the cash flow to total debt ratio to be the best 

predictor of failure five years preceding failure. Altman [1968] introduced a 

multivariate approach to the prediction of failure. Using multiple discriminant 

analysis, a Z-score was computed and used as an indicator of corporate failure. This 

model was updated by Altman et al [1977] into Zeta analysis. Dambolena and Khoury 

[1980] developed a discriminant function that classified failed and non-failed firms 

with 78% accuracy five years prior to failure. 

16 



A third research direction is the behavioral aspects of decision making using 

financial ratios. Frishkoff et al [ 1984] focused on the use of accounting data in 

financial analysis and compared the findings of protocol analysis with results of 

questionnaire surveys. Bouwman et al [1987] investigated the behavior of chartered 

financial analysts and their use of ratio analysis. Differences between expert and 

novice analysts were found by Anderson [1988] and Choo [1989]. Gibson [1983, 

1985, 1987] examined useful financial ratios for accountants, bankers and financial 

analysts. Shivaswamy and Matsumoto [1993] surveyed bankers and found no 

evidence of correlation between behaviorally-useful and statistically-useful ratios. 

The fourth research stream examines statistical issues resulting from the 

various ratio studies. In applying the financial ratios, different studies employ 

different methodologies. Most of the statistical models employ parametric test 

procedures that assume a univariate or multivariate distribution that is not in 

agreement with the empirical evidence. Validity of such procedures partly depends on 

the nature of the underlying distribution of the data set. Both Horrigan [1965] and 

Mecimore [1968] looked at empirical distributions of financial ratios and found 

evidence of skewness. Expanding these studies, Deakin [1976] examined the cross­

sectional distributions of 11 ratios for manufacturing firms over the period 1953 to 

1972. He concluded that, except for the debt/total asset ratio, the normality 

assumption was not tenable. Frecka and Hopwood [1983] extended Deakin's study by 

examining the effects of outliers on cross-sectional distributional properties of selected 

financial ratios. Their analysis utilized the gamma distribution which is appropriate 

17 



for skewed distributions, a condition evidenced by ratios in prior studies [Deakin 

1976, Horrigan 1965, Mecimore 1968]. While ten of the 11 ratios departed from 

normality, upon deletion of the identified outliers, normality could not be rejected for 

almost one-half of the distributions. They found that the inclusion of outliers can 

produce a dramatic distortion in the shape of the distribution. They cautioned 

researchers in the use of linear statistical models derived from financial ratios. 

Discriminant models are sensitive to the presence of skewed data [Ezzamel et al 

1987]. The parameter estimates can be severely impacted by the outlier observations 

and thereby potentially compromise the model's predictive ability. 

So [1987] proposed using the non-normal stable Paretian distribution to 

describe financial ratios. The normal distribution is a special case of the stable 

Paretian family of distributions. The non-normal stable Paretian distribution is similar 

to the normal distribution except that the former has a fatter tail indicating that a 

greater probability of observations occur in the tail of the distribution [So 1987]. 

As financial ratios are constructed from two accounting variables, the joint 

distribution will depend on the behavior of both the numerator and the denominator 

and on the relationship between these two coordinates. An implicit assumption of 

ratio analysis is that of proportionality. It is expected that a proportionate relationship 

exists between the two variables used in the calculation of the ratio. Inhere is non­

proportionality, then the distribution will be skewed. Ezzamel et al [1987] conducted 

a test on the same 11 ratios used in the Deakin [1976] study but used the non-normal 

stable asymmetric Paretian distribution. After removing the outliers, many of the 

18 



distributions were found to still be non-normally and asymmetrically distributed. 

They concluded that non-proportionality probably explained why even after 

eliminating outliers normality could still not be achieved. 

Tippett [ 1990] examined two standard stochastic processes to model financial 

ratios. First, he assumed that the financial aggregates from which the ratios are 

constructed are generated by geometric Brownian motion. He also used Lev's [1969] 

partial adjustment model which assumes that the ratio's underlying financial 

aggregates are generated by an elastic random walk. Both of these assumptions imply 

that the ratio will be lognormally distributed and a non-linear function of time. Based 

on his analysis, there are relatively few occasions on which the proportionality 

assumption can be justified. He concludes that normality will be the exception rather 

than the rule and that accounting ratios will be non-linear functions of time. 

Given the abundance of empirical evidence refuting the basic assumptions of 

parametric-based methodologies, one can understand why the utilization of financial 

ratios for predictive purposes has had such limited success. Research findings suggest 

that financial statement data may be non-linear and that the use of linear models may 

be inappropriate. This study combines the findings of the ratio classification studies 

and the statistical limitations of ratio analysis and expands the research stream by 

exploring the nature of financial ratios for evidence of non-linearity. Such exploration 

is conducted using chaos theory and its unique methodology which has various tools 

for measuring the non-linearity of a system. The following chapter is an introduction 

to chaos theory and its applicability to the ensuing research. 
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CHAPTERill 

CHAOS THEORY 

Concepts 

Chaos theory is the qualitative study of the behavior of deterministic non-linear 

dynamical systems [Kellert 1993]. Upon first examination, the behavior of the system 

appears irregular and seemingly random moment by moment. In actuality, the system 

is completely deterministic and defined by one or more equations. Discrete models 

are characterized by difference equations whereas continuous models are characterized 

by differential equations. The non-linearity of these equations usually renders a 

closed-form solution impossible. 

In a discrete model, the value of a variable at time t+ 1 is related to its value at 

an earlier time: 

Xr+1 = f ( Xi, Xt-1, Xt.2, · · · ). 

If the function is non-linear, then the time series ( ... Xr-1, Xi, Xt+1 , ... ) may exhibit 

deterministic chaos. The logistic map3 is probably the most well studied non-linear 

3 The term "map" is used rather than "function" because of the discrete way that difference equations 
associate paired data by jumping to the subsequent value without including any values in the continuous 
range between the points. 

20 



discrete iµodel exhibiting chaos. May [1976] initially investigated the chaotic 

properties of the general logistic map: 

Xt+1 = aX,( 1-X,). 

The above equation produces different results depending on your initial starting value 

Xo and parameter value a. Holding the initial starting value Xo constant and merely 

· changing the parameter value a produces different values. For example, if a is 

between O and 4, then for any Xo between O and 1, all subsequent X, will be bounded 

between O and 1. Repeated iterations of the equation illustrate the dynamics of the 

non-linear system and result in different types of behavior. 

An example of the logistic equation is given in Table 3A and its various 

figures. When a= 2.5 (Figure 1), iteration of the equation quickly converges to the 

fixed value 0.60. When a= 3.2 (Figure 2), iteration results in an oscillation between 

two values: 0.513045 and 0.799455. When a= 3.5 (Figure 3), iteration again results 

in an oscillation. This time, by X;6, the equation produces four values: 0.826941, 

0.500884, 0.874997, 0.38282. When a= 3.9 (Figure 4), iteration results in values that 

appear to have no discernible pattern. While an infinite number of values are 

produced, they are bounded within the range O < X, < 1. When a= 4.2 (Table 3A), by 

~, the values are outside the previously bounded range and quickly approach 

negative infinity. Despite being a deterministic non-linear equation, prediction is not 

possible. 

Being deterministic and being predictable are not the same thing. A system is 

called deterministic when its future states are completely fixed by its current state and 
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TABLE 3A- LOGISTIC MAP 

a= 2.5 a= 3.2 a= 3.5 a= 3.9 a= 3.900001 a =4.2 a= 3.9 

Xo 0.200000 0.200000 0.200000 0.200000 0.200000 0.200000 0.200001 

Xi 0.400000 0.512000 0.560000 0.624000 0.624000 0.672000 0.624002 

X2 0.600000 0.799539 0.862400 0.915034 0.915034 0.925747 0.915031 

X3 0.600000 0.512884 0.415332 0.303214 0.303214 0.288705 0.303221 

X4 0.600000 0.799469 0.849910 0.823973 0.823973 0.862489 0.823984 

Xs 0.600000 0.513019 0.446472 0.565661 0.565662 0.498128 0.565633 

~ 0.600000 0.799458 0.864971 0.958185 0.958186 1.049985 0.958200 
x, 0.600000 0.513040 0.408785 0.156258 0.156258 -0.220432 0.156206 

Xa 0.600000 0.799456 0.845880 0.514181 0.514181 -1.129893 0.514042 

~ 0.600000 0.513044 0.456285 0.974216 0.974216 -10.107521 0.974231 

Xio 0.600000 0.799456 0.868312 0.097966 0.097965 -471.531869 0.097909 

Xn 0.600000 0.513044 0.400213 0.344638 0.344634 negative infinity 0.344460 
t,.) Xi2 0.600000 0.799455 0.840149 0.880864 0.880860 negative infinity 0.880648 
t,.) 

·xi3 0.600000 0.513044 0.470046 0.409276 0.409288 negative infinity 0.409917 

Xi4 0.600000 0.799455 0.871860 0.942900 0.942909 negative infinity 0.943352 

Xis 0.600000 0.513045 0.391022 0.209975 0.209945 negative infinity 0.208412 

Xi6 0.600000 0.799455 0.833433 0.646953 0.646886 negative infinity 0.643409 

X11 0.600000 0.513045 0.485879 0.890778 0.890856 negative infinity 0.894793 

Xis 0.600000 0.799455 0.874302 0.379440 0.379203 negative infinity 0.367142 

Xi9 0.600000 0.513045 0.384643 0.918314 0.918091 negative infinity 0.906160 

X20 0.600000 0.799455 0.828425 0.292551 0.293279 negative infinity 0.331634 

X2i 0.600000 0.513045 0.497480 0.807164 0.808339 negative infinity 0.864446-

X22 0.600000 0.799455 0.874978 0.607036 0.604217 negative infinity 0.456999 

X23 0.600000 0.513045 0.382871 0.930319 0.932642 negative infinity 0.967789 

X24 0.600000 0.799455 0.826983 0.252821 0.245002 negative infinity 0.121578 

X25 0.600000 0.513045 0.500788 0.736720 0.721407 negative infinity 0.416508 

Use table with Figures 1 - 6 



a= 2.5 a= 3.2 a= 3.5 a= 3.9 a= 3.900001 a =4.2 a= 3.9 
X26 0.600000 0.799455 0.874998 0.756458 0.783818 negative infinity 0.947813 

X21 0.600000 0.513045 0.382818 0.718494 0.660845 negative infinity 0.192906 

x28 0.600000 0.799455 0.826939 0.788815 0.874103 negative infinity 0.607205 

X29 0.600000 0.513045 0.500887 0.649684 0.429184 negative infinity 0.930178 

X30 0.600000 0.799455 0.874997 0.887619 0.955442 negative infinity 0.253293 

X31 0.600000 0.513045 0.382820 0.389030 0.166032 negative infinity 0.737629 

X32 0.600000 0.799455 0.826941 0.926974 0.540016 negative infinity 0.754777 

X33 0.600000 0.513045 0.500884 0.264003 0.968755 negative infinity 0.721845 

X34 0.600000 0.799455 0.874997 0.757791 0.118047 negative infinity 0.783061 

X3s 0.600000 0.513045 0.382820 0.715820 0.406037 negative infinity 0.662519 

x36 0.600000 0.799455 0.826941 0.793345 0.940567 negative infinity 0.871992 

X31 0.600000 0.513045 0.500884 0.639400 0.218012 negative infinity 0.435325 

X3s 0.600000 0.799455 0.874997 0.899214 0.664884 negative infinity 0.958687 

X39 0.600000 0.513045 0.382820 0.353451 0.868973 negative infinity 0.154464 

N :X,.o 0.600000 0.799455 0.826941 0.891241 0.444051 negative infinity 0.509360 w 
X41 0.600000 0.513045 0.500884 0.378028 0.962792 negative infinity 0.974658 

X42 0.600000 0.799455 0.874997 0.916979 0.139711 negative infinity 0.096328 

X43 0.600000 0.513045 0.382820 0.296901 0.468748 negative infinity 0.339491 

X44 0.600000 0.799455 0.826941 0.814129 0.971191 negative infinity 0.874523 

X4s 0.600000 0.513045 0.500884 0.590161 0.109117 negative infinity 0.427956 

x46 0.600000 0.799455 0.874997 0.943297 0.379122 negative infinity 0.954758 

X41 0.600000 0.513045 0.382820 0.208602 0.918016 negative infinity 0.168462 

x48 0.600000 0.799455 0.826941 0.643840 0.293525 negative infinity 0.546321 

X49 0.600000 0.513045 0.500884 0.894309 0.808735 negative infinity 0.966632 

Xso 0.600000 0.799455 0.874997 0.368628 0.603262 negative infinity 0.125793 

Xs1 0.600000 0.513045 0.382820 0.907692 0.933415 negative infinity 0.428880 

Xs2 0.600000 0.79945.5 0.826941 0.326771 0.242392 negative infinity 0.955274 

Use table with Figures 1 - 6 



a= 2.S a= 3.2 a= 3.S a= 3.9 a= 3.900001 a =4.2 a= 3.9 

Xs3 0.600000 O.Sl304S O.S00884 0.857968 0.716189 negative infinity 0.166631 

Xs4 0.600000 0.1994SS 0.874997 0.41S2Sl 0.792723 negative infinity O.S4lS1S 

Xss 0.600000 O.Sl304S 0.382820 0.972611 0.640822 negative infinity 0.968259 

XS6 0.600000 0.1994SS 0.826941 0.103891 0.897660 negative infinity 0.119861 

Xs1 0.600000 O.Sl304S O.S00884 0.363081 0.358280 negative infinity 0.411427 

Xss 0.600000 0.1994SS 0.874997 0.901887 0.896670 negative infinity 0.944404 

Xs9 0.600000 0.51304S 0.382820 0.345098 0.361345 negative infinity 0.204TIO 

~ 0.600000 0.799455 0.826941 0.881421 0.900022 negative infinity 0.635073 

~l 0.600000 0.51304S O.S00884 0.407620 0.350932 negative infinity 0.903845 

~ 0.600000 0.79945S 0.874997 0.941717 0.888337 negative infinity 0.338945 

~ 0.600000 0.51304S 0.382820 0.214054 0.386858 negative infinity 0.873839 

~ 0.600000 0.799455 0.826941 0.656117 0.925076 negative infinity 0.429953 

~ 0.600000 0.513045 0.500884 0.879947 0.270311 negative infinity 0.955865 

~ 0.600000 0.79945S 0.874997 0.411997 0.769248 negative infinity 0.164531 
N ~ 0.600000 0.513045 0.382820 0.944796 0.692271 negative infinity 0.536097 
~ 

~ 0.600000 0.799455 0.826941 0.203410 0.830824 negative infinity 0.969918 

~ 0.600000 0.513045 O.S00884 0.631934 0.548165 negative infinity 0.113789 

X10 0.600000 0.799455 0.874997 0.907114 0.96S9S3 negative infinity 0.393281 

X11 0.600000 0.513045 0.382820 0.328607 0.128264 negative infinity 0.930583 

Xn 0.600000 0.799455 0.826941 0.86043S 0.436068 negative infinity 0.251933 

X73 0.600000 0.513045 O.S00884 0.468337 0.959060 negative infinity 0.735005 

X14 0.600000 0.799455 0.874997 0.971090 0.153130 negative infinity 0.759613 

X1s 0.600000 0.51304S 0.382820 0.109489 0.50S156 negative infinity 0.712144 

Use table with Figures I - 6 
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its rules of dynamical motion [Casti 1994]. As illustrated with the logistic map, order 

and chaos may appear within the same deterministic system and is clearly 

contradictory to the Newtonian world-view. It shatters the presumption that 

determinism necessarily implies predictability [Mauck 1998]. 

This theoretical impossibility of prediction is the result of three characteristics 

of the iterative process: (1) numbers extend to an infinite number of decimal places 

and must be rounded off in order to do practical calculations; (2) the outcome has a 

sensitive dependence upon the chosen parameters; and (3) in the chaotic range, the 

outcome has an extremely sensitive dependence on initial conditions (SDIC). SDIC 

means that small initial differences or fluctuations in variables may grow over time 

into very large differences. 

The logistic map illustrates the concept of sensitive dependence on parameters. 

Once again, set Xo = .20 (see Table 3A and Figure 5). When a= 3.9, iteration results 

in a seemingly random set of solutions bounded within the range O < X, < 1. What 

happens when we change the value of parameter a to 3.900001? Given such a 

miniscule change in the parameter value, one would expect a set of solutions very 

similar to those resulting when a was 3.9. Such is not the case. At a= 3.900001, the 

solution set is again infinite and seemingly random and bounded within the range O < 

X, < 1. Comparison of the two solution sets is similar only for the first 25 iterations or 

so. By X2a, the solution sets begin to diverge. Further iterations sometimes bring the 

solutions closer together ( e.g., see X51, X51) only to become divergent once again 

( e.g., see X5,1, °XtiJ ). 
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Similarly, the logistic map illustrates the concept of SDIC. Set a= 3.9 (see 

Table 3A and Figure 6). When Xo = .200000, iteration results in a seemingly random 

set of solutions bounded within the range O < X, < 1. What happens when we change 

the initial starting condition of Xo to .200001? Again, this is a miniscule change in 

value and one would expect a similar set of solutions. However, this is not the case. 

At Xo = .200001, the solution set is again infinite and seemingly random and bounded 

within the range O < X, < 1. The two solution sets are similar only for the first 20 

iterations~ the sets then begin to diverge. Some iterations bring the solutions closer 

together (e.g., see Xu, Xs6) while others cause divergence (e.g., see X27, Xsa ). Such 

SDIC means that effects may be wildly out of proportion to causes. A small cause 

such as a simple and seemingly insignificant rounding can have very major 

consequences. This is the nature of chaos. Small changes in initial conditions 

produce dramatically different evolutionary outcomes. A chaotic system is inherently 

unpredictable, not because its solution is seemingly random, but because one is unable 

to measure its initial state with absolute precision. While deterministic non-linear 

systems are highly predictable in theory (given infinite precision), they are extremely 

unpredictable in practice where precision is limited. 

As a qualitative study, chaos theory investigates a system by asking about the 

general character of its long-term behavior rather than seeking to arrive at numerical 

predictions about its exact future state [Kellert 1993]. An important arena for 

understanding non-linear dynamical systems is phase space, a mathematically 

constructed conceptual space where each dimension corresponds to one variable of the 
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system. Every point in phase space represents a full description of the system in one 

of its possible states. Phase space is the space of the possible, containing not just the 

states that do occur but also those that might have occurred. Parameter space is 

similar but each dimension corresponds to a different parameter. A point in parameter 

space specifies the values of all the parameters of the system. For example, the 

logistic map has one variable X and one parameter a. Phase space is therefore the line 

of X values from O to 1 while parameter space is the line of a values from O to 4. 

The evolution of the system manifests itself as the tracing out of a path or 

trajectory in phase space [Kellert 1993]. One can categorize the possible trajectories 

according to their shape resulting in a topological taxonomy. By linking topology and 

dynamical systems, phase space provides a way of turning numbers into pictures, 

abstracting all the essential information from the system and making a flexible road 

map to all of its possibilities. One can use the shape to visualize the whole range of 

behaviors of a system. If one can visualize the shape, one can gain understanding of 

the system. Traditional time-series and trajectories in phase space are two ways of 

displaying the same data and gaining a picture of a system's long-term behavior 

[Gleick 1987]. 

When a deterministic non-linear dynamical system is plotted in phase space, 

the resulting shape is called an attractor. In essence, the attractor is a graphical 

representation of an equilibrium state attainable by the system. Basically, there are 

three types of attractors. The simplest is the fixed point whereby the output of the 

system is a steady state. An example of a fixed point attractor was illustrated earlier 
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with the logistic map when the parameter value was set at a= 2.5. Despite repeated 

iterations, the system is attracted to the solution 0.60. The equilibrium is a single 

value. The second type of attractor is the limit cycle whereby the trajectory repeats 

itself in a cyclic fashion. Once again, the limit cycle was demonstrated earlier with the 

logistic map. When a= 3.2, the system is attracted to a two-point equilibrium state in 

which the values alternate between 0.513045 and 0.799455. Similarly, when a= 3.5, 

the system is attracted to a different limit cycle consisting of a repeating sequence of 

four values: 0.826941, 0.500884, 0.874997, and 0.382820. As illustrated, limit cycles 

are dynamic equilibria being repeated with a regular periodicity. The third type of 

attractor is the strange attractor whereby the trajectory consists of aperiodic paths. 

The logistic map illustrated such a strange attractor. When a= 3.9, the system is 

attracted to infinite solutions all bounded within the range between O and 1. There are 

infinite equilibrium states, all confined within a region of phase space. 

These various equilibria are completely independent of initial starting 

condition (i.e., the value of Xo) and depend only on the parameter value a. This is 

illustrated in Table 3B. Note that the parameter values for a are identical to those used 

previously (i.e., a= 2.5, 3.2, 3.5, 3.9, and 4.2). However, the initial starting condition 

Xo is now .500000. When a= 2.5, the system is again attracted to the fixed point 

solution 0.60. The same two-point and four-point limit cycles described previously 

result when a= 3.2 and 3.5 respectively. Similarly, a strange attractor, still bound 

within the range O < X,< 1, results when a= 3.9. 
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TABLE 3B -LOGISTIC MAP 

a= 2.S a= 3.2 a= 3.S a= 3,9 a =4.2 

Xo o.sooooo o.sooooo 0.500000 0.500000 0.500000 

X1 0.625000 0.800000 0.875000 0.97SOOO 1.050000 

X2 0.585938 0.512000 0.382813 0.095063 -0.220500 

X3 0.606537 0.799539 0.826935 0.335500 -1.130305 

Xi O.S96625 0.512884 0.500898 0.869465 -10.113157 

Xs 0.601659 0.799469 0.874997 0.442633 -472.034238 

~ 0.599164 0.513019 0.382820 0.962165 negative infinity 

X1 0.600416 0.799458 0.826941 0.141973 negative infinity 

Xa 0.599791 0.513040 O.S00884 0.475084 negative infinity 

Xg 0.600104 0.799456 0.874997 0.972S79 negative infinity 

X10 O.S99948 0.513044 0.382820 0.104010 negative infinity 

Xu 0.600026 0.799456 0.826941 0.363448 . negative infinity 

X12 0.599987 O.S13044 O.S00884 0.902278 negative infinity 

X13 0.600007 0.799455 0.874997 0.343871 negative infinity 

X14 0.599997 O.S13044 0.382820 0.879933 negative infinity 

Xis 0.600002 0.799455 0.826941 0.412040 negative infinity 

X16 0.599999 0.513045 0.500884 0.944826 negative infinity 

X11 0.600000 0.79945S 0.874997 0.203308 negative infinity 

xlB 0.600000 0.51304S 0.382820 0.631698 negative infinity 

X19 0.600000 0.79945S 0.826941 0.9073S7 negative infinity 

X20 0.600000 0.51304S 0.500884 0.327834 negative infinity 

X21 0.600000 0.799455 0.874997 0.859399 negative infinity 

X22 0.600000 0.513045 0.382820 0.471246 negative infinity 

X23 0.600000 0.799455 0.826941 0.971776 negative infinity 

X24 0.600000 O.S1304S 0.500884 0.106968 negative infinity 

X25 0.600000 0.799455 0.874997 0.372552 negative infinity 

x26 0.600000 0.513045 0.382820 0.911652 negative infinity 

X21 0.600000 0.799455 0.826941 0.314115 negative infinity 

X2a 0.600000 O.S1304S 0.500884 0.840243 negative infinity 

X29 0.600000 0.799455 0.874997 0.523515 negative infinity 

X30 0.600000 0.513045 0.382820 0.972843 · negative infinity 

X31 0.600000 0.799455 0.826941 0.103034 negative infinity 

X32 0.600000 0.513045 0.500884 0.360431 negative infinity 

X33 0.600000 0.799455 0.874997 0.899030 negative infinity 

X34 0.600000 0.51304S 0.382820 0.354021 negative infinity 

X3s 0.600000 0.799455 0.826941 0.891892 negative infinity 

x36 0.600000 0.513045 0.500884 0.376041 negative infinity 

X31 0.600000 0.799455 0.874997 0.915073 negative infinity 

X3s 0.600000 0.513045 0.382820 0.303086 negative infinity 

X39 0.600000 0.799455 0.826941 0.823777 negative infinity 
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a= 2.5 a= 3.2 a= 3.5 a= 3.9 a =4.2 

X«, 0.600000 0.513045 0.500884 0.566158 negative infinity 

Xn 0.600000 0.799455 0.874997 0.957930 negative infinity 

X.2 0.600000 0.513045 0.382820 0.157169 negative infinity 

X.3 0.600000 0.799455 0.826941 0.516622 . negative infinity 

Xw 0.600000 0.513045 0.500884 0.973922 negative infinity 

X.s 0.600000 0.799455 0.874997 0.099050 negative infinity 

~ 0.600000 0.513045 0.382820 0.348034 negative infinity 

X.1 0.600000 0.799455 0.826941 0.884934 negative infinity 

Xta 0.600000 0.513045 0.500884 0.397120 negative infinity 

X.9 0.600000 0.799455 0.874997 0.933721 negative infinity 

Xso 0.600000 0.513045 0.382820 0.241355 negative infinity 

Xs1 0.600000 0.799455 0.826941 0.714101 negative infinity 

Xs2 0.600000 0.513045 0.500884 0.796227 negative infinity 

Xs3 0.600000 0.799455 0.874997 0.632773 negative infinity 

X54 0.600000 0.513045 0.382820 0.906248 negative infinity 

Xss 0.600000 0.799455 0.826941 0.331355 negative infinity 

XS6 0.600000 0.513045 0.500884 0.864079 negative infinity 

Xs1 0.600000 0.799455 0.874997 0.458041 negative infinity 

Xss 0.600000 0.513045 0.382820 0.968134 negative infinity 

Xs9 0.600000 0.799455 0.826941 0.120318 negative infinity 

Xro 0.600000 0.513045 0.500884 0.412782 negative infinity 

~I 0.600000 0.799455 0.874997 0.945333 negative infinity 

~ 0.600000 0.513045 0.382820 0.201547 negative infinity 

~ 0.600000 0.799455 0.826941 0.627610 negative infinity 

~ 0.600000 0.513045 0.500884 0.911491 negative infinity 

~s 0.600000 0.799455 0.874997 0.314632 negative infinity 

X&, 0.600000 0.513045 0.382820 0.840990 negative infinity 

~7 0.600000 0.799455 0.826941 0.521530 negative infinity 

~ 0.600000 0.513045 0.500884 0.973192 negative infinity 

~ 0.600000 0.799455 0.874997 0.101748 negative infinity 

X10 0.600000 0.513045 0.382820 0."356440 negative infinity 

X11 0.600000 0.799455 0.826941 0.894624 negative infinity 

X12 0.600000 0.513045 0.500884 0.367662 negative infinity 

X73 0.600000 0.799455 0.874997 0.906698 negative infinity 

X14 0.600000 0.513045 0.382820 0.329929 negative infinity 

X1s 0.600000 0.799455 0.826941 0.862195 negative infinity 
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As illustrated with the logistic map, different parameter values can lead to 

totally different dynamics and attractors. Despite being a very simple deterministic 

non-linear system, different points in parameter space will have different attractors in 

phase space. Fixed points, various limit cycles and strange attractors coexist within the 

same dynamical system. One ends up with different long-term behaviors dependent 

upon the parameter value. 

This dependence oflong-term behavior on parameter values can be represented 

graphically by plotting points in parameter space. An example of a hypothetical 

deterministic non-linear chaotic system is shown in Figure 7. The two dimensions 

represent parameter space. White areas of the graph represent combinations which 

produce non-chaotic behavior (i.e., fixed point or periodic). Black areas of the graph 

represent combinations which produce chaotic behavior. 

Gregersen and Sailer [1993] describe how various studies can be undertaken of 

such a system. As illustrated in Figure 7, a study conducted in Region 1 is well within 

the non-chaotic subset. In this situation, the inherent chaos within the system is 

relatively unimportant. Prediction should be feasible. Meanwhile, a study conducted 

in Region 2 is well within the chaotic subset. Such behavior is well-defined, even for 

small relative variations in the parameter values. The system would show clear 

evidence of chaos. A study conducted in Region 3 might include both chaotic and 

non-chaotic behavior. Analysis of such a system might produce mixed behavior that 

would appear random. It is not possible to predict which behavior would result. 
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Most dynamic systems exhibit some degree of chaos over part of their domain 

[Gregersen and Sailer 1993]. It is imperative that one determines in which part of the 

domain the research study lies. If the study lies near the boundary, the standard 

statistical methods of prediction are not applicable. Analyzing chaotic systems using 

such methods will produce poor results. Identifying the system's behaviors is 

important because of their implications for model selection and the explanatory power 

of the model [Etheridge and Sriram 1993]. 

This research study is a first attempt to explore the dynamics of the financial 

accounting system to determine the behavior of financial statement ratios and identify 

in which part of the domain the ratios reside. The question is not simply whether or 

not chaos exists but also the degree to which chaos occurs and the degree to which 

such chaos is relevant to financial statement ratios and their ability to predict and/or 

detect fraud. The following section is a review of the application of chaos theory to 

the research realms of the physical sciences, the social sciences and accounting. 

Literature Review 

Physical Sciences 

Chaos theory developed from research undertaken in the physical sciences. 

Initially scientists had an orderly and structured view of the physical world. 

Newtonian physics had postulated that physical systems were governed by 

fundamental laws of cause and effect. Nature was seen as orderly and the objective of 
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all natural systems was to achieve equilibrium. Scientists discovered, however, that 

many physical systems did not behave in an orderly and linear fashion. Models based 

on such assumptions were ineffectual for the prediction of natural phenomena. 

Some scientists began to look at the complex and disorderly behaviors from a 

different perspective. Henri Poincare studied the n-body problem and developed 

topological and geometrical techniques for examining the global structure of dynamic 

systems. In the 1920s, Fatou and Gaston worked with analytic maps while Birkhoff 

used iterative processes to analyze differential equations. Lorenz [1963] attempted to 

model the weather and discovered that there were patterns within the seemingly 

random output generated by his weather simulation program. He concluded that, due 

to sensitive dependence on initial conditions and the inability to conduct precise 

measurements to the most extreme level of detail, long-term weather prediction was 

impossible. May [1976] attempted to model the dynamics of population biology and 

found chaotic behavior in the iteration of the simple logistic equation. Feigenbaum 

[1978] studied the orderliness exhibited by a dynamic system on its way to chaos. 

In the 1980s, with the advent of computer graphics, researchers revisited the 

work done by Fatou and Gaston and investigated the geometry of dynamic systems. 

Representations of chaotic behavior were pictured using fractal geometry. Examples 

include the Lorenz attractor (Figure 8) and the Mandelbrot Set, both of which are 

instantly recognized as symbols of chaos. For a more complete history of the 

development of chaos theory, please refer to Gleick [1987]. See Table 4 for a listing 

of selected studies in the physical sciences utilizing chaos theory. 
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TABLE4 

CHAOS TIIEORY STUDIES -PHYSICAL SCIENCES 

Author Year Area 
Arun 1986 physiology 
Berge etal 1984 physics 
Eckman 1981 physics 
Feigenbaum 1978 physics 
Freeman 1991 physiology 
Glass and Mackey 1988 physiology 
Goldberger et al 1985 physiology 
Li 1975 ecology 
Lipsitz and Goldberger 1992 physiology 
Lorenz · 1963 meteorology 
Lorenz 1984 meteorology 
Mackey and Glass 1977 physiology 
May 1974 ecology 
Miles 1989 turbulent fluids 
Peacocke 1982 biology 
Pool 1988 physics 
Prigogine 1980 biology 
Prigogine 1980 physics 
Ruelle 1983 physics 
Steeb and Louw 1986 physics 
Stewart 1989 physics 
Swinney and Gollub 1975 physics 
Wicken 1988 biology 
Winfree 1987 physiology 
Wisdom 1985 astronomy 
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Social Sciences 

The nature of social science research is quite different than that of the physical 

sciences. The adaptation of theories developed in the physical sciences to the social 

sciences is often fraught with difficulties. The controlled laboratory conditions of 

physics are generally not available to social science researchers. Extraneous variables 

cannot always be removed or controlled. Comparing results of an occurrence to the 

results obtained from a control group may prove troublesome. Replications of an 

occurrence may not be possible. For these reasons, findings in the social sciences ate 

often mixed and/or inconclusive. Some of the physical sciences not subject to the 

normal controlled laboratory conditions suffer these same limitations. Examples 

include meteorology and astronomy. 

To ameliorate such limitations, much work has been done to develop methods 

more applicable to small, noisy data sets. Brock et al [1987] developed the BDS 

statistic4 to look for evidence of non-linear structure in data. Wolf et al [1985] created 

an algorithm that estimates the Lyapunov exponents5 from experimental data 

consisting of discrete measurements of a single time-series. A variation of this 

algorithm for use on small data sets was. developed by Rosenstein et al [ 1993]. The 

use of these tools has expanded social science research utilizing chaos theory into such 

4 The BDS statistic examines the pattern of a series of data; infonnation regarding the BDS statistic is 
discussed in Chapter N. 
s Lyapunov exponents measure the degree of SDIC; information regarding Lyapunov exponents is 
discussed in Chapter N. 
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realms as economics, behavioral finance, management, psychology and sociology. 

See Table S for a listing of selected studies in the social sciences utilizing chaos 

theory. A brief discussion of some of this research follows. 

Early research in economics can be grouped under two broad categories: (1) 

methods to detect ch~os in economic systems; and (2) approaches to describe non­

linear dynamics, including chaos [Etheridge and Sriram 1993]. Baumol and Benhabib 

[1989] provided examples of chaotic behavior resulting from economic activities. 

One such example involved advertising expenditures and its impact on profits. 

Chiarella [1990] discussed the applicability of non-linear theory to the study of 

economic dynamics. Denecker and Pelikan [1986] used chaos theory to explain the 

outcomes of competitive economies. Farmer [1986] examined deficits and economic 

cycles while Medio [1991] explored continuous time models. Rosser [1990] applied 

the concepts of chaos theory to classic Keynesian economics. While qualitative 

changes in a system's behavior are most evidenced via observation of its time-series, 

the applicability of chaos theory is not limited to longitudinal studies. Craig et al 

[1991] used a modified chaos technique for a cross-sectional study of marginal 

housing prices. 

In the area of finance, Frank and Stengos [1988] conducted a study of gold and 

silver prices and found evidence of chaos. Larrain [1991] found non-linearities in 

Treasury bill rates. Thaler's [1993] book is a collection of works in behavioral finance 

with many studies exploring investor behavior. These studies report evidence that 

"irrational" investor behaviors such as overreactions, noise trading, and investment 

44 



TABLES 

CHAOS THEORY STUDIES - SOCIAL SCIENCES 

Author Year Author Year 

ECONOMICS FINANCE 
Anderson et al 1988 Brock and Malliaris 1989 
Arthur 1989 Frank and Stengos 1988 
Baumol and Benhabib 1989 Larrain 1991 
Chiarella 1990 Thaler 1993 
Craig et al 1991 
Denecker and Pelikan 1986 
Farmer 1986 MANAGEMENT 
Grandmont and Malgrange 1986 Anderson and Sturis 1988 
Holland 1988 Baburoglu 1988 
Kelsey 1988 Bahlmann · 1990 
Mandelbrot 1963 Cheng and Van de Ven 1996 
Media 1991 Dooley ·1997 
Nijkamp and Reggiani 1991 Eisenhardt and Schoonhoven 1990 
Rosser 1990 Feichtinger and Kopel 1993 
Smale 1980 Goldstein 1994 

Kiel 1994 
Leifer 1989 

PSYCHOLOGY Mosekilde and Larsen 1988 
Abraham et al 1990 Priesmeyer 1992 
Barton 1994 Priesmeyer and Baik 1989 
Guastella 1995 Rasmussen and Mosekilde 1988 
Sterman 1988 Smilor and Feeser 1991 

Stacey 1992 
Sterman 1989 

SOCIOLOGY · Thietart and Forgues 1995 
Dendrinos and Sonis 1990 
Holland and Leinhardt 1977 
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fads influence the financial markets thereby generating a significant portion of market 

volatility [Mouck 1998]. 

Management is another realm of social science where chaos theory has been · 

extended. Priesmeyer and Baile [1989] used alternative forecasting techniques and 

found corporate performance to be non-linear. Mosekilde and Larson [1988] 

presented a chaotic inventory management model for production distribution and 

sales. Feichtinger and Kopel [1993] used a deterministic managerial decision rule to 

analyze the chaotic output of an iterative research and development model. Eisenhardt 

and Schoonhoven [1990] examined newly formed semi-conductor firms and found 

linkages to chaos. Leifer [1989] used a dissipative structure model to understand 

organizational transformation. Smilor and F eesor [ 1991] identified factors that can 

contribute to the chaotic behavior of entrepreneurial firms. Sterman [1988] used chaos 

theory to model management behavior while Holland and Leinhardt [1977] developed 

a dynamic model for social interaction. 

Accounting 

Within the realm of financial accounting, capital markets has been one of the 

most prominent areas of research. The efficient market hypothesis (EMH) is based on 

a linear paradigm and presumes that the market responds only upon the receipt of new 

information. Stock prices quickly adjust to a new equilibrium. The returns are 

independent (i.e., random variables), have a normal probability distribution and follow 

a random walk. According to portfolio theory, the distribution of returns is a function 
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of the riskiness of a portfolio and is measured by its variance. The capital asset 

pricing model (CAPM) combined the EMH and portfolio theory into a model of 

investor behavior based on rational expectations in a general equilibrium framework. 

The linear paradigm implies that returns should have approximately normal 

distributions and be independent. Many studies were conducted examining the 

distributional properties of capital markets data. Fama [1965] found that returns were 

negatively skewed with fatter tails and a higher peak (i.e., leptokurtotic) than that 

predicted by the normal distribution. Using daily Standard and Poor (S&P) index 

returns from 1928 through 1989, Turner and Weigel [1990] found similar results. 

Friedman and Laibson [1989] used quarterly S&P 500 returns from 1946 through 

1988. In addition to being leptokurtotic, the authors noted that large movements were 

more often the result of crashes rather than rallies. Sterge [1989] studied financial 

futures prices of treasury bond, treasury note and Eurodollar contracts. He found the 

same leptokurtotic distribution and that very large price changes occurred two to three 

times as often as predicted by normality. Results from these studies show there is 

little basis to the assertion that the distribution of market returns is approximately 

normal. The findings also weaken the argument that stock price movements are the 

result of a random walk [Peters 1996]. 

Mandelbrot [1964] suggested that market returns follow a family of 

distributions called stable Paretian. Such distributions have high peaks at the mean 

and fat tails. They also exhibit two interesting characteristics. The first is called the 

"Joseph effect" and refers to the tendency of the distribution to be persistent, to follow 
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trends and cycles. A persistent time-series will have a long memory. In other words, 

there is a long-term correlation between current events and future events. The second 

is called the "Noah effect" whereby the distribution is still persistent but subject to 

abrupt and discontinuous changes. The stock market crash of 1929 and the severe 

decline that occurred October 1987 provide evidence that large price changes can be 

discontinuous and very abrupt. Such characteristics are not applicable to normal 

distributions. 

Using various chaos theory techniques, Peters [1996] examined the stock 

market, the treasury bond market and the currency exchange market. He found 

leptokurtotic distributions of persistent time-series characterized by long memory 

processes. Using U.S. stock returns, the long memory effect is approximately four 

years (i.e., the cycle time). The U.K. equity market has an eight-year cycle while 

Germany's is six years and Japan's is four years. There is a five-year cycle time for 

the treasury bond market. Peters [1996] found evidence that stock returns are the 

result of a biased random walk. 

Numerous market anomalies have been found. For example, the January effect 

refers to the historical pattern that stock prices rise in the first few days of January. 

The small-firm effect is the tendency of small firms to outperform the stock market. 

Another effect is the tendency of portfolios of stocks with low price-earnings ratio to 

outperform portfolios of stocks with high price-earnings ratios. These effects have 

been shown to give statistically significant excess returns without an increase in 

volatility. Bernard [1993] examined anomalous findings in capital markets research. 
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Contrary _to the EMH, information is not immediately reflected in prices and the 

capital markets appear to be non-linear dynamic systems that exhibit deterministic 

chaos. Hinich and Patterson [1985], Scheinkman and LeBaron [1989] and Willey 

[1992] examined non-linearity in daily stock returns and indices. Savit [1989] 

examined non-linearities in options prices while Hsieh [1989] and Sewell et al [1993] 

found non-linear dependence in foreign exchange rates. Freeman and Tse [1992] 

developed a non-linear model of security price responses to unexpected earnings. See 

Table 6 for a listing of selected capital markets studies utilizing chaos theory-. Peters 

[1994, 1996] and Mouck [1998] have a more thorough discussion on the challenge to 

capital markets research generated by chaos theory-. 

Outside the area of capital markets, chaos theory- has been little used in 

accounting research. Etheridge and Sriram [1993] discuss the implications of chaos 

theory- and non-linear dynamics for accounting researchers. They suggest that chaos 

provides the theoretical framework and techniques to perform sensitivity analysis prior 

to model selection. For example, examination of the attractors would reveal the 

underlying dynamics of the time-series and indicate whether the series is stable, 

fluctuating (i.e., oscillating), or chaotic. Ignoring the underlying dynamics of the 

system would result in selecting models that do not robustly represent the system and 

therefore result in low explanatory- power. They suggest that chaos techniques can be 

used in the following areas: (1) classification studies; (2) policy and planning studies; 

(3) budgeting studies; and (4) strategy studies. Lindsay and Campbell [1996] 
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TABLE6 

CHAOS THEORY STUDIES - CAPITAL MARKETS 

Author Year Area 

Aczel and Josephy 1991 examined foreign exchange rates 

Ambrose et al 1993 examined long-term persistence in 
stock prices 

Aydogan and Booth 1988 examined long-term persistence in 
stock prices 

Bernard 1993 examined anomalous findings in capital 
markets research 

Cheng etal 1992 examined unexpected earnings response 
regression model 

Cochran et al 1993 examined predictability of foreign stock 
returns 

Das and Lev 1994 examined returns/earnings relations 

Freeman and Tse 1992 developed non-linear model of security 
price responses to unexpected earnings 

Goetzmann 1993 examined long-term persistence in 
stock prices 

Granger and Morgenstern 1964 performed spectral analysis on stock 
prices 

Greene and Fielitz 1977 examined long-term dependence in 
stock returns 

Hinich and Patterson 1985 examined non-linearity in daily stock 
returns 

Hsieh 1989 examined non-linear dependence in 
daily foreign exchange rates 
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Author Year Area 

Lo 1991 examined long-tenn memory in stock 
prices 

Mandelbrot 1966 examined distributional properties of 
stock returns 

Peters 1991 examined capital markets from a non-
linear perspective 

Savit 1989 examined non-linearities in options 
prices 

Scheinkman and LeBaron 1989 examined non-linear dynamics in stock 
returns 

Schwert 1989 examined business cycles and stock 
volatility 

Sewell etal 1993 examined non-linearities in foreign 
capital markets 

Willey 1992 examined non-lineary dynamics in daily 
stock indices 
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responde~ to Etheridge and Sriram's [1993] challenge and used non-linear dynamic 

methodology to develop a new model for bankruptcy prediction. 

This research study similarly accepts the challenge and explores financial 

statement data of both fraudulent and non-fraudulent firms for evidence of non­

linearity or the lack thereof. Examining the qualitative changes in financial ratios 

across time and identifying any differences in dynamics between fraudulent and non­

fraudulent firms will provide evidence that could be used in subsequent research as a 

basis for the selection and construction of a fraud detection and/or prediction model. 

The following chapter presents the methodology employed in this exploratory study. 
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CHAPTERN 

METHODOLOGY 

Introduction 

Priesmeyer [1992] proposes that financial analysis requires more than 

examining the current relationships between various financial measures. Thus, an 

awareness of the chronological patterns in the financial relationships is necessary. 

Accordingly, this research study is a longitudinal examination of financial statement 

data for a sample of :fraudulent and non-fraudulent firms. The variables used in this 

study are ratios computed from income statement and balance sheet data. 

Sample Selection 

Firms involved in :fraudulent financial reporting were obtained from the SEC's 

Accounting and Auditing Enforcement Releases (AAERs) issued between 1982 and 

1995. A firm reported in an AAER was included as a potential sample fraud firm if 

the SEC accused top management of reporting materially false and misleading 

financial statements. More specifically, the SEC alleged violation ofRule IO(b)-5 of 

the 1934 Securities Exchange Act. Rule IO(b)-5 requires the intent to deceive, 

manipulate or defraud. Upon finding sufficient evidence of fraud, the court entered 
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final judgment of permanent injunction. For purposes of this study, the "fraud year'' 

was defined as the first year for which the financial statement(s) included fraudulent 

data. In most instances, the actual discovery of the fraud occurred several years 

subsequent to the fraud year. A fraud firm was included in the sample if SEC lOQ 

reports were available for a minimum period of seven years inclusive of the fraud 

year. See Table 7 for a reconciliation of AAERs and the identification of the sample 

fraud firms. 

TABLE7 

IDENTIFICATION OF FRAUD FIR.MS 

Accounting and Auditing Enforcement Releases (AAERs) 
#1 - 712 for the period 4/82 - 9/95 

Less: 
• AAERs not referencing violation ofRule lO(b)-5 
• AAERs affecting banks/insurance firms, CPA firms, 

registration statements, or fraud year(s) not identified 
• AAERs expanding other AAERs ( e.g., duplicate AAERs 

for same firm) 
• SEC 1 OQ reports either not available or available for less 

than the minimum time period of seven years 

Total number of fraud firms included in study 

712 

(423) 

(161) 

( 49) 

( "49) 

30 

For each fraud firm included in the sample, financial statement data were 

collected for the entire period the firm is/was public, subject to data availability. Since 

federal legislation requires quarterly reporting, SEC 1 OQ reports were used for data 

collection. This allowed construction ofa complete time-series of the financial 

statement data for the fraud firm for the greatest number of periods thereby 
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significantly increasing the number of data points available for analysis. Note this 

time-series included the period before the occurrence of the fraud and the period 

subsequent to the occurrence of the fraud. While the sample firms had different pre­

fraud and post-fraud periods, the time-series data captured any change in the dynamics 

of the financial statement data. 

Using CO:MPUSTAT, each fraud firm was matched with a non-fraud firm 

based on the following requirements: 

1. firm size- a non-fraud firm was considered similar if total assets were within+/-

40% of the total assets for the fraud firm in the year preceding the fraud year; if no 

matches were found, a non-fraud firm was considered similar if total sales were 

within+/- 40% of the total sales for the fraud firm in the year preceding the fraud 

year; 

2. time period-firms identified in (1) above were reviewed to identify those non­

fraud firms for which the 1 OQ reports were available for the same time period as 

the fraud firm; 

3. industry - firms identified in (2) above were reviewed to identify a non-fraud firm 

within the same four-digit SIC as the fraud firm; the non-fraud firm chosen was 

the one with the closest total assets or total sales to the fraud firm; if no match was 

found using the four-digit SIC, then the three-digit codes were matched. 

One inherent limitation of the above sample selection process involved the 

potential misclassification of a non-fraud firm. Financial statement fraud might have 

55 



occurred but had not yet been detected. See Table 8 for a listing of the matched fraud 

and non-fraud firms. 

Ratio Selection 

The variables in this study were ratios computed from the sample firms' 

quarterly income statements and balance sheets. Ideally, the selection of financial 

ratios to be used for analysis should be based on theory and coupled with 

demonstrated empirical evidence of their usefulness. An acceptable theoretical 

foundation for the selection of ratios for decision making does not currently exist. As 

discussed in Chapter II, prior studies have produced scattered heterogeneous empirical 

evidence regarding ratio usefulness. To date, a complete set of useful ratios has not 

been identified. 

For this research study, several considerations governed the process of ratio 

selection. The Committee of Sponsoring Organizations of the Treadway Commission 

(COSO) sponsored a research study by Beasley et al [1999] that provides a 

comprehensive analysis of :fraudulent financial reporting occurrences investigated by 

the SEC subsequent to the issuance of the 1987 Treadway Commission Report. 

Beasley et al [1999] found that the two most common methods of fraudulent financial 

reporting were the improper recognition of revenue and the overstatement of assets 

(excluding accounts receivable due to revenue fraud). Fifty percent of the sample 

firms recorded revenues inappropriately, primarily by recording revenues prematurely 

or by creating fictitious revenue transactions. In addition, fifty percent of the sample 
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TABLES 

MATCHED FRAUD/ NON-FRAUD FIRMS 

Fraud Firms 
1 Chronar Corp 
2 Comserve Corp 
3 Datapoint Corp (Data Point) 
4 Digilog Inc 
5 Earthworm (Tractor Co) Inc 
6 Electro-Catheter Corp 
7 Flight International Group Inc 
B Information Solutions Inc 
9 Kellett Corp 
10 Levin Computer Corp (Levin International Corp) 
11 Matrix Science Corp 
12 Miniscribe 
13 Oaklndustrieslnc 
14 Poloron Products Inc 
15 Ramtek Corp 
16 Rocky Mount Undergarment Co 
17 Stauffer Chemical Co 
18 Storage Technology Corp 
19 United States Surgical Corp 
20 Collins Industries Inc 
21 Fidelity Medical Inc 
22 Horizon Technology Inc 
23 Programming & Systems Inc 
24 MMI Medical Inc (R2 Scan Systems Inc) 
25 Star Technologies 
26 Telephone Specialists Inc 
27 Video Station 
28 Ocilla Industries Inc 
29 Systems & Computer Technology Corp 
30 United States Shoe Corp 

Non-fraud Firms 
Electric M&R 
Rand Information Syst&ms 
Cray Research 
Boonton Electronics Corp 
Crown Zellerbach Corp 
Bioresearch Medical Products 
Offshore Logistics Inc 
Hadron Inc 
Goddard Industries 
Grantree Corp 
Robinson-Nugent Inc 
Certron Corp 
BumdyCorp 
Lindal Cedar Homes Inc 
Scan Optics Inc 
FAB Industries 
Big Three Industries Inc 
Gould Inc 
Cobe LaboratDries Inc 
Spartan Motors Inc 
Biochem ln18mational Inc 
Communications Corp of America 
National Data Corp 
OCG Technology 
Tandem Computers Inc 
Coradian Corp 
Schwartz Bros Inc 
Manufactured Homes Inc 
Hogan Systems 
Petrie Storas Liquidation 



firms overstated assets by overvaluing existing assets, recording fictitious assets, or 

capitalizing items that should have been expensed. Even excluding the effects of 

misstating accounts receivable due to the revenue recognition frauds, the two most 

common misstated asset accounts were inventory and accounts receivable. Other 

:frequently misstated. accounts include property, plant and equipment and loans/notes 

receivable [Beasley et al 1999]. Financial ratios composed of such misstated accounts 

were selected for inclusion in this study. 

Pinches et al [1973, 1975] used factor analysis to reduce 48 ratios to seven 

factor patterns. Gombola and Ketz [1983] investigated the impact of cash flow 

measurement upon the classification patterns of financial ratios and found that 40 

ratios could be reduced to eight factors. The cash flow ratios loaded on a separate and 

distinct factor, while the other seven factors were substantially similar to those found 

by Pinches et al [1973, 1975]. 

Using the data from Kaminski et al [2000], a factor analysis was performed on 

21 financial ratios from 76 matched fraud/non-fraud firms for the time period one year 

prior to the first occurrence of fraud. Results indicated a seven-factor solution. 

Despite using a different and smaller set of financial ratios (e.g., 21 versus 48) than 

those used in the early classification studies, the results were consistent with the 

findings of the prior studies of Pinches et al [1973, 1975] and Gombola and Ketz 

[1983]. Accordingly, the Pinches et al [1973, 1975] classifications were included in 

this study. 
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Because information overlaps individual ratios and results in ratio redundancy, 

only one or two ratios from each factor was needed to adequately represent that factor 

and at the same time be independent of the other factors thereby restricting 

multicollinearity. The resulting reduced set of financial ratios still provides for a 

representative and comprehensive analysis of the ratio factor patterns. 

Another consideration in ratio selection was data availability. Quarterly 

financial statements are usually summarized reports and less detailed than annual 

financial statements. Accordingly, ratio choice was further limited to those ratios 

whose components were reported on the SEC 1 OQ financial statements. Given the 

time frame of this study, (i.e., mid-1970s thru mid-1990s) and the fact that the 

statement of cash flows was not a required financial statement until 1987, ratios based 

on cash flow data were not included. Lastly, the large number of tests that were 

performed on each ratio for each firm also limited the number of ratios used. 

Given these considerations, a parsimonious yet comprehensive and 

representative selection of financial ratios was chosen for this study. See Table 9 for a 

listing of the selected ratios. 

Tests 

There are two basic methods for measuring chaos. The first method is to use 

the equations of a :fully-specified model of the dynamic system. Iterations of the 

equations with various parameter and starting values are then analyzed. Very few 

systems have such models available. The second method is to use the data from the 
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TABLE9 

RATIOS 

Classification Ratio coso1 

Return on Investment RI Net Income I Total Assets 
R2 Net Income / Sales 

Capital Intensiveness R3 Sales / Total Assets 
R4 Fixed Assets / Total Assets 

Inventory Intensiveness RS Inventory / Sales 
R6 Current Assets / Sales 

Financial Leverage R7 Total Liabilities / Total Assets 

Receivables Intensiveness RS Sales / Accounts Receivable 
R9 Accounts Receivable / Inventory 

Short-Term Liquidity RIO Current Assets / Current Liabilities 

Cash Position4 

1 Account or account category included in COSO report [Beasley et al 1999]. 
2 Ratio had high factor loading in study by Pinches et al (1973, 1975]. 
3 Ratio found significant in study by Kaminski et al (2000]. 
4 Cash flow ratios were excluded in this study. 

* 
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* 
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* 
* 

* 

* 
* 

* 
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dynamic system to test whether a deterministic process exists. Presently, there are two 

approaches to the analysis of this data, the purposes of which are to gain additional 

descriptive insight about the dynamics of the system. The metric approach focuses on 

the distance between points on the attractor. The topological approach focuses on the 

organization of the attractor. Both approaches depend on the behaviors evidenced by 

the time-series data [Gilmore 1993, 1996]. Since there is no fully-specified model of 

the financial accounting system, this research study employed the second method. 

Given that chaos theory is a relatively new field of research and its 

methodology is evolving as we speak, there exists no definitive set of procedures for 

analyzing a chaotic time-series. Several well-established tools have been identified in 

the literature, six of which were applicable to this study. The first five tools utilized 

metrics while the sixth one used the topological approach. A discussion of each of 

these tools follows and is summarized in Table 10. 

The Hurst Exponent 

One of the metric tools is the calculation of the Hurst exponent. H. E. Hurst, a 

hydrologist, discovered a methodology for distinguishing a random system from a 

non-random system. Speaking on a broad scale, a system is the result of a long stream 

of interconnected events. Where we are now is a result of where we have been in the 

past. Similarly, where we will be in the future is dependent upon where we are in the 

present [Peters 1996]. The dynamics of the system is captured in its time-series. One 

common type of time-series is a random walk, also known as Brownian motion. In 
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Ap_proach 

Metric 

Metric 

Metric 

Metric 

Metric 

Topological 

TABLE 10 

METHODOLOGICAL TESTS 

Hurst exponent 

Lyapunov exponent 

Correlation dimension 

BDS statistic 

Shuffle test 

Phase space map 
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Benefits 

Provides evidence of whether a 
time-series is random, periodic 
or chaotic 

Provides evidence of type of 
attractor and degree of chaos 
exhibited by the system 

Provides evidence of whether 
attractor is due to a random or 
chaotic process; also indicates 
number of variables necessary 
to model the system 

Provides evidence of whether 
the time-series is random (i.e., 
IID) or the result of non-linear 
dynamics 

Provides evidence of whether 
the time-series is random (i.e., 
IID) or the result of non-linear 
dynamics 

Provides visual evidence of 
type of attractor 



such a case, on average, the value of x moves away from its initial position by an 

amount proportional to the square root of time. Using each point in the time-series as 

an initial condition and plotting the root-mean-square displacement against time 

produces a curve, the slope of which is called the Hurst exponent [Sprott and 

Rowlands 1995]. As a nonparametric measure, no assumptions are made concerning 

the underlying distribution of the time-series (e.g., normally distributed). 

In the case of a random walk, events are random and uncorrelated. A time­

series may be antipersistent or mean-reverting (i.e:, past trends tend to reverse in the 

future) and more volatile than a random series. Alternately, a time-series may be 

persistent and characterized by long-term memory effects (i.e., past trends persist into 

the future). What happens in the present has an impact on the future. Speaking in 

terms of chaos theory, there is a sensitive dependence on initial conditions (i.e., 

SDIC). Such a time-series is a biased random walk, also known as fractional 

Brownian motion. 

The Hurst exponent can be used to classify a time-series. A random time­

series should produce a Hurst exponent near zero whereas a periodic time-series 

should produce a Hurst exponent near one. If the Hurst exponent is neither near zero 

nor one, there is evidence that the time-series is chaotic. 

In this study, the Hurst exponent was computed for each ratio for each of the 

fraud and non-fraud firms. The findings will provide evidence as to the behavior of 

the time-series and whether chaos is exhibited by the system. The findings will also 

indicate whether there are differences among firm type and/or financial ratios. 
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The Lyapunov Exponent 

A second metric tool is the calculation ofLyapunov exponents. While chaotic 

systems are detenninistic, they are only predictable for short periods of time due to 

their sensitive depen~ence on initial conditions (SDIC). Lyapunov exponents measure 

the degree of SDIC and tell us whether small changes in the initial values of the 

variables for the system produce different trajectories that are markedly divergent 

from the original trajectory. For chaotic systems, Lyapunov exponents tell us that the 

divergence from the original trajectory is very rapid. In essence, the divergence is 

exponential. Positive Lyapunov exponents indicate divergence from the original 

trajectory while negative values indicate convergence. A zero value indicates 

constancy. 

The divergence and convergence of the trajectories is similar to the stretching 

and folding that results in the process of kneading dough [Peitgen et al 1992]. Start 

with two points on the dough that are close together. Next observe the distance 

between them as the dough is repeatedly stretched and folded. As the dough is being 

stretched, the points diverge from one another. A positive Lyapunov exponent 

measures stretching in phase space. When the dough is being folded, initial conditions 

that were distant may converge. A negative Lyapunov exponent measures folding in 

phase space. The stretching action represents SDIC while the folding action 

represents the presence of an attractor. 
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There are as many Lyapunov exponents as there are dimensions in the system. 

Each exponent describes divergence in a separate direction and is intuitively 

comparable to a separate direction along each axis in phase space [Brown 1995]. 

Lyapunov exponents offer a way to classify attractors. When dealing with one 

variable in one dimension, if the single Lyapunov exponent is zero, the system 

exhibits marginally stable behavior and the attractor is a fixed point. If the exponent's 

value is negative, the different trajectories converge and the attractor is periodic. If 

the exponent is positive, nearby trajectories diverge and the attractor is a strange 

attractor. The system is chaotic. The magnitude of the positive Lyapunov exponent 

determines the speed of divergence of the trajectory paths. 

In this study, the largest Lyapunov exponent was computed for each ratio for 

each of the fraud and non-fraud firms. The :findings will provide evidence as to the 

type of attractor as well as the degree of chaos exhibited by the system. The :findings 

will also indicate whether there are differences among firm type and/or :financial 

ratios. 

The Correlation Dimension 

Another numerical tool for measuring chaos is the correlation dimension. It is 

a measure of the spatial correlation of scatter points in m-dimensional space. It 

determines the relationship between each point in a time-series and all of the other 

points in the series [Grassberger and Procaccia 1983]. The correlation dimension 

indicates the dimension of the attractor. While a point has a dimension of zero, a line 
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has dimension of one, and a plane has dimension of two, the correlation dimension for 

a chaotic attractor will be a non-integer. The issue is to determine whether an attractor 

that results from a seemingly random time-series is due to low-dimensional chaos or · 

infinite-dimensional randomness. A two-dimensional phase space map of a time­

series of uniformly distributed random numbers fills the plane. Continuing with 

spaces of higher dimension, the time-series continues to fill the available space. In the 

limit, random numbers are infinite-dimensional. This is a major difference between a 

chaotic system and a random system. In a chaotic system, the correlation measure 

converges to a fixed value despite being tested in higher and higher dimensions. In a 

truly random system, such convergence does not occur. The correlation dimension is 

also an indicator of the number of variables that are necessary to model the dynamic 

system. 

Grassberger and Procaccia [1983] studied a measure called the correlation 

integral to test for evidence of chaos. The correlation integral essentially measures the 

frequency with which temporal patterns are repeated in time-series data and is 

obtained from the spatial correlations between points on the attractor. More 

technically, the correlation integral is a measure of spatial correlation of scatter points 

in m-dimensional space, 

Cm. -r{e) = Lt<• L {x~, x:} X [2 / {Tm{Tm - 1))], 
where Tm = T - (m-1), 

X~ = (xt, ... , Xt+m-1), 

and L{ x~, x:} is an indicator function which equals 1 if llx~ -x: II < &, 

and equals O otherwise. 
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Here { Xt} is a scalar time-series under scrutiny for randomness. In order to use the 

equation to measure intertemporal local correlations and dependence, one embeds 

{ Xt} in an m -dimensiona 1 space by forming m -vectors x~ = (Xt, ... , Xt. m. 1) 

starting at each datet. 

For stochastic and deterministically chaotic systems, as T ~ co, 

Cm. T( e) ~ Cm( e) = Prob {!Ix~ - x~ II< e}w. p. 1, for almost all initial conditions. 

The definition of correlation dimension in embedding dimension m is defined as: 

elm= lilllB ~ o lim T ~ aolog [Cm. T(&)] I log (e). 

The correlation dimension itself is given by: 

d = limm ~ 00 dm. 

A major difference between a chaotic process and a truly random process is 

that they both appear random to the naked eye and to standard linear time-series 

methods, yet the truly random process will have high to infinite dimension, whereas 

the chaotic process will have low dimension. According to Brock et al [1991], low 

dimensional chaos will have a correlation dimension substantially lower than 10, 

perhaps 5 or 6. 

Since an independent and identically distributed stochastic process has 

correlation dimension of infinity, the correlation dimension can be used to distinguish 

deterministic chaos from truly random systems. If the time series is truly random, the 

slope dm oflog Cm(e) versus log (e) will increase indefinitely as mis increased. If the 

time series is low dimensional, the slope dm oflog Cm(e) versus log (e) increases at a 
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rate slower than m. The specific value dm • where dm stabilizes is then an estimate of 

the correlation dimension. If convergence does not occur, one can accept the null 

hypothesis that the time series is random. 

In this study, the correlation dimension was computed for each ratio for each 

of the :fraud and non-fraud firms. The resulting value will provide evidence as to 

whether the attractor of the time-series is due to randomness or due to a chaotic 

process. Comparisons can then be made between :fraudulent and non-fraudulent firms 

as well as the various financial ratios. 

The BDS Statistic 

Brock et al [1987] developed the BDS statistic and used the correlation 

dimension to perform a statistical test of non-linear dynamics. The BDS test examines 

the pattern of a series of data. The ith observation is compared to the (i + l)th 

observation. There is some positive probability that these observations are within a 

known distance d of each other. Next, a third observation is compared with the second 

and again there is a positive probability that it is within the same distance. This 

process is repeated for all observations in the time-series. The BDS statistic compares 

how often a series of data points are actually within the distance d of each other to the 

expected value if the series were independently and identically distributed (IID). In 

essence, it tests the null hypothesis that the time-series is 11D (i.e., randomly 

distributed) by fitting a model to the data and then testing the estimated errors of the 

model [Craig et al 1991]. A significantly positive BDS statistic implies that points in 
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an m-history space have a probability of clustering together more than what would be 

probable with truly random data. A random time-series would result in a large 

negative BDS statistic. The BDS test has been shown to have good power to detect 

non-IID behavior. The test has also been shown to be effective for small sample sizes. 

In this study, the BDS statistic was computed for each ratio for each of the 

fraud and non-fraud firms. The statistic will provide direct evidence as to whether the 

time-series is random or the result of non-linear dynamics. The findings will also 

indicate whether there are differences among firm type and/or financial ratios. 

Rejection of the null hypothesis ofIID does not immediately lead to the 

conclusion of deterministic chaos. The statistic implies only non-IID behavior (i.e., 

non-linear dependence) which could be the result of various kinds of non-linear 

influences. Chaotic dynamics is one such influence but so is a non-linear stochastic 

process. Accordingly, the BDS statistic should be used in conjunction with other tests 

to provide more conclusive evidence of the presence of chaos. Such an approach is 

being utilized in this study through the use of multiple measures ( e.g., Hurst 

exponents, Lyapunov exponents, correlation dimension, phase space maps). 

The Shuffie Test 

Another metric tool for investigating whether a time-series is random is the 

shuffle test [Theiler et al 1992]. Surrogate data is generated by taking the original 

time-series and randomly shuffiing the sequence of the data. The surrogates have the 

same distributional characteristics as the original data, but the correlations in the 
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original data that reflect the system dynamics have been destroyed by shuftling. A 

statistic of interest ( e.g., the correlation dimension) is compared to the same statistic 

for the original data. If the results are the same, there is evidence that the original 

time-series is IID. If the results are different, there is evidence of non-linear structure 

in the original data. This test can be repeated for multiple shuftles. For example, 

performing the shuffle test 20 times and obtaining a lower correlation dimension on 

just one of the tests would give a non-parametric level of significance of 1/20 or p = 

.05. The result of this test would be the rejection of the null hypothesis of randomness 

at the 95% confidence level. 

In this study, the shuftle test was performed for each ratio for each of the fraud 

and non-fraud firms. The shuftle test was conducted 20 times using the BDS statistic 

as the test statistic. The findings will provide additional evidence as to whether the 

time-series is random. Comparison of the findings among fraudulent and non­

fraudulent firms and the various financial ratios can then be made. 

Phase Space Map 

In addition to the metrics described above, a topological approach focusing on 

the organization of the attractor can also be utilized. Through a phase space 

reconstruction of the shape of the attractor, additional descriptive insights about the 

dynamics of the system can be found. Phase space requires a dimension for each 

variable of the system. One quickly exceeds the capability to topologically construct 

the behavior of the system (e.g., drawing trajectories in the 4th or 5th dimension). The 
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procedure therefore uses only one variable at a time and does not require a priori 

knowledge of the formal equation(s) that underlie the dynamic system. The procedure 

extracts the geometric features of the system's behavior and creates a simulated phase 

space of the one-dimensional time-series record [Kellert 1993]. The value of the 

variable is simply plotted against its lag. Using different values of lag length, the plot 

depicts the rotation of the attractor in its own phase space. This procedure has been 

shown to be effective even in the presence of substantial amounts of stochastic noise 

[Brown 1995]. This phase space map enables a visual inspection of the attractor and 

provides evidence as to the type of attractor (i.e., fixed point, limit cycle, strange). 

According to Kellert [1993], reconstruction of attractors is one of the most important 

methods for discovering and analyzing chaos. It enables the researcher to study a 

system's qualitative features without solving or even knowing the equations that 

govern the system. 

A phase space map was constructed for each ratio for each of the fraud and 

non-fraud firms. Analysis of the maps should provide evidence as to whether there are 

differences in the attractors of the fraudulent versus non-fraudulent firms. 

Additionally, the maps should also indicate any differences in the attractors of the 

various financial ratios. 

Each of the above procedures (i.e., Hurst exponent, Lyapunov exponents, 

correlation dimension, BDS statistic, shuffle test and phase space maps) was 

conducted using the software program Chaos Data Analyzer - The Professional 

Version [1995] (CDA). This program has been used in several published studies, 
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including those applying chaos methodology to financial data (e.g., Lindsay and 

Campbell 1996, Dooley and Van de Ven 1999]. The results ofthese procedures will 

provide evidence of non-linear dynamics or the lack thereof in financial statement 

data. The findings will also indicate whether there are differences among firm type 

and/or financial ratios. Table 10 provides a summary of the methodological tests 

· performed in this exploratory study. The following chapter presents the results of 

these tests. 
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CHAPTERV 

RESULTS 

Introduction 

This research study was a longitudinal examination of financial statement data 

for 30 matched pairs of fraudulent and non-fraudulent firms. The variables used in 

this study were ten financial ratios computed from quarterly income statement and 

balance sheet data. Multiple tests of the ratio values were conducted to determine the 

behavior of the time-series. More specifically, the tests were conducted to provide 

evidence of random, periodic or chaotic behavior. This chapter presents the analysis 

and results of the empirical examination. It is organized as follows. The first section 

is a descriptive summary of the sample data that was used for the subsequent metric 

and topological tests. This is followed by a discussion of each measurement's 

sensitivity to sample size. The third section is a discussion of the grouping and 

reporting of the data for each measure. Next, the results of each of the measurement 

tests are then discussed. This is followed with a discussion of the performance of 

some additional analyses. Finally, there is a summary of the findings of this study. 
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Descriptive Summary of Sample Data 

For each of the 30 fraud and non-fraud firms identified in Table 8, the ten 

financial ratios identified in Table 9 (i.e., Rl thru RIO) were computed for the entire 

time period for which SEC 1 OQ financial statements were available. The minimum 

time period for inclusion in the study was seven years. This was to allow a minimum 

time-series of 28 data points for analysis for each ratio. The fraud firms had a mean 

sample size of 42.50 with a range of28 to 80 time periods. The non-fraud firms had a 

larger mean sample size of 55.30 with a range of30 to 89 data points. On average, the 

fraud firms reported fraudulent financial data over 55% of their time-series. Such 

fraudulent reporting ranged from 8% to 95%. These descriptive statistics are 

summarized in Table 11. Before proceeding with the results of the metric and 

topological tests, further discussion of sample size is warranted and is presented in the 

next section. 

Measurement Sensitivity to Sample Size 

Chaos theory developed from research undertaken in the physical sciences. 

The ability to control laboratory conditions and perform thousands of replications 

generated very large data sets. Early research in accounting utilizing chaos theory was 

primarily limited to the capital markets because thousands of data points were 

available for analysis. Most social science research is vastly different. Measurements 

are usually discrete rather than continuous, plus the data sets are much smaller and 

more prone to the inclusion of noise. Methods have been developed to account for 
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TABLE 11 

SUMMARY OF DESCRIPTIVE STATISTICS 

Fraud Firms Non-Fraud Firms 
Sample Size 

Mean 42.50 55.30 
Range . 28-80 30-89 

% Fraudulent 
Mean 0.55 
Range .08 - .95 

such conditions and chaos theory research utilizing these methods has expanded into 

such realms as management, psychology and sociology. Rather than thousands of data 

points, this research uses sample sizes of fewer than 100 or even 50 data points. 

Despite the new methods, the smaller data sets produce measured results with reduced 

predictive power as would be expected. 

To determine the sensitivity of sample size on the measurements utilized in 

this study, some preliminary tests and analyses were performed. The software 

program Chaos Data Analyzer-The Professional Version [1995] (CDA) includes 

sample data files of known random, periodic and chaotic time-series. The Hurst 

exponent, Lyapunov exponent, correlation dimension and BDS statistic were 

computed for each type of time-series (i.e., random, periodic and chaotic) for various 

sample sizes ranging from 2,000 data points to only 50 data points. A summary of the 

test results is presented in Table 12. A discussion of the analysis of each of the 

measures follows. 
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TABLE12 

MEASUREMENT SENSITIVITY TO SAMPLE SIZE 

N Hurst Exponent Lyapunov Exponent Correlation Dimension BOS Statistic 

Random 2000 0.0026 0.895+/-0.031 4.407+/-0.048 (16.8631) 
Random 200 (0.0041) 0.835+/-0.110 4.804+/-0.234 (0.5038) 
Random 100 (0.0109) 0.698+/-0.222 5.006+/-2.393 (1.3327) 
Random 50 0.0070 0.549+/-0.255 7.398+/-7.398 (2.5105) 

Periodic 2000 0.7216 (0.001 )+/-0.026 0.894+/-.0624 0.0699 
Periodic 200 0.9634 (0.003)+/-0.082 1.451+/-0.501 0.0521 
Periodic 100 0.9152 (0.003)+/-0.143 2.146+/-0.460 0.0713 

-.J Periodic 50 0.8049 (0.015)+/-0.188 7.398+/-7.398 0.2371 
°' \, 

Chaos 2000 0.4382 0.075+/-0.034 2.001+/-0.103 0.3339 
Chaos 200 0.6019 0.127+/-0.101 2. 7 42+/-0.649 0.0950 
Chaos 100 0.3833 0.261+/-0.121 2.975+/-0.957 0.1430 
Chaos 50 0.2660 0.412+/-0.210 4.247+/-3.473 0.0598 



For the Hurst exponent, the random time-series generated a near zero value 

regardless of sample size. The periodic time-series consistently resulted in a large 

value, though there was more variability in the range of values. The chaotic time­

series produced middle values, but once again, the range of values was larger. As 

calculated by the software program CDA, it can be concluded that the Hurst exponent 

is a reliable measure even for small sample sizes. 

For the Lyapunov exponent, both the random and chaotic time-series generated 

a range of positive values. However, the values for the random time-series were 

significantly larger. The periodic time-series resulted in a value consistent with zero 

regardless of sample size. While the Lyapunov exponent appeared somewhat 

sensitive to sample size, it is still a fairly reliable measure for discerning the type of 

time-series. 

For the correlation dimension, each type of time-series produced a wide range 

of values that appears very sensitive to sample size. One would expect a large 

correlation dimension for a random series but the values ranged from 4.407 for the 

large data set to 7.396 for the smallest data set. The sensitivity to sample size is even 

more evident with the periodic series where the range varied from 0.894 to 7.398. 

With small data sets, it was not possible to distinguish a periodic time-series from a 

purely random one. For the chaotic series, the correlation dimension for the smallest 

sample size was 4.247. This value is very close to the 4.407 value for the largest 

sample size of the random series. Once again, using the correlation dimension as a 

measurement parameter, it was not possible to discern a chaotic time-series from a 
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random one. In addition, note should be made of the substantial increase in the 

uncertainty of the mean as the sample size decreased.. As calculated by the software 

program CDA, this measure is extremely sensitive to sample size. Accordingly, the 

correlation dimension is deemed an unreliable measure for the purposes of this study. 

For the BDS. statistic, the random time-series generated negative values 

regardless of sample size. Both the periodic and chaotic series produced positive 

values irrespective of sample size. It can be concluded that the BDS statistic has good 

power to detect non-IID behavior, even for small data sets such as those used in this 

study. 

To summarize, given the results of the preliminary analysis described above, 

the Hurst exponent, Lyapunov exponent and BDS statistic are reliable measures for 

this study' s limited sample size. The next section discusses the grouping and 

reporting of the data for each of the appropriate measures. 

Data Grouping and Measurements 

Using the software program CDA, six tests [i.e., (I) Hurst exponent; (2) 

Lyapunov exponent; (3) correlation dimension; (4) BDS statistic; (5) shuffle test; and 

( 6) phase space maps] were conducted on the time-series of each of the financial 

ratios. More specifically, for each ratio for each firm, the following measures were 

computed: the Hurst exponent, Lyapunov exponent, correlation dimension and BDS 

statistic. For each of these measures, a mean value was computed for the fraud firm 

sample and the non-fraud firm sample for each ratio. This grouping by firm-type (i.e., 
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fraud vs non-fraud) remained constant through subsequent analyses. Further sub­

groupings are discussed below. 

To determine if the time-series was sensitive to sample size, the data for each· 

ratio was split into two groups - low sample size N and high sample size N. Given 

that the sample sizes fluctuated for each ratio depending upon the availability of 

company data, the split was determined by looking for a natural break for each ratio. 

Accordingly, the split between low sample size N and high sample size N varied 

between 47 and 50. Mean values for each of the measures were then computed for 

each group for each ratio. 

To determine if the time-series was sensitive to the percent of time the fraud 

firm data was :fraudulent, the data for each ratio was again split into two groups - low 

% F and high% F. Since the range of percent of time :fraudulent varied so 

significantly from a low of 8% to a high of 95%, those fraud firms with less than 50% 

of the data prior to the first occurrence of fraud were placed in the low % F group. 

The remaining fraud firms were placed in the high % F group. Mean values for each 

of the measures were then computed for each group for each ratio. 

Given the extensive use of mean values and the fact that the uncertainty in 

each mean is strongly dominated by the spread in the distribution, estimated errors of 

the means were also computed. For each of the mean values discussed above, the 

uncertainty of the means was reported as the mean value+/- the estimated error. The 

reporting of the uncertainty of the means strengthens the subsequent conclusions for 
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the various quantitative measures. The following sections discuss the results of each 

of the measurement tests. 

The Hurst Exponent 

The Hurst exponent is a nonparametric measure that can be used to classify a 

time-series. A random time-series is subject to a normal Gaussian distribution where 

the average displacement never gets very large because the mean is fixed. The Hurst 

exponent is therefore near zero. Straight-line motion would have a Hurst exponent 

equal to one. A periodic time-series would therefore have a large Hurst exponent very 

near one. For a chaotic time-series, the Hurst exponent is dependent upon the attractor 

and would result in a value that is neither near zero nor one. 

A summary of the Hurst exponent mean values is presented in Table 13. 

Ranges for the mean Hurst exponent for the various groupings are summarized below: 

F N 

Total .0277 to .4250 .0280 to .3927 

LowN .0497 to .4385 .0714 to .4320 
HighN (.0326) to .4420 .0028 to .3700 

Low%F .0085 to .3814 
High%F .0405 to .4600 

The data indicates that R4, R7, R9, and RIO are the result of a chaotic time­

series. There is no evidence that any of the ratios are from a periodic time-series. The 

ratios are consistent regardless of firm-type. The means for each ratio for both the 

sample size sub-grouping and the % fraudulent sub-grouping are consistent with the 
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TABLE 13 

HURST EXPONENT-:MEAN VALUES 

F mean est error lowN est error hlN est error low'lfoF est error hl'lfoF est error 
R1-NI/TA F 0.0277 .0277+/-.0201 0.0497 .0497+/-.0171 (0.0326) (.0326)+/-.0563 0.0085 .0085+/-.0464 0.0405 .0405+/-.0142 
R2-NI/S F 0.0845 .0845+/-.0308 0.1119 .1119+/-.0384 0.0092 .0092+/-.0381 0.0496 .0496+/-.0433 0.1078 .1078+/-.0425 
R3-S/TA F 0.1711 .1711+/-.0404 0.1860 .1860+/-.0449 0.1302 .1302+/-.0913 0.1493 .1493+/-.0854 0.1857 .1857+/-.0381 
R4-FA/TA F 0.3948 .3948+/-.0354 0.3776 .3776+/-.0450 0.4420 .4420+/-.0487 0.3814 .3814+/-.0686 0.4037 .4037+/-.0391 
RS-INV/S F 0.1787 .1787+/-.0328 0.1929 .1929+/-.0347 0.1401 .1401+/-.0810 0.2147 .2147+/-.0596 0.1477 .1477+/-.0335 
R6-CA/S F 0.1440 .1440+/-.0285 0.1857 .1857+/-.0255 0.0844 .0844+/-.0810 0.1338 .1338+/-.0571 0.1508 .1508+/-.0300 
R7-TL/TA F 0.4250 .4250+/-.0348 0.4385 .4385+/-.0394 0.3878 .3878+/-.0758 0.3725 .3725+/-.0675 0.4600 .4600+/-.0359 
RB-SIAR F 0.1751 .1751+/-.0337 0.1481 .1481+/-.0364 0.2496 .2496+/-.0747 0.1826 .1826+/-.0557 0.1702 .1702+/-.0434 
R9-AR/INV F 0.2535 .2535+/-.0272 0.2379 .2379+/-.0324 0.2848 .2848+/-.0508 0.2614 .2614+/-.0376 0.2481 .2481 +/-.0389 
R1D-CA/CL F 0.3338 .3338+/-.0258 0.3501 .3501 +/-.0332 0.2882 .2882+/-.0286 0.2999 .2999+/-.0443 0.3581 .3581+/-.0311 

00 ...... 
R1-NlfTA N 0.0280 .0280+/-.0268 0.0714 .0714+/-.0359 0.0028 .0028+/-.0363 
R2-NI/S N 0.0678 .0678+/-.0200 0.0983 .0983+/-.0394 0.0554 .0554+/-.0233 
R3-S/TA N 0.1242 .1242+/-.0281 0.1513 .1513+/-.0407 0.1084 .1084+/-.0379 
R4-FA/TA N 0.3927 .3927+/-.0347 0.4320 .4320+/-.0518 0.3700 .3700+/-.0480 
RS-INV/S N 0.1392 .1392+/-.0408 0.1722 .1722+/-.0645 0.1227 .1227+/-.0529 
R6-CA/S N 0.1090 .1090+/-.0268 0.1091 .1091+/-.0305 0.1090 .1090+/-.0382 
R7-TL/TA N 0.3546 .3546+/-.0390 0.4124 .4124+/-.0691 0.3212 .3212+/-.0486 
RB-SIAR N 0.1269 .1269+/-.0288 0.1510 .151D+/-.0427 0.1129 .1129+/-.0348 
R9-AR/INV N 0.1921 .1921+/-.0323 0.2413 .2413+/-.0841 0.1632 .1632+/-.0348 
R1D-CA/CL N 0.3023 .3023+/-.0275 0.3056 .3056+/-.0398 0.3004 .3004+/-.4296 



means from the full data set. The ratios do not appear to be sensitive to sample size or 

percent of time fraudulent. 

The Lyapunov Exponent 

The Lyapunov exponents measure the degree of SDIC and indicate whether 

small changes in the values of the variables for the system produce different 

trajectories that are markedly divergent from the original trajectory. Lyapunov 

exponents provide evidence as to the type of attractor produced by the dynamic 

system. If the Lyapunov exponent is zero, the system exhibits marginally stable 

behavior and has a periodic attractor. A negative exponent indicates converging 

trajectories and a fixed-point attractor. If the exponent is positive, trajectories diverge, 

indicating a strange attractor and therefore a chaotic system. 

It should be noted that the software program CDA reports the Lyapunov 

exponent as a range. For example, the Lyapunov exponent for RI for a sample firm 

might be 0.465+/-0.170. Such a range reports the estimated error of the mean value. 

The raw data produced ranges that were very disparate among the individual firms and 

their various ratios. It was deemed necessary to determine if the uncertainty of the 

ranges would adversely affect the mean values. Such could be determined if the mean 

were weighted inversely by the uncertainty of the range. Accordingly, for this 

measure, weighted means were calculated in addition to simple means. Such 

calculations were performed for the total data set grouped by firm type as well as the 

sample size sub-grouping. 
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A. comparison of the weighted means and the simple means is presented in 

Table 14. As evidenced by the table, the results were very similar for both the fraud 

and non-fraud total data set and the sample size groupings. The uncertainty of the 

ranges did not have a material impact on the mean values. Given such results, it was 

deemed appropriate to use the simple means for analysis purposes. 

A summary of the Lyapunov exponent values is presented in Table 15. Ranges 

for the mean Lyapunov exponent for the various groupings are summarized below: 

F N 

Total .2333 to .3674 .2676 to .3758 

LowN .1971 to .4017 .1567 to .4453 
HighN .2564 to .3799 .2923 to .3491 

Low%F .1983 to .3653 
High%F .2567 to .3979 

The mean Lyapunov exponent is positive for all ratios tested, thereby 

eliminating the possibility of a periodic attractor. Since none of the positive values are 

very large, the ratios appear to be the product of a chaotic system. Doing a firm-type 

comparison, all of the Lyapunov exponents are relatively close except for R4. This 

ratio's Lyapunov exponent is .2333 for the fraud firms and .3587 for the non-fraud 

firms. The measure indicates that for this ratio, on average, the non-fraud firms seem 

to exhibit more chaos. Doing a low/high sample size comparison, the ratios are 

relatively close except for R2, R4, R7, and RIO. No differences were found for the 

low/high % fraudulent grouping. It should be noted that the ranges for the Lyapunov 
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TABLE14 

LY APUNOV EXPONENT - WEIGHTED vs SIMPLE MEANS 

R1 R1 R2 R2 R3 R3 R4 R4 R5 R5 
NI/TA NI/TA NI/S NI/S SITA SITA FA/TA FA/TA INV/S INV/S 

weighted simple weighted simple weighted simple weighted simple weighted simple 
mean mean mean mean mean mean mean mean mean mean 

F loN 0.3788 0.3685 0.3881 0.4017 0.3477 0.3684 0.2773 0.1971 0.2369 0.2500 
hiN 0.3405 0.3585 0.2513 0.2564 0.3737 0.3646 0.3107 0.3330 0.3055 0.3123 
total 0.3670 0.3658 0.3459 0.3630 0.3559 0.3674 0.2905 0.2333 0.2599 0.2678 

N loN 0.3536 0.4220 0.3950 0.4453 0.3395 0.3679 0.4180 0.3992 0.2970 0.3001 
hiN 0.3150 0.3491 0.2952 0.3039 0.3086 0.3216 0.3255 0.3353 0.3124 0.3260 
total 0.3262 0.3758 0.3231 0.3510 0.3180 0.3386 0.3519 0.3587 0.3081 0.3174 

00 
~ 

R6 R6 R7 R7 RB RB R9 R9 R10 R10 
CA/S CA/S TL/TA TL/TA SIAR SIAR ARIINV AR/INV CA/CL CA/CL 

weighted simple weighted simple weighted simple weighted simple weighted simple 
mean mean mean mean mean mean mean mean mean mean 

F loN 0.2492 0.2524 0.3960 0.3936 0.2992 0.2980 0.2305 0.2801 0.2632 0.2527 
hiN 0.2982 0.3120 0.2675 0.2699 0.2899 0.3069 0.3529 0.3731 0.3840 0.3799 
total 0.2663 0.2683 0.3565 0.3606 0.2954 0.3003 0.2964 0.3111 0.3074 0.2866 

N loN 0.2177 0.2184 0.2875 0.3016 0.2710 0.2695 0.2202 0.2335 0.1766 0.1567 
hiN 0.3014 0.2923 0.2836 0.2996 0.2983 0.3204 0.3294 0.3374 0.3366 0.3327 
total 0.2775 0.2676 0.2849 0.3004 0.2906 0.3017 0.2968 0.2989 0.2850 0.2682 



TABLE 15 

LY APUNOV EXPONENT - MEAN VALUES 

F mean est error lowN est error hlN est error low%F est error hl%F est error 
R1-NI/TA F 0.3658 .3658+/-.0226 0.3685 .3685+/-.0236 0.3585 .3585+/-.0578 0.3177 .3177+/-.0278 0.3979 .3979+/-.0312 
R2-NI/S F 0.3630 .3630+/-.0311 0.4017 .4017+/-.0318 0.2564 .2564+/-.0866 0.3653 .3653+/-.0847 0.3614 .3614+/-.0308 
R3-S/TA F 0.3674 .3674+/-.0248 0.3684 .3684+/-.0284 0.3648 .3648+/-.0524 0.3354 .3354+/-.0470 0.3887 .3887+/-.0265 
R4-FA/TA F 0.2333 .2333+/-.0504 0.1971 .1971 +/-.0848 0.3330 .3330+/-.0536 0.1983 .1983+/-.0748 0.2587 .2567+/-.0888 
R5-INV/S F 0.2878 .2678+/-.0291 0.2500 .2500+/-.0344 · 0.3123 .3123+/-.0575 0.2305 .2305+/-.0373 0.2957 .2957+/-.0427 
R6-CA/S F 0.2683 .2883+/-.0358 0.2524 .2524+/-.0440 0.3120 .3120+/-.0592 0.2135 .2135+/-.0833 0.3048 .3048+/-.0413 
R7-TUTA F 0.3608 .3608+/-.0333 0.3936 .3936+/-.0417 0.2899 .2899+/-.0352 0.3637 .3637+/-.0588 0.3588 .3586+/-.0408 
RS-SIAR F 0.3003 .3003+/-.0322 0.2980 .2980+/-.0402 0.3089 .3089+/-.0529 0.2488 .2488+/-.0389 0.3347 .3347+/-.0468 
R9-AR/INV F 0.3111 .3111+/-.0374 0.2801 .2801 +/-.0449 0.3731 .3731 +/-.0887 0.2838 .2838+/-.0585 0.3299 .3299+/-.0494 
R10-CA/CL F 0.2888 .2886+/-.0238 0.2527 .2527+/-.0284 0.3799 .3799+/-.0213 0.2891 .. 2891+/-.0289 0.2850 .2850+/-.0354 

00 
VI 

R1-NI/TA N .0.3758 .3758+/-.0382 0.4220 .4220+/-.0758 0.3491 .3491+/-.0419 
R2-NVS N 0.3510 .3510+/-.0351 0.4453 .4453+/-.0804 0.3039 .3039+/-.0308 
R3-S/TA N 0.3388 .3388+/-.0222 0.3679 .3679+/-.0354 0.3218 .3216+/-.0284 
R4-FA/TA N 0.3587 .3587+/-.0248 0.3992 .3992+/-.0449 0.3353 .3353+/-.0284 
R5-INV/S N 0.3174 .3174+/-.0333 0.3001 .3001 +/-.0733 0.3280 .3280+/-.0385 
R6-CA/S N 0.2878 .2678+/-.0180 0.2184 .2184+/-.0181 0.2923 .2923+/-.0238 
R7-TUTA N 0.3004 .3004+/-.0190 0.3018 .3016+/-.0327 0.29QS .2996+/-.0240 
RB-SIAR N 0.3017 .3017+/-.0242 0.2895 .2895+/-.0193 0.3204 .3204+/-.0382 
R9-AR/INV N 0.2989 .2989+/-.0347 0.2335 .2335+/-.0478 0.3374 .3374+/-.0471 
R10-CA/CL N 0.2882 .2882+/-.0310 0.1567 .1567+/-.0481 0.3327 .3327+/-.4315 



exponent are narrower for the larger data sets indicating some sensitivity of this 

measure to sample size. 

Correlation Dimension 

The correlation dimension determines the relationship between points in a 

· time-series. The measure indicates the dimension of the attractor and determines 

whether the attractor is the result of a random or chaotic process. Random numbers 

are infinite-dimensional whereas in a chaotic system, the correlation measure 

converges to a fixed value. 

Similar to the Lyapunov exponent, the software program CDA reports the 

correlation dimension as a range. For example, the correlation dimension for RI for a 

sample firm might be 4.737+/-3.096. For the same reasons cited with the previous 

measure, weighted means were calculated in addition to simple means for the 

correlation dimension. Such calculations were performed for the total data set 

grouped by firm type as well as the sample size sub-grouping. 

A comparison of the weighted means and the simple means is presented in 

Table 16. As evidenced by the table, unlike the Lyapunov exponent, the results are 

quite disparate for both the total data set and the various groupings. Given the 

findings of the preliminary analysis regarding the correlation dimension's sensitivity 

to sample size described previously, such results are not surprising. This provides 

additional evidence of the unreliability of this measure forthis study. However, prior 
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TABLE16 

CORRELATION DIMENSION - WEIGHTED vs SIMPLE MEANS 

R1 R1 R2 R2 R3 R3 R4 R4 R5 R5 
NI/TA NI/TA NI/S NI/S SITA SITA FA/TA FA/TA INV/S INV/S 

weighted simple weighted simple weighted simple weighted simple weighted simple 
mean mean mean mean mean mean mean mean mean mean 

F loN 4.0596 6.4642 4.5319 6.3660 6.1331 7.0046 6.0818 7.0041 4.7303 6.2827 
hiN 5.1584 4.3119 3.5433 4.3988 4.3478 6.0609 4.6739 5.8303 5.5201 4.4650 
total 4.3042 5.8265 4.1470 5.8234 5.4516 6.7443 5.6443 6.6429 4.9717 5.6768 

N loN 5.6895 6.3514 5.2590 6.5398 3.9413 6.7137 5.0992 6.0923 4.2155 6.9544 
hiN 5.1524 5.3844 5.1120 5.0738 4.6013 4.8335 4.2330 5.3305 4.3563 5.1985 
total 5.3688 5.6953 5.1494 5.5287 4.2959 5.4818 4.5174 5.5754 4.2878 5.8063 

00 
....J 

R6 R6 R7 R7 RS RS R9 R9 R10 R10 
CA/S CA/S TUTA TUTA SIAR SIAR ARJINV ARJINV CA/CL CA/CL 

weighted simple weighted simple weighted simple weighted simple weighted simple 
mean mean mean mean mean mean mean mean mean mean 

F loN 4.2653 6.8441 5.1379 6.7677 5.5352 6.6492 4.0651 6.5776 5.2707 6.~ 
hiN 4.4138 5.0530 3.9832 5.0674 4.3781 5.5148 6.0084 5.1881 6.1911 5.0419 
total 4.3496 6.3324 4.5207 6.2639 5.0158 6.3131 4.5514 6.1330 5.6241 6.1661 

N loN 4.8901 7.2726 5.2885 6.7311 4.4881 6.6270 4.6179 6.8339 4.7499 6.1698 
hiN 4.5161 5.0493 5.2529 5.3279 4.9327 4.9189 5.1791 5.8792 4.8350 5.8161 
total 4.6584 5.8160 5.2641 5.7789 4.7115 5.5079 4.9260 6.2464 4.7965 5.9298 



to reaching a final conclusion on the applicability/dependability of this measure, 

further analysis was conducted using the simple means. 

A summary of the correlation dimension values is presented in Table 17. 

Ranges for the mean correlation dimension for the various groupings are also 

summarized below: 

Total 

LowN 
HighN 

Low%F 
High%F 

F 

5.6768 to 6:7442 

6.2827 to 7.0046 
4.3119 to 6.0609 

5.0544 to 7.2677 
5.8111 to 6.9146 

N 

5.4818 to 6.2464 

6.0923 to 7.2726 
4.8335 to 5.8792 

The mean correlation dimension is large for all ratios tested regardless of firm 

type, sample size and % fraudulent groupings. Such findings would normally indicate 

the ratios are the product of a random series. In addition, there are lower values for 

the high sample size grouping and this is consistent across all ratios. However, given 

the inconclusive results of the preliminary analysis, the limited sample size of this 

study, and the disparate uncertainty of the means, the correlation dimension is deemed 

an unreliable measure. Accordingly, for the purposes of this study, the correlation 

dimension is an inappropriate measure and is excluded. 

BDS Statistic 

The BDS statistic tests the null hypothesis that the time-series is IID. A 

random time-series would result in a negative BDS statistic. Meanwhile, a positive 
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TABLE17 

CORRELATION DIMENSION - MEAN VALUES 

F mean est error lowN est error hlN est error low 'lfiF est error hi 'lfiF est error 
R1-NIITA F 5.8265 5.8265+/-.4644 8.4842 8.4642+/-.5869 · 4.3119 4.3119+/-.8261 5.8568 5.8568+/-.4731 5.9624 5.9624+/-. 7301 
R2-NI/S F 5.8233 5.8233+/-.3730 8.3660 8.3660+/-.4212 4.3988 4.3988+/-.8301 5.0544 5.0544+/-.5t 17 8.3681 8.3681+/-.5122 
R3-S/TA F 8.7442 8.7442+/-.3381 7.0048 7.0048+/-.3985 8.0809 8.0809+/-.8364 8.4655 8.4655+/-. 7595 8.9148 8.9148+/-.2437 
R4-FAITA F 6.8429 8.8429+/-.4988 7.0041 7.0041+/-.8841 5.8303 5.8303+/-.4010 7.2677 7.2877+/-.1303 8.1074 8.1074+/-.7817 
R5-INV/S F 5.6768 5.8768+/-.8101 8.2827 6.2827+/-.7980 4.4850 4.4850+/-.8528 5.4888 5.4888+/-1.0188 5.8111 5.8111+/-.7803 
R6-CA/S F 8.3324 8.3324+/-.4243 8.8441 8.8441 +/-.5434 5.0530 5.0530+/-.5032 8.0387 8.0387+/-.5718 8.5528 6.5526+/-.6145 
R7-TL/TA F 8.2639 8.2639+/-.4470 8.7877 8. 7677+/-.5925 5.0674 5.0674+/-.4791 8.1187 8.1187+/-.3955 6.3817 8.3817+/-.7174 
R8-S/AR F 6.3131 6.3131+/-.4580 8.8492 8.8492+/-.8162 5.5148 5.5148+/-.4711 8.1954 8.1954+/-.4856 8.40n 8.40n+1-. 7081 
R9-AR/INV F 6.1330 8.1330+/-.5575 8.5778 6.5778+/-.5604 5.1881 5.1881+/-1.0558 8.0922 8.0922+/-.9765 6.1601 8.1601+/-.7389 
R10-CA/CL F 8.1660 8.1660+/-.3417 8.5943 8.5943+/-.3962 5.0419 5.0419+/-.5944 8.2987 8.2987+/-.3985 6.0738 8.0738+/-.5094 

00 
\0 

R1-NIITA N 5.6953 5.6953+/-.3518 8.3514 8.3514+/-.9348 5.3840 5.3844+/-.2506 
R2-NI/S N 5.5287 5.5287+/-.3533 8.5398 8.5398+/-. 7844 5.0738 5.0738+/-.3745 
R3-S/TA N 5.4818 5.4818+/-.3581 8.7137 8.7137+1-.n11 4.8335 4.8335+/-.35n 
R4-FAITA N 5.5754 5.5754+/-.3753 8.0923 8.0923+/-.9458 5.3305 5.3305+/-.3109 
R5-INV/S N 5.8063 5.8063+/-.4785 8.9544 8.9544+/-.3459 5.1985 5.1985+/-.5855 
R6-CA/S N 5.8160 5.8160+/-.3974 1.2n6 1.2n6+1-.1254 5.0493 5.0493+/-.5009 
R7-TL/TA N 5.7789 5. 7789+/-.3988 8.7311 6.7311+/-.9639 5.3279 5.3279+/-.3582 
R8-S/AR N 5.5079 5.5079+/-.3318 8.6270 8.6270+/-.7425 4.9189 4.9189+/-.2902 
R9-AR/INV N 6.2484 8.2484+/-.4711 8.8339 6.8339+/-.3097 5.8792 5.8792+/-.6500 
R10-CA/CL N 5.9298 5.9298+/-.3681 8.1698 8.1698+/-.9480 5.8161 5.8181 +/-.4918 



BDS statistic implies non-IID behavior (i.e., non-linear dependence) which may or 

may not be the result of a chaotic process. 

A summary of the BDS statistic values is presented in Table 18. Ranges for 

the mean BDS statistic for the various groupings are summarized below: 

F N 

Total (.3997) to .2054 (.4104) to .2208 

LowN (.6505)to .1832 (.9074) to .1438 
HighN (.2360) to .3965 (.3692) to .2704 

Low%F (.4604) to .1785 
High%F (.3556) to .2415 

For the full data set, all ratios are negative except for R4, R7, and RIO 

indicating that these ratios are the result of a non-IID time-series. Doing a firm-type 

comparison, there are wide fluctuations in R2 and R4. The BDS statistic for the low 

sample size group is negative for all ratios except R4, R7, and RIO. For the sample 

size groupings, the results are quite disparate, both within the grouping and among 

firm type. For the fraud firms, the BDS statistic is positive for all ratios except for R5 

and R9. For the non-fraud firms, the BDS statistic is positive only for R3, R4, R7, and 

RIO. Similar disparity is.found for the low/high% fraudulent grouping. Most of the 

ratios have wide fluctuations among the various groupings. While the results of the 

sub-groupings are inconclusive, the results of the total data set appear reliable and are 

consistent with the findings of prior measures. To summarize, it appears that R4, R7, 

and RIO are the result of a non-linear time-series. 
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TABLE 18 

BOS STATISTIC - :MEAN VALUES 

F mean est error lowN est error hlN est error low %F est error hi %F est error 
R1-NI/TA F (0.3213) (.3213)+/-.1116 (0.5706) (.5706)+/-.1333 0.1773 .1773+/-.1069 (0.3413) (.3413)+/-.1464 (0.3265) (.3265)+/-.1602 
R2-NI/S F (0.0399) (.0399)+/-.0898 (0.0990) (.0990)+/-.1075 0.0612 .0612+/-.1605 0.1785 .1785+/-.0723 (0.1462) (.1462)+/-.1286 
R3-S/TA F (0.1494) (.1494)+/-.1266 (0.3649) (.3649)+/-.1706 0.2200 .2200+/-.1110 0.1586 .1586+/-.0970 (0.2916) (.2916)+/-.1856 
R4-FA/TA F 0.0253 .0253+/-.1270 (0.2716) (.2716)+/-.1792 0.3965 .3965+/-.0385 (0.0402) (.0402)+/-.1622 0.0909 .0909+/-.1942 
R5-INV/S F (0.2323) (.2323)+/-.1336 (0.2341) (.2341)+/-.1633 (0.2295) (.2295)+/-.2500 (0.1832) (.1832)+/-.1941 (0.2691) (.2691)+/-.1880 
R6-CA1S F (0.1262) (.1262)+/-.1018 (0.3378) (.3378)+/-.1311 0.1911 .1911+/-.1231 (0.0365) (.0365)+/-.1259 (0.1861) (.1861)+/-.1492 
R7-Tl/TA F 0.2054 .2054+/-.0868 0.1832 .1832+/-.1113 0.2529 .2529+/-.1314 0.1620 .1620+/-.1480 0.2415 .2415+/-.1083 
RS-SIAR F (0.3997) (.3997)+/-.1486 (0.6505) (.6506)+/-.1949 0.1436 .1436+/-.0951 (0.4604) (.4604)+/-.2181 (0.3556) (.3556)+/-.2059 
R9-AR/INV F (0.1711) (.1711 )+/-.1234 (0.1256) (.1256)+/-.1105 (0.2360) (.2360)+/-.2859 (0.4445) (.4445)+/-.2696 0.0204 .0204+/-.0845 
R10-CA/CL F 0.0265 .0265+/-.0895 0.0349 .0349+/-.1119 0.0098 .0098+/-.1559 0.1651 .1651+/-.0635 (0.0428) (.0428)+/-.1369 

\0 - R1-NI/TA N (0.3017) (.3017)+/-.1374 (0.7735) (. 7735)+/-.2613 (0.1182) (.1182)+/-.1543 
R2-NI/S N (0.3448) (.3448)+/-.1137 (0.9074) (.9074)+/-.2021 (0.0217) (.0217)+/-.0826 
R3-S/TA N (0.1301) (.1301)+/-.1034 (0.7646) (. 7646)+/-.2564 0.0109 .0109+/-.1056 
R4-FA/TA N 0.2200 .2200+/-.0653 0.1438 .1438+/-.0906 0.2468 .2468+/-.0845 
R5-INV/S N (0.3112) (.3112)+/-.1663 (0.7930) (. 7930)+/-.3892 (0.1185) (.1185)+/-.1623 
R6-CA/S N (0.1178) (.1178)+/-.1625 (0.4565) (.4565)+/-.2966 (0.0049) (.0049)+/-.1967 
R7-Tl/TA N 0.2208 .2208+/-.0928 0.1073 .1073+/-.2297 0.2704 .2704+/-.ono 
RS-SIAR N (0.4104) (.4104)+/-.1784 (0.4651) (.4651)+/-.2959 (0.3692) (.3692)+/-.2288 
R9-AR/INV N (0.1983) (.1983)+/-.1494 (0.0809) (.0809)+/-.0957 co.23n> c.23n)+t-.2201 
R10-CA/CL N 0.1859 .1859+/-.1121 (0.0768) (.0768)+/-.2820 0.1747 .1747+/-.4091 



Shuffle Test 

The shuffle test is another metric tool for investigating whether a time-series is 

random. Shuffling the sequence of the data destroys the dynamics within the system 

but produces surrogates with the same distributional characteristics as the original 

data. Comparisons can then be made of a test statistic for the original data with the 

test statistic for the shuffled data. If the results are the same, there is evidence that the 

original time-series is IID. 

Using the BDS statistic as the test statistic, the shuffle test was performed 20 

times for each ratio for each of the fraud and non-fraud firms. A two-tailed t-test was 

then performed for each ratio. This tested the null hypothesis that the original BDS 

statistic calculated for that ratio for a given firm was equal to the mean BOS statistic 

for the shuffled data. The alternate hypothesis was that the original BDS statistic was 

not equal to (i.e., two-tailed) the mean BDS statistic for the shuffled data. Alpha was 

set at both the 5% and 10% levels. If the null hypothesis is rejected (i.e., the BDS 

statistics are different), there is evidence of non-linear structure in the time-series. 

Conversely, failing to reject the null hypothesis (i.e., the BDS statistics are the same) 

provides evidence that the time-series is IID. 

A summary of the results of the shuffle test is presented in Table 19. On 

numerous occasions, an original BDS statistic value of O was calculated. Since the 

BDS statistic should be positive for a non-IID time-series and negative for an IID 

time-series, a value of O was deemed indeterminate. Subsequent t-tests performed on 

such ratios were similarly classified as indeterminate. Given that there are 30 fraud 
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F 
indetenninate fail to reject 

= IID % 

R1 6/30 4/24 0.1667 
R2 9/30 4/21 0.1905 
R3 11/30 3/19 0.1579 
R4 12/30 1/18 0.0556 
RS 10/30 6/20 0.3000 
R6 10/30 4/20 0.2000 

IO R7 8/30 0/22 0.0000 
I.,.) 

R8 11/30 4/19 0.2105 
R9 13/30 1/17 0.0588 
R10 12/30 0/18 0.0000 

TABLEI9 

SHUFFLE TEST 

N 
reject indetenninate 

= non-llD 

0.8333 5/30 
0.8095 8/30 
0.8421 8/30 
0.9444 7/30 
0.7000 8/30 
0.8000 10/30 
1.0000 7/30 
0.7895 7/30 
0.9412 12/30 
1.0000 5/30 

fail to reject reject 
= IID % = non-llD 

4/25 0.1600 0.8400 
5/22 0.2273 0.7727 
2/22 0.0909 0.9091 
0/23 0.0000 1.0000 
4/22 0.1818 0.8182 
1/20 0.0500 0.9500 
0/23 0.0000 1.0000 
1/23 0.0435 0.9565 
1/18 0.0556 0.9444 
0/25 0.0000 1.0000 



and 30 non-fraud firms, the number ofindeterminate firms for each ratio is indicated. 

The table then indicates the number of "fail to reject" firms followed by its percentage. 

Finally, the percentage of"reject" firms is reported. 

Per the results presented in Table 19, the null hypothesis is consistently 

rejected for all ratios thereby indicating a non-IID time-series. For the fraud firms, 

R4, R7, R9, and RIO have the highest rejection percentages. For the non-fraud firms, 

R4, R6, R7, RS, R9, and RIO have the highest rejection percentages. These results are 

consistent with the findings of the other measures. Rejecting the null hypothesis of 

IID only implies non-IID behavior (i.e., non-linear dependence) which could be the 

result of chaos or other non-linear influences. 

Phase Space Maps 

There are two approaches to the analysis of data :from a dynamic system. The first 

approach utilizes metrics and focuses on the distance between points on the attractor. 

Each of the measures discussed previously employed metrics. However, additional 

descriptive insight concerning system dynamics can be obtained by taking a 

topological approach and focusing on the organization of the attractor. Through the 

construction of phase space maps, the geometric features of a one-variable time-series 

record can be observed. 

Using the software program CDA, phase space maps were plotted in two­

dimensions. The time derivative was plotted versus the original value at each data 

point. 
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To determine the sensitivity of sample size on the phase space maps, 

preliminary tests and analyses were performed on known random, periodic and chaotic 

time-series. Figure 9 consists of two phase space maps of a random time-series with a 

sample size of 200 data points. The first map was created from the original time­

series while the second map was created from a random shuffle of the data. Figure 10 

consists of similar maps but the sample size was only 50 data points. As evidenced by 

the figures, random data appears to fill the plane without any discemable pattern and 

produces similar maps for both the original and shuffled data. This is true for both the 

large and small data sets. 

Similar phase space maps were constructed for a periodic time-series and is 

presented in Figures 11 and 12. The phase space map of the shuffled data is vastly 

different than that of the original data and closely resembles the maps of the random 

time-series. Such a map is a visual representation of how the shuffle test destroys the 

dynamics occurring within the original time-series. 

The phase space maps for a chaotic time-series is presented in Figures 13 and 

14. The map of the original data depicts a strange attractor with a discemable pattern. 

This pattern is still in evidence even with the small data set. The maps of the shuffled 

data are again vastly different and resemble the maps of the random time-series. 

The conclusions reached by this analysis include the following. First, a phase 

space map of a random time-series will fill the plane without any discernable pattern. 

Similar findings result from a phase space mapping of the shuffled data. Second, a 

phase space mapping of a periodic or chaotic time-series will not fill the plane; the 
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FIGURE9 

PHASE SPACE MAP 

RANDOM TIME-SERIES ( N = 200 ) 
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FIGURE 10 

PHASE SPACE MAP 

RANDOM TIME-SERIES ( N = 50 ) 
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FIGURE 11 

PHASE SPACE MAP 

PERIODIC TIME-SERIES ( N = 200) 
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FIGURE 12 

PHASE SPACE MAP 

PERIODIC TIME-SERIES ( N = 50 ) 
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FIGURE 13 

PHASE SPACE MAP 

CHAOTIC TIME-SERIES ( N = 200 ) 
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FIGURE 14 

PHASE SPACE MAP 

CHAOTIC TIME-SERIES ( N = 50 ) 
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mapping depicts an attractor with a discemable pattern. Finally, shuffling the data of a 

periodic or chaotic time-series will destroy the original pattern and result in a map that 

fills the plane without any pattern. 

Two phase space maps were constructed for each fraud and non-fraud firm for 

each of the ten ratios. One map was created using the original data. The second map 

was created from a random selection of one of the 20 shuffles performed for the 

shuffle test described in a previous section. Given that this study had a total of 60 

firms, each with ten ratios and each ratio having two maps, this procedure resulted in 

1,200 maps requiring analysis. 

A map was coded as "random" if the points comprising the map appeared to 

fill the plane and/or the shuffled map was very similar to the original despite the 

various shuffles. An "R" was used to indicate a map that clearly appeared random, 

while a "r'' was used for those maps that still appeared random but were less clearly 

discerned. A map was coded as "chaotic" if there appeared to be some type of 

attractor or grouping of points and/or the shuffled map was vastly different from the 

original. Similarly, a "C" was used to indicate a map that clearly appeared chaotic, 

while a "c" was used for those maps that still appeared chaotic but were less clearly 

discerned. The sample sizes ranged from 28 to 80 data points for the fraud firms and 

30 to 89 data points for the non-fraud firms. The firms with the smaller sample sizes 

produced less definitive phase space maps and were generally coded with an "r'' or a 

"c". Given the exploratory nature of this study and the small data sets employed, the 

above determinations were very subjective and were based upon the preliminary 
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analysis of the maps of the random, periodic and chaotic time-series described 

previously. 

Ranked in order of decreasing randomness, the original map may be coded 

''R", "r'', "c", or "C". The shuffle should destroy the dynamics within the system and 

result in a "random" code. A shuffled map was given a code of "R" only if the 

original map was clearly random and the shuffled map appeared identical. All other 

shuffled maps received a code of "r''. The resulting possible classifications were 

"RR," "rr," "Cr," and "er''. The first letter indicates the classification of the original 

map while the second letter indicates the classification of the shuffled map. An 

example of a ratio with phase space maps resulting in an "RR'' classification is 

presented in Figure 15. · Both the original map and the shuffled map have no 

discemable pattern and fill the plane. An example of a ratio with phase space maps 

resulting in an "rr'' classification is presented in Figure 16. Both maps appear to be 

the result of a random time-series, though this conclusion is more subjective than that 

reached in the prior classification. An example of a ratio with phase space maps 

resulting in an "Cr'' classification is presented in Figure 17. The original map appears 

to be of a strange attractor with a pattern or grouping of points thereby indicating a 

chaotic time-series. The shuffled map has no pattern and appears to fill the plane. 

Finally, an example of a ratio with phase space maps resulting in a "er'' classification 

· is presented in Figure 18. Once again, the original map appears to have a grouping of 

points but this conclusion is more subjective than that reached in the prior 

classification. The shuffled map has no pattern and appears random. 
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FIGURE 15 

PHASE SPACE MAP 

SAMPLE "RR'' CLASSIFICATION 
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FIGURE 16 

PHASE SPACE MAP 

SAMPLE "rr'' CLASSIFICATION 
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FIGURE 17 

PHASE SPACE MAP 

SAMPLE "Cr'' CLASSIFICATION 
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FIGURE 18 

PHASE SPACE MAP 

SAMPLE "er'' CLASSIFICATION 
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A summary of the phase space map classifications is presented in Table 20. 

Percentages for each classification for each ratio are reported, first for the fraud firm 

grouping, next for the non-fraud firm grouping and finally for the total data set. The 

highest percentages of"Cr'' and "er'' classifications occur for R4, R7, and RIO. R9 

appears borderline. These findings hold true for the fraud firm and non-fraud firm 

groupings as well as for the total data set. Given the subjective nature of the 

classifications, the usefulness of the conclusions is limited. However, the results are 

consistent with the findings for the previously reported measures. 

Additional Analyses 

Since the previously described analysis of the various measures utilized mean 

values, additional analyses were performed using the raw ratio data organized simply 

by company. The objective was to see if there were any patterns evident in the raw 

data. Given the unreliability of the correlation dimension for the purposes of this 

study, such analysis was only conducted on the Hurst exponent, Lyapunov exponent 

and BDS statistic. A summary of the findings is presented in Table 21. Prior to a 

discussion of the findings, an explanation of the organization and reporting of the data 

1s necessary. 

The first column lists the code number for each matched firm pair. The 

"difference" row lists those ratios where the measure's value differences were larger 

between firm type. For the Hurst exponent, the listed ratios are those that appeared 

chaotic. For the Lyapunov exponent, since almost all ratios appeared chaotic, the 
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R1 R2 R3 

F 
RR 0.9000 0.8667 0.6667 
rr 0.1000 0.1000 0.1333 
Cr 0.1000 
er 0.0333 0.1000 

N - RR 0.8667 0.9667 0.8000 0 
\0 rr 0.0667 0.0667 

Cr 
er 0.0667 0.0333 0.1333 

Total 
RR 0.8833 0.9167 0.7333 
rr 0.0833 0.0500 0.1000 
Cr 0.0500 
er 0.0333 0.0333 0.1167 

TABLE20 

PHASE SPACE MAPS 

R4 RS R6 

0.2667 0.6429 0.7333 
0.1667 0.1429 0.2000 
0.3667 0.0357 
0.2000 0.1786 0.0667 

0.3333 0.6296 0.8000 
0.0667 0.1111 0.1333 
0.3667 0.1111 
0.2333 0.1481 0.0667 

0.3000 0.6364 0.7667 
0.1167 0.1273 0.1667 
0.3667 0.0727 
0.2167 0.1636 0.0667 

R7 RS R9 R10 

0.1667 0.6000 0.4074 0.2333 
0.0667 0.2333 0.1852 0.3000 
0.3667 0.1481 0.0667 
0.4000 0.1667 0.2593 0.4000 

0.2000 0.7667 0.5556 0.2333 
0.0667 0.1667 0.1852 0.2000 
0.4000 0.1481 0.3000 
0.3333 0.0667 0.1111 0.2667 

0.1833 0.6833 0.4815 0.2333 
0.0667 0.2000 0.1852 0.2500 
0.3833 0.1481 0.1833 
0.3667 0.1167 0.1852 0.3333 



TABLE21 

COMPANY DATA 

Hurst mcponent Lyapunov mcponent BOS &lati&lic 
B12F R4,R7,R8,R10 R6neg R5,R9 
B12N R4,R7,R9,RO R4,R7,R9,R10 

difference R4,R7,R9,R10 R2,R7,R8 

B16F R4,R7,R10 R3,R6,R7,R10 
B16N R2,R4,R10 R4,R6,R10 

difference R2,R7,R10 R4,R6,R8 

B22F R4,R7,R9 R1,R3,R4,R6,R7,R8,R10 
B22N R4,R10 R8 R5,R8,R9,R10 

difference R4,R7,R9 R1,R2,R3,R5,R7,R9,R10 

B24F R3,R4,R7,R10 R8 R7 
B24N R4,R5,R6,R7 R1,R3,R4,R7,R10 

difference R4,R5,R7 R2,R4,R5,R8,R9 

B25F R4,R7,R9,R10 R7 R7,R10 
B25N R4,R5,R9,R10 R7,R10 

difference R4,R5,R7,R10 R1,R2,R7,R8,R9,R10 

B26F R3,R4,R7,R8,R9,R10 all 
B26N R3,R4,R7 R10 R7,R10 

difference R2,R3,R4,R5,R6,R8,R9,R10 R2,R3,R4,R10 

B32F R3,R5,R7,R8,R9,R10 R10 
B32N R3,R5,R6,R8,R10 all except R8 

difference R6,R7,R9 R1,R2,R3,R5,R6,R7,R10 

B38F R4,R7,R9,R10 R9,R10 
B38N R4,R7,R10 R5 all 

difference R3,R4,R9,R10 R2,R3,R5,R7,R9 

B41F R4,R6,R10 R10 R4 
B41N R4,R7,R10 R7,R10 

difference R4,R7,R10 R6,R7,R10 

B42F R4,R7,R10 R2,R6,R7 
B42N R3,R4,R5,R7,R9 R2 

difference R3,R5,R8,R9,R10 R1,R2,R3,R4,R5,R10 

B45F R4,R7,R9,R10 R8 R3,R5,R7,R9 
B45N R4,R5,R7,R10 R3,R4,R5,R6,R7 

difference R5,R6,R9 R1,R2,R3,R6,R7 

B48F R7,R9,R10 R1,R2,R5 
B48N R4,R7,R10 R3,R4,R7,R9,R10 

difference R4,R7 R4,R7,R8 

B52F R4,R7,R9,R10 R1,R2,R4,R7,R9 
B52N R4,R5,R7,R10 R1 ,R2,R3,R4,R7 

difference R1,R4,R10 R3,R6,R10 

B54F R4,R7,R10 R1,R7,R10 
B54N R4,R7,R10 R1 R4 

difference R4,R7,R10 R1 ,R4,R7,R9,R10 

B57F R4,R7,R10 R1,R2,R4,R10 
B57N R3,R4,R7,R9,R10 R1,R2,R4,R7,R8,R9 

difference R3,R6,R9,R10 R3,R9 
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TABLE21 

COMPANY DATA 

Hurat exponent Lyapunov exponeit BOS .tatistic 

B59F R3,R4,R7,R9,R10 R4,R5,RB,R9 
859N random R3,R4,R5,R6,R7,R10 

difference R3,R4,R7,R8,R9,R10 R1,R5,R9 

B61F R5,R6,R8,R10 R4 R1 ,R2,R3,R5,R6,R7 
B61N R4,RB 1111 

difference R3,R4,R7,R8,R9,R10 R1 ,R3,R4,R6,R9 

B62F R4,R7,R9 all 
B62N R9 R3,R6,R7,R8,R9 

difference R4,R7,R8 R1,R2,R5,R9,R10 

B69F R3,R4,R5,R6,R8,R9,R10 all R1,R2 
B69N R3,R4,R5,R8,R9,R10 R1,R3,R4 

difference R1 ,R3,R5,R6,R7,R8,R9 R1 

C09F R4,R7,R9 R7,R10 
C09N R1,R2,R4,R10 R1 R4,R7,R10 

difference R1,R2,R7,R9 R1,R3,R10 

C16F R2,R5,R6,R9 R2 
C16N R4,R7,R9,R10 R10 R2,R6,R7,R8,R10 

difference R2,R3,R4,R5,R6,R7 R2,R4,R6,R7,R9,R10 

C17F R3,R4,R7 R5 R4,R7,R10 
C17N R4,R7,R8,R10 R1,R4,R5,R6,R8,R9 

difference R3,R6,R7,R8,R10 R2,R4,R5 

C25F R4,RB,R10 R1 ,R2,R3,R4,R5,R6,RB 
C25N R4,R7,R10 R4,R6,R8,R10 

difference R4,R7,R10 R1 ,R2,R7,R8,R10 

C27F R3,R4,R5,R6,R9 R6 R2,R4,R6,R7,R9 
C27N R7,R10 R1,R3,R4,R6,R7,R8,R10 

difference R3,R4,R5,R6,R8,R9,R10 · R1,R2,R5,R6,R7 

C31F R3,R4,R7,R8,R10 R5,R6 R3,R4,R5,R8 
C31N R4,R5,R9 R1 ,R2,R4,R5,R10 

difference R3,R6,R7,R8,R10 R1 ,R2,R3,R5,R6,R9 

C32F R4,R7,R9,R10 R5 
C32N R4,R7,R10 R10 R10 

difference R2,R4,R6,R8,R9,R10 

C34F R2,R4,R7,R8,R10 none 
C34N R4,R7,R9,R10 R5,R7,R8,R9 

difference R2,R7,R8,R9 R2,R4,R7,R9,R10 

021F R4,R7,R10 none 
021N R4,R7,R8,R9 R7 

difference R3,R7,R10 R4,R5,R6,R7,R10 

024F R4,R7,R10 R2,R7,R8,R10 
024N R4,R7,R10 R6 

difference R2,R4 R1,R4,R6,R7 

027F R4,R10 R4,R6,R8,R9,R10 
027N R4,R7,R8 all 

difference R6,R7,R10 R1,R5 
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listed ratios are those that appeared non-chaotic. For the BDS statistic, the listed ratios 

have positive values which indicate non-IID behavior. Since many of the ratios had a 

BDS statistic value of "O" which was previously deemed indeterminate, a comparison 

of the values between firm type was not meaningful. Accordingly, there is no data in 

the "difference" row for this measure. 

For the Hurst exponent, R4, R7, and RIO are consistently chaotic. This is true 

for both the fraud and non-fraud firms. R9 is borderline and more chaotic for the 

fraud firms. Comparing the ratios by firm type, R4, R7 and RIO are consistently 

different. These differences however are not consistently larger or smaller. There 

does not appear to be a pattern for the percent of time fraudulent grouping. These 

findings are consistent with the results from the mean data. 

For the Lyapunov exponent, the 30 fraud firms each had 10 ratios producing 

300 values of which only 17 values did not appear chaotic. For the non-fraud firms, 

only 10 of the 300 ratios did not appear chaotic. These findings are consistent with the 

findings of the mean data given previously. Comparing the ratios by firm type, except 

for RS, all ratios are consistently different. Similar to the Hurst exponent, these 

differences are not consistently larger or smaller. For the percent of time fraudulent 

grouping, there does not appear to be any pattern. 

For the BDS statistic, R4, R7, and RIO are consistently positive thereby 

indicating evidence of non-linear structure in the data. Most of the other ratios show 

evidence of non-linear dependence but not as consistently. There does not appear to 

be any pattern for the percent of time fraudulent grouping. All of these findings are 
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consistent with the results of the mean data reported previously. Given that many of 

the ratios had a "O" value for this measure, the findings are not as reliable as the 

results of the prior measures. 

In summary, the results of these additional analyses of the individual company 

data are consistent with the findings of the mean data. No additional or conflicting 

patterns are evident. 

Summary ofFindings 

The Hurst exponent provides evidence of whether a time-series is random, 

periodic or chaotic. Of the ten ratios analyzed in this study, R4, R7, R9 and RIO 

appear to be the result of a chaotic time-series. The ratios were consistent regardless 

of firm type and were not sensitive to sample size or percentage of time fraudulent. 

The Lyapunov exponent provides evidence of the type of attractor as well as 

the degree of chaos exhibited by the system. The mean Lyapunov exponent was 

positive for all ratios tested indicating that the ratios appear to be the product of a 

chaotic system. On average, for R4, the non-fraud firms exhibited a higher degree of 

chaos than the fraud firms. 

The correlation dimension provides evidence of whether the attractor is due to 

a random or chaotic process. Given the results of the preliminary analysis regarding 

this measure's sensitivity to sample size and the disparate results of the weighted 

means/simple means comparisons, this measure was deemed unreliable for the 

purposes of this study. Accordingly, no conclusions were drawn. 
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rhe BDS statistic provides evidence of whether a time-series is random (i.e., 

IID) or the result of non-linear dynamics. Of the ten ratios analyzed in this study, R4, 

R 7, and RIO appear to be the result of a non-IID time-series. Such non-IID behavior 

could result from chaotic dynamics or from other non-linear influences. 

Since the BDS statistic was used as the test statistic, the shuffle test provides 

further evidence of whether the time-series is random (i.e., IID) or the result of a non­

IID time-series. For the fraud firms, R4, R7, R9, and RIO appear to be the result ofa 

non-IID time-series. For the non-fraud firms, R6 and RS also appear to be products of 

non-linear dynamics. Once again, chaos or other non-linear influences could produce 

such dependence. 

Finally, the phase space maps provide evidence of the type of attractor for the 

ratios for each of the fraud and non-fraud firms. R4, R7, and RIO appear to have 

strange attractors. R9 has similar though less conclusive results. 

Combining the results of the multiple metric and topological tests can be 

summarily condensed as follows. Of the ratios tested, R4, R7 and RIO were 

consistently strong indicators of chaos. R9 also indicated a chaotic time-series but not 

as consistently. None of the ratios appeared periodic. Each of these findings was true 

for both the fraud firms and the non-fraud firms. The various measures were more 

consistent/definitive with the larger data sets. Grouping the fraud firms by the 

percentage of time :fraudulent did not cause a difference in the measures. Given the 

limited sample size for this study and the sensitivity of the measures to sample size, 

the low/high sample size sub-grouping did not provide meaningful results. The 
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following chapter presents the conclusions, limitations and implications for future 

research of the above :findings. 
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CHAPTER VI 

CONCLUSION 

Introduction 

Fraud in business is a matter of grave social and economic concern. Both the 

government and the accounting profession have responded as evidenced by the 

creation of new laws, commission reports as well as accounting and auditing 

standards. In 1997, the American Accounting Association (AAA) formally posited the 

following question: "can analytical procedures be better used to detect fraud?" 

[Landsittel and Bedard 1997, 4]. This researcher accepted the AAA's challenge and 

explored fraud within the context of chaos theory. Financial statements are the 

product of a dynamical system. According to chaos theory, such dynamical systems 

are deterministic, yet unpredictable and usually non-linear. Chaos theory 

methodology has various tools for measuring the non-linearity of a system. 

This research study explored financial statement data of both fraudulent and 

non-fraudulent firms for evidence of non-linearity. A longitudinal examination often 

financial ratios computed from quarterly income statement and balance sheet data was 

conducted for 30 matched pairs of fraudulent and non-fraudulent firms. Using chaos 

theory methodology, multiple metric tests were performed on the ratio values to 
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determine the behavior of the time-series (i.e., random, periodic, or chaotic). 

Topological tests were also conducted to provide further evidence. This chapter 

presents the conclusions reached by the study' s findings. Limitations of the study and 

implications for future research are also discussed. 

Conclusion 

The combined results of the multiple metric and topological tests indicate that 

R4, R7, and RIO were consistently strong indicators of chaos. R9 also indicated a 

chaotic time-series but less consistently. Each of these ratios is comprised of balance 

sheet account(s) and/or categories. R4 is the ratio of fixed assets to total assets, a 

capital intensiveness measure. R7 is the ratio of total liabilities to total assets, a 

measure of financial leverage. R9 is the ratio of accounts receivable to inventory and 

indicates the intensiveness of receivables. RIO is the ratio of current assets to current 

liabilities, a prominent measure of short-term liquidity. These findings indicate that 

ratios comprised of financial data as reported on the balance sheet are the result of 

non-linear chaotic dynamics. The remaining tested ratios were comprised of income 

statement amounts (e.g., R2 is the ratio of net income to sales) or a combination of 

income statement and balance sheet amounts ( e.g., R3 is the ratio of sales to total 

assets, R5 is the ratio ofinventory to sales). 

None of the tested ratios appeared periodic. This finding is somewhat 

surprising for the income statement data. Given that quarterly income statements were 

the data source, and most firms have a cyclical nature to their operations, one would 
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intuitively expect evidence of periodicity. The sample was comprised of a wide range 

of industry classifications, each with their own unique operating cycle. When 

combined together, the periodic patterns may dilute and/or confound each other. 

Another explanation could be the small sample size. A minimum of 28 data points 

was used for each ratio, representing seven annual cycles. The fraud firms had a mean 

sample size of 42.50 or ten annual cycles while the non-fraud firms had a mean 

sample size of 55.30 or 13 annual cycles. A longer time-series may be necessary to 

adequately capture the cyclical nature of the firm's operations. 

This study found none of the tested ratios exhibited stable or periodic behavior. 

However, four ratios (i.e., R4, R7, R9, and RIO) were consistently strong indicators of 

chaos indicating that these ratios are less affected by noise. The parameter values 

coupling these ratios are probably larger than the other parameters. Recall Figure 7 

which depicted a hypothetical deterministic non-linear chaotic system. If one was to 

presume the figure was a depiction of the financial reporting system, this study would 

be represented in Region 2. Financial ratios appear to be part of the chaotic subset of 

the system. 

The above findings were true for both the fraud and non-fraud firms. One 

cannot use the ratios to differentiate firm type. This result is consistent with prior 

research findings of the limited ability of financial ratios to detect fraudulent firms 

[Kaminski et al 2000, Persons 1995]. Beasley et al [1999] found that fraudulent firms· 

overstate asset accounts, particularly inventory, accounts receivable and fixed assets. 
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Despite the use of these accounts in R4, R7, R9, and RIO, there was not a distinction 

between fraud versus non-fraud firms. 

Contributions of this research include the following. First and foremost, this 

study has employed chaos theory within the realm of accounting and auditing 

research. Up to this point, chaos theory has only been applied to the area of capital 

markets and stock returns. This study has expanded the ratio analysis research stream 

by exploring the dynamics of the financial accounting system and determined the 

behavior of financial statement ratios. This study found evidence of non-linearity in 

ratios comprised of balance sheet accounts/categories. Such ratios exhibit chaos 

thereby severely limiting their utility in predictive models. Through an exploration of 

the underlying dynamics of financial statement data, this study also provided evidence 

that the use of linear models derived from financial ratios based on balance sheet data 

is inappropriate. Such models do not robustly represent the system and result in low 

explanatory power. This study examined the qualitative changes in financial ratios 

across time and found no differences in dynamics between fraudulent and non­

fraudulent firms, thereby providing further evidence of the limited ability of financial 

ratios to detect fraudulent firms. 

Limitations 

As with all empirical investigations, there are limitations to this study. Most of 

these limitations are directly linked to chaos theory and its unique methodology. 

Chaos theory is a relatively new field of research and there is no comprehensive 
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theory of all chaotic phenomena. Instead, there exists a cluster of theoretical models, 

mathematical procedures and experimental techniques, none of which are definitive 

for analyzing a chaotic time-series. Most of the metric tests are actually the product of 

graphical techniques and only provide clues of non-linear dynamics. Confidence 

limits and probabili~y values cannot be assigned to these measures. The BDS statistic 

is an exception and is a well-founded statistical test of non-linear dynamics. The 

conclusions reached by topological tests such as phase space maps are very subjective 

and open to various interpretations. To mitigate these limitations, this study utilized 

different diagnostics to triangulate the empirical evidence and thereby increase 

confidence in the findings. 

Non-linear dynamic systems are characterized by long memory processes. To 

perform a proper analysis, the crucial element is more time, not necessarily more data 

points. Wolf et al [1985] recommend that ten cycles are necessary. In this study, 

there was no known cycle time. To mitigate this unknown, the approach taken was to 

obtain financial statement data for the entire period for which the firm is/was public, 

within data availability and cost constraints. The measures used in this study were 

more consistent and definitive with the larger data sets. 

A limitation of the sample selection process involved the potential 

misclassification ofa non-fraud firm. Financial statement fraud might have occurred 

but has yet to be detected and subjected to SEC investigation. 

At the present time, an acceptable theoretical foundation for the selection of 

financial ratios for decision making does not exist. The parsimonious set of ratios 
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selected for inclusion in the study was based upon scattered heterogeneous empirical 

evidence and logical inferences of accounts most likely involved in :fraudulent 

financial reporting. Different results might ensue if different ratios were selected for 

examination. 

Implications for Future Research 

This study found that ratios comprised of financial data as reported on 

quarterly balance sheets are the result of non-linear chaotic dynamics. The utilization 

of such ratios for predictive purposes will have very limited success. Additional 

investigation of predictive models comprised of financial ratios is warranted. Models 

that incorporate ratios computed from balance sheet amounts should be revised to 

exclude such ratios. Tests can then be performed comparing the original model with 

the revised model and evaluating their respective effectiveness. 

. The findings in this study can be used in subsequent research as a basis for 

model selection. Models that include financial ratios comprised of balance sheet 

amounts should be non-linear. 

While the ratios examined in this study found no differences in the 

dynamics of fraudulent and non-fraudulent firms, the ratios may have other utility. 

Financial analysts, investors, creditors, internal and external auditors employ ratio 

analysis for very disparate purposes. These additional findings about the dynamics 

underlying such ratios may have implications for such users. 
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Additional exploration of balance sheet and income statement data seems 

warranted. Rather than using ratios, one could use the raw financial data to examine 

the dynamics of the time-series to see if the system exhibits stable, periodic or chaotic 

behavior. One could combine the results of this study and the Beasley et al [1999] 

study and examine accounts most susceptible to fraud ( e.g., accounts receivable, 

inventory). Comparisons could then be made between fraudulent and non-fraudulent 

firms to see if there is a difference between firm type. 

One of the limitations discussed previously was the limited time frame and 

data points available for analysis. Longitudinal studies of firms with 30, 40 or more 

years of quarterly data can be conducted. Analysis can be performed on either ratio 

data or the raw financial statement amounts or both to again examine the dynamics of 

the financial reporting system. Stability in dynamics or the lack thereof would provide 

additional evidence of the appropriateness of the use of such data in model selection. 

Non-linearity in feedback processes serves to regulate and control [Gleick 

1987]. Goldberger [1990] discussed the use of non-linear dynamic models to predict 

cardiac events such as myocardial infarction. He argues that healthy systems exhibit 

more chaos than unhealthy systems. Perhaps the same is true of firms. A fraudulent 

firm can be considered unhealthy, whereby its behavior may change from chaotic to 

random. Recall Figure 7 which depicted a hypothetical deterministic non-linear 

chaotic system. Subsequent to the occurrence of fraud, a firm may move to a different 

region of parameter space. Such a shift may have implications in model selection and 

the resulting explanatory power of the model. Alternately, there could be a subtle 
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change in behavior such as different types of chaos ( e.g., Hurst exponents, BDS 

statistics, attractors). Such a change in behavior means there has been a change in 

some of the parameter values. Inherent noise comes from variation in the parameter 

values. There will be fluctuations (i.e., noise) around the nominal behavior. While 

this study did not find any dramatic change in behavior for the fraud firms, subtle 

changes in behavior may have resulted and warrant further investigation. 
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