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NOMENCLATURE 

Symbols 

Aw = wetted airside surface area on which moisture is condensing, m2 

or ft2 

C = clearance factor 

Cs = specific heat of saturated air, J/(kg-K) or Btu/(lbm-F) 

Cp = specific heat, J/(kg-K) or Btu/(lbm-F) 

h = sensible heat transfer coefficient through air film, W/(m2-K) or 
Btu/(hr-°F-ft2) 

h = enthalpy of air vapor mixture per pound of dry air evaluated at 
the main stream temperature, kJ/kg or Btu/lbm 

hc,aAo = outside surface heat transfer coefficient, kW/Kor Btu/(hr-F) 

h = enthalpy, J/kg or Btu/lbm 

hs = enthalpy of air vapor mixture per pound of dry air evaluated at 
the surface temperature, kJ/kg or Btu/lbm 

Hr = total heat loss by total weight of air flowing over wetted surface, 
kW or Btu/hr 

m = mass flow rate, kg/s or lbrn/hr 

NTU = number of transfer units 

p = pressure, Pa or psia 

PD = piston displacement, m3 /s or CFM 

Q = heat transfer rate, W or Btu/hr 

s = humid specific heat of air vapor mixture, kJ/(kg dry air - °C) or 
Btu/(lbm dry air - °F) 

s = thermostat signal 

T = temperature, °C , °F or °K 

UA = heat transfer coefficient, W /K or Btu/(hr-F) 

(UA)i = inside surface heat transfer coefficient, kW/Kor Btu/(hr-F) 

V = specific volume, m3 /kg or ft3 /lbm 

w = humidity ratio, kg/kg dry air 
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compressor power input, W or Btu/hr 

isentropic exponent 

loss factor used to define the electro-mechanical loss that is 

supposed to be proportional to the theoretical power 

thermal effectiveness of heat exchanger 

superheat, °C or °F 

pressure drop across suction or discharge valve, Pa or psia 

air 

A state point in refrigeration cycle 

B state point in refrigeration cycle 

condensing state 

compressor 

catalog data 

discharge state 

dry condition 

evaporating state 

high pressure cut-off 

inlet condition, ith calculated result or inside surface 

compressor inlet state 

load side 

low pressure cut-off 

constant part of the electro-mechanical power losses 

outlet condition or outside surface 
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r = refrigerant 
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s source side 

sen sensible 

t = Theoretical power 

sue suction state 

w water 

wet wet condition 
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1. Introduction 

Reciprocating vapor compression heat pumps and chillers have been the target of a 

number of simulation models. Hamilton and Miller (1990) presented a classification 

scheme for air conditioning equipment with two extremes. At one end of the spectrum are 

equation-fit models, called "functional fit" models by Hamilton and Miller, which treat 

the system as a black box and fit the system performance to one or a few large equations. 

At the other end are deterministic models, called "first principle" models by Hamilton 

and Miller, which are detailed models based on applying thermodynamic laws and 

fundamental heat and mass transfer relations to individual components. 

Many of the models found in the literature might actually fall between the two 

extremes, although the detailed deterministic models often apply equation-fitting for 

some of the components. For example, in the reciprocating chiller model proposed by 

Bourdouxhe, et al. (1994), the chiller was modeled as an assembly of several simplified 

components. Each component ( e.g., compressor, evaporator, condenser, expansion 

device) is modeled with a detailed deterministic approach. The parameters describing the 

detailed physical geometry and operation of each component are then adjusted (i.e., in an 

equation-fit procedure) to reproduce the behavior of the actual unit as accurately as 

possible. The model of Bourdouxhe, et al. requires more details for each component than 

what is usually available from the manufacturers' catalogs. This type of model is most 

suitable for users that have access to internally measured data (e.g., in Bourdouhxe's 
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model, condensing and evaporating temperatures and subcooling and superheating 

temperature differences) from the chiller or heat pump. 

The alternative approach, equation-fitting, alleviates the need for internally 

measured data and usually maintains better fidelity to the catalog data. It also usually 

requires less computational time. These models are most suitable for users that only have 

access to catalog data. These models would not be useful for someone attempting to 

design a heat pump or chiller by modifying or replacing internal components. Especially 

troublesome for some applications, extrapolation of the model may lead to unrealistic 

results. 

It is desirable to have a model that only requires catalog data, but allows 

extrapolation beyond the catalog data. In the authors' experience, this model has been 

extremely useful for modeling of ground source heat pumps in novel applications where 

the fluid temperatures occasionally go beyond the catalog data. It is also useful in 

simulations that are part of a ground loop sizing procedure. In this application, it often 

happens that the temperatures are well beyond the catalog data. Even though the ultimate 

outcome is that the ground loop heat exchanger size will be adjusted to bring the 

temperatures within reasonable limits, it is helpful to have a model that does not 

catastrophically fail when the temperatures are too high or too low. 

The model presented in this report uses deterministic models of each heat pump 

component. Each of the fundamental equations describing the system components may 
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have one or more parameters, which are estimated simultaneously using catalog data 

only; no other experimental data are required. The parameter estimation is done with a 

multi-variable optimization method. Once the parameters have been estimated, the heat 

pump model may be used as part of a multi-component system simulation. 

This modeling approach has the advantage of not requiring experimental data 

beyond what are published in the manufacturer's catalog. Yet, its predictions are of 

similar or better accuracy than previously published deterministic models that required 

additional experimental data. Unlike the equation-fit models, the model domain may be 

extended beyond the catalog data without catastrophic failure in the prediction. 
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2. Literature Review 

2.1. Heat Pump and Chiller Models 

Simulation models of vapor-compression refrigeration and air-conditioning systems 

such as heat pumps and chillers have been the topic of numerous papers. The models can 

generally be classified in terms of the degree of complexity and empiricism. A review of 

the literature reveals a few limitations on existing models. For the more deterministic 

models, there is a gap between what data are provided by manufacturers' catalogs and 

what data the simulation models require. For equation-fit models) the valid application is 

limited to the manufactu!e~-supplied data range and conditions. 

2.1.1. Equation-fit Models 

2.1.1.1. Allen and Hamilton Model 

Allen and Hamilton (1983) proposed a steady state reciprocating water chiller 

model which can be used for full and part load performance evaluation. This model is a 

typical equation-fit modeL Other modeling algorithms employing the equation-fit 

approach are similar to this method. This water chiller model was a model of the 

complete system and did not consist of individual component models or involve internal 

pressures and temperatures. Although basic equations governing the steady state water 

chiller operation can be obtained by applying basic physical laws to the systems, the 

author eliminated the internal variables by utilizing the functional relationships among 

variables and examing typical water chiller performance data. For example, evaporator 
. ' 
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cooling load was expressed by a polynomial in terms of evaporator water and condenser 

water temperatures in which several constant coefficients were actually fitted by a 

regression approach: 

where QE = evaporator cooling load, kW or Btu/hr 

TE2 = evaporator leaving water temperature, °C or 0 P 

TC2 = con4ynser leaving water temperature. °C or 0 P 

Similarly, the compressor energy balance can also be expressed by the following 

polynomial equation, 

where P = compressor power, kW or Btu/hr 

TE2 = evap,orator leaving water temperature, °C or 0 P 

TC2 = condenser leaving water temperature, °C or 0 P 

The evaporator water energy balance, condenser water energy balance and the 

simple thermal balance for the whole system are expressed respectively as: 

(2.3) 

(2.4) 
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QC=QE+P 

where ME= evaporator water mass flow rate, kg/s or lbm/hr 

CP = water specific heat, kJ/(kg-K) or Btu/(lbm-°F) 

QC= condenser heat rejection rate, kW or Btu/hr 

MC= condenser water mass flow rate, kg/s or lbm/hr 

TC1 = condenser entering water temperature, °C or °F 

TE1 = evaporator entering water temperature, °C or °F 

TE1 Reservoir 

ME 

p Water Chiller Systems 

MC 

TC 1 Reservoir 

Figure 2.1. Water chiller conceptual experiment 

(2.5) 

The constant coefficients in above equations B rB 12 are to be determined. The 

physical significance of the model, consisting of five equations and nine variables, can be 

envisioned in a conceptual experiment which is described in the paper. Given a water 

chiller, Figure 2.1, a reservoir of chilled water at TE1 with a mass flow rate of ME, and a 
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reservoir of cooling water at TC1 with a mass flow rate of MC, then the five system 

equations can be solved for energy rates QE, P and QC and leaving temperatures TE2 and 

TC2. 

2.1.1.2. Hamilton and Miller Model 

The Allen and Hamilton (1983) model utilizes overall system data, e.g. entering and 

leaving water temperatures and flow rates. In contrast, the model of Hamilton and Miller 

(1990) requires more detailed data, such as internal refrigerant pressures and 

temperatures. Hamilton and Miller (1990) developed this general steady state model by 

equation-fitting manufacturers' catalog data of the individual components, along with 

thermodynamic relationships. The model is capable of simulating the response of an air

conditioning system confi~ration for a variety of ambient and inside conditions. 

According to the author, any air conditioning system can be divided into components 

such as heat exchangers, fans, etc. It permits modeling a particular air conditioning 

system with the general usefulness of the simulation program. Several models of each 

component can be made and combined into a broad range of air conditioning systems 

using the concepts of mass and energy flow continuity and pressure-temperature 

compatibility at each component connection. The conceptual model of each component 

consists of an energy balance and a mass balance at steady state conditions yielding two 

rate equations for each component. Figure 2.2 illustrates the conceptual model for a 

general component operating at steady state conditions. 
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where, E = energy rate, kW or Btu/hr 

m = masSflow rare, kg/s or lbm/hr 

p = pressure, kPa or psig 

T = temperature, °C or °F 

X = refrigerant quality 

U = energy flow rate, kW or Btu/hr 
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Figure 2.2. Inlet and outlet variables of a single fluid general component 
· at steady-state conditions 

The authors defined the model as a simulation tool for 'air conditioning system' . 
.. 

Since air is the secondaryworking fluid in both evaporator and condenser, the equipment 

might be an air-to-air unit or split type air conditioner. The evaporator and condenser 

models include the air mass flow rates and the evaporator model accounts for the mass 

flow rate of the water condensing on the coil. Obviously, the mass flow rate of the water 

on condenser coils is zero. 

8 



The functional fit equations describing the individual component characteristics 

form a set of simultaneou~ algebraic rate equations describing the system performance. 

This model is actually a equation-fit model, but it established a model for each 

component individually by internal operating conditions, instead of treating the whole 

system as a black box. According to the author, in the general simulation developed in 

this work, each component model is primarily based on data available in manufacturers' 

catalogs. Similar to the ci~terministic model, those detailed component performance data 

are usually not readily available. 

'i. ,. 

2.1.1.3. Stoecker and Jones Model 

Stoecker and Jones (1982) present a vapor compression system simulation analysis. 

The purpose of the analysis is to predict the performance of the entire system when the 

characteristics of the individual components are known. 

• Reciprocating compressor 

The mathematical equatio~s that represent the performance data is: 

and 
•. ~ • I 

where qe = refrigeration capacity, kW or Btu/hr 
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P = power required by compressor, kW or Btu/hr 

te = evaporating temperature, °C or 0 P 

tc = condensing temperature, °C or 0 P 

The constants applicable to Equations (2.6) and (2. 7) for the compressor are 

determined by equation-fit procedures (i.e. the method ofleast squares). In addition to the 

refrigerating capacity and the power requirement of the compressor, another quantity of 

interest is the rate of heat rejection required at the condenser. The compressor catalogs 

show this quantity and usually it is simply the sum of the refrigerating and condensing 

temperatures. 

(2.8) 

where qc is the rate of heat rejection at the condenser in kilowatts or Btu/hr. 

• Condenser performance 

The precise representation of the heat-transfer performance of a condenser can be quite 

complex, because the refrigerant vapor enters the condenser superheated and following 

the onset of condensation in the tube the fraction of liquid and vapor changes 

consequently through the qondenser. A satisfactory representation of air-cooled 

condenser performance for most engineering calculations is available, however, through 

an assumption of a constant heat-exchanger effectiveness for the condenser, namely 
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(2.9) 

where F = capacity per unit temperature difference, kW/Kor Btu/(hr-°F) 

tamb = ambient temperature, °C or °F 

• Evaporator performance 

For subsequent mathematical simulation, an equation is needed to express the evaporator 

capacity. An adequate equation could originate from: 

(2.10) 

where twi = entering water temperature, °C or °F 

G = proportionally factor, kW/Kor Btu/(hr-°F) 

The G value may be constant, or if the G value is not constant, as an approximation 

G can be proposed as a linear function of the temperature difference. For a particular 

case: 

G = 6.0[1 + 0.046(t wi -t e )] (2.11) 

Thus, 

(2.12) 

• Simulation of complete system 

In the mathematical simul~tion, the three components can be simulated simultaneously. 

The sequence of the calculation is shown by the information-flow diagram in Figure 2.3. 
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Similar to the model of Hamilton and Miller (1990), this model also requires more 

detailed data, such as internal refrigerant pressures and temperatures. 

Eq. (f,-:6) 
f(qe,te,tJ 

tc 

Eq. (2-7) 
f(P,te,tJ 

I ' I ) 
I I 
I I 
I I 
I I 
I I 

Trial te Trial tc 

qe Eq. (2-12) 
Ftwi=20 C 

Eq. (2-8) 

tc 

t 

Eq. (2-9) 
Tamb=35 C 

Figure 2.3. lnformatiori-'flow diagram for simulation the complete vapor-compression 
system 

2.1.2. Models Falling B~tween the Two Extremes 

2.1.2.1. Stefanuk et al. Model 

The superheat-controlled water-to-water heat pump model developed by Stefanuk, 

et al. ( 1992) may be the most detailed model presented to date. The authors claim "The 

model is derived entirely from the basic conservative laws of mass, energy, momentum 

and equations of state as well as fundamental correlations of heat transfer." Each 

component is modeled to a very detailed level. For example, to simulate the real heat 
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transfer process in the condenser, the condenser itself is analyzed as three heat 
., 

exchangers connected in series corresponding to the three phases of the refrigerant. 

Supemeat refrigerant Two-phase refrigerant Subcooled refrigerant 
:· vapor section section liquid section 

Tsat 

Mref 

Temperature 

Distance 

Figure 2.4. Temperature profile of the counter-flow concentric tube condenser 

Values of the parameters that describe the behavior of the individual components are 

assumed to be available.:For example, the parameters of the compressor are selected by 

"fitting the model to marpifacturer-supplied performance curves that related mass flow 
{··. 

rate and input electrical ~ower to evaporation temperature and the compressor discharge 

pressure." However, they-are not normally available in the heat pump manufacturers' 

catalogs. Comparisons between the experimental measurements and model predictions 

for the evaporating and condensing pressures, the heat transfer rates in the evaporator and 

the condenser, and the COP of the heat pump are given. Except a few points with errors 

beyond ±10%, most of the results are generally acceptable. The predictions of the heat 

transfer rates in both heat exchangers are consistently too high. The authors explain that 
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the cause for this phenomenon is the overestimated predictions of heat transfer 

coefficients since heat transfer coefficients used in the model are only known to within 

±20%. 

2.1.2.2. Domanski and Didion Model 

Domanski and Didion (1984) developed a steady state model of an air-to-air heat 

pump having air to air he~t exchangers, a capillary tube, and a reciprocating compressor. 

The basic assumption for the compressor simulation is that the highly dynamic 

compression process results in steady vapor flow condition through the compressor. Four 

internal locations are defined and refrigerant is considered to have uniform 

thermodynamic properties throughout the space assigned at the particular location. Heat 

transfer between these locations is governed by forced convection and is evaluated by 

expression based on the equation: 

Nu oc Re o.s Pr o.333 (2.13) 

The refrigerant pressure drop within the compressor due to dynamic or friction 

effects is considered and evaluated based on the following expression respectively, 

mz 
Moc

p 
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mo.s 
Mocµo.2 --

p 

where P = pressure, kPa or psia 

m = refrigerant mass flow rate, kg/s or lbm/hr 

p = density, kg/m3, or lbm/ft3 

µ=dynamic viscosity, N-s/m2 or centipoise 

(2.15) 

The process in the compressor is assumed to be polytropic for both compression 

and re-expansion, with the same polytropic index. The refrigerant enthalpy increment 

during polytropic compression is evaluated by the equation derived from the expression 

for isentropic and polytropic work of compression at the same compression pressure 

ratio, 

1 Rn-1/n -1 
11i = 11i ----

s r; P R r-I/r -1 

where i = enthalpy, kJ/kg or Btu/lbm 

r-1 

r; = _r_ ... polytropic efficiency 
P n-1 

n. 

R = compre&sion pressure ratio 

n = polytropic index 

r = isentropic index 

subscript s ,= isentropic 

15 

(2.16) 



Compressor energy balance is found iteratively by solving the equation, 
.. ~, 

where E = electrical: energy input rate to the compressor, kW or Btu/hr 

m = refrigerant mass flow rate, kg/s or lbm/hr 

(' 

(2.17) 

i3 = refrigerant enthalpy at compressor suction state, kJ/kg or Btu/lbm 

i4 = refrigerant enthalpy at compressor exhausting state, kJ/kg or Btu/lbm 

Qcan = heat rejection rate from a compressor to ambient air, kW or Btu/hr 

This model requires a variety of design parameters of the compressor and retains in 

some degree the complexity of the physical processes involved in describing the 

performance of a compressor, such as motor and mechanical efficiencies. The motor and 

mechanical efficiencies are related to the compressor motor and its interaction with the 

compressor. The polytropic and volumetric efficiencies are related to the processes 

occurring in the compressor cylinder. However, all of these parameters are based on the 

compressor manufacturer;s one bench test. 

Condenser and evaporator models are set up by a tube-by-tube simulation method 

which is based on an imaginary isolation of each finned tube from the coil assembly. The 

air to refrigerant heat transfer and refrigerant enthalpy change calculation are made on 

each tube independently. Heat transfer to/from each individual tube is calculated with the 

aid of the heat exchanger cross flow theory. Derived equations allow for consideration of 

two encountered cases: heat exchange between air and single-phase refrigeration 

16 



(temperature of both fluids change) and heat exchange between air and two-phase 

refrigerant (temperature ofrefrigerant is constant). For a tube in which change from one 

flow mode into another occurs, length of the tube with two-phase and single-phase is 

evaluated and heat transfer and pressure drop are evaluated accordingly. Overall heat 

transfer coefficient is calculated by the following equation, 

-1 

(2.18) 

U = overall heat transfer coefficient, kW/(m2-K) or Btu/(hr-ft2-°F) 

A0 = pipe total outside surface area, m2 or ft2 

h; = forced convection inside tube heat transfer coefficient, 

Ap,; = pipe inside surface area, m2 or ft2 

x P = pipe wall thickness, m or ft 

Ap,m = pipe mean surface area, m2 or ft2 

kP = thermal conductivity of pipe material, kW/(m-K) or Btu/(hr-ft-°F) 

k = thermal conductivity of frost or water, kW/(m-K) or Btu/(hr-ft-°F) 

<5 = condensate (frost) layer thickness, m or ft 

h0 = forced convection air side tube heat transfer coefficient modified for 
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the latent heat, kW/(m2-K) or Btu/(hr-ft2- 0 P) 

A1 = fin surface area, m2 or ft2 

¢ = fin efficiency 

he= forced convection air side heat transfer coefficient, kW/(m2-K) or 

i fg,w = latent heat of condensate of water, kJ/kg or Btu/lbm 

wa = air humidity ratio, kgv/kga, lbmv/lbma 

ww = humidity ratio of saturated air at water (frost) temperature, 

kgv/kga, lbmv/lbma 

C p,a = air specific heat at constant pressure, kJ/(kg-K) or Btu/(lbm-0 P) 

Ta= air temperature, °C or 0 P 

Tw = temperature of water (frost) on a fin, °C or 0 P 

2.1.2.3. Cecchini and Marchal Model 

Cecchini and Marchal (1991) proposed a computer program for simulating 

refrigeration and air conditioning equipment of all types: air-to-air, air-to-water, water-to

water and water-to-air. The model presented did not describe in detail the operation of 

equipment but characterized it with a small number of parameters determined from the 

results of a few testing points. The author divided the simulation of a piece of equipment 

into two steps: evaluation of the characteristic parameters of the equipment; prediction of 

equipment performance at any operation conditions. The paper is presented by two parts. 
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In the first part the simulation model is described focusing on the refrigerant 

thermodynamic cycle, which is the same for all types of equipment. The heat exchanger 

laws for external fluids (water, air) at the evaporator and at the condenser, adapted to 

each type of equipment are also described. The second part deals with the comparison 

between computed results and experimental data. 

The following simplifying assumptions are made: 

• Steady-state operation (same mass flow ofrefrigerant in any part of the loop) 

• Pressure drops neglected, except at the expansion valve 

• Constant subcooling at the condenser outlet 

• Constant superheating at the evaporator outlet 

The thermodynamic cycle is presented in Figure 2.5. 

Different components are simulated with the following set of equations: 

• Compressor: 

• Enthalpy balance: 

(2.19) 

Where h1 = compressor outlet refrigerant specific enthalpy, k:J/kg or Btu/lbm 

h3 = evaporator outlet refrigerant specific enthalpy, k:J/kg or Btu/lbm 

k = polytropic exponent 
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Pv = refrigerant saturation pressure for evaporator, kPa or psia 

Pc = refrigerant saturation pressure for condenser, kPa or psia 

Pv = refrigerant saturation specific mass for evaporator, kg/m3 or lbm/ft3 

• Volumetric balance: 

(2.20) 

Where q = refrigerant mass flow rate, kg/s or lbm/hr 

Q = swept volume, m3/s or CFM 

i- = built-in volume ratio 

These parameters (k, Q, t) characterize the compressor size and compression 

irreversibility. 

• Condenser 

• Thermal balance: 

(2.21) 

Where Uc = thermal conductance on the refrigerant side, kW/Kor Btu/(hr-°F) 

q = refrigerant mass flow rate, kg/s or lbm/hr 

h1 = compressor outlet refrigerant specific enthalpy, kJ/kg or Btu/lbm 
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h2 = condenser outlet refrigerant specific enthalpy, kJ/kg or Btu/lbm 

-9c = refrigerant saturation temperature for condenser, °C or °F 

Tc = condenser mean surface temperature, °C or °F 

Compressor 

h h 

t2c 

Evaporator q 

t2v 

Pv ... (---1-->• Pc 
qc Condenser 

I h h 
I 1----------t.?<----~-~ 
I 
I 

External Fluid I Refrigerant Thermodynamic Cycle External Fluid 
I 

Figure 2.5. Thermodynamic compression cycle 

• Evaporator 

• Thermal balance: 

(2.22) 

Where Uv = thermal conductance on the refrigerant side, kW/Kor Btu/(hr-°F) 

q = refrigerant mass flow rate, kg/s or lbm/hr 

h3 = evaporator outlet refrigerant specific enthalpy, kJ/kg or Btu/lbm 

h2 = condenser outlet refrigerant specific enthalpy, kJlk& or Btu/lbm 
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,9v = refrigerant saturation temperature for evaporator, °C or 0 P 

Tv = condenser mean surface temperature for evaporator, °C or 0 P 

The author provided some correlations for thermal conductance on the refrigerant 

side. However, this model still requires detailed performance data for each component. 

The same disadvantages previously discussed appear again. 

The model was first tested on three water-to-water heat pumps, ranging between 5 

kW and 20 kW heat output. Predicted and measured capacities are compared on one 

piece of equipment. The uncertainty on capacity is about ±5%. The results obtained with 

three air-to-air conditioners and one water-cooled air conditioner have an uncertainty of 

slightly higher than ±10%. 

2.1.2.4. Bourdouxhe, et al. Model 

The quasi-static reciprocating chiller model developed by Bourdouxhe, et al. (1994) 

are characterized by the authors as being part of a toolkit "oriented towards simple 

solutions with a minimum number of parameters" and being somewhere between "curve

fitting, the traditional way to describe the input-output relationships, and deterministic 

modeling, which is an exhaustive description of the physical phenomena". Their 

approach is to utilize a "conceptual schema" as a modeling technique to represent the unit 

as an assembly of classical and elementary components. The behavior of the each 

component is then modeled by a deterministic approach. This approach requires fewer 
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parameters and experimental data compared with the models developed previously. In the 

parameter identification procedure, the "available experimental data" such as the 

condensing and evaporating temperatures, the possible subcooling and superheating are 

required. Based on these experimental results, the parameters of the compressor are 

identified. Then the whole chiller is considered to identify the evaporator and condenser 

heat transfer coefficients. However, those experimental data are normally not available 

from manufacturers' catalogs. 

Both the condenser and the evaporator are represented as classical heat exchangers 

with water as secondary working fluid. No pressure drop is considered on the refrigerant 

side, and the refrigerant side is considered to be isothermal. The effectiveness model of 

such a heat exchanger is defined by the following relationship, 

s=l-e-NTU 

NTU= UA 
rh C 

w w 

where s = thermal effectiveness of heat exchanger 

NTU = number of transfer units 

UA= heat transfer coefficient, kW/Kor Btu/(hr-°F) 

rhw = water mass flow rate, kg/s or lbm/hr 

Cw= water specific heat, kJ/(kg-K) or Btu/(lbm-°F) 
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The heat transfer coefficient (UA) is prescribed to be independent of water flow rate 

thus remains constant during the simulation. 

This is based on some idealized assumptions as follows: 

• Isobaric aspiration of refrigerant into the cylinders, 

• Isentropic compression, 

• Isobaric expulsion of refrigerant from the cylinders, and 

• Is entropic re-expansion of the refrigerant that remains in the clearance volume at 

the end of the expulsion process. 

The refrigerant flow rate due to the re-expansion of the clearance volume is 

expressed by the following widely used equation, 

where V = volume flow rate, m3 /s or CFM 

V. = piston displacement of the compressor, m3 Is or CFM 

C 1 = clearance factor 

Pi = compressor exhausting pressure, kPa or psia 

Pi = evaporator exhausting pressure, kPa or psia 

r = isentropic coefficient 
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The author describes the energy calculation of reciprocating chiller model in two 

parts: a parameter identification procedure and a simulation procedure. In the parameter 

identification procedure, the compressor is first considered separately from the whole 

heat pump. On the basis of some necessary experimental results, the data needed for each 

working point are: 

• The condensing and evaporating temperature, 

• The possible subcooling and superheat, and 

• The refrigerating capacity and the power consumed by the compressor. 

Four parameters chosen to represent the geometry and dynamics of the compressor 

are estimated. These are: 

Vs = piston displacement of the compressor, m3/s or CFM 

Ci= clearance factor 

WZo = constant part of the electromechanical losses, kW or Btu/hr 

a= loss factor used to define another electromechanical loss that is supposed to be 

proportional to the compressor's internal power 

The isentropic compression power is: 

(2.25) 

where Ws = isentropic compression power, kW or Btu/hr 
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Vs = piston displacement of the compressor, m3/s or CFM 

r = isentropic coefficient 

Pi = pressure at the evaporator exhaust, kPa or psia 

p 2 = pressure at the exhaust of the compressor cylinder, kPa or psia 

I 

e.,, = 1 + C 1 - C 1 ( :: Y , volumetric effectiveness 

C 1 = clearance factor 

The electric power consumed by the compressor is: 

W = W"io + (1 + a )ws 

where W = electrical power consumed by the compressor, kW or Btu/hr 

Wz0 = constant part of the electromechanical losses, kW or Btu/hr 

(2.26) 

a = loss factor used to define another electromechanical loss that is 

supposed to be proportional to the compressor's internal power 

Ws = isentropic compression power, kW or Btu/hr 

When these parameters for the compressor are obtained, the whole chiller is 

considered. Here as mentioned above, only two parameters, the heat transfer coefficients 

(UA) for condenser and evaporator, shall be estimated. A set of coupled coefficients UA's 

is extracted from a given domain of variation, and an objective function representing the 

relative error between experimental or catalog data and model calculation results for 
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power com;umption and cooling capacity is set up. An exhaustive search method is 

employed to search for the optimal values of the heat transfer coefficients in this 

optimization problem. 

2.1.2.5. Gordon and Ng Model 

Gordon and Ng (1994) proposed a simple thermodynamic model for reciprocating 

chillers that they suggest might be valuable for diagnostic purposes. The model predicts 

the COP over a wide range of operation conditions from the inlet fluid temperatures and 

the cooling capacity, using three fitted parameters. The prediction of COP is remarkably 

good for a range of different chillers. However, the model doesn't predict the cooling 

capacity; it is required as an input. 

The condenser and evaporator temperatures are approximated as constants, and 

expressed in terms of measured fluid temperatures and heat exchanger properties: 

Qevap (1 +-1-)[exp(NTUcond )-1] 
T T out COP 

cond = cond + ( ) 
.. mC cond 

Qevap(l +-1-)[1-exp(NTUcond )] 
T in COP 

=cond+ () 
. mC cond 

(2.27) 

in Qevap ll-exp(-NTUevap )j 
T evap = 1',,vap - ( c) 

m evap 

out Qevap [exp(- NTU evap )-1] 
=Tevap- ( ·) 

mC evap 

(2.28) 
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where 'in' and 'out' denote inlet and outlet fluid flows, 'cond' and 'evap' denote 

the condensing and evaporating temperatures, m is the mass flow rate, C is the coolant 

specific heat, and NTU is the number of transfer units. 

Manufacturers' catalog data usually report COP and Qevap values at assorted values 

of condenser inlet temperature or condenser outlet temperature, and evaporator outlet 

temperature. 

Recognizing that entropy S is a state function, and that chiller operation is cyclic, 

we have: 

Q loss Q + loss 
/iS = Q = cond - q cond _ evap q evap 

Tcond Tevap 

(2.29) 

where q10ss refers to the losses from heat leaks, fluid friction, throttling, and 

desuperheating, and where heat transfer processes have been approximated as isothermal. 

If heat leaks are dominated by a linear heat transfer law and if isentropic throttling and 

desuperheating losses are not large and are typical of those in actual commercial chillers, 

then the function form of q10ss should be: 

loss A AT 
qcond =- 0 + 3 cond (2.30) 

loss A AT 
qevap =- 2 + 4 evap (2.31) 
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The constants Ao, A1 and A2 characterize the irreversibilities of a particular chiller. 

The chiller can be characterized quantitatively by three parameters obtained by fitting the 

desired relation to sample measurements of the type reported in chiller catalogs. For 

particular realistic operating ranges of commercial chillers, not as a general cooling 

system description for all possible situations, a simplified expression for COP as a 

function of cooling rate, condenser inlet temperature, evaporator outlet temperature and 

other systems variables described above was obtained. 

T in A +ATin A (Tin !Tout) _1_=-l+ cond + - 0 1 cond - 2 cond evap 

COP Te::~ Qevap 
(2.32). 

It is demonstrated that the simple functional form predicted for the COP vs Qcool 

curve agrees with actual performance data very well. The authors derived the equation 

for COP by actual experimental data with several constants to be determined and the 

accuracy of the predicted and measure COP was presented. However, the author did not 

provide any information about how to calculate the cooling capacity, power consumption 

and heat rejection by this model. 

2.1.2.6. Parise Model 

Parise (1986) developed a vapor compression heat pump simulation model to . 
predict the overall performance of a system by employing a simple model for the 
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components of the heat pump cycle. Operating conditions, such as compressor speed, 

heat source and heat sink temperature, cooling and heating fluids flow rates, are entered 

as input data. Predetermined empirical parameters that characterize the components, such 

as the polytropic index of compression and heat exchangers' overall conductances, are 

also entered as input data. Predicted results were compared with experimental data. A 

typical application is presented at the end of the paper. 

In the modeling of condenser and evaporator, these two heat exchangers are treated 

as having a constant overall heat transfer coefficient, based on the arithmetic overall 

temperature difference. For example, the heat transfer in the condenser is governed by the 

following equations, 

(2.33) 

(2.34) 

(2.35) 

where f2cn = condenser heat transfer rate, kW or Btu/hr 

Ucn= overall heat conductance of condenser, kW/(m2-°C) 

Acn = condenser heat transfer area, m2 or ft2 

T2 = compressor outlet temperature, °C or °F 

Ten = condensing temperature, °C or °F 

Tei= condenser cooling fluid inlet temperature, °C or °F 
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Teo = condenser cooling fluid outlet temperature, °C or 0 P 

mF = refrigerant mass flow rate, kg/s or lbm/hr 

h2 = refrigerant enthalpy at compressor outlet, kJ/kg or Btu/lbm 

h3 = refrigerant enthalpy at condenser outlet, kJ/kg or Btu/Ihm 

me= condenser cooling fluid mass flow rate, kg/s or lbm/hr 

Cc= Specific heat at constant pressure for condenser cooling fluid, 

kJ/(kg-°C) or Btu/(lbm-0 P) 

The evaporator follows the condenser model in the assumption of an overall heat 

transfer coefficient, U EV , for both the two-phase and superheated regions. According to 

the author, the following parameters are required by the model: 

• Compressor: 

Ve = compressor displaced volume, m3 or ft3 

r = clearance ratio 

n = constant index of polytropic process 

w = rotational speed, rad/s 

Cv = volumetric coefficient 

• Condenser: 

Tei = condenser cooling fluid inlet temperature, °C or 0 P 

me = condenser cooling fluid mass flow rate, kg/s or lbm/hr 

Cc = Specific heat at constant pressure for condenser cooling fluid, 
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J/(kg-°C) or Btu/(lbm-°F) 

Acn = heat transfer area of condenser, m2 or ft2 

Ucn = overall heat conductance of condenser, kW/(m2-°C) or Btu/(hr-ft2-°F) 

!iTsc = condenser subcooling, °C or °F 

• Expansion valve: 

!iTs = evaporator superheat, °C or °F 

• Evaporator: 

Thi = evaporator heating fluid inlet temperature, °C or °F 

mh = evaporator heating fluid mass flow rate, kg/s or lbm/hr 

Ch = Specific heat at constant pressure for evaporator heating fluid, 

kJ/(kg-°C) or Btu/(lbm-°F) 

AEv = evaporator heat transfer area, m2 or ft2 

UEv = overall heat conductance of evaporator, kW/(m2-°C) or Btu/(hr-ft2-°F) 

With so many parameters as input data, the author did not provide any information 

about how to identify these values. 

2.1.2. 7. Fischer and Rice Model 

Fischer and Rice (1983) developed an air-to-air heat pump model to predict the 

steady-state performance of conventional, vapor compression, electrically-driven heat 

pumps in both heating and cooling modes. This model is also known as the ORNL Heat 
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Pump Design Model. The purpose for the development of this model is to provide an 

analytical design tool for use by heat pump manufacturers, consulting engineers, research 

institutions, and universities in studies directed toward the improvement of heat pump 

efficiency. 

• Compressor model 

Since the compressor is the heart of a heat pump system and the primary user of 

electrical power, accurate compressor modeling is important to good system performance 

prediction. This criterion, however, must be tempered by consideration of the type of 

information available to most potential users of the program and of the different types of 

heat pump studies in which the program may be used. For these reasons the ORNL Heat 

Pump Design Model does not incorporate a subroutine which rigorously models 

compressor performance using detailed hardware design parameters. Instead, users can 

choose between two simpler models depending upon their specific needs: (1) Map-based 

compressor model, and (2) Loss and efficiency-based compressor model. 

The first compressor model is based on the use of compressor manufacturers' data 

(compressor maps) for a specific compressor or compressor type. The model has built-:-in 

corrections to adjust for levels of refrigerant superheat in reciprocating compressor which 

are different from those for which the maps were generated. Although this model was 

written for reciprocating compressor, it should be easy to modify for use with rotary, 

33 



screw, or centrifugal compressor. Accurate simulation of existing compressor is possible 

with this model. 

The map-based compressor model uses empirical performance curves for 

reciprocating compressors obtained from compressor calorimeter measurements 

performed by the manufacturers. These performance curves provide compressor motor 

power input, refrigerant mass flow rate and/or refrigerating capacity as functions of 

"evaporator" saturation temperature (i.e., at compressor shell inlet) for four to six" 

condenser" saturation temperatures (i.e., at the compressor shell outlet). The map-based 

routine uses curve fits to the compressor motor power input (kW) and the refrigerant 

mass flow rate (lbm/h) as functions of compressor shell inlet and outlet saturation 

temperatures to model the published performance data. The user must provide sets of 

coefficients for bi-quadratic functions of the form given by Equation (2.36) for the power 

input and mass flow rate as functions of the inlet and outlet saturation temperature. 

where T0 u,tet = inlet saturation temperature, °C or 0 P 

I';ntet = outlet saturation temperature, °C or 0 P 

C1 - -C6 = equation-fit coefficients 

(2.36) 

The user must also specify the total actual compressor displacement, the rated 

compressor motor speed, and the fixed refrigerant superheat or temperature at the 
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compressor shell inlet (upon which the map is based) for the compressor which is being 

modeled. The desired compressor displacement is also an input parameter. This value is 

used by the map-based model to scale the compressor performance curves linearly to 

represent a compressor with the same general performance characteristics as the original 

compressor but of a different capacity. For values of superheat or suction gas temperature 

other than those for which the maps were generated, Equations (2.37) and (2.38) are 

employed for correcting the compressor motor power input and the refrigerant mass flow 

rate. 

mr,actual = [1 + Fv ( v map -1)]mr,map 

V actual 

(2.37) 

where mr actual = actual refrigerant mass flow rate, kg/s or lbm/hr 

Fv = volumetric efficiency correction factor 

v map = specific volume under map superheat conditions, m3 /kg or ft3 /lbm 

v actual = specific volume under actual superheat conditions, 

m3 /kg or ft3 /lbm 

mr actual = actual refrigerant mass flow rate, kg/s or lbm/hr 
'· 

W = ( mr,actual J( 11hisen,actual Jw 
cm. actual . !).h . cm ,map 

m,,map tsen,map 

(2.38) 

35 



where Wern actual = actual compressor motor power input, kW or Btu/hr 
' 

!),.hisen actuat = actual isentropic process enthalpy change, kJ/kg or Btu/lbm 
' ' 

!),.hisen,map = map isentropic process enthalpy change, kJ/kg or Btu/lbm 

Wcm,map = map compressor motor power input, kW or Btu/hr 

The enthalpy gain to the suction gas between compressor shell inlet and suction port 

due to motor and compressor cooling by the suction gas is assumed as follows. 

!),.h F Wcm,map 
in/et.suction port sh , 
' mr,map 

(2.39) 

where Fsh = appropriate suction gas heating factor 

Once the correction for actual superheat level have been applied to the values of 

wcm,map and wr,map ' the enthalpy at the compressor shell outlet, hout/et ' is computed from 

Equation (2.40). 

houtlet = (wcm,actua/ -Qcan )1 mr,actual + hin/et (2.40) 

where Qcan = heat loss rate from the compressor shell, kW or Btu/hr 

Qcan is specified by the user as either a fixed input value or as a specified fraction 

of actual compressor power. 
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The second model, a loss and efficiency-based compressor model, is intended for 

use in heat pump design studies, e.g., to predict how changes in compressor loss and 

efficiency terms affect system performance. It can also be used to model compressor 

performance with a new refrigerant. This more general routine models the internal energy 

balances in a reciprocating compressor using user-supplied heat loss and internal 

efficiency values. This model cannot predict compressor performance as accurately over 

the same range of operating conditions as the map-based model without local adjustment 

of some of the input efficiency and loss values. It is well suited, however, for studying 

internal compressor improvements i;ind interactions and their effect on system 

performance about a particular design point. 

The loss and efficiency-based compressor routine models the internal energy 

balance in a reciprocating compressor from user-supplied design, internal efficiency, and 

heat-loss values. The user is required to specify the following values: 

D - total compressor displacement, m3 Is or CFM 

C - actual clearance volume ratio 

Sinput - synchronous or actual compressor motor speed, RPM 

Ws,fl - compressor motor full load shaft power, kW or Btu/hr 

1'/mot,max - maximum compressor motor efficiency 

1'/mech - compressor mechanical efficiency 

1'/isen - isentropic compression efficiency from suction to discharge port 
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This model can be treated as a supplement to the map-based model since it is not 

intended to be a rigorous tool to replicate the compressor performance. 

• Expansion device 

The ORNL Heat Pump Design model allows the user to specify a fixed level of 

condenser subcooling or design parameters for a particular expansion device in order to 

control the refrigerant flow between the high and low sides of the system. Three basic 

expansion device models have been developed: capillary tubes, thermostatic expansion 

valves (TXV), and short-tube orifices. 

One of the options in the heat pump model is to simulate the operation of one or 

more capillary tubes in parallel. The capillary tube model requires the refrigerant pressure 

and degree of subcooling at the inlet of the capillary tube or tubes. The model consists of 

empirical fits to curves given in the ASHRAE equipment handbook for a standardized 

capillary tube flow rate as a function of inlet pressure and subcooling for R-12 or R-22. 

The TXV model contains: 

• a general model of a cross-charged thermostatic expansion valve 

• specific empirical correlations for one size of distributor nozzle and tubes 

• additional empirical equations to correct for nonstandard liquid line temperature, 

tube lengths and nozzle and tube loadings 
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The short-tube orifice model which is included in the ORNL Heat Punp Design 

Model uses correlations developed by Mei (1982). He obtained data for five 0.127 m (0.5 

in.) long Carrier Accurators with diameters from 1.067 to 1.694 mm (0.0420 to 0.0667 

inches) (LID ratio from 7.5 to 11.9) using R-22. He observed pressure drops between 620 

and 1515 kPa (90 and 220 psi) across the restrictor and levels of subcooling from O to 28 

~C (0 to 50 °F) at the inlet. The observed refrigerant mass flow rates ranged from 68.0 to 

213 kg/h (150 to 470 lbm/h). 

• condenser and evaporator model 

The ORNL Heat Pump Design Model calculates the performance of air-to

refrigerant condensers and evaporators by using: 

• effectiveness vs. Ntu correlations for heattransfer for a dry coil 

• a modified version of the effectiveness surface temperature approach when there is 

dehumidification 

• the Thom correlation for two-phase refrigerant pressure drops and the Moody friction 

factor chart plus momentum terms for the single-phase refrigerant pressure drops 

• friction factor equations for the air-side pressure drop for dry, partially wetted or fully 

wetted coils. 

The calculation method which has been used assumes that the heat exchangers 

consist of equivalent, parallel refrigerant circuits with unmixed flow on both the air and 

refrigerant sides. The air-side mass flow rate and the estimated refrigerant mass flow rate 
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from the compressor model are divided by the number of circuits to obtain values for 

each circuit. The refrigerant-side calculations are separated into computations for the 

superheated and two-phase regions for the evaporator and for the superheated, two-phase 

and subcooled regions for the condenser. 

The refrigerant heat transfer coefficient for the superheated region in the condenser 

is calculated by Equation (2.41) for gas flow from an abrupt contraction entrance. 

h - C G C N-213 NC2 
- I r p,v Pr Re (2.41) 

where h = heat transfer coefficient, kW/(m2-K), or Btu/(hr-ft2-°F) 

Ci,~\ = constants 

Gr = refrigerant mass flux, kg/(m2-s) or lbm/(ft2-hr) 

Cp,v = refrigerant specific heat, kJ/(kg-K) or Btu/(lbm-°F) 

N Pr = Prandtl number 

N Re = G rD Iµ, Reynolds number 

The refrigerant side or interior heat transfer coefficients for the subcooled region of 

the condenser and the superheated region in the evaporator are computed using the 

Dittus-Boelter correlation for fully developed flow. 

h = 0 023G C N(C-l) N-O.ZO 
' rpPr Re (2.42) 

where h = heat transfer coefficient, kW/(m2-K), or Btu/(hr-ft2-°F) 
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Gr = refrigerant mass flux, kg/(m2-s) or lbm/(ft2-hr) 

CP = refrigerant specific heat, kJ/(kg-K) or Btu/(lbm-°F) 

N Pr = Prandtl number 

N Re = GrD Iµ' Reynolds number 

C is 0.3 when the refrigerant is being cooled and 0.4 when being heated. 

The two-phase heat transfer coefficients for the condenser and the evaporator are 

average values obtained by effectively integrating local values over the length of the two

phase region. The actual integration is performed over the range of refrigerant quality 

where a length of tube dz is related to a change in quality of dx by, 

dx 
dz oc -----=--,---

h ( x )L1T 

and L\T is the change in temperature between the refrigerant and the tube wall. 

The air-side heat transfer coefficients are calculated by Equation (2.44). 

h =CG C N-2/3 ·[1-1280NTN;!.2] 
a o a pa Pr J l-Sl20N-l.2 

Re 

where ha = heat transfer coefficient, kW/(m2-K), or Btu/(hr-fl2-°F) 

Ga =airmass flux, kg/(m2-s) or lbm/(ft2-hr) 

cp,a = air specific heat, kJ/(kg-K) or Btu/(lbm-°F) 
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N Pr = Prandtl number 

( J
-0.15 ( J-0.4 

j=0.0014+0.2618 l-lFa G~D 

N r = number of tube rows in the heat exchanger in the direction of the air 

flow 

N - GaWT 
Re -

µ 

and C0 =1.0, 1.45 or 1.75 depending on whether the fins are smooth, wavy, or louvered. 

The air-side heat transfer coefficient for the portion of the evaporator which is wetted due 

to dehumidification is calculated from the dry coefficient ha by Equation (2.45). 

( 
, JO.IOI 

ha,w = 0.626 ~ ha (2.45) 

where ha,w = heat transfer coefficient for wet coil, kW/(m2-°K) or Btu/(ft2-°F) 

Q = heat transfer rate, kW or Btu/hr 

A = frontal area of heat exchanger, m2 or ft2 

To calculate the performance of the condenser and evaporator, the heat transfer for 

the liquid, vapor and two-phase refrigerant regions of the heat exchanger are computed 

using effectiveness vs. Ntu correlations, except for the two-phase refrigerant region of an 

evaporator with dehumidification. Except for this case, the number of heat transfer units 

for the two-phase region ( condenser and evaporator) is given by Equation (2.46). 
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UA 
Ntu=--= 

cmin 

(2.46) 

where Ntu = number of heat transfer units 

UA = heat transfer coefficient product, kW/Kor Btu/(hr-°F) 

Cmin = minimum of the heat capacity rates for the air and the refrigerant, 

kJ/K or Btu/°F 

Cpm = specific heat of moist air, kJ/(kg-K) or Btu/(lbm-°F) 

A, = total refrigerant-side heat transfer area, m2 or ft2 

17a = heat exchanger overall surface effectiveness 

ha = air side heat transfer coefficient, kW/(m2-K) or Btu/(hr-ft2-°F) 

Aa = air side fin and tube heat transfer area, m2 or ft2 

h1p = average condensing or evaporating heat transfer coefficient, 

kW/(m2-K) or Btu/(hr-ft2-°F) 

C pm is corrected for moist air conditions (i.e., C pm = C pa + 0.444 x W where W is 

the air humidity ratio), A0 is the refrigerant-side heat transfer area per unit of air mass 

flow rate. The effectiveness is given by Equation (2.47). 

8 =1-e-Ntu 
Ip 

where s,P = heat exchanger effectiveness for two phase region 
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When there is moisture removal on the evaporator, it is assumed to occur only on 

the two-phase region of the coil. 

2.1.2.8. The Comparison by Damasceno, et al. 

Damasceno, et al. (1990) compared three steady-state air-to-air heat pump computer 

models. Two of them are available in the open literature, the third one was developed in

house. These are (1) the MARK III model, which is an updated version of an earlier 

program developed at Oak Ridge National Lab. by Fischer and Rice (1983) and Fischer 

et al. (1988) (2) HPSIM, developed at NBS by Domanski and Didion (1983) and (3) HN, 

developed by Nguyen and Goldschmidt (1986) and updated by Damasceno and 

Goldschmidt (1987). A summary of predicted capacity and COP discrepancies is 

presented in Table 2.1: 

Table 2.1. Interpretation of Accuracy of Performance Predictions 

MODEL HEATING(47 °F) COOLING(95 °F) 
CAPACITY COP CAPACITY COP 

HPSIM +15.5% +7.1% +3.0% +7.5% 
MARK III +6.5% -9.5% +10.5% +8.0% 

HN +19.5% -2.5% +13.0% +8.0% 

They concluded that the prediction of capacity and coefficient of performance 

( COP) are acceptable for all programs, but they failed to predict detailed refrigerant 

pressure and temperature distributions adequately. 
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2.1.2.9. Shelton and Weber Model 

Shelton and Weber (1991) developed a chiller model based on manufacturers' 

performance data. The evaporator was characterized by an overall heat transfer 

coefficient (UA) function on the cooling load only. The condenser modeling led to a two

parameter correlation of the overall condenser UA with varying water tube velocity and 

condenser load. The compressor model was based on Carnot efficiency. Assuming an 

isentropic compressor, constant temperature heat rejection at Tc, and constant 

temperature heat input at TE and using the Carnot principle leads to a Carnot-based 

kW/ton of cooling load calculated as follows: 

[kW I ton ]carnot = [Tc I TE -l]. 3.517 (2.48) 

where Tc and TE are in absolute temperature. 

This model was corrected by means of compressor isentropic efficiency at design 

load, which included the motor efficiency, and an efficiency factor that decreased as load 

decreased due to off-design compressor operation. 

kw I [kw I ton ]carnot ton=-----
1] !SENT 1J TON 

The last two efficiencies ( 1J ISENT, 1JroN) were determined from second-order 

polynomial equation equation-fits to the manufacturers' data points. 
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2.1.2.10. Greyvenstein Model 

A computer model for the simulation of vapor-compression heat pumps and 

refrigeration systems with thermo-statically controlled expansion valve is presented. The 

model describes the performance of the system given its design, the fan curves, the 

compressor characteristics, the design of the heat exchangers and the condition of the 

external fluids flowing through the heat exchangers. 

The compressor model consists of a performance data file and an interpolation 

routine which uses the data in the file to interpolate values of refrigerant mass flow and 

input power given the inlet and outlet pressures. The accuracy of the model therefore 

depends on the accuracy of the performance data. The evaporator is of fin and tube type 

in a stream of air. The heat absorbed by the refrigerant in the evaporator can be divided 

into two parts. The first parts is the heat necessary to evaporate all the liquid, while the 

second part is that necessary to heat the vapor to the superheated point. The heat absorbed 

by the refrigerant is transferred across the outside surface area of the evaporator. The 

total outside surface area can thus also be divided into two parts associated with the 

quantities of those two parts of the heat. The two air streams across the two parts are 

mixed after the evaporator. From the heat transfer relationships, we may have: 

Q=UA/!...T 

where U = overall heat transfer coefficient, kW/(m2-K) or Btu/(hr-ft2-°F) 

/!...T = log mean temperature difference, °C or °F 
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A = area, m2 or ft2 

For two-phase region and superheated region, different correlations and equations 

are used for the U, LJT and A respectively. 

Similarly, the heat rejected by the refrigerant can be divided into three parts in the 

condenser. The first part is the heat necessary to cool the superheated refrigerant to 

saturated vapor. The second part is the heat associated with the condensation of the 

saturated vapor. The third part is the heat rejected in sub-cooling the saturated liquid. The 

heat transfer relationships are established from the same principle as evaporator. 

The evaporator model was verified by comparing it with design data published by 

the Bohn Heat Transfer Division of the Gulf and Western Metals Forming Company. The 

Bohn data are based on laboratory findings and widely used in the refrigeration industry 

for the design of evaporator coils. No experimental data are available for the type of 

condenser. Some related data are adapted to this type, which is essentially the same as the 

water-cooled kind. 

The author claimed that the model is a powerful and versatile tool for the design 

and optimization of refrigeration systems or heat pumps and has been used successfully 

to design a number of systems. 
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2.1.2.11. Dabiri Model 

A steady state heat pump simulation model was developed by Dabiri (1982) that 

targeted at reducing the amount of testing required by DOE to obtain heat pump 

performance rating information. The Fisher and Rice (1981) air-to-air heat pump model 

that developed for design purposes was modified. Power inputs to indoor and outdoor 

fans, which were calculated as outputs in the original model, were inputs to this 

simulation model. Other modification such as a reversing valve model and refrigerant 

line losses was also discussed. The input variables to the heat pump simulation model for 

each component include redundant information that normally available for a research lab. 

For example, the required inputs for the condenser and evaporator are: outside diameter 

of tubes, inside diameter of tubes, fin thickness, fin pitch and configuration, thermal 

conductivity of the fins, heat exchanger frontal area, number of tubes in direction of 

airflow, number of parallel circuits in heat exchanger, spacing of tube passes 

perpendicular to airflow, spacing of tube rows in direction of airflow, total number of 

return bends in heat exchanger, and contact conductance between fins and tubes. The 

model's outputs include heating capacity, COP, mass flow rate through the compressor, 

refrigerant pressure and temperature at every point of the circuit, air pressure drops across 

the heat exchanger, and air temperature at the heat exchangers' exits. Compressor shell 

heat loss was considered in the model and no specific pattern exists in the relationship 

between the shell heat loss and evaporating temperature was observed. The compressor 

shell heat loss factor varied between 10% and 40%. The heat pump simulation model was 

applied to three different heat pumps and results were presented. The results presented 

48 



indicate that the simulation model predictions generally fall within the acceptable 

tolerance of the ARI standards and within the possible errors existing in the experimental 

measurements. A sensitivity analysis was made to assess the effect of possible variation 

of some of the inputs parameters on the system's thermal performance. The input 

parameters that could not be determined accurately were listed. 

2.1.2.12. Ouazia and Snelson's Model 

Ouazia and Snelson (1994) presented a simulation model suitable for the 

preliminary evaluation ofrefrigerants and refrigerant mixtures in a water-water heat 

pump test facility. The simulation is specific to the heat pump test facility and uses a 

semi-theoretical cycle analysis to predict steady-state operating conditions. The model is 

to calculate performance characteristics including evaporator capacity, compressor shaft 

power, refrigerant mass flow, cooling coefficient of performance, etc. 

3 
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Figure 2.6. Temperature-entropy diagram for the simulated heat pump 
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The simulation uses a simplified model of an open-drive reciprocating compressor, 

and includes effects such as refrigerant subcooling at the condenser outlet, refrigerant 

superheating at the evaporator outlet, heat transfer and pressure drops in heat exchangers, 

and a representation of liquid line/suction line heat exchange. The temperature-entropy 

diagram shown in Figure 2.6 represents the basic vapor-compression cycle as modeled by 

the computer simulation. Assumptions made are: compression process 2-3 is isentropic; 

expansion process 7-8 is isenthalpic; condensation and evaporation processes are at 

constant pressure. To use the simulation program, it is necessary to specify the evaporator 

superheat, condenser exit subcooling, and secondary side temperatures for the condenser 

and evaporator. Initial estimates must also be provided of the refrigerant saturation 

temperatures at the condenser and evaporator and for the refrigerant mass flow rate. 

2.1.2.13. Krakow and Lin's Model 

A computer model of a multiple-source heat pump was presented by Krakow and 

Lin (1983). The model was used to simulate heat pump systems having solar insolation, 

ambient air, or storage water as energy source and space air or storage water as energy 

sink. The model determines steady-state performance characteristics of a heat pump 

interacting with the environment. The evaporators and condensers in the system are 

specified by values of heat exchanger effectiveness and heat capacities. The values of 

heat capacities of evaporators and condensers depend on the flow rate of air or water, not 

those of the refrigerant. For constant air or water flow rates, the values of heat capacities 

and heat exchanger effectiveness are assumed constant. 
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The compressor model permits the simulation of heat pump systems with 

reciprocating compressors. The performance of a reciprocating compressor is specified 

by, 

evi = 1 +c-c ·(i!, I PJ1n 

m=e ·Viv 
V 

where c = clearance volume ratio 

ei = isentropic compression efficiency 

er = volumetric efficiency ratio, actual/theoretical 

ev = actual volumetric efficiency of the compressor 

evi = ideal volumetric efficiency of the compressor 

hci = enthalpy at compressor inlet, kJ/kg or Btu/lbm 

hcoa = actual enthalpy at compressor outlet, kJ/kg or Btu/lbm 

hcoi = ideal enthalpy at compressor outlet, kJ/kg or Btu/lbm 

m = refrigerant mass flow rate, kg/s or lbm/m 

n = ratio of specific heats of the refrigerant vapor 

Pc= condensation pressure, kPa or psi 

Pe = evaporation pressure, kPa or psi 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

v = refrigerant specific volume at compressor inlet, m3 /kg or ft3 /lbm 

V = rate of volumetric displacement, m3 Is or CFM 
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An air-cooled or a water-cooled condenser was simulated. The following equations 

were used to specify the performance of the condenser, 

Qc = e. H . (Tc -Tsnk) 

e = (Thot -Tsnk )!(Tc -Tsnk) 

where e = heat exchanger effectiveness 

H = heat capacity of space air or storage water, energy/time/degree 

temperature difference, kW/°C or Btu/(hr-0 P) 

Qc = condenser heat transfer rate, energy/time, kW or Btu/hr 

Tc = condensation temperature of the refrigerant, °C or 0 P 

Tsnk = inlet temperature of space air or storage water, °C or 0 P 

Thot = outlet temperature of space air or storage water, °C or 0 P 

(2.55) 

(2.56) 

The heat pump under investigation used solar/air collectors, through which ambient 

air was circulated during the night and periods of low solar insolation. The collector's 

performance as an evaporator extraction heat from ambient air is specified by the heat 

capacity of the source and the heat exchanger effectiveness. A water-cooled storage 

evaporator may also be the same parameter. The performance of either of these 

evaporators is governed by, 

(2.57) 

where e = heat exchanger effectiveness 

H = heat capacity of the source, energy/time/ degree temperature 
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2.2. Modeling of Heat Pump Components 

Models for heat transfer process and primary components (i.e. heat exchangers, 

compressor, expansion devices) of heat pumps or chillers are focus of this section. Only 

models relevant to the basic heat pump components and fundamental techniques that 

might be useful in the future research work are discussed. 

2.2.1. Analysis of Heat Transfer between Moist Air and Cold Surface by McElgin 

and Wiley 

The transfer of heat from warm moist air to cold surface and thence through the fins 

and tubes to the cold water or refrigerant may best be analyzed by dividing the process 

into two distinct steps, (1) from the air to the wetted surface and (2) from the surface 

through the fins and tubes to the water. The total heat lost by the air in passing over an 

element of wetted area dAw is given by: 

dHT = Jg (h-hs)dAw (2.58) 
s 

where Hr= total heat lost by total weight of air flowing over wetted surface, 

kW or Btu/hr 

fg = sensible heat transfer coefficient, kW/(m2-K) or Btu/(hr-ft2-°F) 

s = humid specific heat of air vapor mixture, kJ/(kg-K) or Btu/(lbm-°F) 

h = total heat content of air vapor mixture per mass of dry air, 

kJ/kg or Btu/lbm 
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hs = total heat content of air vapor mixture per mass of dry air at surface, 

kJ/kg or Btu/lbm 

This equation which was originally derived by Merkel (1925), combines sensible 

heat transfer due to temperature difference and latent heat transfer due to vapor pressure 

difference into a single equation which states that the rate of simultaneous sensible and 

latent heat flow depends on the difference between the total heat of the air flowing over 

the surface and the total heat corresponding to saturation a the surface temperature. The 

total heat transferred from the element of area dAw through the fins and tubes to the water 

is given by: 

(2.59) 

where ts = surface temperature, °C or °F 

tR = refrigerant temperature, °C or °F 

Where R is as defined above the composite resistance to heat flow imposed by the 

fins and tubes and the internal water film. Equations (2.58) and (2.59) are rearranged: 

(2.60) 

The value of s, the humid specific heat of air, may be taken as constant for the range 

of comfort cooling. For a given coil, air velocity and refrigerant velocity,_{g and Rare 

constant and thus C is a constant coil characteristic for given conditions. 
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2.2.2. Analysis of Air Side Heat Transfer in Finned Tube Heat Exchangers by Webb 

When heat is transferred between air and sensible or two-phase fluids in tubes, 

finned tube heat exchangers are beneficial. In this case, the air-side heat transfer 

coefficient may be 10-50 times smaller than the tube-side coefficient. The use of a finned 

surface will increase the air-side conductance (hA) to more evenly proportion the thermal 

resistance on each side of the heat exchanger. In many applications, air-side extended 

surface can be added for much less unit cost than that if the base tube surface. The degree 

of heat transfer augmentation is dependent on the following factors: 

1) Fin spacing 

2) Fin efficiency 

3) Use of special fin configuration to yield increased heat transfer coefficients 

The significance of these factors on the resulting augmentation is given by Equation 

(2.61), which defines the overall heat transfer coefficient, based on the internal tube area: 

l A. l 
-=-'-+-u 17hA hi 

where U = overall heat transfer coefficient, kW/(m2-°K) or Btu/(hr-fr-°F) 

Ai = inside surface area, m2 or ft2 

17 = total surface efficiency 

Thus, the air-side conductance is: 

56 

(2.61) 



(2.62) 

An increased number of fins per centimeter will increase the conductance by 

increase the conductance by increase the ratio Al Ai. Also, the use of more closely spaced 

flat fin will increase the heat transfer coefficient h, because of a smaller hydraulic 

diameter. Or, the use of a special fin configuration, such as a "wavy" fin, will produce a 

higher heat transfer coefficient. The surface efficiency lJ is influenced by the fin 

thickness, thermal conductivity, and fin length. The fin efficiency may be calculated from 

appropriate graphs or equations given in most heat transfer textbook. The surface 

efficiency is calculated from Equation (2.63): 

.(2.63) 

where A is the total external surface and A1 is the finned surface area. 

2.2.3. Experimental Results of Chilled-Water Cooling Coils Operating at Low 

Water Velocities by Mirth et al. 

Experimental results were presented that demonstrate that chilled-water cooling 

coils operating at low water-side Reynolds numbers do not perform as well as predicted 

by the manufacturer's software. The manufacturer's software overpredicts coil 

performance by as much as 8% at a water-side Reynolds number of3100 (the lower 

Reynolds number limit certifiable under ARI standard 410-87). At a Reynolds number of 
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2300, the overpredictions range from 12% to 18%. An analysis revealed that this problem 

could be mitigated by using the Gnielinski correlation instead of the Dittus-Boelter 

correlation to predict the water-side heat transfer coefficient. When the coils were 

operating in the turbulent flow regime (Rew>2300), a coil model using the Gnielinski 

correlation was able to predict coil performance to within 4% for wet fin surface 

conditions and to within 2% for dry surface conditions. A laminar, developing flow 

correlation that was tested for water-side Reynolds numbers less than 2300 

underpredicted coil performance. 

2.2.4. Comparison of Methods of Modeling the Air Side Heat and Mass Transfer in 

Chilled-Water Cooling Coils by Mirth and Ramadhyani 

Three different methods of modeling the heat and mass transfer in chilled-water 

cooling coils are compared. A new model (model 3) is compared with discretized version 

of the models presented in ARI Standard 410-87 (model 1) and by McQuiston (model 2) 

and with the ARI log-mean enthalpy method. The models differ both in the method used 

to determined the heat transfer rate to primary surface and in the method used to 

determine the fin efficiency. It was summarized that the heat transfer rate predicted by 

model 1 agreed within 1 % to 2% of the new model, while model 2 predicted heat-transfer 

rates 2% to 8% higher than did model 3. However, by modifying the assumptions used in 

model 2, it was possible to bring its predictions to within 2% of those of model 3. The 

ARI log-mean enthalpy method was also found to agree well within 2%. 
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2.2.5. Cooling Coil Model of Braun, et al. 

Braun, et al. (1989) proposed an effectiveness model for cooling coils. The cooling 

coil model was developed from a basic analysis of cooling tower performance. The 

primary difference between the analysis of cooling coils and cooling towers is associated 

with the fact that the air and water streams are not in direct contact. A schematic of a 

counter-flow cooling tower showing the important states and dimensions is given in 

Figure 2.7. 

From steady state energy and mass balances on an incremental volume, the 

following differential equations may be derived: 

dwa Ntu / ) 
dV = -V\wa -ws,w 

T 

dh a LeNTU r( ) ( X ) ] dV =- V ~ha -hs,w + '[[Ta -{J)s,w I/Le-I hg,w 
T 

dha -C (T -T )d{J)a 
dTw dV p,w w ref dV 

=---------
dV [ ':;: -(m"' -mJ]c, .• 

A = surface area, m2 or ft2 
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Av = surface area of water droplets per volume of cooling tower, m2 or ft2 

Cp,a = constant pressure specific heat of moist air, kJ/(kg-K) or 

Btu/(lbm-°F) 

Cp,w = constant pressure specific heat ofliquid water, kJ/(kg-K) or 

Btu/(lbm-°F) 

C, = derivative of saturation air enthalpy with respect to temperature, 

kJ/(kg-K) or Btu/(lbm-°F) 

c· = ratio of air to water capacitance rate for dry analysis 

ha = enthalpy of moist air per mass of dry air, kJ/kg or Btu/lbm 

he = convection heat transfer coefficient, kW/(m2-K) or Btu/(hr-ft2-°F) 

hD = mass transfer coefficient, kg/(m2-s) or lbm/(ft2-hr) 

hg = enthalpy of water above reference state for liquid water at Tref, kJ/kg 

or Btu/lbm 

h, = enthalpy of saturated air, kJ/kg or Btu/lbm 

mw = mass flow rate of water, kg/s or lbrn/hr 

ma = mass flow rate of dry air, kg/s or lbrn/hr 

m * = ratio of air to water effective capacitance rate for wet analysis 

Le = Lewis number 

Ntu = overall number of transfer units 

Q = overall heat transfer rate, kW or Btu/hr 

Ta = air temperature, °C or °F 
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Tref = reference temperature for zero enthalpy of liquid water, °C or 0 P 

Ts = surface temperature, °C or 0 P 

Tw = water temperature, °C or °F 

UA = overall heat transfer conductance, kW/Kor Btu/(hr-°F) 

V = volume, m3 or ft3 

s0 = air side heat transfer effectiveness 

ma = air humidity ratio, kg/kg dry air 

ms = humidity of saturated air, kg/kg dry air 

Subscripts: 

a = air stream conditions 

dry = dry surface 

e = effective 

i = inlet or inside condition 

o = outlet or outside conditions 

s = surface conditions 

T == total 

w = water stream conditions 

wet = wet surface 

In order to simplify the analysis, Merkel made two assumptions: 

• The water loss due to evaporation is neglected, such that the water flow rate at 

each point in the tower is constant and equal to the inlet flow. 
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• A Lewis number of unity is also assumed. 

With these approximations, the equation for the cooling tower may be reduced to: 

dha = _ Ntu (h _ h ) 
dV V a s,w 

T 

(2.67) 

(2.68) 

Water 

ma;wa,o;ha,o mw;;Twi 
' ' 

l 
O)a +dwa mw+dmw 

ha +dha Tw+dTw 

j_ 
EE dV 

V 

Air 

Figure 2. 7. Schematic of a counter-flow cooling tower 
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Equation (2.68) may be rewritten in term of air enthalpies only by introducing the 

derivative of the saturated air enthalpy with respect to temperature evaluation at the water 

temperature. 

where cs = [dhs J 
dT T=T. 

w 

dhs,w = m0 Cs(dh0 I dV) 

dV mwCp,w 
(2.69) 

Cs has the units of specific heat and will be termed the saturation specific heat. 

According to the authors, through the introduction of the air saturation specific heat and 

thus the effectiveness relationships, this approach has several advantages such as 

simplicity, accuracy and consistency with the methods for analyzing sensible heat 

exchangers. This paper presented the basic equations for effectiveness relationships for 

cooling coils analogous to those for sensible heat exchangers, and also provided a 

procedure to estimate the performance of a cooling coil having both wet and dry portions. 

The method was validated over wide range of conditions. The steps for determining the 

heat transfer and outlet conditions for a cooling coil are summarized as follows, 

1) Assume that the coil is completely dry and apply the dry coil effectiveness method. 

2) If the surface temperature at the air outlet determined with the dry analysis is less 

than the dew point of the entering air, then assume that the coil is completely wet and 

apply the wet coil effectiveness method. 
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3) If the surface temperature at the air inlet determined with the wet analysis is greater 

than the entering dew point temperature, then a portion of the coil is dry. At this 

point, the fractions of the coil that are wet and dry could be determined iteratively. 

More simply, choose the result of steps 1 or 2 that yields the largest heat transfer. 

In order to simulate the performance of a cooling coil in a system, it is necessary to 

estimate the air side and water side transfer units as a function of the flows. In other 

words, the heat transfer coefficients UA's are essential if the mass flow rate and specific 

heat are given according to the definition ofNTU. Without specific details concerning the 

dimensions and configuration of the coil, the NTU is not readily available. The author 

provides an empirical solution as, 

(2.70) 

(2.71) 

where rizw = water mass flow rate, kg/s or lbm/hr 

riza = mass flow rate of dry air, kg/s or lbm/hr 

The author did not provide any information about how to get the values of so-called 

rizw.aes and ma.des. But according to the form of Equations (2.70) and (2.71) which employs 

one of the commonly used regression techniques, they should have the values of some 

base case, say nominal flow rates for the heat exchanger. k1, k2, k3 and k4 are empirical 
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constants that may be determined with nonlinear regression applied to differences 

between measurements and cooling coil model predictions of the water and air outlet 

temperatures. This approach may not be feasible for modeling the chiller or heat pump 

because the detailed catalog data for the heat exchanger are usually not available from the 

chiller or heat pump manufacturers' catalog. 

2.2.6. Parameter Estimation Technique of Rabehl, et al. 

Rabehl, et al. (1999) presented a technique for developing models that can 

accurately reproduce cooling coil performance. This technique employed mechanistic 

relations with unspecified parameters as the basis for model relations. Catalog 

information is then used to estimate the optimal values of the parameters. Only a few 

geometric specifications are required. This technique is based on the fundamental heat 

and mass transfer correlations that are manipulated so that all geometric terms are lumped 

into characteristic parameters. Then the values of parameters are determined from curve 

fits to catalog data. 

The author classified the models for heat exchangers by the degree of complexity 

and empiricism incorporated. Two extreme ends exist: at one end of the spectrum are 

simple models that highly empirical and require few geometry specifications; at the other 

end, detailed models for heat exchangers and coils have been developed. These detailed 

models are based on fundamental heat and mass transfer relations, but many require 

details on construction that are not often available from manufacturers' catalogs. 
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For chilled water cooling coil, the overall heat and mass transfer coefficient was 

assumed to be based on two heat transfer resistances in series: the convection heat 

transfer resistance between the tube fluid (e.g. chilled water) and the tube wall; and the 

convection heat transfer resistance between the tube/fin surface and the air. The 

resistance of the heat exchanger wall is neglected. The two convection resistances are 

assumed to have the same form of heat transfer coefficient: 

(2.72) 

where C, m, and n are specific values for a given flow geometry. For the heat 

transfer coefficient between the tube/fin surface and the air, the Nusselt number relation 

of Zhukauskas was used as the basis for the model. Equation (2. 72) was modified by 

introducing parameters that account for specific characteristics such as flow area, surface 

area, tube bank arrangement, fin efficiency, and fluid type. Generalizing Equation (2. 72) 

yielded an equation for the heat transfer coefficient-area product in terms of the mass 

flow rate and fluid properties: 

(2.73) 

where C1 and C2 are parameters that need to be determined. The effect of property 

variations across the flow were expressed as a Prandtl number ratio since the external 
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fluid is air. C1is a convection coefficient correction factor that accounts for the totally 

wet operation. 

The heat transfer coefficient between the inner fluid and the tube wall was based on 

the Sieder-Tate equation. In a manner similar to that for Equation (2.73), the relation for 

the heat transfer coefficient-area product inside the tubes was modified to be: 

(2.74) 

The values of the three characteristic heat transfer parameters C1, C2 and C3 need to 

be fit using catalog data points. 

2.2.7. Reciprocating Compressor Model of Popovic and Shapiro 

Popovic and Shapiro (1995) proposed a semi-empirical model for modeling a 

reciprocating compressor in refrigeration systems simulations. The model is based on 

thermodynamics principles and a large database. The purpose of the model is to reduce 

the amount of data required to completely characterize compressor performance using 

alternative refrigerants. Two compressor performance parameters were defined. An 

effective pressure drop accounts for mass flow losses in the compressor, while 

numerically determined functional dependence of the heat transfer loss coefficient is 

related to compressor energy losses. The model depicted compressor operation with 
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reasonable accuracy. The model predicted mass flow rates and required compressor 

power for all data points within I 0% of relative error. 

As claimed by the authors, the McQuiston and Parker (1994) volumetric efficiency 

compressor model was the starting point in the model development. Several assumptions 

are incorporated into the modeling procedure. The final equation determining the 

refrigerant mass flow rate through the compressor is: 

m = RPD·RPM[1+c-c(pdis Jun] 
Vsuc psuc 

where m = refrigerant mass flow rate, kg/s or lbm/hr 
,J 

RPD = rate of piston displacement, m3/RPM or ft3/RPM 

RPM = compressor motor shaft speed (revolutions per minute) 

v sue = specific volume for suction state, m3 /kg or ft3 /lbm 

C = clearance factor 

Pdis = pressure at discharge state, kPa or psia 

~uc = pressure at suction state, kPa or psia 

n = polytropic exponent 

(2.75) 

However, according to the literature survey, Threlkeld might be the first researcher 

who systematically presented the thermodynamic description of a mechanical vapor 

compression refrigeration cycle. In the book titled 'Thermal Environmental Engineering' 

published in 1962, he provided a few important definitions and equations that are still 
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widely used nowadays. The coefficient of performance expresses the effectiveness of a 

refrigeration system, it is a dimensionless ratio defined by the expression: 

Useful Refrigerating Effect 
C.O.P.=~~~~~~~~~~~~~~~-

Net Energy Supplied From External Source 

For a mechanical-compression system, work must be supplied by an external 

source, thus: 

Q 
C.0.P=-

W 

where Q = refrigeration capacity, kW or Btu/hr 

W = power consumption, kW or Btu/hr 

(2.76) 

(2.77) 

In the model developed by Popovic and Shapiro (1995), the comparison was 

originally run assuming no pressure drops. Refrigerant mass flow rates calculated by 

Equation (2.75) significantly overestimated the measured mass flow rate. Thus, the 

presence of suction and discharge pressure drops was considered. Pressure drops were 

assumed to be processes with constant enthalpy in order to fix suction and discharge 

states for the compressor. To simplify the problem, the magnitudes of the suction and 

discharge pressure drops were set equal. 

Accurate prediction of a refrigerant mass flow rate requires knowledge of the· 

clearance factor, pressure drops, polytropic exponent, refrigerant inlet state, and 
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refrigerant outlet pressure. The clearance factor is a compressor design parameter that 

depends on compressor cylinder geometry. Unfortunately, compressor manufacturers 

were not willing to release this information. Hence, the clearance factor had to be taken 

as unknown parameter. The pressure drops were also taken as unknown, but were set 

equal to each other. In order to determine these three compressor parameters it was 

decided to vary each one looking for the minimum relative error between the calculated 

and measured mass flow rates. 

2.2.8. ARI Standard 540-99 

ARI standard 540-99 is to establish for positive displacement refrigerant 

compressors and compressor units for refrigeration application. This standard is intended 

for the guidance of the industry, including manufacturers, engineers, installers, 

contractors and users. In this standard, it is required that general performance data, 

covering the operational spectrum of the equipment be presented in tabular form within 

defined accuracies and ranges of operation. It is also required that a third order 

polynomial equation of 10 coefficients be used to represent the tabular data in the 

following form, 

Where C = equation coefficient, represents compressor performance 

S = suction dew point temperature, °C or °F 
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D = discharge dew point temperature, °C or °F 

X represents (as designated): 

Power input, W or kW 

Mass flow rate, lbs/hr or kg/hr 

Current, A 

Compressor or compressor unit efficiency 

2.2.9. Ganesh et al. Coil Model 

A new coil model (Ganesh 1987) for cooling and heating was employed by Ganesh 

et al. (1989) as a component in the overall system with either single phase ( chilled or hot 

water coil) or two phase (DX or steam coil) fluid through the tubes. The effect of various 

coil parameters on the overall HV AC system performance was also studied. 

Ganesh (1987) modeled steady state performance of heating and cooling coil with 

both one and two phase heating or chilled fluid flowing through the tubes. Once the inlet 

conditions of air and tube fluid is specified along with coil geometric configuration, the 

outlet conditions are predicted. The inlet air conditions include air flow rate, maximum 

air velocity, dry and wet bulb air temperatures. Coil configuration to be specified 

includes coil face area (length and height), tube outside diameter and thickness, tube, row 

and fin spacings and number of rows. If single phase fluid is used through tubes, inlet 

conditions are fluid velocity and temperature while for two phase fluid the inlet 

conditions is just the evaporating or condensing temperature. 
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In single phase flows, fluid inlet temperature and velocity are specified. In typical 

performance type calculation the length and height of the coil are specified and the 

temperature drop or rise is obtained form the program. In addition the program also 

calculates outlet air dry and wet bulb temperatures along with the total heat transfer. Coil 

circuitry is important since it influences the liquid mass flow and a standard coil with 

single row serpentine configuration and 'U' bends at opposite ends was assumed. In two 

phase flows, the inlet and exit conditions are fixed for the tube fluid and the mass flow 

rate is iterated such that both the thermodynamic and heat transfer relations are satisfied 

by suitable adjustments to the aspect ratio, if necessary. The output from the program is 

outlet air dry and wet bulb conditions and the total heat transfer. Sensible and latent 

components are also calculated. Coil circuitry is not critical for heat transfer calculation 

since the mass flow rate is iterated for convergence. 

The following assumptions were made: 

1) Heat transfer between heat exchanger and surroundings is negligible and that 

there are no thermal energy sources within the heat exchanger. 

2) Only transverse heat flow across the tube wall is considered. First law of 

thermodynamics (ignored kinetic and potential energy changes) for an open 

system applied to both air side and tube fluid side. The heat exchanger equation 

(cross or counter-flow) is described by the log-mean temperature difference for 

the dry coil and by the log-mean enthalpy difference for the wet coil. 
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3) Thermophysical properties of moist air and tube fluid due to total pressure drop 

through the heat exchanger is negligible. 

The main criteria used to determine whether a cooling coil is completely dry or 

completely wet or partially dry/wet is analogous to that used by Elmahdy and Mitalas: 

1) If coil surface temperature at air inlet section is less than the dew point 

temperature of air at the inlet then the coil surface is all wet. 

2) If the surface temperature at the air outlet section is greater than the dew point 

temperature of air at the inlet then the coil is completely dry. 

3) If neither 1 or 2 is satisfied then the coil is partially dry/wet. 

The derivation of the equations for the dry and wet portions of the coil is given in 

detail by Elmahdy and Mitalas (1977). 

• Cooling coil model for single phase tube fluid 

For cooling coils it is possible that dehumidification starts occurring at some point 

along the length of the coil when the coil surface temperature is less than the dew point 

temperature. This identification of the boundary is important since different equations 

and correlations apply to the dry and wet portion of the coil. Figure 2.8 gives a schematic 

of a cooling and dehumidifying coil along with the appropriate variables. 
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Figure 2.8. Schematic of cooling and dehumidifying coil 

Dry surface: 

Q = UodAod/1ttm 

Q = heat transfer rate, kW or Btu/hr 

ta1 = entering air temperature, °C or 0 P 

ta2 = air temperature at interface, °C or 0 P 

tw2 = tube fluid temperature at interface, °C or 0 P 

tw3 = leaving tube fluid temperature, °C or 0 P 

74 

(2.79) 

(2.80) 

(2.81) 



Uod = overall heat transfer coefficient, dry, kW/(m2-°C) or Btu/(hr-ft2-°F) 

Aod = tube outside area, m2 or :ft2 

Atzm = log mean temperature difference, °C or °F 

ma = air mass flow rate, kg/s or lbm/hr 

Cpa = air specific heat, kJ/(kg-°C) or Btu/(lbm-°F) 

mw = tube fluid mass flow rate, kg/s or lbm/hr 

Cpw = tube fluid specific heat, kJ/(kg-°C) or Btu/(lbm-°F) 

Solving the above system, 

where K 1 = x(z -1) 

K2 =Z(X + Y)!W 

ta2 =tal -Ki(tal -fw2) 

(w3 =fal -Kz(tal -fw2) 

Z = exp{U0 dAod (X + Y)} 

W=XZ+Y 

Coil surface temperature is computed from 
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fs2 = coil surface temperature, °C or °F 

R0 = outside tube thermal resistance, m2-°C/kW or hr-ft2-°F/Btu 

R1 = inside tube thermal resistance, m2 ~°C/kW or hr-ft2-°F/Btu 

R1= fin thermal resistance, m2-°C/kW or hr-ft2-°F/Btu 

Rp = tube thermal resistance, m2-°C/kW or hr-ft2-°F/Btu 

Re= calculated thermal resistance, m2-°C/kW or hr-ft2-°F/Btu 

h1 = inside tube film heat transfer coefficient, kW/(m2-°C) or 

Btu/(hr-ft2-°F) 

2 ft2 Aptd = area, m or 

F = fouling factor 

b; = tube thickness, m or ft 

kt= tube conductivity, kW/(m-°C) or Btu/(hr-ft-°F) 

Apa = area, m2 or ft2 

he= calculated film heat transfer coefficient, kW/(m2-°C) or 

hod= outside tube heat transfer· coefficient, kW/(m2 -°C) or Btu/(hr-ft2-°F) 

T/od = fin effectiveness 
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wet surface: 

where X'= 1/ ma 

Q = (ha2 -ha3 )/ X' 

Q = (hswl -hsw2 )/ Y' 

(2.85) 

(2.86) 

(2.87) 

In the analysis 'b' was assumed as constant since over a small range of tube fluid 

temperature variation this is valid. 

Where ha2 = air enthalpy at interface, kJ/kg or Btu/lbm 

ha3 = outlet air enthalpy, kJ/kg or Btu/lbm 

hswl = tube surface enthalpy at tube fluid inlet, kJ/kg or Btu/lbm 

hswl = tube surface enthalpy at tube fluid outlet, kJ/kg or Btu/lbm 

U0 w = Pseudo overall heat transfer coefficient based on air enthalpy 

difference, kW-m2-kJ/kg or Btu/hr-ft2-Btu/lba 

A0 w = area, m2 or ft2 
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,1htm = log mean enthalpy difference, kJ/kg or Btu/lbm 

tw1 = inlet tube fluid temperature, °C or °F 

Solving the above system, 

where K 3 =(X'+Y')!W' 

K 4 =X'(Z'-1) 

K 5 =Z'(X'+Y')IW' 

K 6 =Y'(l-Z')!W' 

Z' = exp{U owAow (X'+ Y')} 

W'=X'Z'+Y' 

Coil surface temperature is computed from: 

where LR =b)Ri +R1 +RP +RJ+bwRo =ll(U0 wA0 w) 

R; = 1 !(h;Apiw) 
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R1 =FI Apiw 

RP = <5, !(k,Apiw) 

Re= I1(Ap0 hJ 

R0 =·l f(h0w'l owAow) 

bp = value of slope 'b' evaluated at mean pipe temperature 

bw = value of slope 'b' evaluated at mean water film temperature 

t82 is obtained from hs2 by Newton-Raphson method, depending on the type of fit 

for hs2=<lXJs2). Care should be taken such that ts2 converges to the desired root. If hs2 is 

linear in t82 in the temperature range within the coil, then t82 may be solved exactly. 

Outlet air temperature is calculated using the ARI Std 410-81 relation: 

Partly dry and wet coil: 

ta3 =ts3 +(ta2 -ts2)exp(-N) 

N = Aowhow'low l(C pama) 

(2.92) 

(2.93) 

The appropriate equations for the dry and wet portion of the coil are applied, once 

the boundary between the dry and wet regions is computed. 

Determination 9f boundary between dry/wet regions: 

(2.94) 
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or 

ha2 = hal -K,C pa (tal -fw2) (2.95) 

Equations (2.94) and (2.95) give: 

(2.96) 

Since fw2 is the only unknown in Equation (2.96), it may be computed by Newton

Raphson technique or by solving for fw2 exactly if hsw is linear in fw. Once fw2 is computed 

all other quantities may be found. However, the boundary would be computed only when 

the coil surface temperature at the boundary is equal to the dew point temperature. An 

iterative algorithm was adopted. This simple algorithm always converged to the 

boundary, since if at any point, ts2~tdp2 we know that the boundary is definitely wet at that 

point, and that we should increase the wetted surface area. If fs2>fdp2 we know that the 

surface is dry at that point and that we should decrease the wetted surface area. 

If the coil is partially or fully wet, one has to iterate for the mean pipe and water 

film temperature. In the present situation, fixed point iteration was employed and there 

was no problem of convergence. The equation used to check the assumed values of fp and 

fw are as follows: 

(pm =fw,av +UowAow(hav -hsw,av)/(h;Awi) (2.97) 

hsw,m =hav -Cpahowuow !(bwhod){I-bpUowAow !(h;Awi)Khav -hsw,av)c2.98) 
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twm is then computed from Equation (2.96). 

• Heating coil model for single phase tube fluid 

In this case, the coil is always dry and the calculations are simplified considerably. 

The equations for cooling and dehumidifying coils for dry surface are true there. 

• Coil models for two phase tube fluid 

Evaporating refrigerant through tubes: 

The temperature of evaporating refrigerant tR is assumed constant through the tubes. 

The expressions for cooling coil model for single phase tube fluid are also valid here, but 

for two important changes: 

1) set Y=O= Y'. This may be considered equivalent to sending liquid refrigerant with very 

high velocities through the tubes with twl being set equal to tR. 

2) inside film heat transfer coefficient hi for evaporating refrigerant is given by Bo 

Pierre's correlation for complete evaporation: 

Nu,p = hid I k1 = 0.0082(Re 2 K 1 )°"5 for 109 <Re2Kf<0.7x 1012 and up to 11 °F superheat. 

This correlation is within + 10% and -20% with experiments. 

Condensing steam through tubes: 

This includes the following changes to the equations presented for heating coils 

with single phase tube fluid: 
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1) tc=twl, Y=O=Y' 

2) inside film heat transfer coefficient hi is given by the correlation due to Akers et al. 

(1959), which correlates experimental data to within 20%: 

Nu 1P = hid I k1 = 5.0300Re0.33 Prz°"33 Re<5x104 

Nu 1P = hid I k1 = 0.0625 Re 0·80 Prz°"33 Re>5x104 

The investigation extended the application of the new coil mode (Ganesh 1987) to 

other systems and showed how this model may be integrated with the performance of 

primary system components to estimate energy requirements during part-load operation. 

The part load simulations using chilled or hot water coil was based on the 

performance curves for water chilling and heating equipment. Once the coil dimensions 

were specified, the chilling unit performance was described by two biquadratic-type 

equations relating the refrigerating capacity and compressor power to the suction 

(evaporating) temperature, and the outdoor air dry-bulb temperature as follows: 

Qref =C, +C2fe +C3f 0 +C4t; +C5t; +C6tefo +C7t;t0 +C8ti; +C9t;t; (2.99) 

pc =C, +C2te +C3to +Ci; +C5t; +C6tio +C7t;to +Csti; +C9t;t; (2.100) 

where C1, C2, .. . C9 are regression coefficients obtained by fitting regression 

equation to manufacturers' data. In the present situation, these equations were fitted to a 

commercially available condensing unit. and, 
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Qref:= refrigerating capacity, kW or Btu/hr 

Pc= compressor power, kW or Btu/hr 

te = suction ( evaporating) temperature, °C or 0 P 

t0 = outdoor air dry bulb temperature, °C or 0 P 

Exhaust Return Air 

Outside Air 
Coil 

Valve 

Primary System 

Figure 2.9. Schematic of simple HV AC system 

Space 

A separate program was developed that performs multiple linear regression analysis 

to fit manufacturers' data in order to come up with the essential coefficient. The 

algorithm was obtained from Chapra and Canale (1985). Once the performance curves 

for the chilling and heating plant were input, the stage was set for part load simulations. 

Two iterative processes were involved: (1) for chilled or hot water flow rate convergence 

and (2) for humidity ratio convergence in space. In practice, chilled or hot water flow 

control may be attained by a three-way or modulating valve. 
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The part load simulations using DX coil that was a part of a vapor compression 

refrigeration system should be different. The expansion valve throttled the refrigerant 

such that a constant temperature was maintained at the evaporator during part-load 

operation. The mass flow rate of the refrigerant through the coil was adjusted such that 

thermodynamic and heat transfer relations were satisfied, and the convergence for air 

temperature off the coil and space humidity ratio were complete. This numerical control 

strategy has drawback, since a low evaporating temperatures ( desirable due to the higher 

refrigeration capacity) and low loads, mass flow rates become very small and numerically 

it is possible for them to become negative. In such situations it would be appropriate to 

increase the evaporating temperature, which would result in a higher mass flow rate. The 

compressor performance was described by two biquadratic-type equations relating the 

refrigerating capacity and compressor power to the suction ( evaporating) temperature and 

the condensing temperature as follows: 

Qref = C1 +Cife +Cic +Ci; +C5t; +C6tic +C1t;tc +C8ti; +C9t;t; (2.101) 

Pc = C1 + C2te + Cic +Ci;+ C5t; + C6tic + C1t;tc + C8ti; + C9t;t; (2.102) 

where Ci, C2, .. . C9 are regression coefficients obtained by fitting regression 

equation to manufacturers' data. Data were fitted to a commercially available six-cylinder 

compressor . ..And, 

Qref~ refrigerating capacity, kW or Btu/hr 

Pc= compressor power, kW or Btu/hr 

te = suction ( evaporating) temperature, °C or °F 
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t0 = ·outdoor air dry bulb temperature, °C or °F 

2.2.10. Hassab and Kamal Coil Model 

A model for the design of plain tube air coolers under wet, partially dry, or totally 

dry conditions was presented by Hassab and Kamal (1988). The authors give credit to 

Goodman (1938, 1939) for the fundamental work done half a century ago. Goodman 

assumed that the air-side heat transfer coefficient was the same for dry operating 

conditions as for condensing conditions. He suggested the correct driving potential for 

the energy transfer during forced flow condensation is the enthalpy potential. Departing 

from Goodman's classic approach (Goodman 1938, 1939), the new model employed new 

correlations for the heat and mass transfer coefficient within the heat exchanger to predict 

the variation of air states along the length, i.e., from one row to the next. The model was 

verified using a large number of test cases covering a wide range of flow rates and inlet 

conditions. It was then utilized to study the influence coil design parameters as well as air 

and water inlet conditions on its performance, characterized by the cooling load, air 

temperature drop, and the coil sensible heat factor. The comparison with experimental 

results proved the superiority of the model over procedures employing the Lewis relation. 

When moist air is cooled in a cooling and dehumidifying coil, the moisture in the 

air is partially condensed into water in the part of coil whose temperature is lower than 

the local dew point of the air at this section of the coil. The simultaneous heat and mass 

transfer equations must be applied between air stream and the interface on one side in 
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conjunction with a heat transfer analysis between the cooling water and the interface on 

the other side. In the model the following assumption were made: 

1. The basic equations are applied across each row of the coil. 

2. The enthalpy of the condensate water is neglected. 

3. The property of the air are evaluated at each row, based on the local mean temperature. 

4. The mass transfer coefficient and heat transfer coefficient which are considered to vary 

from row to row are related through the correlation reported by Kamal and Hassab (1986) 

and given by: 

K C [T -T ]-o.7 
di pa = 1 _34 dpi si (T . > T . ) 
h . T. - T . ' dpi Sl 

al l Sl 

(2.103) 

where the dew point temperature, Tdpi is related to the water vapor pressure, P w ( in 

kPa, by the following correlation: 

and, 

Tdp = 6.972 + 14.427 ln(Pw )+ 1.05[1n(Pw )]2 

Kdi = local mass transfer coefficient for air, kg/m2-s or lbm/ft2-m 

Cpa = air specific heat at constant pressure, kJ/(kg-°C) or Btu/(lbm-0 P) 

hat= local heat transfer coefficient for air, kW/(m2-°C) or Btu/(hr-ft2- 0 P) 

Tsi = tube surface temperature at the ith row, °C or 0 P 

T1 = temperature of air outside boundary layer, °C or 0 P 
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conjunction with a heat transfer analysis between the cooling water and the interface on 

the other side. In the model the following assumption were made: 

1. The basic equations are applied across each row of the coil. 

2. The enthalpy of the condensate water is neglected. 

3. The property of the air are evaluated at each row, based on the local mean temperature. 

4. The mass transfer coefficient and heat transfer coefficient which are considered to vary 

from row to row are related through the correlation reported by Kamal and Hassab (1986) 

and given by: 

K C [T -T ]-o.7 

di pa = 1.34 dpi si (r . > T.) 
h . T. - T . ' dp, SI 

QI l Sl 

(2.103) 

where the dew point temperature, Tdpi is related to the water vapor pressure, P w (in 

kPa, by the following correlation: 

and, 

Tdp = 6.972 + 14.427 ln(Pw )+ 1.05[1n(Pw )]2 

Kdi = local mass transfer coefficient for air, kg/m2-s or lbm/ft2-m 

Cpa = air specific heat at constant pressure, kJ/(kg-°C) or Btu/(lbm-0 P) 

hai = local heat transfer coefficient for air, kW/(m2-°C) or Btu/(hr-ft2- 0 P) 

Tsi = tube surface temperature at the ith row, °C or 0 P 

Ti = temperature of air outside boundary layer, °C or 0 P 
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Based on these assumptions, the governing equations for the process occurring in 

the differential area equal to the area of any row i may be written for cases of wet and dry 

surface conditions as follows. 

Wet surface: 

1. Mass transfer: 

(2.105) 

2. Sensible heat transfer from the air: 

(2.106) 

3. Total energy transfer form the moist air: 

(2.107) 

4. Heat transfer to the chilled water: 

(2.108) 

where mci = mass transfer rate, kg/s or lbm/hr 
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ma =airmass flow rate, kg/s or lbm/hr 

Wi = humidity ratio of the air outside boundary layer, kg/kg dry air or 

lbm/lbm dry air 

Ai = coil surface area, m2 or ft2 

Wsi = air humidity ratio at tube surface, kg/kg dry air or lbm/lbm dry air 

Qai = sensible heat transfer rate, kW or Btu/hr 

Qi = total heat transfer rate, kW or Btu/hr 

hJgi = latent heat of water vapor, kJ/kg or Btu/lbm 

U = overall heat transfer coefficient on the water side, kW/(m2-°C) or 

Btu/(hr-ft2-°F) 

Two= outlet temperature of cooling water, °C or °F 

Twi = inlet temperature of cooling water, °C or °F 

mw = mass flow rate of cooling water, kg/s or lbm/hr 

j 

Cpw = air specific heat at constant pressure, kJ/(kg-°C) or Btu/(lbm-°F) 

Substitution of Equations (2.106) and (2.107) into Equation (2.108) gives: 

(2.109) 

From Equation (2.109) one obtains: 

(2.110) 
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Wh U = . C ti- -U oA;lmwCpw Ji s: A. ere e mW pw e U I 

Once the moist air becomes saturated at any section of the air cooler, it must remain 

saturated over the rest of the coil following that section. Under this restrictive condition, 

the mass transfer coefficient is to be determined at each row based on relative humidity 

equal to 100%. Accordingly, the process of cooling saturated air can be described by 

Equations (2.109) and (2.110) for the unknowns T1+ 1, oQi, and Tst, respectively. 

Elimination of oQi and Tst between these equations leads to the following equation for 

(2.111) 

In above equation, the humidity ratio Wt+J is a known function of Ti+1 only since air 

is saturated. After solving this equation for the temperature Ti+1 (and Wt+i) using an 

iterative scheme, the variables Tst, oQi and oQai can be determined from Equations 

(2.109) and (2.110), respectively. Knowning Tst (and Wst) the mass transfer coefficient, 

Kdt can be determined at each row from Equation (2.108) as: 

(2.112) 

Dry surface: 
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When the dew point temperature of the air Tdpi at row i becomes less than the 

temperature of the air at the interface Tsi, the outer surfaces of the tubes of this row will 

be dry. In this case, the moisture in the air will not condensate, and the air is sensibly 

cooled. To determine the interface temperature Tsi, Equation (2.111) and Equation 

(2.112) are combined yielding: 

(2.113) 

The other variables, ciQi (which equals ciQai) and Ti+ 1, can be determined from 

Equation (2.109). 

Having evaluated the conditions of air at row i, the solution can advance up to the 

last row at which the conditions of the air and coolant leaving the coil are established. 

Furthermore, the total and sensible energy transfer from the air as well as the rate of the 

condensation on the coil are obtained by summing up their elemental quantities thus, 

n 

Qa = IoQai (2.114) 
i=l 

The coil sensible heat factor, a key design factor, is defined as: 
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SHF=Qa IQ (2.115) 

2.2.11. Khan Coil Model 

A heat and mass transfer performance analysis of a cooling and dehumidification 

coil at part load operating conditions was presented by Khan (1994). For this purpose, a 

set of coupled differential equations describing the heat and mass transfer from a water 

cooled coil is solved numerically. Several controlling parameters are identified to analyze 

the part load performance of a coil that is allowed to operate under dry, partially wet, and 

completely wet modes. Air side enthalpy and humidity effectiveness are defined and used 

to report the part load performance. Finally, the part load performance as predicted by the 

numerical model is compared with an easy-to-use procedure and with catalog data for 

commercially available cooling coils. 

ha 
~ 

~ .... 

a 
... ~ 

ta t a .. ... ... ... 

Control Volume 

Figure 2.10. Schematic for counter flow cooling coil control volume 
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A differential control volume in a typical counter flow cooling and 

dehumidification coil is used to develop the governing equation. The following 

assumptions are made in the derivation of equations. 

1. Dry air and water vapor in the air are treated as a non-reacting mixture of ideal gases. 

2. Air and water flow directions are in an overall counter-flow configuration, as the local 

cross-flow effects in each control volume are neglected. This assumption is valid, as the 

performance of a cross-flow heat exchanger approaches that of a counter flow heat 

exchanger when the number of the tube passes is greater than four. 

3. The air side heat transfer coefficient includes the additional thermal resistance due to 

the presence of dry, partially wet, or completely wet extended surfaces. 

4. Both the air and the water are well mixed in the cross section normal to its flow; 

therefore, only gradients for each fluid exist in their respective flow directions. 

5. In the case of dehumidification, the condensate is removed by gravity from the coil 

surface. <> 

After the above assumptions are made, the change in the bulk air enthalpy and 

humidity ratio and the change in water temperature for the control volume considered in 

Figure 2.10 can be written as 

dha -- NTUo [(h -h )+(w -w {_l -lJh ] 
dAO - Ao a s,t, a s,t, \ Leo v,t, 

(2.116) 

(2.117) 

and 
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and 

dtw NTU; ( ) -= t -t 
dA. A. w s 

I I 

(2.118) 

where 

h .A. 
NTU. = c,1 ' 

I • C 
mW p,W 

(2.119) 

h A NTU = c,o o 
o • C ma p,m 

(2.120) 

(2.121) 

where ha = specific enthalpy, moist air, kJ/kg or Btu/Ihm 

Ao = outside surface area, m2 or ft2 

NTU0 = number of transfer unit for outside surface 

hs,ts = specific enthalpy of saturated air at surface temperature, kJ/kg or · 

Btu/Ihm 

Wa = air humidity ratio, kg/kg dry air 

Ws,ts = saturated air humidity ratio at surface temperature, kg/kg dry air 

Le0 = outside surface Lewis number 

hv,ts = specific enthalpy of water vapor at surface temperature, kJ/kg 

tw = water temperature, °C or °F 

Ai = inside surface area, m2 or :ft2 

NTUi = number of transfer unit for inside surface 
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ts = surface temperature, °C or °F 

hc,i = inside surface convective heat transfer coefficient, kW/(m2-°C) or 

Btu/(hr-fr-°F) 

rhw = water mass flow rate, kg/s or lbrn/hr 

Cp,w = constant pressure specific heat of liquid water, kJ/(kg-°C) or 

Btu/(lbm-°F) 

hc,o = outside surface convective heat transfer coefficient, kW/(m2-°C) or 

Btu/(hr-fr-°F) 

rha = dry air mass flow rate, kg/s or lbrn/hr 

Cp,m = constant pressure specific heat of moist air, kJ/(kg-°C) or 

Btu/(lbm-°F) 

hd,o = outside surface mass transfer coefficient, mis or ft/m 

hfts = specific enthalpy of condensate water at surface temperature, kJ/kg 

Also the equations for conservation of energy and mass for this control volume can 

be written as 

(2.122) 

and 

drh = drh = 0 a w (2.123) 

Thus, Equations (2.119) through (2.121) along with Equation (2.122), constitute the 

set of equations that can be solved for a given value of NTU0 , NTUi, Le0 , the water-to-air 
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mass flow rate ratio, and the air and water inlet conditions to predict the air and water exit 

conditions for a cooling coil. 

2.2.12. Expansion Device 

The expansion device for controlling the refrigerant flow is normally a thermostatic 

expansion valve for heat pumps (ASHRAE 1996). A capillary tube is also used for some 

cases. But it may pass refrigerant at an excessive rate at low back pressures, causing 

liquid flood-back to the compressor. The thermostatic expansion valve controls the flow 

of liquid refrigerant entering the evaporator in response to the superheat of the gas 

leaving it. It functions to keep the evaporator active without permitting liquid to return 

through the suction line to the compressor. The thermostatic expansion valve is widely 

used for controlling refrigerant flow to all types of evaporators in air conditioning 

equipment (industrial, commercial, and residential applications). The capillary tube is 

especially popular for smaller unitary hermetic equipment. A wide range of conditions is 

often essential for heat pumps and a capillary tube won't be able to operate correctly over 

as wide a range of conditions as does a thermostatic expansion valve. Capillary tubes are 

not usually chosen as the expansion device for heat pumps. However, capillary tubes are 

less costly and may perform nearly as well for smaller units operating under a relatively 

narrow range of conditions. In the heat pump models previously developed, no matter 

what expansion device ( capillary tube or thermostatic expansion valve) the authors 

claimed has been incorporated and simulated, usually an adiabatic throttling process was 

assumed. The heat pump models did not explicitly model the expansion device. The 
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refrigerant mass flow rate was determined by the compressor model. For example, this 

assumption can be found in the Greyvenstein (1988)'s heat pump model. It is a simplified 

approach to model the performance of the expansion device in heat pumps. However, 

since the target of those models is not trying to re-design the heat pump to improve its 

performance based on a more sophisticated evaluation of the expansion device, this 

simplification may be acceptable. 

2.2.13. Modeling of Rotary Compressors 

2.2.13.1. Analysis of Chu, et al. 

The exact performance of a hermetic rolling-piston type rotary compressor used for 

domestic room air conditioner has been evaluated concerning with volumetric efficiency 

and power consumption (Chu, et al. 1978). To compute the power consumption, the 

authors considered gas compression work, mechanical loss, and driving motor loss. 

The gas compression work is estimated based on the polytropic compression work, 

over-shooting loss in the discharge stage, under-shooting loss in suction stage, gas 

leakage loss, heating loss by oil leakage, and compression loss of the top clearance 

volume. The polytropic compression work is calculated as, 

L,. = v,17, n~ I P,G{(;, f-11 (2.124) 

where v2 = specific volume at the suction state, m3 /kg or ft3 /lbm 
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1/v = volumetric efficiency 

n = polytropic exponent 

Ps = suction pressure, kPa or psia 

G0 = theoretical refrigerant mass flow rate, kg/s or lbm/hr 

Pd = discharge pressure, kPa or psia 

Under-shooting in suction stage is reduced since no suction valve is present. Other 

losses are evaluated with integration of the parameters of detailed configuration and 

status data. 

2.2.13.2. Analysis of Wakabayashi, et al. 

Another analysis of the performance of a rolling piston type hermetic compressor 

for a room air conditioner has been presented by Wakabayashi et al. (1982). Influence of 

several factors on compressor performance were studied experimentally. Cylinder 

pressure as well as temperatures of refrigerant gas, oil, and cylinder wall were measured. 

A detailed distribution and rates of losses were calculated from the measurements. The 

heat exchange in the cylinder was simulated. The results from the simulation were found 

to agree with the experimental data favorably. The theoretical power was expressed by 

Equation (2.125), 

(2.125) 

where k = adiabatic exponent 
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Ps = suction pressure, kPa or psia 

Vs.= specific volume of suction gas, m3 /kg or ft3 /Ihm 

Gs = measured gas flow rate, kg/s or lbm/hr 

Pd = discharge pressure, kPa or psia 

Simulation results such as leakage of hot refrigerant gas and oil through piston 

clearances, and heat transfer from cylinder wall to gas in cylinder have been compared 

with the experimental results. The authors concluded that decreasing heat transfer loss 

was very important for improving performance as well as decreasing leakage loss. 

2.2.13.3. Simulation Model for Fixed Vane Rotary Compressor of Gyberg and 

Nissen 

Gyberg and Nissen (1984) presented a model based on a control volume for suction 

and pressure volume. The first law of the thermodynamics and the law of continuity ub 

dynamic form are used on these control volumes. This means the thermodynamic 

properties, mass flow, heat effect and compression power are calculated as a function of 

the time or angle of rotation instead of a static average value. 
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2.2.13.4. Model of Rotary Compressor to Simulate its Transient Behavior by 

Y anagisawa et al. 

A mathematical model of rotary compressor which can predict its transient behavior 

has been developed by Y anagisawa et al. (1990). The model takes compression work and 

heat transfer into consideration and consists of governing differential equations on 

specific enthalpy of refrigerant and temperature of a compressor body. To obtain a good 

agreement between model prediction and experimental results, some parameter values are 

used as follows, 

(1) compression power- shaft power of motor 

(2) representative temperature of heat transferring refrigerant in lower chamber

average of temperature after receiving compression power and temperature in 

lower chamber 

(3) representative temperature of heat transferring refrigerant in upper chamber

average of lower chamber temperature and upper chamber temperature 

(4) product of heat transfer coefficient and heat transfer surface area- empirical 

value estimated from compressor performance at standard operating condition. 

2.2.13.5. An Analytical Model for Rotary Air Compressor by Huang 

Huang (1999) developed an analytical model for a rotary compressor with 

diagonally symmetrical two inlet ports and two outlet ports, elliptical inner contour stator 
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and sliding blades. The displacement, velocity, acceleration of the blades were studied. 

The effects of the polytropic exponent and blades number on the air pressure and 

temperature were investigated using the continuity equations, ideal gas relation, 

compression polytropic process and conservation of energy. A value for the polytropic 

exponent is selected for prediction of the fluid properties, interactions of the blades with 

the rotor and the stator, and efficiency for the specified compressor. The blade segment 

volume, friction power loss and flow rate versus the rotor rotational speed are also 

analyzed. 

2.2.13.6. Dynamic Analysis of a Rotary Compressor by Padhy 

A theoretical treatment of the roller and vane dynamics of the rotary compressor has 

been presented by Padhy (1994). The total linear roller velocity at the vane and roller 

contact line is evaluated. The change in direction for the forces are incorporated. The 

vane slapping motion has been determined form the direction of the vane side reaction 

forces. Roller velocity was measured using high speed video technology and good 

agreement is found between the experimental data and the theoretical results. 

2.2.13. 7. A Simulation Model of an A/C Rotary Vane Compressor by Takeshita 

A simulation model for rotary vane compressor has been developed by Takeshita 

(1997). The features of this model are the compression algorithm that makes extensive 

use of entropy tracking and the real R134a properties in the form oflook-up table rather 
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than a polytropic equation. Compression process was modeled as an isentropic process 

with mass flow into and out of the compression chamber and flow through the valves. 

The simulation output included torque, torque variance, heat capacity, coefficient of 

performance. Two simulation examples have been presented to demonstrate how the 

model could provide useful insight for the design and part optimization. 

2.2.13.8. A Computer Simulation of a Rotary Compressor by Ooi and Wong 

Analytical studies of a fractional horse-power rotary refrigeration compressor has 

been presented by Ooi \ind Wong (1997). The model was used in assisting the design of 

new compressors. The study also paved a way for more comprehensive simulation 

studies and for possible overall computerized optimization design study in the future. The 

model incorporated basic working principles of the compressor, thermodynamic 

simulation of the working chamber, valve flow and valve dynamics, as well as the 

mechanical losses of the moving components. 

2.2.13.9. Heat Transfer Analysis of a Rolling-Piston Rotary Compressor by Padhy 

and Dwivedi 

Mathematical modeling of the heat transfer of a rolling-piston compressor has been 

described by Padhy and Dwivedi (1994). It is also called 'a lumped mass model' by the 

authors. The system equations were developed using the thermal conductance concept. 

Heat transfer coefficients were calculated from the empirical/theoretical equations 
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adapted from various sources. Mechanical and electrical losses were considered as heat 

additions to the system. The model is capable of predicting the temperature of the 

compressor at different locations, calculating the various heat transfers between 

components and evaluating the mechanical losses at various interfaces. 

2.2.13.10. A review of Rotary Compressor Design Evolution for Heat Pump 

Application by Barratt and Murzinski 

The paper of Barratt and Murzinski (1987) was to review the evolutionary changes 

that took place in developing a typical rotary compressor to meet the special challenge of 

heat pumps with long life and reliable performance. Emphasis was given to the 

introduction of improved materials used in the compressor design. 

2.3. Literature Review Summary 

The heat pump or chiller models presented in all the papers reviewed may be 

classified between the two extr~mes of the scheme introduced in section one. Traditional 

equation-fit model is one end of the spectrum and three models belong to this category: 

[Stoecker and Jones (1982), Allen and Hamilton, 1983; Hamilton and Miller, 1990]. This 

approach is widely used in a few building-HY AC simulation programs for its good 

accuracy within the allowed operation range and its simplicity of computation. 
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The rest of the models in the literature review actually fall between the two 

extremes, the detailed deterministic models often apply equation-fitting for some of the 

components. These models are aimed at modeling for chillers or heat pumps using the 

basic thermodynamics laws for the conservation of mass, energy and momentum and heat 

and mass transfer rate equations. Generally, such modeling approaches depend on the 

availability of internal measurements. However, the prediction accuracy is generally not 

as good as the equation-fit approach. It also requires more calculation effort than the 

equation-fit method. To improve on the "pure" deterministic models, some researchers 

(e.g. Bourdouxhe, et al. 1994) have developed models that introduce some equation

fitting into the deterministic approach. These modeling approaches have proved to be 

robust and they are capable of accurately replicating the catalog or experimental data 

over the entire operation range. They also provide comparatively detailed information for 

each component and the entire system. 
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3. Objectives and Scope 

As mentioned in the introduction section, the specific objective of the research is to 

develop heat pump models based on the data published by manufacturers' catalogs where 

no detailed experimental internal measurements of each component are available. This 

model is expected to be an alternative for commonly used regression or equation-fitting 

approach in well-known computer programs such as TRNSYS, HVACSIM+ and 

Energyplus and is expected to be capable of reasonable accuracy over a wide operation 

range. The accomplishment of this dissertation may be divided into five stages. The focus 

of each stage is described as follows. 

The first stage involves the review, analysis, evaluation and comparison of currently 

available chiller and heat pump simulation models. The goal at this stage is to acquire an 

extensive yet intensive understanding of the theoretical fundamentals of these models. 

The advantage and disadvantage of the currently available models are to be analyzed and 

evaluated in depth. The questions may include: how can a mathematical model of each 

component be established? how can each component model be combined together or 

what is the algorithm of the performance calculation for the whole heat pump? and what 

experimental data are required to estimate the performance of the heat pump? This 

literature survey shall become the basis of later research work and the model developed 

by the author. The literature survey has been described in Chapter 2 of this dissertation. 
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The next stage concerns the development of water-to-water heat pump and water

to-air heat pump simulation models that are capable of forecasting the performance with 

a reasonably good conformity to the catalog data. This model shall be different from 

other models developed so far from at least two viewpoints. First, it is similar to 

deterministic models that give each component of the heat pump a physically meaningful 

mathematical description. Secondly, since the experimental or catalog data available from 

the manufacturer are usually not in such detail as required by some models previously 

developed, this model will be capable of predicting the performance with only the limited 

information in the catalog data, such as load side and source side entering water 

temperature, mass flow rate, cooling capacity and power input. In other words, without 

detailed experimental data for each component, the model shall be able to identify the 

parameters that describe each component of the heat pump. Together with an appropriate 

algorithm, it will provide a relatively accurate prediction of the performance. A model for 

a water-to-water heat pump will be described in Chapter 4. Due to the complication of the 

load side heat exchangers in water-to-air heat pumps, a more sophisticated model for the 

load side heat exchanger shall be incorporated into the heat pump model with other 

components same as those of the water-to-water heat pump model developed. The water

to-air heat pump model will be the focus of Chapter 5. 

The third stage involves the extensions of the heat pump models. Reciprocating 

compressors have been assumed in the water-to-water and water-to-air heat pump 

models. However, since scroll compressors and rotary compressors are two frequently 

used alternatives to reciprocating compressors, it is desirable to develop models of scroll 
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and rotary compressors that can replace the reciprocating compressor model in the heat 

pump models presented in Chapter 4 and Chapter 5. While necessary in many 

applications for providing freeze protection, antifreeze solutions adversely impact heat 

transfer performance. It is also desirable to be able to model water-source heat pumps 

when the secondary heat transfer fluid is a water-antifreeze mixture. Chapter 6 of this 

dissertation addresses this stage. 

The fourth stage is to validate the water-to-water heat pump model. The parameter 

estimation based water-to-water heat pump model has been evaluated with selected 

experiments. The experiments were performed at the medium-scale bridge deck heating 

system set up for the experimental work of the Geothermal Smart Bridge project. 

Experimental data have been collected under various operation conditions. Three data 

sets that collected in December of 2000 and December of 2001 have been used to 

validate the parameter estimation model. The experimental validation of the water-to

water heat pump model is the topic of Chapter 7. 

In the last stage, an experimental validation of the water-to-air heat pump model has 

been accomplished. Some monitored field data have been collected at the test cell 

building located to the north of Mechanical and Aerospace Engineering Research Labs. 

Comparisons between the model prediction and experimental data have been 

implemented. This topic will be addressed in Chapter 8. 
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4. A Parameter Estimation Based Model for Water-To-Water Heat Pumps 

Reciprocating vapor compression heat pumps and chillers have been the target of a 

number of simulation models. Hamilton and Miller (1990) presented a classification 

scheme for air conditioning equipment with two extremes. At one end of the spectrum are 

equation-fit models, called "functional fit" models by Hamilton and Miller, which treat 

the system as a black box and fit the system performance to one or a few large equations. 

At the other end are deterministic models, called "first principle" models by Hamilton 

and Miller, which are detailed models based on applying thermodynamic laws and 

fundamental heat and mass transfer relations to individual components. 

Many of the models found in the literature might actually fall between the two 

extremes, although the detailed deterministic models often apply equation-fitting for 

some of the components. For example, in the reciprocating chiller model proposed by 

Bourdouxhe, et al. (1994), the chiller was modeled as an assembly of several simplified 

components. Each component ( e.g., compressor, evaporator, condenser, expansion 

device) is modeled with a detailed deterministic approach. The parameters describing the 

detailed physical geometry and operation of each component are then adjusted (i.e., in an 

equation-fitting procedure) to reproduce the behavior of the actual unit as accurately as 

possible. The model of Bourdouxhe, et al. requires more details for each component than 

are usually available from manufacturers' catalogs. This type of model is most suitable 

for users that have access to internally measured data (e.g., in Bourdouhxe's model, 
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condensing and evaporating temperatures and subcooling and superheating temperature 

differences) from the chiller or heat pump. 

The alternative approach, equation-fitting, alleviates the need for internally 

measured data and usually maintains better fidelity to the catalog data. It also usually 

requires less computational time. These models are most suitable for users that only have 

access to catalog data. These models would not be useful for someone attempting to 

design a heat pump or chiller by modifying or replacing internal components. Especially 

troublesome for some applications, extrapolation of the model may lead to umealistic 

results. 

For use in energy calculation and/or building simulation programs, it is desirable to 

have a model that only requires catalog data, but allows extrapolation beyond the catalog 

data. In the authors' experience, this model has also been useful for modeling of ground 

source heat pumps in novel applications where the fluid temperatures occasionally go 

beyond the catalog data. It has also proven useful in simulations that are part of a ground 

loop sizing procedure. In this application, it often happens that the temperatures are well 

beyond the catalog data. Even though the ultimate outcome is that the ground loop heat 

exchanger size will be adjusted to bring the temperatures within reasonable limits, it is 

helpful to have a model that does not catastrophically fail when the temperatures are too 

high or too low. 
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The model presented in this paper uses deterministic models of each heat pump 

component. Each of the fundamental equations describing the system components may 

have one or more parameters, which are estimated simultaneously using catalog data 

only; no other experimental data are required. The parameter estimation is done with a 

multi-variable optimization method. Once the parameters have been estimated, the heat 

pump model may be used as part of a multi-component system simulation. 

This modeling approach has the advantage of not requiring experimental data 

beyond what is published in the manufacturer's catalog. Yet, its predictions are of 

similar or better accuracy than previously published deterministic models that required 

additional experimental data. Unlike the equation-fit models, the model domain may be 

extended beyond the catalog data without catastrophic failure in the prediction. 

Simulation models of vapor-compression refrigeration and air-conditioning systems 

such as heat pumps and chillers have been the topic of numerous papers. The models can 

generally be classified in terms of the degree of complexity and empiricism. A review of 

the literature reveals a few limitations on existing models. For the more deterministic 

models, there is a gap between what data are provided by manufacturers' catalogs and 

what data the simulation models require. For equation-fit models, the valid application is 

limited to the manufacturer-supplied data range and conditions. 

Stoecker and Jones (1982), Allen and Hamilton (1983), and Hamilton and Miller 

(1990) have presented steady-state equation-fit models of vapor compression 
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refrigeration systems with reciprocating compressors. The Allen and Hamilton (1983) 

model utilizes overall system data, e.g. entering and leaving water temperatures and flow 

rates. The models of Stoecker and Jones (1982) and Hamilton and Miller (1990) require 

more detailed data, such as internal refrigerant pressures and temperatures. 

Consequently, the latter two models will be difficult to use for engineers who only have 

access to catalog data. 

Gordon and Ng (1994) proposed a simple thermodynamic model for reciprocating 

chillers that they suggest might be valuable for diagnostic purposes. The model predicts 

the COP over a wide range of operation conditions from the inlet fluid temperatures and 

the cooling capacity, using three fitted parameters. The prediction of COP is remarkably 

good for a range of different chillers. However, the model doesn't predict the cooling 

capacity; it is required as an input. A chiller model presented by Shelton and Weber 

(1991), is similar in approach, and also has the same limitation ofrequiring the cooling 

capacity as an input. 

The quasi-static reciprocating chiller model developed by Bourdouxhe, et al. (1994) 

are characterized by the authors as being part of a toolkit "oriented towards simple 

solutions with a minimum number of parameters" and being somewhere between "curve

fitting, the traditional way to describe the input-output relationships, and deterministic 

modeling, which is an exhaustive description of the physical phenomena". Their 

approach is to utilize a "conceptual schema" as a modeling technique to represent the unit 

as an assembly of classical and elementary components. The behavior of the each 
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component is then modeled by a deterministic approach. This approach requires fewer 

parameters and experimental data compared with the models developed previously. In the 

parameter identification procedure, the "available experimental data" such as the 

condensing and evaporating temperatures, the possible subcooling and superheating are 

required. Based on these experimental results, the parameters of the compressor are 

identified. Then the whole chiller is considered to identify the evaporator and condenser 

heat transfer coefficients. However, those experimental data are normally not available 

from manufacturers' catalogs. 

Parise (1986) developed a vapor compression heat pump simulation model to 

predict the overall performance of a system. Simple models for the components of the 

heat pump cycle were employed. Input data include compressor speed, displacement 

volume, clearance ratio and other parameters for a comparatively detailed description of 

each component. 

Cecchini and Marchal (1991) proposed a computer program for simulating 

refrigeration and air conditioning equipment of all types: air-to-air, air-to-water, water-to

water and water-to-air. Some parameters characterizing the components require 

experimental data from equipment testing, such as the heat exchanger mean surface 

temperatures, the saturation pressures in both evaporator and condenser, and superheating 

and subcooling. Again, these data are not typically provided in manufacturers' catalogs. 
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Fischer and Rice (1983) developed an air-to-air heat pump model to predict the 

steady-state performance of conventional, vapor compression heat pumps in both heating 

and cooling modes. The motivation for the development of this model is to provide an 

analytical design tool for use by heat pump manufacturers, consulting engineers, research 

institutions, and universities in studies directed toward the improvement of heat pump 

efficiency. The compressor was modeled using the data "curve-fits" and "compressor 

maps" provided by the manufacturers. Modeling of the other components employed 

many fundamental correlations and detailed design data are required. Hence, while this 

model may be useful in the heat pump design process, it is difficult or impossible for an 

engineer working from catalog data to use. Similarly, the water-to-air heat pump model 

developed by Greyvenstein (1988) is also based on detailed information component 

information, including the fan curve, compressor characteristics, heat exchanger 

geometry, etc. 

The superheat-controlled water-to-water heat pump model developed by Stefanuk, 

et al. (1992) may be the most detailed model presented to date. The authors claim "The 

model is derived entirely from the basic conservative laws of mass, energy, momentum 

and equations of state as well as fundamental correlations of heat transfer." Values of the 

parameters that describe the behavior of the individual components are assumed to be 

available. For example, the parameters of the compressor are selected by "fitting the 

model to manufacturer-supplied performance curves that related mass flow rate and input 

electrical power to evaporation temperature and the compressor discharge pressure." 

However, they are not normally available in the heat pump manufacturers' catalogs. 
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Comparisons between the experimental measurements and model predictions for the 

evaporating and condensing pressures, the heat transfer rates in the evaporator and the 

condenser, and the COP of the heat pump are given. Except a few points with errors 

beyond ±10%, most of the results are generally acceptable. The predictions of the heat 

transfer rates in both heat exchangers are consistently too high. The authors explain that 

the cause for this phenomenon is the overestimated predictions of heat transfer 

coefficients since heat transfer coefficients used in the model are only known to within 

±20%. 

Damasceno, et al. (1990) compared three steady-state air-to-air heat pump computer 

models. Two of them are available in the open literature; the third one was developed in

house. These are: 1) the MARK III model, which is an updated version of an earlier 

program developed at Oak Ridge National Lab. by Fischer and Rice (1983) and Fischer 

et al. (1988), 2) HPSIM, developed at NBS by Domanski and Didion (1983) and 3) HN, 

developed by Nguyen and Goldschmidt (1986) and updated by Damasceno and 

Goldschmidt (1987). All three models require extensive test data for calibration. A more 

extensive comparison and summary of the heat pump and chiller models developed so far 

are shown in Table 4.1. 

Domanski and McLinden (1992) presented a simulation model called 'Cycle-I I'. 

'Cycle-11' and its derived versions are models targeted at the preliminary evaluation of 

performance of refrigerant and refrigerant mixtures in the vapor compression cycle. 

Hence, to facilitate this function, the input to the program normally includes the outlet 
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temperature for the heat transfer fluids. In the UA version of 'Cycle-11' (Domanski 

2000), the author simplified the heat exchanger model to use a constant heat transfer 

coefficient UA. However, the approach to obtain the value of this constant UA is not 

addressed explicitly. The input to the program also includes internal specifications for the 

components, such as the compressor swept volume, compressor speed, and electric-motor 

efficiency. The authors assumed that this information is already available. Some other 

internal pressure and temperature changes are calculated using simplified pressure-drop 

and heat transfer correlations. They are obtained from a separate program and specified 

as inputs for the model. 

Clearly, while there are a number of models available for vapor compression 

refrigeration systems, all that provide the advantages of the deterministic approach 

require detailed data beyond what is typically provided in manufacturers' catalogs. 

However, many users of such models only have access to catalog data. Therefore, it 

would be useful to have a model that uses a deterministic approach, but only requires 

catalog data. Such a model has been developed and is the topic of this paper. 

The objective of this research effort is to develop a water-to-water heat pump model 

suitable for use in energy calculation and/or HV AC system simulation programs. 

Furthermore, it is desired that the model accurately duplicate the water-to-water heat 

pump performance, utilize catalog data for parameter estimation, require a minimal 

number of data points, and allow extrapolation. The modeling method employs 

mechanistic relations of fundamental thermodynamic laws and heat transfer correlations 
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with parameters identified from catalog data. There are numerous options for the 

selection of parameters. A number of combinations of parameters have been investigated, 

and the scheme that provides the best results, i.e. least relative error, is presented in 

detail. The other schemes are discussed and their results are compared with the final one. 
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Table 4.1. Literature Review Summary for Heat Pump & Chiller Models 

Author Year Compressor Evaporator & Condenser Expansion Device 
Suction & Compression Re-expansion Shell Loss Refrigerant Superheating, Heat 
Discharge of Clearance or Pressure Drop & Transfer 

Pressure Drop Vapor Efficiency Subcooling Coefficient 
Stoecker & Jones 1982 Non-Deterministic/Component Level Equation-fit Model 
Allen & Hamilton 1983 Non-Deterministic/Overall System Level Equation-fit Model 

Curve-fit/map-based model 1) Capillary tube: 

Fischer & Rice (Mark I) Equation-fit 

Revisions of Fischer & 
1983 2) TXV: General 

Rice's Model, 1983 
to Deterministic/loss and efficiency-based model Yes Yes Variable Model & Empirical 

(Mark III to Mark V) 
1996 Correlations 

No Isentropic Yes Yes 3) Short Tube Orifice: 
Empirical correlations 

1) No 1) Isentropic 1) Zero 1) Variable 

Domanski & Didion 1984 clearance 
Yes 

Revision of Domanski & to 
2) Polytropic 

volume 
Yes Individual Adiabatic 

Didion's Model 2000 3) Either of 
Yes Specified as sections 

2) Yes 2) Typical input specified as Detailed model for 
Specified 

above with 
clearance input 2) Assumed 

constant flow area volumetric Constant as input 
efficiency 

volume expansion device 

Yes 
Account for Assumed 

Parise 1986 No Polytropic Polytropic No No 
the LIT using Constant 

Isenthalpic 
arithmetic specified as 

average with input 
2-phase temp 

Greyvenstein 1988 Interpolation of manufacturers' performance data Yes Yes Variable Adiabatic 
Hamilton & Miller 1990 Non-Deterministic/Component Level Equation-fit Model 

Cecchini & Marchal 1991 No Polytropic Polytropic No No Assumed Variable Isenthalpic 
Constant 

Shelton & Weber 1991 Only kW/ton is computed 
Stefanuk et al 1992 Yes Isentropic Isentropic Yes No Yes Variable Adiabatic 

Isenthalpic 
Bourdouxhe et al. 1994 No Isentropic Isentropic Yes No No Assumed Adiabatic 

Constant Isenthalpic 
Gordon &Ng 1994 Only COP is computed 
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4.1. System Description 

The heat pump configuration used in this study is presented in Figure 4.1. The heat 

pump consists of four basic components: reciprocating compressor, evaporator, 

condenser and expansion device. Other components are neglected due to the 

comparatively small contribution to the thermodynamic analysis for the entire system. 

Assuming an isenthalpic process in the expansion device and no heat exchange between 

this system and its environment, in case of the cooling mode, we have: 

/\v/\ /\ /\ 
'----?I' V V '1-----41 

/\v/\ /\ /\ 
~------v V V ~--------,: 

Expansion Device Compressor Motor ~ W 

Figure 4.1. Basic heat pump configuration 

where f2s = source side heat transfer rate, kW or Btu/hr 
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W = compressor power input, kW or Btu/hr 

QL = load side heat transfer rate, kW or Btu/hr 

Equation ( 4.1) assumes that no heat is lost from the compressor, when in actuality, 

there will be some heat transferred from the compressor shell. Generally, this loss will be 

fairly small, and heat pump manufacturers' catalog data neglects this heat loss. i.e., the 

catalog data is consistent with Equation ( 4.1 ). 

4.2. Compressor Model 

The thermodynamic cycle for an actual single-stage system may depart significantly 

from the theoretical cycle. The principal departure occurs in the compressor. Hence, it is 

worthwhile to pay more attention to the thermodynamic processes occurring within a 

reciprocating compressor. The representation of the compressor cycle, shown in Figure 

4.2, follows that of Threlkeld (1962). 

Several assumptions are incorporated into the modeling procedure: 

• The modeled compressor cycle is only an approximation of the real compressor 

cycle 

• The compression and expansion in the compressor cycle are isentropic processes 

with equal and constant isentropic exponents. 

• The isentropic exponent is dependent on the refrigerant type; the values of the 

isentropic exponents are obtained from the Bourdouxhe et al. (1994) that are 

originally based on the study of Saavedra (1993). 
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• The oil has negligible effects on refrigerant properties and compressor operation. 

• There are isenthalpic pressure drops at the suction and discharge valves. 

For the compression process from 2 to 3 we will assume an isentropic process: 

where P = the pressure, kPa or psia 

v = the specific volume, m3 /kg or ft3 /lbm 

4 3 

I 
p ---- ------ ---------------out I 

I 
I 
I Pvr = Const. 
I 
I 
I 
I 
I 
I P;n ----t-----
1 

psuc ---+------->-------------
1 1 

Clearance 
volume 

Piston displacement volume 

Cylinder Volume, V 

Figure 4.2. Schematic indicator diagram for a reciprocating compressor 

(4.2) 

We may further assume that the temperature change from point 3 to 4 is negligible. 

With this approximation, the specific volume at point 3 is equal to the specific volume at 
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point 4. Ifwe denote the state of the re-expanded clearance vapor as 1, then for the re-

expansion process, we have: 

(4.3) 

Due to the re-expansion of the refrigerant vapor in the clearance volume, the mass 

flow rate of the compressor refrigerant is a decreasing function of the pressure ratio, 

mr = PD[I+c-c(Pdis JYrl 
Vsuc }J,,·uc 

where m, = refrigerant mass flow rate, kg/s or lbm/hr 

PD = piston displacement, m3/s or ft3/hr 

vsuc = specific volume at suction state, m3 /kg or ft3 /Ihm 

C = clearance factor 

Pdis = discharge pressure, kPa or psia 

P.uc = suction pressure, kPa or psia 

r = isentropic exponent 

(4.4) 

The suction and discharge pressures play important roles in varying the magnitude 

of the theoretical mass flow rate. These two pressures are different from the evaporating 

and condensing pressures due to the pressure drop across suction and discharge valves. 

According to the discussion of Popovic and Shapiro (1995), the inclusion of pressure 

drops across the suction and discharge valves led to a more accurate prediction for their 
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reciprocating compressor model. The pressure drop,&, is also considered in the model. 

Results for versions of the model with and without pressure drops across the valves are 

presented below. Acceptable accuracy was not achieved in models that did not 

incorporate pressure drop. 

An expression for the compressor work required may be derived subjected to the 

same approximations and limitations as used in the analysis above. The work is 

represented by the enclosed area of the diagram of Figure 4.2. Therefore, 

~ = [vdP- fvdP (4.5) 

The compressor model has a power requirement based on the thermodynamic work 

rate of an isentropic process: 

I r-1 I . - r . pdis r 
W,--=-m,PsucVsuc (-J -1 

Y 1 Psuc 
(4.6) 

where ~=theoretical power, kW or Btu/hr 

r = isentropic exponent 

mr = refrigerant mass flow rate, kg/s or lbrn/hr 

P.uc = suction pressure, kPa or psia 

vsuc = specific volume at suction state, m3 /kg or ft3 /Ihm 

Pdis = discharge pressure, kPa or psia 
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A simple linear representation has been used to account for the electrical and 

mechanical efficiency of the compressor. The actual power input for the compressor is 

calculated by the following equation, 

. w . 
W =-' +Wioss (4.7) 

T/ 

where W = compressor power input, kW or Btu/hr 

"Wzoss = constant part of the electro-mechanical power losses, kW or Btu/hr 

r; = electro-mechanical efficiency 

~ = theoretical power, kW or Btu/hr 

The refrigerant mass flow rate is not given in heat pump manufacturers' catalogs. In 

this parameter estimation model, the refrigerant mass flow rate is estimated first based on 

the estimated values of the selected parameters for the compressor using Equation (4.4). 

Then the compressor power is calculated accordingly using Equations ( 4.6) and ( 4. 7). 

The enthalpy of the refrigerant at the suction state is determined from the evaporator 

model. 

In addition, some superheat, .!JTsh, is assumed to occur before entering the 

compressor, following Bourdouxhe, et al. (1994). To summarize, there are six 

parameters that have to be identified for the compressor. They are PD, C, .!JP, Wtoss, .!JTsh, 

and r;. 
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It is not expected from this model that the values of the selected parameters derived 

with parameter estimation procedure will match the exact specifications of each 

component if they are readily available. The heat pump manufacturers' catalogs do not 

normally provide any compressor specifications, though they may be available from their 

compressor suppliers. However, proprietary information such as clearance factor is 

normally not available. If the exact values of a few of the selected parameters are 

available, those parameters could be eliminated from the list of the parameters to be 

estimated, and their actual values could be used. Due to the limitation of the available 

catalog data, it is virtually impossible that the estimated values of the parameters for each 

individual component will match the actual physical value 

4.3. Condenser and Evaporator Models 

The condenser and evaporator models are developed from fundamental analysis of 

the counter-flow heat exchangers. It is assumed that there is negligible pressure drop in 

the heat exchangers, and therefore the refrigerant is at a constant temperature while 

changing phase. Since the temperature of the refrigerant in the two-phase region is 

considered constant, it is not necessary to differentiate whether the heat exchanger is 

actually counter-flow or has some other configuration. 

A more detailed approach, using the heat exchanger model of Rabehl, et al. (1999) 

was tried, but it did not significantly improve the prediction accuracy. Instead, the heat 

exchanger was treated as a simple heat exchanger with phase change on one side: 
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&=l-e-NTU 

& = thermal effectiveness of heat exchanger 

NTU = number of transfer units 

UA = heat transfer coefficient, kW/Kor Btu/(hr-F) 

rhw = mass flow rate of water, kg/s or lbm/hr 

C pw = specific heat of water, kJ/(kg-K) or Btu/(lbm-F) 

(4.8) 

Therefore, the heat transfer coefficients (UA) of the condenser and the evaporator 

are the last two parameters to be identified. The entire cycle is shown in Figure 4.3. 

Discharge State 
p -----------dis 

Condenser 

Outlet State 

Saturation Line 

Suction State 

Enthalpy, H 

Figure 4.3. Pressure-enthalpy diagram for the refrigeration cycle 
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A constant value of (UA) for the condenser and evaporator is clearly not physically 

correct, yet it seems to be a reasonable approximation, given the overall goal of this 

model. 

Furthermore, for the evaporator, the effect of refrigerant superheating is neglected 

in the evaporator model. If every other part of the heat exchanger model were "correct", 

this would result in under prediction of the evaporator heat transfer. However, this small 

systematic error is presumably compensated by a smaller estimated value of UA. 

Analogously, for the condenser, the neglect of the superheating and subcooling can also 

be compensated for by a smaller value of UA. 

4.4. Expansion Device 

The heat pump model does not explicitly model the expansion device. Rather, the 

amount of superheat is held constant, and the refrigerant mass flow rate is determined by 

the compressor model. This is a round-about way of modeling ( or assuming the presence 

of) a thermostatic expansion valve. All of the heat pumps investigated with this model do 

utilize thermostatic expansion valves. To the best of the authors' knowledge, this is true 

for all water-to-water heat pumps manufactured in North America. Therefore, the model 

has not been tested with any other expansion devices, such as a capillary tube, and it may 

not be applicable for heat pumps with capillary tubes. 
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4.5. Parameter Estimation Procedure 

The values of the parameters are estimated using the available catalog data. One set 

of parameters is estimated for the heating mode, and one set is estimated for the cooling 

mode. For each operating point, the data needed are: 

• Source side entering water temperature, flow rate, and heat rejection (cooling mode) 

or heating extraction (heating mode) 

• Load side entering water temperature, flow rate and cooling capacity ( cooling mode) 

or heat capacity (heating mode) 

• Compressor power consumption 

The parameter estimation procedure minimizes the difference between the model 

results and the catalog data by systematically adjusting the values of the parameters. The 

difference between the model results and the catalog data is quantified in the form of an 

objective function. For any given set of parameters, PD, C, L1P, Wioss, L1Tsh, T/, (UA)r, 

and (UA)s, in case of the cooling mode, the objective function is calculated as follows: 

1. Calculate the evaporator and condenser effectiveness by Equations ( 4.9) and ( 4.10), 

(4.9) 

where s L = thermal effectiveness of evaporator 
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(uAt = heat transfe~ coefficient for evaporator, kW/Kor Btu/(hr-P) 

rhwL = mass flow rate of water in evaporator, kg/s or Ihm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lhm-P) 

(4.10) 

where es = thermal effectiveness of condenser 

(UA)8 = heat transfer coefficient for condenser, kW/Kor Btu/(hr-P) 

rhws = mass flow rate of water in condenser, kg/s or Ihm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lhm-P) 

2. Calculate the evaporating and condensing temperatures of the refrigerant: 

(4.11) 

where Te = evaporating temperature, °C or 0 P 

Twa. = evaporator entering water temperature, °C or 0 P 

{t = evaporator heat transfer rate, kW or Btu/hr 

e L = thermal effectiveness of evaporator 

rhwL = mass flow rate of water in evaporator, kg/s or Ihm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lhm-P) 
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(4.12) 

where Tc = condensing temperature, °C or 0 P 

Tw;s = condenser entering water temperature, °C or 0 P 

Qs = condenser heat transfer rate, kW or Btu/hr 

& s = thermal effectiveness of condenser 

rhws =mass flow rate of water in condenser, kg/s or Ihm/hr 

C pw = specific heat of water, kJ/(kg-K) or Btu/(lbm-P) 

3. When the condensing and evaporating temperatures are obtained, the corresponding 

pressures and enthalpies can be derived using a refrigerant property subroutine. We 

used subroutines provided with an HY ACSIM+ system simulation program (Clark 

and May 1985). 

4. Identify the refrigerant state at the compressor suction port by adding the superheat to 

the evaporating temperature. The refrigerant enthalpy at this point is determined using 

the refrigerant property subroutines. 

(4.13) 

where T;com = Compressor inlet temperature, °C or 0 P 
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Te = evaporating temperature, °C or 0 P 

l:iTsh = superheat, °C or 0 P 

5. Identify the compressor suction and discharge states by adding or subtracting the 

pressure drop. The specific volume at the suction state is determined by the 

refrigerant property subroutines. 

l'.uc = P,, - LJP 

where P.uc = compressor suction pressure, kPa or psia 

P,, = evaporating pressure, kPa or psia 

M = pressure drop across suction valve, kPa or psia 

where Pais = compressor discharge pressure, kPa or psia 

P,, = condensing pressure, kPa or psia 

M = pressure drop across discharge valve, kPa or psia 

(4.14) 

(4.15) 

6. Calculate the refrigerant mass flow rate by Equation (4.4), the theoretical value of 

isentropic compression power by Equation ( 4.6) and the total power input by 

Equation (4.7). 
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7. Calculate the new value of the cooling capacity for cooling mode. 

(4.16} 

Or, for heating mode, the heating capacity is calculated using Equation ( 4.17). 

(4.17) 

where h A = enthalpy of the refrigerant leaving the evaporator, kJ/kg or Btu/lbm 

hn = enthalpy of the refrigerant entering the evaporator, kJ/kg or Btu/lbm 

(t = heating capacity, kW or Btu/hr 

Q8 = heat extraction that is determined through the same procedure as the 

cooling capacity in the cooling mode, kW or Btu/hr 

Based on the given values of the parameters, the power consumption for the 

compressor and the cooling capacity ( cooling mode) or heating capacity (heating mode) 

are calculated for each operation point. Then it is possible to compare the calculated 

results with the catalog performance data. The relative error between the catalog data and 

the calculated results for the power consumption and the cooling capacity or the heating 

capacity should be small. This is achieved by searching for the minimum value of the 

following objective function, which is the sum of the squares of the relative errors for 

both power consumption and load side heat transfer rate. 
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where Wcat = catalog power consumption, kW or Btu/hr 

W = calculated power consumption, kW or Btu/hr 

QLcat = catalog cooling capacity, kW or Btu/hr 

QL = calculated cooling capacity, kW or Btu/hr 

(4.18) 

The optimal parameter values for a particular heat pump will be those associated 

with the minimum value of function SSE. Hence, the search for the optimal values of the 

selected parameters becomes a multi-variable optimization problem. To solve this 

problem, the widely used Nelder-Mead simplex (Kuester and Mize 1973) method is 

employed. A multi-start random sampling strategy was added to ensure the global 

minimum has been obtained. The flow chart for the computer program that implements 

the parameter estimation is shown in Figure 4.4. 
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Given: 
Source side entering water temperature, flow rate, 
Source side heat transfer rate 
Load side entering water temperature, flow rate, 
Load side heat transfer rate 
Com ressor ower consun tion 

Startingpoint:PD, C, Lip, Llr,,., Wioss, Tl, (UA)L, (UA)s 

Effectiveness of evaporator and condenser 

Evaporating temp and condensing temp 

Evaporating pressure and condensing pressure 

Identify condenser & evaporator 
exit point A and B 

Apply suction and discharge pressure drop 

Suction and discharge pressure 

From compressor model find: 
refrigerant mass flow rate mr 

New estimation oftheparameters 

From compressor model find new power 
consumption w Cooling capacity QL =m, .(j,A -hB) 

no 

Output data, optimal values of the parameters: 
PD, C, LIP, .dT,,. Wi ... Tl, (UA)L. (UA)s 

Figure 4.4. Flow diagram for parameter estimation computer program 
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Figure 4.5. Information flow chart for model implementation 

4.6. Model Implementation 

The model is implemented in nearly the same way as the objective function 

evaluation described above. However, a thermostat signal is used as an input parameter 

to tell the model which set of parameters (heating mode or cooling mode) should be used. 

Also, the objective function evaluation takes advantage of the fact that the heat transfer 

rates are known, using the catalog data as an initial guess, then minimizing the difference 

between the predicted and measured heat transfer rates. However, for the model 

implementation, the heat transfer rates are solved simultaneously with successive 
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substitution, and this introduces an iterative loop not present in the objective function 

evaluation. 

The model then determines the outlet temperatures for each of the fluid streams. 

Other information such as cooling and heating capacities, COP, etc., may be reported if 

desired. An information flow chart of the model implementation is presented in Figure 

4.5. Figure 4.6 shows the cooling mode of the model implementation. 

Table 4.2. Range of Water Flow Rates and Entering Water Temperatures 

No. Load Side Source Side 
EWT Flow Rate EWT Flow Rate 

1 
25 °F (-3.89 °C) 4 GPM (0.25 kg/s) 55 °F (12.78 °C) 4 GPM (0.25 kg/s) 

(cooling) 
to to to to 

65 Of (18.33 °C) 7 GPM (0.44 kg/s) 95°F (35 °C) 7 GPM (0.44 kg/s) 

2 
25 °F (-3.89 °C) 20 GPM (1.26 kg/s) 55 Of (12.78 oq 20 GPM (1.26 kg/s) 

(cooling) 
to to to to 

65 °F (18.33 °C) 36 GPM (2.27kg/s) 95°F (35 °C) 36 GPM (2.27kg/s) 

3 
80 °F (26.67 °C) 4 GPM (0.25 kg/s) 25 °F (-3.89 °C) 4 GPM (0.25 kg/s) 

(heating) 
to to to to 

120 °F (48.89 °C) 7 GPM (0.44 kg/s) 65 °F (18.33 °C) 7 GPM (0.44 kg/s) 

4 
60 °F (15.56 °C) 45 GPM (2.84 kg/s) 10 Of (-12.22 oq 45 GPM (2.84 kg/s) 

(heating) 
to to to to 

120 °F (48.89 °C) 90 GPM (5.68 kg/s) 70 °F (21.11 °C) 90 GPM (5.68 kg/s) 

This modeling approach has the advantage of not requiring experimental and 

component specification data beyond what are published in heat pump manufacturers' 

catalogs. Since the objective of this model is to eliminate the requirement for any 

internal measurements such as the refrigerant mass flow rate, temperature and pressure, 

all the comparisons are made based on the external measurements of water flow rates and 

temperatures for both source and load sides. These data are readily available in the heat 

pump manufacturers' catalogs. The ranges of flows and inlet temperatures in the catalog 

data for the heat pumps investigated are presented in Table 4.2. 
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Given: 
The values ofthe parameters i>r both cooling & heating mode 
Load & Source water rrass flow rates & entering temps 
Thermostat signal 

Initial guess: Qsig,e,, heat trans Jer rate in condenser 

Initial guess: QLgguers heat trans Jer rate in evaporator 

Eflectiveness ofevaporator and condenser 

Evaporating temp and condensing temp 

Identily condenser & evaporator 
exit point A and B 

Apply suction and discharge 
pressure drop 

From compressor model :find: 
Refrigerant mass flow rate mr 

From compressor model find: Cooling capacity Q, =m, ·(h, -h,) 
Power consumption W 

Heat rejection Q, = W + Q, 

Output data: 

Cooling capacity Q, 
Power Consumption W 

Figure 4.6. Flow diagram for model implementation computer program 
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4. 7. Treatment of Extreme Operating Conditions 

When this model is used inside of a transient system simulation program, it may 

encounter conditions not intended by the manufacturer, such as low water flow rates or 

extreme temperatures. This may happen even when the system simulation inputs are 

correct, as the equation solving process may occasionally try physically unrealistic 

values. Without any other checks, the model may then provide unrealistic results, or 

crash due to errors in the property routines. 

In order to avoid this problem, a check is provided that is analogous to what 

happens in real heat pumps. Real heat pumps are usually equipped with protection 

against overly high pressures or overly low pressures that switch the compressor off 

when the limits are exceeded. These have been replicated in the model by incorporating 

a minimum evaporator pressure (P1o) and maximum condenser pressure (Phi) that may be 

set as parameters. If either of these is exceeded, the heat pump is turned off - outlet fluid 

temperatures are set equal to inlet fluid temperatures and power is set to zero. 

4.8. Model Validation 

The water-to-water heat pump model was validated using catalog data for three 

randomly-selected heat pumps made by two different manufacturers. In Table 4.3, a 

summary of the comparisons for units A and B, validated using the cooling mode data; 

and units A and C, validated using the heating mode data, is given. The heat pump 
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capacities, number of operating points given in the manufacturer's catalog, and the root

mean-square (RMS) error for·capacity and power are shown in Table 4.3. The 

comparison showed a comparatively good agreement with generally acceptable accuracy. 

For the model of Stefanuk et aL (1992), Stefanuk (1990) reports errors between the model 

and the experimental data. Measured condenser heat transfer rates are, on average, 12% 

lower than the predicted rates. Measured evaporator heat transfer rates are, on average, 

17% lower than the predicted rates. However, when the model is adjusted with a 

physically-measured refrigerant mass flow rate, the errors are significantly reduced, to 

between 3 and 5%, on average. As can be seen, the errors in Table 4.3 compare very 

favorably with the Stefanuk model, considering that making internal measurements is 

impractical for most engineers using simulation programs. 

Table 4.3. RMS Errors of the Simulations for 4 Sets of Catalog Data 

No. Unit 
Nominal Capacity Number of RMS 
(W) (Btu/hr) Points Capacity Power 

1 A 
7,034 24,000 

81 4.57% 4.77% 
(cooling) (cooling) 

2 B 
43,965 150,000 

81 4.71% 5.44% 
(cooling) (cooling) 

3 A 
7,620 26,000 

81 2.66% 1.70% 
(heating) (heating) 

4 C 
99,654 340,000 

234 3.08% 5.76% 
(heating) (heating) 

A comparison of the results to the catalog data for the heat pump with the least 

satisfactory match is shown in Figures 4.7 and 4.8. A comparison of the results to the 

catalog data for the heat pump with the best match is shown in Figures 4.9 and 4.10. The 
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comparisons of the rest of the results to heat pumps are shown in Figures 4.11 through 

4.14. 

Qlcat( Btu/Hr) 

0 40000 80000 120000 160000 200000 
60 200000 

50 
160000 

40 -;:-

~ 120000 ~ 
-"' cc }J' 30 Ill }J' 
0 Ill 

...I 
80000 0 

0 ...I 

20 0 

10 40000 

0 0 
0 10 20 30 40 50 60 

QLcat(kW) 

Figure 4.7. Calculated cooling capacity vs catalog cooling capacity (heat pump B) 
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Figure 4.8. Calculated power vs catalog power (heat pump B) 
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Figure 4.9. Calculated heating capacity vs catalog heating capacity (heat pump A) 
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Figure 4.10. Calculated power vs catalog power (heat pump A) 
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Figure 4.11. Calculated cooling capacity vs catalog cooling capacity (heat pump A) 
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Figure 4.12. Calculated power vs catalog power (heat pump A) 
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Figure 4.13. Calculated heating capacity vs catalog heating capacity (heat pump C) 
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Figure 4.14. Calculated power vs catalog power (heat pump C) 
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4.9. Discussion of Parameter Selections 

The model, as presented above, represents the final step in a series of incremental 

modifications. With each modification, new parameters were introduced, or in some 

cases, old parameters were removed. Some insight as to the relative importance of the 

different parameters may be gleaned from Table 4.4, which shows the estimated 

parameters and the SSE for seven different versions of the model, applied to a single heat 

pump in cooling mode. The catalog data used for the study is the heat pump A in cooling 

mode in Table 4.3. 

It should be noted that the parameter estimation procedure can consume a 

significant amount of computer time. There is a trade-off between the number of 

parameters estimated and the required computational time. There are eight parameters 

selected for the final solution, scheme 7 in Table 4.4. For the case of heat pump C in 

Table 4.3, the parameter estimation process takes approximately 95 minutes computing 

time for a PC with Pentium II 333MHz CPU if all 234 operating points are used. If 16 

points are used, the computing time is about 9 minutes. As will be demonstrated in the 

next section, 16 points should be sufficient. It might also be noted, that once all the 

parameters are known, the model can be executed on the same machine in about 0.0025 

seconds for a single operating condition. 

For the compressor model, the selection of W"toss , the constant part of the electro

mechanical power losses and 17, the loss factor that defines the electro-mechanical loss 
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proportional to the theoretical power contributes to the greatest improvement in the 

model from scheme 1 to scheme 2. An alternative improvement was the implementation 

of more detailed heat exchanger models (Rabehl, et al. 1999), as shown in scheme 3. 

Since the computer time required for estimation with more than eight parameters was 

deemed unacceptable, the detailed heat exchanger representation, which requires six 

parameters, was dropped. 

Then, various combinations of suction and discharge pressure drops were added in 

schemes 4-6. It was noted that the separately estimated values of LIP for both the suction 

side and discharge side were very nearly equal, so the final number of parameters was 

held to eight by estimating a single LIP that is applied to both the suction side and 

discharge side. 

Given the approximations in the parameter estimation procedure, and the fact that 

the approximations are compensated by artificially high or low values of parameters, it 

might be expected that estimated values of parameters for a given heat pump in heating 

mode and in cooling mode might be significantly different. Comparing the estimated 

parameters for data sets 1 and 3 may be instructive, since they represent the same heat 

pump operating in heating mode and cooling mode. However, the estimated parameters 

are surprisingly close ... For the load side heat exchanger, the estimated value of UA for 

heating mode is 2.21 kW/°C (4,189 Btu/(hr-°F)) and for cooling mode is 2.10 kW/°C 

(3,981 Btu/(hr-°F)). For the source side heat exchanger, it is 1.54 kW/°C (2,919 Btu/(hr-
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~F)) and 1.46 kW/°C (2,768 Btu/(hr-°F)) respectively. Table 4.5 presents a comparison 

of the parameter estimation results of cooling and heating mode for the same heat pump. 
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Table 4.4. Comparison of the Search Results of the Objective Function 

Scheme 1 2 3 4 5 6 7 

P.D. 
(mj/s) 0.00205 0.00107 0.00459 0.00176 0.00137 0.00177 0.00175 
(ft'/hr) 260.34 135.89 583.86 223.73 174.53 225.00 222.46 

C 0.0213 0.0499 0.0495 0.0498 0.0492 0.0482 0.0463 

Tl - 0.381 - 0.541 0.470 0.575 0.824 

W1oss 
(kW) - 0.0000425 - 0.0129 0.00383 0.00919 0.586 

(Btu/hr) - 0.145 - 43.94 13.06 31.36 1998.29 
Parameter 

(UA)1o1ev 
(kW/K) 0.239 1.770 - 2.193 2.117 1.986 2.156 

Btu/(hr F) 452.67 3353.26 - 4156.10 4013.36 3765.42 4087.10 
Estimation 

{UA)totcon 
(kW/K) 0.573 0.305 - 0.730 0.671 0.803 1.469 

Btu/(hr F) 1085.23 578.14 - 1383.03 1272.37 1521.41 2784.64 
Model 

Suction.M> 
(kPa) - - - 98.414 - 103.928 97.937 
(psi) - - - 14.27 - 15.07 14.20 

Discharge Af> 
(kPa) - - - - 101.123 101.693 97.937 
(psi) - - - - 14.67 14.75 14.20 
(OC) - - - - - - 7.078 

~Tsh (OF) - - - - 44.74 - -
C1 - - 300.139 - - - -

Evap. C2 - - -0.140 - - - -
C, - - 0.250 - - - -
C4 - - 700.301 - - - -

Cond. Cs - - 0.123 - - - -
c6 - - 0.275 - - - -

SSE 23.907 2.331 6.769 1.111 1.594 0.943 0.419 
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Table 4.5. The Comparison of the Parameter Estiamtion Results for Heat Pump A 
in Cooling and Heating Modes 

Parameter Cooling Heating 

Piston Displacement 0.00175 m3/s (222.46 ft3/hr) (0.00162 m3/s) 205.93 ft3/hr 

Clearance Factor 0.0463 0.0690 

Loss Factor 0.824 0.696 

Constant Loss 0.586 kW (1,999.32 Btu/hr) 0.525 kW (1,791.20 Btu/hr) 

Pressure Drop 97.937 kPa (14.20 psi) 99.29 kPa (14.40 psi) 

Superheat 7.077 °C (12.74 °F) 9.82 °C (17.68 ° F) 

Source Heat Transfer 
1.46 kW/°C (2,768 Btu/(hr-°F)) 1.54 kW/°C (2,919 Btu/(hr-°F)) Coefficient 

Load Heat Transfer 
2.10 kW/°C (3,981 Btu/(hr-°F)) 2.21 kW/°C (4,189 Btu/(hr-°F)) Coefficient 

It should be recognized that the development of the model is somewhat of an art. 

The selection of more sophisticated representation for a single component may not 

benefit the results in a manner proportional to the increase in computational cost. This 

seems to be the case for the heat exchangers. 

4.10. Comparison to an Equation-fit Model 

No generally accepted equation-fit model for water-to-water heat pumps is found in 

the literature. Due to the similarity between heat pump and chiller models, the steady 

state reciprocating chiller model recommended by Allen and Hamilton (1983) and the 

centrifugal and absorption water chiller model proposed by Stoecker et al. (1975), have 

been adapted to establish an equation-fit model for a water-to-water heat pump. Allen and 

Hamilton fit the cooling capacity and power consumption to a second order polynomial 
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in two variables: evaporator and condenser leaving water temperatures. In the chiller 

model proposed by Stoecker et al. (1975), the cooling capacity is also a function of two 

variables: the evaporator leaving water temperature and the condenser entering water 

temperature. In the equation-fit model used here, the condenser and evaporator entering 

water temperatures are chosen as the variables in the polynomial representation. This is 

more convenient for a component model when the inlet temperatures are known. This is 

also more convenient for equation fitting, since the heat pump catalog data are typically 

given in terms of four variables: load side entering water temperature, source side 

entering water temperature, load side water flow rate and source side water flow rate. 

Accordingly, the water flow rates for both sides are included as the other two variables in 

the equation-fit model. 

As discussed by Stoecker et al. (1975), there is not a "best" equation for the 

simulation of heat pumps or chillers. A polynomial representation may be the best choice 

when no physical insight into the performance is available. Different combinations of 

variables and coefficients were tried to find the best equation form for a particular set of 

catalog data selected for comparison purposes. The final functional relationships for 

cooling capacity and compressor power are implemented with a second order polynomial 

in four variables, with eleven and thirteen coefficients, respectively: 

(4.19) 

Q = C12 + C13 ·TLi + C14 ·Ti;+ cl5 ·Tsi + cl6 ·Ti;+ C17 ·mL + CJ8 ·ml+ C19 ·ms 

+C20 ·m~ +C21 ·TLi ·mL +C22 ·Tsi ·ms +C23 ·TLi ·Tsi +C24 ·mL ·ms(4.20) 
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where P = power consumption, kW or Btu/hr 

Q = heating or cooling capacity, kW or Btu/hr 

TLi = load side entering water temperature, °C or 0 P 

Ts; = source side entering water temperature, °C or 0 P 

rizL = load side water mass flow rate, kg/s or lbm/hr 

rizs = source side water mass flow rate, kg/s or lbm/hr 

C1 - -C24 = quadratic equation-fit constants. 

The parameter estimation procedure has two significant advantages over the 

equation-fit model: improved fidelity to the catalog data and improved extrapolation 

beyond the catalog data. Heat pump C in Table 4.3 is selected for comparison purpose. 

There are 234 operating points in the heating mode given in the catalog for the selected 

heat pump. The 234 points cover a range of entering water temperatures (EWT) and mass 

flow rates on both sides of the heat pump. In order to compare the parameter estimation 

model to the equation-fit model, parameters or coefficients were determined for each 

model using all 234 points, all of the points except the 45 with the highest load side 

EWT, all of the points except the 63 with the lowest load side EWT, all of the points 

except the 45 hightest and 63 lowest load side EWT, and 16 points representing 

combinations of the highest and lowest values of the EWT and mass flow rates on each 

side. Once the parameters or coefficients were determined, each model was applied to all 

234 operating points. The maximum relative error, average absolute error, and RMS error 

were calculated for all 234 operating points. 
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Figure 4.15. Calculated heating capacity vs catalog heating capacity using equation-fit 
(heat pump C) 
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Figure 4.16. Calculated power vs catalog power using equation-fit (heat pump C) 
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The comparisons of the results are summarized in Tables 4.6 and 4.7. For both 

heating capacity and power consumption, for every combination of operating points used 

to estimate parameters or coefficients, for every characterization of the error, the 

parameter estimation model performs better than the equation-fit model. For both results, 

but particularly for the heating capacity, the parameter estimation extrapolates much 

better (shown in the 2nd, 3rd, and 4th rows) and performs much better with a very limited 

data set (shown in the 5th row). In fact, the parameter estimation model performs almost 

as well with 16 data points as with 234 data points. This represents a significant 

advantage if the model user has to manually transcribe the data from the catalog! The 

idea to use 16 data points representing the combination of the lowest and highest values 

of the input variables came from Rabehl, et al. (1999), who applied it in their heat 

exchanger model. 

Table 4.6. The Comparison of the Relative Error of Power Consumption Simulated 
by Parameter Estimation and Equation-fit Models 

Relative Error 

Catalog Data Used 
Max. (abs. value) Average (abs. value) RMS 

Parameter Equation- Parameter Equation- Parameter Equation-
Estimation Fit Estimation Fit Estimation Fit 

Entire 234 Points 16.06% 29.12% 4.21% 6.33% 5.76% 7.84% 
w/o 45 Highest Points 17.49% 25.54% 4.40% 6.73% 6.13% 8.56% 
w/o 63 Lowest Points 30.82% 36.94% 4.60% 6.49% 6.93% 8.54% 
w/o 45 Highest & 63 

30.41 % 37.64% 4.56% 6.07% 6.86% 8.53% 
Lowest Points 

16 Points 21.96% 33.46% 4.19% 6.85% 5.77% 8.54% 
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Table 4. 7. The Comparison of the Relative Error of Heating Capacity Simulated by 
Parameter Estimation and Equation-fit Models 

Catalog Data Used Relative Error 

Max. (abs. value) Average (abs. value) RMS 

Parameter Equation Parameter Equation 
Parameter 

Equation-
Estimatio 

Estimation -Fit Estimation -Fit Fit 
n 

Entire 234 Points 8.17% 38.50% 2.46% 7.41% 3.08% 9.65% 
w/o 45 Highest Points 8.31% 35.72% 2.44% 7.96% 3.00% 10.81% 
w/o 63 Lowest Points 8.00% 32.36% 2.71% 11.36% 3.26% 13.64% 
w/o 45 Highest & 63 

8.00% 40.93% 2.49% 7.56% 3.03% 10.57% 
Lowest Points 

16 Points 8.77% 49.24% 2.80% 12.55% 3.39% 16.45% 

4.11. Conclusion for Water-to-Water Heat Pump Model 

This paper has presented a water-to-water heat pump model suitable for use in 

building energy analysis and HV AC system simulation programs. The model has been 

developed so as to require only commonly available data from manufacturers' catalogs in 

order to estimate the model coefficients. As compared to more detailed deterministic 

models, it does not require internally measured data usually unavailable to building 

system designers and simulationists. It also works well with only 16 data points for each 

mode, making it reasonably convenient when the data must be manually transcribed from 

a catalog. 

Furthermore, the model's performance compares favorably against the most detailed 

deterministic model previously published, having a similar RMS error to the model 

described by Stefanuk, et al. (1992). As compared to equation-fit models, this model 

retains the physically-based representation of the heat pump, which allows some 
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extrapolation beyond the catalog data. It also performs significantly better when a limited 

number of operating points are utilized for estimation of parameters or coefficients. 
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5. A Parameter Estimation Based Model for Water-to-Air Heat Pumps 

Following the parameter estimation based model for water-to-water heat pumps, a 

water-to-air heat pump model has been developed and is described in detail in this 

chapter. The schematic of a water-to-air heat pump is shown in Figure 5.1. The objective 

of this research effort is to develop a water-to-air heat pump model suitable for use in 

energy calculation and/or HV AC system simulation programs. It is desired that the 

model is able to accurately predict the water-to-air heat pump performance, such as 

cooling capacity, heating capacity, power consumption, heat rejection and heat 

extraction. With a similar parameter estimation technique to that discussed in the water

to-water heat pump model, the water-to-air heat pump model requires a minimal number 

of data points, which are normally available from the specification data published in 

manufacturers' catalogs. 

AlR 

LIQ.IE. 

Figure 5.1. Schematic of a water-to-air heat pump 

The modeling approach employs accepted mechanistic relations of fundamental 

thermodynamic and heat transfer principles with parameters identified and estimated 
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using manufacturers' catalog data. Some extrapolation of the catalog data is allowed. The 

selection of parameters for water-to-air heat pump model evolved from the final 

parameter selection scheme of water-to-water heat pump model. The main difference 

between the water-to-water and water-to-air heat pump models involves the load side 

heat exchanger. For the water-to-air heat pump model, condensation of water vapor may 

occur in cooling operation. Simultaneous sensible and latent heat transfer further 

complicates the model development. Since for heating operation, the water-to-air heat 

pump model is identical to the water-to-water heat pump model, this chapter will focus 

on the cooling mode of the water-to-air heat pump model. 

5.1. System Description 

The heat pump consists of four basic components: reciprocating compressor, 

evaporator, condenser and expansion device. The only difference between the water-to

air heat pump configuration shown in Figure 5.2 and that of the water-to-water heat pump 

is the load side heat exchanger. Other less important components are neglected due to 

their comparatively small contribution to the thermodynamic analysis for the entire 

system. Assuming an isenthalpic process in the expansion device and no heat exchange 

between this system and its environment, in case of the cooling mode, we have: 

where f2s = source side heat transfer rate, kW or Btu/hr 

W = compressor power input, kW or Btu/hr 
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QL = load side total heat transfer rate, kW or Btu/hr 
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Figure 5.2. Basic water-to-air heat pump configuration ( cooling operation) 

Equation (5.1) assumes that no heat is lost from the compressor, when in actuality, 

there will be some heat transferred from the compressor shell. Generally, this loss will be 

fairly small, and heat pump manufacturers' catalog data neglect this heat loss. i.e., the 

catalog data is consistent with Equation (5.1). 

5.2. Compressor Model 

Since reciprocating compressor is assumed in the heat pump configuration, the 

modeling of compressor in the water-to-air heat pump model is the same as that of the 
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water-to-water heat pump model described in Chapter 4. If alternative compressor type 

such as scroll compressor or rotary compressor is used, the parameters selected for the 

reciprocating compressor need to be replaced by some other parameters selected for that 

type of compressor. The modeling of compressors other than reciprocating type will be 

discussed in Chapter 6. 

5.3. Sensible Heat Exchanger Model 

As discussed in Chapter 4, the condenser and evaporator models developed for 

water-to-air heat pump model are also based on the fundamental analysis of the counter

flow heat exchangers. The assumptions and simplifications are same as those of the heat 

exchanger models described in Chapter 4. 

For a water-to-air heat pump, the source side heat exchanger in both heating and 

cooling mode, as well as the load side heat exchanger in heating mode are identified as 

sensible heat exchangers. The sensible heat exchanger is simply treated as heat exchanger 

with phase change on one side. Hence, its thermal effectiveness can be calculated as, 

(5.2) 

e = heat transfer effectiveness 

NTU = number of transfer units 
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UA = heat transfer coefficient, kW/Kor Btu/(hr-°F) 

rhF = water mass flow rate or air mass flow rate in case of heating 

operation, kg/s or lbm/hr 

CpF= water or air specific heat, kJ/(kg-K) or Btu/(lbm-°F) 

Therefore, the heat transfer coefficients (UA) of the source side heat exchanger and 

the load side heat exchanger in case of heating mode are the parameters to be estimated. 

A constant value of (UA) is clearly not physically correct, yet it seems to be a reasonable 

approximation, given the overall goal of this model. Identical to the heat exchanger 

model in water-to-water heat pump model, superheat in the evaporator and subcooling in 

the condenser are neglected. However, superheating is selected as a parameter for the 

compressor model. 

To summarize, the heat transfer coefficients are presumed to be independent of the 

physical condition for the heat exchanger under different operation conditions, such as 

water flow rates or entering water temperatures. The heat transfer coefficients (UA)L of 

the load side heat exchanger and the heat transfer coefficients (UA)s of the source side 

heat exchanger are the parameters selected. 

5.4. Direct Expansion Cooling Coil Model 

A schematic of a direct expansion cooling coil is shown in Figure 5 .3. In reality, the 

outside surface of the cooling coil may be completely dry, complete wet or partly wet and 
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partly dry. This significantly complicates the heat exchanger model, compared to the 

sensible only model described above. The first step that should be accomplished before 

the performance prediction is to identify the dry or wet condition for a specific input 

state. A sophisticated analysis would involve finding the point on the coil surface where 

the surface temperature of the coil is equal or below the dew point temperature of the 

entering air. Unfortunately, this complicated calculation requires more information than 

what is available from manufacturers' catalogs. In addition, an iterative process 

introduced accordingly by the partly dry and partly wet modeling approach will require a 

significant increase in the computational time for an annual building energy consumption 

analysis. 
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Figure 5.3. Schematic of a counter-flow direct expansion coil 

Braun et al. (1989) presented a simplified method to overcome this complication by 

assuming that the coil is either completely dry or completely wet. Since both of the 

assumptions tend to under-predict the heat transfer rate, the larger one between the 

solutions is chosen as the final result. It is understood that only sensible heat transfer rate 

(equal to total heat transfer rate) is considered with the complete dry coil assumption. A 
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review of water-to-air heat pump catalog shows that almost no data are available for this 

condition. Therefore, the direct expansion cooling coil is always assumed to be wet. As 

will be shown later, it is still possible that with dry entering air conditions the model will 

show sensible heat transfer. Other than always assuming wet coil conditions, the model 

follows Braun's (1989) model closely. Another simplified model for the chilled water 

cooling coils has been presented by Morisot et al. (2002). It also assumes that the coil is 

either completely dry or completely wet even if it is partially wet. The errors associated 

with this assumption have been investigated and fall into an acceptable range for the 

building energy calculation. 

The completely wet or completely dry assumption discussed above was originally 

developed for models of chilled water cooling coils. The difference between direct 

expansion cooling coils and chilled water cooling coils makes this approximation even 

more appropriate for the direct expansion coils. According to the ASHRAE Handbook of 

HV AC Systems and Equipment (ASHRAE 2000), the typical air side thermal resistance 

is around 0.07-0.12 °F,ft2,h/Btu (0.012-0.021 m2·°C/W) and the convective heat transfer 

coefficient is 8.3-14.3 Btu/(h·ft2·°F) (47.1-81.2 W/m2,°C). The typical total metal thermal 

resistance is around 0.0125-0.014 °F,ft2,h/Btu (0.0022-0.0024 m2·°C/W) and the metal 

conductance is around 71.4-80 Btu/(h,ft2,°F) (405-454 W/m2·°C). In comparison, the 

typical refrigerant side thermal resistance is around 0.001-0.0033 °F,ft2-h/Btu (0.000176-

0.000587 m2,°C/W) and the convective heat transfer coefficient (R22) is around 300-

1,000 Btu/(h·ft2·°F) (1,704-5,679 W/m2·°C) (ASHRAE 2001). The greatest thermal 

resistance is associated with air side heat transfer. Thus, the temperature difference 
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between the coil surface and refrigerant is relatively small compared to that of the air side 

and coil surface. Considering the refrigerant as having constant evaporating temperature, 

the coil surface temperature could be approximated as uniform, if the resistance between 

coil surface and refrigerant is negligible. If the coil surface temperature is assumed to be 

uniform throughout the air flow, the cooling coil will definitely either completely wet or 

completely dry. 

A coil that effects moisture removal in addition to sensible heat cooling is termed a 

dehumidifying coil. When cooling coils act as dehumidifying coils, water vapor is 

transported from the main air stream and condensed on the coil surface. At the same time, 

the air is being cooled because of the transfer of sensible heat. This simultaneous transfer 

of both sensible and latent heat can be solved by a method developed by McElgin and 

Wiley (1940), which is called 'enthalpy potential' method by later authors. The total heat 

transfer from the air stream to coil surface is a combination of sensible heat transfer due 

to temperature difference and latent heat transfer due to the vapor pressure difference. 

5.4.1. Total Heat Transfer Rate 

Using the enthalpy potential method, the total heat lost by the air in passing over an 

element of wetted area dAw is given by: 

(5.3) 

i = l.006T'+w · (2501 + l.805T') (5.4) 
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where Hr= total heat transfer rate (sensible + latent) of air flowing over wetted 

surface, kW or Btu/hr 

h = sensible heat transfer coefficient through air film, kW/(m2-K) or 

Cp = specific heat of air vapor mixture, kJ/(kg dry air-°C) or 

Btu/(lbm dry air-°F) 

i = enthalpy of air vapor mixture per pound of dry air evaluated at the 

main stream temperature, kJ/kg or Btu/lbm 

is = enthalpy of saturated air vapor mixture per pound of dry air evaluated 

at the surface temperature, kJ/kg or Btu/lbm 

Aw = wetted airside surface area on which moisture is condensing, m2 or 

This equation, originally derived by Merkel (1925), combines sensible heat transfer 

due to the temperature difference and latent heat transfer due to the pressure difference of 

vapor into a single equation. It was recognized that simultaneous sensible and latent heat 

flow or total heat flow depends on the enthalpy difference between the main air flow over 

the surface and the saturated air at the surface temperature. 

Based on the enthalpy potential method, the wet coil heat transfer effectiveness is 

defined as, 

ia i -ia o 
8 = ' ' wet • • (5.5) 

la,i - z,,e 
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where E = 1- e(-NTUw,t) 
wet 

ia,i = enthalpy of moist air at inlet state, kJ/kg or Btu/lbm 

ia,o = enthalpy of moist air at outlet state, kJ/kg or Btu/lbm 

(5.6) 

is,e = enthalpy of moist air at evaporating temperature, kJ/kg or Btu/lbm 

The overall number of transfer units is slightly different from that of a sensible heat 

exchanger, in that the total heat transfer driving force is split into two parts. 

Where Cps is the specific heat of saturated air defined by: Cps = ( dhs ) 
dT T~T 

e 

(5.7) 

hc,aAo = outside surface heat transfer coefficient, W/K or Btu/(hr-°F) 

(UA)i = inside surface heat transfer coefficient, W/K or Btu/(hr-°F) 

ma =airmass flow rate, kg/s or lbm/hr 

Cpa = air specific heat, kJ/(kg-C) or Btu/(lbm-F) 

Analogous to sensible heat exchanger, a total heat transfer coefficient may be 

defined as follows, 

(5.8) 
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And the number of transfer units can be simplified as, 

NTU - (UA),a, 
wet-(· C) 

ma pa 

Hence, the total heat transfer rate for a completely wet coil is, 

5.4.2. Split of Total Heat Transfer Rate 

(5.9) 

(5.10) 

Based on the analysis of the performance of dehumidifying coils in ASHRAE 

Handbook ofHVAC Systems and Equipment (ASHRAE 2000), the effective surface 

temperature Ts,e is used to determine the sensible heat transfer rate of the cooling coil. 

The effective surface temperature can be derived from the corresponding enthalpy is,s,e of 

saturated air. The enthalpy of saturated air is, 

i = i . -s,s,e a,z (5.11) 
(

- h,, 0 A0 ) 

maCpa 

1-e 

Inlet and outlet air enthalpy difference can be computed from the total heat transfer 

rate, 

(5.12) 
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( hc,oA.) 
Let 8 1 = 1-e m.cpa , which is called 'air side effectiveness' in ASHRAE Handbook, 

Equation ( 5 .11) can be reduced to, 

ia,i - ia,o 
i =i .----
s,s,e a,1 e' (5.13) 

Analogous to the sensible heat exchanger, 'number of air-side transfer of units' 

could be defined as, 

h A 
NTU = c,o o 

a • C 
ma pa 

(5.14) 

Thus, the air side effectiveness is simplified to, 

(5.15) 

The effective surface temperature may be found iteratively from its corresponding 

enthalpy. The approach is discussed briefly as follows, which is based on the ASHRAE 

Handbook of Fundamentals (ASHRAE 2001 ). 

The pressure of the saturated water vapor is computed from, 

ln(Pw.J= -S.SOOZ:06 x 103 + 1.3914993-4.8640239x 10-2 T + 
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4.1764768 x 10-5 T 2 -1.4452093 x 10-s T 3 + 6.5459673 ln(T) (5.16) 

where, P w,s = saturated pressure, kPa 

T= absolute dry bulb temperature, °K=°C+273.15 

When the partial pressure of the water vapor is obtained, the humidity ratio of the 

saturated air can be found as, 

. p 
w=0.62198 w,s 

P-Pw,s 

where, w = humidity ratio, kg/kg dry air 

P = total mixture pressure, kPa 

P w,s = saturated pressure, kPa 

Finally, the enthalpy of the saturated air is determined by, 

i = l .006T'+w · (2501 + 1.805T') 

where, i= enthalpy of moist air, kJ/kg 

w = humidity ratio, kg/kg dry air 

T' = moist air dry bulb temperature, °C 

(5.17) 

(5.18) 

By comparing the calculated enthalpy and the targeted enthalpy, the initial guess of 

the effective surface temperature will be adjusted, and then substituted into Equations 

( 5 .16), ( 5 .17) and ( 5 .18) until it converges within a specified error. 
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Once the effective surface temperature is obtained, the sensible heat transfer rate is, 

(5.19) 

where Ta,i = inlet air dry bulb temperature, °C or °F 

The latent heat transfer rate is obtained when the sensible heat transfer rate Qsen is 

subtracted from the total heat transfer rate Q wet . 

The outlet air dry bulb temperature, is determined by the following equation, 

( 
\_ (-NTUa) 

Ta,o = T.,e + Ta,i -Ts,e ;e 

To summarize, the parameters identified and shall be estimated are total.heat 

transfer coefficient (UA)tot, and external heat transfer coefficient hc,oA0 • 

5.5. Expansion Device 

(5.20) 

(5.21) 

To the author's knowledge, the expansion devices used in the water-to-air heat 

pumps manufactured in North America are all thermostatic expansion valves. A relatively 

constant superheat temperature shall be achieved with the thermostatic expansion valve 
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in the refrigeration cycle. Hence, the modeling of expansion device in the water-to-air 

heat pump model is the same as that of the water-to-water heat pump model described in 

Chapter 4. 

5.6. Parameter Estimation Procedure 

The values of the parameters are estimated using the available catalog data. One set 

of parameters is estimated for the heating mode, and one set is estimated for the cooling 

mode. For each operating point, the data needed are: 

• Source side entering water temperature, flow rate, and heat rejection (cooling mode) 

or heating extraction (heating mode) 

• Load side entering air dry bulb/wet bulb temperature, flow rate, total cooling 

capacity, sensible cooling capacity and latent cooling capacity ( cooling mode) or load 

side entering air dry bulb temperature, flow rate and heating capacity (heating mode) 

• Compressor power consumption 

The parameter estimation procedure minimizes the difference between the model 

results and the catalog data by systematically adjusting the values of the parameters. The 

difference between the model results and the catalog data is quantified in the form of 

objective functions. 
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The splitting of total heat transfer rate into sensible and latent parts is one of 

greatest challenges in the modeling of cooling coils. The parameter estimation procedure 

for this model takes advantage of the fact that the external heat transfer coefficient hc,aAa 

is the only parameter involved in the splitting of total heat transfer rate into sensible and 

latent parts. Since the sensible heat transfer is determined based on the effective coil 

surface temperature, which is calculated from its corresponding saturation enthalpy, the 

estimation of the parameter associated with the splitting of total heat transfer rate can be 

isolated from the estimation of the parameters associated with the overall heat pump 

performance. Therefore, it is possible to estimate the external heat transfer coefficient 

hc.aAa separately. Another objective function is established to estimate the remaining 

parameters associated with the overall heat pump performance including the total heat 

transfer rate of the coil. One single objective function that combines the two separate 

parameter estimation routines has also been attempted. However, for a sophisticated 

multi-variable optimization problem, better search results may be expected with fewer 

variables. Since the separation helps to improve the model accuracy on the split of total 

heat transfer rate considerably, it is recommended that the external heat transfer 

coefficient hc,aAa be estimated using a separate routine. 

Two objective functions are established: one is used to estimate the external heat 

transfer coefficient hc,aAa based on the catalog data, in which total heat transfer, sensible 

heat transfer rate and latent heat transfer rate are all given for a range of operating 

conditions. The other is used to estimate the remaining parameters involved in the 
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determination of the total heat transfer rate, heat rejection and power consumption: PD, 

C, LJP, Wzoss, ATsh, 1/, (UA)s, (UA)tot· 

5.6.1. Objective function #1 for external heat transfer coefficient hc,oAo 

1. Calculate the inlet and outlet air enthalpy difference using Equation (5.12). 

2. Calculate the air side effectiveness using Equation (5.15). Note that this relies 

only on the air mass flow rate from catalog data, air specific heat Cpr and hc,oA.0 • 

3. Calculate the saturated surface enthalpy using Equation (5.13). 

4. Calculate the corresponding effective surface temperature using Equations (5.16), 

( 5 .17) and ( 5 .18). Since no explicit solution has been found, the temperature 

needs to be calculated from its corresponding enthalpy iteratively. 

5. Calculate the sensible heat transfer rate using Equation ( 5 .19). 

6. Calculate the latent heat transfer rate using Equation (5.20). 

Based on the given value of hc,oAo, the sensible and latent heat transfer rates are 

calculated for each operation point.· A best estimate of hc,oAo is found by searching for the 

minimum value of the following objective function, which is the sum of the squares of 

the relative errors for both sensible and latent heat transfer rates. 

(5.22) 

where Qsencat = catalog sensible cooling capacity, kW or Btu/hr 
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Qsen = calculated sensible cooling capacity, kW or Btu/hr 

Q1a,cat = catalog latent cooling capacity, kW or Btu/hr 

Q,a, = calculated latent cooling capacity, kW or Btu/hr 

The optimal parameter values of the external heat transfer coefficient hc,oAo will be 

the one associated with the minimum value of function SSE1. Any appropriate single 

independent variable optimization approach can be used. A flow chart for the computer 

program that implements the parameter estimation is shown in Figure 5 .4. 
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Given catalog data: 

Load side entering air dry bulb/wet bulb temperature, flow rate 
Load side total/sensible/latent heat transfer rate 

Starting point: hc,,A0 

In/out enthalpy difference 

Air side effectiveness 

Saturated enthalpy on surface 

New estimation of the parameter 
Effective surface temperature 

Sensible heat transfer Q •• 

Latent heat transfer Q ,~, 

no 

Output data: 
Optimal value of the parameter hc,,Ao 

Figure 5.4. Flow diagram for parameter estimation computer program (#1) 

When the optimal value of external heat transfer coefficient hc,oAo is found, the next 

step is to search for the optimal values of the rest of the parameters, keeping the hc,oAo 

fixed. The rest of the parameters are PD, C, &, Wioss, ATsh, 'f/, (UA)s, (UA)tot· 
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5.6.2. Objective function #2 for the remaining parameters 

1. Calculate the condenser effectiveness using Equation (5.2). 

2. Calculate the evaprator effectiveness using Equation (5.6), 

3. Calculate the evaporating and condensing temperatures of the refrigerant. The 

condensing temperature is determined using, effectiveness model of sensible heat 

exchanger. However, since the driving potential for the heat transfer of the wet 

coil is enthalpy instead of temperature, the enthalpy is calculated first and the 

corresponding evaporating temperature is determined accordingly. The 

evaporating temperature is calculated using Equations (5.16), (5.17) and (5.18). 

4. When the condensing and evaporating temperatures are obtained, the 

corresponding pressures and enthalpies can be derived using a refrigerant property 

subroutine. We used subroutines provided with an HVAC system simulation 

program (Clark and May 1985). 

5. Identify the refrigerant state at the compressor suction port by adding the 

superheat to the evaporating temperature. The refrigerant enthalpy at this point is 

determined using the refrigerant property subroutines. 

6. Identify the compressor suction and discharge states by adding or subtracting the 

pressure drop. The specific volume at the suction state is determined by the 

refrigerant property subroutines. 

7. Calculate the refrigerant mass flow rate by Equation (4.4), the theoretical value of 

isentropic compression power by Equation ( 4.6) and the total power input by 

Equation (4.7). 
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8. Calculate the new value of the total cooling capacity for cooling mode using 

Equation (4.16). 

9. The new value of heat rejection is calculated by adding up the power consumption 

and total cooling capacity. 

Based on the given values of the parameters, the power consumption for the 

compressor, the total cooling capacity and the heat rejection are calculated for each 

operation point. The relative error between the catalog data and the calculated results for 

the power consumption, the total cooling capacity and the heat rejection should be small. 

This is achieved by searching for the minimum value of the following objective function, 

which is the sum of the squares of the relative errors. 

where Wcat = catalog power consumption, kW or Btu/hr 

W = calculated power consumption, kW or Btu/hr 

Qwetcat = catalog total cooling capacity, kW or Btu/hr 

Qwet = calculated total cooling capacity, kW or Btu/hr 

Qscat = catalog heat rejection, kW or Btu/hr 

Qs = calculated heat rejection, kW or Btu/hr 
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Given:catalog data: 
Source side entering water temperature, flow rate, 
Source side heat transfer rate 
Load side entering air cty bulb/wet bulb temperature, flow rate, 
Load side total heat transfer rate, 
Com ressor o=r con sun ion 

Starting point: PD, C, B, L1Tsh' w,Oss' 1], (UA) tot 

Effectiveness of evaporator and condenser 

Evaporating temp and condensing temp 

Identify condenser & evaporator 
exit point A and B 

From compressor model find: 
Refrigerant mass flow rate m, 

New estimation of the parameters 

From compressor model find: Total cooling capacity !1e,=m, ·(hA-hB) 
Power consumption W 

Output data, optimal values of the parameters 
PD, C, B, L1Tsh' w,oss' 1], (UA) toP 

no 

Figure 5.5. Flow diagram for parameter estimation computer program (#2) 

The optimal parameter values for a particular heat pump will be those associated 

with the minimum value of function SSE2• Again, the Nelder-Mead simplex (Kuester and 
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Mize 1973) method is employed. The flow chart for the computer program that 

implements the parameter estimation is shown in Figure 5 .5. 

5.7. Model Implementation 

The model is implemented in a similar way as the objective functions evaluation 

described above. However, the model implementation program combines the two 

separate parameter estimation subroutines into one single procedure. A thermostat signal 

is used as an input parameter to tell the model which set of parameters (heating mode or 

cooling mode) should be used. Also, the objective function evaluation takes advantage of 

the fact that the heat transfer rates are known, using the catalog data as an initial guess, 

then minimizing the difference between the calculated and catalog heat transfer rates. 

However, for the model implementation, the heat transfer rates are solved simultaneously 

with successive substitution, and this introduces an iterative loop not present in the 

objective function evaluation. 
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Figure 5.6. Information flow chart for model implementation 

The model then determines the total/sensible cooling capacity, heating capacity, 

heat rejection, heat extraction, etc. The outlet temperatures can also be reported if 

desired. An information flow chart of the model implementation is presented in Figure 

5.6. Similar to that of parameter estimation computer program, a logic diagram for model 

implementation is presented in Figure 5.7. 

It is noted that in the model implementation, the total cooling capacity calculated 

using Equation ( 5 .10) may be less than the sensible cooling capacity calculated using 

Equation (5.19) when the humidity ratio of the inlet air drops below the point of 
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completely dry coil. This departure from reality results from the approximation of using 

an analysis based on wet coil condition to predict dry coil condition. The enthalpy of 

saturated air at the coil surface is calculated by Equation (5.11). The humidity ratio of the 

saturated air at the coil surface is determined accordingly. In all cases, the humidity ratio 

of the air at the coil surface should be less than or equal to that of the main air flow. For a 

wet coil, the humidity ratio of the air at the coil surface is lower than that of the main air 

flow. For a dry coil, the humidity ratios are equal. However, the humidity ratio of the air 

at the coil surface determined from Equation ( 5 .11) may be greater than that of the main 

air flow when the inlet air humidity ratio is very low. As a result, the sensible heat 

transfer rate calculated by Equation (5.19) may be greater than the total heat transfer rate 

calculated by Equation ( 5 .10). Since this problem only occurs when the inlet air humidity 

ratio drops below the threshold of completely dry coil conditions, the solution is as 

simple as setting the sensible heat transfer rate equal to the total heat transfer rate. In fact, 

this condition may be looked upon as a signal for completely dry coil conditions, when 

the previous approach for splitting total heat transfer rate cannot be expected to work 

properly. 
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Figure 5.7. Flow diagram for model implementation computer program 
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5.8. Treatment of Extreme Operating Conditions 

As discussed in Chapter 4, the model may encounter conditions not intended by the 

manufacturer, such as low water flow rates or extreme temperatures. This may happen 

even when the system simulation inputs are correct, as the equation solving process may 

occasionally try physically unrealistic values. Without any other checks, the model may 

then provide unrealistic results, or crash due to errors in the property routines. The 

treatment of extreme operating conditions in the water-to-air heat pump model is the 

same as that of the water-to-water heat pump model described in section 4.7, i.e. checks 

for the suction and discharge pressures are performed. 

5.9. Model Validation 

The water-to-air heat pump model was validated using catalog data for five heat 

pumps made by three different manufacturers. Since the cooling mode which involves 

dehumidification is the major concern, heat pump #1 to #5 are all validated using the 

cooling mode catalog data. Validation of the heating mode of the water-to-air heat pump 

model is fundamentally same as that of water-to-water heat pumps. For sake of brevity, it 

is not discussed in this chapter. A brief description of the heating mode validation for a 

water-to-air heat pump can be found in Chapter 8. It is noted that the manufacturers' 

tabulated performance data are originally given for one single combination of entering air 

dry bulb and wet bulb temperatures and air flow rate specified by ARI standard 320. 

Correction factors for variation in entering air temperature and air flow rate are also 

provided by the manufacuturers. In the model validation, the correction factors have been 
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used to expand the original qata over a range of air temperatures and flow rates. 

Necessarily, these data are only as accurate as the manufacturers' correction factors. 

Since each correction factor is applied to multiple operating points (i.e. different entering 

water temperature, water flow rate and air flow rate), these data are presumed to have 

lower accuracy than the other tabulate data. 

The root-mean-square (RMS) error for the total cooling capacity, sensible cooling 

capacity, latent cooling capacity and power are shown in Table 5 .1. RMS errors for latent 

capacity are given in Watts and Btu/Hr instead of percentage, because the latent cooling 

capacity is sometimes zero, and the percentage error then become meaningless. The RMS 

errors between model prediction and catalog data for the total cooling capacity range 

from 2.4% to 6.2%. Those of power consumption range from 3.5% to 7.4%. However, 

some relatively larger errors occur for the splitting of the total cooling capacity into 

sensible and latent parts. The greatest error is 6.4% for the sensible and 0.82 kW (2,798 

Btu/Hr) for the latent respectively. The least error is 4.3% for the sensible and 0.14 kW 

(478 Btu/Hr) for the latent respectively. Given the complication and limitation involved 

in the modeling of the direct expansion cooling coil, the comparison shows a 

comparatively good agreement between model prediction and catalog data. 

As with the water-to-water heat pump model, this modeling approach also has the 

advantage of not requiring experimental and component specifications data beyond what 

is published in the heat pump manufacturer's catalogs. All the comparisons are made 

based on the external measurements of water flow rates and temperatures for both source 
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and load sides. The ranges of flows and inlet temperatures in the catalog data for the heat 

pumps investigated are presented in the Table 5.2 and Table 5.3. 

Table 5.1. A List of the HP's used for Model Verification 

No I 2 3 4 5 

Make Addison 
Climate 

Trane Addison Trane Master 
Model WPG017-1A HS006 WPHF021 WPG036-1A WPHF040 

Nominal Cooling I Btu/Hr 16,000 7,400 21,000 35,000 40,000 
Capacity I Watts 4,690 2,170 6,155 10,260 11,700 

Total Points 2,544 2,981 1,339 2,536 1,435 

Total All Points 2.92% 4.72% 5.46% 2.39% 6.22% 

Capacity 32 Points 4.32% 5.68% 5.57% 2.99% 7.01% 

Sensible All Points 6.43% 6.33% 4.26% 5.26% 4.97% 
Capacity 32 Points 6.64% 15.4% 4.78% 6.47% 10.52% 

All Points 
O.I6kW 0.14kW 0.39 kW 0.25 kW 0.82 kW 

RMS Latent (546 Btu/Hr) (478 Btu/Hr) (1,331 Btu/Hr) (853 Btu/Hr) (2,798 Btu/Hr) 
Capacity 

32 Points 
0.25 kW 0.27 kW 0.43 kW 0.27 kW 1.23 kW 

(853 Btu/Hr) (921 Btu/Hr) (1,467 Btu/Hr) (921 Btu/Hr) (4,196 Btu/Hr) 
Heat All Points 2.67% 3.71% 4.73% 2.43% 5.50% 

Rejection 32 Points 4.47% 3.78% 6.29% 2.95% 6.37% 

Power 
All Points 3.47% 6.38% 6.25% 6.51% 7.41% 
32 Points 6.13% 8.58% 10.3% 7.49% 13.7% 

Table 5.2. Range of Flow Rates and Temperatures (IP units) 

No Source Side Load Side 
EWT Flow Rate Dry Bulb Wet Bulb Flow Rate 
(OF) (GPM) (OF) (OF) (CFM) 

1 40 to 110 2 to 4 70 to 90 61 to 73 400 to 550 
2 40 to 110 1 to 2.4 70 to 90 61 to 73 165 to 320 
3 45 to 120 2.5 to 6 70 to 85 45 to 78 480 to 720 
4 40 to 110 5 to 9 70 to 90 61 to 73 800 to 1100 
5 45 to 120 4.5 to 13 70 to 85 45 to 78 960 to 1440 

Table 5.3. Range of Flow Rates and Temperatures (SI units) 

No Source Side Load Side 
EWT Flow Rate Dry Bulb Wet Bulb Flow Rate 
(oC) (LIS) (oC) (oC) (LIS) 

1 4.4 to 43.3 0.13 to 0.25 21.1 to 32.2 16.1 to 22.8 189 to 260 
2 4.4 to 43.3 0.06 to 0.15 21.1 to 32.2 16.1 to22.8 77.9 to 151 
3 7.2 to 48.9 0.16 to 0.38 21.1 to29.4 7.2 to 25.6 227 to 340 
4 4.4 to 43.3 0.32 to 0.57 21.1 to 32.2 16.1 to 22.8 378 to 519 
5 7.2 to 48.9 0.28 to 0.82 21.1 to29.4 7.2 to 25.6 453 to 680 
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Once the air inlet condition correction factors have been utilized, there are 

thousands of operating points given in the catalog for all five heat pumps. The points 

cover a range of entering water temperatures and water flow rates on source side, and a 

range of entering air dry bulbtemperatures, wet bulb temperatures and air flow rate on 

the load side of the heat pump. The idea to use data points representing the combination 

of the lowest and highest values of the input variables described in chapter 4 for the 

water-to-water heat pump model can also be applied to the water-to-air heat pump model. 

Since air temperature should be described by both dry bulb temperature and wet bulb 

temperature, 32 data points have been used to represent the combination of the lowest 

and highest values of the input variable. Parameters were determined for each heat pump 

using all points and then 32 points representing combinations of the highest and lowest 

values of the temperatures and mass flow rates on each side, Once the parameters were 

determined, both sets of parameters were applied to all operating points. The comparisons 

of the results are summarized in Table 5.1. In fact, the parameter estimation model 

performs almost as well with 32 data points as with all the data points. This represents a 

significant advantage if the model user has to manually transcribe the data from the 

catalog. The model accuracy for using all the data points and 32 data points are plotted in 

Figures 5.8. through 5.17. for heat pump #1. 
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Figure 5.8. Calculated total cooling capacity vs. catalog total cooling capacity 
(heat pump # 1 all points) 

QtotalCat( Btu/Hr) 

10235 14235 18235 22235 
7 

22235 

6 
'-

~ ::c 
..I<'. 18235 ~ u 
ro 5 u 
() "iij 

]i () 

.9 ]i 
a 0 

14235 o 
4 

Rrv1S=4.32% 

3 10235 
3 4 5 6 7 

QtotalCat(kW) 

Figure 5.9. Calculated total cooling capacity vs. catalog total cooling capacity 
(heat pump #1 32 points) 
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Figure 5.10. Calculated sensible cooling capacity vs. catalog sensible cooling capacity 
(heat pump #1 all points) 
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Figure 5.11. Calculated sensible cooling capacity vs. catalog sensible cooling capacity 
(heat pump #1 32 points) 
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Figure 5.12. Calculated latent cooling capacity vs. catalog latent cooling capacity 
(heat pump # 1 all points) 
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Figure 5.13. Calculated latent cooling capacity vs. catalog latent cooling capacity 
(heat pump #1 32 points) 
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Figure 5.14. Calculated heat rejection vs. catalog heat rejection 
(heat pump #1 all points) 
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Figure 5.15. Calculated heat rejection vs. catalog heat rejection 
(heat pump #1 32 points) 
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Figure 5.16. Calculated power consumption vs. catalog power consumption 
(heat pump # 1 all points) 
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Figure 5.17. Calculated power Consumption vs. catalog power consumption 
(heat pump #1 32 points) 
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5.10. Prediction of Dry Coil Condition using Wet Coil Parameters 

The total and sensible heat transfer calculation discussed above is based on the 

completely wet coil assumption. However, this analysis can also be used for completely 

dry calculation as an approximation. Morisot et al. (2002) discussed the error induced by 

the wet or dry determination method and the use of wet coil external heat transfer 

coefficient for both wet and dry conditions. In the model implementation discussed 

previously, it could be assumed that if the predicted total heat transfer rate and sensible 

heat transfer rate are very close to each other, the coil is likely to be under completely dry 

condition. However, it is not expected that the model is able to predict the dry coil or 

partly dry coil condition with 100% confidence based on completely wet coil assumption. 

The analysis for completely wet coil is useful to some extent to predict the performance 

with dry coil. This section will examine this prediction. 

Heat pump # 1 in the model validation has been used to test the model behavior in 

response to the inlet air humidity ratio. Data points with the lowest dry bulb temperature 

of 21.1 °C (70 °F), medium dry bulb temperature of 26. 7 °C (80 °F) and highest dry bulb 

temperature of 32.2 °C (90 °F) are selected from the manufacturer's catalog. The wet 

bulb temperature is reduced by an appropriate step starting from the value equal to dry 

bulb temperature. The model predicted latent heat factor, which is the ratio of latent 

cooling capacity and total cooling capacity is plotted in Figure 5 .18 through Figure 5 .20 

against wet bulb temperature. The catalog latent heat factors are also plotted. It is 

reasonable to assume that the points with wet bulb temperature close to that of the 
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maximum latent heat factor can be regarded as in completely wet coil condition. There 

exists a wet bulb temperature, above which the latent cooling or condensation occurs. 

The points with wet bulb temperature close to or below that temperature can be regarded 

as in the completely dry coil condition. As can be seen from the figures, the model 

performance is physically realistic as the air becomes dryer. 
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Figure 5.18. Latent heat factor vs. wet bulb temperature (low dry bulb temp) 
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Figure 5.19. Latent heat factor vs. wet bulb temperature (medium dry bulb temp) 
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5.11. Conclusion for Water-to-Air Heat Pump Model and Recommendations for 
Future Work 

This chapter has presented a water-to-air heat pump model suitable for use in 

building energy analysis and HV AC system simulation programs. The model has been 

developed so as to require only commonly available data from manufacturers' catalogs in 

order to estimate the model coefficients. As compared to more detailed deterministic 

models, it does not require internally measured data usually unavailable to building 

system designers and simulationists. 

The previously developed evaporator and condenser models are based on 

availability of the detailed information of the dimensions and configuration of the heat 

exchangers, such as tube and fin sizes, row numbers, fin spacing and type, and circuit 

types, etc. The complication associated with the co-existence of dry and wet regions with 

variable (UA) then can be solved. However, the information required for such detailed 

models is not typically given in the heat pump manufacturers' catalogs, and it may also 

requires some internal measurements to refine the model to such a detailed level. Hence, 

it is not set up as the target of this research effort. 

In addition, the values of the other parameters need to have physical meanings. In 

other words, they should fall into some physically reasonable range that may be realistic 

for the actual heat pump performance and its component specifications. However, it is 

not expected that the estimated parameter values shall match the exact specifications of 

the heat pump and its components if they are available. Instead, this research effort is 

trying to establish a model that can replicate the heat pump performance published in the 
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manufacturers' catalogs, and some desirable prediction beyond the catalog data using a 

parameter estimation technique. 

The parameter estimation based water-to-air heat pump model has been developed 

so as to require only commonly available data from manufacturers' catalogs in order to 

estimate the model coefficients. As compared to more detailed deterministic models, it 

does not require internally measured data usually unavailable to building system 

designers and simulationists. It also works well with only 32 data points, making it 

reasonably convenient when the data must be manually transcribed from a catalog. As 

compared to equation-fit models, this model retains the physically-based representation 

of the heat pump, which allows some extrapolation beyond the catalog data. The 

complication associated with the water-to-air heat pump exists in the modeling of load 

side heat exchanger, or direct expansion cooling coil specifically. Difficulty was 

encountered in the distinguishing of dry and wet conditions with limited information 

available from the catalog data. This has been solved by the approximation of using wet 

coil external convection heat transfer coefficient to predict dry coil condition. The model 

predicts sensible and latent capacities acceptably well when the coil approaches 

completely dry conditions. 

The potential exists for significantly increasing the performance of water-to-air heat 

pump model. Further research is suggested in the following areas: 

• Modeling of the direct expansion coil operating in cooling mode is the 

greatest challenge in the water-to-air heat pump model. A small change of 
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inlet air condition may result in a significant change in cooling capacity and 

outlet air condition. The transition from completely dry coil to partly dry 

and partly wet coil, and the transition from partly dry and partly wet coil to 

completely wet coil are not the focus of this model. However, if a more full 

description of the DX coil and air condition is required, additional research 

using more detailed information of the coil and entire heat pump may be 

needed. 

• Additional validation of the model, using data from an experimental system, 

would be highly useful. The manufacturers' catalog data have unknown 

accuracy at conditions other than the ARI operating point. Particularly, the 

correction factors for variation in entering air temperature and air flow rate 

may be a fairly rough approximation since one single factor is used for 

multiple operating points with different water temperature and flow rate. As 

a result, the performance data calculated using the correction factors for 

conditions other than standard may not be as accurate as the data for 

standard conditions. 

Another possibility is that manufacturers could use this parameter estimation 

based model to generate catalog data for non-measured conditions. This 

could give significantly improved catalog data as compared to the equation

fit procedures that are apparently used now. 
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• As it is noticed in the model validation results, the split of total cooling 

capacity into sensible and latent parts are not very satisfactory for a few 

cases. One of the reasons may be due to the completely wet coil assumption. 

The author believes that a better understanding of the co-existence of the dry 

and wet regions and the transition point on the cooling coil may be 

necessary to refine the model. 

• Only two-phase region is considered for the heat exchanger model. 

Refrigerant superheat and subcooling may also have influence on the heat 

exchanger performance to some extent. Thus, if more detailed insight into 

the heat exchangers is expected, a more sophisticated model, which 

accounts for subcooling and superheat may be necessary. 
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6. Extensions for the Parameter Estimation Based Heat Pump Models 

This chapter covers three important extensions to the water-to-water and water-to

air heat pump models - scroll compressors, rotary compressors and antifreeze. Scroll 

compressors and rotary compressors are two frequently used alternatives to reciprocating 

compressors. Therefore, it is desirable to develop models of scroll and rotary 

compressors that can replace the reciprocating compressor model in the heat pump 

models presented in Chapter 4 and Chapter 5. In this chapter, a five parameter (including 

intake volumetric flow rate, built-in compression ratio, leakage coefficient and two 

efficiency-related parameters) scroll compressor model and a four-parameter 

(displacement, discharge pressure drop, two efficiency-related parameters) rotary 

compressor model will be presented. 

While necessary in many applications for providing freeze protection, antifreeze 

solutions adversely impact heat transfer performance. It is also desirable to be able to 

model water-source heat pumps when the secondary heat transfer fluid is a water

antifreeze mixture. An approach to adjust the heat exchanger model by modifying the 

heat transfer coefficient, as a result of the change in the physical properties of the 

secondary heat transfer fluid will also be presented. 

6.1. Modeling of Scroll Compressor 

6.1.1. Model 

The scroll compressor is a member of the big family of positive displacement 

compression machines. For the scroll compressor, compression is accomplished by the 
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rotary motion of two interfacing, spiral-shaped scrolls. At the suction state, refrigerant 

vapor is trapped in a pocket at the outer periphery of the scrolls. As the scrolls move, this 

pocket is continuously made smaller, compressing the vapor as it proceeds toward the 

discharge port. The scroll compressor's fixed volume ratio is set by the geometry of the 

scrolls and the location of the discharge port. This feature provides the scroll compressor 

with different performance characteristics from those of reciprocating compressors. 

Pressure losses are minimized with large suction and discharge ports. High volumetric 

efficiency over a wide range of operation conditions is achieved as a result of the absence 

of valves and re-expansion volumes, and the continuous flow process. Figure 6.1 shows 

the compression process schematically. 

A few scroll compressor models have been described in the literature (Morishita 

1984, Qu et al. 1998, Bush and Elson 1988, lkegawa et al. 1984, Etemad and Mieter 

1988). However, these models are targeted at the re-design of the scroll compressor for 

improved performance. The models require an exhaustive description of all the 

components in the compressor such as the configuration of the scrolls, the location of the 

ports, and the rotation speed, etc. The high number of parameters in these models make 

them infeasible to use with the parameter estimation based modeling approach, at least in 

cases where the overall heat pump performance is modeled. 

Winandy, et al. (2002) presented a hermetic scroll refrigeration compressor model, 

which shares some significant features with the screw compressor model presented by 

Lebrun, et al. (1999). Both types of compressors trap a volume ofrefrigerant and 
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continuously reduce the size of the volume up to the discharge port. The characteristics 

shared by the twin-screw compressor and scroll compressor make it possible to duplicate 

most of the thermodynamic analysis for twin-screw compressors for use in the scroll 

compressor model. 

Figure 6.1. Scroll compression process 

(ASHRAE handbook ofHVAC systems and equipment) 

First, both of them have a feature called 'built-in' pressure ratio or internal pressure 

ratio. This feature, the 'built-in' compression ratio may be defined by the following 

equation, 
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where 14 = the 'built-in' pressure ratio 

P1 = the internal discharge pressure, kPa or psia 

Pe= the evaporating pressure, kPa or psia 

(6.1) 

Another related characteristic to the 'built-in' pressure ratio is the 'built-in' volume 

ratio v1, which is the ratio of the volume of the trapped gas pocket immediately after 

closing, to the volume of trapped gas pocket immediately before opening to discharge. 

The relationship between 'built-in' pressure ratio and 'built-in' volume ratio may be 

derived as follows if the compression is assumed to be isentropic, 

(6.2) 

Analogously, scroll compression also involves another important term as 'external 

pressure ratio', which is the ratio of the condensing pressure, denoted as Pc to the 

evaporating pressure, denoted as Pe, This ratio was defined by LeBrun et al. (1999) as 

follows, 

(6.3) 

198 



The difference between external pressure ratio and 'built-in' pressure ratio results in 

three modes of operation of the scroll compression process - design operation, over 

compression and under compression. Under design conditions, the 'built-in' pressure 

ratio is equal to the external pressure ratio. This should be the optimal operating point. 

However, the scroll compressor operates over a range of conditions where the external 

pressure ratio varies and it does not match the internal pressure ratio. 

p 

V 

Figure 6.2. Thermodynamic cycle of a scroll compressor under design condition 

When the condensing pressure is lower than internal discharge pressure, over

compression occurs. In this case, the trapped gas pocket is compressed above the 

condensing pressure and expand into the discharge as the port is uncovered, with 

resultant lost work. 
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Figure 6.3. Thermodynamic cycle of a scroll compressor with over-compression loss 

When the condensing pressure is higher than the internal discharge pressure, under

compression occurs. In this case, trapped pocket opens early to a higher pressure in the 

discharge line and then must pump against this higher pressure for the remaining rotary 

motion of the scrolls, requiring higher torque than would have been required if the 

pressure had built up gradually to the condensing pressure. 
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Figure 6.4. Thermodynamic cycle of a scroll compressor with under-compression loss 

Both over compression and under compression may lead to energy losses in the 

compressor. The theoretical power consumption of the compressor will be a little higher 

than the power required to perform a pure isentropic compression. Figures 6.2-6.4 show 

the actual compression processes schematically. The shaded areas constitute the energy 

losses when the 'built-in' pressure ratio and external pressure ratio are not equal to each 

other. 

If external pressure ratio matches the 'built-in' pressure ratio, isentropic power 

consumption is, 

r . -
[ 

y-1 ] 

w; = --P.,~. 7r r - l 
r-I 

where Pe = the evaporating pressure, kPa or psia 
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vr = the refrigerant volume flow rate at the beginning of the compression, 

r = isentropic exponent 

If external pressure ratio does not match the 'built-in' pressure ratio, the power 

consumption will be higher than that of the isentropic process. 

r . [r-1 tr 1 r-1 ] W =--PV --· -+-tr. r -1 
I l e r 1 r- r vi r 

(6.5) 

A simple linear representation, which follows the same modeling approach as 

reciprocating compressor discussed previously, has been used to account for the electrical 

and mechanical efficiency of the compressor. The actual power input for the compressor 

is calculated by the following equation, 

. w . 
W =-' +W,oss (6.6) 

1/ 

where w is the compressor power input, w, is the theoretical power, 17 is the electro-

mechanical efficiency , Wioss is the constant part of the electro-mechanical power losses. 

Due to the absence of suction and discharge valves and theoretically negligible re

expansion volumes, the refrigerant volume flow rate at the beginning of the compression 

Vr is equal to the product of the volume of the pockets that seal the suction gas at the 
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beginning the compression and the rotational speed. This volume should be a value 

defined by its configuration and dimension for a given compressor. Thus, the refrigerant 

mass flow can be determined as, 

. vr 
m =r 

vsuc 

Where Vsuc = specific volume at the suction state, m3 /kg or ft3 /Ihm 

(6.7) 

In practice, leakage will reduce the refrigerant mass flow rate in the scroll 

compressor calculated by Equation (6.7). In the scroll compressor model presented by 

Chen et al. (2000), the leakage due to the gap between the bottom/top plate and the 

scrolls and the gap between the flanks of the two, scrolls has been discussed 

quantitatively. Based on the analysis of Chen et al. (2000), the leakage was found to be a 

function of the ratio of discharge pressure and suction pressure. To simplify the 

calculation, the discharge pressure is assumed to be equal to condensing pressure and the 

suction pressure is equal to the evaporating pressure. Hence, the leakage rate is defined as 

follows: 

. c~ 
mleak = ·-

~ 
(6.8) 

Where Pc is condensing pressure, Pe is evaporating pressure and C is coefficient to define 

the relationship between pressure ratio and leakage _rate. 
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The refrigerant mass flow rate calculated in Equation ( 6. 7) is then corrected by 

subtracting the leakage mass flow rate calculated in Equation (6.8). To summarize, the 

parameters chosen to represent the scroll compressor model will be T7r, Vi, C, Wtoss and T/ . 

These parameters, along with the UA values for both heat exchangers and the superheat, 

are estimated from catalog heat pump data. (As described below, use of antifreeze 

further increases the parameters.) 

6.1.2. Algorithm 

As an example, the algorithm for the water-to-water heat pump model, with the 

scroll compressor, is summarized below. For the sake of brevity, only the heating mode 

of the model is described. 

For any given set of parameters, 17r, vi, C, Wtoss, T/ and ATsh, (UA)L, (UA)s, which 

are defined previously in Chapter 4, and initial guesses of load side heat transfer rate {]r 

and source side heat transfer rate f.2s , the model is implemented as follows. 

1. Calculate the evaporator and condenser effectiveness by Equations (6.9) and (6.10), 

(6.9) 

where & s = thermal effectiveness of evaporator 
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(UA)s = heat transfer coefficient for evaporator, kW/Kor Btu/(hr-P) 

mws = mass flow rate of water in evaporator, kg/s or lbm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lbm-P) 

(6.10) 

where 8 L = thermal effectiveness of condenser 

(uAt = heat transfer coefficient for condenser, kW/Kor Btu/(hr-P) 

mwL = mass flow rate of water in condenser, kg/s or lbm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lbm-P) 

2. Calculate the evaporating and condensing temperatures of the refrigerant: 

(6.11) 

where Te = evaporating temperature, °C or 0 P 

TwiS = evaporator entering water temperature, °C or 0 P 

Qs = source side heat transfer rate, kW or Btu/hr 

8 s = thermal effectiveness of evaporator 

mwL = mass flow rate of water in evaporator, kg/s or lbm/hr 

C pw = specific heat of water, kJ/(kg-K) or Btu/(lbm-P) 
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(6.12) 

where Tc = condensing temperature, °C or 0 P 

TwiL = condenser entering water temperature, °C or 0 P 

QL = load side heat transfer rate, kW or Btu/hr 

s L = thermal effectiveness of condenser 

mwL =mass flow rate of water in condenser, kg/s or lbm/hr 

Cpw = specific heat of water, kJ/(kg-K) or Btu/(lbm-P) 

3. When the condensing and evaporating temperatures are obtained, the corresponding 

pressures and enthalpies can be derived using a refrigerant property subroutine. We 

used subroutines provided with an HV ACSIM+ system simulation program (Clark 

and May 1985). 

4. Identify the refrigerant state at the compressor suction port by adding the superheat to 

the evaporating temperature. The refrigerant enthalpy at this point is determined using 

the refrigerant property subroutines. 

(6.13) 

where ~com = Compressor inlet temperature, °C or 0 P 
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Te = evaporating temperature, °C or 0 P 

IJ.Tsh = superheat, °C or 0 P 

5. Identify the compressor suction and discharge states. Assuming no pressure loss at 

the suction and discharge ports, the suction pressure is equal to the evaporating 

pressure and the discharge pressure is equal to the condensing pressure. The specific 

volume at the suction state is determined by the refrigerant property subroutines. 

where ~uc = compressor suction pressure, kPa or psia 

P,, = evaporating pressure, kPa or psia 

where Pais = compressor discharge pressure, kPa or psia 

~ = condensing pressure, kPa or psia 

(6.14) 

(6.15) 

6. Calculate the refrigerant mass flow rate rhr by Equation (6.7) and Equation (6.8), the 

theoretical value of isentropic compression power by Equation ( 6,5) and the total 

power input by Equation (6.6). 

7. Calculate the new value of the source side heat transfer rate. 
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(6.16) 

where hA = enthalpy of the refrigerant leaving the evaporator, kJ/kg or Btu/lbm 

hB = enthalpy of the refrigerant entering the evaporator, kJ/kg or Btu/lbm 

8. The new value of the load side heat transfer rate is calculated using Equation (6.17). 

(6.17) 

where hA = enthalpy of the refrigerant leaving the evaporator, kJ/kg or Btu/lbm 

hB = enthalpy of the refrigerant entering the evaporator, kJ/kg or Btu/lbm 

QL = load side heat transfer rate, kW or Btu/hr 

fls = source side heat transfer rate, kW or Btu/hr 

For the model implementation, the heat transfer rates are solved simultaneously 

with successive substitution, thus an iterative loop is introduced. When the heat transfer 

rates converge to a specified error, the model then determines the outlet temperatures for 

each of the fluid streams. Other information such as cooling and heating capacities, COP, 

etc., may be reported if desired. 
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6.1.3. Validation 

Since, in our application, the scroll compressor model is only used within a heat 

pump model, it is difficult to directly validate its operation. One indirect validation is to 

apply two variations of a water-to-water heat pump model - one with reciprocating 

compressor, the other with scroll compressor, to a water-to-water heat pump model that 

actually has a scroll compressor. The scroll compressor model may be judged successful 

if it improves the overall performance of the heat pump model. A Florida Heat Pump 

model WP 120, which utilizes a Copeland scroll compressor, has been modeled with both 

variations of the water-to-water heat pump model. Figures 6.5 and 6.6 show the heating 

capacity and power consumption when the heat pump is modeled with a hypothetical 

reciprocating compressor. Figures 6.7 and 6.8 show the heating capacity and power 

consumption when the heat pump is modeled with a scroll compressor. The RMS errors 

are summarized in Table 6.1. In addition, Table 6.1 shows the RMS errors of the heat 

pump model prior to adding the leakage parameter "C" to the model. It noticeably 

improves the model performance. 
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Table 6.1. A Comparison of the Model Prediction RMS Errors 

Heatin2 Capacity Power Heat of Extraction 
Reciprocating Compressor 1.27% 3.15% 2.19% 
Scroll Comp. w/o Leakage 1.32% 1.03% 2.15% 
Scroll Comp. w/ Leakage 0.30% 0.67% 0.62% 

As can be seen from Figures 6.5-6.8, the performance of the heat pump model is 

significantly improved, both for predicting heating capacity and power, when the scroll 

compressor equipped heat pump is modeled with the scroll compressor vers_ion of the 

heat pump model. Therefore, use of the scroll compressor model is recommended for 

heat pump with scroll compressors. 

6.2. Modeling of Rotary Compressor 

Another type of compressor used in the heat pump technology is rotary compressor. 

Rotary compressors actually comprise two sub-types, rolling piston compressor and 

rotary vane compressor. This section will focus on the modeling of rolling piston 

compressors. In a rolling piston rotary compressor, a rolling piston or roller is mounted 

on an eccentric shaft. A fixed vane sliding in a slot machined in the non-rotating cylinder 

block remains in contact with the roller. The eccentrically moving roller causes the 

reciprocating motion of the blade in the slot. Vapor refrigerant enters the compression 

chamber through the suction inlet and is compressed by the eccentric motion of the roller. 

When the rolling piston is in contact with the top of the cylindrical housing, the hot gas is 

squeezed out through the discharge valve. A schematic diagram of the rolling piston 

compressor is shown in Figure 6.9. The inherent design features include high volumetric 
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efficiency due to the small clearance volume and low re-expansion losses accordingly. 

Only a discharge valve is necessary for rolling piston rotary compressors; no suction 

valve is required. Displacement for the rolling piston compressor can be calculated from 

Vd = JZ"H(A 2 -B2 ); 4 

Where, Vd = displacement, m3 /s or CFM 

H = cylinder block height, m or inch 

A = cylinder diameter, m or inch 

B = roller diameter, m or inch 

(6.18) 

Obviously, the displacement Vd is a value defined by its configuration and 

dimension for a given rotary compressor, which means it may be chosen as a parameter 

for the rotary compressor. 

Like the scroll compressor, previously published models for rotary compressors 

(Chu et al. 1978, Wakabayashi, et al. 1982, Gyberg and Nissen 1984, Huang 1999, 

Takeshita 1997, Ooi and Wong 1997) have been targeted at the re-design of the rotary 

compressor for improved performance. Again, the high number of parameters in these 

models make them infeasible to use with the parameter estimation based modeling 

approach. 

However, a review of the performance characteristics of rotary compressors shows 

it may be feasible to adapt the reciprocating compressor model discussed previously to 
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rotary compressors. Due to the re-expansion of the refrigerant vapor in the clearance 

volume of the reciprocating compressors, the mass flow rate of the refrigerant is a 

decreasing function of the pressure ratio, 

m, = PD[I+c-c(Pdis JYr] 
Vsuc psuc 

(6.19) 

where m, = refrigerant mass flow rate, kg/s or lbm/hr 

PD = piston displacement, m3/s or CFM 

vsuc = specific volume at suction state, m3/kg or ft3/lbm 

C = clearance factor 

Pdis = discharge pressure, kPa or psia 

P.uc = suction pressure, kPa or psia 

r = isentropic exponent 

For a rotary compressor, the PD term or piston displacement in Equation (6.19) 

may be replaced by displacement Vd discussed above. The C term or clearance factor in 

Equation ( 6.19) is negligible due to the small clearance volume and corresponding low 

re-expansion losses of rotary compressors. If C = 0, Equation ( 6.19) can be simplified as, 

. vd 
m =r 

vsuc 
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Figure 6.9. Rotary compressor -- rolling piston type 
(ASHRAE handbook ofHVAC systems and equipment) 

Analogously, the theoretical compressor power for the isentropic process is, 

. r . 
W, = --m r p suc V sue 

y -1 

where ~=theoretical power, kW or Btu/hr 

r = isentropic exponent 

m, = refrigerant mass flow rate, kg/s or lbm/hr 

P.uc = suction pressure, kPa or psia 

v suc = specific volume at suction state, m3 /kg or ft3 /lbm 

Pdis = discharge pressure, kPa or psia 

(6.21) 

Since discharge valve is required by rolling piston rotary compressors, pressure 

drop t1P across the discharge valve will be considered. However, the suction pressure is 
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assumed to be equal to the evaporating pressure since there is no suction valve. Figure 

6.10 shows the compression cycle schematically. 

~UC= P,, (6.22) 

where ~uc = compressor suction pressure, kPa or psia 

P,, = evaporating pressure, kPa or psia 

(6.23) 

where Pdis = compressor discharge pressure, kPa or psia 

P,, = condensing pressure, kPa or psia 

M = pressure drop across discharge valve, kPa or psia 

p 

pdis 

pc 

~ 
i:ll 
i:ll e 
~ 

p sue 
Pe=Psuc 

V 
Cylinder Volume 

Figure 6.10. Thermodynamic cycle of a rotary compressor 
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A simple linear representation has been used to account for the electrical and 

mechanical efficiency of the compressor. The actual power input for the compressor is 

calculated by the following equation, 

. w . 
W=-' +Wzoss (6.24) 

17 

where W = compressor power input, kW or Btu/hr 

W"ioss = constant part of the electromechanical power losses, kW or Btu/hr 

17 = electro-mechanical efficiency 

W, = theoretical power, kW or Btu/hr 

To summarize, the parameters chosen to represent a typical rotary compressor will 

be vd, LJP, Wtoss and 17. 

Since the rotary compressor model is, in the end, a simplified version of the 

reciprocating compressor model, it is not expected to give better results than the 

reciprocating compressor model. Presumably, the extra parameters in the reciprocating 

compressor model will allow it to fit any data set better. However, it makes more 

physical sense than the reciprocating compressor model and should give similar results, 

while taking less time for parameter estimation. Experience with a limited number of 

rotary compressor heat pumps has shown that the performance is roughly the same, 

regardless of whether a reciprocating compressor or rotary compressor model is used. 
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6.3. Modeling of Heat Pump Performance with Anti-Freeze 

It is common in ground source heat pump systems to utilize an antifreeze mixture, 

also called 'coolant' alternatively, as secondary heat transfer fluid. As compared to 

system using pure water, this degrades the heat pump performance. It would be useful to 

be able to model the impact of antifreeze on the performance of the heat pump. 

Unfortunately, very little information is available from manufacturers with regards to the 

change in system performance when antifreeze mixtures are used. The Trane Company 

has provided the most detailed procedures to adjust the catalog data for pure water to the 

performance with antifreeze mixtures (Newton 2001). The correction factors for heating 

capacity, cooling capacity and power consumption are presented versus the concentration 

of the antifreeze mixture in manner of tables and charts. Given the very limited amount of 

data available only a preliminary effort has been made to develop a procedure for 

adjusting the model. This procedure is described below along with a check of how it 

performs compared to the Trane correction factors. 

Heat transfer taking place in the condenser or evaporator will be affected by the 

degraded heat transfer coefficient, density and specific heat of the fluid. In the parameter 

estimation model, the previously assumed constant heat transfer coefficient will be 

replaced by a variable heat transfer coefficient that depends upon the fluid side 

volumetric flow rate. This allows the separate estimation of the refrigerant side resistance 

and coolant side resistance. Assuming the forms of the correlation for the fluid to heat 

exchanger wall convection allows an estimate of a degradation factor by substituting in 

correct values of density, specific heat, viscosity and conductivity. The degradation factor 
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multiplies the fluid-side heat transfer coefficient estimated for pure water, so that the heat 

pump performance with antifreeze can be predicted. 

According to the smart bridge development strategy, the ground source heat pump 

system will be switched on to heat up the fluid that will be circulated through the bridge 

deck when icing is going to accumulate on it. However, the temperature of the bridge 

deck and the hydronic piping system may potentially drop below the freezing point of 

straight water when the system is shut off. Antifreeze is necessary in this case for 

providing freeze protection. In this experimental set up, a 42% by weight aqueous 

propylene glycol solution has been used. For the experiment in winter of 2000/2001, the 

42% by weight propylene glycol solution was only used on the load (bridge deck) side of 

the heat pump. Pure water was used for the source side or ground loop side. Starting in 

the winter of 200112002, propylene glycol solution has been used in both sides. 

6.3.1. Derivation of Antifreeze Degradation Factor 

The overall heat transfer resistance may consist of coolant side convection heat 

transfer resistance, refrigerant side convection heat transfer resistance, tube wall 

resistance and fouling resistance. According to classical heat transfer theory, the coolant 

side convection heat transfer resistance is a function of fluid velocity and physical 

properties. Thus, it may vary considerably as a result of changes in fluid properties when 

antifreeze is added to water. The geometry of the heat exchanger niay not be known, but 

is likely to be a co-axial heat exchanger. Some manufacturers may also use compact heat 
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exchangers. For purpose of calculating a degradation factor, it is reasonable to assume a 

co-axial heat exchanger geometry, with the coolant flowing through the inner tube. In this 

case, the Sieder-Tate correlation (Kem 1950) may be taken a reasonable approximation: 

Nu= 0.027Re0·8 Pr0.33{µ/ µJ0·14 

where Re= ud/v, Reynolds number 

Pr= CPµI k, Prandtl number 

Nu= hd I k , Nusselt number 

u = fluid velocity, mis or ft/min 

d = diameter of tubes or pipes, m or ft 

v= kinematic viscosity, m2/s or ft2/sec 

Cp = specific heat, J/(kg-°C) or Btu/(lbm-°F) 

µ=dynamic viscosity, N-s/m2 or centipoise 

k = thermal conductivity, W/(m-°C) or Btu/(hr-ft-°F) 

h = convection heat transfer coefficient, W/(m2-°C) or Btu/(hr-fl2-°F) 

(6.25) 

However, since we are only interested in the relative performance, we are only 

assuming that the exponents are correct. 

Substituting the definitions of the dimensionless group into Equation (6.25) yields, 

h = 0.027uo.sa-0,2 µ-0.47 po.scp 0.33 k0.67 (6.26) 
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The relationship of the convection heat transfer coefficients between fluids with 

different physical properties can be found as follows, providing same volumetric flow 

rate or velocity. 

( J-o.41( Jo.s( C Jo.33( Jo.61 h1 A P1 Pl kl -= - - -- --
h2 µ2 P2 CP2 k2 

If a degradation factor of the convection heat transfer coefficients between 

antifreeze and pure water is defined as, 

D F = (hA tntifreeze 

(hALater 

Where 

(6.27) 

(6.28) 

(hA)antifreeze = product of coolant side convection heat transfer coefficient and heat transfer 

area for anti-freeze, W/°C or Btu/(hr-°F) 

(hA)water = product of coolant side convection heat transfer coefficient and heat transfer 

area for straight water, Wl°C or Btu/(hr-°F) 

Since the dimensions such as heat transfer area of the heat exchanger should always 

be constant, the degradation factor can be reduced to, 

D F = h ;tifreeze = µ antifreeze P antifreeze P antifreeze antifreeze ( J-0.47( Jo.s(c Jo.33(k Jo.67 
water µwater P water C p water k water 

(6.29) 
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The degradation factor for propylene glycol solution is plotted in Figure 6.11 

against the concentration by percent volume with different temperatures. The propylene 

glycol properties were calculated with the functions developed by Rees (2002). 
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Figure 6.11. Degradation factor for propylene glycol/water mixture by percent volume 

6.3.2. Volumetric Flow-Dependent Heat Exchanger Model 

In order to apply the degradation factor developed in the last section, it is necessary 

to split the heat transfer resistance between the coolant side convection and the other 

parts (refrigerant side convection, tube wall resistance and fouling). The heat pump 

models described in Chapter 4 and 5 only estimate a single UA value for each heat 

exchanger. This did not lend itself to differentiating between the two resistance 

components. 

222 



Several different approaches were considered before setting on the approach 

described in this section. In short, the procedure takes advantage of the fact that water 

source heat pump catalogs give performance data for a range of water flow rates. Using 

an analogy to the Wilson Plot (Wilson 1915) will allow the two resistances to be 

estimated separately when pure water is used. Then, the degradation factor described in 

the last section may be applied when antifreeze is used. 

The overall heat transfer coefficient is a function of coolant side heat transfer 

coefficient, refrigerant side heat transfer coefficient, tube wall resistance and fouling 

resistance. 

1 1 1 
( ) = ( ) + ( ) · +Rwall +Rfouling 
U A total hA refrigerant hA coolant 

(6.30) 

where 

(UA)total = overall heat transfer coefficient, W/°C, or Btu/(hr-°F) 

(hA)refrigerant = product of refrigerant side convection heat transfer coefficient and heat 

transfer area, W/°C or Btu/(hr-°F) 

(hA)coolant = product of coolant side convection heat transfer coefficient and heat transfer 

area, W/°C or Btu/(hr-°F) 

Rwall = heat transfer resistance of tube wall, °C/W or (hr-°F)/ Btu 

Rfouling = heat transfer resistance of fouling, °C/W or (hr-°F)/ Btu 
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If the sum of the resistances of refrigerant side, tube wall and fouling is assumed 

constant and defined as, 

R'= l R R 
( ) + wall + fouling 
hA refrigerant 

(6.31) 

Then Equation (6.30) can be reduced to, 

1 1 
-~--+R' 

(UA )total - (hA La/ant 
(6.32) 

From Sieder-Tate Correlation, coolant side convection heat transfer coefficient is, 

(6.33) 

Since the temperature range in which the coolant operates is relatively small, the 

variation of the physical property of pure water is negligible. Thus, for pure water, the 

convection heat transfer coefficient may be assumed to be a function of fluid velocity 

only. 

U0.8 

Let (hALater = - ' R' = C2' Equation (6.32) becomes, 
c, 
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(6.34) 

Or 

(UA),01a1 
1 

=----water C U -0.8 + C 
I 2 

(6.35) 

Since fluid velocity is related to the volumetric flow rate by the cross-sectional area 

of the pipe as, 

Then 

v 
u=-

A 

1 
(UA),01a1_water =-(V_J_-0_8-

C1 - +C2 
A 

Let C3 = C1A0·8 , then the overall heat transfer coefficient takes the form as, 

(UA) = l 1ota1 _ water C v-o.s + C 
3 2 

(6.36) 

(6.37) 

(6.38) 

This part of the procedure is analogous to a technique introduced by Wilson (1915). 

The technique, which is often called 'Wilson Plot' by later authors, is used to infer heat 

transfer coefficients on both sides of a heat exchanger when the total resistance is 

225 



measured for series of tests where the flow rate is varied on one side of the heat 

exchanger. As discussed previously, for a water-cooled condenser, total heat transfer 

resistance, denoted 1 /U0 , is the sum of the individual resistances including water side heat 

transfer resistance, tube wall resistance, refrigerant side resistance and fouling resistance 

if applicable. The water side convection heat transfer coefficient, denoted as hi, can be 

assumed to follow the relationship given by Equation (6.39), provided the temperature 

range is not large. 

h; = (constant Xv 0·8 ) (6.39) 

The 'Wilson Plot' for the condenser then will be a graph of 1/U0 vs 1 lv°·8• If the 

refrigerant side heat transfer coefficient remains constant, the overall heat transfer 

resistance should be a straight line in the plot. The intercept of the straight line on the 

l lU0 axis is equal to the sum of refrigerant side resistance and tube wall resistance. 

In other words, c/·-o.s is the estimated coolant side resistance and C2 is the 

estimated resistance due to refrigerant to tube wall convection, tube wall conduction and 

fouling if any. C2 and C3 can be estimated from catalog data given for use with pure 

water. 

Then, the degradation factor can be applied when the model is used with antifreeze: 
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1 
(UA ),oral _antifreeze = C v-0.8 I DF + C 

3 2 

(6.40) 

6.3.3. Antifreeze Model Performance 

Regrettably, there is little data available from manufacturers of water-source heat 

pumps regarding performance with antifreeze. What is available only covers water-to-air 

heat pumps. As a preliminary check on the effect of antifreeze on the water-to-water heat 

pump model, we have used it to model a water-to-air heat pump for which the 

manufacturer has provided correction factors for use with antifreeze (a Trane GSUJ 018, 

which utilizes a scroll compressor), operating in heating mode only. In heating mode, the 

water-to-water heat pump performs much like the water-to-air heat pump, since there is 

no condensation of water vapor on the refrigerant-to-air heat exchanger. 

The manufacturer has tabulated performance data for operation with pure water. In 

addition, three groups of correction factors for cooling capacity, heating capacity and 

pressure drop across the heat pump are also provided by the manufacturer in case an 

antifreeze mixture (propylene glycol, ethylene glycol, or methanol) is used as the source 

side secondary heat transfer fluid. The parameters estimated for the heat pump model 

(with scroll compressor and two-parameter evaporator model) are given in Table 6.2. 

The parameter values estimated with data of pure water have been used in model 

implementation to assess the accuracy of the model prediction. A comparison of model 

prediction to catalog data for pure water is shown in Figure 6.12 and Figure 6.13. A 

summary of the RMS errors is presented in Table 6.3. 
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Table 6.2. Parameter Estimation Results for the 
Trane Water-to-Air Heat Pump Model GSUJ 018 (Heating) 

Parameter Estimated Value 
product of the volume of the pockets that 
seal the suction gas at the beginning the l.28x10·3 m3/s (162.7 ft3/hr) 
compression and the rotational speed vr 

Built-in volume ratio Vi 2.21 
Load side heat exchanger heat transfer 

0.425 kW/°C 
coefficient 

Source side heat exchanger heat transfer 
0.125 

resistance coefficient 3 
Source side heat exchanger heat transfer 

1.11 °C/kW (5.86x104 (hr-°F)/Btu) resistance coefficient 2 
Loss factor used to define the electro-
mechanical loss that is supposed to be 0.897 
proportional to the theoretical power TJ 
Constant part of the electro-mechanical 

0.55 kW (1,877 Btu/hr) 
power losses Wzoss 

Superheat L1Tsh 16. 79 °C (30.22 °F) 

Qlcat (Btu/Hr) 

13647 17647 21647 25647 29647 
9 

29647 
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25647 
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Figure 6.12. Calculated heating capacity vs catalog heating capacity 
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Figure 6.13. Calculated power vs catalog power 

Table 6.3. RMS Errors of Model Prediction Compared with Catalog Data 
(Trane GSUJ & WPVJ 018 Water-to-Air Heat Pump) 

Nominal Capacity Number of RMS 
(W) (Btu/hr) Points Heating Capacity Heat Extracted Power 

4,100 18,000 
35 1.35% 1.68% .052% 

(Heating) (Heating) 

As can be seen in Figure 6.11, the degradation factor varies with both antifreeze 

concentration and temperature. Since temperature varies throughout the simulation, the 

degradation factor is recalculated at every model iteration as a function of temperature 

and concentration. The temperature is taken as the average of the inlet and outlet coolant 

temperatures. Once calculated, the degradation factor is applied as shown in Equation 

(6.40). In addition, the properties such as density and specific heat used in the model 
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implementation have to be changed to match the temperature and concentration of the 

antifreeze solution. 

The model then has been run with the same inlet temperatures and volumetric flow 

rates given in the catalog, along with a range of concentrations of propylene glycol. 

Figure 6.14 shows the resulting resistances for three different flow rates, averaged for all 

entering fluid temperatures, as a function of propylene glycol concentration. The water

side resistance varies significantly as the propylene glycol concentration increases. The 

effect is most significant at low flow rates. 

3.0 ,-------~---~-----~ 

2.5 --------------:--------------:--------------r--------------~--------

§' 2.0 

~ 
~ 1.5 
Jg 

~ 1.0 

. ' ' 

: --- ., 

-~-=-~-:: -~~=-~-~-;-~.~ 7.7-~ ~ ·r. ~-~- . . . 
' . ' 
' ' ' 

___ ._-_· --:-: ,-·-:-· --·---·:- ·---·--:·--_·_- ._ 
I I I I 

1.4 

1.2 
:i' 

1.0 m 
'i:: 
::c 

0.8 ~ 

! 0.6 0 

a2 
0.4 

0.5 --------------~- --- -- --------~------------ --~ ----------- ---~ --------------
: : : I 0.2 
' ' ' ' ' ' ' ' ' ' ' ' 0.0 +-----· ---·---..;..' ---....----+ 0.0 

0 10 20 30 40 50 

Concentration in Percent Volume 

--0.21 Vs (3.3 GPI\II) 

- - - - 0.32 Vs (5.0 GPIIII) 

· ...... 0.38 Vs (6.0 GPIIII) 

Figure 6.14. Evaporator overall heat transfer resistance 
(Trane GSUJ O 18 water-to-air heat pump) 

The increased heat transfer resistance that occurs with increasing concentration of 

propylene glycol results in a decreasing heating capacity. The manufacturer has provided 

a correction factor that multiplies the heating capacity with pure water to give the heating 
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capacity with an antifreeze mixture. This is given only as a function of the concentration 

of propylene glycol. Presumably, the reduction in heating capacity varies also with the 

flow rate and entering fluid temperature. We have calculated the reduction in heating 

capacity for a range of propylene glycol concentrations, fluid flow rates, and entering 

fluid temperatures. The calculated correction factor is taken as the ratio of the heating 

capacity calculated with antifreeze to the heating capacity calculated (with the model) for 

pure water. 

Correction factors provided by the heat pump manufacturer may be compared to 

correction factors calculated with the water-to-water heat pump model in Figure 6.15. 

The model-calculated correction factors are averaged for all catalog-specified entering 

fluid temperatures at each flow rate. As can be seen, the correction factors for the three 

different flow rates show some divergence from the manufacturer's single curve. 

Assuming for a moment that the curves calculated with the model are correct, the 

manufacturer's single curve probably provides a reasonable approximation for designers. 

However, it is desirable for modeling purposes to be able to more accurately represent the 

effects of antifreeze. Further experimental work is needed to establish the accuracy of 

the model. 

Since propylene glycol properties vary significantly with temperature, the 

sensitivity to heat pump entering fluid temperature was also examined. For a single, 

intermediate flow rate, the correction factors were calculated for three different entering 

fluid temperatures. The results are shown in Figure 6.16. While some variation in 
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correction factor may be observed, the differences over the expected range of temperature 

are not as significant as the differences over the allowable range of fluid flow rates. 
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Figure 6.15. Heating capacity correction factor with varying flow rates 
(Trane GSUJ O 18 water-to-air heat pump) 
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Figure 6.16. Heating capacity correction factor with varying entering fluid temperatures 
(Trane GSUJ water-to-air heat pump) 
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6.4. Conclusions and Recommendations 

A parameter estimation based model of water-to-water heat pumps has been revised 

to include scroll compressors and allow an accounting for the effects of antifreeze. A 

five-parameter scroll compressor model has been incorporated into the heat pump model. 

As the goal of the heat pump model is to produce a physically-realistic model for which 

all parameters can be estimated from catalog data, the scroll compressor sub-model was 

validated by comparing the results of both the scroll-compressor-equipped and 

reciprocating-compressor-equipped heat pump models applied to catalog data for a scroll

compressor-equipped heat pump. The scroll compressor version of the heat pump model 

gives noticeably improved results over the reciprocating compressor version. It was 

noted that the overall accuracy of the heat pump model was improved by including the 

fifth parameter into the scroll compressor model: a differential pressure-dependent 

leakage. 

A rotary compressor model, which is a simplified version of the reciprocating 

compressor model, has also been presented. It has been developed to make more physical 

sense if a rotary compressor is used in the heat pump. It is not expected to give better 

results than the reciprocating compressor model, since the extra parameters in the 

reciprocating compressor model will allow it to fit any data set better. Experience with a 

limited number of rotary compressor heat pumps has shown that the performance is 

roughly the same, regardless of whether a reciprocating compressor or rotary compressor 

model is used. 
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A preliminary investigation of a methodology for modeling the use of antifreeze 

solutions with water-to-water heat pumps has been described. The methodology retains 

the physically-realistic approach of the heat pump model, and should, in theory, allow the 

prediction of heat pump performance to be extended to a range of antifreeze solutions, 

even when only pure-water-based catalog data are available. To date, we can only say 

that the results appear to be approximately consistent with the correction factors offered 

by one manufacturer. The model does show sensitivity to flow rates and fluid 

temperatures that are not reflected in the manufacturer's recommendations. It would be 

desirable to perform an experimental investigation of the antifreeze effects on water-to

water heat pumps under laboratory conditions, where entering fluid temperature, flow 

rate and antifreeze concentration can be more easily changed and controlled. 
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7. Water-to-Water Heat Pump Model Validation 

This chapter describes a 'field' validation of the water-to-water heat pump model 

using an existing experimental apparatus. The experiment has been implemented to 

support the 'Geothermal Smart Bridge' project. In the experiment, a water-to-water heat 

pump was selected and installed to supply heating for the bridge deck. However, some 

instrumentation has been added which provides measurements of the essential external 

performance data to validate the heat pump model. 

7.1. Background and a Brief Description of Experimental Apparatus 

Research is ongoing at OSU to develop and implement a bridge deck heating 

system that will eliminate preferential icing on the nation's bridges. This new technology 

makes use of a ground source heat pump system that recovers energy stored in the earth 

and uses it to heat fluid that is circulated through the bridge deck. 

A simple heating system might be composed of an electric-powered pump that 

circulates earth-heated fluid through piping to the deck. Should additional heat be 

necessary or desirable, a heat pump could be incorporated into the system. Fluid could 

also be circulated on some hot days in the summer. The sun's radiant heat would be 

transported from the deck to "recharge" the ground. Heat removed during the previous 

cold season would be replaced. 
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An experiment has been implemented to support this project. ~t will be used for 

model validation and testing of control strategies. This work has involved the 

construction, instrumentation, operation, and analysis of a medium-scale (60'x20') bridge 

deck and of which one half is heated with a ground source heat pump-based bridge deck 

heating system. The construction and data collection for this experiment have been 

conducted by researchers affiliated with the Division of Engineering Technology at 

Oklahoma State University, supervised by Dr. Marvin Smith. 

A schematic diagram of the experimental facility is shown in Figure 7.1. Since the 

objective of the research effort discussed in this part of the project is to validate the 

parameter estimation based model of water-to-water heat pumps, only those test facilities 

related to the model validation are described here. The necessary components are: a 

water-to-water heat pump, two circulating pumps for load and source loop respectively, a 

heat source (ground loop heat exchanger), a heat sink (medium-scale bridge deck), 

valves, fitting and pipes, etc. For the load side, the fluid is circulated between bridge deck 

and the condenser (load side heat exchanger). For the source side, the fluid is circulated 

between the ground loop heat exchanger and the evaporator (source side heat exchanger). 

The instrumentation and data acquisition equipment include four thermistor probes, two 

fluid flow meters and three watthour meters. 
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Watthour Meter B 

Watthour Meter C 

Bridge D.eck 

Circulating Pump 
Thermistor Probe 

Ground Loop Heat Exchanger 

Flow Meter A 

' Ball Valve 

Figure 7.1. System schematic of the water-to-water heat pump experiment 

The experimental apparatus is described in two parts: the hydronic heating system, 

and the instrumentation. The hydronic heating system is comprised of a water-to-water 

heat pump, circulating pumps, some valves and pipes. The instrumentation includes 

sensors, transducers, and transmitters for the fluid flow rate, the inlet and outlet fluid 

temperatures, the power consumption and finally data acquisition. 
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7 .2. The Hydronic Heating System 

7.2.1. Water-to-Water Heat Pump 

Figure 7.2. Water-to-water heat pump in the instrumentation building 

The test was performed on an FHP model WP120 water-to-water heat pump with 

nominal cooling capacity of 10 tons (35.2 kW). The unit is design to operate with 

entering fluid temperatures between 20 °F (-7 °C) and 120 °F (49 °C). Table 7.1 shows 

the heating performance data extracted from the FHP WP series catalog. The heating 

performance is based on 24 GPM (1.511/s) and 10 °F (5.56 °C) rise on load side. The 

unit contains a sealed refrigerant circuit including a hermetic scroll compressor, bi

directional thermal expansion valve metering device, coaxial style fluid-to-refrigerant 

heat exchangers, refrigerant reversing valve and service ports. A view of the heat pump in 

the instrumentation building is shown in Figure 7.2. 
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Table 7.1. Heating Capacity Data for Model WP120 

LOAD LEAVING FLUID TEMPERATURE 
Source 

Source 100 Of (37.78 °C) 110 Of (43.33 °C) 120 Of (48.89 oq 
EFT 

BTUH kW BTUH kW BTUH kW 
40 Of 

115,727 33.92 115,067 33.73 114,442 33.54 
24GPM (4.44 °c) 

(1.51 US) 70 Of 
166,727 48.87 164,507 48.22 162,348 47.58 

<21.11 °c) 

Source 
LOAD LEA YING FLUID TEMPERATURE 

Source 125 Of (51.67 °C) 130 Of 54.44 °C) 
EFT 

BTUH kW BTUH kW 
40 °F 

114,142 33.46 113,847 33.37 
24GPM (4.44 °c) 

(1.51 US) 70 Of 
161,290 47.27 160,245 46.97 

<21.11 °c) 

7 .2.2. Water Circulation Pumps 

Another important component in the heating system is the circulating pump. The 

two pumps, located in the equipment room, on the load side and source side are both 

Grundfos Type UPS 32 series. The UPS 32 pump has a flow range of 9-78 GPM and 

head range of I to 46 feet. 

7.2.3. Ground Loop Heat Exchanger 

The borehole field of the ground source heat pump system consists of six vertical 

boreholes arranged in a 2x3 rectangular configuration. The borehole depths range from 

209 ft (63.7 m) to 225 ft (68.58 m) and each borehole has a diameter of 5.25 inches 

(133.35 mm). The ground loop heat exchangers are I inch (25.4 mm) nominal high

density polyethylene U tube pipes. The boreholes are spaced 25 ft (7.62 m) apart from 

each other, center-to-center. Fluid flow to and from the borehole field through the 
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horizontally buried piping connected to the water-to-water heat pump and circulation 

pump in the instrumentation building. The heat transfer fluid circulated in the pipes was 

pure water originally, but it was changed to 42% aqueous solution of propylene glycol in 

2001. 

7 .2.4. Medium-Scale Bridge Deck 

The medium-scale bridge deck is 60 ft long and 30 ft wide. Only the south half is 

heated. The concrete slab has a thickness of 5 inches (127 mm) at edge and 7 inches 

(177.8 mm) in the center. The heating elements in the bridge deck are% inch (19.05 mm) 

nominal E-PexB pipes, buried 2.5 inches (63.5 mm) below the surface at the edge of the 

bridge deck and 3.5 inches (88.9 mm) in the center. There are ten flow circuits and the 

pipe for each circuit is 65 ft (19.812 m) long. The circuits are connected to the supply 

header and the reverse return header pipes at the center of the bridge. At the north end of 

the bridge, the supply and return headers go vertically to the ground and pipes are buried 

in a trench leading to the heat pump in the instrumentation building. The heat transfer 

fluid circulating in the pipes is 42% aqueous propylene glycol solution all the time. 

7.3. Instrumentation 

The measurement of the temperatures, flow rates and power consumption is made 

in the instrumentation building. 
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7.3.1. Fluid Flow Rates 

The fluid flow rates are measured by two Gems Sensors RF A type volumetric 

measuring flow meters, which utilize a paddlewheel design. The model used in this 

experiment is a Gems Sensors Type RFA RF--2500 rotor flow sensor with a brass body. It 

needs an input power of24VDC ±10%. The standard output signal is 0-10 VDC analog 

signal. The standard range and accuracy according to the published catalog is 6.0 to 30.0 

GPM (±15.0%) for port size of0.75". The flow meters have been calibrated by the 

researchers in the Division of Engineering Technology. Calibration data and regression 

equations are given in Appendix A. The estimated uncertainty is ±3 % (Holloway 2000). 

7.3.2. Inlet and Outlet Fluid Temperatures 

The fluid temperatures are measured at the inlet and outlet of the heat pump. The 

sensors for all the temperature measurements are YSI 55031 1 OK H mix glass 

encapsulated thermistors potted into an 1/8" OD, 3" long tubular probe with 12" ofround 

PVC cable. The interchangeability tolerance level is ±1 °C. The probes are embedded in a 

Pete's port and immersed into the circulating fluid. Each probe is attached to a voltage 

divider in which the other resistor of the voltage divider is a precise 10 K resistor. The 

analog voltage output signals are picked up by the data logging system and converted into 

corresponding temperature readings. The thermistors have been calibrated by the 

researchers in the Division of Engineering Technology. Calibration data and regression 
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equations are given in Appendix A. The estimated uncertainty is ±0.18 °F (±0.1 °C) 

(Holloway 2000). 

7 .3.3. Power Consumption 

Three watthour meters are put in place to measure power input to the heat pump, 

load loop circulating pump and source loop circulating pump. The watthour meters are 

manufactured by Sangamo Electric and Westinghouse. One is a Sangamo Electric Type 

J4S and the other two are Westinghouse Type D4S-8M. Each watthour meter has a 

sensor that detects one revolution of the meter and sends a pulse to a circuit that toggles 

the output high and low. In other words, when a pulse is detected, the output of the 

circuit goes high, when another pulse is detected, the output of the circuit goes low. The 

software detects a change in state of the output to count the revolutions. The revolutions 

are counted over a five-minute interval (same as the data-saving interval) and power 

consumption is calculated. The watthour meters were calibrated and sealed before 

shipment. The estimated uncertainty including the uncertainty of the rotational sensor is 

±1 % ±0.22 kW (Holloway 2000). 

7.3.4. Data Acquisition and Logging 

The analog output signals from all of the sensors are measured by a data logging 

system. The signals are actually DC voltages and pulses configured on the different 

242 



output scales for each measurement. The signals sent to the data logger from each sensor 

are: 

1-4) Entering/leaving fluid temperatures on both sides (analog voltage) 

5-6) Fluid flow rates on both sides ( analog voltage) 

7-9) Power consumptions of the heat pump and each circulation pump (pulse) 

Each signal is retrieved at specified time interval and saved as an ASCII data file. 

7.4. Physical Properties of the Propylene Glycol Solution 

Equation (7 .1) has been used to find the load side and the source side heat transfer 

rates for the experimental data. 

Where Q = heat transfer rate, W or Btu/hr 

V = volumetric flow rate, m3 Is or GPM 

p = density, kg/m3 or lbm/ft3 

Cp = specific heat, J/(kg-°C) or Btu/(lbm-°F) 

LJT = temperature difference, °C or °F 

(7.1) 

A propylene glycol solution is used instead of pure water in the bridge deck heating 

system in order to provide freeze protection. Since propylene glycol properties vary 

widely over the range of the temperature occurring in the experiment, the assumption of 
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constant properties may result in a considerable error in the calculation. Therefore, the 

propylene glycol properties were calculated with the functions developed by Rees (2002). 

Thermal properties of interest for a 42% by weight propylene glycol solution are 

shown in Figure 7 .3 through Figure 7 .6. 
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Figure 7.3. Density of aqueous solution of propylene glycol (42% by weight) 
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Figure 7.6. Dynamic viscosity of aqueous solution of propylene glycol ( 42% by weight) 

The physical properties involved in the calculation of heat transfer rate based on the 

experimental data are density and specific heat. To investigate the impact of the errors 

associated with the properties on the accuracy of heat transfer rate, some typical inlet and · 

outlet temperatures for load side as 95.1 °F (35.0 °C) and 125.6 ° F (52.0 °C) in the 

experimental data have been chosen. The temperature difference across the heat pump 

leads to a difference of 10.5 kg/m3 (0.66 lbm/ft3) or 1.0% in density and a difference of 

0.06 kJ/(kg-C) (0.014 Btu/(lbm-F)) or 1.5 % in specific heat. Thus the total error in the 

heat transfer rate due to the uncertainties in the density and specific heat is calculated as, 

where Ep = density error 
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Ecp = specific heat error 

Also, for the antifreeze-adapted model described in Chapter 6, a detailed description 

of the physical properties of the antifreeze for different concentrations and temperatures 

is also required to determine the degradation factor of the coolant side heat transfer 

coefficient. The subroutines given in Appendix X are utilized for this purpose. 

7.5. A Preliminary Analysis of Experimental Uncertainty 

The main source of error in the measurement of heat transfer rates and power 

consumption are identified as: (1) Calibration error in the thermistor probes used for 

entering and leaving fluid temperature measurements on both sides; (2) Calibration error 

in the flow meters used for fluid flow rate measurements and (3) Calibration error in the 

watthour meter used for power measurement. 

The uncertainties for individual measurements have been presented previously. The 

heat transfer rate can be calculated using Equation (7 .1 ). From Equation (7 .1 ), the total 

error of the heat transfer rate consists of two individual errors, the flow rate error and the 

temperature difference error. The flow rate measurement error, Ev, is ±3% as described 

previously. The error associated with the temperature difference LIT across the heat pump 

is calculated based on the error of each temperature measurement. Since inlet and outlet 

temperature measurements are assumed to be independent from each other, their errors 
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may be added in quadrature. Then the error for temperature difference can be computed 

as, 

E,JT =~(EEFT)2 +(ELFT)2 

where EEFT = entering fluid temperature error 

ELFT = leaving fluid temperature error 

The temperature difference error may be converted into the percentage error, 

E~T = EL1T I LJT 

Where E~r = temperature difference error in percentage 

L1T = temperature difference 

The total uncertainty in heat transfer rate is calculated as, 

(7.3) 

(7.4) 

(7.5) 

The error of power consumption consists of two individual errors also. They are the 

internal error of watthour meter and the error of the rotational sensor as described 

previously. Analogously, the error of rotational sensor can be converted into percentage 

error as, 
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Where E~ = rotational sensor error in percentage 

Es = rotational sensor error 

P = power consumption 

Then the total uncertainty in power consumption is determined as, 

Where Ep = power consumption error 

Em = watthour meter error 

Es ' = rotational sensor error in percentage 

(7.6) 

(7.7) 

As a preliminary example, some typical temperature differences across the heat 

pump and power consumption have been chosen. They are 31.3 °F (17.4 °C) for load side 

temperature difference, 7.5 °F (4.3 °C) for source side temperature difference and 10.9 

kW for power consumption. The propagated uncertainties are, load side heat transfer: 

±3.0%, source side heat transfer rate: ±4.5% and power consumption: ±2.3%, 

respectively. 

7.6. The Manufacturer's Catalog Data for the Heat Pump 

The heat pump in this experiment is a model WP 120 made by FHP Manufacturing 

(http://www.fhp-mfg.com/). The catalog data are available in FHP published catalog set 
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and the FHP web site as well. The catalog data for the heating mode are re-organized and 

presented in both IP and SI units in Table 7.2 and Table 7.3. Unfortunately, only data for 

the performance with pure water is available from the heat pump manufacturer. 

Therefore, the antifreeze-adapted heat pump model can only be compared to 

experimental data and not to the catalog data. 

Table 7.2. FHP WP 120 Catalog Data (IP Units) 

Load Liquid Source Liquid Power 
No EWT Volumetric Flow Rate Heating Capacity EWT Volumetric Flow Rate Heat of Extraction (kW) 

(F) (GPM) (MBTUH) (F) (GPM) (MBTUH) 

1 90.0 23.0 115.7 40.0 24.0 86.6 8.5 

2 90.0 26.l 131.2 50.0 24.0 101.7 8.7 

3 90.0 29.5 148.2 60.0 24.0 118.2 8.8 

4 90.0 33.2 166.7 70.0 24.0 136.2 8.9 

5 100.0 22.9 115.l 40.0 24.0 82.6 9.5 

6 100.0 25.9 130.l 50.0 24.0 97.3 9.6 

7 100.0 29.2 146.6 60.0 24.0 113.3 9.8 

8 100.0 32.7 164.5 70.0 24.0 130.8 9.9 

9 110.0 22.8 114.4 40.0 24.0 78.2 10.6 

10 110.0 25.7 129.0 50.0 24.0 92.5 10.7 

11 110.0 28.9 145.0 60.0 24.0 108.l 10.8 

12 110.0 32.3 162.3 70.0 24.0 124.9 10.9 

13 115.0 22.7 114.l 40.0 24.0 75.9 11.2 

14 115.0 25.6 128.5 50.0 24.0 89.9 11.3 

15 115.0 28.7 144.2 60.0 24.0 105.3 11.4 

16 115.0 32.l 161.3 70.0 24.0 121.9 11.5 

17 120.0 22.7 113.8 40.0 24.0 73.4 11.9 

18 120.0 25.5 128.0 50.0 24.0 87.3 11.9 

19 120.0 28.6 143.5 60.0 24.0 102.4 12.0 

20 120.0 31.9 160.2 70.0 24.0 118.8 12.2 
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Table 7.3. FHP WP 120 Catalog Data (SI Units) 

Load Liquid Source Liquid 
No EWT Volumetric Flow Rate Heating Capacity EWT Volumetric Flow Rate Heat of Extraction 

(C) (US) (kW) (C) (US) (kW) 

I 32.2 1.5 33.9 4.4 1.5 25.4 

2 32.2 1.6 38.5 10.0 1.5 29.8 

3 32.2 1.9 43.4 15.6 1.5 34.6 

4 32.2 2.1 48.9 21.1 1.5 39.9 

5 37.8 1.4 33.7 4.4 1.5 24.2 

6 37.8 1.6 38.1 10.0 1.5 28.5 

7 37.8 1.8 42.9 15.6 1.5 33.2 

8 37.8 2.1 48.2 21.1 1.5 38.3 

9 43.3 1.4 33.5 4.4 1.5 22.9 

10 43.3 1.6 37.8 10.0 1.5 27.1 

11 43.3 1.8 42.5 15.6 1.5 31.7 

12 43.3 2.0 47.6 21.1 1.5 36.6 

13 46.1 1.4 33.5 4.4 1.5 22.2 

14 46.1 1.6 37.7 10.0 1.5 26.4 

15 46.1 1.8 42.3 15.6 1.5 30.9 

16 46.1 2.0 47.3 21.1 1.5 35.7 

17 48.9 1.4 33.4 4.4 1.5 21.5 

18 48.9 1.6 37.5 10.0 1.5 25.6 

19 48.9 1.8 42.1 15.6 1.5 30.0 

20 48.9 2.0 46.9 21.1 1.5 34.8 

7. 7. Parameter Estimation and a Comparison Between Model Prediction and 

Catalog Data 

Power 
(kW) 
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The catalog data were used to fit coefficients for the water-to-water heat pump 

model described in Chapter 4, with the modifications described in sections 6.1 and 6.3. 

As discussed in section 6.3, it is desirable to use the flow-rate-dependent form of the heat 

exchanger model when antifreeze will be used. Since this heat pump utilizes a scroll 

compressor, the scroll compressor model described in section 6.1 is used. The parameters 

selected for the modified heat exchanger model have been estimated simultaneously with 

the parameters for the compressor model and the results are shown in Table 7.4. 
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Table 7.4. Parameter Estimation Results for the 
HP Water-to-Water Heat Pump Model WP120 

Parameter Estimated Value 
product of the volume of the pockets that 
seal the suction gas at the beginning the 8.09x10-3 m3/s (1,028 ft3/hr) 
compression and the rotational speed V, 

Built-in volume ratio vi 2.43 
Load side heat exchanger heat transfer 

6.095x10-2 
resistance coefficient 3 

Load side heat exchanger heat transfer 
0.186 °C/kW (9.82x10-5 (hr-°F)/Btu) 

resistance coefficient 2 
Source side heat exchanger heat transfer 

5.747x10-2 
resistance coefficient 3 

Source side heat exchanger heat transfer 
6.086x10-2 °C/kW (3.21x10-5 (hr-°F)/Btu) 

resistance coefficient 2 
Loss factor used to define the electro-
mechanical loss that is supposed to be 0.95 
proportional to the theoretical power 'fJ 

Constant part of the electro-mechanical 
3.35 kW (11,430 Btu/hr) 

power losses Wioss 
· Superheat ATsh 16.70 °C (30.06 °F) 

The model output for pure water is compared to the catalog data in Figure 7. 7 

through Figure 7.9. A summary of the RMS error for heating capacity, heat of extraction 

and power consumption is presented in Table 7.5. A review of Figure 7.7 through Figure 

7.9 and Table 7.5 shows that the model prediction compares favorably to the catalog data. 

The RMS errors are all within 2%. 
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Figure 7.9. Calculated power vs catalog power 

Table 7.5. RMS Errors of the Simulations for the Catalog Data 

Nominal Capacity Number of RMS 
(W) (Btu/hr) Points Heating Capacity Heat Extracted Power 

48,655 166,000 
20 1.28% 1.99% 1.78% 

(Heating) (Heating) 

7.8. Model Uncertainty 

Uncertainty in the model results is due to two factors: 1) uncertainty in the catalog 

data and 2) uncertainties in the model that are reflected in the fact that the model doesn't 

exactly match the catalog data. 

Water-source heat pumps are subjected to testing and rating requirements of ARI 

standard 320. The units are tested at ARI specified condition and certified as to 
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performance. ARI standard allowable tolerance is ±5% from the catalog data. The ARI 

rated condition is only one of the numerous data points in the catalog. For those operation 

points different from the ARI rated condition, the deviation may be greater than 5%. As a 

result, the heat pump model, using parameters estimated from the manufacturer's catalog 

data, has an inherent uncertainty between model prediction and observation of no less 

than±5%. 

As an example, one source of error is that both manufacturer's catalog data and the 

model assume zero energy imbalance among source side heat transfer, load side heat 

transfer and power consumption. However, the energy imbalance will not be perfectly 

zero because of the compressor shell loss, which may constitute a few percent of the 

power consumption. Hence, there are some errors associated with model predictions 

caused by this assumption. 

Secondly, as shown previously, the model may not be expected to furnish perfect 

fidelity (i.e. 0% RMS error) to the catalog data. There is no general theory known to the 

author for estimating the uncertainty in this type of parameter estimation. However, as 

might be noticed in Figures 7.7 to 7.9, there is an analogy to linear regression if the final 

result ( estimated value) is compared to the catalog data. Therefore, the uncertainty has 

been calculated as if a linear regression was being performed on the data set consisting of 

model estimated values and catalog values. As in a linear regression, the probability 

distribution of the random error is assumed to be normal and the variance of the random 

error is equal to a constant. For any linear regression using least squares approach, the 
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mean of the errors of all the fitted points is zero, but it is not necessarily true for the 

parameter estimation modeling approach. Nevertheless, the normal distribution of the 

errors of the parameter estimation can be calculated based on the mean of the errors and 

their variance. For the twenty catalog data points in this case, the mean of errors, denoted 

byµ, and the standard deviation, denoted by o-, as an estimation of the variance are given 

in Table 7.6. The profile of the assumed normal distribution of the errors is plotted in 

Figure 7.10. 

µ 

O" 

Table 7.6. Mean of Errors and Standard Deviation 

Load Side Heating Capacity Source Side Heat Extraction Power 
-0.112 -0.0415 -0.0695 
0.564 0.677 0.223 
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The confidence of any possible error is obtained by calculating the area under the 

normal distribution curve for the interval of the specified error. This calculation can be 

readily accomplished by looking up the table in any classical statistics books, in which 

the tabulated probability values are organized as a function of standard normal random 

variable. The standard normal random variable z is defined by the following equation, 

x-µ 
Z=-- (7.8) 

U 

where x = the normal random variable (the uncertainty) 

In Equation (7.8), the variable x represents the uncertainties of heating capacity, 

heat extraction and power consumption in our case. Experimental uncertainties are 

typically given for 95% confidence, and we will follow that convention here. That means 

the area over the interval we are seeking is 0.95. Since normal distribution is symmetric, 

the area is 0.475 if half the profile is considered. From McClave and Dietrich (1994), we 

find the standard normal random variable z is 1.96 for an area of 0.475. Hence, the 

uncertainties of heating capacity, heat extraction and power consumption can be 

computed using Equation (7.8). They are ±1.1 kW (±3,753 Btu/Hr), ±1.3 kW (±4,435 

Btu/Hr) and ±0.44 kW (±1,501 Btu/Hr) respectively. In other words, they are ±2.7% of a 

typical heating capacity, ±4.3% of a typical heat of extraction and ±4.2% of a typical 

power consumption. 

Another factor involved in the propagation of overall uncertainty is the adjusted 

total heat transfer resistance as a result of the estimated degradation of the fluid side heat 
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transfer coefficient when antifreeze is used. This uncertainty may be estimated as ± 1 % 

based on the description of model extension on antifreeze applications in Chapter 6. All 

the errors are then compounded by adding in quadrature to find the overall uncertainty of 

the model prediction. 

To summarize, the estimated uncertainties for model prediction are ~5.8% with 

heating capacity, ~6. 7% with heat extraction, and ~6.6% with power consumption. 

It is noted that the model uncertainty discussed above is limited to the operation 

rariges of inlet temperatures and flow rates in the catalog. If the inlet temperatures and 

flow rates are considerably away from the catalog specified range, the model uncertainty 

is expected to be higher than what we have estimated. 

7.9. Experiments 

On December 11, 2000 and December 12, 2000, two sets of data were collected 

when the heat pump system was running with 42% by weight propylene glycol solution 

on the load side, and pure water on the source side to investigate the validity of the 

adapted heat pump model. The data of December 11, 2000 represent continuous heat 

pump operation, so that quasi steady state operation is achieved. The data of December 

12, 2000 represent another typical example of the system operation with frequent on-off 

cycles. On December 30, 2001, data were collected with 42% by weight propylene glycol 

solution on both sides. Again, the heat pump was operating with frequent on-off cycles. 
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This set of data will be used to assess the adapted heat pump model for antifreeze on both 

sides. The following three sections describe the three experiments and the associated 

model validation. 

7.10. Dec. 11 2000 Experiment 

The load/source side fluid flow rates in the experimental data of Dec. 11, 2000 are 

presented in Figure 7 .11. The load/source side entering and leaving fluid temperatures 

and power consumption can be found below in Figure 7 .13 through Figure 7 .15 in section 

7.10.3. The plots show that the heat pump was operating in a comparatively stable 

manner for bout nine hours, although the last five hours represent the most stable 

operation period. 
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Figure 7.11. Heat pump load/source side flow rates 
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7.10.1. Experimental Uncertainty 

The time period between 19.00 and 24.00 on Dec. 11, 2000 is selected for 

comparison, as the heat pump was running under fairly stable conditions. The average 

temperatures and power consumption are given in Table 7.7. The uncertainties of load 

side heat transfer, source side heat transfer and power consumption are calculated 

accordingly as discussed in the section 7.5. The results are shown in Table 7.8. 

Table 7.7. Average Temperature Differences and Power Consumption used to 
Compute the Relative Uncertainties 

Date Load Side Av Li T Source Side Av Li T Avg Power 
12/11/2000 31.3 °P (17.4 °C) 7.4 °P (4.3 °C) 11.7 kW 

Table 7.8. Derived Uncertainties of Heat Transfer Rate and Power Consumption 

Date 
Load Side Heat Source Side Heat 

Power 
Transfer Rate Transfer Rate 

12/11/2000 ±3.0% ±4.5% ±2.1% 

7.10.2. Energy Imbalance 

In order to verify the reasonableness of the experimental measurements, an energy 

balance is made. As discussed in Chapter 4, the manufacturers usually assume that there 

is no heat loss from the compressor shell or other locations in the heat pump. Thus, a 

perfect energy balance may be obtained theoretically. For example, load side heating 

capacity is equal to the sum of source side heat of extraction and compressor power when 

the heat pump operates in heating mode. In practice, the difference between load side 
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heat and source side heat plus compressor power will not approach 'zero' due to shell 

loss and error of the measurements. However, shell loss should constitute a fairly small 

portion of total energy provided by the heat pump. Therefore, it is still desirable to check 

the energy balance to ensure it falls into a reasonably small range, say ± 10%. In case of 

heating mode, the percentage imbalance is calculated as, 

I b 1 (o,1) ABS(LoadSideH.T.-SourceSideH.T.-CompressorPower) 1000,1 
m a ance ,10 = x ,10 

Load Side H. T. 

(7.9) 

The energy imbalance as a percentage of the load side heat transfer rate of the data 

for Dec. 11, 2000 is plotted in Figure 7.12. It is noticeable that there is a significant 

imbalance at the first few points. Presumably this is due to the heat accumulation or 

dissipation inside the heat pump and fluid transient delay during the starting period. 

When the operation approaches a quasi steady state, this high imbalance diminishes 

rapidly. Since high energy imbalance only takes place in one or two data points at the 

beginning period, the remaining experimental data are still useful for the model 

validation purpose. Furthermore, given the uncertainties in experimental measurement 

and compressor shell loss, the imbalance shown in Figure 7 .12 is quite reasonable. 
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Figure 7.12. Heat pump energy imbalance (12/11/00) 

For the selected analysis period (19.00 --' 24.00), the average load side heat transfer 

rate, average source side heat transfer rate and average power consumption with their 

uncertainties are presented in Table 7.9. Table 7.9 shows that the energy imbalance as the 

residual by subtracting source heat transfer and power consumption from load heat 

transfer is between -0.3 kW -1,024 Btu/Hr) and 4.3 kW (14,671 Btu/Hr) when the 

uncertainty of the instrumentation is included. It could range from 0% to 12.2% of the 

load side heat transfer rate. The energy imbalance plotted in Figure 7.12 for the selected 

time block falls into the band of estimated uncertainty, even without accounting for the 

compressor shell loss. 
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Table 7.9. Energy Imbalance with Estimated Uncertainties (12/11/2000) 

Load Source 
Power Consumption 

Heating Capacity Heat of Extraction 
35.3 ± 1.1 kW 22.0 ± 0.9 kW 

11.3 ± 0.3 kW 
(120,437 ± 3,646 Btu/Hr) (75,060 ± 3,088 Btu/Hr) 

Imbalance = Load Heating Capacity - Source Heat of Extraction - Power 

2.0 ± 2.3 kW or -0.3 kW:::; imbalance:::; 4.3 kW 
(6,824 ± 7,847 Btu/Hr or -1,024 Btu/Hr:::; imbalance:::; 14,671 Btu/Hr) 

7.10.3. A Comparison of Model Prediction to the Experimental Data 

A comparison of model prediction to the measured field data is desirable in order to 

assess the validity of the adapted heat pump model for antifreeze application. The model 

has been evaluated using the measured entering fluid temperatures. Then the predicted 

leaving fluid temperatures are compared with the measured temperatures and predicted 

power consumption is compared with the measured power consumption. The 

comparisons are presented in Figure 7.13 through Figure 7.15 for the data collected on 

December 11, 2000. A review of Figure 7.13 through Figure 7.15 shows favorable 

agreement. The maximum deviation ( around 4 °C or 7 °F) is observed at the beginning 

two points due to the transient behavior of the heat pump discussed previously in the 

section 7.10.3. 
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As discussed in section 7.8, the estimated uncertainties of model prediction are 

±5.8% for heating capacity, ±6.7% for heat extraction, and ±6.6% for power 

consumption. The average estimated uncertainties of experimental data collected in Dec. 

11, 2000 are ±3 .1 % for heating capacity, ±4.5% for heat of extraction and ±2.1 % for 

power consumption. Thus, deviations between model predictions and experimental data 

of ±8.9% for heating capacity, ±11.2% for heat of extraction and ±8.7% for power 

consumption, respectively may be accounted for by the uncertainty analysis. 

Figures 7 .16 through Figure 7 .18 show the percentage error between model 

predictions and experimental measurements for the data collected on December 11, 2000. 

Each plot also shows the amount of error that can be explained by the uncertainty 
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analysis, if the catalog data are assumed to have an uncertainty of ±5%. For the most part, 

except during the initial transients, the model predictions match the experimental results 

within the bands of estimated uncertainty. The average load side heat transfer rate, 

average source side heat transfer rate and average power consumption of the model 

simulation and experimental data for the selected time period are given in Table 7 .10. 

Table 7.10. Average Heat Transfer Rates and Power Consumption 
(19:00 -24:00) 

Experiment Model Deviation 
Load side 35.3 kW 37.8kW 2.5kW 

heat transfer rate (120,437 Btu/Hr) (128,966 Btu/Hr) (8,530 Btu/Hr) 
Source side 22.0kW 24.9kW 2.9kW 

heat transfer rate (75,060 Btu/Hr) (84,954 Btu/Hr) (9,894 Btu/Hr) 
Power 11.3 kW 12.1 kW 0.8kW 
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error between model and experiment 
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7.11. Dec. 12, 2000 Experiment 

The load/source side fluid flow rates in the experimental data of Dec. 12 2000 is 

presented in Figure 7.19. This experiment follows immediately from the data described in 

the previous section. Due to the heating requirements of the bridge deck, the heat pump 

has now begun to cycle. The load/source side entering and leaving fluid temperatures and 

power consumption can be found below in Figure 7.20 through Figure 7.22. The time 

blocks when the heat pump and circulation pump were on are marked by black dots in the 

plots. The plots show that the heat pump was operating with frequently on-off cycle 

during a period of 12 hours. 
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As described in section 7.10.3, the model prediction for leaving fluid temperatures 

and power consumption are compared to the experimental measurements in Figure 7.20 

to 7 .22. The comparison shows that the behavior of the model prediction is very similar 

to the behavior shown in section 7.10 except for the first two measurement points (12 

min.) of each on-cycle. The deviation between the model and the experimental are within 

the bands of the uncertainty analysis. After the first 12 minutes, the model prediction of 

the load side heat transfer rate is typically within the 7.6 % of the experimental 

measurement; the model prediction of the source side heat transfer rate is typically within 

the 11. 7 % of the experimental measurement; the model prediction of the power 

consumption is typically within the 6.0 % of the experimental measurement. 

The first two data points that show significant transients represent the behavior of 

12 minutes at the beginning of each on-cycle. It is noticed that the shortest on-cycle in 

this data set last about one hour and the longest last about 5 hours. Thus, the model is not 

able to simulate the heat pump performance for about 1/5 of the shortest on-cycle and 

about 1/25 of the longest on-cycle with an acceptable accuracy. If the time period of the 

on-cycle drops to close to the time for the heat pump to finish its transient behavior, this 

steady state model could fail the simulation completely. A transient heat pump model is 

necessary in this case, which is not the objective of this dissertation. 
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Figure 7.22. Heat pump model validation in heating mode: power input 

7.12. Dec. 30, 2001 Experiment 

This experiment took place in December of 200 I, which is one year after the 

experiments described in section 7.10 and 7.11. The load/source side fluid flow rates in 

the experimental data are presented in Figure 7.23. The load/source side entering and 

leaving fluid temperatures and power consumption can be found below in Figure 7 .25 

through Figure 7.27 in section 7.12.4. 
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7.12.1. Experimental Uncertainty 
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Since this experiment was implemented one year after the previous two experiments 

and antifreeze was applied to the source side, it is desirable to investigate the 

experimental uncertainty again. The time period between 10.00 AM and 11.30 AM on 

Dec.· 30, 2001 is selected for comparison, as the heat pump was running under fairly 

stable conditions. The average temperatures and power consumption are given in Table 

7 .11. The uncertainties of load side heat transfer, source side heat transfer and power 

consumption are calculated accordingly as discussed in the section 7.5. The results are 

shown in Table 7.12. 
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Table 7.11. Average Temperature Differences and Power Consumption used to 
Compute the Relative Uncertainties 

I Date I Load Side Avg L\ T Source Side Avg L\ T Avg Power 
I 1213012001 I 29.7 °P (16.5 °C) 7.6 °P (4.2 °C) 9.9kW 

Table 7.12. Derived Uncertainties of Heat Transfer Rate and Power Consumption 

Date 
Load Side Heat Source Side Heat 

Power 
Transfer Rate Transfer Rate 

12/30/2001 ±3.1% ±4.5% ±3.7% 

7.12.2. Energy Imbalance 

Due to the same reason described in the section above, it is also desirable to assess 

the energy imbalance of the data for Dec. 30, 2001. The imbalance is plotted in Figure 

7.24. 
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Figure 7.24. Heat pump energy imbalance 
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For the selected analysis period (1 O.OOAM and 11.30AM), the average load side 

heat transfer rate, average source side heat transfer rate and average power consumption 

with their uncertainties are presented in Table 7 .13. Table 7 .13 shows that the energy 

imbalance as the residual by subtracting source heat transfer and power consumption 

from load heat transfer is between 1.3 kW (4,435 Btu/Hr) and 6.1 kW (20,812 Btu/Hr) 

when the uncertainty of the instrumentation is included. It could range from 3.8 % to as 

high as 18.0% of the load side heat transfer rate. The energy imbalance plotted in Figure 

7 .24 for the selected time block falls into the band of estimated uncertainty. 

Table 7.13. Energy Imbalance with Estimated Uncertainties (12/30/2001) 

Load Source 
Power Consumption 

Heating Capacity Heat of Extraction 
33.8 ± 1.1 kW 20.2 ± 0.9 kW 

9.9 ± 0.4kW 
(115,319 ± 3,753 Btu/Hr) (68,918 ± 3,071 Btu/Hr) 

Imbalance = Load Heating Capacity - Source Heat of Extraction - Power 

3.7 ± 2.4 kW or 1.3 ~imbalance~ 6.1 kW 
(12,624 ± 8,188Btu/Hr or 4,435 ~imbalance~ 20,812 Btu/Hr) 

7.12.3. A Comparison of Model Prediction to the Experimental Data 

Again, the model predictions for leaving fluid temperatures and power consumption 

are compared with the experimental data in Figures 7 .25 to 7 .27. 
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Figure 7.27. Heat pump model validation in heating mode: power input 

As discussed in section 7.8, the estimated uncertainties of model prediction are 

±5.8% for heating capacity, ±6.7% for heat extraction, and ±6.6% for power 

consumption. The estimated uncertainties of experimental data collected in Dec. 30, 2001 

are ±3.1 % for heating capacity, ±4.5% for heat of extraction and ±3.7% for power 

consumption. Thus, deviations between model predictions and experimental data of 

±8.9% for heating capacity, ±11.2% for heat of extraction and ±10.3% for power 

consumption, respectively may be account for by the uncertainty analysis. 

Figure 7.28 through Figure 7.30 show the percentage error between model 

predictions and experimental measurements for the data collected on December 30, 2001. 
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The RMS errors between model prediction and experimental data for the selected time 

block are given in Table 7 .14. For the heating capacity and power consumption, the 

amount of difference can be explained by the uncertainty analysis as they are shown in 

each plot. For the most part, except during the initial transients, the model predictions 

match the experimental results within the bands of estimated uncertainty. However, for 

the heat extraction, the difference between model prediction and experimental data goes 

out of the band of uncertainty. There may be several explanations for this relatively large 

error. First, the heat pump was set up about three years ago. After this considerably long 

period of time, it is reasonable to assume that fouling may cause the degradation of the 

heat pump performance to some extent. Secondly, as discussed in section of model 

uncertainty, the estimated model uncertainty is limited to the operation ranges of inlet 

temperatures and flow rates provided in the catalog. If the inlet temperatures and flow 

rates are considerably away from the catalog specified range, the model uncertainty is 

expected to be higher. Thirdly, it is noticed in Table 7 .13 that the imbalance among load 

side heating capacity, source side heat extraction and power is positive. It goes oppositely 

to the way that could be explained by the compressor shell loss. Also, the error is still on 

order of the model uncertainty. Fourthly, the flow meters are calibrated for pure water. Its 

accuracy is questionable when the fluid is changed to antifreeze solution whose viscosity 

is significantly different from pure water. 

277 



16% 

14% 

12% 

.. 10% e .. 
w .... 8% C 
QI 

I::! 
QI 6% c.. 

4% 

2% 

0% 
9:07 9:50 

RMS Error ( 10:00 AM -- 11 :30 AM):8.1 % 

10:33 

Time 

11:16 12:00 

Figure 7.28. Heat pump model validation in heating mode: heating capacity percentage 
error between model and experiment 

30% 

25% 

20% .. 
g 
w .... 15% C 
QI 

I::! 
QI c.. 10% 

5% 

0% 
9:07 9:50 

Deviation by Uncertainty Analysis 

RMS Error (10:00 AM-- 11 :30 AM):19.2% 

10:33 

Time 

11 :16 12:00 

Figure 7.29. Heat pump model validation in heating mode: heating of extraction 
percentage error between model and experiment 

278 



20% 

18% 

16% 

14% 

... 
12% g 

w .... 10% C 
Cl) 

~ 8% 
a?. 

6% 

4% 

2% 

0% 

9:07 9:50 

Deviation by Uncertainty Analysis 

RMS Error (10:00AM--11:30AM):12.1% 

10:33 

Time 

11:16 12:00 

Figure 7 .30. Heat pump model validation in heating mode: power consumption 
percentage error between model and experiment 

Table 7.14. RMS Errors between Model Prediction and Experimental Data 

Date Heating Capacity Heat Extracted Power 
10.00 AM - 11.30 AM 

8.1% 19.2% 12.1% 
12/30/01 

7.13. Summary 

Good agreement between the predicted and the measured leaving water 

temperatures and power consumption is obtained. The maximum deviations are observed 

at the beginning of on-cycle. Presumably this is due to the heat accumulation or 

dissipation inside the heat pump and fluid transient delay during the starting period. The 

points with relatively high deviation only constitute very small portion of the entire data 

set. Its influence on the accuracy of the overall energy calculation is negligible. 
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Conclusively, the comparison between the predicted and measured temperatures 

and power input shows the parameter estimation heat pump model works effectively for 

the simulation of ground source heat pump bridge deck heating system. 
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8. Water-to-Air Heat Pump Model Validation 

This chapter describes a 'field' validation of the water-to-air heat pump model 

using an existing experiment apparatus. The experiment apparatus has been established 

for an ASHRAE research project. In the experiment, a water-to-air heat pump was 

installed to supply cooling for the test cell, which was built to validate the heat balance 

and radiant time series cooling load calculation procedures. However, some 

instrumentation has been added which provides measurements of the essential external 

performance data to validate the heat pump model. 

8.1. Background and a Brief Description of Experimental Apparatus 

The experimental apparatus is in a test cell building located to the north of 

Mechanical and Aerospace Engineering Research Lab. This test cell building was 

constructed for experimental validation of cooling load calculation method as a research 

project from American Society of Heating, Refrigerating and Air-conditioning 

Engineers. A schematic diagram of the experimental facility is shown in Figure 8.1. The 

first floor of the building is the instrumentation room. The second floor of the building is 

a space that can be cooled or heated by the water-to-air heat pump housed in the 

instrumentation room. Air is circulated in a loop including the space of simulated load, 

the load side of the heat pump, a booster fan and some necessary ductwork. Meanwhile, 

water is circulated in a loop including a ground loop heat exchanger and the source side 

of the heat pump. The instrumentation and data acquisition devices are also contained 
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within the instrumentation room. The instrumentation and data acquisition devices 

include two groups of exposed junction thermocouples, a chilled mirror dew point 

transmitter, a nozzle, a pressure transducer, two thermocouple probes, a water flow 

meter, a watt transducer, a scale and two Fluke datgaloggers. 
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Figure 8.1. System schematic of the water-to-air heat pump experiment 
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The experimental apparatus is described in two parts: the heating and air 

conditioning system and the instrumentation. The heating and air conditioning system is 

comprised of the air conditioned space, a water-to-air heat pump, an electric re-heater, a 

booster fan, two humidifiers, a water circulation pump, the ground loop heat exchanger, 

some valves, pipes and ductwork. The instrumentation includes sensors, transducers, and 

transmitters for the air flow rate, the return and supply air dry bulb temperatures, the 

return air dew point temperature, the condensate, the water flow rate, the inlet and outlet 

water temperatures, the power consumption and finally data acquisition. 

8.2. The Heating and Air Conditioning System 

8.2.1. Water-to-Air Heat Pump 

The test was performed on an FHP model GT018 water-to-air heat pump. The 

performance of the heat pump is certified to ARI/ISO standard 13256-1 for water loop 

heat pumps, ground water heat pumps and ground loop heat pump applications. The heat 

pump is designed to operate with entering water temperatures between 25 °F (-3.9 °C) 

and 110 °F (43.3 °C). Nominal cooling capacity is 1-1/4 ton (4.4 kW) at ARI/ISO 13256-

1 rated air flow rate (550 CFM). 
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Figure 8.2. Front side of the tested water-to-air heat pump 

The heat pump contains a sealed refrigerant circuit including a hermetic rotary 

compressor, bi-directional thermal expansion valve metering device, finned tube air-to

refrigerant heat exchanger, refrigerant reversing valve and service ports. A view of the 

heat pump in the instrumentation room is presented in Figure 8.2. A few of the 

instruments placed on the heat pump, return and supply ductwork near the heat pump are 

also in the sight. 

8.2.2. Humidifier 

Two humidifiers have been placed to maintain a considerable amount of latent 

cooling load in the air-conditioned space. The humidifier is of cool mist type with a 

capacity up to 10 gallons per day. It draws relatively dry air through its rear air intake 

grill area. This air is then passed through a moisture-laden wick filter, which retains the 

minerals and deposits in the water. The resulting moist air is directed back into the room 

from the top air grill. 
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8.2.3. Booster Fan 

The internal fan of the heat pump is designed for normal pressure drop in the 

ductwork. A booster fan is installed at the return duct to compensate for the significant 

pressure loss across the nozzle that used to measure the air flow rate. 

8.3. Instrumentation 

8.3.1. Air Flow Rate 

The air flow rate is determined from the pressure difference measured across a 

nozzle installed in a chamber in line with the supply air ductwork. The dimensions of the 

nozzle are shown in Figure 8.3. The volume flow rate can be calculated from (IP units), 

V = l 096{I CA )y(M' / Ps )°"5 

Where C = nozzle discharge coefficient 

A = cross section area of the nozzle at designated plane, ft2 

Y = expansion factor 

L1P = pressure drop, in. H20 

p = density of air, lbm/ft3 

(8.1) 

There are four plastic tubes connected to the four sides of the chambers at both up

stream and down-stream of the nozzle. And then these four tubes are connected 

altogether to a manifold. Another tube goes from the manifold to the pressure transducer. 

285 



Thus, the pressure delivered from the manifold represents the average of four pressures at 

the four sides of the chamber. The pressure transducer is SETRA model 264. Its standard 

accuracy is of ±1.0% Full Scale and the standard pressure range is 0-2.5" WC, with 10 

PSI overpressure. The pressure transducer has an analog output signal of 0-5 VDC of 

full-scale reading. The signal from the pressure transducer is received by the Fluke Data 

Logger and can be displayed and saved on a personal computer. The estimated 

uncertainty for the air flow rate measurement is± 3.8% (Ferguson 1997). 
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Figure 8.3. Nozzle without throat taps (L = D = 5) 
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8.3.2. Return and Supply Air Dry Bulb Temperatures 

The return and supply air dry bulb temperatures are measured by two groups of 

widely used type T exposed junction thermocouples. To obtain a comparatively complete 

picture of the temperature through the cross-sectional area of the duct, two wired screens 

with nine thermocouples evenly distributed on it have been placed at the inlet and outlet 

of the heat pump respectively. The layout of the thermocouples on the screen is shown in 

Figure 8.4. Besides, the screen is installed to straighten the air flow. 

T 
V) 

V) + 
V) 

+ 
"' N 

v 

15 ·I 
Figure 8.4. Lay-out of the thermocouples on the screen used to measure the inlet and 

outlet air temperatures 

The nine thermocouples are connected to the data logger by individual channels. 

The signals received by the data logger are converted into the corresponding temperatures 
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respectively. Average of the temperatures measured at the nine thermocouples can be 

calculated automatically by the data logger, then displayed and saved on expanded 

channels. If the temperatures are relatively uniform throughout the cross-sectional area, 

the average temperature should be very close to all of the individual measurement. All 

the thermocouples have been calibrated and the calibration results are presented in 

Appendix B. The estimated uncertainty of type T thermocouple is ±0.3 °C (±0.54 °F) 

based on the calibration data. 

8.3.3. Return Air Dew Point Temperature 

It is necessary to know the humidity ratio or any related property of the moist air at 

the inlet of the heat pump to determine its latent cooling capacity with each inlet 

condition. This is accomplished in this experiment by measuring the dew point 

temperature of the return air. A dew point sensor is installed near the air return of the heat 

pump. The dew point sensor is OMEGA model RHCM-20-3-lOOF duct mounted type. It 

uses the chilled mirror technology to generate 4-20 mA (0° to 100°F or -17. 78° to 

37.78°C) output in accordance with the dew point temperature. According to the 

operator's manual, no routine calibration is needed. The output of the dew point sensor is 

received by the Fluke Data Logger with a 200Q resistor connected across load terminals 

to obtain 0.8-4 VDC signal. The transmitter has a ±1 °F (±0.56 °C) dew point accuracy as 

stated by the manufacturer. 
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8.3.4. Condensate 

If the heat pump operates in cooling mode, the removal of moisture occurs when the 

air is cooled down below its dew point temperature. Vapor condenses on the surface of 

the evaporator, or direct expansion cooling coil in this case. In other words, the humidity 

ratio of the air leaving the heat pump will be lower than that of the air entering the heat 

pump. The difference between the inlet and outlet multiplied by the air flow rate is equal 

to the condensate. The latent heat associated with the phase change from vapor into liquid 

or vice versa is approximately equal to the latent cooling capacity of the heat pump. 

Therefore, the condensate, which usually flows in a drain pan and then is discarded, will 

be measured to determine the latent cooling capacity of the heat pump. This is 

accomplished by a portable digital scale. The scale has a capacity up to 1200 grams with 

precision of 0.1 gram. A ball valve has been installed close to the condensate connection 

of the heat pump. When the ball valve is open, the condensate will flow into a small cup 

sitting underneath instead of to the draining pipe. The inaccuracy of the condensate 

measurement would be caused mainly by the water trapped in the system, rather than the 

error of the scale. Thus, the uncertainty associated with the condensation measurement is 

estimated as the difference between two measurements during two consecutive time 

periods when the heat pump was operating in a steady state. The greatest difference 

observed is 18.2 g (0.04 lbm) for a period offifteeri minutes, which leads to an 

uncertainty of about 0.05 kW for the latent cooling capacity. 
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8.3.5. Water Flow Rate 

The source side water flow rate is measured by an OMEGA FTB-105 turbine meter. 

The flow meter provides a 0-5 V output that runs off user supplied 10-40 V de power. Its 

linear flow range is between 0.151/s (2.4 GPM) and 0.35 1/s (5.5 GPM) approximately. 

The water flow rate specified for the heat pump in this experiment falls into the range of 

the linear flow. The flow meter is installed between the circulation pump and the water 

inlet of the heat pump. There are two ball valves located up-stream and down-stream of 

the flow meter. And a bypass pipe runs parallel to the flow meter. In case of the mal

function or a re-calibration is needed, the flow meter can be dismounted readily. 

Calibration data and regression equations are given in Appendix B. Since the output 

signal of the flow meter is fairly sensitive to the inevitably unstable power supply, the 

average voltage output has been adopted in the calibration. The estimated uncertainty is 

±2.8% (Wadivkar 1997). 

8.3.6. Inlet and Outlet Water Temperatures 

The water temperatures are measured at the inlet and outlet of the heat pump by two 

sheathed type T thermocouple probes. They are OMEGA model TMQSS-125G-6 quick 

disconnect thermocouple probes with miniature connectors. The probes are embedded 

into the headers of the source side heat exchanger. The analog output signal of the 

thermocouple probes are received by the Fluke Data Logger. Calibration data and 
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regression equations are given in Appendix B. The estimated uncertainty is ±0.5 °C (±0.9 

°F) based on the calibration data. 

8.3.7. Power Consumption 

A watt transducer is put in place to measure power input to the heat pump. The watt 

transducer is built and calibrated by Ohio Semitronics, Inc. Since the power consumption 

of the heat pump is around 1,000 Watts, the current flowing into the heat pump will be 

less than 5 Amp. Hence, no current transformer ( current sensing doughnut) is needed to 

scale down the current to an acceptable level of the watt transducer. The watt transducer 

has a sensing range of 0-300 V AC and 0-6.25 Amp, provides an analog output 

proportional to time-averaged instantaneous power. The output signal is calibrated to 1 

mA=lkW. The signal is sent to the Fluke Data Logger and then saved by a personal 

computer. The watt transducer has an accuracy of ±1.0% of reading (Austin 1998). 

8.3.8. Data Acquisition and Logging 

The analog output signals from all of the sensors are received by a Fluke Hydra data 

logger. One data logger has a building block of 20 channels. The N etDAQ system can be 

plug into the existing network to send data directly to a PC. 
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Signals from all the sensors are actually analog DC voltages configured on the 

different output scales for each measurement. The signals sent to the data logger from 

each sensor are: 

1-2) return/supply air dry bulb temperatures (analog voltage) 

3) return air dew point temperature (analog voltage) 

4) air flow rate (analog voltage) 

5-6) entering/leaving water temperatures (analog voltage) 

7) water flow rate (analog voltage) 

8) power consumption ( analog voltage) 

For this experiment, an isolated network has been set up. The isolated network 

consists of only NetDAQ instrument and host computer. When a scan is triggered, the 

instrument scans the analog channels and calculates the computed channels. It stores the 

resulting time-stamped data in a scan record. The data logger obtains scan records from 

the instruments and logs the data into files of the computer. Each scan record written in 

the data file consists of a timestamp, values from all configured analog channels and 

computed channels. 

8.4. Experimental Uncertainty 

The uncertainties for individual measurements have been presented previously. The 

calculation of propagated uncertainties shall follow closely to that of the water-to-water 

heat pump experiment. For the sake of brevity, the methodology is not described in detail 
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in this chapter. The overall uncertainties are presented in Section 8.8.1 for heating mode 

and Section 8.9.1 for cooling mode respectively. 

8.5. The Manufacturer's Catalog Data for the Heat Pump 

The heat pump in this experiment is a model GT 018 made by FHP Manufacturing 

(http://www.fhp-mfg.com/). The catalog data are available in FHP published catalog set 

and the FHP web site as well. The catalog data for both the cooling mode and heating 

mode are re-organized and presented in both IP and SI units in Table 8 .1 through Table 

8.4. 

Further investigation of the catalog data reveals a few doubtful data points. Based 

on psychrometrics analysis, the relative humidity of the air leaving the heat pump can be 

calculated from the dry bulb temperature, wet bulb temperature of the air entering the 

heat pump and corresponding total and sensible capacities given in the catalog data. The 

result of this calculation is also presented in Table 8.1 and Table 8.2 with the 

questionable points underlined. The points with relative humidity higher than 100% are 

physically unrealistic. To allow the parameter estimation from a rational basis, these 

points have been deleted from the data set. 

Table 8.1. FHP GT018 Catalog Data for Cooling Mode (IP Units) 

Load Side Source Side 

No. 
Sensible Power 

!Entering DB Temp Entering WB Temp Flow Rate Total Cooling CapacitJ Cooling 
RH_LVG 

EWT Flow Rate Heat Rejection (kW) 
(OF) (OF) (CFM) (Mbtu/Hr) Capacity (OF) (GPM) (MBtu/Hr) 

(Mbtu/Hr) 

I 75.0 61.0 550.0 18.3 13.9 82.63% 50.0 4.0 20.7 0.7 
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2 80.0 61.0 550.0 18.3 16.7 80.41% 50.0 4.0 20.7 0.7 

3 85.0 61.0 550.0 18.3 18.3 67.71% 50.0 4.0 20.7 0.7 

4 75.0 64.0 550.0 19.1 13.0 93.53% 50.0 4.0 21.6 0.7 

5 80.0 64.0 550.0 19.1 16.5 98.69"/o 50.0 4.0 21.6 0.7 

6 85.0 64.0 550.0 19.1 18.3 86.56% 50.0 4.0 21.6 0.7 

7 75.0 67.0 550.0 20.0 12.0 102.97% 50.0 4.0 22.6 0.7 

8 80.0 67.0 550.0 20.0 15.6 110.07% 50.0 4.0 22.6 0.7 

9 85.0 67.0 550.0 20.0 18.0 103.61% 50.0 4.0 22.6 0.7 

10 75.0 70.0 550.0 21.0 10.0 102.55% 50.0 4.0 23.6 0.8 

11 80.0 70.0 550.0 21.0 13.8 110.77% 50.0 4.0 23.6 0.8 

12 85.0 70.0 550.0 21.0 17.9 123.48% 50.0 4.0 23.6 0.8 

13 80.0 73.0 550.0 21.9 11.8 109.65% 50.0 4.0 24.5 0.8 

14 85.0 73.0 550.0 21.9 16.1 123.86% 50.0 4.0 24.5 0.8 

15 75.0 61.0 550.0 17.4 13.2 80.13% 60.0 4.0 20.0 0.8 

16 80.0 61.0 550.0 17.4 15.8 76.76% 60.0 4.0 20.0 0.8 

17 85.0 61.0 550.0 17.4 17.4 64.10% 60.0 4.0 20.0 0.8 

18 75.0 64.0 550.0 18.2 12.4 91.16% 60.0 4.0 20.9 0.8 

19 80.0 64.0 550.0 18.2 15.7 94.42% 60.0 4.0 20.9 0.8 

20 85.0 64.0 550.0 18.2 17.4 82.08% 60.0 4.0 20.9 0.8 

21 75.0 67.0 550.0 19.1 11.4 100 86% 60.0 4.0 21.8 0.8 

22 80.0 67.0 550.0 19.l 14.9 105.87% 60.0 4.0 21.8 0.8 

23 85.0 67.0 550.0 19.1 17.2 98.54% 60.0 4.0 21.8 0.8 

24 75.0 70.0 550.0 20.0 9.5 101.40% 60.0 4.0 22.8 0.8 

25 80.0 70.0 550.0 20.0 13.1 107.57% 60.0 4.0 22.8 0.8 

26 85.0 70.0 550.0 20.0 17.1 117.57% 60.0 4.0 22.8 0.8 

27 80.0 73.0 550.0 20.8 11.2 107.50% 60.0 4.0 23.7 0.8 

28 85.0 73.0 550.0 20.8 15.3 119.05% 60.0 4.0 23.7 0.8 

29 75.0 61.0 550.0 16.5 12.5 77.66% 70.0 4.0 19.4 0.9 

30 80.0 61.0 550.0 16.5 15.0 73.22% 70.0 4.0 19.4 0.9 

31 85.0 61.0 550.0 16.5 16.5 60.60% 70.0 4.0 19.4 0.9 

32 75.0 64.0 550.0 17.3 11.7 88.77% 70.0 4.0 20.2 0.9 

33 80.0 64.0 550.0 17.3 14.9 90.24% 70.0 4.0 20.2 0.9 

34 85.0 64.0 550.0 17.3 16.5 77.74% 70.0 4.0 20.2 0.9 

35 75.0 67.0 550.0 18.1 10.8 98.71% 70.0 4.0 21.1 0.9 

36 80.0 67.0 550.0 18.1 14.1 10173% 70.0 4.0 21.1 0.9 

37 85.0 67.0 550.0 18.1 16.3 93.60% 70.0 4.0 21.1 0.9 

38 75.0 70.0 550.0 18.9 9.0 100.20% 70.0 4.0 22.0 0.9 

39 80.0 70.0 550.0 18.9 12.4 104.37% 70.0 4.0 22.0 0.9 

40 85.0 70.0 550.0 18.9 16.2 111.82% 70.0 4.0 22.0 0.9 

41 80.0 73.0 550.0 19.7 10.6 105.30% 70.0 4.0 22.9 0.9 

42 85.0 73.0 550.0 19.7 14.5 114 31% 70.0 4.0 22.9 0.9 

43 75.0 61.0 550.0 14.7 11.2 73.07% 85.0 4.0 18.1 1.0 

44 80.0 61.0 550.0 14.7 13.4 66.86% 85.0 4.0 18.1 1.0 

45 85.0 61.0 550.0 14.7 14.7 54.42% 85.0 4.0 18.1 1.0 

46 75.0 64.0 550.0 15.4 10.5 84.34% 85.0 4.0 18.9 1.0 

47 80.0 64.0 550.0 15.4 13.3 82.72% 85.0 4.0 18.9 1.0 

48 85.0 64.0 550.0 15.4 14.7 70.06% 85.0 4.0 18.9 1.0 

49 75.0 67.0 550.0 16.1 9.6 94.66% 85.0 4.0 19.7 1.0 
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50 80.0 67.0 550.0 16.1 12.6 94.20% 85.0 4.0 19.7 1.0 

51 85.0 67.0 550.0 16.1 14.5 84.79% 85.0 4.0 19.7 1.0 

52 75.0 70.0 550.0 16.9 8.0 97.85% 85.0 4.0 20.5 1.1 

53 80.0 70.0 550.0 16.9 I 1.1 98.46% 85.0 4.0 20.5 1.1 

54 85.0 70.0 550.0 16.9 14.4 101.56% 85.0 4.0 20.5 I.I 

55 80.0 73.0 550.0 17.6 9.5 101.17% 85.0 4.0 21.3 1.1 

56 85.0 73.0 550.0 17.6 13.0 105.73% 85.0 4.0 21.3 1.1 

57 75.0 61.0 550.0 13.3 JO.I 69.69% 100.0 4.0 17.2 1.1 

58 80.0 61.0 550.0 13.3 12.2 62.30% 100.0 4.0 17.2 I.I 

59 85.0 61.0 550.0 13.3 13.3 50.06% 100.0 4.0 17.2 1.1 

60 75.0 64.0 550.0 14.0 9.5 81.02% 100.0 4.0 17.9 1.2 

61 80.0 64.0 550.0 14.0 12.0 77.32% 100.0 4.0 17.9 1.2 

62 85.0 64.0 550.0 14.0 13.3 64.64% 100.0 4.0 17.9 1.2 

63 75.0 67.0 550.0 14.6 8.7 91.60% 100.0 4.0 18.6 1.2 

64 80.0 67.0 550.0 14.6 11.4 88.74% 100.0 4.0 18.6 1.2 

65 85.0 67.0 550.0 14.6 13.2 78.55% 100.0 4.0 18.6 1.2 

66 75.0 70.0 550.0 15.3 7.3 96.00% 100.0 4.0 19.4 1.2 

67 80.0 70.0 550.0 15.3 JO.I 94.06% 100.0 4.0 19.4 1.2 

68 85.0 70.0 550,0 15.3 13.1 94.26% 100.0 4.0 19.4 1.2 

69 80.0 73.0 550.0 16.0 8.6 98.03% 100.0 4.0 20.1 1.2 

70 85.0 73.0 550.0 16.0 11.8 99.51% 100.0 4.0 20.1 1.2 

Table 8.2. FHP GT018 Catalog Data for Cooling Mode (SI Units) 

Load Side Source Side 

No. Entering DB Entering Total Cooling Sensible Cooling Power 
Flow Rate EWT Flow Rate Heat Rejection (kW) Temp WBTemp 

(m3/S) 
Capacity Capacity RH_LVG 

("C) (US) (kW) ("C) ("C) (kW) (kW) 

I 23.9 16.1 0.26 5.4 4.1 82.63% 10.0 0.25 6.1 0.7 

2 26.7 16.1 0.26 5.4 4.9 80.41% 10.0 0.25 6.1 0.7 

3 29.4 16.l 0.26 5.4 5.4 67.71% 10.0 0.25 6.1 0.7 

4 23.9 17.8 0.26 5.6 3.8 93.53% 10.0 0.25 6.3 0.7 

5 26.7 17.8 0.26 5.6 4.8 98.69% 10.0 0.25 6.3 0.7 

6 29.4 17.8 0.26 5.6 5.4 86.56% 10.0 0.25 6.3 0.7 

7 23.9 19.4 0.26 5.9 3.5 102.97% 10.0 0.25 6.6 0.7 

8 26.7 19.4 0.26 5.9 4.6 110.07% 10.0 0.25 6.6 0.7 

9 29.4 19.4 0.26 5.9 5.3 103 61% 10.0 0.25 6.6 0.7 

10 23.9 21.1 0.26 6.1 2.9 102.55% 10.0 0.25 6.9 0.8 

11 26.7 21.1 0.26 6.1 4.0 110.77% 10.0 0.25 6.9 0.8 

12 29.4 21.1 0.26 6.1 5.3 123 48% 10.0 0.25 6.9 0.8 

13 26.7 22.8 0.26 6.4 3.4 109.65% 10.0 0.25 7.2 0.8 

14 29.4 22.8 0.26 6.4 4.7 123 86% 10.0 0.25 7.2 0.8 

15 23.9 16.1 0.26 5.1 3.9 80.13% 15.6 0.25 5.9 0.8 

16 26.7 16.1 0.26 5.1 4.6 76.76% 15.6 0.25 5.9 0.8 

17 29.4 16.l 0.26 5.1 5.1 64.10% 15.6 0.25 5.9 0.8 

18 23.9 17.8 0.26 5.3 3.6 91.16% 15.6 0.25 6.1 0.8 

19 26.7 17.8 0.26 5.3 4.6 94.42% 15.6 0.25 6.1 0.8 
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20 29.4 17.8 0.26 5.3 5.1 82.08% 15.6 0.25 6.1 0.8 

21 23.9 19.4 0.26 5.6 3.3 100.86% 15.6 0.25 6.4 0.8 

22 26.7 19.4 0.26 5.6 4.4 105.87% 15.6 0.25 6.4 0.8 

23 29.4 19.4 0.26 5.6 5.0 98.54% 15.6 0.25 6.4 0.8 

24 23.9 21.1 0.26 5.8 2.8 101.40% 15.6 0.25 6.7 0.8 

25 26.7 21.1 0.26 5.8 3.8 107.57% 15.6 0.25 6.7 0.8 

26 29.4 21.1 0.26 5.8 5.0 ~ 15.6 0.25 6.7 0.8 

27 26.7 22.8 0.26 6.1 3.3 107.50% 15.6 0.25 7.0 0.8 

28 29.4 22.8 0.26 6.1 4.5 119.05% 15.6 0.25 7.0 0.8 

29 23.9 16.1 0.26 4.8 3.7 77.66% 21.1 0.25 5.7 0.9 

30 26.7 16.1 0.26 4.8 4.4 73.22% 21.1 0.25 5.7 0.9 

31 29.4 16.1 0.26 4.8 4.8 60.60% 21.1 0.25 5.7 0.9 

32 23.9 17.8 0.26 5.1 3.4 88.77% 21.1 0.25 5.9 0.9 

33 26.7 17.8 0.26 5.1 4.4 90.24% 21.1 0.25 5.9 0.9 

34 29.4 17.8 0.26 5.1 4.8 77.74% 21.1 0.25 5.9 0.9 

35 23.9 19.4 0.26 5.3 3.2 98.71% 21.1 0.25 6.2 0.9 

36 26.7 19.4 0.26 5.3 4.1 101.73% 21.1 0.25 6.2 0.9 

37 29.4 19.4 0.26 5.3 4.8 93.60% 21.1 0.25 6.2 0.9 

38 23.9 21.1 0.26 5.5 2.6 100.20% 21.1 0.25 6.4 0.9 

39 26.7 21.1 0.26 5.5 3.6 104.37% 21.1 0.25 6.4 0.9 

40 29.4 21.1 0.26 5.5 4.7 111.82% 21.1 0.25 6.4 0.9 

41 26.7 22.8 0.26 5.8 3.1 105.30% 21.l 0.25 6.7 0.9 

42 29.4 22.8 0.26 5.8 4.3 114.31% 21.1 0.25 6.7 0.9 

43 23.9 16.1 0.26 4.3 3.3 73.07% 29.4 0.25 5.3 1.0 

44 26.7 16.1 0.26 4.3 3.9 66.86% 29.4 0.25 5.3 1.0 

45 29.4 16.l 0.26 4.3 4.3 54.42% 29.4 0.25 5.3 1.0 

46 23.9 17.8 0.26 4.5 3.1 84.34% 29.4 0.25 5.5 1.0 

47 26.7 17.8 0.26 4.5 3.9 82.72% 29.4 0.25 5.5 1.0 

48 29.4 17.8 0.26 4.5 4.3 70.06% 29.4 0.25 5.5 1.0 

49 23.9 19.4 0.26 4.7 2.8 94.66% 29.4 0.25 5.8 1.0 

50 26.7 19.4 0.26 4.7 3.7 94.20% 29.4 0.25 5.8 1.0 

51 29.4 19.4 0.26 4.7 4.3 84.79% 29.4 0.25 5.8 1.0 

52 23.9 21.1 0.26 4.9 2.4 97.85% 29.4 0.25 6.0 1.1 

53 26.7 21.1 0.26 4.9 3.3 98.46% 29.4 0.25 6.0 1.1 

54 29.4 21.1 0.26 4.9 4.2 101.56% 29.4 0.25 6.0 1.1 

55 26.7 22.8 0.26 5.2 2.8 101.17% 29.4 0.25 6.2 1.1 

56 29.4 22.8 0.26 5.2 3.8 1QUlli 29.4 0.25 6.2 1.1 

57 23.9 16.1 0.26 3.9 3.0 69.69% 37.8 0.25 5.0 1.1 

58 26.7 16.1 0.26 3.9 3.6 62.30% 37.8 0.25 5.0 1.1 

59 29.4 16.1 0.26 3.9 3.9 50.06% 37.8 0.25 5.0 1.1 

60 23.9 17.8 0.26 4.1 2.8 81.02% 37.8 0.25 5.2 1.2 

61 26.7 17.8 0.26 4.1 3.5 77.32% 37.8 0.25 5.2 1.2 

62 29.4 17.8 0.26 4.1 3.9 64.64% 37.8 0.25 5.2 1.2 

63 23.9 19.4 0.26 4.3 2.6 91.60% 37.8 0.25 5.5 1.2 

64 26.7 19.4 0.26 4.3 3.3 88.74% 37.8 0.25 5.5 1.2 

65 29.4 19.4 0.26 4.3 3.9 78.55% 37.8 0.25 5.5 1.2 

66 23.9 21.1 0.26 4.5 2.1 96.00% 37.8 0.25 5.7 1.2 

67 26.7 21.1 0.26 4.5 2.9 94.06% 37.8 0.25 5.7 1.2 
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68 29.4 21.1 0.26 4.5 3.8 94.26% 37.8 0.25 5.7 1.2 

69 26.7 22.8 0.26 4.7 2.5 98.03% 37.8 0.25 5.9 1.2 

70 29.4 22.8 0.26 4.7 3.4 99.51% 37.8 0.25 5.9 1.2 

Table 8.3. GT018 Catalog Data for Heating Mode (IP Units) 

Load Side Source Side 
Power 

No. Entering DB Temp Flow Rate Heating Capacity EWT Flow Rate Heat Absorption (kW) 
(°F) (CFM) (MBtuh) (·F) (GPM) (MBtuh) 

1 60.0 550.0 15.9 50.0 4.0 12.5 0.986 

2 70.0 550.0 15.1 50.0 4.0 11.7 1.005 

3 80.0 550.0 14.1 50.0 4.0 10.6 1.026 

4 60.0 550.0 17.9 60.0 4.0 14.4 1.022 

5 70.0 550.0 17.0 60.0 4.0 13.5 1.041 

6 80.0 550.0 15.9 60.0 4.0 12.3 1.063 

7 60.0 550.0 19.9 70.0 4.0 16.3 1.056 

8 70.0 550.0 18.9 70.0 4.0 15.2 1.076 

9 80.0 550.0 17.7 70.0 4.0 14.0 1.098 

10 60.0 550.0 22.0 80.0 4.0 18.2 1.090 

11 70.0 550.0 20.8 80.0 4.0 17.0 1.111 

12 80.0 550.0 19.5 80.0 4.0 15.6 1.134 

Table 8.4. GT018 Catalog Data for Heating Mode (SI Units) 

Load Side Source Side Power 
No. Entering DB Temp Flow Rate Heating Capacity EWT Flow Rate Heat Absorption (kW) 

r•q (m3/S) (kW) r•q (US) (kW) 

I 15.6 0.26 4.7 10.0 0.25 3.7 0.986 

2 21.1 0.26 4.4 10.0 0.25 3.4 1.005 

3 26.7 0.26 4.1 10.0 0.25 3.1 1.026 

4 15.6 0.26 5.3 15.6 0.25 4.2 1.022 

5 21.1 0.26 5.0 15.6 0.25 3.9 1.041 

6 26.7 0.26 4.7 15.6 0.25 3.6 1.063 

7 15.6 0.26 5.8 21.1 0.25 4.8 1.056 

8 21.1 0.26 5.5 21.1 0.25 4.5 1.076 

9 26.7 0.26 5.2 21.1 0.25 4.1 1.098 

10 15.6 0.26 6.4 26.7 0.25 5.3 1.090 

11 21.1 0.26 6.1 26.7 0.25 5.0 Ull 

12 26.7 0.26 5.7 26.7 0.25 4.6 1.134 
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8.6. Parameter Estimation and a Comparison Between Model Prediction and 

Catalog Data 

The catalog data were used to fit coefficients for the water-to-air heat pump model 

described in Chapter 5, with the modifications described in Section 6.X. Since this heat 

pump utilizes a rotary compressor, the rotary compressor model described in Section 6.X 

is used. The parameters selected for the rotary compressor model have been estimated 

simultaneously with the other parameters and the results are shown in Table 8.5 and 

Table 8.6. 

Table 8.5. Parameter Estimation Results for the FHP Water-to-Air Heat Pump 
Model GT018 - Cooling Mode 

Parameter Estimated Value 
Displacement Va 9.294 x10-4 m3/s (118.14 ft3/hr) 

Discharge pressure drop & 65.838 kPa (9.55 psia) 
Load side heat exchanger total heat transfer 

0.509 kW/°C (964.47 Btu/(hr-°F)) 
coefficient (UA)101 

Load side heat exchanger air side heat 
0.5776 kW/°C (1094.5 Btu/(hr-°F)) 

transfer coefficient hcoAo 
Source side heat exchanger heat transfer 

0.609 kW/°C (1153.96 Btu/(hr-°F)) 
coefficient UAs 

Efficiency TJ 0.817 
Constant part of the electro-mechanical 

0.313 kW (1067.96 Btu/hr) 
power losses Wioss 

Superheat .ATsh 7.528 °C (13.55 °F) 
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Table 8.6. Parameter Estimation Results for the FHP Water-to-Air Heat Pump 
Model GT018 - Heating Mode 

Parameter Estimated Value 
Displacement Vd 9.419x104 m3/s (119.73 ft3/hr) 

Discharge pressure drop AP 48.99 kPa (7.11 psia) 
Load side heat exchanger heat transfer 

0.182 kW/°C (344.86 Btu/(hr-°F)) 
coefficient UAL 

Source side heat exchanger heat transfer 
16.841kW/°C (31910.93 Btu/(hr-°F)) 

coefficient UAs 
Efficiency 77 0.404 

Constant part of the electro-mechanical 
0.700 kW (2388.26 Btu/hr) 

power losses Wioss 
Superheat L1Tsh 20.133 °C (36.24 °F) 

Comparisons of the predicted and catalog total cooling capacity, sensible cooling 

capacity, latent cooling capacity, heat rejection and power consumption for the cooling 

mode are shown in Figure 8.5 through Figure 8.9. Summary of the RMS errors is 

presented in Table 8. 7. The RMS error of latent cooling capacity is presented as the 

absolute deviation between model prediction and catalog data because percentage 

differences become meaningless when the latent capacity goes to zero. 

A review of Figure 8.5 through Figure 8.9 and Table 8.7 shows that the model 

prediction compares favorably to the catalog data except for the latent cooling capacity. 

The RMS error between model prediction and catalog data for the total cooling capacity 

is 7.2%. Those of heat rejection and power consumption are 6.6% and 4.9% respectively. 

However, the errors associated with the splitting of the total cooling capacity into 

sensible and latent parts are noticeably much larger. The error of latent heat transfer rate 

depicted in Figure 8. 7 shows some undesirable deviations. 
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As discussed in Chapter 5, the model accuracy in the split of the total cooling 

capacity into sensible and latent parts are not as satisfactory as that of total cooling 

capacity itself. What makes this case more unpredictable is the fact that the reliability of 

the catalog data is a little questionable as discussed previously in Section 8.5. It is not 

reasonable to expect that the heat pump model could furnish high accuracy prediction if 

no physically reasonable basis for the catalog data can be found. 
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Figure 8.5. Calculated total cooling capacity vs catalog total cooling capacity 
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Figure 8.8. Calculated heat rejection vs catalog heat rejection 
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Figure 8.9. Calculated power vs catalog power 

Table 8.7. RMS Errors of the Simulations for the Catalog Data 

Nominal Capacity Number RMS 
of Heat 

(W) (Btu/hr) Points Total Sensible Latent 
Rejection 

5,041 17,200 
46 7.16 % 8.32 % 

0.27kW 
6.55% (Cooling) (Cooling) (921 Btu/Hr) 
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Comparisons of the predicted and catalog heating capacity, heat extraction and 

power consumption for the heating mode are shown in Figure 8 .10 through Figure 8 .12. 

Summary of the RMS errors is presented in Table 8.8. A review of Figure 8.10 through 

Figure 8.12 and Table 8.8 shows that the model prediction compares favorably to the 

catalog data. The highest RMS error of about 5% is with heat extraction. 
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Figure 8.10. Calculated heating capacity vs catalog heating capacity 
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Figure 8.12. Calculated power vs catalog power 

Table 8.8. RMS Errors of the Simulations for the Catalog Data 

Nominal Capacity Number of RMS 
(W) (Btu/hr) Points Heating Capacity Heat Extracted Power 

4,778 16,300 
12 4.29% 5.03 % 1.39 % 

(Heating) (Heating) 
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8.7. Model Uncertainty 

As with the uncertainty of the water-to-water heat pump model, the uncertainty in 

the water-to-air heat pump model is due to two factors: 1) uncertainty in the catalog data 

and 2) uncertainties in the model that are reflected in the fact that the model doesn't 

exactly.match the catalog data. 

The model is based on the manufacturers' catalog data. The ARI standard allowable 

tolerance is ±5% from the catalog data for the water-to-air heat pump. Thus, there is also 

about ±5% inherent uncertainty. However, as already noted, the ARI standard only 

applies to one single specified point, other points may exhibit further deviation. As 

discussed earlier, this seems even more likely when correction factors are utilized. 

In addition, the model is not able to furnish perfect fidelity to the catalog data. The 

uncertainty associated with parameter estimation modeling approach is discussed in 

Section 7.8. For the sake of brevity, only the results are described in this section. The 

normal distribution of the errors of the parameter estimation can be calculated based on 

the mean of the errors and their variance. For the catalog data in this case, the mean of 

errorsµ, and the standard deviation o; as an estimation of the variance for cooling mode 

are given in Table 8.9. Those of heating mode are given in Table 8.10. 
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Table 8.9. Mean of Errors and Standard Deviation (Cooling) 

µ, a 
Total Cooling Capacity -0.065 0.363 

Sensible Cooling Capacity -0.008 0.327 
Latent Cooling Capacity -0.057 0.276 

Heat Rejection -0.07 0.395 
Power -0.005 0.041 

Table 8.10. Mean of Errors and Standard Deviation (Heating) 

Heating Capacity Heat Extraction Power 
µ, -0.149 -0.140 -0.009 

a 0.256 0.240 0.016 

As with the water-to-water heat pump model, model uncertainties are given for 95% 

confidence. The uncertainties of total cooling capacity, sensible cooling capacity, latent 

cooling capacity, heat rejection and power consumption for cooling mode are presented 

in Table 8.11. The uncertainties of heating capacity, heat extraction and power 

consumption for heating mode is presented in Table 8.12. The relative uncertainties in 

Tables 8.11 and 8.12 are based on the typical heat transfer rates and power consumption 

in the experimental data. 

Table 8.11. Estimated Model Uncertainty Based on Normal Distribution 
(Cooling Mode) 

· Uncertainty 
Total Cooling Capacity ±0.71 kW (2,427 Btu/Hr) ±16.4% 

Sensible Cooling Capacity ±0.64 kW (2,187 Btu/Hr) ±15.6% 
Latent Cooling Capacity ±0.54 kW (1,842 Btu/Hr) ±52.4 % 

Heat Extraction ±0.77 kW (2,641 Btu/Hr) ±14.7% 
Power ±0.08 kW (274 Btu/Hr) ±8.9% 
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Table 8.12. Estimated Model Uncertainty Based on Normal Distribution 
(Heating Mode) 

Heating Capacity ±0.50 kW (1,712 Btu/Hr) ±11.4% 
Heat Extraction ±0.47 kW (1,605 Btu/Hr) ±12.7% 

Power ±0.03 kW (107 Btu/Hr) ±2.76% 

The errors associated with catalog data and parameter estimation model are then 

compounded by adding in quadrature to find the overall uncertainty of the model 

prediction. The total uncertainties are shown in Table 8.13 and Table 8.14. The minimum 

uncertainties in Table 8.13 and 8.14 are based on ±5% deviation specified in ARI 

standard. As already noted, the 5% deviation only applies to one single specified point, 

points other than the ARI standard specified point may exhibit greater deviation. It is also 

noted that the model uncertainty discussed above is limited to the operation ranges of 

inlet temperatures and flow rates in the catalog. If the inlet temperatures and flow rates 

are considerably away from the catalog specified range, the model uncertainty is 

expected to be higher than what we have estimated. 

Table 8.13. Total Model Uncertainty (Cooling Mode) 

Total Cooling Capacity ~17.1% 
Sensible Cooling Capacity ~16.4% 
Latent Cooling Capacity ~52.6% 

Heat Extraction ~15.5% 
Power ~10.2% 

Table 8.14. Total Model Uncertainty (Heating Mode) 

Heating Capacity ~12.4% 
Heat Extraction ~13.6% 

Power ~5.71% 
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8.8. Experiment in Heating Mode 

Due to the limitation of this experiment apparatus, the load/source side fluid flow 

rates are both kept fixed at 505 CFM (23.8 LIS) and 4.3 GPM (0.27 LIS) respectively. 

The time-varying load/source side entering and leaving fluid temperatures and power 

consumption are plotted below in Figure 8.14 through Figure 8.16. The plots show that 

the heat pump was operating in a comparatively stable manner for about twelve hours, 

although the last five hours represent the most stable operation period. 

8.8.1. Experimental Uncertainty 

The time period between 1.00AM and 6.00AM on March 2, 2002 is selected for 

comparison, as the heat pump was running under fairly stable conditions. The average 

measured temperatures and power consumption are given in Table 8.15. The 

uncertainties of load side heat transfer, source side heat transfer and power consumption 

are calculated accordingly as discussed in the Section 7 .5. The results are shown in Table 

8.16. 

Table 8.15. Average Temperature Differences and Power Consumption used to 
Compute the Relative Uncertainties 

Load Side Av ~T Source Side Av ~T Avg Power 
27.5 °F {15.3 °C 5.9 °F 3.3 °C) 1.1 kW 

308 



Table 8.16. Experimental Uncertainties of Heat Transfer Rate and Power 
Consumption 

Load Side Heat Source Side Heat 
Power 

Transfer Rate Transfer Rate 
±4.7% ±21.6% ±1.0% 

8.8.2. Energy Imbalance 

As a check on the reasonableness of the experimental measurements, it is also 

desirable to assess the energy imbalance of the experimental data of the water-to-air heat 

pump. The measured imbalance is plotted in Figure 8.13. 
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Figure 8.13. Heat pump energy balance (heating) 

For the selected analysis period (1.00AM and 6.00AM), the average load side heat 

transfer rate, average source side heat transfer rate and average power consumption with 

their uncertainties are presented in Table 8.17. Table 8.17 shows that the energy 
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imbalance as the residual by subtracting source heat transfer and power consumption 

from load heat transfer is between -1.4 kW (-4,777 Btu/Hr) and 0.6 kW (2,047 Btu/Hr) 

when the uncertainty of the instrumentation is included. It could range from 0% to as 

high as 31.9% of the load side heat transfer rate. Thus, the energy imbalance plotted in 

Figure 8.13 for the selected time block falls into the band of estimated uncertainty. 

Table 8.17. Energy Imbalance with Estimated Uncertainties 

Load Source 
Power Consumption 

Heating Capacity Heat of Extraction 
4.39 ± 0.21 kW 3.69 ± 0.80 kW 

I.I± 0.011 kW 
(14978 ± 716 Btu/Hr) (12590 ± 2729 Btu/Hr) 

Imbalance = Load Heating Capacity - Source Heat of Extraction - Power 

-0.4 ± 1.0 kW or -1.4 ~imbalance~ 0.6 kW 
(-1365 ± 3412 Btu/Hr or -4777 ~imbalance~ 2047 Btu/Hr) 

8.8.3. A Comparison of Model Prediction to the Experimental Data 

The comparison between the predicted and experimental heat pump leaving fluid 

temperatures and power consumption for heating mode is presented in Figures 8.14-8.16. 

The model has been evaluated using the measured entering fluid temperatures for both 

load and source sides. Then the predicted leaving fluid temperatures have been compared 

with the measured temperatures. A review of the model predictions and measured leaving 

fluid temperatures/power consumption in Figure 8.14 through Figure 8.16 shows good 

agreement. The resulting errors in heat transfer rates are quantified below. 
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Figure 8.16. Heat pump model validation in heating mode: power consumption 

As discussed in Section 8.7, the estimated uncertainties of model prediction are 

±12.4% for heating capacity, ±13.6% for heat extraction, and ±5.71 % for power 

consumption. The estimated average uncertainties of experimental data in heating mode 

are ±4.7% for heating capacity, ±21.6% for heat of extraction and ±1.0% for power 

consumption. Thus, deviations between model predictions and experimental data of 

±17.1 % for heating capacity, ±35.2% for heat of extraction and ±6.71 % for power 

consumption, respectively may be accounted for by the uncertainty analysis. 

Figures 8.17 through Figure 8.19 show the percentage error between model 

predictions and experimental measurements for the data in heating mode. Each plot also 

shows the amount of error that can be explained by the uncertainty analysis, if the catalog 

data are assumed to have an uncertainty of ±5%. For the most part, except during the 

initial transients, the model predictions match the experimental results within the bands 
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of estimated uncertainty. The errors associated with power consumption are a little larger 

than the estimated uncertainty during certain time period. Since the heat pump in the 

experiment has been used for a fairly long time, it is possible that there could be some 

degradation on the heat pump performance. The average load side heat transfer rate, 

average source side heat transfer rate and average power consumption of the model 

simulation and experimental data for the selected time period are given in Table 8.1 8. 

Table 8.18. Average Heat Transfer Rates and Power Consumption 

Experiment 
Load side 4.39 kW 

heat transfer rate (14978 Btu/Hr) 
Source side 3.69 kW 

heat transfer rate (12590 Btu/Hr) 
Power 1.1 kW 
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Figure 8.17. Heat pump model validation in heating mode: heating capacity percentage 
error between model and experiment 
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8.9. Experiment in Cooling Mode 

Since the latent cooling capacity is found by measuring the weight of the 

condensate, the experimental data for cooling mode cannot be collected continuously as 

those of the heating mode. Some time blocks with relatively stable data points were 

selected and the condensate from the heat pump within these selected time blocks was 

measured. Time-averaged values shall be used for the other measurements. 

8.9.1. Experimental Uncertainty 

Since the operation is switched from heating mode to cooling mode and 

temperature difference may change considerably, it is desirable to investigate the 

experimental uncertainty again. The uncertainties of load side sensible heat transfer, 

latent heat transfer rate and source side heat transfer are calculated accordingly as 

discussed in the Section 7.5. The results are shown in Table 8.19 to Table 8.21. The 

uncertainty of watt transducer is 1.0% of the reading. 

Table 8.19. Uncertainty of Load Side Sensible Heat Transfer Rate 

No Load Side ~T 
Experimental Uncertainty 

(OC) (OF) 
1 11.1 19.9 ±5.4% 
2 10.8 19.5 ±5.5% 
3 11.2 20.2 ±5.4% 
4 11.2 20.2 ±5.4% 
5 11.9 21.5 ±5.2% 
6 11.7 21.1 ±5.2% 
7 12.0 21.6 ±5.2% 
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8 12.0 21.6 ±5.2% 
9 12.3 22.1 ±5.1% 
10 12.3 22.1 ±5.1% 
11 12.9 23.2 ±5.0% 
12 12.6 22.6 ±5.1% 
13 13.1 23.7 ±5.0% 
14 13.3 23.9 ±5.0% 
15 13.2 23.8 ±5.0% 

Table 8.20. Uncertainty of Latent Heat Transfer Rate 

No Latent H. T. Rate (kW) Experimental Uncertainty 
1 0.68 ±7.4% 
2 0.70 ±7.1% 
3 0.79 ±6.3% 
4 0.77 ±6.5% 
5 0.82 ±6.1% 
6 0.87 ±5.7% 
7 1.11 ±4.5% 
8 1.15 ±4.3% 
9 1.30 ±3.8% 
10 1.31 ±3.8% 
11 1.09 ±4.6% 
12 1.10 ±4.5% 
13 1.19 ±4.2% 
14 1.24 ±4.0% 
15 1.26 ±4.0% 

Table 8.21. Uncertainty of Source Side Heat Transfer Rate 

No Source Side fl. T Experimental Uncertainty 
(OC) (OF) 

1 4.0 7.1 ±18.1% 
2 3.9 7.1 ±18.2% 
3 4.1 7.4 ±17.5% 
4 4.1 7.3 ±17.7% 
5 4.3 7.7 ±16.8% 
6 4.3 7.7 ±16.8% 
7 4.6 8.2 ±15.7% 
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8 4.6 8.3 ±15.7% 
9 4.7 8.5 ±15.2% 
10 4.8 8.6 ±15.1% 
11 4.7 8.5 ±15.2% 
12 4.7 8.5 ±15.3% 
13 4.9 8.8 ±14.8% 
14 4.9 8.8 ±14.7% 
15 4.9 8.9 ±14.6% 

8.9.2. Energy Imbalance 

As a check on the reasonableness of the experimental measurements, it is also 

desirable to assess the energy imbalance of the data for cooling mode. The imbalance is 

shown in Table 8.22. 

Table 8.22. Heat Pump Energy Imbalance 

Total Cooling (kW) Sensible Cooling (kW) Latent Cooling (kW) Heat Rejection (kW) Power(kW) hnbalance 

1 3.84 3.16 0.68 4.47 0.94 6.49% 

2 3.80 3.10 0.70 4.44 0.95 6.53% 

3 4.01 3.21 0.79 4.63 0.94 6.46% 

4 3.98 3.21 0.77 4.59 0.94 6.71% 

5 4.23 3.41 0.82 4.82 0.93 6.59% 

6 4.23 3.36 0.87 4.83 0.93 6.40% 

7 4.55 3.44 1.11 5.16 0.94 6.01% 

8 4.58 3.43 1.15 5.18 0.96 6.50% 

9 4.81 3.51 1.30 5.36 0.95 6.94% 

10 4.82 3.51 1.31 5.37 0.96 7.09% 

11 4.77 3.68 1.09 5.33 0.98 7.30% 

12 4.70 3.60 1.10 5.31 0.97 6.35% 

13 4.95 3.76 1.19 5.48 0.98 7.59% 

14 5.03 3.79 1.24 5.52 0.98 8.15% 

15 5.05 3.79 1.26 5.56 0.98 7.79% 

Table 8.23 shows the effect of experimental uncertainties on the energy imbalance 

of point #1 in Table 8.22. The imbalance, which is the residual by subtracting load side 
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heat transfer and power consumption from source side heat transfer, is between -1.35 kW 

(-4,606 Btu/Hr) and 0.73 kW (2,491 Btu/Hr) when the uncertainty of the instrumentation 

is included. It could range from 0% to as high as 35.2% of the load side heat transfer rate. 

The energy imbalance shown in Table 8.22 falls into the band of estimated uncertainty, 

even without accounting for the uncertainty of the latent heat transfer. 

Table 8.23. Energy Imbalance with Estimated Uncertainties (Data Point #1) 

Source Heat Rejection Load Sensible H. T. Load Latent H. T. Power 

4.47 ± 0.81 kW 3.16±0.17kW 0.68 ± 0.05 kW 
0.94 ± 0.01 kW 

(15251 ± 2764 Btu/Hr) (10781 ± 580 Btu/Hr) (2320 ± 170 Btu/Hr) 

Imbalance= Source Heat Rejection -Load Sensible H. T. - Load Latent H. T. - Power 

-0.31 ± 1.04 kW or -1.35 ~imbalance~ 0.73 kW 
(-1058 ± 3548 Btu/Hr or -4606 ~imbalance~ 2491 Btu/Hr) 

8.9.3. Parameter Estimation Based on Experimental Data 

It is discussed in Section 8.5 that, quite a few data points in the manufacturer's 

catalog are physically unrealistic. Parameter estimation and model implementation based 

on the catalog data shows a greater than acceptable error associated with split of total 

heat transfer rate. To investigate the discrepancy between the real measurements in the 

experiment and the catalog data, it might be helpful to use the experimental data to fit the 

parameters for the water-to-air heat pump model. The estimated parameter values are 

shown in Table 8.24. The model accuracy against the experimental measurements using 

the estimated parameters based on the experimental data have assessed. The results are 

shown in Table 8.25. 
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Table 8.24. Parameter Estimation Results for the FHP Water-to-Air Heat 
Pump Model GT018 -Cooling Mode 

Parameter Estimated Value 
Displacement Vd 0.001162 m3/s (147.71 ft3/hr) 

Discharge pressure drop AP 81.05 kPa (11.76 psia) 
Load side heat exchanger total heat transfer 

0.2031 kW/°C (384.84 Btu/(hr-°F)) 
coefficient (UA)iot 

Load side heat exchanger air side heat 
0.2345 kW/°C (444.34 Btu/(hr-°F)) 

transfer coefficient hc,oAo 
Source side heat exchanger heat transfer 

0.7834 kW/°C (1484.41 Btu/(hr-°F)) 
coefficient UAs 

Efficiency 11 0.9677 
Constant part of the electro-mechanical 

0.328 kW (1119.48 Btu/hr) 
power losses Wzoss 

Superheat LlTsh 7.50 °C (13.51 °F) 

The parameter estimation results based on experimental data presented in Table 

8.24 may be compared to those based on the catalog data presented in Table 8.5. The 

most remarkable differences are noticed for the total heat transfer coefficient and external 

heat transfer coefficient of the load side heat exchanger. Given the number of physically 

impossible data points in the catalog data (Table 8.1 and Table 8.2), and given the 

relatively high RMS error in the latent cooling capacities predicted with parameters 

estimated from catalog data, it is not surprising that the parameters which control the 

sensible/latent split would be significantly different when estimated with experimental 

data. 

The estimated parameters are used to predict the performance with the same inputs 

as the experimental data. Comparisons of the predicted and experimental total cooling 

capacity, sensible cooling capacity, latent cooling capacity, heat rejection and power 

consumption are shown below in Figure 8.20 through Figure 8.24. Summary of the RMS 
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errors is presented in Table 8.25. A review of Figure 8.20 through Figure 8.24 and Table 

8.25 shows a significant improvement on the model accuracy compared to that of the 

catalog data, especially for the latent cooling capacity. 

Table 8.25. RMS Errors of the Simulations for the Experimental Data 

Number 
RMS 

of Points Total Cooling Sensible Cooling Latent Cooling Heat 
Power Capacity Capacity Capacity Rejection 

15 1.82 % 2.23 % 
0.08 kW 

7.80% 1.59 % 
(273 Btu/Hr ) 

8.9.4. A Comparison of Model Prediction to the Experimental Data 

The model has been evaluated using the measured entering fluid temperatures for 

both load and source sides as inputs. Two sets of parameters, one based on the 

manufacturer's catalog data and the other based on the experimental data, are used in the 

model to compare their influence on the model accuracy against the experimental data. 

The predicted leaving fluid temperatures have been compared with the measured 

temperatures. The model predictions against experimental data with both sets of 

parameters are plotted in Figures 8.20 to 8.24. A review of Figures 8.20 to 8.24 shows 

some significant improvement in the model accuracy with parameters based on the 

experimental data over the accuracy with parameters based on the catalog data. The 

greatest improvement is obtained for the latent cooling capacity. There may be two 

reasons accounting for the improvement: first, as discussed earlier, the accuracy of the 

catalog data is fairly questionable according to the psychrometric analysis. The model 

can be expected to predict incorrect results. In contrast, the experiment data show a very 
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reasonable behavior of the coil cooling and dehumidification, and the parameter 

estimation discussed above shows that a good agreement between model and 

experimental data can be obtained. Second, it is also possible that degradation of the heat 

pump performance may lead to a considerable deviation between the experimental 

measurements and catalog data. In this case, the model using parameters estimated with 

experimental data should show much better agreement with the experimental data than 

that using parameters estimated with catalog data. 

For the heat rejection, it is noticed that the model accuracy with parameters based 

on experimental data is a little lower than that with parameters based on catalog data. 

Presumably, the fact that the experimental data are not consistent with the model 

assumption of no heat losses may be the cause of this phenomenon. 
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Figure 8.20. Calculated total cooling capacity vs experimental total cooling capacity 

321 



QsenExp(Btu/Hr) 

10235.00 11235.00 12235.00 13235.00 

4.0 -+-----'-------'------'---

3.8 

~ tr 3.6 
ro 
() 

5i 3.4 
Cl) 

0 

3.2 

• 13235 

... 
~ 
::, 

12235 ffi 
1r 
co 
() 
C: 
Q) 

11235 0 

3.0 -¥'-----_,e;,,.----~-------+ 10235 

3.0 3.2 3.4 3.6 3.8 4.0 

QsenExp(kW) 

I o Exp-Parameters 1> Cat-Parameters I 

Figure 8.21. Calculated sensible cooling capacity vs experimental sensible cooling 
capacity 

QlatExp(Btu/Hr) 

1706 2706 3706 4706 

1.5 

4706 
1.3 

........ ... 
~ I 
..I<: 1.1 3706 i u 
ro -10% u 
B 0.9 

ro 
co tJ a 

2706 a 
0.7 II). 

I> I> 
I> t,.I> 

0.5 ti' 1706 

0.5 0.7 0.9 1.1 1.3 1.5 

QlatExp(kW) RMS=0.08 kW (273 Btu/Hr) (Exp) 
0.51kW (1740 Btu/Hr) (Cat) 

I o Exp-Parameters 1> Cat-Parameters I 

Figure 8.22. Calculated latent cooling capacity vs experimental latent cooling capacity 

322 



QsExp(Btu/Hr) 

10235 14235 18235 22235 

7 +------....1-------'-----....-J.-~ 

6 

[ 

22235 

~ ,._ 
::c 

'Ji 5 
(IJ 

18235 2 
ca 
'Ji 

(.) 
rn 
0 

4 
RMS=7.80% (Exp) 

3.62% (Cat) 

(IJ 
(.) 
rn 

14235 0 

3 --1"---.c;._----------~-----+ 10235 

3 4 5 

QsExp(kW) 

6 

I o Exp-Parameters "' Cat-Parameters I 

7 

Figure 8.23. Calculated heat rejection vs experimental heat rejection 

~ 1.0 
~ u 
ro 
~ 0.9 

0.8 0.9 

WExp(kW) 

RMS=1.59% (Exp) 

5.58% (Cat) 

1.0 

I o Exp-Parameters "' Cat-Parameters I 

1.1 

Figure 8.24. Calculated power consumption vs experimental power consumption 

323 



8.10. Summary 

The model predictions match the experimental data in the bands of estimated 

uncertainty for sensible heat transfer, latent heat transfer, source side heat transfer and 

power consumption. Good agreement between the predicted and the measured heat pump 

heating/total cooling capacity and power consumption is obtained. Relatively high errors 

for sensible and latent cooling capacities have been observed. There may be three major 

reasons: first, the accuracy of the sensible and latent capacity as a result of the split of 

total cooling capacity is not as good as that of the total capacity itself in the heat pump 

model described in Chapter 5; secondly, the reliability of the catalog data for the sensible 

and latent capacities is questionable as discussed previously in this chapter, thus the 

parameters estimated based on the catalog data may result in a considerable error in 

model prediction. The model prediction accuracy could be significantly improved if a 

complete and reliable set of experimental data were available. Thirdly, as it is noticed in 

the experimental data, the latent cooling capacity constitutes about twenty percent of the 

total cooling capacity only. A significant change for the latent cooling capacity will result 

in a negligible change in the total cooling capacity. Therefore, a balance of the energy 

flows does not insure accurate prediction of the latent capacity. 
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9. Conclusions and Recommendations 

9.1. Conclusions 

This chapter summarizes the conclusions that can be drawn from the previous 

chapters. Detailed conclusions are given for each aspect of the work in chapters 4-8 

respectively. 

Water source heat pumps have been used in building and environmental 

applications for decades. During this time, modeling of water source heat pumps and 

other similar vapor compression heating and air-conditioning equipment has received 

extensive attention. Most of the heat pump models developed previously, which are 

classified as 'deterministic' models in this thesis, are targeted at the design of the heat 

pump itself for improved performance. Only the models based on pure mathematical 

regression (classified as 'equation-fit' models in this thesis) are widely accepted in the 

building energy calculation programs due to their minimal computational time and 

information requirements. Though 'equation-fit' models work effectively for many 

applications, they sometimes have low accuracy and are particularly problematic when 

the model is operating outside of the range of the manufacturer's catalog data. 

Furthermore, it is difficult to extend these models when different working fluids are used. 

This study has dealt with the modeling of water-to-water and water-to-air heat 

pumps in building energy calculation programs to overcome the drawbacks of the 

'deterministic' and 'equation-fit' models. The challenges associated with the modeling of 
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water source heat pumps for energy calculation are three-fold. First, HVAC system 

design engineers typically have access to the manufacturers' catalog data only. It is not 

feasible for them to obtain detailed information such as heat pump configuration, 

component dimensions, internal measurements and other parameters that are required by 

'deterministic' models. Second, during any system simulation, it is likely that the model 

inputs may go beyond the catalog data. Even though the ultimate outcome is that the 

solution will be adjusted to bring the inputs within reasonable limits, it is helpful to have 

a model that does not catastrophically fail when the inputs are too high or too low. Third, 

the annual simulation of building and its accompanying thermal systems is normally 

needed for at least one year, or perhaps as long as twenty years. Each day during the 

simulation period could be divided into many time steps (i.e. one hour). There may be 

numerous loops within every time step. Thus, computational speed becomes important 

and detailed deterministic models would often require too much computational time. This 

thesis presents parameter estimation based models that address the challenges facing the 

HV AC system design engineer. 

Chapter 4 of this thesis has described the development and validation of a parameter 

estimation based water-to-water heat pump model for use in energy calculation programs. 

A parameter estimation modeling approach has been used to simulate the performance of 

reciprocating vapor compression water-to-water heat pumps. The model has been 

validated by comparing simulation results to the manufacturers' catalog data. The 

model's performance compares favorably against the most detailed 'deterministic' model 

previously published, while not consuming an inordinate amount of computiaonal time. 
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As compared to 'equation-fit' models, the model retains the physically-based 

representation of the heat pump, which allows some extrapolation beyond the catalog 

data. It also perform significantly better than the equation-fit model when a limited 

number of operating points are utilized for estimation of parameters or coefficients. 

Chapter 5 of this thesis presents the development and validation of a parameter 

estimation based water-to-air heat pump model. An extension of the water-to-water heat 

pump model, it is complicated by modeling of the direct expansion cooling coil. 

Difficulties were encountered in modeling partially wet coil conditions with limited 

information available from the catalog data. This problem has been solved by the 

approximation of using the fully wet coil external convection heat transfer coefficient to 

predict all coil conditions. The model predicts sensible and latent capacities acceptably 

well when the coil approaches the completely dry condition. 

Chapter 6 discusses three important extensions to the heat pump models - scroll 

compressors, rotary compressors and glycol/water mixtures. Scroll compressors and 

rotary compressors are two frequently used alternatives to reciprocating compressors. A 

five-parameter scroll compressor model has been developed to replace the reciprocating 

compressor model used in the water-to-water heat pump model described in Chapter 4. 

For a heat pump with a scroll compressor, use of the scroll compressor model (instead of 

a hypothetical reciprocating compressor model) was shown to significantly improve the 

overall heat pump model performance. A four-parameter rotary compressor model was 

also developed. The rotary compressor model is, in the end, a simplified version of the 
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reciprocating compressor model. However, it makes more physical sense than the 

reciprocating compressor model if the modeled heat pump is really equipped with a 

rotary compressor. It requires less time for parameter estimation for rotary compressor 

model than reciprocating compressor model 

One of the advantages of the parameter estimation based model over the equation

fit model is that it has the possibility of being adapted to different heat transfer fluids by 

adjusting the heat exchanger UA. Since antifreeze solutions are commonly used with 

ground source heat pump system, a procedure for adjusting the model parameters to 

account for the change in working fluids has been developed. This procedure was 

checked against correction factors provided by one manufacturer and found to give 

reasonable results. Further experimental work is needed to validate the procedure. 

Chapter 7 and Chapter 8 in this thesis discuss the field validations of the water-to

water and water-to-air heat pump models using existing experimental apparatus. These 

experiments give the opportunity to compare the model prediction to the 'real' 

experimental measurements, other than what is available in the manufacturers' catalogs. 

For the water-to-water heat pump, results show that model predicts performance 

acceptably close for building energy calculation purposes. Generally, the percentage 

errors between model prediction and experimental data are less than 9% for load side heat 

transfer rate, 20% for the side heat transfer rate, and 12% for the power consumption. For 

the water-to-air heat pump experiment, the deviations are also acceptably small (less than 

10%) except for the latent cooling capacity. Since quite a few physical unrealistic data 
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points have been found in the catalog, and relatively high RMS error is obtained in the 

latent cooling capacities predicted with parameters estimated from catalog data, it is not 

surprising that the accuracy of the model using parameter estimated from catalog data is 

relatively low. The model using parameters estimated with experimental data shows 

much better agreement with the experimental data than that using parameters estimated 

with catalog data. The comparison shows that the deviations between model simulation 

and experimental data generally fall into the bands of uncertainties associated with both 

model and experiment. 

9.2. Recommendations 

Although the models presented in this thesis are a considerable improvement in the 

modeling of heat pumps for building energy calculation, further work would be useful. 

1. Monitored field data have been used to validate the water-to-water and water-to

air heat pump models. Unfortunately, in both of the experiments, there is no 

way to control the fluid flow rates and temperatures. It is not possible to get the 

flow rates and inlet temperatures matched with the data points published in the 

manufacturers' catalogs, nor is possible to vary them systematically. Therefore, 

a direct comparison cannot be established between the catalog data and 

experimental measurements. To quantify the discrepancy between catalog data 

and actual performance data, and to validate the model performance over a 

range of conditions, it is highly desirable to have a laboratory-based heat pump 

test loop where flow rates and inlet temperatures can be controlled on both sides 
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of the heat pump. A comparison between the actual measurements and the 

catalog data may be helpful for estimating the model uncertainty based on the 

deviations of the 'real' performance from the catalog data. 

2. In the water-to-water heat pump experiment, no data are available for heat pump 

operating with pure water on both load and source sides since antifreeze has to 

be used for freeze protection on the load side. Although the heat pump model 

has been modified to meet the needs of antifreeze applications, it is still 

desirable to have an experiment on the heat pump operating with pure water, 

which may furnish more information to assess the_ antifreeze adjustment 

procedure. Again, this would be facilitated by a laboratory-based heat pump test 

loop. 

3. In the water-to-air heat pump experiment, the latent heat transfer was measured 

only on the basis of the condensation rate with an uncertainty of ±0.05 kW. In a 

laboratory test loop, this measurement might be made more accurately and 

could be checked against the humidification flow rate and the change of 

humidity ratio in the air stream. 

4. All cooling mode experiments have high sensible heat factors that range from 

0.73 to 0.82. It would be desirable to obtain higher incoming humidity ratio. To 

achieve a high air humidity ratio, additional humidification capacity is needed. 

In order to test the full range of the heat pump latent cooling, it would be 
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desirable to have a humidification capacity of 32 gallons/day (121 kg/day). Two 

humidifiers, each with a rate capacity of 10 gallons/day (38 kg/day) were used. 

However, under actual operating conditions, they only put out about 6.3 

gallons/day (24 kg/day). Therefore, some further investigation may be necessary 

to increase the humidification capacity to 32 gallons/day (121 kg/day). 

5. While extensively used in many applications such as ground source heat pump 

systems for providing freeze protection, antifreeze adversely impacts heat 

transfer performance. The procedure developed for modeling heat pump 

performance with antifreeze could only be checked against some correction 

factors provided by one manufacturer. It would be highly desirable to validate 

the model with laboratory data, where varying concentration of the antifreeze 

could be used and where inlet conditions to both sides of the heat pump could 

be controlled. 

6. It is also desirable to measure the internal conditions of the heat pump such as 

suction and discharge pressures, superheat, subcooling, condensing and 

evaporating temperatures. Some comparisons may be implemented between the 

intermediate variables of the parameter estimation based heat pump models and 

observed measurements. These comparisons may provide further insight into 

the performance of the parameter estimation based heat pump models. 
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7. Numerous errors in the catalog data are apparently caused by manufacturers' 

procedure (believed to be based on equation-fit models) for generating non

measured catalog data. As an alternative, the parameter estimation based models 

developed in this thesis might be utilized by manufacturers to generate the 

catalog data. 
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APPENDIX A 

Sensitivity Analysis of the Water-to-Water Heat Pump Model 
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There are errors associated with the output of the heat pump model such as cooling 

capacity or heating capacity as a result of the uncertainty of the estimated parameter 

values. Therefore, a series of sensitivity analyses are performed to assess the influence of 

a number of parameters that cannot be determined exactly, but estimated with some 

uncertainty on the predicted capacity of the heat pump model. In this investigation, heat 

pump A used for the water-to-water heat pump model validation in Chapter 4 has been 

chosen to do the sensitivity analysis. 

A.1. Sensitivity to the Heat Transfer Coefficient of Load Side Heat Exchanger 

The sensitivity of the predicted cooling capacity to the heat transfer coefficient of 

load side heat exchanger is shown in Figures A. I and A.2. Figure A. I is a plot for point 

#1, which is the first point of the specification data. Figure A.2 is a plot for point #81, 

which is the last point of the specification data. The 100% heat transfer coefficient has 

been chosen as the reference point, whose value was estimated using the manufacturer's 

catalog data. Then the heat transfer coefficient has been reduced gradually at the step of 

10%. A review of the plots shows that the cooling capacity asymptotically approaches the 

maximum value, which is the capacity for 100% heat transfer coefficient value. This 

implies that the estimated heat transfer coefficient value is approximately the least value 

necessary to achieve the specified capacity of the heat pump. A greater heat transfer 

coefficient than this value, or in other words, a bigger heat exchanger won't help to 

enhance the cooling capacity of the heat pump considerably. Apparently, when the heat 

transfer coefficient of the load side heat exchanger approaches the 100% value, the 
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cooling capacity is less sensitive to the heat transfer coefficient than it is to a much 

smaller value. 
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Figure A.1. Cooling capacity correction factor vs. degradation of heat transfer coefficient 
ofload side heat exchanger- catalog data point #1 
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Figure A.2. Cooling capacity correction factor vs. degradation of heat transfer coefficient 
of load side heat exchanger - catalog data point #81 
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A.2. Sensitivity to the Heat Transfer Coefficient of Source Side Heat Exchanger 

The sensitivity of the predicted cooling capacity to the heat transfer coefficient of 

source side heat exchanger is shown in Figures A.3 and A.4. Figure A.3 is a plot for point 

#1, which is the first point of the specification data. Figure A.4 is a plot for point #81, 

which is the last point of the specification data. The 100% heat transfer coefficient has 

been chosen as the reference point, whose value was estimated using the manufacturer's 

catalog data. Then the heat transfer coefficient has been reduced gradually at the step of 

10%. A review of the plots shows that the cooling capacity asymptotically approaches the 

maximum value, which is the capacity for 100% heat transfer coefficient. This behavior 

can be explained similarly by what has been discussed for the load side heat transfer 

coefficient. 
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Figure A.3. Cooling capacity correction factor vs. degradation of heat transfer coefficient 
of source side heat exchanger - catalog data point #1 
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Figure A.4. Cooling capacity correction factor vs. degradation of heat transfer coefficient 
of source side heat exchanger - catalog data point #81 

A.3. Sensitivity to the Compressor Piston Displacement 

The sensitivity of the predicted cooling capacity to the compressor piston 

displacement is shown in Figures A.5 and A.6. Figure A.5 is a plot for point #1, which is 

the first point of the specification data. Figure A.6 is a plot for point #81, which is the last 

point of the specification data. The 100% piston displacement has been chosen as the 

reference point, whose value was estimated using the manufacturer's catalog data. Then 

the piston displacement has been reduced and increased gradually at the step of 10%. A 

review of the plots shows that the cooling capacity asymptotically approaches a 

maximum value, which may be far greater than that with the estimated compressor piston 

displacement. This implies that the cooling capacity is more sensitive to the piston 

displacement at the estimated value than the heat transfer coefficients. 
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Figure A.5. Cooling capacity correction factor vs. hypothetical variation of compressor 
piston displacement- catalog data point #1 
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Figure A.6. Cooling capacity correction factor vs. hypothetical variation of compressor 
piston displacement - catalog data point #81 
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A.4. Sensitivity to the Compressor Clearance Factor 

The clearance factor is another important feature of the compressor design. 

Obviously, the bigger the clearance factor, the less the cooling capacity is. Since the 

clearance factor has been defined as a percentage value, the plots of sensitivity of the 

cooling capacity to the value of the clearance factor in Figures A. 7 and A. 8 are a little 

different from the plots for other parameters discussed above. To the author's best 

knowledge, the clearance factor of the reciprocating compressor with a normal design is 

no greater than 10%. Hence, the calculation of the sensitivity of the cooling capacity to 

the clearance factor is only performed between 2% and 9%. This range may be 

adequately wide to cover the clearance factor values for most of the reciprocating 

compressors used in the heat pump technology. A review of the plots shows that the 

relationship between the cooling capacity and clearance factor is nearly linear. 
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Figure A.7. Cooling capacity correction factor vs. hypothetical variation of compressor 
clearance factor- catalog data point #1 
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Figure A.8. Cooling capacity correction factor vs. hypothetical variation of compressor 
clearance factor - catalog data point #81 

A.5. Sensitivity to the Suction & Discharge Pressure Drop 

The last parameter selected for the sensitivity analysis is the pressure drop across 

the suction and discharge valves. Obviously, the bigger the pressure drop, the less the 

cooling capacity is. The sensitivity of the predicted cooling capacity to the pressure drop 

is shown in Figures A.9 and A.IO. Figure A.9 is a plot for point #1, which is the first 

point of the specification data. Figure A. IO is a plot for point #81, which is the last point 

of the specification data. The 100% pressure drop has been chosen as the reference point, 

whose value was estimated using the manufacturer's catalog data. Then the pressure drop 

has been reduced and increased gradually at the step of 10%. A review of the plots shows 

that the relationship between the cooling capacity and pressure drop is approximately 

linear. 
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APPENDIXB 

Calibration of the Instrumentation for the Water-to-Air Heat Pump Experiment 
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This appendix presents the calibration of the experimental devices and uncertainty 

analysis for the validation of the water-to-air heat pump model. 

B.1. Calibration of Experimental Devices 

For any experimental apparatus, the uncertainty always exists for all the 

measurements. When the measurements are used to calculate the derived parameters, the 

errors are usually compounded and amplified. Therefore, a meticulous calibration of the 

sensors and data acquisition equipment is necessary to minimize the uncertainties. For 

this experiment, five types of experimental data are procured: normal temperature (°C or 

°F), mass flow rate (kg/s or Ihm/hr), dew point temperature (°C or °F), pressure 

difference (kPa or PSI) and input power (watts or Btu/Hr). Each device has been 

calibrated independently. 

B.1.1. Normal Temperature Devices 

There are two thermocouple probes, two groups of exposed thermocouples used to 

measure the normal temperatures. Each device serves a separate and specific purpose. 

One of the thermocouple probes is used to measure the entering water temperature of the 

heat pump, the other thermocouple probes is used to measure the leaving water 

temperature of the heat pump. The exposed thermocouple groups measure the return and 

supply air dry bulb temperatures of the heat pump. 

355 



B.1.1.1. Exposed Junction Thermocouple 

The exposed junction thermocouple is a type-T thermocouple, which measures the 

return and supply air dry bulb temperatures of the heat pump. The uncertainty is about 

±0.3 °C (±0.54 °F) based on the calibration data. Type-T thermocouples are made of 

copper versus constantan and the valid temperature range is between O °C (32 °F) and 

3 71.1 °C (700 °F). Since the variation of the air temperatures in the HV AC application 

and the return and supply air temperatures of the building in this case fall into a 

considerable narrow range, the thermocouples have been calibrated at three points: 0.7 °C 

(33.3 °F), 15.8 °C (60.4 °F) and 26.9 °C (80.4 °F). The output voltage of the 

thermocouple is received by the Fluke data logger. And then the temperature converted 

internally by the data logger is saved in an ASCII file. An average value is calculated for 

three different points respectively. The fitted equations have been found for each 

thermocouple using linear regression analysis tool in Excel. 

B.1.1.2. Thermocouple Probe 

The experimental apparatus uses two thermocouple probes to measure the entering 

and leaving water temperatures of the heat pump. They are stainless steel OMEGA 

TMQSS-125G-6 quick disconnect thermocouple probes with miniature connectors. It is a 

type-T thermocouple, 0.125" sheath diameter and 6 "sheath length. The probes have an 

accuracy of ±0.5 °C (±0.9 °F) based on the calibration data. The thermocouple probe is 

also calibrated with the same approach as the exposed joint thermocouple. The fitted 
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equations have been found for each thermocouple probe using linear regression analysis 

tool in Excel. 

B.1.2. Flow Meter 

The OMEGA FTB-100 and 200 series turbine meters are volumetric measuring 

flow meters. The flowing fluid engages the vaned rotor causing it to rotate at an angular 

velocity proportional to the liquid flow rate. The flow meter pickup senses the motion of 

the rotor and converts it to a pulsing electrical signal which is of a discrete, digital nature. 

The pickup generates a relatively high magnetic field and produces a high level 

sinusoidal output. Thus the angular velocity of the rotor results in the generation of an 

electrical signal (AC sine wave type). Summation of the pulsing electrical signals relates 

directly to total flow. Frequency of the signals relates directly to the flow rate. The vaned 

rotor is the only moving part of the flow meter. OMEGA FTB-105 turbine meter has a 

sealed ball bearing design that gives the widest linear flow range. Its low mass rotor 

allows for rapid dynamic response, and therefore it can be used in pulsating flow 

applications. The estimated uncertainty is ±2.8% (Wadivkar 1997). 

The output signal from the FTB-105 flowmeter is received by the OMEGA FLSC-

28 High Accuracy Integral Signal Conditioner. The input circuitry of the FLSC-28 Signal 

Conditioner has been designed to condition the low level turbine meter signals while 

rejecting unwanted noise and spurious signals. A signal threshold control is provided 

which allows the user to set the input sensitivity above the ambient noise level, thereby 
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eliminating any false signal on the output. The FLSC-28 provides a 0-5V output that runs 

off user supplied 10-40 V de power supply. 

The calibration of the flow meter was accomplished by the 'bucket and stop watch 

method'. The tap water traveled through the flow meter and drain into a big chest. When 

the reading on the data logger stabilized at the desired value, the flow was diverted into a 

bucket until it was filled up. The time consumed to fill the bucket was measured using a 

stop watch. Then the water collected in the bucket was weighted on an electronic scale. 

Meanwhile, the voltage output from the flow meter was recorded at one-second intervals. 

A simple average of these reading in terms ofVdc was calculated to minimize the error. 

This average voltage corresponded to the flow rate that calculated as the weight of the 

water in the bucket divided by the time consumed. 

The maximum and minimum flow rates have to be dependent on the adjustability of 

the tap water. Fortunately, the desired flow rates fell into the adjustable range of the tap 

water. It was noticed that the nominal flow rate of the condenser water is around 4 GPM 

(0.2524 LIS). Hence, to verify the extrapolation ability of the heat pump model, some 

water flow rates 1 to 2 GPM (0.0631 to 0.1262 LIS) lower and higher than the nominal 

flow rate are desirable. According to the operator's manual of the flow meter, the linear 

flow rate extends from 2.5 to 29 GPM (0.15775 to 1.8299 LIS) for Model FTB-105, 

which is much wider than the desired range. The available signal conditioner (FLSC-28) 

provides a 0-5V output that runs off user supplied 10-40 V de power supply. 
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B.2. Humidity Instrument 

B.2.1. Background for the Selection of Dew Point Sensor 

A laboratory evaluation of humidity sensors for use in HV AC systems was 

presented by Thomas (1992). Among the sensors investigated, dew point sensor generally 

demonstrated the superiority over the others in a few respects. 

Sensors to measure the humidity of the air entering and leaving cooling coils are 

required in the determination of coil loads and supply air quality. Three different 

humidity sensors were tested, one that measures dew point and two that measure relative 

humidity. The sensors were tested in an environmental chamber under various typical 

conditions. The outcome of the tests showed the most accurate instrument for field tests 

was the dew point sensor. 

The dew point sensor showed a 1.6% overall average percent error form the 

standard for both the cooling coil inlet and outlet calculated absolute humidity in an 

environmental chamber. The standard deviation of the sensor was 0.75% for coil inlet 

and 1. 7% for outlet measurements. The author then selected the dew point sensor as the 

most accurate sensor evaluated for its response time in an operating fan/cooling coil 

setup. 

The relative humidity sensor is economical and accurate for compartment ambient 

humidity measuring requirements. However, the accuracy of relative humidity sensor 
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used to measure the load of cooling coil is questionable. Since the sensors are subjected 

to high air velocity and/or dirty environment, they are easily contaminated with dirt and 

grease, which leads to inaccurate humidity values. In addition, the sensor does not 

provide any indication of loss of accuracy when it becomes contaminated. 

Three sensors were selected for the study, one dew point and two relative humidity 

instruments. The dew point instrument selected for testing was a low cost chilled mirror 

dew point transmitter. One of the relatively humidity sensor is of the capacitance type 

using a polymer dielectric as the sensing element. The other relative humidity sensor is a 

processed plastic wafer made up of chemically treated styrene copolymer, which has an 

electrically conducting surface layer that is integral with non-conducting substrate. 

Changes in relative humidity cause the surface resistivity to vary. 

Table B.24 shows a comparison of the calculated accuracy and the chamber test 

accuracy results. The manufacturers' published accuracy was converted into absolute 

humidity. And the results of the chamber test were presented using two error analysis 

methods: the average deviation and the standard deviation (RMS). From the table, it is 

easily concluded that dew point sensors perform at the manufacturers' stated accuracy. 

The relative humidity sensors go much worse than the manufacturers' stated accuracies. 
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Table B.24. Calculated Latent Load and Absolute Humidity Accuracy 
(Thomas, 1992) 

Instrument Percent Error Absolute Humidity 
Type Calculated Accuracy Chamber Test Results 

Coil Inlet Outlet Coil Inlet Outlet 
Dew Point 4.2 4.2 2.3/3.8 5.4/4.5 
Capacitive 4.4 2.2 11.5/11.2 -/7.4 
Resistive 2.8 1.5 27.8/24.5 15.9/18.1 

' 

The author's conclusions were that the dew point sensor is the best choice of the 

three sensors tested for calculating cooling coil latent load. It is a field-oriented, primary 

measuring device designed for high velocity ductwork measurements. Based on the 

selected set of conditions, the latent heat constituted 10% of the total heat. The author 

found the dew point sensor's expected overall latent load accuracy is around 42%. And 

the overall sensible load accuracy is 6%. Combing the latent and sensible heat, the total 

load accuracy is about 8%. 

B.2.2. An Introduction of the Chilled Mirror Dew Point Hygrometer 

The chilled mirror hygrometer indicates the temperature at which H20 changes 

from a gas to liquid (dew point) or from gas to solid (frost point). In the hygrometer, a 

surface (usually of gold, palladium, platinum, or electroplated nickel) is cooled 

(thermoelectrically, mechanically, or chemically) until dew begins to condense out. 

Adiabatic cooling, caused by the sudden expansion of a gas-water vapor mixture, will 

produce condensate if the dew point is reached. In practice, the sample is compressed, 

then suddenly expanded to atmospheric pressure, and the surface condensation is detected 

optically, photoelectrically or by nuclear techniques. The condensate surface is 
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maintained electronically in vapor pressure equilibrium with the surrounding gas. The 

measured surface temperature is then the dew point temperature. 

The condensate type or chilled mirror dew point hygrometer is an accurate and 

reliable instrument with a wide humidity range. When the primary criterion of the 

measurement is accuracy, a chilled mirror will give the most satisfactory result. The 

largest source of error in a condensate hygrometer stems from the difficulty in measuring 

condensate surface temperature accurately. Chilled mirror are as accurate as the 

thermometry used to measure the temperature of the mirror. Typical industrial versions of 

the instrument are accurate to ±0.5 °C (±0.9 °F) over wide temperature spans. With 

proper attention to the condensate surface temperature measuring system, errors can be 

reduced to about 0.2 °C (0.36 °F). Condensation type hygrometers can be made 

surprising compact using solid state optics and thermoelectric cooling. 

Applications for the chilled mirror are extensive. They have found use in 

meteorology, environmental monitoring, dry operations, storage operations, trace 

elements in process gases, HV AC climate control, heat-treating furnaces, process gases in 

semiconductor manufacturing, laboratory standards, clean rooms, compressed air, 

greenhouses, research and development, emissions testing, glove box atmospheres, food

processing applications and others. 
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B.2.3. Omega Chilled Mirror Dew Point Transmitter 

The RHCM-20-3-lOOF is one of the OMGA RHCM series chilled mirror dew point 

transmitters. The sensor is capable of providing long-term repeatability and reliable 

performance for process control and energy management. The RHCM sensors are 

designed to be either pipe or duct mounted for process control in HV AC/Energy 

management applications. Field calibration is not required and the ambient temperature 

effects, hysteresis, and calibration drift with age are all virtually eliminated. 

The RHCM series offer a wide range of user specified power inputs including 24 

Vdc, 24 Vac, 115 Vac and 230 Vac, for many applications. The user specified outputs 

include lOOYi platinum RTD (4-wire) or 4 to 20 mA, which can be scaled over three 

different temperature ranges of Oto 100°F, 0 to 50°C and-40 to 140°F. Either output can 

be directly connected to a panel meter, controller or data acquisition system. The 

accuracy of RHCM-20 duct mount is ±1.0 °F (±0.556 °C). 

B.2.4. Error Analysis of the Relative Humidity Sensor and Dew Point Transmitter 

To determine the psychrometric properties, it is necessary to know the water vapor 

saturation pressure. It's given in the following Table B.25 using polynomial regression 

analysis on data obtained from ASHRAE research. In some other cases, the saturation 

pressure is given and it is required to calculate backward to obtain the temperature 
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corresponding-to the pressure. The calculation of temperature is shown in Table B.26 

derived from the regression analysis analogously. 

Table B.25. Calculation of Water-Vapor Saturation Pressure That is Dependent on 
the Temperature within Various Temperature Ranges 

a=AT+BT+C+DT1, Tin K 

A 
B 
C 
D 

E 
F 
G 
H 
K 

P ws= 1 OOOea, P ws in Pa 
Temperature (K) 

213.15g<273.15 213.15g<322.15 322.15:s;T <373.15 373.15:s;T <423.15 423.15g <473.15 
-0.7297593707E-5 O.l255001965E-4 O.l246732157E-4 0.1204507646-4 0.1069730183-4 
0.5397420727E-2 -O.l923595289E-1 -0.1915465806E-1 -0.1866650553E-1 -0.1698965754E-l 
0.2069880620E2 0.2705101899E2 0.2702388315E2 0.2683629403E2 0.2614073298E2 
-0.6042275128E4 -0.6344011577E4 -0.6340941639E4 -0.6316972063E4 -0.6220781230E4 

Table B.26. Calculation of Temperature That is Dependent on Water Vapor 
Saturation Pressure within Various Temperature Ranges 

T=Ef!+F/f +G/f+Hp+K, Tin K 
P=ln(PwJ., Pws in Pa 

Temperature (K) 

1:s;P<611 611:s;P<l2350 12350:s;P<101420 101420:s;P<476207 476207:s;P<l55509 
9 

0.1004926534E-2 0.5031062503E-2 0.1209512517E-4 0.2467291016E-1 0.2748402484E-4 
O.l392917633E-2 -0.8826779380E-1 -0.3545542105 -0.9367112883 -0.1068661307El 

0.2815151574 0.1243688446El 0.2125893734E3 O.l514142334E2 O. l 742964962E2 
0.7311621119El 0.3388534296El -0.2050301050E2 -0.98824 l 7501E2 -O.l 161208532E3 
0.2125893734E3 0.2150077993E3 0.2718585432E3 0.4995092948E3 0.5472618120E3 

B.2.5. Error Analysis of Relatively Humidity Sensor 

For water-to-air heat pumps in cooling mode, the cooling capacity consists of 

sensible and latent heat removal. Since the moisture removal corresponding to the latent 

heat is measured using either relative or absolute humidity, the accuracy of the humidity 

sensor is significant for the calculation of latent cooling capacity thereby. Hence, it is 

essential to pay a close attention to the manufacturers' published accuracies of the 

humidity sensors and find out their affect on the error of the cooling capacity calculated. 

The discussion of deviation of the cooling capacity based on different humidity 
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measurements using a variety of accuracy of the humidity sensor has been divided into 

two parts: the first part is for the relative humidity sensor and the second part is for the 

dew point sensor. Meanwhile, this discussion is also extended to more than one single 

manufacturers' catalog data. 

It is noticed that the manufacturers' catalog data is typically listed by a series of the 

dry bulb and wet bulb temperatures of the inlet air, instead of the humidity ratio. 

Therefore, the first step is to calculated the ideal value of the relative humidity of 

the inlet air: 

Given: Dry Bulb Temperature tdb, Wet Bulb Temperature twb· 

Find: Relative Humidity rp. 

Equations used in sequence: 

Pws = IOOOea, Pws in Pa 

(250I-2.38Itwb)ws• -CP)tdb -twb) 
W=-------------

2501 + I.805tdb -4. I86twb 

p = PW 
w W +0.62918 
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Where a= natural log of saturation vapor pressure over pure water 

Tdh = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

(B.6) 

Ws * = humidity ratio of moist air at saturation at thermodynamic wet bulb 

temperature, kg/kg dry air or lbm/lbm dry air 

fwb = wet bulb temperature, °C or °F 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-°F 

fdb = dry bulb temperature, °C or °F 

P w = water vapor partial pressure, kPa or psia 

P = total pressure of moist air, kPa or psia 

rjJ = relative humidity. 

The relative humidity calculated is the best measurement we expect from the 

sensor. However, the actual measurement will not so ideal as we have mentioned before, 

the accuracy of the sensor will lead to the error of the measured value up to around 5% 

according to the manufacturers' publication. Table B.27 presents the relative humidity 

calculated and the worst measurements probable for those operating points using one heat 

pump manufacturer's specification sheet. 
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Table B.27. Relative Humidity Error Analysis for Entering States 

Enterin• DB temu Enterino WB temu RH ENT H RH+2% H RH-2% H 

{F) (C) (F) (C) CAT (KJ/KG) (Btu/lb) (KJ/KG) (Btu/lb) (KJ/KG) (Btu/lb) 

75.000 23.889 61.000 16.111 44.62% 44.95 19.33 46.62% 45.89 19.73 42.62% 43.99 18.91 

80.000 26.667 61.000 16.111 32.63% 44.87 19.29 34.63% 45.97 19.77 30.63% 43.73 18.80 

85.000 29.444 61.000 16.lll 23.35% 44.80 19.26 25.35% 46.14 19.84 21.35% 43.51 18.71 

75.000 23.889 64.000 17.778 55.18% 49.99 21.49 57.18% 50.96 21.91 53.18% 49.04 21.09 

80.000 26.667 64.000 17.778 41.59% 49.90 21.46 43.59% 51.04 21.94 39.59% 48.78 20.97 

85.000 29.444 64.000 17.778 30.97% 49.82 21.42 32.97% 51.16 22.00 28.97% 48.52 20.86 

75.000 23.889 67.000 19.444 66.40% 55.38 23.81 68.40% 56.34 24.22 64.40% 54.41 23.39 

80.000 26.667 67.000 19.444 51.10% 55.28 23.77 53.10% 56.42 24.26 49.10% 54.15 23.28 

85.000 29.444 67.000 19.444 39.06% 55.19 23.73 41.06% 56.55 24.31 37.06% 53.88 23.17 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.IO 26.70 76.35% 60.16 25.87 

80.000 26.667 70.000 21.111 61.23% 61.05 26.25 63.23% 62.18 26.73 59.23% 59.89 25.75 

85.000 29.444 70.000 21.111 47.68% 60.95 26.20 49.68% 62.30 26.79 45.68% 59.62 25.63 

80.000 26.667 73.000 22.778 72.01% 67.24 28.91 74.01% 68.38 29.40 70.01% 66.08 28.41 

85.000 29.444 73.000 22.778 56.85% 67.12 28.86 58.85% 68.51 29.46 54.85% 65.81 28.29 

75.000 23.889 61.000 16.111 44.62% 44.95 19.33 46.62% 45.89 19.73 42.62% 43.99 18.91 

80.000 26.667 61.000 16.111 32.63% 44.87 19.29 34.63% 45.97 19.77 30.63% 43.73 18.80 

85.000 29.444 61.000 16.111 23.35% 44.80 19.26 25.35% 46.14 19.84 21.35% 43.51 18.71 

75.000 23.889 64.000 17.778 55.18% 49.99 21.49 57.18% 50.96 21.91 53.18% 49.04 21.09 

80.000 26.667 64.000 17.778 41.59% 49.90 21.46 43.59% 51.04 21.94 39.59% 48.78 20.97 

85.000 29.444 64.000 17.778 30.97% 49.82 21.42 32.97% 51.16 22.00 28.97% 48.52 20.86 

75.000 23.889 67.000 19.444 66.40% 55.38 23.81 68.40% 56.34 24.22 64.40% 54.41 23.39 

80.000 26.667 67.000 19.444 51.10% 55.28 23.77 53.10% 56.42 24.26 49.10% 54.15 23.28 

85.000 29.444 67.000 19.444 39.06% 55.19 23.73 41.06% 56.55 24.31 37.06% 53.88 23.17 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.10 26.70 76.35% 60.16 25.87 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.10 26.70 76.35% 60.16 25.87 

80.000 26.667 70.000 21.111 61.23% 61.05 26.25 63.23% 62.18 26.73 59.23% 59.89 25.75 

75.000 23.889 73.000 22.778 91.07% 67.35 28.96 93.07% 68.34 29.38 89.07% 66.39 28.54 

80.000 26.667 73.000 22.778 72.01% 67.24 28.91 74.01% 68.38 29.40 70.01% 66.08 28.41 

85.000 29.444 61.000 16.111 23.35% 44.80 19.26 25.35% 46.14 19.84 21.35% 43.51 18.71 

75.000 23.889 61.000 16.lll 44.62% 44.95 19.33 46.62% 45.89 19.73 42.62% 43.99 18.91 

80.000 26.667 61.000 16.lll 32.63% 44.87 19.29 34.63% 45.97 19.77 30.63% 43.73 18.80 

85.000 29.444 64.000 17.778 30.97% 49.82 21.42 32.97% 51.16 22.00 28.97% 48.52 20.86 

75.000 23.889 64.000 17.778 55.18% 49.99 21.49 57.18% 50.96 21.91 53.18% 49.04 21.09 

80.000 26.667 64.000 17.778 41.59% 49.90 21.46 43.59% 51.04 21.94 39.59% 48.78 20.97 

85.000 29.444 67.000 19.444 39.06% 55.19 23.73 41.06% 56.55 24.31 37.06% 53.88 23.17 

75.000 23.889 67.000 19.444 66.40% 55.38 23.81 68.40% 56.34 24.22 64.40% 54.41 23.39 

80.000 26.667 67.000 19.444 51.10% 55.28 23.77 53.10% 56.42 24.26 49.10% 54.15 23.28 

85.000 29.444 70.000 21.111 47.68% 60.95 26.20 49.68% 62.30 26.79 45.68% 59.62 25.63 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.10 26.70 76.35% 60.16 25.87 

80.000 26.667 70.000 21.111 61.23% 61.05 26.25 63.23% 62.18 26.73 59.23% 59.89 25.75 

75.000 23.889 73.000 22.778 91.07% 67.35 28.96 93.07% 68.34 29.38 89.07% 66.39 28.54 

80.000 26.667 73.000 22.778 72.01% 67.24 28.91 74.01% 68.38 29.40 70.01% 66.08 28.41 

85.000 29.444 61.000 16.111 23.35% 44.80 19.26 25.35% 46.14 19.84 21.35% 43.51 18.71 

75.000 23.889 61.000 16.111 44.62% 44.95 19.33 46.62% 45.89 19.73 42.62% 43.99 18.91 
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80.000 26.667 61.000 16.111 32.63% 44.87 19.29 34.63% 45.97 19.77 30.63% 43.73 18.80 

85.000 29.444 64.000 17.778 30.97% 49.82 21.42 32.97% 51.16 22.00 28.97% 48.52 20.86 

75.000 23.889 64.000 17.778 55.18% 49.99 21.49 57.18% 50.96 21.91 53.18% 49.04 21.09 

80.000 26.667 64.000 17.778 41.59% 49.90 21.46 43.59% 51.04 21.94 39.59% 48.78 20.97 

85.000 29.444 67.000 19.444 39.06% 55.19 23.73 41.06% 56.55 24.31 37.06% 53.88 23.17 

75.000 23.889 67.000 19.444 66.40% 55.38 23.81 68.40% 56.34 24.22 · 64.40% 54.41 23.39 

80.000 26.667 67.000 19.444 51.10% 55.28 23.77 53.10% 56.42 24.26 49.10% 54.15 23.28 

85.000 29.444 70.000 21.111 47.68% 60.95 26.20 49.68% 62.30 26.79 45.68% 59.62 25.63 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.10 26.70 76.35% 60.16 25.87 

80.000 26.667 70.000 21.111 61.23% 61.05 26.25 63.23% 62.18 26.73 59.23% 59.89 25.75 

75.000 23.889 73.000 22.778 91.07% 67.35 28.96 93.07% 68.34 29.38 89.07% 66.39 28.54 

80.000 26.667 73.000 22.778 72.01% 67.24 28.91 74.01% 68.38 29.40 70.01% 66.08 28.41 

85.000 29.444 61.000 16.111 23.35% 44.80 19.26 25.35% 46.14 19.84 21.35% 43.51 18.71 

75.000 23.889 61.000 16.111 44.62% 44.95 19.33 46.62% 45.89 19.73 42.62% 43.99 18.91 

80.000 26.667 61.000 16.111 32.63% 44.87 19.29 34.63% 45.97 19.77 30.63% 43.73 18.80 

85.000 29.444 64.000 17.778 30.97% 49.82 21.42 32.97% 51.16 22.00 28.97% 48.52 20.86 

75.000 23.889 64.000 17.778 55.18% 49.99 21.49 57.18% 50.96 21.91 53.18% 49.04 21.09 

80.000 26.667 64.000 17.778 41.59% 49.90 21.46 43.59% 51.04 21.94 39.59% 48.78 20.97 

85.000 29.444 67.000 19.444 39.06% 55.19 23.73 41.06% 56.55 24.31 37.06% 53.88 23.17 

75.000 23.889 67.000 19.444 66.40% 55.38 23.81 68.40% 56.34 24.22 64.40% 54.41 23.39 

80.000 26.667 67.000 19.444 51.10% 55.28 23.77 53.10% 56.42 24.26 49.10% 54.15 23.28 

85.000 29.444 70.000 21.111 47.68% 60.95 26.20 49.68% 62.30 26.79 45.68% 59.62 25.63 

75.000 23.889 70.000 21.111 78.35% 61.15 26.29 80.35% 62.10 26.70 76.35% 60.16 25.87 

80.000 26.667 70.000 21.111 61.23% 61.05 26.25 63.23% 62.18 26.73 59.23% 59.89 25.75 

75.000 23.889 73.000 22.778 91.07% 67.35 28.96 93.07% 68.34 29.38 89.07% 66.39 28.54 

80.000 26.667 73.000 22.778 72.01% 67.24 28.91 74.01% 68.38 29.40 70.01% 66.08 28.41 

The second step is to calculate the inlet air enthalpy from the given dry bulb and 

wet bulb temperatures in the manufacturers' catalog data: 

Given: Dry Bulb Temperature tdb, Wet Bulb Temperature twb· 

Find: Enthalpy h. 

Equations used in sequence: 

Pws = lOOOea, Pws in Pa 
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(B.9) 

(2501-2.38ltwb)w/-cpavdb -twb) 
W=~~~~~~~~~~ 

2501 + l.805tdb -4.186twb 
(B.10) 

(B.11) 

where a= natural log of saturation vapor pressure over pure water 

Tdb = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

Ws * = humidity ratio of moist air at saturation at thermodynamic wet bulb 

temperature, kg/kg dry air or lbm/lbm dry air 

fwb = wet bulb temperature, °C or 0 P 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-0 P 

tdb = dry bulb temperature, °C or 0 P 

h = enthalpy of moist air, kJ/kg dry air or Btu/lbm dry air 

The enthalpy calculated is based on the ideal dry bulb and wet bulb temperatures in 

the catalog data that is corresponding to the best measurement of humidity ratio of the 

inlet air. However, since the inevitable error occurs for the relatively humidity measured, 

there could be a deviation for the enthalpy calculated based on the measured humidity 

from the ideal value. The greatest deviation happens when the error of humidity is the 
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worst. The step for the calculation of enthalpy when the dry bulb temperature and relative 

humidity are given is as follows: 

Given: Dry Bulb Temperature tdb, Relative Humidity </J. 

Find: Enthalpy h. 

Equations used in sequence: 

a=AT~ +BTab +C+DTa~1 , TinK 

Pw, = lOOOea, P ws in Pa 

W=0.62918x pw 
P-P w 

where a = natural log of saturation vapor pressure over pure water 

Tdb = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

P w = water vapor partial pressure, kPa or psia 

r/> = relative humidity. 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

P = total pressure of moist air, kPa or psia 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-°F 
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fdb = dry bulb temperature, °C or °F 

h = enthalpy of moist air, kJ/kg dry air or Btu/lbm dry air 

Table B.28 presents the enthalpy calculated using the heat pump manufacturer's 

specification sheet. In the same table, the enthalpy calculated based on the worst probable 

error of relative humidity measured is shown. 

The total and sensible cooling capacities are listed in the specification sheet. 

Together with the enthalpy and dry bulb temperature of inlet air have been discussed 

previously, the leaving air enthalpy and dry bulb temperature can be calculated. When the 

enthalpy and dry bulb temperature are obtained, the relatively humidity of the moist air is 

calculated as follows: 

Given: Dry Bulb Temperature fdb, Enthalpy h. 

Find: Relative Humidity </J. 

Equations used in sequence: 

Pws = lOOOea, Pws in Pa 

h-Cpa ·tdb 
W=-----

2501 + 1.805! db 

p = PW 
w W +0.62918 
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(B.21) 

where a= natural log of saturation vapor pressure over pure water 

Tdb = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-°F 

fdb = dry bulb temperature, °C or °F 

P w = water vapor partial pressure, kPa or psia 

P = total pressure of moist air, kPa or psia 

rjJ = relative humidity. 

Analogously, the relative humidity calculated is the best measurement we expect 

from the sensor. However, the actual measurement will not so ideal as we have 

mentioned before, the accuracy of the sensor will lead to the error of the measured value 

up to around 5% according to the manufacturers' publication. Table B.28 presents the 

relative humidity calculated and the worst measurements probable for those operating 

points using the heat pump manufacturer's specification sheet. 

Table B.28. Relative Humidity Error Analysis for Leaving States 

LVGDB H RH LVG RH+2% H RH-2% 

C F /KG Btu/Hr CAT /KG Btu/Hr 
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12.421 54.358 34.756 14.94 98.29% 100.00% 35.15 IS.II 96.29% 34.23 14.72 

12.378 54.281 34.627 14.89 98.20% 100.00% 35.04 15.07 96.20% 34.12 14.67 

12.206 53.972 34.196 14.70 98.19% 100.00% 34.61 14.88 96.19% 33.70 14.49 

12.078 53.740 33.851 14.55 98.07% 100.00% 34.29 14.74 96.07% 33.39 14.36 

12.936 55.285 36.050 15.50 98.26% 100.00% 36.47 15.68 96.26% 35.51 15.27 

13.258 55.864 36.563 15.72 96.97% 98.97% 37.06 15.93 94.97% 36.08 15.51 

13.116 55.609 36.261 15.59 97.22% 99.22% 36.74 15.80 95.22% 35.73 15.36 

12.636 54.744 35.231 15.15 98.01% 100.01% 35.70 15.35 96.01% 34.76 14.95 

13.279 55.902 36.912 15.87 98.18% 100.18% 37.40 16.08 96.18% 36.38 15.64 

13.601 56.482 37.331 16.05 96.50% 98.50% 37.83 16.26 94.50% 36.96 15.89 

13.455 56.219 37.007 15.91 96.71% 98.71% 37.50 16.12 94.71% 36.58 15.73 

12.979 55.362 36.309 15.61 98.88% 100.00% 36.58 15.73 96.88% 35.86 15.42 

13.622 56.520 37.775 16.24 98.06% 100.00% 38.26 16.45 96.06% 37.26 16.02 

13.987 57.177 38.176 16.41 95.87% 97.87% 38.69 16.64 93.87% 37.70 16.21 

13.828 56.891 37.831 16.27 96.15% 98.15% 38.32 16.48 94.15% 37.29 16.03 

13.322 55.980 36.999 15.91 98.08% 100.00o/, 37.47 16.11 96.08% 36.49 15.69 

13.794 56.829 38.206 16.43 97.98% 100.00% 38.71 16.65 95.98% 37.71 16.21 

14.185 57.532 38.620 16.60 95.58% 97.58% 39.14 16.83 93.58% 38.21 16.43 

14.021 57.239 38.249 16.45 95.81% 97.81% 38.76 16.66 93.81% 37.79 16.25 

13.494 56.289 37.473 16.11 98.19% 100.00% 37.92 16.30 96.19% 36.93 15.88 

13.966 57.138 38.680 16.63 98.06% 100.00% 39.17 16.84 96.06% 38.15 16.40 

14.390 57.903 39.077 16.80 95.26% 97.26% 39.61 17.03 93.26% 38.48 16.55 

14.223 57.602 38.711 16.64 95.55% 97.55% 39.22 16.86 93.55% 38.31 16.47 

13.665 56.598 37.947 16.32 98.30"/o 100.00% 38.37 16.50 96.30% 37.37 16.07 

14.137 57.447 39.155 16.83 98.14% 100.00% 39.63 17.04 96.14% 38.60 16.60 

14.601 58.281 39.551 17.01 94.94% 96.94% 40.07 17.23 92.94% 39.03 16.78' 

14.433 57.980 39.181 16.85 95.23% 97.23% 39.70 17.o? 93.23% 38.59 16.59 

13.837 56.907 38.422 16.52 98.39% 100.00% 38.83 16.69 96.39% 37.82 16.26 

14.438 57.988 40.060 17.22 98.52% 100.00% 40.45 17.39 96.52% 39.66 17.05 

14.438 57.988 39.931 17.17 98.03% 100.00% 40.45 17.39 96.03% 39.40 16.94 

14.309 57.756 39.629 17.04 98.20% 100.00% 40.10 17.24 96.20% 39.06 16.79 

14.223 57.602 39.413 16.95 98.25% 100.00% 39.87 17.14 96.25% 38.83 16.69 

14.910 58.837 41.440 17.82 98.86% 100.00% 41.75 17.95 96.86% 40.94 17.60 

14.910 58.837 41.354 17.78 98.54% 100.00% 41.75 17.95 96.54% 40.94 17.60 

14.824 58.683 41.052 17.65 98.30% 100.00% 41.51 17.85 96.30% 40.43 17.38 

14.738 58.528 40.837 17.56 98.37% 100.00% 41.27 17.75 96.37% 40.20 17.28 

Due to the inevitable error for the relatively humidity measured, there could be a 

deviation for the enthalpy calculated based on the measured humidity from the ideal 

value. The greatest deviation happens when the error of humidity is the worst. The step 

for the calculation of enthalpy when the dry bulb temperature and relative humidity is 

given is same as it is discussed previously. 
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Obviously, the total cooling capacity is the difference between the enthalpies of the 

inlet and outlet air. lfwe subtract the sensible cooling from the total cooling, the 

remainder is latent cooling capacity. When derived total and latent cooling capacities are 

obtained, they may be compared with the catalog data. The deviation of the derived 

capacity from the catalog capacity that supposed to be the ideal value is presented in 

Table B.29 through Table B.31. 

Total CC 

Latent CC 

Total CC 

Latent CC 

Total CC 

Latent CC 

Total CC 

Latent CC 

Table B.29. Accuracy of RH Meter ±1 % 
Heat Pump: Make Trane,# of Points 36 

ENT-/LVG~ ENT+/LVG-

Max. Min. RMS Max. Min. 
2.20% 1.60% 1.85% 6.10% 3.70% 

15.20% 5.20% 8.28% 40.80% 11.60% 

ENT-/LVG+ ENT+/LVG+ 

Max. Min. RMS Max. Min. 

6.20% 3.70% 4.85% 2.20% 1.60% 

42.0% 11.80% 22.12% 14.50% 4.90% 

Table B.30. Accuracy of RH Meter ±2% 
Heat Pump: Make Trane,# of Points 36 

ENT-/LVG- ENT+/LVG-

Max. Min. RMS Max. Min. 

5.10% 3.00% 3.67% 12.40% 7.50% 

33.80% 9.70% 16.52% 81.00% 23.60% 

ENT-/LVG+ ENT+/LVG+ 

Max. Min. RMS Max. Min. 

11.20% 7.30% 9.38% 6.00% 3.30% 

72.40% 23.20% 42.24% 40.80% 10.40% 
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4.83% 

22.03% 

RMS 
1.83% 

8.20% 

RMS 

9.73% 

44.25% 

RMS 

4.01% 

18.50% 



Table B.31. Accuracy of RH Meter ±2.5% 
Heat Pump: Make Trane, # of Points 36 

ENT-/LVG- ENT+/LVG-

Max. Min. RMS Max. Min. RMS 

Total CC 5.40% 4.00% 4.61% 15.10% 9.20% 12.09% 

Latent CC 37.00% 12.80% 20.61% 103.00% 29.10% 55.17% 

ENT-/LVG+ ENT+/LVG+ 

Max. Min. RMS Max. Min. RMS 

Total CC 13.20% 8.60% 11.31% 8.00% 4.30% 5.45% 

Latent CC 85.90% 27.40% 50.73% 54.70% 14.50% 25.26% 

B.2.5. Error Analysis of Dew Point Sensor 

If the dew point sensor is used to measure the humidity of the air instead of the 

relative humidity sensor, the first step is to calculated the ideal value of the dew point of 

the inlet air: 

Given: Dry Bulb Temperature tdb, Wet Bulb Temperature fwb· 

Find: Dew Point temperature td. 

Equations used in sequence: 

Pws = IOOOea , P ws in Pa 

(2501-2.38ltwb)ws• -Cpa(tdb -twb) 
W=-------------

2501+1.805tdb -4.186fwb 
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p = PW 
w W +0.62918 

P = ln(Pw) 

where a= natural log of saturation vapor pressure over pure water 

Tdb = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

(B.26) 

(B.27) 

(B.28) 

Ws * = humidity ratio of moist air at saturation at thermodynamic wet bulb 

temperature, kg/kg dry air or lbm/lbm dry air 

twb = wet bulb temperature, °C or 0 P 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-0 P 

tdb = dry bulb temperature, °C or 0 P 

P w = water vapor partial pressure, kPa or psia 

P = total pressure of moist air, kPa or psia 

p = natural log of saturation vapor pressure over pure water 

Td = absolute dew point temperature, °K 

The second step is to calculate the inlet air enthalpy from the given dry bulb and 

wet bulb temperatures in the manufacturers' catalog data, which is same as the step for 

relative humidity sensor. 
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The enthalpy calculated is based on the ideal dry bulb and wet bulb temperatures in 

the catalog data that is corresponding to the best measurement of humidity ratio of the 

inlet air. However, since the inevitable error occurs for the dew point measured, there 

could be a deviation for the enthalpy calculated based on the measured dew point from 

the ideal value. The greatest deviation happens when the error of dew point is the worst. 

The step for the calculation of enthalpy when the dry bulb temperature and dew point are 

given is as follows: 

Given: Dry Bulb Temperature fdb, Dew Point temperature td. 

Find: Enthalpy h. 

Equations used in sequence: 

a= ATd2 +BTd +C+DT/, Tin K 

W=0.62198 PW 
P-Pw 

where a = natural log of saturation vapor pressure over pure water 

Td = absolute dew point temperature, °K 

P w = water vapor partial pressure, kPa or psia 

P = total pressure of moist air, kPa or psia 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 
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kg/kg dry air or lbm/lbm dry air 

Cpa = air specific heat, kJ/kg-°C or Btu/lbm-°F 

tdb = dry bulb temperature, °C or °F 

h = enthalpy of moist air, kJ/kg dry air or Btu/lbm dry air 

Table B.32 presents the enthalpy calculated using the heat pump manufacturer's 

specification sheet. In the same table, the enthalpy calculated based on the worst probable 

error of relative humidity measured is shown. 

Table B.32. Dew Point Error Analysis for Entering States(FHP) 

Enterin DB temn Enterine WB temn DPU/1 oint H Td+0.56 Td+l H Td..(),56 Td-1 H 

(F) (C) (F) /C) /Cl /Fl /KJ/KGl /Btu/Hr) (C) (F) /KJ/KG) /Btu/Hr) /Cl /Fl (KJJKG) /Btu/Hr) 

75 23.889 61 16.111 11.117 52.011 44.95 19.33 11.677 53.011 45.751 19.67 10.557 51.011 44.173 18.99 

80 26.667 61 16.111 8.915 48.047 44.87 19.29 9.475 49.047 45.575 19.60 8.355 47.047 44.191 19.00 

85 29.444 61 16.111 6.382 43.488 44.80 19.26 6.942 44.488 45.398 19.52 5.822 42.488 44.212 19.01 

75 23.889 64 17.778 14.358 57.845 49.99 21.49 14.918 58.845 50.961 21.91 13.798 56.845 49.046 21.09 

80 26.667 64 17.778 12.555 54.600 49.90 21.46 13.115 55.600 50.778 21.83 11.995 53.600 49.055 21.09 

85 29.444 64 17.778 10.544 50.980 49.82 21.42 11.104 51.980 50.596 21.75 9.984 49.980 49.065 21.10 

75 23.889 61 16.111 11.117 52.011 44.95 19.33 11.677 53.011 45.751 19.67 10.557 51.011 44.173 18.99 

80 26.667 61 16.111 8.915 48.047 44.87 19.29 9.475 49.047 45.575 19.60 8.355 47.047 44.191 19.00 

85 29.444 61 16.111 6.382 43.488 44.80 19.26 6.942 44.488 45.398 19.52 5.822 42.488 44.212 19.01 

75 23.889 64 17.778 14.358 57.845 49.99 21.49 14.918 58.845 50.961 21.91 13.798 56.845 49.046 21.09 

80 26.667 64 17.778 12.555 54.600 49.90 21.46 13.115 55.600 50.778 21.83 11.995 53.600 49.055 21.09 

85 29.444 64 17.778 10.544 50.980 49.82 21.42 11.104 51.980 50.596 21.75 9.984 49.980 49.065 21.10 

85 29.444 67 19.444 14.074 57.333 55.19 23.73 14.634 58.333 56.150 24.14 13.514 56.333 54.260 23.33 

85 29.444 61 16.111 6.382 43.488 44.80 19.26 6.942 44.488 45.398 19.52 5.822 42.488 44.212 19.01 

80 26.667 61 16.111 8.915 48.047 44.87 19.29 9.475 49.047 45.575 19.60 8.355 47.047 44.191 19.00 

85 29.444 64 17.778 10.544 50.980 49.82 21.42 11.104 51.980 50.596 21.75 9.984 49.980 49.065 21.10 

85 29.444 67 19.444 14.074 57.333 55.19 23.73 14.634 58.333 56.150 24.14 13.514 56.333 54.260 23.33 

85 29.444 70 21.111 17.184 62.932 60.95 26.20 17.744 63.932 62.099 26.70 16.624 61.932 59.832 25.72 

85 29.444 61 16.111 6.382 43.488 44.80 19.26 6.942 44.488 45.398 19.52 5.822 42.488 44.212 19.01 

75 23.889 61 16.111 11.117 52.011 44.95 19.33 11.677 53.011 45.751 19.67 10.557 51.011 44.173 18.99 

80 26.667 61 16.111 8.915 48.047 44.87 19.29 9.475 49.047 45.575 19.60 8.355 47.047 44.191 19.00 

85 29.444 64 17.778 10.544 50.980 49.82 21.42 11.104 51.980 50.596 21.75 9.984 49.980 49.065 21.10 

80 26.667 64 17.778 12.555 54.600 49.90 21.46 13.115 55.600 50.778 21.83 11.995 53.600 49.055 21.09 

85 29.444 67 19.444 14.074 57.333 55.19 23.73 14.634 58.333 56.150 24.14 13.514 56.333 54.260 23.33 

85 29.444 70 21.111 17.184 62.932 60.95 26.20 17.744 63.932 62.099 26.70 16.624 61.932 59.832 25.72 
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85 29.444 61 16.111 6.382 43.488 44.80 19.26 6.942 44.488 45.398 19.52 5.822 42.488 44.173 18.99 

75 23.889 61 16.111 11.117 52.011 44.95 19.33 11.677 53.011 45.751 19.67 10.557 51.011 44.191 19.00 

80 26.667 61 16.111 8.915 48.047 44.87 19.29 9.475 49.047 45.575 19.60 8.355 47.047 49.065 21.10 

85 29.444 64 17.778 10.544 50.980 49.82 21.42 11.104 51.980 50.596 21.75 9.984 49.980 49.046 21.09 

80 26.667 64 17.778 12.555 54.600 49.90 21.46 13.115 55.600 50.778 21.83 C 11.995 53.600 54.260 23.33 

85 29.444 67 19.444 14.074 57.333 55.19 23.73 14.634 58.333 56.150 24.14 13.514 56.333 54.261 23.33 

85 29.444 70 21.111 17.184 62.932 60.95 26.20 17.744 63.932 62.099 26.70 16.624 61.932 59.853 25.73 

The total and sensible cooling capacities are listed in the specification sheet. 

Together with the enthalpy and dry bulb temperature of inlet air have been discussed 

previously, the leaving air enthalpy and dry bulb temperature can be calculated. When the 

enthalpy and dry bulb temperature are obtained, the dew point temperature of the moist 

air is calculated as follows: 

Given: Dry Bulb Temperature tdb, Enthalpy h. 

Find: Dew Point temperature td. 

Equations used in sequence: 

Pws = lOOOea, Pws in Pa 

h-Cpa ·tdb 
W=------

2501 + l.805tdb 

p = PW 
w W+0.62918 

/J = ln(Pw) 

Td =E/J4 +F/J 3 +G/J 2 +H/J+K 
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where a = natural log of saturation vapor pressure over pure water 

Tdb = absolute dry bulb temperature, °K 

P ws = pressure of saturated pure water, kPa 

P w = water vapor partial pressure, kPa or psia 

P = total pressure of moist air, kPa or psia 

W = humidity ratio of moist air, mass of water per unit mass of dry air, 

kg/kg dry air or lbm/lbm dry air 

p = natural log of saturation vapor pressure over pure water 

Td = absolute dew point temperature, °K 

Analogously, the dew point temperature calculated is the best measurement we 

expect from the sensor. However, the actual measurement will not so ideal as we have 

mentioned before, the accuracy of the sensor will lead to the error of the measured value 

up to around 1 °F (0.56 °C) according to the manufacturers' publication. Table B.33 

presents the dew point calculated and the worst measurements probable for those 

operating points using the heat pump manufacturer's specification sheet. 

Table B.33. Dew Point Error Analysis for Leaving States (FHP) 

LVGDB H D= oint Td+o.56 Td+I H Td-0.56 Td-1 H 

(C) (F) (KJ/KG) (Btu/Hr) (C) (F) (C) (F) (KJ/KG) (Btu/Hr) (C) (F) (KJ/KG) (Btu/Hr) 

10.881 51.585 27.770 11.940 8.045 46.481 8.605 47.481 28.429 12.223 7.485 45.481 27.132 11.666 

11.060 51.909 27.693 11.906 7.820 46.076 8.380 47.076 28.344 12.186 7.260 45.076 27.064 11.636 

12.351 54.231 27.616 11.874 6.556 43.801 7.116 44.801 28.218 12.132 5.996 42.801 27.034 11.623 

11.719 53.095 31.976 13.748 10.710 51.279 11.270 52.279 32.752 14.082 10.150 50.279 31.225 13.425 

11.218 52.192 31.891 13.712 11.020 51.836 11.580 52.836 32:682 14.052 10.460 50.836 31.127 13.383 

12.310 54.159 31.806 13.675 10.134 50.241 10.694 51.241 32.556 13.998 9.574 49.241 31.081 13.363 

11.511 52.719 28.601 12.297 8.208 46.775 8.768 47.775 29.267 12.583 7.648 45.775 27.956 12.020 

11.816 53.269 28.524 12.264 7.874 46.174 8.434 47.174 29.177 12.545 7.314 45.174 27.892 11.992 
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13.178 55.721 28.448 12.231 6.548 43.787 7.108 44.787 29.050 12.490 5.988 42.787 27.866 11.981 

12.308 54.155 32.849 14.123 10.909 51.636 11.469 52.636 33.635 14.461 10.349 50.636 32.089 13.797 

11.966 53.538 32.763 14.087 11.098 51.977 11.658 52.977 33.557 14.428 10.538 50.977 31.994 13.756 

13.140 55.652 32.678 14.050 10.154 50.277 10.714 51.277 33.430 14.373 9.594 49.277 31.952 13.738 

13.373 56.071 37.243 16.013 13.147 55.665 13.707 56.665 38.142 16.399 12.587 54.665 36.373 15.639 

17.715 63.887 29.305 12.600 2.549 36.588 3.109 37.588 29.775 12.802 1.989 35.588 28.851 12.405 

11.253 52.256 29.381 12.633 9.076 48.337 9.636 49.337 30.084 12.935 8.516 47.337 28.702 12.340 

18.471 65.248 33.576 14.436 6.312 43.362 6.872 44.362 34.172 14.692 5.752 42.362 33.000 14.189 

19.343 66.817 38.184 16.417 9.527 49.149 10.087 50.149 38.910 16.729 8.967 48.149 37.481 16.115 

21.022 69.840 43.166 18.559 11.909 53.437 12.469 54.437 44.005 18.920 11.349 52.437 42.353 18.210 

18.971 66.148 30.964 13.313 3.011 37.419 3.571 38.419 31.449 13.521 2.451 36.419 30.497 13.112 

11.323 52.382 31.117 13.379 10.373 50.671 10.933 51.671 31.878 13.706 9.813 49.671 30.382 13.063 

12.904 55.227 31.040 13.346 9.059 48.305 9.619 49.305 31.743 13.648 8.499 47.305 30.361 13.054 

19.646 67.363 35.316 15.184 6.826 44.287 7.386 45.287 35.932 15.449 6.266 43.287 34.721 14.928 

12.872 55.169 35.401 15.221 12.283 54.109 12.843 55.109 36.255 15.588 11.723 53.109 34.576 14.866 

20.425 68.765 40.005 17.200 10.081 50.146 10.641 51.146 40.756 17.523 9.521 49.146 39.278 16.887 

21.925 71.465 45.070 19.378 12.562 54.612 13.122 55.612 45.943 19.753 12.002 53.612 44.225 19.015 

19.956 67.921 32.265 13.872 3.363 38.053 3.923 39.053 32.761 14.086 2.803 37.053 31.787 13.667 

12.506 54.510 32.418 13.938 10.444 50.799 11.004 51.799 33.182 14.267 9.884 49.799 31.679 13.620 

14.198 57.557 32.341 13.905 9.045 48.282 9.605 49.282 33.043 14.207 8.485 47.282 31.661 13.613 

20.568 69.023 36.680 15.771 7.216 44.989 7.776 45.989 37.311 16.042 6.656 43.989 36.070 15.508 

14.169 57.505 36.766 15.807 12.310 54.158 12.870 55.158 37.622 16.176 11.750 53.158 35.939 15.452 

21.273 70.292 41.434 17.814 10.504 50.907 11.064 51.907 42.206 18.147 9.944 49.907 40.688 17.494 

22.632 72.737 46.564 20.020 13.058 55.504 13.618 56.504 47.465 20.408 12.498 54.504 45.694 19.646 

Due to the inevitable error for the dew point measured, there could be a deviation 

for the enthalpy calculated based on the measured dew point from the ideal value. The 

greatest deviation happens when the error of dew point is the worst. The step for the 

calculation of enthalpy when the dry bulb temperature and dew point is given is same as 

it is discussed previously. 

Obviously, the total cooling capacity is the difference between the enthalpies of the 

inlet and outlet air. Ifwe subtract the sensible cooling from the total cooling, the 

remainder is latent cooling capacity. When derived total and latent cooling capacities are 

obtained, they may be compared with the catalog data. The deviation of the derived 
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capacity from the catalog capacity that supposed to be the ideal value is presented in 

Table B.34. 

Table B.34. Accuracy of Dew Point Transmitter ±1 °F (±0.56 °C) 
Heat Pump: Make FHP,# of Points 75 

ENT-/LVG- ENT+/LVG-

Max. Min. RMS Max. Min. 

Total CC 1.7% 0.004% 0.876% 14.1% 6.818% 

Latent CC 4.8% 1.66% 3.072% 266.7% 21.1% 

ENT-/LVG+ ENT+/LVG+ 

Max. Min. RMS Max. Min. 

Total CC 13.9% 6.798% 9.483% 1.8% 0% 

Latent CC 93.7% 21% 35.4% 3.59% 3.34% 

B.3. Watt Transducer 

RMS 

9.503% 

85.5% 

RMS 

0.896% 

3.12% 

The watt transducer measures the amount of power transfer to the heat pump 

including the compressor and blower. The watt transducer is calibrated by the 

manufacturer and has a seal of warranty on the casing ensuring calibration. The watt 

transducer has a sensing range of 0-20 kW and provides an analog output proportional to 

time-averaged instantaneous power with an accuracy of ±1.0% of reading (Austin 1998). 

The output signal is calibrated to 1 mA=lkW. The signal is sent to the Fluke Data Logger 

and then a personal computer. The total power input to the heat pump is saved in the 

computer and can be displayed as a real time plot in an MS Excel format. 
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