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Chapter I 

LITERATURE REVIEW 

Introduction 

Extensive animal production systems often integrate several management 

practices before the final end product., and beef cattle production is no exception 

(Drouillard and Kuhl, 1999). Beef cattle production systems often involve cow-calf, 

growing and ( or) backgrounding, and finishing phases of production. At each phase of 

production, decisions are made about the level of nutrition that the animal will receive. 

Nutritional decisions can be immediately beneficial, neutral, or negative with respect to 

animal growth. Additionally, nutritional decisions can have long-term effects on future 

animal growth. 

A period of grazing is often incorporated into production systems for beef cattle. 

However, season and weather have large effects on quantity and quality of available 

forage (Lawerence and Pearce, 1964). Restrictions include dry matter intake (DMI), 

energy, and (or) protein intake, which will reduce animal performance. However, when 

previously restricted cattle are refed they exhibit compensatory growth (Fox et al., 1972; 

Ferrell et al., 1986; Sainz and Bentley, 1997). Compensatory growth has been defined as 

the more rapid or efficient growth of cattle following a period of nutritional restriction or 

environmental stress (NRC, 1996). Many reports document the occurrence of 

compensatory growth in cattle. Generally, compensatory growth by animals is defined as 



1) increased rate of live body weight gain; 2) more efficient rate of body weight gain 

(Fox et al., 1972; Ferrell et al., 1986; Sainz et al., 1995); and 3) reduced maintenance 

energy requirements (Fox et al., 1972; Shetty, 1990). The occurrence of compensatory 

growth and the overall response to restriction is highly variable (Coleman and Evans, 

1986; Drouillard et al., 1991a, NRC, 1996). 

'The following discussion will examine the effects of previous nutrition on 

subsequent performance and the occurrence of compensatory growth. Following that 

discussion is an examination of some of the possible underlying mechanisms of 

compensatory growth: changes in visceral organ mass, blood metabolites, and net flux of 

metabolites across splanchnic tissues. 

Effect of Previous Nutrition on Subsequent Growth Performance 

High Forage Diets 

Performance. Seasonal patterns of forage growth result in variations in forage 

availability and forage nutritive value, and this greatly influences cattle performance. 

Several researchers have reported decreased animal body weight (BW) gains when 

animals consume low-quality forage-based diets (White et al., 1987; Lewis et al., 1990). 

In an experiment conducted by White et al. ( 1987), steers grazed either wheat pasture 

(ADG = 0.71 kg/d) or consumed poor quality bermudagrass hay with decreasing 

supplementation levels and ADG (0.16, -0.07, and -0.23 kg/d). After 98 d, steers were 

placed on high quality pastures for a 112-d grazing period. Grazing ADG (112 d) was 

inversely related to previous ADG ( 0. 3 7, 0 .46, 0. 51, and O. 54 kg/ d for wheat pasture, 

bermudagrass hay with decreasing level of supplementation, respectively). Steers that 
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had previously been restricted in BW gain by consuming low quality forage exhibited 

compensatory growth during the summer grazing period. In a similar study, Lewis et al. 

( 1990) utilized com residue silage with differing levels of supplementation to create low, 

medium, and high levels of steer BW gain during a 106-d winter feeding period (0.28, 

0.38, and 0.50 kg/d, respectively). Steers then grazed fertilized pastures during the 

summer. Daily gain of steers during the summer decreased linearly with increasing level 

of winter-feeding. The reduction in growth performance during the summer was 81 g for 

every I 00 g uf wimer gain. Steers that gained the least during the winter exhibited 

compensatory growth by gaining 27% faster during the summer grazing period. 

Lawrence and Pearce ( 1964) observed a similar effect of decreasing winter BW gain of 

animals resulting in greater summer grazing BW gains. Baker et al. ( 1992) examined the 

effect of restricted energy intake from silage diets prior to summer grazing. Steers that 

had been restricted during silage feeding had 17% greater live, shrunk, and empty body 

weight (EBW) daily gains during grazing compared with steers that had ad libitum silage 

consumption. In the experiments of White et al. (1987) and Lewis et al. (1990), when 

steers that exhibited compensatory growth during the summer grazing period were placed 

into a feedlot, no differences in ADG, intake, or gain efficiency were reported among 

different winter gain treatments. 

Body composition. Empty body weight (EBW) is often used to relate body 

composition and organ mass. Empty body weight is defined as live BW minus digesta 

mass. Restricted steers, in the experiment of Baker et al. (] 992), after the silage-feeding 

period had reduced live, EBW, and carcass weights compared to ad libitum fed steers. 

Empty body of restricted steers contained 34% less fat, 6% more protein, and 39% less 

..., 
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total energy than ad libitum fed steers. After steers were realimented by grazing 

perennial ryegrass pastures for 172 d, previously restricted steers had 18% greater empty 

body fat, 6% lower protein, and similar total energy accretion compared with previously 

unrestricted steers. 

The compensatory growth response of cattle consuming roughage diets appears to 

depend on the genetic gain potential of the cattle. During realimentation, the growth 

potential of a steer will result in an increased ADG, such that BW of normal and 

realimented steers will be similar given adequate opportunity. Body composition is 

dictated by the level of available nutrients and priority of tissue accretion; bone> lean>> 

fat. 

High Grain Diets 

Pe,:formance. In many studies reporting compensatory growth, high-grain or 

finishing diets were utilized during realimentation after restriction of DMI. Fox et al. 

(1972) utilized Hereford steers to examine the effect of 190 or 145 d of energy and 

protein restriction (maintenance level of feeding) on subsequent compensatory growth 

when steers were fed corn or soybean flake diets. Compensating steers had 24% greater 

ADG and 20% greater gain efficiency compared to ad libitum controls up to 364 kg of 

BW and 35% greater ADG and 25% greater gain efficiency up to 454 kg ofBW. Dry 

matter intake was similar (6.5 kg) between compensating steers and ad libitum controls 

up to 364 kg; however, DMI by compensating steers was 1.1 kg greater compared with 

ad libitum controls up to 454 kg. Carstens et al. ( 1991) restricted the growth of Angus x 

Hereford steers to 0.4 kg/d for I 89 d. During realimentation, compensating steers had 
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72% greater ADG from 325 to 420 kg BW compared with ad libitum-fed control steers. 

From 325 to 420 kg BW, compensating steers had 0.92 kg lower DMI and about a two

fold greater gain efficiency. During the entire re-feeding period (325 to 500 kg BW), 

compensating steers had greater ADG ( 1. 59 vs. 1.16 kg/d), similar DMI, and 50 g/kg 

ADG:DMI improvement compared with control steers. Yambayamba et al. (1991) 

demonstrated the effect oflength of restriction on B W gain of compensating heifers. 

Heifers were either fed ad libitum to 400 kg BW, intake restricted to gain 0.5 kg/d for 

two months and then fed ad libitum to 400 kg BW, or intake restricted to gain 0.5 kg/d 

for two months then intake restricted to maintain BW for two months and then fed ad 

libitum to 400 kg BW. Heifers that had been restricted to 0.5 kg/d for two months had 

14% greater daily BW gains when fed ad libitum for 58 d compared with ad libitum fed 

controls. Heifers that had been restricted to 0.5 kg/d for two months followed by 0.0 kg/d 

for two months had 40% greater ADG during the early ad libitum feeding period 

compared with ad libitum fed controls and 3 I% greater ADG compared to two month 

restricted heifers. Heifers restricted for two months had DMI that was 1 kg/d less than ad 

libitum fed heifers and 26% greater gain efikiency. Heifers restricted for four months 

had 1.5 kg/d greater DMI, and 30% greater gain efiiciency than ad libitum fed heifers 

during the early feeding period. 

Conflicting data of increased BW gains during re-feeding of previously restricted 

steers has been reported (Rompala et al., I 985; Hayden et al., 1993). Rompala et al. 

( 1985) reported that steers fed grass hay for 70 d to maintain BW and then refed a high

moisture corn, corn silage diet had similar live and EBW ADG compared with normally 

fed steers that gained 1.15 kg/d live weight and 1.05 kg/d EBW. Previously restricted 
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steers also had similar DMI and EBW gain efficiency compared with normally fed steers. 

Similarly, Hayden et al. (1993) reported similar EBW gain between steers previously 

energy-restricted for 92 d and energy-adequate steers finished for 88 d. However, 

Hayden et al. (1993) did report 1 .09 kg/d greater DMI which resulted in 11 % lower gain 

efficiency by compensating steers. 

Drouillard et al. (1991a) examined the effects of long and short duration (154 or 

77 d), sever or mild, and metabolizable protein (54 or 62 g/kg DM metabolizable protein) 

or energy restriction (0.62 or 0.75 Meal/kg net energy for gain) of steers compared with 

finishing control steers (90 g/kg DM metabolizable protein, 1.61 Meal/kg net energy for 

gain). Steers that had been restricted in either metabolizable protein or energy for Jong or 

short periods exhibited compensatory growth (except short, mild energy restriction). 

Compensating steers during realimentation exhibited increased ADG (1.53 and 1.43 vs. 

1.28 kg/d for energy and protein restriction vs. finishing control, respectively) and 

increased DMI (10.5 and 10.1 vs. 9 kg/d for energy and protein restriction vs. finishing 

control, respectively). However, gain efficiency was similar between compensating 

steers and finishing controls. An inverse relationship was observed for severity of energy 

restriction and finishing ADG and gain efficiency. Also the duration of energy restriction 

did affect gain or efficiency of steers (short, 77 d < long, 154 d). The authors reported 

that protein restriction had a larger effect on animals during the restriction period than 

energy restriction. Additionally, the restriction of protein during the growing phase may 

have necessitated the increase of crude protein levels during finishing to replace body 

nitrogen required for full growth. Additional studies with lambs by Drouillard et al. 

( 1991 b) re-examined the effects of metabolizable protein or energy restriction on lamb 
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performance. In the lamb trial, the restriction period was for 3 5 d. During the refeeding 

period after a two-week adjustment to the finishing diet, protein and energy-restricted 

lambs did not differ and had 20% greater ADG, 0.2 kg/d greater DMI, and 8% greater 

EBW gain efficiency than unrestricted lambs. Wester et al. (1995) conducted a similar 

experiment to examine the effect of protein or energy restriction on lamb growth. Lambs 

were limit fed their respective diets during a 7-week restriction period that resulted in 

ADGof 0.25, 0.03, and 0.02 for ad libitum control, energy and protein restricted lambs, 

respectively. All lambs were then allowed to consume feed to appetite during a 2-week 

repletion period. Average daily gain was 29 and 21 % greater in energy and protein

restricted lambs, respectively, compared with control lambs. Dry matter intake (kg/d) 

was greater in energy-restricted compared with protein-restricted lambs. Dry matter 

intake, as% of final BW, was greater in both energy and protein-restricted lambs 

compared with control lambs. Similarly, gain efficiency in energy and protein-restricted 

lambs was 27% greater compared with control lambs. In contrast, Abdalla et al. ( 1988) 

did not observe any compensatory growth in Holstein steer calves that had previously 

been restricted in energy intake. However in the same experiment, steers that had been 

protein restricted did exhibit compensatory growth (increased EBW ADG, intake relative 

to metabolic body weight, and gain efficiency). In two experiments reported by Rossi et 

al. (2001 ), steers that had previously been restricted in crude protein and then refed diets 

with adequate crude protein had 14 and 27% greater ADG and 13 and 27% greater gain 

efficiency than steers fed diets adequate in crude protein. 

Sainz et al. (1995) utilized a 75%- high-concentrate diet fed ad libitum or limit

fed and a 96% hay-roughage diet ( restriction of energy intake) fed ad libitum to create 
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three treatments to examine compensatory growth. During the growing phase, EBW 

ADG was 1.96, 0.69 and 0.77 kg/d for concentrate-ad libitum, concentrate-limit fed and 

roughage-fed steers, respectively. During the subsequent finishing phase all steers were 

fed the same concentrate diet ad Iibitum. Steers that were previously limit-fed had the 

greatest EBW ADG followed by the roughage-fed steers and then ad libitum-fed steers 

(1.92 > 1. 74 > 1.22 kg/d, respectively). Dry matter intake of steers of both restricted 

treatments was greater than DMI intake by the ad libitum steers (11.36 vs. 9.04 kg/d). 

Gain efficiency oflimit fed steers was 23% greater and 9% greater in roughage fed steers 

compared with the ad libitum steers. Steers were fed to similar final BW, but final EBW 

were 30 kg greater for intake-limited and roughage-fed steers compared with ad libitum

fed steers. Subsequent analysis determined that previously limit-fed steers had the lowest 

estimated maintenance energy requirements, whereas the roughage-fed steers had 

increased maintenance energy requirements compared with steers fed the concentrate diet 

ad libitum. 

The response of steers and lambs to restrictions of intake, energy, and protein has 

varied in magnitude and timing during realimentation. In general most studies reported 

an increase in ADG, DMI, and ADG:DMI during the early compensatory period and a 

number of studies reported increased ADG of compensating animals during the entire 

realimentation period. The most variable response was DMI, in that some studies did not 

report significant differences in DMI between normal and compensating animals. One 

general observation was that the degree of compensation during realimentation was 

inversely related to severity of the previous nutrient restriction. 
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Digestibility. Changes in diet digestibility may be associated with increased DMI 

of compensating animals. Interestingly, Thomson et al. (1982) demonstrated species 

differences between lambs and steers in diet digestibility during restriction. Diet DM and 

gross energy digestibility were numerically greater and crude protein significantly greater 

in lambs undergoing energy restriction compared with control lambs. Diet DM and·gross 

energy digestibility were numerically lower and crude protein digestibility was not 

different for steers undergoing energy restriction compared with control steers. During 

realimentation, when metabolizable energy intake was similar for control and previously 

restricted lambs or steers, lambs had similar DM, gross energy, and crude protein 

digestibility. Previously restricted steers consuming similar metabolizable energy had 

DM and gross energy digestibility lower than control steers but similar crude protein 

digestibility. Thomson et al. (1982) also reported overall diet digestibility of steers was 

lower in compensating steers from 300 to 405 kg ofBW, thereafter diet digestibility was 

similar between control and previously energy-restricted steers. A 5% lower total tract 

DM digestibility, 5.3% lower energy digestibility, and a 4.7% lower crude protein 

digestibility was reported by Hayden et al. (1993) for previously energy-restricted steers 

compared with non-restricted steers during d 42 to 45 of the refeeding period. In contrast 

to the reports of Thomson et al. (1982) and Hayden et al. (1993), Hornick et al. (1998) 

reported increased nitrogen digestibility for Belgium Blue bulls that were previously 

restricted in energy and protein intake for 115 d compared with non-restricted steers. 

Body Composition. Different rates and patterns of live BW gain caused by 

restrictions in DMI or restrictions of energy or protein, as previously discussed, also 

result in important differences in body composition. Baker et al. (1992) reported 43% 

9 



greater empty body fat, 15% lower empty body protein, and 36% lower empty body 

water concentration in steers fed silage ad libitum steers compared with restricted steers. 

Differences in fat and protein contents resulted in ad libitum steers having 1. 7 MJ/ kg 

EBW more body energy than restricted silage fed steers. When these steers subsequently· 

grazed N-fertilized ryegrass pastures, and restricted steers demonstrated compensatory 

growth; final fat, protein, and water content of the empty body were ·similar after the 172 

d grazing period. The similar final body composition implies differential accretion of fat 

and protein between normal and compensating steers. Predictive allometric growth 

equations of Carstens et al. ( 1991) showed that hot carcass weight gain occurred faster 

than gain of EBW in control steers, whereas the rate of hot carcass weight gain was 

similar to EBW gain in compensating steers. This would imply that compensating steers 

were increasing non-carcass tissues faster than control steers during the refeeding period. 

During the refeeding period, accretion rates of protein in the empty body were 28% 

greater in compensating steers compared with control steers; whereas fat, water, and ash 

accretion rates were not different. Carcass accretion rates for protein, fat, water, and ash 

did not differ between treatments. Non-carcass protein and water accretion rates were 

greater in compensating steers compared with control steers. Fat accretion rate was 24% 

greater in control steers compared with compensating steers. Therefore, the majority of 

the increase in rate of protein accretion in the empty body of compensating steers was 

due to the increase in protein in non-carcass tissues rather than carcass tissues. 

Wright and Russel (1991) examined body composition of compensating and 

normal fed steers at three BW. At 350 kg ofEBW, fat content was 3% greater, energy 

content 1 .13 MJ/kg greater, and protein 1 % lower in adequately fed steers compared with 
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steers undergoing compensatory growth. Carcass characteristics were similar with the 

exception that compensating steers had 11 % greater protein than normal steers. Non

carcass protein was similar, but normal steers had 26% greater fat content than 

compensating steers. At 400 kg, the compensating steers still had lower concentrations 

of fat and energy and greater concentrations of protein and water than adequately fed 

steers (Wright and Russel, 1991). When steers reached 450 kg of empty body, carcass 

fat, protein, and energy contents were similar; non-carcass fat and energy continued to 

remain greater in adequately fed steers than compensating steers. A similar effect of 

previous restriction on compensating steer fat and protein mass was observed by 

Rompala et al. (1985). Compensating steers had greater empty body fat free mass and 

lower fat mass from 250 to 400 kg ofEBW; whereas at 450 and 500 kg EBW, fat free 

mass and fat mass were similar between compensating and normal steers. The rates of 

protein deposition were greater and fat deposition lower in the empty body of 

compensating steers compared with normal steers and inversely related from 200 to 300 

kg of EB W (Rom pal a et al., 1991). Hayden et al. (] 993) repoted an interesting contrast 

to other studies that had restricted energy intake to elicit compensatory growth. After the 

restriction period, energy-restricted steers had 14% less empty body protein and 22% less 

empty body fat. During the 88-d refeeding period empty body protein and fat gain were 

similar between compensating and normal steers, but initial differences in protein and fat 

content remained. 

In work reported by Drouillard et al. ( 1991 b ), using energy or protein restricted 

lambs for 35 d, protein and water content remained unchanged, and fat content of the 

empty body increased by 20 g/d compared with unrestricted lambs. Protein-restricted 
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lambs decreased empty body protein and water mass and deposited 30 g/d of fat during 

the restriction period. During the first two weeks of the refeeding period, protein

restricted lambs deposited greater amounts of protein and fat in carcass and non-carcass 

tissues compared with energy-restricted lambs. After the initial two weeks of the 

refeeding period, composition of empty body gain of energy and protein restricted lambs 

was similar. Sainz et al. (1995) also conducted an experiment that examined energy or 

protein restriction. Sainz et al. ( 1995) reported increased fat mass at 327 kg of BW (back 

fat, kidney-pelvic-heart, marbling, abdominal, and total empty body) in ad libitum 

concentrate fed steers compared with energy-restricted limit-fed concentrate steers or ad 

libitum roughage-restricted steers. Empty body protein was greater in the restricted 

steers compared with the ad libitum-fed steers. At the final EBW, after ad libitum intake 

of the high-concentrate diet, all treatments had similar carcass fat and protein 

measurements. 

In general, previous restriction of either DM, energy, or protein decreased fat 

content while increasing protein content in the empty body compared with non-restricted 

animals. However, protein restricted animals tend to deposit more fat than lean tissue 

because of a lack of anabolic precursors. Accretion rates of fat or protein during the 

refeeding period are generally inversely related to accretion during the restriction period. 

Compensating animals continue to have similar protein accretion rates as control animals, 

but fat accretion rates tend to be higher. Differences in the accretion rate of protein 

especially are evident between carcass and non-carcass tissues. The differential rates of 

accretion coupled with the differences in initial body composition before the refeeding 
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period often results in similar final empty body composition between normal and 

compensating steers when fed to similar final BW. 

Effect of Previous Nutrition on Splanchnic Organ Mass and Energy Use 

Nutrient Restriction 

Aside from the effects that any type of nutrient restriction might have on growth 

performance, effects of nutrient restriction on splanchnic organ mass and energy use may 

be part of the mechanism of compensatory growth. The gastrointestinal tract ( GIT) of the 

ruminant makes up a relatively small proportion ofBW (6 - 10%, Burrin et al., 1990). In 

contrast, the GIT can account for up to 16 to 28% of whole body oxygen consumption, 

and the liver can account for 12 to 24% of whole body oxygen consumption (McBride 

and Kelly, 1990). Together the GIT and liver, which make up less than 15% ofBW, can 

consume as much as 40% of the energy required for maintenance. 

Reticulo-rumen. Changes in the mass of the reticulo-rumen as a result of nutrition 

can have large effects on subsequent performance because alterations in reticulo-rumen 

size can affect DMI. Kouakou et al. (1997) reported an increase in mass of the reticulo

rumen in response to forage maturity in wether lambs consuming bermudagrass or 

orchardgrass hay ad libitum. McLeod and Baldwin (2000) divided the rumen and 

reticulum in lambs fed at two different levels of intake of diets that were 75% forage or 

75% concentrate. Mass of the rumen(% of EBW) was greater in steers consuming feed 

at the high level of intake compared with steers at the low level of intake. Mass of the 

reticulum (% of EBW) was greater in Jambs from the high forage diet and greater for 

high intake lambs. However, Sun et al. (1994) and Kouakou et al. (1997) did not observe 
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any difference in reticule-rumen mass in lambs consuming different forages with 

different supplementation levels. 

Overall DMI has been reported to affect reticulo'-rumen mass. A decrease in DMI 

to 85% of ad libitum reduced reticule-rumen mass by 3% in lambs (Fluharty and 

McClure et al., 1997). Ferrell et al. (1986) reported a 26 and 41 % decrease in stomach 

mass of lambs fed the same diet but limited in intake so that lambs gained 0.38, 0.12 or -

0.14 kg/d. Similarly Burrin et al. (1990) observed a 29% increase in stomach mass in ad 

libitum-fed lambs compared with maintenance-fed lambs, and a 13% decrease in stomach 

mass of lambs fed at maintenance compared to ad libitum fed lambs across a 21 d feeding 

period. Noziere et al. (1999) also observed a 38% decrease in reticule-rumen mass of 

ewes underfed energy and protein for 78 d compared with ewes fed at maintenance. 

However, Rompala and Hoagland (1987) reported no difference in mass of stomach 

complex between lambs fed ad libitum or 50% ad libitum for 21 d. Restrictions of 

energy and protein intake have been reported to decrease the absolute weight of the 

stomach complex in lambs (Drouillard et al., 1991b), but increase stomach mass(% of 

EBW) (Drouillard et al., 1991 band Wester et al., 1995). Restriction of energy intake in 

cattle did not affect stomach mass, however restriction of energy by feeding a high

roughage diet did increase stomach mass compared to concentrate fed steers (Sainz and 

Bentley, 1997). 

Concentrations of nucleic acids and protein are indicative of cell number and 

cellular activity. McLeod and Baldwin (2000) reported increased cell number (DNA 

content), increased protein synthetic capacity or cell activity through increases in (RNA 

content). However, cell size (protein:DNA) in the ruminal epithelium oflambs on high 
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levels (2X maintenance) vs. low levels (maintenance) of intake was not different 

regardless of diet type (75 :25 roughage:concentrate and vise versa). No difference in 

ruminal mucosa DNA, RNA or protein:DNA were observed between underfed (41 and 

47% of energy and protein requirement) and maintenance-fed ewes (Noziere et al., 1999) 

or ad libitum and maintenance fed lambs (Burrin et al., 1992). This could be because the 

difference between levels of intake in the experiment ofNoziere al. (1999) was 

insufficient to stimulate a cellular response in the ewes. In the experiment of Burrin et al. 

(1992) using lambs, a response was evident (ad libitum > maintenance) in all 

measurements when expressed on an EBW basis. 

Growing steers fed 75% concentrate diets had lower DNA content compared with 

steers fed 96% roughage (Sainz and Bentley, 1997). In those same steers RNA content 

was greater in steers fed ad libitum (concentrate or roughage) compared with limit-fed 

steers. Protein:DNA was greater in steers fed concentrate ad libitum compared with limit 

fed or roughage fed steers. 

Reticulo-rumen mass is sensitive to both diet type and intake level. Increasing 

dietary roughage or level of intake increased reticulo-rumen mass in several studies. 

Reticulo-rumen mass(% ofEBW) was also increased in lambs and steers that were 

energy or protein intake restricted. The increase in mass(% ofEBW) would also be a 

function of decreased EBW in nutrient restricted lambs or steers compared to control 

lambs or steers. Cellularity of the reticulo-rumen ( cell number, cell activity, and cell 

size) increased in animals on higher levels of intake. Presumably ruminants on higher 

planes of nutrition have increased quantities of fermentation products to absorb and 
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metabolize in the rumen. Concentrate diets also stimulate cell activity but not cell 

number compared with roughage diets. 

Intestines. Varied responses of the small intestine to diet type and intake have 

been reported. Maturity ofgrass hay has been reported to increase small intestinal mass 

in lambs (Kouakou et al., 1997b), as has type of forage (alfalfa> bermudagrass; Kouakou 

et al., 1997a). McCleod and Baldwin (2000) reported increased small intestine mass(% 

EBW) with increased forage inclusion in the diet and increased level of intake in high 

forage and high-concentrate diets. Ferrell et al. (1986) reported linear decreases in small 

intestine mass from high to low levels of intake. Burrin et al. (1990) observed a linear 

increase in small intestine mass of ad libitum fed lambs and a linear decrease of intestinal 

mass in maintenance-fed lambs during a 21-d feeding period. Noziere et al. (1999) 

reported a 23% decrease in small intestine wet mass in ewes that were underfed energy 

and protein compared with ewes fed at maintenance. In energy and protein restricted 

lambs, (Drouillard et al., 1991b) observed decreased small intestine(% ofEBW) after a 

35-d restriction period. Sainz and Bentley (1997) observed similar small intestine mass 

among steers fed concentrate ad libitum or in limited amounts; however, ad libitum 

roughage fed steers had greater small intestine mass than concentrate fed steers. Contrary 

to the preceding reports, Rompala and Hoagland (1986), Wester et al. (1995), and 

Fluharty and McClure ( 1997) did not observe any effect of intake, energy or protein 

restriction, or protein level on small intestinal mass. 

Variable effects of intake on cellularity of the small intestine have been observed. 

Noziere et al. (1999) using jejunum and McLeod and Baldwin (2000) analyzing 

duodenum, jejuna), and ilea) tissue observed no difference in DNA, RNA, or 
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protein:DNA in sheep underfed (41 and 47% of energy and protein, respectively) or 

maintenance fed and sheep with low or high intakes of predominately roughage or 

predominately concentrate diets. Ten-fold differences in DNA, RNA and protein:DNA 

concentrations reported by Noziere et al. ( 1999) and McLeod and Baldwin (2000) 

demonstrates. the large amount of variation that exists between reported values. Burrin et 

al. (1992) reported an increase in duodenal DNA concentration between ad libitum and 

maintenance-fed lambs after a 21-d feeding period. Concentrations of RNA exhibited an 

intake level x day interaction; RNA concentration increased in ad libitum-fed lambs and 

decreased in maintenance-fed lambs during the feeding period. Protein concentration 

was similar between treatments, however when protein was expressed as mg/kg of EBW, 

ad libitum lambs had greater protein concentrations compared with maintenance-fed 

lambs. Small intestinal cellularity was affected by intake level and diet type (Sainz and 

Bentley, 1997). Limit-fed steers had 34% greater small intestinal DNA concentration 

compared with ad libitum-fed steers consuming high concentrate or high-roughage diets; 

whereas, roughage-fed steers had 34% lower RNA concentration compared with 

concentrate-fed steers regardless oflevel of intake. 

The small intestine has a variable response to differences in diet and nutrition. 

However, some generalizations can be made. Increasing bulk of diets through 

differences in forages or inclusion of roughage increased small intestinal mass. 

Additionally, increased DMI of any diet increased small intestinal mass. Restriction of 

energy or protein intake had variable effects in small intestinal mass. When differences 

in cellularity of the small intestine are evident, dietary intake appears to be the largest 

driving force. In the work ofBurrin et al. (1992) overall feed intake influenced 
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cellularity, but differences in diet type independent of intake were reported by Sainz and 

Bentley ( 1997). 

Liver. The liver, which plays a central role in nutrient metabolism is influenced 

both by inputs from the stomach complex and intestines in ruminants. Kouakou et al. 

(1997a, b) reported forage type and maturity affected liver mass. High-quality, early

maturity bermudagrass and orchardgrass hay increased liver mass in lambs compared 

with lambs consuming lower-quality, later-maturity hays. Additionally, alfalfa hay 

supplemented with cere~I grains resulted in greater liver mass in lambs compared with 

ryegrass-wheat hay with supplemental cereal grain. Lambs fed ryegrass-wheat hay with 

supplemental cereal grain had greater liver mass than lambs fed bermudagrass hay with 

grain supplementation (Kouakoa et al., 1997; Sun et al., 1994). 

In addition to forage type, diet type has been implicated in affecting liver mass. 

Sainz and Bently ( 1997) and McLeod and Baldwin (2000) observed increased liver mass 

in concentrate-fed steers and sheep, respectively, compared with forage-fed animals. 

Additionally, animals that had greater intake of concentrate diets or predominately 

roughage diets had greater liver mass (Rompala et al., l 986; Sainz and Bentley, 1997; 

McLeod and Baldwin, 2000). Ferrell et al. (1986) demonstrated the relative 

responsiveness of the liver to intake of nutrients that affected rate ofBW gain. Lambs 

fed to gain 0.38 kg/d had liver masses that were 393 g greater than lambs fed to gain 0.12 

kg/d. Lambs fed to lose 0.14 kg/d had liver masses that were 159 g less than low BW 

gain lambs. Wright and Russel (1991) reported that liver mass in steers previously 

restricted in DMI was 0.76 kg less than full-fed steers at 350 kg ofBW. Similarly, Burrin 

et al. ( 1990) demonstrated the response of the liver to maintenance feeding. Liver mass 
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(g/kg ofEBW) was decreased by 5 g/kg ofEBW in lambs fed at maintenance for 21 din 

comparison with lambs fed ad libitum which exhibited increased liver size of 3.6 g/kg of 

EBW. However, Noziere et al. (1999) demonstrated that the liver does have a minimum 

threshold for proportional size. In their experiment, with ewes underfed energy and 

protein for 78 d, liver mass (g/kg ofEBW) was not different from liver mass of 

maintenance-fed ewes. Drouillard et al. (1991b) and Wester et al. (1995) reported that 

lambs, which were energy or protein restricted, had decreased liver mass(% ofEBW) 

compared with control lambs fed adequate energy and protein. However, Drouillard et 

al. (1991b) reported a similar reduction in liver mass(% ofEBW) between energy and 

protein-restricted lambs fed the restriction diet for 35 d; whereas, Wester et al. (1995) 

reported greater (0.34%) liver mass(% of EBW) in protein restricted lambs compared 

with energy-restricted lambs fed the restriction diet for 49 d. 

Cellularity of the liver is an important response to level of nutrition in previously 

restricted animals. Noziere et al. (1999) noted a 20% increase in DNA (mg/g of tissue) in 

ewes that had been underfed for 78 d compared with maintenance-fed ewes. Burrin et al. 

(1992) reported a similar effect in maintenance-fed lambs compared with ad libitum-fed 

lambs. During a 21-d feeding period, maintenance-fed lambs linearly increased liver 

DNA by 2.5 mg/g tissue; whereas, ad libitum-fed lambs had DNA concentrations that 

were 0.6 mg/g of tissue lower during the feeding period. Sainz and Bentley (1997) did 

not report any differences in liver DNA content in steers fed concentrate diets at two 

levels of intake or roughage fed ad libitum. Liver RNA concentration was greater in ad 

libitum concentrate-fed steers compared with ad libitum roughage-fed steers, that had 

greater RNA concentration than limited concentrate-fed steers (Sainz and Bentley, 1997). 
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Noziere et al. (1999) and Burrin et al. (1992) reported values that were not different 

between underfed and maintenance-fed ewes and maintenance and ad libitum-fed lambs, 

respectively. Protein:DNA was increased by level of intake (ad libitum > maintenance 

and ad libitum > limit-fed) and diet type (concentrate> roughage) in studies ofBurrin et 

al. (1992) and Sainz and Bentley (1997). 

The liver can be characterized as being responsive to nutrient intake. Liver mass 

was increased in animals fed concentrate diets and increased level of intake of 

concentrate diets. Restriction of energy or protein intake decreases liver mass compared 

with livers of control animals. However, the liver of intake-restricted animals does have 

a greater number of cells compared with control animals. The RNA content is increased 

by concentrate diets but is not particularly sensitive to level of intake. Whereas, the size 

of hepatocytes (protein:DNA) is increased with concentrate diets and greater levels of 

intake. 

Realimentation After Nutrient Restriction 

Changes in GIT and liver mass and cellularity during realimentation can 

significantly affect growth performance of animals. Previous reductions in GIT and liver 

mass that decreased maintenance energy expenditure during the restriction period can 

carry over into the realimentation period. The carry-over effect may be one of the 

mechanisms responsible for compensatory growth in previously restricted animals. 

Reticulo-rumen. Rompala and Hoagland (1987) reported that increased intake of 

lambs from 21 d of 50% of ad libitum intake to ad libitum intake resulted in stomach 

complex mass that was not different from the stomach mass of lambs continually fed ad 
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libitum intakes after only 5 d. Ferrell et al. (1986) demonstrated the effect that BW gain 

and implicit nutrient intake had on stomach mass in lambs. Previously restricted lambs 

had 7 to 10% greater stomach mass compared with lambs that had been fed to gain 

greaterBW. Overfeeding (236 and 271% of requirements of energy and nitrogen, 

respectively) of previously underfed or maintenance fed ewes resulted in similar reticulo

rumen wet mass after 26 d of feeding (Noziere et al., 1999). The response to refeeding 

resulted in greater reticulo-rumen mass(% of EBW) in compensating lambs that had 

been previously restricted in energy or protein intake compared with control lambs (2.57 

vs. 1.91% ofEBW, respectively) after only ]4 d ofrefeeding (Wester et al., 1995). 

However, compensating lambs that had been energy or protein restricted in the 

experiment ofDrouillard et al. (1991b) had lower stomach mass(% ofEBW) after 14 d 

of finishing compared with unrestricted lambs, but were not different after 50 d of 

finishing. The delay in increase of reticulo-rumen mass was attributed to feeding 

practices that limited intake during the first 14 d to avoid acidosis concerns in the 

compensating lambs. In the work by Sainz and Bentley (I 997), limit-fed and roughage

fed steers were fed a concentrate diet ad libitum from 327 to 481 kg EBW. Steers limit

fed for I 12 d and then realimentated for 89 d had stomach mass that was not different 

from ad libitum-concentrate fed steers. Steers roughage-fed for 112 d and then 

realimented for 1 I 1 d had stomach mass that was 9% lower than steers previously fed 

concentrate. 

After finishing, concentration of DNA was greater in steers that had ad libitum 

access to either concentrate or roughage compared with steers that were limit fed the 

concentrate diet during the 112 d growing period. Concentrations of RNA and 
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protein:DNA were greater in 112 d limit fed steers compared with steers that had been 

fed ad libitum during the growing period. Noziere et al. ( 1999) reported DNA and RNA 

concentrations, and protein:DNA that were not different between underfed or 

maintenance-fed ewes that were subsequently overfed. The similarity in cellularity of 

ewes could be attributable to massive overfeeding in both treatments, which would have 

abolished any previous differences. 

Intestines. Similar to the stomach mass, intestinal mass was not different between 

lambs offered feed ad Ii bi tum vs. 50% ad Ii bi tum after 5 d of ad libitum feeding 

(Rompala and Hoagland, 1987). Ferrell et al. (1986) reported a 23 and 26% increase in 

small intestine mass in lambs fed to gain 0.64 or 0.38 kg/d, respectively, after a previous 

42-d restriction period in which the lambs lost 0.14 kg/d. Small intestinal mass(% of 

EBW) in previously protein-restricted, compensating lambs was greater than control or 

previously energy-restricted, compensating lambs after 14 d ofrefeeding (Wester et al., 

1995). In contrast, previously restricted, compensating lambs small intestinal mass(% of 

EBW) remained less than control lambs after 14 d offinishing (Drouillard et al., 1991b); 

however, after 50 d of finishing small intestinal mass(% of EBW) was not different 

among treatments. Steers that had been restricted by feed intake or by consuming 

roughage for 112 d, had 9% greater intestinal mass compared with ad libitum 

concentrate-fed steers (Sainz and Bentley, 1997). The high level of overfeeding used by 

Noziere et al. (l 999), probably resulted in no observed differences in small intestine mass 

between previously underfed and maintenance-fed ewes. 

Cellularity response of small intestine in previously restricted animals is limited. 

Noziere et al. (1999) reported no differences in DNA, RNA, or protein:DNA in 
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previously underfed ewes compared with maintenance-fed ewes when both treatments 

were overfed for 26 d. Small intestine from steers (Sainz and Bentley, 1997) had similar 

RNA concentrations and protein:DNA ratios between previously limit fed or roughage

fed steers compared with ad libitum concentrate-fed steers. Concentrations of DNA were 

greater in steers that had been fed roughage diets previous to the finishing period; 

however, DNA concentrations were not different between previously limit-fed and ad 

libitum concentrate-fed steers (Sainz and Bentley, 1997). 

Similar to the reticulo-rumen, the response of the small intestine after 

realimentation was variable. ln general small intestinal mass was increased or similar 

compared with non-restricted control animals in energy, protein, or intake restricted 

animals. 

Liver. The liver is very responsive to the level of nutrition. Rompala and 

Hoagland ( 1987) reported that greater than 5 d was required for liver mass of lambs 

restricted to 50% of ad libitum intake for 21 d to reach liver mass of ad libitum fed lambs 

(431 vs. 550 g). However, Wright and Russel (1991) reported that liver mass in steers 

could be equalized within a 100 kg of BW gain period. Ferrell et al. (1986) demonstrated 

the importance of ADG before harvest on liver mass. All lambs had similar BW gain 

over a 84 d period, however lambs that had ADG of0.64 and 0.38 kg/d during the last 42 

d had increased liver mass compared with lambs that had ADG of 0.12 kg/d during the 

last 42 d. The effect of similar level of intake following a 98 d period of restriction on 

liver mass was demonstrated by Noziere et al. (1999), where ewes that were overfed 

energy and protein had similar liver mass after 26 d regardless of the prior 152 g 

difference in liver mass. Previously energy or protein-restricted lambs (Drouillard et al., 
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1991 band Wester et al., 1995) had liver mass(% ofEBW) that was not different by d 50 

and 14, respectively. Sainz and Bentley (1997) reported 10% increase in liver mass after 

steers that had been limit fed or roughage fed for 112 d were finished. 

Noziere et al. (1999) reported no difference in liver DNA, RNA, or protein:DNA 

of overfed ewes. Previously limit-fed or roughage-fed, compensating steers had DNA 

concentrations that were not different after finishing and greater RNA concentrations 

compared with previously ad libitum concentrate-fed steers. Previously limit fed steers 

had greater protein:DNA compared with previously ad libitum-fed steers after the 

finishing period. 

The liver is very responsive to level of intake that affects ADG. The liver mass 

increases to a point dictated by the level of realimentation, independent of previous 

nutrition, provided adequate time for growth is allowed. The liver of previously 

restricted steers increased in activity (RNA content) most likely in response to the 

increased nutrient intake and metabolic demands for body growth. However, the 

response in compensating animals did not included increases in liver cell number (DNA 

content) or size (protein:DNA). 

Oxygen Consumption 

Concurrent with changes in visceral organ mass and cellularity associated with 

intake and level of nutrition are changes in energy use. Energy use by organs can be 

estimated by in vitro tissue oxygen consumption. Because different diets have been used 

to affect nutrient restrictions, this discussion will initially examine differences in effects 

of diet type on oxygen consumption. 
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Ruminal papillae are often used to estimate oxygen consumption by ruminal 

tissues. Studies of diets with greater protein content (alfalfa vs. bromegrass hay; Kelly et 

al., 1993) or greater metabolizable energy (timothy hay with soybean meal, and corn vs. 

timothy hay with soybean meal; Kelly et al., 1995) resulted in greater oxygen 

consumption by ruminal papillae. Harmon et al. ( 1991) examined the effect of level of 

intake (maintenance or 2 x maintenance) using 90% forage vs. 90% concentrate diets. 

Oxygen consumption by ruminal papillae was not effected by diet type, however 

increasing intake resulted in 27 and 12% increases in oxygen consumption by ruminal 

papillae from steers fed the forage and concentrate diets, respectively. In contrast, 75% 

forage diets vs. 75% concentrate diets, or high vs. low intake of diets did not result in any 

difference in oxygen consumption by ruminal or small intestinal tissues (McLeod and 

Baldwin, 2000). In the diets of McLeod and Baldwin (2000), gross energy and crude 

protein:metabolizable energy ratio were similar between diet types suggesting that the 

oxidative capacity of tissues was not influenced by diet. Burrin et al. (1990) reported 

similar ruminal epithelium oxygen consumption between ad libitum and maintenance fed 

lambs during a 21 d feeding period. 

Small intestinal oxygen consumption rate has been reported to be affected by 

level of intake (McBride and Milligan, 1985a; Burrin et al., 1990; McLeod and Baldwin, 

2000). McBride and Kelly (I 985) reported that increasing level of digestible energy 

intake (0, 7.6, and 14.8 MJ/d) resulted in a linear increase in the percent inhibition by 

ouabain, a Na+, K 1
- ATPase blocker, of duodenal oxygen consumption. Additionally, 

duodenal Na-1
, K" ATPase dependent respiration increased with increasing level of 

digestible energy intake, whereas Na\ K+ ATPase independent respiration decreased. 
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The results of McBride and Milligan (1985a) suggest differential cellular metabolism in 

the duodenum that is influenced by level of energy intake. Oxygen consumption by 

previously energy or protein restricted lambs was not different compared to control lambs 

after restriction, but increased relative to small intestinal oxygen consumption before the 

restriction period in control and restricted lambs (Drouillard et al., 1991 b; Wester et al., 

1995). After refeeding, oxygen consumption by small intestinal tissue was not different 

between control and previously restricted lambs (Drouillard et al., 1991b; Wester et al., 

1995). 

Rate of liver oxygen consumption per unit weigh of tissue has been reported not 

to be different between fed and fasted rats (Burrin et al., 1988) and fed and starved sheep 

(McBride and Milligan, 1985b). However, in the rat data ofBurrin et al. (1988), whole 

liver oxygen consumption was 41 % greater in fed rats compared with fasted rats. 

Differences in whole liver oxygen consumption were due to greater liver mass in fed rats. 

McBride and Milligan (1985b) reported increased inhibition ofliver oxygen consumption 

by the Na\ K 1- ATPase inhibitor ouabain in fed sheep . .Increased inhibition ofliver 

oxygen consumption by ouabain implies that livers from fed sheep expend more energy 

in transport and other activities associated with Na+, K + A TPase. Increases in the 

proportion of energy attributable to Na+, K'- A TPase would also imply a greater 

maintenance energy requirement by those tissues. Drouillard et al. (1991b) reported 

decreased liver oxygen consumption rate in energy and protein restricted lambs after the 

35-d restriction period. Wester et al. (1995) did not observe a similar reduction in liver 

oxygen consumption rate by energy or protein restricted Jambs compared to control 

lambs; however, whole liver oxygen consumption was decreased in restricted lambs 
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compared with control lambs. After 14 d of finishing, previously energy or protein 

restricted lambs continued to have 15% lower liver oxygen consumption rates compared 

with unrestricted lambs (Drouillard et al., 1991 b ). Wester et al. ( 1995) reported 

previously energy or protein-restricted lambs had liver oxygen consumption rate and 

whole liver oxygen consumption that was not different from unrestricted lambs after 14 d 

of refeeding. 

Increases in dietary crude protein and metabolizable energy increased ruminal 

papillae oxygen consumption. However, differences in diet type (75% concentrate vs. 

75% roughage) were also reported not to affect ruminal papillae oxygen consumption. 

Additionally, conflicting results are reported for ruminal papillae oxygen consumption in 

response to increases in intake level. Intake level or energy or protein restriction does not 

affect small intestinal oxygen consumption. However, differences in intake do cause 

differences in cellular metabolism that required oxygen. Like the small intestine, liver 

oxygen consumption was not affected by level of intake. However, differences in intake 

· level did elicit differences in cellular metabolism. Energy and protein restriction 

decreased the rate and whole organ oxygen consumption in lambs. However, when 

energy and protein restricted lambs were realimented, oxygen consumption compared to 

control lambs was variable between studies. 

Effect of Previous Nutrition on Blood Metabolites and Endocrine Hormones 

Metabolites 

Glucose. Concentration of plasma glucose is very responsive to level of feed 

intake. Plasma glucose concentration of DMI-restricted steers decreased as the length of 
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the restriction period increased (Blum et al., I 985; Ellenberger et al., 1989; Y ambayamba 

et al., 1996; Hornick et al., 1998). In steers that were subjected to long-term restriction, 

plasma glucose concentration reached minimal values after 200 d in steers fed to gain 

0.13 kg/d (Blum et al., 1985) and 300 din Belgian Blue bulls fed to gain 0.5 kg/d 

(Hornick et al., 1998). The majority of glucose production in ruminants comes from 

hepatic gluconeogenesis (Brockman and Laarveld, 1986); therefore glucose concentration 

is reflective of the availability of gluconeogenic precursors, and thus DMI. When 

previously restricted steers were realimented, plasma glucose concentrations increased 

rapidly. Blum et al. (1985) reported plasma glucose concentrations greater than pre

restriction levels 2 d after the initiation of refeeding. Concentrations of plasma glucose in 

steers restricted in intake were not different than non-restricted steers by d 50 

(Ellenberger et al., 1989), 30 (Hayden et al., 1993), and 10 (Yambayamba et al., 1996). 

The increase in glucose concentration in compensating animals corresponded with 

increases in DMI and ADG (Blum et al., I 985; Ellenberger et al., 1989; Yambayamba et 

al., 1996). 

Nonester(fiedfatty acids. Nonesterified fatty acids (NEPA) concentrations are 

indicative of the mobilization of fat as an energy source in animals during periods oflow 

energy intake (Yambayamba et al., I 996). Concurrent with the reduction in glucose 

concentration during restriction is an increase in NEF A concentration. Nonesterified 

fatty acids are the result of oxidation in adipose tissue to provide NEF A and glycerol for 

hepatic metabolism (Brockman and Laarveld, 1986). Concentrations of NEF A in feed 

restricted heifers and steers were greater than ad libitum fed controls by d 20 and 15 of 

restriction (Yambayamba et al., 1996 and Blum et al., 1986, respectively). Increasing the 
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length ohime of restriction increased NEF A concentrations in steers (Blum et al., 1986) 

and heifers (Yambayamba et al., 1996). However, feed restriction that resulted in 0.35 

kg/d gain in steers (Ellenberger et al., 1989) did not elicit any difference in NEFA 

concentrations during the restriction period. Concentrations of NEF A were decreased by 

30% in the early refeeding period and 60% in the late refeeding period in previously 

restricted compensating steers compared with control (normal growth) steers (Ellenberger 

et al., 1989). Rapid deceases in NEF A concentrations in compensating steers have been 

reported. Similar concentrations of NEF A were measured between normal and 

compensating steers and heifers by d 25 and 10 of the refeeding period (Hayden et al., 

1993 and Yambayamba et al., 1996, respectively). Blum et al. (1985) reported NEFA 

concentrations lower than pre-restriction values on d 1 after initiation of the refeeding 

period. 

Urea Nitrogen. The concentration ofurea-N in blood is often affected by dietary 

crude protein concentration with variable effects of feed restriction. A decrease in urea-N 

concentration in intake-restricted animals did not occur until d 48 of the restriction period 

in heifers fed to achieve zero BW gain (Yambayamba et al., 1996) and d 140 of the 

restriction period in steers fed to gain 0.13 kg/d (Blum et al., 1985). The variability of 

the urea-N response is evident in the study of Hayden et al. (1993) in which restricted 

steers that had 0.53 kg/d EBW gain had greater urea-N concentrations than non-restricted 

steers at the end of the restriction period. During realimentation, previously restricted, 

compensating steers had declining urea-N concentrations up to d 30, which were lower 

than non-restricted steers and continued to be lower on d 60 of refeeding (Hayden et al., 

1993). In contrast, urea-N concentrations during the realimentation period were not 
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different between compensating animals and normally fed control animals (Blum et al., 

1985; Ellenberger et al., 1989; Yambayamba et al., 1996). Hayden et al. (1993) reported 

a correlation between deceased urea-N concentrations and increased empty body protein 

accretion. Other reports of compensating animals.demonstrate increased BW gains with 

increasing urea-N concentration (Ellenberger et al., ·1989; Yambayamba et al., 1996; 

Lammers et al., 1999). Blum et al. ( 1985) examined the effect of restriction on a-amino 

N (AAN) and albumin. Concentrations of AAN were lower in energy-restricted steers 

beginning shortly after the initiation of the restriction period. Concentrations of AAN 

were not different between compensating and control steers within 20 d after the 

initiation of the refeeding period. Concentrations of AAN in compensating steers were 

not different from pre-restriction concentrations by d 2 ofthe refeeding period. A similar 

rapid resumption of basal values by d 2 was observed for albumin concentration in 

compensating steers (Blum et al., 1985). 

These data suggest that in compensating cattle, blood metabolite concentrations 

are dependent upon intake. Concentrations of glucose, urea-N, and AAN decrease and 

NEF A increase with restriction of intake and implicitly nutrients. However, when cattle 

are realimented metabolite concentrations respond in a fairly rapid time frame. The rapid 

response of circulating metabolites provides compensating cattle with adequate nutrients 

for deposition of tissue and subsequent BW gain. 

Endocrine Hormones 

Insulin. Plasma concentrations of insulin are positively related to DM or energy 

intake (Brockman and Laarveld, 1986). Barash et al. (1998) demonstrated a dose-
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dependent response of insulin concentration to metabolizable energy (ME) intake after 23 

d of reduced energy feeding in steers. At the end of the 77-d restriction period, steers fed 

diets with 2.43 Meal of ME/kg and 11. 7% crude protein had lower insulin concentrations 

than steers fed diets with 2.61 Meal of ME/kg and 12.8% crude protein. Blum et al. 

( 1985) and Yambayamba et al. (1996) reported similar decreases in plasma insulin 

concentration by d 20 of restriction in energy-restricted steers and heifers, respectively. 

In all instances (Blum et al., 1985; Hayden et al., 1993; Yambayamba et al., 1996, Barash 

et al., 1998), plasma insulin concentration was significantly lower in energy-restricted 

animals compared with normally-fed control animals regardless of the length of the 

restriction period ( 48 to 120 d). During the restriction period lower plasma insulin 

concentration allows energy-restricted animals to increase hepatic gluconeogenesis, 

lipolysis, and ketogenesis. The up-regulation of these mechanisms is a directed response 

to the reduction in DM or energy intake (Brockman and Laarveld, 1986). 

When previously energy-restricted animals are refed high-energy diets, plasma 

insulin concentrations rapidly increased to. concentrations similar to control animals 

(Blum et al., 1985; Hayden et al., 1993; Yambayamba et al., 1996, Barash et al., 1998). 

Blum et al. (1985) reported increases in plasma insulin concentration above pre

restriction basal levels by d 1 of refeeding. The increased plasma insulin effect of 

refeeding high-energy diets has been implicated in the initiation of the compensatory 

growth mechanism (Blum et al., 1985). The initiation of compensatory growth in 

previously energy-restricted animals could be a result of the anabolic stimulation 

provided by insulin (Brockman and Laarveld, 1986). Additionally, Eisemann et al. 

( 1997) reported that sensitivity of peripheral tissue to insulin was decreased by age, BW, 
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and percent empty body fat. Compensating animals generally have decreased BW and 

empty body fat content; and, therefore would retain a greater peripheral and hepatic 

sensitivity to the anabolic effects of insulin. 

Insulin Like Growth Factor I. Breier et al. ( 1988a) suggested that regulation of 

circulating plasma insulin-like growth factor I (IGF-1) may be mediated by hepatic high

affinity growth hormone (GH) receptors that are subject to nutritional manipulation. The 

mediation of circulating IGF-I concentrations through hepatic receptors is vital because 

the liver is the largest source of circulating IGF-1 (Le Raith et al., 2001 ). Most tissues 

produce IGF-1, and therefore the local autocrine or paracrine effects ofIGF-1 could be of 

equal importance in stimulating growth as measurable-circulating IGF-1 (Le Raith et al., 

2001 ). Restriction of either energy and ( or) protein has been reported to lower circulating 

IGF-1 concentrations by d 20 of energy restriction in cattle (Barash et al., 1998; 

Ellenberger et al., 1989; Yambayamba et al., 1996) and by d 7 and 14 of protein and 

energy-restricted lambs (Wester et al., 1995). Thissen et al. ( 1990) reported decreased 

IGF-1 concentrations in protein-restricted rats through GH dependent post-receptor 

events. Growth hormone and IGF-1 act synergistically (Hua et al., 1993; Le Raith et al., 

2001 ). Un-coupling of the GH-IGF-I axis has been demonstrated by Breier et al. 

(1988b), who reported steers receiving 3% of their BW in feed responded to boluses of 

GH by increasing IGF-I concentration compared with steers receiving 1 % of their BW in 

feed, and Hua et al. (1993), who reported that fed sheep increased tissue IGF-I 

concentration in response to GH administration whereas starved sheep did not respond to 

GH. 
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When previously restricted animals are realimented, IGF-I concentrations quickly 

increase. Breier et al. (1986) and Y ambayamba et al. (1996), using intake-restricted 

steers and heifers, respectively, reported resumption of IGF-I concentrations similar to ad 

libitum fed animals after d 10 of refeeding. Hayden et al. (1993) and Barash et al. (1998) 

reported that previously restricted compensating steers required 30 d to achieve IGF-I 

concentrations not different from adequate ·energy and protein intake control steers. 

Previously energy or protein restricted lambs achieved similar IGF-I concentrations as 

control lambs after only d 6 of the refeeding period (Wester et al., 1995). 

Growth Hormone. Growth hormone concentrations increase during energy 

restriction (Blum et al., 1985; Ellenberger et al., 1989; Hayden et al., 1993; Yambayamba 

et al., 1996). The increase in GH concentration in energy-restricted steers required 48 

and 60 d of restriction (Yambayamba et al., 1996 and Blum et al., 1985, respectively). 

Wester et al. (1995) reported no rise in GH concentration in energy-restricted lambs 

compared to adequate-energy control lambs, however protein-restricted lambs did exhibit 

an increase in GH concentration seven days after the initiation of the restriction period. It 

was speculated that the absence of the GH response in energy-restricted lambs was a 

result of the need to slowly release lipid stores for energy. 

Realimentation of animals results in resumption of basal concentrations of GH. 

However, it can take up to 30 d (Hayden et al., 1993; Yambayamba et al., 1996) for 

resumption of GH concentrations similar to control animals. Blum et al. (1985) reported 

daily mean GH concentrations in compensating steers that were less than basal values on 

d 4 of the refeeding period, whereas Wester et al. (1995) reported resumptionofGH 

concentration that were not different from control steers on d 4 of the refeeding period . 
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The decline in GH concentrations occurs with concurrent increases in IGF-1 

concentration. Le Roith et al. (2001) speculated that the need for high circulating IGF-1 

concentrations produced by the liver may not be for stimulation of growth, but rather to 

effect feedback on the hypothalamus to regulate GH secretion and modulate the 

metabolic effects elicited by GH. 

Thyroid Hormones. The thyroid hormones, while not directly anabolic, do 

function with insulin to stimulate anabolic growth through protein synthesis and glucose 

utilization (Griffin and Ojeda, 1992). It has also been suggested that thyroid hormones 

function with IGF-1 to stimulate bone and cartilage growth (Ellenberger et al., 1989). 

Additionally, Hayden et al. ( 1993) implicated triiodothryronine (T 3) as a metabolic signal 

indicative of energy status in animals and thyroxine (T 4) as a metabolic signal indicative 

of energy consumption. 

Restriction of energy and protein intake that resulted in decreased BW gains 

reduced T 4 concentrations in the restricted animals compared with adequately-fed control 

animals (Blum et al., 1985; Ellenberger et al., 1989; Hayden et al., 1993; Wester et al., 

1995; Yambayamba et al., 1996; Barash et al., 1998). However, the temporal 

responsiveness ofT4 varies. Blum et al. (1985) observed almost immediate reduction in 

T4 concentration in steers fed to gain 0.13 kg/d. Wester et al. (1995) observed reduced T4 

concentration in lambs that were energy or protein restricted that gained 0.03 kg/d within 

7 d of the initiation ofthe restriction. Barash et al. (1998) observed reduction ofT4 

concentrations within 20 d of initiation of restriction in steers fed to gain 0.66 to 1.2 kg/d. 

Yambyamba et al. (1996) did not observe a decrease in T4 concentration of heifers 

gaining 0.7 kg/d relative to ad libitum-fed heifers until d 48 of restriction. Concentrations 
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ofT3, similar to T4, decreased in energy or protein restricted animals (Blum et al., 1985; 

Hayden et al., 1993; Wester et al., 1995; Yambayamba et al., 1996). Similarly to T4, the 

time course for the decrease in T3 varied. In steers, T 3 decreased almost immediately 

when steers were placed on restricted-energy intake compared with control steers (Blum 

et al., I 985). In heifers fed to gain greater BW than steers of Blum et al. (1995), T3 

tended to decrease by d 20 of restriction, and was significantly decreased by d 48 

(Yambyamba et al., 1996). A similar time frame was required by energy or protein 

restricted lambs (Wester et al., 1995). Concentrations ofT3 in restricted lambs did not 

differ from control lambs until d 21 of restriction (Wester et al., 1995). Contrary to the 

preceding findings, Ellenberger et aL ( 1989) observed no difference in T 3 concentrations 

between normally fed steers fed to gain 1.29 kg/d and steers fed to gain 0.35 kg/d. 

The response of thyroid hormones in compensating animals during the refeeding period is 

variable in magnitude and timing. Blum et al. (1985) reported greater T 4 concentrations 

in compensating, previously energy restricted steers during the first 15 d of the refeeding 

period and lower T 3 concentrations during the first 30 d compared with control steers. 

Hayden et al. (1993) reported that T 4 concentration in compensating steers remained 

lower than control steers through d 60 of the refeeding period, but T3 concentration was 

not different from control steers after d 30 of the refeeding period. Wester et al. (1995) 

reported a similar pattern in which T 4 concentration of compensating lambs remained 

lower than control lambs, but T 3 concentration was not different from control on d 14 of 

refeeding. Yambayamba et al. ( 1996) reported similar T 4 and T 3 concentrations between 

compensating and normal heifers on d 30 of the refeeding period. 
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Leptin. Leptin is a 16 k-Da protein that is produced and secreted by white 

adipocytes (Houseknecht et al., 1998; Barb 1999). Since the discovery ofleptin in 1994, 

leptin has been implicated in affecting feed intake, energy expenditure, energy balance, 

and immune function (Houseknecht et al., 1998; Barb, 1999; Spicer, 2001; Delavaud et 

al., 2002). In a review of the biology of leptin, Houseknecht et al. (1998) illustrated the 

regulatory effects ofleptin on peripheral tissue metabolism. Leptin has been reported to 

affect peripheral insulin resistance by decreasing insulin action. Additionally, leptin has 

been reported to decrease insulin secretion from the pancreas. Leptin production is 

regulated by triglyceride content in adipose tissue (Barb, I 999). Increasing triglyceride 

concentrations resulted in increased leptin production (Barb, 1999). Increasing leptin 

concentrations decreases food intake, increases energy expenditure and increases activity 

by the animal (Houseknetch et al., 1998; Barb, 1999). Leptin has also been implicated in 

affecting GH secretion in pigs; infusion of leptin into the brain of normally fed pigs 

resulted in increased GH secretion (Barb, 1999). Houseknecht et al. (1998) suggested the 

best description of the role of leptin maybe as a "metabolism modifier". 

Relationships between leptin and body fatness, intake and overall nutrition have been 

examined. Delavaud et al. (2000) reported highly significant correlations between ewe 

body condition score and leptin (r = 0. 72) and body lipid content(% of BW) and leptin (r 

= 0.68) prior to imposing different dietary regimes. When ewes were fed 39% of 

maintenance requirements for 65 d, plasma leptin concentration was decreased by 56% 

compared with no change in ewes fed 90% of maintenance for the same period. 

Delavaud et al. (2002) reported that a strong (r = 0.95) curvilinear relationship exists 

between adipose cell volume or size and plasma leptin concentration. This relationship 
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implies that leptin concentration is related to adipose cell hypertrophy. Additionally, 

Delavaud et al. (2002) reported postprandial decreases in plasma leptin concentrations in 

well-fed and refed-previously restricted cows. The decrease in plasma leptin in those 

cows would indicate that leptin is not associated with satiety in ruminants. Daniel et al. 

(2002) also observed a high correlation (r = 0.77) between leptin concentration and body 

fat (ultrasound fat thickness) in sheep. Moreover, Daniel et al. (2002) demonstrated the 

episodic nature of leptin secretion in ewes with continual access to food. Leptin secretion 

characteristics as measured by area under the curve, peak number, and peak height were 

greater for fed than fasted ewes and greater for fat than thin ewes. Intervals between 

peak leptin concentrations were shorter for fed and fat ewes compared with fasted and 

thin ewes (Daniel et al., 2002). 

The response of endocrine hormones during nutrient intake restriction has 

important implications for growth. Decreases in the anabolic hormones (insulin and IGF-

1) in restricted cattle reduce their ability to increase in BW at rates comparable to control 

cattle. The uncoupling of the IGF-1- GH axis is also critical in the decreased growth 

response in intake or nutrient restricted cattle. Decreases in thyroid hormones as a result 

of intake and nutrient restriction might help to lower basal metabolism and conserve 

energy. Metabolic signal hormones like leptin are also affected by altered nutritional 

status. Realimentation of cattle increases the concentrations of endocrine hormones that 

had previously been decreased. However, the response time to realimentation is hormone 

dependent. It has been suggested that the lowered concentration of circulating hormones 

during the restriction period is advantageous because it increases the responsiveness of 

tissues to hormones and likely increases hormone production during realimentation. 
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Effect of Diet on Blood Flow and Net Flux Through Splanchnic Tissues 

0 

The effect of diet on blood flow through the organs of the GIT and across the liver 

is of great importance. Blood flow from the GIT assimilates absorbed nutrients for 

delivery to the liver. Metabolism of nutrients by the liver and flux out of the liver 

dictates the nutrients and their concentrations available for use by peripheral tissues. 

Roughage Diets 

Blood Flow. Blood flow across the portal-drained viscera (PDV), the liver, and 

arterial blood flow was not affected by forage type (Patil et al., 1996; Park et al., 1997). 

Goetsch et al. (1997a) reported that arterial, portal, or hepatic blood flow was not affected 

by forage type or chop lengths even though DMl was influenced. Additionally, inclusion 

of corn or alfalfa hay in hay diets increased total DMJ but did not affect blood flow 

(Goetsch et al., 1997b ). In contrast, increases of 400 g in daily DMI of alfalfa pellets 

increased PDV blood flow by 31 % in sheep (MacRae et al., 1997) and an increase of 250 

g/d of hay increased PDV blood flow by 14% in ewes (Han et al., 2002). Similarly, 

Reynolds et al. (1991b) reported a near equal increase in blood flow with increased DMI. 

A 39% increase in DMI resulted in a 46 and 44% increase in portal and hepatic blood 

flow, respectively (Reynolds et al., 1991b). However, Huntington et al. (1996) reported 

decreased portal and hepatic blood flow in steers when dietary concentrate was increased 

from 27 to 63% with a 1 kg difference in DMI between the two diets. Seal et al. (1992) 

also repo11ed decrease mesenteric and portal blood flow between all forage and 50:50 
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forage concentrate diets. Ruminal blood flow, which is a portion of PDV blood flow, 

was increased by 5.2 L/h when nutrient supply was increased by infusion of nutrients into 

the rumen (Han et al., 2002). 

Blood flow responds to changes in DMI and energy content of diet. Differences 

in forage type, processing, or supplementation did not affect blood flow. However, when 

the roughage content of the diet was replaced by concentrates blood flow decreased. 

Apparently differences in fermentation in the rumen and potential post-ruminal digestion 

can have significant effects on blood flow. 

Oxygen Consumption. Oxygen consumption or the energy expenditure by 

splanchnic tissues constitutes a major portion of the maintenance energy requirements of 

animals (Crooker et al., 1991). Oxygen consumption by the PDV was similar for lambs 

consuming alfalfa, ryegrass-wheat, or bermudagrass hay (Park et al., 1997), lambs 

consuming warm- or cool-season grass hay with or without alfalfa hay (Patil et al., 1996), 

and lambs consuming ryegrass-wheat hay with supplemental corn or alfalfa (Goetsch et 

al., I 997b ). An increase in PDV oxygen consumption was observed in lambs consuming 

ground and pelleted bermudagrass or ryegrass-wheat hay (Goetsch et al., 1997a). Han et 

al. (2002) reported increased oxygen consumption by the PDV of ewes consuming hay 

with additional infused urea or casein, and a linear increase in PDV oxygen consumption 

with increasing dietary bulk. Ruminal oxygen consumption was not affected by ruminal 

nutrient infusion or dietary bulk. Because metabolism of the splanchnic tissues (PDV 

and liver) is driven by DMI, they make up a substantial proportion of whole body oxygen 

consumption (Reynolds 2001 ). Increasing DMI of a 75% alfalfa diet increased 

splanchnic tissue oxygen consumption, and accounted for 72% of the increase in whole 
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body oxygen consumption (Reynolds et al., 1991a). Splanchnic tissues oxygen 

consumption was similar for lambs consuming ryegrass-wheat hay alone or supplemented 

either with corn and/or alfalfa hay (Goetsch et al., 1997b). The inclusion of20% alfalfa 

hay in the diet of lambs consuming either warm- or cool-season hay increased splanchnic 

tissue oxygen consumption by 16%. Grinding and pelleting alfalfa hay increased 

splanchnic tissue oxygen consumption by 17% in lambs consuming either bermudagrass 

or ryegrass-wheat hay (Goetsch et al., 1997a). 

Oxygen consumption by the PDV and splanchnic tissues generally increased with 

increasing DMI. However, increased DMJ was not solely responsible for increased 

oxygen consumption by the splanchnic tissues because increased dietary bulk also 

increased oxygen consumption. Increasing the amount of nutrients available for 

digestion, absorption, and.metabolism increases the workload of the splanchnic tissues, 

and thereby increases the energy consumption by those tissues. 

Flux of Nitrogenous Metabolites. Release of ammonia-N by the POV was 

increased by the inclusion of alfalfa in ryegrass-wheat hay diets and warm-season grass 

hay diets (Goetsch et al., 1997b; Patil et al., 1996, respectively). Inclusion of alfalfa in 

the diet provided additional ruminally fermentable nitrogen that was absorbed across the 

rumen. Increasing DMI of a 75% alfalfa diet by 39% increased ammonia-N release by 

45% from the POV of heifers (Reynolds et al., 1991b). Grinding and pelleting grass hays 

resulted in a decreased release of ammonia-N from the PDV (Goetsch et al., 1997a). 

Infusion of8.5 g/d of urea and 33 g/d of casein into the rumen increased POV ammonia

N flux by 10. 3 9 mmol/h in ewes compared with ewes only infused with urea (Han et al., 

2002). In contrast, Huntington et al. (1996) reported no difference in POV release of 
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ammonia-Nin steers consuming 73 or 47% roughage diets. Release of ammonia-N by 

the PDV was offset by a hepatic removal that resulted in a net utilization of ammonia-N 

by the splanchnic tissues (Patil et al., 1996; Goetsch et al., 1997a; Goetsch et al., 1997b ). 

Uptake ammonia-N by the splanchnic tissues increased with increasing DMI (Reynolds 

et al., 1991b). 

Unlike ammonia-N PDV flux, urea-N flux is generally removal and not affected 

by forage type (Goetsch et al., 1997a; Park et al., 1997), form of the diet (Goetsch et al., 

1997a), or addition of corn or alfalfa to ryegrass~wheat hay diets (Goetsch et al., 1997b ). 

In contrast, Huntington et al. (1996) reported decreased urea-N uptake by the PDV when 

concentrate level was increased. However the liver releases urea-N and this results in a 

positive flux of hepatic urea-N (Patil et al., 1996; Goetsch et al., 1997a; Goetsch et al., 

1997b ). Alfalfa hay or the inclusion of alfalfa in ryegrass-wheat hay increased hepatic 

urea-N flux (Park et al., 1997, Goetsch et al., 1997b, respectively). Increased liver urea

N release was reported to account for 16% of the increase in oxygen consumption by the 

liver with increased intake of 75% alfalfa diets (Reynolds et al., 1991 a). Release of urea

N by the liver, which is greater than the removal by the PDV, resulted in the splanchnic 

release ofurea-N (Patil et al., 1996; Goetsch et al., 1997a; Goetsch et al., 1997b). 

Release of urea-N from splanchnic tissues would supply N for recycling (Huntington et 

al., 1996). 

Release of AAN from PDV was 56% greater in alfalfa hay diets compared with 

ryegrass-wheat or bermudagrass hay diets (Park et al., 1997). Ryegrass-wheat hay had 

11% greater AAN PDV flux than bermudagrass hay diets (Goetsch et al., 1997a). 

Inclusion of alfalfa into warm- or cool-season grass hay diets increased AAN PDV flux 
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compared to grass hay diets only (Patil et al., 1996). However, the inclusion of corn or 

alfalfa in ryegrass-wheat hay diets resulted in similar AAN PDV flux in wethers. 

Similarly, Reynolds et al. (1991b) and Huntington et al. (1996) reported no differences in 

PDV AAN flux in cattle consuming diets that differed in forage:concentrate ratio. 

Interestingly, increasing diet bulk by feeding increasing amounts if hay coupled with 

infusion of urea and casein resulted in a linear increase of amino acid PDV flux in ewes 

(-3.03, 6.45, 12.21 mmol/h; low, medium, highbulk, respectively; Han et al., 2002). 

Amino acid PDV flux exhibited a linear increase in amino acid release in response to 

increasing diet bulk (Han et al., 2002). Hepatic uptake of AAN could be used as possible 

gluconeogenic precursors or urea cycle intermediates (Reynolds et al., 1991). 

Flux of nitrogenous nutrients across the PDV appears to be primarily driven by 

crude protein content of the diet. Increasing crude protein in the diet by increasing intake 

or supplementation of high protein sources increased PDV release of ammonia-N and 

AAN. The source of the increase in ammonia-N is likely the rumen when ruminal 

digestible protein is supplied. Likewise the increase in AAN might be from increased 

microbial flow to the small intestine or increased flow of ruminal undegradable protein. 

The carbon skeletons provided by the sources of AAN can be utilized as gluconeogenic 

precursors. Urea-N uptake by the PDV is primarily a result of recycling urea N to the 

rumen. However, the increased release ofurea-N from the liver for recycling is a source 

of energy expenditure incurred by the Splanchnic tissues. Adequate ruminal degradable 

protein in the diet would reduce urea-N recycling to the rumen and decrease energy 

expenditure by the liver. 
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Flux of Energy Yielding Nutrients. Little starch reaches the lower GIT for 

digestion and absorption because of ruminal fermentation. What starch is digested in the 

lower GIT is utilized by the tissues of the GIT. Therefore, the PDV is generally a net 

utilizer of glucose, and removal of glucose across the PDV occurs in roughage-based 

diets (Patil et al., 1996; Goetsch et al., 1997a; Han et al., 2002). In the preceding reports, 

PDV glucose flux was not affected by grass hay type or the inclusion of alfalfa hay, level 

ofbulk in the diet, or ruminal infusion of urea and casein. In contrast, Huntington et al. 

( 1996) reported decreased glucose uptake by PDV when concentrate level was increased 

from 27 to 63%. Reynolds et al. (1991b) reported that increasing DMI ofan alfalfa diet 

increased PDV uptake of glucose. Because PDV glucose flux is negative, hepatic 

glucose flux and the subsequent splanchnic tissue flux must be positive to maintain 

adequate glucose concentrations for metabolic needs of peripheral tissue. In the studies 

of Patil et al. (1996) and Goetsch et al. (1997a), which utilized animals that had similar 

requirements, hepatic and splanchnic glucose flux were similar regardless of diet type, 

supplementation, or diet form. However, Reynolds et al. ( 1991 b) reported a 55% 

increase in hepatic and a 32% increase in splanchnic release of glucose when alfalfa 

intake increased by 39%. Release of glucose from the liver and splanchnic tissues in 

light of extraction of glucose by the PDV indicates substantial gluconeogenesis. 

The primary gluconeogenic precursors that arise from ruminal fermentation are 

the volatile fatty acids (VF A) acetate and propionate. Because VF A are a product of 

ruminal fermentation, PDV releases VF A (Huntington et al., 1996; Patil et al., 1996; 

Goetsch et al., 1997a; Han et al., 2002). Level of nutrition does affect acetate and 

propionate PDV flux. Inclusion of alfalfa hay in warm- or cool-season grass hay diets 
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increased propionate PDV flux (Goetsch et al., 1997a). Likewise the addition of urea or 

casein to grass hay diets increased propionate PDV flux (Han et al., 2002). Acetate 

release by the PDV was reduced when roughage level was reduced from 73 to 37%, but 

propionate was not affected (Huntington et al., 1996). Because propionate is a 

gluconeogenic precursor, it is taken up by the liver. Additionally, acetate is utilized for 

lipid synthesis. Extraction of propionate was not effected by hay type, supplementation, 

(Patil et al., 1996), or form of the diet (Goetsch et al., 1997a). Small splanchnic release 

of propionate resulted from roughage diets (Huntington et al., 1996; Patil et al., 1996; 

Goetsch et al., 1997a). 

Lactate in portal blood can come from two sources, ruminal absorption and 

glycolysis in the post-ruminal digestive tract (Reynolds and Huntington 1988a; Eisemann 

et al., 1997). Contribution of lactate from either ruminal or adipose sources is not well 

defined. Additionally, the ruminal contribution oflactate from ruminants consuming 

roughage-based diets may be minimal. However, Reynolds et al. ( 1991 b) reported 

increased PDV lactate release with increased intake of 75% alfalfa diets by heifers. 

Interestingly, PDV lactate release was similar between 75% alfalfa and 75% concentrate 

diets. Han et al. (2002) reported similar PDV lactate flux between diets differing in bulk 

from hay intake and nutrients supplied by infusion. Ruminal contribution to PDV lactate 

flux varied from 21 % in low bulk, low nutrient supplementation to 40% on medium bulk, 

high nutrient supplementation. Goetsch et al. (1997a) reported a 50% increase in PDV 

flux of lactate when bermudagrass and ryegrass-wheat hay was pelleted as opposed to 

coarsely chopped. The liver extracts nearly all lactate resulting in hepatic removal that is 

nearly equal to PDV release and therefore splanchnic flux is near zero (Goetsch et al., 
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1997a). Removal by the liver is an important factor in gluconeogensis and 

transamination in the Cori cycle. 

Flux of energy yielding nutrients across the PDV appears to be entirely diet 

dependent. Roughage diets increase the uptake of glucose by the PDV with some 

exceptions. Addition of concentrate sources into the diet decreases the uptake of glucose 

from arterial blood by the PDV. Because of the large uptake of glucose by the PDV, the 

liver synthesizes most of the glucose for peripheral use, although the kidney synthesizes 

some. Flux VF A and lactate are diet dependent. Release of VF A and lactate by the PDV 

is counterbalanced by uptake by the liver for metabolism into substrates that are utilized 

by the peripheral tissues. Acetate is an exception because it can be utilized directly for 

fatty acid synthesis. 

Concentrate Diets 

Blood.Flow. Eisemann et al. (1996) examined the pattern of blood flow change in 

growing steers as they aged and gained BW. Portal vein and liver blood flow increased 

concomitant with DMI, age, and BW. Blood flow reached a plateau at 400 kg ofBW and 

400 days of age. Increased DMI of 75% concentrate diet increased portal and hepatic 

bloodflowby41 and39%inheifersand33 and29%(Reynoldsetal., 1991b, 1992). 

Burrin et al. (1989) fed pelleted diets that were 67% corn, 20% alfalfa at either ad libitum 

or at maintenance levels to growing lambs and measured blood flow. Arterial, portal, and 

hepatic blood flows increased 44, 5, and 21 %, respectively, in ad libitum fed lambs 

during the 21 d feeding period; whereas, blood flows in maintenance fed lambs decreased 

32, 7.5, 16% from d Oto 21. Increases from low to medium (39%) and medium to high 
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(33%) DMI resulted in 40 and 47% increase in PDV blood flow and 79 and 30% increase 

in splanchnic blood flow in steers (Lapierre et al., 2000). 

Differences in com and sorghum processing ( dry-rolled vs. steam-flaked) resulted 

in similar mesenteric, ruminal, portal, and hepatic blood flows (Alio et al., 2000; Theurer 

et al., 2002). Different underagadable intake protein (UIP) supplements to com, pelleted 

com cob diets had no effect on arterial blood flow (Bonhert et al., 1999). 

Supplementation with UIP supplements decreased portal blood flow by 14% and hepatic 

blood flow by 17% compared with soybean meal (Bonhert et al., 1999). Intraruminal 

infusion of VF A regardless of concentration increased portal blood flow in sheep by 23% 

compared with non-infused sheep (Kristensen et al., 2000). However, Krehbiel et al. 

( 1992) observed no increase in portal or hepatic blood flow with increasing intraruminal 

infusion of butyrate. Lobley et al. ( 1998) reported that infusion into the mesenteric vein 

of amino acids increased arterial blood flow by 44% and decreased portal and hepatic 

blood flow by 11 and 7%, respectively, compared with pre-infusion blood flow. 

Oxygen Consumption. Oxygen consumption by the PDV and liver in growing 

steers increased as steers aged, DMI increased, and gained BW (Eisemann et al., 1996). 

Liver oxygen consumption was greater than PDV oxygen consumption and splanchnic 

tissue oxygen consumption was 58% of whole body oxygen consumption at 236 kg of 

BW and 66% of whole body oxygen consumption at 522 kg ofBW (Eisemann et al., 

1996). Differences in DMI of concentrate has been reported to affect oxygen 

consumption by the PDV, liver, and splanchnic tissues. Maintenance level of intake 

resulted in a 30% reduction in PDV oxygen consumption in lambs after 21 d and no 

change in PDV oxygen consumption in ad libitum-fed lambs during a 21-d feeding 

46 



period (Burrin et al., 1989). Liver oxygen consumption increased by 29% in ad libitum 

fed lambs and decreased by 29% in maintenance-fed lambs after 21 d. Splanchnic tissue 

oxygen consumption was unchanged in ad libitum fed lambs, but was decreased by 30% 

from d O values in maintenance fed lambs after 21 d (Burrin et al., 1989). Reynolds et 

al., 1992) reported that a 44 % increase in DMI (g/kg of BW0·75 ) by growing steers 

resulted in 30, 39, and 34% increase in PDV, hepatic, and splanchnic tissue oxygen 

consumption, respectively. Lapierre et al. ( 1999) reported a linear increase in CO2 

production with increasing intake of a 64% corn diet. Infusion of an amino acid solution 

into the mesenteric vein resulted in a 35% increase in oxygen consumption by the PDV 

and a 29% increase in liver oxygen consumption (Lobley et al., 1998). Reynolds et al. 

(1988a) reported that steers meal-fed concentrate diets had mesenteric, stomach, and 

PDV oxygen consumption that was not different from alfalfa fed steers. 

Blood flow responds positively to increases in DMI. In each of the preceding 

studies, increasing DMI increased blood flow by substantial amounts. In addition, 

supplying additional nutrients by supplementation or infusion that increased the digestive 

and absorptive load for the PDV increased blood flow. These same trends were also 

observed for oxygen consumption by the PDY, liver, and splanchnic tissues. Many of the 

same reports that examined blood flow also examined oxygen consumption. 

Flux<?/ Nitrogenous Metabolites. Ammonia-N flux across PDV in growing steers 

varied curvilinearly as steers aged, increased DMI, and gained BW (Eisemann et al., 

1996). Peak ammonia-N release from the POV appeared to be at a metabolic BW of87 

kg (Eisemann et al., 1996). Hepatic uptake of ammonia-N by the liver exhibited a nearly 

inverse response to that of the PDY. The inverse relationship of PDV and hepatic flux 
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resulted in a small release of ammonia-N release by splanchnic tissues (Eisemann et al., 

1996). Whitt et al. (1996) examined PDV and hepatic ammonia N flux during a 24-h 

period in steers fed twice daily. Ammonia N PDV flux peaked 1.5 h after feeding and 

decreased to daily average (131 mmol/h) by 5 h after feeding. Hepatic ammonia-N flux 

was a mirror image ofPDV flux in steers. The removal of ammonia-N by the liver is 

essential because of ammonia's potential toxicity. Reynolds et al. ( 1991 b, 1992) reported 

that a 45% increase in DMI of high concentrate diets resulted in 31 and 43% increased 

PDV release and hepatic uptake of ammonia-N. Similarly, differences in low and high 

DMI resulted in a 33% increase in ammonia N PDV release and a 35% increase in 

hepatic removal, whereas increasing DMI from medium to high increased ammonia-N 

PDV release by 19%, and increased hepatic removal by 16% (Lapierre et al., 2000). 

Splanchnic tissue flux of ~mmonia-N was unaffected by DMI (Reynolds et al., 1992; 

Lapierre et al., 2000). 

Differences in grain processing did not affect PDV, hepatic, or splanchnic 

ammonia-N flux (Alio et al., 2000,_ Theurer et al., 2002). Mesenteric infusion of amino 

acids or intraruminal infusion of butyrate did not affect POV or hepatic flux of ammonia

N in sheep (Lobley et al., 1998; Krehbiel et al, 1992, respectively). Splanchnic ammonia 

N flux was increased with 100 mmol/h of butyrate infusion but was decreased below 

control values at 200 mmol/h (Krehbiel et al., 1992). Addition of energy in the form of 

glucose or starch through abomasal infusion to a high concentrate diet did not alter PDV 

release of ammonia-N in beef heifers (Huntington and Reynolds, 1986). Bonhert et al. 

(1999) reported a decrease in ammonia-N PDV flux with increasing UIP supplementation 
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in lambs. The decrease in PDV ammonia-N release was coupled with a decreased 

hepatic removal of ammonia-N, but similar splanchnic flux. 

Urea-N removal by PDV increased in growing steers as they increased DMI, age, 

and Bw°·75 (Eisemann et al., 1996). Hepatic flux exhibited a more dramatic increase in 

the rate of release, and splanchnic flux increased in overall rate of release as steers aged, 

increased DMI, and gained BW (Eisemann et al., 1996). In steers fed twice daily, POV 

urea-N flux resulted in a net uptake by the POV after the initial feeding of the day and 

release of urea-N after the second feeding, resulting in a mean daily uptake of urea-N by 

the POV (Whitt et al., 1996). Hepatic urea-N flux changed from release to uptake 7 h 

after the initial morning feeding and uptake continued until approximately 4 h before 

initial morning feeding the next day (Whitt et al., 1996). Differences in OMI did not 

affect POV uptake of urea N, however hepatic release ofurea-N increased by 31% 

between low and medium DMI and 1 5% between steers on medium and high DMI 

(Lapierre et al., 2000). Because of the similarity in PDV flux, splanchnic urea-N flux 

was not affected by level ofDMI. In contrast, POV uptake ofurea-N increased by 53 

and 70% with high intake of concentrate diets compared with low intakes in two studies 

of Reynolds et al. (1991 band 1992). Release of urea-N from the liver was also 

significantly increased in cattle consuming greater amounts of high concentrate diets 

(Reynolds et al., 1991 b and 1992); subsequent release of urea-N was also increased with 

increased DMI. 

Increasing steam-flaked corn bulk density increased PDV urea-N uptake (Ailo et 

al., 2000), but grain processing (dry-rolled vs. steam-flaked) did not affect hepatic urea-N 

flux, and subsequent splanchnic urea-N flux did not differ between grain processing 
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methods in growing steers (Alio et al., 2000; Thuerer et al., 2002). Intraruminal infusion 

of butyrate did not affect urea-N PDV, hepatic, or splanchnic flux (Krehbiel et al., 1992). 

Likewise abomasal infusion of glucose or starch did not affect urea-N PDV uptake 

(Huntington and Reynolds, 1986). Increases in amino acid infusion or UIP feeding 

increased urea-N PDV uptake in lambs (Lobley et al., 1998; Bonhert et al., 1999, 

respectively). Hepatic urea-N flux increased with infusion of amino acids by increasing 

the release rate of urea-N (Lobley et al., 1998). Feeding UIP vs. ruminally degradable 

protein decreased urea-N release in lambs (Bonhert et al., 1999). 

As steers aged, increased DMl, and BW, PDV flux of AAN increased and greater 

amounts of AAN were released to the liver (Eisemann et al., 1996). Hepatic flux of AAN 

resulted in uptake of AAN at a lower rate than PDV release but hepatic uptake increased 

as steers aged and increased DMI (Eisemann et al., 1996). The resulting splanchnic flux 

indicated a release of AAN in steers at 60 kg BW0·75 , but splanchnic flux was near zero at 

114 kg BW0·75 (Eisemann et al., 1996). Whitt et al. (1996) reported that AAN PDV, 

hepatic, and splanchnic flux was not sensitive to time of feed intake or time of day. 

Lapierre et al. (2000) reported a linear increase in AAN PDV flux between low, medium, 

and high levels ofDMI in steers. Similarly, Reynolds et al. (1991b and 1992) reported 

56 and 65% increased PDV release of AAN in cattle consuming 45% more of concentrate 

diets. Hepatic flux was not different between low, medium, and high levels of intake 

despite differences in PDV flux (Lapierre et al., 2000). However, two studies of 

Reynolds et al. ( 1991 b and 1992) reported increased hepatic uptake of AAN when cattle 

consumed greater amounts concentrate diets. Differences in PDV flux between DMI 

levels resulted in an increased splanchnic tissue release of AAN on high levels of intake 

50 



(Reynolds et al., 1991 band 1992; Lapierre et al., 2000). Dry-rolled and steam-flaked 

corn diets resulted in similar PDV, hepatic, and splanchnic flux (Alia et al., 2000). 

Decreasing flake density increased PDV release of AAN (Ailo et al., 2000). Additional 

energy supplied by butyrate infusion did not alter PDV flux of AAN but did decrease 

hepatic flux with increasing concentration of butyrate infusion (Krehbiel et al., 1992). 

Splanchnic tissue flux was similar between control and butyrate infused steers; the 

splanchnic tissues had a net release of 43. 5 mmol/h (Krehbiel et al., 1992). Infusion of 

additional amino acids into the mesenteric vein increased PDV release of AAN and 

increased removal hepatic flux of AAN above basal levels (Lobley et al., 1998). A 

second infusion of amino acids following the first infusion increased AAN PDV and 

hepatic flux above basal levels but not to the extent that the initial amino acid infusion 

produced (Lobley et al., 1998). 

The high rate of metabolism of the liver can be attributed to its' high rate of 

protein turnover (Reynolds 2001; Lobley 2002). The high rate of protein turnover in the 

liver is a result of the synthesis of constitutive and exports proteins (Connell et al., 1997; 

Reynolds 2001; Lobley 2002). Export proteins synthesized by the liver such as albumin 

can be used as anabolic sources for peripheral tissues (Lobley 2002). In addition export 

and other constitutive proteins synthesized by the liver can act as temporary repositories 

of amino acids to mediate variation in amino acid supply (Lobely et al., 1998). 

In cattle consuming concentrate based diets the flux of nitrogenous metabolites 

appears to be influenced by DMI. Increasing DMI increases the PDV release of 

ammonia-N and AAN. Increased PDV release of ammonia-N and AAN are probably a 

result of increased availability of nutrients for absorption. Ammonia-N uptake by the 
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liver counterbalances PDV release; however, AAN uptake by the liver is not always as 

great as PDV release and release of AAN from splanchnic tissues can be observed. 

Uptake ofurea-N by the PDV, most like by the rumen, increased with increases in DMI. 

Increased fermentable carbohydrates of high concentrate diets increases the need of N by 

the ruminal microbes for microbial protein synthesis. A good example of this is the 

increased urea-N uptake by the PD V of steers consuming diets of lower flake density on 

steam flaked sorghum diets. 

Flux(?{ Energy Yielding Nutrients. Volatile fatty acid PDV, hepatic, and 

splanchnic flux were all affected by increases of DMI in growing steers (Eisemann et al., 

1996). Increasing acetate release by the PDV and liver resulted in increasing release 

splanchnic flux of acetate for peripheral use. Because steers deposit more fat as they age 

when consuming high-energy diets the supply of acetate required by the peripheral 

tissues increases. Likewise, PDV flux release of propionate increased as steers aged and 

increased DMI (Eisemann et al., 1996). Hepatic flux increased in a similar fashion, but 

the liver utilized propionate resulting in a near zero splanchnic flux of propionate 

(Eisemann et al., 1996). Butyrate PDV, hepatic and subsequent splanchnic flux varied by 

less than 50 mmol/h as steers increased age and BW0·75 (Eisemann et al., 1996). 

Glucose flux across the PDV in growing steers remained relatively stable as steers 

gained BW, increased DMI, and aged (Eisemann et al., 1996); but did increase slightly at 

approximately 92 kg BW0·75 . However because of the increasing DMI and flux of 

gluconeogenic precursors, hepatic release of glucose increased as steers gained BW0·75 

(Eisemann et al., 1996). Subsequent splanchnic release of glucose also increased with 

body weight but leveled off at 92 kg BWrJ.?s. Reynolds et al. (1991 b and 1992) reported 
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PDY release by cattle on low intake of concentrate diets and PDV uptake of glucose by 

cattle on high intake. Similarly, Whitt et al. ( 1996) reported removal of glucose by PDV 

in steers consuming a 64% concentrate diet. Increased PDV removal of glucose implies 

utilization of glucose exceeded absorption of glucose by intestinal tissues. In contrast, 

increasing level ofDMI linearly increased release PDV flux in growing steers (Lapierre 

et al., 2000). Examination of within day variation showed that PDV glucose flux was 

release for only 3 h after the second feeding of the day (Whitt et al., 1996). Mean hepatic 

glucose flux indicated a release of glucose by the liver (Whitt et al., 1996), but removal 

occurred for 10 h during the day after the first of two feedings of steers. Therefore, a 

positive daily splanchnic flux was observed in steers on high-energy diets (Whitt et al., 

1996). Similarly, the increase in DMI and gluconeogenic precursors resulted in an 

increase in release hepatic flux and splanchnic glucose flux (Reynolds et al., 1991 b and 

· 1992; Lapierre et al., 2000). Addition of intraruminal butyrate or increases in UIP did not 

affect PDV, hepatic, or splanchnic flux of glucose in steers or sheep, respectively 

(Krehbiel et al., 1992; Bonhert et al., 1999). However, Huntington and Reynolds (1986) 

reported increased PDV glucose release with abomasal glucose infusion compared with 

infusion of starch. Lower PDV glucose release associated with starch infusion implies 

digestion of starch to glucose is the rate-limiting step in glucose absorption (Reynolds et 

al., 1991b). 

Release oflactate by the PDV was similar in growing steers as they increased 

DMI, BW, and age (Eisemann et al., 1996). Removal lactate flux indicated utilization of 

lactate by the liver in growing steers but remained stable with increases in DMI and BW 

(Eisemann et al., 1996). The subsequent splanchnic flux indicated removal oflactate, 
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and was constant across the growth period. In contrast Reynolds et al. (1991 b and 1992) 

reported increased release oflactate by the PDV with increasing DMI of concentrate 

diets. However, cattle on lower DMI level of concentrate diet had hepatic removal 

greater than cattle on high DMI level (Reynolds et al., 1991 b and 1992); but because of 

greater PDV release, splanchnic release of lactate was greater for cattle consuming 

greater amounts of concentrate diets (Reynolds et al., I 991 band 1992). Reynolds et al.· 

( 1998b) reported steers consuming alfalfa diets had 21 % greater release of lactate from 

the PDV compared with steers consuming a concentrate diet The majority oflactate in 

both alfalfa (77%) and concentrate ( 65%) diets originated from stomach tissues 

(Reynolds et al., 1988b). 

Flux ofNEFA across the PDV, liver, and splanchnic tissues have been reported to 

be DMI dependent (Reynolds et al., 1992; Lapierre et al., 2000). Steers consuming a 

medium level ofDMI had greater release ofNEFA by the PDV compared with low or 

high DMI steers. However, removal hepatic flux was greatest in low DMI steers 

followed by medium and then high-DMI steers (Lapierre et al., 2000); splanchnic flux 

was indicative of the extent of uptake of NEF A by the liver. In contrast, Reynolds et al. 

(1992) reported greater release ofNEF A by the PDV and increased uptake by the liver 

for steers on a high level of intake, but splanchnic uptake was not different between steers 

on low and high levels of intake. 

Flux of energy yielding nutrients is significantly affected by differences in intake. 

Volatile fatty acids released by the PDV increases with increasing DMI. Hepatic and 

splanchnic flux is mostly dependent on individual VF A. The liver metabolizes butyrate 

and propionate whereas acetate is released. The PDV even on high concentrate diets 
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takes up glucose. However, on high concentrate diets greater release of glucose from the 

liver is possible because of greater concentrations of gluconeogenic precursors. The 

effect of diet on lactate and NEF A metabolism is more variable than glucose. Release of 

lactate by the PDV is variable, but liver utilization remains nearly complete. 

Summary and Conclusions 

The occurrence and magnitude of compensatory growth that is exhibited in 

animals depends on many factors. This review focused on the effect of plane of nutrition 

on the occurrence of compensatory growth. Additionally, the review examined the effect 

of nutrition on some of the possible mechanisms that contribute to compensatory growth: 

visceral organ mass, cellularity and energy expenditure, circulating nutrients and 

hormones, and the flux of nutrients across splanchnic tissues. 

Compensatory growth is generally characterized by increased BW gain, increased 

DMI, and increased gain efficiency. Compensating animals prior to the compensation 

period have a leaner body composition than contemporaries. Differential accretion of 

body protein and fat occurs during the realimentation period between compensating and 

normal steers. However, final body composition is often similar when all animals are fed 

to common final body weights. 

Mass of critical visceral organs such as the GIT and liver are often changed in 

compensating cattle. In some cases the response of specific organs or tissues to nutrient 

restriction depends on the nature of the restriction (i.e., energy, protein, or intake). 

Generally, reduced visceral organ mass, cellularity, and oxygen consumption are 
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characteristic of animals that have undergone energy, protein, or intake restriction. The 

splanchnic tissues consume a large portion of an animal's maintenance energy 

requirements. The decrease in mass and energy expenditure that occurs in growing 

ruminants during energy, protein, and intake restriction decreases maintenance energy 

requirements. At the initiation of the realimentation period, the decreased maintenance 

energy requirements allow greater amounts of energy to be directed to growth. 

Dietary energy, protein, or intake restrictions that elicit compensatory growth in 

animals alter circulating nutrients, metabolites, and hormones in those animals. 

Decreased nutrient intake will in turn decrease circulating nutrients available to the 

animal. Decreased nutrient intake also alters hormone concentrations in energy, protein, 

and intake restricted animals. Alteration of hormone concentration reconciles the 

animal's homeorhetic controls with nutrient intake. When dietary nutrient supply 

changes during realimentation circulating nutrient concentrations are quick to respond. 

However, hormonal balance and increases in hormone concentration in some instances 

require a longer time-course for change. 

Level of intake and type of diet affects the nutrient profile and concentdttion that 

is ultimately absorbed by the GIT. The GIT requires nutrients and release of nutrients 

from the GIT varies with feed intake and diet type. The liver is an important 

thoroughfare for nutrients between the PDV and peripheral tissues. Depending on PDV 

release, peripheral needs, and nature of the nutrient, the liver can alter the concentration 

of nutrients that exit relative to the concentration that enters the liver. Ultimately the 

concentrations of nutrients that leave the liver dictate expression of compensatory growth 

in cattle. 
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ABSTRACT 

We compared feedlot performance, carcass characteristics, and body chemical 

composition to determine the effect of previous winter grazing BW gain in steers. Two 

experiments were conducted utilizing 48 Angus x Angus-Hereford steers in each 

experiment. The experimental designs were completely random. In each experiment, 

steers were randomly assigned to one of three treatments: high rate ofBW gain grazing 

winter wheat (HGW); low rate of BW gain grazing winter wheat (LGW); or grazing 

dormant tallgrass native range (NR) with 0.91 kg/d of a 41% CP supplement. Steers 

grazed for 120 or I 44 d in Exp. 1 and 2, respectively. Prior to placement into a feedlot in 

each experiment, four steers from each treatment were randomly selected for initial 

harvest to measure carcass characteristics, and carcass, offal, and whole body chemical 

composition. All remaining steers were placed into a feedlot and fed to the same backfat 

endpoint (1.27 cm). Six steers were randomly selected from each treatment for final 

chemical composition; carcass traits were measured on all steers. Initial carcass 

characteristics of steers prior to finishing were different (P < 0.05) between the three 

winter grazing treatments in Exp. l and 2. Feedlot live and empty BW ADG and gain 

efficiency was not different (P > 0.10) among treatments, but DMI (% of mean BW) of 

NR and LGW steers was greater (P < 0.05) compared with HGW steers in Exp. I and 2. 

Final carcass compositions were generally not different among treatments, except final 

carcass fat ofHGW and NR was greater (P = 0.03) compared with LGW in Exp. 1 and 

greater (P = 0.07) in NR compared with HGW in Exp. 2. Final whole body composition 
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was similar (P > 0.10) among treatments in both Exp. 1 and 2. In Exp. 1, LGW carcass 

FFOM (fat free organic matter) accretion was greater (P = 0.002) and LGW and NR offal 

FFOM accretion was less (P < 0.001) compared with HGW. However in Exp. 2, NR and 

LGW fat accretion rate in the carcass and whole body was greater (P < 0.01) compared 

with HGW. In conclusion, differences in winter grazing ADG and initial body fat did not 

result in differences in feedlot gain or efficiency among treatments. Initial differences in 

body fat and FFOM content were nullified by feeding animals to a similar compositional 

endpoint. However, differences in accretive rates of fat and lean exist which could allow 

for different compositional endpoints depending on the length of the finishing period. 

Key words: Cattle, Grazing, Feedlot, Body composition 

Introduction 

Beef production systems that incorporate grazing programs can have profound 

effects on body composition (Carstens et al., 1991 ), nutrient metabolism (Thomson et al., 

1982), and subsequent feedlot performance (Drouillard et al., J 991 a) of cattle. Sainz et 

al. (1995) reported that alterations in body composition through previous nutrition altered 

net energy maintenance requirements of growing cattle. Generally, as body fat content of 

cattle increases at a particular BW, metabolizable energy allowable daily gain decreases 

(NRC, 1996). Therefore, it is generally assumed that body fat content of cattle entering 

the feedlot can have important effects on cattle performance. 

Previous nutrition that restricts cattle growth and limits body fat deposition can 

positively affect cattle performance in the feedlot through increased growth. Altering 
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previous nutrition has also been reported to affect composition ofBW gain in the feedlot 

(Fox et al., 1972; Rompalla et al., 1985; Drouillard et al., 1991b). Much of the previous 

work examining feedlot growth has not utilized grazing systems, rather different levels of 

feed intake, restrictions in nutrient intake, and (or) differences between concentrate and 

roughage diets. In this experiment we wanted to compare winter grazing programs 

common to the Southern Great Plains. We hypothesized that steers of similar genetics 

with different BW gains and body fat resulting from winter grazing programs would 

exhibit different growth rates in the feedlot and have different body chemical 

composition changes during finishing. Therefore our objectives were to examine effect 

of previous BW gain during winter grazing on subsequent feedlot performance, carcass 

characteristics, and feedlot body chemical composition change. 

Materials and Methods 

Animals and Management 

In each of two experiments, 48 fall-weaned Angus x Angus-Hereford steers (244 

± 23 kg, Exp. 1; 231 ± 25 kg, Exp. 2) from the same cowherd were randomly allotted to 

one of three winter grazing treatments. Treatments were: grazing winter wheat pasture to 

achieve a high rate ofBW gain (HGW; mean herbage allowance= 1,665 ± 361 kg·steer" 

1, Exp. 1; 2,093 ± 1,776 kg·steer"1, Exp. 2); grazing winter wheat pasture and adjusting 

stocking density to maintain a low rate ofBW gain (LGW; mean herbage allowance= 

234 ± 53 kg·steer"1, Exp. 1; 186 ± 93 kg·steer" 1, Exp. 2), or grazing dormant tallgrass 

native range (NR, very low stocking density). Steers grazing NR were offered 0.91 

kg·steer-1.d- 1 of a cottonseed-meal based supplement (41% CP). No implants were 
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utilized during winter grazing. In Exp. 1, grazing was initiated on December 7, 1999 and 

terminated on April 6, 2000 after 120 d. In Exp. 2, grazing was initiated on December 

18, 2000 and was terminated on May 10, 2001 after 144 d. Body weights of steers were 

obtained after a five to six hour removal from forage and water at the initiation of 

grazing, monthly during grazing, and at the termination of grazing. 

Following grazing, steers were sorted by weight within winter grazing treatment 

and randomly assigned to feedlot pens. Prior to entering the feedlot, steers were co

mingled and allowed access to hay for 3 d to equalize gut fill. Steers were then shrunk 

without water for 5 to 6 h (Exp 1 ), or transported to the USDA, ARS Grazinglands 

Research Laboratory, El Reno, OK (Exp. 2) and weights were taken prior to placement 

into feedlot pens. At this time all steers were implanted with Revelor-S (lntervet; 

Millsboro, DE) and vaccinated for infectious bovine rhinotracheitis, bovine virus 

diarrhea, parainfluenza, and respiratory syncytial virus (Titanium 5, Diamond Animal 

Health; Des Moines, IA). In Exp. 1, steers were fed in 12.2 x 30.5 m open pens at the 

Willard Sparks Beef Research Center, Stillwater, OK, (3 pens/treatment, 4 steers/pen). In 

Exp. 2, steers were individually fed by use of Calan Broadbent Feeding System 

(American Catan; Northwood, NH) in 4.57 m2 pens in an open-fronted building at the 

USDA, ARS Grazinglands Research Laboratory, El Reno, OK. During both experiments 

steers were adapted over four weeks to the final feedlot diet (Table 2.1) by replacing 

cottonseed hulls in Exp. 1 and ground alfalfa hay in Exp, 2 with corn. After adaptation to 

the final diet, in Exp. 1 steers were offered sufficient feed twice daily at 0800 and 1300 

for the bunks to have approximately 2.5 kg at 2100 and no feed at 0700; in Exp. 2 all 

steers were offered ad libitum access to feed and were fed once daily at 0800. In Exp. 2, 
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one steer was removed from the HGW treatment because of refusal to eat from the Calan 

headgate. During the feedlot phase, steers were weighed unshrunk at monthly intervals. 

Steers were fed to a common endpoint of 1.27 cm of backfat as determined by ultrasound 

(Aloka, model 210, Aloka probe, model UST-5021; Aloka Co. Ltd., Wallingford, CT) 

between the 12th and 13th rib on the right side. When the backfat threshold was 

achieved, all steers in each treatment were harvested within nine days. The Oklahoma 

State University Institutional Animal Care and Use Committee approved the use of 

animals and research protocols. 

Slaughter and Body Composition 

Prior to placement in the feedlot for each experiment, four animals from each 

treatment were harvested for the determination of initial carcass characteristics and body 

composition. Steers were removed from their respective pastures at 0700 the morning of 

harvest and transported no more than l O km to the Oklahoma Food and Agricultural 

Products Research and Technology Center (FAPRTC) abattoir. At harvest, steers were 

stunned with a captive bolt gun and killed by exsanguination. Weights of the noncarcass 

tissues and blood ( offal), digesta weights, and hot carcass weights (HCW) were recorded. 

Offal tissues (minus digesta) were composited and ground twice using an Autio grinder 

(Astoria, OR) through a 10-mm aperture plate, mixed and sub-sampled in triplicate. 

After a 48-h chill, carcasses were re-weighed and carcass characteristics that included 

maturity, fat thickness at the 12th rib, 12th rib longissimus muscle area, kidney, pelvic, 

heart (KPH) fat, marbling score, quality grade, and yield grade were evaluated by faculty 

of the meats section in the Department of Animal Science. The right side of each cold 
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carcass was subsequently ground through a 10-mm followed by a 5-mm aperture plate, 

mixed and sub-sampled in triplicate. At final harvest for each experiment, six steers from 

each treatment were selected for composition measurements (two steers/pen in Exp. 1 ). 

Final body composition measurements were the same as for the initial harvest group. 

The remaining steers from each treatment were harvested and carcass characteristics 

measured as described for the initial harvest. 

Triplicate samples of carcass and offal were analyzed for water by lyophilization 

to a constant weight. Lyophilized carcass and offal samples were further processed to 

reduce particle size by submersion in liquid nitrogen and ground using a Waring blender 

(Waring Products Co., Winsted, CT). Carcass and offal tissues were then subsequently 

analyzed for fat (extraction with diethyl ether for 48 h in Soxhlet apparatus), fat free 

organic matter (combustion of ether extraction residue, 500°C for 5 h), nitrogen (LECO, 

St. Joseph, Ml), and phosphorus (AOAC, 1990). Energy content of carcass and offal 

tissues was calculated as weight of ether extracted material x 9.4 kcal/g and weight of fat

free organic matter (FFOM) x 5.55 kcal/g (Ferrell and Jenkins, 1998). 

Statistical Analysis 

All data for feedlot performance, carcass characteristics, chemical composition, 

and chemical accretion were analyzed as a completely random design using the Mixed 

procedure of SAS (SAS Inst. Inc., Cary NC). Gains of carcass, offal, and whole body 

composition were calculated as the difference between the final individual weights and 

predicted initial weights of steers measured at final harvest. The statistical model for 

feedlot performance in Exp. I included the term for treatment. The statistical model for 
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feedlot performance in Exp. 2 and all carcass characteristics, chemical composition, and 

chemical accretion data included the fixed effect of treatment and steer within treatment 

as the random effect. Treatment least squares means were calculated and means 

compared using LSD when protected by a (P < 0.10) F-value. Pen was the experimental 

unit for feedlot performance and feed intake in Exp. 1, whereas steer was the 

experimental unit in Exp. 2. For all other measurements, steer was the experimental unit. 

Results 

Winter Grazing 

Live BW of steers during winter grazing and the feedlot period are shown in 

Figures 2. I and 2.2, respectively. In Exp. 1, both HGW and LGW steers gained BW at 

similar rates during the first 45 d, whereas the NR steers gained no BW during this same 

period. After the first 45 d of winter grazing, LGW steers gained 39 kg and NR steers 

gained 20 kg during the remaining 74 d of the winter grazing period. In contrast, HGW 

steers gained 105 kg during the last 74 d of winter grazing. During Exp. 2, LGW and NR 

steers lost BW during the first 44 d, whereas HGW steers gained 21 kg. After d 45 of 

winter grazing in Exp. 2 HGW, LGW, and NR steers gained 1.49, 1.04, and 0.53 kg/d, 

respectively. Final grazing weights were greater for HGW steers than LGW steers, and 

both were heavier than NR steers in both Exp. I and 2. Winter grazing ADG were 1. 3 1, 

0.54, 0.16, and 1. 10, 0.68, 0. I 5 kg/d for HGW, LGW, and NR steers in Exp. I and 2, 

respectively. Total gut fill at the end of winter grazing was not different (P = 0.60, 

average= 37.97 kg, Exp. 1; P = 0.26, average= 41.95 kg) between treatments. 
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Feedlot Performance 

Experiment 1. Initial feedlot BW ofHGW steers was 30% greater (P < 0.001) 

than LGW, which was 22% greater (P < 0.001) than NR steers (Table 2.2). Final BW of 

HGW and NR steers (average= 559 kg) were 7% greater (P = 0.02) than LGW steers. 

Mean DMI during the feedlot period did not differ (P = 0.17) among treatments (average 

= 10.42 kg/d). However, DMI (% of mean BW) ofLGW and NR steers (average= 

2.45%) was 11% greater (P = 0.003) compared with HGW steers. Throughout the entire 

feeding period, live BW gains were not different (P = 0.95) among treatments (average= 

1.79 kg/d). Likewise, empty BW gains were not different (P = 0.44) among treatments 

(average= 1.69 kg/d). Across the entire feeding period, ADG:DMI was not different (P = 

0.41) between treatments (average= 0. 173 kg/kg). 

l,:Xperiment 2. Initial feedlot BW of HGW steers was 19% greater (P < 0.001) 

than LGW steers, which was 30% greater compared with NR steers (Table 2.2). Final 

feedlot BW was not different (P = 0.08) among the treatments (average= 527 kg). Mean 

DMI during the feedlot period was not different (P = 0.40) among treatments (average= 

9.92 kg/d). During the feedlot period, DMI (% of mean BW) ofNR steers was 14% 

greater (P = 0.01) compared with HGW steers, LGW steers were intermediate. Across 

the entire feedlot period daily live and empty BW gains did not differ (P = 0.24 and 0.07; 

1.68 and 1. 77 kg/d, respectively) among treatments. Across the entire feedlot period, 

mean ADG:DMI among treatments was 0.177 (P = 0.58). 
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Carcass Characteristics 

Experiment J. Initial HCW were 64 and 100 kg greater for HGW steers 

compared with LGW and NR steers, respectively (Table 2.4). Greater initial HCW in 

HGW steers resulted in 3.5 and 6.7% greater (P < 0:001) dressing percent than LGW and 

NR steers. All initial measures of fat deposition: kidney, pelvic and heart fat, 12•1t-rib fat 

thickness, and marbling score were greatest (P < 0.001) for HGW carcasses followed by 

LGWand then NR carcasses. Final HCW were greater (P = 0.03) for HGW than LGW 

steers; HCW ofNR steers were intermediate. Kidney, pelvic, and heart fat were greater 

(P = 0.02) for HGW carcasses compared with LGW and NR carcasses. All other final 

carcass characteristic measurements were not different (P > 0.10) among treatments. 

These results were expected because our goal was to harvest all steers at a similar 12111-rib 

fat thickness endpoint. 

Experiment 2. Similar to Exp. l, initial HCW from HGW steers were 27 and 70% 

greater (P < 0.001) compared with LGW and NR steers, respectively, in Exp. 2 (Table 

2.5). Dressing percent ofHGW steers was 2.9 and 7.4% greater (P < 0.001) than LGW 

and NR steers. Similar to Exp. 1, all initial estimations of fat deposition: kidney, pelvic 

and heart fat, 121h-rib fat thickness, and marbling score were greater (P < 0.005) in HGW 

carcasses compared with LGW and NR carcasses. All final carcass measurements did 

not differ (P > 0.10) among treatments. 
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Carcass Chemical Composition 

Experiment 1. Initial carcass mass ofHGW was greater (P < 0.001) compared 

with LGW, which was greater compared with NR (Table 2.6). Because of the large 

differences in carcass mass between treatments, all measured chemical components 

(water, FFOM, fat, ash, phosphorus, and energy) were greater (P < 0.001) for HGW 

compared with LGW and chemical components of LGW were greater (P < 0.001) 

compared with NR. Initial offal mass ofHGW steers was 32.8 kg greater (P = 0.05) than 

NR steers. Total water and FFOM content of offal tissue was not different (P > 0.1 O; 

average= 59.6 and19.0 kg, respectively) among treatments. Total fat content and 

calculated energy content of offal followed a similar pattern as carcass fat and energy, 

being greatest (P < 0.001) in HGW followed by LGW and then NR steers. Amount of 

ash and phosphorus of offal was not different (P > 0 .10) among treatments ( 1. 4 7 and O. 5 

kg, respectively). Initial whole empty body mass was greater (P < 0.001) in HGW steers 

compared with LGW steers, that had greater (P < 0.001) initial empty body mass than NR 

steers. Whole empty body water ofHGW and LGW was 27.7 kg more than NR whole 

empty water but was not significantly different (P = 0.36). Whole empty body FFOM, 

fat and energy content was 21, 1 77, and 5 7% greater (P < 0.001) for HGW compared 

with LGW, which had 23, 154, and 28% greater FFOM, fat, and energy content 

compared with NR. Ash (P = 0.005) and phosphorus (P = 0.02) content in the whole 

empty body of HGW steers was greater compared with LGW and NR steers. 

At final harvest, HGW and NR steers had carcasses that were heavier (P = 0.05, 

average= 338.3 kg), and contained more fat (P = 0.03, average= 99.0 kg) compared to 

LGW steers. Final carcass water, FFOM, and P were not different (P > 0.1 O; average = 
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167.3, 64.5, and 2.5 kg) among treatments. Final ash content ofHGW was 2.0 kg greater 

(P = 0.10) than LGW; NR was intermediate. Final carcass energy content was not 

different (P = 0 .13) among treatments, however HGW and NR carcasses did have 297 

and 237 kcal/kg more energy, respectively, than LGW. Final offal mass was not different 

(P = 0.11) among treatments (average= 158.3 kg), as was final FFOM, fat, and ash 

content of offal (P > 0.1 O; 32.6, 34.1, and 2.2 kg, respectively). At final harvest, water 

content ofNR offal was greater (P = 0.10) compared with LGW, HGW was intermediate. 

Final offal energy content did not differ (P > 0 .1 O; average = 3173 kcal/kg) among 

treatments, because neither FFOM nor fat content of offal was different among 

treatments. Final phosphorus content ofHGW offal was 0.25 kg greater (P = 0.02) 

compared with LGW and NR offal (average= 0.45 kg). Final whole empty body mass of 

HGW and NR (average= 500 kg) was greater (P = 0.03) compared with LGW (468 kg). 

Because of the relatively small differences between treatments for carcass and offal 

weight and chemical content, whole empty body chemical composition was similar (P > 

0.10) among treatments. 

The rate of carcass mass (average= 1.28 kg/d) and water (average= 509 g/d) 

accretion was not different (P >0.14) among treatments during the finishing period (Table 

2.5). Carcass FFOM accretion rate was 16% greater (P = 0.004) for LGW (220 g/d) 

compared with HGW and NR (average= 189 g/d). The carcass fat accretion rate did not 

differ (P = 0.28; average= 544 g/d), while carcass energy accretion was 30% greater (P = 

0.11) in NR carcasses compared with HGW carcasses, LGW carcasses were intermediate. 

Ash accretion was not different (P = 0.15, average= 15 g/d) among treatments. 

Phosphorus accretion was not different (P = 0.67) among treatments (average= 9.4 g/d). 

81 



Offal mass accretion rate was 0.14 kg/d greater (P = 0.006) for HGW compared with 

LGW, 0.12 kg/d greater than NR. Water accretion rate was greater (P = 0.03) for HGW 

(311 g/d) compared with LGW and NR (244 g/d). Offal FFOM accretion rate was 

greater (P < 0.001) for HGW compared with LGW and NR. Fat accretion rate in offal 

tissue did not differ (P = 0.58) among treatments, but was numerically greater for LGW 

and NR (17%). Offal ash accretion rate was greatest (P = 0.04) for HGW, intermediate 

for NR, and least for LGW; phosphorus accretion rate was greater (P = 0.004) for HGW 

compared with LGW and NR offal. Offal energy accretion rate was 71 % greater (P = 

0.04, average= 8.33 kcal·kg·1·d-1) for LGW and NR compared with HGW (4.87 kcal·kg· 

1·d·1). Empty body mass accretion rate was not different (P = 0.51) among treatments 

(average= 1.85 kg/d). Water accretion rate was greater (P = 0.05) for HGW (882 g/d) 

compared with LGW and NR (average= 665 g/d). Empty body FFOM and fat accretion 

rate did not differ (P > 0.10) among treatments (average= 334 and 750 g/d, respectively). 

Even though empty body FFOM and fat accretion were not different, empty body energy 

accretion was greater (P <0.001) for LGW and NR (average= 12.20 kcal-kg·1·d·1) 

compared with HGW (4.66 kcal·kg" 1·d·1). Empty body ash accretion rate was not 

different (P = 0.13, average= 22 g/d) nor was phosphorus accretion rate different (P = 

0.67) among treatments (average= l 0.3 g/d). 

Experiment 2. Initial carcass mass ofHGW was 48 kg greater (P < 0.001) 

compared with LGW carcasses which were 45.5 kg greater (P < 0.001) than NR carcasses 

(Table 2.6). A similar pattern was exhibited in carcass water, FFOM, and fat content; 

HGW carcasses had greater (P < 0.001) amounts compared with LGW, and LGW had 
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greater (P < 0.001) amounts of water, FFOM, and fat compared with NR. Carcass ash 

content ofHGW was greater (P = 0.006) compared with LGW and NR. Initial carcass 

phosphorus content ofHGW and LGW was greater (P = 0.002; average= 1.61 kg) than 

NR. Energy content of carcasses was affected by the content ofFFOM and fat, and 

therefore followed a similar pattern; HGW carcasses had 583 kcal/kg greater energy (P < 

0.001) compared with LGW carcasses, which had 723 kcal/kg greater energy (P < 0.001) 

compared with NR. Similar to initial carcass mass, initial offal mass ofHGW was 

greater (P < 0.001) than LGW, which was greater (P < 0.001) compared with NR. Offal 

water content was 7.5 kg greater (P = 0.002) for HGW compared with LGW which was 

9.7 kg greater compared with NR offal water content. Offal FFOM ofHGW and LGW 

was 35% greater (P = 0.008; average= 21.6 kg) compared with NR. Initial offal fat 

content ofHGW was 46% greater (P < 0.001) than LGW, and five-fold greater than NR 

offal. Because of the large differences in offal FFOM and fat content, energy content of 

HGW offal was 11 % greater (P < 0. 00 I) compared with LGW, which was 61 % greater (P 

< 0.001) than NR. Offal ash content was not different (P = 0.42; average= 1.48 kg) 

among treatments. Initial empty body mass ofHGW was greater (P < 0.001) compared 

with LGW, which was greater compared with NR. Because of the large differences in 

whole empty body mass: water, FFOM, fat, ash, phosphorus, and energy content ofHGW 

were greater (P < 0.002) compared with LGW, and LGW chemical components were all 

greater (P < 0.002) compared with NR. 

Final carcass mass did not differ (P = 0.33; average= 322.4 kg) among 

treatments. Final water and FFOM content were also not different (P > 0.1 O; average= 

164.4 and 62.7 kg, respectively) among treatments. Final fat content ofNR carcasses 
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was 12% greater (P = 0.07) compared with HGW, whereas LGW final fat content was 

intermediate. Final carcass energy content of LGW and NR ( average = 3 712 kcal/kg) 

was 9% greater (P = 0.04) compared with HGW because of the increased fat content and 

slightly more FFOM content. Final offal mass, water, FFOM, ash, and phosphorus were 

not different (P > 0.10; average= 156.5, 87.5, 29.7, 8.2, 2.03 kg, respectively) among 

treatments. Final offal fat content displayed a similar pattern as final carcass fat content; 

NR offal fat content was 4.3 kg greater (P = 0.07) compared with HGW and LGW offal 

fat content was intermediate. Ash content of the final offal tissue in HGW and LGW 

(average= 3.3 kg) was greater (P = 0.03) compared with NR offal ash content. Final 

offal phosphorus content ofNR tended to be greater than HGW and LGW (P = 0.08; 0.62 

vs. 0.52 kg). Final offal energy content was affected by fat content; LGW and NR final 

offal energy (average= 3328 kcal/kg) was greater (P = 0.02) compared with HGW (3048 

kcal/kg). Final empty body mass was not different (P = 0.43; average= 478.8 kg) among 

treatments. Because of few differences in final carcass and offal chemical composition, 

final whole empty body composition did not differ (P > 0.10) among treatments. 

Numerical increases in empty body fat and energy content can be discerned between 

HGW andNR. 

Carcass mass accretion rate ofNR was 0.17 kg/d greater (P = 0.009) compared 

with HGW and LGW (average= 1.17 kg/d). Carcass FFOM accretion rate did not differ 

(P > 0. 10) among treatments in Exp. 2 (average= 185 g/d). Carcass water accretion of 

NR was 32% greater (P = 0.02) compared with LGW, HGW was intermediate. Because 

LGW and NR steers initial carcass fat content was low, fat accretion in LGW and NR 

carcasses was 39% greater (P < 0.001, average= 583 g/d) than HGW carcass fat 
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accretion. Because LGW and NR carcasses had greater fat accretion rate, carcass energy 

accretion rate ofNR was over two-fold greater (P < 0.001) compared with HGW 

carcasses and LGW was nearly two-fold greater (P < 0.001) compared with HGW 

carcasses. Carcass ash and phosphorus accretion rates were similar (P > 0.10) among 

treatments (average= 47 and 5.6 g/d). Offal mass accretion ofNR was 18% greater (P = 

0.04) compared with HGW and LGW. Offal water and FFOM accretion rates were not 

different (P > 0.10) among treatments (average= 219, and 86 g/d, respectively). Offal fat 

accretion ofLGW and NR was greater (P = 0.02, average= 240 g/d) compared with 

HGW. Ash accretion rates in offal were greater (P = 0.05) for HGW compared with NR 

and LGW was intermediate. Phosphorus accretion rate was greater in NR (P < 0.001) 

than HGW or LGW. Like carcass and offal mass accretion, empty body mass accretion 

ofNR was 19% greater (P = 0.001) compared with HGW and LGW (average= 1.67 

kg/d). Because carcass and offal accretion rates ofFFOM were not different, empty body 

accretion rate did not differ (P = 0.19; average= 271 g/d). Empty body water accretion 

was 31 greater (P = 0.007) for NR compared with LGW and HGW was intermediate. 

Empty body fat accretion rate was 36% greater (P = 0.001) for LGW and NR (average= 

823 g/d) compared with HGW. Whole body ash and phosphorus accretion rates were 

similar (P > 0.10) among treatments. Energy accretion within the empty body was two

fold greater (P < 0.001) for NR compared with HGW and 123% greater for LGW 

compared with HGW. 
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Discussion 

Steers that had lower BW gains and lower body fat (LGW and NR) at the end of 

winter grazing had similar feedlot performance, carcass characteristics, and body 

composition when fed to a similar end-point. Phillips et al. ( l 991 and 2001) compared 

feedlot performance of steers that had previously grazed dormant native prairie during the 

winter followed by spring wheat-cool season grass grazing or steers that had grazed 

winter wheat followed by spring wheat-cool season grass grazing. Steers that had grazed 

native prairie had lower grazing ADG (0.42 and 0.71 kg/d) compared with steers that had 

grazed wheat (0.55 and 0.71 kg/d; Phillips et al., 1991 and 2001, respectively). In the 

feedlot steers that had grazed native prairie had greater ADG, similar DMI and were 10% 

more efficient (Phillips et al., 1991). In contrast, in the present study steers with 

decreased winter ADG grazing wheat or native range had similar feedlot gains and 

efficiency but increased DMI relative to mean feeding weight. In addition, previous 

restriction of energy or protein intake by steers resulted in increased ADG and DMI 

during realimentation (Drouillard et al., 1991a). Other work by Wester et al. (1995), who 

utilized energy restricted lambs or metabolizable protein restricted lambs, reported 

restricted lambs had greater ADG, greater feed DMI (% BW) and were 27% more 

efficient compared with control lambs. Steers that were limit fed a concentrate diet or 

low energy forage diet prior to feedlot finishing exhibited increased DMI, empty body 

weight (EBW) gain, and increased gain efficiency compared with ad libitum-fed control 

steers (Sainz et al., 1995). 
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While there was no difference in feedlot performance among treatments in the 

current study, an increase in feedlot performance ofLGW and NR steers might have been 

expected relative to HGW steers. Carstens et al. (1991) reported that steers that exhibited 

compensatory growth due to a 189-d restriction period in which they gained 0.4 kg/d, had 

ADG that was 37% greater than ad libitum-fed control steers. In an experiment by 

Wright and Russel (1991), Charolais-cross steers that had been restricted to 58% of the 

daily gain of control steers from 259 to 350 kg ofBW, gained 38% faster from 350 to 

400 kg while consuming similar amounts of feed compared with control steers, resulting 

in compensating steers having a 39% increase in gain efficiency. 

Interestingly for both experiments, live BW ADG by HGW during the feedlot 

period was 1. 79 and 1. 72 kg/d for Exp. 1 and 2, respectively, and the LGW and NR live 

BW ADG was not greater than HGW. The greater ADG of HGW compared with LGW 

or NR steers in Exp. 2 also conflicts with the 1996 Beef Cattle NRC Level 1 Model. The 

Level 1 model predicts a negative relationship between ME allowable ADG and 

estimated body fat content, regardless of initial BW. Hayden et al. ( 1993) reported a 

reduced initial performance during the finishing period by previously restricted steers. 

These authors observed that previously forage fed, adequate energy intake steers gained 

51 % faster compared with previously forage fed, energy intake restricted steers during 

the first 34 d of a high-grain finishing diet. Similar to our results, White et al. (1987) 

reported that steers, which had the highest BW gains on winter wheat pasture, also had 

the greatest BW gains during the first 28 d of either a subsequent summer grazing period 

or feedlot finishing, but entire feedlot gains did not differ. Additionally, in Exp. 1 and 

Exp. 2, DMI (% mean BW) of all treatments was greater than what would be expected. 
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Rakestraw ( 1995) summarized DMI (% of mean BW) of feedlot steers during two years. 

Dry matter intake had a range of2.10 to 1.95% with a mean of2.03% of mean BW. In 

the current experiments DMI (% of mean BW) was 16% greater than that reported by 

Rakestraw ( 1995). The exceptional feedlot performance of high gaining wheat catde has 

yet to be explained. The feedlot performance of the HGW steers would contradict 

traditional thinking, in that animals that enter the feedlot with a higher degree of body fat 

. will not perform well and will be less efficient compared with animals of similar age and 

genetic background but having less body fat. 

In Exp. 1, LGW and NR steers gained little BW during the 72 d prior to 

placement into the feedlot. Even though overall winter gain ofLGW steers was 0.54 

kg/d, the majority of this weight gain occurred during the first 50 d of the winter grazing 

period. Steers in LGW and NR treatments had been held at maintenance for some time 

and had apparently adjusted to that level of energy intake. Burrin et al. (1989) reported 

that in sheep fed at maintenance level of intake over 21 d, whole body oxygen 

consumption decreased by 10%, thus lowering the maintenance energy requirements of 

those lambs. These results agree with those of Sainz et al. (1995) and Wright and Russell 

(1991 ), where growth restricted steers had greater daily EBW gain and greater protein 

gain than non-restricted steers. 

In contrast during the grazing period of Exp. 2, the majority ofBW gained in 

LGW and NR steers occurred during the last 100 d. Interestingly, LGW and NR steers 

were gaining weight while grazing prior to placement in the feedlot in Exp. 2. Steers 

from the LGW and NR treatments were in a positive energy balance and gaining weight 

for 109 d, thus reducing the etl'iciency with which they might utilize the additional 
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energy provided in the feedlot diet compared with steers fed at maintenance. Ferrell et al. 

(1986) observed that lambs with similar ADG had similar fasting heat production 

regardless of previous rate of gain. In our case, the fact that LGW and NR steers were 

gaining BW prior to entering the feedlot might have negated any potential reduction in 

fasting heat production they would have otherwise had when they entered the feedlot. 

At the initiation of the feedlot period, carcass characteristics and body 

composition were by design very different in both experiments. All measures of carcass 

fat content and actual carcass, offal, and body fat analysis indicated that HGW steers 

entered the feedlot with a large amount of body fat relative to LGW steers that had more 

body fat than NR steers. Other work supports the observed differences in body 

composition by our winter grazing treatments. Baker et al. (1992), using different forage 

levels in restricted and ad libitum fed steers, reported that restricted steers had 76% less 

empty body fat compared with ad libitum fed steers, and 0.33 Meal/kg less body energy. 

In contrast restricted steers had 8% more protein and 6% more empty body water 

compared with ad libitum fed steers. This is similar to our data from both experiments, in 

that HGW steers initially had increased fat and energy contents but decreased proportion 

of water content compared with LGW and NR steers. While we did not initially harvest 

our animals at a similar EBW, Sainz et al. ( 1995) adjusted intermediate harvest date 

steers to a common 327 kg of EBW. In their study, ad libitum fed steers had greater 

measures of fat mass (back fat, KPH, marbling and abdominal fat). Carcass fat percent 

and empty body fat were also greater in ad libitum fed steers compared with limit-fed or 

forage-fed steers, but empty body protein mass was greater in the limit-fed or forage-fed 

steers. The intermediate harvest date of Sainz et al. (1995) was at a greater EBW than 
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our LGW and NR steers would have achieved before entering the feedlot, but our data are 

comparable. Baker et al. (1992) and Sainz et al. (1995) both reported increases in the 

percent protein in restricted steers. We did observe an increase in carcass protein in Exp. 

1, but not offal or empty body, and no increases in protein by LGW or NR steers above 

that ofHGW steers in Exp. 2. Fox et al. (1972) reported steers that had maintained BW 

for 190 or 154 d did not increase protein content compared with control steers. 

In Exp. 1, LGW and NR steers that had decreased winter BW gains had lighter 

carcasses, but equal carcass and 23% greater FFOM accretion rates compared with HGW 

steers in spite of increased days on feed. These same steers had similar offal composition 

and 25% lower offal accretion rate compared with HGW steers, which resulted in no 

differences in empty body composition. These findings agree with those of Carstens et 

al. (1991 ), where at 450 kg of emptyBW, which would be less than our estimated empty 

BW, previously restricted steers had greater carcass protein and water, and less carcass 

fat compared with control steers. The similarity among treatments in final empty body 

composition also agrees with the work of others (Wright and Russel, 1991; Coleman et 

al., 1993; Hayden et al., 1993; and Sainz et al., 1995) who reported no differences 

between control and previously restricted steers for final empty body composition. In 

Exp. 2, steers that entered the feedlot with reduced carcass, offal, and body fat (LGW and 

NR), had greater final percent fat in both the carcass (28%) and offal (24%) compared 

with HGW steers (25 and 21 %, respectively). The amount of carcass and final empty 

body FFOM did not differ. This may suggest that LGW and NR steers deposited more 

fat than lean mass early in the feedlot period, which might explain the numerically lower 

BW gains compared with HGW steers. Increased offal mass accretion and increased 
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offal fat accretion in LGW and NR steers also support the idea of early deposition of fat 

early in the feedlot period. Energy restricted lambs have been shown to deposit more fat 

during the early finishing period (Drouillard et al., 1991b). The early deposition of fat 

rather than increased protein deposition in previously restricted lambs led those authors to 

speculate that the growth potential of the lambs had been compromised. Blum et al. 

(1985) utilizing two-year old energy-restricted and control, energy-adequate steers 

examined changes in heat production during and immediately after restriction. At the end 

of the restriction phase heat production by restricted steers was reduced by 100 

kcal·kg0·75-1-d-1. However, by the fifth day of re-feeding, heat production had increased 

by 200 kcal·kg 0·75-1-d-1 and remained constant. If LGW and NR steers had a similar 

pattern of heat production and fat deposition rate was increased during the early feedlot 

period, this might explain the absence of increased growth. Old and Garrett (1987) 

reported that as ME intake increases, the proportion of energy that is partioned to fat 

synthesis increases. 

Implications 

Historically, cattle that have had high body condition resulting from grazing or 

growing programs have been discounted in price when they entered feedlots because of 

their anticipated reduced performance. Our limited data over two years would indicate 

that anticipating reduced performance by high gaining wheat pasture steers may not 

always be appropriate. Differences in initial body composition of cattle can be 

effectively minimized at the end of the feeding period if all cattle are fed to the same 

backfat endpoint. Timing and degree of restriction might influence rate and composition 
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of tissue accretion. However, differences in growth rate and accretion rates of fat and 

lean exist which could allow for different compositional endpoints depending on the 

length of the finishing period. 
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Table 2.1. Composition of the final feedlot diet(% ofDM 
or Meal/kg DM) 

Item Experiment 1 Experiment 2 
Ingredient 

Dry whole shelled corn 
Dry rolled corn 
Cottonseed hulls 
Ground alfalfa hay 
Blended fat 
Soybean meal 
Cottonseed meal 
Wheat middlings 
Cane molasses 
Urea 
Limestone 
Dicalcium phosphate 
Salt 
Rumensin, 176 g/kg 
Tylan, 220 g/kg 
Vitamin A, 30,000 IU/g 
Vitamin E, 3,000 IU/g . 
Trace mineral premix" 

Calculated nutrient composition 

79.0 

9.0 

3.0 
5.17 

1.04 

0.80 
0.93 
0.33 
0.24 
0.02 
0.01 
0.01 
0.001 
0.04 

83.0 

8.0 

4.0 

4.0 
0.65 
0.70 

0.02 
0.01 
0.01 

0.03 

Crude protein, % 13 .40 13 .48 
NEm, Meal/kg 2.15 2.11 
NEg, Meal/kg 1.38 1.3 7 

a Guaranteed Analysis: Zn (13.5%), Mn (6.0%), Cu 
(3.6%), Fe (1.43%), Co (800 ppm), I (6,000 ppm), Se 
(100 ppm). 
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Table 2.2. Feedlot performance of steers from different winter grazing 

Item 

Initial liveBW, kg 
Final live BW, kg 
Days on feed 
Feed DMI 

kg/d 
% ofmeanBW 

Gain,·kgld 
LiveBW 
EmptyBW 

Gain:feed, kg/kg 
Live 
Empty 

Initial live BW, kg 
Final live BW, kg 
Days on feed 
Feed DMI 

kg/d 
% ofmeanBW 

Gain, kg/d 
LiveBW 
EmptyBW 

Gain:feed, kg/kg 

programs 
Treatment 

HGW LGW NR 
----------Experiment 1----------
404b 311c 255d 
563b 524c 555b 

89 116 163 

10.68 10.43 10.15 
2.21b 2.50c 2.40c 

1.79 1.80 1.80 
1.64 1.67 1.75 

0.17 0.17 0.18 
0.15 0.16 0.17 

----------Experiment 2----------
395b 333c 257d 
542 51 l 528 

88 111 145 

10.25 
2. l 9h 

1.72 
l .77 

9.73 
2.31 be 

1.60 
l .69 

9.79 
2.50c 

1.71 
l .86 

Live 0.18 0.17 0.18 
0.19 Empty O. l 8 O. 18 

SEMa 

2.4 
7.1 
0.0 

0.17 
0.02 

0.06 
0.06 

0.006 
0.005 

5.6 
. 9.9 

0.0 

0.30 
0.07 

0.05 
0.05 

0.006 
0.006 

a Standard error of mean, Exp. 1, n = 3, Exp. 2, n= 12. 
b,c,d Within a row, means without a common superscript letter differ (P < 
0.05). 
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Table 2.3. Effect of winter grazing on carcass characteristics of steers entering 
the feedlot and at final harvest in Exp. 1 

Treatment 
Item HGW LGW NR SEMa 
Initial harvest 

Hot carcass wt, kg 
Dressing,% 
li11 Rib fat thickness, cm 
Kidney, pelvic, heart fat,% 
Longissimus area, cm2 

Marbling score e 

Yield grade 
Final harvest 

237b 
60.4b 

1.17a 
2.63b 

70.45h 
357h 

2.54b 

] 73c 
56.9c 

0.25c 
a.soc 

54.99c 
260c 

1.59c 

137d 
53.7d 
o.oc 
0.14c 

47.25c 
155d 

1.36c 

Hot carcass wt, kg 342h 318c 332hc 
Dressing,% 60.8 59.2 60.5 
12111 Rib fat thickness, cm 1.63 1.59 1.55 
Kidney, pelvic, heart fat,% 2.19b 1.72c 1.68c 
Longissimus area, cm2 77.19 76.51 80.28 
Marbling score 448 392 407 
Yield grade 3.49 3.25 3.17 

a Standard error of mean, n = 4 for initial harvest, n = 12 for final harvest. 

4.9 
0.64 
0.10 
0.22 
3.62 

24.0 
0.26 

6.3 
0.61 
0.12 
0.14 
0.44 

22.9 
0.16 

h,c,d Within a row, means without a common superscript letter differ (P < 0.05). 
e 100 = Practically devoid, 200 = Trace, 300 = Slight, 400 = Small. 
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Table 2.4. Effect of winter grazing on carcass characteristics of steers entering 
the feedlot and at final harvest in Exp. 2 

Treatment 
Item HGW LGW NR SEMa 
Initial harvest 

Hot carcass wt, kg 225b 177c 132d 
Dressing,% 59.7b 56.8c 52.3d 
1 i111 Rib fat thickness, cm 0.69b 0.08c o.oc 
Kidney, pelvic, heart fat,% 2.25b 1.31 C 0.88c 
Longissimus area, cm2 56.70 55.60 47.40 
Marbling score e 275b . 75c o.od 
Yield grade 2.76b 1.58c 1.43c 

Final harvest 
Hot carcass wt, kg 328 310 320 
Dressing,% 60.4 60.9 60.7 
12111 Rib fat thickness, cm 1.37 1.16 1.55 
Kidney, pelvic, heart fat, % 1.82 1.83 1.67 
Longissimus area, cm2 79.34 74.61 74.18 
Marbling score 405 387 426 
Yield grade 3.01 3.06 3.38 

5.89 
0.67 
0.06 
0.21 
2.94 

17.23 
0.16 

6.9 
0.60 
0.13 
0.09 
2.28 

16.6 
0.17 

a Standard error of mean, n = 4 for initial harvest, n = 12 for final harvest. 
b,c,d Within a row, means without a common superscript letter differ (P < 0.05). 
e 100 = Practically devoid, 200 = Trace, 300 = Slight, 400 = Small. 
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Table 2.5. Effect of winter grazing Qrogram on steer chemical comQosition in ExQ. I 
Carcass Offal Empty body 

Treatment Treatment Treatment 
HGW LGW NR SEMa HGW LGW NR SEM HGW LGW NR SEM 

Initial 
Mass, kgb 237.2c 173.i 13 7.0c 5.15 107.0c 97.6cd 74.2d 8.24 344.2c 271.3d 211.2e 9.64 
Water, kg 127.7c 107.8c 95.0c 2.97 64.4 62.8 51.6 5.53 176.5 177.7 149.4 14.98 
FFOM \ kg 53.6c 37.5d 29.6c 1.86 18.8 20.7 17.6 1.48 68.86c 56.9d 46. le 1.94 
Fat, kg 49.2c 24.8d 10.2c 1.93 22.3c 12.3d 3.9c 2.36 88.8c 32.0d 12.6d 9.04 
Ash, kg 6.8c 3_7d 2.2c 0.46 1.5 1. 7 1.2 0.20 IO. le 4.8d 3. ld 1.13 
P, kg 1. 7c 1.4d 0.9c 0.10 0.5 0.6 0.4 0.05 · 2.8c 1.8d 1.3d 0.30 

f 3201 C 2542d 1900c 77 2936c 2357d 178r 74 3570c 2275d 1773d 291 Energy , 

....... kcal/kg 
0 Final 

Mass, kgb 339.lc 317.2d 337.4c 6.27 161.2 151.2 162.5 3.86 500.2c 468.4d 500.0c 8.53 
Water, kg 166.5 166.2 169.3 4.14 89.3 85.1 93.4 2.51 247.3 243.4 246.4 7.41 
FFOM, kg 66.3 63.9 63.3 1.52 33.9 30.9 33.1 1.35 99.2 93.2 95.7 3.00 
Fat, kg 99.2c 82.0d 98.7c 4.69 35.3 "\"l ""- 33.8 2.30 143.5 124.6 139.0 8.59 ., ., . ., 
Ash, kg 7.0c 5.0d 6.0cd 0.61 2.6 1.8 2.2 0.33 10.3 7.2 8.8 1.00 
P, kg 2.6 2.3 2.5 0.17 0.7c 0.5d 0.4d 0.06 3.5 2.9 3.0 0.21 
Energy, 3846 3549 3786 100 3231 3206 3082 97 3798 3611 3669 135 
kcal/kg 
Accretion g 

Mass, kg/db 1.27 1.33 1.23 0.04 0.66c 0.52d 0.54d 0.03 1.94 1.85 1.77 0.05 
Water, g/d 505 568 454 38 311 C 231d 256d 20 882c 676d 654d 66 
FFOM, g/d 173c 220d 206c 14 180c 100d 95d 12 353 350 300 22 
Fat, g/d 589 501 543 37 158 187 184 21 668 807 776 71 

Ash, g/d 7 14 24 6 12c zd 7cd ,., 20 16 31 9 .) 

P, g/d 10.3 8.3 9.5 1.62 2.0c -0.6d -O.i 0.47 9.5 10.7 10.7 1.89 



-0 
N 

C d d Energy, 8.84 10.21 11.51 0.88 4.87 8.76 7.89 1.01 
kcal·k_g" 1·d-' 

a Standard error of measure, n = 4 for initial harvest, n = 6 for final harvest and accretion. 
b Hot carcass. 
c.d.e Within a row and tissue, means without a common superscript letter differ (P < 0.05). 
"Fat free organic matter. 
rEther extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g. 
g Final kg - initial kg/ days on feed. 

4.66c 12.84d 11.56d 1.19 



Table 2.6. Effect of winter grazing 12rogram on steer chemical comeosition in ExQ.2 
Carcass Offal Empty body 

Treatment Treatment Treatment 
HGW LGW NR SEMa HGW LGW NR SEM HGW LGW NR SEM 

Initial 
Mass kab 

' :=, 
225.5c l 77.5ct 132.0e 5.90 111. 7c 96.3d 73.0e 3.46 337.2c 273.8d 205.0e 8.45 

Water, kg 126.8c 109.5ct 91.3e 4.52 70.3c 62.8d 53.1 e 2.43 197.1 C 172.2d 144.4e 5.65 
FFOM\ kg 48.1 C 42.0de 32.1 e 2.06 22.9c 20.3c 16.0d 1.18 71.0c 62.3d 48. le 2.72 
Fat, kg 45.8" 22.8d 6.4e 2.50 16.8c 11.5ct 2.8e 0.97 62.6c 34.3d 9.2e 3 .11 
Ash, kg 4.82c 3.26d 2.22d 0.41 1.60 1.74 1.11 0.34 6.4c 5.0c ,., -,d ., . ., 0.52 
P, kg 1.77c 1.45c l .OOct 0.13 0.47 0.50 0.36 0.10 2.24c 1.95c l.3i 0.14 

f 3103c 2520d 119r 121 2552c 2289d 1583e 63 2917c 2437d l 720e 88 Energy , 
kcal/kg 

0 Final l,.) 

Mass, kgb 323.8 313.8 329.5 7.77 155.0 156.5 158.0 3.16 478.8 470.3 487.4 9.13 
Water, kg 168.7 157.5 167.1 4.30 89.2 85.9 87.5 1.82 258.0 243.4 254.6 4.97 
FFOM, kg 60.9 63.1 64.2 4.13 29.7 29.8 29.7 I. 51 90.6 92.9 93.9 4.28 
Fat, kg 81.8" 86.9cd 91.9d 2.89 32.6c 37_5cd 38.9d 1.80 114.5 124.4 130.8 4.31 
Ash, kg 12.3 6.4 6.2 3.22 3.4c ..., ...,c 1.9d 0.40 15. 7 9.7 8.1 3.42 ., . ., 
P, kg 2.12 2.12 1.98 0.14 0.51 0.53 0.62 0.03 2.63 2.65 2.60 0.13 
Energy, 3414c 372i 370i 88 3048c 3305d 3351 d 74 3296 3581 3590 74 
kcal/kg 
Accretion g 

Mass, kg/db 1.14c 1.19c 1.39d 0.06 0.50c 0.52c 0.60d 0.03 1.63c 1. 71 C 1.98d 0.06 
Water, g/d 481':,d 407c 539d 29 216 195 247 20 668cd 602c 786d 34 
FFOM, g/d 147 181 227 41 79 82 97 14 226 263 324 37 
Fat, g/d 420c 573d .592d 27 184c 231d 249d 15 604c 804d ·341d 38 

Ash, g/d 87 27 28 38 21 C 14cd 6d 4 108 41 34 40 
P, g/d 4.1 5.8 6.9 1.2 0.5c 0.2c d 4.5 5.9 8.7 1.2 1.8 0.2 



...... 
0 
~ 

Energy, 3.57c 10.26d 13.43e 0.93 5.73c 8.61d 12.39e 0.65 
kcal·kg·1·d·1 

a Standard error of measure, n = 4 for initial harvest, n = 6 for final harvest and accretion. 
b Hot carcass. 
c.d,e Within a row and tissue, means without a common superscript letter differ (P < 0.05). 
e Fat free organic matter. 
f Ether extract material x 9.4 kcal/g + fat-free organic matter x 5.55 kcal/g. 
g Final kg - initial kg / days on feed . 

4.37c 9.75d 13.15e 0.85 



Figure 2.1. Steer live BW during winter grazing and the 
feedlot period in Exp. 1 
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Figure 2.2. Steer live BW during winter grazing and the 
feedlot period in Exp. 2 
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ABSTRACT 

We compared organ mass and oxygen consumption by tissues in steers with 

different previous winter grazing BW gain and organ mass change during finishing. Two 

experiments were conducted utilizing 48 Angus x Angus-Hereford steers in each 

experiment. The experimental designs were completely random. In each experiment, 

steers were randomly assigned to one of three treatments: high rate ofBW gain grazing 

winter wheat (HGW); low rate ofBW gain grazing winter wheat (LGW); or grazing 

dormant tallgrass native range (NR) with 0.91 kg/d of a 41% CP supplement. 'Steers 

grazed for 120 or 144 din Exp. 1 and 2, respectively. Prior to placement into a feedlot in 

each experiment, four steers from each treatment were randomly selected for initial 

harvest to measure organ mass and oxygen consumption. All remaining steers were 

placed into a feedlot and fed to the same backfat endpoint (1.27 cm). Six steers were 

randomly selected from each treatment for final organ mass and oxygen consumption 

determination. Initial empty body weight (EBW) was greatest (P < 0.001) in HGW steers 

followed by LGW, and then NR steers in both Exp. 1 and 2 (370 > 280> 226 kg and 345 

> 280 > 197 kg, respectively). Initial total gastro-intestinal tract (GIT) (g/kg ofEBW) 

was greater (P < 0.05) in NR steers compared with HGW and LGW steers in both exp 

(73.9 > 65.7 and 80.3 > 63.3 g/kg EBW, Exp. 1 and 2 respectively). However in Exp. 1, 

total splanchnic tissue (TST) (g/kg ofEBW) tended to be greater (P = 0.06) in HGW 

compared with NR steers. Initial liver oxygen consumption was greater in HGW and 

LGW compared with NR steers (34.5 > 16.9 mL/min), whereas initial small intestine 

oxygen consumption was greater in LGW compared to HGW and NR steers (12. l > 5.2 

mL/min). Reticulo-rumen oxygen consumption was similar (P > 0.10) among treatments. 
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The decrease of GIT (g·g EBW"1·d-1) during finishing was greater in NR compared with 

HGW an LGW steers in both Exp. 1 and 2, but the increases in TST was similar among 

treatments in each experiment. Differences in the timing of organ mass and lower initial 

oxygen consumption may be part of the mechanism that affects feedlot growth in steers 

from different previous grazing programs. 

Key words: Cattle, Visceral Organs, Oxygen Consumption 

Introduction 

A strong positive correlation exists between fasting heat production (maintenance 

energy requirements) and visceral organ weight in response to plane of nutrition in sheep, 

rats, and cattle (Huntington and Reynolds, 1987; Burrin et al., 1992; Sainz and Bentley, 

1997). This high correlation occurs because while the gastro-intestinal tract tissues (GIT) 

and liver make up only 8-14% ofan animal's live BW (Burrin et al., 1990; Kelly et al., 

1993), the GIT and liver is responsible for as much as 40% of the total body oxygen 

consumption (McBride and Kelly, 1990). This makes the GIT and liver (splanchnic 

tissues) inproportionally metabolically active compared to their relative contribution to 

live-weight mass. McBride and Kelly (1990) demonstrated this greater energy 

consumption to mass ratio when they showed that liver oxygen consumption was 1.2 to 

1.6 times greater than that of skeletal muscle. Whereas energy use by the tissues that 

livestock production favors (i.e. lean skeletal muscle) are necessary, energy use by the 

splanchnic tissues to an extent is considered a waste of energy, or tax on production 
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(Reynolds, 2001). Therefore, any changes in visceral organ mass, and by convention 

energy use, may change the amount of energy and protein available to the animal for 

growth (Fluharty and McClure, 1997). 

We hypothesized that differences in growing cattle with respect to growth and 

gain efficiency in the feedlot are partially due to visceral organ mass and associated 

energy expenditure. It was our objective as part of a larger experiment examining feedlot 

growth in cattle, to determine the effect of different winter grazing programs for growing 

cattle on organ mass and oxygen consumption by tissues in relation to subsequent feedlot 

performance, and discern if these were factors in dictating whether differences in growth 

would occur in cattle. 

Materials and Methods 

Animals and Management 

A complete description of the procedures utilized for the animals is found in 

Hersom et al., 2002. Briefly, in each of two experiments we randomly allotted 48 fall

weaned Angus x Angus-Hereford steers (244 ± 23 kg, Exp. l; 231 ± 25 kg, Exp. 2) from 

the same cowherd to one of three winter grazing treatments. Treatments were: grazing 

winter wheat pasture to achieve a high rate ofBW gain (HGW; stocking density= 0.43 

to 0.55 ha·steef 1); grazing winter wheat pasture and adjusting stocking density to 

maintain a low rate ofBW gain (LGW; stocking density= 0.16 to 0.52 ha·steef1), or 

grazing dormant tallgrass native range (NR; 0.63 ha·stee(1). Steers grazing NR were 

offered 0.91·kg·steer-1·d-1 ofa cottonseed-meal based supplement (41% CP). No 

implants were utilized during winter grazing. At the end of the grazing phase steers were 
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placed in a feedlot and fed a high-grain finishing diet. Steers were fed to a common 

endpoint of 1.27 cm ofbackfat as determined by ultrasound (Aloka, model 210, Aloka 

probe, model UST-5021; Aloka Co. Ltd., Wallingford, CT) between the 12th and 13th rib 

on the right side. When the backfat threshold was achieved, all steers in each treatment 

were harvested within nine days. The Oklahoma State University Institutional Animal 

Care and Use Committee approved the use of animals and research protocols. 

Organ Mass and Tissue Collection 

In each experiment, we randomly selected four steers from each treatment to 

estimate empty body weight (EBW), organ mass and oxygen consumption prior to 

placement in the feedlot. We removed the steers from their respective treatments the 

morning of harvest. The steers were transported to the Oklahoma Food and Agricultural 

Products Research and Technology Center (FAPRTC) abattoir. Steers were stunned with 

a captive bolt and exsanguinated. Weights of blood, hide, head, internal organs, gastro

intestinal tract (GIT) organs, mesenteric fat trimmed from GIT organs, GIT contents, 

trim, and hot carcass were recorded. Contents of the reticule-rumen and omasum were 

removed by opening the organ and removing contents by hand, the organs were then 

washed free of remaining feed particles. Abomasum and intestinal contents were 

removed by squeezing contents the length of the organ. Empty body weight was 

calculated as live BW minus weight of GIT contents, and total splanchnic tissue (TST) 

was calculated as the GIT plus liver, spleen, pancreas, and mesenteric fat. In addition, 

samples of tissues from the center lobe of the liver and duodenum 15 cm distal to the 

pylorus were collected. The samples were weighed snap frozen in liquid nitrogen, and 
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subsequently stored at -80°C for further analysis. At final harvest, we randomly selected 

six steers per treatment to estimate final EBW, organ mass, and tissue oxygen 

consumption. Feedlot personnel removed steers from their pens early in the morning 

they were harvested, prior to feeding, for transport to the F APR TC abattoir. The harvest 

procedure was same as the initial harvest procedure. 

Tissue Oxygen Consumption 

In Exp 2., during initial harvest we collected additional tissue samples from the 

liver, ventral sac of the rumen, and duodenum to estimate oxygen consumption. Abattoir 

personnel collected samples used for oxygen consumption as soon as possible after 

evisceration; organ contents were removed and organ mass recorded. Timely collection 

of tissues from some animals after stunning and exsanguinations was precluded by 

abattoir procedures (up to 50 mi1,1 after exsanguination). Collected tissues were placed in 

ice-cold Krebs-Hensleit saline with glucose (KHS; Kelly et al., 1993) and transported to 

the laboratory. The transport media for ruminal epithelial tissues contained 25 mM of 

HEPES (Harmon et al., 1991 ). When tissue samples reached the laboratory, laboratory 

personnel transferred the tissues to fresh KHS at 37°C bubbled with 95% oxygen gas 

(Kelly et al., 1993). Ruminal KHS contained approximately 90 mM acetate, 60 mM 

propionate, and 30 mM butyrate (Harmon et al., 1991). A 50-mg sub-sample of liver 

tissue was excised using a scalpel and lightly scored (Burrin et al., 1990). Individual 

ruminal papillae were removed from the rumen epithelial sample to accumulate 50 mg 

for analysis (Burrin et al., 1990; Harmon et al., 1991) and scored using a scalpel. All 

visible adipose tissue was removed from the small intestine, which was then cut 
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longitudinally to open the lumen. Small cross-sections were excised to accumulate 50 

mg for analysis (Burrin et al., 1990). Rates of 0 2 consumption were measured 

polargaphically using a Clark-style electrode (YSI model 5300, Yellow Springs 

Instruments, Yellow Springs, OH) positioned within a thermostatically controlled (37°C) 

cell chamber (Yellow Springs Instruments, Yellow Springs, OH). Triplicate tissue 

samples were placed in unoxygenated KHS solution in the 0 2 electrode chamber and 

allowed to acclimate to the chamber for 1 min, after which 0 2 consumption was 

measured over 5 min (Kelly et al., 1993). Triplicate tissue samples were also used to 

estimate ouabain-sensitive 0 2 consumption and cyclohexarnide-sensitive 02 consumption 

(Kelly et al., 1993). Samples were placed in unoxygenated KHS solution containing 1 x 

10-4 M of either ouabain or cyclohexamide (Kelly et al., 1993) in the 0 2 electrode 

chamber and allowed to acclimate to the chamber for 1 min, after which 02 consumption 

was measured over 5 min. 

Calculations and Statistical Analysis 

We calculated accretion data by subtracting the treatment mean of initial organ 

mass from the final organ mass of individual steers and dividing by days on feed in the 

feedlot. Initial, final, and rates of accretion of organ mass and oxygen consumption data 

were analyzed using the Mixed procedure of SAS (SAS Inst. Inc., Cary NC). The model 

included the fixed effect of previous winter grazing treatment and the random effect of 

steer with in treatment, experimental unit was steer. Least squares means were calculated 

and tested against the error term of steer within treatment. Treatment least squares means 
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were calculated and means compared using LSD when protected by a (P < 0.10) F-value. 

Results were considered significant if P < 0.05 and trends if P > 0.05 and P < 0.10. 

Results 

Animal Performance 

Winter grazing daily BW gains were 1.31, 0.54, and 0.16 kg/d for HGW, LGW, 

and NR steers, respectively in Exp. 1. During Exp. 2, winter grazing daily BW gains 

were 1.10, 0.68, and 0.15 kg/d for HGW, LGW, and NR steers. Feedlot performance in 

Exp. 1 was not different (P > 0.10) among treatments (average ADG = 1.80 kg/d, 

gain:feed = 0.17 kg/kg), however DMI (% of mean BW) ofLGW and NR steers was 

greater (P = 0.003) compared with HGW steers. Similarly, in Exp. 2 feedlot performance 

was not different (P > 0.10) among treatments (average ADG = 1.68 kg/d, gain:feed = 

0.18 kg/kg), but DMI (% of mean BW) ofNR was greater (P = 0.01) compared with 

HGW steers, LGW steers were intermediate. 

Initial Harvest 

Exp. 1. Initial live BW and the subsequent EBW were 83 and 90 kg greater (P < 

0.001) for HGW compared with LGW steers, which were 55 and 54 kg greater than NR 

steers, respectively (Table 3.1). Total offal was similar (P = 0.27) among treatments 

( average = 318 g/kg EBW). However, within the total offal there were several organs 

that differed as a proportion ofEBW between treatments. The mass (g/kg EBW) of 

HGW steers liver was 16% greater (P < 0.001) than livers ofLGW and NR steers (18.6 

vs. 15.6 g/kg ofEBW). In contrast, steers that had been restricted in live BW gain (LGW 

and NR) tended (P = 0.06) to have 7% larger reticule-rumens (24.3 g/kg ofEBW) 
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compared with HGW steers (22.7 g/kg ofEBW). Interestingly, the omasum ofNR steers 

was 43% larger compared with omasums of steers that grazed wheat forage. High gain 

wheat steers had 11.7 g/kg ofEBW greater (P < 0.001) mesenteric fat compared with 

LGW steers, which had 8.3 g/kg ofEBW greater mesenteric fat than NR steers. Because 

of the greater proportions of stomach and small intestinal tissues, NR steers had 11 % 

greater (P = 0.02) GIT (g/kg) compared with HGW and LGW steers (73.9 vs. 65.6 g/kg 

ofEBW). Total splanchnic tissue tended to be greater (P = 0.06) in HGW steers 

compared with NR steers, while LGW steers were intermediate. 

Exp. 2. Similar to Exp. 1, live BW and EBW of steers entering the feedlot were 

62 and 65 kg greater (P = 0.001) for HGW compared with LGW, which were 80 and 83 

kg heavier than NR steers (Table 3.2). Total offal was 38 g/kg ofEBW greater (P = 

0.009) in NR steers compared with steers that grazed wheat forage (average= 334 g/kg of 

EBW). However, unlike Exp. 1, the proportion ofEBW made up by the liver was similar 

(P = 0.26; average= "16.9 g/kg offiBW) among treatments. The entire stomach complex 

(reticulo-rumen, omasum, abomasum) ofNR steers was 25% greater (P < 0.05) compared 

with HGW and LGW steers (average= 38.0 g/kg of EBW), whereas the proportion of 

EBW comprised of small intestine in previously restricted steers (LGW and NR; average 

= 17.5 g/kg ofEBW) was 26% greater (P = 0.01) compared with the small intestine of 

HGW steers. Because of the greater proportions of the stomach complex and small 

intestine, total GIT in NR steers was 16% greater (P < 0.001) compared with LGW steers, 

which had I 2% greater total GIT compared with HGW steers. Initial mesenteric fat in 

Exp. 2 followed a similar pattern as Exp. 1; mesenteric fat in HGW steers was 7.3 g/kg of 

EBW greater (P < 0.001) than LGW steers, which had 9.8 g/kg ofEBW greater (P < 
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0.001) mesenteric fat than NR steers. However, because of divergent patterns in total 

GIT and mesenteric fat, initial TST was similar (P = 0.50; average= 105 g/kg EBW) 

among treatments. 

Final Harvest 

Exp. 1. Even though steers were harvested at similar backfat endpoints (Hersom 

et al., 2002), live BW of all steers and EBW of steers selected for organ mass 

measurements were greater (P = 0.02) for HGW and NR steers compared with LGW 

steers (Table 3 .3 ). Similar to the initial harvest date, total offal was similar (P = 0. 78; 

average 304 g/kg ofEBW) among treatments. In addition, organ masses were similar (P 

> 0.10) among treatments with few exceptions. The exceptions included kidney and 

mesenteric fat mass. Kidney mass ofHGW steers were greater (P = 0.02) than NR steers 

(2.1 vs 1.9 g/kg ofEBW), LGW steers were intermediate. Mesenteric fat mass ofHGW 

steers was greater23% greater (P = 0.04) than LGW steers (37.3 vs. 28.8 g/kg ofEBW), 

NR steers had intermediate mesenteric fat mass. 

Exp. 2. Final live BW ofLGW steers tended (P = 0.08) to be lower compared 

with HGW and NR steers, but EBW mass of steers selected for organ mass 

measurements was similar (P = 0.44; average= 509 kg) among treatments (Table J.4). 

Total offal was also similar (P = 0.34; average 309 g/kg ofEBW) among treatments. All 

components of the offal were similar (P > 0.10) among treatments with the exception of 

the omasum, which was greater (P = 0.05) in NR steers compared with HGW and LGW 

steers. The proportion ofEBW comprised by mesenteric fat was 17% greater (P = 0.02) 

in LGW and NR steers (average= 37.8 g/kg ofEBW) compared to HGW steers (31.3 
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g/kg ofEBW). Because of the difference in mesenteric fat and similar liver and total 

GIT, TST was 8% greater (P = 0.01) in LGW and NR (average= 119.5 g/kg EBW) 

compared with HGW steers (110.2 g/kg of EBW). 

Changes in Mass 

Exp. 1. Changes in live BW of all feedlot steers and EBW of steers selected for 

organ mass measurement during the finishing period were similar (P > 0 .1 O; average = 

1.79 and 1.76 kg/d) between treatments (Table 3.5). Total offal became a smaller 

proportion ofEBW during the finishing period in all treatments. The decline in total 

offal ofLGW and HGW steers was similar (average= -168 g·g EBW-1·d-1) and tended to 

be 88% greater (P = 0 .10) than NR steers. This trend can be attributed to the increased 

number of days on fed that NR steers spent compared with HGW and LGW steers, 

because the proportion of total offal at the initiation of the finishing phase and at final 

harvest were similar among treatments. The liver in HGW steers exhibited a decline that 

was 85% greater (P < 0.001) compared with LGW and NR steers (-5.7 g·g EBW-1·d-1). 

This greater rate of decline must be attributed to the relative adaptivity of the liver, 

because HGW steers entered the finishing phase with larger livers, but at final harvest the 

livers of all treatments were similar, and HGW steers spent the fewest days on feed. 

Conversely, the reticulo-rumen ofHGW steers had a greater (P = 0.05) increase 

compared with NR steers, whose reticulo-rumen decreased as a proportion ofEBW. The 

total GIT became a smaller proportion of the EBW in all treatments; GIT decline in NR 

was 55% greater (P = 0.06) compared with steers that grazed wheat (average= -39.5 g·g 

EBW-1·d-1). Mesenteric fat deposition increased in all treatments. The increase in 
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mesenteric fat was 38% greater (P = 0.05) in NR steers compared with HGW and LGW 

steers (average= 102.3 g·g EBW-1·d-1) despite the greater number of days on feed for NR 

steers. Coupling declines in total GIT with increases in mesenteric fat resulted in similar 

(P = 0.54; average= 48.2 g·g EBW"1·d-1) increases ofTST among treatments. However, 

when one examines the differences in the change of various organ masses previously 

described, one can see that different responses occurred to achieve similar TST change. 

Experiment 2. Gains of live BW of all steers and EBW of steers selected for 

organ mass measurements were similar (P > 0. 10; average = 1 . 68 and 1. 93 kg/ d 

respectively; Table 3.6). The change in total offal proportion was similar (P = 0.17; 

average= -292 g·g EBW-1·d-1) among treatments. Increases in reticulo-rumen and 

omasum proportions in wheat steers and relatively small decreases in abomasum 

proportion resulted in increases (P < 0.05) in the stomach complex ofHGW and LGW 

steers (average= 47.5 g·g EBW-1·d-1) whereas the stomach complex ofNR steers 

decreased (-23.4 g·g EBW"1·d·1). The change exhibited by small intestine in NR and 

LGW steers was 80% greater (P < 0.001; average= -41.1 g·g EBW"1·d-1) compared with 

HGW small intestine (-8.0 g·g EBW"1·d·1). Differential rates of change in the stomach 

complex and intestines resulted in varied responses in the total GIT and differences were 

observed among all treatments (P < 0.001 ). High gain wheat total GIT increased, LGW 

total GIT decreased and NR total GIT decreased at a greater rate than LGW (P < 0.001). 

Similar to Exp: 1, mesenteric fat in LGW and NR steers (average= 163.4 g·g EBW-1·d"1) 

increased 64% greater (P = 0.001) than HGW steers. Total splanchnic tissue proportion 

ofEBW increased similarly (P = 0.45; average= 90.4 g·g EBW"1·d-1) in all treatments. 
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Oxygen Consumption 

Prior to placement in the feedlot, rumen papillae oxygen consumption was similar 

(P= 0.55; average= 5.99 µLmin-1.g- 1 of wet tissue) among treatments (Table 3.7). 

Despite differences in gross wet weight of reticulo-rumens among treatments, oxygen 

consumption on a whole organ basis by the reticulo-rumen was similar (P = 0.16; average 

= 42.63 mL/min), however the small number of samples and large variation among 

animals could have affected our ability to discern significant differences between the 

HGW and previously restricted steers. In addition, inhibition of oxygen consumption by 

either ouabain or cyclohexamide was similar (P > 0.90; average= 34.46 and 21.02%, 

respectively) among treatments. 

Initial small intestine oxygen consumption was 48% greater (P = 0.01) in LGW 

compared to NR, which was 7% greater (P = 0.01) compared to HGW. Similarly, small 

intestine whole organ oxygen consumption was 57% greater (P = 0.01) compared with 

HGW and NR (average= 5.19 mL/min). Inhibition of duodenal oxygen consumption 

was similar (P > 0.10) among treatments for both ouabain and cyclohexamide (54.1 and 

47.1 %, respectively). 

Oxygen consumption by liver tissue was similar (P = 0.33; average= 6.02 

µLmin-1.g- 1 of wet tissue) among treatments. However because of the large differences 

in gross liver mass between steers that grazed wheat forage and steers that grazed native 

range forage, oxygen consumption by the whole liver ofHGW and LGW steers (average 

= 34.5 mL/min) tended to be 51% greater (P = 0.09) compared to NR steers. Similar to 

the other tissues, inhibition by ouabain and cyclochexamide was similar (P > 0.1 O; 

average= 23.67 and 39.88%, respectively) among treatments. 
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At final harvest, the rate of oxygen consumption by ruminal epithelium, small 

intestine, or liver tissues were similar (P > 0.10; average= 5.4, 1.7, 3.2 µL"min-1.g- 1 of 

wet tissue, respectively). Similarly, final whole organ oxygen consumption by the· 

reticulo-rumen, small intestine and liver were similar (P > 0.10; 49.2, 43.1, 10.2 mL/min, 

respectively). 

Discussion 

In response to winter grazing treatments, steers entered the feedlot with different 

EBW. Controlling the amount of forage or grazing low- quality forage affected nutrient 

supply and ultimately final grazing EBW. Other research (Burrin et al. 1990; Sainz et al. 

1995; Noziere et al. 1999) has demonstrated that limitations of DMI or protein will 

decrease EBW relative to adequately feed animals. The decrease in EBW exhibited by 

LGW and NR steers relative to HGW steers also caused differences in the proportion of 

EBW made up by the total offal and by several metabolically important visceral organs. 

Total offal in Exp. 1 was similar among treatments. However, during Exp. 2, the 

proportion ofEBW comprised by offal tissues was increased in NR steers. 

In Exp. 1, HGW steers had unlimited access to high-quality wheat forage and had 

increased liver size relative to their overall EBW compared with LGW and NR steers 

which had limited DMI or limited forage quality, respectively. The reduction in 

proportion of liver through control ofDMI has previously been demonstrated in sheep 

(Burrin et al. 1990; Noziere et al. 1999) and steers (Sainz and Bentley, 1997). Other 

differences in diet quality have also been reported to affect liver size: increases in dietary 

protein concentration increased (Fluharty and McClure, 1997) whereas restrictions in 
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dietary protein concentration decreased (Drouillard et al. 1991; Wester et al. 1995) liver 

as a percent ofEBW. However, a similar pattern in liver proportion ofEBW was not 

observed in the current Exp. 2, which may be explained by the 63 g/kg ofEBW increase 

of total offal in NR steers and the nearly 20 g/kg ofEBW greater total offal in LGW 

steers. Interestingly, McCleod and Baldwin (2000), using different diets with different 

forage:concentrate ratios but with similar CP:ME ratios, reported sheep had similar liver 

mass as a percent ofEBW. Our data seem to agree with the conclusions of Drouillard et 

al. ( 1991) and Sainz and Bentley ( 1997) in that the liver appears to respond to changes in 

protein and energy supply. 

Conversely, restricted steers in Exp. 1 (LGW and NR) and NR steers in Exp. 2, 

exhibited increased reticulo-rumen proportion prior to the feedlot phase. Similar results 

have been observed when_ DMI and metabolizable energy intake were restricted (Wester 

et al. 1995; Fluharty and McClure 1997; Noziere et al. 1999). Sainz and Bentley (1997) 

demonstrated that steers limit-fed concentrate diets had similar stomach weights as steers 

ad libitum-fed concentrate diets. In the same experiment, steers fed high-roughage-diet 

had greater stomach weights compared with steers fed concentrate diets at either level. It 

appears that the stomach complex, particularly the reticulo-rumen responds to dietary 

energy density. The greatest difference in stomach complex proportions occurred 

between HGW and NR treatments, which corresponded to abundant high-quality wheat 

forage and low-quality native range forage. 

Differences in the initial proportion ofEBW comprised by the small intestine 

varied between experiments. Small intestine mass in Exp. 1 was similar among 

treatments, similar to Wester et al. (1995) who demonstrated no differences between 
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lambs fed diets adequate in energy and protein and protein or energy restricted lambs, 

and Fluharty and McClure ( 1997) who reported no differences in small intestine weight 

between steers fed 100 or 85% of ad libitum. However, work by Drouillard et al (1991) 

with energy and protein restricted lambs, and Burrin et al. (1990) and Noziere et al. 

(1999) using different levels ofDMI showed reductions in small intestine mass as a 

proportion of EBW with restriction. Synergistic interactions between DMI and 

absorbable nutrients presented to the small intestine may ultimately dictate the proportion 

of the EBW contributed by the small intestine. 

The effects of previous live BW gain and differences in EBW on total GIT and 

TST prior to placement into the feedlot depended on the various organ and tissue 

complexes. Increases in diet energy density appear to decrease the proportion of GIT, 

whereas diets oflower energy density increase the GIT (McLeod and Baldwin, 2000). 

Greater availability of energy and protein to the liver increase the proportion of liver and 

mesenteric fat (Wester et al. 1995; Fluharty and McClure 1997). Therefore, if sufficient 

differences in liver, total GIT, and mesenteric fat occur, differences in TST proportion are 

evident, as observed in Exp. 1. In Exp. 2, similar proportions ofliver and divergent 

proportions of GIT and mesenteric fat resulted in similar TST. In addition, differences in 

levels of intake have been reported to affect TST mass (Fluharty and McCLure, 1997; 

and Noziere et al. 1999). 

After finishing steers at the same estimated backfat, the proportions ofEBW 

comprised by various organs was remarkably similar among treatments and between 

experiments. Our similar organ proportions between treatments agree with Drouillard et 

al. (1991) who ad libitium fed, and re-fed energy and protein restricted lambs to 50 kg 
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live BW, and Noziere et al. (1999) who re-fed ewes that had been under-fed energy and 

proteitn and maintenance-fed ewes for 26 d. However, work by Sainz and Bently (1997), 

in which steers were harvested at 481 kg EBW, demonstrated continued differences in 

liver, stomach, and intestines of steers with different BW gain prior to finishing. The 

important exception within our data was mesenteric fat. In Exp. 1 final mesenteric fat 

was greater in HGW steers compared with LGW steers and NR steers were intermediate. 

Conversely, during Exp. 2 LGW and NR steers finished with a greater proportion of 

mesenteric fat compared with HGW steers. The difference in mesenteric fat deposition 

could be one facet in the mechanism of compensatory growth. With less energy being 

deposited into fat, more would be available for synthesis of lean tissue. Total mesenteric 

fat deposition (initial+ final mesenteric g/kg ofEBW) shows that in Exp. I, HGW steers 

deposited a greater amount of total mesenteric fat compared with LGW and NR steers 

(65.1 vs. 44.9 and 42.8 g/kg ofEBW). In contrast in Exp. 2, total mesenteric fat 

deposition by HGW, LGW and NR steers was similar (57.6, 56.9 and 46.9 g/kg ofEBW, 

respectively). McLeod et al. (2002), reported that total energy intake did not effect EBW 

fat accretion rates. Those authors did report differences in visceral fat accretion due to 

differences in energy source infused into the abomasum (glucose > hydrolyzed corn 

starch). Therefore differences in digestibility and carbohydrate escape from the rumen 

could alter visceral fat accretion. Total GIT and TST proportions were similar among 

treatments, which indicates that within our experimental populations, organ mass is 

similar at similar EBW. 

Even though final organ proportions were similar among treatments, the rate of 

change of several metabolically important organs was different among treatments. In 
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both experiments, total offal became a smaller proportion of the EBW during finishing. 

In Exp. 1, the HGW and LGW steers decreased total offal by at 8.5-fold greater rate 

compared with NR steers, whereas in Exp. 2, total offal ofNR steers decreased at a 1.7-

fold greater rate than HGW and LGW steers. Decreases in the proportion of total offal 

should not be surprising, especially in the NR steers, considering that when steers entered 

the feedlot they had low carcass weights relative to their total offal mass. Therefore, at 

the initiation of the feedlot phase, NR steers possessed adequate organ mass and could 

accrete carcass weight preferentially to visceral organ weight. 

In Exp. 1, decrease in liver proportion during the finishing period was greater in 

HGW compared with restricted steers. High-gain wheat steers entered the feedlot with 

large initial liver proportions most likely because of the metabolic demand placed on the 

liver by grazing wheat pasture. Conversely, the slower decrease in liver proportion in 

LGW and NR steers in Exp. l may have been physiologically required because these 

steers had to adapt to a greater nutrient load presented to the liver in the early finishing 

period, compared to the nutrient load the liver was receiving during the winter grazing 

period. This presentation of nutrients to the liver could also explain the similarities in 

liver change in Exp. 2, where LGW and NR steers were gaining BW prior to placement 

into the feedlot (Hersom et al., 2003). Several experiments (Drouillard et al. 1991; 

Wester et al. 1995; Noziere et al. 1999) have demonstrated increases in liver proportion 

during realimentation after restrictions of energy, protein, or level of intake. In Exp. 1, 

the change in small intestine proportion was similar among treatments, whereas in Exp. 2, 

previously restricted steers had greater decreases in the proportion ofsmall intestine 

compared with HGW steers. Our data agree with that ofDrouillard et al. (1991) who 
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reported decreases in small intestine(% ofEBW) during finishing in control and 

previously energy or protein restricted lambs. However, other work in sheep (Wester et 

al., 1995; Noziere et al., 1999) and steers (Sainz and Bentley, 1997) demonstrated 

increases in the proportion of small intestine in animals that had previously been 

restricted in intake of energy, protein or DM. In sheep data (Wester et al., 1995 and 

Noziere et al., 1999) realimentation periods were 14 and 26 d, whereas the steer data 

(Sainz and Bentley, 1997) is confounded by different previous diet type. In our 

experiments, an interesting difference among treatments was the increased change in the 

proportion of reticluo-rumen in HGW steers in Exp. 1 and HGW and LGW steers in Exp. 

2 compared with NR steers across the finishing period. Our data suggest that steers with 

decreased grazing ADG do not have larger GIT, rather a greater proportion of their EBW 

upon entering the feedlot is comprised of GIT in particular the stomach complex. In Exp. 

1, the total GIT in NR steers decreased at a two-fold faster rate compared with LGW and 

HGW steers during the finishing phase. In Exp. 2, NR steers decreased total GIT at over 

five -fold the rate compared with LGW and HGW steers, which were increasing total 

GIT proportion during finishing. Our observation of decreases in total GIT proportion 

agrees with those observed in control, and energy or protein restricted sheep by 

Drouillard et al. (1991) and sheep fed at maintenance or 45% maintenance then 

realimented at over 200% of maintenance by Noziere et al. (1999). Our observation do 

differ from Wester et al. (1995) and Sainz and Bentley (1997) who observed increases in 

GIT in previously energy restricted sheep or steers, respectively. Differences among 

studies may result from timing and type of restriction prior to the realimentation or 
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finishing phase, length of the re-feeding or finishing phase, and final chosen endpoint for 

harvest. 

During both experiments the proportion of TST increased at similar rates in all 

treatments. Noziere et al. (1999) reported no increase or a small decrease in TST of ewes 

realimented after restriction, however the realimentation period was only 26 d and adult 

animals were used. As previously stated the way in which the change in TST occurred 

varied between treatments with the exception of the increase in mesenteric fat, yet 

differences in fat accretion was the moderating factor causing the increase in TST despite 

decreases in other organ proportions. Increases in TST proportion would indicate an 

overall increase in the maintenance energy requirements of the cattle during the finishing 

period (Huntington and Reynolds, 1987). Whereas this is physiologically unavoidable, 

our data suggests that the timing of the increase in TST and relative proportions of 

different organs and tissue changes are important and potentially open for manipulation 

through nutritional and management practices. 

The rate of oxygen consumption of ruminal papillae from HGW steers was 30 and 

14% greater compared with LGW and NR steers. A 30% difference in ruminal epithelial 

tissue oxygen consumption between steers fed forage diets at maintenance or two-times 

maintenance has been reported by Harmon et al. ( 1991 ). Similarly, Kelly et al ( 1993) 

observed an 18% increase in rate of oxygen consumption 12 h after feeding by ruminal 

epithelium from steers fed alfalfa hay or bromegrass hay. However, Drouillard et al. 

( 1991) observed similar ruminal papillae oxygen consumption between control and · 

previously energy or protein restricted lambs. Duodenal tissues in LGW and NR steers 

had increased oxygen consumption relative to duodenal tissue of HGW steers. Our data 

126 



are similar to Drouillard et al. (1991) who reported 14 and 12% increase above control 

lambs in duodenal epithelium oxygen consumption from lambs previously restricted in 

protein or energy, respectively. McLeod and Baldwin (2000) reported similar duodenal 

tissue rate of oxygen consumption from sheep fed either maintenance or two-time 

maintenance of either high-forage or high-concentrate diets. McBride and Milligan 

(1985) have reported similar results with sheep fed either low or high levels of dietary 

DE. Our ouabain inhibition data, while not significant, showed a 32% increase in 

inhibition in HGW compared with LGW and NR steers. This compares favorably with a 

13% increase in ouabain inhibition in sheep fed high-DE compared with low-DE diets 

(McBride and Milligan 1985). The rate of liver oxygen consumption was similar among 

treatments, however when liver oxygen consumption is viewed on an organ basis, steers 

that consumed wheat forage had livers that consumed greater amounts of oxygen than did 

the livers of NR steers. Burrin et al. ( 1990) reported that in sheep the increase in liver 

oxygen consumption was a result of an increase in organ size rather than metabolic 

activity, which agrees with our data. 

Final rates and total organ oxygen consumption in ruminal epithelium, small 

intestine, and liver tissues were not different among treatments at final harvest. 

Drouillard et al. (1991) and Wester et al. (1995) reported similar oxygen consumption by 

ruminal papillae, small intestine and liver tissues between unrestricted and energy or 

protein restricted lambs after re-feeding. 
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Implications 

Winter grazing or growing programs can cause important differences in visceral 

organ mass. Lower visceral organ mass can lower energy expenditure of metabolically 

important tissues in steers before placement into feedlots. Differential changes in organ 

mass, similarities in final .total splanchnic tissue mass, and lower initial energy 

expenditure by visceral organs of previously restricted steers may cause steers to exhibit 

increased growth during finishing. 
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Table 3.1. Mass of visceral organs of steers from different winter grazing programs 
before placement into the feedlot, Exp. 1 

Item 
LiveBW, kg 
EBW \ kg 

Treatmene 
HGW LGW NR 
404 311 256 
3 70f 280g 22611 

--------------g I kg EB W--------------

SEMb 
2.4 
7.3 

Total offal 322 324 308 7.0 
Trim 17.0r 12.lg 10.7g 1.28 
Feet and ears 25.9r 32.3g 33.5g 0.59 
Hide 68.9r 76.7g 69.9r 1.91 
Blood 37.8 37.5 38.9 1.91 
Head 34.3 40.7 35.1 6.40 
Heart 4.9 4.7 4.9 0.12 
Lung 11.7 14.2 14.5 1.03 
Liver 18.6r 15.6g 15.5g 0.44 
Pancreas 1.3 1.1 1.2 0.08 
Spleen 2.2 2.4 2.5 0.29 
Kidney 3.1 2.8 3.1 0.22 
Reticulo-rumen 22.?1· 24.2g 24.4g 0.48 
Omasum 7.6r 8Ar 14.1 g 1 .4 
Abomasum 3.9 4.5 4.8 0.29 
Small intestine 16.9 17.6 18.3 0.97 
Large intestine 11.0 11.5 1 l.0 0.68 
Cecum 1.1 1.9 l.3 0.27 
Mesenteric fat 27.8'" 16. lg 7.8 11 2.06 
Total GIT d 63.i 68.1 r 73.9g 2.20 
TST c 110.6r 100.81g 98.4g 3.40 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 4. 

< 0.001 
< 0.001 

0.27 
0.02 

< 0.001 
0.05 
0.84 
0.75 
0.37 
0.16 
0.001 

. 0.18 
0.79 
0.55 
0.06 
0.02 
0.14 
0.65 
0.82 
0.13 

< 0.001 
0.02 
0.06 

c Empty body weight 
d Gastro-intestinal tract; includes reticulo-rumen, omasum, abomasum, small intestine, 

large intestine and cecum. 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
J;g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.2. Mass of visceral organs of steers from different winter grazing programs before 
Qlacement into the feedlot, ExQ. 2 

Treatment3 
Item HGW LGW NR SEMb 
LiveBW, kg 395 333 257 5.6 
EBW 0 , kg 345e 280f 197g 10.1 

--------------g I kg EBW--------------
Total offal 324f ,343f 371g 8.3 
Trim 16.4 11.7 11.1 3.03 
Feet and ears 29.4f 33.6g 38.5g 1.13 
Hide 77.8 79.5 85.0 3.17 
Blood 34.9 43.5 45.8 2.86 
Head 38.0r 44.6g 52.1 11 1.13 
Heart 5.0 5.4 5.4 0.21 
Lung 15.0r 14.7'. 18.2g 0.93 
Liver 16.2 17.2 17.5 0.57 
Pancreas 1.1 1.2 1.3 0.13 
Spleen 2.0 2.6 2.9 0.48 
Kidney 2.i .., or ., . 4.0g 0.21 
Reticulo-rumen 24.4f 25.6f 29.3g 1.09 
Omasum 7_9f 9.9g 15.?11 0.64 
Abomasum 3.8r 4.4f 5.4g 0.24 
Small intestine 13.or 16.6g 18.3g 1.01 
Large intestine 8.6 9.3 9.6 0.67 
Cecum 1.5 1.5 2.0 0.24 
Mesenteric fat 26.l 19.0g 9.i1 1.80 
Total GIT<l 59. lf 67.4g 80.311 2.20 
TST 0 102.6 104.8 108.3 3.32 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 4. 

P- value 
< 0.001 
< 0.001 

0.01 
0.43 
0.001 
0.29 
0.05 

< 0.001 
0.30 
0.05 
0.26 
0.32 
0.48 
0,003 
0.03 

< 0.001 
0.004 
0.01 
0.57 
0.28 

< 0.001 
< 0.001 

0.50 

0 Empty body weight 
d Gastro-intestinal tract; includes reticulo-rumen, omasum, abomasum, small intestine, 

large iritestine and cecum." 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
f,g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.3. Mass of visceral organs of steers from different winter grazing programs at 
the final harvest date, Exp. 1 

Treatment" 
Item HGW LGW NR SEMb 
Live BW, kg 563 524 555 7. 1 
EBWC k 532e 501f 528e 7.3 ' g 

--------------g I kg EB W--------------
Total offal 303 302 308 6.5 
Trim 13.8 16.0 16.9 1.74 
Feet and ears 22.6 23.7 22.4 0.63 
Hide 71.2 70.2 75.9 3.60 
Blood 30.9 29.8 29.7 1.54 
Head 29.6 31.3 30.4 0.39 
Heart 4.3 4.5 4.3 0.20 
Lung 13.6 14.9 14.3 0.75 
Liver 15. l 14.6 14.9 0.05 
Pancreas 0.9 0.9 l.O 0.06 
Spleen 1.9 2.5 2. l 0.26 
Kidney 2.11" 2.01g 1.9g 0.05 
Reticulo-rumen 23.3 23.9 21.6 0.74 
Omasum 9.1 9.7 10.7 0.89 
Abomasum 3 .1 3.8 2.7 0.39 
Small intestine 13.3 12.9 12.9 0.48 
Large intestine 9.8 10.8 9.5 0.49 
Cecum 1.4 1.6 1.8 0.13 
Mesenteric fat 37.Jf 28.8g 35.01g 2.19 
Total GITct 59.9 62.7 59.2 1.78 
TSTC 113. l 107.1 110.1 3.10 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 6. 

P-value 
0.02 
0.02 

0.78 
0.44 
0.34 
0.51 
0.82 
0.25 
0.77 
0.49 
0.77 
0.27 
0.38 
0.02 
0.12 
0.45 
0.14 
0.84 
0.19 
0.20 
0.04 
0.35 
0.41 

c Empty body weight 
ct Gastro-intestinal tract; includes reticulo-rumen, omasurn, abomasum, small intestine, 

large intestine and cecum. 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
t;g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.4. Mass of visceral organs of steers from different winter grazing programs at 
the final harvest date, Exp. 2 

Treatment 
Item HGW LGW NR SEMb 

LiveBW, kg 542 511 560 9.9 
EBWC, kg 512 497 518 11.4 

--------------g I kg EB W--------------
Total offal, kg 303 318 306 7.8 
Trim 15.1 12.2 13.7 1.25 
Feet and ears 23.5 24.1 23.6 0.41 
Hide 73.9 73.5 71.2 1.98 
Blood 27.3 29.6 22.1 3.30 
Head 31.2 31.6 31.4 0.61 
Heart 4.7 5.4 4.9 0.55 
Lung 12.9 15.5 14.3 1.61 
Liver 14.9 15.1 15.7 0.47 
Pancreas 1.0 0.9 1. l 0.07 
Spleen 1.9 2.2 2. I 0.28 
Kidney 2.2 2.5 2.3 0.27 
Reticulo-rumen 28.2 30.4 28. I 1.07 
Omasum 9.5r 9.9r 11.6g 0.57 
Abomasum . 3.5 3.6 4.7 0.53 
Small intestine 12.3 11.2 12.1 0.51 
Large intestine 7.9 8.4 7. l 0.60 
Cecum 1.6 1.4 1.9 0.25 
Mesenteric fat 31.3f 37.9g 37.7g 1.65 
Total GITct 62.9 64.9 65.4 1.54 
TSTC 110.i" 118.9g 120.0g 2.18 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 6. 

P-value 
0.08 
0.44 

0.34 
0.29 
0.56 
0.31 
0.29 
0.87 
0.69 
0.54 
0.43 
0.09 
0.78 
0.75 
0.25 
0.05 
0.25 
0.27 
0.33 
0.39 
0.02 
0.50 
0.01 

c Empty body weight 
d Gastro-intestinal tract; includes reticulo-rumen, omasum, abomasum, small intestine, 

large intestine and cecum. 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
i;g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.5. Change in mass of visceral organs of steers from different winter grazing 
programs during finishjng, Exp. 1 

Treatment 
Item HGW LGW NR SEMb 
Live BW, kg/d 1.79 1.80 1.78 0.06 
EBWC, kg/d 1.77 1.75 1.81 0.05 

-------------g·g EBW-1·d-1------------

Total offal -159ef -177c -210f 52 
Trim -35.lc 31.0r 37.8r 14.3 
Feet and ears -35.8c -68.5r -66.5r 4.8 
Hide 13.9 -51.4 35.8 29.6 
Blood -75.4 -60.6 -55.6 13.9 
Head -52.0c -74.9r -28.3g 5.4 
Heart -6.2 -1.4 3.4 1.7 
Lung 20.9c 5. I er 1.lr 6.5 
Liver -38.3c -7.i -3.i 3.9 
Pancreas -4.6e -0.9r -0.9r 0.5 
Spleen -2.9 0.3 -2.2 1.8 
Kidney -10. 7e -6.6f -7.6f 0.4 
Reticulo-rumen 6.8e -2.7.:1· -16.4[ 6.2 
Omasum 16.0e 11.0c 20.8r 7.3 
Abomasum -9.1 -5.4 -12.7 3.1 
Small intestine -40.3 -36.5 -32.0 3.7 
Large intestine -13.7 -6.1 -9.1 4.4 
Cecum 4.1 e -2.8r 2.Sc 1. 1 
Mesenteric fat I03.6e J 01.0c r 163.1 . 18.7 
Total GIT<l -36.3c -42.6c -88.4r 15.4 
TSTC 24.5 49.9 70.l 28.4 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 6. 

P-value 
0.95 
0.73 

0.10 
0.004 

< 0.001 
0.13 

· 0.59 
< 0.001 

0.16 
0.08 · 

< 0.001 
< 0.001 

0.44 
< 0.001 

0.05 
0.006 
0.28 
0.30 
0.48 
0.002 
0.05 
0.06 
0.54 

c Empty body weight 
d Gastro-intestinal tract; includes reticulo-rumen, omasum, abomasum, small intestine, 

large intestine and cecum. 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
f,g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.6. Change in mass of visceral organs of steers from different winter grazing 
programs during finishing, Exp. 2 

Treatment8 

Item HGW LGW NR SEMb 
Live BW, kg/d 1.72 1.60 1. 71 0.05 
EBW\ kg/d 1.94 1.86 1.98 0.10 

-------------g·g EBw-1-d-1------------

Total offal -245 -226 -406 69 
Trim -15.7 -17.0 16.0 17.7 
Feet and ears -68.2c -79.3,;: -92.2" 4.4 
Hide -45.8 -62.5 -84.8 16.0 
Blood -88.7 -99.8 -146.3 31.6 
Head -79.5e -104.5r -127.8g 7.0 
Heart -2.7 -0.67 -2.83 4.9 
Lung -24.8 6.7 -23.8 14.7 
Liver -15.2 -20.3 -11.3 4.1 
Pancreas -0.7 -2.7 -1.2 0. 6 
Spleen -1. 7 -3.7 -5.0 2.5 
Kidney -5.3 -4.8 -11.0 2.4 
Reticulo-rumen 44.2c 40.7c 7 ,.,r . ., 10.8 
Omasum 18.3e 3.0r -26.0g 5.2 
Abomasum A.O" 7 "'" - . ., -4.7 3.5 
Small intestine -8.0" -44.0r -38.i 5.4 
Large intestine -8.2 -6.0 -15.2 4.6 
Cecum 1.3 -2.2 -0.7 1.6 
Mesenteric fat 59.0c 150.7'' 176.0r 18.7 
Total GITd 44.3" -16.0r -91.8g 13.6 
TST..: 87.5 111.8 72.0 21.9 
a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 6. 

P-value 
0.24 
0.69 

0.17 
0.31 
0.006 
0.25 
0.41 

< 0.001 
0.94 
0.26 
0.32 
0.07 
0.64 
0.16 
0.007 

< 0.001 
0.78 

< 0.001 
0.37 
0.34 
0.001 

< 0.001 
0.45 

" Empty body weight 
d Gastro-intestinal tract; includes reticulo-rumen, omasum, abomasum, small intestine, 

large intestine and cecum. 
e Total splanchnic tissues; includes GIT, liver, pancreas, spleen, and mesenteric fat. 
i;g,h Within a row, means without a common superscript letter differ (P < 0.05). 
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Table 3.7. Oxygen consumption by tissues from steers before placement into the feedlot, 
Exp.2 

Treatment 
Item HGW LGW NR SEM b P..;value 
Rumen papillae 

µLmin-1.g- 1 7.02 4.91 6.03 1.51 0.55 
whole organ, rnL/min 58.66 36.43 32.79 10.33 0.16 
ouabain inhibition, % 27.37 39.49 36.52 19.86 0.90 
cyclohexamide inhibition, % 25.38 25.58 12.09 29.63 0.91 

Duodenum 
µLmin-1.g- 1 1.27c 2.63d 1.37c 0.28 0.01 
whole organ, mL/min 5.77c 12.06d 4.61 C 1.47 0.01 
ouabain inhibition, % 68.78 44.65 48.94 12.71 0.27 
cyclohexamide inhibition, % 51.80 52.26 37.25 12.89 0.62 

Liver 
µLmin-1.g- 1 6.17 7.00 4.88 0.95 0.33 
whole organ, mL/min 35.24 33.77 16.87 5.80 0.09 
ouabain inhibition, % 34.22 39.61 24.19 10.83 0.57 
cyclohexamide inhibition, % 37.48 36.59 45.57 12.73 0.84 

a HGW = High gain wheat; LGW = Low gain wheat; NR = Native range. 
b Standard error of mean, n = 4. · 
c, d Within a row, means without a common superscript letter differ (P < 0.05). 
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ABSTRACT 

Two experiments were conducted utilizing 48 Angus x Angus-Hereford steers in 

each experiment to determine the effect of previous winter grazing BW gain on 

concentrations of blood metabolites and hormones during feedlot finishing. In each 

experiment, steers were randomly assigned to one of three treatments: high rate ofBW 

gain grazing winter wheat (HGW); low rate ofBW gain grazing winter wheat (LGW); or 

grazing dormant tallgrass native range (NR) with 0.91 kg/d ofa 41% CP supplement. 

Steers grazed for 120 or 144 d in Exp. 1 and 2, respectively. Plasma and serum were 

collected from all steers prior to placement into a feedlot in Exp. 1 and 2, and at six or 

seven times during feeding in Exp. l and 2 respectively. In Exp. 1, initial concentrations 

of insulin, triiodothyronine (T3), and thyroxine (T4) were greater (P < 0.05) in HGW 

steers compared with LGW and NR steers. Concentrations ofIGF-1, glucose and plasma 

urea nitrogen were greater (P < 0.05) in steers that grazed wheat pasture compared with 

NR steers. In Exp. 2, initial concentrations of glucose, T3, T 4, IGF-1, and leptin were 

greater (P < 0.05) in steers that grazed wheat pasture than NR steers. Concentrations of 

glucose, insulin, T3, T4, and IGF-1 increased during the first 49 din Exp. l and the entire 

finishing period in Exp. 2. Concentrations of glucose were greater (P < 0.05, average= 

95.01 mg/dL) and insulin less (P < 0.001, average= 4.50 ng/mL) in LGW and NR steers 

compared with HGW steers (82.6 mg/dL, 6:54 ng/mL) on d 49 in Exp. 1, but similar (P > 

0.10) among treatments in Exp. 2 on d 46. Final IGF-I and leptin concentrations (Exp. 2) 

were similar (P > 0.10, average= 453.67 and 15.56 ng/mL) among treatments. Previous 

BW gain can affect blood metabolites and hormones in steers entering the feedlot. Lower 
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concentrations ofT3, T4, and IGF-1 at the initiation of the feedlot period may be 

associated with growth in steers. 

Keywords: Cattle, Grazing, Feedlot, Nutrients, Hormones 

Introduction 

Occurrence of differences in -feedlot growth in cattle may be associated with 

altered endocrine function. Ellenberger et al. (1989) postulated that alterations in 

anabolic hormones might induce growth and, Hayden et al. ( 1993) found a strong 

correlation between protein anabolic hormones (JGF~I and insulin) and body growth in 

steers exhibiting increased rate of growth. Nutritional restriction reduces plasma 

concentrations oftriiodothyronine (T3), thyroxine (T4), and IGF-1 (Ellenburger et al., 

1989; Yambayamba et al., 1996) and insulin (Yelich et al., 1995). Decreased 

concentrations of thyroid hormone have been reported to reduce maintenance energy 

requirements (Murphy and Loerch, 1 994) and decrease protein degradation (Ellenburger 

et al., 1989). Yan den Brande (1986) speculated that animals become more sensitive to 

anabolic hormones, especially IGF-I, after a period of nutritional restriction. 

Additionally, Yambayamba et al. ( 1996) speculated that changes in blood metabolites are 

not abrupt when animals are re-fed after restriction. The lag in response of blood 

metabolites might allow increased efficiency of energy use by decreasing the animal's 

maintenance energy requirements. Decreased maintenance energy requirements through 
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reduced thyroid function and increased sensitivity and/or responsiveness to anabolic 

hormones may be mechanisms that cause increased growth in cattle. 

In this experiment we examined endocrine and metabolite responses of steers 

during feedlot finishing. Steers had similar genetics but different BW gains and body fat, 

resulting from different winter grazing programs prior to placement into the feedlot. 

Materials and Methods 

Animals and Management 

A complete description of the procedures utilized for the animals are in a 

companion paper (Hersom et al., 2003). Briefly, in each of two experiments, 48 fall

weaned Angus x Angus-Hereford steers (244 ± 23 kg, Exp. 1; 231 ± 25 kg, Exp. 2) from 

the same cowherd were randomly allotted to one of three winter grazing treatments. 

Treatments were: grazing winter wheat pasture to achieve a high BW gain (HGW; 1.31 

kg/d Exp. 1 and 1.10 kg/d Exp. 2, stocking density= 0.43 to 0.55 ha·steef1); grazing 

winter wheat pasture and adjusting stocking density to maintain a low BW gain (LGW; 

0.54 kg/d Exp. 1 and 0.68 kg/d Exp. 2, stocking density= 0.16 to 0.52 ha·stee(1), or 

grazing dormant tallgrass native range (NR; 0.16 kg/d Exp. 1 and 0.15 kg/d Exp. 2, 

stocking density= 0.63 ha·stee(1). Steers grazing NR were offered 0.91 kg·steer-1·d-1 of 

a cottonseed meal-based supplement ( 41 % CP). Implants were not utilized during winter 

grazing. At the end of the grazing phase, steers where placed in a feedlot and adapted to 

a high-grain finishing diet over four weeks. Steers from all treatments were harvested at 

approximately the same backfat endpoint (1.27 cm). The Oklahoma State University 
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Institutional Animal Care and Use Committee approved the use of animals and research 

protocols. 

Blood Collection 

Three days (d -3) prior to placement into the feedlot in Exp 1 and Exp 2, all steers 

were removed from pastures and after 5 to 6 h without feed and water blood was 

collected via jugular venipuncture into two 10 mL Vaccutainer tubes and placed on ice. 

Blood for plasma was collected into tubes containing sodium heparin and centrifuged 

(3,000xg for 20 min) within l h of collection. Blood for serum was collected into empty 

tubes and allowed to clot for 16 h at 2 to 8°C before centrifugation. Plasma and serum 

were stored in polyethylene tubes at -40°C until analysis. 

In Exp I, blood samples for plasma and serum were also collected 3 to 4 h after 

the steers received one-half of their daily feed allotment on d 14, 21, 28, 35, 42, and 49 of 

the feedlot period. In Exp 2, blood samples were collected 2 to 3 h after steers received 

their entire feed allotment for the day on d 26, 46, 67, 86 (HGW, LGW, and NR), 111 

(LGW and NR), 132, and 145 (NR) from steers on feed. 

Metabolite and hormone assays 

Plasma glucose and urea nitrogen (PUN) concentrations were determined using a 

Cobas Mira analyzer (Roche Diagnostic Corporation, Indianapolis, IN). Intra- and 

interassay CV (n = 6) were 2 and 4% respectively. Serum NEFA concentration was 

determined by enzymatic colorimetric procedure (Wako-NEF A C, W AKO Chemicals 

USA, Dallas, TX) with modifications described by McCutheon and Banman (1986). 
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Intra- and interassay CV (n = 6) were 9 and 18% respectively. Serum T3 and T4 was 

quantified with a solid phase RIA for human T:i and T4 (Coat-A-Count, Diagnostic 

Products Corporation, Los Angles, CA). Assay sensitivity was 10 ng/mL of serum and 

the addition of 48 ng ofT4 to 25 µL resulted in 96% recovery. When 5, 10, 15, 20, and 

25 µL of bovine serum were assayed, concentrations ofT4 were parallel to the standard 

curve. Intra- and interassay CV (n = 6) were 12 and 18% respectively. Assay sensitivity 

ofT3 was 0.4 ng/mL of serum and the addition of 15 ng ofT3 to 100 µL resulted in 91% 

recovery. When 4, 6, 8, and 10 µL of bovine serum were assayed, concentrations ofT3 

were parallel to the standard curve. Intra- and interassay CV (n = 6) were 11 and 16% 

respectively. Concentrations of insulin in serum were quantified by solid phase RIA as 

described by Bossis et al. (1999). Serum IGF-1 concentrations were determined using 

RIA with acid-ethanol extraction (Echternkamp et al., 1990). Recombinant human IGF-l 

(R&D Systems, Minneapolis, MN) was used for standards. Intra- and interassay CV (n = 

6) were 19 and 18% respectively. Plasma concentrations of Ieptin were quantified with 

RIA (Delavaud et al., 2000) using purified recombinant ovine leptin produced as 

described by Gertler et al. (1998) for standards. lntrassay CV was 5%. 

Statistical Analysis 

For both Exp., data from d -3 were analyzed as a completely random design using 

the Mixed procedure of SAS (SAS Inst. Inc., Cary, NC). The statistical model included 

the treatment as the fixed effect and steer within treatment as a random effect. Treatment 

least squares means were calculated and means were compared using LSD when 

protected by a (P < 0 .10) F-value. Data after placement into the feedlot were analyzed as 
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a completely random design with the Mixed procedure using a model that included the 

terms for treatment, day, and the interaction and days were repeated in the analysis. The 

covariance structure used was autoregressive of order 1 (Littell et al., 1996). In Exp. 1, 

all sampling dates were included, however in Exp. 2, because treatments were harvested · 

at different dates, only through d 86 was used. If metabolites or hormones had significant 

treatment x day interactions best fit polynomial response curves were determined and 

tested for heterogeneity of regression were used to determine differences among HGW, 

LGW, and NR treatments (Yelich et al., 1995). Treatments response curves were then 

compared using LSD pair-wise comparisons; HGW vs. LGW, HGW vs. NR, LGW vs. 

NR. In Exp. 2, the final collection date was analyzed in a similar manner as d -3, to 

examine differences among treatment at final harvest. Simple Pearson correlations (SAS 

Inst. Inc., Cary, NC) were determined between leptin concentration and BW, and final 

leptin concentration and final carcass fat (kg). 

Results 

Experiment I 

Metabolites. Prior to placement into the feedlot, plasma glucose concentrations of 

HGW and LGW (average= 88.7 mg/dL) were greater (P = 0.04) than NR (Table 4.1 ). 

During d 14 through 42 in the feedlot plasma glucose concentrations were not different 

among treatments (P = 0.43) with no discernable pattern (treatment x day, P = 0.22). 

Plasma urea nitrogen concentrations (Table 4.1) in HGW and LGW (average= 

21.3 mg/dL) were greater (P < 0.006) than NR steers (16.31 mg/dL) prior to placement 

into the feedlot. After steers were placed in the feedlot and on a similar diet PUN 
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concentrations were similar (P > 0.10) among treatments and remained constant 

(treatment x day, P = 0.06). 

Prior to placement into the feedlot serum NEF A concentrations were greater (P < 

0.001) in LGW and NR steers (average= 515 mEq/L) compared with HGW steers (286 

mEq/L, Figure 4.1). There was a treatment x day (P < 0.001) effect on concentrations of 

NEFA in serum during d 14 through 49. Concentrations ofNEFA in steers were best 

described by a quartric regression equation. Analyses of heterogeneity of the response 

curves ofNEFA concentration were different (P < 0.0001) between HGW and NR, and 

LGW and NR, but were not different (P = 0.29) between HGW and LGW. 

Hormones. Prior to placement into the feedlot, serum insulin concentration in 

HGW steers was greater (2.56 ng/mL, P= 0.002) than LGW steers (1.43 ng/mL); insulin 

concentration ofNR steers was intermediate (1.59 ng/mL; Table 4.2). After d 14 serum 

insulin concentration ofHGW steers (4.74 ng/mL) was greater (P < 0.001) compared 

with LGW or NR steers (average= 3.26 ng/mL). Additionally, serum insulin 

concentration increased from day 14 through 49 (P < 0.001). No treatment x day effect 

was observed (P = 0.11). The Pearson correlation between glucose and insulin was 

negative for HGW steers (r = -0.006, P = 0.95), positive for NR steers (r == 0.20, P = 

0.09), and for LGW steers (r = 0.22, P = 0.04). All treatments exhibited positive Pearson 

correlations (P < 0.001) between insulin and days on feed (r = 0.58, 0.45, 0.38; HGW, 

LGW, NR respectively), and only NR steers exhibited a correlation between days on feed 

and glucose concentration (Exp. 1, r = 0.35, P < 0.002). 

Serum T 3 concentrations prior to placement into the feedlot were greatest (P = 

0.003) in HGW steers followed by LGW steers which had greater serum T3 
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concentrations than NR steers (1.63 > 1.38 > 1.17 ng/mL, respectively; Table 4.2). 

During the early sampling period, serum T 3 concentrations of HGW steers were greater 

(P < 0.005) than NR steers. At the end of the sampling period, serum T3 concentrations 

were not different (P > 0.12) among treatments (average= 1.60 ng/mL). 

Prior to placement into the feedlot, serum concentrations of T 4 (Table 4.2) in 

HGW steers (71.7 ng/mL) were greater (P < 0.001) compared with LGW and NR 

(average= 51.9 ng/mL). Early in the feedlot-sampling period, serum T 4 concentrations in 

HGW steers remained greater (P < 0.02) compared with LGW and NR steers. At the end 

of the feedlot-sampling period HGW and LGW serum T4 concentrations were greater (P 

< 0.02) compared with NR steers. 

Prior to placement into the feedlot, serum IGF-1 concentrations ofHGW and 

LGW (average= 469 ng/mL) were two-fold greater (P < 0.01) than NR (239 ng/mL). 

Concentration of serum IGF-1 exhibited a treatment x day interaction (P < 0.001, Figure 

4.2). Concentrations oflGF-1 in steers were best described by a quadratic regression 

equation. The analysis of heterogeneity of response curves of serum IGF-1 concentration 

was different (P < 0.001) between HGW and NR, and LGW and NR but was similar (P = 

0.27) between HGW and LGW. After d 14 the feedlot period the serum IGF-1 

concentrations ofHGW and LGW steers were greater (P < 0.01) compared with NR 

steers. On d 49 of the feedlot period, serum IGF-I concentrations in NR and HGW steers 

was 443 ng/mL, LGW steers was 285 ng/mL. 
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Experiment 2 

Metabolites. Prior to placement into the feedlot, plasma glucose concentrations 

(Table 4.3) ofHGW and LGW steers were greater (P < 0.04) compared with NR steers. 

During the first 86 d that steers were on feed, plasma glucose concentrations did not 

differ (P = 0.86) among treatments. Plasma glucose at final harvest in NR steers (d 145) 

was greater (P < 0.03) compared with HGW (d 86) and LGW steers (d 111). 

Concentrations ofNEFA were not different (P = 0.15, average= 265 mEq/L) 

among treatments when steers entered the feedlot. During the entire feedlot period, 

NEFA concentrations did not differ (P = 0.55) among treatments declining to their lowest 

concentration on d 86. 

Prior to placement into the feedlot, PUN concentrations were greater (P < 0.001) 

in LGW (21.3 mg/dL) compared with HGW and NR steers (average= 14.4 mg/dL). 

Concentrations of PUN (Figure 4.3) exhibited a treatment x day interaction (P = 0.07). 

Plasma urea N concentrations were best described by a cubic regression equation. The 

analysis of heterogeneity for response curves of PUN was different (P < 0.02) between 

HGW, LGW, and NR treatments. Plasma urea nitrogen concentrations increased in all 

treatments after d 26. Plasma urea nitrogen concentrations were not different (P > 0.14) 

among treatments for the remainder of the feeding period. 

Hormones. Plasma leptin concentrations (Table 4.3) prior to placement into the 

feedlot in HGW steers were greater (P = 0.04) compared with LGW and NR steers (4.55 

vs. 2.83 ng/mL). Once steers were in the feedlot, leptin concentrations were not different 

(P > 0.10) between HGW and LGW steers except on d 46 when HGW steers had leptin 

concentrations that were 2.9 ng/mL greater (P < 0.001) than LGW steers. Native range 
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steers during the feedlot period had leptin concentrations that were 56 to 33% lower (P < 

0.05) compared with HGW steers through 86 days on feed and 35 to 23% lower (P < 

0.05) than and LGW steers through 86 days on feed. Serum leptin concentrations were 

not different (P > 0.10) among treatments at final harvest (average= 15.56 ng/mL). We 

observed a significant correlation between leptin and shrunk BW (Figure 4.6) during the 

feedlot period (r2 = 0.69, P < 0.001 ). We also observed a significant correlation (r2 = 

0.53, P = 0.02) between carcass fat (kg) and leptin concentration in steers (Figure 4.7). 

Serum insulin concentrations (Table 4.4) were not different (P = 0.18, average= 

2.47 ng/mL) among treatments before steers entered the feedlot. In the feedlot, insulin 

concentrations did not differ (P = 0.24) among treatments. However, final serum insulin 

concentrations at harvest were greater (P = 0.04) in NR steers compared with LGW 

steers, HGW steers were intermediate (12.44, 7.78, 9.54 ng/mL, respectively). The 

Pearson correlation between glucose and insulin was negative for HGW steers (r = -0.20, 

P = 0.15), positive for NR steers (r = 0.45, P < 0.001), and for LGW steers (r = 0.05, P = 

0.68). All treatments exhibited positive Pearson correlations (P < 0.001) between insulin 

and days on feed (r = 0.48, 0.53, 0.67; HGW, LGW, NR respectively), and only NR 

steers exhibited a correlation between days on feed and glucose concentration (r = 0.51, P 

< 0.001 ). 

Prior to placement into the feedlot serum T3 concentrations ofHGW and LGW 

(average= 1.69 ng/mL) were nearly two-times greater (P < 0.001) than NR (0.93 ng/mL). 

Concentration of serum T 3 exhibited a treatment x day interaction (P < 0.003, Figure 4.4). 

Serum T 3concentrations were best described by a linear regression equation. The 
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analysis of heterogeneity for response curves ofT3 was not different (P >0.10) between 

HGW, LGW, and NR treatments. During the early feedlot period, serum T3 

concentrations ofHGW and LGW steers were greater (P = 0.03, average= 1.52 ng/mL) 

compared withNR steers (1.18 ng/mL). During the remaining feedlot period T3 

concentrations were not different (P > 0.97) among treatments. Concentrations of serum 

T3 prior to final harvest were greater (P = 0.004) in NR compared with HGW steers~· 

LGW steers were intermediate (1. 76, 1.39, and 1.60 ng/mL, respectively). 

Serum concentrations ofT4 (Table 4.4) prior to placement into the feedlot were 

greater (P < 0.001) in HGW and LGW steers (average= 60.6 ng/mL) compared with NR 

steers (34.1 ng/mL). During the early feedlot period, serum T4 concentrations in HGW 

and LGW steers were greater (P < 0.006) than NR steers (average= 65.5 > 50.9 and 

average= 79.9 > 68.3ng/mL). Final serum T4 concentrations prior to harvest were 

greater (P = 0.004) in LGW and NR steers (average= 95.6 ng/mL) compared with HGW 

steers (77.8 ng/mL). 

Prior to placement into the feedlot serum IGF-1 concentrations ofHGW and LGW 

(average= 212.8 ng/mL) were 2.5 fold greater (P < 0.001) than NR (84.2 ng/mL). 

Concentration of serum IGF-1 exhibited a treatment x day interaction (P < 0.007, Figure 

4.5). Serum IGF-1 concentrations of steers were best described by a quadratic regression 

equation. Analysis of the response curves of serum IGF-I concentration was different (P 

= 0.03) between HGW and LGW, HGW and NR (P = 0.001) but was not different (P = 

0.21) between LGW and NR. Serum lGF-1 concentrations increased in all treatments (P 

< 0.001), apparently more rapidly in HGW and LGW steers compared with NR steers. 
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After d 46, serum IGF-I concentrations plateaued in HGW and LGW steers, whereas 

IGF-I concentration in NR steers did not plateau until d 111. Final pre-harvest IGF-I 

concentrations were similar (P = 0.87, average 455.1 ng/mL) among treatments. 

Discussion 

In a companion paper we reported that BW gains during winter grazing were 60 

and 88% less in LGW and NR than HGW steers in Exp. 1 and 40 and 86% less in Exp. 2. 

Accordingly, empty body protein and fat masses were reduced in LGW and NR steers 

compared to HGW steers. The reduced BW gains during winter grazing, especially in 

NR steers, had the effect of reducing serum hormone, plasma glucose and urea nitrogen 

and increasing NEF A concentrations relative to HGW steers. Other workers (Ellenberger 

et al. 1989; Hayden et al. 1993; Yambayamba et al. 1996) have reported a similar 

response to reduced nutrient intake over an extended period. 

Initial plasma glucose concentrations were lower in steers that grazed native range 

forage compared with steers that grazed wheat pasture. Plasma portal and liver glucose 

flux has been reported to be stable in beef steers fed 90% ad libitum intake of alfalfa hay 

or 64% concentrate diets twice daily (Whitt et al., 1996). Therefore, differences in initial 

plasma glucose concentrations can be ascribed to treatment differences and not a 

response to post-prandial time interval. Reduced plasma glucose concentrations 

corresponded with reduced concentration of insulin, which at low concentration is 

lipolytic (Hornick et al. 1993). The reduction in plasma glucose mostly likely elicited the 

increased serum NEF A concentrations that served as an alternative energy source. 
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The elevated concentration of PUN in HGW steers is an effect of the wheat forage 

diet; wheat forage has a large amount of soluble nitrogen (Horn, 1983) that is quickly 

absorbed into blood. Low gain wheat steers had elevated PUN concentration priorto 

placement into the feedlot, which may be a combination of the highly soluble Nin wheat 

forage and mobilization of body tissues to meet energetic demands. Ellenberger et al. 

(1989) reported elevated blood urea nitrogen concentrations of steers after a 189-d 

restriction period characterized by gains of0.4 kg/d. Hayden et al. (1993) observed an 

increase in glucose and a decline in PUN concentrations during the first 60 d of re

alimentation when steers that were previously energy-restricted for 92 d were adapted to 

a high-energy diet. In Exp. 1 plasma concentrations of glucose and PUN ofLGW and 

NR steers followed similar trends as described by Hayden et al. (1993). However in Exp. 

2, plasma glucose concentrations in LGW steers remained constant, and NR steers 

exhibiting increasing glucose concentrations. The decrease in NEF A concentrations in 

both LGW and NR steers in both Exp. 1 and Exp. 2 indicates that steers upon entering the . 

feedlot were returning to a more positive energy balance. Indeed, NEF A concentrations 

in LGW and NR steers were less than HGW steers that were rapidly gaining BW when 

they entered the feedlot. The response observed in NEF A concentrations may imply that 

LGW and NR steers were utilizing dietary energy more efficiently to meet body energy 

demand rather than mobilizing body energy reserves. Composition data from serial 

harvest of these steers showed a numerical increase in accretion rate of whole body 

energy in both LGW and NR steers (Hersom et al., 2002). 

Serum insulin concentrations increased in steers from all treatments when steers 

entered the feedlot. Insulin concentration steadily increased in HGW steers in Exp. I 
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through d 49 on feed. In Exp. 2, insulin concentrations in HGW steer were maximal just 

prior to harvest. Insulin concentrations in LGW and NR steers exhibited steady increases 

in concentration, but were never greater than HGW steer insulin concentration during the 

first 49 din Exp 1 and 132 din Exp. 2. Hayden et al. (1993) reported that previously 

restricted steers exhibited linear increases in insulin concentration during realimentation 

and had greater insulin concentrations compared with normally fed animals after 60 d of 

realimentation. Perhaps an increased sensitivity to insulin or up regulation of receptors 

affinity occurred in both LGW and NR steers reducing the amount of circulating insulin 

required for homeostasis. Insulin resistance by peripheral tissues of steers has been 

reported (Eisemann et al., 1997). These authors examined insulin responsiveness and 

sensitivity in beef steers of different age and BW (275 vs. 490 kg) and determined that 

the metabolism of glucose decreases in sensitivity and responsiveness at heavier BW that 

also corresponded with increased age and body fat content. Our steers started the feedlot 

period at the same age however; HGW steers had greater initial body fat content (Hersom 

et al., 2002) compared with LGW and NR. High gain wheat steers would have 

maintained increased fat content relative to time in the feedlot compared with LGW and 

NR steers. Our results agree with Eisemann et al. ( 1997) in that body fat content could 

be a factor affecting the insulin response in finishing cattle. 

Serum IGF-I concentrations were less 1n NR steers compared with steers that 

grazed wheat forage in both Exp. 1 and 2. Breier et al. (1988a) suggested that regulation 

of circulating IGF-I might be mediated through high-affinity hepatic growth hormone 

(GH) receptors that are subject to nutritional manipulation. Hayden et al. (1993) reported 

that after a 92-d energy restriction, GH concentration in restricted steers had increased 
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45% whereas IGF-1 concentration was reduced by 43% compared with steers offered 

adequate energy for feedlot growth. In addition, a restriction in consumed nutrients has 

been shown to reduce liver mass in cattle (Drouillard et al., 1991 b) and sheep in which 

IGF-I concentrations were reduced by dietary energy or protein restriction (Wester et al., 

1995). Reduced liver mass would then result in a reduced total number of hepatocytes 

and therefore GH receptors for with which to stimulate hepatic IGF-I synthesis. In 

addition to the reduction in hepatocytes, protein restriction has been shown to decrease 

IGF-I concentration through GH dependent post-receptor events (Thissen et al., 1990). 

The un-coupling of the GH-IGF-I axis has been demonstrated by Breier et al. (1988b) 

who reported only steers on a high plain of nutrition responded to boluses of GH with 

increased IGF-I concentration. 

Once steers were in the feedlot, IGF-I concentrations in NR steers were less than 

steers that grazed wheat forage until d 49 in Exp. 1 and d 67 in Exp.2. Breier et al. 

(1986) and Yambayamba et al. ( 1996) using intake-restricted steers and heifers, 

respectively, found that IGF-1 concentration in previously energy restricted animals were 

similar to that of ad libitum fed animals after 10 d of refeeding. Ellenberger et al. ( 1989) 

also found a rapid resumption ofIGF-I concentration, similar to ad libitum fed steers, in 

steers that had been restricted to 0.35 kg/d from 242 to 310 kg BW. Ellenberger et al. 

(1989) observed that previously energy-restricted steers also tended to have greater IGF-I 

concentrations compared with adequate energy, ad libitum fed steers during the later 

finishing period, whereas Yambayamba et al. ( 1996) showed that refed restricted heifers 

had similar IGF-1 concentrations as ad libitum fed heifers. In Exp. 2, IGF-1 

concentrations ofNR steers were similar to HGW steers after d 67, corresponding to 
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increased growth rate during that period (Hersom et al., 2002). Our results from both 

experiments agree with that of Hayden et al. (1993), in that IGF-1 concentration of 

previously energy restricted steers was nearly equal to that of adequate energy-fed steers 

after 60 d of realimentation. One issue controlling the slow increases in IGF-1 

concentration in both the present experiments and that of Hayden et al. ( 1993) might be a 

deficiency in metabolizable protein (MP) during the early feedlot or re-feeding period. 

Drouillard et al. (1991a) speculated that not increasing the CP level of the finishing or re

feeding diet might limit steers from exhibiting their full compensatory growth potential, 

because MP restricted steers must first replace body N before they can begin protein 

accretion. Therefore, a restriction in either amino acid supply or energy could limit IGF-1 

production (Clemmons and Van Wyk, 1981 ). 

During the first 49 d (Exp. I) and 46 d (Exp. 2) of the feedlot period, LGW and 

NR steers had consistently lower insulin concentration and NR steers had lower IGF-1 

concentration comparedwith HGW steers. During the same period in Exp. 1, LGW and 

NR steers ADG and gain efficiency were not different compared with HGW steers 

performance (Hersom et al., 2002). The increased growth rate and efficiency would 

appear to support the hypothesis by Van der Brande (1986) that nutritional restriction 

increases tissue responsiveness to IGF-l during refeeding. Stick et al. (1998) found that 

an increase of 1 ng/mL of serum IGF-l was associated with an increase of0.00135 kg/d 

and an 0.0001 kg gain/kg feed increase in efficiency across three levels of feed intake. 

Particularly in the NR steers, even though circulating IGF-1 concentrations were not as 

great as HGW or LGW steers, the fact that concentrations were increasing may have been 

adequate to stimulate increased growth rate and efficiency. 
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The level of energy intake and subsequent BW gains of the grazing steers effected 

leptin concentrations prior to placement into the feedlot. Leptin concentrations are 

responsive to energy intake (Daniel et al., 2002; Delavaud et al., 2002). Prior to 

placement into the feedlot HGW steers (ADG = 1.10 kg/d) had 38% greater leptin 

concentrations compared with LGW and NR steers ADG = 0.68 and 0.15 kg/d, 

respectively). Delavaud et al. (2000) reported a 56% decrease in plasma leptin 

concentrations in ewes that were restricted to 39% of their estimated energy requirement 

for 65 d and incurred a 3.5% reduction in body fat and -0.21 kg/dBW change. Our 

steers did not lose BW however, the relative differences in concentrations ofleptin in our 

restricted steers (LGW and NR) and adequate feed steers (HGW) do compare well with 

Ieptin concentrations of restricted and well fed ewes in Delavaud et al. (2000). 

Additionally, a positive relationship between leptin concentration and body composition 

and fat content has been reported (Houseknecht et al., 1998; Delavaud et. al., 2000). In 

Exp. 2, the differences in carcass and offal fat content of steers (Hersom et al., 2002) 

were also reflected in leptin concentrations, i.e. steers with greater fat contents (HGW) 

had greater leptin concentrations. All treatments increased leptin concentrations with 

increasing days in the feedlot. Our objective was to harvest all steers at a similar back fat 

end point and BW. The similarity in final back fat and BW resulted in concentrations of 

leptin at final harvest that were similar among treatments. Whereas leptin showed steady 

increases in concentrations, IGF-1 concentrations appeared to plateau in all treatments. 

Interestingly, the plateau in IGF-1 and steady increases in leptin concentrations could 

correspond to the decreasing accretion of body protein and continued increased accretion 

of body fat in maturing animals. The significant correlation between carcass fat and 
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leptin concentration that we report is similar to the positive relationships between leptin 

and beef carcass fat (Mcfadin et al., 2002) and sheep back fat thickness (Daniel et al., 

2002) that has been previously found. To date very little research has examined the 

change in leptin concentrations during the entire feedlot period in cattle. Much of the 

previous leptin work was concerned with the effects of severe feed restrictions and 

differences in body composition at single points in time. Our data offer additional insight 

into the factors related to leptin expression such as initial BW and BW gain, body 

composition and the change in leptin concentration in beef cattle management systems. 

The concentrations of the thyroid hormones prior to placement into the feedlot 

provide insight into the energy status and gain patterns leading up to the feedlot period. 

Concentrations of T3 followed the same pattern as daily BW gains before entering the 

feedlot. In Exp. 1, concentration of T3 in HGW steers were greatest, followed by LGW, 

and lowest concentrations in NR steers that had the lowest BW gains. However, in Exp. 

2 when LGW and NR steers prior to entering the feedlot, T3 levels were similar between 

HGW and LGW steers. Our data are in agreement with Hayden et al. (1993) who 

reported that T 3 concentrations are indicative of energy balance, and Murphy and Loerch 

( 1994) who related T 3 concentration to level of intake of a finishing diet. Concentrations 

ofT4 prior to placement into the feedlot follow the same trend as T3 . Hayden et al. 

(1993) reported that T4 appears to be positively associated with energy consumption. A 

positive relationship between energy intake and T 4 concentration is supported by our 

data. In Exp. 1, HGW steers had access to abundant forage and had the greatest T4 

concentrations entering the feedlot, whereas NR steers were consuming low quality, dry 
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native range forage and had the lowest concentration ofT4. Low gain wheat steers' 

intake of wheat forage was limited, and therefore LGW had intermediate T 4 

concentrations relative to HGW and NR steers. Once steers were in the feedlot, T 4 

concentrations ofHGW steers only increased by 5 ng/mL compared with increases in T4 

concentrations by LGW and NR steers of 21 and 16 ng/mL, respectively. The shifts in 

T4 concentration in LGW and NR steers demonstrates the increased access to energy that 

these steers had when allowed to consume ad libitum quantities of feed. 

Thyroid hormones synergize with insulin to stimulate protein synthesis, glycogen 

synthesis and glucose utilization (Griffin and Ojeda, 1992). Additionally, thyroid 

hormones act permissively with IGF-1 to stimulate long bone and cartilage growth 

(Ellenberger et al. 1993 ). The initially reduced concentrations of T 3 and T 4 in LGW and 

NR steers may have optimized the anabolic nature of the thyroid hormones to enhance 

the actions of insulin and IGF-1, especially with an increased sensitivity to these 

hormones. 

Implications 

Growth by previously restricted cattle during feedlot realimentation is dependent 

upon many factors. In these experiments, the potential decreases in metabolic rate as 

measured by thyroid hormone concentrations and adequate stimulation ofIGF-1 

production may have occurred to achieve increased body weight gains by the restricted 

steers. The complex interaction of previous nutrition, re-feeding strategies, and hormonal 

regulation all influence the extent of growth during realimentation. Interactions of body 
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composition and hormone concentrations may also signal a decrease in responsiveness to 

anabolic hormones as cattle reach approach final harvest. 
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Table 4.1. Plasma concentrations of glucose and urea nitrogen (PUN) for steers from 
different winter grazing programs, Exp. 1 a 

Days on feed 
Item -3 14 21 28 35 42 49 SEMb 

Glucose mg/dL 
HGW 88.5 C 88.4 85.8 88.1 98.1 91.0 82.6 4.15 
LGW 88.9c 97.2 87.5 91.7 90.9 92.7 96.0 3.98 
NR 73.7d 91.9 83. l 87.6 87.4 89.4 94.1 4.33 

PUN, mg/dL 
HGW 21.24 C 7.62 9.11 7.34 8.07 8.42 8.85 0.75 
LGW 21.34 C 5.39 8.14 7.93 9.83 9.14 8.09 0.72 
NR 16.31" 4.71 7.84 7.75 8.82 8.54 8.50 0.77 

a Treatment x day (P > 0.10). 
b Standard error of mean, n = 12. 
c, d Within a column and item, means without a common superscript letter differ (P < 
0.05). 

Table 4.2. Serum concentrations of insulin and thyroid hormones for steers from different 
winter grazing programs, Exp. 1 a 

Item -3 14 
Insulin, ng/mL 

HGW 2.56c 3.46 
LGW 1.43 <l 3.53 
NR 1.59cd 3.00 

T3, ng/mL 
HGW 1.63 C 1.65 
LGW 1.38" 1.37 
NR 1.17 ~ 1.23 

T4, ng/mL 
HGW 71.7c 67.0 
LGW 54.0" 54.2 
NR 49.7d 48.1 

a Treatment x day (P > 0.10). 

21 

3.78 
3.40 
2.59 

1.48 
1.29 
1.03 

65.0 
51.7 
39.2 

Days on feed 
28 

4.65 
3.00 
2.95 

1.46 
1.39 
1.18 

68.1 
60.7 
47.2 

35 

4.79 
2.87 
2.02 

1.62 
1.44 
1.22 

66.5 
61.0 
50.0 

42 

5.22 
3.79 
3.04 

1.69 
1.64 
1.53 

70.7 
65.7 
56.1 

49 

6.54 
4.74 
4.25 

l.62 
1.54 
1.57 

76.5 
75.5 
65.9 

SEMb 

0.60 
0.59 
0.61 

.080 

.078 

.083 

4.12 
3.99 
4.28 

b Standard error of mean, n = 12. 
c, d, e Within a column and item, means without a common superscript letter differ (P < 
0.05). 
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Table 4.3. Plasma glucose, NEF A, and leptin concentrations for steers from 
different winter grazing Qrograms, ExQ. 2 a 

Days on feed 
Item -3 26 46 67 86 111 132 145 
Glucose, mg/dL 

HGW 83.3 C 67.4 78.1 79.2 77.9x 

LGW 78.8c 67.0 75.5 82.6 74.0 75.9x 
NR 69.4 d 64.0 80.3 82.4 79.1 77.1 86.5 86.4y 

NEFA, mEq/L 
HGW 240 202 174 166 136 
LGW 248 165 222 202 158 157 
NR 314 195 194 173 141 176 165 185 

Leptin, ng/mL 
HGW 4.55 C 7.37 8.86 12.32 16.93 
LGW 2.95 d 4.97 5.96 9.93 14.6] 15.12 
NR 2.71 d 3.21 3.89 6.59 11.28 10.85 12.47 14.62 

a Treatment x day (P > 0.10). 
b Standard error of mean, n = 12. 
c, d Within a column and item, means without a common superscript letter differ (P < 
0.05). 
x, Y Final collection date, means without a common superscript differ (P < 0.05). 

Table 4.4. Serum insulin and T4 concentrations for steers from different winter 
grazing programs, Exp. 2 a 

Days on feed 
Item -3 26 46 67 86 111 132 145 
Insulin, ng/mL 

HGW 2.73 
LGW 2.58 

N'R. 2.1 l 
T4, ng/mL 

6.07 
4.49 
3.53 

5.94 
4.87 
4.34 

HGW 60.7c 65.6 79.5 
LGW 60.6 c 65.5 80.3 
NR 34.1 t1 50.9 68.3 

a Treatment x day (P > 0.10). 
b Standard error of men, n = 12. 

5.08 
4.97 
4.95 

77.5 
85.9 
72.2 

9.54"')' 

7.76 
7.69 

77.8 X 

88.4 
80.6 

7.58x 
6.40 

l 00.7 y 
86.37 

8.05 12.44y 

85.8 90.6y 

c, d Within a column and item, means without a common superscript letter differ (P < 
0.05). 
x, Y Final collection date, means without a common superscript differ (P < 0.05). 
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2.2 
2.1 
2.1 

59.9 
57.4 
57.1 

0.80 
0.77 
0.77 

SEMb 

0.55 
0.53 
0.52 

2.36 
2.26 
2.26 
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Figure 4.1. Serum NEF A concentration 
of steers from different winter grazing 

programs, Exp. 1 
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a,b Means within a day with different letters differ (P < 0.05) 

Treatment x day (P, 0.001, quadratic) 
HGW and LGW vs. NR, (P < 0.001); HGW vs. LGW, (P = 0.29) 
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Figure 4.2. -Serum IGF-1 concentration of 
steers from different winter grazing 

programs, Exp. 1 
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Days on feed 

a,b Means within a day with different letters differ (P < 0.05) 
Treatment x day (P < 0.001, quadratic) 
HGW and LGW vs. NR, (P < 0.001); HGW vs. LGW (P = 0.27) 
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Figure 4.3. Plasma urea-N concentration 
of steers from different winter grazing 

programs, Exp. 2 

...._HGW 

20 ----------- -a-LGW 
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Days on feed 

a.b Means within a day with different letters differ (P < 0.05) 
Treatment x days, (P = 0.07, cubic) 
HGW vs. LGW, (P = 0.02); LGW vs. NR, (P < 0.001) 
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Figure 4.4. Serum T3 concentration of 
steers from different winter grazing 

programs, Exp. 2 
1.9 -r--------------~ 
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Days on feed 

a,b Means within a day with different letters differ (P < 0.05) 
x, Y Means of final day with different letters differ (P = 0.01) 

Treatment x day (P = 0.003) 
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Figure 4.5. Serum IGF-I concentration of 
steers from different winter grazing 

programs, Exp. 2 
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Treatment x day (P = 0.007, quadratic) 

143 

HGW vs. LGW, (P = 0.03); HGW vs. NR, (P = 0.001); LGW vs. NR, (P = 0.21) 
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Figure 4.6. Relationship of plasma leptin 

to BW in feedlot steers, Exp. 2 
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~ 

Figure 4. 7. Relationship of final plasma 
leptin to final carcass fat (kg) in feedlot 

steers, Exp. 2 
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Figure 4.8. Relationship of plasma leptin 
to DMI in feedlot steers, Exp. 2 
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Chapter V 

EFFECT OF PREVIOUS LIVE BODY WEIGHT GAIN ON ACID/BASE BALANCE, 
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A HIGH-GRAIN DIET IN BEEF STEERS1•2•3 
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ABSTRACT 

Ten multicatherized steers (average initial BW = 324 ± 45 kg) were used in a 

completely random design to determine the effect of previous BW gain on blood flow, 

oxygen consumption and hormone and metabolite flux across portal-drained viscera and 

liver of growing beef steers fed a high-grain diet. Treatments were high (HG; 1.25 ± 

0.14 kg/d) or low (LG; 0. 73 ± 0.13 kg/d) daily BW gain while grazing winter wheat 

pasture. Blood flow and net nutrient and hormone flux were determined on d 0, 14, 28, 

42, 64, and 92 of the high-grain finishing period. Compensatory growth was evident in 

LG steers (30% by d 28); ADG and ADG:DMI were greater (P = 0.01; 2.13 vs. 1.31 

kg/d; P = 0.005; 0.221 vs. 0.103) from d O through 28. Across the 92 d experiment, mean 

OM digestibility in HG steers was greater (P = 0.01; 80.0 vs. 79.3%) than LG steers. 

Portal blood flow increased with days on feed (P < 0.001 ), but was similar between 

treatments (P = 0.51; 664 L/h). Hepatic blood flow in LG steers was greater (P = 0.06) 

than HG steers (756 > 654 L/h) and increased (P < 0.001) with days on feed. Similarly, 

across the feeding period, total splanchnic tissue (TST) oxygen consumption was greater 

(P = 0.002) in LG than HG steers (805 vs. 597 mmol/h). Ammonia, urea-N, and a-amino 

N flux across TST were similar (P > 0.30) among treatments. Release of glucose from 

the TST was similar (P = 0.47) between treatments but increased with days on feed (P< 

0.001 ). Insulin PDV release increased (P < 0.001) and hepatic removal of insulin 

decreased (P = 0.08) in both HG and LG with days on feed. Net insulin flux across TST 

increased (P= 0.06) with days on feed in both treatments. Leptin (P > 0.39) and IGF-1 (P 

> 0.29) flux across TST was similar. Steers that had moderate BW gains prior to high 

175 



grain feeding had increased finishing performance despite lower OM digestibility and 

increased TST oxygen consumption. Numerically greater TST flux of a-amino N and 

glucose and numerically greater hepatic removal of lactate might have provided more 

anabolic precursors and energy for BW gain. 

Key words: Cattle, Blood Flow, Nutrient Flux, Compensatory Growth 

Introduction 

Little information is available regarding the effect of previous live BW gain and 

compensatory growth on splanchnic tissue metabolism in beef steers. Compensatory 

growth is observed as increased BW gain resulting from increased DMI and lower 

maintenance energy requirements (Fox et al., 1972; Carstens et al., 1991 ). However, 

these characteristics must have metabolic controls; integration of metabolism into growth 

characteristics implicates the importance that tissues such as the gastro-intestinal tract 

and liver have on animal production (Eisemann et al., 1996). 

Previous level of nutrition has been shown to affect the mass of splanchnic tissues 

(Wester et al., 1995; Sainz and Bentley, 1997). Lower dietary intake, energy, and protein 

restriction has been reported to lower liver and small intestinal mass but realimentation 

resulted in similar liver mass (Burrin et al., 1990; Wright and Russel, 1991; Sainz and 

Bentley, 1997). Restriction of intake, energy, or protein has been shown to increase 

reticule-rumen mass(% ofEBW), however upon realimenation, reticule-rumen mass did 
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not differ between adequately fed and previously restricted animals (Drouillard et al., 

1991; Sainz and Bentley, 1997). 

Similar changes in blood flow and energy expenditure occur in response to 

changes in splanchnic tissue mass and DMI (Burrin et al., 1989). Splanchnic tissues are 

key to the absorption, transport, and recycling of nutrients required for growth. 

Conceivably, compensatory growth in cattle occurs because of changes in blood flow and 

associated oxygen consumption and nutrient flux across splanchnic tissues. 

The incidence of sub acute acidosis is an important consideration in feeding high

grain diets (Elam, 1976). Acidosis occurs in conjunction with excessive consumption of 

fermentable carbohydrates (Slyter, 1976) that increase the acid load absorbed from the 

gastro-intestinal tract. Base excess in body fluids work to buffer the increased absorbed 

acid load (Owens et al., 1998) to maintain blood pH.. Occurrence of acidosis depresses 

animal performance and nutrient absorption (Owens et al., 1998). Increased DMI by 

compensating steers might possibly cause incidence of sub-acute acidosis compromising 

animal performance. 

The objective of this experiment was to determine the effect of different previous 

BW gains of steers on blood acid/base balance and blood flow, oxygen consumption, and 

net nutrient and hormone flux across splanchnic tissues during finishing on a high-grain 

diet. 
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Materials and Methods 

Animal Management 

Ten Angus x Angus-Hereford steers (average initial BW = 324 ± 45 kg, age= 395 

± 11 d) were randomly assigned to one of two treatments. Treatments were high (HG; 

1.25 ± 0.14 kg/d) or low (LG; 0. 73 ± 0.13 kg/d) daily BW gain while grazing winter 

wheat pasture. Stocking density was altered in the LG treatment to maintain the desired 

BW gain (Hersom et al., 2003). The grazing phase lasted 69 d from February 2 until 

April 12, 2001. 

Prior to the surgery for placement of chronic indwelling catheters, steers were 

housed in individual, indoor pens (3. 5 x 3. 5 m) and fed a transition diet (Table 1) to 

maintain their respective BW gains. Water was provided ad libitum. Catheters were 

surgically placed in the portal vein, a hepatic vein, a mesenteric vein, and an adjacent 

mesenteric artery as described by Ferr ell et al. ( 1991). Steers were allowed a minimum 

of 21 d to recover from surgery prior to the beginning of the initial collection period. 

Steers were fed a constant amount of feed to maintain their respective BW gains 

through the initial blood collection date (d 0). After d 0, steers were adapted to the final 

diet in three steps by gradually replacing the transition diet with increasing amounts of 

the final diet (Table 1). Each step lasted six d; steers were fed ad libitum after the d-0 

collection with the daily ration split between two feedings at 0800 and 1600. Body 

weights of steers were taken at the beginning and end of each sampling period. Steers 

were fed for a total of 92 d. The Oklahoma State University Institutional Animal Care 

and Use Committee approved all experimental procedures. 
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Sample Collection 

The steers were placed into stanchions in a climate-controlled room 6-d prior to 

the initiation of blood collection. Total fecal collections were weighed daily for three d 

prior to blood collection. A sub-sample of the daily fecal collection was taken to form a 

composite for the 96 h fecal collection period. Simultaneous diet samples were also 

taken. Blood was collected on d 0, 14, 28, 42, 64, and 92 of the experiment. Five steers 

were sampled on one day, 3-HG steers and 2-LG steers; the other five steers were 

sampled on the next day, 2-HG steers and 3 LG steers. 

A priming dose of25 mL of 7% (d 0, 14, 28) or 10% (d 42, 64, 92) para

aminohippuric acid (PAH, pH= 7.4) was administered through a 0.45 µm filter 

(Millipore, Bedford, MA) into the mesenteric vein catheter at 0700. Para-aminohippuric 

acid was continuously infused at 0.8 mL/min for eighth (PHD 2000 Syringe pump, 

Harvard Apparatus Inc., Hollisoton, MA) following the priming dose. Blood was 

collected hourly from 0800 until 1600. Blood was drawn simultaneously from the portal 

vein, hepatic vein, and mesenteric artery catheters into syringes and the blood was placed 

into tubes (BD Vacutainer) treated with sodium heparin (2) and potassium oxalate and 

sodium fluoride ( 1 ). Hourly blood samples were placed on ice for transport to the 

laboratory. In the laboratory a sub-sample of the hourly whole blood from each site was 

taken for blood gas analysis (1304 pH/Blood Gas Analyzer, Instrumentation Laboratory, 

Lexington, MA). Additional hourly sub-samples from each site were used to determine 

packed cell volume and to form a daily whole blood composite pool. The remaining 

blood was used for plasma collection by centrifugation (450 x g, 4°C, 20 min); plasma 

was collected and frozen (-40°C) for further analysis. 
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Sample Analysis 

Hourly plasma samples from each site were used to determine PAH, (Harvey and 

Brothers, 1962) with standards prepared from the infusion solution from each sampling 

day, a.-amino N (AAN; Lorentz and Flatter, 1974), and ammonia N concentrations· 

(Sigma chemical Co., St. Louis, Mo; 171-B). Glucose, urea N, total protein, and albumin 

concentrations were determined from hourly plasma samples using a Cobas Mira 

analyzer (Roche Diagnostic Corporation, Indianapolis, IN). Lactate (Sigma Chemical 

Co., St. Louis, Mo; 826-B) and NEF A concentrations (W AKO Chemicals USA, Dallas, 

TX) with modifications described by Yambayamba et al. ( 1996) were determined using 

daily plasma composite samples from each site. Insulin concentrations were determined 

on daily plasma composites using solid phase RIA (Coat-A-Count, Diagnostic Products 

Corporation, Los Angles, CA). Bovine pancreatic insulin (Sigma Chem. Co., St Louis, 

MO) was used for standards (Bossis et al., 1999). Daily composite plasma IGF-I 

concentrations were determined using RIA with acid-ethanol extraction (Echternkamp et 

al., 1990). Recombinant human IGF-1 (R&D Systems, Minneapolis, MN) was used for 

standards. Plasma concentrations of leptin were quantified on daily composite samples 

with RIA (Delavaud et al., 2000) using purified recombinant ovine leptin produced as 

described by Gertler et al. (1998) for standards. Intra-assay coefficients of variation were 

as follows: a-amino N, 8.01%; ammonia N, 7.43%; glucose, 3.99%; urea N, 4.17%; total 

protein, 3.20%; albumin. 1.60%; lactate, 9.42%; NEFA, 26.04%; insulin, 9.09%; IGF-1, 

19.27%; leptin, 5.49%. Inter-assay coefficients of variation were as follows: a.-amino N, 

9.71%; ammonia N, 4.35%; glucose, 1.48%; urea N, 1.40%; total protein, 3.24%; 
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albumin. 1.23%; lactate, 12.31%; NEFA, 9.11%; insulin, 40.30%; IGF-1, 11.41%; leptin, 

6.94%. 

Feed and fecal samples were dried at 55°C and ground with a Willey mill to pass 

a 2 mm screen. Dry matter and ash (AOAC 1990) and N concentration (LECO, St 

Joseph, Ml) were determined on feed and fecal samples from each sampling period. 

Calculations and Statistical Analysis 

Plasma flow through the portal drained viscera (PDV) and liver was calculated 

using the Fick principle as outlined by Katz and Bergman (1962): blood flow (BF) = 

IRPAH / (C/AI-I - c/AI-I) in which BF represents plasma flow through the PDV or liver 

(mL/min), IRPAI-I is the infusion rate (mg/min) of PAH and C/AH and C/Al-I are the PAH 

concentration (mg/mL) in venous and arterial plasma, respectively. Portal and hepatic 

blood flow were calculated directly, arterial blood flow was calculated as hepatic BF -

portal BF. Individual plasma flows from any site deviating more than two SD from the 

mean were deleted and means recalculated (Bohnert et al., 1999). Oxygen concentrations 

were calculated (Burrin et al., 1989) and net flux of nutrients and hormones (Huntington 

et al., 1989) across the PDV, liver, and total splanchnic tissues (TST) were calculated 

using the following equations: PDV flux = portal BF X (portalconcentration -

arterialconccnlralion); hepatic flux = portal BF X (hepatiCconccnlralion - portalconcentration) + arterial 

BF X (hepatiCconcentration - arterialconccn1ra1ion); and TST flux= PDV flux+ hepatic flux. A 

positive flux number indicates a net release, whereas a negative flux number indicates a 

net uptake of a metabolite or hormone. Hepatic metabolite ratios (HMR) were calculated 

as (hepatic output/ hepatic input) - 1 (Bonhert et al., 1999). A negative HMR indicates 
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the fractional extraction rate of a metabolite by the liver, whereas a positive HMR 

indicates the fractional increase of a metabolite from what entered the liver. 

All data were analyzed as a completely random design using the Mixed procedure 

of SAS (SAS Inst. Inc., Cary, NC). The statistical model included treatment, day, and the 

interaction as fixed effects. The experimental unit and random term was steer within 

treatment. Data was collected repeatedly across experimental days. The spatial power 

law covariance structure was used (Littell et al., 1996) because of unequal spacing of 

collection days. Treatment least squares means were calculated and means were 

compared using LSD when protected by a (P < 0.10) F-value. Results were considered 

significant if P < 0.05 and trends if P > 0.05 and P < 0.10. 

Results 

Animal Pe,:formance 

The number of steers sampled during each period and number of catheters patent 

at each site are listed in Table 2. 

High gain steers were 75 kg heavier (P = 0.002) than LG steers on d O (Table 3). 

Bodyweight of the HG steers was greater (P < 0.02) than LG steers during the entire 

experiment. Body weight gains by the LG steers tended (P = 0.10) to be 28% greater 

than HG steers during the first 14 d. Similarly, LG steers ADG during the next 14 d (d 

14- 28) was 1.05 kg/d greater (P = 0.006) than HG steers, and therefore through the first 

28 d of the feeding period, ADG of LG steers was 63% greater (P = 0.01; 2.13 vs. 1.31 

kg/d) than HG steers. From d 28 to d 92, ADG by LG steers was greater (P = 0.03; 1.23 

vs. 0.94 kg/d). Overall, 92-d ADG tended (P = 0.06) to be greater for LG steers than HG 
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steers (1.28 vs. 1.06 kg/d). Dry matter intake up to and including d O was held constant 

to maintain pre-sampling ADG in both HG and LG steers. On d 14, HG steers tended (P 

= 0.09) to have greater DMI (% ofBW) compared with LG steers (Figure 5.1), on d 28 

DMI (% ofBW) of LG steers was 16% greater (P = 0.003) than HG steers. After d 28, 

DMI (% ofBW) was similar (P > 0.20) between treatments. Low gain steers had gain 

efficiencies that were 84% and two-fold greater (P = 0.01 and 0.02, respectively) during 

the first 14 and 28 d of the feeding period compared with HG steers. From d 42 through 

92 gain efficiency was similar (P > 0.50) between treatments. However, 92-d gain 

efficiency was 37% greater (P = 0.005) for LG compared with HG steers (average= 

0.185 VS. 0.135). 

During the feeding period OM digestibility (OMD) was similar (P > 0.10) 

between treatments, but qverall mean OMD by HG steers was greater (P = 0.01; 80.0% ± 

0.17, 79.34% ± 0.09) than LG steers. In both treatments OMD increased from d O and 

peaked on d 28. Digestible OM intake (DOMI) on d O was greater (P = 0.01) by HG 

steers compared with LG steers. After d 0, DOMI was similar (P > 0.10) between 

treatments except on d 42 when DOMI was 51 % greater in HG steers than LG steers. 

Mean DOMI by HG steers was 18% greater (P = 0. 003) than LG steers ( average = 13. 6 

vs. 11.5 kg/d). 

Blood Gases 

Arterial blood pH was similar between treatments (P = 0.4 7) and across days (P = 

0.58); mean arterial pH was 7.42 during the 92-d experiment (Table 4). Similarly, portal 

blood pH was similar between treatments (P = 0.31) and across days (P = 0.11). Hepatic 

183 



blood pH was similar between treatments (P = 0.89) but increased (P = 0.04) as days on 

feed increased. Partial pressure of carbon dioxide (pC02) was similar (P > 0.10) between 

treatments in arterial, portal, and hepatic blood. All three sites exhibited day effects (P = 

0.06, 0.01, and 0.002 for arterial, portal, and hepatic, respectively) whereas pC02 

decreased with increasing days on feed. Portal (P = 0.01) and hepatic (P = 0.07) blood 

exhibited treatment x day effects; HG steers had greater decreases in pC02 from d Oto 92 

compared with LG steers. Calculated bicarbonate levels in arterial, portal, and hepatic 

blood did not differ (P > 0.10) between treatments. Portal blood bicarbonate decreased 

(day effect P = 0.05) as days on feed increased. Arterial blood base excess in LG steers 

tended (P = 0.08) to be greater than HG steers until after d 42; on d 64 and 92 they were 

similar. Portal blood base excess exhibited a sharp decline in HG and LG steers until d 

28 and 42, respectively (day effect; P = 0.02). Although not significant (P = 0.17), 

hepatic base excess followed a similar pattern. Oxygen saturation of arterial, portal, and 

hepatic blood was similar (P > 0.10; average= 98.6, 78.9, and 6~.8%, respectively) 

between treatments. Oxygen saturation in both portal (P = 0.02) and hepatic (P 0.05) 

blood increased with days on feed in both treatments, peaking on day 42. Hemoglobin 

concentration in arterial, portal, and hepatic blood was similar (P > 0.10) between 

treatments during the feeding period (average= 9.76, 9.38, 9.47 g/dL). However; 

hemoglobin concentrations in arterial (P = 0.001), portal (P = 0.001), and hepatic (P = 

0.06) blood did increase by 24, 26, and 27% with days on feed. Packed cell volume 

(PCV) was similar and remained constant in arterial blood in both treatments (treatment 

effect; P = 0.46; day effect; P = 0.43). Portal PCV increased (P = 0.02) with increasing 
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days on feed and the increase in HG steers tended to be greater (treatment x day effect, P 

= 0.07) than in LG steers. 

Blood Flow and Oxygen Consumption 

Arterial BF (L/h) was not different (P = 0.22; average= 83.5 ± 17.8 and 115.3 ± 

16.0 L/h, HG and LG, respectively) between treatments during the 92-d feeding period 

(Table 5). Portal BF was similar (P = 0.51) between treatments, however portal BF 

increased (day effect, P < 0.001) after d 0, peaking on d 64 in both treatments. Hepatic 

BF in LG steers tended (P = 0.06) to be greater than HG steers, but both treatments had 

increased (P < 0.001) hepatic BF with increasing days on feed. Blood oxygen 

concentrations (mmol/L) of arterial (P = 0.86), portal (P = 0.81), and hepatic (P= 0.81) 

blood were similar between treatments. However, oxygen concentration increased (P = 

0.001, 0.001, and 0.02; for arterial, portal, and hepatic, respectively) with increasing days 

on feed. Peak oxygen concentration in HG steers occurred on d 42 in arterial and portal 

blood, and on d 64 in hepatic blood. Low-gain steer peak oxygen concentration occurred 

on d 70 in all three sites. Oxygen consumption (mmol/h) by the PDV was similar (P = 

0.47) between treatments and across days (P = 0.69). Mean PDV oxygen consumption 

was 367 mmol/h. Hepatic oxygen consumption by LG steers was 22% greater (P < 

0.001, average= 441 mmol/h) than HG steers during the finishing period. Because of the 

difference in hepatic oxygen consumption, TST oxygen consumption in LG steers was 

26% greater (P = 0.002, average= 805 mmol/h) than HG steers. Oxygen consumption by 

TST tended (P = 0.06) to increase with days on feed. High gain steers exhibited a steady 
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increase in TST oxygen consumption from d Oto 64, whereas LG steers increased TST 

oxygen consumption from d Oto 28 and then from d 42 to 92. 

Metabolite Concentrations 

Arterial and hepatic ammonia plasma concentrations were similar (P > 0.10) 

between treatments and across the finishing period. Portal ammonia concentration in HG 

steers was numerically (P = 0.11) greater than LG steers. Portal plasma ammonia 

concentration decreased in both treatments after d O and continued to decrease in HG 

steers until d 42 and then increased, whereas in LG steers after d 14 portal plasma 

ammonia concentrations generally increased until d 92 (treatment x day effect, P = 0.06). 

Urea-N concentration in HG steers was 19, 19, and 14% greater (P < 0.05) in arterial, 

portal, and hepatic plasma, respectively, than LG steers. Hepatic urea-N concentrations 

numerically decreased (P = 0.12) across days. Arterial AAN concentration was similar 

(P = 0.25, average= 3.52 mM) between treatments. Portal AAN concentrations tended 

(P = 0.08) to be greater in LG compared with HG steers (average= 3.69 vs. 3.56 mM). 

Concentrations of AAN increased from d O to d 28 in arterial, portal, and hepatic plasma 

in both treatments (P = 0.02, 0.0003, 0.002, respectively), thereafter concentrations 

declined until d 92. Albumin and total protein concentrations in arterial, portal, and 

hepatic plasma were similar (P > 0.1 O; average albumin = 516, 514, and 513 mM; 

average total protein= 66.8, 66.6, and 66. l g/L) in both treatments across the finishing 

period. 

Glucose concentrations in arterial, portal and hepatic plasma were similar (P > 

0.50) between treatments. However, plasma glucose concentrations increased (P :S 0.02) 
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from d Oto 92 by 9, 9, and 14% in arterial, portal, and hepatic plasma, respectively. 

Similar to glucose concentrations, arterial, portal, and hepatic plasma lactate 

concentrations were similar (P > 0.26) between treatments. Lactate concentrations 

decreased by 22 and 25% in arterial and portal plasma from d Oto 92 (P :S 0.004), and by 

31 % in hepatic plasma (P = 0.10). Non-esterified fatty acid concentrations, like other 

energy metabolites, were similar (P 2: 0.19) between treatments in arterial, portal, and 

hepatic plasma. The arterial and portal blood NEF A concentrations decreased (P :S O. 05) 

by 22 and 8 mM, respectively, from d Oto 92. Hepatic plasma NEFA concentrations 

numerically (P = 0.12) decreased with increasing days on feed. 

Hormone Concentrations 

The concentration of arterial and portal plasma insulin was similar (P 2: 0.14, 

average= 0.315 and 0.383 ng/mL, respectively) between treatments. However d 0 

insulin concentrations in arterial and portal plasma of HG steers were greater (P < 0.05) 

than LG steers. Hepatic plasma insulin concentration in HG steers was greater (P < 

0.001, average= 0.450 vs. 0.323 ng/mL) than LG steers. Insulin concentration, similar to 

glucose concentration, increased (P < 0.001) with increasing days on feed in arterial, 

portal, and hepatic plasma in both treatments. Insulin concentration in hepatic plasma of 

HG steers increased up to d 64, whereas hepatic plasma insulin concentrations in LG 

steers increased up to d 92. Insulin-like growth factor-1 in arterial, portal, and hepatic 

plasma was similar (P > 0.12, average= 131.4, 134.6, and 136.3 ng/mL, respectively) 

between treatments and was similar (P > 0.20) across the finishing period. Leptin 

concentrations in arterial, portal, and hepatic plasma were similar (P > 0.24, average = 
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5.32, 5.36, and 5.48 ng/mL, respectively) between treatments. Plasma leptin 

concentrations in arterial, portal, and hepatic plasma increased (P < 0.02) in both 

treatments as days on feed increased. The decrease in leptin concentration in LG steers 

on d 42 occurred simultaneous to a decrease in OMI. 

Metabolite Flux 

Ammonia release across the PDV (Table 8) was similar (P = 0.92, average= 104 

mmol/h) between treatments and across the finishing period (P = 0.71). Uptake of 

ammonia by the liver was similar (P = 0.75; average= -95.1 mmol/h) between HG and 

LG steers and was similar (P = 0.55) across the 92-d experiment. The liver was 

extracting 89.8% of the ammonia that was presented to it by the PDV. A greater mean 

PDV flux compared to hepatic flux resulted in a positive TST flux that was similar (P = 

0.44, average= 14.6 mmol/h) in HG and LG steers and across the finishing period (P = 

0. 79). The HMR was not different (P = 0.44, average= 0.339) between HG and LG 

steers. The HMR exhibited a day effect (P = 0.03) decreasing 34% from d Oto d 70. 

Mean plasma urea-N PDV flux in HG steers tended (P = 0.09) to be greater than 

LG steers. Hepatic flux ofurea-N was variable across the feeding period (P = 0.63) and 

between treatments (P = 0.98, average= 35.6 rnmol/h). During the early feeding period 

the liver of HG steers was taking up urea-N from the GIT, whereas the liver of LG steers 

was releasing urea-N for recycling. Urea~N TST flux was positive and similar between 

treatments (P = 0.49, average= 142.0 mmol/h) and across the finishing period (P = 0.94). 

The urea-N HMR did not differ (P = 0.96, average= 0.011) between HG and LG steers 

and similar across the finishing period (P= 0.82). 
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Net release of AAN across the PDV (P = 0.60, average= 83 .3 mmol/h) and liver 

(P = 0.20, average= -35.5 mmol/h) did not differ observed between HG and LG steers 

during the entire finishing period. There was a tendency (P = 0.10) for a day effect in 

hepatic AAN flux; LG steers had AAN positive flux on d 28, 42, and 92, whereas HG 

steers had positive hepatic flux on d 42. Total splanchnic tissue AAN was similar (P = 

0.33) between treatments but tended to have a day effect (P = 0.11 ). Mean AAN HMR 

was similar (P = 0.12) even though HG steers had a negative HER (-0.044) whereas LG 

steers had a positive HMR (0.012) across the 92 d experiment. The positive HMR in LG 

steers was attributable to the 9 and 20% increase in AAN releases on d 28 and 42. 

Albumin flux across the POV (P = 0.98), liver (P = 0.54), and TST (P = 0.49) was 

similar (average= 603 .1, -1,54 7.4, and -1, 179.8 mmol/h, respectively) between HG and 

LG steers. Albumin HMR did not differ (P = 0.61; HMR > 2%) between HG and LG 

steers. Total protein PDV flux (P = 0.65, average= -107 g/h), hepatic flux (P = 0.99, 

average= -328 g/h), TST flux (P = 0.65, average= -568 g/h) were similar between 

treatments. Hepatic flux did exhibit a treatment x day trend (P = 0.11 ); hepatic uptake by 

the liver in HG steers tended to decrease with days on feed, whereas LG removal tended 

to increase with day on feed. Total protein HMR were similar (P = 0.81) between 

treatments and across the finishing period (P = 0.43). 

Removal of glucose by the POV was similar (P = 0. 51, average = -43 .1 mmol/h) 

between HG and LG steers. Portal-drained viscera glucose flux tended (P = 0.11) to 

increase with days on feed in both HG and LG steers. Peak PDV glucose removal 

occurred on d 64 and was 82% greater than on d 0. Hepatic glucose flux was similar (P = 

0.99) between treatments. However glucose release by the liver increased with days on 
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feed (P < 0.001). Peak hepatic glucose flux occurred on d 64 for HG steers, which was 

85% greater than d O; peak hepatic glucose flux occurred on d 28 for LG steers and was 

71% greater than d 0. Because of the large hepatic glucose flux, TST glucose flux 

resulted in a similar (P = 0.47) mean net release of glucose of 232 mmol/h between 

treatments. Peak TST glucose release occurred on similar days (day effect; P < 0.001) as 

peak hepatic glucose flux (HG = d 64, LG = d 28). Similar to hepatic and TST glucose 

flux, glucose HMR was similar (P = 0.84, average= 0.088) between treatments, but 

increased with days on feed (P < O.001 ) . 

Lactate PDV flux did not differ (P = 0.37, average= 76.4 mmol/h) between 

treatments. However release oflactate by the PDV tended (P = 0.09) to exhibit a day 

effect; lactate flux increased from d Oto 14 in both HG and LG steers, whereas after d 14 

lactate PDV flux declined. Hepatic lactate removal was similar (P = 0.67, average= 28.2 

mmol/h) between treatments and across the finishing period (P = 0.99). Low gain steers 

did exhibit a larger hepatic lactate removal of flux on d 14. Total splanchnic tissue flux 

did not differ (P = 0.53, average= 41.2 mmol/h) between HG and LG steers or across the 

finishing period (P = 0.54). Mean lactate HMR was similar (P = 0.93). 

Flux ofNEFA across the POV was similar (P = 0.49, average= 0.033 mol/h) 

between treatments, but PDV in both treatments did not differ from zero. Portal-drained 

viscera flux ofNEFA tended (P = 0.08) to exhibit a day effect. Portal drained viscera in 

LG steers was utilizing NEFA while POV of HG steers released NEFA on d O; thereafter 

PDV released NEFA in both HG and LG steers. Hepatic (P = 0.95) and TST (P = 0.83) 

flux were similar (average= -0.006 and 0.004 mol/h, respectively) between HG and LG 

steers. The HMR ofNEFA was similar (P = 0.93; average= -0.019) between HG and 
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LG steers. From d O to 28 the liver was releasing more NEF A than was presented, 

whereas on d 42 to 92 the liver was extracting 2 to 18% of the NEFA that it was 

presented. 

Hormone Flux 

Insulin flux across the PDV was similar (P = 0.46, average= 45.3 µg/h) between 

treatments. Insulin PDV flux responded with a day (P < 0.001) effect, increasing in HG 

steers to a peak flux on d 64 which was 86% greater than on d 0, peak flux in LG steers 

occurred on d 92 and was 95% greater than d 0. Hepatic flux of insulin was similar (P = 

0.12, average= 10.8 µg/h) in HG and LG steers. Removal of insulin by the liver tended 

(day effect; P = 0.08) to increase with days on feed. Hepatic insulin flux was positive on 

d 14 and 28, indicating release of insulin, thereafter, hepatic insulin flux was negative 

indicating removal of insulin by the liver. Total splanchnic tissue flux was similar (P = 

0.62; average= 34.6 µg/h) and positive, indicating a release of insulin from the TST. 

Insulin TST flux tended (P 0.06) to be affected by day, with peak TST insulin flux 

occurring on d 70 in HG and d 42 in LG steers. Insulin HMR was similar (P = 0.64, 

average= 0.0004). 

Portal drained viscera IGF-1 flux was similar (P = 0.51, average= 189.3 µg/h) 

between HG and LG and similar (P = 0.88) across the finishing period. Hepatic IGF-I 

removal in LG steers was greater (P = 0.002) 249 µg/h compared with 212 µg/h in HG 

steers. This difference is mostly likely because of the large values for HG steers on d 28 

and 70 and on d 92 in LG steers. Flux of IGF-I across the TST was similar (P = 0.29, 

average = 228.6 µg/h) despite the difference in hepatic flux. Hepatic metabolite ratios 

were different (P = 0.05) between HG and LG steers. Mean HMR for HG steers was 

191 



0.036, indicating a 4% release oflGF-1 from the liver, whereas LG steers mean HMR 

was -0.016, indicating a extraction of 2% of the IGF-I presented to the liver. 

Leptin flux across the PDV did not differ (P = 0.99, average= 7.74 µg/h) between 

treatments or across the finishing period (P = 0.88). The large variation in leptin PDV 

flux between steers may have precluded determining any differences. Similarly hepatic 

leptin flux did not differ (P= 0.61, average= 25.7 µg/h) between HG and LG steers or 

with increasing days on feed (P = 0. 78). However, different patterns of hepatic leptin 

flux were evident between HG and LG steers. Because PDV and hepatic flux were not 

different, TST flux did not differ (P = 0.39, average= 9. I µg/h) between HG and LG 

steers or among steers across the finishing phase (P = 0.20). The mean HMR of leptin 

was different (P = 0.01) between treatments. In HG steers the HMR was -0.01, 

indicating the liver was removing .1 % of the leptin. The mean HMR in LG steers was 

0.011, but was not different from zero. 

Discussion 

Compensatory growth has been defined as more rapid and efficient growth of an 

animal (Ferrell et al., 1986; Sainz and Bentley, 1995) following a period of nutritional 

restriction. Generally, compensatory growth is characterized by increased rate of BW 

gain (Fox et al., 1972; Sainz et al., 1995; Hersom et al., 2003), more efficient rate of BW 

gain (Ferrell et al., 1986; Sainz et al., 1995; Hersom et al., 2003), and reduced 

maintenance energy requirements (Fox et al., 1972; NRC 1996). Low-gain steers in the 

current study exhibited compensatory gain during the first 28 d of the finishing period. 

The LG steers exhibited the criteria of compensatory growth: greater ADG, increased 
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intake, and increased gain efficiency (Fox et al., 1972). To our knowledge no one has 

examined the effect of compensatory growth in steers on net nutrient flux. 

Mean OM digestibility was greater for HG steer than LG steers. However, on d 0 

and 14 LG steers had numerically greater diet digestibility, and digestibility in both 

treatments peaked on d 28. Lower diet DM digestibility has been previously reported 

(Thomson et al., 1982, Hayden et al., 1993) in re-fed cattle that had been previously 

energy restricted for 154 or 92 d. Thomson et al. (1982) proposed that decreased DM 

digestibility might result from an increased rate of passage caused by increased DMI by 

compensating steers. Digestible OM intake (DOMI) across the finishing period was 

greater in HG than LG steers. The difference in mean DOMI was due to differences on d 

0 and 42. On d 0, the difference in D0M1 occurred because LG steers were being limit 

fed to maintain their respective BW gain before the start of the finishing phase. The 

difference in DOMI on d 42 occurred due to low DOMI during the fecal collection 

period. The reduction in DOMI by LG steers might have had subsequent effects on 

oxygen consumption and blood metabolite flux. 

One objective was to measure the effect of previous BW gain on blood acid/base 

balance. Because we expected LG steers to undergo of compensatory growth and the 

associated increase in DMI, we hypothesized that LG cattle might have been more 

susceptible to metabolic acidosis during adaptation to the high-grain diet. Therefore 

measures of blood acid/base balance were of interest. There were no differences in blood 

pH; mean arterial pH was 7.43, portal 7.32, and hepatic 7.33. However as stated by 

Owens et al. ( 1996) blood pH may not be indicative of acidosis in all circumstances. 

Steers in both treatments were fed to achieve ad libitum intake after the d O sampling. 
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Partial pressure of CO2 did not differ between treatments, but in both treatments the pC02 

decreased as DOMI increased. A similar trend was observed in portal blood bicarbonate 

levels. The decrease in bicarbonate suggests an increased need for buffering in the blood, 

however the decrease in pC02 indicates that the respiratory system was able to 

compensate and maintain blood pC02. In addition, arterial blood base excess tended to 

be lower in HG steers than LG steers. Differences in POV tissues ability to disperse the 

metabolic acid load into blood could be important in controlling cellular metabolism and 

absorption of nutrients. Regression analysis demonstrated that portal blood base excess 

was negatively related to DOMI (P = 0.03, portal base excess= 3.04 + -0.289*DMI). 

The lowest portal blood base excess in HG steers coincided with the greatest DOMI. The 

lowest portal blood base excess of LG steers occurred on d 42 when DOMI was the 

lowest, however the next lowest value occurred on d 28 which was also the day with the 

highest DOMI. Regression analysis demonstrated hepatic blood base excess also was 

negatively related to DMI (P = 0.04, hepatic base excess= 3.85 + -2.72*DMI). 

Decreases in blood base excess coincided with both HG and LG steers adaptation to a 

finishing diet with greater concentrate levels, and the absorbed acid load from the diet 

most likely required more buffering. We concluded that compensating steers are at no 

more risk of experiencing metabolic acidosis than non-compensating steers. 

Key to the dispersion and metabolism of absorbed nutrients is blood flow through 

the splanchnic tissues. Arterial, portal, and hepatic blood flow were similar among 

treatments. Portal and hepatic blood flows are similar to those previously reported 

(Reynolds and Huntington, 1988: Krehbiel et al., 1992; Eisemann et al., 1996; Lapierre et 

al. 2000) for growing steers of similar BW, age, and diets. Similar to other reported data, 
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portal and hepatic blood flow in both HG and LG steers increased concomitant with 

increased DOMI (Reynolds et al., 1992; Eisemann et al., 1996) and BW (Eisemann et al., 

1996). However, Huntington et al. ( 1996) reported decreased portal and hepatic blood 

flow in steers fed 27 or 63% concentrate diets with 1 kg difference in DMI Variation in 

blood flow has been shown to occur throughout the day. Whitt et al. ( 1996) reported 

portal and hepatic plasma flows increased after feeding and varied by as much as 8 to 9% 

across the day. Many experiments examining nutrient flux utilize equally spaced feed 

delivery during the day (Eisemann et al., 1996; Huntington et al.1996; Goetsch et al., 

1997; Lapierre et al., 2000). Even spaced feeding may decrease variation in blood flow 

because adherence to the Fick principle is more likely (Huntington, 1999). Our objective 

in the feeding management of our steers was to more closely replicate our larger feedlot 

feeding experiments (Hersom et al., 2002), and more realistic feed delivery patterns (i.e., 

twice daily). Therefore more variation in blood flow is to be expected when steady state 

conditions are not met. Additionally, Huntington (1999) reported that the greatest 

variation in blood flow is attributable to steer. 

In vitro oxygen consumption has previously been reported to be lower for small 

intestinal and liver tissues in lambs prior to undergoing compensatory growth (Drouillard 

et al., 1991; Wester et al., 1995). Our values for POV oxygen consumption are lower 

than those summarized by Huntington and Reynolds (I 987) and lower than those 

reported by Reynolds and Huntington ( 1988a) and Reynolds et al. (1992) for beef steers. 

Oxygen consumption by the PDV in our experiment was similar between treatments and 

across the feeding period. In contrast, Eisemann et al. ( 1996) demonstrated increased 

PDV oxygen consumption as steers grew heavier and consumed more DM. In both HG 
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and LG steers, PDV oxygen consumption increased during the first 28 d, thereafter PDV 

oxygen consumption remained stable. The reduction in DOMI on d O by LG steers is 

evident by a 100 mmol/h reduction in PDV oxygen consumption. Similar and steady 

PDV oxygen consumption from d 28 to 92 probably is a reflection of the steady DOMI 

exhibited by steers on both treatments. Hepatic oxygen consumption was greater in LG 

than HG steers during the feeding period. Low gain steers increased hepatic oxygen 

consumption with the increase in DOMI starting after d 0, unlike HG steers that already 

had a higher level of intake. Total splanchnic tissue oxygen consumption increased in 

both HG and LG steers. The decrease in DOMI by LG steers on d 42 is evident in TST 

oxygen consumption, producing peak TST oxygen consumption on d 28 that falls on d 42 

and then increases to d 92. Oxygen consumption by TST in HG steers increased up to d 

64, a point at which they might have reached maturity and maximal PDV mass. 

Differences in energy intake have not affected blood flow and presumably oxygen 

consumption by PDV, hepatic, and splanchnic tissues (Goetsch et al., 1997; Krehbiel et 

al., 1998). 

Changes in portal blood ammonia concentration reflect potential changes in 

ruminal fermentation characteristics (Eismann et al., 1996) and changes in DOMI over 

the course of the finishing period. However, venous-arterial differences in ammonia 

concentration coupled with changes in blood flow resulted in little change in PDV 

ammonia flux. Similarly, Huntington et al. (1996) reported no difference in PDV release 

of ammonia N in steers consuming 27 or 63% concentrate diets. In contrast, Reynolds et 

al. (1991) reported decreased PDV ammonia N release in 75% concentrate diets 

compared with 75% alfalfa diets. Ammonia N release by the PDV was also increased 
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with increased DMI (Reynolds et al., 1991, 1992). In light of differences in portal 

ammonia concentration, hepatic flux and the resulting TST flux reflect the liver's ability 

to maintain systemic ammonia concentration by changing the extraction ratio. Decreased 

release of ammonia by the TST in LG steers might also reduce the energy required to 

excrete ammonia. Release ofurea-N by the PDV is of some concern. However, PDV 

urea-N flux was different from zero only on d 28 in HG and d 14 in LG steers. 

Generally, the PDV has demonstrated a utilization of urea-N (Reynolds and Huntington, 

1988; Krehbiel et al., 1998, Lapierre et al., 2000). Differences in urea-N concentrations 

possibly reflect differences in ruminal fermentation and intake patterns between HG and 

LG steers. Additionally we report low HMR compared with values reported by Bonhert 

et al. (1999) for urea-N. Also unexpected was the extraction of urea-N to the extent that 

was observed on d 14 to 42 in HG steers. However, TST flux values fa11 within the range 

of those reported previously (Eisemann et al., 1996, Whitt et al., 1996, and Lapierre et al., 

2000). Release of urea-N from TST would supply N for recycling (Huntington et al., 

1996) and greater concentrate levels increase TST release ofurea-N. Numerically lower 

TST flux in LG steers might either limit N recycling or decrease energy expenditure 

associated with N metabolism in the liver. Increased liver urea-N release was reported to 

account for 16% of the increase in oxygen consumption by the liver with increased intake 

of75% concentrates diets (Reynolds et al., 1991 ). Because of the unusual results for 

urea-N, the relationship of ammonia and urea-N flux are not consistent. 

Concentrations of AAN decreased with increasing days on feed, however release 

of AAN from the PDV varied because of changes in blood flow. Goetsch et al. (1997) 

reported a 36% decrease in AAN POV flux with increasing energy supplied through the 
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substitution of 25% corn in grass hay diets. Reynolds et al ( 1991) and Huntington et al. 

(1996) reported no differences in PDV AAN flux in steers consuming diets differing in 

forage:concentrate ratio, In contrast, Lapierre et al. (2000) reported increased release of 

AAN by the PDV with increasing intake and an increase in grain processing. Release of 

AAN by the PDV could be a result of direct absorption of amino acids, deamination, and 

decarboxylation of amino acids by the GIT tissues (Reynolds et al., 1991 ). Extraction of 

AAN has been implicated as a key regulatory point in the control of nutrient distribution 

(Eisemann et al., 1996). Hepatic uptake of AAN in HG steers indicates the use of AAN 

as a possible gluconeogenic precursor or urea cycle intermediates (Reynolds et al., 1991 ). 

Release of AAN on d 28 and 42 from the liver and greater TST AAN release would 

indicate the synthesis of AAN and thus amino acids for peripheral use in LG steers. 

Albumin and total protein concentrations in arterial, portal, and hepatic blood 

were not effected by treatment or days on feed. Additionally, flux of albumin and total 

protein were not effected by previous BW gain during finishing. Work of Connell et al., 

( 1997) reported that fasting did not decrease total protein synthesis rate relative to fed 

sheep, however, fasted sheep had an albumin synthesis rate that was depressed by one

half In the present experiment even when DOMI was reduced in LG steers, 

concentration and net flux of albumin and total protein remained unchanged, indicating 

the constitutive nature of the total protein in blood to maintain homeostasis. In addition 

to maintenance of blood homeostasis, albumin and total protein can be a repository for 

short-term amino acid storage and recycling. Release of albumin by the liver can be used 

as anabolic precursors (Lobley, 2002), and release of protein from the GIT can be 

processed in the liver to supply amino acids. 
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Glucose concentration increased with days on feed. The level of corn inclusion 

increased from d O until d 18 while steers were adapting to the final diet, thereafter 

increases in glucose in the diet were due to increased intake. As steers grew, the 

utilization of glucose by the PDV increased. Peak glucose use by the PDV was nearly 

five fold greater on d 64 compared with d O in HG steers and six-fold greater in LG 

steers. Reynolds et al. (1991) reported greater PD V glucose use by heifers fed a high ME 

diet compared with low ME diets. Huntington et al. ( 1996) also showed that increasing 

dietary concentration level from 27 to 63% increased PDV glucose use by 63%. 

Increased PDV removal of glucose implies utilization of glucose exceeded absorption of 

glucose by the intestinal tissues. Even though the diet provided increasing starch 

concentration during the adaptation diets, increases in glucose absorption lagged behind 

utilization. Huntington and Reynolds (1986) reported increased PDV glucose release 

with abomasal glucose infusion compared with infusion of starch. Lower PDV glucose 

release associated with starch infusion implies digestion of starch to glucose is the 

limiting step in glucose absorption (Reynolds et al., 1991 ). Eisemann et al. (1996) 

reported 20% lower PDV glucose utilization values as steers matured. Hepatic flux of 

glucose was positive indicating a release of glucose from the liver. Release of glucose 

from the liver in light of extraction of glucose by the PDV indicates substantial 

gluconeogenesis. Hepatic extraction ratios show addition of 4 to 13% glucose from the 

liver. Total splanchnic tissue release of glucose peaked on d 28 in LG and d 64 in HG 

steers. Even though treatments were statistically similar in TST glucose flux, LG steers 

had 13% greater TST flux than HG steers except on d 64. Slightly greater supplies of 

anabolic precursors could have stimulated the additional growth observed in LG steers. 
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Coupling slightly greater TST glucose and AAN flux in LG than HG steers might be part 

of the mechanism of compensatory growth in LG steers. 

Blood lactate concentrations decreased with increasing days on feed. Greatest 

arterial blood lactate concentrations were observed on d 0, before high-grain finishing 

was initiated. Portal and hepatic blood lactate concentrations varied with day and would 

be dependent on DOMI and rumen fermentation patterns on sampling days. Portal 

drained viscera flux oflactate tended to be effected by days on feed. Both treatments 

exhibited peak PDV lactate flux on d 14, during the adaptation period to the final diet. 

Reynolds et al. (1991) and Huntington et al. (1996) reported that PDV lactate release was 

not affected by dietary concentrate level. Therefore, lactate PDV flux change during the 

adaptation diets in the current experiment most likely comes from other sources Lactate 

flux in the PDV comes from two sources; absorption by the ruminal epithelium and 

glycolysis in the post-ruminal digestive tract (Reynolds and Huntington 1988a; Eiseman 

et al., 1997). The change in lactate PDV flux could indicate increased use oflactate for 

visceral organ fat synthesis (Eisemann et al., 1996). Hepatic lactate flux generally 

indicated removal of lactate by the liver. Removal of lactate by the liver is an important 

factor in gluconeogenesis and transamination in the Cori cycle. The variable TST flux 

observed in both HG and LG steers reflects the variable extraction of lactate for further 

metabolism by the liver. 

Blood NEF A concentrations were effected by day. With no discernable pattern to 

NEF A concentration, factors other than treatment or diet were affecting NEF A 

concentrations. Because the LG steers were gaining BW up to the d O sampling date, no 

differences in NEFA were expected. Plasma NEFA concentrations in contemporary HG 
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and LG steers utilized in the feedlot trial were also similar between treatments (Hersom et 

al., 2002 b). The trend of PDV NEFA release would indicate variation in the use of fat as 

an energy substrate by gut tissues. The variable uptake or release by the TST reflects the 

lipid metabolism by the mesenteric fat, not dietary lipid content (Freetly and Ferrell, 

2000), and limited extraction of NEF A by the liver. 

Blood insulin concentrations exhibited significant increases with increasing days 

on feed at all three sites. Insulin concentration was higher in HG steers than LG steers, 

this was especially evident in hepatic blood insulin concentrations. Release of insulin by 

the POV increased with days on feed. In HG steers insulin PDV flux nearly doubled 

from d Oto 28. It was not until d 42 that LG and HG steers had similar PDV insulin flux. 

Similarly, Lapierre et al. (1992) reported that increasing intake by 45% resulted in a 47% 

increase in PDV insulin release in growing steers. Increasing DMI did not affect hepatic 

uptake. In the current experiment, hepatic extraction of insulin did not occur until d 42 of 

the finishing period. After d 42 the liver in HG and LG steers began extracting insulin. 

Release of insulin by the TST increased during the finishing period. Similar TST insulin 

flux is a result of greater hepatic blood flow in LG steers and greater hepatic insulin 

concentration in HG steers. Eisemann et al. ( 1997) demonstrated a reduced sensitivity to 

insulin as steers increased in age, BW, and percentage of empty body weight as fat. In 

the present experiment all steers were the same age, however, HG steers started the 

finishing period with greater BW and whole body fat percent estimated by harvest of 

contemporary steers (Hersom et al., 2002a). The higher sensitivity to insulin because of 

reduced fat content in LG steers compared with HG steers could associated with part of 
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the mechanism of compensatory growth, in which compensating animals are more 

sensitive to the anabolic effects of insulin that in turn increase BW gain. 

Blood concentrations ofIGF-I were similar between treatments. Similar results 

for IGF-I concentration in contemporary HG and LG steers have been reported 

previously (Hersom et al., 2002 b). Because blood concentrations ofIGF-I were similar, 

differences in flux ofIGF-I are due to differences in blood flow. Increasing DMI by 45% 

has no effect on blood IGF-I concentration (Lapierre et al., 1992), but PDV flux indicated 

IGF-I release at low DMI and uptake at high DMI by steers. As a result of differences in 

PDV flux, TST uptake ofIGF-I was greater at high DMI compared with low DMI intake 

(Lapierre et al., 1992). In contrast to the current study and previous work, Lapierre et al. 

(2000) reported a lack of detectable differences in IGF-I flux among steers with different 

feed intakes. 

To our knowledge we are the first to report flux ofleptin by steers consuming 

high-grain diets. Leptin concentrations increased with days on feed in both treatments. 

Leptin concentrations have previously been reported to be sensitive to energy intake 

(Daniel et. al., 2002; Delavaud et al., 2002). Positive correlations have also been reported 

between leptin concentration and body fat content (Houseknecht et al., 1998; Delavaud et 

al., 2002; Hersom et al., 2002 b). Leptin PDV flux would be more indicative of 

mesenteric fat status, and would act as a signal to the hypothalamic-pituitary axis (Barb, 

1999). Hepatic uptake ofleptin, though not affected by treatment or days on feed, is 

likely. Leptin is a protein hormone and thus would be degraded in the liver. Additionally 

Houseknecht et al. (1998) stated the existence of hepatic leptin receptors. Interestingly, 
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the TST flux ofleptin and insulin were both positive. Barb (1999) indicated that leptin 

concentration can be positively influenced by insulin. 

Implications 

Steers that had previously been restricted in live BW gain on wheat pasture prior 

to placement on high-grain diets were able to compensate in BW compared with 

unrestricted steers. Compensating steers were more efficient and had greater diet 

digestibility during the early feeding period. Compensating steers also had livers that 

consumed more oxygen and thus expended more energy. This increase in energy 

consumption was not detrimental to efficient BW gain. Compensating steers had greater 

blood flow through the liver that contained greater concentrations of anabolic precursors 

such as glucose and a-amino N. The increased hepatic blood flow and greater 

concentrations of metabolites may be part of the underlying mechanism of compensatory 

growth in cattle. 
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Table 5.1. Composition of the transition, adaptation, and final diet fed to steers 

Ingredient Transition Step 1 a Step 2) Step 3c Finale 
---------------------------------- %, DM ----------------------------------

Whole corn 
Alfalfa hay 
Cottonseed hulls 
Soybean meal 
Cane molasses 
Salt 

40. 0 54.0 62.4 70.8 80.0 
35.0 23 .0 15.4 8.0 
24. 9 1 9. 1 15 .4 1 1. 9 

0.05 5.9 6.1 6.2 
0.03 1.12 2.21 3 .09 
0.003 0.09 0.14 0.19 

Limestone 
Urea 
Premix e 

NEm, Meal/ kg DM 1 . 63 
NEg,Mcal/kg DM 0.91 
CP, % 13.80 
a Day O - 6 of feeding period. 
bDay 7 ~ 13 of feeding period. 
cDay 14 - 20 of feeding period. 
dDay 21 - 98 of feeding period. 

0.35 0.56 0.77 
0.23 0.36 0.5 
0.02 0.04 0.05 

1. 81 
1.07 

13.88 

1.91 
1.16 

13.83 

2.00 
1.24 

13.77 

8.0 
6.0 
4.0 
0.25 
1.0 
0.65 
0.07 

2.10 
1.34 

13.45 

e40% trace mineral mix (]3.0% Zn, 6.0% Mn, 3.6% Cu, 1.43% Fe, 800 ppm Co, 6,000 
ppm I, 100 ppm Se), 27% Rumensin-80 (Elanco, Indianapolis, IN), 17% Tylan-40 
(Indianapolis, IN), 15% vitamin A 30,000 IU/g, 1 % vitamin E 500 IU/g. 
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Table 5 .2. Number of steers and patent catheters from each site during the experiment 

Days on feed 
Item 0 14 28 42 64 92 
Arterial site 

HGa 5 5 5 5 5 4 
LGh 5 5 5 4 3 3 

Portal site 
HG 5 5 5 5 5 4 
LG 5 5 5 4 

.., 
3 ., 

Hepatic site 
HG 4 3 3 3 3 2 
LG 5 5 5 4 

.., 
2 ., 

Total steers 
HG 5 5 5 5 5 4d 

LG 5 5 5 4h -,c 3 ., 
a HG= High gain (1.25 kg/d prior to high grain feeding), LG= Low gain 

(0. 73 kg/d prior to high grain feeding). 
b One LG steer dropped from blood collection because arterial catheter 

was not patent. 
c One LG steer dropped from blood collection because mesenteric vein 

catheter was infected and prevented infusion. 
d One HG steer removed from experiment because of problems with it's 

feet and legs. 
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Table 5.3. Incremental finishing performance and nutrient digestibility of steers with different previous 
BW gains 

Days on feed ?-value 
Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

BW,kg 
HGC 362 384 398 408 429 454 12.2 0.009 < 0.001 0.19 
LG 287 317 344 353 375 403 12.2 

ADG, kg/d 0.04 < 0.001 0.18 
HG -- 1.55 1.05 0.78 1.06 0.88 0.12 
LG -- 2.16 2.10 0.67 1.10 1.05 0.11 

DMI, kg/d 0.001 <0.001 0.03 
HG 7.65 8.17 8.72 6.61 6.87 7.07 0.22 
LG 4.86 6.85 8.50 4.47 6.78 6.48 0.21 

DMI, % ofBW 0.20 < 0.001 0.01 
l'0 

HG 2.32 2.47 2.24 1. 70 1.60 1.48 0.05 ..... 
l,J 

LG 1.99 2.28 2.60 1.78 1.72 1.61 0.50 
ADG:DMI, kg/kg 0.005 0.007 0.16 

HG -- 0.161 0.109 0.103 0.143 0.120 0.014 
LG -- 0.296 0.221 0.099 0.164 0.156 0.014 

OM digestibility, % 0.01 <0.001 0.12 
HG 70.4 74.9 84.02 82.4 83.7 84.6 0.17 
LG 74.6 77.3 83.5 78.9 81.3 80.5 0.10 

Digestible OM intake, kg/d 0.003 < 0.001 0.25 
HG 5.5 6.2 7.4 5.44 6.2 6.2 0.20 
LG 3.7 5.4 7.2 3.6 5.9 5.5 0.19 

a Standard error of measure, n = see Table 2. 
b Treatment x day. 
cHG = High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0.73 kg/d prior to high grain 

feeding). 



Table 5.4. Blood gas components from steers with different previous BW gains 
Days on feed P-value 

Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

pH 
Arterial 0.47 0.58 0.53 

HGC 7.42 7.43 7.43 7.42 7.44 7.36 0.02 
LG 7.43 7.43 7.44 7.42 7.44 7.44 0.02 

Portal 0.31 0.11 0.21 
HG 7.31 7.34 7.30 7.31 7.33 7.33 0.004 
LG 7.32 7.31 7.31 7.31 7.33 7.31 0.004 

Hepatic 0.89 0.04 0.21 
HG 7.30 7.34 7.32 7.32 7.35 7.35 0.004 
LG 7.32 7.33 7.34 7.33 7.34 7.34 0.004 

pC02 
N Arterial 0.11 0.06 0.81 ...... 
~ 

HG 41.42 40.88 40.36 40.94 39.13 39.57 0.39 
LG 42.33 42.25 39.93 42.53 40.31 41.09 0.39 

Portal 0.15 0.01 0.01 
HG 55.03 53.03 55.42 54.87 52.02 52.70 0.78 
LG 57.02 57.30 54.84 55.42 52.12 56.68 0.77 

Hepatic 0.70 0.002 0.07 
HG 59.53 51.43 54.35 55.69 53.24 50.86 0.75 
LG 57.38 56.18 52.95 54.07 52.14 54.73 0.62 

Bicarbonate, mmol/L 
Arterial 0.17 0.78 0.68 

HG 27.21 27.3 26.79 26.80 26.86 27.21 0.83 
LG 28.49 28.13 32.30 28.13 27.66 28.64 0.84 

Portal 0.15 0.05 0.67 
HG 28.56 28.04 27.76 27.66 27.83 27.94 0.37 
LG 30.30 29.19 28.13 27.94 28.12 29.14 0.37 



Hepatic 0.35 0.28 0.55 

HG 29.70 28.09 28.37 28.91 29.31 28.64 0.45 

LG 30.65 29.38 29.26 28.73 28.55 29.61 0.37 

Blood base excess, mmol/L 
Arterial 0.08 0.25 0.49 

HG 3.06 3.06 2.55 2.51 3.08 3.38 0.32 

LG 4.63 4.50 3.62 3.13 3.16 3.40 0.32 

Portal 0.57 0.02 0.63 

HG 1.90 1.12 O.Old 0.90d 0.84d 0.72d 0.32 

LG 3.38 1.09 0.45d 0.21d 0.90d 1.12d 0.33 

Hepatic 0.51 0.17 0.61 

HG 2.20 1.39 0.78d 1.94 2.23 1.87 0.40 

LG 3.76 l.97 1.56 1.36 1.69 2.26 0.33 

Calculated 02 saturation, % 
Arterial 0.67 0.49 0.17 

N HG 98.67 ....... 98.65 98.71 98.86 96.9. 98.18 0.26 
V, 

LG 98.50 98.79 98.77 97.78 98.67 98.33 0.23 

Portal 0.38 0.02 0.45 

HG 78.14 .84.15 85.16 86.03 83.40 82.45 0.75 

LG 79.56 81.63 81.29 83.35 83.35 84.02 0.77 

Hepatic 0.25 0.05 0.79 

HG 67.31 71.98 74.42 74.17 72.92 71.11 2.26 

LG 66.36 67.87 69.21 69.08 70.71 66.21 1.87 

Hemoglobin, g/dL 
Arterial 

HG 8.12 9.19 10.35 10.88 10.17 9.47 0.62 0.88 0.001 .065 

LG 8.37 8.45 10.72 10.34 10.84 10.21 0.57 

Portal 0.75 0.001 0.53 

HG 7.93 8.50 9.50 10.51 10.08 8.82 0.68 

LG 7.95 7.57 10.14 10.42 11.01 IO.IO 0.65 

Hepatic 0.74 0.06 0.92 



HG 7.66 8.92 9.76 9.84 11.01 8.99 0.48 
LG 8.91 8.02 9.68 10.42 11. 74 8.71 0.40 

Packed cell volume, % 
Arterial 0.46 0.43 0.88 

HG 26.17 27.33 26.29 28.49 26.06 27.98 1.21 
LG 28.52 28.88 26.49 29.63 28.17 28:35 1.12 

Portal 0.48 0.02 0.07 
HG 26.05 27.53 26.22 28.65 26.24 28.57 0.79 
LG 27.61 25.11 27.64 28.20 28.07 28.22 0.76 

Hepatic 0.81 0.88 0.09 
HG 26.25 28.19 26.44 28.88 27.08 29.33 1.06 
LG 27.16 24.68 24.99 28.10 27.20 27.89 0.87 

a Standard error of measure, n = see Table 2. 
b Treatment x day. 
cHG = High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0.73 kg/d prior to high grain 

N feeding) . ...... 

°' d Means not different from zero (P > 0.10). 



Table 5.5. Blood flow, oxygen concentration, and oxygen consumption in steers with different Erevious BW gains 
Days on feed P-value 

Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

Blood flow, L/h 
Arterial 0.22 0.55 0.23 

HGC 76.7 103.45 114.1 65.1 90.9 50.6d 17.81 
LG 74.7 105.6 121.8 120.0 72.6 197.2 15.95 

Portal 0.51 < 0.001 0.33 
HG 432.7 589.5 758.1 669.6 904.4 627.9 53.55 
LG 435.7 557.1 579.2 722.4 962.9 586.2 56.59 

Hepatic 0.06 < 0.001 0.63 
HG 485.8 514.7 737.8 709.1 930.9 518.3 34.43 
LG 504.4 727.6 758.8 749.9 942.2 853.0 32.05 

Blood 02, mmol/L 
N 

Arterial 0.86 0.001 0.27 ..... 
-...J 

HG 2.48 2.81 3.15 3.32 3.04 2.87 0.17 
LG 2.56 2.60 3.27 3.11 3.30 3.09 0.16 

Portal 0.81 0.001 0.43 
HG 1.90 2.18 2.47 2.75 2.57 2.21 0.16 
LG 1.94 1.91 2.54 2.63 2.80 2.59 0.16 

Hepatic 0.81 0.02 0.85 
HG 1.59 1.96 2.17 2.19 2.37 1.92 0.13 
LG 1.80 1.66 2.05 2.18 2.50 1.76 0.10 

Oxygen consumption, mmol/h 
PDVe 0.47 0.69 0.92 

HG -268.4 -333.0 -383. 7 -391.3 -329.3 -384.7 35.47 
LG -269.9 -431.2 -452.1 -353. 7 -481.2 -331.6 38.16 

Hepatic < 0.001 0.34 0.95 
HG -189.6d -288.i -299.9d -372.1 -547.4 _355.3d 71.75 
LG -193.5d -400.4 -515.0 -412.5 -392.2 -730.5 35.53 



N 

00 

TS Tr 0.002 0.06 0.85 
HG -424.3 -537.7 -640.6 -698.6 -753.1 -525.3 41.63 
LG -414.9 -733.1 -967.1 -784.5 -880.2 -1052.7 43.04 

a Standard error of measure, n = see Table 2. 
b Treatment x day. 
cHG = High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0. 73 kg/d prior to high grain feeding). 
dMeans not different from zero (P > 0.10). 
e PDV = Portal drained viscera. 
rTST = Total splanchnic tissue. 



Table 5.6. Arterial, portal, and hepatic metabolite concentrations from steers with different previous BW 
ams 

Days on feed P-value 
Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

Ammonia, µM 
Arterial 0.14 0.45 0.84 

HGC 320 260 218 254 272 273 13.6 
LG 244 247 226 195 240 264 15.0 

Portal 0.11 0.002 0.06 
HG 568 459 380 397 383 393 13 .3 
LG 439 377 399 310 378 481 14.8 

Hepatic 0.28 0.42 0.26 
HG 413 291 264 295 321 237 43.99 
LG 214 255 238 196 249 232 39.52 

N Urea-N, mM ..... 
'° Arterial 0.003 0.47 0.42 

HG 7.55 7.79 7.34 6.87 6.48 7.40 0.22 
LG 6.31 4.42 5.78 5.78 5.48 7.14 0.25 

Portal < 0.001 0.56 0.40 
HG 7.80 7.98 7.64 7.03 6.64 7.05 0.12 
LG 6.50 4.68 5.87 5.83 5.53 7.38 0.17 

Hepatic 0.05 0.12 0.40 
HG 7.83 7.60 7.22 6.83 5.28 7.54 0.33 
LG 6.45 4.73 5.93 6.06 5.65 7.53 0.28 

a-Amino N, mM 
Arterial 0.25 0.02 0.88 

HG 3.47 3.66 4.06 3.50 3.23 2.66 0.10 
LG 3.69 3.63 3.97 3.67 3.46 3.23 0.11 

Portal 0.08 0.003 0.94 
HG 3.42 3.75 3.97 3. 71 3.36 3.15 0.04 



LG 3.57 4.13 3.91 3.71 3.53 3.31 0.06 
Hepatic 0.10 0.002 0.90 

HG 3.44 3.93 4.01 3.89 2.94 2.57 0.08 

LG 3.47 3.78 4.34 4.09 3.22 3.13 0.08 

Albumin, mM 
Arterial 0.61 0.69 0.40 

HG 519 529 517 505 515 527 8.0 
LG 517 486 495 508 5"'"' .) .) 534 8.9 

Portal 0.60 0.33 0.45 

HG 511 522 521 506 519 528 8.8 

LG 507 491 494 515 524 532 9.2 
Hepatic 0.97 0.44 0.49 

HG 502 536 511 504 505 516 14.4 
LG 505 500 489 500 540 544 12.5 

Total protein, g/L 
N Arterial 0.68 0.12 0.17 
N 
0 HG 66.3 68.2 66.0 67.2 68.2 67.5 1.53 

LG 67.6 63.2 64.0 66.1 67.9 69.l 1.56 

Portal 0.68 0.35 0.10 

HG 65.2 67.6 68.1 66.5 67.3 67.2 1.52 

LG 67.0 63.9 63.6 65.2 67.2 69.5 1.55 

Hepatic 0.67 0.47 0.26 

HG 63.4 67.1 66.7 67.6 67.3 66.6 1.49 

LG 66.7 63.6 63.4 65.2 66.2 68.4 1.25 

Glucose, mM . 
Arterial 0.77 0.002 0.76 

HG 4.01 4.31 4.37 4.51 4.03 4.42 0.09 

LG 3.90 4.22 4.47 4.73 4.24 4.34 0.10 

Portal 0,50 0.02 0.72 

HG 3.96 4.23 4.43 4.38 4.87 4.36 0.06 

LG 3.87 4.24 4.41 4.67 4.16 4.26 0.07 



LG 3.57 4.13 3.91 3.71 3.53 3.31 0.06 
Hepatic 0.10 0.002 0.90 

HG 3.44 3.93 4.01 3.89 2.94 2.57 0.08 

LG 3.47 3.78 4.34 4.09 3.22 3.13 0.08 

Albumin, mM 
Arterial 0.61 0.69 0.40 

HG 519 529 517 505 515 527 8.0 

LG 517 486 495 508 533 534 8.9 

Portal 0.60 0.33 0.45 

HG 511 522 521 506 519 528 8.8 
LG 507 491 494 515 524 532 9.2 

Hepatic 0.97 0.44 0.49 

HG 502 536 511 504 505 516 14.4 

LG 505 500 489 500 540 544 12.5 

Total protein, g/L 
N Arterial 0.68 0.12 0.17 
N 

HG 66.3 68.2 66.0 67.2 68.2 67.5 1.53 

LG 67.6 63.2 64.0 66. l 67.9 69.1 1.56 

Portal· 0.68 0.35 0.10 

HG 65.2 67.6 68.1 66.5 67.3 67.2 1.52 

LG 67.0 63.9 63.6 65.2 67.2 69.5 1.55 

Hepatic 0.67 0.47 0.26 

HG 63.4 67.1 66.7 67.6 67.3 66.6 1.49 

LG 66.7 63.6 63.4 65.2 66.2 68.4 1.25 

Glucose, mM 
Arterial 0.77 0.002 0.76 

HG 4.01 4.31 4.37 4.51 4.03 4.42 0.09 

LG 3.90 4.22 4.47 4.73 4.24 4.34 0.10 

Portal 0.50 0.02 0.72 

HG 3.96 4.23 4.43 4.38 4.87 4.36 0.06 

LG 3.87 4.24 4.41 4.67 4.16 4.26 0.07 



Hepatic 0.62 < 0.001 0.93 
HG 4.09 4.79 4.85 5.08 4.54 4.92 0.10 
LG 4.08 4.61 4.90 5.15 4.52 4.61 0.09 

Lactate, mM 
Arterial 0.26 < 0.001 0.29 

HG 0.86 0.32 0.81 0.54 0.47 0.64 0.022 
LG 0.80 0.63 0.75 0.60 0.44 0.66 0.26 

Portal 0.82 0.004 0.77 
HG 0.91 0.64 0.92 0.78 0.57 0.63 0.035 
LG 0.84 0.83 0.95 0.74 0.49 0.67 0.040 

Hepatic 0.61 0.10 0.97 
HG 0.87 0.74 0.92 0.64 0.62 0.59 0.058 
LG 0.81 0.58 0.89 0.69 0.51 0.63 0.053 

NEFA, mM 
Arterial 0.19 0.03 0.39 

N HG 211.2 190.2 241.6 150.0 156.3 189.4 7.78 N 
N 

LG 278.7 179.1 198.7 176.3 194.3 211.5 8.81 
Portal 0.92 0.05 0.45 

HG 252.4 202.4 265.2 155.2 218.7 208.1 13.30 
LG 219.3 225.0 222.3 182. l 218.0 247.3 14.23 

Hepatic 0.86 0.12 0.94 
HG 254.2 221.3 268.3 149.8 168.8 212.0 18.57 
LG 266.6 240.2 237.8 175.9 181.1 146.5 16.57 

a Standard error of measure, n = see Table 2. 
b Treatment x day. 
cHG = High gain (1.25 kg/d prior to high grain feeding), LG= Low gain(O. 73 kg/d prior to high grain 
feeding). 



Table 5. 7. Arterial, portal, and hepatic hormone concentrations from steers with different previous BW gains 
Days on feed P-value 

Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

Insulin, ng/mL 
Arterial 0.14 < 0.001 0.32 

HGC 0.176 0.188 0.248 0.500 0.493 0.451 0.022 
LG 0.137 0.161 0.241 0.512 0.281 0.397 0.024 

Portal 0.16 < 0.001 0.46 
HG 0.209 0.177 0.293 0.608 0.624 0.596 0.030 
LG 0.147 0.166 0.257 0.633 0.374 0.514 0.033 

Hepatic < 0.001 < 0.001 0.005 
HG 0.233 0.203 0.349 0.624 0.710 0.584 0.018 
LG 0.140 0.176 0.271 0.295 0.335 0.425 0.017 

N 
IGF-1 nu/mL , 0 

N Arterial 0.61 0.20 0.29 \.,.) 

HG 148.11 117. 76 146.76 138.87 114.94 141.45 8.48 
LG 118.82 139.08 133.24 145. 71 112.31 119.88 8.86 

Portal 0.69 0.42 0.42 
HG 150.49 127.92 139.19 146.46 120.49 136.43 7.52 
LG 119.06 145. 70 143.97 141.99 118,64 124.58 7.99 

Hepatic 0.12 0.21 0.12 
HG 153.38 109.78 170.45 161.96 122.69 151. 73 7.23 
LG 121.97 146.35 134.83 145.44 120.66 96.39 6.44 

Leptin, ng/mL 
Arterial 0.24 0.001 0.37 

HG 3.55 5.71 6.93 7.12 6.14 7.39 0.91 
LG 2.86 4.05 6.33 4.43 4.77 4.56 0.93 

Portal 0.26 0.001 0.40 

HG 3.94 5.61 6.99 7.25 5. 71 7.51 0.93 
LG 2.78 3.89 6.24 4.58 5.12 4.61 0.95 



N 
N 
~ 

Hepatic 0.24 0.02 0.42 
HG 4.00 5. 70 6.85 8.24 6.98 6.66 1.02 
LG 2. 77 3.93 · 6.24 4.62 4.88 5.52 0.91 

a Standard error of measure, n = see Table 2. 
b Treatment x day. 
cHG = High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0.73 kg/d prior to high grain feeding). 



Table 5.8. Nutrient flux across portal drained viscera, liver, and total splanchnic tissues and hepatic metabolism ratio 
of steers with different Qrevious BW gains 

Days on feed P-value 
Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

Ammonia, mmol/h 
POV flux" 0.92 0.71 0.12 

HG<l 107.3 136.5 137.9 101.5 104.0 34.0e 11.10 
LG 102.1 80.4 112.3 66.8e 120.5 148.7 12.15 

Hepatic flux 0.55 0.75 0.24 
HG -78.0 -108.7 -73.0 -69.3 -118.1 -138.9 21.68 
LG -121.3 -74.7 -104.9 -69.3 -118.1 -138.9 19.44 

TST flui 0.37 0.79 0.63 
HG 28.1\! 21.3e 30.4e l 9.2e 21.1 e 25.8e 18.29 
LG -17.9e 5.7e 7 -,e 

·-' 2.6e 6.8e 3.6e 16.39 
N HMR.g 0.44 0.03 0.18 N 
V, 

HG -0.294 -0.296 -0.284 -0.266 -0.196 -0.415 0.084 
LG -0.548 -0.312 -0.356 -0.314 -0.355 -0.432 0.076 

Urea-N, mmol/h 
PDV flux 0.09 0.70 0.57 

HG 102.2e 171.0e 287.9 I00.3e 136.9 87.Se 27.00 
LG 93.2e 166.4 59.2e 4.7e 21.2e 148.5e 27.80 

Hepatic flux 0.98 0.63 0.12 
HG 79.7e -8.4e -38. 7e -9.56e 90. le 97.5e 29.49 
LG -15.2e 60.4e 48.7e 159.4 110.5e 146.8e 25.75 

TST flux 0.49 0.94 0.95 
HG 160.6 156.8e 142.2e 146. 7'' 213.2 143.1 36.63 
LG 78.1 e 226.7 107.9e 164.1 131.6e 33.5e 34.67 

HMR 0.96 0.82 0.14 

HG 0.022e 0.007e -0.006e O.OOle 0.019e 0.026e 0.007 
LG -0.004e 0.021e O.OlOe 0.040 0.019e -0.022e 0.006 



a-Amino N, mmol/h 
PDV flux 0.60 0.50 0.42 

HG -65. 7e 25.7e ll8.9e 133.8e 106.7e 341.3 67.12 

LG -19. 7e 311.6 -45.3e 12.0e 41.5.: 38.2e 72.7 

Hepatic flux 0.20 0.10 0.39 

HG -25.6e -46.1 e -l 52.8e 73.1 e -285.5 -l 82.4e 75.8 

LG -41.3e -184. 7e 319.0 300.0 -287.7 88.0e 64.7 

TST flux 0.33 0.11 0.64 

HG -28.0e 44.3e -13.6e 65.8e -123 .4e -108.5e 73.3 

LG -61.0e 126.9e 273.7 309.8 -267.5 57.5e 63.2 

HMR 0.12 0.17 0.58 

HG -0.019e -0.026e -0.040e 0.019e -0.096e -0.103e 0.026 

LG -0.029e · -0.061e 0.109 0.120 -0.097e 0.028e 0.02 

Albumin, mmol/h 
PDV flux 0.98 0.94 0.79 

N 
HG -4702e -4393 -1262e 270e 4716e 2009e 2075 N 

°' LG -3472e 3084e -1028e 2319e -5089e 309e 2326 

. Hepatic flux 0.54 0.30 0.67 

HG -I44r 11714e -10200e -3270e -13083e -3625.: 4149 

LG -1365e 7485e -4104e -8662e 5890e 2100e 3676 

TST flux 0.49 0.17 0.95 

HG -8655e 3944e -2704e -5985e 904e -2853e 2743 

LG -4837e 10569e -5132e -6284e 1135e 5742e 2483 

HMR 0.61 0.31 0.76 

HG -0.004e 0.024e -0.025e -0.007e -0.021e -0.014e 0.009 

LG -0.006e 0.016e -0.0lOe -0.022e O.Olle 0.005e 0.008 

Total protein, g/h 
PDV flux 0.65 0.22 0.22 

HG -673 . -436 2417 -562 -815 "' 277 ., 
LG -211 440 -306 -601 -704 165 309 

Hepatic flux 0.99 0.61 0.11 



HG -715 354 -1290 -467 260 -125 143 
LG -169 -146 -172 -122 -853 -505 134 

TST flux 0.65 0.42 0.26 
HG -1820 401 -463 -861 -194 -125 243 
LG -380 294 -478 -726 -1558 -100 221 

HMR 0.81 0.43 0.21 
HG -0.021 0.008 -0.026 -0.009 0.004 -0.003 0.003 
LG -0.007 -0.003 -0.004 -0.003 -0.014 -0.009 0.003 

Glucose, mmol/h 
PDV flux 0.51 0.11 0.31 

HG -32.81e -43.13e 60.64e -98. 78 -158.73 -37.26e 16.85 
LG -12.47\! 15.0le -39.80e -31.58\! -78.04e -59.57e 18.93 

Hepatic flux 0.99 < 0.001 0.13 
HG 73.72c 317.81 237.33 341.67 492.03 229.99 30.27 
LG 105.61 269.45 369.41 317.28 321.05 306.7 26.3 

N TST flux 0.47 < 0.001 0.89 N 
-.J 

HG 15.30c 269.82 275.35 251. 78 293.18 188.05 32.49 
LG 93.14 284.46 329.61 286.07 244.50 253.19 28.28 

HMR 0.84 < 0.001 0.05 
HG 0.040 0.100 0.068 0.104 0.129 0.096 0.010 
LG 0.052 0.087 0.110 0.097 0.086 0.088 0.008 

Lactate, mmol/h 
PDV flux 0.37 0.09 0.85 

HG l 7.12e 203.68 69.33e 162.21 98.41 -l l.33e 16.63 
LG 21.32e 120.18 120.02 70.95e 39.43e 5.I3e 22.27 

Hepatic flux 0.67 0.99 0.27 
HG -30.SOe 1s.2r -35.25e -48.7le -49.1r -32.lle 27.72 
LG -20.98e -151.26 -13.lOe -41.99e 31.2le 21. 76e 25.01 

TST flux 0.53 0.54 0.56 

HG -22.85e 139.58 52.93e 114.67e 73.0SC -35.53e 29.45 
LG 0.35e -31.08e 106.92 29.12e 70.60e -3.91e 26.52 



Hl\1R 0.68 0.98 0.06 
HG -0.043c 0.256 -0.002c -0.091 c -0.036c -o.o5r 0.064 
LG -0.0l}c -0.278 -0.015c -o.02r 0.103c 0.028c 0.057 

NEFA, mol/h 
PDV flux 0.49 0.08 0.28 

HG 0.016c 0.004c 0.026c 0.004c 0.067 0.012c 0.009 
LG -0.0}0c 0.028c 0.015c o.oc 0.025c 0.029c 0.010 

Hepatic flux 0.95 0.36 0.94 
HG 0.009c 0.002c -0.003c -o.oor -0.022c -0.013c 0.011 
LG 0.022" 0.010" 0.01 Sc -0.004c -0.036c -0.046c 0.009 

TST flux 0.83 0.58 0.36 
HG 0.022.: 0.012c -0.008" 0.001 c 0.008c 0.0003c 0.009 
LG -0.008.: 0.039c 0.030 o.002~ -0.013c -0.030c 0.009 

HMR 0.93 0.52 0.97 
HG 0.059" 0.002" 0.068c -0.061" -0.129" -0.082" 0.076 

N LG 0.103~ O. l 62" 0.11 r -0.022c -O. l 79c -0.268" 0.068 N 
00 

a Standard error of measure, reported in Table 2. 
b Treatment x day . 
.:PDV = Portal drained viscera. 
ct HG= High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0. 73 kg/d prior to high grain feeding). 
"Means not different from zero (P > 0.10). 
rTST = Total splanchnic tissue. 
gHMR = Hepatic extraction ratio. 



Table 5.9. Hormone flux across portal drained viscera, liver, and total splanchnic tissues and hepatic metabolism ratio 
of steers with different Qrevious BW gains 

Days on feed P-value 
Item 0 14 28 42 64 92 SEMa Treatment Day TxD6 

Insulin, µg/h 
PDV flux C 0.46 < 0.001 0.63 

HGd 16.7e -9.9e 31.3 69.2 120.2 77.2 7.75 
LG 4.0e 0.7e 6.5e 78.8 77.4. 83.8 8.55 

Hepatic flux 0.12 0.08 0.72 
HG 4.6e 3. le 0.8e -23. 1 e -72.6e -23. T' 7.1 
LG 2 ,..,e - . .) 8.5e 9.7" -12.2e -20.8e -l.6e 6.4 

TST flux r 0.62 0.06 0.99 
HG 20.1 e 9.8e 35.9e 53.2 60.8 48.2e 9.68 
LG 1. 7e 9.2e I6.2e 65.8 54.0 39.9e 8.76 

N HMRg 0.64 0.42 0.79 N 
I.O 

0.074e 0.078e -0.002e -0.05le -0.097e -0.061 e HG 0.032 
LG -0.033e 0.075e 0.071 e 0.005e -0.052e 0.003e 0.028 

IGF-I, µg/h 
PDV flux 0.51 0.88 0.43 

HG 175.3e 420.6e -474.0e 658.8e 302.2e -496.9e 185.09 
LG -194.4e 385.2e 647.5e -71.7" 555.3e 363. 7e 205.00 

Hepatic flux 0.002 0.24 0.15 

HG -180.0e -209.6e 1812. 0 753.t -1412.3 511. oe 94.53 
LG 162.8e 198.8e -484.5e 438.4e 554.1 e -2390.3 87.53 

TST flux 0.29 0.37 0.29 
HG -110.9e 481.8e l 135.4e 1915.5 -689.2e 272.6e 375.4 
LG -31.6e 581.0e 192.9e 242.3e 1066.0e -2312.3 335.9 

HMR 0.05 0.62 0.31 

HG 0.015e -0.037e 0.169 0.076e -0.074e 0.068e 0.018 

LG 0.016e 0.015e -0.039e 0.033e 0.039e -0.162 0.016 



Leptin, µg/h 
POV flux 0.99 0.88 0.21 

HG 120.3e -42.5e 190.3e 74.4e -395.5 98.6e 70.09 
LG -31. 7e -108.4,: -87.2e 93.2e 226.2e -44.9,: 76.58 

Hepatic flux 0.61 0.78 0.39 
HG -8.0e -11. 5e -289.6e 89.7e 484.7 -279.7e 80.75 
LG -25.r 19.3e -27.4e 22.9e -105.2e 438.9e 72.01 

TST flux 0.39 0.20 0.37 
HG 164.0e -99.4e -500.7 195.6e 196.9e -276.2e 103.8 
LG -57.4e -89. i e -l 14.6e 130.8e 106.r 452.5e 93.07 

HMR 0.01 0.90 0.34 
HG 0.004 0.021 -0.020 0.007 0.058 -0.058 0.004 
LG 0.005 -0.002 -0.0001 -0.0002 -0.051 0.181 0.005 

a Standard error of measure, reported in Table 2. 

N 
h Treatment x day. 

i.;J .: POV= Portal drained viscera. 
0 

d HG= High gain (1.25 kg/d prior to high grain feeding), LG= Low gain (0. 73 kg/d prior to high grain feeding). 
~ Means not different from zero (P > 0.10). 
1·rsT = Total splanchnic tissue. 
g HMR = Hepatic extraction ratio 
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Table A 1. Steer organ and digesta mass at intital harvest, 
Ex . 1 

Item High Gain Wheat LowGai 
Steer ID G74 G50 G46 G75 Y96 YlOO 
Harvest Date 4/3/00 4/3/00 4/5/00 4/5/00 4/3/00 4/3/00 
Live BW, kg 393.62 394.53 422.22 424.49 331.87 315.08 
Hot carcass, kg 225.87 225.87 251.52 245.61 182.28 170.48 
Hide, kg 25.85 24.70 26.00 27.00 23.65 20.40 
Blood, kg 12.85 15.05 14.80 13.30 12.10 11.15 

Head, kg 11.60 12.00 13.30 14.00 11.85 11.50 
Heart, kg 1.68 1.74 1.78 2.00 1.40 1.22 
Lung, kg 2.65 4.35 4.65 5.80 4.60 4.15 
Liver, kg 6.48 7.08 7.06 6.90 4.10 4.56 
Pancreas, kg 0.44 0.38 0.58 0.52 0.26 0.28 

Spleen, kg 0.70 0.72 0.88 1.00 1.05 0.62 
Kidney, kg 1.18 1.02 1.34 1.00 0.95 0.84 
Reticulo-rumen, kg 8.40 8.40 8.35 8.40 6.80 6.95 
Omasum, kg 2.88 2.45 2.46 3.50 2.40 2.64 
Abomasum, kg 1.64 1.25 1.40 1.50 1.52 1.38 
Small intestine, kg 5.30 7.50 5.90 6.45 4.30 5.10 
Large intestine, kg 3.80 3.80 3.95 4.80 4.05 3.00 

Cecum, kg 0.60 0.01 0.45 0.50 0.65 0.55 
Mesenteric fat, kg 11.70 9.85 8.05 11.55 3.15 5.15 
Feet and ears, kg 9.20 9.50 9.75 9.90 9.15 9.30 

Trim, kg 6.55 6.25 6.35 5.99 3.65 2.95 
Total Offal, kg 113.50 116.05 117.05 124.11 95.63 91.74 

Empty Body, kg 352.02 362.68 377.12 390.84 292.07 281.93 

Digesta Mass, kg (As is) 
Reticulo-rumen 31.55 26.75 35.90 26.10 28.80 24.45 

Reticulo-rumen (DM) 3.88 4.31 4.85 3.38 2.91 2.52 

Omasum 2.75 0.35 0.45 0.70 0.45 0.45 

Abomasum 2.00 1.45 2.25 1.30 1.50 1.15 

Small intestine 4.45 2.30 3.55 4.15 5.40 3.20 
Large intestine 0.10 0.50 1.70 0.70 2.40 2.25 

Cecum 0.75 0.50 1.25 0.70 1.25 1.65 
Total Digesta 41.60 31.85 45.10 33.65 39.80 33.15 
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Table A. l. Continued 

Item Wheat Native Ran~e 
Steer ID Y74 Y 65 Or97 Or99 Or95 Or98 
Harvest Date 4/5/00 4/5/00 4/3/00 4/3/00 4/5/00 4/5/00 
LiveBW, kg 305.54 311.44 238.80 271.04 278.30 275.58 
Hot carcass, kg 166.39 171.16 126.89 141.65 144.37 135.07 
Hide, kg 21.05 . 20.80 12.95 15.80 18.15 16.55 
Blood, kg 9.05 9.75 8.35 9.40 7.80 9.60 
Head, kg 11.65 10.55 9.80 0.60 9.75 11.25 
Heart, kg 1.25 1.34 1.06 1.08 1.18 1.08 
Lung, kg 3.65 3.55 3.15 3.05 3.25 3.60 
Liver~ kg 4.22 4.54 3.22 3.72 3.72 3.32 
Pancreas, kg 0.32 0.32 0.26 0.24 0.26 0.30 
Spleen, kg 0.50 0.56 0.46 0.74 0.62 0.44 
Kidney, kg 0.66 0.70 0.62 0.68 0.66 0.88 
Reticulo-rumen, kg 6.45 6.90 5.20 5.45 5.85 5.50 
Omasum, kg 1.68 2.65 4.20 2.45 3.04 2.90 
Abomasum, kg 1.08 1.10 1.05 l.00 1.04 1.25 
Small intestine, kg 5.15 5.05 3.55 4.55 4.15 4.30 
Large intestine, kg 2.60 3.30 2.55 2.60 2.40 2.35 
Cecum, kg 0.30 0.65 0.30 0.30 0.25 0.35 
Mesenteric fat, kg 3.95 5.65 l.05 2.05 2.65 1.40 
Feet and ears, kg 8.75 8.95 7.10 7.95 7.40 7.80 
Trim, kg 3.60 3.36 1.25 2.90 2.10 3.50 
Total Offal, kg 85.91 89.72 66.12 64.56 74.27 76.37 
Empty Body, kg 272.79 272.79 202.95 232.19 240.50 228.98 

Digesta Mass, kg (As is) 
Reticulo-rumen 25.70 28.60 27.55 29.80 29.15 33.90 
Reticulo-rumen (DM) 3.57 3.13 4.19 4.19 4.21 5.04 
Omasum 0.20 0.35 0.70 0.40 1.85 1.25 
Abomasum l.95 3.25 2.05 1.55 1.20 1.60 

Small intestine 3.20 4.80 2.80 3.55 3.75 5.30 
Large intestine 1.20 1.20 1.90 . 2.45 1.20 3.15 
Cecum 0.50 0.45 0.85 1.10 0.65 1.40 
Total Digesta 32.75 38.65 35.85 38.85 37.80 46.60 
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Table A.2. Steer organ and digesta mass at intital harvest, 
Ex. 2 

Item High Gain Wheat Low Gai 
Steer ID G31 G34 G27 Gll Y38 Y42 
Harvest Date 5/16/01 5/16/01 5/16/01 5/16/01 5/17/01 5/17/01 
Live BW, kg 413.14 395.89 365.92 399.52 296.92 325.06 
Hot carcass, kg 241.30 219.74 210.20 230.86 167.98 171.61 
Hide, kg 27.30 29.46 24.36 26.18 20.26 21.08 
Blood, kg 14.24 13.54 7.78 12.90 10.54 12.96 
Head, kg 13.98 13.58 12.10 12.80 11.40 12.30 
Heart, kg 1.59 1.58 1.83 1.81 1.39 1.42 
Lung,kg 4.89 5.44 4.93 5.46 3.67 4.75 
Liver, kg 6.19 4.96 5.73 5.44 4.22 4.98 
Pancreas, kg 0.45 0.28 0.40 0.34 0.29 0.34 
Spleen, kg 0.65 0.68 0.82 0.64 0.68 0.63 
Kidney, kg 0.99 0.89 0.87 0.93 0.70 0.88 
Reticulo-rumen, kg 8.08 8.90 8.38 8.18 6.04 6.84 
Omasum, kg 2.62 3.08 2.34 2.90 2.38 2.72 
Abomasum, kg 1.30 1.18 1.38 1.38 1.14 1.32 
Small intestine, kg 4.83 4.24 4.65 4.14 4.16 5.25 
Large intestine, kg 3.04 2.56 3.26 2.96 2.10 2.72 
Cecum, kg 0.30 0.50 0.70 0.50 0.38 0.56 
Mesenteric fat, kg 11.08 6.84 8.46 10.04 3.30 6.06 
Feet and ears, kg 10.30 10.62 9.34 10.30 9.00 9.08 
Trim, kg 3.56 3.52 9.96 5.22 2.92 3.40 

Total Offal, kg 115.39 111. 85 107.29 112.12 84.57 97.29 

Empty Body, kg 366.64 338.29 322.08 353.72 254.56 281.80 

Digesta Mass, kg (As is) 
Reticulo-rumen 34.88 45.10 34.96 35.58 30.10 30.94 
Reticulo-rumen (DM) 3.26 4.97 4.15 4.60 3.95 4.12 
Omasum 3.66 3.40 2.22 3.30 4.20 3.82 
Abomasum 2.04 1.42 0.42 1.30 l.64 2.42 
Small intestine 3.86 4.60 2.94 3.12 3.78 3.44 
Large intestine 1.04 1.68 1.28 1.26 1.28 0.86 
Cecum 1.02 1.40 2.02 1.24 1.36 1.78 
Total Digesta 46.50 57.60 43.84 45.80 42.36 43.26 
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Table A.2. Continued 

Item Wheat Native Range . 
Steer ID Y40 Y30 Or288 Or537 Orl78 Or277 
Harvest Date 5/17/01 5/17/01 5/15/01 · 5/15/01 5/15/01 5/15/01 
LiveBW, kg 342.32 338.68 243.34 236.08 300.55 273.31 
Hot carcass, kg 184.78 185.69 124.40 120.31 148.00 135.29 

Hide, kg 26.32 21.56 15.22 16.32 17.30 17.84 

Blood, kg 12.06 13.16 6.90 8.78 10.22 10.30 
Head, kg 12.80 13.18 9.78 9.82 11.18 IO.IO 
Heart, kg 1.57 1.65 0.91 0.99 1.22 1.13 
Lung, kg 3.76 4.29 2.74 3.33 4.64 3.71 
Liver, kg 5.42 4.74 2.92 3.27 3.97 3.68 

Pancreas, kg 0.44 0.32 0.29 0.15 0.37 0.27 
Spleen, kg 1.11 0.56 0.34 0.87 0.46 0.53 
Kidney, kg 0.90 0.94 0.70 0.88 0.88 0.70 
Reticule-rumen, kg 7.65 8.18 4.98 5.51 6.24 6.32 
Omasum, kg 3.46 2.62 2.52 2.82 4.00 3.14 

Abomasum, kg 1.32 1.20 0.98 0.84 l.12 1.32 

Small intestine, kg 5.18 4.07 3.28 3.63 3.28 4.12 

Large intestine, kg 3.04 2.62 1.84 2.08 1.66 1.86 

Cecum, kg 0.24 0.44 0.30 0.30 0.56 0.42 

Mesenteric fat, kg 6.66 5.50 1.42 1.40 2.34 2.16 

Feet and ears, kg 10.04 9.54 6.36 7.50 8.42 8.04 
Trim, kg 4.42 2.40 2.42 2.24 1.90 2.06 

Total Offal, kg 106.39 96.97 63.90 70.73 79.76 77.70 

Empty Body, kg 299.74 284.68 183.58 175.12 224.87 205. l 3 

Digesta Mass, kg (As is) 
Reticule-rumen 30.32 41.40 47.60 48.78 60.04 53.64 

Reticule-rumen (DM) 3.89 5.00 5.46 4.93 8.27 4.54 

Omasurn 4.84 3.68 4.88 4.92 7.72 5.34 

Abomasum 1.80 1.08 1.24 1.32 1.96 · 2.52 

Small intestine 4.60 4.24 3.82 3.04 4.30 3.14 

Large intestine 0.78 2.10 1.30 1.76 0.32 2.40 

Cecum 0.24 I 50 0.92 1.14 1.34 1.14 

Total Digesta 42.58 54.00 59.76 60.96 75.68 68.18 
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Table A.3. Steer organ and digesta mass at final harvest, Exp. 1 

Item High Gain Wheat 
Steer ID G36 G39 G48 G49 G72 G73 
Harvest Date 7/5/00 7/5/00 7/5/00 7/5/00 7/5/00 7/5/00 
LiveBW, kg 580.21 577.49 603.37 555.24 584.75 572.49 
Hide, kg 33.05 38.30 38.15 34.35 40.60 42.55 
Hot carcass, kg 333.69 345.95 348.22 341.41 326.43 338.68 
Blood, kg 15.10 19.15 15.35 18.55 13.85 16.70 
Head, kg 16.25 16.00 15.95 15.20 15.50 15.35 
Heart, kg 2.04 2.50 2.44 2.52 2.02 2.16 
Lung,kg 7.95 8.40 7.30 7.20 7.30 5.15 
Liver. kg 8.15 8.95 8.04 8.40 7.35 7.25 
Pancreas, kg 0.32 0.50 0.52 0.46 0.50 0.48 
Spleen. kg 1.02 0.84 1.08 1.10 1.02 1.14 
Kidney, kg 1.08 1.12 1.22 1. 16 1.08 1.04 
Reticulo-rumen, kg 13.25 l l.80 12.95 11.85 12.70 11.70 
Omasum, kg 5.60 6.05 3.42 4.44 5.00 4.35 
Abomasum, kg 1.55 1.76 l.56 l.86 1.60 1.50 
Small intestine, kg 6.85 7.55 6.65 7.15 7.40 6.80 
Large intestine, kg 5.30 5.65 4.95 6.10 5.05 4.05 
Cecum, kg 0.45 0.90 0.85 0.90 0.85 0.60 
Mesenteric fat, kg 19.70 20.95 22.80 21.30 18.95 15.15 
Feet and ears, kg 11.20 12.00 12.95 12.40 12.15 11.45 
Trim, kg 7.20 7.45 11.45 4.65 5.70 7.75 
Total Offal, kg 156.06 169.87 167.63 159.59 158.62 155.'l 7 
Empty Body, kg 531.61 530.79 534.57 518. 79 525.55 512.29 

Digesta Mass, kg (As is) 
Reticulo-rumen 43.80 36.40 60.05 27.50 50.20 54.15 
Reticulo-rumen (DM) 15.26 13.64 24.29 6.69 18.02 20.29 
Omasum 0.20 1.60 0.50 0.95 0.55 0.15 
Abomasum 1.35 1.90 2.55 2.15 0.95 2.75 
Small intestine 2.65 4.35 4.lO 3.70 5.05 2.05 
Large intestine 0.35 0.75 0.20 1.15 1.20 0.00 
Cecum 0.25 1.70 1.40 1.00 1.25 1.10 
Total Digesta 48.60 46.70 68.80 36.45 59.20 60.20 
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Table A.3. Continued 

Item Low Gain Wheat 

Steer ID Y60 Y64 Y66 Y73 Y95 Y98 
Harvest Date 8/9/00 8/9/00 8/9/00 8/9/00 8/9/00 8/9/00 
Live BW, kg 551.16 569.32 542.98 552.97 551.61 564.78 
Hide, kg 34.28 36.76 33.74 42.06 39.50 24.70 
Hot carcass, kg 317.57 330. 51 304.18 320.98 306.45 323.70 
Blood, kg 16.70 15.36 11.38 18.02 13.70 14.56 
Head, kg 15.12 15.92 15.88 18.06 14.44 14.50 
Heart, kg 2.44 1.92 2.13 2.64 2.10 2.22 
Lung, kg 8.02 8.02 6.98 7.06 7.32 7.24 
Liver, kg 7.16 7.29 6.90 8.06 7.17 7.35 
Pancreas, kg 0.58 0.51 0.46 0.39 0.37 0.49 
Spleen, kg 0.87 1.94 1.32 1.23 1.07 0.96 
Kidney, kg 0.95 0.93 0.93 1.03 1.06 1.03 
Reticule-rumen, kg 13.72 12.42 12.68 11.14 11.24 10.46 
Omasum, kg 5.70 3.24 5.06 6.74 4.42 4.10 
Abomasum, kg 3.46 1.78 1.66 1.66 1.48 1.46 
Small intestine, kg 6.80 6.26 5.38 7.20 6.86 6.42 
Large intestine; kg 5.92 6.12 5.02 5.12 5.12 5.04 
Cecum, kg 0.50 0.92 0.68 0.86 0.80 0.94 
Mesenteric fat, kg 15.92 19.36 12.58 10.72 16.51 11.42 
Feet and ears, kg 11. 76 11.00 12.52 12.46 12.36 10.98 
Trim, kg 8.54 5.32 7.52 10.16 8.26 8.34 
Total Offal, kg 158.44 155.07 142.82 164.61 153.78 132.21 
Empty Body, kg 490.46 507.84 491.58 507.55 503.47 503.78 

Digesta Mass, kg (As is) 
Reticule-rumen 52.22 52.38 44.00 39.16 42.08 52.86 
Reticule-rumen (DM) 20.19 15 .15 15.49 14.68 14.65 21.97 
Omasum 1.24 0.36 1.06 0.52 0.56 0.86 
Abomasum 2.86 2.78 2.82 0.98 0.86 0.54 
Small intestine 2.74 3.90 2.90 3.20 1.88 4.16 
Large intestine 0.76 1.56 0.04 0.06 1.34 0.38 
Cecum 0.88 0.50 0.58 I.SO 1.42 2.20 
Total Digesta 60.70 61.48 51.40 45.42 48.14 61.00 
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Table A.3. Continued 

Item Native Range 
Steer ID Or84 Or85 Or89 Or90 Or93 Or96 
Harvest Date 9/19/00 9/19/00 9/19/00 9/19/00 9/19/00 9/19/00 
Live BW, kg 582.03 572.95 546.16 559.78 581.12 643.32 
Hide, kg 45.04 34.22 39.20 37.28 38.32 46.34 
Hot carcass, kg 320.98 335.05 309.17 331 .65 354.12 373.64 
Blood, kg 16.02 16.62 14.12 12.96 16.38 18.18 
Head, kg 16.04 16.84 14.52 15.24 15.96 17.74 
Heart, kg 2.04 2.09 2.15 2.58 2.60 2.14 
Lung, kg 8.10 6.84 8.74 6.74 8.02 6.58 
Liver, kg 7.09 7.13 6.86 8.76 8.26 8.99 
Pancreas, kg 0.44 0.56 0.63 0.53 0.52 0.52 
Spleen, kg 0.99 0.97 1.01 l.85 0.84 1.01 
Kidney, kg 0.97 0.98 1.00 1.05 0.90 1.02 
Reticule-rumen, kg 11.54 11.82 10.96 10.40 11.10 12.64 
Omasum, kg 7.64 4.50 5.16 4.98 5.06 6.48 
Abomasum, kg 1.32 l.50 1.48 1.42 1.46 1.34 
Small intestine, kg 6.06 7.82 7.12 6.54 6.58 6.74 
Large intestine, kg 4.08 4.74 5.70 4.74 5.48 5.22 
Cecum, kg 0.84 0.92 1.04 1.02 0.80 0.92 
Mesenteric fat, kg 19.82 15.46 16.48 16. 14 22.48 20.82 
Feet and ears, kg 12.94 10.92 11.26 12.40 11.44 1 I .82 
Trim, kg 7.10 8.30 13.72 7.90 7.30 9.12 
Total Offal, kg 168.07 152.23 161.15 152.53 163.50 177.62 
Empty Body, kg 519.61 516.61 499.22, 509.90 542.22 579.28 

Digesta Mass, kg (As is) 
Reticulo-rumen 52.62 48.66 38.34 42.96 34.16 57.62 
Reticulo-rumen (DM) 18.14 13.58 13.43 15.40 1 I .47 20.16 
Omasum 1.48 1.52 1.18 0.46 0.48 1.20 
Abomasum 1.86 2.30 0.98 1.80 1.18 2.42 
Small intestine 3.92 3.46 3.36 3.36 2.00 2.06 
Large intestine 0.68 0.22 1.32 0.52 0.60 0.12 
Cecum 1.86 0.18 1.76 0.78 0.48 0.62 
Total Digesta 62.42 56.34 46.94 49.88 38.90 64.04 
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Table A.4. Steer organ and digesta mass at final harvest, Exp. 2 

Item High Gain Wheat 
Steer ID G29 G25 G28 G32 G30 G35 
Harvest Date 8/7/01 8/7/01 8/7/01 8/7/01 8/7/01 8/7/01 
Live BW, kg 551.61 531.18 585.66 524.37 576.58 576.58 
Hot Carcass, kg 336.41 308.27 332.78 304.18 330.06 330.97 
Hide, kg 36.15 33.10 41.30 37.15 38.90 40.65 
Blood, kg 13.05 15.30 7.85 19.15 14.15 13.55 
Head, kg 15.95 15.80 16.80 15.35 15.50 16.35 
Heart, kg 2.42 2.04 2.87 2.21 2.40 2.60 
Lung,kg 6.20 6.50 5.99 6.89 7.83 6.20 
Liver, kg 7.98 7.16 7.82 7.50 8.06 7.18 
Pancreas, kg 0.43 0.40 0.53 0.48 0.72 0.54 
Spleen, kg 0.85 0.86 1.12 1.08 0.88 0.98 
Kidney, kg 1.12 1.22 1.08 1.08 1.12 1.15 
Reticulo-rumen, kg 12.05 13.40 15.15 14.40 18.00 13.65 
Omasum, kg 4.50 4.60 5.60 4.55 4.30 5.75 
Abomasum, kg 1.85 1.60 2.05 1.85 1.65 1.70 
Small intestine, kg 5.91 6.69 6.15 6.64 6.86 5.40 
Large intestine, kg 4.60 3.95 4.30 4.10 3.95 3.30 
Cecum, kg 0.95 0.80 0.85 0.80 0.80 0.65 
Mesenteric fat, kg 18.80 10.80 16.65 16.70 16.60 16.95 
Feet and ears, kg 12.00 11.60 13.35 11.50 12.10 11.75 
Trim, kg 6.15 8.00 9.53 7.11 8.55 7.10 
Total Offal, kg 150.96 143.82 158.99 158.54 162.37 155.45 
Empty Body, kg 503.81 483.78 537.56 492.02 528.17 528.13 

Digesta Mass, kg (As is) 
Reticulo-rumen 37.00 39.85 39.50 26.85 40.26 39.60 
Reticulo-rumen (DM) 7.65 7.75 6.85 5.03 8.16 8.07 
Omasum 2.95 2.05 2.25 1.00 2.60 2.20 
Abomasum l.80 lost 1.80 0.55 1.00 0.90 
Small intestine 4.25 3.35 3.10 2.75 2.90 3.50 
Large intestine 0.75 0.75 0.70 0.75 0.70 1.20 
Cecum 1.05 1.40 0.75 0.45 0.95 1.05 
Total Digesta 47.80 47.40 48.10 32.35 48.41 48.45 
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Table A.4. Continued 

Item Low Gain Wheat 
Steer ID Y39 Y41 Y37 Y34 Y35 Y36 
Harvest Date 9/4/01 9/4/01 9/4/01 9/4/01 9/4/01 9/4/01 
LiveBW, kg 558.42 515.29 572.04 494.86 522.10 551.61 
Hot Carcass, kg 322.79 293.74 332.78 291.47 309.17 332.78 
Hide, kg 39.70 35.86 36.30 36.98 33.40 36.54 
Blood, kg 14.50 18.76 15.72 13.48 13.42 11.94 
Head, kg 15.80 15.92 16.18 15.60 15.52 15.12 
Heart, kg 2.59 . 2.16 2.42 4.54 2.14 1.97 
Lung, kg 6.68 6.76 6.60 13.30 6.24 5.94 
Liver, kg 8.32 7.39 7.35 7.48 6.19 8.38 
Pancreas, kg 0.50 0.44 0.39 0.50 0.40 0.54 
Spleen, kg 0.88 0.86 0.89 2.04 0.83 0.81 
Kidney, kg 1.09 1.00 1.10 2.18 1.01 0.94 
Reticulo-rumen, kg 15.64 13.94 16.48 14.60 15.54 14.48 
Omasum, kg 4.88 4.86 4.46 6.16 4.00 5.04 
Abomasum, kg l.76 1.60 2.50 1.42 1.74 1.68 
Small intestine, kg 5.55 5.50 6.19 5.53 4.68 5.82 
Large intestine, kg 4.10 4.30 4.76 3.20 3.76 5.14 
Cecum, kg 0.98 0.48 0.84 0.60 0.58 0.66 
Mesenteric fat, kg 20.72 17.40 22.50 16.80 16.38 19.78 
Feet and ears, kg 11.96 12.00 13.04 11.20 11.54 12.14 
Trim, kg 6.60 l.54 6.82 7.68 7.16 6.68 
Total Offal, kg 162.25 150.77 164.54 163.29 144.53 153.60 
Empty Body, kg 517.60 473.63 526.18 460.54 490.25 514.97 

Digest a Mass, kg ( As is) 
Reticulo-rumen 33.72 36.62 40.86 30.52 27.35 30.56 
Reticulo-rumen (DM) 6.32 7.49 5.01 5.14 4.86 5.40 
Omasum 0.78 0.22 0.40 0.40 0.98 1.42 
Abomasum 0.46 0.12 0.96 0.42 0.38 1.14 
Small intestine 4.96 3.52 2.18 l.74 2.20 2.80 
Large intestine 0.00 0.54 0.22 0.44 0.36 0.28 
Cecum ~ 0.90 0.64 1.24 0.80 0.58 0.44 
Total Digesta 40.82 41.66 45.86 34.32 31.85 36.64 
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Table A.4. Continued 

Item Native Range 
Steer ID Or12 Or9 Or4 Orl 1 Or8 Or3 
Harvest Date 10/23/01 10/23/01 10/23/01 10/23/01 10/23/01 10/23/01 
LiveBW, kg 601.55 592.47 501.67 519.83 572.04 569.77 
Hot Carcass, kg 355.48 340.50 296.46 304.18 339.59 340.50 
Hide, kg 38.64 39.52 33.98 38.52 32.06 38.06 
Blood, kg 6.26 6.74 16.28 14.54 8.40 15.06 
Head, kg 17.00 16.38 14.78 14.52 16.60 18.26 
Heart, kg 2.97 2.94 2.02 2.30 2.65 2.41 
Lung, kg 8.07 · 8.14 7.07 6.48 7.68 6.97 
Liver, kg 9.10 7.77 7.65 8.02 8.60 7.69 
Pancreas, kg 0.78 0.62 0.45 0.55 0.60 0.58 
Spleen, kg 0.98 0.99 1.02 1.04 1.04 1.33 
Kidney, kg 1.19 1.1 l 1.22 1.13 1.35 1.03 
Reticulo-rumen, kg 15.22 14.30 12.54 12.77 14.94 17.64 
Omasum, kg 7.38 5.84 5.68 5.10 6;04 5.88 
Abomasum, kg 4.88 L78 1.56 2.14 2.28 1.96 
Small intestine, kg 5.63 6.47 5.31 6.02 7.69 6.52 
Large intestine, kg 3.78 2.92 2.12 4.84 3.68 4.86 
Cecum, kg 0.64 1.04 0.63 0.60 2.00 0.98 
Mesenteric fat, kg 19.04 23. l 0 15.82 20.52 19.10 19.46 
Feet and ears, kg l l.84 12.70 10.54 11.98 12.92 13.26 
Trim, kg 9.06' 6.68 5.74 6.88 6.94 7.38 
Total Offal, kg 162.46 159.04 144.41 157.95 154.57 169.33 
Empty Body, kg 547.85 541.53 464.47 487.77 529.74 534.63 

Digesta Mass, kg (As is) 
Reticulo-rumen 43.04 41.16 30.38 27.52 35.02 30.78 
Reticulo-rumen (DM) 6.99 6.84 5.66 5.15 6.69 5.59 
Omasum 1.02 2.12 0.78 1.36 2.92 0.78 
Abomasum 5.24 1.04 1.12 1.08 0.42 1.44 
Small intestine 2.42 4.98 4.20 1.72 3.94 1.28 
Large intestine 0.34 0.32 0.04 0.00 0.00 0.10 
Cecum l.64 1.32 0.68 0.38 0.00 0.76 
Total Digesta 53.70 50.94 37.20 32.06 42.30 35.14 
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