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CHAPTERl 

INTRODUCTION 

The principal objective of this research is to develop gradient-based algorithms for training general 

dynamic neural networks. There are three main steps in this development. 

The first step is to define a general framework that can be used to represent a large class of dynamic 

neural networks. Chapter 2 describes such a framework: the Layered Digital Dynamic Network {LDDN). We 

show that many popular dynamic networks can be represented by the LDDN framework. 

The second step is to derive general procedures for computing the gradients for the LDDN. The basic 

concepts that are used for gradient-based optimization are introduced in Chapter 3. Then Chapters 4 and 5 

present the key results of this research: two different algorithms for computing gradients and two different 

algorithms for computing Jacobians for the LDDN. Chapter 4 develops the general Forward Perturbation (FP) 

algorithms, and Chapter 5 develops the general backpropagation-through-time (BTT) algorithms. 

The third step is the development of gradient-based optimization algorithms that are well suited for 

dynamic network training. Chapter 6 analyzes the error surfaces for some simple dynamic networks and 

presents a newly discovered feature of these error surfaces: spurious narrow valleys that can trap optimization 

algorithms. Based on the analysis of these spurious valleys, Chapter 6 presents modified training algorithms 

that show improved performance on dynamic networks. 

Chapter 7 describes two applications of dynamic network training related to Model Reference 

Control and Nonlinear Filtering. The control application is solved using the FP algorithm. The nonlinear 

filtering application is solved using the BTT algorithm. 
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Chapter 8 presents memory, speed and computational complexity comparisons for the FP and BTT 

algorithms using 33 different neural networks. Some of these neural networks came from the literature, and 

others were created for testing purposes. 

Finally, Chapter 9 provides a summary of the key results and some directions for future research. 
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Chapter2 

LAYERED DIGITAL DYNAMIC NEURAL NETWORK 

Neural networks can be classified into dynamic and static categories. Static (feedforward) networks 

have no feedback elements and contain no delays; the output is calculated directly from the input through 

feedforward connections. In dynamic networks the output depends not only on the current input to the 

network, but also on the current or previous inputs, outputs or states of the network. This includes feedforward 

neural networks with delays between layers. In this research we are concerned with the training of general 

dynamic networks. 

In order to develop training algorithms that will be suitable for a general class of dynamic network, 

we first need to find a general framework. In this chapter we introduce the Layered Digital Dynamic Network 

(LDDN). We will show how this framework is able to encompass many previously published dynamic 

architectures. 

2.1. Neural Networks. 

Biological neural networks allow the interaction between you and me. Not only do they facilitate my 

writing skills throughout this document and your ability to understand my ideas but they also allow important 

neurological functions. Each one of us have about 1011 highly interconnected neurons, where each 

interaction is based on tissue, chemical and electrical connections. The biological neural networks inspired 

simulation using artificial models. This document will consider a class of neural networks called artificial 

dynamic neural networks. 

Early work on Neural Networks occurred between late 19th and early 20th centuries. Theories of 

learning, vision, conditioning, etc. were developed by Hermann von Helmholtz, Ernst Mach, Ivan Parlov and 

others. McCulloch and Pitts c3o1 showed that artificial neural networks could c~mpute any arithmetic or 
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logical function in the early 1940s. Later, Hebb [22l proposed the first learning rules based on neuron behavior 

at the cellular level. Rosenblatt [4 ll proposed the perceptron network and its associated learning rule in the 

late 1950s. Unfortunately, the perceptron was only able to solve a limited class of problems. In 1960 the 

Widrow-Hoff learning rule was introduced to train adaptive linear neural networks (521. The previous neural 

networks were very limited in their implementations and applications. Those limitations were presented in 

the Minsky and Papert book [321, resulting in a slow down in neural network research, except for work due to 

Kohonen r251 and Anderson [ll on neural networks as memories, and Grossberg [l 3l on self-organizing 

networks. 

Two developments precipitated an explosion in research involving theoretical and practical 

applications of neural networks. The first was the introduction of Hopfield networks (231, a class of recurrent 

neural networks that can be used as associative memories. The second was the development of the 

backpropagation algorithm (421 for training multilayer networks. Two important results related to the training 

ofrecurrent neural networks are the Backpropagation Through Time algorithm [5 ll and the Forward 

Perturbation algorithm (541_ These two algorithms will be discussed in detail in later chapters. 

2.2. Dynamic Neural Network Architectures. 

We will begin this section by reviewing a number of dynamic network architectures that have been 

proposed in the literature. Then we will present a general class of dynamic network that includes most 

previous networks as subclasses. This general class of network (called the Layered Digital Dynamic 

Network) will enable us to develop general purpose training algorithms for dynamic networks. 

Tsai (431 described several architectures enabling the configuration ofrecurrent neural networks and 

explained how each architecture helps the gradient evaluation. The Williams-Zipser architecture (541 

classifies neurons as input neurons, output neurons, hidden neurons or a combination of input and output. The 

connection between neurons is an adjustable time delay. The Time Delay Neural Network [491 is a multilayer 

feedforward neural network where tap delay lines can be connected to the outputs of input neurons, hidden 

neurons and/or output neurons. The Canonical Form Network [26• 361 consists of a feedforward neural network 

where the outputs are delayed using a tap delay line with d delays as shown in Figure 2.1. 
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y(t) 

u(t) 

Constant 
Weights 

Delays 

Figure 2.1: Canonical form networks as introduced by Nerrand et aiJ361 

Narendra et al. C35, 34l proposed six different architectures based on the autoregressive moving 

average (ARMA) model C4l _ The first four models are described by the following nonlinear difference 

equations C35l: 

Model l: 

n-1 

yp<k+l) = z:aiy/k-i)+g[u(k),u(k-1), ... ,u(k-m+l)] 

i=O 

Model II: 

m-1 

Yp(k+l) =f'[ypCk),Yp(k-1), ... ,yp<k-n+l)]+ L ~;u(k-i) 

i= 0 

Model III: 

ypCk + 1) = f'[ypCk), Yp(k- 1), ... , ypCk-n + l)] + g[u(k), u(k- 1), ... , u(k-m + l)] 

Model IV: 

Yp(k + 1) = fiyp(k), Yp(k-1), ... , ypCk-n + 1), u(k), u(k- 1), ... , u(k-m + 1)] 

where [u(k), Yp(k)] represents the input-output of the model andf and g represent feedforward neural 

networks. The last two models facilitate neural network adaptive control c34l: 

Narma-Ll Model: 

Yp(k + d) = fiyp(k), ypCk- 1), ... , ypCk-n + 1 )] 

m-l 

+ L g;[Yp(k), Yp(k- 1), ... , Yp(k-n + 1)] · u(k- i) 

i=O 
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Narma-L2 Model: 

Yp(k+d) = fT.ypCk),yP(k-1), ... ,yp(k-n+ 1), u(k-1), ... , u(k-n+ l)] 

+ g0 [yp(k), Yp(k-1 ), ... , ypCk-n + 1), u(k- 1), ... , u(k- n + 1)] · u(k) 
(2.6) 

Eachf and g represent neural networks. Models like the NARMA-L2 allow the configuration of 

neurocontrollers. The plant is identified using Eq. (2.6) and solvingfor u(k) we obtain: 

u(k) = Y_.p'"""(_k _+_d_) _-JT._y Fc....(_k_),_Y Pc....(_k_-_1_),_._ .. _, Y-"-p_(k_-_n_+_l_),_u_(k_-_1 )_, _· ._.,_u_(k_-_n _+_1_)] 
g0 [yp(k), ypCk- 1 ), ... , Yp(k- n + 1), u(,k- 1), ... , u(k- n + 1)] 

(2.7) 

Frasconi et al. [l ?J proposed an architecture where a feedforward neural network has a simple local 

feedback loop around each hidden layer. A more complex model called the Fully Connected Hidden Layer 

Recurrent Neural Network was proposed by Elman ll4J and Mills et al. l3 IJ where we have single delays 

between all layers. 

The Finite Impulse Response (FIR) Neural Network [SO, 3J replaces each network synaptic weight by 

an FIR filter: 

y(t) = L W;X(t-i) (2.8) 

i = l 

where x(t) is the input to the filter, y(t) is the output of the filter and nb is the filter order. 

The Gamma Network [l3, 39, 33• 24• 4oJ replaced the inputs to the hidden layers by gamma filters: 

Y;, 0(t) = u(t) 

Y;, k(t) = (1- µ;)Y;, it-1) + µ;Y;, k- 1 (t- 1) 
(2.9) 

where i = 1, ... , N, k = 1, ... , K and t = 1, ... , tf" N is the dimension of the input signal u(t), K is the order of 

the memory structure and µ/ s are the parameters of the memory banks. Figure 2.2 shows a Gamma Network 

where only one memory bank is shown in detail. Each memory consists of a tapped delay line with a local 

recurrent connection. 
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u(t) 
G(z) 

Y;, oU) 
G(z) 

Figure 2.2: The discrete Gamma Network. 

Another representation is the Infinite Impulse Response (IIR) Network [3, 371 where the weights are 

replaced by Infinite Impulse Response (IIR) filters. The direct form of an IIR filter is: 

M 

z: b;q-i 

y(t) = -'-i =~~-- u(t) (2.10) 

or 

y(t) = a 1y(t-1) + a2y(t-2) + ... + aNy(t-N) + b 1u(t- l) + b2u(t-2) + ... + bMu(t-M) (2.11) 

where a;, i = 1, ... , N and b;, i = 1, ... , M are the weight parameters for the IIR filter for the layer and M 

and N are the filter orders. 

Now that we have reviewed some typical dynamic networks, we next want to introduce a very 

general class of dynamic network. The Layered Digital Dynamic Network (LDDN) is a general neural 

network architecture able to represent all the previous specific architectures presented by different 

researchers. Each of the previous dynamic architectures has its own training algorithm; we will present 

general algorithms able to train arbitrary LDDNs. The LDDN is a generalization of the Layered Feedforward 

Network (LFFN), which has been modified to include feedback connections and delays. We begin here with 

a description of the LFFN, and then show how it can be generalized to obtain the LDDN. 
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2.3. Layered Feedforward Network. 

Figure 2.3 is an example of a layered feedforward network (two layers in this case). (See [l2l for a 

full description of the notation used here.) The input vector to the network is represented by p1 , which has 

R1 elements. The superscript represents the input number, since it is possible to have more than one input 

vector. The input is connected to Layer 1 through the input weight IW1' 1 , where the first superscript 

represents the layer number and the second superscript represents the input number. The bias for the first layer 

is represented by b 1 • The net input to Layer 1 is denoted by n 1 , and is computed as 

I IWl,l I bl n = p + (2.12) 

The output of Layer 1, a 1 , is computed by passing the net input through a transfer function, according to 

a 1 = f 1 (n 1) • The output has S1 elements. The output of the first layer is input to the second layer through 

the layer weight L W2' 1 , where the first superscript represents the destination layer number and the second 

superscript represents the source layer number. The overall output of the network is labeled y . This is 

typically chosen to be the output of the last layer in the network, as it is in Figure 2.3, although it could be the 

output of any layer in the network. Similarly, we could connect any input to any layer. 

Layer1 Layer2 
\ ( \ 

R1 Xl 
IW1.1 

S1xl 
LW2.1 

S1xR + Ill 
f1 . sixs1 + 

1~ 

s 1 xl 

1~ 

a2 =y 
six 1 

f2 

RI s 1 xl S' six l 
\..::_) \, ) \, sz) 

a1 = f1 (IW1.1p1 +bi) a2 =f2 (LW2,1a1+b2) 

Figure 2.3: Example of a Layered Feedforward Network 

Each layer in the LFFN is made up of: 

1) a set of weight matrices that come into that layer (which may connect from other layers or from 

external inputs), 

2) a bias vector, 
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3) a summing junction and 

4) a transfer function. 

In the example given in Figure 2.3, there is only one weight matrix associated with each layer, but 

it is possible to have weight matrices that are connected from several different input vectors and layer outputs. 

This will become clear when we introduce the LDDN network. Also, the example in Figure 2.3 has only two 

layers, our general LFFN can have an arbitrary number of layers. The layers do not have to be connected in 

sequence from Layer l to Layer M. For example, Layer l could be connected to both Layer 3 and Layer 4, 

by weights L W3' 1 and L W4' 1 , respectively. Although the layers do not have to be connected in a linear 

sequence by layer number, it must be possible to compute the output of the network by a simple sequence of 

calculations. Due to the nature of the LFFN there cannot be any feedback loops in the network or feedforward 

delays. The order in which the individual layer outputs must be computed in order to obtain the correct 

network output is called the simulation order. 

2.4. Layered Digital Dynamic Network. 

We now introduce a class of dynamic networks that are based on the LFFN. The LFFN is a static 

network, in the sense that the network output can be computed directly from the network input, without the 

knowledge of initial network states. A Layered Digital Dynamic Network (LDDN) can contain feedback 

loops and time delays. The network response is a function of network inputs, as well as initial network states. 

The components of the LDDN are the same as those of the LFFN, with the addition of the tapped 

delay line (TDL), which is shown in Figure 2.4. The output of the TD,L is a vector containing current and/or 

previous values of the TDL input. In Figure 2.4 we show two abbreviated representations for the TDL. In the 

case on the left, the undelayed value of the input variable is included in the output vector. In the case on the 

right, only delayed values of the input are included in the output. 
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a(t) 

a(t-1) 

a(t-d) 

Abbreviated Notation 

Undelayed Value 
Included 

a(t) x(t) 

Sxl S(d+l)xl 

d 

Undelayed Value 
Discarded 

x(t) 

Figure 2.4: Tapped Delay Line 

Figure 2.5 is an example of an LDDN. Like the LFFN, the LDDN is made up of layers. In addition 

to the weight matrices, bias, summing junction and transfer function, which make up the layers of the LFFN, 

the layers of the LDDN also include any tapped delay lines that appear at the input of a weight matrix, where 

any weight matrix in an LDDN can be proceeded by a tapped delay line. For example, Layer 1 of Figure 2.5 

contains the weight L W 1' 2 and the TDL at its input. The output of the TDL in Figure 2.5 is labeled a1' \t) . 

This indicates that it is a composite vector made up of delayed values of the output of Layer 2 and is an input 

to Layer 1. These TDL outputs are important variables in our training algorithm for the LDDN. Note that all 

of the layer outputs and net inputs in the LDDN are explicit functions of time. 
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Input 

r-'\ 
Layer1 Layer2 

r ' 

+1--...... 
1~. 

n2(t) 
f2 

\...._ ________ ) 
Figure 2.5: Layered Digital Dynamic Network Example 

y(t) 

a2(t) 

In the LDDN, feedback as well as feedforward delays are added to an LFFN. Therefore, unlike the 

LFFN, the output of the network is a function not only of the weights, biases, and network input, but also of 

the outputs of some of the network layers at previous points in time. For this reason, it is not a simple matter 

to calculate the gradient of the network output with respect to the weights and biases ( which is needed to train 

the network). This is because the weights and biases have two different effects on the network output. The 

first is the direct effect, which can be calculated using the standard backpropagation algorithm [ZOJ. The 

second is an indirect effect, since some of the inputs to the network,· such as a 1' 2 ( t) , are also functions of the 

weights and biases. In the next section we briefly describe the gradient calculations for the LFFN, and show 

how they must be modified for the LDDN. The main development of the next three chapters is a general 

gradient calculation for arbitrary LDDN's. 

The LDDN architecture is very general and can be used to represent all of the dynamic networks that 

we reviewed at the beginning of this chapter. Appendix A demonstrates LDDN representations for several 

network types. 

In the next three chapters we will develop algorithms for computing the gradient of LDDN errors 

with respect to the weights of the network. These will be general algorithms, applicable to any LDDN 

network. The gradients computed by these algorithms will then be used by optimization procedures to train 

the networks. 
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Chapter 3 

DYNAMIC LEARNING 

In this chapter we will introduce the basic concepts required for training dynamic networks. We 

begin with a review of gradient-based optimization algorithms that can be used to train both static and 

dynamic networks. We then describe how gradients can be computed for static networks. Finally, we use a 

simple dynamic network structure, with one feedback loop and one delay, to demonstrate gradient 

calculations for dynamic networks. (These calculations will be generalized for the LDDN in Chapter 4 and 

Chapter 5.) 

3.1. Performance Optimization. 

Once a neural network architecture is defined, the objective is to train the network. The training 

generally modifies the weights and biases to obtain a network that produces a specific behavior. We have 

three types of training algorithms: unsupervised learning, reinforcement or graded learning and supervised 

learning. Unsupervised learning is based only on the inputs of the neural network. Reinforcement learning is 

based on a grade or score for neural network performance. Supervised learning uses a set of examples of 

network inputs Pq and corresponding targets tq [ZOJ. 

(3.1) 

This research will develop supervised learning algorithms for the LDDN. Due to the time 

dependencies of the LDDN, we will refer to the input-target sets as sequences. For static feedforward neural 

networks we can present data to the networks in batch form, where each input-target pair will be independent 

from other pairs. For dynamic systems, as we present the input sequence we must maintain the relative time 

position of each data point. 
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Supervised learning is based on the optimization of the performance of the neural network. A 

common pe,formance index is the sum squared error: 

(3.2) 

q = I q= I 

where x is the vector of network weights and biases, tq is the target vector, y q is the output vector when the 

qth input, Pq, is presented and eq = tq-Yq is the error. 

A second performance index is sum squared error with regularization: 

Fssereg(X) = aFss/X) + ( 1 - a) [xT. X] (3.3) 

which combines sum squared error and sum squared weights and biases. The ratio a is a value between O and 

I. 

The optimization of any of the performance indexes begins with an initial set of weights x0 and the 

iterative update of the weights for each training epoch k according to: 

(3.4) 

or 

(3.5) 

where the vector dk represents a search direction, and the positive scalar µk is the learning rate. The 

optimization algorithms will determine the search direction dk as well as the learning rate µk. 

3.1.1. Steepest Descent. 

Consider the first-order Taylor series expansion of any performance index F(x) around the guess 

(3.6) 

where gk is the gradient evaluated at the guess xk: 

(3.7) 

For minimization, F(xk+ 1) should be smaller than F(xk), so the second term on the right-hand side of Eq. 
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(3.6) must be negative: 

(3.8) 

We will select a positive learning rate µk, so g[dk < 0. The performance function will decrease fastest when 

g[ dk is most negative, which will occur when the search direction vector dk is the negative of the gradient: 

We can redefine Eq. (3.4) for the steepest descent method as: 

We have two methods to determine the learning rate µk for steepest descent: 

1.- Minimize F(x) along the line xk - µkgk for each iteration. 

(3.9) 

(3.10) 

2.- Use a fixed value (for example µk = 0.02) or use variable but predetermined values (for example 

µk = Ilk). 

3.1.2. Newton's Method. 

This method is based on the second-order Taylor series approximation r20l: 

(3.11) 

To locate the stationary point of the previous approximation we take its gradient with respect to t.xk : 

(3.12) 

and set it equal to zero. Solving for t.xk: 

(3.13) 

From the previous relation, we obtain Newton's Method: 

(3.14) 

The drawback of Newton's Method is the calculation and storage of the Hessian Matrix Ak, as well 

as its inverse. Two alternatives are the quasi-Newton methods and the one-step-secant methods. These 

methods replace A;;-1 with a positive definite matrix Hk, that is updated at each iteration without matrix 

inversion. 
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3.1.3. Conjugate Gradient. 

The calculation and storage of the second derivatives may impractical for the performance 

optimization of neural networks, especially for a large number of weights and biases. An alternative 

possibility that emulates a quadratic trajectory is conjugate directions [ZOJ_ 

For the quadratic performance function: 

(3.15) 

a set of vectors { dk} · is mutually conjugate with respect to a positive definite Hessian matrix A if and only if 

(3.16) 

For quadratic functions we have: 

VF(x) = Ax+b (3.17) 

2 
V F(x) = A (3.18) 

We can combine the previous equations to find the change in gradient for the iteration k + 1: 

(3.19) 

By combining Eq. (3.5) and the conjugate condition Eq. (3.16): 

h) (3.20) 

From the previous relation, the Hessian matrix is no longer needed. The conjugate conditions could 

be obtained recursively by starting the search in the steepest descent direction: 

(3.21) 

and updating the search direction by: 

(3.22) 

The most common choices to select the scalar value ~k are [43l: 

(3.23) 
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due to Hestenes and Steifel, 

(3.24) 

due to Fletcher and Reeves, and 

(3.25) 

due to Polak and Ribiere. 

3.1.4. Levenberg-Marquardt Algorithm. 

This algorithm is a variation of Newton's method based on the sum squared error (Eq. (3.2)) [21 , 201. 

From Eq. (3.14) Newton's method for optimizing a performance index F(x) is 

For a performance function like the sum squared error: 

N 

F(x) = L vr(x) = vT(x)v(x)' 

i = 1 

the jth element of the gradient is 

where 

[\7 F(x) l · = c/F(x) 
1 cixj 

N 
c/v;(X) 

= 2" V-(X)--. L. l ax. 
i = 1 J 

We can rewrite the gradient in matrix form: 

\7F(x) = 2F(x)v(x), 

c/v1(x) c/v 1(X) civ 1 (x) 

cix1 cix2 cixn 

civ2(x) civz(x) civ2(x) 

JT(x) = cix1 cix2 cixn 

civN(x) civN(x) civN(x) ----
cix 1 cix2 cixn 
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(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 



is the Jacobian matrix. The k, j term of the Hessian matrix would be 

N 2 
2 . _ a2F(X) _ {dv;(X)dv;(X) d v;(X)} 

[V F(x)lk,1 - -=,--a - 2" a a + V;(X) Cl Cl ' 
UX· X, £... Xk X, OX·UX· 

1 1 i=I J J J 

then we can represent the Hessian in matrix form: 

where 

2 
V F(x) = 2F(x)J(x) + 2S(x), 

N 
2 

S(x) = L v;(x)V v;(X) 

; = I 

Ifwe assume that S(x) is small, we can approximate the Hessian matrix as 

2 
V F(x) = 2F(x)J(x). 

By substitution of Eq. (3.34) and Eq. (3.29) into Eq. (3.26) we obtain the Gauss-Newton method: 

xk + 1 = xk- [2F(xk)J (xk)]-12F(xk)v(xk) 

= xk - [F(xk)J (xk)]-1 F(xk)v(xk) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

The advantage of the Gauss-Newton method over Newton's method (Eq. (3.14)) is that we only 

require the calculation of first derivatives. The drawback of the Gauss-Newton method is that the matrix 

H = JTJ may not have inverse. We can overcome this problem by using the approximation: 

G = H +µI, (3.36) 

The eigenvalues and eigenvectors of Hare {A.1, 11.2, ... , "-n} and {z1, z2, ... , zn}, so we have: 

Gz; = [H + µl]z; = Hz;+ µz; = A;Z; + µz; = ("-; + µ)z;, (3.37) 

meaning that G and H have the same eigenvectors, and the eigenvalues of Gare (A;+µ). We can increase µ 

until ("-; + µ) > 0 for all i, allowing us to invert the matrix G. 

The G approximation leads to the Levenberg-Marquardt algorithm [43• 21 • 201: 

(3.38) 
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or 

(3.39) 

This algorithm approximates the steepest descent algorithm for large µk and approximates the Gauss-Newton 

method for small µk. 

3.2. Gradient Calculations for Static Networks. 

In order to use the optimization algorithms described in the previous section, we need to be able to 

compute the gradients of the performance index with respect to the weights and biases. In this section we will 

demonstrate the gradient calculations for static networks. 

Consider again the multilayer network of Figure 2.3 on page 8. The basic simulation equation of 

such a network is 

ak = t(L1wk,ipi+LLWk,jaj+bkJ, (3.40) 

l J 

where k is incremented through the simulation order. This is the order that will make the necessary inputs at 

each layer available, as will be discussed later. The summation over i represents the inputs connected to layer 

k and the summation over j represents the layers connected to layer k. 

We want to compute the gradient of the sum squared error performance index: 

Q Q 
T 

F(x) = L (tq-Yq) (tq-Yq) (3.41) 

q = I 

The gradient of the sum squared error is the sum of the gradients of each individual squared error [20l: 

(3.42) 

so we will consider these terms individually. We want to compute the terms 

(3.43) 

Define 

k dF 
S-=-

1 k 
dn; 

(3.44) 
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as the sensitivity of the performance index to changes in the net input of unit i in layer k. Using the chain rule, 

we can show that 

aF oF on7' m I oF oF an~ m I oF oF an~ "' =~x--=s-p.,--=~x--=s.a.,~=~x~=s. 
oiw'!'·.1 anm oiw"'·.1 t 1 azwm'. 1 an'!' atw'!'·.' 1 1 ob'." anm ob'!' t 

l,J I l,J l,j l l,j l l l 

(3.45) 

It can also be shown that the sensitivities satisfy the following recurrence relation, in which mis incremented 

through the backpropagation order, which is the reverse of the simulation order: 

(3.46) 

where 

.m m 
f (n 1 ) 0 0 

0 
.m m 
f (nz) · · · 0 

0 0 
(3.47) 

and 

(3.48) 

This recurrence relation is initialized at the output layer: 

(3.49) 

The overall algorithm now proceeds as follows: first, propagate the input forward using Eq. (3.40); 

next, propagate the sensitivities back using Eq. (3.49) and Eq. (3.46); and finally, compute the gradient using 

Eq. (3.45). 

3.3. Dynamic Training Principles. 

Now consider an LDDN, such as the one shown in Figure 2.5 on page 11. Suppose that we want to 

compute the same gradient, Eq. (3.43), that is computed by the standard backpropagation algorithm. The 

problem in this case is that when we try to find the equivalent ofEq. (3.45) we note that the weights and biases 

have two different effects on the network output. The first is the direct effect, which is accounted for by Eq. 
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(3.45). The second is an indirect effect, since some of the inputs to the network, such as a1' 2(t), are also 

functions of the weights and biases. To account for this indirect effect we must use dynamic backpropagation. 

To illustrate dynamic backpropagation [55• 56• 191, consider Figure 3 .1, which is a simple dynamic 

network. It consists of an LFFN with a single feedback loop added from the output of the network, which is 

connected to the input of the network through a single delay. In this figure the vector x represents all of the 

network parameters (weights and biases) and the vector a(t) represents the output of the LFFN at time step t. 

p(t) 
..... ------...... a(t) 

LFFN 

a(t) = NN(p(t),a(t-1),x) 

Figure 3.1: Simple dynamic network 

Now suppose that we want to minimize 

Q 

F(x) = L (t(t)-a(t){(t(t)-a(t)) (3.50) 

t = l 

In order to use gradient descent, we need to find the gradient of F with respect to the network parameters. 

There are two different approaches to this problem. They both use the chain rule, but are implemented in 

different ways: 

or 

Q 

aF = '°' [aa(t)JT X ae F 
ax L... ax aa(t) 

t = l 

ax 

Q e T " [a a(t)J x aF 
L... ax aa(t) 

I= I 

(3.51) 

(3.52) 

where the superscript e indicates an explicit derivative, not accounting for indirect effects through time. The 
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explicit derivatives can be obtained with the standard backpropagation algorithm, as inEq. (3.46) [201. To find 

the complete derivatives that are required in Eq. (3.51) and Eq. (3.52), we need the additional equations: 

aa(t) aea(t) aea(t) aa(t-1) ~-=~~+ x~~~ ax ax aa(t-1) ax 
(3.53) 

and 

aF aeF aea(t+l) aF ~-=~-+ x~~-
aa(t) aa(t) aa(t) aa(t + 1) 

(3.54) 

Eq. (3.51) and Eq. (3.53) make up the forward perturbation (FP) algorithm [541_ Note that the key 

term is 

(3.55) 

which must be propagated forward through time. 

Eq. (3.52) and Eq. (3.54) make up the backpropagation-through-time (BTT) algorithm [511. Here the 

key term is 

aF 
aa(t) 

which must be propagated backward through time. 

In general, the FP algorithm requires somewhat more computation than the BTT algorithm. 

(3.56) 

However, the BTT algorithm cannot be implemented in real-time, since the outputs must be computed for all 

time steps, and then the derivatives must be backpropagated back to the initial time point. The FP algorithm 

is well-suited for real-time implementation, since the derivatives can be calculated at each time step. 

3.4. Additional methods for dynamic gradient calculation. 

Additional dynamic gradient calculation methods had been proposed in the literature. Generally 

th~se methods are derived from the BP and the BTT algorithms. The Green's Function method [45, 21 is a 
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simplification of the FP algorithm. The idea is to obtain the gradient aF I ax for a sequence of Q terms based 

on the previously calculated gradient for Q-1 terms. Ifwe subtract both gradient values based on Eq. (3.51): 

aFI aFI [aa(Q)JT aeF 
ax Q - ax Q-1 = ~ xaa(Q) 

T 
= [aea(Q) + aea(Q) X aa(Q-1)] X aeF 

ax aa(Q-1) ax aa(Q) 

= [aea(Q)+ aea(Q) x(aea(Q-l)+aea(Q-l)x(aea(Q-2) 
ax aa(Q-1) ax aa(Q-2) ax 

(3.57) 
T 

aea(Q-2) ( (aea(2) aea(2) iJ"a(l)) )))] aeF + X ... X + X ... X 
aa(Q-3) ax aa(l) ax aa(Q) 

[
aea(Q) aea(Q) aea(Q-1) aea(Q) aea(Q-1) aea(Q-2) 

= ~~+ X + X x~~~ 

ax aa(Q-1) ax aa(Q-1) aa(Q-2) ax 

aea(Q) aea(Q-1) aea(2) aea(l)JT aeF 
+ ... +aa(Q-l)x aa(Q-2) x ... x aa(l) x~ xaa(Q) 

We can multiply inside the transpose term by: 

I - aea(Q) X ( aea(Q)-1-1 
- aacQ-1) aacQ-1Y 

we will obtain: 

aFI _aFI -[ aea(Q) (( aea(Q)0-l aea(Q) aea(Q-1) aea(Q-1) aea(Q-2) 
- - - X X + + X 
ax Q ax Q I aa(Q-1) aa(Q-1 ax ax aa(Q-2) ax 

- . · (3.58) 

+ ... +aea(Q-l)X ... Xaea(2)Xaea(l))]T X aeF 
aa(Q-2) aa(l) ax aa(Q) 

e e -1 
If we continue until I = a a(2) x (a a( 2)) : 

aa( 1) aa(l) 

aFI aFI _ [( aea(Q) aea(Q-1) aea(3) aea(2)) 
ax Q -ax Q-1 - aa(Q-l)X aa(Q-2) X ... X aa(2) X aa(l) 

X ((aea(2)rl X (aea(3)rl X ... X (aea(Q- l)rl X ( aea(Q) rl X aea(Q) 
aa(l) aa(2) aa(Q-2) aa(Q-1) ax (3.59) 

( aea(2))-l (aea(3))-l (aea(Q-1))-l aea(Q-1) 
+ X X ... X X -. 

aa(l) aa(2) aa(Q-2) oX 

+ ... + (aea(2))-l X aea(2) + aea(l))]T X aeF 
aa(l) ax ax aa(Q) 
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We could define: 

U(Q) = aea(Q) X aea(Q-1) X ••. X aea(3) X aea(2) 
aa(Q-1) aa(Q-2) aa(2) aa(l) 

(3.60) 
= aea(Q) xU(Q-1) 

aa(Q-1) 

( aea(2))-l (aea(3))-l (aea(Q-1))-I ( aea(Q)0-l aea(Q) 
S(Q) = -- X -- x ... x X x--

aa(l) aa(2) aa(Q-2) aa(Q-1 ax 

( aea(2))-l (aea(3))-l (aea(Q-1))-l aea(Q-1) + X X .•. X X --'-=------'-

aa (l) aa(2) aa(Q- 2) ax 

+ ... + (aea(2)')-l X aea(2) + aea(l) 
aa( 1)) ax ax 

(3.61) 

= (U(Q))-lxaea(Q)+S(Q-1) 
ax 

Finally we can update the gradient using: 

aFI = aFI + [U(Q) X S(Q)]Tx aeF 
axQ axQ-1 aa(Q) 

(3.62) 

The Fast Forward Propagation Method [46· 47• 21 calculates the gradient recursively, allowing an on

line version of the BTT method. Let us assume that we can rewrite Eq. (3.54) as: 

_E!_ = aae F x A(k) + b(k) 
aa(k) a( 1) 

(3.63) 

If we solve recursively: 

aF aeF aea(Q+l) ..,..;;w---: 
aa(Q) = aa(Q) + ~aa(Q+ 1) 

aF aeF aea(Q) aF 
---= + x~-
aa(Q-1) aa(Q-1) aa(Q-1) aa(Q) 

(3.64) 

aF aeF aea(3) aF -- = --+--x--
aa(2) aa(2) aa(2) aa(3) 

aF aeF aea(2) aF -- = --+--x--
aa(l) aa(l) aa(l) aa(2) 
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we have that: 

aF I aeF aea(2) ( aeF aea(3) ( ( aeF aea(Q) aeF JJJ 
aa(l) Q = aa(l) + aa(l) X aa(2) + aa(2) X ... aa(Q-1) + aa(Q- 1) X aa(Q) 

= aeF + aea(2) X aeF + ... + aea(2) X aea(3) X ... X aea(Q) X aeF (3.65) 
aa(l) aa(l) aa(2) aa(l) aa(2) aa(Q-1) aa(Q) 

aF I aea(2) aea(3) aea(Q) ae F 
= aa(l) Q-1 + aa(l) X aa(2) X ... X aa(Q-1) X aa(Q) 

For a generic time t=k we have: 

aF I -(aea(k)_j-l ( aeF (aea(k-1))-l ( 
aa(k) Q - aa(k-1)1 X - aa(k-1) + aa(k-2) X ••. 

X (- aeF + (aea(3)1-l X (- aeF + (aea(2)"1-l X (- aeF + aF 11JJ ) 
aa(3) aa(2)) aa(2) aa(l)) aa(l) aa(l) J ... 

( aea(k)_1-l aeF ( aea(k)J-l (aea(k-1)'\-l aeF 
=- aa(k-1)1 Xaa(k-1)- aa(k-1)1 X aa(k-2)) Xaa(k-2)-... (3.66) 

( aea(k) 0-l (ae a(k- 1 )j-l (aea(2))-l ae F 
- X X X -- X--

aa(k-1 aa(k-2) ... aa(l) aa(l) 

( aea(k)_\-1 (aea(k-l)')-1 (aea(2))-l. aF 
+ aa(k-1)1 x aa(k-2)) x ... x aa(l) xaa(l)IQ 

= b(k) +A(k) X _lf_l 
aa(l) Q 

where: 

b(k) _ -( aea(k) )-l aeF -( aea(k) )-I (aea(k-1)')-l aeF _ 
- aa(k-1) X aa(k-1) aa(k-1) X aa(k-2)) X aa(k-2) ... 

( aea(k)~-l (aea(k-1))-I (aea(2)j-l aeF 
- X X X -- X--

aa(k-1 aa(k-2) ... aa(l) aa(l) 
(3.67) 

= ( aea(k)_J-1 x(b(k-1)- aeF -1 
aa(k-1)-1 aa(k-1)1 

A(k) = ( aea(k) )-1 x(aea(k-1))-1 X ... x(aea(2))-l 
aa(k-1) aa(k-2) aa(l) 

= ( aea(k) )-1 xA(k-1) 
aa(k-1) 

(3.68) 

allowing us to create an expression similar to Eq. (3.63). We can rewrite Eq. (3.52) using the final result of 
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Eq. (3.66) as: 

Q e T 

L [a a(t)J x [b(t) + A(t) x _1f__ I J 
ax aa(l) Q 

t= I 

Q e T Q e T 

= L [a a(t)J X b(t) + L [a a(t)J X A(t) X _j£_ I 
ax ax aa(l) Q 

t = I t = I 

(3.69) 

The algorithm will work by solving recursively for _jf__l and _l!__I , using the final results ofEq. (3.65) 
aa(l) Q aa(k) Q 

through Eq. (3.68) and by substituting into Eq. (3.69). 

The Block Update method [44, 53• ZJ updates the gradient every N steps. This algorithm combines 

characteristics of the FP and BTT and is well suited for very long sequences. Assume that we computed the 

gradient for a time t=Q-N. The idea is to wait until the time t=Q to update the gradient again. The gradient 

update will be: 

G(Q) = aFI _ aFI 
ax Q ax Q-N 

(3.70) 

where the gradient update G(Q) is calculated assuming that the term aae F in Eq. (3.54) is zero fort~ Q-N. 
a(t) 

We can say that: 

G(Q) = Z(l, Q-N) +Z(Q-N + 1, Q) (3.71) 

where: 

(3.72) 

If we solve the second term in the summation of the previous equation for the interval 1 to Q-N: 

aF aea(2) aF -- = --x--
aa(l) aa(l) aa(2) 

aF aea(3) aF 
-- = --x--
aa(2) aa(2) aa(3) (3.73) 

aF aea(Q-N+ 1) aF ---= x-----
aa(Q-N) aa(Q-N) aa(Q-N+l) 
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we will obtain for a generic time t=k: 

oF oea(k+l) oea(k+2) oea(Q-N+l) oF 
oa(k) = oa(k) X oa(k+ 1) X ... X oa(Q-N) X oa(Q-N+ 1) • 

(3.74) 

This result implies that: 

Z(l,Q-N) = Q~N[oea(t)]T xaea(t+l)x~ea(t+2)x ... xaea(Q-N+l)x oF (3.75) 
L.., ox oa(t) oa(t+l) oa(Q-N) oa(Q-N+l) 

t = I 

If we define: 

(3.76) 

we have: 

oF 
Z(l, Q- N) = Q;( Q - N) X a_a_(_Q ___ N_+_l_) (3.77) 

Ifwe apply Eq. (3.54) for the interval t=Q-N+l to t=Q: 

oF oeF oea(Q) oF 
---= + x--
oa(Q-1) oa(Q-1) oa(Q-1) aa(Q) (3.78) 

oF oeF oea(Q-N + 2) oF 
---- = + x--,-_---
oa(Q-N+ 1) oa(Q-N+ 1) oa(Q-N+ 1) oa(Q-N+2) 

we will obtain for a generic time t=k: 

_jf_ = oeF +aea(k+l)x( oeF +aea(k+2)x( ... 
aa(k) aa(k) aa(k) aa(k+ 1) aa(k+ 1) 

( oeF oea(Q) oeF J 
... x aa(Q-l)+oa(Q-1/aa(Q) ... ) 

(3.79) 

oeF oea(k+l) oeF oea(k+l) oea(k+2) oeF 
=--+ X + X X + ... 

oa(k) aa(k) oa(k + 1) aa(k) oa(k + 1) oa(k + 2) 

aea(k+l) aea(k+2) oea(Q) c?F 
+ X X ... X X--

oa(k) oa(k+ 1) aa(Q-1) oa(Q) 
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We can rewrite Eq. (3.71) as: 

ifa(k+l) aea(k+2) aeF 
+ X X + ... 

aa(k) aa(k + 1) aa(k + 2) 

(3.80) 

aea(k+l) aea(k+2) aea(Q) aeF) 
... + aa(k) X aa(k+ 1) X ... X aa(Q-1/ aa(Q) 

where: 

aF aeF aea(Q-N+2) aeF 
----= + X + ... 
aa(Q-N+l) aa(Q-N+l) aa(Q-N+l) aa(Q-N+2) 

(3.81) 
aea(Q-N+2) a•a(Q-N+3) aea(Q) a•F 

+ X X ... X X--
aa(Q-N+l) aa(Q-N+2) aa(Q-1) aa(Q) 

We could define a new term: 

r(t,Q) = aeF +a•a(k+l)x aeF +aea(k+l)xaea(k+2)x aeF + ... 
aa(k) aa(k) aa(k+l) aa(k) aa(k+l) aa(k+2) 

(3.82) 
aea(k+l) aea(k+2) aea(Q) aeF 

... + X X ... X X--
aa(k) aa(k + l) aa(Q- 1) aa(Q) 

that will allow us to rewrite Eq. (3.80) as: 

Q 

G(Q) = 
ae T 

L [ :t)J xr(t,Q)+Qi(Q-N)xr(Q-N+l,Q) (3.83) 

t=Q-N+I 

where we can calculate recursively the term in Eq. (3.82) with: 

(3.84) 

Atiya and Parlos [ZJ demonstrated that the Forward Perturbation Method has the largest 

computational complexity O(N4), followed by Green's Function, Fast-Forward Propagation and Block 

Update Methods with computational complexity O(N3). The Backpropagation-Through-Time method has 

the smallest computational complexity O(N2) . Here N is the number of nodes in a fully recurrent network of 

the form 

x(k+ l) = j[Wx(k)] k = 0, ... , K - l (3.85) 
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where k is the time index. 

In section 8.3 we will review the computational complexity of the Forward Perturbation and 

Backpropagation-Through-Time Methods, based not only on the gradient calculation but also on the Jacobian 

calculation. After reviewing the test networks presented on Appendix D, we concluded that it is not 

appropriate to use the number of nodes in the network to determine computational complexity when using a 

variety of different network architectures. A better approach is to consider the total number of weights in the 

network. Therefore, for the computational complexity mentioned above, the Forward Perturbation Method 

has computational complexity O(N2) and the Backpropagation-Through-Time has computational 

complexity O(N) , where N is the number of weights and biases in the network. 

Appendix B describes how all of the methods described previously can be applied to a single layer 

neural network with one delay. Table 3.1 shows the floating point operations for that network. BTT is the 

method with the fewest floating points operations, followed by FP. The Fast Forward Propagation algorithm 

results in more than double the number of operations of the BTT or the FP methods. The Green's Function 

method also required more flops than BTT and FP. Those two methods are the only ones that required matrix 

inversion, producing ill-conditioning problems. Because these methods did not improve the number of flops, 

we will not consider them further in this dissertation. The Block Update method requires more flops than the 

BTT and the FP methods. However, this method could be useful for long sequences, where memory 

requirements could jeopardize the algorithm implementation. 

Table 3.1: Floating point operations for dynamic gradient calculations of Appendix B example. 

Method Additions Multiplications Divisions Flops 

Forward Perturbation 10 7 0 17 

Backpropagation-Through-Time 6 7 0 13 

Green's Function 10 13 4 27 

Fast Forward Propagation 14 21 3 38 

Block Update 10 10 0 20 
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3.5. Summary. 

In this chapter we have introduced the key concepts required for training recurrent networks. In 

particular, we have discussed two important algorithms for computing gradients for dynamic networks: the 

Forward Perturbation algorithm and Backpropagation Through Time. In the next two chapters we will 

generalize these two algorithms for the computation of gradients for arbitrary LDDNs, and we will extend the 

algorithms for Jacobian calculations as well. 
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Chapter 4 

FORWARD PERTURBATION 

In this section we will generalize the Forward Perturbation (FP) algorithm, given in Eq. (3.51) and 

Eq. (3.53), for LDDN networks [9J_ We will begin with some preliminary definitions. 

4.1. Preliminaries 

To explain the algorithms, we must create certain definitions related to the LDDN. We do that in the 

following paragraphs. 

First, as we stated earlier, a layer consists of a set of weights, associated tapped delay lines, a 

summing junction, and a transfer function. The network has inputs that are connected to special weights, 

called input weights, and denoted by IWi,j, where j denotes the number of the input vector that enters the 

weight, and i denotes the number of the layer to which the weight is connected. The weights connecting one 

layer to another are called layer weights and are denoted by L Wi,j, where j denotes the number of the layer 

coming into the weight and i denotes the number of the layer at the output of weight. In order to calculate the 

network response in stages, layer by layer, we need to proceed in the proper layer order, so that the necessary 

inputs at each layer will be available. This ordering of layers is called the simulation order. In order to 

backpropagate the derivatives for the gradient calculations, we must proceed in the opposite order, which is 

called the backpropagation order. 

In order to simplify the description of the training algorithm, some layers of the LDDN will be 

assigned as network outputs, and some will be assigned as network inputs. A layer is an input layer if it has 

an input weight, or if it contains any delays with any of its weight matrices. A layer is an output layer if its 

output will be compared to a target during training, or if it is connected to an input layer through a matrix 

which has any delays associated with it. 
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For example, the LDDN shown in Figure 4.1 has two output layers (1 and 3) and two input layers (1 

and 2). For this network the simulation order is 1-2-3, and the backpropagation order is 3-2-1. As an aid in 

later derivations, we will define U as the set of all output layer numbers and X as the set of all i'nput layer 

numbers. For the LDDN in Figure 4.1, U={ 1,3} and X={ 1,2}. 

Layer 1 Layer2 Layer 3 
( 

\.._ _____ } 

Figure 4.1: Three-layer LDDN with two output layers ( 1 and 3) 

and two input layers ( 1 and 2) 

The general equations for simulating an arbitrary LDDN network are given below. The net input at 

layer m can be computed as 

(4.1) 

leL~,deDL..,,1 

where DLm,l is the set of all delays in the tapped delay line between Layer l and Layer m, Dlm,l is the set of 

all delays in the tapped delay line between Input l and Layer m, Im is the set of indices of input vectors that 

connect forward to layer m, ~nd If,,. is the set of indices of layers that directly connect forward to layer m. 

The output of layer m is then computed as 

m ,.m m 
a (t) = 1 (n (t)). (4.2) 

At each time point, Eq. (4.1) and Eq. (4.2) are iterated forward through the layers, as mis 

incremented through the simulation order. Time is then incremented from t=l to t=Q. 
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4.2. Eq. (3.51) 

The first step in generalizing the FP algorithm is to generalize Eq. (3.51). For the general LDDN 

network, we can calculate the terms of the gradient by using the chain rule, as in 

aF = ~ "{[aa"(t)JT X aeF }, 
aw L., L., aw aa"(t) 

t= [UE U 

(4.3) 

where u is an output layer, U is the set of all output layer numbers, and w represents twZ/<d), iw2/(d) and 

· b~. (The equation is the same for all network parameters.) 

4.3. Eq. (3.53) 

The next step of the development of the FP algorithm is the generalization of Eq. (3.53). Again, we 

use the chain rule: 

aa"(t) = aea"(t) + " " " aea"(t) X aenx(t) X aa"'(t-d) 
aw aw L., L., L., x T a u' T aw 

u'e UxeXdeDL ,an (t) a (t-d) 
X,11 

(4.4) 

In Eq. (3.53) we only had one delay in the system. Now we need to account for each output and also for the 

number of times each output is delayed before it is input to another layer. That is the reason for the 

summations in Eq. (4.4). These equations must be updated forward in time, as tis varied from 1 to Q. The 

terms 

(4.5) 

are generally set to zero for t :,; 0 . 

To implement Eq. (4.4) we need to compute the terms 

(4.6) 

To find the second term on the right, we can use 

(4.7) 

32 



we can now write 

If we define the following sensitivity term 

which can be used to make up the following matrix 

ae u 
8u, m(t) = ___!.J1 = 

m T an (t) 

then we can write Eq. ( 4.6) as 

or in matrix form 

u, m( ) u, m( ) u, m ( ) s 1, l t s 1, 2 t . . . s I S t 
' m 

u,m() u,m() u,m () 
sz. 1 t sz,2 t ... s1,s., t 

u,m() u,m() u,m () 
ss •. 1 t ss •. 2 t ... ss.,s,. t 

u,m( )T 
s.s t 

and therefore Eq. (4.4) can be written 

u'e UxeXdeDL_,, •. 
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(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 



Many of the terms in the summation on the right hand side of Eq. (4.13) will be zero and will not 

have to be computed. To take advantage of these efficiencies, we introduce the following definitions. 

(4.14) 

(4.15) 

(4.16) 

Using Eq. (4.14) and Eq. (4.15), we can rearrange the order of the summations in Eq. (4.13) and sum 

only over existing terms 

aa"(t) aea"(t) ""' s",x(t) a;-= a;-+ L, (4.17) 

XE ~(u) 
, u dE DL , 

u E ELw(x) x," 

This can be written for the individual weight matrices 

aa"(t) = aea"(t) 

dvec(L Wm, 1(d)) T dvec(L Wm, \d)) T 

u' L L LWx,u'(d)x aa (t-d) T 

a (L Wm, 1(d)) , Eu ( )dE DL, ,,. vec 
U E LW X • ' 

(4.18) 

aa"(t) aea"(t) 

dvec(IWm, 1(d)) T 

XE ~(u) 

u' 
L wx, u'(d) X aa (t- d) 

dvec(IWm, 1(d)) 

(4.19) 

(4.20) 

where the vec operator transforms a matrix into a vector by stacking the columns of the matrix one underneath 

the other l29l. 

Eq. (4.17) through Eq. (4.20) make up the generalization of Eq. (3.53) for the LDDN network. It 

remains to compute the sensitivity matrices S"' m(t) and the explicit derivatives aea"(t)ldw, which are 

described in the next two sections. 

34 



4.4. Sensitivities 

In order to compute the elements of the sensitivity matrix, we use a form of backpropagation. The 

sensitivities at the outputs of the network can be computed as 

or, in matrix form, 

s"· \t) = F"cn"(t)), 

where F"cn\t)) is defined as 

F"cn"(t)) = 0 

0 

0 

·?' u f (n 2(t)) ... 

0 

0 

0 

, U E U, (4.21) 

(4.22) 

(4.23) 

The matrices S"' m(t) can be computed by backpropagating through the network, from each network output, 

using 

S" ·u) = ! L, S" '(,)L w'· ·co1)Fm (nm(t)), u E u, 
li EL,,, 

(4.24) 

where m is decremented from u through the backpropagation order and L: is the set of indices of layers that 

are directly connected backwards to layer m (or to which layer m connects forward) and that contain no 

delays. 

4.5. Explicit Derivatives 

We also need to compute the explicit derivatives 

(4.25) 
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We can derive the following three expansions of Eq. (4.25): 

e u :,e u ) :,e m 
d ak(t) o ak(t on, (t) u,m / 
--- = --X I = s, k (t) Xp/(-d), 
diwm'. 1(d) dn~'(t) diwm'. (d) 

l,J ' l,J 

e u :,e u e m 
d ak(t) o ak(t) d n, (t) u,m I --- = --x = s. k (t)xa1.(t-d), 

a1w;ycd) anru) a1wt/cd) · 

e u :,e u :,e m 
d ak(t) 0 ak(t) 0 n; (t) u, m 
-- = --x-- = s. k (t). 

dbm dnm(t) db"' ,, 
l I l 

In vector form we can write 

dea"(t) _ u,m() I( d) 
- S; t Xpj t- , 

diwm'. 1(d) 
l,J 

dea"(t) _ u,m() I( d) 
- S; t X aj t - , 

dlwm'.\d) 
l,J 

In matrix form we have 

dea"(t) = [pl(t-d){ ® s",m(t)' 

dvec(IWm, \d){ 

:,e u T 
o a (t) ,; [al(t-d)] ®S"'m(t), 

dvec(L Wm, \d)) T 

dea"(t; = s"· m(t)' 

d(bm) 

where A ® B is the Kronecker product of A and B [Z9J 

4.6. FP Gradient Algorithm Summary. 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

The total FP gradient calculation algorithm for the LDDN network is summarized in Figure 4.2. 
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Initialize: 

aa"(t) - < a;- - 0, t _ 0 , for all u e U, 

Fort= l to Q, 

U' = 0, Es(u) = 0 and J!i(u) = 0 for all ue U. 

For m decremented through the BP order 
For all u e U' 

Forward Perturbation Gradient 

S"'m(t) = { L b S"'\t)LW 1'm(O)}Fm(D 111 (t)) 

IE E8(u) nl,., 

add m to the set Es(u) 

if me X, add m to the set J!i(u) 

EndFor u 
If m EU 

sm,m(t) = Fm<nm(t)) 

add m to the sets U' and Es< m) 

if me X, add m to the set E'J(m) 

Endifm 
EndFor m 
For u e U incremented through the simulation order 

For all weights and biases (w is a vector containing all weights and biases) 

ae "( ) I T a t = [p (t-d)] ® s",m(t) 

avec(IWm,l(d){ 

ae "( ) I T 
a t = [a (t-d)] ® s",m(t) 

avec(LWm, I (d)) T 

aea"(t) = s",m(t) 
T 

a(bm) 

EndFor weights and biases 

aa"(t) = aea"(t) + "' s",x(t) 
awr awr £... L L 

XE E'J(u) u' E E~,v(x) d E DL.,,,,. 

EndFor u 
EndFort 
Compute gradients 

Q {[ aeF Jr aa"(t)} LL -. x-
t= J!IE I/ aa"(t) awT 

Figure 4.2: Pseudo Code for the Forward Perturbation gradient algorithm. 
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4.7. FP Jacobian Algorithm. 

The previous section described the forward perturbation algorithm for computing the gradient. This 

gradient could be used for steepest descent, conjugate gradient and quasi-Newton training algorithms as 

described from section 3.1.1 to section 3.1.3. lfwe want to implement a Gauss-Newton or a Levenberg

Marquardt algorithm, we need to calculate the Jacobian instead of the gradient. In this section we will present 

the FP implementation of the Jacobian calculation. 

The weight update process using the Levenberg-Marquardt Algorithm was presented in Eq. (3.38) 

and Eq. (3.39). lfwe rewrite the last equation using the terminology given in this chapter: 

(4.35) 

where w P is a vector containing all weights and biases in the network. 

We need the Jacobian matrix J (w p) to perform the weight update for a given epoch or iteration p. 

We can express the Jacobian using Eq. (3.30) as: 

av! (1) av! (1) av! (1) 

aw;- aw2 awn 

av2(1) av2(1) avi( I) 

awl aw2 awn 

avN( 1) avN( 1) avN( 1) 

~ aw2 a;:-
av 1(2) av! (2) av! (2) 

JT(W) = aw;- aw; awn (4.36) 

avN(Q- I) avN(Q-1) avN(Q- 1) 

awl aw2 awn 

av 1(Q) av 1(Q) avl(Q) 

a;-;- aw;- awn 

avN(Q) avN(Q) avN(Q) 

~ a;; ~ 

where vk(t) represents the individual error function for an individual output element k at time t: 

(4.37) 

where tk(t) is the target and ak(t) is the network output at time t. The index k represents the individual target 
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or output for all the layers contained in the set of output layers U arranged in one vector from 1 to N 

al t I 

au! a2 tu' t2 

a= au2 a3 t = tuz t3 

allN11 aN-1 tUN11 tN-1 

aN tN 

where Nu is the number of output layers and N = L, Su . 
UE U 

The k,j element of the Jacobian is 

(4.38) 

This is the negative of the dynamic derivative of the network output, which is computed as part of the FP 

calculation of the gradient (Eq. ( 4.32) to Eq. ( 4.34)). As also noticed by Yang (55), the Jacobian generation 

does not require the calculation of the derivative of the objective function, as in Eq. (4.3). Therefore, the FP 

implementation of the Jacobian calculation is actually a simplified version of the FP gradient algorithm. 

4.8. FP Jacobian Algorithm Summary. 

The total FP Jacobian algorithm for the LDDN network is summarized in Figure 4.3. 
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Initialize: 

aa\t) -a;;- - 0, t ~ 0, for all u e U, 

Fort= 1 toQ, 

U' = 0, Es(u) = 0 and ~(u) = 0 for all ue U. 

Form decremented through the BP order 
For all u e U' 

Forward Perturbation Jacobian 

su,m(t) = { L b S"' 1(t)LW1'm(O)}Fm(nm(t)) 

I e E8(u) ril,,. 

add m to the set Es(u) 

if me X, add m to the set ~(u) 

EndFor u 
IfmeU 

sm,m(t) = F'\nm(t)) 

add m to the sets U' and Es(m) 

if me X, add m to the set ~(m) 

Endlfm 
EndForm 
For u e U incremented through the simulation order 

For all weights and biases (w is a vector containing all weights and biases) 

a•au(t) = [p/(t-d){ ® s",m(t) 

avec(lWm,t(d){ 

a•au(t) = [a/(t-d){ ® su,m(t) 

avec(LWm,/(d))T 

a•a\t) = S"'m(t) 

a(bm) T 

EndFor weights and biases 

aa\t) = a•au(t) + L Su'\t) L L 
awT awT 

x E E;(u) u' E E~w(x) de Dlx,u' 

EndFor u 
EndFort 

Figure 4.3: Pseudo Code for the Forward Perturbation Jacobian algorithm. 
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Chapter 5 

BACKPROPAGATION THROUGH TIME 

In this section we will generalize the Backpropagation-Through-Time (BTT) algorithm, given in Eq. 

(3.52) and Eq. (3.54), for LDDN networks [8l. 

5.1. Eq. (3.52) 

The first step is to generalize Eq. (3.52). For the general LDDN network, we can calculate the terms 

of the gradient by using the chain rule, as in 

(5.1) 

(5.2) 

(5.3) 

where u is an output layer, U is the set of all output layers, and Su is the number of neurons in layer u. 

From Eq. (4.1), the elements of the net input can be computed as 

n~(t) = L L (±.zwZ/<d)a1(t-d))+ L L (±.iwZ/(d)pj(t-d))+b~ (5.4) 
telf,.deDLm,Jj=I tef,.deDI.,, 1 j=I 

Therefore, 

(5.5) 
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We will also define 

(5.6) 

The terms of the gradient can then be written 

aF Q I 
--1 - = L t;'U)ap-d), 
a/w:j (d) t = I 

(5.7) 

aF Q I 
--1 - = I. t;u>pp-d>, 
aiw:j (d) I= I 

(5.8) 

Q 

aF = L t;'<t). 
ab~ t= I 

(5.9) 

Ifwe use the sensitivity term s~ ~(t) defined in Eq. ( 4.9) and Eq. ( 4.10), the elements d'('(t) can be 

written 

s • 
.m "' "' aF u, m a;(t)= k.i k.-u-Xs1c,;(t). 

u e Uk= \ aak(t) 
(5.10) 

In matrix form this becomes 

dm(t) =. L [Su,m(t){ X a: 
, U E U aa (t) 

(5.11) 

where 

iJF 

aa~(t) 

aF 
aF 

aa;(t) ---
aa\t) 

(5.12) 

aF 

aa~ (t) 
u 
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Now the gradient can be written in matrix form. 

a Q m I T 
F = ""d (t) X [a (t-d)] , 

aLWm,l(d) 1-:"1 
(5.13) 

Q m I T rd (t)x[p(t-d)]' (5.14) 
t ~ l 

(5.15) 

Eq. (5.13) through Eq. (5.15) make up the generalization ofEq. (3.52) for the LDDN network. It 

remains to compute the explicit derivatives of the sensitivity matrix s"· m(t). This procedure was described 

in section 4.4. 

5.2. Eq. (3.54). 

The next step of the development of the BTT algorithm is the generalization ofEq. (3.54). Again, 

we use the chain rule: 

_jf_ = aeF + "" "" "" [aea"'(t+d)xaenx(t+d)]r x--aF __ 
u u ~ ~ ~ T T u' 

aa (t) aa (t) u' E U XE X d E Dl,., aux (t + d) aau(t) aa (t + d) 
(5.16) 

(Many of the terms in these summations will be zero. We will provide a more efficient representation later in 

this section.) In Eq. (3.54) we only had one delay in the system. Now we need to account for each network 

output, how that network output is connected back through a network input, and also for the number of times 

each network output is delayed before it is applied to a network input. That is the reason for the three 

summations in Eq. ( 5 .16). This equation must be updated backward in time, as tis varied from Q to 1. The 

terms 

(5.17) 

are generally set to zero fort> Q. 
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Ifwe consider one element of the matrix in the brackets on the right side ofEq. (5.16), we can write 

(5.18) 

The first term on the right hand side of this equation is just our previously defined sensitivity 

e u' 
aa.(t+d) u'x 

I = S, 'k (t + d) ' 
X I, 

ank(t + d) 
(5.19) 

which can be computed from Eq. (4.24). To find the second term on the right hand side ofEq. (5.18), we can 

write 

( 
s, . ) 

n;(t+d)= L. L I,Iwi,'.(d')a'.(t+d-d') 
/ E L~ ti E DL.,, 1 ; = I 

(5.20) 

We can now write 

(5.21) 

Therefore, Eq. (5.18) can be written 

[aeau'(t+d) xaenx(t+d)] 
X T u T 

an (t + d) aa (t) i,j 

s., 
L s~';tU+d)xlw;:;(d) 

k-= I 

(5.22) 

or in matrix form 

e· u' e x 
a a (t+d)xa n (t+d) = s"',x(t+d)xLWX'\d). 

X T u T 
an (t + d) aa (t) 

(5.23) 

This allows us to write Eq. (5.16) as 

(5.24) 
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Many of the terms in the summation on the right hand side ofEq. (5.24) will be zero and will not 

have to be computed. In order to provide a more efficient implementation ofEq. (5.24), we define the 

following sets (in addition to those defined in Eq. (4.14)- Eq. (4.16)): 

U · U X 
Es(x) = {ue U33(S' ;tO)} 

We can now rearrange the order of the summation in Eq. (5.24): 

and sum only over the existing terms: 

5.3. BTT Gradient Algorithm Summary 

The total BTT algorithm is summarized in Figure 5 .1 
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(5.25) 

(5.26) 

(5.27) 

(5.28) 



Initialize: 

_jf_ = 0, t > Q , for all u e U, 
aa"ct) 

Fort= Q to 1, 

U' = 0 , and E 8( u) = 0 for all u e U . 

For m decremented through the BP order 
For all u e U' 

Backpropagation-Through-Time Gradient 

su,m(t) = { L b S"' 1(t)LW 1'm(O)}Fm(nm(t)) 

IE Es(u) r, L., . 

add m to the set E8(u) 

EndFor u 
Ifme U 

sm,m<t) = Fm<nm(t)) 

add m to the sets U' and E8(m) 

Endlfm 
EndForm 
For u E u decremented through the BP order 

_jf_ = a_eF + L L LWX'"(d{ L 
aa"(t) aau(t) 

EndFor u 
For all layers m 

dm(t) = I. 

EndForm 
EndFor t 

ue Ei(m) 

Compute gradients 

x e E'iw(u) de DL_,," 

' 

[S11'm(t){ X _jf_ 
aa"ct) 

c)F Q I T 
---"'---1 - = L dm(t) x [a (t-d)] 
cJLWm, (d) t= 1 

c)F Q I T 
--1- = L, dm(t) X [p (t-d)] 
a1wm, (d) 1 = 1 

Q 

ai:, = I. dm (t) 

ab t= r 

u' e Ei(x) 

Figure 5.1: Pseudo Code for the Backpropagation-Through-Time gradient algorithm 
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5.4. BTT Jacobian Algorithm. 

In section 4.7 we presented the FP calculation of the Jacobian ( defined in Eq. ( 4.36)). In this section 

we present the BTT calculation of the Jacobian. In the FP gradient calculation, the elements of the Jacobian 

(as shown in Eq. (4.38)) were also computed. For this reason, the FP Jacobian calculation was a simplified 

version of the FP gradient calculation. This is not true for the BTT algorithm. 

As shown in Eq. (5 .17), the key term computed in the BTT gradient algorithm is aF 1aa u' (t) . In order 

to compute the Jacobian, we want to replace this term with avk(t)laau'(t'). Eq. (5.16) can then be modified 

as follows: 

avk(t) - aev/t) L L L [aeau'(t' + d) aenx(t' + d)]T av/t) -- - -- + X X ---"---
u u T T u' 

aa (t') aa (t') u'E UxEXdE DL,,,, anx(t'+d) aa"(t') aa (t'+d) 

where this equation must be updated backward in time, as t' is varied from t to 1. The terms 

are set to zero for t' > t. The explicit derivative for each output layer will be 

where af (t) are the output layers being used as targets. 

if t= t 

if t * t' 

Applying a similar development to the one shown in Eq. (5.18) through Eq. (5.23), and the 

simplification mentioned before Eq. (5.28), we have that 

a u· ae u· 
ak (t) ak (t) 
-- = ---+ 
aa 11 (t') aa''<t') x E E'iw(u) d E DL_,-,,, 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

where the explicit derivatives are based on Eq. ( 5 .31 ). Eq. (5 .32) must be solved backwards in time as t' is 

varied from t to 1. 
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i/ u . u" 
We next want to use the terms oak (t)loa (t') to compute the elements of the Jacobian, oak (t)low1 . 

This can be done by replacing the cost function F with the outputs being used as target a~· (t) in Eq. (5.1) 

through Eq. (5.3): 

oa~· (t) 

olw1n'.\d) 
I,} 

(5.33) 

(5.34) 

(5.35) 

Applying a similar development to the one shown in Eq. (5.4) through Eq. (5.15) we have that 

and 

0 u'(t) 
d/(t,t') = L, [S"'m(t'){ x~ 

!IE U oa\t') 

" u' t 
oak (t) m I T 

--'-'--- = " d (t, t') X [a (t' -d)] , 
oLWm,l(d) t'':'1 

u' 
oak (t) 

olWm,l(d) 

t m I T L, d (t, t') X (p (t'-d)] , 

t'= l 

u' 
oak (t) 
---

t' = l 

The combination ofEq. (5.32) and Eq. (5.36) through Eq. (5.39) make up the BTT Jacobian 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

calculation. Unlike the FP algorithm, where the Jacobian calculation is simpler than the gradient calculation, 

the BTT Jacobian calculation is more complex than the BTT gradient. This is because the FP gradient 

calculation computes the elements of the Jacobian as an intermediate step, whereas the BTT gradient 
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calculation does not. For the BTT Jacobian, at each point in time we must solve Eq. (5 .32) backwards to the 

first time point. 

5.5. BTT Jacobian Algorithm Summary 

The total BTT algorithm is summarized in Figure 5.2 
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nitialize: Backpropagation-Through-Time Jacobian 

aat(t) = O {'ift>Q. 

aa"{t') , 'tit* t' , 

c1a" 0 (t) 
_k_ = -1,{'tlts;Q and t = t',forall ue U, 
aa \t') 

Fort= Q to 1, 

U' = 0, and Es(u) = 0 for all u e U. 

For m decremented through the BP order 
For all u e U' 

su,m(t) = { L b S"'l(t)LWl,m(O)}Fm(nm(t)) 

le Es(u)r,Lm · 

add m to the set Es(u) 

EndForu 
IfmeU 

8 m,mU) = Fm<nmU)) 

add m to the sets U' and Es(m) 

Endlfm 
EndForm 

EndFor t 
Fort=Qto 1, 

For all the elements of a:· (t) , 

For u e U decremented through the BP order 
Fort'=tto 1, 

u' e ~ , T c/a~(t) 
c/ak(t) c/ak(t) L L LWx'"(d{ L S"'x(t'+d) X k 
aa"(t') = aa"(t') + ::,a"0(t' + d) 

EndFor t' 
EndFor u 
For all layers m 

For t' = t to 1, 

I. 
u e Ei(m) 

EndFor t' 
EndForm 
Compute Jacobian terms 

xeE'J.w(u)deDL,,, u'eEi(x) u · 

u' I 
clak (t) m I T 

------ = "" d (t, t') X [a (t' -d)] 
c1LWm,l(d) /:\ 

c/a~·(t) = ~dm(t,f)x[pl(t'-d){ 

a1wm,l(d) /:\ 

cl u'(t) I 

..::!!_ = "" dm(t t') m £., , 
clb f- l 

u' 
EndFor ak (t) 

EndFor t 

Figure 5.2: Pseudo Code for the Backpropagation-Through-Time Jacobian algorithm 

50 



Chapter 6 

ERROR SURFACE ANALYSIS 

In this chapter we will suggest a mechanism that can explain, at least in part, the difficulties that 

occur in training recurrent networks. Based on our analysis of this mechanism, we will also propose modified 

training procedures that can provide improved convergence. We will demonstrate the operation of these 

training procedures on two simple recurrent networks. 

6.1. Prelude 

We begin with an explanation of how we came across a certain characteristic of the error surfaces 

ofrecurrent networks. While training a neural-network-based Model Reference Controller [I IJ, we found that 

the error sometimes increased during training, although a line search was being executed at each iteration. In 

order to understand the failure of the line search, we plotted the error surface along the search direction. 

Typical profiles are shown in Figure 6.1. For the system shown, we have 65 weights being trained. The 

surface we present is along the direction of search ( obtained by the BFGS quasi-Newton algorithm) through 

a 65-dimensional space. It is clear from these profiles that any standard line search, using a combination of 

interpolation and sectioning, will have great difficulty in locating the minimum along the search direction. 

There are many local minima contained in very narrow valleys .. (Some of the valleys were found to have 

widths on the order ofl o- 10.) In addition, the bottom of the valleys are often cusps. We normally assume that 

the minimum will occur at the point where the derivative is zero. However, for some of these valleys the 

derivative continues to increase as we approach the minimum. Even if our line search were to locate the 

minimum, it is not clear that the minimum represents an optimal weight location. In fact, in the remainder of 

this chapter we will demonstrate that spurious minima are introduced into the error surface due to 

characteristics in the input sequence. 
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Figure 6.1: Error profile 

In ordet to understand how the spurious valleys can appear in the error surface, we analyzed the 

surfaces for some very simple recurrent networks. The idea was to find the simplest network that would 

produce the valleys. In the next section we will discuss a first-order linear recurrent network that produces 

the spurious valleys. We will also show how nonlinear transfer functions can affect the shape of the valleys. 

This is followed by some modifications we propose to improve the training process, based on our analysis of 

the creation of the spurious valleys. The fourth section of the chapter tests the proposed modifications on first 

and second order recurrent networks. In the last section, we give a summary of the results. 

6.2. First Order Model 

6.2.1. Linear model 

Figure 6.2 illustrates the simplest possible recurrent network. As we will see, even this network 

produces spurious valleys similar to those shown in Figure 6.1. 
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u(t) w1 

y(t) w2 

D 
Figure 6.2: First order linear recurrent network. 

In order to generate an error surface, we first developed training data using the network of Figure 

6.2, where the weights were set to wt = 0.5 and W 2 = 0.5 . We used a random input sequence for u(t), and 

then used the network to generate a sequence of outputs y(t). Our training objective was then to train another 

network with the same architecture to fit the training data. The global minimum of the error surface should 

occur at the values wt = 0.5 and wz = 0.5. 
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Figure 6.3: Error su,face for first order linear model. 

Figure 6.3 is a typical error surface obtained using the above procedure for one particular input 

sequence and the initial output y(O) = 0 . (The plot is cut off at 10,000 to better visualize the surface.) There 

are several interesting features of the surface. First, the error surface generally increases dramatically as the 

weight W 2 becomes larger than 1 in magnitude. This is to be expected, since the network is unstable for these 

weight values. What is unexpected are the two valleys that run through the surface. Even though the network 
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is unstable for lw21 > I , for this particular input sequence there are some values for W2 in this range that 

produce small network outputs (and therefore relatively small errors). We expect the output to grow without 

bound under these conditions, but it doesn't always happen. 

The two valleys in the error surface occur for two different reasons. One valley occurs at W 1 = O. 

If this weight is zero, and the initial condition is zero, the output of the network will remain zero. Therefore, 

our mean squared error will be constant and equal to the mean square value of the target outputs. 

The second valley in the error surface is due to the input sequence that is presented to the network. 

For a given input u(t), the system output will be: 

y(t) = W 1u(t)+W2y(t- I) (6.1) 

Ifwe accumulate the responses starting from some initial condition y(O) = 0 up to time k > O, we obtain 

y(k) = wiu(k) + wzy(k- I) 

= W 1u(k) + W 2(W 1u(k- 1) + W 2y(k-2)) 

= W 1{u(k) + W2u(k- I)+ (W2)2u(k-2) 

+ ... + (W2l- 1u( I)}+ (W2)ky(O) 

(6.2) 

Here we can see that the response at time k is a polynomial in the parameter W2 . The coefficients 

of the polynomial involve the input sequence and the initial condition. We obtain the second valley because 

this polynomial contains a root outside the unit circle. There is some value of W2 that is larger than 1 in 

magnitude for which the output y(k) is almost zero. 

Of course, having a single output close to zero would not produce a valley in the error surface. 

However, we discovered that once the polynomial shown in Eq. (6.2) has a root outside the unit circle, that 

root appears also in the next polynomial at time k+ 1, and therefore the output will remain small for future 

times. 

Figure 6.4 shows a cross-section of the error surface presented in Figure 6.3 for W 1 = 0.5 using 

different sequence lengths. The error falls abruptly near -3.8239 . That is the root of the polynomial described 

in Eq. (6.2). The root maintains its location as the sequence increases in length (k increases). 
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Figure 6.4: Error cross-section for W 1 = 0.5. 

To summarize, there are two mechanisms that create the spurious valleys. The first mechanism has 

to do with the initial conditions. If some initial conditions are zero, then there are certain combinations of 

weights that will produce zero outputs for all time. (This effect is more complex in larger networks, as we 

will see in a later example.) The second mechanism has to do with the input sequence. There are values for 

the weights that produce an unstable network, but for which the output remains small for a particular input 

sequence. If the input sequence is modified, it may produce a valley in a different location. 

In section 6.3 we will propose some modified training procedures that can mitigate the effects of the 

spurious valleys. Before introducing that topic, let's investigate the effect of nonlinear transfer functions on 

the error surface. 

6.2.2. Nonlinear network 

Figure 6.5 presents a nonlinear modification of the linear network presented in the previous section. 

Here we include a sigmoid nonlinearity at the output. 

u(t) 
y(t) 

Figure 6.5: First order nonlinear model. 
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Figure 6.6 presents the error surface for the nonlinear network using the same input sequence used 

in the previous section. Due to the nonlinearity, the output is bounded for large weight values. So the error 

does not grow without bound, as in the linear network. We notice that the valley is still present, however it is 

bent. This curving valley is still able to trap the training algorithm and even to move the weights away from 

the true minimum. 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

02 

Figure 6.6: Error su,face for first order nonlinear network. 

6.3. Modifications to the Training Procedure 

From the previous section we see that difficulties in training recurrent neural networks could be due 

to the presence of spurious valleys. The shape of the valleys could be complex for large nonlinear neural 

networks. If a gradient search algorithm falls inside a valley we may converge to a region where the network 

is unstable or where the weights are unreasonably large. The location of those valleys depends on the input 

sequence and on the initial conditions. In this section we will propose three modifications to standard training 

procedures that can mitigate the effects of the valleys. 

6.3.1. Proposed solutions 

In this section we will propose three variations to the standard training algorithms for recurrent 

networks. These variations include regularization, switching training sequences, and randomly setting initial 

conditions. 

If we compare the linear and nonlinear cases from section 6.2, we notice that the linear case has a 

natural way of allowing convergence to the optimal weights, because larger weights generate large outputs. 
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The farther we move from the stable region, the larger the gradient will become. A gradient descent algorithm 

would generally move the weights toward the stable region. This effect does not occur in the nonlinear 

networks. However, we can obtain a similar effect if we combine regularization [3SJ with our mean square 

error performance function. In other words we can use the performance function 

J(W) = SSE+ aSSW, (6.3) 

where SSE is the sum squared errors and SSW is the sum squared weights. This performance function would 

help to force the weights back into the stable region, because it would overwhelm the spurious valleys for 

large values of the weights. We can decrease the regularization factor a during training to ensure that we 

don't bias the final trained weights. 

-~2'-----~-,.5~~.,---0~.,--=-~ •. ~, -~-~,.,-~ 

Figure 6.7: Error surface for first order nonlinear model for different input sequence. 

Another technique for improved training involves using more than one training sequence. Figure 6.7 

presents the error surface for the nonlinear model of Figure 6.5, using a different sequence. The valley that 

appeared in Figure 6.6 has moved to the positive region of W 2 . For any two random input sequences, the 

valleys will appear in different locations. 

This suggests another technique for improved training. We could use multiple input sequences. 

Because valleys are sequence dependent, we can use one sequence for a given number of epochs and then 

alternate to a new sequence. If we become trapped in a spurious valley, that valley will disappear when the 

new sequence is presented. 
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--4 

-1 

Figure 6.8: Error surface using sequence averaging. 

Another implementation of multiple sequences could be sequence averaging. We could compute the 

gradients for multiple sequences and then move in the direction of the average. Figure 6.8 presents an error 

surface for five sequences. This figure,demonstrates how the spurious valleys are reduced in amplitude . 
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Figure 6.9: Error surface using y(O) = 0.1. 
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Another method to move the valleys is to use random initial conditions. Figure 6.9 shows how the 

error surface is changed when we set the initial ~ondition to y(O) = 0.1. The valley at W 1 = 0, which we 

discussed earlier, is missing. In later experiments with larger networks, we found that the valleys do not 

always disappear when nonzero initial conditions are used. They are often only moved to new locations. A 

better approach would be to use different small random initial conditions at different stages of training. We 

could switch the initial conditions in combination with the switching of sequences. 
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In all, we have four proposed training modifications. For ease ofreference, we will label them as 

follows: switching sequences (SS), averaging sequences (AS), regularization (REG), nonzero initial 

conditions (IC). 

6.4. Test Results for Gradient Algorithm 

In this section we will test the training modifications that were proposed in the previous section using 

the gradient algorithm described in section 5.3. For these tests we will train the nonlinear network shown in 

section 6.2 (and a more complex, second-order network) using the standard gradient descent algorithm with 

a golden section line search. We will not worry about using the most sophisticated training algorithm. Rather, 

the objective will be to verify the ability of the new procedures to improve training performance. We will 

define the results obtained with the gradient descent algorithm alone as our baseline. Other tests will be 

performed for each one of the proposed modifications. For the REG test, we divided a by 1.2 at each epoch. 

For the IC method we set all layer initial conditions to 0.2. One test was performed using all three methods. 

We called this training procedure the "Multiple" method. For all tests, the gradient is computed using the 

dynamic backpropagation method described in section 5 .3. 

6.4.1. First order nonlinear system 

For the first order nonlinear system we generated training data using W 1 = 0.5 and W 2 = 0.5. The 

training was done using 25000 different sequences of 15 samples each and random initial conditions. The 

random initial weights were generated in three different levels: 1, 5 and 20 standard deviations from the true 

solution. 

Table 6.1 summarizes the results of the first tests on the first order network. It shows the percentage 

of tests in which the weights converged close to the optimal weights. Each method provides some 

improvement on the baseline method. However, the multiple method is the only one that guarantees accurate 

convergence. 
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Table 6.1: Percentage of final weights within 0.001 of the optimal weights for the first order nonlinear 
network. 

Method 
STD of the initial weights 

1 5 20 

Baseline 92.1 61.2 37.9 

REG 99.6 99.7 99.9 

ss 96.5 64.7 45.7 

AS 94.3 58.1 42.7 

IC 95.6 71.1 45.0 

Multiple 100.0 100.0 100.0 
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Figure 6.10: Relative final position ofW 1 vs. W2 for 5 std. 

10 30 40 

Figure 6.10 shows the relative final position of W l vs. W2 for Baseline, SS, AS and IC. For the first 

three methods many tests finished along W l = O . That condition was removed when we set the initial 

conditions to 0.2. When we switch the sequences we avoided many cases where training may be trapped in 
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the spurious valleys. The averaging of sequences did not improve our training results, resulting in worse 

results than the baseline method for 5 std. 

6.4.2. Two layer neural network 

Figure 6.11 has a neural network with two layers, where each layer is fed back to the previous layers. 

This system will allow us to test the previous training procedure modifications on a more complex system. 

For these tests, we generated training data using the following weights: 

W 2 = -0.5 

w1 = o.5 
W3 = 0.25 

w4 = -0.3 

__ u_(t)--•11 

w2 

w1 

W3 

W4 

Figure 6.11: Two-layer nonlinear model. 

(6.4) 

y(t) 

Table 6.2 shows the percentage of weights close to the final weights after the training process. For 

this neural network architecture, regularization resulted in a success rate of over ninety percent. However, it 

is again the multiple method that guarantees the best convergence. 

Table 6.2: Percentage of final weights within 0.5 of the optimal weights/or the two-layer nonlinear 
network. 

"Method 
STD of the initial weights 

1 5 20 

Baseline 82.2 12.8 0.3 

REG 93.0 95.0 97.0 

ss 95.8 38.6 2.5 

IC 54.6 7.2 0 

Multiple 100.0 99.0 100.0 
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Figure 6.12 presents the final weight positions in the W3 vs. W4 plane for the Baseline, SS and IC 

training methods. For the Baseline training method, we notice the presence of three axes or valleys where the 

training converged. From the middle figure we can see that the SS method can eliminate the diagonal final 

condition. However, the axis along W3 = 0 remains. When we set the initial layer conditions to 0.2, we can 

see from the last figure that two new axes appear. This demonstrates that setting the initial conditions to 

nonzero values does not necessarily remove spurious valleys. It may just move them to new locations. This 

suggests that we should vary the initial conditions whenever we switch the training sequence. 
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Figure 6.12: Relative.final position of W3 vs. W 4 for 20 std. 

Figure 6.13 shows how the final distance to the optimal weights is affected by the switching 

sequence interval. While training for 10000 epochs, we switched the training sequence every 1, 10, 100, 500 

and 1000 epochs. Frequent changes consistently resulted in more accurate final weights. If training continues 

with the same sequence, we could be caught in a spurious valley, resulting in failed training. 
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Figure 6.13: Final distance to optimal weights for different switching sequence intervals. 

Figure 6.14 shows the average performance for three different switching intervals. We obtain 

substantial improvement when the sequence is switched more frequently. We can conclude that we should 

not maintain the same sequence for long periods, when training recurrent neural networks. 
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Figure 6.14: Average performance for different switching sequence interval. 

Another battery of tests was performed to evaluate how to adjust a when regularization is being 

used. We adjusted a by dividing it by a constant at each epoch. The constants we used were 1.01, 1.2 and 2. 

Figure 6.15 shows the average performance when a is divided by 1.01 and 1.2. The best results were obtained 

for 1.2. (The results for 2 were almost identical to the results for 1.2.) From this test we can conclude that a 

must be decreased in some way to obtain the best training results. 
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Figure 6.15: Average performance for cx/1.01 and cx/1.2. 

Figure 6.16 shows the number of flops required to train the two-layer neural network to convergence 

using the multiple method with different sequence lengths. This figure does not demonstrate any advantage 

to using long sequences for this network. The algorithm converged for all sequences, but the longer sequences 

require more computation. One would expect that for more complex networks there might be some advantage 

to longer sequences. 
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Figure 6.16: Flops for different sequence length. 
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6.5. Test Results for Jacobian Algorithm 

In this section we will test the training modifications that were proposed in section 6.3 using the 

Jacobian algorithm from section 4.8. For these tests we will train the nonlinear network shown in section 6.2 

(and a more complex, second-order network) using the Levenberg-Marquardt algorithm. Like the previous 

section, the objective will be to verify the ability of the new procedures to improve training performance. We 

will define the results obtained with the gradient descent algorithm alone as our baseline. Other tests will be 

performed for each one of the proposed modifications based on the Levenberg-Marquardt features. For the 

REG test, we used the Bayesian regularization procedure proposed by Foresee and Hagan [l 6l, and Chen and 

Hagan [6l. One test was performed using all three methods. We called this training procedure the "Multiple" 

method. For all tests, the Jacobian is computed using the dynamic backpropagation method described in 

section 4.8. 

6.5.1. First order nonlinear system 

For the first order nonlinear system we generated training data using W 1 = 0.5 and W 2 = 0.5. The 

training was done using 25000 different sequences of 15 samples each and random initial conditions. The 

random initial weights were generated in three different levels: 1, 5 and 20 standard deviations from the true 

solution. 

Table 6.3 summarizes the results of the first tests on the first order network. It shows the percentage 

oftests in which the weights converged close to the optimal weights. Each method provides some 

improvement on the baseline method. However, the multiple method is the only one that guarantees accurate 

convergence. Ifwe compare the Jacobian results against the gradient results presented in Table 6.1, we could 

confirm that the Jacobian-based algorithm outperforms gradient-based algorithms. The criteria for Jacobian 

algorithms was two orders of magnitude more strict than gradient algorithms. Even under those conditions, 

the results were better for similar testing conditions. 
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Table 6.3: Percentage of final weights within 0.00001 of the optimal weights/or the first order nonlinear 
network. 

Method 
STD of the iqitial weights 

I 5 20 

Baseline 98.9 92.4 69.2 

REG 99.7 98.9 96.1 

ss 99.8 97.4 84.8 

IC 99.4 93.7 72.1 

Multiple 100.0 99.9 99.9 

6.5.2. Two layer neural network 

This section tested the Jacobian-based algorithms using a neural network with two layers, where 

each layer is fed back to the previous layers, as shown in Figure 6.11. For these tests, we generated training 

data using the weights presented in Eq. (6.4). 

Table 6.4 shows the percentage of weights close to the final weights after the training process. For 

this neural network architecture, regularization resulted in a success rate of over ninety percent with initial 

weights up to 5 standard deviations from the true weights ( even though using strict performance conditions 

than for the gradient based algorithms). However, it is again the multiple method that guarantees the best 

convergence. Ifwe compare the results against the gradient based algorithms in Table 6.2, we notice better 

results provided by Jacobian-based algorithms. 

Table 6.4: Percentage of final weights within 0.00001 of the optimal weights for the second order nonlinear 
network. 

Method 
STD of the initial weights 

I 5 20 

Baseline 71.7 33.9 2.8 

REG 99.7 97.9 71.2 

AS 96.0 54.0 9.6 

IC 94.0 54.2 6.6 

Multiple 100.0 99.0 85.0 

6.6. Summary 

This chapter suggested that spurious valleys are present in the error surface of dynamic networks. 

Those narrow valleys often trap gradient based training algorithms. We suggested some procedures to 

improve convergence: switching sequences (SS), regularization (REG) and nonzero initial conditions (IC). 
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The best results were obtained when all procedures were used simultaneously. The previous procedures were 

demonstrated using two simple recurrent networks. 
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Chapter 7 

APPLICATIONS 

This chapter will present two types of applications for dynamic neural networks. The first class of 

applications is Model Reference Control. For this type of controller architectures, the plant is modelled using 

a feedforward neural network. Later, the plant model network is used in combination with a separate neural 

network controller. The plant model network is used to backpropagate the controller errors and update the 

controller weights. Due to the feedback nature of the controller and plant combination, dynamic 

backpropagation is required to update the controller weights. The second class of applications involve filter 

design. We will use dynamic neural networks to emulate a nonlinear process. 

We will use these two classes of applications to show how the dynamic backpropagation methods 

are applied. For the controller we will use the FP algorithm. For the filter example we will use the BTT 

algorithm. 

7.1. Model Reference Control. 

In this section we illustrate the application of the LDDN and dynamic backpropagation to different 

control problems. We win describe the Model Reference Controller [35l and apply it to four different systems: 

a continuous stirred tank reactor, a single-link robot arm, a magnetic levitation system and a simple diesel 

engine model. These four systems represent a variety of simple applications to which neurocontrollers can be 

applied. We will then compare and contrast the performances on the four test problems. 

There are typically two steps involved when using neural networks for control: system identification 

and control design. In the system identification stage, you develop a neural network model of the plant that 

you want to control. This network is trained offline in batch mode, using data collected from the operation of 

the plant. In the control design stage, you use the neural network plant model to design (or train) the 
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controller. The control design stage, however, changes for different controller implementations. Figure 7.1 

shows the architecture of the Model Reference Controller. 

Command 
Input 

Reference 
M9del 

NN 
Controller 

,..._ ____ _, Control 
Input 

NN 
Plant Model 

Plant 

Figure 7.1: Model Reference Control Architecture 

+ Control 
Error 

Plant 
Output 

The model reference architecture [351 requires that a separate neural network controller be trained 

off-line, in addition to the neural network plant model. The controller training is computationally expensive, 

since it requires the use of dynamic backpropagation [35, 191. On the positive side, model reference control 

applies to a larger class of plant than, for example, does NARMA-L2 control (see Eq. (2.6)). Each network 

has two layers, and you can select the number of neurons to use in the hidden layers. There are three sets of 

delayed controller inputs: reference inputs, controller outputs and plant outputs. Table 9.1 shows the final 

Model Reference controller parameters for each test. 

Table 7.1: Parameters for Model Reference Controller 

CSTR Maglev Robot Engine 

Del. reference 3 2 2 2 

Delayed inputs 3 2 2 2 

Delay. outputs 3 2 1 1 

Hidden layer 8 13 13 15 

The following figure shows the details of the neural network plant model and the neural network 

controller. Each network has two layers, and you can select the number of neurons to use in the hidden layers. 

The plant model is used only as a backpropagation path for the derivatives needed to adjust the controller 

weights; the plant model weights are not adjusted. There are three sets of controller inputs: delayed reference 
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inputs, delayed controller outputs and delayed plant outputs. For each of these inputs, you can select the 

number of delayed values to use. Typically, the number of delays increases with the order of the plant. 

a2(t) 

Plant 

Neural Network Controller Neural Network Plant Model 

Figure 7.2: Detailed Model Reference Control Structure 

If we apply the algorithm described in Figure 4.2 to the system shown in Figure 7 .2, we first notice 

that the Backpropagation order is 4-3-2-1, the set of all output layer numbers is U={2,4} and the set of all 

input layer numbers is X={ 1,3}. 

We now show how these equations can be developed using our general FP algorithm. We start in the 

last layer in the backpropagation order (layer 4), obtaining: 

S4,4(t) = F\n4(t)); U' = 4 ; Es(4) = 4 

Layer 3 is only connected to layer 4 through a non-delay, so we apply: 

S4,3(t) = S4,4(t)LW4,3(Q)F\n\t)); Es(3) = 3 ; ~(4) = 3 

Layer 2 is the last layer of the neural controller and it is connected to another layer through delays. So we 

apply the equations: 

s2,2(t) = F\n2(t)); U' = {2, 4} ; Es(2) = 2 
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Layer 1 is only connected to layer 2 through a non-delay, so we apply: 

We can solve now the explicit derivatives for each weight and bias: 

T T 
3 4 a (t) a (t) 

ia4(t) a\t-1) ia4(t) 4 
= ® S4, 3(t); = a (t- 1) ® S4, 3(t) 

T . T 
clvec(L W3, 2(d)) clvec(LW3,4(d)) 

3 a (t-d) 
4 a (t- d) 

T T 
2 a (t) 

4 a (t) 

ia2(t) 2 ia2(t) 4 
= a (t-1) ® s2, ict); = a (t- 1) ® s2, icr) 

T T 
clvec(LWI, 2(d)) clvec(LW 1, 4(d)) 

2 a (t- d) 
4 a (t- d) 

l r 
r(t) 

aea2(t) 
= r(~~ 1) ® s2, 1(t) 

T 
clvec(IW 1• 1(d)) 

r(t- d) 

Now that we have finished with the backpropagation step, we have the explicit derivatives for all of 

the weights and biases in the system. We are now ready to calculate the dynamic derivatives: 

2 · e 2 
i)a (t) - a a (t) -----+ 
i)wT clWT 

and 
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This previous process is repeated for each sample time in the training set. 

We have now computed all of the dynamic derivatives of the outputs with respect to the weights. 

The next step is to compute the derivatives of the performance function with respect to the weights. We must 

first calculate 

a•F 
-- = -2(r(t)- a4(t)), 
aa4(t) 

to obtain 

Q {[ e ]T u } Q { u } aFT = L L a/ X aa ~) = - L [2(r(t) - a4(t)){ X aa ~) 

aw t = l U E U aa (t) aw t = l aw 

for all the weights and biases in the neural controller. The next section will present the results for the Model 

Reference Controller for the systems mentioned at the beginning of this section. 

7 .1.1. Case Studies 

7.1.1.1. Continuous Stirred Tank Reactor (CSTR) 

The first application is a catalytic Continuous Stirred Tank Reactor (CSTR) [SJ shown in Figure 7 .3. 

W2 

I 
Figure 7.3: Continuous Stirred Tank Reactor 
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The dynamic model of the system is 

dh(t) h77. -- = w1(t)+w2(t)-0.2..,h(t) 
dt 

(7.1) 

(7.2) 

where h(t) is the liquid level, Cb(t) is the product concentration at the output of the process, w 1 (t) is the flow 

rate of the concentrated feed Cb 1 , and w2(t) is the flow rate of the diluted feed Cb2 • The input concentrations 

are setto cb 1 = 24.9mol/ cm3 and cb2 = O.lmoll cm3 . The constants associated with the rate of consumption 

are k1 = 1 and k2 = 1 . The objective of the controller is to maintain the product concentration by adjusting 

the flow w2(t). To simplify the demonstration, we set w1(t) = O.lcm3!s. The level of the tank h(t) is not 

controlled for this experiment. 

To obtain the model reference controller for the CSTR, the plant model was trained using a sample 

time of ts = 0.05 . We found that normalization was critical to obtaining a good controller. Controllers trained 

without normalized data were unsuccessful. Another important factor for the accurate training of the 

controller was considering the training modifications suggested in Chapter 6. The model reference controller 

requires dynamic training because of its recurrent architecture. The initial training resulted in saturation, 

oscillation and bad performance from the controller. As detailed in Chapter 6, the error surface of a recurrent 

network has spurious minima that occur in narrow valleys. These valleys can be mitigated by switching 

training sequences, using small random initial conditions and employing regularization. Using these 

techniques, we were able to obtain the controller response shown in Figure 7.4. 

73 
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Figure 7 .4: CSTR response and control action using the Model Reference Controller. 

7.1.1.2. Magnetic Levitation System (MagLev) 

In the second test problem, the objective is to control the position of a magnet suspended above an 

electromagnet, where the magnet is constrained so that it can only move in the vertical direction. The equation 

of motion is: 

d2y(t) = -g+ sgn(i(t))~i\t) _fdy(t) 
d/ My(t) M dt 

(7.3) 

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing in the 

electromagnet, M is the mass of the magnet, and g is the gravitational constant. The parameter 13 is a viscous 

friction coefficient that is determined by the material in which the magnet moves, and a is a field strength 
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constant that is determined by the number of turns of wire on the electromagnet and the strength of the 

magnet. The system is shown in Figure 7.5. 

Figure 7.5: Magnetic Levitation System 

Figure 7 .6 shows the system response and the control actions for the system after training using the 

model reference controller. We see that the system has a steady state error of between 3% and 6%. 

Magnetic Levitation Reference and Output 
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Figure 7.6: MagLev response using model reference control. 

7 .1.1.3. Robot Arm 

The objective in this application is to control the movement of a simple, single-link robot arm (see 

Figure 7 .7), where the equation of motion for the arm is: 

d2m d"' 
::::.....:i: = -I0sin<)>-2=+u 
dr2 dt 

(7.4) 
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where <)> is the angle of the arm, and u is the torque supplied by the DC motor. 

Figure 7.7: Single-Link Robot Arm 

Figure 7 .8 shows the response of the system using the model reference controller. The system is able 

to follow the reference, and the control actions are smooth. 

Robot Arm Reference and Output 
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Figure 7.8: Robot arm response. 

7.1.1.4. Simple Diesel Engine Model 

The objective of this application is to control the speed of a diesel engine [?] by adjusting the fueling. 

The fueling has a variable time delay as a function of the engine speed. That delay can vary from 10 to 50 

milliseconds and is reduced by the load applied to the engine. The effect of fueling Fis) is modeled by the 

following equation: 

60 
N(s) = 2·TC·l·sFis) · (7.5) 

where the engine inertia is / = 2 lb-ft-sec2, and N(s) is the engine speed. A constant feedback gain of 0.2 
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was introduced to simulate viscous friction. The delay in the fuel system is d(t) = 0.003 + 29.166 · N.(t), 

where Ns(t) is a saturated engine speed between 500 and 2400 rpm. Figure 7.9 shows a Simulink 

representation of the simple engine model. 

Signal to be delayed -------1 

torque 

-----I Delayed Signal 

Variable Time Delay with Memory 

Load 

Fuel system delay calculation 

td_fl(1) + td_fl(2)/u 

Figure 7.9: Simple Engine Model. 

Fueling1 

Figure 7.10 shows the engine speed for the model reference controller. The model reference 

controllers was able to control the engine including the effect of the variable delay in the fueling as shown in 

the next figure. 
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Figure 7.10: Engine speed using the model reference controller and Predictive Controller. 
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7 .2. Filter design. 

This section provides a second example of the application of the LDDN and dynamic 

backpropagation. We use a multi-loop recurrent network to predict the Mackey-Glass chaotic time series [2s, 

271. This model was derived as a model of blood production represented by the equation: 

du(t) = 
dt 

au(t-'t) -bu(t) 
l+u(t-1:) 10 

(7.6) 

where a= 0.2, b = 0.1 and u(t) represents the blood concentration at time t. For some patients with different 

pathologies the time 't increases and the blood concentration becomes chaotic for 't ~ 17 . Figure 7 .11 shows 

the training data for 't = 17 and u( 0) = 0.8 . 

1.3~-~--~-~--~-~--~-~-~ 

:: J J J j J j J J I 

0.7 

0.6 

o.5~-~--~-~--~-~--~~~----' 
0 50 100 150 200 

time(s) 
250 300 350 400 

Figure 7.11: Blood Concentration using the Mackey-Glass equation. 

The dynamic nature of the previous system makes the use of recurrent filter structures of great 

interest for prediction and control of this type of system. In the first part of this section we develop the 

dynamic training equations for the Mackey-Glass system. Then we present experimental results showing the 

prediction performance. 

Figure 7.12 shows the structure of the LORN used for predicting the Mackey-Glass chaotic time 

series. This is a modification proposed by Hagan et. al [t 9J of the cascaded recurrent neural network presented 

by Li and Haykin [271. In this network there are 3 cascaded recurrent structures with the output connected to 
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layer 6. We now show how these equations can be developed using our general BTT procedure, which was 

described in the flowchart of Chapter 5. The Backpropagation order is 6~5-4-3-2-1, so we start in the last layer 

in the backpropagation order (Layer 6) to get the following equations: 

S6,6(t) = F\n6(t)); U' = {6} ; E5(6) = 6 

5 5 
S6.5(t) = S6· 6(t)L W 6, 5(0)F (n (t)) 

S4,4(t) = F\n4(t)); U' = {6, 4} ; E5(4) = 4 

3 3 S4, 3(t) = S 4, 4(t)L W 4, 3(0)F (n (t)) 

sz,z(t) = F\n\t)); U' = {6, 4, 2} ; Es(2) = 2 

I I 
s2, 1(t) = s2,2(t)LW2, 1(o)F (n (t)) 

To compute the dynamic derivatives of the performance function with respect to the outputs of the 

system, we found that the only explicit derivative is with respect to output 6 

aeF = -2(p(t)- a6(t)) 
aa6(t) 

So the dynamic equations are: 

aF 
I LW3' 4(d/S4' 3(t+ d{ 

aF 
--= 

4 4 
aa (t) 

de D~. 4 
aa (t+d) 

aF LW1' 2(d/S2' 1ct+ d) 
T aF 

-2- = I . 2 
aa (t) 

de DL,, 2 
aa (t+d) 
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aF 

+ 
aa\t+d) 

de DL3, 2 
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Figure 7.12: Modified Cascaded Recurrent Neural Network 

For all layers we have 
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The previous process is repeated for each sample time in the training set. 

Finally we can obtain the gradient for each weight and bias by 

Q Q Q 

'i)F - "d3(t); 'i)F = "d3 (t) X [p 1(t-d){; aF3 2 = "d\t) X [a\t-d){ 
ah 3 - 1LJ= 1 a1w3• 1 (d) L..J aL w · (d) LJ 

t= 1 t= 1 

Q Q Q 
aF 1 aF I 1 T 'i)F 1 2 T - - "d (t); = "d (t)x[p (t-d)]; 12 = "d (t)x[a (t-d)] 
ah1 - 1L..J=1 a1w1• 1cd) LJ aLw · (d) LJ 

t = 1 t = 1 

After the network was trained, it was used to predict blood concentration. Figure 7.13 shows the 

actual and predicted signals when full dynamic backpropagation is used to train the LDDN. Figure 7.14 is a 

plot of the errors between actual and predicted signals. 
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Figure 7.13: Prediction Results for WDN with Full Dynamic Training 
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Figure 7.14: Errors for LDDN with Full Dynamic Training 

Appendix C shows a modification of the previous dynamic neural network using the full cascaded 

recurrent neural network presented by Li and Hay kin [Z7l, That appendix shows how the equations change for 

a similar architecture and how the algorithm is able to find the gradient calculation equations. 
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Chapter 8 

ALGORITHM COMPARISON 

This chapter will present memory, time and floating point operation comparisons for the gradient 

and Jacobian FP and BTT algorithm implementations using Matlab. The algorithms were tested for 33 

different dynamic neural networks. The diagrams of each network are shown in Appendix D. All tests were 

performed in a Windows 2000 Professional system with a Pentium 4 running at 1.7 GHz and 640 MB of 

system RAM. 

8.1. Memory requirements. 

Table 8. I shows the memory usage for the FP and BTT gradient algorithms. For each test network, 

the memory usage, the ratio ofBTT memory to FP memory, the total number of weights and biases, and the 

total number oflayers are presented. Except for two cases (network 32 and network 33), the BTT algorithm 

requires about IO percent more memory than the FP algorithm. In the cases where the FP algorithm required 

more memory, the network had more weights because there were more delays in the network structure. 

Table 8.2 shows the memory usage for the FP and BTT Jacobian algorithms. For each test network, the 

Jacobian BTT implementation requires about twice as much memory as the FP algorithm. 

Figure 8.1 and Figure 8.2 show the memory per weight required for the gradient and Jacobian 

algorithms. Networks with few weights need more memory per weight due to the baseline memory required 

to run the algorithm. Also, the BTT algorithm generally requires more memory per weight than the FP 

algorithm. 
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Table 8.1: FP and BTT Gradient memory comparison (bytes). 

Test Total Memory Weights Memory per Weiqht 
Network FP BTT BTT/FP Layers FP BTT W/L 

1 71952 85514 1.188 13 2 5535 6578 6.5 
2 102522 118050 1.151 31 3 3307 3808 10.3 
3 109688 121030 1.103 24 3 4570 5043 8.0 
4 134506 153006 1.138 40 3 3363 3825 13.3 
5 153444 171806 1.120 72 3 2131 2386 24.0 
6 136246 152646 1.120 29 3 4698 5264 9.7 
7 162296 179286 1.105 35 3 4637 5122 11.7 
8 160150 177430 1.108 17 4 9421 10437 4.3 
9 147948 165830 1.121 14 4 10568 11845 3.5 
10 107614 125338 1.165 31 2 3471 4043 15.5 
11 105920 117638 1.111 21 3 5044 5602 7.0 
12 160440 178862 1.115 38 3 4222 4707 12.7 
13 159296 179318 1.126 41 3 3885 4374 13.7 
14 170728 190454 1.116 44 3 3880 4329 14.7 
15 114474 133790 1.169 16 3 7155 8362 5.3 
16 94100 111754 1.188 22 2 4277 5080 11.0 
17 161802 190726 1.179 38 4 4258 5019 9.5 
18 189238 210662 1.113 17 5 11132 12392 3.4 
19 71952 85514 1.188 13 2 5535 6578 6.5 
20 165554 187294 1.131 12 5 13796 15608 2.4 
21 375912 404158 1.075 32 8 11747 12630 4.0 
22 197042 223042 1.132 19 6 10371 11739 3.2 
23 141256 161910 1.146 32 4 4414 5060 8.0 
24 186932 215388 1.152 40 5 4673 5385 8.0 
25 346856 392178 1.131 85 9 4081 4614 9.4 
26 47674 54474 1.143 3 1 15891 18158 3.0 
27 126964 155954 1.228 32 3 3968 4874 10.7 
28 454060 484850 1.068 81 10 5606 5986 8.1 
29 259240 301002 1.161 51 6 5083 5902 8.5 
30 48362 55098 1.139 4 1 12091 13775 4.0 
31 83538 98738 1.182 19 2 4397 5197 9.5 
32 318182 286450 0.900 101 6 3150 2836 16.8 
33 433800 366510 0.845 115 7 3772 3187 16.4 
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Table 8.2: FP and BTT Jacobian memory comparison (bytes). 

Test Total Memory Weights Memory per Weight 
Network FP BTT BTT/FP Layers FP BTT W/L 

1 78534 191894 2.443 13 2 6041 14761 6.5 
2 113956 231130 2.028 31 3 3676 7456 10.3 
3 121730 245686 2.018 24 3 5072 10237 8.0 

.4 150652 348006 2.310 40 3 3766 8700 13.3 
5 176126 320350 1.819 72 3 2446 4449 24.0 
6 154064 283078 1.837 29 3 5313 9761 9.7 
7 182698 374126 2.048 35 3 5220 10689 11.7 
8 178412 310514 1.740 17 4 10495 18266 4.3 
9 164082 287218 1.750 14 4 11720 20516 3.5 
10 121948 258910 2.123 31 2 3934 8352 15.5 
11 117506 188846 1.607 21 3 5596 8993 7.0 
12 181298 374158 2.064 38 3 4771 9846 12.7 
13 180610 375070 2.077 41 3 4405 9148 13.7 
14 192498 391078 2.032 44 3 4375 8888 14.7 
15 126972 288590 2.273 16 3 7936 18037 5.3 
16 105394 222846 2.114 22 2 4791 10129 11.0 
17 179912 364074 2.024 38 4 4735 9581 9.5 
18 209920 387198 1.845 17 5 12348 22776 3.4 
19 78534 191894 2.443 13 2 6041 14761 6.5 
20 182132 346174 1.901 12 5 15178 28848 2.4 
21 479878 1137402 2.370 32 8 14996 35544 4.0 
22 213912 384062 1.795 19 6 11259 20214 3.2 
23 156782 280930 1.792 32 4 4899 8779 8.0 
24 270594 630768 2.331 40 5 6765 15769 8.0 
25 446218 816954 1.831 85 9 5250 9611 9.4 
26 52444 105450 2.011 3 1 17481 35150 3.0 
27 140222 281946 2.011 32 3 4382 8811 10.7 
28 978386 1429918 1.462 81 10 12079 17653 8.1 
29 502194 864926 1.722 51 6 9847 16959 8.5 
30 291006 532358 1.829 4 1 72752 133090 4.0 
31 53284 110626 2.076 19 2 2804 5822 9.5 
32 92704 207702 2.240 101 6 918 2056 16.8 
33 355876 614310 1.726 115 7 3095 5342 16.4 
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Figure 8.1: Memory per Weight for gradient algorithms. 
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Figure 8.2: Memory per Weight for Jacobian algorithms. 

Table 8.3 and Table 8.4 show the memory usage for network 1 (Figure D.1) and network 31 (Figure 

D.31) as the size of the first layer is increased. The first network has feedforward delays. The second network 

has feedback delays from layer 1 to itself. Both networks have two layers. From the tables, we see that the 

memory for the BTT gradient algorithm increases faster than the FP gradient algorithm as the size of the first 
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layer increases. A different behavior is seen for the Jacobian algorithms, where the FP memory requirements 

increase faster than BTT as the the size of the first layer increases. 

Table 8.3: FP and BTT memory comparison (bytes) for network 1 as function of first layer size: 

Gradient Jacobian 
S1 FP BTT BTI/FP FP BTT BTT/FP Weights 
1 67276 75698 1.125 72642 173470 2.388 5 
3 72940 85858 1.177 79522 192238 2.417 13 
5 81740 101522 1.242 89538 216510 2.418 21 
7 93676 122690 1.310 102690 246286 2.398 29 
9 108748 149362 1.373 118978 281566 2.367 37 
11 126956 181538 1.430 138402 322350 2.329 45 
13 148300 219218 1.478 160962 368638 2.290 53 

Table 8.4: FP and BTTmemory comparison (bytes)for network 31 as function of first layer size. 

Gradient Jacobian 
S1 FP BTT BTT/FP FP BTI BTI/FP Weights 
1 76056 85998 1.131 83094 185442 2.232 5 
2 79688 91678 1.150 87638 195730 2.233 11 
3 84744 99182 1.170 93910 208146 2.216 19 
4 91320 108510 1.188 102006 222690 2.183 29 
5 99512 119662 1.202 112022 · 239362 2.137 41 
6 109416 132638 1.212 124054 258162 2.081 55 

Table 8.5 and Table 8.6 show the memory usage for the network 1 (Figure D.1) and network 31 

(Figure D.31) as the number of delays is increased. These tables show a different pattern than was seen for 

layer size. In this case, the memory requirements for the BTT gradient increase slower than those for the FP 

gradient as the number of delays increases. On the other hand, the memory requirements for the BTT Jacobian 

increase faster than those for the FP Jacobian. 

Table 8.5: FP and BTT memory comparison (bytes) for network 1 as function of number of delays. 

Gradient Jacobian 
ND FP BTT BTI/FP FP BTT BTT/FP Weights 
1 72940 85858 1.177 79522 192238 2.417 13 
3 77836 89506 1.150 85330 216238 2.534 19 
5 83500 93154 1.116 91906 241966 2.633 25 
7 89932 96802 1.076 99250 269422 2.715 31 
9 97132 100450 1.034 107362 298606 2.781 37 
11 105100 104098 0.990 116242 329518 2.835 43 
13 113836 107746 0.947 125890 362158 2.877 49 
15 123340 111394 0.903 136306 396526 2.909 55 
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Table 8.6: FP and BTT memory comparison (bytes) for network 31 as fimction of number of delays. 

Gradient Jacobian 
ND FP BTT BTT/FP FP BTT BTT/FP Weiqhts 
1 84744 99182 1.170 93910 208146 2.216 19 
2 88472 101414 1.146 99006 221250 2.235 28 
3 92776 103646 1.117 104678 234786 2.243 37 
4 97656 105878 1.084 110926 248754 2.243 46 
5 103112 108110 1.048 117750 263154 2.235 55 
6 109144 110342 1.011 125150 277986 2.221 64 

Table 8.7 and Table 8.8 shown the memory usage for the network 1 (Figure D.l) and network 31 

(Figure D.31) as the number of samples of the training sequence is increased. These tables shown that the 

memory requirements for the BTT gradient and Jacobian increase faster than those for the FP gradient and 

Jacobian as the number of samples increases. 

Table 8.7: FP and BTT memory comparison (bytes) for network 1 as function of number of samples. 

Gradient Jacobian 
NS FP BTT BTT/FP FP BTT BTT/FP 

20 79662 91330 1.146 87164 218070 2.502 
40 106702 133650 1.253 123164 558790 4.537 
60 133742 175970 1.316 159164 1072310 6.737 
80 160782 218290 1.358 195164 1758630 9.011 

100 187822 260610 1.388 231164 2617750 11.324 
120 214862 302930 1.410 267164 3649670 13.661 
140 241902 345250 1.427 303164 4854390 16.012 
160 268570 387570 1.443 339164 6231910 18.374 
180 295890 429890 1.453 375164 7782230 20.744 
200 323022 472210 1.462 411164 9505350 23.118 
220 350062 514530 1.470 447164 11401270 25.497 
240 377102 556850 1.477 483164 13469990 27.879 
260 404142 559170 1.384 519164 (*) (*) 
280 431182 641490 1.488 555164 (*) (*) 
300 458222 683810 1.492 591164 (*) (*) 
400 593422 895410 1.509 771164 (*) (*) 
500 728622 1107010 1.519 951164 (*) (*) 
600 863822 1318610 1.526 1131164 (*) (*) 

1000 1404622 2165010 1.541 1851164 (*) (*) 
5000 6812622 10629010 1.560 9051164 (*) (*) 

(*) Tests were not performed due to computer memory limitations. 
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Table 8.8: FP and BTT memory comparison (bytes) for network 31 as function of number of samples. 

Gradient Jacobian 
NS FP BTT BTT/FP FP BTT BTT/FP 

20 94770 105638 1.115 106680 236786 2.220 
40 128210 156598 1.221 153720 590786 3.843 
60 161650 207558 1.284 200760 1117586 5.567 
80 195090 258518 1.325 247800 1817186 7.333 

100 228530 309478 1.354 294840 2689586 9.122 
120 261970 360438 1.376 341880 3734786 10.924 
140 295410 411398 1.393 388920 4952786 12.735 
160 328850 462358 1.406 435960 6343586 14.551 
180 362290 513318 1.417 483000 7907186 16.371 
200 395730 564278 1.426 530040 9643586 18.194 
220 429170 615238 1.434 577080 11552786 20.019 
240 462610 666198 1.440 624120 13634786 21.846 
260 496050 717158 1.446 671160 (*) (*) 
280 529490 768118 1.451 718200 (*) (*) 
300 562930 819078 1.455 795240 (*) (*) 
400 760130 1073878 1.413 1000440 (*) (*) 
500 897330 1328678 1.481 1235640 (*) (*) 
600 1064530 1583478 1.487 1470840 (*) (*) 

1000 1733330 2602678 1.502 2413330 (*) (*) 
5000 8421330 12794678 1.519 11819640 (*) (*) 

(*) Tests were not performed due to computer memory limitations. 

89 



8.2. Speed Comparison. 

Table 8.9 shows the average time required to compute the gradient for each one of the test networks 

using FP and BTT. The BTT gradient is between 1.7 and 3.8 times faster than the FP gradient. Table 8.10 

shows a similar table for the FP and BTT Jacobian. Here the FP Jacobian is between 1.2 and 4.2 times faster 

than the BTT Jacobian. 

Table 8.9: FP and BTT Gradient time comparison. 

Test Total Time (ms) Weights Time per Weiqht (ms) 
Network FP BTT BTT/FP Layers FP BTT W/L 

1 394.7 186.4 0.472 13 2 30.4 14.3 6.5 
2 570.3 258.5 0.453 31 3 18.4 8.3 10.3 
3 761.8 347.7 0.456 24 3 31.7 14.5 8.0 
4 1173.5 515.6 0.439 40 3 29.3 12.9 13.3 
5 1240.9 513.5 0.414 72 3 17.2 7.1 24.0 
6 1429.9 577.8 0.404 29 3 49.3 19.9 9.7 
7 2817.9 958.3 0.340 35 3 80.5 27.4 11. 7 
8 1705.1 652.4 0.383 17 4 100.3 38.4 4.3 
9 1350.9 559.7 0.414 14 4 96.5 40.0 3.5 
10 937.7 428.1 0.457 31 2 30.2 13.8 15.5 
11 593.9 286.5 0.482 21 3 28.3 13.6 7.0 
12 2369.4 839.0 0.354 38 3 62.4 22.1 12.7 
13 1952.3 755.8 0.387 41 3 47.6 18.4 13.7 
14 2877.3 965.3 0.335 44 3 65.4 21.9 14.7 
15 1078.1 468.5 0.435 16 3 67.4 29.3 5.3 
16 838.1 356.9 0.426 22 2 38.1 16.2 11.0 
17 1812.8 677.5 0.374 38 4 47.7 17.8 9.5 
18 2619.5 888.0 0.339 17 5 154.1 52.2 3.4 
19 398.2 187.9 0.472 13 2 30.6 14.5 6.5 
20 1957.9 725.6 0.371 12 5 163.2 60.5 2.4 
21 8902.1 2411.5 0.271 32 8 278.2 75.4 4.0 
22 2180.5 817.2 0.375 19 6 114.8 43.0 3.2 
23 972.3 413.3 0.425 32 4 30.4 12.9 8.0 
24 1271.9 514.6 0.405 40 5 31.8 12.9 8.0 
25 3095.4 1113.4 0.360 85 9 36.4 13.1 9.4 
26 225.1 119.9 0.533 3 1 75.0 40.0 3.0 
27 917.5 374.6 0.408 32 3 28.7 11.7 10.7 
28 9181.3 2367.4 0.258 81 10 113.3 29.2 8.1 
29 8303.0 2244.2 0.270 51 6 162.8 44.0 8.5 
30 4286.0 1258.6 0.294 4 1 1071.5 314.7 4.0 
31 246.5 137.1 0.556 19 2 13.0 7.2 9.5 
32 598.6 275.9 0.461 101 6 5.9 2.7 16.8 
33 4018.7 1398.8 0.348 115 7 34.9 12.2 16.4 
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Table 8.10: FP and BTT Jacobian time comparison. 

Test Total Time (ms) Weights Time per Weight (ms) 
Network FP BTT BTT/FP Layers FP BTT W/L 

1 395.7 980.3 2.477 13 2 30.4 75.4 6.5 
2 572.8 1181.7 2.063 31 3 18.5 38.1 10.3 
3 780.2 1858.9 2.383 24 3 32.5 77.5 8.0 
4 1183.7 2985.2 2.522 40 3 29.6 74.6 13.3 
5 1254.7 2886.6 2.301 72 3 17.4 40.1 24.0 
6 1436.8 3338.1 2.323 29 3 49.5 115.1 9.7 
7 2839.9 6400.6 2.254 35 3 81.1 182.9 11.7 
8 1709.5 3491.2 2.042 17 4 100.6 205.4 4.3 
9 1369.0 2791.1 2.039 14 4 97.8 199.4 3.5 
10 944.5 2603.7 2.757 31 2 30.5 84.0 15.5 
11 604.2 1291.9 2.138 21 3 28.8 61.5 7.0 
12 2368.8 5461.6 2.306 38 3 62.3 143.7 12.7 
13 1956.1 4558.8 2.331 41 3 47.7 111.2 13.7 
14 2890.8 6423.5 2.222 44 3 65.7 146.0 14.7 
15 1090.5 2611.9 2.395 16 3 68.2 163.2 5.3 
16 843.7 2072.5 2.456 22 2 38.4 94.2 11.0 
17 1835.0 3630.6 1.979 38 4 48.3 95.5 9.5 
18 2640.8 4923.2 1.864 17 5 155 .. 3 289.6 3.4 
19 397.1 965.3 2.431 13 2 30.5 74.3 6.5 
20 1952.3 3614.8 1.852 12 5 162.7 301.2 2.4 
21 9358.7 25048.0 2.676 32 8 292.5 782.8 4.0 
22 2196.9 3925.7 1.787 19 6 115.6 206.6 3.2 
23 978.5 1810.3 1.850 32 4 30.6 56.6 8.0 
24 1544.1 6627.6 4.292 40 5 38.6 165.7 8.0 
25 3438.0 8609.3 2.504 85 9 40.4 101.3 9.4 
26 230.3 599.9 2.605 3 1 76.8 200.0 3.0 
27 935.9 1794.5 1.917 32 3 29.2 56.1 10.7 
28 9193.8 11360.3 1.236 81 10 113.5 140.3 8.1 
29 8282.0 10927.0 1.319 51 6 162.4 214.3 8.5 
30 4317.1 6613.9 1.532 4 1 1079.3 1653.5 4.0 
31 248.3 743.0 2.992 19 2 13.1 39.1 9.5 
32 612.2 1403.0 2.292 101 6 6.1 13.9 16.8 
33 4089.3 8985.9 2.197 115 7 35.6 78.1 16.4 

Table 8.11 and Table 8.12 show the time required to compute the gradient and Jacobian for 

network l (Figure D. l) and network 31 (Figure D.31) as the size of the first layer is increased. The BTT 

gradient algorithm is approximately twice as fast as the FP gradient for all sizes. However, the FP Jacobian 

is approximately three times as fast as BTT Jacobian for all sizes. 
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Table 8.11: FP and BTT time comparison for network 1 as function of first layer size (msec). 

Gradient Jacobian 
S1 FP BTI BTI/FP FP BTT BTT/FP Weights 
1 147.4 78.3 0.531 140.7 452.0 3.213 5 
3 143.0 77.7 0.543 146.4 459.6 3.139 13 
5 144.7 76.1 0.526 148.3 465.4 3.138 21 
7 149.1 80.4 0.539 150.2 475.6 3.166 29 
9 153.8 84.9 0.552 154.7 484.4 3.131 37 
11 158.7 87.5 0.551 158.5 485.8 3.065 45 
13 165.0 92.8 0.562 167.6 495.6 2.957 53 

Table 8.12: FP and BTT time comparison for network 31 asfimction of first layer size (msec). 

Gradient Jacobian 
S1 FP BTT BTI/FP FP BTT BTT/FP Weights 
1 220.1 109.1 0.496 225.7 712.5 3.157 5 
2 226.8 112.0 0.494 236.1 735.8 3.116 11 
3 230.1 116.5 0.506 239.4 740.5 3.093 19 
4 235.2 116.8 0.497 240.9 743.9 3.088 29 
5 243.7 120.3 0.494 245.0 751.5 3.067 41 
6 257.6 126.7 0.492 260.5 771.0 2.960 55 

Table 8.13 and Table 8.14 shown the time comparison as we increase the number of delays. The time 

between FP gradient and BTT gradient tends to get closer as the number of delays increases. On the other 

hand, the BTT Jacobian tends to get much slower than the FP Jacobian as the number of delays increases. 

Table 8.13: FP and BTT time comparison for network 1 as function of number of delays (msec). 

Gradient Jacobian 
ND FP BTT BTT/FP FP BTT BTT/FP Weights 
1 142.3 77.7 0.546 142.8 456.7 3.198 13 
3 150.7 93.8 0.622 151.5 616.3 4.068 19 
5 159.0 110.6 0.696 158.8 774.1 4.875 25 
7 171.0 126.3 0.739 170.2 931.5 5.473 31 
9 180.8 144.3 0.798 182.1 1105.9 6.073 37 
11 194.8 161.4 0.829 198.1 1266.6 6.394 43 
13 207.9 176.6 0.849 209.1 1426.6 6.823 49 
15 223.2 195.6 0.876 226.9 1592.3 7.018 55 
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Table 8.14: FP and BTT time comparison for network 31 as fimction of number of delays (msec). 

Gradient Jacobian 
ND FP BTT BTI/FP FP BTT BTT/FP Weights 
1 229.3 114.1 0.498 234.6 736.8 3.141 19 
2 241.9 132.2 0.547 250.3 901.7 3.602 28 
3 254.2 148.0 0.582 261.4 1079.2 4.129 37 
4 271.7 168.7 0.621 276.7 1241.3 4.486 46 
5 291.5 185.8 0.637 296.2 1412.5 4.769 55 
6 312.5 203.7 0.652 317.6 1580.9 4.978 64 

Table 8.15 and Table 8.16 shown the time comparison as we increase the number of samples of the 

training sequence. The time between FP gradient and BTT gradient tends to get closer as the number of 

samples increases. For a large number of samples, FP becomes a better option than BTT for computing the 

gradient. On the other hand, the BTT Jacobian tends to get much slower than the FP Jacobian as the number 

of samples increases. 

Table 8.15: FP and BTT time comparison for network 1 as fimction of number of samples (msec). 

Gradient Jacobian 
NS FP BTT BTT/FP FP BTT BTT/FP 

20 163.7 140.0 0.855 150.5 360.5 2.395 
40 280.0 147.0 0.525 285.5 1517.0 5.313 
60 414.0 230.3 0.556 425.0 5092.5 11.982 
80 557.7 310.3 0.556 566.0 13700.0 24.205 

100 687.7 397.3 0.578 706.0 28251.0 40.016 
120 828.0 494.3 0.597 836.5 47934.0 57.303 
140 967.7 597.7 0.618 981.0 77956.5 79.466 
160 1118.3 711.0 0.636 1146.0 121474.5 105.999 
180 1252.0 828.0 0.661 1262.0 184525.5 146.217 
200 1408.7 965.0 0.685 1447.0 270569.5 186.987 
220 1532.3 1071.3 0.699 1552.5 378234,0 243.629 
240 1676.0 1222.0 0.729 1687.0 523673.5 310.417 
260 1829.0 1368.7 0.748 1838.0 (*) (*) 
280 1956.3 1515.7 0.775 1978.0 (*) (*) 
300 2093.0 1676.0 0.801 2113.0 (*) (*) 
400 2857.7 2814.0 0.985 2829.0 (*) (*) 
500 3495.0 3731.7 1.068 3535.5 (*) (*) 
600 4152.7 4957.0 1.194 4251.0 (*) (*) 

1000 7050.3 14040.3 1.991 7245.0 (*) (*) 
5000 40054.0 743108.7 18.553 46877.5 (*) (*) 

(*) Tests were not performed due to computer memory limitations. 
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Table 8.16: FP and BTT time comparison for network 31 as function of number of samples (msec). 

Gradient Jacobian 
NS FP BTT BTT/FP FP BTT BTT/FP 

20 230.3 110.0 0.478 230.5 596.0 2.586 
40 471.0 240.0 0.510 465.5 2538.5 5.453 
60 684.3 360.7 0.527 696.0 7736.0 11.115 
80 911.3 501.0 0.550 926.5 18737.0 20.223 

100 1141.7 657.7 0.576 1162.0 37138.5 31.961 
120 1378.7 821.0 0.595 1392.0 67517.0 48.504 
140 1609.0 1001.7 0.623 1617.5 111129.5 68.704 
160 1849.3 1178.7 0.637 1893.0 167681.0 88.580 
180 2069.7 1375.3 0.664 2078.0 233611.0 112.421 
200 2355.2 1604.2 0.681 2409.0 329509.0 136.782 
220 2540.0 1816.3 0.715 2618.5 448520.0 171.289 
240 2764.0 2063.0 0.746 2789.0 608810.5 218.290 
260 2991.0 2313.7 0.774 3019.5 (*) (*) 
280 3228.3 2584.0 0.800 3259.5 (*) (*) 
300 3465.0 2894.3 0.835 3500.0 (*) (*) 
400 4642.7 4649.7 1.002 4682.0 (*) (*) 
500 5818.0 6930.0 1.191 5868.0 (*) (*) 
600 6945.0 9724.0 1.400 7076.0 (*) (*) 

1000 11947.0 29422.0 2.463 12193.0 (*) (*) 
5000 78362.0 1488820.0 18.999 87185.5 (*) (*) 

(*) Tests were not performed due to computer memory limitations. 
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8.3. Computational complexity. 

The complexities of the various algorithms are dependent on the number of weights in the network, 

N, and also on the length of the training sequence, T. In this section we will.analyze experiments to verify the 

complexity of each algorithm in terms of both N and T. We begin with some background discussion of 

complexity that will help in understanding the tables that follows. 

Let's say that the number of flops required for certain algorithm is O(Nk): 

As N ~ oo this can be approximated as 

Ifwe take the log of the number of flops to the base Nwe have 

log Jtops = log ,,flk + klog NN 

= log,y1k + k 

As N ~ oo this should approach k. Ifwe know k, we can find ak through the following 

Ifwe know ak, we can then check the value ofk by 

We will be using Eq. (8.3), Eq. (8.4) and Eq. (8.5) in the tables in this section in order to 

experimentally verify the order of the complexity of the various algorithms. 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

As mentioned earlier, it is best to view the complexity of the algorithms to be functions of two 

variables: the number of weights in the network, N, and the number of time steps in the training sequence or 

samples, T. We will begin by testing the effect of Non algorithm complexity. We will do this in two ways: 

first, we will increase the number ofneurons in the first layer of the network, then we will increase the number 

of delays in the network. Next, we will test the effect of Ton algorithm complexity by holding the network 

architecture fixed while we increase the length of the training sequence. 
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Table 8.17 and Table 8.19 show the floating point operations required to compute the gradient and 

Jacobian for network 1 (Figure D.l) and network 31 (Figure D.31) as the size of the first layer is increased, 

for sequences of 20 samples and with the number of delays equal to 1. The BTT algorithm requires fewer 

computations than the FP algorithm for the gradient calculation, but more computations than the FP algorithm 

for the Jacobian calculations. As the size of the first layer increases, the number of flops for the BTT gradient 

increases slower than the n_11mber of flops for the FP gradient. For the Jacobian calculations, the number of 

flops for FP and BTT tend to get closer as the size of the first layer increases. 

Next, let's.examine these experiments in a more qualitative way, using Eq. (8.3), Eq. (8.4) and Eq. 

(8.5). Table 8.17 and Table 8.19 show logN(flops) on the right side of the tables. From Eq. (8.3) this value 

should approach k as N increases. 

In Table 8.18 and Table 8.20 we use Eq. (8.4) and Eq. (8.5). The columns labeled FI (k) represent 

Eq. (8.4) and the columns labeled.F2 represent Eq. (8.5). For example, the second column in Table 8.18 

indicates that ak = 0.63 . Using this value in Eq. (8.5), we obtain column three in Table 8.18, which indicates 

that k = 3. This means that the FP algorithm for the gradient calculation is O(N3). 

Summarizing the results from the tables, the data suggests that for network 1 the FP gradient and 

Jacobian algorithms are O(N3), and the BTT algorithms are O(N'2). For network 31, the FP algorithms are 

O(N2 ) and the BTT algorithms are O(Nl.5). Network 31 contains feedback. while network 1 does not; this 

seems to explain the differences in algorithm complexity, and similar results were seen in other tests not 

shown here. 
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S1 
1 
3 
5 
7 
9 

11 
13 
20 
40 
60 
80 
100 
200 
300 
400 
500 
600 

FP 
3782 
8802 

19402 
35522 
65082 

104014 
156202 
471112 

3131512 
9903912 

22708312 
43464712 

333726712 
1110788712 
2614650712 
5085312723 
8762774712 

Table 8.17: FP and BTT floating point operations for network I asjimction of first layer size. 

Flops log N ( Flops ) 

Gradient Jacobian Gradient Jacobian 
BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weiqhts (N) 

1515 0.401 4917 18807 3.825 5.12 4.55 5.28 6.12 5 
3035 0.345 9923 34767 3.504 3.54 3.13 3.59 4.08 13 
5475 0.282 20523 60387 2.942 3.24 2.83 3.26 3.62 21 
8875 0.250 38643 96087 2.487 3.11 2.70 3.14 3.41 29 

13235 0.203 66203 141867 2.143 3.07 2.63 3.07 3.29 37 
18555 0.178 105123 197727 1.881 3.03 2.58 3.04 3.20 45 
24835 0.159 157323 263667 1.676 3.01 2.55 3.01 3.14 53 
54288 0.115 472323 573837 1.215 2.97 2.48 2.97 3.02 81 

203488 0.065 3132723 2140437 0.683 2.94 2.41 2.94 2.87 161 
448688 0.045 9905123 4715037 0.476 2.94 2.37 2.94 2.80 241 
789888 0.035 22709523 8297637 0.365 2.93 2.35 2.93 2.76 321 

1227088 0.028 43465923 12888240 0.297 2.93 2.34 2.93 2.73 401 
4853088 0.015 333727923 50961237 0.153 2.94 2.30 2.94 2.65 801 

10879088 0.010 1110789923 114234237 0.103 2.94 2.28 2.94 2.62 1201 
19305088 0.007 2614651923 202707237 0.078 2.94 2.27 2.94 2.59 1601 
30131091 0.006 5085313923 316380237 0.062 2.94 2.27 2.94 2.57 2001 
43357088 0.005 8762775923 455253237 0.052 2.94 2.26 2.94 2.56 2401 



~ 

Table 8.18: FP and BTT constant calculations for floating point operations for network 1 as a function of.first layer size. 

FP Gradient 
S1 F1 (3) I F2 
1 30.26 5.406 
3 4.01 3.721 
5 2.10 3.395 
7 1.46 3.249 
9 1.28 3.197 
11 1.14 3.156 
13 1.05 3.128 
20 0.89 3.078 
40 0.75 3.034 
60 0.71 3.021 
80 0.69 3.015 

100 0.67 3.011 
200 0.65 3.005 
300 0.64 3.002 
400 0.64 3.002 
500 0.63 3.001 
600 0.63 3.001 

Const. 0.631 

BTT Gradient 
F1(2) I F2 

60.60 3.298 
17.96 2.340 
12.41 2.166 
10.55 2.101 
9.67 2.070 
9.16 2.053 
8.84 2.041 
8.27 2.022 
7.85 2.009 
7.73 2.005 
7.67 2.004 
7.63 2.003 
7.56 2.001 
7.54 2.001 
7.53 2.001 
7.53 2.000 
7.52 2.000 

7.51 

FI(k) = Nog,1..Flops)-k 

F2 = Iog}/..FlopslConst) 

FP Jacobian BTT Jacobian 
F1(3) I F2 F1 (2) I F2 

39.34 5.569 752.28 3.400 
4.52 3.768 205.72 2.373 
2.22 3.413 136.93 2.181 
1.58 3.274 114.25 2.110 
1.31 3.202 103.63 2.075 
1.15 3.159 97.64 2.056 
1.06 3.130 93.87 2.043 
0.89 3.078 87.46 2.023 
0.75 3.034 82.58 2.009 
0.71 3.021 81.18 2.005 
0.69 3.015 . 80.53 2.003 
0.67 3.011 80.15 2.002 
0;65 3.005 79.43 2.001 
0.64 3.002 79.20 2.000 
0.64 3.002 79.08 2.000 
0.63 3.001 79.02 2.000 
0.63 3.001 78.97 2.000 
0.631 791 
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S1 
1 
2 
3 
4 
5 
6 
10 
20 
40 
60 
80 
100 
200 

FP 
4755 

13155 
29695 
60515 

111615 
189955 
948515 

10329315 
132158915 
617012515 

1870010115 
4449871715 

67559339715 

Table 8.19: FP and BTT floating point operations for network 31 as fimction of first layer size. 

Flops log N ( Flops ) 

Gradient Jacobian Gradient Jacobian 
BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N) 

1955 0.411 6268 31886 5.087 5.26 4.71 5.43 6.44 5 
4135 0.314 14668 53066 3.618 3.96 3.47 4.00 4.54 11 
7495 0.252 31208 86066 2.758 3.50 3.03 3.51 3.86 19 

12455 0.206 62028 135106 2.178 3.27 2.80 3.28 3.51 29 
19255 0.173 113128 202706 1.792 . 3.13 2.66 3.13 3.29 41 
28135 0.148 191468 291386 1.522 3.03 2.56 3.04 3.14 55 
89255 0.094 950028 907306 0.955 2.82 2.34 2.82 2.81 131 

505255 0.049 10330828 5157506 0.499 2.63 2.14 2.63 2.52 461 
3281255 0.025 132160428 33841906 0.256 2.51 2.01 2.51 2.33 1721 

10249255 0.017 617014028 106238306 0.172 2.46 1.96 2.46 2.24 3781 
23329255 0.012 1870011628 242506706 0.130 2.43 1.93 2.43 2.19 6641 
44441255 0.010 4449873228 462807106 0.104 2.40 1.91 2.40 2.16 10301 

337681255 0.005 67559341228 3530389106 0.052 2.35 1.85 2.35 2.07 40601 
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Table 8.20: FP and BTTconstant calculations for floating point operations for network 31 as afimction of first layer size. 

FP Gradient 
S1 F1 (2) I F2 
1 190.20 2.969 
2 108.72 2.417 
3 82.26 2.245 
4 71.96 2.174 
5 66.40 2.136 
6 62.80 2.113 
10 55.27 2.066 
20 48.60 2.032 
40 44.62 2.015 
60 43.16 2.009 
80 42.40 2.007 
100 41.94 2.005 
200 40.98 2.002 

Const. 401 

BTT Gradient FP Jacobian 
F1(1.5) I F2 F1 (2) I 

174.86 2.401 250.72 
113.34 1.924 121.22 
90.50 1.769 86.45 
79.75 1.698 73.76 
73.34 1.657 67.30 
68.98 1.630 63.30 
59.53 1.576 55.36 
51.05 1.536 48.61 
45.96 1.515 44.62 
44.08 1.509 43.16 
43.11 1.506 42.40 
42.51 1.504 41.94 
41.28 1.501 40.98 

41 I 401 

FI (k) = Nog,1._Flops)-k 

F2 = IogMFlopslConst) 

F2 
3.140 
2.462 
2.262 
2.182 
2.140 
2.115 
2.067 
2.032 
2.015 
2.009 
2.007 
2.005 
2.002 

BTT Jacobian 
F1(1.5) I F2 Weights (N) 
2851.97 2.674 5 
1454.55 2.007 11 
1039.20 1.799 19 
865.12 1.707 29 
772.13 1.657 41 
714.37 1.626 55 
605.13 1.570 131 
521.06 1.531 461 
474.01 1.513 1721 
456.95 ,1 .507 3781 
448.10 1.504 6641 
442.67 1.503 10301 
431.54 1.500 40601 

431 I 



Now we will describe experiments in which we change N by adjusting the number of delays in the 

network. Table 8.21 and Table 8.23 show the floating point operations required to compute the gradient and 

Jacobian for network I and network 31 as the number of delays is increased, for sequences of20 samples 

and with the size of the first layer equal to 3 neurons. Table 8.22 and Table 8.24 use Eq. (8.4) and Eq. (8.5) 

to help determine the complexity of the algorithms. 

The results here are simpler than those described on previous pages for changes in layer size. Here 

we find that the FP algorithms are O(N2) and the BTT algorithms are O(N), and the result does not seem to 

be architecture dependent. 
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Table 8.21: FP and BTT floating point operations for network 1 as fimction of number of delays. 

Flops log N ( Flops ) 

Gradient Jacobian Gradient Jacobian 
ND FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N) 
1 8802 3035 0.345 9923 34767 3.504 3.54 3.13 3.59 4.08 13 
3 16402 3995 0.244 17523 44467 2.538 3.30 2.82 3.32 3.63 19 
5 26882 4955 0.184 28003 54167 1.934 3.17 2.64 3.18 3.39 25 
7 40152 5828 0.145 41363 63867 1.544 3.09 2.52 3.10 3.22 31 
9 56392 6788 0.120 57603 73567 1.277 3.03 2.44 3.04 3.10 37 

11 75512 7748 0.103 76723 83267 1.085 2.99 2.38 2.99 3.01 43 
13 97512 8708 0.089 98723 92967 0.942 2.95 2.33 2.95 2.94 49 
15 122392 9668 0.079 123603 102667 0.831 2.92 2.29 2.93 2.88 55 
20 197192 12068 0.061 198403 126917 0.640 2.87 2.21 2.87 2.77 70 
40 676394 21668 0.032 677603 223917 0.330 2.76 2.05 2.76 2.53 130 

..... 60 1443592 31268 0.022 1444803 320917 0.222 2.70 1.97 2.70 2.42 190 
~ 80 2498792 40868 0.016 2500003 417917 0.167 2.67 1.92 2.67 2.34 250 

100 3841992 50468 0.013 3843203 514917 0.134 2.64 1.89 2.64 2.29 310 
200 14878011 98468 0.007 14879203 999991 0.067 2.58 1.79 2.58 2.15 610 
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Table 8.22: FP and BTT constant calculations for floating point operations for network 1 as a function of number of delayi 

FP Gradient 
ND F1(2) I F2 
1 52.08 2.103 
3 45.43 2.043 
5 43.01 2.023 
7 41.78 2.013 
9 41.19 2.008 -

11 40.84 2.006 
13 40.61 2.004 
15 40.46 2.003 
20 40.24 2.001 
40 40.02 2.000 
60 39.99 2.000 
80 39.98 2.000 
100 39.98 2.000 
200 39.98 2.000 

Const. 401 -

BTT Gradient FP Jacobian 
F1 (1) I F2 fl(2) I 
233.46 1.145 58.72 
210.26 1.091 48.54 
198.20 1.065 44.80 
188.00 1.045 43.04 
183.46 1.036 · 42.08 
180.19 1.030 41.49 
177.71 1.025 41.12 
175.78 1.022 40.86 
172.40 1.016 40.49 
166.68 1.007 40.09 
164.57 1.004 40.02 
163.47 1.003 40.00 
162.80 1.002 39.99 
161.42 1.000 39.99 

161 I 401 

Fl (k) = Nlog,,(.Flops) -k 

F2 = logJ!._FlopslConst) 

F2 
2.150 
2.066 
2.035 
2.021 
2.014 
2.010 
2.007 
2.005 
2.003 
2.000 
2.000 
2.000 
2.000 
2.000 

BTT Jacobian 
F1(1) I F2 Weights (N) 
2674.38 1.200 13 
2340.37 1.129 19 
2166.68 1.094 25 
2060.23 1.074 31 
1988.30 1.060 37 
1936.44 1.051 43 
1897.29 1.044 49 
1866.67 1.038 55 
1813.10 1.029 70 
1722.44 1.015 130 
1689.04 1.010 190 
1671.67 1.008 250 
1661.02 1.007 310 
1639.3.3 1.004 610 

16001 



Table 8.23: FP and BTT floating point operations for network 31 as fimction of number of delays. 

Flops log N ( Flops ) 

Gradient Jacobian Gradient Jacobian 
ND FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N) 
1 29695 7495 0.252 31208 86066 2.758 3.50 3.03 3.51 3.86 19 
2 59315 11095 0.187 60828 123676 2.033 3.30 2.80 3.31 3.52 28 
3 97575 14695 0.151 99088 161286 1.628 3.18 2.66 3.19 3.32 37 
4 144475 18295 0.127 145988 198896 1.362 3.10 2.56 3.11 3.19 46 
5 200015 21895 0.109 201528 236506 1.174 3.05 2.49 3.05 3.09 55 
6 264195 25495 0.097 265708 274116 1.032 3.00 2.44 3.00 3.01 64 
10 607315 39895 0.066 608828 424556 0.697 2.89 2.30 2.89 2.81 100 
20 2069915 75895 0.037 2071428 800656 0.387 2.77 2.14 2.77 2.59 190 
40 7587115 147895 0.019 7588628 1552856 0.205 2.68 2.01 2.68 2.41 370 
60 16560317 219895 0.013 16561828 2305056 0.139 2.63 1.95 2.63 2.32 550 
80 28989515 291895 0.010 28991031 3057256 0.105 2.61 1.91 2.61 2.26 730 .... 

$: 100 44874715 363895 0.008 44876228 3809456 0.085 2.59 1.88 2.59 2.22 910 



Table 8.24: FP and BTT constant calculations for floating point operations for network 1 as a function of number of delays. 

FP Gradient BTT Gradient FP Jacobian BTT Jacobian 
ND F1(2) I F2 F1 (1) I F2 F1 (2) I F2 F1 (1) I F2 Weights (N) 
1 82.26 2.143 394.47 0.995 86.45 2.160 4529.79 1.027 19 
2 75.66 2.101 396.25 0.997 77.59 2.109 4417.00 1.016 28 
3 71.27 2.077 397.16 0.998 72.38 2.081 4359.08 1.011 37 
4 68.28 2.061 397.72 0.999 68.99 2.064 4323.83 1.008 46 
5 66.12 2.051 398.09 0.999 66.62 2.052 4300.11 1.007 55 
6 64.50 2.043 398.36 0.999 64.87 2.044 4283.06 1.006 64 
10 60.73 2.026 398.95 0.999 60.88 2.026 4245.56 1.003 100 
20 57.34 2.011 399.45 1.000 57.38 2.012 4213.98 1.001 190 
40 55.42 2.004 399.72 1.000 55.43 2.004 4196.91 1.000 370 
60 54.74 2.002 399.81 1.000 54.75 2.002 4191.01 1.000 550 
80 54.40 2.001 399.86 1.000 54.40 2.001 4188.02 1.000 730 
100 54.19 2.001 399.88 1.000 54.19 2.001 4186.22 1.000 910 

...... Const. 541 4001 541 41861 
~ 

FI (k) = NlogJ,Flops)-k 

F2 = logN(FlopslConst) 



For the final experiments in this chapter we will investigate the effect of training sequence length, 

T, on the complexity of the algorithms. Table 8.25 and Table 8.27 presents the flops for network 1 and 

network 31 for a neural network with hidden layer size of 3 with 3 delays. The number of samples was 

increased from 20 to 5000. Each neural network has two layers, with 19 weights for network 1 and 3 7 weights 

for network 31. Table 8.26 and Table 8.28 use Eq. (8.4) and Eq. (8.5) to identify the complexity of the 

algorithms. 

The main results from these tests are that the FP gradient and Jacobian algorithms and the BTT 

gradient algorithm are O(T), while the BTT Jacobian algorithm is O(T2 ). 
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Table 8.25: FP and BTT floating point operations for network I as a function of number of samples. 

Flops log r (Flops ) 

Gradient Jacobian Gradient Jacobian 
T FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT 
20 16312 3908 0.240 17523 44467 2.538 3.24 2.76 3.26 3.57 
40 32592 7768 0.238 35003 172067 4.916 2.82 2.43 2.84 3.27 
60 48872 11628 0.238 52483 382867 7.295 2.64 2.29 2.65 3.14 
80 65152 15488 0.238 69963 676867 9.675 2.53 2.20 2.55 3.06 

100 81432 19348 0.238 84443 1054067 12.483 2.46 2.14 2.46 3.01 
120 97712 23208 0.238 104923 1514467 14.434 2.40 2.10 2.41 2.97 
140 113992 27068 0.237 122403 2058067 16.814 2.36 2.07 2.37 2.94 
160 130272 30928 0.237 139883 2684867 19.194 2.32 2.04 2.33 2.92 
180 146552 34788 0.237 157363 3394867 21.573 2.29 2.01 2.30 2.90 
200 162832 38648 0.237 174843 4188067 23.953 2.26 1.99 2.28 2.88 
220 179116 42508 0.237 192323 5064467 26.333 2.24 1.98 2.26 2.86 
240 195396 46368 0.237 209803 6024069 28.713 2.22 1.96 2.24 2.85 
260 212214 50768 0.239 227283 7066867 31.093 2.21 1.95 2.22 2.84 
280 227952 54088 0.237 244763 (*) (*) 2.19 1.93 2.20 (*) 
300 244323 57948 0.237 262243 (*) (*) 2.18 1.92 2.19 (*) 
400 325632 77248 0.237 349643 (*) (*) 2.12 1.88 2.13 (*) 
500 407032 96548 0.237 437043 (*) (*) 2.08 1.85 2.09 (*) 
600 488432 115848 0.237 524443 (*) (*) 2.05 1.82 2.06 (*) 

1000 814032 193048 0.237 874043 (*) (*) 1.97 1.76 1.98 (*) 
5000 4070036 965048 0.237 4370043 (*) (*) 1.79 1.62 1.80 (*) 

(*) Tests were not performed due to computer memory limitations. 



..... 
~ 

Table 8.26: FP and BTT constant calculations for floating point operations for network 1 as a fimction of number of samples. 

T 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
400 
500 
600 

1000 
5000 

Const 

FP Gradient 
F1(1) I F2 

815.60 1.0007 
814.80 1.0003 
814.53 1.0002 
814.40 1.0001 
814.32 1.0001 
814.27 1.0001 
814.23 1.0001 
814.20 1.0000 
814.18 1.0000 
814.16 1.0000 
814.16 1.0000 
814.15 1.0000 
816.21 1.0005 
814.11 1.0000 
814.41 1.0001 
814.08 1.0000 
814.06 1.0000 
814.05 1.0000 
814.03 1.0000 
814.01 1.0000 

8141 

BTT Gradient 
F1 (1) I F2 

195.40 1.0041 
194.20 1.0017 
193.80 1.0010 
193.60 1.0007 
193.48 1.0005 
193.40 1.0004 
193.34 1.0004 
193.30 1.0003 
193.27 1.0003 
193.24 1.0002 
193.22 1.0002 
193.20 1.0002 
195.26 1.0021 
193.17 1.0002 
193.16 1.0001 
193.12 1.0001 
193.10 1.0001 
193.08 1.0001 
193.05 1.0000 
193.01 1.0000 

1931 

Fl(k) = Tog,.(Flops)-k 

F2 = logfFlopslConst) 

FP Jacobian 
F1 (1) I F2 

876.15 1.0008 
875.08 1.0003 
874.72 1.0002 
874.54 1.0001 
844.43 0.9925 
874.36 1.0001 
874.31 1.0001 
874.27 1.0001 
874.24 1.0001 
874.22 1.0000 
874.20 1.0000 
874.18 1.0000 
874.17 1.0000 
874.15 1.0000 
874.14 1.0000 
874.11 1.0000 
874.09 1.0000 
874.07 1.0000 
874.04 1.0000 
874.01 1.0000 

8741 

(*) Tests were not performed due to computer memory limitations. 

BTT Jacobian 
F1 (2) I F2 

111.17 2.0222 
107.54 2.0091 
106.35 2.0055 
105.76 2.0038 
105.41 2.0029 
105.17 2.0023 
105.00 2.0019 
104.88 2.0017 
104.78 2.0014 
104.70 2.0013 
104.64 2.0011 
104.58 2.0010 
104.54 2.0009 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
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Table 8.27: FP and BTT floating point operations for network 31 as a fanction of number of samples. 

Flops log T ( Flops ) 

Gradient Jacobian Gradient Jacobian 
T FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT 
20 97757 14695 0.150 99088 161286 1.628 3.84 3.20 3.84 4.00 
40 195115 29335 0.150 198128 626896 3.164 3.30 2.79 3.31 3.62 
60 292655 43975 0.150 297168 1396906 4.701 3.07 2.61 3.08 3.46 
80 390195 58615 0.150 396208 2471316 6.237 2.94 2.51 2.94 3.36 

100 487735 73255 0.150 495248 3850126 7.774 2.84 2.43 2.85 3.29 
120 585275 87895 0.150 594288 5533336 9.311 2.77 2.38 2.78 3.24 
140 682815 102535 0.150 693328 7520946 10.848 2.72 2.33 2.72 3.20 
160 780355 117175 0.150 792368 9812956 12.384 2.67 2.30 2.68 3.17 
180 877895 131815 0.150 891408 12409366 13.921 2.64 2.27 2.64 3.15 

. 200 975435 146455 0.150 990448 15310176 15.458 2.60 2.24 2.61 3.12 

.... 220 1072975 161095 0.150 1089488 18515386 16.995 2.57 2.22 2.58 3.10 
1:5 . 240 1170515 175735 0.150 1188528 22024996 18.531 2.55 2.20 2.55 3.08 

260 1268145 190462 0.150 1287568 25839006 20.068 2.53 2.19 2.53 3.07 
280 1365685 205102 0.150 1386608 (*) (*) 2.51 2.17 2.51 (*) 
300 1463225 219742 0.150 1485648 (*) (*) 2.49 2.16 2.49 (*) 
400 1950925 292942 0.150 1980848 (*) (*) 2.42 2.10 2.42 (*) 
500 2438625 366142 0.150 2476048 (*) (*) 2.37 2.06 2.37 . (*) 

600 2928625 438142 0.150 2971348 (*) (*) 2.33 2.03 2.33 (*) 
1000 4877125 732142 0.150 4952048 (*) (*) 2.23 1.95 2.23 (*) 
5000 24385035 3660055 0.150 24790048 (*) (*) 2.00 1.77 2.00 (*) 

(*) Tests were not performed due to computer memory limitations. 



..... ..... 
~ 

Table 8.28: FP and BTT constant calculations for floating point operations for network 31 as a function of number of samples. 

T 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
400 
500 
600 

1000 
5000 

Const 

FP Gradient 
F1(1) I F2 
4887.85 1.0007 
4877.88 1.0000 
4877.58 1.0000 
4877.44 1.0000 
4877.35 1.0000 
4877.29 1.0000 
4877.25 1.0000 
4877.22 1.0000 
4877.19 1.0000 
4877.18 1.0000 
4877.16 1.0000 
4877.15 1.0000 
4877.48 1.0000 
4877.45 1.0000 
4877.42 1.0000 
4877.31 1.0000 
4877.25 1.0000 
4881.04 1.0001 
4877.13 1.0000 
4877.01 1.0000 

48771 

BTT Gradient 
F1(1) I F2 

734.75 1.0013 
733.38 1.0005 
732.92 1.0003 
732.69 1.0002 
732.55 1.0002 
732.46 1.0001 
732.39 1.0001 
732.34 1.0001 
732.31 1.0001 
732.28 1.0001 
732.25 1.0001 
732.23 1.0001 
732.55 1.0001 
732.51 1.0001 
732.47 1.0001 
732.36 1.0001 
732.28 1.0001 
730.24 0.9996 
732.14 1.0000 
732.01 1.0000 

7321 

FI (k) = Tog/Flops)-k 

F2 = log.j_Ftops!Const) 

FP Jacobian 
F1(1) I F2 
4954.40 1.0002 
4953.20 1.0001 
4952.80 1.0000 
4952.60 1.0000 
4952.48 1.0000 
4952.40 1.0000 
4952.34 1.0000 
4952.30 1.0000 
4952.27 1.0000 
4952.24 1.0000 
4952.22 1.0000 
4952.20 1.0000 
4952.18 1.0000 
4952.17 1.0000 
4952.16 1.0000 
4952.12 1.0000 
4952.10 1.0000 
4952.25 1.0000 
4952.05 1.0000 
4958.01 1.0001 

49521 

(*) Tests were not performed due to computer memory limitations. 

BTT Jacobian 
F1 (2) I F2 

403.22 2.0180 
391.81 2.0069 
388.03 2.0038 
386.14 2.0025 
385.01 2.0017 
384.26 2,0012 
383.72 2.0009 
383.32 2.0007 
383.01 2.0005 
382.75 . 2.0004 
382.55 2.0003 
382.38 2.0002 
382.23 2.0001 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
(*) (*) 
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8.4. Summary. 

From the results presented in this chapter we confirmed the comments made at the end of Chapter 4 

and Chapter 5, where we concluded that BTT is the best algorithm for gradient calculations and FP is the best 

algorithm for Jacobian calculation for some small networks and large sequences. The only case where the 

BTT Jacobian outperforms the FP Jacobian is for networks with a large number of weights and short training 

sequences. That combination rarely occurs. The BTT gradient requires about half of the time and fewer flops 

than the FP gradient. The BTT gradient required about IO percent more memory than FP, a value not critical 

with systems available today. Ifwe compare the Jacobian versions, FP requires about half of the memory, a 

third of the time and fewer flops than BTT. For very large sequences, the BTT and FP gradient tend to be 

close in computational complexity. It maybe best to use the FP gradient for long sequences, because of the 

memory requirements. 

Another important point to be gained from this chapter is that algorithm complexity is dependent on 

the network architecture, and not just on the number of weights. Whether or not a network has feedback 

connections, and the number of feedback connections it has, can affect the algorithm complexity. 
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Chapter 9 

SUMMARY 

In this chapter a brief summary of the contributions of this research is presented, followed by 

recommendations for future work. 

9.1. Summary of Results 

There are two main contributions of this research. The first contribution is the development of two 

algorithms for gradient computation for a general class of dynamic network: the Layered Digital Dynamic 

Network. Chapter 4 presented the Forward Perturbation algorithm and Chapter 5 presented the 

Backpropagation-Through-Time algorithm. Each algorithm has a version for gradient-based optimization 

algorithms and Jacobian-based optimization algorithms. These two main algorithms have been introduced in 

the past by other authors, but this research has derived the complete equations for arbitrary LDDN's. We have 

shown that the LDDN structure can be used to represent most dynamic networks that have been proposed in 

the literature. 

The second principal contribution of this research is the discovery of a key characteristic of the error 

surfaces of dynamic networks: spurious narrow valleys that can trap optimization algorithms. Chapter 6 

analyzes these error surfaces and proposes new procedures that provide improved training for dynamic 

networks. 

This research also demonstrated the application of the proposed algorithms to problems in control 

systems and nonlinear filtering (Chapter 7) and also compared the memory, the speed and the computational 

complexity characteristics of the FP and BTT algorithms (Chapter 8). 
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9.2. Future Work. 

The work described in this dissertation has centered on exact gradient and Jacobian calculations for 

gradient-based and Jacobian-based optimization algorithms. Future research should explore faster 

approximate gradient and Jacobian calculations. It may be possible to obtain approximate gradients that are 

almost as affective as exact gradients for optimization algorithms, but that require significantly fewer 

computations. 
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Appendix A 

NEURAL NETWORK EXAMPLES USING THE LAYERED DIGITAL DYNAMIC NETWORK 

(LDDN) 

This appendix illustrates how we can implement some neural network architectures explained in 

section 2.2 using the LDDN. For simplicity we will describe the neural network examples with the minimum 

number oflayers. 

A.I. Narendra Models. 

For the Narendra Models the input u(k) will be represented by p 1 (t) and the output Yp(k) will be 

represented by the output of the last layer aM(t), where Mis the last layer in the network. 

The Model I (Eq. (2.1)) could be represented as: 

a 1 (t) = r1[,w J;:;;~ ;;] + b 11 

ll(t-m) 
(A.I) 

The Model II (Eq. (2.2)) could be represented as: 
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[ [
a2(t- ll l 

al(t) = fl Lw1,2 a2(:.~2) + bl 

a2(t-n) 

[ 
t

l(t- l)j l tl(t-1)] a2(t) = f2 1w2, I p 1(~-~2) + LW2, lal(t) + b2 = 1w2, l p 1(~-~2) + al(t) 

1(t-m) 1(t-m) 

(A.2) 

The Model III (Eq. (2.3)) could be represented as: 

[ 
t

l(t-l)j l al(t) = fl 1w1,1 pl(~-~2) +bl 

l(t-m) 

a2(t) = f2[LW'·' ::;:=:)l + b2] 

a2(t- n) 

(A.3) 

a3(t) = f3(LW3,lal(t)+LW3,2a2(t)+b3) = al(t)+a2(t) 

The Model IV (Eq. (2.4)) could be represented as: 

[ 
t

t(t- l)j tat(t- ll ] 
at(t) = fl 1w1,1 p 1(~-~2) +Lw1,1 a1(~-~2) +bl 

1(t-m) a 1(t-n) 

(A.4) 

For the previous four equations the last layer is the output layer. The transfer function for the last 

layer must be linear for Eq. (2.1), Eq. (2.2) andEq. (2.3). From the examples, Model IV requires fewer layers. 

All the other examples required an additional layer with a linear transfer function. 

For the Narma-Ll Model (Eq. (2.5)) with m=2 we have: 

119 



[ 
a6(t-ll l 

al(t) = fl i,w1,6 a:(~-~2) + b' 

a (t-n) · 

a2(t) = f2[LW,.J::::=:Jl + b2] 

la6(t-n) (A.5) 

a3(t) = f3(JW3,lpl(t-l)·LW3,2a2(t)·b3) =pl(t-l)·a2(t) 

a4(t) = f4[LWJ::::=:Jl + b4] 

la6(t- n) 

a5{t) = f5(IW 5, 1p 1(t-2)·LW5,4a4(t)·b5) =p 1(t-2)-a4(t) 

a6(t) = f6(LW6,lal(t)+LW6,3a3(t)+LW6,5a5(t)+b6) = al(t)+a3(t)+a5(t) 

where the transfer functions for layers 3, 5 and 6 must be linear. The first layer represents the/ network, each 

subsequent pair represents the networks g0 and g 1 , where we have a nonlinear layer followed by a linear 

layer with a product operation instead ofa summation. We set the biases oflayers 3 and 5 to one. The last 

layer combines the result of the previous three subnetworks. 

The Narma-L2 Model (Eq. (2.6)) will be represented by: 

[ t'(t-2] a4(t- ll l 
a'(t) = fl 1w1,1 p 1(~-~3) +LWl,4 a 4(~-~2) +b' 

1(t-n} a 4(t-n) 

a2(t) = f2[IW'·' ~:;:j + LW '· •[::;:_= ;Jl + b2] 

l1u-J a4(t-n) 

a3(t) = f3(IW 3, 1p'(t-1)·LW3,2a 2(t)·b3) =p'(t-l)·a2(t) 

a4(t) = f4(LW 4, 1a1(t)+LW 4• 3a3(t)+b4) = a 1(t)+a3(t) 

(A.6) 

As in the Narma-Ll model, Layer 3 allow us to multiply the last input to the model times the output 

of the subnetwork g0 • We could generate the neurocontroller shown in Eq. (2.7) by rearranging Eq. (2.6): 
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[ tl(t-2)1 a4(t-1] l 
a'(t) = fl 1w1, t pt(~-~3) +LWl,4 a4(~-~2) + b' 

1(t-n) a4(t-n) 

a2(t) = f2[IW'· t::=:;1 + LW '·' ::;:=:L,] 
l1(t-J a4{t-nJ 

a3(t) = f3(IW3, 2p2(t)- LW3, tat (t) + b3) = p2(t) _ a 1(t) 

a4{t) = f 4((LW4•3a3{t))/(LW 4, 3a2(t))/(b4)) = a3(t)/a2(t) 

(A.7) 

where p 2(t) is the desired output. For the last two models we included product and division operators inside 

the evaluation of the transfer function input. Those operators are considered in the final implementations of 

the dynamic gradient calculation algorithms. 

A.2. Finite Impulse Response (FIR) and Infinite Impulse Response (HR) layers. 

A FIR layer is implemented as the product ofa weight times the input to the layer, where that input 

could be external or the output from another layer: 

1 rN(t-1]] [ [aN(t- lll aM(t) = f IWM,N pN(·t-~2) or aM(t) = fM LWM,N aN(·t-~2) 

N(t-n) aN(t-n 

(A.8) 

Similarly, an IIR layer is implemented as the product of a weight times the input to the layer plus a 

delayed feedback of the same layer, where the input to the filter could be external or the output from another 

layer: 

[ rN(t-1] [aM(t-1)]] 
aM(t) = fM IWM,N pN(:.~2) +LWM,M aM~~~2) or 

N(t-n) aM(t-m) 

(A.9) 

[ - [aN(t-ll laM(t-l)j] 
aM(t) = fM LWM,N aN(·t-~2) + LWM,M aM~~~2) 

aN(t-n) aM(t-m) 

(A.10) 
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A.3. Gamma Memory Structure. 

We can construct the Gamma Memory Structure using the following configuration with a one-layer 

network: 

pl(t) 

[:] lxl Mxl 

a I (t) 

Mxl 

Gamma 
TDL Memory 

Structure MxI 

Figure A.1: Gamma Memory Structure. 

We can create the filter with a one-layer NN: 

(A.11) 

where the input weight IW 11 is not being trained. 
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Appendix B 

COMPARISON OF CALCULATION PROCEDURES FOR DIFFERENT DYNAMIC GRADIENT 

CALCULATION METHODS 

This chapter will show an example based on the simple neural network presented in Figure 3 .1 on 

page 20 and Figure 6.2 on page 53. For a sequence of four points we will demonstrate Forward Perturbation 

(Eq. (3.51) and Eq. (3.53)), Backpropagation-Through-Time (Eq. (3.52) and Eq. (3.54)), the Green's 

Function Method (Eq. (3.60) to Eq. (3.62)), the Fast Forward Propagation Method (Eq. (3.65) to Eq. (3.69)) 

and the Block Update method (Eq. (3.70) and Eq. (3.84)). 

Ifwe apply Eq. (6.1) from t = l tot = 4, we will obtain: 

y(l) = W 1u(l)+W2y(O) 

y(2) = Wlu(2)+W2y(l) 

y(3) = W 1u(3)+W2y(2) 

y(4) = Wlu(4)+W2y(3) 

The dynamic Forward Perturbation equations (Eq. (3.53)) for w 1 are: 

~ = aey(l) + aey(l) X ay(O) = u(l) 
aw1 aw1 ay(O) aw1 . 

We will obtain the final gradient for W 1 by applying Eq. (3 .51 ): 
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(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 



dF _ Q [~JT X deF 
aw1 - I awt ay(t) 

t= t 

= - u( 1 )(t(l )-y( 1))- (u(2) + W2u( 1 ))(t(2) -y(2)) (B.9) 

-(u(3) + W 2u(2) + (W2)2u( 1) )(t(3 )- y(3 )) 

-(u(4) + wzu(3) + (W2)2u(2) + (W2)3u(l))(t(4)-y(4)) 

To obtain the gradient of wt using FP we required 7 multiplications and 10 additions. 

The dynamic Backpropagation-Through-Time equations (Eq. (3.54)) for wt are: 

(B.10) 

aF = aeF +aey(4)x aF = -(t(3)-y(3))-W2(t(4)-y(4)) 
ay(3 > ay(3 > ay(3 > ay( 4 > 

(B.11) 

_j£_ = de F + dey(3) x dF = _ (!(2)- y(2)) _ W2(t(3) -y(3 )) _ (W2)2(t(4)-y( 4)) 
ay(2 > ay(2 > ay(2 > ay(3 > 

(B.12) 

aF = aeF +aey(2)x_lf__ = -(t(l)-y(l))-W2(t(2)-y(2))-(W2)2(t(3)-y(3)) 

ay(l) ay(l) ay(l) ay(l) -<w2)3(t(4)-y(4)) 
(B.13) 

We will obtain the final gradient for wt by applying Eq. (3.52): 

dF _ ~ [dey(t)]T X dF 
awt - "'-' awt ay(t) 

/= t 

= -u( 1 )( (t(l) -y( 1)) + W2(t(2) - y(2)) + (W2) 2(t(3) - y(3 )) + (W2)3(t( 4) -y( 4) )) (B.14) 

-u(2)( (t(2) - y(2)) + W2(t(3) - y(3)) + (W2)2(t( 4 )-y( 4 )) ) 

- u(3 )((t(3 )-y(3 )) + W 2(t( 4) -y(4)))- u( 4 )(!(4 )-y(4)) 

where this results is the same for the FP in Eq. (B.9). To obtain the gradient of wt using BTT we required 7 

multiplications and 6 additions. 

The Green's Function Method must be applied recursively by using Eq. (3.60) to Eq. (3.62): 

U( 1) = 1 

S(l) = (U(l))- 1 xaey(l)+S(O) = u(l) 
aw 1 

aF I = aF I +[U(l)xS(l)]Tx aeF = -u(l)(t(l)-y(l)) 
awt ' awt o ay(l) 
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(B.15) 

(B.16) 

(B.17) 



U(2) = aea(2) x U(l) = W2 
aa(l) 

S(2) = (U(2)r1 x aey(2 ) + S(l) = u( 2 ) + u(l) 
aw 1 w2 

aF I = aF I + [U(2) X S(2)]Tx aeF 
aw 1 2 awi 1 ay(2) 

= - u(l)(t(l)-y(l))-(u(2) + W2u(l))(t(2)-y(2)) 

U(3) = aea(J)xU(2) = (W2)2 
aa(2) 

aF I = aF I + [U(3) X S(3)]Tx aeF 
awi 3 aw1 z ay(3) 

= -u(l)(t(l)-y(l))-(u(2) + W2u(l))(t(2)-y(2)) 

-(u(3) + W 2u(2) + (W2 )2u(l) )(1(3) - y(3)) 

U(4) = aea(4) x U(3) = (W2)3 
aa(3) 

aF I = aF I +[U(4)xS(4)]Tx aeF 
aw1 4 awi 3 ay(4) 

= - u(l )(t( 1) -y(l) )- (u(2) + w2u( 1) )(1(2) - y(2)) 

-(u(3) + W 2u(2) + (W2)2u(l))(t(3)-y(3)) 

-(u(3) + W2u(3) + (W2)2u(2) + (W2) 3u( 1 ))(/( 4) -y( 4 )) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

This method implies 17 multiplications/divisions and 10 additions. From this example we concluded 

that this method is not as efficient as proposed in the literature. 

The Fast Forward Propagation Method must be applied recursively by using Eq. (3.67), Eq. (3.68) 

and Eq. (3.65): 

b( 1) = 0 

A(l) = 1 
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(B.27) 

(B.28) 



aF I = aF I + aeF = -(t(l)- (1)) (B.29) 
ay( 1) 1 ay( 1) o ay(l) Y 

b(2) = (aey(2))-I x(b(l)- aeF) = (t(l)-y(l)) (B.30) 
ay(l) ay(l) w2 

A(2) = (aey(Z))-I xA(l) = - 1 (B.31) 
ay(l) w2 

aF I = aF I +aey(2)x aeF = -(t(l)-y(l))-W2(t(2)-y(2)) (B.32) 
ayo) 2 ay( 1) 1 ay( 1) ay(2) 

e -1 e · 
b(3) = (iLlill) x (b(2) - a F) = _l ((t( l)-y(l )) + (t(2) ~ y(2))) (B.33) 

ay(2) ay(2) w2 w2 

A(3) = (aey(3))-I xA(2) = _l_ (B.34) 
ay(2) (W2)2 

aF I = aF I +aey(3)xaey(2)x aeF 
ay(l) 3 ay(l) 2 ay(2) ay(l) ay(2) (B.35) 

= - (t( 1 )-y( 1))- W2(t(2) -y(2)) -(W2)2(t(3) -y(3 )) 

b(4) = (aey(4 ))-! x (b(3 )- aeF) .= _1 (-1 ((t(l)-y( 1 )) + (t(2)-y(2))) + (t(3 )-y(3))) (B.36) 
ay(3) ay(3) w2 w2 w2 . 

A(4) = (aey( 4))-I xA(3) = _l_ (B.37) 
ay(3) (W2)3 

ae ae ae ae aF I = aF I +~x y(3)x y(2)x_f_ 
ay(I) 4 ay(l) 3 ay(3) ay(2) ay(l) ay(2) (B.38) 

= - (t( 1)-y( 1 ))- W2(t(2)-y(2)) - (W2)2(t(3 )-y(3 ))- (W2)3(t( 4 )-y(4)) 

We finally can apply Eq. (3.69) to obtain the gradient respect to W 1 : 
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4 e T 4 e T 

aF = L [~] xb(t)+ L [~] xA(t)x aF I 
aw 1 t= I aw 1 1 = I aw 1 ay(l) Q 

= u(2)~+u(3)~+u(3'(t(l~+u(4)~ 
~~~~W2)3 

+ u(4)~+ u(4)~u(I)(t(I)-y(I))-u(I)W2(t(2)-y(2)) 
~~-

-u(I )(W2)2(t(3)-y(3 ))-u(l)(W2)3(t(4)-y(4))-~l~ 
wz 

- u(2)(t(2)-y(2))- u(2)W2(t(3 )-y(3 ))- u(2)(W2)2(t( 4)- y(4)) 

_ u(3 )(t( 1 l.afi1) u(3 )(t(l l?;l:'f21) _ u(3 )(t(3) - y(3 )) - u(3 )W2 (t( 4) - y( 4 )) 
=-----tw2) 2 :_::::.:::=-w 2 

u( 4 )(t(l) - _ u( 4 )(t(2 )2::fillI _ u( 4 )(t(3) ;:::.J431Y _ u( 4 )(t( 4) -y( 4 )) 
wz) 3 :_:::.::::zw2) 2 ::::::--:---W2 

= - u( I)(t( 1 )-y(l))- u( I )W2(t(2)-y(2))- u( l)(W2)2(t(3 )-y(3 )) 

- u( I )(W2)3(t( 4 )-y( 4 ))- u(2)(t(2) -y(2)) - u(2)W2(t(3) -y(3)} 

- u(2)(W2)2(t( 4 )-y(4 ))- u(3 )(t(3) -y(3 ))- u(3)W2(t(4)-y(4))- u( 4)(t( 4 )-y( 4)) 

This method implies 24 multiplications/divisions and 14 additions. 

(B.39) 

The Block Update method is intended to obtain the gradient in multiple stages. For the example 

presented here we will divide the sequence in two segments of two samples each. First we apply the regular 

BTT algorithm from t=J to t=2: 

aF _ ae F + 00 x aF _ (t(l) (l)) 
ay(2) - ay(2) ayc2) ay(3) - - -y 

(B.40) 

aF aeF aey(2) aF 2 
-- = --+--x-- = -(t(l)-y(l))-W (t(2)-y(2)) 
ay(I) ay(I) ay(l) ay(2) 

(B.41) 

By substitution in Eq. (3.52): 

2 e T 

aF I = "' [~] x .1!_ awr 2 1-:-1 aw 1 ay(t) (B.42) 

= - u(I )(t(I) -y( I))- u( l)W2(t(2)-y(2))- u(2)(t(2) -y(2)) 

We can now apply Eq. (3.83): 

4 e T 

G(4) = I.[aa;~)J xI'(t,4)+Q/2)xI'(3,4) 
t = 3 

(B.43) 

where: 

I'(4,4) =a!::)+~= -(t(4)---:YC4)) (B.44) 
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rc3,4) = aa•F +aa·rc4)xr(4,Q) = -(t(3)-y(3))-W2(t(3)-y(3)) 
y(3) y(3) 

Q-(2) = Q~N[a•y(t)]T x a•y(t + I) x a•y(t + 2) x ... x a•y(Q- N + 1) 
' £.. aw1 ay(t) ay(t+ 1) ay(Q-N) 

t= I 

= [002JT X a•y(2) X ~ + [a•y(2)]T X a•y(3) 
aw1 ay(l) ay(2) aw1 ay(2) 

= u(l)(W2) 2 +u(2)W2 

by substitution in Eq. (B.43): 

G( 4) = - u(4)(t(4)-y(4 )) - u(3 )(t(3 )-y(3))- u(3 )W2(t( 4) -y(4 )) 

- u(I )(W2)2(t(3) -y(3))- u( I )(W2)3{t( 4) -y( 4)) 

- u(2)W2(t(3) - y(3 )) - u(2)(W2)2(t( 4) -y( 4 )) 

(B.45) 

(B.46) 

(B.47) 

We can obtain the final gradient by using the results ofEq. (B.42) and Eq. (B.47) and solving Eq. 

(3.70) for G(4): 

aF I = aF I + G(4) 
aw 1 4 aw 1 2 

= - u(I )(t( 1)-y(I ))- u(I )W2(t(2)-y(2))- u(2)(t(2)-y(2)) 

- u(4 )(t( 4) -y(4))- u(3 )(t(3)-y(3)) - u(3 )W2(t( 4)-y( 4 )) 

- u( I )(W2)2(t(3) -y(3 )) - u(I )(W2)3{t( 4) - y( 4)) . 

- u(2)W2(t(3 )-y(3))-u(2)(W2)2(t(4) -y(4)) 

(B.48) 

To obtain the gradient of w 1 using the Block Update method we required 10 multiplications and 10 

additions. 

The required operations for each method are sumarized on Table 3.1 on page 28. 
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Appendix C 

EXTRA FILTER DESIGN APPLICATION 

Let us modify the dynamic neural network shown in section 7 .2. on page 7 8 and use the full cascaded 

recurrent neural network presented by Li and Haykin [Z?] as shown in Figure C.1. For this model the 

intermediate layers (2, 4 and 6) are connected to an additional layer that combines the effect of those layers. 

Also, the sixth 1\lyer is fed back to the first layer. 

The Backpropagation order is now 7-6-5-4-3-2-1, so we start in the last layer in the backpropagation 

order (Layer 7) to get the following equations: 

.7 7 
S7, 7(t) = F (n (t)); U' = {7} ; Es(7) = 7 

·6 6 
S7, 6(t) = S7, 7 (t)LW7, 6(0)F (n (t)) 

0 6 6 
S6,6(t) = F (n (t)); U' = {7,6}; Es(6) = 6 

.5 5 
S7,5(t) = S7,6(t)LW6,5(0)F (n (t)) 

.5 5 
S6,5(t)"" S6,6(t)LW6,5(0)F (n (t)) 

.4 4 
S7, 4(t) = S7, 7{t)LW 7, 4(0)F (n (t)) 

·4 4 
S4, 4 (t) = F (n (t)); U' = {7,6,4}; Es(4) = 4 

.3 3 
S 7,3{t) = S 7•4 (t)LW 4,3(0)F (n (t)) 

· 3 3 S4,3(t) = S4,4(t)LW4,3(o)F (n (t)) 
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LWl,6 

a2(t) 

F2 

p(t) 

LWl,2 

F4 

LW3,4 

LW5,4 

F6 

LW5,6 

F7 

e(t) 

Figure C.1: Full Cascaded Recurrent Neural Network 
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·2 2 S7,2(t) = S7,7(t)LW7,2(0)F (n (t)) 

·2 2 
S2, 2(t) = F (n (t)); U' = {7, 6, 4, 2} ; E8(2) = 2 

· I I S7, I (t) = S7, 2(t)LW 2, 1 (O)F (n (t)) 

.J I 
S2, I (t) = S2, 2(t)LW2, I (O)F (n (t)) 

To compute the dynamic derivatives of the performance function respect to the outputs of the 

system, we fount that the only explicit derivative is respect to the output 7 

c/F =-2(p(t)-a7(t)) 
aa 7 (t) 

so the dynamic equations are: 

~ = aeF + 
7 7 

aa (t) aa (t) 

aF 
6 

aa (t) dE DL,., 

+ 

dE DL,., 

dE DL,., 

LWs, \d{ S6, s (t + d{ aF 
aa\t+ d) 

LW1'\d{S2, 1(t+d{ aF 
aa\t+ d) dE DL,, 6 

L LW5'\d{S6,5(t+d{ /F 
aa (t+d) dE DL,., 

aF 

aa\t) 
L LW3'\d{s1·\r+d{ aF + L LW3'\d{s4,3(t+d{ aF 

aa\t+d) dE DL,. 4 aa\t+d) 

L, LW5'\d{S7'\t+d{ /F + L, LW5'\d{S6' 5(t+d{ /F 
aa (t+ d) dE DL,. 4 aa (t+d) d E Dl,.4 

+ 

dE DL,, 2 

LW 1'\d{s1·\t+d{ aF + I, Lw 1·\d{s2• 1(t+d{ aF 
aa\t+d) dE DL,., aa\t+d) 

aF 

I, LW3'\d{S7' 3(t+d{ aF + I, LW3'\d{s4·\t+d{ aF 
aa\t+ d) dE DL,., aa\t+d) 

+ 

For all layers we have 

d7(t) = [S7' \t){ x a; ; d\tJ = [S7' 6(tJ{ x a; + [s6• 6uJ{ x a{ 
aa (t) aa (t) aa (t) 
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The previous process is repeated for each sample time in the training set. 

Finally we can obtain the gradient for each weight and bias by 

ap Q . 7 aP Q 7 6 T aP Q 7 4 T 
- = I,d (t)" = I,d (t)x[a (t-d)] ; = I,d (t)x[a (t-d)] 
ab1 t=1 'aLW7'\d) t=1 aLW7' 4(d) 1=1 

aP 

QS Ir ap QS 4 T 
"'d (t) x [p (t-d)] ; = I, d (t) x [a (t-d)] 
t"':"1 aLW 5'\d) t= 1 · 

ap Qs 6 rap Q4 aP Q4 3 r I,d (t)x[a (t-d)]; - 4 = "'d (t); = I,d (t)x[a (t-d)] 
t= 1 ab t"':"1 aLW4' 3(d) t= 1 

Q 

"' d\t). aP 
t"':"1 ' a1wJ, 1(d) 

Q3 Ir ap Q3 2 r 
"'d (t) X [p (t-d)] ; = "' d (t) X [a (t-d)] 

1"':"1 aLW 3'\d) t"':"1 

ap Q rap Q2 aP Q2 Ir 
I,d3(t)x[a\t-d)]; - 2 = I,d (t); = I,d (t)x[a (t-d)] 
1=1 ab t=1 aLW2' 1(d) t=l 

QI Ir aP QI 2 r "'d (t)x[p (t-d)]; = I,d (t)x[a (t-d)] 
t"':"1 aLW 1' 2(d) t= 1 · 
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Again, after the network was trained, it was used to predict blood concentration. Figure C.2 is a plot 

of the errors between actual and predicted signals. Using the last network we were able to reduce the 

prediction error by half. 

X 10-J 4~--------------------~ 

C 

i 
c 1 
g 
8 
8 0 
iii 
0 
0 -1 

Ji 
C 
.Q 
U -2 
] 
a. 

-3 

-4 

I 
j 

-5'-----~-----'-----'---,L_-~-----'----_l_-__J 
0 50 100 150 200 

time(s) 
250 300 350 400 

Figure C.2: Errors for LDRN with Full Dynamic Training 
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Appendix D 

NEURAL NETWORK EXAMPLES 

This chapter contains the neural network examples used to test the dynamic training algorithms. 

Each circle represents a layer as described in section 2.3 on page 8 and section 2.4 on page 9. The tapped 

delay line (see Figure 2.4 on page 10) represents a default value that may change for different experiments. 

p(t) y(t) 

Figure D.1: Network 1: 2-layer LDDNwith [O l] delay between layers 1 and 2. 

p(t) y(t) 

Figure D.2: Network 2: 3-layer LDDN with [O l] delay between layers 1 and 2. 

p(t) y(t) 

Figure D.3: Network 3: 3-layer LDDN with [O l] TDLfrom layer 1 to 2 and [l 2 3] TDLfrom layer 3 to 2. 

134 



y(t) 

Figure D.4: Network 4: 3-layer LDDN example. 

y(t) 

Figure D.5: Network 5: 3-layer LDDN. 

y(t) 

Figure D.6: Network 6: 3-layer LDDN. 
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y(t) 

Figure D.7: Network 7: 3-layer LDDN 

p(t) y(t) 

Figure D.8: Network 8: 4-layer LDDN 

y(t) 

Figure D.9: Network 9: 4-layer LDDN This model resembles the Model Reference Controller. 
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y(t) 

Figure D.10: Network JO: 2-layer LDDN 

p(t) y(t) 

Figure D.11: Network 11: 3-layer LDDN with [I 2 3]feedbackfrom layer 3 to 2. 

y(t) 

Figure D.12: Network 12: 3-layer LDDN 
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y(t) 

Figure D.13: Network 13: 3-layer LDDN. 

Figure D.14: Network 14: 4-layer LDDN. 

Figure D.15: Network 15: 4-layer LDDN. 
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y(t) 

Figure D.16: Network 16: 2-layer LDDN 

y(t) 

Figure D.17: Network 17: 4-layer LDDN 

Figure D.18: Network 18: 5-layer LDDN. 
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p(t) y(t) ... 

Figure D.19: Network 19: 2-layer LDDN similar to Network 1 (FigureB.l) with layer numbers in reverse 
order. 

y(t) 

Figure D.20: Network 20: 5-layer LDDN. 

Figure D.21: Network 21: 8-layer LDDN with two outputs connected to layers 7 and 8. 
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Figure D.22: Network 22: 6-layer LDDN with unitary feedbackfrom layers 2 and 3 to layer 1. 

IA\ .... . :t) __ ____ ., ... ~ 
Figure D.23: Network 23: 4-layer LDDNwith unitary feedback from layer 2 to layer 1. 

y(t) __ .,~ 

PzU) 

Figure D.24: Network 24: 5-layer LDDN with two inputs connected to layers 1 and 5. 
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y(t) 

Figure D.25: Network 25: 9-layer LDDN with output connected to layer 6. 

y(t) 

Figure D.26: Network 26: ]-layer LDDN with unitary feedback to itself. 

y(t) 

Figure D.27: Network 2 7: 3-layer LDDN with unitary feedback from layer 2 to layer 1. 

Figure D.28: Network 28: 10-layer LDDN with multiple delays and feedback 
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y(t) 

· Figure D.29: Network 29: 6-layer LDDN with multiple TDLs and output connected to layer 4. 

y(t) 

Figure D.30: Network 30: 2-layer LDDNwith two inputs connected to both layers. 

y(t) 

Figure D.31: Network 31: 2-layer LDDNwith unitary feedback from layer 1 to itself 
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p(t) 

y(t) 

Figure D.32: Network 32: 6-layer LDDN in modified cascaded recurrent neural network configuration. 
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p(t) 

y(t) 

Figure D.33: Network 33: 7-layer LDDN infill! cascaded recurrent neural network configuration. 
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