
TRAINING GENERAL DYNAMIC NEURAL

NETWORKS

By

ORLANDO DE JESUS

Engineer in Electronics
Universidad Simon Bolivar

Caracas, Venezuela
1985

Project Management Specialist
Universidad Simon Bolivar

Caracas, Venezuela
1992

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of the

. Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
August, 2002

TRAINING GENERAL DYNAMIC NEURAL

NETWORKS

Thesis Approved:

ii

ACKNOWLEDGMENTS

I would like to thank:

Dr. Martin Hagan, my major adviser, for his guidance, encouragement, patience and friendship. The

dissertation presented here is the result of many hours of discussion and their headaches trying to understand

how the training of dynamic networks works.

Dr. Eduardo Misawa, Dr. Carl Latino and Dr. Gary Yen, my other committee members, for their help

and encouragement.

Dr. Howard Demuth of the University of Colorado for his help, support and good sense ofhumor in

the development of this dissertation and its final implementation.

Mark Beale ofMHB, Inc. for his help and support in the development of this dissertation and its final

implementation.

Roger Schultz of Oklahoma State University and Halliburton Energy Services for his support,

encouragement, friendship. and incredible exchange of ideas.

Jason Horn of Oklahoma State University for his incredible help in the error surface analysis chapter.

Ohm Arjpolson Pukrittayakamee of Oklahoma State University for his help in the testing of the

Neural Network control blocks.

Randall Beckloff and Regina Henry oflnternational Students and Scholars at OSU for their help in

all the immigration paperwork and their friendship.

Dr. Dingding Chen and Dr. Meng Fun of Oklahoma State University for their comments, help and

support.

Dr. Syed Hamid of Halliburton Energy Services for his support, encouragement and friendship

during my work in Carrollton.

iii

Marisela, my lovely wife, for her years ofloving support, encouragement and patience. Her infinite

support allowed the conclusion of this project.

Our Daughter, that will be coming soon. I hope she will understand the crazy parents she has and the

tribulations we are having now.

Manuel and Nelli, my parents, for all they have done to support all my years of study and work,

especially the encouragement for this one.

My family Jose, Gilberto, Pedro, Ernesto, Maria, Jorge, Nelli, Juan, Genesis, Elier, Daniela, Debbi,

Maria de los Angeles, Belkys, Debora, Elia.

My friends from AETI C.A. The company is gone after many years of incredible results. However

the memories will continue forever.

My friends from the Halliburton Energy Services for their help and support.

My friends for your support Aitzol, Xabier and Ifiaki, Francis, Carmen Elena and Alberto, Betty and

Alfonso, Arleen and Hector, Janice and Eliecer, Carmen and Antonio, Adriana and Alejandro, Francisca and

Hanz, Yulissa, Maite and Daniel, Manuel and Ivette, Felipe, Fidelia and Jose Abraham, Yamirca and Jose

Luis, Rossany and Noe, Tamar and Victor, Sandra and Gustavo, Elsa and Rene, Paloma and Douglas, Mayra

and Gabriel, Claudia and Chicho, Hector, Pascualino, Otto, Magaly and Manuel.

iv

TABLE OF CONTENTS

CHAPTERl
INTRODUCTION .. 1

CHAPTER2
LAYERED DIGIT AL DYNAMIC NEURAL NETWORK .. 3

2.1.·Neural Networks .. : .. 3
2.2. Dynamic Neural Network Architectures4
2.3. Layered Feedforward Network. .. 8
2.4. Layered Digital Dynamic Network ... 9

CHAPTER3
DYNAMIC LEARNING .. 12

3 .1. Performance Optimization .. 12
3 .1.1. Steepest Descent. ... 13
3.1.2. Newton's Method .. 14
3.1.3. Conjugate Gradient. ... : 15
3 .1.4. Levenberg-Marquardt Algorithm .. 16

3.2. Gradient Calculations for Static Networks ... 18
3.3. Dynamic Training Principles .. 19
3.4. Additional methods for dynamic gradient calculation .. 21
3.5. Summary ... 29

CHAPTER4
FORWARD PERTURBATION ... 30

4 .1. Preliminaries ... 3 0
4.2. Eq. (3.51) .. 32
4.3. Eq. (3.53) .. 32
4.4. Sensitivities ... 35
4.5. Explicit Derivatives .. 35
4.6. FP Gradient Algorithm Summary , ... 36
4.7. FP Jacobian Algorithm ... 38
4.8. FP Jacobian Algorithm Summary .. 39

CHAPTERS
BACKPROPAGATION THROUGH TIME41

5.1. Eq. (3.52)41
5.2. Eq. (3.54)43
5.3. BTT Gradient Algorithm Summary45
5.4. BTT Jacobian Algorithm47
5 .5. BTT Jacobian Algorithm Summary49

V

CHAPTER6
ERROR SURF ACE ANALYSIS ... 51

6.1. Prelude .. 51
6.2. First Order Model ... 52

6.2.1. Linear model. ... 52
6.2.2. Nonlinear network ... 55

6.3. Modifications to the Training Procedure .. 56
6.3.1. Proposed solutions ... 56

6.4. Test Results for Gradient Algorithm .. 59
6.4.1. First order nonlinear system .. 59
6.4.2. Two layer neural network .. 61

6.5. Test Results for Jacobian Algorithm .. 65
6.5.1. First order nonlinear system .. , 65
6.5.2. Two layer neural network .. 66

6.6. Summary ... 66

CHAPTER 7
APPLICATIONS .. 68

7 .1. Model Reference Control. ... 68
7.1.1. Case Studies .. 72

7.2. Filter design .. 78

CHAPTERS
ALGORITHM COMPARISON ... 83.

8.1. Memory requirements ... 83
8.2. Speed Comparison .. 90
8.3. Computational complexity .. 95
8.4. Summary ... 11 l

CHAPTER9
SUMMARY ... , .. 112

9.1. Summary ofResults ... 112
9.2. Future Work. ... 113

REFERENCES .. '. .. 114

APPENDIX A
NEURAL NETWORK EXAMPLES USING THE LAYERED DIGITAL DYNAMIC NETWORK
(LDDN) ... 118

APPENDIXB
COMPARISON OF CALCULATION PROCEDURES FOR DIFFERENT DYNAMIC GRADIENT
CALCULATION METHODS .. 123

APPENDIXC
EXTRA FILTER DESIGN APPLICATION .. 129

APPENDIXD
NEURAL NETWORK EXAMPLES ... 134

vi

LIST OF TABLES

Table 3.1: Floating point operations for dynamic gradient calculations of Appendix B example 28

Table 6.1: Percentage of final weights within 0.001 of the optimal weights for the first order nonlinear
network .. 60

Table 6.2: Percentage of final weights within 0.5 of the optimal weights for the two-layer nonlinear
network .. 61

Table 6.3: Percentage of final weights within 0.00001 of the optimal weights for the first order nonlinear
network ... '. .. 66

Table 6.4: Percentage of final weights within 0.00001 of the optimal weights for the second order
nonlinear network. ... 66

Table 7.1: Parameters for Model Reference Controller .. 69

Table 8.1: FP and BTT Gradient memory comparison (bytes) ... 84

Table 8.2: FP and BTT Jacobian memory comparison (bytes) ... 85

Table 8.3: FP and BTT memory comparison (bytes) for network 1 as function of first layer size 87

Table 8.4: FP and BTT memory comparison (bytes) for network 31 as function of first layer size 87

Table 8.5: FP and BTT memory comparison (bytes) for network 1 as function of number of delays 87

Table 8.6: FP and BTT memory comparison (bytes) for network 31 as function of number of delays 88

Table 8.7: FP and BTT memory'comparison (bytes) for network 1 as function of number of samples 88

Table 8.8: FP and BTT memory comparison (bytes) for network 31 as function of number of samples 89

Table 8.9: FP and BTT Gradient time comparison ... 90

Table 8.10: FP and BTT Jacobian time comparison ... 91

Table 8.11 ! FP and BTT time comparison for network 1 as function of first layer size (msec) 92

Table 8.12: FP and BTT time comparison for network 31 as function of first layer size (msec) 92

Table 8.13: FP and BTT time comparison for network 1 as function ofnumber of delays (msec) 92

Table 8.14: FP and BTT time comparison for network 31 as function ofnumber of delays (msec) 93

vii

Table 8.15: FP and BTT time comparison for network 1 as function of number of samples (rnsec) 93

Table 8.16: FP and BTT time comparison for network 31 as function of number of samples (msec) 94

Table 8.17: FP and BTT floating point operations for network 1 as function of first layer size 97

Table 8 .18: FP and BTT constant calculations for floating point operations for network 1 as a function
of first layer size ... 98

Table 8.19: FP and BTT floating point operations for network 31 as function of first layer size 99

Table 8.20: FP and BTT constant calculations for floating point operations for network 31 as a function
of first layer size ... 100

Table 8.21: FP and BTT floating point operations for network 1 as function of number of delays 102

Table 8.22: FP and BTT constant calculations for floating point operations for network 1 as a function
of number of delays ... 103

Table 8.23: FP and BTT floating point operations for network 31 as function ofnumber of delays ; .. .l 04

Table 8.24: FP and BTT constant calculations for floating point operations for network 1 as a function
of number of delays ... 105

Table 8.25: FP and BTT floating point operations for network 1 as a function of number of samples 107

Table 8.26: FP and BTT constant calculations for floating point operations for network 1 as a function
of number ofsamples ... 108

Table 8.27: FP and BTT floating point operations for network 31 as a function of number of samples 109

Table 8.28: FP and BTT constant calculations for floating point operations for network 31 as a function
of number ofsamples ... 110

viii

LIST OF FIGURES

Figure 2 .I: Canonical form networks as introduced by N errand et al. [361 ... 5

Figure 2.2: The discrete Gamma Network. .. 7

Figure 2.3: Example ofa Layered Feedforward Network ... 8

Figure 2.4: Tapped Delay Line .. 10

Figure 2.5: Layered Digital Dynamic Network Example11

Figure 3.1: Simple dynamic network ... , : ... 20

Figure 4.1: Three-layer LDDN with two output layers (1 and 3) and two input layers (1 and 2) 31

Figure 4.2: Pseudo Code for the Forward Perturbation gradient algorithm ... 37

Figure 4.3: Pseudo Code for the Forward Perturbation Jacobian algorithm .. 40

Figure 5.1: Pseudo Code for the Backpropagation-Through-Time gradient algorithm46

Figure 5 .2: Pseudo Code for the Backpropagation-Through-Time Jacobian algorithm 50

Figure 6.1: Error profile ... 52

Figure 6.2: First order linear recurrent network ... 53

Figure 6.3: Error surface for first order linear model. ... 53

Figure 6.4: Error cross-section for W 1 = 0.5 ... 55

Figure 6.5: First order nonlinear model.' .. 55

Figure 6.6: Error surface for first order nonlinear network ... 56

Figure 6.7: Error surface for first order nonlinear model for different input sequence 57

Figure 6.8: Error surface using sequence averaging .. 58

Figure 6.9: Error surface usingy(O) = 0.1 .. .58

Figure 6.10: Relative final position ofW1 vs. W2 for 5 std : ... 60

ix

Figure 6.11: Two-layer nonlinear model. .. 61

Figure 6.12: Relative final position of W3 vs. W4 for 20 std ... 62

Figure 6.13: Final distance to optimal weights for different switching sequence intervals 63

Figure 6.14: Average performance for different switching sequence interval. ... 63

Figure 6.15: Average performance for a/1.01 and a/l.2 .. 64

Figure 6.16: Flops for different sequence length .. 64

Figure 7.1: Model Reference Control Architecture ... 69

Figure 7.2: Detailed Model Reference Control Structure .. 70

Figure 7.3: Continuous Stirred Tank Reactor .. 72

Figure 7.4: CSTR response and control action using the Model Reference Controller 74

Figure 7.5: Magnetic Levitation System .. 75

Figure 7.6: MagLev response using model reference control. ... 75

Figure 7.7: Single-Link Robot Arm ... 76

Figure 7.8: Robot arm response ... 76

Figure 7.9: Simple Engine Model. ... 77

Figure 7.10: Engine speed using the model reference controller and Predictive Controller 77

Figure 7.11: Blood Concentration using the Mackey-Glass equation ... 78

Figure 7.12: Modified Cascaded Recurrent Neural Network .. 80

Figure 7.13: Prediction Results for LDDN with Full Dynamic Training .. 82

Figure 7.14: Errors for LDDN with Full Dynamic Training ... 82

Figure 8. I: Memory per Weight for gradient algorithms ... 86

Figure 8.2: Memory per Weight for Jacobian algorithms .. 86

Figure A. I: Gamma Memory Structure .. 122

Figure C.l: Full Cascaded Recurrent Neural Network ... 130

Figure C.2: Errors for LDRN with Full Dynamic Training .. 133

Figure D.l: Network I: 2-layer LDDN with [O I] delay between layers I and 2 134

X

Figure D.2: Network 2: 3-layer LDDN with [O 1] delay between layers 1 and 2 134

Figure D.3: Network 3: 3-layer LDDN with [O 1] TDL from layer 1 to 2 and [1 2 3] TDL from layer
3to2 ... , .. 134

Figure D.4: Network 4: 3-layer LDDN example .. 135

Figure D.5: Network 5: 3-layer LDDN ... 135

Figure D.6: Network 6: 3-layer LDDN ... 135

Figure D.7: Network 7: 3-layer LDDN ... 136

Figure D.8: Network 8: 4-layer LDDN ... 136

Figure D.9: Network 9: 4-layer LDDN. This model resembles the Model Reference Controller 136

Figure D.10: Network 10: 2-layer LDDN .. 137

Figure D.11: Network 11: 3-layer LDDN with [1 2 3] feedback from layer 3 to 2 137

Figure D.12: Network 12: 3-layer LDDN. ···:·······137

FigureD.13: Network 13: 3-layerLDDN .. 138

Figure D.14: Network 14: 4-layer LDDN .. 138

Figure D.15: Network 15: 4-layer LDDN .. 138

Figure D.16: Network 16: 2-layer LDDN .. 139

Figure D.17: Network 17: 4-layer LDDN .. : 139

FigureD.18:Network 18: 5-layerLDDN .. 139

Figure D.19: Network 19: 2-layer LDDN similar to Network 1 (Figure B.l) with layer numbers in
reverse order .. 140

Figure D.20: Network 20: 5-layer LDDN .. 140

Figure D.21: Network 21: 8-layer LDDN with two outputs connected to layers 7 and 8 140

Figl!fe D.22: Network 22: 6-layer LDDN with unitary feedback from layers 2 and 3 to layer 1 141

Figure D.23: Network 23: 4-layer LDDN with unitary feedback from layer 2 to layer 1 141

Figure D.24: Network 24: 5-layer LDDN with two inputs connected to layers 1 and 5 141

Figure D.25: Network 25: 9-layer LDDN with output connected to layer 6 ... 142

Figure D.26: Network 26: I-layer LDDN with unitary feedback to itself ... 142

xi

Figure D.27: Network 27: 3-layer LDDN with unitary feedback from layer 2 to layer 1 142

Figure D.28: Network 28: IO-layer LDDN with multiple delays and feedback .. 142

Figure D.29: Network 29: 6-layer LDDN with multiple TDLs and output connected to layer 4 143

Figure D.30: Network 30: 2-layer LDDN with two inputs connected to both layers 143

Figure D.31: Network 31: 2-layer LDDN with unitary feedback from layer 1 to itself.. 143

Figure D.32: Network 32: 6-layer LDDN in modified cascaded recurrent neural network configuration .. 144

Figure D.33: Network 33: 7-layer LDDN in full cascaded recurrent neural network configuration 145

xii

ARMA

b

BFGS

BTT

CMAC

CSTR

E[]

u
E8 (x)

FIR

fix

FP

LIST OF SYMBOLS AND ACRONYMS

Neural Network Output for layer k.

Autoregressive Moving Average.

bias.

Broyden, Fletcher, Goldfarb, and Shanno quasi-Newton algorithm.

Backpropagation Through Time.

Cerebellar model articulation controller.

Continuous Stirred Tank Reactor [5]_

Set ofall delays in the tapped delay line between Input land Layer m.

Set of all delays in the tapped delay line between Layer land Layer m.

Expected value.

Set of all output layer numbers where the layer weight connecting the layer u to
the layer x exists.

Set of all input layer numbers where the layer weight connecting the layer u to the
layer x exists.

Set of all output layer numbers where the sensitivity from layer u to layer x exists.

Set of all input layer numbers where the sensitivity from layer u to layer x exists.

Set of all layer numbers where the sensitivity from layer u to layer x exists.

Transfer function for layer k.

Finite Impulse Response.

Rounds toward zero.

Transfer function derivative for layer m.

Forward Perturbation.

xiii

F(x)

I

IIR

IWi,j

LDDN

LFFN

II m

LWi,j

MagLev

mse

msereg

NARMA

NN

7t

s

m s

T

Performance index for the network.

Engine Inertia (lb-ft-sec2).

Infinite Impulse Response.

Set of indices of input vectors that connect forward to layer m.

Input Weight. where j denotes the number of the input vector that enters the
weight, and i denotes the number of the layer to which the weight is connected.

Derivative gain of PID controller.

Integral gain of PID controller.

Proportional gain of PID controller.

Layered Digital Dynamic Network.

Layered Feedforward Network.

Set of indices of layers that directly connect forward to layer m.

Set of indices oflayers that directly connect backwards to layer m.

Layer Weight, where j denotes the number of the layer coming into the weight
and i denotes the number of the layer ;it the output of the weight.

Magnetic Levitation System.

Mean squared error.

Mean squared error with regularization.

Input for transfer function oflayer k.

Nonlinear Autoregressive Moving Average.

Neural Network.

External Neural Network Input k.

3.14159265358979.

Laplace transform variable.

Sensitivity oflayer m.

Sensitivity calculated from the input oflayer m to the output oflayer u.

Sampling time.

xiv

TDL

u

vec

X

X

z

Neural Network Target k.

Tapped Delay Line.

Set of all output layer numbers.

Operator that transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other [291.

Vector containing all of the weights and biases in the network.

Set of all input layer numbers.

Neural Network Output k.

Z-transform variable.

xv

CHAPTERl

INTRODUCTION

The principal objective of this research is to develop gradient-based algorithms for training general

dynamic neural networks. There are three main steps in this development.

The first step is to define a general framework that can be used to represent a large class of dynamic

neural networks. Chapter 2 describes such a framework: the Layered Digital Dynamic Network {LDDN). We

show that many popular dynamic networks can be represented by the LDDN framework.

The second step is to derive general procedures for computing the gradients for the LDDN. The basic

concepts that are used for gradient-based optimization are introduced in Chapter 3. Then Chapters 4 and 5

present the key results of this research: two different algorithms for computing gradients and two different

algorithms for computing Jacobians for the LDDN. Chapter 4 develops the general Forward Perturbation (FP)

algorithms, and Chapter 5 develops the general backpropagation-through-time (BTT) algorithms.

The third step is the development of gradient-based optimization algorithms that are well suited for

dynamic network training. Chapter 6 analyzes the error surfaces for some simple dynamic networks and

presents a newly discovered feature of these error surfaces: spurious narrow valleys that can trap optimization

algorithms. Based on the analysis of these spurious valleys, Chapter 6 presents modified training algorithms

that show improved performance on dynamic networks.

Chapter 7 describes two applications of dynamic network training related to Model Reference

Control and Nonlinear Filtering. The control application is solved using the FP algorithm. The nonlinear

filtering application is solved using the BTT algorithm.

1

Chapter 8 presents memory, speed and computational complexity comparisons for the FP and BTT

algorithms using 33 different neural networks. Some of these neural networks came from the literature, and

others were created for testing purposes.

Finally, Chapter 9 provides a summary of the key results and some directions for future research.

2

Chapter2

LAYERED DIGITAL DYNAMIC NEURAL NETWORK

Neural networks can be classified into dynamic and static categories. Static (feedforward) networks

have no feedback elements and contain no delays; the output is calculated directly from the input through

feedforward connections. In dynamic networks the output depends not only on the current input to the

network, but also on the current or previous inputs, outputs or states of the network. This includes feedforward

neural networks with delays between layers. In this research we are concerned with the training of general

dynamic networks.

In order to develop training algorithms that will be suitable for a general class of dynamic network,

we first need to find a general framework. In this chapter we introduce the Layered Digital Dynamic Network

(LDDN). We will show how this framework is able to encompass many previously published dynamic

architectures.

2.1. Neural Networks.

Biological neural networks allow the interaction between you and me. Not only do they facilitate my

writing skills throughout this document and your ability to understand my ideas but they also allow important

neurological functions. Each one of us have about 1011 highly interconnected neurons, where each

interaction is based on tissue, chemical and electrical connections. The biological neural networks inspired

simulation using artificial models. This document will consider a class of neural networks called artificial

dynamic neural networks.

Early work on Neural Networks occurred between late 19th and early 20th centuries. Theories of

learning, vision, conditioning, etc. were developed by Hermann von Helmholtz, Ernst Mach, Ivan Parlov and

others. McCulloch and Pitts c3o1 showed that artificial neural networks could c~mpute any arithmetic or

3

logical function in the early 1940s. Later, Hebb [22l proposed the first learning rules based on neuron behavior

at the cellular level. Rosenblatt [4 ll proposed the perceptron network and its associated learning rule in the

late 1950s. Unfortunately, the perceptron was only able to solve a limited class of problems. In 1960 the

Widrow-Hoff learning rule was introduced to train adaptive linear neural networks (521. The previous neural

networks were very limited in their implementations and applications. Those limitations were presented in

the Minsky and Papert book [321, resulting in a slow down in neural network research, except for work due to

Kohonen r251 and Anderson [ll on neural networks as memories, and Grossberg [l 3l on self-organizing

networks.

Two developments precipitated an explosion in research involving theoretical and practical

applications of neural networks. The first was the introduction of Hopfield networks (231, a class of recurrent

neural networks that can be used as associative memories. The second was the development of the

backpropagation algorithm (421 for training multilayer networks. Two important results related to the training

ofrecurrent neural networks are the Backpropagation Through Time algorithm [5 ll and the Forward

Perturbation algorithm (541_ These two algorithms will be discussed in detail in later chapters.

2.2. Dynamic Neural Network Architectures.

We will begin this section by reviewing a number of dynamic network architectures that have been

proposed in the literature. Then we will present a general class of dynamic network that includes most

previous networks as subclasses. This general class of network (called the Layered Digital Dynamic

Network) will enable us to develop general purpose training algorithms for dynamic networks.

Tsai (431 described several architectures enabling the configuration ofrecurrent neural networks and

explained how each architecture helps the gradient evaluation. The Williams-Zipser architecture (541

classifies neurons as input neurons, output neurons, hidden neurons or a combination of input and output. The

connection between neurons is an adjustable time delay. The Time Delay Neural Network [491 is a multilayer

feedforward neural network where tap delay lines can be connected to the outputs of input neurons, hidden

neurons and/or output neurons. The Canonical Form Network [26• 361 consists of a feedforward neural network

where the outputs are delayed using a tap delay line with d delays as shown in Figure 2.1.

4

y(t)

u(t)

Constant
Weights

Delays

Figure 2.1: Canonical form networks as introduced by Nerrand et aiJ361

Narendra et al. C35, 34l proposed six different architectures based on the autoregressive moving

average (ARMA) model C4l _ The first four models are described by the following nonlinear difference

equations C35l:

Model l:

n-1

yp<k+l) = z:aiy/k-i)+g[u(k),u(k-1), ... ,u(k-m+l)]

i=O

Model II:

m-1

Yp(k+l) =f'[ypCk),Yp(k-1), ... ,yp<k-n+l)]+ L ~;u(k-i)

i= 0

Model III:

ypCk + 1) = f'[ypCk), Yp(k- 1), ... , ypCk-n + l)] + g[u(k), u(k- 1), ... , u(k-m + l)]

Model IV:

Yp(k + 1) = fiyp(k), Yp(k-1), ... , ypCk-n + 1), u(k), u(k- 1), ... , u(k-m + 1)]

where [u(k), Yp(k)] represents the input-output of the model andf and g represent feedforward neural

networks. The last two models facilitate neural network adaptive control c34l:

Narma-Ll Model:

Yp(k + d) = fiyp(k), ypCk- 1), ... , ypCk-n + 1)]

m-l

+ L g;[Yp(k), Yp(k- 1), ... , Yp(k-n + 1)] · u(k- i)

i=O

5

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Narma-L2 Model:

Yp(k+d) = fT.ypCk),yP(k-1), ... ,yp(k-n+ 1), u(k-1), ... , u(k-n+ l)]

+ g0 [yp(k), Yp(k-1), ... , ypCk-n + 1), u(k- 1), ... , u(k- n + 1)] · u(k)
(2.6)

Eachf and g represent neural networks. Models like the NARMA-L2 allow the configuration of

neurocontrollers. The plant is identified using Eq. (2.6) and solvingfor u(k) we obtain:

u(k) = Y_.p'"""(_k _+_d_) _-JT._y Fc....(_k_),_Y Pc....(_k_-_1_),_._ .. _, Y-"-p_(k_-_n_+_l_),_u_(k_-_1)_, _· ._.,_u_(k_-_n _+_1_)]
g0 [yp(k), ypCk- 1), ... , Yp(k- n + 1), u(,k- 1), ... , u(k- n + 1)]

(2.7)

Frasconi et al. [l ?J proposed an architecture where a feedforward neural network has a simple local

feedback loop around each hidden layer. A more complex model called the Fully Connected Hidden Layer

Recurrent Neural Network was proposed by Elman ll4J and Mills et al. l3 IJ where we have single delays

between all layers.

The Finite Impulse Response (FIR) Neural Network [SO, 3J replaces each network synaptic weight by

an FIR filter:

y(t) = L W;X(t-i) (2.8)

i = l

where x(t) is the input to the filter, y(t) is the output of the filter and nb is the filter order.

The Gamma Network [l3, 39, 33• 24• 4oJ replaced the inputs to the hidden layers by gamma filters:

Y;, 0(t) = u(t)

Y;, k(t) = (1- µ;)Y;, it-1) + µ;Y;, k- 1 (t- 1)
(2.9)

where i = 1, ... , N, k = 1, ... , K and t = 1, ... , tf" N is the dimension of the input signal u(t), K is the order of

the memory structure and µ/ s are the parameters of the memory banks. Figure 2.2 shows a Gamma Network

where only one memory bank is shown in detail. Each memory consists of a tapped delay line with a local

recurrent connection.

6

u(t)
G(z)

Y;, oU)
G(z)

Figure 2.2: The discrete Gamma Network.

Another representation is the Infinite Impulse Response (IIR) Network [3, 371 where the weights are

replaced by Infinite Impulse Response (IIR) filters. The direct form of an IIR filter is:

M

z: b;q-i

y(t) = -'-i =~~-- u(t) (2.10)

or

y(t) = a 1y(t-1) + a2y(t-2) + ... + aNy(t-N) + b 1u(t- l) + b2u(t-2) + ... + bMu(t-M) (2.11)

where a;, i = 1, ... , N and b;, i = 1, ... , M are the weight parameters for the IIR filter for the layer and M

and N are the filter orders.

Now that we have reviewed some typical dynamic networks, we next want to introduce a very

general class of dynamic network. The Layered Digital Dynamic Network (LDDN) is a general neural

network architecture able to represent all the previous specific architectures presented by different

researchers. Each of the previous dynamic architectures has its own training algorithm; we will present

general algorithms able to train arbitrary LDDNs. The LDDN is a generalization of the Layered Feedforward

Network (LFFN), which has been modified to include feedback connections and delays. We begin here with

a description of the LFFN, and then show how it can be generalized to obtain the LDDN.

7

2.3. Layered Feedforward Network.

Figure 2.3 is an example of a layered feedforward network (two layers in this case). (See [l2l for a

full description of the notation used here.) The input vector to the network is represented by p1 , which has

R1 elements. The superscript represents the input number, since it is possible to have more than one input

vector. The input is connected to Layer 1 through the input weight IW1' 1 , where the first superscript

represents the layer number and the second superscript represents the input number. The bias for the first layer

is represented by b 1 • The net input to Layer 1 is denoted by n 1 , and is computed as

I IWl,l I bl n = p + (2.12)

The output of Layer 1, a 1 , is computed by passing the net input through a transfer function, according to

a 1 = f 1 (n 1) • The output has S1 elements. The output of the first layer is input to the second layer through

the layer weight L W2' 1 , where the first superscript represents the destination layer number and the second

superscript represents the source layer number. The overall output of the network is labeled y . This is

typically chosen to be the output of the last layer in the network, as it is in Figure 2.3, although it could be the

output of any layer in the network. Similarly, we could connect any input to any layer.

Layer1 Layer2
\ (\

R1 Xl
IW1.1

S1xl
LW2.1

S1xR + Ill
f1 . sixs1 +

1~

s 1 xl

1~

a2 =y
six 1

f2

RI s 1 xl S' six l
\..::_) \,) \, sz)

a1 = f1 (IW1.1p1 +bi) a2 =f2 (LW2,1a1+b2)

Figure 2.3: Example of a Layered Feedforward Network

Each layer in the LFFN is made up of:

1) a set of weight matrices that come into that layer (which may connect from other layers or from

external inputs),

2) a bias vector,

8

3) a summing junction and

4) a transfer function.

In the example given in Figure 2.3, there is only one weight matrix associated with each layer, but

it is possible to have weight matrices that are connected from several different input vectors and layer outputs.

This will become clear when we introduce the LDDN network. Also, the example in Figure 2.3 has only two

layers, our general LFFN can have an arbitrary number of layers. The layers do not have to be connected in

sequence from Layer l to Layer M. For example, Layer l could be connected to both Layer 3 and Layer 4,

by weights L W3' 1 and L W4' 1 , respectively. Although the layers do not have to be connected in a linear

sequence by layer number, it must be possible to compute the output of the network by a simple sequence of

calculations. Due to the nature of the LFFN there cannot be any feedback loops in the network or feedforward

delays. The order in which the individual layer outputs must be computed in order to obtain the correct

network output is called the simulation order.

2.4. Layered Digital Dynamic Network.

We now introduce a class of dynamic networks that are based on the LFFN. The LFFN is a static

network, in the sense that the network output can be computed directly from the network input, without the

knowledge of initial network states. A Layered Digital Dynamic Network (LDDN) can contain feedback

loops and time delays. The network response is a function of network inputs, as well as initial network states.

The components of the LDDN are the same as those of the LFFN, with the addition of the tapped

delay line (TDL), which is shown in Figure 2.4. The output of the TD,L is a vector containing current and/or

previous values of the TDL input. In Figure 2.4 we show two abbreviated representations for the TDL. In the

case on the left, the undelayed value of the input variable is included in the output vector. In the case on the

right, only delayed values of the input are included in the output.

9

a(t)

a(t-1)

a(t-d)

Abbreviated Notation

Undelayed Value
Included

a(t) x(t)

Sxl S(d+l)xl

d

Undelayed Value
Discarded

x(t)

Figure 2.4: Tapped Delay Line

Figure 2.5 is an example of an LDDN. Like the LFFN, the LDDN is made up of layers. In addition

to the weight matrices, bias, summing junction and transfer function, which make up the layers of the LFFN,

the layers of the LDDN also include any tapped delay lines that appear at the input of a weight matrix, where

any weight matrix in an LDDN can be proceeded by a tapped delay line. For example, Layer 1 of Figure 2.5

contains the weight L W 1' 2 and the TDL at its input. The output of the TDL in Figure 2.5 is labeled a1' \t) .

This indicates that it is a composite vector made up of delayed values of the output of Layer 2 and is an input

to Layer 1. These TDL outputs are important variables in our training algorithm for the LDDN. Note that all

of the layer outputs and net inputs in the LDDN are explicit functions of time.

10

Input

r-'\
Layer1 Layer2

r '

+1--......
1~.

n2(t)
f2

\...._ ________)
Figure 2.5: Layered Digital Dynamic Network Example

y(t)

a2(t)

In the LDDN, feedback as well as feedforward delays are added to an LFFN. Therefore, unlike the

LFFN, the output of the network is a function not only of the weights, biases, and network input, but also of

the outputs of some of the network layers at previous points in time. For this reason, it is not a simple matter

to calculate the gradient of the network output with respect to the weights and biases (which is needed to train

the network). This is because the weights and biases have two different effects on the network output. The

first is the direct effect, which can be calculated using the standard backpropagation algorithm [ZOJ. The

second is an indirect effect, since some of the inputs to the network,· such as a 1' 2 (t) , are also functions of the

weights and biases. In the next section we briefly describe the gradient calculations for the LFFN, and show

how they must be modified for the LDDN. The main development of the next three chapters is a general

gradient calculation for arbitrary LDDN's.

The LDDN architecture is very general and can be used to represent all of the dynamic networks that

we reviewed at the beginning of this chapter. Appendix A demonstrates LDDN representations for several

network types.

In the next three chapters we will develop algorithms for computing the gradient of LDDN errors

with respect to the weights of the network. These will be general algorithms, applicable to any LDDN

network. The gradients computed by these algorithms will then be used by optimization procedures to train

the networks.

11

Chapter 3

DYNAMIC LEARNING

In this chapter we will introduce the basic concepts required for training dynamic networks. We

begin with a review of gradient-based optimization algorithms that can be used to train both static and

dynamic networks. We then describe how gradients can be computed for static networks. Finally, we use a

simple dynamic network structure, with one feedback loop and one delay, to demonstrate gradient

calculations for dynamic networks. (These calculations will be generalized for the LDDN in Chapter 4 and

Chapter 5.)

3.1. Performance Optimization.

Once a neural network architecture is defined, the objective is to train the network. The training

generally modifies the weights and biases to obtain a network that produces a specific behavior. We have

three types of training algorithms: unsupervised learning, reinforcement or graded learning and supervised

learning. Unsupervised learning is based only on the inputs of the neural network. Reinforcement learning is

based on a grade or score for neural network performance. Supervised learning uses a set of examples of

network inputs Pq and corresponding targets tq [ZOJ.

(3.1)

This research will develop supervised learning algorithms for the LDDN. Due to the time

dependencies of the LDDN, we will refer to the input-target sets as sequences. For static feedforward neural

networks we can present data to the networks in batch form, where each input-target pair will be independent

from other pairs. For dynamic systems, as we present the input sequence we must maintain the relative time

position of each data point.

12

Supervised learning is based on the optimization of the performance of the neural network. A

common pe,formance index is the sum squared error:

(3.2)

q = I q= I

where x is the vector of network weights and biases, tq is the target vector, y q is the output vector when the

qth input, Pq, is presented and eq = tq-Yq is the error.

A second performance index is sum squared error with regularization:

Fssereg(X) = aFss/X) + (1 - a) [xT. X] (3.3)

which combines sum squared error and sum squared weights and biases. The ratio a is a value between O and

I.

The optimization of any of the performance indexes begins with an initial set of weights x0 and the

iterative update of the weights for each training epoch k according to:

(3.4)

or

(3.5)

where the vector dk represents a search direction, and the positive scalar µk is the learning rate. The

optimization algorithms will determine the search direction dk as well as the learning rate µk.

3.1.1. Steepest Descent.

Consider the first-order Taylor series expansion of any performance index F(x) around the guess

(3.6)

where gk is the gradient evaluated at the guess xk:

(3.7)

For minimization, F(xk+ 1) should be smaller than F(xk), so the second term on the right-hand side of Eq.

13

(3.6) must be negative:

(3.8)

We will select a positive learning rate µk, so g[dk < 0. The performance function will decrease fastest when

g[dk is most negative, which will occur when the search direction vector dk is the negative of the gradient:

We can redefine Eq. (3.4) for the steepest descent method as:

We have two methods to determine the learning rate µk for steepest descent:

1.- Minimize F(x) along the line xk - µkgk for each iteration.

(3.9)

(3.10)

2.- Use a fixed value (for example µk = 0.02) or use variable but predetermined values (for example

µk = Ilk).

3.1.2. Newton's Method.

This method is based on the second-order Taylor series approximation r20l:

(3.11)

To locate the stationary point of the previous approximation we take its gradient with respect to t.xk :

(3.12)

and set it equal to zero. Solving for t.xk:

(3.13)

From the previous relation, we obtain Newton's Method:

(3.14)

The drawback of Newton's Method is the calculation and storage of the Hessian Matrix Ak, as well

as its inverse. Two alternatives are the quasi-Newton methods and the one-step-secant methods. These

methods replace A;;-1 with a positive definite matrix Hk, that is updated at each iteration without matrix

inversion.

14

3.1.3. Conjugate Gradient.

The calculation and storage of the second derivatives may impractical for the performance

optimization of neural networks, especially for a large number of weights and biases. An alternative

possibility that emulates a quadratic trajectory is conjugate directions [ZOJ_

For the quadratic performance function:

(3.15)

a set of vectors { dk} · is mutually conjugate with respect to a positive definite Hessian matrix A if and only if

(3.16)

For quadratic functions we have:

VF(x) = Ax+b (3.17)

2
V F(x) = A (3.18)

We can combine the previous equations to find the change in gradient for the iteration k + 1:

(3.19)

By combining Eq. (3.5) and the conjugate condition Eq. (3.16):

h) (3.20)

From the previous relation, the Hessian matrix is no longer needed. The conjugate conditions could

be obtained recursively by starting the search in the steepest descent direction:

(3.21)

and updating the search direction by:

(3.22)

The most common choices to select the scalar value ~k are [43l:

(3.23)

15

due to Hestenes and Steifel,

(3.24)

due to Fletcher and Reeves, and

(3.25)

due to Polak and Ribiere.

3.1.4. Levenberg-Marquardt Algorithm.

This algorithm is a variation of Newton's method based on the sum squared error (Eq. (3.2)) [21 , 201.

From Eq. (3.14) Newton's method for optimizing a performance index F(x) is

For a performance function like the sum squared error:

N

F(x) = L vr(x) = vT(x)v(x)'

i = 1

the jth element of the gradient is

where

[\7 F(x) l · = c/F(x)
1 cixj

N
c/v;(X)

= 2" V-(X)--. L. l ax.
i = 1 J

We can rewrite the gradient in matrix form:

\7F(x) = 2F(x)v(x),

c/v1(x) c/v 1(X) civ 1 (x)

cix1 cix2 cixn

civ2(x) civz(x) civ2(x)

JT(x) = cix1 cix2 cixn

civN(x) civN(x) civN(x) ----
cix 1 cix2 cixn

16

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

is the Jacobian matrix. The k, j term of the Hessian matrix would be

N 2
2 . _ a2F(X) _ {dv;(X)dv;(X) d v;(X)}

[V F(x)lk,1 - -=,--a - 2" a a + V;(X) Cl Cl '
UX· X, £... Xk X, OX·UX·

1 1 i=I J J J

then we can represent the Hessian in matrix form:

where

2
V F(x) = 2F(x)J(x) + 2S(x),

N
2

S(x) = L v;(x)V v;(X)

; = I

Ifwe assume that S(x) is small, we can approximate the Hessian matrix as

2
V F(x) = 2F(x)J(x).

By substitution of Eq. (3.34) and Eq. (3.29) into Eq. (3.26) we obtain the Gauss-Newton method:

xk + 1 = xk- [2F(xk)J (xk)]-12F(xk)v(xk)

= xk - [F(xk)J (xk)]-1 F(xk)v(xk)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

The advantage of the Gauss-Newton method over Newton's method (Eq. (3.14)) is that we only

require the calculation of first derivatives. The drawback of the Gauss-Newton method is that the matrix

H = JTJ may not have inverse. We can overcome this problem by using the approximation:

G = H +µI, (3.36)

The eigenvalues and eigenvectors of Hare {A.1, 11.2, ... , "-n} and {z1, z2, ... , zn}, so we have:

Gz; = [H + µl]z; = Hz;+ µz; = A;Z; + µz; = ("-; + µ)z;, (3.37)

meaning that G and H have the same eigenvectors, and the eigenvalues of Gare (A;+µ). We can increase µ

until ("-; + µ) > 0 for all i, allowing us to invert the matrix G.

The G approximation leads to the Levenberg-Marquardt algorithm [43• 21 • 201:

(3.38)

17

or

(3.39)

This algorithm approximates the steepest descent algorithm for large µk and approximates the Gauss-Newton

method for small µk.

3.2. Gradient Calculations for Static Networks.

In order to use the optimization algorithms described in the previous section, we need to be able to

compute the gradients of the performance index with respect to the weights and biases. In this section we will

demonstrate the gradient calculations for static networks.

Consider again the multilayer network of Figure 2.3 on page 8. The basic simulation equation of

such a network is

ak = t(L1wk,ipi+LLWk,jaj+bkJ, (3.40)

l J

where k is incremented through the simulation order. This is the order that will make the necessary inputs at

each layer available, as will be discussed later. The summation over i represents the inputs connected to layer

k and the summation over j represents the layers connected to layer k.

We want to compute the gradient of the sum squared error performance index:

Q Q
T

F(x) = L (tq-Yq) (tq-Yq) (3.41)

q = I

The gradient of the sum squared error is the sum of the gradients of each individual squared error [20l:

(3.42)

so we will consider these terms individually. We want to compute the terms

(3.43)

Define

k dF
S-=-

1 k
dn;

(3.44)

18

as the sensitivity of the performance index to changes in the net input of unit i in layer k. Using the chain rule,

we can show that

aF oF on7' m I oF oF an~ m I oF oF an~ "' =~x--=s-p.,--=~x--=s.a.,~=~x~=s.
oiw'!'·.1 anm oiw"'·.1 t 1 azwm'. 1 an'!' atw'!'·.' 1 1 ob'." anm ob'!' t

l,J I l,J l,j l l,j l l l

(3.45)

It can also be shown that the sensitivities satisfy the following recurrence relation, in which mis incremented

through the backpropagation order, which is the reverse of the simulation order:

(3.46)

where

.m m
f (n 1) 0 0

0
.m m
f (nz) · · · 0

0 0
(3.47)

and

(3.48)

This recurrence relation is initialized at the output layer:

(3.49)

The overall algorithm now proceeds as follows: first, propagate the input forward using Eq. (3.40);

next, propagate the sensitivities back using Eq. (3.49) and Eq. (3.46); and finally, compute the gradient using

Eq. (3.45).

3.3. Dynamic Training Principles.

Now consider an LDDN, such as the one shown in Figure 2.5 on page 11. Suppose that we want to

compute the same gradient, Eq. (3.43), that is computed by the standard backpropagation algorithm. The

problem in this case is that when we try to find the equivalent ofEq. (3.45) we note that the weights and biases

have two different effects on the network output. The first is the direct effect, which is accounted for by Eq.

19

(3.45). The second is an indirect effect, since some of the inputs to the network, such as a1' 2(t), are also

functions of the weights and biases. To account for this indirect effect we must use dynamic backpropagation.

To illustrate dynamic backpropagation [55• 56• 191, consider Figure 3 .1, which is a simple dynamic

network. It consists of an LFFN with a single feedback loop added from the output of the network, which is

connected to the input of the network through a single delay. In this figure the vector x represents all of the

network parameters (weights and biases) and the vector a(t) represents the output of the LFFN at time step t.

p(t)
..... ------...... a(t)

LFFN

a(t) = NN(p(t),a(t-1),x)

Figure 3.1: Simple dynamic network

Now suppose that we want to minimize

Q

F(x) = L (t(t)-a(t){(t(t)-a(t)) (3.50)

t = l

In order to use gradient descent, we need to find the gradient of F with respect to the network parameters.

There are two different approaches to this problem. They both use the chain rule, but are implemented in

different ways:

or

Q

aF = '°' [aa(t)JT X ae F
ax L... ax aa(t)

t = l

ax

Q e T " [a a(t)J x aF
L... ax aa(t)

I= I

(3.51)

(3.52)

where the superscript e indicates an explicit derivative, not accounting for indirect effects through time. The

20

explicit derivatives can be obtained with the standard backpropagation algorithm, as inEq. (3.46) [201. To find

the complete derivatives that are required in Eq. (3.51) and Eq. (3.52), we need the additional equations:

aa(t) aea(t) aea(t) aa(t-1) ~-=~~+ x~~~ ax ax aa(t-1) ax
(3.53)

and

aF aeF aea(t+l) aF ~-=~-+ x~~-
aa(t) aa(t) aa(t) aa(t + 1)

(3.54)

Eq. (3.51) and Eq. (3.53) make up the forward perturbation (FP) algorithm [541_ Note that the key

term is

(3.55)

which must be propagated forward through time.

Eq. (3.52) and Eq. (3.54) make up the backpropagation-through-time (BTT) algorithm [511. Here the

key term is

aF
aa(t)

which must be propagated backward through time.

In general, the FP algorithm requires somewhat more computation than the BTT algorithm.

(3.56)

However, the BTT algorithm cannot be implemented in real-time, since the outputs must be computed for all

time steps, and then the derivatives must be backpropagated back to the initial time point. The FP algorithm

is well-suited for real-time implementation, since the derivatives can be calculated at each time step.

3.4. Additional methods for dynamic gradient calculation.

Additional dynamic gradient calculation methods had been proposed in the literature. Generally

th~se methods are derived from the BP and the BTT algorithms. The Green's Function method [45, 21 is a

21

simplification of the FP algorithm. The idea is to obtain the gradient aF I ax for a sequence of Q terms based

on the previously calculated gradient for Q-1 terms. Ifwe subtract both gradient values based on Eq. (3.51):

aFI aFI [aa(Q)JT aeF
ax Q - ax Q-1 = ~ xaa(Q)

T
= [aea(Q) + aea(Q) X aa(Q-1)] X aeF

ax aa(Q-1) ax aa(Q)

= [aea(Q)+ aea(Q) x(aea(Q-l)+aea(Q-l)x(aea(Q-2)
ax aa(Q-1) ax aa(Q-2) ax

(3.57)
T

aea(Q-2) ((aea(2) aea(2) iJ"a(l)))))] aeF + X ... X + X ... X
aa(Q-3) ax aa(l) ax aa(Q)

[
aea(Q) aea(Q) aea(Q-1) aea(Q) aea(Q-1) aea(Q-2)

= ~~+ X + X x~~~

ax aa(Q-1) ax aa(Q-1) aa(Q-2) ax

aea(Q) aea(Q-1) aea(2) aea(l)JT aeF
+ ... +aa(Q-l)x aa(Q-2) x ... x aa(l) x~ xaa(Q)

We can multiply inside the transpose term by:

I - aea(Q) X (aea(Q)-1-1
- aacQ-1) aacQ-1Y

we will obtain:

aFI _aFI -[aea(Q) ((aea(Q)0-l aea(Q) aea(Q-1) aea(Q-1) aea(Q-2)
- - - X X + + X
ax Q ax Q I aa(Q-1) aa(Q-1 ax ax aa(Q-2) ax

- . · (3.58)

+ ... +aea(Q-l)X ... Xaea(2)Xaea(l))]T X aeF
aa(Q-2) aa(l) ax aa(Q)

e e -1
If we continue until I = a a(2) x (a a(2)) :

aa(1) aa(l)

aFI aFI _ [(aea(Q) aea(Q-1) aea(3) aea(2))
ax Q -ax Q-1 - aa(Q-l)X aa(Q-2) X ... X aa(2) X aa(l)

X ((aea(2)rl X (aea(3)rl X ... X (aea(Q- l)rl X (aea(Q) rl X aea(Q)
aa(l) aa(2) aa(Q-2) aa(Q-1) ax (3.59)

(aea(2))-l (aea(3))-l (aea(Q-1))-l aea(Q-1)
+ X X ... X X -.

aa(l) aa(2) aa(Q-2) oX

+ ... + (aea(2))-l X aea(2) + aea(l))]T X aeF
aa(l) ax ax aa(Q)

22

We could define:

U(Q) = aea(Q) X aea(Q-1) X ••. X aea(3) X aea(2)
aa(Q-1) aa(Q-2) aa(2) aa(l)

(3.60)
= aea(Q) xU(Q-1)

aa(Q-1)

(aea(2))-l (aea(3))-l (aea(Q-1))-I (aea(Q)0-l aea(Q)
S(Q) = -- X -- x ... x X x--

aa(l) aa(2) aa(Q-2) aa(Q-1 ax

(aea(2))-l (aea(3))-l (aea(Q-1))-l aea(Q-1) + X X .•. X X --'-=------'-

aa (l) aa(2) aa(Q- 2) ax

+ ... + (aea(2)')-l X aea(2) + aea(l)
aa(1)) ax ax

(3.61)

= (U(Q))-lxaea(Q)+S(Q-1)
ax

Finally we can update the gradient using:

aFI = aFI + [U(Q) X S(Q)]Tx aeF
axQ axQ-1 aa(Q)

(3.62)

The Fast Forward Propagation Method [46· 47• 21 calculates the gradient recursively, allowing an on

line version of the BTT method. Let us assume that we can rewrite Eq. (3.54) as:

E! = aae F x A(k) + b(k)
aa(k) a(1)

(3.63)

If we solve recursively:

aF aeF aea(Q+l) ..,..;;w---:
aa(Q) = aa(Q) + ~aa(Q+ 1)

aF aeF aea(Q) aF
---= + x~-
aa(Q-1) aa(Q-1) aa(Q-1) aa(Q)

(3.64)

aF aeF aea(3) aF -- = --+--x--
aa(2) aa(2) aa(2) aa(3)

aF aeF aea(2) aF -- = --+--x--
aa(l) aa(l) aa(l) aa(2)

23

we have that:

aF I aeF aea(2) (aeF aea(3) ((aeF aea(Q) aeF JJJ
aa(l) Q = aa(l) + aa(l) X aa(2) + aa(2) X ... aa(Q-1) + aa(Q- 1) X aa(Q)

= aeF + aea(2) X aeF + ... + aea(2) X aea(3) X ... X aea(Q) X aeF (3.65)
aa(l) aa(l) aa(2) aa(l) aa(2) aa(Q-1) aa(Q)

aF I aea(2) aea(3) aea(Q) ae F
= aa(l) Q-1 + aa(l) X aa(2) X ... X aa(Q-1) X aa(Q)

For a generic time t=k we have:

aF I -(aea(k)_j-l (aeF (aea(k-1))-l (
aa(k) Q - aa(k-1)1 X - aa(k-1) + aa(k-2) X ••.

X (- aeF + (aea(3)1-l X (- aeF + (aea(2)"1-l X (- aeF + aF 11JJ)
aa(3) aa(2)) aa(2) aa(l)) aa(l) aa(l) J ...

(aea(k)_1-l aeF (aea(k)J-l (aea(k-1)'\-l aeF
=- aa(k-1)1 Xaa(k-1)- aa(k-1)1 X aa(k-2)) Xaa(k-2)-... (3.66)

(aea(k) 0-l (ae a(k- 1)j-l (aea(2))-l ae F
- X X X -- X--

aa(k-1 aa(k-2) ... aa(l) aa(l)

(aea(k)_\-1 (aea(k-l)')-1 (aea(2))-l. aF
+ aa(k-1)1 x aa(k-2)) x ... x aa(l) xaa(l)IQ

= b(k) +A(k) X _lf_l
aa(l) Q

where:

b(k) _ -(aea(k))-l aeF -(aea(k))-I (aea(k-1)')-l aeF _
- aa(k-1) X aa(k-1) aa(k-1) X aa(k-2)) X aa(k-2) ...

(aea(k)~-l (aea(k-1))-I (aea(2)j-l aeF
- X X X -- X--

aa(k-1 aa(k-2) ... aa(l) aa(l)
(3.67)

= (aea(k)_J-1 x(b(k-1)- aeF -1
aa(k-1)-1 aa(k-1)1

A(k) = (aea(k))-1 x(aea(k-1))-1 X ... x(aea(2))-l
aa(k-1) aa(k-2) aa(l)

= (aea(k))-1 xA(k-1)
aa(k-1)

(3.68)

allowing us to create an expression similar to Eq. (3.63). We can rewrite Eq. (3.52) using the final result of

24

Eq. (3.66) as:

Q e T

L [a a(t)J x [b(t) + A(t) x _1f__ I J
ax aa(l) Q

t= I

Q e T Q e T

= L [a a(t)J X b(t) + L [a a(t)J X A(t) X _j£_ I
ax ax aa(l) Q

t = I t = I

(3.69)

The algorithm will work by solving recursively for _jf__l and _l!__I , using the final results ofEq. (3.65)
aa(l) Q aa(k) Q

through Eq. (3.68) and by substituting into Eq. (3.69).

The Block Update method [44, 53• ZJ updates the gradient every N steps. This algorithm combines

characteristics of the FP and BTT and is well suited for very long sequences. Assume that we computed the

gradient for a time t=Q-N. The idea is to wait until the time t=Q to update the gradient again. The gradient

update will be:

G(Q) = aFI _ aFI
ax Q ax Q-N

(3.70)

where the gradient update G(Q) is calculated assuming that the term aae F in Eq. (3.54) is zero fort~ Q-N.
a(t)

We can say that:

G(Q) = Z(l, Q-N) +Z(Q-N + 1, Q) (3.71)

where:

(3.72)

If we solve the second term in the summation of the previous equation for the interval 1 to Q-N:

aF aea(2) aF -- = --x--
aa(l) aa(l) aa(2)

aF aea(3) aF
-- = --x--
aa(2) aa(2) aa(3) (3.73)

aF aea(Q-N+ 1) aF ---= x-----
aa(Q-N) aa(Q-N) aa(Q-N+l)

25

we will obtain for a generic time t=k:

oF oea(k+l) oea(k+2) oea(Q-N+l) oF
oa(k) = oa(k) X oa(k+ 1) X ... X oa(Q-N) X oa(Q-N+ 1) •

(3.74)

This result implies that:

Z(l,Q-N) = Q~N[oea(t)]T xaea(t+l)x~ea(t+2)x ... xaea(Q-N+l)x oF (3.75)
L.., ox oa(t) oa(t+l) oa(Q-N) oa(Q-N+l)

t = I

If we define:

(3.76)

we have:

oF
Z(l, Q- N) = Q;(Q - N) X a_a_(_Q ___ N_+_l_) (3.77)

Ifwe apply Eq. (3.54) for the interval t=Q-N+l to t=Q:

oF oeF oea(Q) oF
---= + x--
oa(Q-1) oa(Q-1) oa(Q-1) aa(Q) (3.78)

oF oeF oea(Q-N + 2) oF
---- = + x--,-_---
oa(Q-N+ 1) oa(Q-N+ 1) oa(Q-N+ 1) oa(Q-N+2)

we will obtain for a generic time t=k:

jf = oeF +aea(k+l)x(oeF +aea(k+2)x(...
aa(k) aa(k) aa(k) aa(k+ 1) aa(k+ 1)

(oeF oea(Q) oeF J
... x aa(Q-l)+oa(Q-1/aa(Q) ...)

(3.79)

oeF oea(k+l) oeF oea(k+l) oea(k+2) oeF
=--+ X + X X + ...

oa(k) aa(k) oa(k + 1) aa(k) oa(k + 1) oa(k + 2)

aea(k+l) aea(k+2) oea(Q) c?F
+ X X ... X X--

oa(k) oa(k+ 1) aa(Q-1) oa(Q)

26

We can rewrite Eq. (3.71) as:

ifa(k+l) aea(k+2) aeF
+ X X + ...

aa(k) aa(k + 1) aa(k + 2)

(3.80)

aea(k+l) aea(k+2) aea(Q) aeF)
... + aa(k) X aa(k+ 1) X ... X aa(Q-1/ aa(Q)

where:

aF aeF aea(Q-N+2) aeF
----= + X + ...
aa(Q-N+l) aa(Q-N+l) aa(Q-N+l) aa(Q-N+2)

(3.81)
aea(Q-N+2) a•a(Q-N+3) aea(Q) a•F

+ X X ... X X--
aa(Q-N+l) aa(Q-N+2) aa(Q-1) aa(Q)

We could define a new term:

r(t,Q) = aeF +a•a(k+l)x aeF +aea(k+l)xaea(k+2)x aeF + ...
aa(k) aa(k) aa(k+l) aa(k) aa(k+l) aa(k+2)

(3.82)
aea(k+l) aea(k+2) aea(Q) aeF

... + X X ... X X--
aa(k) aa(k + l) aa(Q- 1) aa(Q)

that will allow us to rewrite Eq. (3.80) as:

Q

G(Q) =
ae T

L [:t)J xr(t,Q)+Qi(Q-N)xr(Q-N+l,Q) (3.83)

t=Q-N+I

where we can calculate recursively the term in Eq. (3.82) with:

(3.84)

Atiya and Parlos [ZJ demonstrated that the Forward Perturbation Method has the largest

computational complexity O(N4), followed by Green's Function, Fast-Forward Propagation and Block

Update Methods with computational complexity O(N3). The Backpropagation-Through-Time method has

the smallest computational complexity O(N2) . Here N is the number of nodes in a fully recurrent network of

the form

x(k+ l) = j[Wx(k)] k = 0, ... , K - l (3.85)

27

where k is the time index.

In section 8.3 we will review the computational complexity of the Forward Perturbation and

Backpropagation-Through-Time Methods, based not only on the gradient calculation but also on the Jacobian

calculation. After reviewing the test networks presented on Appendix D, we concluded that it is not

appropriate to use the number of nodes in the network to determine computational complexity when using a

variety of different network architectures. A better approach is to consider the total number of weights in the

network. Therefore, for the computational complexity mentioned above, the Forward Perturbation Method

has computational complexity O(N2) and the Backpropagation-Through-Time has computational

complexity O(N) , where N is the number of weights and biases in the network.

Appendix B describes how all of the methods described previously can be applied to a single layer

neural network with one delay. Table 3.1 shows the floating point operations for that network. BTT is the

method with the fewest floating points operations, followed by FP. The Fast Forward Propagation algorithm

results in more than double the number of operations of the BTT or the FP methods. The Green's Function

method also required more flops than BTT and FP. Those two methods are the only ones that required matrix

inversion, producing ill-conditioning problems. Because these methods did not improve the number of flops,

we will not consider them further in this dissertation. The Block Update method requires more flops than the

BTT and the FP methods. However, this method could be useful for long sequences, where memory

requirements could jeopardize the algorithm implementation.

Table 3.1: Floating point operations for dynamic gradient calculations of Appendix B example.

Method Additions Multiplications Divisions Flops

Forward Perturbation 10 7 0 17

Backpropagation-Through-Time 6 7 0 13

Green's Function 10 13 4 27

Fast Forward Propagation 14 21 3 38

Block Update 10 10 0 20

28

3.5. Summary.

In this chapter we have introduced the key concepts required for training recurrent networks. In

particular, we have discussed two important algorithms for computing gradients for dynamic networks: the

Forward Perturbation algorithm and Backpropagation Through Time. In the next two chapters we will

generalize these two algorithms for the computation of gradients for arbitrary LDDNs, and we will extend the

algorithms for Jacobian calculations as well.

29

Chapter 4

FORWARD PERTURBATION

In this section we will generalize the Forward Perturbation (FP) algorithm, given in Eq. (3.51) and

Eq. (3.53), for LDDN networks [9J_ We will begin with some preliminary definitions.

4.1. Preliminaries

To explain the algorithms, we must create certain definitions related to the LDDN. We do that in the

following paragraphs.

First, as we stated earlier, a layer consists of a set of weights, associated tapped delay lines, a

summing junction, and a transfer function. The network has inputs that are connected to special weights,

called input weights, and denoted by IWi,j, where j denotes the number of the input vector that enters the

weight, and i denotes the number of the layer to which the weight is connected. The weights connecting one

layer to another are called layer weights and are denoted by L Wi,j, where j denotes the number of the layer

coming into the weight and i denotes the number of the layer at the output of weight. In order to calculate the

network response in stages, layer by layer, we need to proceed in the proper layer order, so that the necessary

inputs at each layer will be available. This ordering of layers is called the simulation order. In order to

backpropagate the derivatives for the gradient calculations, we must proceed in the opposite order, which is

called the backpropagation order.

In order to simplify the description of the training algorithm, some layers of the LDDN will be

assigned as network outputs, and some will be assigned as network inputs. A layer is an input layer if it has

an input weight, or if it contains any delays with any of its weight matrices. A layer is an output layer if its

output will be compared to a target during training, or if it is connected to an input layer through a matrix

which has any delays associated with it.

30

For example, the LDDN shown in Figure 4.1 has two output layers (1 and 3) and two input layers (1

and 2). For this network the simulation order is 1-2-3, and the backpropagation order is 3-2-1. As an aid in

later derivations, we will define U as the set of all output layer numbers and X as the set of all i'nput layer

numbers. For the LDDN in Figure 4.1, U={ 1,3} and X={ 1,2}.

Layer 1 Layer2 Layer 3
(

\.._ _____ }

Figure 4.1: Three-layer LDDN with two output layers (1 and 3)

and two input layers (1 and 2)

The general equations for simulating an arbitrary LDDN network are given below. The net input at

layer m can be computed as

(4.1)

leL~,deDL..,,1

where DLm,l is the set of all delays in the tapped delay line between Layer l and Layer m, Dlm,l is the set of

all delays in the tapped delay line between Input l and Layer m, Im is the set of indices of input vectors that

connect forward to layer m, ~nd If,,. is the set of indices of layers that directly connect forward to layer m.

The output of layer m is then computed as

m ,.m m
a (t) = 1 (n (t)). (4.2)

At each time point, Eq. (4.1) and Eq. (4.2) are iterated forward through the layers, as mis

incremented through the simulation order. Time is then incremented from t=l to t=Q.

31

4.2. Eq. (3.51)

The first step in generalizing the FP algorithm is to generalize Eq. (3.51). For the general LDDN

network, we can calculate the terms of the gradient by using the chain rule, as in

aF = ~ "{[aa"(t)JT X aeF },
aw L., L., aw aa"(t)

t= [UE U

(4.3)

where u is an output layer, U is the set of all output layer numbers, and w represents twZ/<d), iw2/(d) and

· b~. (The equation is the same for all network parameters.)

4.3. Eq. (3.53)

The next step of the development of the FP algorithm is the generalization of Eq. (3.53). Again, we

use the chain rule:

aa"(t) = aea"(t) + " " " aea"(t) X aenx(t) X aa"'(t-d)
aw aw L., L., L., x T a u' T aw

u'e UxeXdeDL ,an (t) a (t-d)
X,11

(4.4)

In Eq. (3.53) we only had one delay in the system. Now we need to account for each output and also for the

number of times each output is delayed before it is input to another layer. That is the reason for the

summations in Eq. (4.4). These equations must be updated forward in time, as tis varied from 1 to Q. The

terms

(4.5)

are generally set to zero for t :,; 0 .

To implement Eq. (4.4) we need to compute the terms

(4.6)

To find the second term on the right, we can use

(4.7)

32

we can now write

If we define the following sensitivity term

which can be used to make up the following matrix

ae u
8u, m(t) = ___!.J1 =

m T an (t)

then we can write Eq. (4.6) as

or in matrix form

u, m() u, m() u, m () s 1, l t s 1, 2 t . . . s I S t
' m

u,m() u,m() u,m ()
sz. 1 t sz,2 t ... s1,s., t

u,m() u,m() u,m ()
ss •. 1 t ss •. 2 t ... ss.,s,. t

u,m()T
s.s t

and therefore Eq. (4.4) can be written

u'e UxeXdeDL_,, •.

33

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Many of the terms in the summation on the right hand side of Eq. (4.13) will be zero and will not

have to be computed. To take advantage of these efficiencies, we introduce the following definitions.

(4.14)

(4.15)

(4.16)

Using Eq. (4.14) and Eq. (4.15), we can rearrange the order of the summations in Eq. (4.13) and sum

only over existing terms

aa"(t) aea"(t) ""' s",x(t) a;-= a;-+ L, (4.17)

XE ~(u)
, u dE DL ,

u E ELw(x) x,"

This can be written for the individual weight matrices

aa"(t) = aea"(t)

dvec(L Wm, 1(d)) T dvec(L Wm, \d)) T

u' L L LWx,u'(d)x aa (t-d) T

a (L Wm, 1(d)) , Eu ()dE DL, ,,. vec
U E LW X • '

(4.18)

aa"(t) aea"(t)

dvec(IWm, 1(d)) T

XE ~(u)

u'
L wx, u'(d) X aa (t- d)

dvec(IWm, 1(d))

(4.19)

(4.20)

where the vec operator transforms a matrix into a vector by stacking the columns of the matrix one underneath

the other l29l.

Eq. (4.17) through Eq. (4.20) make up the generalization of Eq. (3.53) for the LDDN network. It

remains to compute the sensitivity matrices S"' m(t) and the explicit derivatives aea"(t)ldw, which are

described in the next two sections.

34

4.4. Sensitivities

In order to compute the elements of the sensitivity matrix, we use a form of backpropagation. The

sensitivities at the outputs of the network can be computed as

or, in matrix form,

s"· \t) = F"cn"(t)),

where F"cn\t)) is defined as

F"cn"(t)) = 0

0

0

·?' u f (n 2(t)) ...

0

0

0

, U E U, (4.21)

(4.22)

(4.23)

The matrices S"' m(t) can be computed by backpropagating through the network, from each network output,

using

S" ·u) = ! L, S" '(,)L w'· ·co1)Fm (nm(t)), u E u,
li EL,,,

(4.24)

where m is decremented from u through the backpropagation order and L: is the set of indices of layers that

are directly connected backwards to layer m (or to which layer m connects forward) and that contain no

delays.

4.5. Explicit Derivatives

We also need to compute the explicit derivatives

(4.25)

35

We can derive the following three expansions of Eq. (4.25):

e u :,e u) :,e m
d ak(t) o ak(t on, (t) u,m /
--- = --X I = s, k (t) Xp/(-d),
diwm'. 1(d) dn~'(t) diwm'. (d)

l,J ' l,J

e u :,e u e m
d ak(t) o ak(t) d n, (t) u,m I --- = --x = s. k (t)xa1.(t-d),

a1w;ycd) anru) a1wt/cd) ·

e u :,e u :,e m
d ak(t) 0 ak(t) 0 n; (t) u, m
-- = --x-- = s. k (t).

dbm dnm(t) db"' ,,
l I l

In vector form we can write

dea"(t) _ u,m() I(d)
- S; t Xpj t- ,

diwm'. 1(d)
l,J

dea"(t) _ u,m() I(d)
- S; t X aj t - ,

dlwm'.\d)
l,J

In matrix form we have

dea"(t) = [pl(t-d){ ® s",m(t)'

dvec(IWm, \d){

:,e u T
o a (t) ,; [al(t-d)] ®S"'m(t),

dvec(L Wm, \d)) T

dea"(t; = s"· m(t)'

d(bm)

where A ® B is the Kronecker product of A and B [Z9J

4.6. FP Gradient Algorithm Summary.

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

The total FP gradient calculation algorithm for the LDDN network is summarized in Figure 4.2.

36

Initialize:

aa"(t) - < a;- - 0, t _ 0 , for all u e U,

Fort= l to Q,

U' = 0, Es(u) = 0 and J!i(u) = 0 for all ue U.

For m decremented through the BP order
For all u e U'

Forward Perturbation Gradient

S"'m(t) = { L b S"'\t)LW 1'm(O)}Fm(D 111 (t))

IE E8(u) nl,.,

add m to the set Es(u)

if me X, add m to the set J!i(u)

EndFor u
If m EU

sm,m(t) = Fm<nm(t))

add m to the sets U' and Es< m)

if me X, add m to the set E'J(m)

Endifm
EndFor m
For u e U incremented through the simulation order

For all weights and biases (w is a vector containing all weights and biases)

ae "() I T a t = [p (t-d)] ® s",m(t)

avec(IWm,l(d){

ae "() I T
a t = [a (t-d)] ® s",m(t)

avec(LWm, I (d)) T

aea"(t) = s",m(t)
T

a(bm)

EndFor weights and biases

aa"(t) = aea"(t) + "' s",x(t)
awr awr £... L L

XE E'J(u) u' E E~,v(x) d E DL.,,,,.

EndFor u
EndFort
Compute gradients

Q {[aeF Jr aa"(t)} LL -. x-
t= J!IE I/ aa"(t) awT

Figure 4.2: Pseudo Code for the Forward Perturbation gradient algorithm.

37

4.7. FP Jacobian Algorithm.

The previous section described the forward perturbation algorithm for computing the gradient. This

gradient could be used for steepest descent, conjugate gradient and quasi-Newton training algorithms as

described from section 3.1.1 to section 3.1.3. lfwe want to implement a Gauss-Newton or a Levenberg

Marquardt algorithm, we need to calculate the Jacobian instead of the gradient. In this section we will present

the FP implementation of the Jacobian calculation.

The weight update process using the Levenberg-Marquardt Algorithm was presented in Eq. (3.38)

and Eq. (3.39). lfwe rewrite the last equation using the terminology given in this chapter:

(4.35)

where w P is a vector containing all weights and biases in the network.

We need the Jacobian matrix J (w p) to perform the weight update for a given epoch or iteration p.

We can express the Jacobian using Eq. (3.30) as:

av! (1) av! (1) av! (1)

aw;- aw2 awn

av2(1) av2(1) avi(I)

awl aw2 awn

avN(1) avN(1) avN(1)

~ aw2 a;:-
av 1(2) av! (2) av! (2)

JT(W) = aw;- aw; awn (4.36)

avN(Q- I) avN(Q-1) avN(Q- 1)

awl aw2 awn

av 1(Q) av 1(Q) avl(Q)

a;-;- aw;- awn

avN(Q) avN(Q) avN(Q)

~ a;; ~

where vk(t) represents the individual error function for an individual output element k at time t:

(4.37)

where tk(t) is the target and ak(t) is the network output at time t. The index k represents the individual target

38

or output for all the layers contained in the set of output layers U arranged in one vector from 1 to N

al t I

au! a2 tu' t2

a= au2 a3 t = tuz t3

allN11 aN-1 tUN11 tN-1

aN tN

where Nu is the number of output layers and N = L, Su .
UE U

The k,j element of the Jacobian is

(4.38)

This is the negative of the dynamic derivative of the network output, which is computed as part of the FP

calculation of the gradient (Eq. (4.32) to Eq. (4.34)). As also noticed by Yang (55), the Jacobian generation

does not require the calculation of the derivative of the objective function, as in Eq. (4.3). Therefore, the FP

implementation of the Jacobian calculation is actually a simplified version of the FP gradient algorithm.

4.8. FP Jacobian Algorithm Summary.

The total FP Jacobian algorithm for the LDDN network is summarized in Figure 4.3.

39

Initialize:

aa\t) -a;;- - 0, t ~ 0, for all u e U,

Fort= 1 toQ,

U' = 0, Es(u) = 0 and ~(u) = 0 for all ue U.

Form decremented through the BP order
For all u e U'

Forward Perturbation Jacobian

su,m(t) = { L b S"' 1(t)LW1'm(O)}Fm(nm(t))

I e E8(u) ril,,.

add m to the set Es(u)

if me X, add m to the set ~(u)

EndFor u
IfmeU

sm,m(t) = F'\nm(t))

add m to the sets U' and Es(m)

if me X, add m to the set ~(m)

Endlfm
EndForm
For u e U incremented through the simulation order

For all weights and biases (w is a vector containing all weights and biases)

a•au(t) = [p/(t-d){ ® s",m(t)

avec(lWm,t(d){

a•au(t) = [a/(t-d){ ® su,m(t)

avec(LWm,/(d))T

a•a\t) = S"'m(t)

a(bm) T

EndFor weights and biases

aa\t) = a•au(t) + L Su'\t) L L
awT awT

x E E;(u) u' E E~w(x) de Dlx,u'

EndFor u
EndFort

Figure 4.3: Pseudo Code for the Forward Perturbation Jacobian algorithm.

40

Chapter 5

BACKPROPAGATION THROUGH TIME

In this section we will generalize the Backpropagation-Through-Time (BTT) algorithm, given in Eq.

(3.52) and Eq. (3.54), for LDDN networks [8l.

5.1. Eq. (3.52)

The first step is to generalize Eq. (3.52). For the general LDDN network, we can calculate the terms

of the gradient by using the chain rule, as in

(5.1)

(5.2)

(5.3)

where u is an output layer, U is the set of all output layers, and Su is the number of neurons in layer u.

From Eq. (4.1), the elements of the net input can be computed as

n~(t) = L L (±.zwZ/<d)a1(t-d))+ L L (±.iwZ/(d)pj(t-d))+b~ (5.4)
telf,.deDLm,Jj=I tef,.deDI.,, 1 j=I

Therefore,

(5.5)

41

We will also define

(5.6)

The terms of the gradient can then be written

aF Q I
--1 - = L t;'U)ap-d),
a/w:j (d) t = I

(5.7)

aF Q I
--1 - = I. t;u>pp-d>,
aiw:j (d) I= I

(5.8)

Q

aF = L t;'<t).
ab~ t= I

(5.9)

Ifwe use the sensitivity term s~ ~(t) defined in Eq. (4.9) and Eq. (4.10), the elements d'('(t) can be

written

s •
.m "' "' aF u, m a;(t)= k.i k.-u-Xs1c,;(t).

u e Uk= \ aak(t)
(5.10)

In matrix form this becomes

dm(t) =. L [Su,m(t){ X a:
, U E U aa (t)

(5.11)

where

iJF

aa~(t)

aF
aF

aa;(t) ---
aa\t)

(5.12)

aF

aa~ (t)
u

42

Now the gradient can be written in matrix form.

a Q m I T
F = ""d (t) X [a (t-d)] ,

aLWm,l(d) 1-:"1
(5.13)

Q m I T rd (t)x[p(t-d)]' (5.14)
t ~ l

(5.15)

Eq. (5.13) through Eq. (5.15) make up the generalization ofEq. (3.52) for the LDDN network. It

remains to compute the explicit derivatives of the sensitivity matrix s"· m(t). This procedure was described

in section 4.4.

5.2. Eq. (3.54).

The next step of the development of the BTT algorithm is the generalization ofEq. (3.54). Again,

we use the chain rule:

jf = aeF + "" "" "" [aea"'(t+d)xaenx(t+d)]r x--aF __
u u ~ ~ ~ T T u'

aa (t) aa (t) u' E U XE X d E Dl,., aux (t + d) aau(t) aa (t + d)
(5.16)

(Many of the terms in these summations will be zero. We will provide a more efficient representation later in

this section.) In Eq. (3.54) we only had one delay in the system. Now we need to account for each network

output, how that network output is connected back through a network input, and also for the number of times

each network output is delayed before it is applied to a network input. That is the reason for the three

summations in Eq. (5 .16). This equation must be updated backward in time, as tis varied from Q to 1. The

terms

(5.17)

are generally set to zero fort> Q.

43

Ifwe consider one element of the matrix in the brackets on the right side ofEq. (5.16), we can write

(5.18)

The first term on the right hand side of this equation is just our previously defined sensitivity

e u'
aa.(t+d) u'x

I = S, 'k (t + d) '
X I,

ank(t + d)
(5.19)

which can be computed from Eq. (4.24). To find the second term on the right hand side ofEq. (5.18), we can

write

(
s, .)

n;(t+d)= L. L I,Iwi,'.(d')a'.(t+d-d')
/ E L~ ti E DL.,, 1 ; = I

(5.20)

We can now write

(5.21)

Therefore, Eq. (5.18) can be written

[aeau'(t+d) xaenx(t+d)]
X T u T

an (t + d) aa (t) i,j

s.,
L s~';tU+d)xlw;:;(d)

k-= I

(5.22)

or in matrix form

e· u' e x
a a (t+d)xa n (t+d) = s"',x(t+d)xLWX'\d).

X T u T
an (t + d) aa (t)

(5.23)

This allows us to write Eq. (5.16) as

(5.24)

44

Many of the terms in the summation on the right hand side ofEq. (5.24) will be zero and will not

have to be computed. In order to provide a more efficient implementation ofEq. (5.24), we define the

following sets (in addition to those defined in Eq. (4.14)- Eq. (4.16)):

U · U X
Es(x) = {ue U33(S' ;tO)}

We can now rearrange the order of the summation in Eq. (5.24):

and sum only over the existing terms:

5.3. BTT Gradient Algorithm Summary

The total BTT algorithm is summarized in Figure 5 .1

45

(5.25)

(5.26)

(5.27)

(5.28)

Initialize:

jf = 0, t > Q , for all u e U,
aa"ct)

Fort= Q to 1,

U' = 0 , and E 8(u) = 0 for all u e U .

For m decremented through the BP order
For all u e U'

Backpropagation-Through-Time Gradient

su,m(t) = { L b S"' 1(t)LW 1'm(O)}Fm(nm(t))

IE Es(u) r, L., .

add m to the set E8(u)

EndFor u
Ifme U

sm,m<t) = Fm<nm(t))

add m to the sets U' and E8(m)

Endlfm
EndForm
For u E u decremented through the BP order

jf = a_eF + L L LWX'"(d{ L
aa"(t) aau(t)

EndFor u
For all layers m

dm(t) = I.

EndForm
EndFor t

ue Ei(m)

Compute gradients

x e E'iw(u) de DL_,,"

'

[S11'm(t){ X _jf_
aa"ct)

c)F Q I T
---"'---1 - = L dm(t) x [a (t-d)]
cJLWm, (d) t= 1

c)F Q I T
--1- = L, dm(t) X [p (t-d)]
a1wm, (d) 1 = 1

Q

ai:, = I. dm (t)

ab t= r

u' e Ei(x)

Figure 5.1: Pseudo Code for the Backpropagation-Through-Time gradient algorithm

46

5.4. BTT Jacobian Algorithm.

In section 4.7 we presented the FP calculation of the Jacobian (defined in Eq. (4.36)). In this section

we present the BTT calculation of the Jacobian. In the FP gradient calculation, the elements of the Jacobian

(as shown in Eq. (4.38)) were also computed. For this reason, the FP Jacobian calculation was a simplified

version of the FP gradient calculation. This is not true for the BTT algorithm.

As shown in Eq. (5 .17), the key term computed in the BTT gradient algorithm is aF 1aa u' (t) . In order

to compute the Jacobian, we want to replace this term with avk(t)laau'(t'). Eq. (5.16) can then be modified

as follows:

avk(t) - aev/t) L L L [aeau'(t' + d) aenx(t' + d)]T av/t) -- - -- + X X ---"---
u u T T u'

aa (t') aa (t') u'E UxEXdE DL,,,, anx(t'+d) aa"(t') aa (t'+d)

where this equation must be updated backward in time, as t' is varied from t to 1. The terms

are set to zero for t' > t. The explicit derivative for each output layer will be

where af (t) are the output layers being used as targets.

if t= t

if t * t'

Applying a similar development to the one shown in Eq. (5.18) through Eq. (5.23), and the

simplification mentioned before Eq. (5.28), we have that

a u· ae u·
ak (t) ak (t)
-- = ---+
aa 11 (t') aa''<t') x E E'iw(u) d E DL_,-,,,

(5.29)

(5.30)

(5.31)

(5.32)

where the explicit derivatives are based on Eq. (5 .31). Eq. (5 .32) must be solved backwards in time as t' is

varied from t to 1.

47

i/ u . u"
We next want to use the terms oak (t)loa (t') to compute the elements of the Jacobian, oak (t)low1 .

This can be done by replacing the cost function F with the outputs being used as target a~· (t) in Eq. (5.1)

through Eq. (5.3):

oa~· (t)

olw1n'.\d)
I,}

(5.33)

(5.34)

(5.35)

Applying a similar development to the one shown in Eq. (5.4) through Eq. (5.15) we have that

and

0 u'(t)
d/(t,t') = L, [S"'m(t'){ x~

!IE U oa\t')

" u' t
oak (t) m I T

--'-'--- = " d (t, t') X [a (t' -d)] ,
oLWm,l(d) t'':'1

u'
oak (t)

olWm,l(d)

t m I T L, d (t, t') X (p (t'-d)] ,

t'= l

u'
oak (t)

t' = l

The combination ofEq. (5.32) and Eq. (5.36) through Eq. (5.39) make up the BTT Jacobian

(5.36)

(5.37)

(5.38)

(5.39)

calculation. Unlike the FP algorithm, where the Jacobian calculation is simpler than the gradient calculation,

the BTT Jacobian calculation is more complex than the BTT gradient. This is because the FP gradient

calculation computes the elements of the Jacobian as an intermediate step, whereas the BTT gradient

48

calculation does not. For the BTT Jacobian, at each point in time we must solve Eq. (5 .32) backwards to the

first time point.

5.5. BTT Jacobian Algorithm Summary

The total BTT algorithm is summarized in Figure 5.2

49

nitialize: Backpropagation-Through-Time Jacobian

aat(t) = O {'ift>Q.

aa"{t') , 'tit* t' ,

c1a" 0 (t)
k = -1,{'tlts;Q and t = t',forall ue U,
aa \t')

Fort= Q to 1,

U' = 0, and Es(u) = 0 for all u e U.

For m decremented through the BP order
For all u e U'

su,m(t) = { L b S"'l(t)LWl,m(O)}Fm(nm(t))

le Es(u)r,Lm ·

add m to the set Es(u)

EndForu
IfmeU

8 m,mU) = Fm<nmU))

add m to the sets U' and Es(m)

Endlfm
EndForm

EndFor t
Fort=Qto 1,

For all the elements of a:· (t) ,

For u e U decremented through the BP order
Fort'=tto 1,

u' e ~ , T c/a~(t)
c/ak(t) c/ak(t) L L LWx'"(d{ L S"'x(t'+d) X k
aa"(t') = aa"(t') + ::,a"0(t' + d)

EndFor t'
EndFor u
For all layers m

For t' = t to 1,

I.
u e Ei(m)

EndFor t'
EndForm
Compute Jacobian terms

xeE'J.w(u)deDL,,, u'eEi(x) u ·

u' I
clak (t) m I T

------ = "" d (t, t') X [a (t' -d)]
c1LWm,l(d) /:\

c/a~·(t) = ~dm(t,f)x[pl(t'-d){

a1wm,l(d) /:\

cl u'(t) I

..::!!_ = "" dm(t t') m £., ,
clb f- l

u'
EndFor ak (t)

EndFor t

Figure 5.2: Pseudo Code for the Backpropagation-Through-Time Jacobian algorithm

50

Chapter 6

ERROR SURFACE ANALYSIS

In this chapter we will suggest a mechanism that can explain, at least in part, the difficulties that

occur in training recurrent networks. Based on our analysis of this mechanism, we will also propose modified

training procedures that can provide improved convergence. We will demonstrate the operation of these

training procedures on two simple recurrent networks.

6.1. Prelude

We begin with an explanation of how we came across a certain characteristic of the error surfaces

ofrecurrent networks. While training a neural-network-based Model Reference Controller [I IJ, we found that

the error sometimes increased during training, although a line search was being executed at each iteration. In

order to understand the failure of the line search, we plotted the error surface along the search direction.

Typical profiles are shown in Figure 6.1. For the system shown, we have 65 weights being trained. The

surface we present is along the direction of search (obtained by the BFGS quasi-Newton algorithm) through

a 65-dimensional space. It is clear from these profiles that any standard line search, using a combination of

interpolation and sectioning, will have great difficulty in locating the minimum along the search direction.

There are many local minima contained in very narrow valleys .. (Some of the valleys were found to have

widths on the order ofl o- 10.) In addition, the bottom of the valleys are often cusps. We normally assume that

the minimum will occur at the point where the derivative is zero. However, for some of these valleys the

derivative continues to increase as we approach the minimum. Even if our line search were to locate the

minimum, it is not clear that the minimum represents an optimal weight location. In fact, in the remainder of

this chapter we will demonstrate that spurious minima are introduced into the error surface due to

characteristics in the input sequence.

51

10'

10'

10'

10·~~-~~-~~-~~-~~~
-2.5 -2 -1.5 -0.5 0.5 1.5 2.5 -2.5 -2 -1.5 -1 -0.5 1.5 25

Figure 6.1: Error profile

In ordet to understand how the spurious valleys can appear in the error surface, we analyzed the

surfaces for some very simple recurrent networks. The idea was to find the simplest network that would

produce the valleys. In the next section we will discuss a first-order linear recurrent network that produces

the spurious valleys. We will also show how nonlinear transfer functions can affect the shape of the valleys.

This is followed by some modifications we propose to improve the training process, based on our analysis of

the creation of the spurious valleys. The fourth section of the chapter tests the proposed modifications on first

and second order recurrent networks. In the last section, we give a summary of the results.

6.2. First Order Model

6.2.1. Linear model

Figure 6.2 illustrates the simplest possible recurrent network. As we will see, even this network

produces spurious valleys similar to those shown in Figure 6.1.

52

u(t) w1

y(t) w2

D
Figure 6.2: First order linear recurrent network.

In order to generate an error surface, we first developed training data using the network of Figure

6.2, where the weights were set to wt = 0.5 and W 2 = 0.5 . We used a random input sequence for u(t), and

then used the network to generate a sequence of outputs y(t). Our training objective was then to train another

network with the same architecture to fit the training data. The global minimum of the error surface should

occur at the values wt = 0.5 and wz = 0.5.

10000

8000

6000

4000

2000

·/
/

-3

-•'--~~~-~----'--~-~-~------'
-2 -1.5 --0.5 0.5 1.5

Figure 6.3: Error su,face for first order linear model.

Figure 6.3 is a typical error surface obtained using the above procedure for one particular input

sequence and the initial output y(O) = 0 . (The plot is cut off at 10,000 to better visualize the surface.) There

are several interesting features of the surface. First, the error surface generally increases dramatically as the

weight W 2 becomes larger than 1 in magnitude. This is to be expected, since the network is unstable for these

weight values. What is unexpected are the two valleys that run through the surface. Even though the network

53

is unstable for lw21 > I , for this particular input sequence there are some values for W2 in this range that

produce small network outputs (and therefore relatively small errors). We expect the output to grow without

bound under these conditions, but it doesn't always happen.

The two valleys in the error surface occur for two different reasons. One valley occurs at W 1 = O.

If this weight is zero, and the initial condition is zero, the output of the network will remain zero. Therefore,

our mean squared error will be constant and equal to the mean square value of the target outputs.

The second valley in the error surface is due to the input sequence that is presented to the network.

For a given input u(t), the system output will be:

y(t) = W 1u(t)+W2y(t- I) (6.1)

Ifwe accumulate the responses starting from some initial condition y(O) = 0 up to time k > O, we obtain

y(k) = wiu(k) + wzy(k- I)

= W 1u(k) + W 2(W 1u(k- 1) + W 2y(k-2))

= W 1{u(k) + W2u(k- I)+ (W2)2u(k-2)

+ ... + (W2l- 1u(I)}+ (W2)ky(O)

(6.2)

Here we can see that the response at time k is a polynomial in the parameter W2 . The coefficients

of the polynomial involve the input sequence and the initial condition. We obtain the second valley because

this polynomial contains a root outside the unit circle. There is some value of W2 that is larger than 1 in

magnitude for which the output y(k) is almost zero.

Of course, having a single output close to zero would not produce a valley in the error surface.

However, we discovered that once the polynomial shown in Eq. (6.2) has a root outside the unit circle, that

root appears also in the next polynomial at time k+ 1, and therefore the output will remain small for future

times.

Figure 6.4 shows a cross-section of the error surface presented in Figure 6.3 for W 1 = 0.5 using

different sequence lengths. The error falls abruptly near -3.8239 . That is the root of the polynomial described

in Eq. (6.2). The root maintains its location as the sequence increases in length (k increases).

54

Figure 6.4: Error cross-section for W 1 = 0.5.

To summarize, there are two mechanisms that create the spurious valleys. The first mechanism has

to do with the initial conditions. If some initial conditions are zero, then there are certain combinations of

weights that will produce zero outputs for all time. (This effect is more complex in larger networks, as we

will see in a later example.) The second mechanism has to do with the input sequence. There are values for

the weights that produce an unstable network, but for which the output remains small for a particular input

sequence. If the input sequence is modified, it may produce a valley in a different location.

In section 6.3 we will propose some modified training procedures that can mitigate the effects of the

spurious valleys. Before introducing that topic, let's investigate the effect of nonlinear transfer functions on

the error surface.

6.2.2. Nonlinear network

Figure 6.5 presents a nonlinear modification of the linear network presented in the previous section.

Here we include a sigmoid nonlinearity at the output.

u(t)
y(t)

Figure 6.5: First order nonlinear model.

55

Figure 6.6 presents the error surface for the nonlinear network using the same input sequence used

in the previous section. Due to the nonlinearity, the output is bounded for large weight values. So the error

does not grow without bound, as in the linear network. We notice that the valley is still present, however it is

bent. This curving valley is still able to trap the training algorithm and even to move the weights away from

the true minimum.

1.8

1.6

1.4

1.2

0.8

0.6

0.4

02

Figure 6.6: Error su,face for first order nonlinear network.

6.3. Modifications to the Training Procedure

From the previous section we see that difficulties in training recurrent neural networks could be due

to the presence of spurious valleys. The shape of the valleys could be complex for large nonlinear neural

networks. If a gradient search algorithm falls inside a valley we may converge to a region where the network

is unstable or where the weights are unreasonably large. The location of those valleys depends on the input

sequence and on the initial conditions. In this section we will propose three modifications to standard training

procedures that can mitigate the effects of the valleys.

6.3.1. Proposed solutions

In this section we will propose three variations to the standard training algorithms for recurrent

networks. These variations include regularization, switching training sequences, and randomly setting initial

conditions.

If we compare the linear and nonlinear cases from section 6.2, we notice that the linear case has a

natural way of allowing convergence to the optimal weights, because larger weights generate large outputs.

56

The farther we move from the stable region, the larger the gradient will become. A gradient descent algorithm

would generally move the weights toward the stable region. This effect does not occur in the nonlinear

networks. However, we can obtain a similar effect if we combine regularization [3SJ with our mean square

error performance function. In other words we can use the performance function

J(W) = SSE+ aSSW, (6.3)

where SSE is the sum squared errors and SSW is the sum squared weights. This performance function would

help to force the weights back into the stable region, because it would overwhelm the spurious valleys for

large values of the weights. We can decrease the regularization factor a during training to ensure that we

don't bias the final trained weights.

-~2'-----~-,.5~~.,---0~.,--=-~ •. ~, -~-~,.,-~

Figure 6.7: Error surface for first order nonlinear model for different input sequence.

Another technique for improved training involves using more than one training sequence. Figure 6.7

presents the error surface for the nonlinear model of Figure 6.5, using a different sequence. The valley that

appeared in Figure 6.6 has moved to the positive region of W 2 . For any two random input sequences, the

valleys will appear in different locations.

This suggests another technique for improved training. We could use multiple input sequences.

Because valleys are sequence dependent, we can use one sequence for a given number of epochs and then

alternate to a new sequence. If we become trapped in a spurious valley, that valley will disappear when the

new sequence is presented.

57

--4

-1

Figure 6.8: Error surface using sequence averaging.

Another implementation of multiple sequences could be sequence averaging. We could compute the

gradients for multiple sequences and then move in the direction of the average. Figure 6.8 presents an error

surface for five sequences. This figure,demonstrates how the spurious valleys are reduced in amplitude .

,~-
w ' '

-1

-2

-2 ..
-1

~
~.----------····

/

/

---. ----

Figure 6.9: Error surface using y(O) = 0.1.

. ::r-,·--

.. ' ·:-:-··

Another method to move the valleys is to use random initial conditions. Figure 6.9 shows how the

error surface is changed when we set the initial ~ondition to y(O) = 0.1. The valley at W 1 = 0, which we

discussed earlier, is missing. In later experiments with larger networks, we found that the valleys do not

always disappear when nonzero initial conditions are used. They are often only moved to new locations. A

better approach would be to use different small random initial conditions at different stages of training. We

could switch the initial conditions in combination with the switching of sequences.

58

In all, we have four proposed training modifications. For ease ofreference, we will label them as

follows: switching sequences (SS), averaging sequences (AS), regularization (REG), nonzero initial

conditions (IC).

6.4. Test Results for Gradient Algorithm

In this section we will test the training modifications that were proposed in the previous section using

the gradient algorithm described in section 5.3. For these tests we will train the nonlinear network shown in

section 6.2 (and a more complex, second-order network) using the standard gradient descent algorithm with

a golden section line search. We will not worry about using the most sophisticated training algorithm. Rather,

the objective will be to verify the ability of the new procedures to improve training performance. We will

define the results obtained with the gradient descent algorithm alone as our baseline. Other tests will be

performed for each one of the proposed modifications. For the REG test, we divided a by 1.2 at each epoch.

For the IC method we set all layer initial conditions to 0.2. One test was performed using all three methods.

We called this training procedure the "Multiple" method. For all tests, the gradient is computed using the

dynamic backpropagation method described in section 5 .3.

6.4.1. First order nonlinear system

For the first order nonlinear system we generated training data using W 1 = 0.5 and W 2 = 0.5. The

training was done using 25000 different sequences of 15 samples each and random initial conditions. The

random initial weights were generated in three different levels: 1, 5 and 20 standard deviations from the true

solution.

Table 6.1 summarizes the results of the first tests on the first order network. It shows the percentage

of tests in which the weights converged close to the optimal weights. Each method provides some

improvement on the baseline method. However, the multiple method is the only one that guarantees accurate

convergence.

59

Table 6.1: Percentage of final weights within 0.001 of the optimal weights for the first order nonlinear
network.

Method
STD of the initial weights

1 5 20

Baseline 92.1 61.2 37.9

REG 99.6 99.7 99.9

ss 96.5 64.7 45.7

AS 94.3 58.1 42.7

IC 95.6 71.1 45.0

Multiple 100.0 100.0 100.0

40~--,--~--~--,--~--~~-,--~
•)

40~--,--~--~--,--~--~--,--~

30

20

10

~ 0

.10

.,o

. ,o

Baseline*

, . .. ·.

ss

I
30

"'
10

!,' 0

-10

.21)

.,o

•o~--,--~--~--,--~--~---~

30

"'
10

~ 0

-10

• ,o

.30

IC

... . .

. ..
..

. •

..
-40'---~--"·~-~~-~-"--"""'-"-~-~--"

-40 -30 -20 -10 0

""'

Figure 6.10: Relative final position ofW 1 vs. W2 for 5 std.

10 30 40

Figure 6.10 shows the relative final position of W l vs. W2 for Baseline, SS, AS and IC. For the first

three methods many tests finished along W l = O . That condition was removed when we set the initial

conditions to 0.2. When we switch the sequences we avoided many cases where training may be trapped in

60

the spurious valleys. The averaging of sequences did not improve our training results, resulting in worse

results than the baseline method for 5 std.

6.4.2. Two layer neural network

Figure 6.11 has a neural network with two layers, where each layer is fed back to the previous layers.

This system will allow us to test the previous training procedure modifications on a more complex system.

For these tests, we generated training data using the following weights:

W 2 = -0.5

w1 = o.5
W3 = 0.25

w4 = -0.3

__ u_(t)--•11

w2

w1

W3

W4

Figure 6.11: Two-layer nonlinear model.

(6.4)

y(t)

Table 6.2 shows the percentage of weights close to the final weights after the training process. For

this neural network architecture, regularization resulted in a success rate of over ninety percent. However, it

is again the multiple method that guarantees the best convergence.

Table 6.2: Percentage of final weights within 0.5 of the optimal weights/or the two-layer nonlinear
network.

"Method
STD of the initial weights

1 5 20

Baseline 82.2 12.8 0.3

REG 93.0 95.0 97.0

ss 95.8 38.6 2.5

IC 54.6 7.2 0

Multiple 100.0 99.0 100.0

61

Figure 6.12 presents the final weight positions in the W3 vs. W4 plane for the Baseline, SS and IC

training methods. For the Baseline training method, we notice the presence of three axes or valleys where the

training converged. From the middle figure we can see that the SS method can eliminate the diagonal final

condition. However, the axis along W3 = 0 remains. When we set the initial layer conditions to 0.2, we can

see from the last figure that two new axes appear. This demonstrates that setting the initial conditions to

nonzero values does not necessarily remove spurious valleys. It may just move them to new locations. This

suggests that we should vary the initial conditions whenever we switch the training sequence.

60 60 • ss Baseline • . .
40 ·, .. . 40, ...
20 . 20 :· \:•:' . • • •••• -!I::--: •

~ 0 . . •:,..•. :-, ...
' 0:.• •--.:;

..... •< ·-;,• ·:
-20 . . . ' -20 "·< . ·"' ...
-40

. · ... -40 . •
-60 -60

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
oN3 "'

60

IC
40
20

if 0

-20

-40 \
-60

-60 -40 -20 0 20 40 60

"'

Figure 6.12: Relative.final position of W3 vs. W 4 for 20 std.

Figure 6.13 shows how the final distance to the optimal weights is affected by the switching

sequence interval. While training for 10000 epochs, we switched the training sequence every 1, 10, 100, 500

and 1000 epochs. Frequent changes consistently resulted in more accurate final weights. If training continues

with the same sequence, we could be caught in a spurious valley, resulting in failed training.

62

,o~

,o~

min ------------~----- ·-----
Epochs

Figure 6.13: Final distance to optimal weights for different switching sequence intervals.

Figure 6.14 shows the average performance for three different switching intervals. We obtain

substantial improvement when the sequence is switched more frequently. We can conclude that we should

not maintain the same sequence for long periods, when training recurrent neural networks.

1o'

10"
500

,o~

~ I 10-10

~

10-15

10...,

10-~--'--~-~-~~-~-~-~~-~
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epochs

Figure 6.14: Average performance for different switching sequence interval.

Another battery of tests was performed to evaluate how to adjust a when regularization is being

used. We adjusted a by dividing it by a constant at each epoch. The constants we used were 1.01, 1.2 and 2.

Figure 6.15 shows the average performance when a is divided by 1.01 and 1.2. The best results were obtained

for 1.2. (The results for 2 were almost identical to the results for 1.2.) From this test we can conclude that a

must be decreased in some way to obtain the best training results.

63

10' ~------r-----.----,----,------,-----,----.---~-----;r----,

10'

10-"~~-~-~-~~-,------~-~---,--',-c-~-~
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epochs

Figure 6.15: Average performance for cx/1.01 and cx/1.2.

Figure 6.16 shows the number of flops required to train the two-layer neural network to convergence

using the multiple method with different sequence lengths. This figure does not demonstrate any advantage

to using long sequences for this network. The algorithm converged for all sequences, but the longer sequences

require more computation. One would expect that for more complex networks there might be some advantage

to longer sequences.

10'

----·

-~---··
min

10'~-~--~--~-~--~--~~
2 8 10 12 14

Sequence length

Figure 6.16: Flops for different sequence length.

64

6.5. Test Results for Jacobian Algorithm

In this section we will test the training modifications that were proposed in section 6.3 using the

Jacobian algorithm from section 4.8. For these tests we will train the nonlinear network shown in section 6.2

(and a more complex, second-order network) using the Levenberg-Marquardt algorithm. Like the previous

section, the objective will be to verify the ability of the new procedures to improve training performance. We

will define the results obtained with the gradient descent algorithm alone as our baseline. Other tests will be

performed for each one of the proposed modifications based on the Levenberg-Marquardt features. For the

REG test, we used the Bayesian regularization procedure proposed by Foresee and Hagan [l 6l, and Chen and

Hagan [6l. One test was performed using all three methods. We called this training procedure the "Multiple"

method. For all tests, the Jacobian is computed using the dynamic backpropagation method described in

section 4.8.

6.5.1. First order nonlinear system

For the first order nonlinear system we generated training data using W 1 = 0.5 and W 2 = 0.5. The

training was done using 25000 different sequences of 15 samples each and random initial conditions. The

random initial weights were generated in three different levels: 1, 5 and 20 standard deviations from the true

solution.

Table 6.3 summarizes the results of the first tests on the first order network. It shows the percentage

oftests in which the weights converged close to the optimal weights. Each method provides some

improvement on the baseline method. However, the multiple method is the only one that guarantees accurate

convergence. Ifwe compare the Jacobian results against the gradient results presented in Table 6.1, we could

confirm that the Jacobian-based algorithm outperforms gradient-based algorithms. The criteria for Jacobian

algorithms was two orders of magnitude more strict than gradient algorithms. Even under those conditions,

the results were better for similar testing conditions.

65

Table 6.3: Percentage of final weights within 0.00001 of the optimal weights/or the first order nonlinear
network.

Method
STD of the iqitial weights

I 5 20

Baseline 98.9 92.4 69.2

REG 99.7 98.9 96.1

ss 99.8 97.4 84.8

IC 99.4 93.7 72.1

Multiple 100.0 99.9 99.9

6.5.2. Two layer neural network

This section tested the Jacobian-based algorithms using a neural network with two layers, where

each layer is fed back to the previous layers, as shown in Figure 6.11. For these tests, we generated training

data using the weights presented in Eq. (6.4).

Table 6.4 shows the percentage of weights close to the final weights after the training process. For

this neural network architecture, regularization resulted in a success rate of over ninety percent with initial

weights up to 5 standard deviations from the true weights (even though using strict performance conditions

than for the gradient based algorithms). However, it is again the multiple method that guarantees the best

convergence. Ifwe compare the results against the gradient based algorithms in Table 6.2, we notice better

results provided by Jacobian-based algorithms.

Table 6.4: Percentage of final weights within 0.00001 of the optimal weights for the second order nonlinear
network.

Method
STD of the initial weights

I 5 20

Baseline 71.7 33.9 2.8

REG 99.7 97.9 71.2

AS 96.0 54.0 9.6

IC 94.0 54.2 6.6

Multiple 100.0 99.0 85.0

6.6. Summary

This chapter suggested that spurious valleys are present in the error surface of dynamic networks.

Those narrow valleys often trap gradient based training algorithms. We suggested some procedures to

improve convergence: switching sequences (SS), regularization (REG) and nonzero initial conditions (IC).

66

The best results were obtained when all procedures were used simultaneously. The previous procedures were

demonstrated using two simple recurrent networks.

67

Chapter 7

APPLICATIONS

This chapter will present two types of applications for dynamic neural networks. The first class of

applications is Model Reference Control. For this type of controller architectures, the plant is modelled using

a feedforward neural network. Later, the plant model network is used in combination with a separate neural

network controller. The plant model network is used to backpropagate the controller errors and update the

controller weights. Due to the feedback nature of the controller and plant combination, dynamic

backpropagation is required to update the controller weights. The second class of applications involve filter

design. We will use dynamic neural networks to emulate a nonlinear process.

We will use these two classes of applications to show how the dynamic backpropagation methods

are applied. For the controller we will use the FP algorithm. For the filter example we will use the BTT

algorithm.

7.1. Model Reference Control.

In this section we illustrate the application of the LDDN and dynamic backpropagation to different

control problems. We win describe the Model Reference Controller [35l and apply it to four different systems:

a continuous stirred tank reactor, a single-link robot arm, a magnetic levitation system and a simple diesel

engine model. These four systems represent a variety of simple applications to which neurocontrollers can be

applied. We will then compare and contrast the performances on the four test problems.

There are typically two steps involved when using neural networks for control: system identification

and control design. In the system identification stage, you develop a neural network model of the plant that

you want to control. This network is trained offline in batch mode, using data collected from the operation of

the plant. In the control design stage, you use the neural network plant model to design (or train) the

68

controller. The control design stage, however, changes for different controller implementations. Figure 7.1

shows the architecture of the Model Reference Controller.

Command
Input

Reference
M9del

NN
Controller

,..._ ____ _, Control
Input

NN
Plant Model

Plant

Figure 7.1: Model Reference Control Architecture

+ Control
Error

Plant
Output

The model reference architecture [351 requires that a separate neural network controller be trained

off-line, in addition to the neural network plant model. The controller training is computationally expensive,

since it requires the use of dynamic backpropagation [35, 191. On the positive side, model reference control

applies to a larger class of plant than, for example, does NARMA-L2 control (see Eq. (2.6)). Each network

has two layers, and you can select the number of neurons to use in the hidden layers. There are three sets of

delayed controller inputs: reference inputs, controller outputs and plant outputs. Table 9.1 shows the final

Model Reference controller parameters for each test.

Table 7.1: Parameters for Model Reference Controller

CSTR Maglev Robot Engine

Del. reference 3 2 2 2

Delayed inputs 3 2 2 2

Delay. outputs 3 2 1 1

Hidden layer 8 13 13 15

The following figure shows the details of the neural network plant model and the neural network

controller. Each network has two layers, and you can select the number of neurons to use in the hidden layers.

The plant model is used only as a backpropagation path for the derivatives needed to adjust the controller

weights; the plant model weights are not adjusted. There are three sets of controller inputs: delayed reference

69

inputs, delayed controller outputs and delayed plant outputs. For each of these inputs, you can select the

number of delayed values to use. Typically, the number of delays increases with the order of the plant.

a2(t)

Plant

Neural Network Controller Neural Network Plant Model

Figure 7.2: Detailed Model Reference Control Structure

If we apply the algorithm described in Figure 4.2 to the system shown in Figure 7 .2, we first notice

that the Backpropagation order is 4-3-2-1, the set of all output layer numbers is U={2,4} and the set of all

input layer numbers is X={ 1,3}.

We now show how these equations can be developed using our general FP algorithm. We start in the

last layer in the backpropagation order (layer 4), obtaining:

S4,4(t) = F\n4(t)); U' = 4 ; Es(4) = 4

Layer 3 is only connected to layer 4 through a non-delay, so we apply:

S4,3(t) = S4,4(t)LW4,3(Q)F\n\t)); Es(3) = 3 ; ~(4) = 3

Layer 2 is the last layer of the neural controller and it is connected to another layer through delays. So we

apply the equations:

s2,2(t) = F\n2(t)); U' = {2, 4} ; Es(2) = 2

70

Layer 1 is only connected to layer 2 through a non-delay, so we apply:

We can solve now the explicit derivatives for each weight and bias:

T T
3 4 a (t) a (t)

ia4(t) a\t-1) ia4(t) 4
= ® S4, 3(t); = a (t- 1) ® S4, 3(t)

T . T
clvec(L W3, 2(d)) clvec(LW3,4(d))

3 a (t-d)
4 a (t- d)

T T
2 a (t)

4 a (t)

ia2(t) 2 ia2(t) 4
= a (t-1) ® s2, ict); = a (t- 1) ® s2, icr)

T T
clvec(LWI, 2(d)) clvec(LW 1, 4(d))

2 a (t- d)
4 a (t- d)

l r
r(t)

aea2(t)
= r(~~ 1) ® s2, 1(t)

T
clvec(IW 1• 1(d))

r(t- d)

Now that we have finished with the backpropagation step, we have the explicit derivatives for all of

the weights and biases in the system. We are now ready to calculate the dynamic derivatives:

2 · e 2
i)a (t) - a a (t) -----+
i)wT clWT

and

71

This previous process is repeated for each sample time in the training set.

We have now computed all of the dynamic derivatives of the outputs with respect to the weights.

The next step is to compute the derivatives of the performance function with respect to the weights. We must

first calculate

a•F
-- = -2(r(t)- a4(t)),
aa4(t)

to obtain

Q {[e]T u } Q { u } aFT = L L a/ X aa ~) = - L [2(r(t) - a4(t)){ X aa ~)

aw t = l U E U aa (t) aw t = l aw

for all the weights and biases in the neural controller. The next section will present the results for the Model

Reference Controller for the systems mentioned at the beginning of this section.

7 .1.1. Case Studies

7.1.1.1. Continuous Stirred Tank Reactor (CSTR)

The first application is a catalytic Continuous Stirred Tank Reactor (CSTR) [SJ shown in Figure 7 .3.

W2

I
Figure 7.3: Continuous Stirred Tank Reactor

72

The dynamic model of the system is

dh(t) h77. -- = w1(t)+w2(t)-0.2..,h(t)
dt

(7.1)

(7.2)

where h(t) is the liquid level, Cb(t) is the product concentration at the output of the process, w 1 (t) is the flow

rate of the concentrated feed Cb 1 , and w2(t) is the flow rate of the diluted feed Cb2 • The input concentrations

are setto cb 1 = 24.9mol/ cm3 and cb2 = O.lmoll cm3 . The constants associated with the rate of consumption

are k1 = 1 and k2 = 1 . The objective of the controller is to maintain the product concentration by adjusting

the flow w2(t). To simplify the demonstration, we set w1(t) = O.lcm3!s. The level of the tank h(t) is not

controlled for this experiment.

To obtain the model reference controller for the CSTR, the plant model was trained using a sample

time of ts = 0.05 . We found that normalization was critical to obtaining a good controller. Controllers trained

without normalized data were unsuccessful. Another important factor for the accurate training of the

controller was considering the training modifications suggested in Chapter 6. The model reference controller

requires dynamic training because of its recurrent architecture. The initial training resulted in saturation,

oscillation and bad performance from the controller. As detailed in Chapter 6, the error surface of a recurrent

network has spurious minima that occur in narrow valleys. These valleys can be mitigated by switching

training sequences, using small random initial conditions and employing regularization. Using these

techniques, we were able to obtain the controller response shown in Figure 7.4.

73

CSTR Reference and Output

20.6

20.4

.....
i
.§.20.2

·i
1
"

I 20

i
a. 19.8

19.6

19.40
50 100 150 200 250 300 350 400

Time (s)

CSTR Control Action

4

3.5

_2.5 ~i
,11 2
a:

.!
u. 1.5

0.5

0 ~-~--~-~--~--~-~--~-~
50 100 .150 200 250 300 350 400

Time(s)

Figure 7 .4: CSTR response and control action using the Model Reference Controller.

7.1.1.2. Magnetic Levitation System (MagLev)

In the second test problem, the objective is to control the position of a magnet suspended above an

electromagnet, where the magnet is constrained so that it can only move in the vertical direction. The equation

of motion is:

d2y(t) = -g+ sgn(i(t))~i\t) _fdy(t)
d/ My(t) M dt

(7.3)

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing in the

electromagnet, M is the mass of the magnet, and g is the gravitational constant. The parameter 13 is a viscous

friction coefficient that is determined by the material in which the magnet moves, and a is a field strength

74

constant that is determined by the number of turns of wire on the electromagnet and the strength of the

magnet. The system is shown in Figure 7.5.

Figure 7.5: Magnetic Levitation System

Figure 7 .6 shows the system response and the control actions for the system after training using the

model reference controller. We see that the system has a steady state error of between 3% and 6%.

Magnetic Levitation Reference and Output

3.5

0.5

o'----'----'-----'------'-----'-------'----L---'--~----'
0 10 15 20 25 30 35 40 45 50

Tlme(s)

Figure 7.6: MagLev response using model reference control.

7 .1.1.3. Robot Arm

The objective in this application is to control the movement of a simple, single-link robot arm (see

Figure 7 .7), where the equation of motion for the arm is:

d2m d"'
::::.....:i: = -I0sin<)>-2=+u
dr2 dt

(7.4)

75

where <)> is the angle of the arm, and u is the torque supplied by the DC motor.

Figure 7.7: Single-Link Robot Arm

Figure 7 .8 shows the response of the system using the model reference controller. The system is able

to follow the reference, and the control actions are smooth.

Robot Arm Reference and Output

0.6

-0.6

10 20 30 40 50 60 70 80 90 100 110
Time (s)

Figure 7.8: Robot arm response.

7.1.1.4. Simple Diesel Engine Model

The objective of this application is to control the speed of a diesel engine [?] by adjusting the fueling.

The fueling has a variable time delay as a function of the engine speed. That delay can vary from 10 to 50

milliseconds and is reduced by the load applied to the engine. The effect of fueling Fis) is modeled by the

following equation:

60
N(s) = 2·TC·l·sFis) · (7.5)

where the engine inertia is / = 2 lb-ft-sec2, and N(s) is the engine speed. A constant feedback gain of 0.2

76

was introduced to simulate viscous friction. The delay in the fuel system is d(t) = 0.003 + 29.166 · N.(t),

where Ns(t) is a saturated engine speed between 500 and 2400 rpm. Figure 7.9 shows a Simulink

representation of the simple engine model.

Signal to be delayed -------1

torque

-----I Delayed Signal

Variable Time Delay with Memory

Load

Fuel system delay calculation

td_fl(1) + td_fl(2)/u

Figure 7.9: Simple Engine Model.

Fueling1

Figure 7.10 shows the engine speed for the model reference controller. The model reference

controllers was able to control the engine including the effect of the variable delay in the fueling as shown in

the next figure.

Engine Speed Reference and Output

640

620

540
~--'----'----'----'----'----'----'----'----'----'----'

10 15 20 25 30 35 40 45 50 55
lime (s)

Figure 7.10: Engine speed using the model reference controller and Predictive Controller.

77

7 .2. Filter design.

This section provides a second example of the application of the LDDN and dynamic

backpropagation. We use a multi-loop recurrent network to predict the Mackey-Glass chaotic time series [2s,

271. This model was derived as a model of blood production represented by the equation:

du(t) =
dt

au(t-'t) -bu(t)
l+u(t-1:) 10

(7.6)

where a= 0.2, b = 0.1 and u(t) represents the blood concentration at time t. For some patients with different

pathologies the time 't increases and the blood concentration becomes chaotic for 't ~ 17 . Figure 7 .11 shows

the training data for 't = 17 and u(0) = 0.8 .

1.3~-~--~-~--~-~--~-~-~

:: J J J j J j J J I

0.7

0.6

o.5~-~--~-~--~-~--~~~----'
0 50 100 150 200

time(s)
250 300 350 400

Figure 7.11: Blood Concentration using the Mackey-Glass equation.

The dynamic nature of the previous system makes the use of recurrent filter structures of great

interest for prediction and control of this type of system. In the first part of this section we develop the

dynamic training equations for the Mackey-Glass system. Then we present experimental results showing the

prediction performance.

Figure 7.12 shows the structure of the LORN used for predicting the Mackey-Glass chaotic time

series. This is a modification proposed by Hagan et. al [t 9J of the cascaded recurrent neural network presented

by Li and Haykin [271. In this network there are 3 cascaded recurrent structures with the output connected to

78

layer 6. We now show how these equations can be developed using our general BTT procedure, which was

described in the flowchart of Chapter 5. The Backpropagation order is 6~5-4-3-2-1, so we start in the last layer

in the backpropagation order (Layer 6) to get the following equations:

S6,6(t) = F\n6(t)); U' = {6} ; E5(6) = 6

5 5
S6.5(t) = S6· 6(t)L W 6, 5(0)F (n (t))

S4,4(t) = F\n4(t)); U' = {6, 4} ; E5(4) = 4

3 3 S4, 3(t) = S 4, 4(t)L W 4, 3(0)F (n (t))

sz,z(t) = F\n\t)); U' = {6, 4, 2} ; Es(2) = 2

I I
s2, 1(t) = s2,2(t)LW2, 1(o)F (n (t))

To compute the dynamic derivatives of the performance function with respect to the outputs of the

system, we found that the only explicit derivative is with respect to output 6

aeF = -2(p(t)- a6(t))
aa6(t)

So the dynamic equations are:

aF
I LW3' 4(d/S4' 3(t+ d{

aF
--=

4 4
aa (t)

de D~. 4
aa (t+d)

aF LW1' 2(d/S2' 1ct+ d)
T aF

-2- = I . 2
aa (t)

de DL,, 2
aa (t+d)

79

I LW5' 4(d{S6' 5(t+ d{
aF

+ 6

de DL5, 4
aa (t+d)

I LW3' 2(d{ S4' 3 (t + d) T
aF

+
aa\t+d)

de DL3, 2

p(t)

F2

LW1,2

LW3,2

F4

LW3,4

LW5,4

F6

e(t)

LW5,6

Figure 7.12: Modified Cascaded Recurrent Neural Network

For all layers we have

80

The previous process is repeated for each sample time in the training set.

Finally we can obtain the gradient for each weight and bias by

Q Q Q

'i)F - "d3(t); 'i)F = "d3 (t) X [p 1(t-d){; aF3 2 = "d\t) X [a\t-d){
ah 3 - 1LJ= 1 a1w3• 1 (d) L..J aL w · (d) LJ

t= 1 t= 1

Q Q Q
aF 1 aF I 1 T 'i)F 1 2 T - - "d (t); = "d (t)x[p (t-d)]; 12 = "d (t)x[a (t-d)]
ah1 - 1L..J=1 a1w1• 1cd) LJ aLw · (d) LJ

t = 1 t = 1

After the network was trained, it was used to predict blood concentration. Figure 7.13 shows the

actual and predicted signals when full dynamic backpropagation is used to train the LDDN. Figure 7.14 is a

plot of the errors between actual and predicted signals.

81

1.3~----------------------,

1.1

0.9

0.8

0.7

0.6

o.5~-~--~-~--~--~-~-~~-~
0 50 100 150 200 250 300 350 ,400

tlme(s)

Figure 7.13: Prediction Results for WDN with Full Dynamic Training

X 10-3
10,---------------,----,--------.-----.-----,

~
0

'1!

6

c 4

J
'll 2

ill
"5 g 0
w
.§
1l -2

£
-4

-6

1/
) I

-a~-~--~-~--~--~-~--~-~
0 50 100 150 200

time(s)
250 300 350 400

Figure 7.14: Errors for LDDN with Full Dynamic Training

Appendix C shows a modification of the previous dynamic neural network using the full cascaded

recurrent neural network presented by Li and Hay kin [Z7l, That appendix shows how the equations change for

a similar architecture and how the algorithm is able to find the gradient calculation equations.

82

Chapter 8

ALGORITHM COMPARISON

This chapter will present memory, time and floating point operation comparisons for the gradient

and Jacobian FP and BTT algorithm implementations using Matlab. The algorithms were tested for 33

different dynamic neural networks. The diagrams of each network are shown in Appendix D. All tests were

performed in a Windows 2000 Professional system with a Pentium 4 running at 1.7 GHz and 640 MB of

system RAM.

8.1. Memory requirements.

Table 8. I shows the memory usage for the FP and BTT gradient algorithms. For each test network,

the memory usage, the ratio ofBTT memory to FP memory, the total number of weights and biases, and the

total number oflayers are presented. Except for two cases (network 32 and network 33), the BTT algorithm

requires about IO percent more memory than the FP algorithm. In the cases where the FP algorithm required

more memory, the network had more weights because there were more delays in the network structure.

Table 8.2 shows the memory usage for the FP and BTT Jacobian algorithms. For each test network, the

Jacobian BTT implementation requires about twice as much memory as the FP algorithm.

Figure 8.1 and Figure 8.2 show the memory per weight required for the gradient and Jacobian

algorithms. Networks with few weights need more memory per weight due to the baseline memory required

to run the algorithm. Also, the BTT algorithm generally requires more memory per weight than the FP

algorithm.

83

Table 8.1: FP and BTT Gradient memory comparison (bytes).

Test Total Memory Weights Memory per Weiqht
Network FP BTT BTT/FP Layers FP BTT W/L

1 71952 85514 1.188 13 2 5535 6578 6.5
2 102522 118050 1.151 31 3 3307 3808 10.3
3 109688 121030 1.103 24 3 4570 5043 8.0
4 134506 153006 1.138 40 3 3363 3825 13.3
5 153444 171806 1.120 72 3 2131 2386 24.0
6 136246 152646 1.120 29 3 4698 5264 9.7
7 162296 179286 1.105 35 3 4637 5122 11.7
8 160150 177430 1.108 17 4 9421 10437 4.3
9 147948 165830 1.121 14 4 10568 11845 3.5
10 107614 125338 1.165 31 2 3471 4043 15.5
11 105920 117638 1.111 21 3 5044 5602 7.0
12 160440 178862 1.115 38 3 4222 4707 12.7
13 159296 179318 1.126 41 3 3885 4374 13.7
14 170728 190454 1.116 44 3 3880 4329 14.7
15 114474 133790 1.169 16 3 7155 8362 5.3
16 94100 111754 1.188 22 2 4277 5080 11.0
17 161802 190726 1.179 38 4 4258 5019 9.5
18 189238 210662 1.113 17 5 11132 12392 3.4
19 71952 85514 1.188 13 2 5535 6578 6.5
20 165554 187294 1.131 12 5 13796 15608 2.4
21 375912 404158 1.075 32 8 11747 12630 4.0
22 197042 223042 1.132 19 6 10371 11739 3.2
23 141256 161910 1.146 32 4 4414 5060 8.0
24 186932 215388 1.152 40 5 4673 5385 8.0
25 346856 392178 1.131 85 9 4081 4614 9.4
26 47674 54474 1.143 3 1 15891 18158 3.0
27 126964 155954 1.228 32 3 3968 4874 10.7
28 454060 484850 1.068 81 10 5606 5986 8.1
29 259240 301002 1.161 51 6 5083 5902 8.5
30 48362 55098 1.139 4 1 12091 13775 4.0
31 83538 98738 1.182 19 2 4397 5197 9.5
32 318182 286450 0.900 101 6 3150 2836 16.8
33 433800 366510 0.845 115 7 3772 3187 16.4

84

Table 8.2: FP and BTT Jacobian memory comparison (bytes).

Test Total Memory Weights Memory per Weight
Network FP BTT BTT/FP Layers FP BTT W/L

1 78534 191894 2.443 13 2 6041 14761 6.5
2 113956 231130 2.028 31 3 3676 7456 10.3
3 121730 245686 2.018 24 3 5072 10237 8.0

.4 150652 348006 2.310 40 3 3766 8700 13.3
5 176126 320350 1.819 72 3 2446 4449 24.0
6 154064 283078 1.837 29 3 5313 9761 9.7
7 182698 374126 2.048 35 3 5220 10689 11.7
8 178412 310514 1.740 17 4 10495 18266 4.3
9 164082 287218 1.750 14 4 11720 20516 3.5
10 121948 258910 2.123 31 2 3934 8352 15.5
11 117506 188846 1.607 21 3 5596 8993 7.0
12 181298 374158 2.064 38 3 4771 9846 12.7
13 180610 375070 2.077 41 3 4405 9148 13.7
14 192498 391078 2.032 44 3 4375 8888 14.7
15 126972 288590 2.273 16 3 7936 18037 5.3
16 105394 222846 2.114 22 2 4791 10129 11.0
17 179912 364074 2.024 38 4 4735 9581 9.5
18 209920 387198 1.845 17 5 12348 22776 3.4
19 78534 191894 2.443 13 2 6041 14761 6.5
20 182132 346174 1.901 12 5 15178 28848 2.4
21 479878 1137402 2.370 32 8 14996 35544 4.0
22 213912 384062 1.795 19 6 11259 20214 3.2
23 156782 280930 1.792 32 4 4899 8779 8.0
24 270594 630768 2.331 40 5 6765 15769 8.0
25 446218 816954 1.831 85 9 5250 9611 9.4
26 52444 105450 2.011 3 1 17481 35150 3.0
27 140222 281946 2.011 32 3 4382 8811 10.7
28 978386 1429918 1.462 81 10 12079 17653 8.1
29 502194 864926 1.722 51 6 9847 16959 8.5
30 291006 532358 1.829 4 1 72752 133090 4.0
31 53284 110626 2.076 19 2 2804 5822 9.5
32 92704 207702 2.240 101 6 918 2056 16.8
33 355876 614310 1.726 115 7 3095 5342 16.4

85

:!!
.5!'
i
i
i:'

~ ..

20000 ~----·--- l
18000 .
16000 .
14000 . -
12000 - • - •

•
• •

10000 • ••
• .

8000

• •
6000 +-------------- ---------------------- -

•I• 1• • • • . ·-·
4000 ••• +-~----~-· ... ·~·-·~~=r- : -~.~----·

• • • I
2000 !I

20 40 60 80 100 120 140

Total Number of Weights

Figure 8.1: Memory per Weight for gradient algorithms.

140000 - --
•

120000

100000

80000

•
60000

40000

• •
•

20000 - ·-• • . . • .. • . , • • • . . : ·- ··-. ' • ' • 0

0 20 40 60 80 100 120 140

Total Number of Weights

Figure 8.2: Memory per Weight for Jacobian algorithms.

Table 8.3 and Table 8.4 show the memory usage for network 1 (Figure D.1) and network 31 (Figure

D.31) as the size of the first layer is increased. The first network has feedforward delays. The second network

has feedback delays from layer 1 to itself. Both networks have two layers. From the tables, we see that the

memory for the BTT gradient algorithm increases faster than the FP gradient algorithm as the size of the first

86

layer increases. A different behavior is seen for the Jacobian algorithms, where the FP memory requirements

increase faster than BTT as the the size of the first layer increases.

Table 8.3: FP and BTT memory comparison (bytes) for network 1 as function of first layer size:

Gradient Jacobian
S1 FP BTT BTI/FP FP BTT BTT/FP Weights
1 67276 75698 1.125 72642 173470 2.388 5
3 72940 85858 1.177 79522 192238 2.417 13
5 81740 101522 1.242 89538 216510 2.418 21
7 93676 122690 1.310 102690 246286 2.398 29
9 108748 149362 1.373 118978 281566 2.367 37
11 126956 181538 1.430 138402 322350 2.329 45
13 148300 219218 1.478 160962 368638 2.290 53

Table 8.4: FP and BTTmemory comparison (bytes)for network 31 as function of first layer size.

Gradient Jacobian
S1 FP BTT BTT/FP FP BTI BTI/FP Weights
1 76056 85998 1.131 83094 185442 2.232 5
2 79688 91678 1.150 87638 195730 2.233 11
3 84744 99182 1.170 93910 208146 2.216 19
4 91320 108510 1.188 102006 222690 2.183 29
5 99512 119662 1.202 112022 · 239362 2.137 41
6 109416 132638 1.212 124054 258162 2.081 55

Table 8.5 and Table 8.6 show the memory usage for the network 1 (Figure D.1) and network 31

(Figure D.31) as the number of delays is increased. These tables show a different pattern than was seen for

layer size. In this case, the memory requirements for the BTT gradient increase slower than those for the FP

gradient as the number of delays increases. On the other hand, the memory requirements for the BTT Jacobian

increase faster than those for the FP Jacobian.

Table 8.5: FP and BTT memory comparison (bytes) for network 1 as function of number of delays.

Gradient Jacobian
ND FP BTT BTI/FP FP BTT BTT/FP Weights
1 72940 85858 1.177 79522 192238 2.417 13
3 77836 89506 1.150 85330 216238 2.534 19
5 83500 93154 1.116 91906 241966 2.633 25
7 89932 96802 1.076 99250 269422 2.715 31
9 97132 100450 1.034 107362 298606 2.781 37
11 105100 104098 0.990 116242 329518 2.835 43
13 113836 107746 0.947 125890 362158 2.877 49
15 123340 111394 0.903 136306 396526 2.909 55

87

Table 8.6: FP and BTT memory comparison (bytes) for network 31 as fimction of number of delays.

Gradient Jacobian
ND FP BTT BTT/FP FP BTT BTT/FP Weiqhts
1 84744 99182 1.170 93910 208146 2.216 19
2 88472 101414 1.146 99006 221250 2.235 28
3 92776 103646 1.117 104678 234786 2.243 37
4 97656 105878 1.084 110926 248754 2.243 46
5 103112 108110 1.048 117750 263154 2.235 55
6 109144 110342 1.011 125150 277986 2.221 64

Table 8.7 and Table 8.8 shown the memory usage for the network 1 (Figure D.l) and network 31

(Figure D.31) as the number of samples of the training sequence is increased. These tables shown that the

memory requirements for the BTT gradient and Jacobian increase faster than those for the FP gradient and

Jacobian as the number of samples increases.

Table 8.7: FP and BTT memory comparison (bytes) for network 1 as function of number of samples.

Gradient Jacobian
NS FP BTT BTT/FP FP BTT BTT/FP

20 79662 91330 1.146 87164 218070 2.502
40 106702 133650 1.253 123164 558790 4.537
60 133742 175970 1.316 159164 1072310 6.737
80 160782 218290 1.358 195164 1758630 9.011

100 187822 260610 1.388 231164 2617750 11.324
120 214862 302930 1.410 267164 3649670 13.661
140 241902 345250 1.427 303164 4854390 16.012
160 268570 387570 1.443 339164 6231910 18.374
180 295890 429890 1.453 375164 7782230 20.744
200 323022 472210 1.462 411164 9505350 23.118
220 350062 514530 1.470 447164 11401270 25.497
240 377102 556850 1.477 483164 13469990 27.879
260 404142 559170 1.384 519164 (*) (*)
280 431182 641490 1.488 555164 (*) (*)
300 458222 683810 1.492 591164 (*) (*)
400 593422 895410 1.509 771164 (*) (*)
500 728622 1107010 1.519 951164 (*) (*)
600 863822 1318610 1.526 1131164 (*) (*)

1000 1404622 2165010 1.541 1851164 (*) (*)
5000 6812622 10629010 1.560 9051164 (*) (*)

(*) Tests were not performed due to computer memory limitations.

88

Table 8.8: FP and BTT memory comparison (bytes) for network 31 as function of number of samples.

Gradient Jacobian
NS FP BTT BTT/FP FP BTT BTT/FP

20 94770 105638 1.115 106680 236786 2.220
40 128210 156598 1.221 153720 590786 3.843
60 161650 207558 1.284 200760 1117586 5.567
80 195090 258518 1.325 247800 1817186 7.333

100 228530 309478 1.354 294840 2689586 9.122
120 261970 360438 1.376 341880 3734786 10.924
140 295410 411398 1.393 388920 4952786 12.735
160 328850 462358 1.406 435960 6343586 14.551
180 362290 513318 1.417 483000 7907186 16.371
200 395730 564278 1.426 530040 9643586 18.194
220 429170 615238 1.434 577080 11552786 20.019
240 462610 666198 1.440 624120 13634786 21.846
260 496050 717158 1.446 671160 (*) (*)
280 529490 768118 1.451 718200 (*) (*)
300 562930 819078 1.455 795240 (*) (*)
400 760130 1073878 1.413 1000440 (*) (*)
500 897330 1328678 1.481 1235640 (*) (*)
600 1064530 1583478 1.487 1470840 (*) (*)

1000 1733330 2602678 1.502 2413330 (*) (*)
5000 8421330 12794678 1.519 11819640 (*) (*)

(*) Tests were not performed due to computer memory limitations.

89

8.2. Speed Comparison.

Table 8.9 shows the average time required to compute the gradient for each one of the test networks

using FP and BTT. The BTT gradient is between 1.7 and 3.8 times faster than the FP gradient. Table 8.10

shows a similar table for the FP and BTT Jacobian. Here the FP Jacobian is between 1.2 and 4.2 times faster

than the BTT Jacobian.

Table 8.9: FP and BTT Gradient time comparison.

Test Total Time (ms) Weights Time per Weiqht (ms)
Network FP BTT BTT/FP Layers FP BTT W/L

1 394.7 186.4 0.472 13 2 30.4 14.3 6.5
2 570.3 258.5 0.453 31 3 18.4 8.3 10.3
3 761.8 347.7 0.456 24 3 31.7 14.5 8.0
4 1173.5 515.6 0.439 40 3 29.3 12.9 13.3
5 1240.9 513.5 0.414 72 3 17.2 7.1 24.0
6 1429.9 577.8 0.404 29 3 49.3 19.9 9.7
7 2817.9 958.3 0.340 35 3 80.5 27.4 11. 7
8 1705.1 652.4 0.383 17 4 100.3 38.4 4.3
9 1350.9 559.7 0.414 14 4 96.5 40.0 3.5
10 937.7 428.1 0.457 31 2 30.2 13.8 15.5
11 593.9 286.5 0.482 21 3 28.3 13.6 7.0
12 2369.4 839.0 0.354 38 3 62.4 22.1 12.7
13 1952.3 755.8 0.387 41 3 47.6 18.4 13.7
14 2877.3 965.3 0.335 44 3 65.4 21.9 14.7
15 1078.1 468.5 0.435 16 3 67.4 29.3 5.3
16 838.1 356.9 0.426 22 2 38.1 16.2 11.0
17 1812.8 677.5 0.374 38 4 47.7 17.8 9.5
18 2619.5 888.0 0.339 17 5 154.1 52.2 3.4
19 398.2 187.9 0.472 13 2 30.6 14.5 6.5
20 1957.9 725.6 0.371 12 5 163.2 60.5 2.4
21 8902.1 2411.5 0.271 32 8 278.2 75.4 4.0
22 2180.5 817.2 0.375 19 6 114.8 43.0 3.2
23 972.3 413.3 0.425 32 4 30.4 12.9 8.0
24 1271.9 514.6 0.405 40 5 31.8 12.9 8.0
25 3095.4 1113.4 0.360 85 9 36.4 13.1 9.4
26 225.1 119.9 0.533 3 1 75.0 40.0 3.0
27 917.5 374.6 0.408 32 3 28.7 11.7 10.7
28 9181.3 2367.4 0.258 81 10 113.3 29.2 8.1
29 8303.0 2244.2 0.270 51 6 162.8 44.0 8.5
30 4286.0 1258.6 0.294 4 1 1071.5 314.7 4.0
31 246.5 137.1 0.556 19 2 13.0 7.2 9.5
32 598.6 275.9 0.461 101 6 5.9 2.7 16.8
33 4018.7 1398.8 0.348 115 7 34.9 12.2 16.4

90

Table 8.10: FP and BTT Jacobian time comparison.

Test Total Time (ms) Weights Time per Weight (ms)
Network FP BTT BTT/FP Layers FP BTT W/L

1 395.7 980.3 2.477 13 2 30.4 75.4 6.5
2 572.8 1181.7 2.063 31 3 18.5 38.1 10.3
3 780.2 1858.9 2.383 24 3 32.5 77.5 8.0
4 1183.7 2985.2 2.522 40 3 29.6 74.6 13.3
5 1254.7 2886.6 2.301 72 3 17.4 40.1 24.0
6 1436.8 3338.1 2.323 29 3 49.5 115.1 9.7
7 2839.9 6400.6 2.254 35 3 81.1 182.9 11.7
8 1709.5 3491.2 2.042 17 4 100.6 205.4 4.3
9 1369.0 2791.1 2.039 14 4 97.8 199.4 3.5
10 944.5 2603.7 2.757 31 2 30.5 84.0 15.5
11 604.2 1291.9 2.138 21 3 28.8 61.5 7.0
12 2368.8 5461.6 2.306 38 3 62.3 143.7 12.7
13 1956.1 4558.8 2.331 41 3 47.7 111.2 13.7
14 2890.8 6423.5 2.222 44 3 65.7 146.0 14.7
15 1090.5 2611.9 2.395 16 3 68.2 163.2 5.3
16 843.7 2072.5 2.456 22 2 38.4 94.2 11.0
17 1835.0 3630.6 1.979 38 4 48.3 95.5 9.5
18 2640.8 4923.2 1.864 17 5 155 .. 3 289.6 3.4
19 397.1 965.3 2.431 13 2 30.5 74.3 6.5
20 1952.3 3614.8 1.852 12 5 162.7 301.2 2.4
21 9358.7 25048.0 2.676 32 8 292.5 782.8 4.0
22 2196.9 3925.7 1.787 19 6 115.6 206.6 3.2
23 978.5 1810.3 1.850 32 4 30.6 56.6 8.0
24 1544.1 6627.6 4.292 40 5 38.6 165.7 8.0
25 3438.0 8609.3 2.504 85 9 40.4 101.3 9.4
26 230.3 599.9 2.605 3 1 76.8 200.0 3.0
27 935.9 1794.5 1.917 32 3 29.2 56.1 10.7
28 9193.8 11360.3 1.236 81 10 113.5 140.3 8.1
29 8282.0 10927.0 1.319 51 6 162.4 214.3 8.5
30 4317.1 6613.9 1.532 4 1 1079.3 1653.5 4.0
31 248.3 743.0 2.992 19 2 13.1 39.1 9.5
32 612.2 1403.0 2.292 101 6 6.1 13.9 16.8
33 4089.3 8985.9 2.197 115 7 35.6 78.1 16.4

Table 8.11 and Table 8.12 show the time required to compute the gradient and Jacobian for

network l (Figure D. l) and network 31 (Figure D.31) as the size of the first layer is increased. The BTT

gradient algorithm is approximately twice as fast as the FP gradient for all sizes. However, the FP Jacobian

is approximately three times as fast as BTT Jacobian for all sizes.

91

Table 8.11: FP and BTT time comparison for network 1 as function of first layer size (msec).

Gradient Jacobian
S1 FP BTI BTI/FP FP BTT BTT/FP Weights
1 147.4 78.3 0.531 140.7 452.0 3.213 5
3 143.0 77.7 0.543 146.4 459.6 3.139 13
5 144.7 76.1 0.526 148.3 465.4 3.138 21
7 149.1 80.4 0.539 150.2 475.6 3.166 29
9 153.8 84.9 0.552 154.7 484.4 3.131 37
11 158.7 87.5 0.551 158.5 485.8 3.065 45
13 165.0 92.8 0.562 167.6 495.6 2.957 53

Table 8.12: FP and BTT time comparison for network 31 asfimction of first layer size (msec).

Gradient Jacobian
S1 FP BTT BTI/FP FP BTT BTT/FP Weights
1 220.1 109.1 0.496 225.7 712.5 3.157 5
2 226.8 112.0 0.494 236.1 735.8 3.116 11
3 230.1 116.5 0.506 239.4 740.5 3.093 19
4 235.2 116.8 0.497 240.9 743.9 3.088 29
5 243.7 120.3 0.494 245.0 751.5 3.067 41
6 257.6 126.7 0.492 260.5 771.0 2.960 55

Table 8.13 and Table 8.14 shown the time comparison as we increase the number of delays. The time

between FP gradient and BTT gradient tends to get closer as the number of delays increases. On the other

hand, the BTT Jacobian tends to get much slower than the FP Jacobian as the number of delays increases.

Table 8.13: FP and BTT time comparison for network 1 as function of number of delays (msec).

Gradient Jacobian
ND FP BTT BTT/FP FP BTT BTT/FP Weights
1 142.3 77.7 0.546 142.8 456.7 3.198 13
3 150.7 93.8 0.622 151.5 616.3 4.068 19
5 159.0 110.6 0.696 158.8 774.1 4.875 25
7 171.0 126.3 0.739 170.2 931.5 5.473 31
9 180.8 144.3 0.798 182.1 1105.9 6.073 37
11 194.8 161.4 0.829 198.1 1266.6 6.394 43
13 207.9 176.6 0.849 209.1 1426.6 6.823 49
15 223.2 195.6 0.876 226.9 1592.3 7.018 55

92

Table 8.14: FP and BTT time comparison for network 31 as fimction of number of delays (msec).

Gradient Jacobian
ND FP BTT BTI/FP FP BTT BTT/FP Weights
1 229.3 114.1 0.498 234.6 736.8 3.141 19
2 241.9 132.2 0.547 250.3 901.7 3.602 28
3 254.2 148.0 0.582 261.4 1079.2 4.129 37
4 271.7 168.7 0.621 276.7 1241.3 4.486 46
5 291.5 185.8 0.637 296.2 1412.5 4.769 55
6 312.5 203.7 0.652 317.6 1580.9 4.978 64

Table 8.15 and Table 8.16 shown the time comparison as we increase the number of samples of the

training sequence. The time between FP gradient and BTT gradient tends to get closer as the number of

samples increases. For a large number of samples, FP becomes a better option than BTT for computing the

gradient. On the other hand, the BTT Jacobian tends to get much slower than the FP Jacobian as the number

of samples increases.

Table 8.15: FP and BTT time comparison for network 1 as fimction of number of samples (msec).

Gradient Jacobian
NS FP BTT BTT/FP FP BTT BTT/FP

20 163.7 140.0 0.855 150.5 360.5 2.395
40 280.0 147.0 0.525 285.5 1517.0 5.313
60 414.0 230.3 0.556 425.0 5092.5 11.982
80 557.7 310.3 0.556 566.0 13700.0 24.205

100 687.7 397.3 0.578 706.0 28251.0 40.016
120 828.0 494.3 0.597 836.5 47934.0 57.303
140 967.7 597.7 0.618 981.0 77956.5 79.466
160 1118.3 711.0 0.636 1146.0 121474.5 105.999
180 1252.0 828.0 0.661 1262.0 184525.5 146.217
200 1408.7 965.0 0.685 1447.0 270569.5 186.987
220 1532.3 1071.3 0.699 1552.5 378234,0 243.629
240 1676.0 1222.0 0.729 1687.0 523673.5 310.417
260 1829.0 1368.7 0.748 1838.0 (*) (*)
280 1956.3 1515.7 0.775 1978.0 (*) (*)
300 2093.0 1676.0 0.801 2113.0 (*) (*)
400 2857.7 2814.0 0.985 2829.0 (*) (*)
500 3495.0 3731.7 1.068 3535.5 (*) (*)
600 4152.7 4957.0 1.194 4251.0 (*) (*)

1000 7050.3 14040.3 1.991 7245.0 (*) (*)
5000 40054.0 743108.7 18.553 46877.5 (*) (*)

(*) Tests were not performed due to computer memory limitations.

93

Table 8.16: FP and BTT time comparison for network 31 as function of number of samples (msec).

Gradient Jacobian
NS FP BTT BTT/FP FP BTT BTT/FP

20 230.3 110.0 0.478 230.5 596.0 2.586
40 471.0 240.0 0.510 465.5 2538.5 5.453
60 684.3 360.7 0.527 696.0 7736.0 11.115
80 911.3 501.0 0.550 926.5 18737.0 20.223

100 1141.7 657.7 0.576 1162.0 37138.5 31.961
120 1378.7 821.0 0.595 1392.0 67517.0 48.504
140 1609.0 1001.7 0.623 1617.5 111129.5 68.704
160 1849.3 1178.7 0.637 1893.0 167681.0 88.580
180 2069.7 1375.3 0.664 2078.0 233611.0 112.421
200 2355.2 1604.2 0.681 2409.0 329509.0 136.782
220 2540.0 1816.3 0.715 2618.5 448520.0 171.289
240 2764.0 2063.0 0.746 2789.0 608810.5 218.290
260 2991.0 2313.7 0.774 3019.5 (*) (*)
280 3228.3 2584.0 0.800 3259.5 (*) (*)
300 3465.0 2894.3 0.835 3500.0 (*) (*)
400 4642.7 4649.7 1.002 4682.0 (*) (*)
500 5818.0 6930.0 1.191 5868.0 (*) (*)
600 6945.0 9724.0 1.400 7076.0 (*) (*)

1000 11947.0 29422.0 2.463 12193.0 (*) (*)
5000 78362.0 1488820.0 18.999 87185.5 (*) (*)

(*) Tests were not performed due to computer memory limitations.

94

8.3. Computational complexity.

The complexities of the various algorithms are dependent on the number of weights in the network,

N, and also on the length of the training sequence, T. In this section we will.analyze experiments to verify the

complexity of each algorithm in terms of both N and T. We begin with some background discussion of

complexity that will help in understanding the tables that follows.

Let's say that the number of flops required for certain algorithm is O(Nk):

As N ~ oo this can be approximated as

Ifwe take the log of the number of flops to the base Nwe have

log Jtops = log ,,flk + klog NN

= log,y1k + k

As N ~ oo this should approach k. Ifwe know k, we can find ak through the following

Ifwe know ak, we can then check the value ofk by

We will be using Eq. (8.3), Eq. (8.4) and Eq. (8.5) in the tables in this section in order to

experimentally verify the order of the complexity of the various algorithms.

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

As mentioned earlier, it is best to view the complexity of the algorithms to be functions of two

variables: the number of weights in the network, N, and the number of time steps in the training sequence or

samples, T. We will begin by testing the effect of Non algorithm complexity. We will do this in two ways:

first, we will increase the number ofneurons in the first layer of the network, then we will increase the number

of delays in the network. Next, we will test the effect of Ton algorithm complexity by holding the network

architecture fixed while we increase the length of the training sequence.

95

Table 8.17 and Table 8.19 show the floating point operations required to compute the gradient and

Jacobian for network 1 (Figure D.l) and network 31 (Figure D.31) as the size of the first layer is increased,

for sequences of 20 samples and with the number of delays equal to 1. The BTT algorithm requires fewer

computations than the FP algorithm for the gradient calculation, but more computations than the FP algorithm

for the Jacobian calculations. As the size of the first layer increases, the number of flops for the BTT gradient

increases slower than the n_11mber of flops for the FP gradient. For the Jacobian calculations, the number of

flops for FP and BTT tend to get closer as the size of the first layer increases.

Next, let's.examine these experiments in a more qualitative way, using Eq. (8.3), Eq. (8.4) and Eq.

(8.5). Table 8.17 and Table 8.19 show logN(flops) on the right side of the tables. From Eq. (8.3) this value

should approach k as N increases.

In Table 8.18 and Table 8.20 we use Eq. (8.4) and Eq. (8.5). The columns labeled FI (k) represent

Eq. (8.4) and the columns labeled.F2 represent Eq. (8.5). For example, the second column in Table 8.18

indicates that ak = 0.63 . Using this value in Eq. (8.5), we obtain column three in Table 8.18, which indicates

that k = 3. This means that the FP algorithm for the gradient calculation is O(N3).

Summarizing the results from the tables, the data suggests that for network 1 the FP gradient and

Jacobian algorithms are O(N3), and the BTT algorithms are O(N'2). For network 31, the FP algorithms are

O(N2) and the BTT algorithms are O(Nl.5). Network 31 contains feedback. while network 1 does not; this

seems to explain the differences in algorithm complexity, and similar results were seen in other tests not

shown here.

96

'C

"'

S1
1
3
5
7
9

11
13
20
40
60
80
100
200
300
400
500
600

FP
3782
8802

19402
35522
65082

104014
156202
471112

3131512
9903912

22708312
43464712

333726712
1110788712
2614650712
5085312723
8762774712

Table 8.17: FP and BTT floating point operations for network I asjimction of first layer size.

Flops log N (Flops)

Gradient Jacobian Gradient Jacobian
BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weiqhts (N)

1515 0.401 4917 18807 3.825 5.12 4.55 5.28 6.12 5
3035 0.345 9923 34767 3.504 3.54 3.13 3.59 4.08 13
5475 0.282 20523 60387 2.942 3.24 2.83 3.26 3.62 21
8875 0.250 38643 96087 2.487 3.11 2.70 3.14 3.41 29

13235 0.203 66203 141867 2.143 3.07 2.63 3.07 3.29 37
18555 0.178 105123 197727 1.881 3.03 2.58 3.04 3.20 45
24835 0.159 157323 263667 1.676 3.01 2.55 3.01 3.14 53
54288 0.115 472323 573837 1.215 2.97 2.48 2.97 3.02 81

203488 0.065 3132723 2140437 0.683 2.94 2.41 2.94 2.87 161
448688 0.045 9905123 4715037 0.476 2.94 2.37 2.94 2.80 241
789888 0.035 22709523 8297637 0.365 2.93 2.35 2.93 2.76 321

1227088 0.028 43465923 12888240 0.297 2.93 2.34 2.93 2.73 401
4853088 0.015 333727923 50961237 0.153 2.94 2.30 2.94 2.65 801

10879088 0.010 1110789923 114234237 0.103 2.94 2.28 2.94 2.62 1201
19305088 0.007 2614651923 202707237 0.078 2.94 2.27 2.94 2.59 1601
30131091 0.006 5085313923 316380237 0.062 2.94 2.27 2.94 2.57 2001
43357088 0.005 8762775923 455253237 0.052 2.94 2.26 2.94 2.56 2401

~

Table 8.18: FP and BTT constant calculations for floating point operations for network 1 as a function of.first layer size.

FP Gradient
S1 F1 (3) I F2
1 30.26 5.406
3 4.01 3.721
5 2.10 3.395
7 1.46 3.249
9 1.28 3.197
11 1.14 3.156
13 1.05 3.128
20 0.89 3.078
40 0.75 3.034
60 0.71 3.021
80 0.69 3.015

100 0.67 3.011
200 0.65 3.005
300 0.64 3.002
400 0.64 3.002
500 0.63 3.001
600 0.63 3.001

Const. 0.631

BTT Gradient
F1(2) I F2

60.60 3.298
17.96 2.340
12.41 2.166
10.55 2.101
9.67 2.070
9.16 2.053
8.84 2.041
8.27 2.022
7.85 2.009
7.73 2.005
7.67 2.004
7.63 2.003
7.56 2.001
7.54 2.001
7.53 2.001
7.53 2.000
7.52 2.000

7.51

FI(k) = Nog,1..Flops)-k

F2 = Iog}/..FlopslConst)

FP Jacobian BTT Jacobian
F1(3) I F2 F1 (2) I F2

39.34 5.569 752.28 3.400
4.52 3.768 205.72 2.373
2.22 3.413 136.93 2.181
1.58 3.274 114.25 2.110
1.31 3.202 103.63 2.075
1.15 3.159 97.64 2.056
1.06 3.130 93.87 2.043
0.89 3.078 87.46 2.023
0.75 3.034 82.58 2.009
0.71 3.021 81.18 2.005
0.69 3.015 . 80.53 2.003
0.67 3.011 80.15 2.002
0;65 3.005 79.43 2.001
0.64 3.002 79.20 2.000
0.64 3.002 79.08 2.000
0.63 3.001 79.02 2.000
0.63 3.001 78.97 2.000
0.631 791

\Q
\Q

S1
1
2
3
4
5
6
10
20
40
60
80
100
200

FP
4755

13155
29695
60515

111615
189955
948515

10329315
132158915
617012515

1870010115
4449871715

67559339715

Table 8.19: FP and BTT floating point operations for network 31 as fimction of first layer size.

Flops log N (Flops)

Gradient Jacobian Gradient Jacobian
BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N)

1955 0.411 6268 31886 5.087 5.26 4.71 5.43 6.44 5
4135 0.314 14668 53066 3.618 3.96 3.47 4.00 4.54 11
7495 0.252 31208 86066 2.758 3.50 3.03 3.51 3.86 19

12455 0.206 62028 135106 2.178 3.27 2.80 3.28 3.51 29
19255 0.173 113128 202706 1.792 . 3.13 2.66 3.13 3.29 41
28135 0.148 191468 291386 1.522 3.03 2.56 3.04 3.14 55
89255 0.094 950028 907306 0.955 2.82 2.34 2.82 2.81 131

505255 0.049 10330828 5157506 0.499 2.63 2.14 2.63 2.52 461
3281255 0.025 132160428 33841906 0.256 2.51 2.01 2.51 2.33 1721

10249255 0.017 617014028 106238306 0.172 2.46 1.96 2.46 2.24 3781
23329255 0.012 1870011628 242506706 0.130 2.43 1.93 2.43 2.19 6641
44441255 0.010 4449873228 462807106 0.104 2.40 1.91 2.40 2.16 10301

337681255 0.005 67559341228 3530389106 0.052 2.35 1.85 2.35 2.07 40601

'-
~

Table 8.20: FP and BTTconstant calculations for floating point operations for network 31 as afimction of first layer size.

FP Gradient
S1 F1 (2) I F2
1 190.20 2.969
2 108.72 2.417
3 82.26 2.245
4 71.96 2.174
5 66.40 2.136
6 62.80 2.113
10 55.27 2.066
20 48.60 2.032
40 44.62 2.015
60 43.16 2.009
80 42.40 2.007
100 41.94 2.005
200 40.98 2.002

Const. 401

BTT Gradient FP Jacobian
F1(1.5) I F2 F1 (2) I

174.86 2.401 250.72
113.34 1.924 121.22
90.50 1.769 86.45
79.75 1.698 73.76
73.34 1.657 67.30
68.98 1.630 63.30
59.53 1.576 55.36
51.05 1.536 48.61
45.96 1.515 44.62
44.08 1.509 43.16
43.11 1.506 42.40
42.51 1.504 41.94
41.28 1.501 40.98

41 I 401

FI (k) = Nog,1._Flops)-k

F2 = IogMFlopslConst)

F2
3.140
2.462
2.262
2.182
2.140
2.115
2.067
2.032
2.015
2.009
2.007
2.005
2.002

BTT Jacobian
F1(1.5) I F2 Weights (N)
2851.97 2.674 5
1454.55 2.007 11
1039.20 1.799 19
865.12 1.707 29
772.13 1.657 41
714.37 1.626 55
605.13 1.570 131
521.06 1.531 461
474.01 1.513 1721
456.95 ,1 .507 3781
448.10 1.504 6641
442.67 1.503 10301
431.54 1.500 40601

431 I

Now we will describe experiments in which we change N by adjusting the number of delays in the

network. Table 8.21 and Table 8.23 show the floating point operations required to compute the gradient and

Jacobian for network I and network 31 as the number of delays is increased, for sequences of20 samples

and with the size of the first layer equal to 3 neurons. Table 8.22 and Table 8.24 use Eq. (8.4) and Eq. (8.5)

to help determine the complexity of the algorithms.

The results here are simpler than those described on previous pages for changes in layer size. Here

we find that the FP algorithms are O(N2) and the BTT algorithms are O(N), and the result does not seem to

be architecture dependent.

101

Table 8.21: FP and BTT floating point operations for network 1 as fimction of number of delays.

Flops log N (Flops)

Gradient Jacobian Gradient Jacobian
ND FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N)
1 8802 3035 0.345 9923 34767 3.504 3.54 3.13 3.59 4.08 13
3 16402 3995 0.244 17523 44467 2.538 3.30 2.82 3.32 3.63 19
5 26882 4955 0.184 28003 54167 1.934 3.17 2.64 3.18 3.39 25
7 40152 5828 0.145 41363 63867 1.544 3.09 2.52 3.10 3.22 31
9 56392 6788 0.120 57603 73567 1.277 3.03 2.44 3.04 3.10 37

11 75512 7748 0.103 76723 83267 1.085 2.99 2.38 2.99 3.01 43
13 97512 8708 0.089 98723 92967 0.942 2.95 2.33 2.95 2.94 49
15 122392 9668 0.079 123603 102667 0.831 2.92 2.29 2.93 2.88 55
20 197192 12068 0.061 198403 126917 0.640 2.87 2.21 2.87 2.77 70
40 676394 21668 0.032 677603 223917 0.330 2.76 2.05 2.76 2.53 130

..... 60 1443592 31268 0.022 1444803 320917 0.222 2.70 1.97 2.70 2.42 190
~ 80 2498792 40868 0.016 2500003 417917 0.167 2.67 1.92 2.67 2.34 250

100 3841992 50468 0.013 3843203 514917 0.134 2.64 1.89 2.64 2.29 310
200 14878011 98468 0.007 14879203 999991 0.067 2.58 1.79 2.58 2.15 610

....
~

Table 8.22: FP and BTT constant calculations for floating point operations for network 1 as a function of number of delayi

FP Gradient
ND F1(2) I F2
1 52.08 2.103
3 45.43 2.043
5 43.01 2.023
7 41.78 2.013
9 41.19 2.008 -

11 40.84 2.006
13 40.61 2.004
15 40.46 2.003
20 40.24 2.001
40 40.02 2.000
60 39.99 2.000
80 39.98 2.000
100 39.98 2.000
200 39.98 2.000

Const. 401 -

BTT Gradient FP Jacobian
F1 (1) I F2 fl(2) I
233.46 1.145 58.72
210.26 1.091 48.54
198.20 1.065 44.80
188.00 1.045 43.04
183.46 1.036 · 42.08
180.19 1.030 41.49
177.71 1.025 41.12
175.78 1.022 40.86
172.40 1.016 40.49
166.68 1.007 40.09
164.57 1.004 40.02
163.47 1.003 40.00
162.80 1.002 39.99
161.42 1.000 39.99

161 I 401

Fl (k) = Nlog,,(.Flops) -k

F2 = logJ!._FlopslConst)

F2
2.150
2.066
2.035
2.021
2.014
2.010
2.007
2.005
2.003
2.000
2.000
2.000
2.000
2.000

BTT Jacobian
F1(1) I F2 Weights (N)
2674.38 1.200 13
2340.37 1.129 19
2166.68 1.094 25
2060.23 1.074 31
1988.30 1.060 37
1936.44 1.051 43
1897.29 1.044 49
1866.67 1.038 55
1813.10 1.029 70
1722.44 1.015 130
1689.04 1.010 190
1671.67 1.008 250
1661.02 1.007 310
1639.3.3 1.004 610

16001

Table 8.23: FP and BTT floating point operations for network 31 as fimction of number of delays.

Flops log N (Flops)

Gradient Jacobian Gradient Jacobian
ND FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT Weights (N)
1 29695 7495 0.252 31208 86066 2.758 3.50 3.03 3.51 3.86 19
2 59315 11095 0.187 60828 123676 2.033 3.30 2.80 3.31 3.52 28
3 97575 14695 0.151 99088 161286 1.628 3.18 2.66 3.19 3.32 37
4 144475 18295 0.127 145988 198896 1.362 3.10 2.56 3.11 3.19 46
5 200015 21895 0.109 201528 236506 1.174 3.05 2.49 3.05 3.09 55
6 264195 25495 0.097 265708 274116 1.032 3.00 2.44 3.00 3.01 64
10 607315 39895 0.066 608828 424556 0.697 2.89 2.30 2.89 2.81 100
20 2069915 75895 0.037 2071428 800656 0.387 2.77 2.14 2.77 2.59 190
40 7587115 147895 0.019 7588628 1552856 0.205 2.68 2.01 2.68 2.41 370
60 16560317 219895 0.013 16561828 2305056 0.139 2.63 1.95 2.63 2.32 550
80 28989515 291895 0.010 28991031 3057256 0.105 2.61 1.91 2.61 2.26 730

$: 100 44874715 363895 0.008 44876228 3809456 0.085 2.59 1.88 2.59 2.22 910

Table 8.24: FP and BTT constant calculations for floating point operations for network 1 as a function of number of delays.

FP Gradient BTT Gradient FP Jacobian BTT Jacobian
ND F1(2) I F2 F1 (1) I F2 F1 (2) I F2 F1 (1) I F2 Weights (N)
1 82.26 2.143 394.47 0.995 86.45 2.160 4529.79 1.027 19
2 75.66 2.101 396.25 0.997 77.59 2.109 4417.00 1.016 28
3 71.27 2.077 397.16 0.998 72.38 2.081 4359.08 1.011 37
4 68.28 2.061 397.72 0.999 68.99 2.064 4323.83 1.008 46
5 66.12 2.051 398.09 0.999 66.62 2.052 4300.11 1.007 55
6 64.50 2.043 398.36 0.999 64.87 2.044 4283.06 1.006 64
10 60.73 2.026 398.95 0.999 60.88 2.026 4245.56 1.003 100
20 57.34 2.011 399.45 1.000 57.38 2.012 4213.98 1.001 190
40 55.42 2.004 399.72 1.000 55.43 2.004 4196.91 1.000 370
60 54.74 2.002 399.81 1.000 54.75 2.002 4191.01 1.000 550
80 54.40 2.001 399.86 1.000 54.40 2.001 4188.02 1.000 730
100 54.19 2.001 399.88 1.000 54.19 2.001 4186.22 1.000 910

...... Const. 541 4001 541 41861
~

FI (k) = NlogJ,Flops)-k

F2 = logN(FlopslConst)

For the final experiments in this chapter we will investigate the effect of training sequence length,

T, on the complexity of the algorithms. Table 8.25 and Table 8.27 presents the flops for network 1 and

network 31 for a neural network with hidden layer size of 3 with 3 delays. The number of samples was

increased from 20 to 5000. Each neural network has two layers, with 19 weights for network 1 and 3 7 weights

for network 31. Table 8.26 and Table 8.28 use Eq. (8.4) and Eq. (8.5) to identify the complexity of the

algorithms.

The main results from these tests are that the FP gradient and Jacobian algorithms and the BTT

gradient algorithm are O(T), while the BTT Jacobian algorithm is O(T2).

106

.....
~
~

Table 8.25: FP and BTT floating point operations for network I as a function of number of samples.

Flops log r (Flops)

Gradient Jacobian Gradient Jacobian
T FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT
20 16312 3908 0.240 17523 44467 2.538 3.24 2.76 3.26 3.57
40 32592 7768 0.238 35003 172067 4.916 2.82 2.43 2.84 3.27
60 48872 11628 0.238 52483 382867 7.295 2.64 2.29 2.65 3.14
80 65152 15488 0.238 69963 676867 9.675 2.53 2.20 2.55 3.06

100 81432 19348 0.238 84443 1054067 12.483 2.46 2.14 2.46 3.01
120 97712 23208 0.238 104923 1514467 14.434 2.40 2.10 2.41 2.97
140 113992 27068 0.237 122403 2058067 16.814 2.36 2.07 2.37 2.94
160 130272 30928 0.237 139883 2684867 19.194 2.32 2.04 2.33 2.92
180 146552 34788 0.237 157363 3394867 21.573 2.29 2.01 2.30 2.90
200 162832 38648 0.237 174843 4188067 23.953 2.26 1.99 2.28 2.88
220 179116 42508 0.237 192323 5064467 26.333 2.24 1.98 2.26 2.86
240 195396 46368 0.237 209803 6024069 28.713 2.22 1.96 2.24 2.85
260 212214 50768 0.239 227283 7066867 31.093 2.21 1.95 2.22 2.84
280 227952 54088 0.237 244763 (*) (*) 2.19 1.93 2.20 (*)
300 244323 57948 0.237 262243 (*) (*) 2.18 1.92 2.19 (*)
400 325632 77248 0.237 349643 (*) (*) 2.12 1.88 2.13 (*)
500 407032 96548 0.237 437043 (*) (*) 2.08 1.85 2.09 (*)
600 488432 115848 0.237 524443 (*) (*) 2.05 1.82 2.06 (*)

1000 814032 193048 0.237 874043 (*) (*) 1.97 1.76 1.98 (*)
5000 4070036 965048 0.237 4370043 (*) (*) 1.79 1.62 1.80 (*)

(*) Tests were not performed due to computer memory limitations.

.....
~

Table 8.26: FP and BTT constant calculations for floating point operations for network 1 as a fimction of number of samples.

T
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
400
500
600

1000
5000

Const

FP Gradient
F1(1) I F2

815.60 1.0007
814.80 1.0003
814.53 1.0002
814.40 1.0001
814.32 1.0001
814.27 1.0001
814.23 1.0001
814.20 1.0000
814.18 1.0000
814.16 1.0000
814.16 1.0000
814.15 1.0000
816.21 1.0005
814.11 1.0000
814.41 1.0001
814.08 1.0000
814.06 1.0000
814.05 1.0000
814.03 1.0000
814.01 1.0000

8141

BTT Gradient
F1 (1) I F2

195.40 1.0041
194.20 1.0017
193.80 1.0010
193.60 1.0007
193.48 1.0005
193.40 1.0004
193.34 1.0004
193.30 1.0003
193.27 1.0003
193.24 1.0002
193.22 1.0002
193.20 1.0002
195.26 1.0021
193.17 1.0002
193.16 1.0001
193.12 1.0001
193.10 1.0001
193.08 1.0001
193.05 1.0000
193.01 1.0000

1931

Fl(k) = Tog,.(Flops)-k

F2 = logfFlopslConst)

FP Jacobian
F1 (1) I F2

876.15 1.0008
875.08 1.0003
874.72 1.0002
874.54 1.0001
844.43 0.9925
874.36 1.0001
874.31 1.0001
874.27 1.0001
874.24 1.0001
874.22 1.0000
874.20 1.0000
874.18 1.0000
874.17 1.0000
874.15 1.0000
874.14 1.0000
874.11 1.0000
874.09 1.0000
874.07 1.0000
874.04 1.0000
874.01 1.0000

8741

(*) Tests were not performed due to computer memory limitations.

BTT Jacobian
F1 (2) I F2

111.17 2.0222
107.54 2.0091
106.35 2.0055
105.76 2.0038
105.41 2.0029
105.17 2.0023
105.00 2.0019
104.88 2.0017
104.78 2.0014
104.70 2.0013
104.64 2.0011
104.58 2.0010
104.54 2.0009
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)

1041

Table 8.27: FP and BTT floating point operations for network 31 as a fanction of number of samples.

Flops log T (Flops)

Gradient Jacobian Gradient Jacobian
T FP BTT BTT/FP FP BTT BTT/FP FP BTT FP BTT
20 97757 14695 0.150 99088 161286 1.628 3.84 3.20 3.84 4.00
40 195115 29335 0.150 198128 626896 3.164 3.30 2.79 3.31 3.62
60 292655 43975 0.150 297168 1396906 4.701 3.07 2.61 3.08 3.46
80 390195 58615 0.150 396208 2471316 6.237 2.94 2.51 2.94 3.36

100 487735 73255 0.150 495248 3850126 7.774 2.84 2.43 2.85 3.29
120 585275 87895 0.150 594288 5533336 9.311 2.77 2.38 2.78 3.24
140 682815 102535 0.150 693328 7520946 10.848 2.72 2.33 2.72 3.20
160 780355 117175 0.150 792368 9812956 12.384 2.67 2.30 2.68 3.17
180 877895 131815 0.150 891408 12409366 13.921 2.64 2.27 2.64 3.15

. 200 975435 146455 0.150 990448 15310176 15.458 2.60 2.24 2.61 3.12

.... 220 1072975 161095 0.150 1089488 18515386 16.995 2.57 2.22 2.58 3.10
1:5 . 240 1170515 175735 0.150 1188528 22024996 18.531 2.55 2.20 2.55 3.08

260 1268145 190462 0.150 1287568 25839006 20.068 2.53 2.19 2.53 3.07
280 1365685 205102 0.150 1386608 (*) (*) 2.51 2.17 2.51 (*)
300 1463225 219742 0.150 1485648 (*) (*) 2.49 2.16 2.49 (*)
400 1950925 292942 0.150 1980848 (*) (*) 2.42 2.10 2.42 (*)
500 2438625 366142 0.150 2476048 (*) (*) 2.37 2.06 2.37 . (*)

600 2928625 438142 0.150 2971348 (*) (*) 2.33 2.03 2.33 (*)
1000 4877125 732142 0.150 4952048 (*) (*) 2.23 1.95 2.23 (*)
5000 24385035 3660055 0.150 24790048 (*) (*) 2.00 1.77 2.00 (*)

(*) Tests were not performed due to computer memory limitations.

.....
~

Table 8.28: FP and BTT constant calculations for floating point operations for network 31 as a function of number of samples.

T
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
400
500
600

1000
5000

Const

FP Gradient
F1(1) I F2
4887.85 1.0007
4877.88 1.0000
4877.58 1.0000
4877.44 1.0000
4877.35 1.0000
4877.29 1.0000
4877.25 1.0000
4877.22 1.0000
4877.19 1.0000
4877.18 1.0000
4877.16 1.0000
4877.15 1.0000
4877.48 1.0000
4877.45 1.0000
4877.42 1.0000
4877.31 1.0000
4877.25 1.0000
4881.04 1.0001
4877.13 1.0000
4877.01 1.0000

48771

BTT Gradient
F1(1) I F2

734.75 1.0013
733.38 1.0005
732.92 1.0003
732.69 1.0002
732.55 1.0002
732.46 1.0001
732.39 1.0001
732.34 1.0001
732.31 1.0001
732.28 1.0001
732.25 1.0001
732.23 1.0001
732.55 1.0001
732.51 1.0001
732.47 1.0001
732.36 1.0001
732.28 1.0001
730.24 0.9996
732.14 1.0000
732.01 1.0000

7321

FI (k) = Tog/Flops)-k

F2 = log.j_Ftops!Const)

FP Jacobian
F1(1) I F2
4954.40 1.0002
4953.20 1.0001
4952.80 1.0000
4952.60 1.0000
4952.48 1.0000
4952.40 1.0000
4952.34 1.0000
4952.30 1.0000
4952.27 1.0000
4952.24 1.0000
4952.22 1.0000
4952.20 1.0000
4952.18 1.0000
4952.17 1.0000
4952.16 1.0000
4952.12 1.0000
4952.10 1.0000
4952.25 1.0000
4952.05 1.0000
4958.01 1.0001

49521

(*) Tests were not performed due to computer memory limitations.

BTT Jacobian
F1 (2) I F2

403.22 2.0180
391.81 2.0069
388.03 2.0038
386.14 2.0025
385.01 2.0017
384.26 2,0012
383.72 2.0009
383.32 2.0007
383.01 2.0005
382.75 . 2.0004
382.55 2.0003
382.38 2.0002
382.23 2.0001
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)
(*) (*)

3821

8.4. Summary.

From the results presented in this chapter we confirmed the comments made at the end of Chapter 4

and Chapter 5, where we concluded that BTT is the best algorithm for gradient calculations and FP is the best

algorithm for Jacobian calculation for some small networks and large sequences. The only case where the

BTT Jacobian outperforms the FP Jacobian is for networks with a large number of weights and short training

sequences. That combination rarely occurs. The BTT gradient requires about half of the time and fewer flops

than the FP gradient. The BTT gradient required about IO percent more memory than FP, a value not critical

with systems available today. Ifwe compare the Jacobian versions, FP requires about half of the memory, a

third of the time and fewer flops than BTT. For very large sequences, the BTT and FP gradient tend to be

close in computational complexity. It maybe best to use the FP gradient for long sequences, because of the

memory requirements.

Another important point to be gained from this chapter is that algorithm complexity is dependent on

the network architecture, and not just on the number of weights. Whether or not a network has feedback

connections, and the number of feedback connections it has, can affect the algorithm complexity.

111

Chapter 9

SUMMARY

In this chapter a brief summary of the contributions of this research is presented, followed by

recommendations for future work.

9.1. Summary of Results

There are two main contributions of this research. The first contribution is the development of two

algorithms for gradient computation for a general class of dynamic network: the Layered Digital Dynamic

Network. Chapter 4 presented the Forward Perturbation algorithm and Chapter 5 presented the

Backpropagation-Through-Time algorithm. Each algorithm has a version for gradient-based optimization

algorithms and Jacobian-based optimization algorithms. These two main algorithms have been introduced in

the past by other authors, but this research has derived the complete equations for arbitrary LDDN's. We have

shown that the LDDN structure can be used to represent most dynamic networks that have been proposed in

the literature.

The second principal contribution of this research is the discovery of a key characteristic of the error

surfaces of dynamic networks: spurious narrow valleys that can trap optimization algorithms. Chapter 6

analyzes these error surfaces and proposes new procedures that provide improved training for dynamic

networks.

This research also demonstrated the application of the proposed algorithms to problems in control

systems and nonlinear filtering (Chapter 7) and also compared the memory, the speed and the computational

complexity characteristics of the FP and BTT algorithms (Chapter 8).

112

9.2. Future Work.

The work described in this dissertation has centered on exact gradient and Jacobian calculations for

gradient-based and Jacobian-based optimization algorithms. Future research should explore faster

approximate gradient and Jacobian calculations. It may be possible to obtain approximate gradients that are

almost as affective as exact gradients for optimization algorithms, but that require significantly fewer

computations.

113

REFERENCES

[1] Anderson, J.A, "A Simple Neural Network generating an Interactive Memory," Mathematical

Biosciences, Vol. 14, 1972, pp. 197-220.

[2] Atiya, AF.; Parlos, A.G., "New Results on Recurrent Network Training: Unifying the Algorithms and

Accelerating Convergence," IEEE Transactions on Neural networks, Vol. 11, 2000, pp. 697-709.

[3] Back, A.D.; Tsai, AC., "FIR and IIR Synapses, a new Neural Network Architecture for Time Series

Modelling," Neural Computation, Vol. 3, 1991, pp. 375-385.

[4] Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C., Time series analysis :forecasting and control, Engle

wood Cliffs, N .J.: Prentice Hall, 1994.

[5] Brengel, D.D.; Seider, W.D., "Multistep Nonlinear Predictive Controller," Ind. Eng. Chem. Res., Vol.

28, 1989, pp. 1812-1822.

[6] Chen, D.; Hagan, M.T., "Optimal use ofregularization and cross-validation in neural network

modeling," Proceedings. IJCNN '99. International Joint Conference on Neural Networks, Washing

ton, DC, July, 1999, Vol. 2, pp. 1275 - 1280.

[7] De Jesus, 0., "Reinforcement Learning Control Applied to Diesel Engines," Master Thesis, Okla

homa State University, Stillwater, 1998.

[8] De Jesus, O.; Hagan, M.T., "Backpropagation through time for a general class of dynamic network,"

Proceedings. IJCNN '01. International Joint Conference on Neural Networks, Washington, DC, July,

2001, Vol. 4, pp. 2638 - 2643.

[9] De Jesus, O.; Hagan, M.T., "Forward perturbation for a general class of dynamic network,"

Proceedings. IJCNN '01. International Joint Conference on Neural Networks, Washington, DC, July,

2001, Vol. 4, pp. 2626 -2631.

[10] De Jesus, O.; Horn, J.M.; Hagan, M.T., "Analysis of Recurrent Network Training and Suggestions for

Improvements," Proceedings. IJCNN 'OJ. International Joint Coriference on Neural Networks, Wash

ington DC, July 2001, Vol. 4, pp. 2632 - 2637.

[11] De Jesus, O.; Pukrittayakamee, A; Hagan, M.T., "A Comparison ofNeural Network Control

Algorithms," Proceedings. IJCNN '01. International Joint Conference on Neural Networks, Washing

ton DC, July 2001, Vol. 1, pp. 521-526.

[12] Demuth, H.B. and Beale, M., Users' Guide for the Neural Network Toolbox for MATLAB, Natick,

MA: The Mathworks, 1998.

[13] De Vries, B.; Principe, J.C., "The Gamma Model - A New Neural Model for Temporal Processing,"

Neural Networks, Vol. 5, 1992, pp. 565-576.

[14] Elman, J., "Finding Structure in Time," Cognitive Science, Vol. 14, 1990, pp. 179-211.

114

[15] Feldkamp, L.A.; Prokhorov, D.V., "Phased Backpropagation: A Hybrid ofBPTT and Temporal BP,"

Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. Vol. 3,

may 1998, pp. 2262 - 2267.

[16JForesee, D.F.; Hagan, M.T., "Gauss-Newton approximation to Bayesian learning," Proceedings.

IJCNN '97. International Joint Conference on Neural Networks, Houston, TX, June, 1997, Vol. 3, pp.

1930 - 1935.

[17] Frasconi, P .; Gori, M.; Soda, G., "Local Feedback Multi layered Networks," Neural Computation, Vol.

4, 1992,pp.120-130.

[18] Grossberg, A., "How does the Brain build a Cognitive Code?," Psychological Review, Vol. 88, 1980,

pp. 375-407.

[19] Hagan, M.T.; De Jesus, O.; Schultz, R.L., "Training Recurrent Networks for Filtering and Control," In

Recurrent Neural Networks: Design and Applications, L.R. Medsker and L.C. Jain, Eds., CRC Press,

2000, pp. 325-354.

[20] Hagan, M.T.; Demuth, H.B.; Beale, M., Neural Network Design, Boston, MA: PWS Publishing

Company, 1996.

[21] Hagan, M.T.; Menhaj, M., "Training Feedforward Networks with the Marquardt Algorithm," IEEE

Transactions on Neural Networks, Vol. 5, 1994, pp. 989-993.

[22] Hebb, D.O., The Organization of Behavior, New York, NY: Wiley, 1949.

[23] Hopfield, J.J., "Neural Networks and Physical Systems with emergent collective Computational

abilities," Proceedings of the National Academy of Sciences, Vol. 79, 1982, pp. 2554-2558.

[24] Hsu, H.H.; Fu, L.M.; Principe, J.C., "Context Analysis by the Gamma Neural Network," IEEE

International Conference on Neural Networks, Vol. 2, 1996, pp. 682-687.

[25] Kohonen, T., "Correlation Matrix Memories," IEEE Transactions on Computers, Vol. 21, 1972, pp.

353-359. -

[26] Lapedes, A.S; Farber R., Nonlinear Signal Processing using Neural Networks: Prediction and System

Modelling, Los Alamos, NM: Los Alamos National Laboratory LA-UR-87-2662, 1987.

[27] Li, L.; Haykin, S., "A cascaded recurrent neural network for real-time nonlinear adaptive filtering,"

IEEE International Conference on Neural Networks, Vol. 2, 1993, pp. 857-862.

[28] Mackey, M.C.; Glass, L., "Oscillation and Chaos in Physiological Control Systems," Science, Vol.

197, 1977, pp. 287-289.

[29] Magnus, J.R.; Neudecker, H., Matrix Differential Calculus, Chichester, UK: John Wiley & Sons,

Ltd., 1999.

[30] McCulloch, W.; Pitts, W., "A Logical calculus of the ideas immanent in nervous activity," Bulletin of

Mathematical Biophysics, Vol. 5, 1943, pp. 115-133.

[31] Mills, P.M.;Zomaya, A.Y.; Tade, M.O., Neuron-Adaptive Process Control: a Practical Approach,

New York, NY: John Wiley& Sons, 1995.

[32] Minsky, M.; Papert, S., Perceptrons, Cambridge, MA: MIT Press, 1969.

[33] Motter, M.A.; Principe, J.C., "A Gamma Memory Neural network for System Identification," IEEE

International Conference on Neural Networks, Vol. 5, 1994, pp. 3232-3237.

[34] Narendra, K.S.; Mukhopadhyay, S., "Adaptive Control using Neural Networks and Approximate

Models,"IEEE Transactions on Neural Networks, Vol. 8, 1997, pp. 475-485.

115

[35] Narendra, K.S.; Parthasrathy, A.M., "Identification and control for dynamic systems using neural

networks," IEEE Transactions on Neural Networks, Vol. 1, 1990, pp. 4-27.

[36] Nerrand, 0.; Roussel-Ragot, P.; Personnaz, L.; Dreyfus, G.; Marcos, S., "Neural Networks and

Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms," Neural Computation, Vol. 5,

1993, pp. 165-197.

[37] Oppenheim, A.V.; Schafer, R.W., Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice

Hall, 1989.

[38] Poggio, T.; Girosi, F., "Networks for Approximation and Leaming," Proceedings of the IEEE, Vol. 78,

1990, pp. 1481-1497.

[39] Principe, J.C.; De Vries, B.; De Oliveira, P.G., "The Gamma Filter - A New Class of Adaptive IIR

Filters with Restricted Feedback," IEEE Transactions on Signal Processing, Vol. 41, 1993, pp. 649-

656.

[40] Principe, J.C.; Euliano, N.R.; Lefebvre, W.C., Neural and Adaptive Systems, New York, NY: John

Wiley & Sons, 2000.

[41] Rosenblatt, F., "The perceptron: A probabilistic model-for information storage and organization in the

brain," Psychological Review, Vol. 65, 1958, pp. 386-408.

[42] Rumelhart, D.; Hinton, D.; Williams, G., "Leaming Internal Representations by Error Propagation,"

In: Parallel Distributed Processing, Vol. 1, Rumelhart, D; McClelland, F., Eds., Cambridge, MA:

M.I.T. Press, 1986.

[43] Scales, L.E., Introduction to non-linear optimization, New York, NY: Springer-Verlag, 1985.

[44] Schmidhuber, J., "A Fixed Size Storage O(n3) Time Complexity Leaming Algorithm for Fully

Recurrent Continually Running Networks," Neural Computation, Vol. 4, 1992, pp. 243 - 248.

[45] Sun, G.Z.; Chen, H.H.; Lee, Y.C., "Green's Method for Fast On-Line Leaming Algorithm ofRecurrent

Neural Networks," In: Advances in Neural Information Processing Systems 4, Moody J.; Hanson S.;

Lippmann R. (eds), San Mateo, CA: Morgan Kaufmann, 1992, pp. 333 - 340.

[46] Toomarian, N.; Barben, J., "Adjoint-Functions and Temporal Learning Algorithms in Neural

Networks," In: Advances in Neural Information Processing Systems 3, Lippmann R.; Moody J.,

Touretzky D. (eds), San Mateo, CA: Morgan Kaufmann, 1991, pp. 113 - 120.

[47] Toomarian, N.; Barben, J., "Leaming a Trajectory Using Adjoint Functions and Teacher Forcing,"

Neural Networks, Vol. 5, 1992, pp. 473 - 484.

[48] Tsoi, A.C., "Architectures and Leaming in Recurrent Neural Networks," In: Adaptive Processing and

Data Structures, Giles C.L.; Gori M. (Eds.), Berlin, Germany: Springer, 1998, pp. 1 - 26.

[49] Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J., "Phoneme recognition using time

delay neural networks," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37,

1989, pp. 328 -339.

[50] Wan, E.A., "Temporal backpropagation for FIR neural networks," 1990 JJCNN International Joint

Conference on Neural Networks, Vol. 1, 1990, pp. 575 - 580.

[51] Werbos, P. J., "Backpropagation through time: What it is and how to do it," Proceedings of the IEEE,

Vol. 78, 1990, pp. 1550-1560.

[52] Widrow, B.; Hoff, M.E., "Adaptive Switching Circuits," 1960 IRE WESCON Convention Record,

New York, NY, IRE Part 4, 1960, pp. 96-104.

116

[53] Williams, R.J.; Peng, J., "Gradient-based Leaming Algorithms for Recurrent Neural Networks and

their Computational Complexity," In: Backpropagation: Theory, Architectures, and Applications,

Chauvin, Y.; Rumelhart, D.E. (Eds.), Hillsdale, NJ: Lawrence Erlbaum, 1992, pp. 433-486.

[54] Williams, R.J.; Zipser, D., "A learning algorithm for continually running fully recurrent neural

networks," Neural Computation, Vol. 1, pp. 270-280, 1989.

[55] Yang, W., Neurocontrol Using Dynamic Learning, Doctoral Thesis, Oklahoma State University, 1994.

[56] Yang, W.; Hagan, M.T., "Training recurrent networks," Proceedings of the 7th Oklahoma Symposium

on Artificial Intelligence, Stillwater, OK, 1993, pp. 226 - 233.

117

Appendix A

NEURAL NETWORK EXAMPLES USING THE LAYERED DIGITAL DYNAMIC NETWORK

(LDDN)

This appendix illustrates how we can implement some neural network architectures explained in

section 2.2 using the LDDN. For simplicity we will describe the neural network examples with the minimum

number oflayers.

A.I. Narendra Models.

For the Narendra Models the input u(k) will be represented by p 1 (t) and the output Yp(k) will be

represented by the output of the last layer aM(t), where Mis the last layer in the network.

The Model I (Eq. (2.1)) could be represented as:

a 1 (t) = r1[,w J;:;;~ ;;] + b 11

ll(t-m)
(A.I)

The Model II (Eq. (2.2)) could be represented as:

118

[[
a2(t- ll l

al(t) = fl Lw1,2 a2(:.~2) + bl

a2(t-n)

[
t

l(t- l)j l tl(t-1)] a2(t) = f2 1w2, I p 1(~-~2) + LW2, lal(t) + b2 = 1w2, l p 1(~-~2) + al(t)

1(t-m) 1(t-m)

(A.2)

The Model III (Eq. (2.3)) could be represented as:

[
t

l(t-l)j l al(t) = fl 1w1,1 pl(~-~2) +bl

l(t-m)

a2(t) = f2[LW'·' ::;:=:)l + b2]

a2(t- n)

(A.3)

a3(t) = f3(LW3,lal(t)+LW3,2a2(t)+b3) = al(t)+a2(t)

The Model IV (Eq. (2.4)) could be represented as:

[
t

t(t- l)j tat(t- ll]
at(t) = fl 1w1,1 p 1(~-~2) +Lw1,1 a1(~-~2) +bl

1(t-m) a 1(t-n)

(A.4)

For the previous four equations the last layer is the output layer. The transfer function for the last

layer must be linear for Eq. (2.1), Eq. (2.2) andEq. (2.3). From the examples, Model IV requires fewer layers.

All the other examples required an additional layer with a linear transfer function.

For the Narma-Ll Model (Eq. (2.5)) with m=2 we have:

119

[
a6(t-ll l

al(t) = fl i,w1,6 a:(~-~2) + b'

a (t-n) ·

a2(t) = f2[LW,.J::::=:Jl + b2]

la6(t-n) (A.5)

a3(t) = f3(JW3,lpl(t-l)·LW3,2a2(t)·b3) =pl(t-l)·a2(t)

a4(t) = f4[LWJ::::=:Jl + b4]

la6(t- n)

a5{t) = f5(IW 5, 1p 1(t-2)·LW5,4a4(t)·b5) =p 1(t-2)-a4(t)

a6(t) = f6(LW6,lal(t)+LW6,3a3(t)+LW6,5a5(t)+b6) = al(t)+a3(t)+a5(t)

where the transfer functions for layers 3, 5 and 6 must be linear. The first layer represents the/ network, each

subsequent pair represents the networks g0 and g 1 , where we have a nonlinear layer followed by a linear

layer with a product operation instead ofa summation. We set the biases oflayers 3 and 5 to one. The last

layer combines the result of the previous three subnetworks.

The Narma-L2 Model (Eq. (2.6)) will be represented by:

[t'(t-2] a4(t- ll l
a'(t) = fl 1w1,1 p 1(~-~3) +LWl,4 a 4(~-~2) +b'

1(t-n} a 4(t-n)

a2(t) = f2[IW'·' ~:;:j + LW '· •[::;:_= ;Jl + b2]

l1u-J a4(t-n)

a3(t) = f3(IW 3, 1p'(t-1)·LW3,2a 2(t)·b3) =p'(t-l)·a2(t)

a4(t) = f4(LW 4, 1a1(t)+LW 4• 3a3(t)+b4) = a 1(t)+a3(t)

(A.6)

As in the Narma-Ll model, Layer 3 allow us to multiply the last input to the model times the output

of the subnetwork g0 • We could generate the neurocontroller shown in Eq. (2.7) by rearranging Eq. (2.6):

120

[tl(t-2)1 a4(t-1] l
a'(t) = fl 1w1, t pt(~-~3) +LWl,4 a4(~-~2) + b'

1(t-n) a4(t-n)

a2(t) = f2[IW'· t::=:;1 + LW '·' ::;:=:L,]
l1(t-J a4{t-nJ

a3(t) = f3(IW3, 2p2(t)- LW3, tat (t) + b3) = p2(t) _ a 1(t)

a4{t) = f 4((LW4•3a3{t))/(LW 4, 3a2(t))/(b4)) = a3(t)/a2(t)

(A.7)

where p 2(t) is the desired output. For the last two models we included product and division operators inside

the evaluation of the transfer function input. Those operators are considered in the final implementations of

the dynamic gradient calculation algorithms.

A.2. Finite Impulse Response (FIR) and Infinite Impulse Response (HR) layers.

A FIR layer is implemented as the product ofa weight times the input to the layer, where that input

could be external or the output from another layer:

1 rN(t-1]] [[aN(t- lll aM(t) = f IWM,N pN(·t-~2) or aM(t) = fM LWM,N aN(·t-~2)

N(t-n) aN(t-n

(A.8)

Similarly, an IIR layer is implemented as the product of a weight times the input to the layer plus a

delayed feedback of the same layer, where the input to the filter could be external or the output from another

layer:

[rN(t-1] [aM(t-1)]]
aM(t) = fM IWM,N pN(:.~2) +LWM,M aM~~~2) or

N(t-n) aM(t-m)

(A.9)

[- [aN(t-ll laM(t-l)j]
aM(t) = fM LWM,N aN(·t-~2) + LWM,M aM~~~2)

aN(t-n) aM(t-m)

(A.10)

121

A.3. Gamma Memory Structure.

We can construct the Gamma Memory Structure using the following configuration with a one-layer

network:

pl(t)

[:] lxl Mxl

a I (t)

Mxl

Gamma
TDL Memory

Structure MxI

Figure A.1: Gamma Memory Structure.

We can create the filter with a one-layer NN:

(A.11)

where the input weight IW 11 is not being trained.

122

Appendix B

COMPARISON OF CALCULATION PROCEDURES FOR DIFFERENT DYNAMIC GRADIENT

CALCULATION METHODS

This chapter will show an example based on the simple neural network presented in Figure 3 .1 on

page 20 and Figure 6.2 on page 53. For a sequence of four points we will demonstrate Forward Perturbation

(Eq. (3.51) and Eq. (3.53)), Backpropagation-Through-Time (Eq. (3.52) and Eq. (3.54)), the Green's

Function Method (Eq. (3.60) to Eq. (3.62)), the Fast Forward Propagation Method (Eq. (3.65) to Eq. (3.69))

and the Block Update method (Eq. (3.70) and Eq. (3.84)).

Ifwe apply Eq. (6.1) from t = l tot = 4, we will obtain:

y(l) = W 1u(l)+W2y(O)

y(2) = Wlu(2)+W2y(l)

y(3) = W 1u(3)+W2y(2)

y(4) = Wlu(4)+W2y(3)

The dynamic Forward Perturbation equations (Eq. (3.53)) for w 1 are:

~ = aey(l) + aey(l) X ay(O) = u(l)
aw1 aw1 ay(O) aw1 .

We will obtain the final gradient for W 1 by applying Eq. (3 .51):

123

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

dF _ Q [~JT X deF
aw1 - I awt ay(t)

t= t

= - u(1)(t(l)-y(1))- (u(2) + W2u(1))(t(2) -y(2)) (B.9)

-(u(3) + W 2u(2) + (W2)2u(1))(t(3)- y(3))

-(u(4) + wzu(3) + (W2)2u(2) + (W2)3u(l))(t(4)-y(4))

To obtain the gradient of wt using FP we required 7 multiplications and 10 additions.

The dynamic Backpropagation-Through-Time equations (Eq. (3.54)) for wt are:

(B.10)

aF = aeF +aey(4)x aF = -(t(3)-y(3))-W2(t(4)-y(4))
ay(3 > ay(3 > ay(3 > ay(4 >

(B.11)

j£ = de F + dey(3) x dF = _ (!(2)- y(2)) _ W2(t(3) -y(3)) _ (W2)2(t(4)-y(4))
ay(2 > ay(2 > ay(2 > ay(3 >

(B.12)

aF = aeF +aey(2)x_lf__ = -(t(l)-y(l))-W2(t(2)-y(2))-(W2)2(t(3)-y(3))

ay(l) ay(l) ay(l) ay(l) -<w2)3(t(4)-y(4))
(B.13)

We will obtain the final gradient for wt by applying Eq. (3.52):

dF _ ~ [dey(t)]T X dF
awt - "'-' awt ay(t)

/= t

= -u(1)((t(l) -y(1)) + W2(t(2) - y(2)) + (W2) 2(t(3) - y(3)) + (W2)3(t(4) -y(4))) (B.14)

-u(2)((t(2) - y(2)) + W2(t(3) - y(3)) + (W2)2(t(4)-y(4)))

- u(3)((t(3)-y(3)) + W 2(t(4) -y(4)))- u(4)(!(4)-y(4))

where this results is the same for the FP in Eq. (B.9). To obtain the gradient of wt using BTT we required 7

multiplications and 6 additions.

The Green's Function Method must be applied recursively by using Eq. (3.60) to Eq. (3.62):

U(1) = 1

S(l) = (U(l))- 1 xaey(l)+S(O) = u(l)
aw 1

aF I = aF I +[U(l)xS(l)]Tx aeF = -u(l)(t(l)-y(l))
awt ' awt o ay(l)

124

(B.15)

(B.16)

(B.17)

U(2) = aea(2) x U(l) = W2
aa(l)

S(2) = (U(2)r1 x aey(2) + S(l) = u(2) + u(l)
aw 1 w2

aF I = aF I + [U(2) X S(2)]Tx aeF
aw 1 2 awi 1 ay(2)

= - u(l)(t(l)-y(l))-(u(2) + W2u(l))(t(2)-y(2))

U(3) = aea(J)xU(2) = (W2)2
aa(2)

aF I = aF I + [U(3) X S(3)]Tx aeF
awi 3 aw1 z ay(3)

= -u(l)(t(l)-y(l))-(u(2) + W2u(l))(t(2)-y(2))

-(u(3) + W 2u(2) + (W2)2u(l))(1(3) - y(3))

U(4) = aea(4) x U(3) = (W2)3
aa(3)

aF I = aF I +[U(4)xS(4)]Tx aeF
aw1 4 awi 3 ay(4)

= - u(l)(t(1) -y(l))- (u(2) + w2u(1))(1(2) - y(2))

-(u(3) + W 2u(2) + (W2)2u(l))(t(3)-y(3))

-(u(3) + W2u(3) + (W2)2u(2) + (W2) 3u(1))(/(4) -y(4))

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

This method implies 17 multiplications/divisions and 10 additions. From this example we concluded

that this method is not as efficient as proposed in the literature.

The Fast Forward Propagation Method must be applied recursively by using Eq. (3.67), Eq. (3.68)

and Eq. (3.65):

b(1) = 0

A(l) = 1

125

(B.27)

(B.28)

aF I = aF I + aeF = -(t(l)- (1)) (B.29)
ay(1) 1 ay(1) o ay(l) Y

b(2) = (aey(2))-I x(b(l)- aeF) = (t(l)-y(l)) (B.30)
ay(l) ay(l) w2

A(2) = (aey(Z))-I xA(l) = - 1 (B.31)
ay(l) w2

aF I = aF I +aey(2)x aeF = -(t(l)-y(l))-W2(t(2)-y(2)) (B.32)
ayo) 2 ay(1) 1 ay(1) ay(2)

e -1 e ·
b(3) = (iLlill) x (b(2) - a F) = _l ((t(l)-y(l)) + (t(2) ~ y(2))) (B.33)

ay(2) ay(2) w2 w2

A(3) = (aey(3))-I xA(2) = _l_ (B.34)
ay(2) (W2)2

aF I = aF I +aey(3)xaey(2)x aeF
ay(l) 3 ay(l) 2 ay(2) ay(l) ay(2) (B.35)

= - (t(1)-y(1))- W2(t(2) -y(2)) -(W2)2(t(3) -y(3))

b(4) = (aey(4))-! x (b(3)- aeF) .= _1 (-1 ((t(l)-y(1)) + (t(2)-y(2))) + (t(3)-y(3))) (B.36)
ay(3) ay(3) w2 w2 w2 .

A(4) = (aey(4))-I xA(3) = _l_ (B.37)
ay(3) (W2)3

ae ae ae ae aF I = aF I +~x y(3)x y(2)x_f_
ay(I) 4 ay(l) 3 ay(3) ay(2) ay(l) ay(2) (B.38)

= - (t(1)-y(1))- W2(t(2)-y(2)) - (W2)2(t(3)-y(3))- (W2)3(t(4)-y(4))

We finally can apply Eq. (3.69) to obtain the gradient respect to W 1 :

126

4 e T 4 e T

aF = L [~] xb(t)+ L [~] xA(t)x aF I
aw 1 t= I aw 1 1 = I aw 1 ay(l) Q

= u(2)~+u(3)~+u(3'(t(l~+u(4)~
~~~~W2)3 

+ u(4)~+ u(4)~u(I)(t(I)-y(I))-u(I)W2(t(2)-y(2)) 
~~-

-u(I )(W2)2(t(3)-y(3 ))-u(l)(W2)3(t(4)-y(4))-~l~ 
wz 

- u(2)(t(2)-y(2))- u(2)W2(t(3 )-y(3 ))- u(2)(W2)2(t( 4)- y(4)) 

_ u(3 )(t( 1 l.afi1) u(3 )(t(l l?;l:'f21) _ u(3 )(t(3) - y(3 )) - u(3 )W2 (t( 4) - y( 4 )) 
=-----tw2) 2 :_::::.:::=-w 2 

u( 4 )(t(l) - _ u( 4 )(t(2 )2::fillI _ u( 4 )(t(3) ;:::.J431Y _ u( 4 )(t( 4) -y( 4 )) 
wz) 3 :_:::.::::zw2) 2 ::::::--:---W2 

= - u( I)(t( 1 )-y(l))- u( I )W2(t(2)-y(2))- u( l)(W2)2(t(3 )-y(3 )) 

- u( I )(W2)3(t( 4 )-y( 4 ))- u(2)(t(2) -y(2)) - u(2)W2(t(3) -y(3)} 

- u(2)(W2)2(t( 4 )-y(4 ))- u(3 )(t(3) -y(3 ))- u(3)W2(t(4)-y(4))- u( 4)(t( 4 )-y( 4)) 

This method implies 24 multiplications/divisions and 14 additions. 

(B.39) 

The Block Update method is intended to obtain the gradient in multiple stages. For the example 

presented here we will divide the sequence in two segments of two samples each. First we apply the regular 

BTT algorithm from t=J to t=2: 

aF _ ae F + 00 x aF _ (t(l) (l)) 
ay(2) - ay(2) ayc2) ay(3) - - -y 

(B.40) 

aF aeF aey(2) aF 2 
-- = --+--x-- = -(t(l)-y(l))-W (t(2)-y(2)) 
ay(I) ay(I) ay(l) ay(2) 

(B.41) 

By substitution in Eq. (3.52): 

2 e T 

aF I = "' [~] x .1!_ awr 2 1-:-1 aw 1 ay(t) (B.42) 

= - u(I )(t(I) -y( I))- u( l)W2(t(2)-y(2))- u(2)(t(2) -y(2)) 

We can now apply Eq. (3.83): 

4 e T 

G(4) = I.[aa;~)J xI'(t,4)+Q/2)xI'(3,4) 
t = 3 

(B.43) 

where: 

I'(4,4) =a!::)+~= -(t(4)---:YC4)) (B.44) 

127 



rc3,4) = aa•F +aa·rc4)xr(4,Q) = -(t(3)-y(3))-W2(t(3)-y(3)) 
y(3) y(3) 

Q-(2) = Q~N[a•y(t)]T x a•y(t + I) x a•y(t + 2) x ... x a•y(Q- N + 1) 
' £.. aw1 ay(t) ay(t+ 1) ay(Q-N) 

t= I 

= [002JT X a•y(2) X ~ + [a•y(2)]T X a•y(3) 
aw1 ay(l) ay(2) aw1 ay(2) 

= u(l)(W2) 2 +u(2)W2 

by substitution in Eq. (B.43): 

G( 4) = - u(4)(t(4)-y(4 )) - u(3 )(t(3 )-y(3))- u(3 )W2(t( 4) -y(4 )) 

- u(I )(W2)2(t(3) -y(3))- u( I )(W2)3{t( 4) -y( 4)) 

- u(2)W2(t(3) - y(3 )) - u(2)(W2)2(t( 4) -y( 4 )) 

(B.45) 

(B.46) 

(B.47) 

We can obtain the final gradient by using the results ofEq. (B.42) and Eq. (B.47) and solving Eq. 

(3.70) for G(4): 

aF I = aF I + G(4) 
aw 1 4 aw 1 2 

= - u(I )(t( 1)-y(I ))- u(I )W2(t(2)-y(2))- u(2)(t(2)-y(2)) 

- u(4 )(t( 4) -y(4))- u(3 )(t(3)-y(3)) - u(3 )W2(t( 4)-y( 4 )) 

- u( I )(W2)2(t(3) -y(3 )) - u(I )(W2)3{t( 4) - y( 4)) . 

- u(2)W2(t(3 )-y(3))-u(2)(W2)2(t(4) -y(4)) 

(B.48) 

To obtain the gradient of w 1 using the Block Update method we required 10 multiplications and 10 

additions. 

The required operations for each method are sumarized on Table 3.1 on page 28. 

128 



Appendix C 

EXTRA FILTER DESIGN APPLICATION 

Let us modify the dynamic neural network shown in section 7 .2. on page 7 8 and use the full cascaded 

recurrent neural network presented by Li and Haykin [Z?] as shown in Figure C.1. For this model the 

intermediate layers (2, 4 and 6) are connected to an additional layer that combines the effect of those layers. 

Also, the sixth 1\lyer is fed back to the first layer. 

The Backpropagation order is now 7-6-5-4-3-2-1, so we start in the last layer in the backpropagation 

order (Layer 7) to get the following equations: 

.7 7 
S7, 7(t) = F (n (t)); U' = {7} ; Es(7) = 7 

·6 6 
S7, 6(t) = S7, 7 (t)LW7, 6(0)F (n (t)) 

0 6 6 
S6,6(t) = F (n (t)); U' = {7,6}; Es(6) = 6 

.5 5 
S7,5(t) = S7,6(t)LW6,5(0)F (n (t)) 

.5 5 
S6,5(t)"" S6,6(t)LW6,5(0)F (n (t)) 

.4 4 
S7, 4(t) = S7, 7{t)LW 7, 4(0)F (n (t)) 

·4 4 
S4, 4 (t) = F (n (t)); U' = {7,6,4}; Es(4) = 4 

.3 3 
S 7,3{t) = S 7•4 (t)LW 4,3(0)F (n (t)) 

· 3 3 S4,3(t) = S4,4(t)LW4,3(o)F (n (t)) 

129 



LWl,6 

a2(t) 

F2 

p(t) 

LWl,2 

F4 

LW3,4 

LW5,4 

F6 

LW5,6 

F7 

e(t) 

Figure C.1: Full Cascaded Recurrent Neural Network 

130 



·2 2 S7,2(t) = S7,7(t)LW7,2(0)F (n (t)) 

·2 2 
S2, 2(t) = F (n (t)); U' = {7, 6, 4, 2} ; E8(2) = 2 

· I I S7, I (t) = S7, 2(t)LW 2, 1 (O)F (n (t)) 

.J I 
S2, I (t) = S2, 2(t)LW2, I (O)F (n (t)) 

To compute the dynamic derivatives of the performance function respect to the outputs of the 

system, we fount that the only explicit derivative is respect to the output 7 

c/F =-2(p(t)-a7(t)) 
aa 7 (t) 

so the dynamic equations are: 

~ = aeF + 
7 7 

aa (t) aa (t) 

aF 
6 

aa (t) dE DL,., 

+ 

dE DL,., 

dE DL,., 

LWs, \d{ S6, s (t + d{ aF 
aa\t+ d) 

LW1'\d{S2, 1(t+d{ aF 
aa\t+ d) dE DL,, 6 

L LW5'\d{S6,5(t+d{ /F 
aa (t+d) dE DL,., 

aF 

aa\t) 
L LW3'\d{s1·\r+d{ aF + L LW3'\d{s4,3(t+d{ aF 

aa\t+d) dE DL,. 4 aa\t+d) 

L, LW5'\d{S7'\t+d{ /F + L, LW5'\d{S6' 5(t+d{ /F 
aa (t+ d) dE DL,. 4 aa (t+d) d E Dl,.4 

+ 

dE DL,, 2 

LW 1'\d{s1·\t+d{ aF + I, Lw 1·\d{s2• 1(t+d{ aF 
aa\t+d) dE DL,., aa\t+d) 

aF 

I, LW3'\d{S7' 3(t+d{ aF + I, LW3'\d{s4·\t+d{ aF 
aa\t+ d) dE DL,., aa\t+d) 

+ 

For all layers we have 

d7(t) = [S7' \t){ x a; ; d\tJ = [S7' 6(tJ{ x a; + [s6• 6uJ{ x a{ 
aa (t) aa (t) aa (t) 

131 



The previous process is repeated for each sample time in the training set. 

Finally we can obtain the gradient for each weight and bias by 

ap Q . 7 aP Q 7 6 T aP Q 7 4 T 
- = I,d (t)" = I,d (t)x[a (t-d)] ; = I,d (t)x[a (t-d)] 
ab1 t=1 'aLW7'\d) t=1 aLW7' 4(d) 1=1 

aP 

QS Ir ap QS 4 T 
"'d (t) x [p (t-d)] ; = I, d (t) x [a (t-d)] 
t"':"1 aLW 5'\d) t= 1 · 

ap Qs 6 rap Q4 aP Q4 3 r I,d (t)x[a (t-d)]; - 4 = "'d (t); = I,d (t)x[a (t-d)] 
t= 1 ab t"':"1 aLW4' 3(d) t= 1 

Q 

"' d\t). aP 
t"':"1 ' a1wJ, 1(d) 

Q3 Ir ap Q3 2 r 
"'d (t) X [p (t-d)] ; = "' d (t) X [a (t-d)] 

1"':"1 aLW 3'\d) t"':"1 

ap Q rap Q2 aP Q2 Ir 
I,d3(t)x[a\t-d)]; - 2 = I,d (t); = I,d (t)x[a (t-d)] 
1=1 ab t=1 aLW2' 1(d) t=l 

QI Ir aP QI 2 r "'d (t)x[p (t-d)]; = I,d (t)x[a (t-d)] 
t"':"1 aLW 1' 2(d) t= 1 · 

132 



Again, after the network was trained, it was used to predict blood concentration. Figure C.2 is a plot 

of the errors between actual and predicted signals. Using the last network we were able to reduce the 

prediction error by half. 

X 10-J 4~--------------------~ 

C 

i 
c 1 
g 
8 
8 0 
iii 
0 
0 -1 

Ji 
C 
.Q 
U -2 
] 
a. 

-3 

-4 

I 
j 

-5'-----~-----'-----'---,L_-~-----'----_l_-__J 
0 50 100 150 200 

time(s) 
250 300 350 400 

Figure C.2: Errors for LDRN with Full Dynamic Training 

133 



Appendix D 

NEURAL NETWORK EXAMPLES 

This chapter contains the neural network examples used to test the dynamic training algorithms. 

Each circle represents a layer as described in section 2.3 on page 8 and section 2.4 on page 9. The tapped 

delay line (see Figure 2.4 on page 10) represents a default value that may change for different experiments. 

p(t) y(t) 

Figure D.1: Network 1: 2-layer LDDNwith [O l] delay between layers 1 and 2. 

p(t) y(t) 

Figure D.2: Network 2: 3-layer LDDN with [O l] delay between layers 1 and 2. 

p(t) y(t) 

Figure D.3: Network 3: 3-layer LDDN with [O l] TDLfrom layer 1 to 2 and [l 2 3] TDLfrom layer 3 to 2. 

134 



y(t) 

Figure D.4: Network 4: 3-layer LDDN example. 

y(t) 

Figure D.5: Network 5: 3-layer LDDN. 

y(t) 

Figure D.6: Network 6: 3-layer LDDN. 

135 



y(t) 

Figure D.7: Network 7: 3-layer LDDN 

p(t) y(t) 

Figure D.8: Network 8: 4-layer LDDN 

y(t) 

Figure D.9: Network 9: 4-layer LDDN This model resembles the Model Reference Controller. 

136 



y(t) 

Figure D.10: Network JO: 2-layer LDDN 

p(t) y(t) 

Figure D.11: Network 11: 3-layer LDDN with [I 2 3]feedbackfrom layer 3 to 2. 

y(t) 

Figure D.12: Network 12: 3-layer LDDN 

137 



y(t) 

Figure D.13: Network 13: 3-layer LDDN. 

Figure D.14: Network 14: 4-layer LDDN. 

Figure D.15: Network 15: 4-layer LDDN. 

138 



y(t) 

Figure D.16: Network 16: 2-layer LDDN 

y(t) 

Figure D.17: Network 17: 4-layer LDDN 

Figure D.18: Network 18: 5-layer LDDN. 

139 



p(t) y(t) ... 

Figure D.19: Network 19: 2-layer LDDN similar to Network 1 (FigureB.l) with layer numbers in reverse 
order. 

y(t) 

Figure D.20: Network 20: 5-layer LDDN. 

Figure D.21: Network 21: 8-layer LDDN with two outputs connected to layers 7 and 8. 

140 



Figure D.22: Network 22: 6-layer LDDN with unitary feedbackfrom layers 2 and 3 to layer 1. 

IA\ .... . :t) __ ____ ., ... ~ 
Figure D.23: Network 23: 4-layer LDDNwith unitary feedback from layer 2 to layer 1. 

y(t) __ .,~ 

PzU) 

Figure D.24: Network 24: 5-layer LDDN with two inputs connected to layers 1 and 5. 

141 



y(t) 

Figure D.25: Network 25: 9-layer LDDN with output connected to layer 6. 

y(t) 

Figure D.26: Network 26: ]-layer LDDN with unitary feedback to itself. 

y(t) 

Figure D.27: Network 2 7: 3-layer LDDN with unitary feedback from layer 2 to layer 1. 

Figure D.28: Network 28: 10-layer LDDN with multiple delays and feedback 

142 



y(t) 

· Figure D.29: Network 29: 6-layer LDDN with multiple TDLs and output connected to layer 4. 

y(t) 

Figure D.30: Network 30: 2-layer LDDNwith two inputs connected to both layers. 

y(t) 

Figure D.31: Network 31: 2-layer LDDNwith unitary feedback from layer 1 to itself 

143 



p(t) 

y(t) 

Figure D.32: Network 32: 6-layer LDDN in modified cascaded recurrent neural network configuration. 

144 



p(t) 

y(t) 

Figure D.33: Network 33: 7-layer LDDN infill! cascaded recurrent neural network configuration. 

145 



VITA 2-

·orlando De Jesus 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: TRAINING GENERAL DYNAMIC NEURAL NETWORKS 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Caracas, Venezuela, on October 3, 1963, the son of Manuel 
De Jesus and Lucia N. De Abreu. 

Education: Graduated from Creaci6n Guarenas High School, Guarenas, 
Edo. Miranda, Venezuela, in July 1980; received degrees of Engineer in 
Electronics (Cum Laude) and Project Management Specialist from 
Universidad Simon Bolivar, ~aracas, Venezuela, in July 1985 and July 
1992, respectively, and Master of Science in Electrical and Computer 
Engineering from Oklahoma State University in December 1998. 
Completed the requirements for the Doctor of Philosophy degree in 
Electrical and Computer Engineering at Oklahoma State University in 
August 2002. 

Experience: Employed by AETI C.A., Caracas, Venezuela, as a Research 
Engineer, R&D Manager and Operations Manager from 1985 to 1996; 
employed by Oklahoma State University as a Research Assistant from 1997 
to present. 

Professional Memberships: Institute ofElectrical and Electronic Engineers (IEEE), 
The Instrumentation, Systems and Automation Society (ISA). 


