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CHAPTER I 

INTRODUCTION 

Reproductive potential of beef cows is strongly 

dependent on nutrient availability. Since cow-calf 

production systems use natural forage as the main source of 

feed, grazing cows often have quantitative or qualitative 

deficiencies of nutrient supply, which can compromise 

reproduction. Because length of gestation limits cows to 

one calf per year, the potential number of calves per year 

is not achieved due to prolonged anovulation and delayed 

establishment of pregnancy. 

The mechanisms associated with the onset of first 

postpartum estrus and ovulation are not completely 

understood. Nutritional management can be a practical 

option to initiate the resumption of ovarian function 

before the onset of breeding. However, the sequence of 

events and metabolic signals responsible for induction of 

first ovulation must be elucidated so optimal feeding 

strategies can be developed. 

1 



Postpartum anestrus is a transition period when the 

hypothalamic-pituitary-ovarian axis recovers the cyclic 

activity that was disrupted during pregnancy. Several 

metabolic signals that can potentially affect the 

reproductive axis and resumption of ovulation have been 

studied (Bossis et al., 1999, 2000) using nutritionally 

induced anestrous heifers as a model. This approach allows 

endocrine and reproductive function of well-fed and 

underfed animals to be evaluated, but it does not consider 

the suckling-induced delay in resumption of pulsatile LH 

secretion. Therefore, metabolic signals that mediate 

nutritional modulation of reproductive function should be 

studied in suckled beef cows to determine endocrine and 

reproductive regulation in a production situation. 

2 

Under this scenario, two experiments were conducted to 

study the influence of nutrient intake on endocrine and 

reproductive function at the first postpartum estrus in 

suckled beef cows. The specific objectives were: 1) to 

determine the effects of BCS at calving and postpartum 

nutrient intake on estrous behavior, ovarian function, 

pregnancy rate at first estrus, and plasma concentrations 

of IGF~r, leptin, NEFA, glucose, insulin, and thyroxine in 

primiparous beef cows; 2) to explore potential 

relationships between postpartum endocrine and reproductive 



functions, and 3) to determine the effect of nutrition on 

concentrations of steroids in follicular fluid aspirated at 

the first estrus and on luteal function during the 

subsequent estrous cycle. 

3 



CHAPTER II 

REVIEW OF LITERATURE 

Postpartum Reproduction in Cows 

Characteristics of the postpartum anestrous period 

Introduction. Mechanisms controlling postpartum 

anestrus and resumption of estrous cycles after parturition 

in beef cows have not been elucidated. Suckling, nutrition 

and the interaction are major factors controlling the 

length of the postpartum interval. Calving season, age at 

parturition, breed, presence of a bull, and ocurrence of 

dystocia are minor factors that can also influence the 

length of the postpartum anestrous period (Short et al., 

1990; Yavas and Walton, 2000). These minor factors are 

beyond the scope of this study, and will not by included in 

this review. 

Secretion of gonadotropin and steroid hormones from 

parturition to first postpartum estrus resemble those 

4 



ocurring during the transition from the prepubertal period 

to normal estrous cycles. Different anestrous conditions 

may share similar mechanisms to suppress ovarian function. 

A sequence of events occur during the transition from 

parturition to resumption of estrous cycles, including: 1) 

involution of the uterine tract after parturition, 2) 

reinitiation of follicular development and maturation, 3) 

increased secretion of GnRH, LH, and estradiol, 4) 

ovulation followed by a transient increase in progesterone 

secretion, and 5) estrous behavior followed by ovulation 

and normal luteal function. Uterine involution does not 

influence the length of the postpartum anestrous period 

(Kiracofe, 1980), so it will not be discussed in this 

review. 

5 

Gonadotropins. Mechanisms controlling LH secretion may 

be responsible for the initiation of ovarian function after 

parturition in cattle (Wettemann, 1980; Butler and Smith, 

1989; Short et al., 1990). Pulsatile LH secretion is 

controlled by the hypothalamic GnRH pulse generator in ewes 

(Clarke and Cummins, 1982). Secretion of LH is temporally 

associated with GnRH release into the third-ventricle 

cerebrospinal fluid of cyclic (Yoshioka et al., 2001) and 
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anestrous (Gazal et al., 1998) cows. Increased frequency of 

exogenous GnRH pulses reduces LH pituitary concentrations, 

increases LH pulse frequency and serum concentration, as 

well as stimulates ovarian function of anovulatory beef 

cows (Bishop and Wettemann, 1993; Vizcarra et al., 1997, 

1999; Hamilton et al., 1999). Hence, infrequent episodic 

release of GnRH may be linked to the anestrous condition of 

beef cows (Walters et al., 1982c; Moss et al., 1985; Short 

et al., 1990; Rasby et al., 1992). 

Pituitary content of LH in cattle is reduced during 

late gestation, probably by high circulating concentrations 

of steroids (Nett, 1987) produced by the ovaries and/or the 

placenta. Concentrations of progesterone and estradiol 

decrease at parturition, thus, the hypothalamus-pituitary 

axis may recover from the negative feedback caused by these 

steroids, allowing secretion of LH to increase with time 

after parturition (Rawlings et al., 1980; Walters et al., 

1982a). 

Mean concentrations of LH in serum began to increase 

as early as 5 to 8 dafter parturition (Erb et al., 1971; 

Ingalls et al., 1973) and continued to increase to reach 

maximal levels after 20 to 30 d postpartum (Peters et al., 

1981; Riley et al., 1981; Humphrey et al., 1983). These 



increases are coincident with increases in LH pulsatility 

and follicular development (Savio et al., 1990a). 

7 

Pulsatility of LH secretion during the postpartum 

anestrous period ranged from 1 to 2 pulses per 6 h (Walters 

et al., 1982c; Humphrey et al., 1983; Schallenberger, 1985; 

Nett et al., 1988). The frequency of LH pulses increased to 

approximately 1 to 2 pulses per h before the first 

postpartum ovulation (Peters et al., 1981; Terqui et al., 

1982; Schallenberger, 1985; Savio et al., 1990a). Amplitude 

of LH pulses may also contribute to increased systemic 

concentrations of LH because LH pulse amplitude increased 

with time after parturition (Leung et al., 1986). Since the 

number and the affinity constant of GnRH binding sites did 

not change during the postpartum period (Moss et al., 1985; 

Leung et al., 1986), the reduced frequency of LH pulses is 

possibly due to limited secretion of GnRH £rom the 

hypothalamus. Frequency of LH pulses increases before the 

onset of puberty, at times when ovarian activity is 

reestablished after seasonal or lactational anestrous 

(Haresign et al., 1983), and during the follicular phase of 

the bovine estrous cycle that precedes the LH surge and 

ovulation (Rahe et al., 1980; Walters and Schallenberger, 

1984; Yoshioka et al., 2001). A decrease in progesterone 
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and an increase in estradiol concentrations are required to 

elicit the preovulatory surge of gonadotropins (Kesner et 

al., 1982; Hansel and Convey, 1983). Cows with increased LH 

pulsatility had estrogen-active large follicles (Spicer et 

al., 1986b) and a 10- to 14- fold increase in serum 

estradiol compared with cows with minimal LH pulsatility 

(Crowe et al., 2001). 

Concentrations of FSH in serum of cows increased more 

rapidly than concentrations of LH after parturition 

(Schallenberger et al., 1982; Peters and Lamming, 1984). 

Secretion of FSH occurs within 5 dafter parturition 

(Schallenberger et al., 1982; Schallenberger, 1985; Crowe 

et al., 1998) and is constant from 14 to 45 d postpartum 

(Convey et al., 1983; Leung et al., 1986; Nett et al., 

1988). Pituitary content of FSH (Moss et al., 1985; Nett et 

al., 1988) and GnRH-induced release of FSH from the 

pituitary gland (Leung et al., 1986) did not change during 

the first 60 dafter parturition. Regulation of FSH 

secretion may require a minimal input of GnRH and is mainly 

regulated at the pituitary by ovarian estradiol and inhibin 

(Clarke, 1989; McNeilly, 1997). Concentrations of FSH, 

unlike those of LH, do not appear to limit the initiation 



of ovarian function during the postpartum period (Walters 

et al., 1982a; Roche et al., 1992; McNeilly, 1997). 

9 

Steroids. Concentrations of progesterone are minimal 

at parturition in beef and dairy cows (Henricks et al., 

1972; Arije et al. 1974; Humphrey et al., 1983) and are< 1 

ng/mL during postpartum anovulation, indicating the absence 

of a functional corpus luteum (Schams et al., 1978; Savio 

et al., 1990a; Perry et al., 1991b). Transient increases in 

concentrations of progesterone in serum usually occurred 

during a 3- to 9-d period before the first postpartum 

estrus of lactating beef cows (Donaldson et al., 1970; 

Perry et al., 1991b; Werth et al., 1996). These initial 

increases in serum progesterone were attributed to the 

corpus luteum formed after the first ovulation (Lauderdale, 

1986; Perry et al., 1991b) or to luteinized ovarian 

follicles, which may also produce progesterone (Dona~dson 

et al., 1970; Corah et al., 1974). The physiological 

significance of initial increases in progesterone prior to 

the first postpartum estrus remains unknown. Progesterone 

secreted after ovulation without estrus may remove the 

hypothalamic refractoriness to estradiol that triggers 

estrous behavior (Allrich, 1994), may enhance GnRH 
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secretion and pituitary sensitivity to estradiol 

(Schallenberger, 1985), and/or increase synthesis of LH~ in 

gonadotropes (Looper, 1999). 

Concentrations of estradiol in serum decrease abruptly 

within 1 to 6 dafter parturition and are minimal during 

the early postpartum period (Henricks et al., 1972; 

Echternkamp and Hansel, 1973; Humphrey et al., 1983). 

During postpartum anovulation, concentrations of estradiol 

in serum may increase occasionally due to growth of 

dominant follicles .(Yavas and Walton, 2000), although, 

concentrations of estradiol in serum and follicular growth 

may not be associated during nonovulatory follicular waves 

(Murphy et al., 1990, Stagg et al., 1995). Concentrations 

of estradiol in serum increased just before the first 

postpartum estrus (Henricks et al., 1972; Echternkamp and 

Hansel, 1973; Arije et al., 1974) and are associated with 

growth of the ovulatory follicle (Murphy et al., 1990; 

Perry et al., 1991b; Stagg et al., 1995). Secretion of 

estradiol was greater in cows treated with int~rmittent 

doses of GnRH (Walters et al., 1982a) or LH (Duffy et al., 

2000) during the early postpartum period than in control 

cows. Whether the first postpartum ovulation (usually 

followed by a short luteal phase) is preceded by normal 



increases in estradiol in serum is still unknown, but the 

preovulatory increases in estradiol in serum before the 

first postpartum estrus are similar in magnitude and 

duration to those during the estrous cycle (Spicer and 

Echternkamp, 1986). 

11 

Follicular development after parturition. Stevenson 

and Britt (1980) proposed the following endocrine events to 

explain the resumption of follicular growth after 

parturition: 1) follicles start growing after parturition 

in response to surges in FSH secretion in the presence of 

low LH concentrations, 2) growing follicles increase 

estrogen secretion, which induces a positive feedback on 

episodic LH secretion, 3) increased LH secretion and 

sustained FSH secretion stimulate further follicular growth 

and differentiation prior to first ovulation, and 4) 

greater secretion of estrogen induces a surge of LH and FSH 

which lead to ovulation. 

Follicular waves occur recurrently during early 

pregnancy (Ginther et al., 1989), however, follicular 

growth decreases gradually between 7 to 9 mo of pregnancy 

until follicles~ 6 mm are undetectable during 21 d before 

parturition (Ginther et al., 1996). Maximal concentrations 
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of progesterone and estradiol in plasma during the last 

third of pregnancy may suppress gonadotropin secretion and 

arrest follicular growth (Nett, 1987). Follicular 

development and establishment of the first dominant 

follicle occurs within 10 to 20 dafter parturition in beef 

and dairy cows (Murphy et al., 1990; Savio et al., 1990a; 

Stagg et al., 1995). A transient increase in FSH 

concentrations after parturition (Beam and Butler, 1997; 

Crowe et al., 1998) precedes the emergence of each 

follicular wave (Adams et al., 1992; Stagg et al., 1998). 

Periods of growth and regression of medium size follicles 

(5 to 9 mm) were detected before any follicles became 

dominant (~ 10 mm; Murphy et al., 1990; Savio et al., 

1990a). Number of small (1 to 3.9 mm) and large (~ 8 mm) 

follicles did not change whereas number of medium (4 to 7.9 

mm) size follicles increased during days 7 to 42 after 

parturition in anovulatory suckled cows (Spicer et al., 

1986c). Thus, the growth and regression of dominant 

follicles in the early postpartum period (i.e. < 42 d) is 

likely not a limiting step to resumption of ovarian 

function in beef and dairy cows. 

The majority (73 %) of dairy cows ovulated the first 

postpartum dominant follicle (DF; Savio et al., 1990a) in 
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contrast to a small percentage (11 %) of beef cows, which 

on the average turned over three (range 2 to 6) DF before 

the first ovulation (Murphy et al., 1990). Ovulation in 

beef cows may be delayed by suckling (Nett, 1987; Williams, 

1990; McNeilly, 1997) and/or inadequate energy intake 

during the early postpartum period (Dunn and Kaltenbach, 

1980; Eadson et al., 1985; Randel, 1990). Cows with suckled 

calves (Henao et al., 2000) or receiving a low postpartum 

energy intake (Stagg et al., 1995) had 3 or more follicular 

waves before the first estrus than nonsuckled or well-fed 

cows, respectively. Primiparous cows ovulated 30 d later 

than mature cows after the appearance of the first 

postpartum DF (Dimmick et al., 1991). Suckling (Short et 

al., 1990; Williams, 1990) and restricted nutrient intake 

(Day et al., 1986; Richards et al., 1989a; Kurz et al., 

1990) reduce the pulsatile secretion of LH. The absence of 

sufficient LH pulses is associated with atresia rather than 

ovulation of DF (Sirois and Fortune, 1990; Savio et al., 

1993; Stock and Fortune, 1993). Conversely, calf removal 

(Walters et al., 1982a; Edwards, 1985; Williams et al., 

1993) or increased nutrient intake (Kurz et al., 1990; 

Perry et al., 1991a; Wright et al., 1992) increases LH 

pulse frequency and hastens the initiation of luteal 



activity. Administration of hourly LH pulses either 

prolonged the dominance phase or caused the ovulation of 

the first DF after calving (Duffy et al., 2000). In 

addition, LH pulse frequency was doubled within 5 dafter 

restricted suckling, leading to a rapid resumption of 

ovulation in 50 % of cows during the early postpartum 

period (Stagg et al., 1998). Collectively, these 

observations indicate that the pulsatile secretion of LH 

regulates final growth and fate of DF during the early 

postpartum period. 

14 

Spicer and Echternkamp (1986) suggested that the 

steroidogenic capacity of large follicles changes during 

the postpartum period. Since large follicles are present on 

the ovarian surface for considerable lengths of time prior 

the first ovulation, and because exogenous GnRH (Kesler et 

al., 1977, 1980; Wettemann et al., 1982) or estradiol 

(Short et al., 1979) can elicit normal LH surges during the 

early postpartum period, it is possible that the 

concentrations of estradiol produced by large follicles may 

be unable to stimulate preovulatory LH surges during the 

postpartum period, or, large follicles may be incapable of 

producing sufficient estradiol for appearance of the normal 

proestrual increase in estradiol (Spicer and Echternkamp, 
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1986). Size of the largest follicle was correlated (r=0.53) 

with concentrations of estradiol in plasma at 48 d 

postpartum and cows with follicles~ 10 mm released 

considerably more LH in response to a GnRH challenge than 

those with follicles~ 10 mm in diameter (Lishman et al., 

1979) . 

Steroids in follicular fluid. Steroidogenic 

capabilities of small and medium follicles did not change 

during 56 dafter parturition, and both sizes of follicles 

produced mainly progesterone (Spicer et al., 1986a). 

However, large follicles shifted from progesterone to 

estradiol production as time postpartum increased, which 

suggests that an increase in concentrations of estradiol of 

large follicles may be an essential step to restore the 

ovarian activity after parturition (Spicer et al., 1986). 

Large follicles collected at 15, 30 or 45 d postpartum 

contain approximately 20 % of the estradiol, testosterone 

and androstenedione found in preovulatory follicles 

collected during the estrous cycle (Braden et al., 1986). 

Intrafollicular concentrations of total IGF-I did not 

change with time postpartum (Rutter and Manns, 1991) and 

were similar between estrogen-inactive and estrogen-active 
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follicles (Spicer et al., 1988). However, a possible role 

of IGF-I in modulating follicular steroidogenesis in 

postpartum cows cannot be ruled out until concentrations of 

IGF-I binding protein activity in follicular fluid are 

characterized. 

Steroidogenic capabilities of postpartum follicles may 

be depressed by suckling (Bellin et al., 1984), low body 

condition at calving (Prado et al., 1990) and/or· inadequate 

energy intake (Kendrick et al., 1999). How these factors 

suppress ovarian function is unknown, but decreased LH 

pulse frequency (Prado et al., 1990), minimal 

concentrations of IGF-I in follicular fluid (Ryan et al., 

1994; Kendrick et al., 1999) and/or reduced aromatase 

activity (Prado et al., 1990) could be involved. 

Concentrations of steroids in follicular fluid of large 

follicles during postpartum anovulation were similar to 

those of luteal phase follicles (Braden et al., 1986). 

Pulsatile treatment with LH during the midluteal phase of 

the estrous cycle increased follicular fluid concentrations 

of estradiol and androstenedione, and increased the 

expression of mRNAs for cytochrome P450 17a-hydroxylase 

(P450c17) and 3p-hydroxysteroid dehydrogenase (3P-HSD) but 

not for cytochrome P450 aromatase (P450arom) (Manikkam et 



al., 2001). There may be a threshold level of 

estrogenicity, below which the physiological changes to 

trigger ovulation cannot be initiated (Pinto Andrade et 

al., 1995). 

17 

Luteal function. Luteal function after the first 

postpartum ovulation is generally abnormal. The first 

corpus luteum formed in postpartum cows has a life span 

that is shorter than normal. Short luteal phases are common 

after spontaneous ovulation (Perry et al., 1991b; Werth et 

.al., 1996; Looper, 1999) or after ovulation induced by 

weaning (Odde et al., 1980; Copelin et al., 1987; Breuel et. 

al., 1993), GnRH (Kesler et al., 1980; Wettemann et al., 

1982), PMSG (Wettemann et al., 1982) or hCG injections 

(Pratt et al., 1982; Sheffel et al., 1982). Because 

maternal recognition of pregnancy in the cow occurs between 

15 to 17 dafter estrus (Northey and French, 1980), a 

corpus luteum cannot support pregnancy if it regresses 

before 15 dafter estrus. 

The first ovulation that occurs after parturition 

usually is not preceded by estrous behavior and is followed 

by a short ovarian cycle. Estrous behavior was not detected 

in 86% of cows (range: 70-100%) prior the first postpartum 
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ovulation (Graves et al., 1968; Murphy et al., 1990; Savio 

et al., 1990a; Perry et al., 1991b), which was followed by 

a short luteal phase in 83% of cows (range: 70-100%) before 

the first estrus (Corah et al., 1974; Rawlings et al., 

1980; Humphrey et al., 1983; Murphy et al., 1990, Perry et 

al., 1991b; Stagg et al., 1995; Werth et al., 1996; Looper, 

1999; Mackey et al., 2000). Length of the estrous cycle, 

after the first postpartum estrus, often is normal (80% of 

the time, range: 72-94 %; Corah et al., 1974; Odde et al., 

1980; Looper, 1999). During a short luteal phase, all cows 

ovulated the first dominant follicle of a wave (Murphy et 

al., 1990; Savio et al., 1990b; Stagg et al., 1995). The 

incidence of short luteal phases decreased after 

consecutive postpartum ovulations (Eger et al., 1988). 

Short luteal phases and/or interovulatory intervals 

averaged 7 to 10 din length between the first and second 

postpartum ovulation (Murphy et al., 1990; Perry et al., 

1991b; Werth et al., 1996). Similarly, interestrus 

intervals were commonly 7 to 10 din length after weaning

induced ovulations (Odde et al., 1980; Ramirez-Godinez et 

al., 1982). A transient pre-estrus increase in progesterone 

enhanced pregnancy rate at the first postpartum estrus in 

primiparous beef cows (Werth et al., 1996). 
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Concentrations of progesterone in plasma were similar 

during the first 5 dafter estrus for cows with short or 

normal life span corpora lutea (CL), but progesterone 

secretion from short-live CL declined abruptly on d 5 to 7 

after estrus (Ramirez-Godinez et al., 1981, 1982; Copelin 

et al., 1987, 1989a). Size of preovulatory follicles was 

similar for those expected to develop CL with short or 

normal life span (Braden et al., 1989; Perry et al., 

1991b), indicating that preovulatory size is not associated 

with abnormal CL development. Although concentrations of 

luteal progesterone and LH receptors, ratio of large/small 

luteal cells, sensitivity to the luteolytic signal, pre

and postovulatory gonadotropin support, and concentrations 

of LH receptors in follicular cells may be related to less 

than normal progesterone secretion by CL with a short life, 

a premature luteolytic signal seems to be responsible for 

short luteal phases (for review see: Hunter, 1991; 

Garverick et al., 1992). 

The uterine luteolysin, PGF2a, is associated with short 

luteal phases in postpartum cows and ewes. Inhibition of 

PGF2a synthesis with indomethacin after GnRH-induced 

ovulation, decreased concentrations of 13,14-dihydro-15-

keto PGF2a (PGFM), normalized progesterone secretion, and 
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prolonged luteal function of suckled beef cows (Troxel and 

Kesler, 1984). Immunization against a PGF2a-ovalbumin 

conjugate maintained the life span and progesterone 

secretion from the corpora lutea induced by calf weaning at 

30-35 d postpartum (Copelin et al., 1989b). Hysterectomy 

prevented the early regression of CL that were expected to 

develop a short luteal phase in postpartum cows (Copelin et 

al., 1987) and anestrous ewes (Southee et al., 1988; 

Lassoued et al., 1997). Basal and oxytocin-stimulated 

secretion of PGF2a from bovine endometrium explants were 

greater on day 5 of a short compared to a normal luteal 

phase (Zollers et al., 1991). Suppression of PGF2a release 

and hysterectomy extend the life span of short-lived 

corpora lutea, indicating that a premature release of 

uterine PGF2a may be the cause of early luteal regression. 

Regression of CL in ruminants involves complex 

interactions between pulses of neurohypophyseal/luteal 

oxytocin and episodic secretion of uterine PGF2a (Silvia et 

al., 1991; McCracken et al., 1999). Concentrations of 

oxytocin and PGFM increased simultaneously during 

luteolysis in cows with short or normal estrous cycles 

(Peter et al., 1989). An increase in concentrations of PGF2a 

occurred on days 4 to 9 after a hCG injection in cows that 
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had a short luteal phase but not in cows with normal length 

cycles (Cooper et al., 1991_). An oxytocin injection induced 

a greater PGFM release on day 5 in cows with a short 

compared with a normal luteal phase (Zollers et al., 1989). 

Cows treated with progesterone, prior to weaning or GnRH

induced ovulation, formed corpora lutea with normal life 

spans (Ramirez-Godinez et al., 1981; Sheffel et al., 1982), 

indicating that progesterone priming of the uterus may 

delay the premature release of PGF2a. 

Greater development of oxytocin binding sites in the 

uterus may determine the life span of CL during the early 

luteal phase. Concentrations of endometrial oxytocin 

receptors were similar at d 1 after GnRH-induced ovulation 

in anestrous ewes treated with progesterone or controls, 

but the presence of oxytocin receptors was greater at d 5 

in the control group (Hunter, 1991). On d 5 after the first 

postpartum induced-ovulation, concentrations of 

progesterone in plasma were less and concentrations of 

oxytocin endometrial receptors were greater in cows 

expected to have short compared with those having a normal 

estrous cycles (Zollers et al., 1993). Presence of oxytocin 

receptors in endometrial explants collected from· 

ovariectomized cows is inhibited by progesterone in a dose-
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dependant manner (Mann, 2001). Progesterone directly 

inhibited oxytocin binding to their receptors in the rat 

uterus (Grazzini et al., 1998). Oxytocin-induced PGF2a 

release was less in cows (Zellers et al., 1989) and ewes 

(Vallet et al., 1990) pretreated with progesterone compared 

with control ewes. Thus, the uterus that is not exposed to 

progesterone may be more responsive to oxytocin during the 

early luteal phase, setting up the conditions for 

development of a PGF2a-oxytocin positive feedback loop that 

may initiate luteal regression. 

Dietary lipids may alter luteal function in beef cows. 

Luteal synthesis and secretion of progesterone is regulated 

by multiple factors, including steroidogenic enzymes and 

availability of its main precursor, cholesterol (Niswender 

et al., 2000). Feeding diets with greater amounts of lipids 

after parturition increased concentrations of cholesterol 

in plasma (Williams, 1989; Hightshoe et al., 1991) and 

follicular fluid (Wehrman et al., 1991), and increased life 

span of CL and progesterone secretion (Williams, 1989, 

Hightshoe et al., 1991). High-lipid diets enhanced, by 2-3 

fold, the ability of preovulatory granulosa cells to 

secrete pregnenolone and progesterone in vitro (Wehrman et 

al., 1991). Dietary-induced increases in serum lipids were 
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directly associated with total steroidogenic area in luteal 

tissue occupied by lipids and concentrations of 

progesterone in plasma, and inversely related with rate of 

progesterone clearance (Hawkins et al., 1995). In theory, 

dietary lipids may enhance luteal function of postpartum 

beef cows, possibly by increased luteal tissue 

steroidogenic capacity and/or reduced progesterone 

clearance. 

Estrous behavior. Expression of estrous behavior is 

essentially controlled by relative concentrations of 

ovarian steroids, estradiol and progesterone. Injections of 

estradiol benzoate can induce normal estrous behavior in 

ovariectomized cows (Carrick and Shelton, 1969; Katz et 

al., 1980; Vailes et al., 1992) and the percentage of cows 

exhibiting estrus (Cook et al., 1986) and duration and 

intensity of estrous behavior may be dose dependant (Nessan 

and King, 1981; Lyimo et al., 2000). However, no 

relationship was detected between concentrations of 

estradiol in plasma and duration or intensity of estrous 

behavior at natural (Glencross et al., 1981; Coe and 

Allrich, 1989) or induced estrus (Cook et al., 1986). 

Estrous behavior did not occur in beef heifers immunized 
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against estradiol benzoate, even when they were exposed to 

concentration of estradiol adequate to induce estrus in 

normal heifers (Martin et al., 1978). These results 

indicate that estradiol concentrations in plasma must 

increase, until a threshold is reached, to induce estrous 

behavior. However, the relationship between concentrations 

of estradiol in plasma and duration and/or intensity of 

estrus is still unclear. 

Progesterone has inhibitory effects on expression of 

estrous behavior in cyclic cows. Simultaneous 

administration of progesterone blocked the ability of 

estradiol benzoate to induce estrous behavior in 

ovariectomized heifers (Rajamahendran et al., 1979) and 

cows (Vailes et al., 1992). Concentrations of progesterone 

in plasma equivalents to those that can be detected during 

the early or middle-late luteal phases, or 

supraphysiological doses, lineraly decreased the expression 

of estrous behavior traits and delayed the onset of 

standing behavior (Davidge et al., 1987). Standing behavior 

was suppressed to a greater extent than mounting activity 

when high concentrations of progesterone and estradiol 

ocurred at the same time (Davidge et al., 1987; Vailes et 

al., 1992). Pretreatment with progesterone did not 



facilitate the estrus-inducing actions of estradiol in 

ovariectomized cows (Allrich et al., 1989). After a 

threshold concentrations of progesterone was reached, 

estrous behavior was inhibited even in the presence of 

estrus-inducing concentrations of estradiol (Allrich, 

1994). 

Several other factors can interact to alter the 

expression of estrous behavior. These include: age of the 

cow (Nebel et al., 1996; Mathew et al., 1999), number of 

cows in estrus (Hurnik et al., 1975; Helmer and Britt, 
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1985; Floyd, 2001), environmental temperature (Gangwar et 

al., 1965; Abilay et al., 1975; White, 2000), and days 

postpartum (King et al., 1976; Britt et al., 1986; 

Pennington et al., 1986). Suckling decreased the intensity 

(LaVoie et al., 1981) and the percentage of cows exhibiting 

estrous behavior (Wiltbank and Cook, 1958; Graves et al., 

1968) at the first detected ovulation. Similarly, negative 

energy balance decreased the percentage of cows exhibiting 

estrous behavior at the first detected ovulation (Spicer et 

al., 1990). Duration of estrus is highly variable (3 to 28 

h; Allrich, 1994; White et al., 2002) between cows, 

prossibly because hypothalamic sensitivity to threshold 



concentrations of estradiol may be different among cows 

(Darwash et al., 2001). 
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Progesterone may stimulate, rather than inhibit, 

estrous behavior in postpartum cows as they become 

reproductively active. The first postpartum ovulation is 

frequently not preceded by estrous behavior (Wettemann, 

1980; Short et al., 1990). Estrus is usually expressed 

prior to the second ovulation in the majority of cows (King 

et al., 1976; Perry et al., 1991b). A transitory increase 

in concentrations of progesterone commonly preceded the 

first pubertal (Rutter and Randel, 1986) and postpartum 

estrus in beef cattle (Perry et al., 1991b; Werth et al., 

1996; Looper, 1999). An injection of estradiol benzoate 

after short-term progesterone treatment increases the 

estrous response of anestrous cows (McDougall et al., 1992; 

Fike et al., 1997). It is likely that short-term transient 

luteal activity must precede the first postpartum estrus. 

Progesterone acting on neural centers may enhance the 

effect of estradiol on estrous behavior. High levels of 

estradiol produced during late pregnancy may induce a 

refractory state to estradiol in the brain, which is 

reversed by progesterone exposure (Carrick and Shelton, 

1969). Alternatively, progesterone may act at the ovarian 
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level to stimulate estrus and ovulation by altering LH 

secretion. Treatment of anestrous cows with progesterone, 

increased synthesis of LHB mRNA in the pituitary (Looper, 

1999), LH secretion (Anderson et al., 1996), and number of 

LH receptors and concentrations of estradiol within the 

largest follicle (Inskeep et al., 1988), a sequence of 

events that can cause estrus and ovulation. 

Nutrition, BCS, suckling, and postpartum reproduction 

Introduction. Nutrition is important in postpartum 

cows because several biological events are overlapping and 

competing for a limited amount of nutrients: uterine 

involution, maximal lactation, return to cyclic ovarian 

function, pregnancy and early embryo development (Smidt and 

Farries, 1982). Even though suckling is a major factor 

affecting the duration of the postpartum anestrous period 

(Stagg et al., 1998), the onset of luteal activity in 

response to early weaning depends on body energy reserves 

of cows at weaning (Bishop et al., 1994). This indicates 

that nutritional status can modulate the length of the 

postpartum anestrous interval when suckling influences 

become less restrictive. Nutrition may influence 
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reproductive endocrine function at the hypothalamus 

(Imakawa et al., 1987; Rasby et al., 1992; Vizcarra et al., 

1997), pituitary (Beal et al., 1978; Sen et al., 1979), 

and/or ovaries (Harrison and Randel, 1986; Rhind et al., 

1989; Quesnel et al., 2000). 

Prepartum nutrition. The relationship between 

nutritional status and reproductive performance has been 

extensively studied in beef cows and the conclusion is that 

cows on a high level of nutrition before parturition resume 

postpartum ovarian activity earlier than cows on a low 

level of nutrition. Restricted nutrient intake prepartum 

results in thin cows at parturition, a prolonged postpartum 

anestrous period, and less cows in estrus during the 

breeding season (Wiltbank et al., 1962; Bellows and Short, 

1978; Dunn and Kaltenbach, 1980; Wright et al., 1987). 

Nutrient intake before calving also influences the 

subsequent interval from parturition to pregnancy (Dunn et 

al., 1969) and pregnancy rate (Dunn et al., 1969; Selk et 

al., 1988). However, variations in nutrient intake during 

the last third of gestation did not affect reproductive 

performance in postpartum mature or first-calf cows (Selk 

et al., 1988; Whittier et al., 1988; DeRouen et al., 1994), 
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suggesting that postpartum reproduction may be independent 

of prepartum nutrient intake if cows calve with adequate 

body energy reserves. Cows with large changes in body 

condition during the last 90 d of gestation, but with 

similar body energy reserves (BCS 5) at calving, had 

similar reproductive performance (Morrison et al., 1999). 

Greater levels of energy prior to parturition may increase 

pregnancy rates without alteration of cow body condition or 

weight (Marston et al., 1995). 

The adverse effects of restricted energy intake 

prepartum on subsequent reproductive performance may be 

partially overcome by increasing energy intake after 

parturition (Wiltbank et al., 1962; Dunn et al., 1969; 

Houghton et al., 1990a). However, the response of cows to 

greater energy intake postpartum is influenced by the 

severity of prepartum energy restriction, which is 

reflected in body condition at calving. Thin primiparous or 

mature cows (BCS ~ 4) had improved reproductive performance 

in response to high energy intake postpartum compared with 

cows in moderate to good condition (BCS ~ 5) (Richards et 

al., 1986; Wright et al., 1987, 1992; Spitzer et al., 

1995). Increased energy intake postpartum enhanced 

follicular development and the incidence of ovulation in 
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cows (Perry et al., 1991a) and shortened the postpartum 

anovulatory interval by 20 din primiparous cows with a BCS 

of 4 at calving (Lalman et al., 1997). Even when postpartum 

nutrient intake improved reproductive performance of thin 

cows it did not reverse completely the undesirable effects 

of inadequate prepartum nutrition, and this effect is more 

evident in first-calf than in mature cows. Wiltbank and 

coworkers (1962) suggested that prepartum energy intake 

affects the interval from calving to first estrus whereas 

postpartum energy intake influences conception rates. 

Body condition. Amount of subcutaneous fat is closely 

related to reproductive performance of postpartum cows. In 

beef cows, subcutaneous fat reserves are subjectively 

quantified by visual appraisal or palpation of specific 

animal fat depots at vertebral processes, over the ribs, 

pins and hooks, and around the tail insertion. According to 

the amount of fat present in the animal, a body condition 

scores on a nine-point scale is assigned, with 1 

representing a severely emaciated and 9 a very obese cow 

(BCS; Wagner et al., 1988). The amount of carcass 

lipids/fats and the total energy content of carcass were 

highly correlated with BCS (Wright and Russel, 1984; Wagner 



et al., 1988; Houghton et al., 1990b; Yelich et al., 1995) 

Thus, BCS can be used to assess the amount of body energy 

reserves in cows under field and research situations. 
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Decreased energy intake causes loss in live weight and 

BCS (Wiltbank et al., 1962; Corah et al., 1975; Richards et 

al., 1989a; Bossis et al., 1999). However, live weight at 

calving did not affect subsequent reproductive performance 

(Osoro and Wright, 1992), which is more strongly related to 

body condition at calving than to prepartum change in BCS 

or live weight (Dunn and Kaltenbach, 1980; Selk et al., 

1988; DeRouen et al., 1994). Selk et al. (1988) concluded 

that body condition at calving and at the start of breeding 

are dominant factors determining the occurrence of 

pregnancy in range cows, with changes in live weight 

between 2 and 4 mo prepartum modulating the response. They 

also indicated that the increase in pregnancy rate per unit 

of increase in body condition is greater (20%) for cows 

that calved with a BCS between 4 and 6 than for thiner or 

fatter cows. 

Reproductive and calf performance should be optimized 

if mature cows calve with a BCS ~ 5 (Richards et al., 1986; 

Morrison et al., 1999), primiparous cows calve with BCS ~ 6 

(DeRouen et al., 1994; Spitzer et al., 1995), and both age 



groups maintain weight during lactation. Thin primiparous 

or mature cows at calving will respond to increased 

postpartum energy intake by enhanced reproductive 

performance (Dunn et al., 1969; Dunn and Kaltenbach, 1980; 

Richards et al., 1986; Wettemann et al., 1986; Wright et 

al., 1992; Spitzer et al., 1995; Vizcarra et al., 1998), 

although postpartum reproduction may be still less than 

optimal for primiparous cows. Nonlactating cows (Richards 

et al., 1989a; Bishop and Wettemann, 1993) and heifers 

(Vizcarra et al., 1995; Bossis et al., 1999) become 

anovulatory when BCS is about 3.5. 
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Mechanisms relating body energy reserves with an early 

resumption of ovarian function during the postpartum period 

are still under research. Available evidence suggests that 

body condition may have direct effects on the GnRH pulse 

generator and/or the ovary. Thin cows at calving had 

increased amounts of met-enkephalin in the preoptic area 

and had similar hypothalamic GnRH content before or at 48 h 

after calf removal (Connor et al., 1990). Body condition of 

thin nonovulatory cows was negatively associated with total 

GnRH content in the infundibular stalk-median eminence and 

maximum LH secreted after GnRH challenge (Rasby et al., 

1992), suggesting that inadequate body energy reserves may 



depress GnRH release, and thus, LH secretion. Pulsatile 

GnRH infusion induced luteal function in thin anestrous 

cows (Bishop and Wettemann, 1993) and pituitary gland 

sensitivity to GnRH was independent of body condition at 

calving (Wright et al., 1990). Body condition at calving 

was not related to LH pulse frequency at 14 d postpartum 

but it was positive associated at 42 and 70 d postpartum 
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(Perry et al., 1991a). This indicates that body condition 

may modulate LH secretion after the GnRH pulse generator 

escapes from other inhibitory factors that control its 

activity during the early postpartum period. Body condition 

at calving is associated with LH pulse frequency, 

peripheral concentrations of IGF-I, and onset of ovarian 

function after early weaning at 40 d postpartum (Bishop et 

al., 1994). Follicular development during the early 

postpartum was delayed in thin cows compared with cows in 

moderate or good body condition at calving, and 

concentrations of IGF-I in serum and follicular fluid 

increased with BCS at calving (Ryan et al., 1994). 

Steroidogenic capacity of large, estrogen-active follicles, 

was affected by body condition at parturition (Prado et 

al., 1990; Pinto Andrade et al., 1995). Systemic 

concentrations of IGF-I were positively associated with BCS 



during the postpartum period but not with days to first 

large follicle (Spicer et al., 2002). 
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Suckling. Secretion of LH is responsible for the 

resumption of reproductive function after parturition 

(Short et al., 1972; Wettemann, 1980; Short et al., 1990; 

Yavas and Walton, 2000). Pulsatile release of LH is reduced 

during the early postpartum period because pituitary LH 

content is minimal after parturition (Moss et al., 1985; 

Nett et al., 1988). Suckling delayed the onset of LH 

secretion in cows (Short et al., 1972; Williams et al., 

1982), whereas suppression of the suckling stimulus after 

20 to 30 d postpartum increased LH secretion (Walters et 

al., 1982b; Myers et al., 1989; Shively and Williams, 1989; 

Stagg et al., 1998). Milking twice a day with the cow's 

calf absent or present did not inhibit pulsatility of LH, 

suggesting that suckling is a more potent inhibitor of LH 

secretion than milking (Lamb et al., 1999). Therefore, 

minimal pulsatile re'iease of LH occurs independently of the 

suckling inhibition soon after parturition but suckling is 

a major inhibitor of LH secretion (Nett, 1987) after 20 d 

postpartum. 
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Episodic LH secretion at 7 and 14 d postpartum was 

less in suckled cows than in cows that had calves weaned at 

12 h after birth (Williams et al., 1983). Complete (Walters 

et al., 1982b; Griffith and Williams, 1996), temporary 

(i.e., 48 to 72 h) (Edwards, 1985; Shively and Williams, 

1989; Myers et al., 1989; Salfen et al., 2001), or partial 

(i.e., once suckling per day) (Stagg et al., 1998; Mackey 

et al., 2000) suppression of the suckling stimulus 

increased LH secretion. Calf return after temporary weaning 

decreased LH pulse frequency within 8 h in anovulatory cows 

(Edwards, 1985; Shively and Williams, 1989). Early weaning 

or once-daily suckling after 65 d postpartum did not affect 

length of the anovulatory interval of primiparous beef cows 

that calved and were fed to maintain a body condition score 

(BCS) ~ 5 until breeding (Bell et al., 1998). Therefore, 

suckling may influence the anovulatory interval from d 20 

to d 65 postpartum after which nutrition plays the primary 

role. 

Suckled beef cows have a longer interval after calving 

to first estrus or ovulation than milked or nonsuckled cows 

(Wiltbank and Cook, 1958; Williams, 1990; Stevenson and 

Lamb, 1997). Continuous presence of a cow's own nonsuckling 

calf did not suppress the weaning-stimulated increase in LH 



concentrations (Williams et al., 1987; Hoffman et al., 

1996) and shorter interval to ovulation (Hoffman et al., 

1996; Lamb et al., 1997, 1999). However, twice-daily 
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suckling was sufficient to decreased LH release and 

prolonged the postpartum anovulatory period (Lamb et al., 

1999). Duration of the postpartum anovulatory period was 

not related to suckling behavior of single calves that 

nursed ad libitum, even when frequency and duration of 

suckling events decreased with days of lactation (Day et 

al., 1987). Extreme suckling intensity, induced by twins 

(Sinclair et al., 1994) or adoption of a foster calf 

(Wettemann et al., 1978), and frequency of daily suckling 

greater than once (Randel, 1981; Lamb et al., 1999) 

extended the postpartum anovulatory period. Thus, it 

appears that presence of a cow's own nonsuckling calf does 

not affect weaning-induced LH secretion and reduce the 

length of the postpartum anovulatory period, whereas at 

least twice daily suckling, but not milking two or five 

times per day, can inhibit LH release and ovulation. Calf 

access to the cow's inguinal area, without suckling, was 

sufficient to prolong the postpartum anovulatory period 

(Viker et al., 1993; Stevenson et al., 1994). 
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Maternal recognition of a cow's own calf may be a 

critical component of suckling-mediated anovulation. Cows 

that were suckled by an alien (foster) calf, or had calves 

weaned, had increased LH pulse frequency and a shorter 

anovulatory interval than cows that were suckled by their 

own calf. This indicates that maternal recognition of a 

calf, not only the suckling event, may be require to 

inhibit LH release and ovulation (Silveira et al., 1993). 

Cows suckled ad libitum by alien calves, in presence or in 

absence of their own calf, had similar intervals to first 

ovulation as cows suckled by their own calves; both had 

longer anovulatory intervals than cows that had calves 

weaned (Lamb et al., 1997). These results indicate that the 

establishment of cow-calf bond, between a cow and her own 

or with an unrelated calf, can postpone ovulation in 

postpartum beef cows. Vision may be an important sense for 

ewes to recognize lambs, although olfactory and auditory 

cues are also involved (Lindsay and Fletcher, 1968). 

Deprivation of a cow's visual and olfactory senses blocked 

recognition of her calf and released the cow from the 

suckling-mediated inhibition of LH secretion (Griffith and 

Williams, 1996). Overall, twice-daily suckling may inhibit 

pulsatile secretion of LH and prolong the anovulatory 



interval if the cow-calf bond has been previously 

established. 
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Quantity of GnRH in the hypothalamic area was greater 

in suckled than in cycling cows (Nett et al., 1987, 1988) 

and remained unchanged during at least 30 to 45 d 

postpartum (Moss et al., 1985; Nett et al., 1988). Amount 

of GnRH receptors in pituitary tissue of suckled cows 

remained constant (Leung et al., 1986) or increased (Moss 

et al., 1985; Nett et al., 1988) during the first 7 to 15 d 

after calving. Concentration of anterior pituitary 

estradiol receptors on d 15 postpartum in suckled cows was 

similar to that observed prior to the preovualtory LH surge 

in cycling cows (Nett et al., 1987, 1988). Pituitary LH 

content (Walters et al., 1982b) and pituitary LH released 

after a GnRH challenge (Walters et al., 1982c; Williams et 

al., 1982) were similar between suckled and nonsuckled 

anestrous cows. Suckling impaired GnRH release from the 

median eminence and decreased concentration of LH in plasma 

(Zalesky et al., 1990). Weaning increased GnRH secretion 

into cerobrospinal fluid and increased LH pulse frequency 

(Gazal et al., 1998). These results indicate that suckling 

suppresses hypothalamic GnRH release and delays LH release 

and first postpartum ovulation. 
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Endogenous opioid peptides can potentially mediate the 

suckling-induced inhibition of LH secretion in postpartum 

beef cows (Malven et al., 1986; Whisnant et al., 1986b; 

Myers et al., 1989). Concentrations of opioid peptides and 

GnRH in the preopic area and hypothalamic tissue were 

positively associated (Malven et al., 1986). Administration 

of naloxonej an opioid receptor antagonist, increased LH 

secretion in suckled cows (Whisnant et al., 1986a, 1986c), 

but it was ineffective in nonsuckled cows that had high 

basal LH secretion (Whisnant et al., 1986a). The ability of 

opioids to inhibit LH secretion may decrease with days 

after parturition (Whisnant et al., 1986b). Suckled 

anestrous cows had greater concentrations of opioid 

receptors in the preoptic-basal forebrain areas than 

suckled cyclic cows (Trout and Malven, 1988). However, 

nonsuckled, ovariectomized cows responded to naloxone with 

increased secretion of LH, suggesting that mechanisms, 

other than ovarian and/or suckling-induced, may be involved 

in opioid-mediated inhibition of LH secretion during the 

early postpartum period (Rund et al., 1989). Suppression of 

endogenous opioid peptides stimulated LH secretion in dairy 

cows in negative energy balance (Ahmadzadeh et al., 1998; 

Kadokawa and Yamada, 2000). The increase in opioidergic 
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tone has been included as a component of an hypothetical 

mechanism that integrates maternal behavior, suckling and 

hypothalamic-pituitary activity to maintain the anovulatory 

state in postpartum beef cows (Williams and Griffith, 

1995). Alternatively, the suppressive effects of suckling 

on pulsatile secretion of LH may be due to increased 

sensitivity of the hypothalamus to the negative feedback of 

estradiol (Acosta et al., 1983). However, the 

postovariectomy increase in concentrations of LH occurred 

sooner in nonsuckled than in suckled cows, even when they 

had similar concentrations of estradiol at ovariectomy 

(Hinshelwood et al., 1985). Physiological concentrations of 

estradiol may enhance LH secretion in ovariectomized one

daily suckled cows (Garcia-Winder et al., 1986). 

Postpartum nutrition. Increased energy intake after 

parturition shortened the intervals from calving to 

ovulation (Dunn et al., 1969; Perry et al., 1991a, Stagg et 

al., 1995; Lalman et al., 1997, 2000) and increased the 

percentage of cows exhibiting estrus during the breeding 

season (Wiltbank et al., 1962, 1964; Richards et al., 1986; 

Spitzer et al., 1995). Postpartum energy intake did not 

affect the interval to detection of the first dominant 



follicle, but the number of dominant follicles undergoing 

atresia before first ovulation was greater in cows 
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receiving a low energy diet (Stagg et al., 1995). Poor 

nutrition caused an increase in turnover of dominant 

follicles (Murphy et al., 1991). This increase in turnover 

of dominant follicle may be due to decreased IGF-I 

secretion (see next section). Restricted energy intake 

during the early postpartum period depressed LH pulsatility 

and decreased the size the largest ovarian follicle, 

suggesting a delay in the establishment of functional 

dominance in underfed cows (Grimard et al., 1995). 

Conversely, mean LH concentration, LH pulse frequency, and 

follicular development were increased in cows fed high 

energy diets compared with those that received less energy 

after calving (Perry et al., 1991a). Dietary energy intake 

after calving may not affect the length of the postpartum 

interval if cows calve and maintain adequate body energy 

reserves during lactation (Richards et al., 1986; Spitzer 

et al., 1995; Stagg et al., 1998). As mentioned earlier, 

positive effects of high energy intake postpartum on 

reproduction depends on body condition score at calving and 

are more evident in thin cows (Dunn and Kaltenbach, 1980; 

Richards et al., 1986; Wright et al., 1992; Spitzer et al., 
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1995). Greater postpartum energy intake increased body 

condition score at 90 d postpartum, concentrations of IGF-I 

and insulin, and decreased the length of the postpartum 

period in primiparous cows that were thin at calving 

(Lalman et al., 2000). However, feeding a high energy diet 

postpartum was unable to decrease the mean postpartum 

interval to estrus to less than 110 d (Lalman et al., 1997, 

2000). Low body condition score at calving may exacerbate 

inhibitory actions of suckling to suppress LH release and, 

therefore, delay return to estrus. Both negative effects 

are more pronounced in primiparous than in mature cows. 

Increasing dietary energy intake after calving 

enhanced pregnancy rates of beef cows (Wiltbank et al., 

1962, 1964; Dunn et al., 1969; Richards et al., 1986). 

Randel (1990) summarized results from those experiments and 

reported that pregnancy rates for cows fed diets restricted 

in energy content, after calving, varied from 50 to 76 % 

compared with 87 to 92 % for well-fed cows. Restricted 

nutrient intake during the postpartum period decreased 

pregnancy rate even in cows that had calved with good body 

condition (Rakestraw et al., 1986). Conception rates at the 

first service ranged from 38 to 62 % compared with 66 to 84 

% for energy-restricted and well-fed cows, respectively 



(Randel, 1990). These results indicate that restriction of 

energy intake postpartum may depress fertility at a single 

insemination, but this presumption has not been tested 

using an adequate number of cows. Hill et al. (1970) 

suggested that fertilization failure, not early embryonic 

mortality, is the cause of depressed conception rates in 

underfed heifers. Conversely, Spitzer et al. (1978) 

suggested that conception rates of energy-restricted 

heifers are reduced by embryo mortality after 4 d 

postmating. 
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Increasing energy intake elicits endocrine and 

metabolic changes that may act directly on the ovary to 

influence fertility of beef cows. Cows fed high energy 

postpartum had larger follicles and greater ovarian volume 

during at least 3 wk prior to first estrus, and conception 

rate at first service was greater than for energy

restricted cows (Wiltbank et al., 1964). Postpartum energy 

restriction decreased size of the dominant follicle and 

this event was not related to changes in LH secretion 

(Grimard et al., 1995). Growth rate of the dominant 

follicle and concentrations of insulin and IGF-I were 

greater in cows fed high energy compared with those fed low 

energy diet (Armstrong et al., 2001). These results and 
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those mentioned earlier suggest that increased energy 

intake may influence growth and perhaps differentiation of 

the DF, independent of LH secretion. Endocrine secretions 

from larger preovulatory follicles may enhance oocyte 

development or uterine ability to support pregnancy and 

enhance fertility. Britt (1995) proposed that 

undernutrition during the early postpartum period may alter 

gene expression of preantral follicles, resulting in 

abnormal mature follicles that produce low quality oocytes 

or form CL with abnormal function and, therefore, decrease 

fertility. 

Metabolic signals and reproduction in female mammals 

Introduction. Nutritional cues influence the 

reproductive process in cattle by altering the hypothalamic 

GnRH pulse generator, which controls the synthesis and 

secretion of luteinizing hormone (Randel, 1990; Short et 

al., 1990; Keisler and Lucy, 1996; Wettemann and Bossis, 

2000). Restricted nutrient intake delays puberty (Day et 

al., 1986; Yelich et al., 1996) prolongs the postpartum 

anestrous interval (Wright et al., 1992; Bishop et al., 

1994) and induces anestrus (Richards et al., 1989a; Bossis 
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et al., 1999) in bovine females by reducing LH pulse 

frequency. Continuous growth and dominance of preovulatory 

follicles requires frequent pulses of LH (Stock and 

Fortune, 1993). Increased nutrient intake increases maximum 

diameter of the dominant follicle in nutritionally 

anestrous (Bossis et al., 2000), cyclic (Spicer et al., 

1991; Armstrong et al., 2001) and postpartum anestrous 

(Grimard et al., 1995; Lents et al., 2000) beef cows. 

Energy intake after parturition affects LH pulse frequency 

(Perry et al., 1991a) and therefore, modulates final stages 

of follicular growth. If follicular growth varies with 

level of nutrient intake, follicular diameter may reflect 

the endocrine/metabolic status of postpartum cows. 

Metabolic signals, either hormones, substrates or 

products of metabolism, are continuously monitored by the 

brain and they may affect, directly or indirectly, the GnRH 

pulse generator, the pituitary gland, and/or the ovaries 

(Randel, 1990; Schillo, 1992; Stevenson and Lamb, 1997; 

Wettemann and Bossis, 2000) triggering events that end the 

anestrous period and lead to the first ovulation. Nutrition 

may modulate reproductive function by its effects on blood 

concentrations of metabolites and/or metabolic hormones. 
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Insulin and Glucose. Insulin, directly or indirectly, 

affects energy metabolism of practically every tissue or 

organ in the body. However, specific effects of insulin on 

the reproductive axis are less clear. Insulin receptors 

have been detected in different regions of the brain, 

pituitary gland (Lesniak et al., 1988), and ovarian tissue 

(Poretsky and Kalin, 1987). Insulin may stimulate 

gonadotropin secretion, follicular growth and 

steroidogenesis. Perfused rat hypothalamic fragments had a 

8-fold increase in GnRH release in response to low 

concentrations of insulin only when glucose was available 

(Arias et al., 1992). Intracerebroventricular infusion of 

insulin increases basal LH concentration in underfed ewes 

(Daniel et al., 2000). Insulin can exert gonadotropin-like 

effects on ovarian tissues (Poretsky and Kalin, 1987), 

including stimulation of thecal androgen production, 

granulosa cell proliferation, and estradiol production in 

cows (Spicer and Echternkamp, 1995). Restricted nutrient 

intake decreases circulating concentrations of insulin in 

cows (Richards et al., 1989b; Armstrong et al., 1993; 

Bossis et al., 1999; Armstrong et al., 2001). 

Administration of insulin increases concentrations of 

estradiol in large follicles (Simpson et al., 1994) and 
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increases ovulation rate of energy restricted superovulated 

cows (Harrison and Randel, 1986). Follicular recruitment 

(Gutierrez et al., 1997b) or the ability of follicles to 

ovulate (Harrison and Randel, 1986) may be enhanced by 

insulin. 

Secretion of GnRH may depend on the availability of 

metabolic energy. Glucose transport into the central 

nervous system is mainly mediated by insulin-independent 

glucose transporters (GLUT-1, -2 and -3), whereas the 

hypothalamus expresses an insulin-dependant glucose 

transporter, GLUT-4 (Livingstone et al., 1995). Under 

dietary restriction, low levels of insulin may redistribute 

glucose as a function of tissue priorities. Likely, 

hypoinsulinemia may inhibit glucose uptake by the 

hypothalamus but not by vital areas of the brain. 

Nutritional anestrous cows had lower plasma. concentrations 

of glucose and insulin than cows on maintenance diets 

(Richards et al., 1989b; Bossis et al., 1999). 

Administration of 2-deoxy-D-glucose (2DG), a glucose 

antagonist, inhibited estrus and ovulation in well-fed cows 

(McClure et al., 1978). Furthermore, phlorizin-induced 

hypoglycemia prevented the increase in insulin and LH 

concentrations that follow early weaning in beef cows 
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(Rutter and Manns, 1987). Secretion of LH, but not 

pituitary sensitivity to GnRH, was abruptly reduced when 

ovariectomized ewes were injected with 2DG even when 

concentrations of insulin were increased (Funston et al., 

1995b). Similarly, 2DG decreases LH secretion in 

gonadectomized male lambs (Bucholtz et al., 1996) and 

female and male rats (Nagatani et al., 1996). However, in 

male Rhesus monkey, stimulation of LH secretion may depend 

on the total availability of metabolic fuels instead of a 

specific increase in glucose concentrations (Schreihofer et 

al., 1996). Estrous cycles in hamsters occur recurrently 

when glycolysis or fatty acid oxidation is inhibited, but 

simultaneous pharmacologic blockage of both oxidative 

pathways suppresses estrous behavior (Schneider and Wade, 

1989). Simultaneous inhibition of glucose and fatty acids 

oxidation decreased pulsatile secretion of LH in 

ovariectomized lambs (Hileman et al., 1991). These results 

indicate that the reproductive system may be more sensitive 

to total than to individual availability of metabolic 

fuels. 

Glucose concentrations may influence ovarian function 

because glucose is the primary energy source used by the 

bovine ovary (Rabiee et al., 1997). In addition, ovarian 
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uptake of glucose and cholesterol are positively associated 

(Rabiee and Lean, 2000) suggesting that ovarian glucose 

uptake may influence steroidogenesis because circulating 

cholesterol is the main substrate for steroidogenic tissues 

(Gwynne and Strauss, 1982). In vitro, glucose stimulates 

bovine thecal cell steroidogenesis (Stewart et al., 1995). 

Therefore, nutritional status influences concentrations of 

insulin and/or glucose that can modulate reproductive 

function at CNS and/or ovarian tissue, even though 

concentrations of insulin and glucose in plasma are not 

good predictors of the onset of luteal activity in 

postpartum cows (Vizcarra et al., 1998). 

Nonesterified fatty acids (NEFA). As an adaptation to 

negative energy balance, ruminants release nonesterified 

fatty acids from the adipose tissue as result of 

triglyceride lipolysis by hormone sensitive lipase. 

Glycerol and NEFA metabolism yield glucose and ketone 

bodies that are used as sources of energy by peripheral 

tissues, thus sparing circulating glucose for the central 

nervous system. Concentrations of NEFA increased with 

negative energy balance in dairy cows (Staples and 

Thatcher, 1990; Lucy et al., 1991) and with losses in body 
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weight and body condition score in beef cows (Richards et 

al., 1989b; Bossis et al., 1999). Beef cows that were 

underfed at calving had reduced LH pulse frequency at 30 d 

postpartum, and increased concentrations of NEFA. However, 

LH pulsatility and NEFA concentrations in plasma were 

similar in underfed and maintenance cows at 70 d postpartum 

(Grimard et al., 1995). Nutrient intake increased LH 

pulsatility by 82% without an alteration in NEFA 

concentrations in lambs, and lipid infusion increased NEFA 

concentrations without an effect on LH pulse frequency 

(Estienne et al., 1990). In addition, concentrations of 

NEFA in plasma increased during the last two follicular 

waves preceding resumption of ovulation during 

realimentation of nutritionally induced anestrous heifers 

(Bossis et al., 2000). Although concentrations of NEFA in 

plasma reflect fat mobilization and may be a good indicator 

of nutrient intake or energy status in beef cows, the onset 

of luteal activity of postpartum beef cows could not be 

predicted from plasma NEFA concentrations (Garmendia, 1984; 

Vizcarra et al., 1998). Therefore, it is unlikely that 

concentrations of NEFA in plasma directly affect LH 

secretion in ruminants. 
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Thyroid hormones. Thyroid gland function may be 

associated with reproduction in cattle. Thyroidectomy 

prevents the transition to seasonal anestrus and allows 

continuous estrous cycles in sheep (Nicholls et al., 1988) 

Thyroidectomized ewes maintained pulsatile secretion of LH 

in presense or absence of estradiol, whereas pulsatile LH 

secretion at the end of the breeding season was blocked by 

estradiol in thyroid-intact ewes (Moenter et al., 1991). 

Oral administration of thyroprotein during lactation of 

dairy cows prolonged the postpartum anestrous period 

(Wagner and Hansel, 1969) and induced hyperthyroidism 

increased the incidence of anestrous in Brahman cows (De 

Moraes et al., 1998). Concentrations of thyroxine were at 

the nadir when nonlactating cows reached nutritionally 

induced anestrus, although concentrations of LH and 

thyroxine were not related (Richards et al., 1995). In 

ovariectomized, nonlactating, nonpregnant Holstein cows, 

the presence of thyroid glands decreased basal 

concentrations of LH and FSH, but pulse frequency and 

amplitude were unaffected (Stewart et al., 1994). 

Hypothyroidism did not inhibit the expression of estrous 

behavior in ovariectomized-thyroidectomized nonlactating 

Holstein cows treated with estradiol benzoate with or 
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without progesterone (Stewart et al., 1993). Thyroid 

hormones may influence ovarian function. Thyroid status 

affected ovarian response to exogenous FSH (Bernal et al., 

1999) although induced hyper- or hypothyroidism did not 

alter follicular dynamics and corpus luteum function in 

cows (De Moraes et al., 1998). Physiological concentrations 

of thyroid hormones enhanced LR-induced androstenedione 

output of bovine theca cells in vitro, which could cause an 

increased estradiol production by granulosa cells (Spicer 

et al., 2001). Dietary intake may alter concentrations of 

thyroid hormones in bovine serum (Beaver et al., 1989; 

Richards et al., 1995). Overall, a role for thyroid glands 

in regulation of gonadal function seems more likely for 

Brahman cows, which have more seasonally-influenced 

reproductive patterns than Bos taurus cows. The effects of 

thyroid hormones on reproductive function are minimal and 

inconsitent in Bos taurus cattle (Wagner and Hansel, 1969; 

Stewart et al., 1994; Richards et al., 1995). 

Insulin-like growth factor-I. Insulin-like growth 

factor-I (IGF-I) is a mitogenic GR-dependent serum peptide 

with structure and functions closely related to insulin and 

IGF-II (Spicer and Echternkamp, 1995). The binding of IGF-I 
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to its cell membrane receptor in cultured cells of 

mesodermal origin stimulates glucose uptake and synthesis 

of glycogen, lipids, proteins, DNA, and cell 

differentiation (Froesch et al., 1985). In biological 

fluids, IGF-I and -II (IGFs) are normally bound to high 

affinity binding proteins (IGFBPs), designated as IGFBP-1 

to -6 (Jones and Clemmons, 1995). The functions of IGFBPs 

include: 1) to prolong the half-life of IGFs in serum, 2) 

to prevent IGFs induced hypoglycemia, 3) to regulate the 

passage of IGFs from intra- to extravascular space, 4) to 

restrict free IGFs binding to its receptor, 5) to enhance 

the biological actions of IGFs by forming a slow release 

IGFs pool, and 6) to exert IGFs-independent, cellular 

actions (Collett-Solberg and Cohen, 2000). In addition to 

endocrine effects of IGFs, locally produced IGFs have 

paracrine, as well as autocrine effects on cell 

proliferation (Jones and Clemmons, 1995). The IGF system 

also includes the IGFBP proteases, which may provide a 

mechanism to increase the availability of free IGFs to cell 

receptors by degradation of IGFBPs (Maile and Holly, 1999) . 

. The IGF type I receptor (IGF-IR) is present in tissues 

directly involved with reproductive function. A high 

density of IGF-IR has been detected in the median eminence 
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as well as the choroid plexus, the olfactory bulb, and the 

suprachiasmatic nucleus of the brain in rats (Lesniak et 

al., 1988; Hiney et al., 1996), indicating a 

neuromodulatory role of IGF-I in specific areas of the 

brain. Incubation of GTl-GnRH neuronal cells with 10 ng/mL 

of IGF-I stimulated GnRH gene expression (Longo et al., 

1998) and produced a two-fold increase in GnRH secretion at 

two h after treatment (Anderson et al., 1999). Treatment of 

median eminence fragments of prepubertal female rats with 

IGF-I elicited a dose-related increase in GnRH (Hiney et 

al., 1991). Moreover, IGF-I administration may decrease 

hypersensitivity of the hypothalamic-pituitary axis to 

estradiol negative feedback and hastened the onset of 

puberty by 4 months in female monkeys (Wilson, 1995). The 

pituitary gland may also be affected by IGF-I because 

labeled IGF-I binding activity and IGF-IR m.RNA were 

detected in the ovine pituitary gland (Adam et al., 2000). 

Output of LH from rat (Soldani et al., 1995) and ovine 

(Adam et al., 2000) pituitary cells is augmented by IGF-I 

in vitro. Concentrations of IGFBP in the bovine pituitary 

gland, but not in serum, changed during the estrous cycle 

and were positively related with progesterone 

concentrations (Funston et al., 1995a), and inversely 



related to serum concentrations of LH. During the estrous 

cycle, pituitary and serum concentrations of IGF-I did not 

vary. Thus changes in pituitary concentrations of IGFBPs 

may alter availability of IGF-I in the pituitary gland of 

cows during the estrous cycle. Roberts et al. (2001) 

suggested that IGFBPs could act within the pituitary 

mediating endocrine feedback mechanisms that regulate 

gonadotrope function. 
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Receptors for IGF-I are also present in bovine 

follicular cells and oocytes. Bovine granulosa and theca 

layers express the gene for IGF-IR and synthesize IGF-IR. A 

greater number of IGF-IR are located in granulosa than 

theca cells (Stewart et al., 1996; Perks et al., 1999; 

Armstrong et al., 2000). IGF-I interacts synergistically 

with gonadotropins to promote growth and differentiation of 

ovarian follicular cells in several mammalian species 

(Monget and Monniaux, 1995; Spicer and Echternkamp, 1995; 

Adashi, 1998). Acting alone (Gutierrez et al., 1997a) or in 

combination with FSH (Spicer et al., 1993b) or LH (Stewart 

et al., 1995), IGF-I stimulated mitogenesis, progesterone 

production, and aromatase activity in bovine granulosa 
) . 

cells, as well as mitogenesis, progesterone and 

androstenedione production, and LH binding in theca cells. 
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In irmnature rat granulosa cells, the IGF-I/FSH synergism 

enhanced expression of the FSH receptor, possibly by 

prolonging FSH receptor mRNA stability in vitro (Minegishi 

et al., 2000). Overall, the interactions between IGF-I and 

gonadotropins seem to be determinants of growth and 

steroidogenic capacity of bovine ovarian follicles. IGF-I 

may also be involved in oocyte maturation, since oocytes 

collected from bovine preantral and antral follicles 

express mRNA for IGF-RI (Armstrong et al., 2001). 

Negative energy balance during early lactation (Spicer 

et al., 1990; Vicini et al., 1991; Sharma et al., 1994), 

chronic (Richards et al., 1991, 1995; Bossis et al., 1999) 

or acute restriction of nutrient intake (Armstrong et al., 

1993; Armstrong et al., 2001; White et al., 2001), and 48-h 

fasting (Spicer et al., 1992; Amstalden et al., 2000) 

reduce plasma concentrations of IGF-I in cattle. Reduced 

nutrient intake uncouples the GH-IGF-I endocrine axis 

(Thissen et al., 1994). Cattle fed restricted diets have 

increased GH secretion (Thomas et al., 1990; Breier and 

Gluckman, 1991; Armstrong et al., 1993; Bossis et al., 

1999) whereas serum concentrations of IGF-I and hepatic 

IGF-I mRNA are decreased (Vandehaar et al., 1995), probably 

due to an insulin-dependent (Thissen et al., 1994; 
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Kobayashi et al., 1999; Butler and Butler, 2001) down

regulation of the GH receptor (Breier and Gluckman, 1991; 

Vandehaar et al., 1995). Concentrations of IGF-I in plasma 

increased in association with onset of puberty (Renaville 

et al., 1993; Yelich et al., 1996) and with the resumption 

of ovarian activity in postpartum (Roberts et al., 1997; 

Beam and Butler, 1997, 1998; Stagg et al., 1998) and 

nutritionally induced anestrous cows (Bossis et al., 2000). 

Concentrations of IGF-I in plasma are positively related to 

body energy reserves and nutrient intake (Rutter et al., 

1989; Bishop et al., 1994; Yelich et al., 1996; Armstrong 

et al., 2001) and increased nutrient intake promotes the 

development of ovulatory follicles in prepubertal heifers 

(Bergfeld et al., 1994) and anestrous cows (Jolly, 1995; 

Stagg et al., 1995; Bossis et al., 2000). Intraovarian 

concentrations of IGF-I did not change with increased 

nutrient intake (Spicer et al., 1991, 1992) or days 

postpartum (Spicer et al., 1988) indicating that total 

amount of IGF-I in follicular fluid is not strongly 

regulated by nutrient supply. However, the availability of 

biologically active IGF-I in serum is influenced by 

nutrition because relative amounts of IGFBPs in serum 

(McGuire et al., 1992; Thissen et al., 1994; Vandehaar et 



al., 1995), hypothalamus, pituitary (Snyder et al., 1999), 

and ovarian follicles (Armstrong et al., 2001) change with 

nutritional status. Ovarian inactivity in postpartum beef 

cows is probably caused by inadequate gonadotropin support 

(Wettemann, 1980) to allow early dominant follicles to 
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produce adequate amounts of estradiol to induce ovulation 

(Murphy et al., 1990; Stagg et al., 1995; Duffy et al., 

2000). Changes in energy status of cows have been directly 

associated with concentrations of IGF-I and estradiol in 

serum and the ability of dominant follicles to ovulate 

(Beam and Butler, 1999; Bossis et al., 2000). 

Concentrations of IGF-I in serum may be a major determinant 

of IGF-I concentrations in the ovary (Leeuwenberg et al., 

1996) and infusion of an IGF-I analog into the ovarian 

artery increased estradiol secretion during the follicular 

phase of ewes with autotransplanted ovaries (Scaramuzzi et 

al., 1999). Increased nutrient intake postpartum could 

stimulate hepatic IGF-I secretion. Systemic IGF-I, and/or 

IGF-I produced locally by tissues, may influence the brain 

to increase gonadotropin secretion, and/or IGF-I may act 

synergistically with gonadotropins to enhance follicular 

steroidogenisis and ovarian function. 



Insulin-like growth factor-II. Actions of IGF-II are 

also mediated through the IGF type I receptor (Adashi et 

al., 1989; LeRoith et al., 1995). Bovine ovarian cells 

contain IGF-II mRNA. Expression of mRNA for IGF-II occurs 

theca cells whereas weak or no expression is detected in 

granulosa cells (Armstrong et al., 2000, 2001; Schams et 

al., 2002). In luteal cells, IGF-II mRNA expression was 

maximal during the early luteal phase (Schams et al., 
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2002), but this was not observed by Woad et al. (2000). An 

intrapituitary IGF system exists in ewes, but in situ 

hybridization signals for IGF-II mRNA were not as intense 

as for IGF-I mRNA (Adam et al., 2000). Intrafollicular 

concentrations of IGF-II were greater in dominant than in 

small antral follicles collected during the first 

follicular wave of cyclic cows (Stewart et al., 1996). 

Insulin like growth factor-II may not affect FSH-induced 

aromatase activity (Spicer et al., 1993a) and may inhibit 

insulin-induced aromatase activity in small and large 

bovine granulosa cells (Spicer et al., 1994). 

Intrafollicular concentrations of IGF-II were reduced in 

ewes fed to maintain weight compared with those fed to gain 

weight (O'Callaghan et al~, 2000). IGF-II has not been 

extensively studied as IGF-I, however, IGF-II may be 



involved in selection of the dominant follicle (Yuan et 

al., 1998), vascularization of luteal tissue (Schams et 

al., 2002), and/or production of luteal progesterone 

(Maciel et al., 2001). 
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Leptin. Leptin, a protein encoded by the OB gene 

(Zhang et al., 1994) and primarily secreted by adipocytes, 

has profound effects on feed intake, metabolism, and 

neuroendocrine secretion (Houseknecht et al., 1998a; Barb, 

1999; Ahima and Flier, 2000). Leptin may also regulate 

reproductive functions (Barash et al., 1996; Finn et al., 

1998; Cunningham et al., 1999; Keisler et al., 1999). 

Leptin alters endocrine functions in rodents and farm 

animals, by influencing secretion of hormones from the 

anterior pituitary (Ahima et al., 1996, Yu et al., 1997; 

Barb et al., 1998), ovary (Spicer and Francisco, 1997, 

1998), and adrenal gland (Heiman et al., 1999). Leptin 

receptors are localized in several reproductive tissues 

(for review see: Houseknecht and Portocarrero, 1998; Spicer 

2001) and brain of rats (Zamorano et al., 1997), monkeys 

(Finn et al., 1998) and sheep (Dyer et al., 1997). The 

large form of leptin receptor mRNA, or protein, was 

detected in several hypothalamic areas including the 
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arcuate nuclei, which has been implicated in the regulation 

of feed intake and reproduction of rats (Kalra et al., 

1998). Intracerebral administration of leptin in sheep 

reduced feed intake and also suppressed LH pulse frequency 

(Henry et al., 1999; Blache et al., 2000b; Morrison et al., 

2001). However, the decreased LH pulsatility could be a 

consequence of feed intake reduction rather than a direct 

action on GnRH neurons (Blache et al., 2000a). In 

nonruminants, leptin treatment stimulates the secretion of 

gonadotropins (Barash et al., 1996), prevents the delay in 

puberty induced by food restriction (Cheung et al., 1997) 

and advances the onset of puberty (Chehab et al., 1997). In 

addition, treatment with leptin prevented the suppression 

of estrous cycles (Ahima et al., 1996; Schneider et al., 

1998) and pulsatile secretion of LH (Ahima et al., 1996; 

Nagatani et al., 1998; Finn et al., 1998) induced by 

fasting in nonruminants. In contrast, cows fasted for 48 h 

had significant reductions in leptin mRNA in adipose tissue 

and plasma concentrations of leptin (Tsuchiya et al., 1998; 

Amstalden et al., 2000), but LH concentrations and 

amplitude of LH pulses were not changed (Amstalden et al., 

2000). Short-term nutritional deprivation may be less 

disruptive to the reproductive axis in ruminants than 
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nonruminants. The rumen may act as a buffer to delay the 

rapid decreased in LH pulse frequency that occurs in 

nonruminants during fasting. Exogenous leptin prevented the 

fasting-induced decline in LH pulse frequency of steroid

implanted wethers (Nagatani et al., 2000) but central 

infusion of leptin did not increase LH pulsatility in well

fed ewes (Henry et al., 1999). This indicates a permissive 

role of leptin in modulation of LH secretion. Perhaps 

decreased concentrations of leptin may coordinate 

neuroendocrine events that partition energy availility away 

from nonprioritized functions, such as reproduction, during 

early lactation period. 

Reproductive function in cows is strongly influenced 

by body fat stores since lean cows reproduce less 

efficiently than cows with moderate body fat (Selk et al., 

1988; Randel, 1990; Short et al., 1990). An important 

component of this fat-reproduction relationship is a 

hormone or signal that reflects the amount of fat stored in 

the body. Concentrations of leptin in plasma are linearly 

related to the amount of body fat in humans (Considine et 

al., 1996; Ostlund et al., 1996) and rodents (Maffei et 

al., 1995; Schneider et al., 2000). The same relationship 

may exist in ruminants (Blache et al., 2000b; Delavaud et 
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al., 2000; Ehrhardt et al., 2000), but there is not 

adequate information to confirm that presumption. Leptin 

may serve as a signal of body fat stores to the central 

nervous system and therefore, it may act as an endocrine 

link between nutritional status and reproductive function. 

Mobilization of body fat reserves during the early 

postpartum period prolongs the postpartum anestrous period 

(Roche et al., 2000). Concentrations of leptin were reduced 

in dairy cows during the first eigth wk after calving, were 

negatively correlated with plasma concentrations of growth 

hormone and NEFA, and were positively correlated with 

plasma concentrations of glucose and insulin (Block et al., 

2001). Days from parturition to the nadir of leptin 

concentrations were directly associated with days to first 

ovulation, suggesting that a delay in recovery of leptin 

secretion may prolong postpartum anestrus (Kadokawa et al., 

2000). Thus, increased concentrations of leptin in plasma 

may stimulate an early return to reproductive activity in 

postpartum cows. Plane of nutrition affects leptin mRNA 

synthesis (Tsuchiya et al., 1998; Amstalden et al., 2000) 

and plasma concentrations of leptin in cattle and sheep 

(Ehrhardt et al., 2000; Marie et al., 2001). Nutritional 

management can be used to stimulate leptin secretion in 



vivo to test if increased concentrations of leptin have a 

key role in the resumption of ovulation in postpartum beef 

cows. Feed restriction, which is associated with decreased 

concentrations of leptin in plasma, up-regulates the 

expression of leptin receptor in the arcuate and 

ventromedial hypothalamic nuclei in ewes (Dyer et al., 

1997) possibly to stimulate feed intake. 

Summary 
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Endocrine functions that control energy metabolism 

preceding the first ovulation postpartum in primiparous 

cows are not completely defined. The roles of plasma 

concentrations of IGF-I and leptin during the 

reestablishment of ovarian activity should be investigated. 

Prepartum and postpartum nutrient intake may interact to 

differentially influence energy status, estrous activity, 

ovarian function and pregnancy rate of cows at the first 

estrus. Concentrations of steroids in follicular fluid 

should reflect steroidogenic capacity of preovulatory 

follicles immediately before the first ovulation. 

Therefore, the objectives of this research are: 1) to 

determine the effects of BCS at calving and postpartum 

nutrient intake on estrous behavior, ovarian function, 
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pregnancy rate at first estrus, and concentrations of IGF

I, leptin, NEFA, glucose, insulin, and thyroxine in 

primiparous beef cows; 2) to explore potential 

relationships between postpartum endocrine and reproductive 

functions, and 3) to determine the effect of nutrition on 

concentrations of steroids in follicular fluid aspirated at 

the first estrus and luteal function during the subsequent 

estrous cycle. 



CHAPTER III 

Influence of Body Condition at Calving and Postpartum 

Nutrition on Endocrine Function and Reproductive 

Performance of Primiparous Beef Cows 

ABSTRACT 

The influences of body condition score (BCS) at calving and 

postpartum nutrition on endocrine and ovarian function, and 

reproductive performance were determined by randomly 

allocating thin (BCS 4.4 ± 0.1) or moderate (BCS 5.5 ± 0.1) 

Angus x Hereford primiparous cows to receive either one of 

two nutritional treatments after calving. Cows were group

fed and targeted to gain 0.45 kg/d (M, n=l7) or 0.90 kg/d 

(H, n=l7) for the first (mean± SD) 71 ± 17 d postpartum. 

Then, all cows were fed the M diet until the first estrus. 

A replication (M, n=25; H, n=23) was used to determine 

pregnancy rate. Concentrations of IGF-I, leptin, insulin, 

glucose, NEFA, and thyroxine (T 4 ) were quantified in plasma 

samples collected weekly during treatment and during 7 wk 

before the first estrus. Estrous behavior was detected by 
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radiotelemetry and ovulation was determined using plasma 

progesterone. All cows were AI between 14 and 20 h after 

onset of estrus, and pregnancy status was determine at 35 
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to 55 d post-AI by ultrasonography. Cows that calved with a 

BCS of 4 or 5 had similar endocrine function and 

reproductive performance at the first estrus. During 

treatment, H cows gained BW and BCS (P < 0.01), and had 

greater (P < 0.05) concentrations of IGF-I, leptin, 

insulin, glucose, and T4 in plasma than M cows. However, 

during the 7 wk before the first estrus, plasma 

concentrations of IGF-I, leptin, insulin, glucose, NEFA, 

and T4 were not affected by time. Cows previously on the H 

treatment had a shorter (P < 0.01) interval to first 

postpartum estrus and ovulation, and a larger dominant 

follicle (P < 0.01) at first estrus, than M cows, but 

duration and intensity of estrus were not influenced by 

nutrient intake. Pregnancy rate from AI at the first estrus 

was greater (P < 0.03) for H (76%, n=38) than for M (57%, 

n=33) cows. In summary, postpartum nutrient intake, but not 

BCS (4 or 5), affected endocrine and reproductive function 

of primiparous beef cows. Increased nutrient intake after 

calving stimulated secretion of anabolic hormones, promoted 

fat tissue deposition during the early postpartum period, 

shortened the postpartum interval, and increased pregnancy 
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rate at the first estrus. Concentrations of IGF-I and 

leptin in plasma were constant during 7 wk before the first 

estrus, indicating that acute changes in these hormones are 

not limiting factors for resumption of ovarian function in 

primiparous beef cows. 

Key Words: Postpartum, Nutrition, IGF-I, Leptin, Fertility, 

Beef cows 

Introduction 

Optimal reproductive performance in beef cows is often 

limited by prolonged postpartum anestrous periods. Heifers 

bred to calve at 2-yr of age resume ovarian function 20 to 

40 d later than mature cows (Wiltbank, 1970). Stress of 

calving and the combined effects of growth and first 

lactation impose nutritional requirements that are often 

not fulfilled when cows graze low quality pastures. Thus, 

inadequate nutrient intake before (Bellows et al., 1982) or 

after calving (Grimard et al., 1995) has greater 

detrimental effects on postpartum reproduction in 

primiparous than in mature cows. 

Suckling (Williams, 1990; Stagg et al., 1998) and 

nutrition (Selk et al., 1988; Randel, 1990) are major 

regulators of the length of postpartum anestrous period. 
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Restricted nutrient intake prepartum results in thin cows 

at calving, a prolonged postpartum anestrous period, and 

less cows in estrus during the breeding season (Dunn and 

Kaltenbach, 1980; Richards et al., 1986; Spitzer et al., 

1995). Greater postpartum nutrient intake can enhance LH 

pulsatility and follicular growth (Perry et al., 1991a; 

Grimard et al., 1995), and effects of nutrition on 

reproduction may be more pronounced in thin cows than in 

cows with adequate BCS (Dunn and Kaltenbach, 1980; Richards 

et al., 1986; Spitzer et al., 1995). 

Metabolites and metabolic hormones could mediate the 

effects of nutrient intake on reproductive function 

(Keisler and Lucy, 1996, Wettemann and Bossis, 2000). In 

postpartum beef cows, the roles of plasma concentrations of 

IGF-I (Stagg et al., 1998, Bossis et al., 2000) and leptin 

(Nagatani et al., 1998, Cunningham et al., 1999), in 

regulation of resumption of ovulation are not established. 

Therefore, this study was designed to determine the effects 

of BCS at calving and postpartum nutrient intake on 

endocrine and ovarian function, and reproductive 

performance at the first postpartum estrus of primiparous 

suckled beef cows. 
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Materials and Methods 

Animalsr dietsr and treatments. Hereford and Hereford 

x Angus primiparous cows maintained on pasture were studied 

in two non-consecutive years (1998 = YEAR 1, n = 34; 2000 = 

YEAR 2, n = 49). During the last third of gestation, cows 

were supplemented with either 0.9 or 1.8 kg/d of a 40% CP 

soybean meal-based supplement, so that they would calve 

with a body condition score (BCS: 1 = emaciated; 9 = obese; 

Wagner et al., 1988) between 4 and 5. At calving, in 

February and March, cows were stratified by body condition 

and calving date and randomly assigned to one of two 

nutritional treatments for the first (mean± SD) 71 ± 17 d 

postpartum. Late calving cows were on nutritional 

treatments for at least 45 d before the end of the feeding 

period (May 19). Cows were group-fed and targeted to gain 

0.45 kg/d (Moderate= M) or 0.90 kg/d (High= H). During 

treatments, cows were offered prairie hay (4% CP) ad 

libitum. Moderate cows were supplemented with 2 kg/d of 38% 

CP range cubes whereas H cows had free access to a high

energy feed ( 1. 61 Meal NErn/kg DM, 0. 90 Meal NE9 /kg DM, and 

11.1% CP). The ration was composed (% DM) of rolled corn 

(39.7%), ground alfalfa pellets (35.5%), cottonseed hulls 

(22%), cane molasses (2.5%) and salt (0.3%). Cows on the 

high-energy feed consumed on average of 16 kg/head/d. After 



71 

the end of nutritional treatments, all cows were maintained 

in the same pasture and fed the M diet until detected in 

estrus. Body weight and BCS were determined monthly, from 

90 d before to 150 after parturition, after cows were 

denied access to feed and water for 16 h. The last BCS 

recorded prior to calving was assigned as BCS at calving. 

The first weight recorded after calving was used to 

determine BW changes during treatments. Calves were weighed 

within 48 h of birth and at 30-d intervals until weaning. 

Calves remained with cows and were denied access to feed 

and water for 16 h prior to weighing. 

Blood sampling and hormone and metabolite assays. 

Blood samples were obtained three (Monday, Wednesday, and 

Friday) or two (Tuesday and Thursday) times a week during 

YEAR 1 and YEAR 2, respectively. Samples were collected 

from 30 dafter calving to 3 wk after the first estrus or 

23 wk after calving for estrous and anestrous cows, 

respectively. Cows had access to feed prior to sampling. 

Caudal vein blood was collected in vacutainers (10 mL) 

containing EDTA (0.1 ml of a 15% solution). Tubes were 

immediately placed on ice, centrifuged (2500 x g for 15 

min) at 4 °C within 3 h after collection, and plasma was 



recovered and stored at -20 °C until hormones and 

metabolites were quantified. 
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Metabolic hormones and metabolites were quantified in 

samples collected during YEAR 1. Concentrations of insulin, 

IGF-I, leptin, thyroxine (T4), glucose, and NEFA were 

determined in weekly samples collected from 3 wk before the 

end of the nutritional treatment to the week of first 

estrus. Concentrations of insulin in plasma were quantified 

with a solid phase RIA for human insulin (Coat-A-Count 

Insulin kit, Diagnostic Products Corp., Los Angeles, CA; 

Bossis et al., 1999) using bovine pancreatic insulin for 

standards (Sigma Chemical Co., St. Louis, MO) and 0.2 mL 

sample volume. Intra- and interassay CV (n = 7 assays) were 

12 and 17%, respectively. Concentrations of IGF-I in plasma 

were quantified by RIA (Echternkamp et al., 1990) after 

acid-ethanol extraction (16 hat 4 °C). Intra- and inter

assay CV (n = 3 assays) were 11 and 14%, respectively. 

Concentrations of leptin in plasma were determined by RIA 

specific for ovine leptin and validated for use in bovine 

serum (Delavaud et al., 2000). Concentrations of T4 in 

plasma were quantified with a solid phase RIA for human T4 

(Coat-A-count Total T4 kit, Diagnostic Products Corp.). 

Sensitivity of the assay was 10 ng/mL of plasma and the 
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addition of 16 ng of T4 to 1 mL of plasma resulted in 95% 

recovery (n=4). When 5, 10, 15, 20, and 25 µL of bovine 

plasma were assayed, concentrations of T4 were parallel to 

those of the standard curve. The intraassay CV was 23%. 

Concentrations of glucose in plasma were determined with an 

enzymatic colorimetric procedure (no. 510, Sigma Chemical 

Co.) and intra- and interassay CV (n = 7 assays) were 3 and 

7%, respectively. Concentrations of NEFA in plasma were 

quantified with a modified (Mccutcheon and Bauman, 1986) 

colorimetric procedure (Wako-NEFA C, Wako Chemicals USA 

Inc., Dallas, TX). Inter- and intrassay CV (n = 7 assays) 

were 7 and 5.5%, respectively. Plasma concentrations of 

progesterone were quantified with a solid phase RIA (Coat

A-Count Progesterone kit, Diagnostic Products Corp.; 

Vizcarra et al., 1997). Ovulation at the first estrus was 

confirmed by at least two consecutive plasma samples with 

concentrations of progesterone greater than 0.5 ng/mL. 

Plasma concentrations of estradiol 17-~ were determined by 

RIA (Estradiol MAIA, Polymedco Inc., New York, NY) with 

modifications (Vizcarra et al., 1997). Estradiol 17-~ 

concentrations were quantified in plasma samples collected 

at 18 to 30 h prior to the onset of the first estrus 

followed by ovulation. 
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Estrous behavior, ovarian function, and reproductive 

performance. The number of mounts received by cows was 

continuously monitored using a radiotelimetric pressure

sensitive device (HeatWatch, DDx Inc., Denver, CO) attached 

to the rump of cows at 30d postpartum. Date, time, and 

duration of each mount received were recorded and used to 

calculate the total number of mounts received and duration 

of estrus for each cow. Onset of estrus was defined as the 

first of two mounts received within 4 h. The end of estrus 

was defined as the last mount received with a mount 4 h 

before and with no mount during the next 12 h. 

Concentrations of progesterone were used to determine the 

incidence of luteal activity before and after the first 

postpartum estrus during YEAR 1. Luteal phases were 

classified as normal if at least 5 consecutive plasma 

samples (or at least 10 consecutive days) had at least 0.5 

ng/mL of progesterone, otherwise they were classified as 

short luteal phases. Size of the dominant follicle (DF) was 

measured (YEAR 1 and 2), between 4 to 14 h after onset of 

estrus, by transrectal ultrasonography (Aloka 500-V 

ultrasound equipment with a 7.5-MHz probe; Corometrics 

Medical Systems, Wallingford, CT). Ovarian images were 

recorded on videotape. Size of the DF was the mean of the 

length and width of the largest follicle. Duration of 
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postpartum anestrus, anovulatory interval (PP!, YEAR 1 and 

2) was the number of days from calving to first estrus and 

ovulation. Cows that remained anovulatory and anestrus (H = 

1 vs M = 9) at 23 wk postpartum were assigned a PP! of 168 

d (1 wk after the end of blood sampling) and were included 

in the statistical analyses. All cows were artificially 

inseminated between 14 and 20 h after onset of estrus by a 

single technician using semen from one bull in each year. 

Pregnancy status was determine at 35 to 55 d post-AI by 

ultrasonography and confirmed by calving date. 

Statistical analyses. Changes in BCS and BW, number of 

mounts received, duration of estrus, PP!, and maximum 

diameter of DF were analyzed as a randomized complete block 

(year) design with a 2 x 2 treatment structure using a 

mixed model (PROC MIXED; Little et al., 1996) with SAS (SAS 

Inst. Inc., Cary, NC). Model included year as a random 

effect, BCS at calving (4 or 5), postpartum nutrition (Hor 

M), the first order interaction as fixed effects, and days 

on nutritional treatment as a covariable. All effects were 

tested with the pooled residual error term. Calf growth and 

weaning weights were analyzed adding calf sex and all 

interactions to the previous model. Weaning weights were 

adjusted to 205 d of age before analysis. Birth weights 

were analyzed using a mixed model that included year as a 
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random effect, and BCS at calving, postpartum nutrition, 

calf sex, and all possible interactions as fixed effects. 

Proestrus concentrations of estradiol were analyzed as a 

completely randomized design with nutritional treatment, 

time of sampling (18 or 30 h) prior to first estrus, and 

its interaction as fixed effects with the GLM procedure of 

SAS. 

Concentrations of metabolites and metabolic hormones 

across time postpartum were analyzed using generalized 

least squares and a mixed model for a randomized complete 

block (assay) design with repeated measures over the same 

experimental unit using the MIXED procedure of SAS. All 

samples for 2 or 3 cows per treatment were included in an 

assay, and samples were randomly distributed within assay. 

The statistical model included assay as a random effect and 

BCS at calving, PPN, week postpartum, and all first and 

second order interactions as fixed effects. Days on 

nutritional treatment were used as a covariable. Cow within 

BCS x nutritional treatment was used as error term to test 

treatment effects (BCS, nutritional treatment, and BCS x 

nutritional treatment) whereas the pooled residual was the 

error term to test the week effect and all interactions 

with week. Degrees of freedom for the pooled error term 

were calculated using Kenward-Roger's approximation. A 
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first order autoregressive function with lag equal to one 

was used to model the covariance structure for the repeated 

measures. If a significant treatment x week postpartum 

interaction was detected, simple effects of treatment were 

compared using the SLICE option of the LSMEANS statement of 

SAS. Pearson correlation coefficients (PROC CORR; SAS) were 

calculated to describe linear relationships among response 

variables. Logistic regression analysis was used to compare 

pregnancy rates. The model included year, BCS at calving, 

nutritional treatment, and all first order interactions as 

predictors,. and number of cows pregnant over those 

inseminated at first estrus as the dependent variable. The 

model was fitted using the GENMOD procedure of SAS with 

legit as a link function and assuming a binomial 

distribution for the error term. 

Results 

Body condition score, body weights, and calf 

performance. Prepartum feeding management was effective to 

achieve a 4 or 5 BCS at calving (P < 0.01, Table 1). Body 

condition score was similar (P = 0.60) for cows on Mor H 

diets at the beginning of postpartum treatments, and 

greater nutrient intake postpartum increased (P < 0.01) BCS 

at the end of feeding, independently (P = 0.64) of BCS at 
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calving. Cows on the M diet lost an average 0.26 BCS 

whereas cows on the H diet gained 0.45 of a BCS. Average 

body weight before calving did not differ (P = 0.80) among 

cows assigned to different postpartum nutritional 

treatments. Body weight changes after calving were similar 

to changes in BCS (Table 1). The effect of postpartum 

nutrition on BW change was independent (P = 0.27) of BCS at 

calving. Body condition score at calving did not influence 

(P = 0.97) change in BW during the feeding period, and H 

cows had a greater ADG during treatment than M cows (1.14 ± 

0.10 vs 0.35 ± 0.10 kg/d, respectively, P < 0.01). Calf 

birth weights (33.3 ± 1.6 kg) were not influenced by BCS at 

calving (Table 2). However, calves that suckled H cows were 

heavier (P < 0.01) at the end of feeding than M calves. 

Average daily gain was 0.25 kg/d greater (P < 0.01) for 

calves that suckled H cows compared with those that suckled 

M cows. Calf weight at the end of feeding was directly 

related to change in BW of the cow during the same time 

period (r = 0.56; P < 0.01). Calves weaned from H cows were 

10 kg heavier (P < 0.05) than those weaned from M cows. 

Endocrine function during and after nutritional 

treatments. Concentrations of IGF-I in plasma during 3 wk 

before and 3 wk after the end of nutritional treatment were 
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greater (P < 0.01) for H cows (29.8 ± 1.7 ng/mL) than M cows 

(20.2 ± 2.0 ng/mL; Figure lA). The end of nutritional 

treatment was an average of 9 wk (range: 4-12 wk) prior to 

first estrus. Neither BCS at calving (P = 0.26), week (P = 

0.61), nor treatment x week (P = 0.21) affected 

concentrations of IGF-I in plasma. 

There was a treatment x week effect (P < 0.01) for 

plasma concentrations of leptin, insulin, and glucose 

during the 3 wk before and 3 wk after treatment (Figure lB, 

lC, and lD, respectively). Cows on H treatment had greater 

concentrations of leptin, insulin and glucose compared with 

M cows during the last 3 wk of nutritional treatment. 

Concentrations of leptin, insulin, and glucose for H vs M 

cows during the last 3 wk of feeding averaged 4.97 ± 0.6 vs 

1.69 ± 0.7 ng/mL (P < 0.01, Figure lB); 1.56 ± 0.1 vs 0.97 ± 

0.1 ng/mL (P < 0.01, Figure lC); and 68.6 ± 2.0 vs 62.0 ± 

2.2 mg/dL (P < 0.05, Figure lD), respectively. 

Concentrations of leptin, and insulin were similar in Hand 

M cows during the first 3 wk after treatment when all cows 

were fed the M-diet. Concentrations of glucose were greater 

(P < 0.05) for H cows than for M cows at the first wk after 

treatment, thereafter concentrations of glucose were 

similar for Hand M cows. 
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There was a treatment x week effect (P < 0.01) on 

plasma concentrations of NEFA during the 3 wk before and 3 

wk after treatment (Figure lE). Concentrations of NEFA were 

similar for Hand M cows during treatment. However, 

concentrations of NEFA in plasma were greater (P < 0.01) 

for H than for M cows during the first 3 wk after the end 

of nutritional treatment (510 ± 30 vs 264 ± 30 µEq/mL, 

respectively). 

There was a treatment x week effect (P < 0.01) on 

concentrations of T4 in plasma during the last 3 wk before 

and 3 wk after nutritional treatment (Figure lF). During 

the 3 wk of treatment and the first wk after treatment, 

plasma concentrations of T4 were greater (P < 0.01) for H 

than for M cows (41.0 ± 2.3 vs 25.0 ± 2.4 ng/mL, 

respectively). However, concentrations of T4 were similar 

for Hand M cows during 2 and 3 wk after treatment. 

Partial correlation coefficients, adjusted for cow, 

for concentrations of hormones and metabolites during the 

last 3 wk of nutritional treatment are in Table 3. 

Concentrations of IGF-I were positively correlated with 

concentrations of leptin (P < 0.05), insulin (P < 0.01) and 

glucose (P < 0.01). Concentrations of leptin were 

positively correlated with concentrations of insulin (P < 



0.01), and glucose (P < 0.05). Concentrations of NEFA were 

not correlated with any of the hormones or metabolic 

compounds quantified. Concentrations of T4 were positively 
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(P < 0.01) correlated with concentrations of IGF-I, leptin, 

insulin, and glucose. 

Endocrine function before the first postpartum estrus. 

There was not a significant (P = 0.97) treatment x BCS at 

calving x week effect on concentrations of IGF-I in plasma 

during 7 wk before the first estrus. There was a 

nutritional treatment x BCS at calving effect (P < 0.03) on 

concentrations of IGF-I in plasma. Concentrations of IGF-I 

during the 7 wk prior to the first estrus did not differ (P 

> 0.60) between cows that calved with BCS 4 and were on M 

(24.9 ± 2.6 ng/mL) or H (23.3 ± 2.4 ng/mL) nutrition after 

calving, but concentrations of IGF-I during 7 wk prior to 

first estrus were greater (P < 0.01) for H (35.3 ± 2.3 

ng/mL) than for M cows (26.1 ± 2.1 ng/mL) when they calved 

with a BCS 5. Concentrations of IGF-I in plasma tended to 

vary (P < 0.06) with week before the first estrus, 

independently of BCS at calving (P = 0.48) and postpartum 

nutritional treatments (P = 0.12). Concentrations of IGF-I 

did not change (P = 0.45) during the last 4 wk before the 

first estrus (Figure 2A). 



Concentrations of leptin during 7 wk before the first 

estrus were not affected by treatment x BCS at calving x 

week (P = 0.29), treatment x week (P = 0.53), treatment x 

BCS at calving (P = 0.52), BCS at calving x week (P = 
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0.52), BCS at calving (1.65 ± 0.3 vs 2.33 ± 0.3 ng/mL, P = 

0.11, 4 vs 5, respectively), treatment (2.28 ± 0.3 vs 1.70 ± 

0.3 ng/mL, P = 0.18, H vs M, respectively), or week (P = 

0.12) before first estrus (Figure 2B). 

Concentrations of insulin (Figure 2C) and glucose 

(Figure 2D) during 7 wk before the first estrus were not 

affected by treatment x BCS at calving x week (P > 0.59), 

treatment x week (P > 0.35), BCS at calving x week (P > 

0.63), or treatment x BCS at calving (P > 0.25). Mean 

concentrations of insulin in plasma during 7 wk before 

first estrus were greater (P < 0.05) for cows with a BCS 5 

at calving (1.08 ± 0.08 ng/mL) than for those with a BCS 4 

(0.97 ± 0.08 ng/mL). Postpartum nutrition did not affect (P 

= 0.45) concentrations of insulin prior to estrus (1.01 ± 

0.08 ng/mL and 1.04 ± 0.08 ng/mL, for Mand H cows, 

respectively). Concentrations of glucose in plasma did not 

differ (P = 0.30) between cows that calved with BCS 4 or 5 

(61.5 ± 1.5 mg/dL and 62.5 ± 1.4 mg/dL, respectively). Cows 

that were previously on H nutrition (63.4 ± 1.4 mg/dL) had 



greater (P < 0.01) concentrations of glucose than those on 

M nutrition (60.6 ± 1.4 mg/dL). There was a tendency (P < 

0.08) for week postpartum to influence concentrations of 

insulin and glucose before the first estrus. 
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Concentrations of NEFA in plasma before first estrus 

were not affected by treatment x BCS at calving x week (P = 

0.28), treatment x BCS at calving (P = 0.95), BCS at 

calving x week (P = 0.76), and treatment x week (P = 0.15). 

Concentrations of NEFA in plasma varied (P < 0.05) in 

magnitude and direction with week before first estrus, but 

there was no distinct time trend (Figure 2E). 

Concentrations of NEFA in plasma prior to first estrus were 

not affected (P = 0.72) by BCS (268 ± 7 VS 265 ± 7 µEq/mL; 

BCS 4 vs 5, respectively). Mean concentrations of NEFA 

during 7 wk before first estrus were greater (P < 0.01) in 

H cows (293 ± 7 µEq/mL) than in M cows (240 ± 7 µEq/mL). 

Concentrations of T4 in plasma prior to first estrus 

were not affected by treatment x BCS at calving x week (P = 

0.53). Week (P = 0.78) and the first-order interactions of 

main effects with week did not affect (P > 0.25) 

concentrations of T4 in plasma prior to estrus (Figure 2F). 

There was a treatment x BCS at calving effect (P < 0.05) on 

concentrations of T4 before first estrus. When cows calved 



with BCS 4, plasma concentrations of T4 did not differ (P 

=0.23) during 7 wk before first estrus for cows that were 

on H (29.3 ± 2.1 ng/mL) or M (26.2 ± 2.0 ng/mL) nutrition 

after calving. When cows calved with BCS 5, plasma 

concentrations of T4 during 7 wk before first estrus were 

greater (P < 0.01) in H cows (37.6 ± 2.0 ng/mL) than in M 

COWS (26.8 ± 1.9 ng/mL). 
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Estrus, ovarian function and reproductive performance. 

Estrus, ovarian function, and reproductive performance were 

not affected (P > 0.20) by BCS at calving and BCS at 

calving x postpartum nutrition treatment, thus results are 

summarized for the postpartum nutrition main effect (Table 

4). The incidence of short luteal phases prior to first 

postpartum estrus was not influenced (P > 0.70) by 

postpartum nutrition. Eighty-seven percent of the cows had 

a transient increase of progesterone ~n plasma (~ 0.5 ng/mL 

for less than 10 d; maximum concentration= 1.60 ± 0.20 

ng/mL) within 2 to 4 d before the first estrus. After first 

estrus, all cows had normal luteal phases (progesterone~ 

0.5 ng/mL for at least 10 consecutive days). 

Characteristics of the first postpartum estrus were 

similar (P > 0.50) for Hand M (Table 4). Average duration 

of the first estrus was 5.6 ± 1.2 hand cows were mounted 
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16.7 ± 5.1 times. Concentrations of estradiol 17-P in plasma 

were not affected by time (P = 0.40) or treatment x time (P 

> 0.50) during 2 d before estrus, and were similar at 30 h 

(4.15 ± 0.41 pg/mL) and 18 h (4.78 ± 0.63 pg/mL) before 

first estrus. Averaged over time, concentrations of 

estradiol 17-p were not different (P > 0.25) for M (3.64 ± 

0.39 pg/mL) and H (4.29 ± 0.41 pg/mL) cows. Maximum diameter 

of the dominant follicle at the first estrus was larger (P 

< 0.01) for H cows than for M cows (Table 4). Mean 

concentration of estradiol 17-P in plasma at 18 to 30 h 

before estrus and maximum diameter of the dominant follicle 

at estrus were not correlated (r = 0.16, P = 0.40, n = 28). 

The interval from calving to first estrus and 

ovulation (postpartum anestrous interval) was shorter (P < 

0.01) for H than for M cows (Table 4). Only 24 % of M cows 

had ovulated and initiated a normal luteal phase before 80 

d postpartum compared with 41 % of H cows (P = 0.13). When 

anovulatory cows (M = 9 and H = 1) were assigned an 

ovulation date as one wk after the last sampling date, the 

length of the postpartum anestrous interval was 34 d longer 

for M cows compared with H cows. Pregnancy rate at the 

first estrus was 18.7 percent units greater (P < 0.03) for 

H than for M cows (Table 4). 
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Discussion 

Increased nutrient intake for approximately 70 dafter 

parturition increased BCS and BW of primiparous suckled 

beef cows that calved with a BCS of 4 or 5. In contrast, 

cows that had a moderate nutrient intake lost body energy 

reserves and weighed less than high cows at the end of 

nutritional treatment. High-energy diets fed after calving 

(Perry et al., 1991a; Stagg et al., 1995) or before puberty 

(Yelich et al., 1995) increase fat deposition in mature 

cows and growing heifers. Primiparous beef cows fed a high

compared with a moderate-energy diet postpartum partitioned 

a greater proportion of net energy (consumed) to grow 

maternal tissue (Lalman et al., 2000). Thus, high-energy 

diets after calving may increase fat and tissue deposition 

in primiparous suckled cows that calve with a thin or 

moderate BCS. 

Calf birth weights were not influenced by BCS at 

calving. Nutrient intake of first-calf cows during 

gestation may (Corah et al., 1975; Bellows and Short, 1978; 

Spitzer et al., 1995) or may not (Whittier et al., 1988b; 

Goehring et al., 1989; Wiley et al., 1991) influence birth 

weight of calves. Calf birth weights of primiparous cows 

with a BCS 5 were an average 1.5 kg heavier than those from 

cows calving with a BCS 4 (Spitzer et al., 1995). In the 



87 

present experiment, calves born from cows with a BCS 5 were 

only 0.5 kg heavier than those born from cows with BCS 4. 

Several environmental and genetic factors affect birth 

weight of calves (Holland and Odde, 1992), and may 

influence the effect of nutrient intake on birth weight. In 

addition, nutrient intake during gestation must be reduced 

drastically to reduce calf birth weight because thin cows 

have enhanced placental growth, which may alleviate or 

diminish some of the negative effects of reduced nutrient 

intake on fetal growth (Rasby et al., 1990). 

Preweaning and adjusted 205-d weaning weights of 

calves were not affected by BCS at calving, which is 

consistent with previous results with primiparous beef cows 

(Whittier et al., 1988b; DeRouen et al., 1994; Spitzer et 

al., 1995). Minimal differences in BCS at calving may not 

have a significant effect on milk production and growth 

rate of calves. However, calves reared by thin cows (BCS 3) 

at calving were lighter at 105 d postpartum (Houghton et 

al., 1990) or at weaning (Corah et al., 1975) than those 

reared by well-fed cows (BCS 5). 

Postpartum nutrient intake affected calf performance. 

Increased nutrient intake during lactation increased calf 

weight at the end of feeding and at 205-d of age. 

Postpartum energy restriction reduce calf weight at 70 d of 
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age (Perry et al., 1991a) as well as actual and adjusted 

205-d weaning weight (Richards et al., 1986; Spitzer et 

al., 1995). Increased energy intake during lactation 

increases daily milk production (Perry et al., 1991a; 

Marston et al., 1995; Lalman et al., 2000). In the present 

study, calves suckling cows on the high-energy diet were 

heavier at 70 d of age and at weaning. Increased energy 

intake probably increased milk production as well as body 

energy reserves in H cows. Milk yield and weaning weights 

are positively correlated in beef cattle (Totusek et al., 

1973; Marston et al., 1992). Alternatively, calves suckling 

H cows may have consumed some of the ration fed to cows, 

which could increase daily gain independently of the 

greater milk production of H cows. 

Amount of nutrient intake after calving influenced 

concentrations of IGF-I in plasma of primiparous lactating 

beef cows. This is consistent with previous studies in 

which concentrations of IGF-I in plasma were directly 

related with nutrient intake in heifers (Armstrong et al., 

1993; Yelich et al., 1996; Armstrong et al., 2001), 

primiparous (Lalman et al., 2000), and mature (Richards et 

al., 1991) beef cows. Reduced nutrient intake uncouples the 

GH-IGF-I axis (Thissen et al., 1994). Undernutrition 

increases GH secretion in cattle (Armstrong et al., 1993; 
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Bossis et al., 1999) whereas serum concentrations of IGF-I 

and hepatic IGF-I mRNA are decreased (Vandehaar et al., 

1995), probably due to an insulin-dependant down-regulation 

of the GH receptor (Thissen et al., 1994; Kobayashi et al., 

1999; Butler and Butler, 2001). In the present study, cows 

on moderate nutrition after calving lost BCS during the 

treatment period, which reflects an inadequate nutritional 

status and, probably, an uncoupled the GH-IGF-I axis. In 

contrast, cows on the high nutrient intake, gained BCS and 

weight, and had greater concentrations of IGF-I in plasma. 

The later occurred simultaneously with increased 

concentrations of insulin in plasma that may have enhanced 

the hepatic sensitivity to GH in H cows. This nutritionally 

induced increase in concentrations of IGF-I in plasma could 

have influenced, directly and/or indirectly, the 

reproductive function of H cows. 

Our results are the first to demonstrate that H 

nutrient intake after calving stimulated secretion of 

leptin in plasma of lactating beef cows. A positive 

association between nutrient intake and concentrations of 

leptin in plasma has been reported in sheep (Delavaud et 

al., 2000; Ehrhardt et al., 2000) and cattle (Ehrhardt et 

al., 2000; Delavaud et al., 2002). We determine an acute 

decrease in concentrations of leptin in H cows within the 



first week (4 ± 0.1 d) after nutritional treatment. 

Similarly, concentrations of leptin in plasma and in 

cerebrospinal fluid of sheep were influenced acutely and 

increased by 5 dafter a change from a low- to a high

energy diet (Blache et al., 2000). These increases were 

probably not linked to changes in BCS or BW because they 

occurred in a short period of time, and indicate that 

nutrient intake may affect secretion of leptin in plasma 

independently of BCS or BW. Similar concentr~tions of 

leptin in plasma of Hand M cows during the first 3 wk 

after treatment, when they were fed the M-diet, supports 

the notion that nutrient intake may exert a short-term 

regulation of leptin secretion without changes in body 

energy reserves. 
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Cows and heifers fasted for 48 h (Tsuchiya et al., 1998; 

Amstalden et al., 2000, 2002) or in negative energy balance 

during early lactation (Block et al., 2001), had decreased 

amounts of leptin mRNA in adipose tissue and concentrations 

of leptin in plasma. On the other hand, plasma 

concentrations of leptin are also highly correlated with 

adipocyte volume in non-lactating well-fed and underfed 

cows (Delavaud et al., 2002). Thus, concentrations of 

leptin in bovine plasma may depend on amount of adipose 



tissue in the long-term, but are influenced by changes in 

nutrient intake in the short-term. 
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Several metabolic compounds could mediate the effect 

of nutrient intake on plasma concentrations of leptin. In 

the current study, plasma concentrations of insulin and 

glucose were greater in primiparous cows that had a high 

compared with moderate nutrient intake after calving, which 

agrees with other reports (Vizcarra et al., 1998; Lalman et 

al., 2000). Insulin secretion is stimulated by propionate 

in ruminants (Harmon, 1992) and diets with greater amount 

of starch, such as the H diet, increase the proportion of 

propionate in plasma. Insulin is secreted in response to 

increased concentrations of glucose in plasma, probably as 

a consequence of an increase in propionic acid in rumen or 

from postruminal starch digestion. In the present study, 

concentrations of leptin, insulin, and glucose were 

positively correlated during the last 3 wk of nutritional 

treatments. Concentrations of leptin in plasma are directly 

related to those of insulin in dairy cows (Block et al., 

2001; Delavaud et al., 2002) and beef heifers (Amstalden et 

al., 2000, 2002). Insulin secretion in fasted heifers 

increased within 3 h of central infusion of leptin 

(Amstalden et al., 2002), and insulin increases the 

expression and secretion of leptin from bovine (Houseknecht 
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et al., 2000) and rat (Barr et al., 1997) adipose tissue in 

vitro. Leptin secretion in sheep did not respond to insulin 

administration for 2 h (Kauter et al., 2000). Insulin

induced secretion of leptin depends on uptake of glucose 

into rat adipocytes (Barr et al., 1997), indicating leptin 

secretion may be related to energy metabolism in the cell. 

An energy deficit in postpartum dairy cows (Block et al., 

2001) or, in primiparous beef cows in this study, reduced 

leptin and increased NEFA concentrations in plasma. Since 

leptin and NEFA are secreted into circulation from 

adipocytes, it is probable that secretion of leptin may be 

coupled to fat synthesis/degradation. Lipolysis and 

sensitivity to catecolamines are enhanced during early 

lactation in dairy cows (Ingvartsen and Andersen, 2000), 

and stimulation of ~-adrenergic receptors enhances 

triglycerides breakdown (Ferlay and Chilliard, 1999) and 

reduces concentrations of leptin in bovine plasma 

(Chilliard et al., 1998). Restricted energy intake 

increases concentrations of GH in plasma (Armstrong et al., 

1993; Bossis et al., 1999), and GH reduces the stimulatory 

effects of insulin on leptin secretion from bovine adipose 

tissue culture (Houseknecht et al., 2000). Lipolysis 

increases secretion of NEFA in plasma, which inhibited 

secretion of leptin from rat adipocytes (Shintani et al., 
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2000). Conversely, lipogenesis may stimulate leptin 

secretion because cows that had increased fat reserves in 

response to nutritional treatment also had increased 

concentrations of insulin, glucose, and leptin in plasma in 

this study. Our results provide evidence of a positive 

relationship between nutrient intake and secretion of 

leptin in postpartum beef cows. However, the specific roles 

of insulin, glucose and NEFA in modulating leptin secretion 

are unsolved. 

Greater nutrient intake post-partum (H cows) increased 

T4 and leptin concentrations in plasma, similar to the 

report recently for non-lactating cows (Delavaud et al., 

2002). Concentrations of T4 and leptin were positively 

associated during nutritional treatment. In agreement with 

this response, leptin administration increased pro-TSH gene 

expression (Legradi et al., 1997) and concentrations of T4 

(Ahima et al., 1996) in fasted rodents. Basal metabolic 

rate and energy expenditure are directly regulated by T4 . 

These results indicate that concentrations of leptin in 

plasma may be associated with rate of metabolism, increased 

secretion of anabolic hormones, and tissue accretion. 

Manipulation of dietary energy intake from 45 to 70 d 

after parturition improved the nutritional and metabolic 

status of primiparous suckled beef cows. However, only 24 % 
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of H cows resumed ovarian function before d 80 postpartum 

in Year 1. Lack of adequate pulsatile secretion of GnRH and 

LH is the major cause of postpartum anovulation in cows 

(Wettemann, 1980; Butler and Smith, 19B9; Short et al., 

1990). This indicates that the changes in metabolic status 

were not sufficient to override the negative influence of 

other factors on the GnRH pulse generator activity. Those 

factors probably were thin BCS at calving and suckling. 

Concentrations of IGF-I, leptin, insulin, glucose, 

NEFA, and T4 did not change during the 7 wk before first 

estrus in cows that were previously fed Hor M nutrient 

intake. In agreement with our results, concentrations of 

IGF-I in plasma did not change with time postpartum in Bos 

taurus cows (Spicer et al., 2002). However, plasma 

concentrations of IGF-I increased linearly during 75 d 

before first postpartum ovulation in beef cows suckled ad 

libitum or once daily (Stagg et al., 1998). Systemic 

concentrations of IGF-I in cows are directly influenced by 

nutrient intake (Bossis et al., 2000), BCS (Bishop et al., 

1994), and energy balance (Spicer et al., 1990). In the 

present study, Hand M cows differed in only 0.75 unit of a 

BCS at the end of feeding, and were on the same diet during 

the 7 wk before the first estrus. Perhaps both reasons may 
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explain why concentrations of IGF-I did not change prior to 

first estrus. 

Leptin possibly regulates reproductive function since 

it acts as a metabolic signal via the brain to control 

pulsatile secretion of LH (Nagatani et al., 1998; 

Cunningham et al., 1999). However, the effects of leptin on 

LH secretion may depend on the animal model used. Exogenous 

leptin prevented the fasting-induced decline in LH pulse 

frequency in rats and steroid-implanted wethers (Nagatani 

et al., 1998, 2000). Leptin also stimulated LH pulses in 

chronically-underfed sheep, but central infusion of leptin 

did not increase LH pulsatility in well-fed ewes (Henry et 

aJ ., 1999) and adequately fed cows (Amstalden et al., 

2002). These results suggest that leptin may have a role in 

naintaining LH secretion when the nutritional insult is 

severe. Minimal concentrations of leptin during the early 

postpartum period in dairy cows may promote feed intake and 

divert energy from nonprioritized functions, such as 

reproduction (Block et al., 2001). Days from parturition to 

the nadir of leptin concentrations were directly associated 

with days to first ovulation, indicating that a delay until 

leptin secretion increases may prolong postpartum anestrus 

in dairy cows (Kadokawa et al., 2000). However, leptin did 

not change after 3-4 wk postpartum in dairy cows (Kadokawa 
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et al., 2000; Block et al., 2001). Similarly, in the 

present study, concentrations of leptin in plasma did not 

change during 7 wk before the first postpartum estrus, 

indicating that leptin is not the primary signal that 

restores cyclic ovarian function in postpartum beef cows. 

Greater milk production and energy intake may be the cause 

of increased leptin in plasma before first ovulation in 

high-producing dairy cows (Kadokawa et al., 2000) but not 

in our study with beef cows. First ovulation occurred an 

average at 25 d and 110 d postpartum for the dairy and beef 

cows, respectively, which implies that feeding management 

and physiological status of cows prior to first ovulation 

were different between experiments. 

Concentrations of insulin and glucose in plasma were 

not influenced by time during 7 wk before first ovulation. 

Similarly, concentrations of insulin and glucose did not 

change during the last 3 follicular waves that preceded the 

resumption of ovulation during realimentation of 

nutritionally induced anestrous heifers (Bossis et al., 

2000). Infusions of insulin and glucose did not alter LH 

secretion in postpartum beef cows (Garmendia, 1986), and 

basal LH concentration and LH pulse frequency were similar 

for control and hypoglycemic cows (Rutter and Manns, 1988). 

Concentrations of insulin and glucose were not predictive 
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of the first luteal activity in primiparous postpartum beef 

cows (Vizcarra et al., 1998). These results indicate that 

the ovulatory process in beef cows may be initiated without 

significant changes in insulin and glucose concentrations 

during several weeks prior to ovulation. However, insulin 

may affect the time of first ovulation by LR-independent 

mechanisms. Insulin stimulates proliferation, and 

steroidogenesis of bovine follicular cells in vitro (Spicer 

and Echternkamp, 1995; Webb et al., 1999). Small increases 

in concentrations of insulin during the postpartum period 

may increase responsiveness of follicular cells to 

gonadotropins, enhancing maturation and estradiol 

production by the dominant follicle and ovulation (Beam and 

Butler, 1999). 

Increased concentrations of NEFA in plasma are 

indicative of lipid mobilization in cows during negative 

energy balance (Richards et al., 1989b; Staples and 

Thatcher, 1990; Bossis et al., 1999). In our study, mean 

plasma concentrations of NEFA were greater for H cows than 

for M cows during 7 wk before first estrus. The increased 

NEFA in H cows could be related to a greater nutrient 

intake and milk production since H cows weaned heavier 

calves, as has been reported previously for the same 

experimental paradigm (Vizcarra et al., 1998). Plasma NEFA 
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concentrations were negatively correlated with LH pulse 

frequency at 30 d postpartum in beef cows (Grimard et al., 

1995), but NEFA are not the only endocrine signal that 

changes when energy balance is negative. Moreover, plasma 

NEFA concentrations are probably not a direct signal for 

the resumption of ovarian function because: 1) lipid 

infusion that increased NEFA concentrations by 2-fold did 

not affect pulsatile secretion of LH in ovariectomized 

lambs (Estienne et al., 1990), 2) concentrations of NEFA in 

plasma did not predict the resumption of ovulation in 

postpartum primiparous cows (Vizcarra et al., 1998) and, 3) 

Concentrations of NEFA in plasma increased with time during 

realimentation of nutritionally induced anovulatory cows 

prior to resumption of ovulation (Bossis et al., 2000) 

Cows that calved with a BCS of 5 and received a H 

nutrient intake postpartum had greater concentrations of T4 

in plasma before first estrus, which probably reflected a 

greater metabolic rate associated with increased milk 

production or greater feed intake (Richards et al., 1995). 

However, plasma T4 did not change during 7 wk before first 

estrus. Thyroid hormones may regulate gonadal function in 

sheep (Webster et al., 1991) and deer (Shi and Barrell, 

1992), species that are seasonally polyestrus. In contrast, 

thyroid gland activity may not be a regulator of ovarian 



function in cows. Concentrations of T4 were at the nadir 

when nonlactating beef cows reached nutritionally induced 

anovulation, but concentrations of LH and T4 were not 

correlated (Richards et al., 1995). Hypothyroidism did not 

interfere with the expression of estrous behavior in 

ovariectomized nonlactating cows treated with estradiol 

benzoate, with or without progesterone (Stewart et al., 

1993). Induced hyper- or hypothyroidism did not alter 

follicular dynamics and corpus luteum function in cyclic 

cows (De Moraes et al., 1998). These results and ours 

support that concentrations of T4 in plasma may not be 

limiting ovarian function in beef cows. 
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The first ovulation that occurs after parturition 

usually is not preceded by estrous behavior and is followed 

by a short ovarian cycle prior to the first estrus and 

second ovulation (Murphy et al., 1990; Perry et al., 1991b; 

Werth et al., 1996). The current experiment is the first to 

determine that BCS at calving and postpartum nutrient 

intake do not influence the incidence of short luteal 

activity before the first estrus of primiparous beef cows. 

In agreement with other studies (Corah et al., 1974; Odde 

et al., 1980), length of the estrous cycle after first 

postpartum estrus usually is normal and not influenced by 



BCS at calving and postpartum weight gain (Looper, 1999; 

Lents et al., 2000). 

100 

Neither BCS at calving nor postpartum nutrition 

influenced estrous behavior at the first postpartum estrus. 

Duration of estrus and number of mounts received per estrus 

were highly variable, but comparable to other reports for 

mature lactating beef cows (Hurnik and King, 1987; Lents et 

al., 2000). In contrast, duration of estrus and number of 

mounts per estrus ranged from 14 to 17 hand 25 to 59 

mounts, respectively, for non-lactating beef cows after a 

synchronized estrus (Floyd, 2001; White et al., 2002). 

These results indicate that duration and intensity of 

estrous behavior may differ between cyclic cows and 

postpartum cows at the first estrus. Possible causes of 

these differences can not be inferred from our experimental 

design, but may involve cow age, management and 

environmeµtal factors, suckling stimulus and/or social 

factors. Estrous synchronization promotes a great number of 

cows in estrus simultaneously. Mounting activity and 

duration of estrus increase with the number of cows in 

estrus (Hurnik et al., 1975; Helmer and Britt, 1985; Floyd, 

2001). In contrast, resumption of estrus and ovulation in 

postpartum cows occurs during a prolonged time period, 

which reduces the number of cows in estrus at the same 
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time. Thus, fewer cows in estrus simultaneously may be 

related to the reduction in duration and mounts received in 

lactating cows at the first postpartum estrus compared with 

nonlactating cyclic cows. 

Similar reproductive performance for primiparous cows 

that calved with thin (BCS 4) or moderate (BCS 5) condition 

was not expected. Reproductive performance is reduced in 

thin mature and primiparous cows (Richards et al., 19B6; 

Wright et al., 1987; Spitzer et al., 1995). However, if 

cows were bred for a shorter period after calving than the 

one used in this study, an effect of BCS at calving on 

reproductive performance might have been observed. Since 

young cows have additional nutritional requirements for 

growth during lactation, spring calving primiparous cows 

should calve at BCS 6 to optimize reproductive performance 

(DeRouen et al., 1994; Spitzer et al., 1995). 

Increased nutrient intake after parturition shorted 

the interval from calving to first estrus and ovulation in 

primiparous cows. Greater nutrient intake postpartum has a 

positive (Wright et al., 1992; Stagg et al., 1995; Vizcarra 

et al., 1998) or no effect (Wright et al., 1987; Whittier 

et al., 1988a; Stagg et al., 1998) on duration of the 

postpartum anovulatory interval. Lack of consistency among 

studies may involve amount of energy intake, duration of 
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feeding period, BCS at calving, age of cows, etc. However, 

thin cows or primiparous cows at calving respond to 

increased postpartum nutrient intake with enhanced 

reproductive performance (Richards et al., 1986; Spitzer et 

al., 1995; Lalman et al., 2000), although reproductive 

performance may be still unacceptable. Length of the 

postpartum interval may depend on body fat reserves and 

energy intake during the postpartum period. If primiparous 

cows calve in thin condition and have restricted nutrient 

intake postpartum, resumption of ovulation will be delayed. 

The mechanisms underlying the effects of nutrition on 

reproductive performance are still unknown. In the present 

study, nutrient intake induced changes in plasma 

concentrations of IGF-I, leptin, insulin, glucose, NEFA, 

and T4, which have been proposed as mediators between 

nutrition, reproductive function, and fat deposition. Most 

changes in plasma constituents occurred about 50 to 70 d 

postpartum, the time that is coincident with maximal milk 

production in beef cows (NRC, 1996). Since suckling is a 

major inhibitor of pulsatile LH secretion in beef cows 

(Williams, 1990; Stagg et al., 1998), it is possible that 

it suppressed reproductive function during that time 

period. However, increased nutrition also induced fat 

deposition in H cows, which may be a prerequisite to 
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reestablish ovarian function in postpartum cows. Increased 

BCS is required to resume estrous cycles in nutritionally 

induced anestrous cows (Richards et al., 1989a) and heifers 

(Bossis et al., 2000), and body energy reserves influence 

the interval to ovulation after early weaning of beef cows 

(Bishop et al., 1994). Thus, fat reserves may influence the 

resumption of ovarian function and could influence the 

inhibitory effects of suckling on LH secretion. Amount of 

fat reserves could be the reason why H-cows resumed ovarian 

function 20 to 30 d earlier than M cows. However, the 

signals that link energy reserves with secretion of GnRH-LH 

are still under intensive investigation. Concentrations of 

leptin in plasma are linearly related to the amount of body 

fat in humans (Considine et al., 1996; Ostlund et al., 

1996), rodents (Maffei et al., 1995; Schneider et al., 

2000), and probably in ruminants (Blache et al., 2000; 

Delavaud et al., 2000; Ehrhardt et al., 2000), and they can 

act at brain centers that control GnRH secretion 

(Cunningham et al., 1999). However, our results indicate 

that leptin may not be a major factor that controls LH 

secretion in postpartum beef cows because leptin 

concentrations did not change during 7 wk preceding the 

first ovulation. Another possibility is that increased 

plasma concentrations of leptin in H cows during increased 



nutrient intake were sufficient to permit the onset of 

ovarian function, but other required signal(s) were not 

adequate to initiate ovulation or inhibitory signals were 

present. 
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Increased energy intake after parturition enhanced 

pregnancy rate at the first postpartum estrus. This result 

confirms what was suggested in previous reports (Wiltbank 

et al., 1964; Richards et al., 1986; Randel, 1990). Hill et 

al. (1970) suggested that fertilization failure, not early 

embryo mortality, is the cause of depressed conception 

rates in underfed heifers. Conversely, Spitzer et al. 

(1978) suggested that conception rates of energy restricted 

heifers are reduced by embryo mortality after 4 dafter 

mating. Body condition score at the time of breeding 

(Humblot et al., 1996) or at time of oocyte recovery 

(Snijders et al., 2000) were positively related to 

pregnancy rate and embryo development in vitro, 

respectively. Bovine oocytes may acquire the ability to 

complete nuclear maturation when follicular diameter is 

approximately 3 mm (Fair et al., 1995). Bovine follicles 

could require 35 d to growth from 0.4 mm to 3.7 mm and 7 d 

more to attain preovulatory size (Lussier et al., 1987). 

Thus, any factor that affects follicular growth during that 

time period could also interfere with normal oocyte 
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maturation, and compromise subsequent embryo development. 

In the current study, increased nutrient intake induced 

endocrine and metabolic changes during 50 to 70 d 

postpartum, that might have acted directly on the ovary to 

influence fertility of H cows at the first estrus. 

Undernutrition during the early postpartum period may 

influence preantral follicles gene expression, resulting in 

abnormal ovulatory follicles that could produce low quality 

oocytes and/or form corpora lutea with abnormal function 

(Britt, 1995). 

In summary, increased energy intake after calving 

stimulated secretion of anabolic hormones during the first 

3 mo of lactation. Concomitantly, primiparous cows that 

calved with a thin or moderate body condition increased fat 

tissue deposition and, probably, milk production, as 

reflected by increased growth rate of the calves. However, 

resumption of ovarian function was limited during the first 

3 mo after calving. Cows that previously had a high 

nutrient intake postpartum not only resumed ovarian 

activity early, but also had a greater pregnancy rate from 

AI at the first estrus. Although concentrations of IGF-I 

and leptin in plasma were greater in H cows during 

consumption of a high nutrient intake, concentrations were 

similar for Hand M cows during 7 wk before the first 
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estrus. This indicates that plasma concentrations of IGF-I 

and leptin may not limiting factors, or were not the only 

factors, that control the resumption of ovarian function in 

primiparous beef cows. Differences in endocrine function or 

metabolic signals during the first 3 mo after calving could 

have influenced ovarian activity and fertility at the first 

postpartum estrus. 

Implications 

Reproductive performance of primiparous cows that 

calve with thin or moderate body condition can be increased 

by feeding a high-energy supplement after calving. Cows 

that maintain or lose body condition during lactation have 

a prolonged interval from calving to estrus, are less 

fertile, and produce lighter calves at weaning. Estrus 

detection should be intensified in postpartum cows due to 

the short duration of estrus period and less mounts 

received. Concentrations of IGF-I, leptin, insulin, 

glucose, NEFA, or thyroxine in blood may not individually 

signal the onset of postpartum ovarian function but may act 

in concert with others factors to signal the adequacy of 

nutrients. Additional research is necessary to elucidate 

the mechanism(s) that control the postpartum anestrous 

interval to maximize reproductive efficiency in beef 

cattle. 



Table 1. Effects of body condition scorea (BCS) at calving and postpartum 
nutrition (PPN) on change in BCS and body weight (BW) of primiparous 
lactating beef cows 

Treatmentb P-value 

Item 4-M 4-H 5-M 5-H SE BCSCC PPN 

Cows, no. 

BCS at calving 

BCS at the end of 
feeding 

Change in BCS 

Precalving BW, kg 

BW at the end of 
feeding, kg 

ADG during 
feeding, kg 

14 

4.4 

15 

4.4 

28 

5.1 

26 

5.1 0.06 0.01 

4.3 5.0 4.6 5.4 0.15 0.01 

-0.1 0.6 -0.5 0.3 0.09 0.01 

420 424 406 434 22 0.05 

370 440 390 456 14 0.07 

0.32 1. 20 0.37 1.09 0.11 0.67 

al= emaciated and 9 = obese (Wagner et al., 1988). 

0.60 

0.01 

0.01 

0.80 

0.01 

0.01 

INTct 

0.63 

0.64 

0.34 

0.13 

0.85 

0.33 

b4-M = BCS 4-Moderate, 4-H = BCS 4-High, 5-M = BCS 5-Moderate, 5-H 
cBCSC = body condition score at calving. 

BCS 5-High. 

ctINT = interaction between BCSC and PPN. 

I--' 
0 
--l 



Table 2. Effects of body condition scorea (BCS) at calving and postpartum 
nutrition (PPN) on calf performance 

Treatmentb P-value 

Item 4-M 4-H 5-M 5-H SE BCSCC PPN 

Calves, no. 14 15 28 26 

Birth wt, kg 33.6 32.8 33.1 34.2 1.2 0.60 0.82 

Weight at the 
end of feeding, kg 83.0 101. 0 82.7 93.7 9 0.17 0.01 

Change in wt, kg 50 68 49 60 8 0.13 0.01 

Weight at 205-d, kg 174 185 174 183 17 0.83 0.05 

al= emaciated and 9 = obese (Wagner et al. , 1988). 

INTct 

0.22 

0.34 

0.20 

0.77 

b4-M = BCS 4-Moderate, 4-H = BCS 4-High, 5-M = BCS 5-Moderate, 5-H = BCS 5-High. 
cBCSC = body condition score at calving. 
ctINT = interaction between BCSC and PPN. 

I-' 
0 
a:, 
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Table 3. Partial correlation coefficients, adjusted for cow, 
among plasma concentrations of insulin-like growth factor-I (IGF
I), leptin (LEP), insulin (INS), glucose (GLU), nonesterified 
fatty acids (NEFA), and thyroxine (T4) of primiparous beef cows 
(n = 30) during the last 3 weeks of nutritional treatment 

Variable LEPa INSb GLU NEFA 

IGF-I 0.29* 0.55** 0.50** -0.17 

LEP 0.43** 0.27* 0.12 

INS 0.45** 0.02 

GLU 0.03 

NEFA 
a Correlations involving LEP or IGF-I based on n 68. 
b Correlations do not involve LEP or IGF-I based on n = 90. 
*P < 0.05; **P < 0.01 

T4 

0.53** 

0.49** 

0.60** 

0.68** 

0.09 
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Table 4. Influences of postpartum nutrition on estrous behavior, 
ovarian function, and reproductive performance at the first 
estrus of primiparous beef cows 

Postpartum nutrition 

Item Moderate High SE P-value 

Cows, no. 

Short LAa, % 

Duration of estrus, h 

Mounts received, no. 

Diameter of DFb, mm 

Duration of PPic, d 

Pregnancy rate, % 

Year 1 

Year 2 

33 

87 

5.5 

15.7 

13.5 

120 

80 (15)d 

39 (18) 

38 

88 

5.6 

17.8 

14.8 

100 

100 (16) 

59 (22) 

1. 2 

5.1 

0.3 

7.1 

0.74 

0.88 

0.54 

0.01 

0.01 

Both years 57.6 76.3 0.03 
aLuteal activity prior to first estrus based on Year 1 data. 
bDominant follicle. 
cPostpartum anestrous interval. 
ctNumber of cows inseminated. 
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Figure 1. Least squares mean concentrations of IGF-I (A), leptin 
(B), insulin (C), glucose (D), NEFA (E), and thyroxine (F) in 
plasma during 3 weeks before and 3 weeks after the end of 
nutritional treatment (High, n = 15; Moderate, n = 15) of 
primiparous lactating beef cows. * Treatment effect (P < 0.05). 
** Treatment effect (P < 0.01). 
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Figure 2. Least squares mean concentrations of IGF-I (A), leptin 
(B), insulin (C), glucose (D), NEFA (E), and thyroxine (F) in 
plasma during 7 weeks before the first estrus of primiparous 
lactating beef cows previously fed a High (n = 15) or a Moderate 
(n = 15) energy diet after calving. In panel A and F, lines with 
solid or open triangles represent cows that calved with body 
condition score 5 or 4, respectively. 
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CHAPTER IV 

Effect of Nutrient Intake on Steroid Concentrations in the 

Dominant Follicle at First Postpartum Estrus of Beef Cows 

ABSTRACT 

Angus x Hereford cows maintained on pasture (n = 12; BW = 

423 ± 2 kg) were used to determine if postpartum nutrient 

intake alters concentrations of steroids in follicular 

fluid (FFL) of dominant follicles (DF) at the first 

postpartum estrus. At calving, cows were stratified by body 

condition score (BCS = 4.0 ± 0.1) and calving date and 

randomly allotted to gain 0.45 kg/d (M; n = 6) or 0.90 kg/d 

(H; n = 6) for the first 65 ± 5 d postpartum. Onset of 

estrus was defined as the first of two mounts detected 

within 4 h using the Heatwatch system. At 4 to 14 h after 

onset of estrus, FFL from DF was aspirated using an 

ultrasound-guided needle. Concentrations of estradiol (E2), 

progesterone (P 4 ), and androstenedione (A4 ) in FFL were 

quantified by RIA. First estrus occurred at 78 ± 7 dafter 

calving. Concentrations of E2, P4 , and A4 in FFL from DF 
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after onset of first estrus were not affected (P > 0.18) by 

nutrient intake. To determine if aspiration of the DF at 

estrus affects concentrations of P4 in plasma during the 

subsequent estrous cycle, an additional group of Angus x 

Hereford nonaspirated cows (n = 28; BW = 401 ± 1 kg; BCS = 

4.6 ± 0.01) was used as a control. After the first 

postpartum estrus, blood samples were collected daily or 

once a week for aspirated or control cows, respectively. 

Both groups of cows were fed to gain 0.45 kg/d (M diet) 

from the first estrus until the next estrus or 24 d later. 

From d 2 to d 10 of the subsequent estrous cycle, 

concentrations of P4 in plasma increased (P < 0.01) at a 

greater rate per d (0.71 ng/mL/d) in control cows than in 

aspirated cows (0.48 ng/mL/d). In conclusion, nutrient 

intake during 65 dafter calving did not alter 

concentrations of steroids in FFL after first estrus (78 ± 7 

d postpartum), and aspiration of the preovulatory DF 

reduced secretion of progesterone during the subsequent 

estrous cycle. 

Key Words: Nutrition, Dominant follicle, Aspiration, 

Estradiol, Beef cows 
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Introduction 

Length of the postpartum anovulatory period in beef 

cows is affected by body condition score (BCS) at calving 

(Selk et al., 1988) and nutrient intake after calving (Dunn 

and Kaltenbach, 1980). Restricted nutrient intake reduces 

the diameter and growth rate of dominant follicles (DF) in 

cyclic (Murphy et al., 1991), nutritional anestrous (Bossis 

et al., 1999), and postpartum (Grimard et al., 1995; Lents 

et al., 2000) beef cows. However, it has not been 

determined if alterations in nutrient intake affect 

steroidogenic capacity of DF at first postpartum estrus. 

Ultrasound-guided transvaginal follicular aspiration 

(Pieterse et al., 1988) is a technique mainly developed to 

harvest oocytes in vivo and can be used to sample 

follicular fluid from cows during follicular growth. Thus, 

the objectives of this study were: 1) to determine if 

alterations in nutrient intake after calving can influence 

concentrations of estradiol, progesterone, and 

androstenedione in follicular fluid aspirated from the DF 

at the first postpartum estrus, and 2) to determine if 

aspiration of DF at estrus influences plasma concentrations 

of progesterone and duration of the subsequent estrous 

cycle. 
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Materials and Methods 

Animals, treatments and follicular aspiration. Angus 

x Hereford 3-yr old cows (n = 12, BW = 423 ± 2 kg) were 

maintained on pasture during gestation. At calving (March 1 

± 3 d), cows were stratified by body condition score (BCS = 

4.0 ± 0.07, 1: emaciated, 9:obese; Wagner et al., 1988) and 

calving date and randomly allotted to moderate (M) or high 

(H) nutrient intake for the first 65 ± 5 d postpartum. 

During treatments, all cows were maintained on dormant or 

early spring native pasture and had prairie hay (4% CP) ad 

libitum. Cows on the M treatment were supplemented with 2 

kg/d of 38% CP range cubes, whereas H cows had free access 

to a high-energy diet (1.61 Meal NEm/kg DM, 0.90 Meal NE9 /kg 

DM, and 11.1% CP). The diet was composed (% DM) of rolled 

corn (39.7%), ground alfalfa pellets (35.5%), cottonseed 

hulls (22%), cane molasses (2.5%) and salt (0.3%). Body 

weight and BCS were determined monthly, from calving until 

the end of treatment, after cows were denied access to feed 

and water for 16 h. At 30 d postpartum, a radiotelimetric 

pressure-sensitive device (Heatwatch, DDx Inc., Denver, CO) 

was attached to the rump of each cow to monitor mounts 

received. Onset of estrus was defined as the first of two 
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mounts detected within 4 h. At 4 to 14 h after the onset of 

the first postpartum estrus, the DF was measured by 

ultrasonography and the FFL was aspirated using an 

ultrasound-guided needle via a vaginal approach (Pieterse 

et al., 1988). A real-time ultrasound scanner (Aloka 500-V; 

Corometrics Medical Systems, Wallingford, CT) equipped with 

a puncture line, a 5-MHz curved probe, and a needle guide 

were used. Briefly, the Heatwatch transmitter was removed, 

and epidiural anesthesia was induced with 5 mL of 2% 

lidocaine. The perineal region was disinfected, and an 18 

G, 55 cm needle (Cook Veterinary Products, Spencer,. IN) was 

inserted into the needle guide to puncture the vaginal wall 

and the DF. Follicular content was aspirated by vacuum into 

a 5-mL syringe attached to the aspiration needle. 

Immediately after collection, FFL samples were transferred 

to a 12-mL centrifuge tube, cooled on ice, and transported 

to the lab within 1 h. At the lab, samples were centrifuged 

at 4 °C (2000 g for 10 min), FFL was removed, and stored at 

-20 °C in cryogenic vials for steroid analysis. For 

technical reasons, FFL were not collected from 4 cows (2 

cows per treatment). 
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Management of cows and blood sampling after follicular 

aspiration. After follicular aspiration, the Heatwatch 

transmitter was replaced on the rump of each cow. Then cows 

were maintained in a pen (25 x 30 m) with at least two 

other cows for estrous detection. Daily blood samples were 

collected by tail-vein puncture into vacutainers (10 mL) 

with EDTA (0.1 mL of a 15% solution), from the day of 

estrus (d 0) until the next estrus or d 24. To determine if 

aspiration of DF at the first postpartum estrus affects 

concentrations of progesterone during the subsequent 

estrous cycle, an additional group of Angus x Hereford 2-yr 

old cows (n = 28; BW = 401 ± 1 kg; BCS = 4.6 ± 0.01) was 

used as a control (non-follicular aspiration). Control cows 

were bled once a wk after the first estrus detected by 

Heatwatch. Aspirated and non-aspirated cows were fed the M

diet from first estrus until the end of blood sampling. 

Cows were AI between 14 to 20 h after onset of next estrus. 

Hormone assays. Concentrations of androstenedione in 

FFL were determined in one assay using a solid-phase RIA 

(ICN Pharmaceuticals, Inc., Costa Mesa, CA) as previously 

described (Stewart et al., 1996). The intraassay CV was 9%. 

Concentrations of estradiol in FFL were quantified in one 

assay by RIA as previously described (Spicer and Enright, 
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1991). The intraassay CV was 11%. Plasma concentrations of 

estradiol 17-~ were determined in one assay by RIA 

(Estradiol MAIA, Polymedco Inc., New York, NY) with 

modifications (Vizcarra et al., 1997). The intraassay CV 

was 15%. Concentrations of progesterone in FFL were 

quantified in one assay by RIA as previously described 

(Spicer and Enright, 1991). The intraassay CV was 8%. 

Concentrations of progesterone in plasma were quantified 

using a solid-phase RIA (Coat-A-Count Progesterone kit, 

Diagnostic Products Corp.; Vizcarra et al., 1997). Intra

and interassay CV (n=2) were 4 and 8%, respectively. 

Statistical analyses. Concentrations of steroids in 

FFL were analyzed with the MIXED procedure of SAS (SAS 

Inst. Inc., Cary, NC), using a one-way ANOVA with nutrition 

as the main effect. When treatment means had heterogeneous 

variance, Satterthwaite's approximation was used for 

calculation of the effective degrees of freedom for the 

error term (Steel et al., 1997). The effect of follicular 

aspiration on plasma concentrations of progesterone was 

analyzed from d 2 to d 10 of the subsequent estrous cycle 

to avoid differences in luteal function between pregnant 

(n=15) and nonpregnant (n=13) control cows. Polynomial 

response curves, up to the fourth order, were fitted to 
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describe secretion of progesterone through day of the cycle 

in treated (ASP) and control (CON) cows. Linear equations 

best described secretion of progesterone in ASP and CON 

cows, so concentrations of progesterone were analyzed with 

a MIXED model that included treatment and day(treatment) as 

fixed effects, and assay (n=2) and cow(treatment) as random 

effects. The model was fitted without an overall intercept, 

thus, the solutions for the treatment and day(treatment) 

effects were the individual intercepts and slopes, 

respectively, for the linear regression of concentrations 

of progesterone on day of the cycle. The ESTIMATE option of 

SAS was used to determine if intercepts and slopes were 

different between treatments. 

Results 

Body condition score and postpartum interval. 

Nutritional management was effective to increase BCS of H 

cows at the end of feeding. Cows on the H diet gained (P < 

0.01) 0.75 ± 0.14 unit of a BCS whereas cows on the M diet 

gained 0.25 ± 0.14. Postpartum interval was not different (P 

= 0.35) for H (85 ± 10 d) and M cows (71 ± 10 d). Aspiration 

of the DF occurred during the last two wk of nutritional 
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treatment in 75% (3 cows per each treatment) of cows. For 

the other two cows, the DF was aspirated 20 (M cow) and 48 

(H cow) dafter the end of nutritional treatment. 

Size of dominant follicle and concentrations of 

steroids in follicular fluid. Maximum diameter of the DF at 

estrus immediately before follicular aspiration did not 

differ (P = 0.52) between treatments (16.6 ± 2.6 vs 13.5 ± 

2.6 mm; H vs M cows, respectively). Concentrations of 

estradiol, progesterone, and androstenedione in follicular 

fluid aspirated from the DF after the onset of the first 

postpartum estrus were not affected (P > 0.18) by nutrient 

intake (Table 1). Mean concentrations of estradiol, 

progesterone, and androstenedione at 10.0 ± 1.7 h after 

estrus were 85.5 ± 48.5 ng/mL, 237 ± 54 ng/mL, and 5.7 ± 1.8 

ng/mL, respectively. The ratio of estradiol:progesterone in 

FFL was similar (P = 0.65) for Hand M cows. Concentrations 

of estradiol in plasma collected immediately before 

follicular aspiration were not influenced by nutritional 

treatment (0.86 vs 1.45 pg/mL, H vs M, respectively, P = 

0.23). 

Luteal function after follicular aspiration. 

Aspiration of the DF at the first postpartum estrus 
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affected concentrations of progesterone in plasma from d 2 

to d 10 of the subsequent estrous cycle (Figure 1). Mean 

concentrations of progesterone in plasma increased (P < 

0.01) at a greater rate per d (0.71 ng/mL/d) in CON-cows 

than in ASP-cows (0.48 ng/mL/d). Seventy-five percent (6/8) 

of the ASP-cows had an inter-estrus interval of 19 ± 1 d 

whereas two ASP-cows were not detected in estrus by d 24 

after aspiration of the DF. Pregnancy rate after a single 

AI was 100% for ASP-cows detected in estrus (n = 6) within 

24 d of aspiration of the DF. 

Discussion 

Concentrations of estradiol, progesterone, and 

androstenedione in follicular fluid of the DF at the first 

estrus were similar for suckled cows fed Hor M nutrient 

intake postpartum. Growth of bovine ovulatory follicles is 

influenced by nutrient intake (Murphy et al., 1991; Grimard 

et al., 1995; Bossis et al., 1999; Ciccioli and Wettemann, 

2000), but dietary effects on steroidogenic capacity of DF 

have not yet been established. Concentrations of estradiol 

in FFL of large follicles decrease with short-term fasting 

(Spicer et al., 1992), but they were similar for heifers 

fed 1.8% or 0.7% of BW in dry matter per day during 10 wk 
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(Spicer et al., 1991). Estradiol release into culture 

medium was similar for individual large follicles collected 

from nonlactating beef cows fed 130 or 65% of NRC 

requirements for 80 d (Staigmiller et al., 1982). Estradiol 

production of bovine granulosa cells from small follicles, 

but not from medium size follicles, was increased by a 

greater dietary intake (Armstrong et al., 2002). Rate of 

gain during realimentation of nutritional-induced anestrous 

cows had no effect on peripheral concentrations of 

estradiol during the follicular wave that preceded the 

first ovulation (Bossis et al., 2000). These results 

indicate that postpartum nutrition may not be associated 

with a greater production of estradiol by the DF at the 

first estrus. However, the prolonged postpartum interval in 

cows with low body condition score at calving may be due to 

reduced capacity to convert androgens to estradiol in 

estrogen-active follicles (Prado et al., 1990). Elucidation 

of this hypothesis requires investigating the effect of 

nutrient intake on aromatase activity in follicles 

collected at different times during the postpartum period. 

The time of FFL aspiration relative to follicular 

growth and the ovulatory surge may have influenced 

concentrations of steroids in FFL. Onset of estrus occurs 
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concurrently with the preovulatory surge of LH in the cow 

(Swanson and Hafs, 1971; Chenault et al., 1975). Secretion 

of estradiol from the largest follicle in vitro decreases 

rapidly within 2 h after the LH surge (Staigmiller et al., 

1982). Amounts of P450 17a-hydroxylase and P450 aromatase 

mRNA in follicular cells, and concentrations of estradiol 

in FFL decrease in preovulatory bovine follicles within 6 h 

after the gonadotropin surge (Voss and Fortune, 1993; Komar 

et al., 2001). In the present study, follicular fluid was 

aspirated from the DF an average 10 h after onset of 

estrus. Concentrations of progesterone were greater and 

concentrations of estradiol and androstenedione were less 

than those previously observed in our lab for FFL collected 

from DF not exposed to the LH surge (Stewart et al., 1996). 

For instance, concentrations of progesterone, estradiol, 

and androstenedione in FFL in our study were 423%, 55%, and 

4%, respectively, of those determined from DF of the first 

follicular wave in lactating dairy cows (Stewart et al., 

1996). These results indicate that our samples were 

collected when granulosa cells of DF had been luteinized, 

so the steroidogenic pathways had changed from estradiol to 

progesterone biosynthesis. In the present study, ratios of 

estradiol to progesterone in FFL of all follicles were less 
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than one, which also indicates that DF had become estrogen

inactive (Ireland and Roche, 1982). Therefore, we can not 

evaluate the effect of nutrient intake on estradiol 

synthesis in the DF at the first postpartum estrus because 

our samples were collected after DF became estrogen

inactive. 

Aspiration of the DF after onset of estrus caused 

plasma concentrations of progesterone to increase at a 

lower daily rate from d 2 to d 10 of the subsequent estrous 

cycle. Previously, concentrations of progesterone in plasma 

were not affected by aspiration of the DF during early, 

mid, and late luteal phases in nonpregnant dairy cows 

(Amiridis et al., 1999), but in that experiment the corpus 

luteum had been formed before DF aspiration, which differs 

with the present study. Concentrations of progesterone in 

plasma depend on the balance between progesterone secretion 

by luteal tissue and metabolism of progesterone by the 

liver. Follicular aspiration probably decreased 

concentrations of progesterone in plasma by altering luteal 

secretion. Corpora lutea of domestic ruminants include two 

types of steroidogenic cells; small luteal cells and large 

luteal cells (Farin et al., 1986; Hansel et al., 1991). 

Large luteal cells are derived from granulosa cells whereas 



126 

small luteal cells are derived from the theca interna 

(Alila and Hansel, 1984). In vitro, both cell types produce 

progesterone, and production of progesterone is regulated 

differently by each cell type (Wiltbank, 1994). Large 

luteal cells produce about 80% of the progesterone secreted 

by the CL in vivo (Niswender et al., 1985). Apart from 

collection of follicular fluid, aspiration also removes the 

oocyte-cumulus complex and some mural granulosa cells. 

Probably, the number of granulosa cells available to 

differentiate into large luteal cells is less in the 

follicular wall after aspiration. Thus, the corpus luteum 

originating from aspirated follicles may secrete less 

progesterone. 

The effect of aspiration of DF on duration of estrous 

cycles in cows is not established. Most studies have 

maximized the rate of oocyte recovery with long-term 

follicular aspiration, which alters ovarian and endocrine 

function and interferes with normal estrous cycles (Carlin 

et al., 1999). Ablation of the preovulatory DF at the first 

postpartum estrus did not alter length of the subsequent 

cycle. This is an expected result since the biochemical 

events associated with follicular luteinization and 

ovulation had already occurred and thus were not altered by 
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follicular aspiration. Ablation of the DF occurred about 10 

h after the onset of estrus and the LH surge. The process 

of luteinization is triggered by the preovulatory LH surge 

(Murphy, 2000), indicating that development of corpora 

lutea had started when DF were aspirated. Ablation of the 

preovulatory DF 10 h after estrus could be similar to a 

premature ovulation which would have been 21 h earlier than 

normal ovulation in beef cows (White et al., 2002). 

Although progesterone concentrations were less after 

follicular aspiration, they were sufficient to allow normal 

estrous cycles. The 19 d estrous cycles observed in this 

study are considered within the normal range in cows 

(Cupps, 1991; Senger, 1997). Aspiration of DF during early, 

mid, or late luteal phase did not affect length of estrous 

cycles (Amiridis et al., 1999). Fertility after a single AI 

was 100% for the limited number of cows that were detected 

in estrus after aspiration, even though plasma 

concentrations of progesterone secretion from d 2 to d 10 

of the previous cycle was less than for control cows. 

Implications 

If the dominant follicle of postpartum cows produces 

sufficient estradiol to cause estrus, previous nutrient 
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intake does not influence concentrations of estradiol, 

progesterone, and androstenedione in follicular fluid. 

Aspiration of the preovulatory DF reduced rate of 

progesterone increase in blood during the early to mid 

luteal phase of the subsequent estrous cycle. However, 

length of the cycle and fertility at the next estrus were 

not compromised. 
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Table 1. Effect of nutrient intake during the first 65 d 
postpartum on concentrations of estradiol (E2), progesterone (P4 ), 

and androstenedione (A4 ) in follicular fluid (FFL) of dominant 
follicles after onset of the first postpartum estrus of beef cows 

Nutrient 

Variable Moderate 

FFL samples, no. 4 

E2, ng/mL 76.9 

P4, ng/mL 206.4 

A4, ng/mL 3.2 

E2:P4 ratio 0.38 

intake 

High 

4 

94.0 

268.0 

8.1 

0.67 

Pooled SE 

48.5 

54.0 

1. 8 

0.37 

P-value 

0.83 

0.51 

0.18 

0. 65 
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Figure 1. Linear regressions (lines) and means (symbols) for 
concentrations of progesterone from d 2 to d 10 of the estrous 
cycle after aspiration or nonaspiration of dominant follicle at 
the first estrus in postpartum beef cows. Treatment effect (P < 
0. 01). 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Reproductive potential of beef cows is strongly 

dependent on nutrient availability. An understanding of the 

physiological mechanisms that mediate nutritional effects 

on resumption of ovarian function after calving will 

provide a basis to design feeding strategies that can 

enhance reproductive performance. Two experiments were 

conducted to study the influence of nutrient intake on 

endocrine and reproductive function at the first postpartum 

estrus in beef cows. The specific objectives were: 1) to 

determine the effects of pre- and postpartum nutrient 

intake on estrous behavior, ovarian function, pregnancy 

rate at first estrus, and concentrations of IGF-I, leptin, 

NEFA, glucose, insulin, and thyroxine in primiparous 

postpartum beef cows; 2) to explore potential relationships 

between postpartum endocrine and reproductive functions; 

and 3) to determine the effect of nutrition on 

concentrations of steroids in follicular fluid aspirated at 
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the first estrus and on luteal function during the 

subsequent estrous cycle. 

In the first experiment, the influence of body 

condition score (BCS) at calving and postpartum nutrition 

on endocrine and ovarian functions, and reproductive 

performance, was determined by randomly allocating thin 
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(BCS 4.4) or moderate (BCS 5.5) Hereford x Angus 

primiparous cows at calving to receive either one of two 

nutritional treatments after calving. Cows were group-fed 

and targeted to gain 0.45 kg/d (M; n = 17) or 0.90 kg/d (H; 

n = 17) for the first 71 ± 17 d postpartum. Then, all cows 

were fed the same (M) diet until the first estrus. A 

replication (M, n = 25; H, n = 23) was added to assess 

pregnancy rate. Concentrations of IGF-I, leptin, insulin, 

glucose, NEFA, and thyroxine (T 4 ) were quantified in plasma 

samples collected weekly during treatment and during 7 wk 

before the first estrus. Estrous behavior was detected by 

radiotelemetry and ovulation was determined using plasma 

progesterone concentrations. All cows were AI between 14 

and 20 h after onset of estrus, and pregnancy status was 

determined at 35 to 55 d post-AI by ultrasonography. 

Heifers that calved with a BCS of 4 or 5 had similar 

endocrine function and reproductive performance at the 
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first estrus. During treatment, H cows gained BW and BCS, 

and had greater concentrations of IGF-I, leptin, insulin, 

glucose, and T4 compared with M cows. However, during the 7 

wk before the first estrus, plasma concentrations of 

metabolites and metabolic hormones were similar for Hand M 

cows, and they were not affected by time. Cows fed the H 

diet had a shorter interval to first estrus and a larger 

dominant follicle at first estrus, but the number of mounts 

received and duration of estrus was similar to M cows. 

Pregnancy rate at the first postpartum estrus was greater 

for H (76%, n = 38) than for M (57%, n = 33) cows. 

In the second experiment, Angus x Hereford cows were 

used to determine if postpartum nutrient intake alters 

concentrations of steroids in follicular fluid collected 

from the dominant preovulatory follicle at the first 

estrus. At calving, thin cows (BCS = 4.0 ± 0.1) were 

stratified by BCS and calving date, maintained on pasture, 

and fed to gain 0.45 kg/d (M) or 0.90 kg/d (H) for the 

first 65 d postpartum. At 4 to 16 h after onset of the 

first estrus, follicular fluid from the dominant follicle 

(DF) was aspirated using an ultrasound-guided needle via a 

vaginal approach. Concentrations of estradiol, 

progesterone, and androstenedione in follicular fluid from 
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the DF at the first estrus were similar for cows with Mor 

H nutrient intake postpartum. 

Increased energy intake after parturition stimulated 

secretion of anabolic hormones during the first 3 mo of 

lactation. Secretion of anabolic hormones promoted fat and 

tissue deposition in primiparous cows that calved with thin 

or moderate BCS. However, only 24 % of H cows resumed 

ovarian function during the first 90 d postpartum, 

indicating that changes in metabolic status were not 

sufficient to override the negative influence of other 

factors that delay the first estrus. Failure of ovulation 

during the postpartum period results from inadequate 

pulsatile secretion of GnRH and LH during the late growing 

phase of dominant follicles. Inadequate BCS at calving and 

suckling delay the return to normal pulsatile LH secretion. 

Greater nutrient intake after calving stimulated 

secretion of leptin in plasma of lactating beef cows. 

Plasma concentrations of leptin decreased acutely within 4 

dafter cows were switched from high to moderate nutrient 

intake. This decrease was probably not linked to changes in 

BCS or BW since it occurred in a short time period, which 

indicates that nutrient intake affects secretion of leptin 
,\! 

in plasma, independently of changes in BCS or BW. 



Concentrations of leptin, insulin, and glucose were 

positively associated during nutritional treatment . 
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. Conversely, decreased nutrient intake resulted in reduced 

plasma concentrations of leptin and increased NEFA release 

from adipocytes. Secretion of leptin in plasma in response 

to nutrient intake was probably coupled to fat synthesis 

and degradation. 

Concentrations of IGF-I, leptin, insulin, glucose, 

NEFA, and T4 did not change during the 7 wk preceding 

resumption of ovulation. Leptin and IGF-I could mediate 

some of the effects of nutrition on reproductive function 

since they can act at the brain-pituitary-ovary level and 

are positively associated with nutrient intake. However, 

our results indicate that IGF-I and leptin may not be major 

regulators of pulsatile LH secretion in postpartum beef 

cows. Alternatively, it is possible that concentrations of 

IGF-I and leptin must be maintained over a threshold 

concentration in plasma for several weeks to restore normal 

activity of the hypothalamo-pituitary-ovarian axis. If this 

situation exists, it could take 30 d or longer to restore 

the frequency LH pulses to normal because concentrations of 

IGF-I and leptin remained constant during 7 wk before the 

first estrus. 
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Increased nutrient intake after calving enhanced 

pregnancy rate at the first postpartum estrus. There is not 

a clear explanation for this novel effect of nutrition on 

fertility. We speculate that the endocrine and metabolic 

changes induced by nutrient intake during 50 to 70 d 

postpartum, may influence follicular growth and oocyte 

maturation, and subsequent embryo development. This 

hypothesis could be tested using an embryo production 

system in vitro. Oocytes, collected from cows fed Hor M 

nutrient intake postpartum, could be matured and fertilized 

in vitro to determine the subsequent rate of blastocyst 

formation. 

The second experiment demonstrated postpartum nutrient 

intake did not influence concentrations of estradiol, 

. 
progesterone, and androstenedione in follicular fluid of 

the dominant follicle at the first estrus. Effects of 

nutrient intake on follicular growth are well documented, 

but it may not be associated with a greater steroidogenic 

potential at first estrus. However, nutrient intake may 

influence the timing of events within the follicle, such as 

expression of the aromatase system. 

Reproductive performance of primiparous cows that 

calve.with thin or moderate body condition can be increased 
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by feeding a high-energy supplement after calving. Cows 

that maintain or lose body condition during lactation have 

a prolonged interval from calving to estrus, are less 

fertile, and produce lighter calves at weaning. 

Concentrations of IGF-I, leptin, insulin, glucose, NEFA, or 

thyroxine in blood may not individually signal the onset of 

postpartum ovarian function but may act in concert with 

others factors to signal the adequacy of nutrients. 

Differences in endocrine function or metabolic signals 

during the first three months after calving could influence 

ovarian activity and fertility at the first postpartum 

estrus. If dominant follicles of postpartum cows produce 

sufficient estradiol to cause estrus, previous nutrient 

intake does not influence concentrations of estradiol, 

progesterone, and androstenedione in follicular fluid. 

Additional research is necessary to elucidate the 

mechanism(s) that control the postpartum anestrous interval 

to maximize reproductive efficiency in beef cows. 
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