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PREFACE 

The traditional approach to molecular biology research involves studying 

one gene at a time. This is based on the reductionist view that to understand the 

whole biochemical or metabolic pathway, one must study its parts. Recently, the 

field of functional genomics provides new strategies for analyzing expression of 

hundreds or thousands of genes simultaneously. Global analysis of gene 

expression through the functional genomics approach is fundamentally affecting 

research on plant-pathogen interactions. 

Considerable progress has been made in the elucidation of the molecular 

mechanisms of plant disease resistance. However, substantial information on 

plant defense pathways is derived from studies on model plant systems. Due to 

the uniqueness and complexity of specific plant-microbe interactions, studies 

must be conducted on taxonomically diverse plant species. Hence, this research 

was done to analyze the wheat multi-component defense response to leaf rust 

infection at the molecular level. I hope that the results of this study will stimulate 

more fundamental and applied investigations that will facilitate the production of 

wheat varieties with improved resistance. 

I would like to express my sincere gratitude to my major professor and 

advisor, Dr. Michael P. Anderson, for his guidance, support and for the 

opportunity that he gave me to study here in OSU. My sincere appreciation 

extends to the members of my advisory committee, Ors. Carol Bender, Ulrich 
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CHAPTER I 

INTRODUCTION 

During the course of their co-evolution, plants and their natural enemies 

have developed complex relationships. Successful pathogen invasion ensues 

when the microorganism has evolved the ability to circumvent plant defense 

barriers. Once these defenses are circumvented, the plant then faces selection 

pressure to resist pathogen colonization. After new defense mechanisms have 

developed in the host plant, the pathogen again responds with an alternative 

mechanism that restores virulence. These continuing interactions between hosts 

and their pathogens have resulted in the development of highly specific and 

complicated attack and defense strategies (Jackson and Taylor 1996). 

Fungi and Their Leaf Penetration Mechanisms 

Fungi are small, generally microscopic, eukaryotic, usually filamentous, 

branched, spore-bearing organisms that lack chlorophyll (Agrios 1997). Very few 

fungal species cause disease in plants. Some fungi are obligate parasites that 

depend on the host for completion of their life cycle. Others are non-obligate 

parasites that depend on the host for parts of their life cycle. Almost all plants are 

attacked by some kinds of fungi, and specific fungi can attack one or several 

kinds of plants. Success of fungi in causing disease in plants i_s based on their 

ability to locate appropriate host surfaces and to elaborate specialized infection 

structures (Tucker and Talbot 2001 ). 
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Plant leaf diseases caused by fungal pathogens are initiated when fungal 

spores land on the host leaf surfaces. Adhesion to the leaf surface is critical in 

the initiation of infection. Spores are often coated with complex compounds that 

promote adhesion. Fungal adhesives contain glycoproteins, lipids, and 

polysaccharides (Xiao et al. 1994; Nicholson 1996). Spore attachment is also 

accompan·ied by production of fungal cutinases and esterases, which are 

enzymes that hydrolyze plant cuticular compounds (Deising et al 1992). The 

physical stimuli and hydration induces spore germination that leads to the 

formation of germ tubes (Read et al. 1992). A germ tube is a specialized fungal 

hypha that grows along the leaf surface towards a site of cuticular penetration. 

Germ tube growth and differentiation into a penetration structure known as an 

appressorium result from responses to plant signals including surface hardness 

(Dean et al 1994 ), hydrophobicity (Jelitto et al 1994 ), surface topography (Allen 

et al. 1991 ), wax components like 1, 16-hexadecanediol and ethylene emissions 

(Kolattukudy et al. 1995). Efficient appressorial formation requires production of 

small-secreted hydrophobic proteins called fungal hydrophobins (Wessels 1994) 

and several transmembrane proteins of unknown function (DeZwaan et al. 1999). 

The appressoria develop into specialized infective structures that penetrate 

through the cuticle using cell expansion under high turgor pressure. In many 

cases, melanin biosynthesis is necessary for turgor generation (Takano et al. 

1997). Cuticular penetration by other fungi also involves production of specific 

hydrolytic enzymes like endopolygalacturonase (Dumas et al. 1999), pectate 

lyase (Guo et al 1996) and cellobiohydrolases (Muller 1997). Alternatively, some 
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fungal species like Puccinia triticina use natural openings such as stomata and 

wounds for entry. After penetration, the fungus colonizes the cell by forming 

haustoria (Knogge 1996). Haustoria produced by biotrophic fungi are not 

intracellular as they are surrounded by a continuation of the plant plasma 

membrane (Heath 1997). Haustoria appear to have two functions: the regulation 

of the host-parasite interaction and uptake of nutrients (Mendgen et al. 2000). 

Plant Defense Mechanisms 

Disease resistance involves a combination of structural and chemical 

barriers (Keen 1992). These barriers are components of two types of resistance 

mechanisms: the non-specific and race-specific (Scholthof 2001 ). Non-specific 

resistance is not mediated by dominant, single resistance genes and places 

severe restrictions on the host range of the pathogen (Heath 2000). On the other 

hand, race-specific resistance is mediated by dominant, single resistance genes. 

The most obvious manifestation of race-specific resistance is called the 

hypersensitive response (HR). HR is a localized defense reaction at the site of 

pathogen infection. HR-mediated resistance, as proposed by Flor (1971 ), is a 

consequence of the interaction of complementary genes between host and 

pathogen. This constituted the theoretical basis of the gene-for-gene model of 

host-pathogen interactions. The model postulates that the interaction between 

specific elicitor molecules encoded by the pathogen avirulence genes and 

receptor molecules encoded by the host resistance genes activates a cascade of 

host genes that leads to the HR (Staskawicz 1995). 
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Early events during HR in many plant-pathogen systems include changes 

in the level of active oxygen species, induction of ion fluxes across the cellular 

membrane and depolarization of the plant cell potential within hours after 

infection (Greenberg 1994 ). These cellular changes are perceived to activate 

diverse arrays of plant defense responses such as phytoalexin production, lytic 

enzyme generation, proteinase elicitation, pathogenesis-related protein 

accumulation, cross-linking of cell walls and localized host cell death (Dixon et al. 

1994 ). It is not clear whether this localized cell death is a direct consequence of 

biochemical or physiological changes induced by the resistance-avirulence gene 

interaction (Baker et al. 1997). However, there is recent evidence of 

morphological markers of apoptosis, a programmed cell death in animals, 

associated with cell death in plant disease-related circumstances. The apoptotic­

like morphologies include the digestion of DNA into fragments to produce a 

phenomenon known as DNA ladders in electrophoretic gels, and the appearance 

of apoptotic bodies in some plant disease-associated death (Mittler et al. 1995; 

Wang et al. 1996). 

Another category of plant defense is called systemic acquired resistance 

(SAR), which acts nonspecifically throughout the plant. Expression of a number 

of defense related genes, in particular the pathogenesis-related genes, correlates 

with the establishment of SAR (Ward et al., 1991 ). Salicylic acid (SA) and its 

analogs such as 2,6-dichloroisonicotinic acid (INA) and benzo (1,2,3) thiadiazole-

7-carbothioic acid S-methyl ester (8TH) are found to induce SAR (Gaffney et al. 

1993; Gorlach et al 1996; Metraux et al. 1991 ). However, a grafting experiment 
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showed that SA is not the systemic signal for SAR (Vernooij et al. 1994). 

Recently, jasmonates- and ethylene-involving signal transduction pathways have 

been identified as regulators of defense-related genes (Penninckx et al 1998; 

Thomma et al 1998; Clarke et al. 1998). 

Plant Disease Resistance Genes 

Expression of race-specific resistance is governed by plant resistance 

genes (R-genes). More than 30 R-genes have been isolated from different plant 

species (Hulbert et al. 2001 ). Several classes have been identified based on the 

molecular structures of the R-genes (Jones 2001; Hulbert et al. 2001 ). The 

largest R-gene group contains a nucleotide-binding site (NBS) and leucine-rich 

repeats (LRRs) domains. NBS is characterized by several sequence motifs found 

in animal ATP- or GTP- binding proteins whose functions are still unknown (Li et 

al. 1997). On the other hand, LRR structures are known to mediate protein­

protein interaction and are major determinants of recognition specificity (Fluhr 

2001 ). The NBS-LRR group is further subdivided into R-genes containing a 

domain with homology to the intercellular signaling domains of the Drosophila 

Toll and mammalian interleukin (IL)-1 receptors (TIR) or containing leucine zipper 

(LZ) structures (Dangl and Jones 2001). LZ structures are well known for their 

roles in homo- and hetero-dimerization of eukaryotic transcription factors as well 

as facilitating interactions between proteins with other functions (Hammond­

Kosack and Jones 1996). Some R-genes consist of LRR with or without a 

serine/threonine kinase domain. The presence of a serine/threonine protein 
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kinase domain suggests the possible involvement in signal transduction 

mechanisms (Martin et al. 1993). Other R-genes are not receptors or signaling 

component of pathogen recognition like Hm1 gene of maize, which has 

enzymatic properties. 

R-genes have been isolated using map-based cloning or transposon 

tagging. The Pto gene of tomato was isolated using positional cloning (Martin et 

al. 1993). This gene confers resistance to races of Pseudomonas syringae pv. 

tomato that carry the avirulence gene avrPto. The amino acid sequence of Pto 

revealed relatedness to serine-threonine protein kinases, suggesting that it may 

play a role in signal transduction. Arabidopsis RPS2, which confers resistance to 

the bacterial pathogen P. syringae pvs. tomato and macu/ico/a expressing the 

avirulence gene avrRpt2, was also isolated using map-based strategies 

(Mindrinos et al. 1994 ). RPS2 encodes a novel 105 kDa protein containing a 

leucine zipper, a nucleotide-binding site and 14 leucine-rich repeats. Likewise, 

the Arabidopsis tha/iana RPM1 gene conferring resistance to P. syringae 

isolates expressing the avrRpm1 gene was isolated based on RFLP markers and 

yeast artificial chromosomes. This gene contains features found in the predicted 

polypeptide sequences of the other R genes: a potential leucine zipper, two 

nucleotide binding site motifs and 14 leucine-rich repeats. The tomato Cf9 gene, 

which confers resistance to the fungal pathogen Cladisporium fulvum expressing 

the avirulence gene avr9, was isolated by transposon tagging using the maize Ds 

element (Jones et al. 1994 ). The isolated Cf9 gene encodes a putative 

membrane-anchored extracytoplasmic glycoprotein, which shows homology to 
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the receptor domain of several receptor-like protein kinases in Arabidopsis. The 

tobacco N gene which confers resistance to TMV (Whitmam et al. 1994) and the 

flax L6 gene which confers resistance to the fungal pathogen Me/amspora lini 

(Lawrence et al. 1995) were identified by transposon tagging using the maize Ac 

transposable element. Sequence analysis of the N gene found that it encodes a 

protein of 131.4 kDa with an amino-terminal domain similar to the cytoplasmic 

domain of the Drosophila Toll protein and the interleukin-1 receptor in mammals, 

a nucleotide binding site and four leucine-rich repeats. Similarly, the L6 gene has 

a nucleotide binding site and a leucine-rich region. Another unique class of R­

genes is the rice Xa21 gene that was isolated based on positional cloning, but 

has no known interaction with a corresponding avirulence gene. The gene 

contains both a leucine-rich repeat motif and a serine-threonine kinase-like 

domain, suggesting a role in cell surface recognition of a pathogen ligand and 

subsequent activation of an intracellular defense response (Song et al. 1995). 

Gene-for-gene resistance is initiated when the product of a plant 

resistance gene recognizes the product of a pathogen avirulence gene. Limited 

evidence of direct interactions between products of avirulence and resistance 

genes has led to the guard hypothesis (van der Biezen and Jones 1998). The 

guard hypothesis was put forward to explain the requirement of Pto-AvrPto 

interaction for another protein, the NB-LRR Prf, to activate plant defense 

(Salmeron et al. 1996). The Pto gene of tomato is an R-gene that confers 

resistance to Pseudomonas syringae strains carrying avrPto. According to the 

guard hypothesis, Pto is the target of AvrPto and their interaction suppresses the 
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defense pathway. Prf is thus an NB-LRR protein that "guards" Pto, detects and 

inhibits the suppression by AvrPto and then activates defense. The guard 

hypothesis is by no means proven and the elicitor/receptor model may still be 

true for some systems (Dangl and Jones 2001 ). 

Other Genes Involved in Localized and Systemic Acquired Resistance 

Several plant genes required for localized and systemic acquired 

resistance have been identified through genetic approaches. Mutants have been 

isolated with impaired salicylic acid (SA) biosynthesis and signaling. Zhou et al. 

(1998) identified an Arabidopsis mutant, pad4, that shows no accumulation of SA 

upon infection with an incompatible pathogen. The gene PAD4 encodes for 

lipase-like proteins that act upstream of SA accumulation. Similarly, sid (SA­

induction deficient) mutants compromise SA biosynthesis in response to both 

virulent and avirulent forms of Pseudomonas syringae and Peronospora 

parasitica (Nawrath and Metraux 1999). 

In contrast, Cao et al. (1994) isolated the npr1 (nonexpresser of PR 

genes) mutant that lacks the expression of PR genes and systemic acquired 

resistance even upon exogenous application of SA. NPR1 encodes an ankyrin 

(see Appendix B) repeat protein and was found to interact with a basic leucine 

zipper transcription factor that binds to PR1 promoter elements (Cao et al. 1997; 

Zhang et al. 1999). NDR1 and EDS1 mutations suppress resistance mediated by 

R-genes of the LZ-NBS-LRR and TIR-NB-LRR types, respectively (Parker et al. 
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1996, Aarts et al. 1998). EDS1 encodes a lipase-like protein and functions 

upstream of SA-mediated plant defense responses (Falk et al. 1999). 

Other mutations produced enhanced disease resistance. Bowling et al. 

(1994) identified the cpr1 (constitutive expressor of PR genes) mutant that shows 

elevated expression of SA and PR genes. Because of the mutant's phenotype, 

the Cpr1 gene was proposed to act upstream of SA as a negative regulator of 

SAR. In addition, dnd1 (defense no death 1) and mpk4 (mitogen activated protein 

kinase 4) mutants also show elevated SA expression in the absence of necrotic 

lesions (Yu et al. 1998; Petersen et al. 2000). The focus of recent studies is on 

determining the relationships of the different genes involved in SA signaling, and 

double mutant analyses have begun to unravel the order in which they function 

(Glazebrook 2001 ). 

"One Gene at a Time Analysis" of Gene Induction and 
Plant Defense Responses 

Plant responses to pathogen attack are complex and involve the induction 

of various genes. However, traditional techniques of detecting differential gene 

induction in plant defense responses, such as northern blot analysis, are usually 

limited to small numbers of genes. Benito et al. (1996) identified three cDNA 

fragments, ddB-2, ddB-5 and ddB-47, which represented Botrytis cinerea genes 

that are up-regulated during its interaction with tomato. Northern blot analysis 

showed that the transcripts detected with the cDNA clones ddB-2 and ddB-5 

accumulated at detectable levels only at late time points during the interaction. 

The cDNA clone ddB-47 detected two different sizes of transcripts displaying 
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distinct, transient expression patterns during the interaction. Sequence analysis 

and database searches revealed no significant homology to any known 

sequence. 

Clive Lo et al. (1999) studied the accumulation of PR-10 and chalcone 

synthase (CHS) in Cochliobolus heterostropus and Col/etorichum sublineolum 

infected sorghum. Coordinated expression of PR-10 and CHS genes was 

localized to the area of inoculation along with the accumulation of phytoalexins. 

Inoculation with C. heterostropus resulted in the rapid accumulation of PR-10 and 

CHS transcripts after appressoria became mature. Accumulation of these 

transcripts was delayed in plants inoculated with C. sublineolum until penetration 

of host tissue had been completed and infection vesicles had formed. Results 

suggest that different recognition events are involved in the expression of 

resistance to the two fungi, and C. sublineolum suppresses the non-specific 

induction of defense responses. 

Uncinula necator, the causal agent of grapevine powdery mildew, was 

found to elevate the activity of the pathogenesis related proteins, chitinase and P-

1, 3 glucanase in leaves and berries of a number of grapevine cultivars (Jacobs, 

1999). PR genes encoding extracellular proteins were strongly induced in the 

infected leaves including an acidic class Ill chitinase, a basic class I glucanase 

and a thaumatin-like-protein. Van Der Vlutgt-Bergmans et al. (1997) reported that 

catalase gene cat1 of tomato is induced from the time of fungal penetration 

onwards, suggesting that H20 2 is produced during the interaction. 
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High Throughput Gene Expression Analysis and Plant 
Defense Responses 

High throughput gene expression analysis is a powerful tool that can be 

applied to elucidate the molecular mechanisms of plant defense responses. In 

recent years, several high throughput techniques of expression profiling have 

been developed like representational difference analysis (Hubank and Schatz 

1994 ), subtractive suppressive hybridization (Diatchenko et al. 1996), differential 

display (Liang and Pardee 1992), serial analysis of gene expression (Velculescu 

et al. 1995), oligonucleotide arrays (Lockhart et al. 1996) and cDNA arrays 

(Schena et al. 1995). These techniques have the capability of analyzing 

hundreds or thousands of genes in a range of experimental conditions. The 

common use of these techniques is to determine differential expression of genes 

in two or more populations of mRNA transcripts (Hegde et al. 2000). Patterns of 

differential gene expression have several applications including identification of 

tissue-specific, organ-specific, developmental stage-specific, abiotic stress­

induced, and biotic stress-induced transcripts (Baldwin et al. 1999). Expression 

profiling is also an attractive approach to assess and predict gene functions 

(Cummings and Reiman 2000). This is based on the assumption that a gene is 

transcribed only when and where its function is needed, determining the 

locations and conditions under which a gene is expressed allows inferences 

about its function. 

Representational difference analysis (RDA) is a form of subtractive 

hybridization originally developed by Litsitsyn et al. (1993) for use with genomic 

DNA and modified by Hubank and Schatz (1994) for cDNA capable of isolating 
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the differences between two complex DNA populations. In this assay, subtractive 

enrichments and hybridization kinetics act to purify cDNA fragments (the target) 

present in one population (tester) but not in another (driver). Successive rounds 

of subtraction and amplification lead to enrichment of the target cDNAs. This 

technique is popular in biomedical studies, but has been recently adapted to 

plant genes. Zhu et al. (1997) cloned a developmentally regulated gene PPF-1, 

the first Pisum sativum post floral specific gene, using RDA from cDNA library 

from short-day grown G2 pea tissue. In the same library, Li et al. (1998) isolated 

a cDNA named GDA-1 that is expressed in darkness and is very rapidly induced 

by gibberellic acid. GDA-1 shares similarity with the B2 protein that is expressed 

during embryogenesis of carrot cells. In the study of Thomas et al. (1997), gene 

fragments shown to be similar to leaf senescence gene in Festulolium have been 

isolated using a variation of the RDA technique. 

Most of the recent studies on expression profiling are based on DNA array 

hybridization. In the DNA array techniques, gene sequences (probes) are 

deposited on a solid support, hybridized with labeled copies of nucleic acids from 

biological samples (targets), and intensities of hybridization signals are used to 

infer levels of gene expression (Harmer and Kay 2000). This system has high 

sensitivity and can reliably detect rare transcripts (Bouchez and Hoftei 1998). 

Different methods for labeling RNA are available and allow a quantitative 

measurement of transcript abundance. DNA array hybridization analysis stands 

out from other high throughput techniques because of its simplicity, 

comprehensiveness and data consistency (Cummings and Reiman 2000). 
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DNA array technology greatly facilitates the elucidation of the molecular 

mechanisms of plant defense responses. Schenk et al. (2000) studied the 

expression pattern of 2,375 genes in Arabidopsis after inoculation with Alternaria 

brassicicola or treatment with salicylic acid (SA), methyl jasmonate (MJ) and 

ethylene using microarray. The array was enriched with pathogen-induced genes 

that were either induced or repressed after inoculation with Alternaria. Their 

results indicated the existence of a substantial network of regulatory interactions 

and coordination among different defense signaling pathways. The largest 

number of genes co-induced and co-repressed was found after treatments with 

SA and MJ, which were previously found to interact in an antagonistic fashion. 

Similarly, Maleck et al. (2000) conducted a microarray analysis of 10,000 

Arabidopsis ESTs representing 7000 genes under 14 different systemic acquired 

resistance (SAR)-inducing or repressing conditions. They observed that 4.3% of 

the genes studied were involved in SAR. Cluster analysis of the expression 

patterns derived groups with common regulation patterns. A common promoter 

element was identified in genes from the regulon that binds to members of a 

plant-specific transcription factor family. Their results demonstrated the 

application of expression profiling in defining the regulatory networks and gene 

discovery in plants. 
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SIGNIFICANCE AND OBJECTIVES OF THE STUDY 

Wheat (Triticum aestivum L.), which is considered to be the world's most 

important food crop, provides over 20% of the calories and protein in human 

nutrition (Bushuk 1998). Although world wheat production is among the highest 

of cereal crops (FAQ 1999), yields of cultivated varieties frequently suffer 

significant losses due to fungal diseases. One of the major fungal diseases of 

wheat is leaf rust caused by the biotrophic pathogen Puccinia triticina. The wheat 

leaf rust pathogen is adapted to a wide range of climates and disease can be 

found in diverse wheat growing areas throughout the world (Kolmer 1996). Yield 

reductions associated with wheat leaf rust were reported to be between 10% 

(mild epidemic year) to 21.9% (severe epidemic year) from 1976 to 1990 in the 

United States, 5% to 15% in susceptible cultivars in Canada, 40% in Mexico and 

38.6% to 50.5% in Argentina (Moschini and Perez 1998). 

The use of genetic resistance is potentially the most effective and 

environmentally sound approach for reducing yield losses to wheat leaf rust. To 

date, 46 leaf rust resistance genes (Lr) have been isolated and mapped to 

specific chromosomes of the wheat genome (Kolmer 1996). Many efforts have 

been undertaken to introgress Lr genes in wheat breeding materials. However, 

resistance conferred by a single gene is frequently overcome by the appearance 

of virulent races in the pathogen population within a short period of time. Among 

the wheat leaf rust resistance genes, Lr-19 has been very effective against all 

isolates of Puccinia triticina found in the United States. Lr-19 gene is derived 

from Agropyron elongatum, a distant relative of wheat (McIntosh et al. 1993). 
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Because of the high level of effective resistance, wheat defense mechanisms 

mediated by the Lr19 resistance gene was selected to analyze the wheat-P. 

triticina interaction. Unraveling the molecular basis of the wheat-P. triticina 

interaction will help to identify targets for genetic engineering of wheat plants and 

consequently provide a strong foundation for the rational design of disease 

control strategies. 

The main goal of this research was to elucidate wheat defense 

mechanisms by determining changes in gene expression during leaf rust 

infection. Specific objectives were (1) to isolate using representational difference 

analysis genes differentially expressed between leaf rust infected susceptible 

and resistant wheat near-isogenic lines differing in the Lr-19 resistance gene 

and; (2) to analyze expression profiles of isolated RDA clones using filter-based 

macroarrays. 
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CHAPTER II 

Modulation of Wheat Gene Expression as a Defense Response to 

Leaf Rust Infection 

ABSTRACT 

Induction of plant disease resistance involves transcriptional modulation of 

many genes. Recent advances in the field of genomics provide tools for large­

scale expression analysis of interacting genes governing host-defense 

mechanisms. In this study, the wheat transcriptional defense response to the leaf 

rust pathogen (Puccinia triticina) was analyzed using cDNA representational 

difference analysis (RDA) coupled with filter-based hybridization macroarray. 

Subtraction cDNA libraries were produced from infected tissues harvested at 24 

and 72 hours after inoculation (hai) using near-isogenic lines differing in the Lr19 

resistance gene. Of 163 RDA clones analyzed, 28 unique cDNA sequences were 

induced (;?:2.0-expression ratio) in the resistant line. Sequence analysis of 17 

differentially expressed RDA clones revealed similarities to genes with defense­

related functions. Eleven cDNA fragments had no significant sequence similarity 

to any known gene. Increased expression of genes related to oxidative stress, 

lignification and pathogenesis-related (PR) protein accumulation were the 

predominant resistance reactions to rust infection. Glutaredoxin-, elongation 

factor 1 a- and a putative zinc finger transcription factor- related genes were 

found highly expressed at 72 hai and showed expression patterns similar to PR 

genes. Genes related to non-specific lipid transfer protein, proteinase inhibitor, 
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polyubiquitin and UDP-glucosyltransferase were found upregulated in the 

resistant plant along with genes involved in lignification at 24 and 72 hai. Co­

induction of RDA fragments with putative defense functions was observed at two 

time points after infection suggesting the production of many possible immediate 

defenses to prevent leaf rust pathogen establishment. The potential role of the 

differentially expressed gene fragments in wheat hypersensitive response is 

discussed. 

Key words: Representational difference analysis (RDA); macroarray; host­
pathogen interaction; wheat leaf rust resistance; Puccinia triticina; 
expression profiling; cDNA 
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INTRODUCTION 

Plants react to an invading pathogen by modulating their gene expression 

to prevent colonization. Hence, a considerable part of the plant genome is 

devoted to encoding the machineries necessary for pathogen recognition and 

defense response. A resistant reaction begins with the specific recognition of 

pathogen encoded elicitor molecules by plant encoded receptor molecules (Keen 

1990). This recognition event triggers plant defense responses leading to 

hypersensitive cell death (Hammond and Jones 1996). Although many studies 

have been conducted to elucidate the molecular basis of race-specific resistance, 

the whole pathway from recognition to defense reaction is still unclear. Even the 

contribution of cell death to microbial inhibition in many pathosystems has not 

been firmly established (Cole et al. 2001, Yu et al. 1998, Century 1995). In 

addition, different host plants and their pathogens have developed unique 

interactions through the course of evolution making it more difficult to harmonize 

our understanding of the genetic induction of disease resistance. This lack of 

sustained consistency serves as a strong impetus to characterize specific 

pathosystems. 

Leaf rust is a major fungal disease of wheat that conforms to the gene for 

gene hypothesis of plant-pathogen interaction. Early studies of the infection 

process revealed that the leaf rust pathogen (Puccinia triticina) infects wheat 

leaves via stomata and colonizes the intercellular spaces (Romig and Caldwell 

1964; Niks 1983a, 1987). With the use of scanning electron microscopy, Hu and 

Rijkenberg (1998) examined the formation of P. triticina infective structures and 
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observed similarities to other rust fungi within susceptible and resistant hosts. 

Fungal growth is normally inhibited in plants exhibiting race-specific resistance 

after penetration but not during germination and appressorial formation (Jacobs 

1989). Two types of resistance, termed prehaustorial and posthaustorial, have 

been characterized based on the presence of aborted infective structures (Niks 

and Dekens 1991 ). Prehaustorial resistance, like that derived from Triticum 

monococcum (Jacobs et al 1996), occurs at the early stages of infection prior to 

haustorial mother cell formation. Posthaustorial resistance, such as that exhibited 

by near isogenic lines of Thatcher carrying Lr19 and Lr21, occur at later stages of 

infection after the formation of the haustorial mother cells (Hu and Rijkenberg 

1998). The genetic background was perceived to affect the onset and expression 

of wheat leaf rust resistance in host and non-host plants (Hu and Rijkenberg 

1998). Distinct properties associated with structural and biochemical defenses to 

leaf rust infection in a particular wheat genotype are mediated by interacting 

changes in gene expression. Characterization of genes whose expression is 

altered during leaf rust infection will aid in the understanding of molecular 

mechanisms of the wheat multi-component defense response. 

Functional genomics is an attractive approach to study interacting genes 

in various plant-pathogen interactions. Representational difference analysis 

(RDA) coupled with cDNA array hybridization has been used in isolating and 

characterizing differentially expressed genes between two complex cDNA 

populations (Welford et al. 1998; Chang et al. 1997). The RDA subtractive 

hybridization technique uses subtractive and kinetic enrichment procedures to 
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isolate differentially expressed genes in a highly specific manner (Lisitsyn et al. 

1993; Hu bank and Schatz 1994 ). A high level of specificity is needed in isolating 

differentially expressed genes to minimize contamination by false positives. In 

this study, RDA subtractive hybridization and cDNA filter-based hybridization 

macroarray were used to identify components of the molecular mechanisms of 

wheat-leaf rust resistance. A subset of differentially expressed genes was 

isolated and clones were identified that suggest the possible existence of redox­

regulation of wheat defense-related gene expression. 
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MATERIALS AND METHODS 

Plant and Fungal Materials 

The leaf rust susceptible wheat cultivar, Thatcher (Th), and its near 

isogenic derivative Thatcher-19 (Th-19) carrying the Lr19 resistance gene, were 

used in this analysis. Seeds were sown in 10 X 33 cm plastic pots in a potting 

soil mix (Metromix 350, Scotts, Marysville, Ohio) and grown for two weeks in an 

environmental control chamber with a cycle of 16 hr light at 20°C and 8 hr dark at 

15°C. Water and 20-20-20 NPK fertilizer with micronutrients (Peters Professional, 

Spectrum Brands, St. Louis, MO) were applied to sustain normal growth. 

A race of P. triticina, PBRL (Long and Kolmer 1989), avirulent on Th-19 

(resistant) and virulent on Th (susceptible) was obtained from the USDA Cereal 

Disease Laboratory at the University of Minnesota (courtesy of Dr. David Long). 

This race was increased on a susceptible wheat cultivar (Danne), and spores 

were collected using a vacuum cyclone collector, placed in cryotubes and stored 

in liquid nitrogen until needed. Prior to inoculation, spores were thawed at room 

temperature for 5 min, heat shocked for 5 min at 45 °C, and then maintained at 

room temperature (20-25 °C) and high humidity (>90%) for 16 hours. 

Plant Infection 

Wheat seedlings of resistant (Th-19) and susceptible (Th) near-isogenic 

lines at the two-leaf growth stage were inoculated with rust spores using the plant­

to-plant brushing method (Browder 1971 ). Susceptible wheat cultivar (Danne) was 

used as the brush plants and served as the source of inoculum. Brush plants were 
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inoculated with hydrated rust spores that had been stored in liquid nitrogen. After 

11 days, rust pustules were evident on the leaves of the brush plants. Prior to 

inoculation, seedlings of resistant and susceptible near-isogenic lines were placed 

in a mist chamber for 1 hr to provide ample moisture to the leaf surfaces. The 

plants were removed from the mist chamber and inoculated by brushing the 

infected brush plants lightly over the tops of misted seedlings. After brushing, 

spores were allowed to settle on the leaves for another 15 min and the inoculated 

plants were placed back in the mist chamber for another 12-16 hr. Infected 

seedlings were transferred back to the growth chamber. For macroarray and 

Northern blot confirmation analyses, leaf samples were harvested at 24 and 72 

hours after inoculation (hai) from infected susceptible and infected resistant 

plants. In the Northern blot time course analysis, leaf samples from infected 

resistant plants were harvested at 0, 6, 12, 24, and 72 hai. Harvested leaf tissues 

were ground to a fine powder in liquid nitrogen, placed in 50 ml centrifuge tubes 

and stored in liquid nitrogen. 

Representational Difference Analysis (RDA) 

The RDA subtractive hybridization technique was used to generate the 24 

and 72 hai subtractive cDNA libraries using infected resistant and susceptible 

source tissues as described by Hu bank and Schatz (1994) (Figure 1 ). The 

subtraction process was carried out by multiple rounds of hybridization of tester 

cDNA (infected resistant) to excess driver cDNA (infected susceptible) in 

increasing ratios of 1:100, 1 :800 and 1 :400,000 through three successive rounds. 
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Figure 1. Schematic diagram of cDNA-representational difference analysis 
(RDA) subtractive hybridization technique based on the procedures 
described by Hubank and Schatz (1994). 
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The RDA was initiated by first isolating mRNA from leaf tissues 

undergoing resistant and susceptible reactions at 24 and 72 hai using Straight 

A's kit (Novagen, Madison, WI) following the manufacturer's instruction. Two µg 

of mRNA was converted to cDNA using Superscript RT (Life Technologies, 

Rockville, MD) and oligo-d (T) primers at 41 °C for 1.5 hr. The second strand 

cDNA synthesis was performed by adding 10 U E.coli DNA polymerase (New 

England Bio-Labs Inc., Beverly, MA), 0.75 U RNase H (Gibco BRL, Grand Island, 

NY), 2 U E.coli DNA ligase (New England Bio-Labs Inc., Beverly, MA) to the first 

strand synthesis mix and incubating at 15°C for 2 hr and at 22°C for 1 hr. Double 

stranded cDNA (2 µg) was digested with Opnll restriction endonuclease (New 

England Bio-Labs Inc., Beverly, MA) at 37°C for 2 hr. The products of digestion 

were extracted with phenol/chloroform, precipitated with isopropanol/NaOAc and 

resuspended in 20 µI TE (Tris-EDTA). The resulting digested cDNA (1.2 µg) was 

then ligated to the R-Bam-12/24 adapters (R-Bam-24 5' -

AGCACTCTCCAGCCTCTCACCGAG-3', R-Bam-12 5'-GATCTGCCGTGA-3') in 

a mixture containing: 130 ng R-Bgl-24 oligo, 6 ng R-Bgl-12 oligo, 1 OX ligase 

buffer (New England BioLabs Inc., Beverly, MA) and 31 µI Milli-Q water (Millipore 

Corp, Bedford, MA). The mixture was incubated at 50°C for 5 min and then 

cooled to 10°C over a period of 1 hr in a thermocycler (MJ Research, Waltham, 

MA). Ligation was carried out overnight at 14°C using 1200 U of T4 DNA ligase 

(New England Bio-Labs Inc., Beverly, MA). cDNA representations were produced 

by PCR amplification of 200 µI reaction mixture containing 2 µI diluted ligation 

mixture, 5X PCR buffer (66 mM Tris-HCI, pH 8.8), 4 mM MgC'2, 16 mM 
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(NH4)2S04, 33 µg/ml BSA), 0.3 mM dNTP, 10 ng R-Bgl-24 primer and 5 U Taq 

DNA polymerase (Gibco BRL, Grand Island, NY) at 95°C, 1 min and 72°C, 3 min 

for 20 cycles. The amplified cDNA representations were extracted with 

phenol/chloroform, precipitated with isopropanol/NaOAc and resuspended in TE 

at 0.5 µg/µI. R-adapters were removed in the tester and driver representations 

by endonuclease digestion with Dpnl I for 4 hr at 37°C. Digested representations 

were again extracted with phenol/chloroform, precipitated with 

isopropanol/NaOAc and resuspended in TE at 0.5 µg/µI. Tester representations 

were gel purified on 1.2% TAE-agarose gel using QiAquick Gel Extraction kit 

(Qiagen, Valencia, CA) following the manufacturer's protocol. Two µg of gel 

purified tester ( not the driver) was ligated to the J-Bgl-12/24 adapters ( J-Bgl-12 

5' -GATGTGTTCATG-3', J-Bgl-24 5' -ACCGACGTCGACTATCCATGAACA-3') 

using T4 DNA ligase overnight at 14°C in the manner described above for 

adapter ligation. The product of ligation was diluted to 10 ng/µI with TE. 

For the first subtractive hybridization, 0.4 µg adapter-ligated tester and 40 

µg driver representations (1/100 tester/driver ratio) were combined, heat­

denatured at 98°C for 6 min and incubated at 67°C for 20 hr with 1.25M NaCl to 

form the first subtractive hybridization mixture. The hybridized DNA was diluted 

with 8 µI TE (Tris-EDTA) containing 5 µg yeast RNA (New England Bio-Labs Inc., 

Beverly, MA), and thoroughly suspended in 400 µI TE. Subtraction resulted in 

three classes of double stranded cDNA: tester/tester (those that were exclusive 

to the tester cDNA population, and differentially expressed), tester/driver (those 

that were common between tester and driver populations, and not differentially 
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expressed) driver/driver (those found exclusively in the driver cDNA population, 

differentially expressed in the driver population). Four 200 µI PCR reactions 

were set up as described in the generation of representations with 20 µI of diluted 

hybridization mix and 10 ng J-Bgl-24 primer for 10 cycles of 95°C, 1 min and 

70°C, 3 min. This round of PCR resulted in the exponential amplification of the 

tester/tester hybrids (adapter sequences present on both strands), the linear 

amplification of the tester/driver hybrids (adaptor sequences on one strand) and 

no amplification of the driver/driver hybrids (no adaptor sequences). The PCR 

products were combined, extracted with phenol/chloroform, precipitated with 

isopropanol/NaOAc and resuspended in 0.2X TE. Twenty microliters of purified 

products was treated with 20 U mungbean nuclease (New England Bio-Labs Inc., 

Beverly, MA) for 35 min at 30°C to digest single stranded cDNA. The reaction 

was stopped by the addition of 50 mM Tris-HCI (pH8.9). A final amplification was 

set up (as described in generation of representations) using 20 µI mungbean 

nuclease treated DNA and 10 ng J-Bgl-24 primer for 18 cycles (1 min, 95°C; 3 

min, 70°C). Final amplification products were phenol/chloroform extracted, 

isopropanol/NaOAc precipitated and resuspended at 0.5 µg/µI to form the first 

difference product (DP1 ). Another round of enrichment for differentially 

expressed gene fragments was performed by repeating the procedure starting 

with the DP1 but using a tester/driver ratio of 1/800 to generate the second 

difference product (DP2). A third enrichment using a tester/driver ratio of 

1/400,000 resulted in the generation of the third difference product (DP3). In 

order to generate the second (DP2) and third (DP3) difference products, 
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adapters had to be replaced by Dpnll nuclease digestion as indicated above. The 

J-adapters (J-Bgl-12 5'-GATGTGTTCATG-3', J-Bgl-24 5'-ACCGACGTCGAC 

TATCCATGMCA-3') from the DP1 were replaced by the N adapters (N-Bgl-12 

5' -GATCTTCCCTCG-3' and N-Bgl-24 5'-AGGCMCTGTGCTATCCGAGGM-3') 

to form the DP2, and the N adapters were then replaced by the J-adapters to 

form the DP3. Subtraction and amplification were done as described for DP1, but 

using a PCR extension temperature of 72°C in subsequent rounds. 

Difference Product Library Production 

Purified difference products (DP1 through DP3) from 24 and 72 hai tissues 

were directly cloned into pGem-T easy vector (Promega, Madison, WI) using 2X 

rapid ligation buffer and 3 U T4 DNA ligase (Gibco BRL, Grand Island, NY) for 16 

hours at 4°C. Ligation products were transformed into DH5a competent cells 

(Gibco BRL, Grand Island, NY) using the manufacturer's protocol. Transformed 

bacterial cells were spread on LB (Luria-Bertani) ampicillin (100mg/l) (Sigma, St. 

Louis, MO) agar plates containing X-gal (40µg/ml) for blue-white selection and 

incubated overnight at 37°C. One hundred white colonies were picked from each 

library, placed in 6 ml LB medium with ampicillin and incubated overnight at 37°C 

on a shaker at 225 rpm. 

Macroarray Production 

Bacterial lysis was performed using glass bead-beating technique as 

follows. Ten µI of clonal cultures (products of transformation) was added to sterile 
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phosphate-buffered saline (8g NaCl, 0.2g KCI, 1.44g Na2HP04 and 0.249g 

KH2P04) and centrifuged for 10 min at 4°C. Seventy µI of sterile Milli-Q water 

(Millipore Corp, Bedford, MA) and 50 mg sterile 0.1 mm glass beads (Biospec 

Products Inc., Bartlesville, OK) were added in the tube with bacterial pellet. The 

mixture was agitated in a mini Bead-Beater (Biospec Products, Bartlesville, OK) 

for 1 min at 5000 rpm. The bacterial lysate was used directly for PCR 

amplification. Two hundred clones from the second difference product (DP2) of 

24 and 72 hai libraries were PCR amplified using 200 µM T7 and SP6 primers, 

200 µM dNTPs, 1 OX PCR buffer (Qiagen, Valencia, CA), 5X Q solution (Qiagen, 

Valencia, CA), and 2.5 U Taq DNA polymerase (Qiagen, Valencia, CA) for 40 

cycles of 94°C, 1 min, 54°C, 1 min and 72°C, 1 min, and then ethanol 

precipitated. Inserts that showed consistent amplification were selected for 

hybridization macroarray analysis. A total of 163 amplified inserts, 91 from 24 hai 

library and 72 from 72 hai library, were blotted onto the Hybond™ N+ nylon 

membrane (Amersham Life Science, Arlington Height, IL) using 384-pin 

replicator (Nalge Nunc International, Rochester, NY). Wheat actin gene 

fragments (650 bp) representing 3 spots and pBluescript (Stratagene, Austin, TX) 

plasmid DNA representing 2 spots were used as positive and negative controls in 

the macroarray, respectively. The membranes were UV crosslinked, sterilized 

with 95% ethanol for 10 min and washed sequentially with 2X SSC, 0.1 % SDS 

and 2X SSC for 10 min. 
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Macroarray Hybridization 

Fluorescein-labeled probes were produced using tester (resistant) and 

driver (susceptible) cDNA representations (see RDA- generation of 

representations) as substrates. Two hundred ng of cDNA representations was 

random-prime labeled using the Gene Images Kit (Amersham Pharmacia 

Biotech, Piscataway, NJ) at 37°C for 2 hr. Fluorescein-labeled susceptible 

(driver) and resistant (tester) cDNA representations were used to probe the 

macroarray blots. Hybridization buffer was prepared from 20X SSC, 0.5X liquid 

block (Gene Images kit), 10% SOS and 0.5X dextran sulfate. Membranes were 

prehybridized using 35 ml hybridization buffer in acrylic trays for 1 hour at 60°C. 

Probes were added to prehybridization buffer and the mixture incubated 

overnight. Following hybridization, two sequential washes with 1 x SSC, 0.1 % 

SOS for 15 min and 0.5X SSC, 0.1 % SOS for another 15 min were performed at 

60°C with gentle agitation. After stringency washes, membranes were incubated 

with gentle agitation for 1 hr at room temperature in approximately 1 ml per cm2 

of a 1 to 10 dilution of liquid block in buffer A (1 OOmM Tris-HCI and 300 mM NaCl 

pH 9.5). Membranes were then transferred to 25 ml of freshly prepared 0.5% 

(w/v) bovine serum albumin in buffer A containing the anti-fluorescein conjugate 

(Gene Images kit). Unbound conjugate was removed by washing three times for 

10 min in 0.3% (v/v) Tween 20 in buffer A at room temperature with agitation. 

Excess wash buffer was removed from the membranes and the membranes 

were placed on top of a sheet of saran wrap. Three milliliters of CDP-Star (Gene 

Images Kit) was applied on to the membranes and allowed to react for 5 min. 
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Excess detection reagents were removed from the membranes and the 

membranes were transferred to plastic bags for autoradiographic film exposure. 

Membranes were exposed to autoradiographic film BioMaX MS-2 (Kodak, 

Rochester, NY) at room temperature. A preliminary experiment was performed to 

determine the response of the hybridization signals to increasing concentrations 

of the spotted clones (200 ng, 500 ng, 1 ug, 1.5 ug, and 2.0 ug) using mean 

optical density and adjusted volume (volume X mean optical density). A linear 

response was shown with increasing spot concentrations when using adjusted 

volume based on size and mean intensity of the spots. Adjusted volume was 

used in macroarray expression analysis. Hybridization signals were visualized at 

different exposure times (5 sec, 30 sec, 5 min, 10 min, 15 min, 2 hr, 12 hr and 

24 hr) and selected exposure time that exhibited detectable differential induction 

and within the linear range of the film. 

Expression Analysis 

Hybridization signals from the autoradiograph were analyzed using GS-

700 Imaging Densitometer (Bio-rad, Richmond, CA). Macroarray spots were 

predefined by manually circling each spot based on the sizes of the spots. 

Adjusted volume of each spot was quantified using densitometry and the 

Molecular Analyst (Bio-rad, Richmond, CA) software. Expression data between 

blots were normalized using hybridization signals of the negative and positive 

controls. The negative control adjusted volume data were used to subtract the 

background level from signal intensities of all the spots. After subtracting the 
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background, expression data between blots were adjusted based on the signal 

intensities of the actin positive control. Normalization was performed not only 

between treatments (resistant and susceptible; 24 and 72 hai) but also between 

replications of a particular treatment. The average adjusted volume of the two­

replicate macroarray blots was used to calculate expression ratio 

(resistant/susceptible) between resistant and susceptible. A minimum cut-off ratio 

of 2.0 was used to identify differentially expressed RDA fragments. Expression 

ratios, correlation and scatter plot analysis were calculated using Microsoft Excel 

(Microsoft Inc., Redmond, WA). Correlation and scatter plot analyses were 

performed by comparing and plotting the normalized expression data of the two 

replications of macroarray experiments. 

Cluster Analysis of Expression Data 

Cluster analysis was performed using the NT-SYS software (Exeter 

Software, NY) based on the expression data from macroarrays probed with 

labeled representations from resistant and susceptible at 24 and 72 hai. Data 

standardization using the NT-SYS software prior to clustering was performed by 

subtracting the mean expression across all treatments from each data point and 

dividing the result by the standard deviation. Standardization is a common 

procedure to eliminate scale differences in the data to measure similarity based 

on the shape of expression patterns rather than the magnitude of expression 

changes. Euclidean distance coefficients were calculated using the NT-SYS 

software algorithm based on standardized expression data of the RDA clones in 
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the infected resistant and susceptible plants at both time points after infection. A 

dendrogram was constructed based on the Euclidean distance matrix using the 

unweighted pair group mean arithmetic (UPGMA) clustering algorithm of NT-SYS 

software. 

Sequencing Analysis of RDA clones 

Bacterial cultures of the identified differentially expressed clones at 24 and 

72 hai libraries were grown overnight in 5 ml LB medium. Plasmids with RDA 

inserts were isolated from DH-5a bacterial cells using Qiagen Plasmid Isolation 

kit (Qiagen, Valencia, CA). Sequencing of RDA fragments was performed using 

a 373 Applied Biosystems DNA Sequencer (Applied Biosystems, Foster, CA) at 

the Recombinant DNA/Protein Core Facility of the Oklahoma State University. 

Database nucleic acid and amino acid sequence comparisons were conducted 

using BLASTX and BLASTN search algorithms (Altschul et al. 1997) from the 

National Center for Biotechnology Information (NCBI), Bethesda, MD. 

Northern Blot Analysis 

Total RNA was isolated from 1 g of infected leaf tissues following the 

protocol of the TotallyRNA kit (Ambion, Austin, TX). For Northern blot 

confirmation analysis, leaf samples were harvested from resistant and 

susceptible infected near-isogenic lines at 24 and 72 hai. Northern blot time 

course analysis was also conducted using leaf samples harvested from resistant 

infected plants at 0, 6, 12, 24 and 72 hai. Northern analysis of extracted RNA 
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was performed according to the protocol of the NorthernMax-Gly kit (Ambion, 

Austin, TX). Twenty µg of total RNA in glyoxal loading buffer was heated at 50°C 

for 30 min and run on a 1 % (w/v) glyoxal-based agarose gel according to the kit 

directions (Ambion, Austin, TX) at 65 V for 3 hours. Equalized loading and RNA 

quality were verified under UV light. The electrophoresed RNA was transferred to 

a Hybond™ N+ nylon membrane (Amersham Life Science, Arlington Height, IL) 

by downward blotting for 2 hr using a turbo blotter (Schleicher and Schuell, 

Keene, NH). The blotted membranes were UV crosslinked at 1200 µJoules. 

Probe preparation was performed using Strip-EZ DNA labeling kit 

(Ambion, Austin, TX). RDA clones related to blue copper binding protein, 

glutathione-S-transferase, caffeic-0-methyltransferase, polyubiquitin, chitinase II 

precursor, thaumatin-like protein, glutaredoxin and ~-D-glucan exohydrolase 

were selected as probes in Northern blot confirmation analysis. RDA clone 

related to blue copper binding protein was used as a probe in Northern blot time 

course analysis. Twenty-five ng of RDA clones was denatured at 95°C for 5 min 

and labeled using 10X decamer solution, 5X buffer-dATP/-dCTP, 10X dCTP, 2 

mCi/ml a-32P dATP, 5 U Exonuclease-free Kienow and 25 µI nuclease-free water 

(Strip-EZ DNA) at 37°C for 30 min. Labeled probes were purified using QiAquick 

PCR Purification kit (Qiagen, Valencia, CA). 

Hybridization of probes to Northern blots was performed according to the 

protocol of the NorthernMax-Gly kit (Ambion). Prehybridization was performed by 

adding 10 ml of UL TRAhyb hybridization buffer (Ambion, Austin, TX) per 100 cm2 

of membrane at 42°C. Labeled probes (106 cpm per ml) were denatured at 90°C 
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for 10 min and added to the prehybridization blots. Hybridization was performed 

overnight at 42°C with gentle agitation. After hybridization, membranes were 

washed with low stringency wash solution #1 (NorthernMax-Gly) for 10 min and 

high stringency wash solution #2 (NorthernMax-Gly) for 15 min at 42°C. Excess 

wash solution was removed and membranes were transferred to plastic bags for 

autoradiography. Hybridized membranes were autoradiographed using Biomax 

MS-2 films (Kodak, Rochester, NY) for 12-16 hr at -80 °C. Optimum exposure 

time was selected by visualizing the hybridization signals using different 

exposure times (1 h, 3h, 6h, 1 day, 2 days, and 1 week). 

After autoradiography, hybridized probes were removed from the 

membranes following the instructions of Strip-EZ DNA kit (Ambion). At room 

temperature, 1 X probe degradation buffer (200X probe degradation buffer, 1 OOX 

degradation dilution buffer and 10 ml nuclease-free water, Strip-EZ DNA) was 

added to the container with the membrane and incubated for 2 min. Membranes 

with probe degradation buffer were transferred to the oven-shaker at 68°C for 1 O 

min. Probe degradation buffer was replaced with 1X blot reconstitution buffer 

(1 OOX blot reconstitution buffer, 20% SOS and 10ml nuclease-free water, Strip­

EZ DNA), added to the container with membranes and incubated in the oven­

shaker at 68°C for 10 min. Final wash was performed using 0.1 % SOS at 68°C 

for 10 min with gentle agitation. 

For Northern blot analysis, autoradiographic film was scanned with the 

GS-700 Imaging Densitometer (Bio-rad, Richmond, CA). Densitometer data was 

imported into the Molecular Analyst software to determine signal strength within 
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the band. Adjusted volume (OD x mm x mm) was used as a measure of signal 

strength. Fold-induction (R/S - 1) was calculated based on the resistant and 

susceptible hybridization signals. 
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RESULTS 

RDA Subtraction Products Analysis 

To analyze wheat resistance-related responses to infection by P. triticina, 

gene fragments were isolated by cDNA-RDA subtractive hybridization between 

infected resistant and susceptible wheat near-isogenic lines. Selective 

amplification of differentially expressed cDNA fragments at 24 and 72 hai was 

shown by agarose gel electrophoresis of the subtraction products (Figure 2). 

Gene fragments common to the resistant and susceptible cDNA populations 

were subtracted out in multiple cycles of RDA subtraction and amplification. 

Decreasing complexity based on the presence of smeared products and the 

number of distinct bands of the RDA amplicons was found with increasing rounds 

of subtraction. Smearing of DNA fragments was observed in DP1 that may 

indicate the presence of non-specific amplicons. Selective amplification of 

resistance-related RDA fragments was revealed by the formation of distinct 

bands in DP2 and DP3. Very few bands were amplified in the DP3 due to the 

utilization of a very high stringency of subtraction (1/400,000 tester to driver 

ratio). DP2 subtraction products were chosen for further analysis because of the 

level of specificity and the number of bands amplified. Previous studies have 

shown that RDA products contained not only differentially expressed genes but 

also non-differentially expressed transcripts that evaded subtraction (Gress et al. 

1997; Chang et al. 1998). The presence of non-differentially expressed 

fragments in RDA subtraction products suggests the need for further expression 

analysis to minimize inclusion of false positives. 
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Figure 2. Agarose gel electrophoresis of representational difference analysis 
(RDA) subtraction products. Subtractive hybridization was done using 
infected resistant and susceptible leaf tissues at 24 and 72 hours after 
inoculation (hai). DP1, DP2 and DP3 were the difference products of 
first, second and third subtractions, respectively. The subtracted 
amplicons range from 0.1 kb to 0.5kb. Equal amounts of difference 
products were loaded in 1.0% agarose gel. 
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Macroarray Expression and Sequence Analyses 

To verify differential expression of RDA clones, macroarray hybridization 

analysis was performed with cDNA derived from two time points after inoculation 

(Figure 3). Two hundred clones from DP2 libraries from 24 and 72 hai samples 

were initially isolated and PCR amplified. Of the total clones amplified, 91 and 71 

clones that showed good amplification were selected from 24 and 72 hai 

libraries, respectively. Selected clones were blotted onto the nylon membrane for 

macroarray hybridization analysis. 

Fluorescein-labeled cDNA representation, a PCR amplified restriction 

endonuclease digested cDNA, was used to probe the macroarray blots. Similar 

expression intensities of positive control actin genes were seen between 

macroarrays probed with labeled cDNA representations from susceptible and 

resistant plants at 24 and 72 hai, suggesting an equal amplification of tester and 

driver cDNA representations. Non-specific hybridization was not evident in 

macroarray blots as plasmid DNA negative controls showed no detectable signal. 

Expression ratios of individual RDA clones ranged from 0.6 to 10.1 in the 24 hai 

library and 2.0 to 47.5 in the 72 hai library. High correlation was found in the 

expression data between the two replications of macroarray experiments at 24 

and 72 hai with coefficients equal to r=0.91 and r=0.90, respectively (Figure 4 ). 

The overall gene expression of all isolated cDNA fragments (combined resistant 

and susceptible) at 72 hai was higher (P<0.001) compared to 24 hai. Based on 

the normalized signal intensities of all isolated RDA clones, the average gene 

expression for resistant infected tissue on the macroarray at 72 hai was 
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Figure 3. Histograms and macroarray blots of differential induction of RDA 
clones at (A) 24 and (B) 72 hours after inoculation (hai) in susceptible 
and resistant wheat near-isogenic lines. NC and PC represent the 
negative control plasmid DNA and positive control actin gene, 
respectively. RDA clones isolated from the library of that particular 
time point of infection are indicated by the arrows. Autoradiography of 
resistant and susceptible hybridized membranes was performed using 
the same film. Mean expression data (adjusted volume) were 
measured based on the spot intensities and normalized based on the 
controls. Expression ratio was estimated by dividing resistant over 
susceptible spot intensities. 
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Figure 4. Scatter plots of adjusted volume data (ODXmmXmm) of the two 
independent macroarray experiments at (A) 24 and (B) 72 hours after 
inoculation (hai). Data were normalized based on the expression of 
positive control actin gene. Normalized expression data of replication I 
were plotted against replication II data at 24 and 72 hai. High 
correlation was found between the two replications of 24 and 72 hai 
macroarray experiments with correlation coefficients of r=0.91 and 
r= 0.90, respectively. Correlation was calculated by comparing the 
expression data of all RDA clones in two replications of macroarray 
experiments using Microsoft Excel. 
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significantly higher compared to susceptible infected tissues at 24 and 72 hai 

using at-test (P< 0.001) (Figure 5). 

Of the 163 RDA clones analyzed, 118 were found induced in the resistant 

line with differential expression ratios greater than or equal to 2.0 at 24 and 72 

hai. Sequence analyses of the induced clones revealed many redundant clones 

with only 28 unique cDNA fragments (Table 1 ). The 28 nonredundant sequences 

represent 24% of all the differentially expressed clones sequenced. Apparently, 

the high degree of redundancy found in the RDA subtraction products may have 

resulted from the combination of high tester/driver subtraction ratio and PCR 

amplification during the enrichment process. Induced clones isolated from the 24 

hai subtraction library showed sequence similarities to oxidative stress, anti­

microbial, lignification and photosynthetic- related genes. Blue copper binding 

protein (BCBP), polyubiquitin and caffeic-0-methyltransferase (COM) cDNA 

fragments were found highly expressed in the resistant line at the early stage of 

pathogen infection with average expression ratios of 6.2, 4.0 and 2.4, 

respectively (Figure 6). In contrast, induced RDA fragments isolated from 72 hai 

subtraction library showed similarities to transcripts associated with regulation of 

gene expression and pathogenesis-related proteins. Chitinase II precursor, 

thaumatin-like protein (TLP) and putative Zn-finger transcription factor (ZnTF) 

related RDA clones showed average expression ratios of 5.1, 4.4 and 24.0, 

respectively (Figure 7). As shown by the error bars, variability was found in the 

hybridization signals of the redundant clones of highly expressed RDA 

fragments. The variability could be attributed to the effect of location in the array 
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Figure 5. Overall expression of isolated RDA clones at 24 and 72 hours after 
inoculation (hai) in resistant and susceptible wheat near isogenic lines. 
Macroarray data were normalized based on the positive control. Mean 
expression data was calculated based on the normalized signal 
intensities (adjusted volume) of all clones. T-test was used in 
comparing mean expression data of resistant and susceptible at 24 
and 72 hai. Significant t-test (P<0.001) was found in the comparison 
of the mean expression data (combined resistant and susceptible) at 
24 hai and 72 hai. The average gene expression for resistant plant at 
72 hai is significantly higher (P< 0.001) compared to the average 
expression data for susceptible plant at 24 and 72 hai. 
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Table 1. Unique expressed sequence tags (ESTs) isolated from 
representational difference analysis (RDA) subtraction experiments. 

RDA Clone Matching Sequences Organism E-value* 
Clone Length from Database 

(bp) 

DP2-24hai 

DP2-24-43 278 Blue copper-binding protein Wheat 1 X 10-39 

DP2-24-33 174 Peroxidase Soybean 5 X 10-06 

DP2-24-37 213 Gluthathione-S-transferase Rice 1 X 10-10 

DP2-24-56 245 Bowman-Birk protease inhibitor Wheat 4 X 1044 

DP2-24-64 201 Uclacyanin Arabidopsis 0.028 
DP2-24-10 178 Caffeic-0-methyltransferase Barley 5 X 10-27 

DP2-24-26 204 Putative UDP-GI u cosyltra n sf erase Rice 2 X 10-09 

DP2-24-44 148 Rubisco Wheat 1 X 10-19 

DP2-24-45 175 Non-specific Lipid Transfer Barley 1 X 10-11 

Protein 
DP2-24-29 201 Polyubiquitin Pinus sy/vestris 8 X 10-21 

DP2-24-6 290 Unknown 
DP2-24-5 124 Unknown 
DP2-24-16 167 Unknown 
DP2-24-65 124 Unknown 
DP2-24-12 230 Unknown 
DP2-24-63 161 Unknown 

DP2-72hai 

DP2-72-1 239 Chitinase II precursor Barley 1 X 10-30 

DP2-72-5 178 P-D glucan Exonuclease Barley 5 X 10-27 

p-glucosidase 
DP2-72-7 178 Peroxidase Soybean 2 X 10-07 

DP2-72-2 178 Thaumatin-like Protein Rice 9 X 10-34 

DP2-72-6 140 Glutaredoxin Arabidopsis 2 X 10-05 

DP2-72-32 198 Putative Zn-finger TF Rice 7 X 10-32 

DP2-72-25 210 Elongation Factor 1 a Cassava 1 X 10-04 

DP2-72-30 171 Unknown 
DP2-72-43 324 Unknown 
DP2-72-23 230 Unknown 
DP2-72-29 290 Unknown 
DP2-72-15 183 Unknown 

* Expect value- The top most hit of the BLAST search was selected. 
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Figure 6. Differential expression of highly expressed RDA clones isolated from 
24 hours after inoculation (hai) library. Expression data of BCBP and 
polyubiquitin were taken from 6 and 3 redundant clones within the 
array, respectively, while expression data of COM were based on 
single clone. Abbreviated highly expressed clones were as follows: 
BCBP- Blue copper binding protein and COM- Caffeic-0 
-methyltransferase. 
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Figure 7. Expression of highly induced clones at 72 hours after inoculation (hai) 
in the resistant and susceptible isogenic lines. Mean adjusted volumes 
of Chitinase 11, TLP and ZnTF were calculated based on the 
expression data of 8, 11 and 12 redundant clones within the array, 
respectively. RDA clones were as follows: Chitinase II- Chitinase II 
precursor, TLP- Thaumatin-like protein and ZnTF- a putative zinc 
finger transcription factor. 
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and the differential length of RDA redundant clones. Eleven clones showed no 

significant similarities to sequences in the database, which constituted 39% of 

the total induced unique cDNA-RDA fragments. 

Venn Diagram of Gene Induction 

A Venn diagram of putative genes shows overlapping and non­

overlapping induction based on the expression ratios at the two time points after 

pathogen inoculation (Figure 8). Putative genes with non-overlapping induction 

showed differential expression only at one time point of pathogen infection. 

Uclacyanin, glutathione-S-transferase (GST), Rubisco and 6 unknowns were 

found differentially expressed only at 24 hai. Elongation factor-1 a, Zn-finger 

transcription factor, p-D-glucan exohydrolase, chitinase II precursor, thaumatin..., 

like protein, glutaredoxin and 5 unknowns were highly induced only at 72 hai. 

Overlapping induction was exhibited by putative genes found differentially 

expressed at two time points after pathogen inoculation. Clones representing 

non-specific lipid transfer protein, caffeic-0-methyltransferase, UDP­

glucosyltransferase, polyubiquitin, BCBP and proteinase inhibitor were isolated 

from 24 hai library but were also induced at 72 hai. Most RDA gene fragments 

isolated from the 72 hai library were not differentially induced at 24 hai, the 

exception being the peroxidase gene fragment which was isolated at both 24 and 

72 hai. 
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Figure 8. Venn diagram of overlapping and non-overlapping induction of isolated 
cDNA-RDA clones. Induction was calculated based on normalized 
macroarray data at 24 and 72 hours after inoculation (hai). Differential 
induction of clones isolated from 24 hai library was also measured at 
72 hai and vice versa. Induction was based on cut-off expression ratio 
of 2.0. Abbreviated RDA clones that showed overlapping induction 
was BCBP- blue copper binding protein and abbreviated RDA clones 
that showed non-overlapping induction were TLP- thaumatin-like 
protein, EF-1a- elongation factor 1a, chitinase II precursor and Zn-TF­
putative zinc finger transcription factor. 
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Cluster Analysis of Susceptible and Resistant Macroarray Data 

Figure 9 represents a cluster analysis of 28 clones based on standardized 

macroarray expression data at 24 and 72 hai in susceptible and resistant wheat 

near-isogenic lines. A representative RDA clone from each redundant gene set 

was selected for cluster analysis. Cluster analysis groups the RDA gene 

fragments based on similarities of expression patterns. The groupings may 

indicate coregulation of genes based on the assumption that shared expression 

implies shared pattern of regulation (Cummings and Reiman 2000, Bassett et al. 

1999, Eisen et al. 1998). Euclidean distance estimates were used in the UPGMA 

cluster algorithm to present expression pattern similarities of the RDA gene 

fragments as dendrogram. The dendrogram revealed four main clusters at 

distance coefficients of 1.5 to 1.7. Cluster A contains gene fragments with 

putative defense functions and 5 with unknown functions. Glutaredoxin, 
. 

elongation factor 1-alpha and Zn-finger transcription factor-related RDA clones 

clustered together with cDNA fragments related to PR genes. Non-specific lipid 

transfer protein, proteinase inhibitor, p-D-glucan exohydrolase and caffeic-0-

methyltransferase formed a separate subcluster within cluster A. An RDA clone 

related to peroxidase clustered with defense-related gene fragments and 

separated from oxidative stress-related gene fragments. Two peroxidase-related 

RDA clones isolated at different time points after infection showed similar 

expression pattern. Cluster B contains a cDNA fragment related to Rubisco, 

indicating a unique expression pattern different from gene fragments with 

putative defense functions. RDA clones with putative roles in oxidative stress 
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Figure 9. Cluster analysis of macroarray expression data of the induced RDA 
clones in susceptible and resistant cultivars at 24 and 72 hai. 
Euclidean distance was estimated based on standardized expression 
data and used in unweighted pair group mean arithmetic (UPGMA) 
cluster algorithm to produce dendrogram. Dendrogram was divided 
into four major clusters; (A) resistance-related cluster, (B) 
photosynthetic-related cluster, (C) oxidative stress-related cluster and 
(D) unknown function cluster. Abbreviated RDA clones were as 
follows: Chitinase II- chitinase II precursor, EF1Alpha- elongation 
factor 1 a, TLP- thaumatin-like protein, ZnFingerTF- zinc-finger 
transcription factor, NslipidTP- non-specific lipid transfer protein, 
ProteinaselN- proteinase inhibitor, Exoglucanase- p-D-glucan 
exohydrolase, COM-caffeic-0-methyltransferase, Ribulose- Ribulose 
bisphosphate carboxylase/oxygenase, Glutransferase-UDP­
glucosyltransferase, GST-glutathione-S-transferase and BCBP- blue 
copper binding protein. 
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grouped together in cluster C along with 4 genes of unknown function. BCBP 

showed a different expression pattern among gene fragments within cluster C. 

Two RDA clones with unknown functions formed cluster D. 

Northern Analysis of RDA Clones 

To confirm the macroarray data, eight cDNA-RDA gene fragments were 

used as probes in the Northern blot analysis. Figure 10 shows the 

autoradiograms of several Northern blots probed with the indicated 32P labeled 

RDA clonal inserts. The total ethidium bromide stained RNA indicates near equal 

RNA loading of the gel. The northern blot analysis confirmed the results of 

macroarray analysis in the selected RDA clones. BCBP, UDP­

glucosyltransferase and caffeic-0-methyltransferase showed 2.0-fold induction in 

the resistant compared to the susceptible at 24 hai. Polyubiquitin showed the 

highest induction at 24 hai of about 3-fold increase in expression in the resistant 

relative to the susceptible lines. Chitinase II precursor and thaumatin-like protein 

were upregulated in the resistant infected plants compared to the susceptible 

infected plants at 72 hai with 3.0-fold induction. p-D-glucan exohydrolase and 

glutaredoxin cDNA-RDA fragments were also found differentially expressed at 72 

hai with 2-fold induction in the resistant compared to susceptible infected plants. 

To check the temporal pattern of defense-related gene expression, blue 

copper binding protein RDA fragment was selected as a representative probe in 

a time course northern blot analysis. Leaf tissues of the infected resistant plants 

undergoing hypersensitive resistance were sampled at 0, 6, 12, 24 and 72 hai. 
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Figure 10. Northern blot analysis of differentially expressed RDA clones in the 
susceptible and resistant wheat lines. Equal amounts of total RNA 
from leaf samples at 24 and 72 hours after inoculation (hai) were 
electrophoresed on glyoxal-based agarose gel and transferred onto 
nylon membrane. Four clones found induced in macroarray analysis 
were used in each infection stage as probes. Differential induction 
was analyzed using Bio-rad Imaging Densitometer. 
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Total RNA was blotted onto the membrane and probed with a 32P-labeled BCBP 

cDNA fragment. BCBP was found initially induced at 6 hai and highly induced at 

24 and 72 hai (Figure 11 ). 
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Figure 11. Genetic induction of blue copper binding protein (BCBP)-related RDA 
clone in wheat resistant line undergoing hypersensitive resistance . 
Total RNA of leaf rust infected Th-19 was isolated from tissues 
harvested at 0, 6, 12, 24, and 72 hai. Equal amounts of total RNA 
were electrophoresed in a denaturing agarose gel and transferred 
onto the nylon membrane. RDA clone was a 32 dATP-labeled and 
hybridized onto the RNA blot. 
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DISCUSSION 

This study describes the utility of combining cDNA-RDA subtraction and 

filter-based macroarray in dissecting the wheat-P. triticina interaction. RDA 

subtraction and amplification allowed enrichment of some pathogen-induced 

genes that are differentially expressed in the infected wheat near-isogenic lines. 

Thatcher (Th) and its near isogenic derivative (Th-19) differ in the Lr-19 gene, 

and this resistance gene should mediate changes in gene expression during 

pathogen infection. As shown by macroarray analysis, the overall gene 

expression in the infected resistant plant increased rapidly from 24 to 72 hai. 

Rapid induction of defense-related genes has been suggested to contribute in 

the effectiveness of resistant plants in controlling disease (Maleck 2000). 

A threshold ratio of 2.0 was used as a criterion for differential expression 

to avoid exclusion of biologically relevant genes in low abundance. In the 

analysis of the expression ratios, a subset of differentially expressed genes with 

putative defense related functions was identified. Gene fragments found highly 

expressed in the resistant infected plant at 24 hai have sequence similarities to 

genes involved in the oxidative stress, which is one of the early responses to 

pathogen infection as mediated through the oxidative burst (Lamb and Dixon 

1997). BCBP, uclacyanin, GST and peroxidase RDA gene fragments were found 

induced as early as 24 hai. The specific functions of BCBP and u,clacyanin are 

still unclear but both have copper-binding domains and are possibly involved in 

redox control and lignin formation (Nersissian et al. 1998). Furthermore, the 

induction of BCBP has also been shown to be upregulated in response to 
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drought stress (Cho, 1997), ozone (Langebartels et al. 2000) and aluminum 

toxicity (Ezaki et al. 2000). GST and peroxidase are major enzymes involved in 

cellular regulation of redox potential and have been found upregulated during 

plant defense (Maleck et al. 2000; Jabs et al. 1996). Aside from its anti-oxidant 

function, other isoforms of peroxidase were shown to be involved in H202 

production (Bolwell and Wojtaszek 1997) and lignin formation (Ezaki et al. 2001 ). 

In addition to oxidative stress induced genes, genes related to caffeic-0-

methyltransferase, proteinase inhibitor, non-specific lipid transfer protein, UDP­

glucosyltransferase and polyubiquitin were also found induced at 24 hai. Caffeic-

0-methyltransferase is one of the major enzymes involved in the biosynthesis of 

lignin precursors, and subsequent lignification increases the strength of cell walls 

and may prevent fungal penetration (Guo 2001 ). Non-specific lipid transfer 

protein was transcriptionally activated in response to pathogen attack and shown 

to inhibit pathogen growth in vitro (Jung and Hwang 2000, Molina et al 1993). 

Glucosyltransferases are involved in the production of cyanogenic glucosides 

(Jones et al. 1999), lignin (Lim et al 2001) and salicylic glucosylation (Lee and 

Raskin 1999). Proteinase inhibitor and polyubiquitin are both involved in 

regulation of protein activities associated with physiological and biochemical 

changes induced by pathogen infection (Stevens et al. 1996). RDA fragment 

related to ribulose bisphosphate carboxylase/oxygenase (Rubisco) was also 

found differentially expressed at 24 hai. Induction of Rubisco in the resistant plant 

may occur at the early stage of pathogen infection to produce the necessary 

assimilates needed for the energy-requiring induction of defense responses. 
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Induced genes at 72 hai were mostly related to regulation of gene 

expression and pathogenesis-related proteins. Chitinase II precursor, p-D-glucan 

exohydrolase and thaumatin-like protein genes were highly induced at the later 

stages of pathogen infection. p-D-glucan exohydrolase has been reported to 

hydrolyze (1-3)-P-D-glucans and (1-3), (1-6)-P-D-glucans present in fungal cell 

walls (Hrmova and Fincher, 1998). Another possible function of exoglucanase in 

the wheat-leaf rust interaction is to catalyze self-hydrolysis of the native cell wall 

due to cessation of growth at the site of pathogen infection. p-glucans found in 

cell walls of grass species accumulate during enlargement but are extensively 

hydrolyzed when cell growth ceases (Carpita and Gibeaut 1993). Chitinase II and 

thaumatin-like protein have been found to degrade chitin and permeabilize the 

cell wall of fungal pathogens, respectively (Sclumbaum et al. 1986; Abad et al. 

1996). RDA clones related to these proteins showed similar temporal patterns 

and magnitudes of expression and are two .of the most abundant clones in the 

library. The combined effect of these two PR proteins may significantly contribute 

to the abortion of leaf rust infective structures at later stages of pathogen 

infection. Interestingly, elongation factor 1 a RDA clone clustered together with 

chitinase II precursor and thaumatin-like-protein related fragments. Elongation 

factor 1 a (EF1 a) delivers aminoacyl tRNA to the ribosomes during translation. 

Since high induction of defense-related proteins has been observed in response 

to pathogen attack (Van Loon 1976), the demand for Ef-1 a should also be high 

and expression should be computationally similar to the highly expressed 

defense-related genes as shown in the cluster analysis. In addition to its function 
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in protein synthesis, Ef-1a has been suggested also to be involved in actin 

filament bundling (Yang et al. 1990), microtuble severing (Shiina et al. 1994) and 

oxidative stress-induced apoptosis (Chen et al. 2000). 

The isolation of glutaredoxin RDA clone at 72 hai and its expression 

pattern may suggest involvement in redox-regulation of plant defense-related 

gene expression (Figure 12). Glutaredoxin is a small disulfide-reducing enzyme 

that has been found to modulate activities of many mammalian transcription 

factors like NF-xB, AP-1, NFI (Hirota et al. 2000, Bandyopandhyay et al. 1998) 

during the hyperoxic state, a condition of an increased oxygen concentration in 

the cell. These glutaredoxin-modulated mammalian transcription factors regulate 

the expression of various genes related to the immune response and apoptosis 

(Wang et al. 1996, Van.;.Antwerp et al. 1996). Oxidation of sulfhydryl groups can 

activate or deactivate DNA binding function of many transcription factors thus 

effecting changes in the expression profile of their target genes (Grant and Loake 

2000). The cluster analysis showed the grouping of glutaredoxin, a putative Zn 

finger transcription factor and a peroxidase for possible coregulation of 

expression. Redox-regulation of the putative Zn-finger transcription factor may be 

involved in the expression of wheat PR genes or inhibition of hypersensitive cell 

death. Cysteine residues in the DNA-intercalating domains of Zn-finger 

transcription factors are the primary targets for oxidative inactivation (Wu et al. 

1996). Novel Zn finger proteins encoded by Arabidopsis /sd1 gene (Dietrich et al. 

1997) and WRKY transcription factors (Eulgem et al. 2000) have been proposed 

to negatively regulate hypersensitive cell death and positively activate PR genes, 
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Figure 12. Model for the possible mechanism of redox-regulation of defense­
related gene expression. Extracellular followed by intracellular 
production of reactive oxygen species (ROS) have been shown to 
occur during pathogen infection. Intracellular ROS cause oxidative 
inactivation of many proteins. Zinc finger proteins are the primary 
targets of oxidative inactivation due to the presence of cysteine 
residues affecting DNA binding activity. Reduced glutathione, with 
the action of glutathione reductase and NADPH, donates electron to 
glutaredoxin, which in turn reduces zinc finger proteins. Reduction 
of zinc finger proteins enhances DNA binding activity, thus regulating 
gene expression. 
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respectively. Database search for sequence similarity of the DP2-72-32 RDA 

clone showed two significant hits: a putative Zn-finger transcription factor in rice 

(E value = 7 X 1 o-32) and a putative CCCH-type zinc finger protein in Arabidopsis 

(E value = 2 X 1 o-4). Sequence analysis of these two zinc finger proteins showed 

a consensus sequence related to mammalian CCCH-type zinc-finger domain 

(see Appendix A). Tristetrapolin, a mammalian CCCH type zinc-finger protein, 

was thought to function as a transcription factor but was recently shown to 

destabilize mRNA related to tumor necrosis factor a, a programmed cell death 

receptor (Lai and Blackshear 2001 ). Due to the similarity of DP2-72-32 clone to 

genes with CCCH-type zinc finger consensus sequence, DP2-72-32 RDA clone 

may not be a zinc finger transcription factor but may be a gene with mRNA 

binding activity that degrades cell death-related mRNAs to prevent the spread of 

the hypersensitive response. 

Coordinated and overlapping expression of defense-related genes is 

possibly a plant strategy to produce synergistic effects to control pathogen 

growth. Synergistic interaction has been shown by chitinase and ~-1,3-

glucanase in transgenic tomato plants (Jongedijk et al. 1995) and by non-specific 

lipid transfer protein and thionins in barley (Molina et al. 1993). The combined 

effect of the two genes enhanced protection against disease. Co-expression of 

wheat defense-related genes was found at 24 and 72 hai. Overlapping 

expression of genes suggests that resistant wheat plants produce many possible 

immediate defenses to prevent leaf rust pathogen establishment. 
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CHAPTER Ill 

CONCLUSIONS: SUMMARY AND FUTURE DIRECTIONS 

Transcriptional profiling is an attractive tool to study the complexity of 

plant-pathogen interactions. Analysis of gene expression provides a molecular 

description of the events that occur during infection. The goal of this study was to 

understand the molecular mechanisms of wheat defense responses to leaf rust 

pathogen attack through gene expression profiling. 

A combination of cDNA-RDA subtractive hybridization and macroarray 

analysis was used to isolate differentially expressed gene fragments between 

near-isogenic lines of wheat differing in resistance to leaf rust infection. 

Sequence analysis showed that induced genes have putative roles in oxidative 

stress, lignification, gene regulation, photosynthesis, and PR protein 

accumulation. Based on the expression pattern of isolated RDA clones, 

transcriptional reprogramming in wheat during leaf rust pathogen ingress showed 

a considerable degree of complexity similar to other cereal-fungal pathosystems. 

It is clear in this study that we can draw meaningful inferences from gene 

expression data using computational analysis. Genes with putative functions in 

oxidative stress, lignification and pathogenesis-related protein accumulation were 

the predominant reactions during leaf rust infection. Glutaredoxin and a putative 

Zn-finger transcription factor related genes shared the same expression pattern 

and are predicted to have roles in regulating defense-related gene expression or 

cell death. Accumulation of reactive oxygen species is an important response to 
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pathogen infection in some pathosystems but there has been no report yet on the 

mechanisms of redox-regulation of transcription factors that modulate plant 

defense-related gene expression. In mammalian systems, redox-regulation of 

many transcription factors related to defense has been reported in many studies 

(Hirota et a.I. 2000, Bandyopandhay et al. 1998). 

Although only a subset of defense-related genes was analyzed at two time 

points after infection, this study provides a significant contribution in describing 

some aspects of the molecular basis of wheat leaf rust resistance. More in-depth 

inferences can be obtained if RDA fragments are analyzed under several 

different conditions and additional time points after pathogen infection. Such data 

sets may be analyzed using various methods with increasing depth of inference 

such as principal component analysis and self-organizing map (see Appendix B). 

Because there are still many pathogen-induced RDA clones with unknown 

functions, future experiments might discover other pathways important in the 

genetic control of the HR in wheat. Knowledge of the exact function and the 

potential targets of the isolated RDA clones will provide important insights toward 

understanding the mechanisms of the wheat defense response. Isolation of full­

length cDNA sequences will be necessary in future experiments on validation of 

functions. The use of knockouts and antisense strategies in wheat will be the 

critical areas of research for the ultimate assignment of gene function. More 

complete understanding of wheat fungal defense responses will require a 

genome-wide expression analysis of all genes but is viewed with considerable 

challenges. By knowing the molecular details of the wheat-wheat leaf rust 
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interaction, scientists can identify host defense strategies and characterize the 

cues to which they respond and mechanisms by which they are regulated. 

Specifically, the information on molecular mechanisms of the wheat defense 

response will help breeders and biotechnologists to identify targets for genetic 

manipulation and consequently provide a strong foundation for the rational 

design of environment-friendly and consumer-accepted biotechnological 

strategies for developing wheat germplasm with improved leaf rust resistance. 
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APPENDIX A 

A Pathogen-Induced Putative Zn-finger Transcription Factor: Its 

Isolation in Leaf Rust Infected Resistant Wheat Plant 

ABSTRACT 

The RACE (rapid amplification of cDNA ends) method was used to isolate 

the 3' cDNA end of the DP2-72-32 RDA gene fragment induced in the wheat leaf 

rust infected resistant plants in the gene expression profiling experiment. Nested 

PCR using gene specific primer 2 (GSP2) produced amplicons corresponded to 

the 3'-end of the gene. Database search for sequence similarity of the 3' cDNA­

end of the gene showed only two significant hits: a putative Zn-finger 

transcription factor in rice (E value = 1 X 10-14) and a putative CCCH-type Zn­

finger protein in Arabidopsis (E value = 2 X 1 o-04). Sequence alignment of the Zn­

finger transcription factor and CCCH-type Zn-finger protein revealed a highly 

conserved sequence of Cys-His in the form of YSGTA-CX7CX5CX3H. This zinc 

finger domain is related to the YKTEL-CX8CXsCXaH conserved region of a small 

family of mammalian CCCH-type Zn-finger proteins found to destabilize mRNA 

encoding tumor necrosis factor a (TNFa). Due to its relatedness to CCCH-type 

Zn-finger protein that regulates mammalian apoptosis, this DP2-72-32 RDA clone 

may bind to and destabilize pro-death mRNAs to regulate the spread of the 

hypersensitive response. 
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INTRODUCTION 

Cell death is one of the obvious manifestations of hypersensitive 

resistance. Although it is common in many plant-pathogen interactions, the 

pathway leading to the expression of programmed cell death remains to be 

elucidated. Many studies have shown the uncoupling of resistance and cell death 

(Cole et al. 2001, Yu et al. 1998), suggesting that these two components of 

hypersensitive response are conditioned by different set of genes. 

Zn-finger proteins have been implicated in the regulation of programmed 

cell death in both plants and animals. In the plant system, Dietrich et al. (1997) 

isolated a novel zinc finger protein called LSD1 that appears to negatively 

regulate hypersensitive cell death at the level of transcription. The mechanism of 

regulation could involve either repression of prodeath (see Appendix B) pathway 

or activation of antideath (see Appendix B) pathway. In the mammalian system, a 

small class of zinc-finger proteins has been shown to regulate apoptosis (see 

Appendix B). Tristetrapolin (TTP), a prototype of CCCH zinc-finger proteins, has 

been found to destabilize genes involved in tumor necrosis factor, a programmed 

cell death receptor (Lai et al. 1999). TTP initiates the degradation after binding of 

the tandem zinc-finger domain to the AU-rich region (ARE) in the 3' UTRs of the 

target mRNAs (Lai et al. 2002). 

In the study of the wheat-Puccinia triticina interaction, an RDA clone was 

isolated in the subtractive hybridization experiment (refer to Chapter II) that 

showed sequence similarity to zinc-finger proteins. This gene fragment was 

highly induced in the infected resistant wheat line at 72 hai. To study the role of 
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this zinc-finger related RDA clone in hypersensitive resistance, isolation of full­

length cDNA sequence was necessary. This study describes the initial effort in 

isolating the full-length sequence of the putative Zn-finger transcription factor 

RDA clone using 3'RACE. 

MATERIALS AND METHODS 

Plant Infection 

The wheat resistant line, Th-19, containing the Lr-19 resistance gene, was 

used in the analysis. Seeds were sown in 1OX10 cm pots with Metro-mix (Scotts, 

Marysville, OH) potting medium and grown for two weeks in a growth chamber 

with 16/8 hr light/dark cycle at 20° and 15°C, respectively. Seedlings at the two­

leaf stage were infected with P. triticina using a plant-to-plant brushing method as 

described by Brawler (1971 ). The infected susceptible wheat cultivar, Danne, 

was used as the brush plants that served as a source of inoculum. Brush plants 

were inoculated with rust spores that had been stored in liquid nitrogen. Rust 

pustules developed on the leaves of the brush plants 11 days after inoculation. 

Th-19 seedlings were placed in a mist chamber 1 hr prior to inoculation. The 

plants were removed from the mist chamber and inoculated by brushing the 

infected brush plants lightly over the tops of misted resistant seedlings. Spores 

were allowed to settle on the leaves for 15 min and the inoculated plants were 

incubated in the mist chamber for another 12-16 hr. Infected seedlings were 

transferred back to the growth chamber. Leaf tissues were harvested at 72 hai 

from the infected Th-19 seedlings and ground in liquid nitrogen. Ground samples 

were stored in liquid nitrogen. 
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RACE Cloning 

Sequence information on the DP2-72-32 RDA clone was used to design 

primers for 3' rapid amplification of the cDNA end (RACE). Two gene specific 

primers were designed using MacVector 6.0 software (Oxford Molecular Group). 

Total RNA was isolated from ground leaf tissues using the TotallyRNA kit 

(Ambion, Austin, TX) following the manufacturer's protocol. 3' RACE kit (Life 

Technologies, Rockville, MD) was used to obtain the 3' cDNA end of the gene. 

First strand cDNA synthesis was performed in 5 µg total RNA with 10 µM adapter 

primer using Superscript II RT (Life technologies, Rockville, MD) at 42°C for 50 

min. After the first strand cDNA synthesis, the original RNA template was 

degraded with RNase H (Life Technologies, Rockville, MD) for 20 min at 37°C. 

The transcribed cDNA was then used as the template for PCR. The 50 µI 

reaction contained 20 mM Tris-HCL, 50 mM KCL, 1.5 mM MgC'2, 0.2 mM dNTP, 

200 nM GSP1 (gene specific primer 1 ), 200 nM UAP (Universal Amplification 

Primer) and 2.5 U Taq DNA polymerase (Life Technologies, Rockville, MD). PCR 

amplification was performed using the following conditions: 94°C, 3 min; 35 

cycles of 94°C for 1 min, 58°C for 1 min, 72°C for 1 min; and a final 10 min 

extension at 72°C. PCR products were diluted in 1: 10000 using sterilized Milli-Q 

water (Millipore, Bedford, MA). A 2 µI aliquot of the diluted reaction was used as 

template for nested amplification. Similar PCR conditions as the first amplification 

was employed for nested PCR using gene specific primer 2 (GSP2). The 3' 

RACE-nested PCR products were gel-purified and ligated into pGEM-T easy 

vector (Promega, Madison, WI). The ligated plasmid vector was transformed into 
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the DH5a competent cells (Life Technologies, Rockville, MD) following the 

manufacturer's protocol. Three microliters of ligation reaction were added directly 

to competent cells. Competent cells were heat-shocked for 20 seconds at 37°C 

and incubated on ice for 2 min. Luria-Bertani (LB) medium was added and 

incubated in the shaker at 225 rpm for 1 hr at 37°C. Bacterial cultures were 

spread on LB containing ampicillin (1 OOmg/1) agar plates with X-gal (40µg/ml) 

and incubated overnight at 37°C in a shaker at 225 rpm. White colonies were 

picked, placed in 6 ml LB medium with ampicillin and incubated overnight at 37°C 

in a shaker at 225 rpm. Plasmid DNA was isolated using Qiagen Plasmid 

Isolation kit (Qiagen, Valencia, CA) and inserts were sequenced at the 

Recombinant DNA/Protein Core Facility, Oklahoma State University, using a 373 

Applied Biosystems DNA Sequencer (Applied Biosystems, Foster, CA). 

Database nucleotide and amino acid sequence comparisons were conducted 

using BLASTN and BLASTX (Altschul et al. 1997), respectively. Conserved 

sequence domains were searched using RPS-BLAST (Altschul et al. 1997) and 

Pfam databases. 
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RESULTS AND DISCUSSION 

Two PCR primers were designed based on the nucleotide sequence of 

DP2-72-32 RDA clone for RACE. Sequences and locations of the gene specific 

primers are shown in Figure 1. The second gene specific primer (GSP2) was 

used in nested amplification. RACE products were cloned and 10 individual 

plasmids were sequenced. Two sequences were identified with different end 

points (Figure 2). One is longer than the other by 17 nucleotides from termination 

codon to polyadenylation site. In almost all plant genes, the position of cleavage 

can be quite heterogeneous within a single transcription unit (Rothnie 1996). 

Extensive deletion and linker analysis showed that the processing site is 

controlled by an upstream sequence called the near upstream element (NUE) 

(Magen et al. 1992). In the two 3'-end sequences isolated in this experiment, the 

NUE is most probably TGTAAAT at 14-15 nt upstream of poly(A) site. Duplication 

of TGT AAA T was found in the longer RACE product. 

The two sequences, although different in length, have the same coding 

region. The 3'-end RACE products coded for a predicted 82 amino acid 

sequence (Figure 3). The predicted amino acid sequence showed significant 

similarity to two sequences in the database: a putative zinc finger transcription 

factor in rice and a putative CCCH-type zinc finger protein in Arabidopsis (Table 

1 ). Sequence comparison of these two proteins revealed three tandem zinc 

finger conserved sequences; CX12CX10CX3H, YSGTA-CX1CX5CX3H and 

GVFECWLHPARYRTQP-CX5C>GiCX3H (Figure 4 ). The spatial arrangements of 

the Cys and His residues in the zinc finger domain are highly conserved in the 

82 



DP2-72-92 
5' 
GATCC TCACT TGGTC ACGGT GACCA CCGCC TCTGG 

CGCCA CCATA ACCAT GGAGC CCATG GACCT CGGGC 

GSP1 
TCATA GCAGA GGAGC AGCCT GTGGA GAGGG TAGAG 

TCCGG GAGAG CCCTC CGCGC AAAGG TATTC GAGAG 

GSP2 
GCTCA GCAAA GAAGC CACCG TCTGC AACGA CACCA 

3' 
TCGCT GCCGC AGCCG TGGAA GTT 

Figure 1. Sequences and locations of the gene specific primers (GSP1 and 
GSP2) for 3' rapid amplification of cDNA ends (RACE). MacVector 6.0 
was used in designing primers following the recommendations in the 
3'RACE kit. Gene specific primer 1 (GSP1) was consisted of 21 bases 
with 57% GC and melting temperature of 58°C. Gene specific primer 2 
(GSP2) was consisted of 18 bases with 55% GC and melting 
temperature of 55°C. GSP1 and GSP2 were used in the first and 
nested PCR reactions, respectively. 
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A.) RACE product 1 

GCTCAGCAAAGAAGCCACCGTCTGCAACGACACCATCGCTGCCGCAGCCG 
TGGAAGTTCCGACCTCAGCCGCTCCTGACGTCGGCTGGGTCTCCGATCTCA 
CCAACTAAAGCAATCAAGGTGGTCAGGTGTTGCTAGATCGGTTTGCAATTC 
CTATTCCTTGTAAGATACTCCTATTCCTTGTAAATATGTTCTTCCTTCCTATG 
TAAAAAAAAAAAAAAAAAAA 

B.) RACE product 2 

GCTCAGCAAAGAAGCCACCGTCTGCAACGACACCATCGCTGCCGCAGCCG 
TGGAAGTTCCGACCTCAGCCGCTCCTGACGTCGGCTGGGTCTCCGATCTCA 
CCAACTAAAGCAATCAAGGTGGTCAGGTGTTGCTAGATCGGTTTGCAATTC 
CTATTCCTTGTAAGATACTCCTATTCCTTGTAAATATGTTCTTCCTTCCTATG 
TAAATTACCAAGATGTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAA 

Figure 2. Two products of 3' rapid amplification of cDNA ends (RACE) with 
different polyadenylation sites. The first sequence (A) has 97 
nucleotides from termination codon to the poly(A), while the second 
sequence (B) has 115 nucleotides from the termination codon to the 
poly(A). TGT AAAT sequence is possibly the near upstream element 
that controls the polyadenylation site. 
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DP H L VT VT TA S GA TIT M 
GATCCTCACTTGGTCACGGTGACCACCGCCTCTGGCGCCACCATAACCATG 

E PM D LG LI A EE Q P VER V 
GAGCCCATGGACCTCGGGCTCATAGCAGAGGAGCAGCCTGTGGAGAGGGT 

ES GR AL RA KV FER LS KE 
AGAGTCCGGGAGAGCCCTCCGCGCAAAGGTATTCGAGAGGCTCAGCAAAG 

ATV C ND TI A A A AVE VP 
AAGCCACCGTCTGCAACGACACCATCGCTGCCGCAGCCGTGGAAGTTCCG 

T SA AP D VG WV SD LT N * 
ACCTCAGCCGCTCCTGACGTCGGCTGGGTCTCCGATCTCACCAACTAAAGC 
AATCAAGGTGGTCAGGTGTTGCTAGATCGGTTTGCAATTCCTATTCCTTGTA 
AGATACTCCTATTCCTTGTAAATATGTTCTTCCTTCCTATGTAAAAAAAAAAA 
AAAAAAA 

Figure 3. Nucleotide and deduced amino acid sequences of the 3' cDNA end of 
the DP2-72-32 RDA clone. The 3' cDNA end was isolated using rapid 
amplification of cDNA ends (RACE) method. The termination codon 
and predicted near upstream element (NUE) of the gene are in bold 
letters. 
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Table 1. Similarity of the 3' cDNA end of the DP2-72-32 RDA clone with 
sequences in the database. 

Sequences % Identities % Positives E-value 

(AP0027 46) Putative zinc finger 
transcription factor (Oryza saliva) 53 63 1 X 10-14 

(AC005169) Putative CCCH-type 
zinc finger protein (Arabidopsis 50 58 2 X 10-04 

thaliana) 

(NC_003075) Putative protein 
(Arabidopsis thaliana) 50 57 0.037 
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ZnTFRice 
CCCHArabidopsis 

ZnTFRice 
CCCHArabidopsis 

ZnTFRice 
CCCHArabidopsis 

ZnTFRice 
CCCHArabidopsis 

ZnTFRice. 
CCCHArabidopsis 

ZnTFRice 
CCCHArabidopsis 

ZnTFRice 
CCCHArabidopsis 

MMMMGEGVSSVPPWSHLP-------VSGVDVLGGGGGGGDEMTPYVIAALRDYLPANDVG 53 
-MMIGESHRGFNP~VHIPPWPLSEDLTVSDIYGSPDGGSSMME--ALAELQRYLPSNEP- 56 

**:** * *:* *: * ** * . :* *: ***:*: 

VGADEEEEAAAMAAAVDAYACDEFRMYEFKVRRCARGRSHDWTECPFAHPGEKARRRDPR 113 
-DPDSDPDLSGPDSPIDAYTCDHFRMYEFKVRRCARGRSHDWTECPYAHPGEKARRRDPR 115 

•. *.: : :. :.:***:**·***********************:************* 

KY YSGTACPDFRKGGCKRGDACEYAHGJVFECWLHPARYRTQPCKDGTACRRRVCFFAHT 173 
K YSGTACPEFRKGCCKRGDACEFSHGVFECWLHPARYRTQPCKDGGNCRRRVCFFAHS 175 

**********: 

PDQLRVLPAQQSSPRSVASSPLAESYDGSPLRRQAFEYLTKTIMSSSPTSTLMSPPKSPP 233 
PDQIRVLPNQ--SPDRVDSFDVLS-----PTIRRAFQ------FSISPSSN--SPPVSPR 220 
***:**** * ** * * * *:**: : * **: *. *** ** 

SESPPLSPDGAAAIRRGSWPGVGSPVNDVLASFRQLRLNKVKSSPSGGWSYPSSSAVYGS 293 
GDS----DSSCSLLSRSLGSNLG---NDVVASLRNLQLNKVKSSLSS--SYNNQIGGYGS 271 
. : * ... : : * .. :* ***:**:*:*:******* * ** *** 

PKAATGLYSLPTTPLASTATVTTASSFMPNLEPLDLGLIGDEEPVQRVESGRALREKVFE 353 
GFGSP-RGSVLGPGFRSLPTTPTRPGFMN---IWENGLE-EEPAMERVESGRELRAQLFE 326 

*: . : * ·*··* ** : ** :* .::****** ** :-:** 

RLSRDGAIS-GDATAFATAGVGLDVDWVSDLIN 385 
KLSKENCMGRIEPDPDQGAGDTPDVGWVSDLVM 359 
:**:: .. :. ** **.*****: 

Figure 4. · Alignment of DP2-72-32 RDA clone similar sequences in the 
database. Database search found significant sequence similarities 
of DP2-72-32 cDNA fragment to putative zinc finger transcription factor 
in rice (E value =1 X 10-14) and putative CCCH-type zinc finger protein 
in Arabidopsis (E value = 2 X 1 o-04). Sequence alignment of related 
genes was done using Clustal W and showed a conserved region 
related to YKTELCXaCXsCX3H, a mammalian CCCH-type zinc finger 
domain. Consensus sequences are shown in asterisk and CCCH-type 
related zinc finger domain is enclosed in a box. 
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two proteins. The YSGTA-CX7CX5CX3H zinc finger domain, where X refers to 

variable amino acids, is related to YKETL-CXsCXsCX3H CCCH-type zinc finger 

consensus sequences in mammalian cells. CCCH-type zinc finger proteins in 

mammalian cells have been found to destabilize mRNA activity. Tristetrapolin, a 

prototype of the small family of CCCH-type zinc finger proteins in mammalian 

cells, was originally thought to be transcription factor but was recently found to 

initiate degradation of mRNAs related to tumor necrosis factor (Lai et al. 1999). 

Because of its sequence similarity to the CCCH-type protein that regulates 

mammalian apoptosis, the DP2-72-32 RDA clone is possibly a gene that 

negatively regulates hypersensitive cell death. Our hypothesis is that the CCCH­

type zinc finger protein and pro-death genes may be induced in the plant c,ells 

within and outside of the pathogen infection site (Figure 5). In /sd1 Arabidopsis 

mutant, the presence of superoxide is a necessary and sufficient signal for cell 

death (Dietrich et al. 1997, Morel and bangl 1997, Jabs et al. 1996). Cell death 

occurs only at the site of pathogen infection probably because of the very high 

level of H202 entering the cells. H202 can be converted to a more reactive 

oxygen species, the hydroxyl radical, in the presence of iron or copper through a 

Fenton type reaction. Reactive oxygen species in the cell may deactivate the 

mRNA binding activity of the CCCH-type zinc finger protein allowing the 

expression of cell death genes. In areas surrounding the infection site, the level 

of reactive oxygen species entering the cells may not be very high. Induction of 

glutaredoxin may be enough to neutralize the level of oxidation in the CCCH-type 

zinc finger protein, thus enhancing their mRNA binding activity and triggers 
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Figure 5. Model for the possible mechanism of redox-regulation of the 
hypersensitive cell death. In this hypothesis, intracellular levels 
of reactive oxygen intermediates and glutaredoxin regulate the 
mRNA binding activity of CCCH-type zinc finger protein that 
destabilizes mRNA related to cell death. 
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destabilization of mRNA related to cell death. Destabilization of cell death mRNA 

may prevent the spread of hypersensitive response surrounding the infection 

site. Isolation and functional analysis of the full-length cDNA sequence of the 

DP2-72-32 RDA clone with sequence similarity to a putative zinc finger protein 

are needed to investigate this hypothesis. 
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Algorithm 

Ankyrin 

Ankyrin repeat 

Anti-death genes 

Apoptosis 

Average-linkage clustering 

APPENDIX B 

Glossary of Terms 

A computational strategy for accomplishing an 
objective. 

A globular protein that links spectrin and an 
integral membrane protein in the erythrocyte 
plasma membrane. 

Tandemly repeated module of about 33 amino 
acids known to function as protein-protein 
interaction domains. 

Genes that protect cells from undergoing 
cell death. 

A programmed cell death in mammalian cells 
that can be induced by a variety of stimuli 
including growth factor, UV, chemotherapeutic 
agents or by a family of transmembrane 
proteins called death receptors. It is 
characterized by shrinkage of the cells, 
membrane inversion and exposure of 
phosphatidylserine, blebbing, fragmentation of 
nucleus, chromatin condensation and DNA 
degradation. In termination phase, membrane 
-enclosed vesicles, the small remainders of the 
cell ("apoptotic bodies") are engulfed by 
phagocytes which prevents an inflammatory 
reaction. 

The distance between clusters is calculated 
using average values. The most common 
technique is unweighted pair-group method 
average (UPGMA). The average distance is 
calculated from the distance between each 
point in a cluster and all other points in another 
cluster. The two clusters with the lowest 
average distance are joined together to form a 
new cluster. 
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BLAST 

Blotting 

Brush Plants 

cDNA 

cDNA arrays 

cDNA Representations 

Clones 

Cluster Analysis 

Driver 

Distance 

ESTs 

The Basic Local Alignment Search Tool is a 
fast technique for detecting ungapped 
subsequences that match a given query 
sequence. 

A technique used for transferring DNA or RNA 
to a suitable matrix, such as nylon membrane. 

Infected susceptible (Danne) plants that serve 
as sources of inoculum in plant-to-plant 
brushing method. 

Complementary DNA; synthesized from an 
mRNA template by the enzyme reverse 
transcriptase. Generation of representation in 
RDA is derived from double stranded cDNA. 

cDNA clone inserts are printed onto a nylon 
membrane using 384 replicator and 
subsequently hybridized to labeled probes. The 
probes are pools of cDNAs derived from 
mRNA. 

cDNA-RDA relies on the generation, by 
restriction enzyme digestion and PCR 
amplification, of simplified versions of the 
cDNA populations under investigation. 

A group of cells or RDA fragments derived 
from a single ancestor. 

Computational algorithm for identification of 
patterns in gene-expression data. 

Susceptible cDNA representations that drive 
the subtraction in RDA. 

A measure of dissimilarity between two RDA 
clones based on macroarray gene expression 
data. 

Expressed Sequence Tags; a sampling of 
sequence from a cDNA. 
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E-value Expect value: the expected number of hits with 
a score equal to or greater than the score for a 
given hit. 

Gene family Consists of a set of genes whose exons are 
related; the members were derived by 
duplication and variation from some ancestral 
gene. 

Hyperoxic State An increased concentration of oxygen in the 
cell; is characteristic of cells undergoing 
oxidative stress induced apoptosis. 

Leucine-rich repeat Short sequence motifs present in a number of 
proteins which contains leucines or other 
hydrophobic amino acids at regular interval; 
LRR motifs usually involved in protein-protein 
interactions. 

Normalization The process of removing the sources of 
variation in macroarray experiments that affect 
the measured gene expression levels. The 
normalization factor is used to adjust the data 
to compensate for experimental variability and 
to balance the hybridization signals from the 
two samples being compared. 

Nucleotide binding site Characterized by several sequence motifs 
found in animal ATP and GTP-binding proteins. 

Pfam database Pfam database of protein domains and HMM 
developed by Washington State University in 
St. Louis. It is a large collection of multiple 
sequence alignments and hidden Markov 
models covering many common protein 
domains. 

Principal Component Analysis It is a mathematical technique that exploits 
factors to pick out patterns in the data, while 
reducing the effective dimensionality of gene 
expression space without significant loss of 
information. 

Pro-death genes Genes that induce cells from undergoing 
cell death. 
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Protein domain 

RPS-BLAST 

Self-organizing maps 

Similarity 

Tester 

To/1-lnter/uekin Receptor 

Zinc finger protein 

A domain is independent region of the protein. 
It may represent a functional unit that is 
identified with a particular activity of the 
protein, for example, its ability to perform a 
certain catalytic activity, to bind certain ligand 
or interact with other types of domains. 

Reverse position-specific BLAST algorithm; 
The query sequence is compared to a position 
-specific score matrix prepared from the 
underlying conserved domain alignment. 

It is a neutral-network-based divisive clustering 
approach. A SOM assigns genes to a series of 
partitions on the basis of the similarity of their 
expression vectors to reference vectors that 
are defined for each partition. 

A measure of how similar one sequence or 
expression is to another; depends on a scoring 
matrix. 

Resistant cDNA representations containing the 
target genes. 

Intracellular signaling domain found in MyD88, 
interleukin 1 receptor and Toll receptor. 

Protein that has a repeated motif of amino 
acids with characteristic spacing of cysteines 
that may be involved in binding zinc; is 
characteristic of some proteins that bind DNA 
and/or RNA. 
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