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Chapter 1 

1. Introduction 
Financial markets for equities, interest rates, and commodities have contingent 

claims or options that provide rights to the holders. Although the development of 

valuation models for contingent claims in equities and interest rates is extensive, this is 

not the case for commodity contingent claims. This research focuses on the natural gas 

and crude oil commodity markets. A valuation framework for energy contingent claims 

is presented that extends current methods by introducing an alternative volatility function 

for the price process. 

Valuing energy contingent claims requires the specification of a pricing 

framework. Two frameworks currently exist for developing valuation models. The first 

method is to specify the spot process for an asset and derive contingent claims. The 

Classic Option Pricing Models of Black and Scholes (1973) and Black (1976) originate 

from this framework. The second method is to specify a forward rate or curve process 

and derive the spot process and contingent claims from this specification. Heath, Jarrow, 

and Morton ( I 990) developed their interest rate model using this framework. 

Commodity valuation models utilize both frameworks. Gibson and Schwartz (1990) and 

Schwartz (1997) develop energy pricing using a spot process specification. Clewlow and 

Strickland ( 1997 and I 999) and Cortazar and Schwartz ( 1994) utilize forward curve 

developments. The research presented here extends the second framework and presents 

an alternative specification for the volatility component of the forward process. 
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The Classic Option Pricing Models (COPM) developed by Black and Scholes 

(1973) and Black (1976) assumes that volatility of the returns is constant for the 

underlying asset. The forward curve models have a term structure of volatilities with 

constant volatility across strike prices. Implied volatility is defined as the standard 

deviation of returns that equates the market price of an option with its option premium for 

a given asset and strike price. The assumption of constant volatility means that the 

implied volatility should be equal across all strike prices for a given time to expiration. 

Volatilities implied by these option pricing models display consistent deviations from this 

assumption. This abnormality is called the "volatility smile," or "volatility skew ." 1 This 

empirical relationship between implied volatility and the option's moneyness is 

illustrated in Figure 1. Panel A illustrates a volatility smile that is skewed to the right 

with out of the money (OTM) call and in the money (ITM) puts having higher volatilities, 

whereas Panel B is a left skewed volatility smile. Panels A and B are common volatility 

smiles in crude oil and natural gas commodities. Panel C is a sneer that is representative 

of an equity's leverage effects as the stock price decreases. The combination of volatility 

skew and volatility term structure together form what is termed the "Volatility Surface." 

Volatility surfaces are a common feature in commodity markets. Research 

devoted to developing pricing models that are "smile" consistent is limited. 

Deterministic Volatility Models (DVM) are smile consistent pricing models that specify a 

deterministic volatility function incorporating time and price (strike) components. 

Dupire (1994), Rubinstein (1994) and Kani, Derman, and Kamal (1996) provide the 

seminal work in this area. The Heath, Jarrow, and Morton (1990) and Clewlow and 

1 For example, Bates ( 1991) finds a negative skew or "volatility sneer" in the S&P 500 index options. 
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Strickland (1999) model's specification of the volatility term structure is also a 

deterministic volatility function. These types of models specify a deterministic function 

for volatility and use implied volatilities from traded options for estimating the 

parameters of the pricing model. The first objective of this research is to present an 

alternative specification for the volatility function for the underlying price process that is 

consistent with observed volatility surfaces which is termed the Smile Consistent 

Volatility Function (SCVF). 

The miss-specification of the pricing model for contingent claims can lead to 

serious hedging errors. The SCVF requires testing hedging effectiveness to determine 

the validity of the model. Hedging performance is the second objective of this study. 

The hedging performance will be tested against two benchmarks. The SCVF contains the 

Clewlow and Strickland (1999) model as a subset, which makes it a logical benchmark. 

The other benchmark is the COPM that is industry standard for determining hedging 

parameters. These two benchmarks have closed form solutions whereas the SCVF is 

tractable, but at this time, a closed form solution is not currently available. Alternatives 

to the closed form solution are the numerical methods of utilizing trees or finite 

difference methods. 

The SCVF is implemented using numerical methods that will produce metrics for 

evaluating the model against two benchmarks. The numerical method is Implied 

Volatility Tree (Derman, Kani, and Chriss, 1996 and Chriss, 1996 and 1997, IVT). The 

SCVF parameters are estimated daily for the period l/l/1995-12/31/99. Weekly hedge 

portfolios including transaction costs will be constructed using the SCVF and the 

benchmarks with a six month hedge window for natural gas and a three month hedge 
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window for crude oil. The hedge positions will be static and the performance is 

evaluated on the ability of the SCVF and the benchmarks to hedge the price risk of the 

portfolio. The evaluation criteria will be the non-parametric squared rank test for equal 

variance and the Diebold and Mariano (1995) hedge statistic. 

The SCVF provides a way to estimate the influences of a proposed set of 

fundamental economic factors and seasonal components on volatility. The SCVF, by 

design, has estimated parameters that describe the volatility surface. These parameters 

are estimated each trading day for the period previously specified, creating a data series 

of parameters to test the magnitude of supply, demand, and market factor influences on 

volatility. 

The third objective is to estimate the relationship of fundamental economic 

factors with the volatility structure. The levels and changes in fundamental factors can be 

regressed on the time series of parameters estimated for the SCVF, as Nandi (1995), 

Bakshi, Cao, and Chen (1997), and Pena, Rubio, and Serna (1999) performed in their 

research. Fundamental factors for this research are supply and demand measures for 

natural gas and crude oil found in commodity inventory levels, trader's positions, and 

seasonality of volatility. Hypotheses relating these factors to changes in volatility 

surf aces are tested. 

The objectives of this research are: 

1. To derive a deterministic, smile consistent volatility function, 
2. To determine the test hedging performance of the smile consistent 

model relative to benchmark models, 
3. To estimate the effect of analyze economic factors on the volatility 

surface through the parameters of the SCVF. 
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The contributions of this research to contingent claim valuation is in three main 

areas. With the development and testing of the proposed SCVF, current research in the 

pricing specification of forward curve commodity models and deterministic volatility 

models is extended. The proposed model is internally consistent with the time varying 

term structure of volatility as found in the interest rate literature which to date has not 

been shown for commodity markets. Second, this research will provide a better 

understanding of changes in volatility from fundamental economic factors, market 

liquidity factors, and seasonal components. 

1. 1. Background of energy markets 

This research focuses on natural gas and crude oil commodity markets and the 

specific commodities in these markets are Light Sweet crude oil and Henry Hub natural 

gas. Crude oil is the primary input to refining heating oil and unleaded gasoline, making 

these products and their markets inter-related. Natural gas is a primary fuel for electric 

power generation, fuel for heating businesses and homes, and raw inputs in the chemical 

industry. The market microstructure of these markets contains trading mechanisms that 

wi11 affect valuation and parameter estimation. 

The depth of the traded contracts is an important consideration. All futures trade 

on monthly cycles, but individual commodities vary on the length of time covered. 

Crude oil contracts extend out to 30 months and natural gas contracts to 36 months. 

Options trade 12 consecutive months out for both crude oil and natural gas options. June 

and December contracts extend the trading horizon to 36 months. These long term 

options wi11 have higher trading volumes and wi11 be utilized more for hedging and 

speculating on long term positions. The off month options in the shorter term wil1 have 
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lower trading volumes. Table I2 lists requirements for future and option contracts on 

these commodities. 

Crude oil and natural gas have external factors of supply and demand. Seasonal 

patterns are easily seen in these commodities. Natural gas traditionally has a forward 

price curve that is in both contango and backwardation. Contango is when longer time to 

expiration forwards exceeds nearer term forwards, and backwardation is when longer 

term forwards are less than near term contracts. The natural gas forward contracts in the 

summer months exhibit lower prices than the winter months (contango) and winter 

months exceed the next summer forwards (backwardation). Early summer months 

typically are the lowest prices and December and January are the highest prices. The 

natural gas term structure is divided into two seasons: injection and withdrawal. The 

injection season is April through October and the withdrawal season in November 

through March. Since the deregulation of electricity markets, the natural gas forward 

market has exhibited a double humped market with July and August forward prices 

having higher prices than the later injection season months. These price patterns are 

attributable to weather factors. Summer months, primarily July and August, have the 

highest extreme temperatures and the winter months of December, January, and 

February, have the lowest extreme temperatures. Crude oil has less of a seasonal pattern 

than natural gas, but it is also heavily driven by the supply and demand factors. Refined 

products from crude oil are needed throughout the year and as supplies and demand for 

these products change, the price and volatility of crude oil changes. 

The volatility term structure of crude oil and natural gas options exhibit an 

exponentially damped volatility term structure where near term volatilities are greater 

2 Additional information can be found at www.nymex.com. 

6 



than longer term volatilities. Figures 2-5 show the volatility term structure of crude oil 

(level), log-returns of crude oil, natural gas (level), and log-returns of natural gas futures 

contracts by expiry and promptness.3 Crude oil's volatility term structure is almost linear 

with slight concavity in the levels, while the log-returns of crude oil display a negative 

exponential form. Seasonality is not observed in either case. Natural gas is quite 

different. The term structure of the levels displays the higher volatilities for near expiry 

futures with lower volatilities as expiry progress. The log-returns have the negative 

exponential form and strong seasonality. 

Two features affecting the analysis include options using spot and forward 

information. First, crude oil spot transactions are available for delivery no later than 20 

days from the initiation of the transaction. This type of transaction becomes a forward 

contract; therefore, the spot commodity for crude oil is a non-traded asset. Past research 

on this commodity uses the nearest to delivery future as the spot price because of this 

feature of the spot market (Gibson and Schwartz, 1990, and Schwartz, 1997). Second, 

natural gas forwards require delivery at a uniform rate of flow for the entire contract 

month on a daily basis. This means the price of the forward contract, the underlying asset 

for the option, is an index price or a basket of daily forwards with the strike set at the 

beginning of the month. Daily forwards and forwards on the index do not exist making 

these types of contracts non-traded assets like the spot for crude oil. 

3 Promptness is defined as the succeeding active contracts by time to expiration. For example, in January 
the prompt month is February, prompt 2 is March, and so forth. 
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Chapter 2 

2. Literature review 
The fol1owing literature review elucidates the importance of volatility in option 

pricing, which is the premise for this research. This review presents a brief background 

of the Classical Option Pricing Models (COPM) by Black and Scholes (1973) and Black 

(1976). Regularity conditions for the drift and volatility functions of option pricing 

models are also addressed. The COPM is derived based on assumptions of the dynamic 

process of the underlying asset. A violation of an assumptions means the COPM is miss

pricing the contingent claim. Alternative option pricing models attempt to correct for 

these errors. The remaining sections discuss the alternative option pricing models 

including benefits and weaknesses of each model. These sections include material 

relating to characteristics other than the volatility component to provide a complete 

coverage of asset pricing models and their relationships. 

2. 1. Theory: Black-Scholes and the Classic Option Pricing Model 

Development of an asset pricing model, for single and multi-factor models, begins 

with a description of an assets' price evolution. A generalized price process is 

d1!J., = µ(F,t)dt + a(F,t)dz, (l) 

where /J{.F,t) is the drift of the diffusion process, o(F,t) is the volatility function, and dz is 

an increment of Brownian motion. The COPM for options on equity assets has the 

following assumptions: 

1. /J{. F, t) and o( F, t) are constant, 
2. short sales with full access to proceeds are permitted, 
3. frictionless markets, 
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4. a constant risk free asset, 
5. no payouts or dividends by the underlying asset, and 
6. trading is continuous. 

Derivation of alternative valuation models for other classes of assets like commodities 

and interest rates relax these assumptions with re-specification of the drift (mean) 

function, volatility function, or additional random components (multi-factors). 

Baxter and Rennie (1998) provide the following regularity conditions for the 

volatility and drift functions of single and multi-factor models. The regularity conditions 

ensure the drift and volatility functions are well behaved or tractable. These regularity 

conditions are as follows: 

1. for each T, the process µ{t,T) and a(t,T) are previsible and their 

integrals r a\t,T)dt and (la(t,T)ldt are finite; 

2. the initial forward curve is deterministic and satisfies the condition that 

(J!(O,u)!du < oo; 

3. the drift ahas finite integral r ria(t,T)!dtdu; 

4. each volatility, o; has finite expectation E f I 1 a\t,T)dW(t)' du. 

The progression of option pricing developments follows re-specifying the drift or 

volatility functions to match market characteristics or overcome a violation of the COPM 

assumptions. 

2.2. Development of options pricing models 

The COPM was developed under the previously mentioned assumptions for 

valuing equities. Asset or market characteristic that differs or violates these assumption 

cause miss-pricing of contingent claim. Alternative models were developed to value 

derivatives on assets to incorporate different characteristics. Single-factor equity models 

correct for a violation of the no-payout/dividend assumption, where single-factor interest 
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rate models are correcting for time-varying characteristics of the drift and volatility 

functions of the diffusion equation. Extending these single factor models to multi-factor 

models includes additional state variables and alternative specifications of the in the drift 

and volatility functions. 

2.2.1. Single factor models 

Single factor models seminal extensions were the incorporation of dividend yields 

for equities (Merton, 1973) and a foreign risk free rate for currency options (Garman and 

Kohlhagen, 1983). Together these developments led to option pricing models for pricing 

derivatives on commodities and other assets wifh cost of carry or convenience yields 

(Gibson and Schwartz, I 991 and Brennan and Schwartz, 1985). Cost of carry and 

convenience yield is the gains attributable to owning the physical asset verses a financial 

derivative where storage, transportation, and insurance are costs incurred against the 

value of the physical asset. These single factor models for contingent claims of equities, 

currencies, and commodities have alternative drift specifications and the assumption of 

constant volatility. These specifications are shown in Table II. 

Interest rate models of the short rate illustrate alternative specifications for both 

the drift and volatility functions of the diffusion process in contrast to the previously 

discussed single factor models where only the drift function was modified. The Ho and 

Lee ( 1986) model has the short rate with drift, 8, and constant volatility and this 

specification is equivalent to the COPM for assets. The Vasicek ( 1977) model drift 

function is 8 - ar, , where a and 8 are constant, and the volatility function is constant. 

The Vasicek model is an Ornstein-Uhlenbeck stochastic process with mean reversion 

properties. The Cox, Ingersoll, and Ross (1985, CIR) model has the drift function of the 
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Vasicek model, but a and Bare deterministic functions of time and their volatility 

function varies with time and interest rate levels as a,J;,. The Black-Karasinski (] 991) 

model is the Vasicek model in log-space with the volatility function and drift parameters, 

a and B, being deterministic functions of time. All of these models are contained within 

the set of models called Constant Elasticity of Variance models (CEV) where the 

volatility function is u,r/3 .4 Table II provides a summary of these models. 

All of the interest rate models, except for the Cox-Ingersoll-Ross model have the 

volatility defined as functions of time only, and there are tractable solutions for these 

models. The Cox-Ingersoll-Ross model contains a derivative with respect to time in its 

DVF specification and has no analytical solution but is numerically tractable (Baxter and 

Rennie, 1998). These models can be expressed in terms of the HJM multi-factor model 

discussed in the following section where the drift and volatility functions are specified in 

terms of the forward curve. 

2.2.1.1. Derivation 

The models discussed above utilize assumptions of the COPM. Embedded in the 

derivations of these models is that agents have a constant relative risk aversion (CRRA) 

utility function, which the lognormal distribution is a member. This allows one to derive 

these models in a "Black-Scholes" world where the distribution of returns for the 

underlying asset are log normally distributed. CIR utilizes a consumption based market 

approach to derive their interest rate model that allows them to specify the market price 

of risk.5 

4 See Baxter and Rennie ( 1998) for detailed derivation of these interest rate models. 
5 The market price of will be discussed in the following section. 
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2.2.1.2. Parameters 

There is only one parameter for the single factor equity, currency, and commodity 

models that is unknown: the volatility parameter. Estimation methods for this parameter 

include using historical data, time series methods, and loss functions. The loss function 

estimation method uses traded options to fit the model price to a market price by 

inverting the COPM to solve for the unknown volatility parameter termed the implied 

volatility. Interest rate models have the additional mean reversion and long run mean 

parameters. These models utilize the same methods where the loss function is the 

prevalent choice to fit traded bond prices and solve for the model parameters. 

2.2.1.3. Benefits and weaknesses 

Single factor models are easy to understand, implement, and estimated parameters 

are reproducible. The weakness of these models is that empirical data shows that several 

assumptions are violated. Violated assumptions include non-normality in the return 

distributions like leptokurtosis and additional state variables like stochastic volatility. 

These issues with single factor models have led to the development of multi-factor 

models to address non-normality of return distributions and include additional stochastic 

state variables. 

2.2.2. Multi-factor models 

Multi-factor models were developed to account for the excess kurtosis and 

skewness, or incorporate additional market factors as state variables. Multi-factor models 

incorporating additional state variables have multiple stochastic or random components. 

The random components include forward rates or prices, and additional stochastic 

components that are incorporated in the drift and volatility functions. Stochastic jumps 
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can also be included. Multi-factor models can be grouped under two categories: Single

factor extensions and forward models. 

There are three prevalent specifications with stochastic components in the drift or 

volatility functions that are extensions of single factor models. Two specify random 

variables in the drift function and one in the volatility function. Common random 

components are stochastic interest rates, cost of carry (dividend yield), volatility6, and 

jump processes specified as a system of stochastic differential equations (Wiggins, 1987, 

Scott, 1987, Hull and White, 1987, Heston, 1993, Stein and Stein, 1991, Bakshi, Cao, and 

Chen, 1997, Bates, 1991 and 1996, Cortazar and Schwartz, 1994, and Schwartz, 1997). 

The forward models have the forward prices or rates specified as a system of stochastic 

differential equations (Clewlow and Strickland, 1999, and Heath, Jarrow, and Morton, 

1990). 

A generalized specification for a multi-factor model is 

d» = µ(F,t,r,5)dt+ I;=1 a;(F,tf dz; +J1dq 

daF,t =f(aF,1 )dt+g(aF,1 )dz,, Vi=l...k 

d 5 = f ( 51 )dt + g ( a O )dz0 

dr = f(rJdt+ g(ar)dzr 
(2) 

ln ( 1 + 11 ) - N ( In [ 1 + µ.,]-,Yi a.,, a., ) 

P,,qdt = dz,,dzq Vs,qE (1 ... k, v,5,r) 

1. µ(*), a(,*)7,f(*), and g(*) are drift and volatility functions, 
2. Jis the cost of carry, 
3. r is the instantaneous risk free interest rate, 
4. µi is the jump mean, 
5. Ps,q is the correlation between the brownian process, 
6. q is the standard deviation of the jump, and 

6 Discrete time series (GARCH) option pricing models of Duan (I 995), Heston and Nandi (1997), Duan 
and Wei (I 999), Garcia and Renault (I 998), Kall sen and Taqqu (I 998), and Sabatini and Linton (l 998) can 
be included in this category because in the continuous limit, a GARCH model is equivalent to stochastic 
volatility. 
7 This is the commodity return variance conditioned on no jumps occurring, 
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7. 11 is the magnitude of the jump.8 

This generalized specification includes multi-factor spot and forward models with 

stochastic volatility, stochastic convenience yield (dividends), stochastic interest rates, 

and jump diffusion components. The functions µf.*), o(*),f(*), and g(*) are varied and 

subject to the regularity conditions 1-4 presented in Section 2.1. A common specification 

for fl(.*) andf(*) is an Ornstein-Uhlenback (OU) drift, where o(*) is commonly specified 

as a square root process of CIR, while g(*) is assumed constant. Table III provides a 

summary of multi-factor models and specifications of the drift and volatility functions. 

2.2.2.1. Derivation 

Multi-factor models require the basic assumptions of continuous trading, perfect 

markets, and no borrowing restrictions for deriving a valuation model. Multi-factor 

models for interest rates, stochastic volatility, and stochastic convenience yield have 

components that are not traded assets. Non-traded assets introduce a market price of risk 

that requires a change of numeraire for risk neutral valuation and assumptions about the 

preference structure of agents.9 The specified assumptions allow deriving an option 

pricing formula in a risk neutral environment utilizing Ito's Lemma and the Feynman-Kac 

formula resulting in a COPM type solution.10 Single factor extensions specify the risk 

adjusted spot price process and derive the forward specification. Multi-factor models of 

forward curves specify the risk adjusted forward price process and derive the spot 

8 The jump in this specification from BCC is assumed log-normally distributed, but a Poison process can be 
utilized as did Merton (1976). 
9 Utility functions with properties that are tractable fall under the class of Hyperbolic Relative Risk 
A version functions that include constant relative risk aversion, isoelastic, and lognormal utility functions 
(Merton, 1990). 
10 See Duffie (1996), Baxter and Rennie (1998), Heston (1993), Heston and Nandi (1998), and Bakshi, Cao, 
and Chen ( 1997) for details of this type of derivations. 
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specification. Each of these types of models must incorporate the correlation structure in 

the system of equations shown in (2). 

Multi-factor models contain correlations between random components that affect 

the complexity of the solution and parameter estimation. Stochastic volatility models 

provide a good example of how restricting the correlation can change the solution. 

Models of Hull and White (1987, HW) and Stein and Stein (1991, SS) assume the 

correlation to be zero, allowing for tractable solutions for the option pricing formulas. 

This solution results in the valuation being the integral of COPM contingent claim over 

the distribution of volatilities. Johnson and Shanno (1987) assumed the correlation as 

nonzero, but require two options with different maturities to create a hedged portfolio for 

deriving a solution. These two stochastic volatility models demonstrate how restrictions 

or assumptions of a parameter can change the results. 

2.2.2.2. Parameters 

The parameters of multi-factor models are estimated several ways: historical data, 

time series estimation, and loss functions. A loss function method and time series 

estimations are the prevalent techniques. Time series estimation includes GARCH, 

EGARCH, and GARCH in mean techniques. Bakshi, Cao, and Chen (1997) use the loss 

function with traded options. Stein ( 1987) use time series estimation with data of the 

underlying asset and Schwartz (1997) uses the advanced time series estimation Kalman 

Filter technique with spot price data. Clewlow and Strickland (1999) use Hull and 

White's (1987) numerical methods to approximate the parameters with forward price 

data. Selecting a parameter estimation method is usually dictated by the availability of 

derivative prices for implementing a loss function and historical prices of the underlying 

asset for time series or historical estimation techniques. 
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2.2.2.3. Benefits and weaknesses 

Multi-factor models are complex and difficult to implement, because the number 

of parameters increases the complexity and difficulty of estimation (Brooks, 1993, 

Derman and Kani, 1994, and Dumas, Fleming, and Whaley, 1998). This is seen in 

equation (2). Market characteristics such as depth and liquidity impact the choice of 

estimation technique because depth and liquidity of derivatives or underlying assets 

provide data for estimating parameters. The limited availability of prices causes 

parameter estimation to be difficult. Models that require the estimation of the 

unobservable market price of risk parameter also have difficulties because of this 

additional parameter. Finally, the parameters are sensitive to outliers. 

The empirical findings suggest mixed results for these models. The correlation of 

the volatility and commodity level is found in the price distributions and effect pricing 

ITM options relativity to OTM options (Heston, 1993, Bates, 1996, and Stein and Stein, 

1991 ). HW find that correlation of volatility with the price seems to explain the smile 

effect whereas, Bates (1996) finds that a stochastic volatility model does not capture the 

smile effect; and a jump diffusion model can only capture the volatility smile effect with 

implausible parameters relative to their time series counterparts. 

These multi-factor models have not been able to capture the behavior of the smile 

even though Ball and Roma (1994), HW, and Taylor and Xu (1994) show that the 

quadratic smile exists under stochastic volatility models. Wiggins (1987) explains that 

shocks increase OTM and ITM implied volatilities in his study of the S&P 500 options. 

The effects of shocks on the OTM and ITM options are smile effects relative to the ATM 

volatility resulting in a negative linear skew. Figure I, panel C shows the negative skew. 
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2.2.3. Deterministic volatility models 

The literature to date has classified deterministic volatility models (DVM) as 

empirical anomalies. This is justified since many of the specifications of DVM are ad 

hoc or exercises in data mining. The main disadvantage for DVM is that theoretical 

justification is incomplete. Theoretical justification can be found in the development of 

multi-factor models as Baxter and Rennie (1996) provided with their single factor interest 

models. This is shown in Table II in the DVF column. Originally, Breeden and 

Litzenberger ( 1978) showed that the risk neutral conditional density function of the 

terminal distribution of the underlying asset could be specified as a function of the strike. 

Dupire (1994 ), using this result, develops a continuous time DVM. Rubinstein (1994) 

and Derman and Kani (1994, DK) extend Dupire' s work and utilize binomial tree 

methods to implement valuation models. This research addresses the limitations of past 

DVM research to bridge the empirical results of volatility with financial theory. 

The specification of DVM in equities, commodities and other derivatives to date 

has been ad hoc but some do exhibit theoretical justification without completely linking 

the empirical with financial theory. The following sections will attempt to overcome this 

limitation. 

2.2.3.1. Multi factor models 

The Heath, Jarrow, and Morton (1990, HJM) type multi-factor models of interest 

rates and the commodity model of Clewlow and Strickland (1999) are DVM. The 

specification of the volatility function as an exponentially damped volatility structure is 

deterministic. This feature provides the major link from empirical analysis to theoretical 

specification. Baxter and Rennie ( 1996) show how to specify the single factor interest 
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rate models as multi-factor forward rate models in a deterministic environment. The 

volatility function for short term interest rate models is 

a(t,T) = <Ya1/ e<-K<T-1)). 

HJM class of multi-factor interest rate and the commodity models of Clew low and 

Strickland ( 1999) and Schwartz ( 1997) commodity model specify o( F, t, T) as only time 

dependent as 

a(t,T) = <Ya e<-K(T-1)J. 

(3) 

(4) 

In addition, Clewlow and Strickland highlight the work of Schwartz (1997) and 

demonstrate that Schwartz's two-factor model with stochastic convenience yield is 

recovered by choosing the appropriate DVM. Clewlow and Strickland (1999) show that 

the volatility function for Schwartz's models contains two components, which are 

(
(l-exp(-K(T-1))) d 

a, (t, T) = a,. - p, .. 0a 0 K , an 

( T) = _ ~l-2 ( (l-exp(-K(T-1))) 
(J'0 f, (J'0\jl-p K 

(5) 

where <Ys(t, T) is the time varying volatility for the spot, aft, T) is the time varying 

volatility for convenience yield, crs is the fundamental spot volatility, and a0 is the 

fundamental volatility of convenience yield. The key feature of these models is the 

specification of a volatility function that allows for deriving a closed form pricing 

solution. The majority of the literature specific to DVM has not exhibited the empirical 

and theoretical ties that this section has shown. 

2.2.3.2. Smile consistent option pricing 

Deterministic Volatility Model (DVM) research has addressed methods to capture 

the volatility skew and term structure and provide procedures for valuing options. The 

deterministic volatility assumption does not rule out stochastic volatility or that volatility 
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estimates contain jump components, only that the information embedded in the volatility 

smile and term structure dominates the stochastic components. 11 This alternative 

approach uses traded options to extract the volatility surface that is then used for 

valuation and risk management. DVM' s require a Deterministic Volatility Function 

(DVF) for volatility that is a function of time and moneyness as a=f(T-t, K,F). 

Moneyness is defined as the ratio of the strike price divided by the underlying asset price 

(K/F)1 2 and is a distance measure of how far an option is ITM or OTM. 

2.2.3.3. Derivation 

Deterministic volatility models are derived based on the effective theory of 

volatility where the local volatility surface is a deterministic function based on a spectrum 

of options and futures prices. This allows making inferences about the terminal 

distribution of the underlying asset (Derman and Kani, 1994). Based on Derman and 

Kani (1994 and 1997), the relationship between implied volatility and deterministic 

volatility functions for a futures contract can be derived. The forward (Fokker-Plank) 

equation for a forward based on (I) is 

(6) 

11 The distinction between stochastic volatility and deterministic assumes that the random error of the DVM 
has an expectation of zero. That is the same as the random component of a stochastic volatility model, but 
the DVM has the time varying volatility embedded in a static volatility surface. Stochastic volatility 
models will allow the volatility to be random. Rosenberg (2000) and Derman and Kani (1997) develop a 
Dynamic Implied Volatility Function where the volatility surface is modeled as a function of one or more 
stochastic state variables, which extends DVM to stochastic volatility models. This extension has the 
stochastic volatility being a function of strike and price level where each combination of strike and price is 
a state variable. 
12 Alternative definitions for moneyness is centering around zero that is accomplished by subtracting one 

from the ratio and as specified by Hull (2003) (.JT ln ( f) . 
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where C is the option price, r is the risk free interest rate, K is the strike price for the 

option, a%t is the partial derivative of the option with respect to time, d2%K 2 is the 

second partial derivative of the option with respect to strike price, and crK is the volatility 

function. COPM assume aK is constant, whereas CS and HJM assume an exponentially 

damped volatility structure. This is analogous to a static forward rate curve defining the 

effective theory of interest rates (Derman and Kani, 1997). The solution to (5) for a 

given strike, K, is 

2 = 2 ac K ·ii- rC K ,T 

(YK,T ~ a2c K,T K2 
dK 2 

(7) 

a 2 = EcK,1)fa2(T) IF = K} KJ l I 

This local variance is an unbiased, risk adjusted expectation of future realized variance at 

time T (Derman and Kani, 1997 and Fleming, 1998). The volatility a(_ F, t) is a function 

of the underlying futures price, F1, and time t, and a(_K,t) is a function of the strike and 

time. The effective theory of volatility is defined by (7) with a non-random local 

volatility surface. The effective theory of volatility is equivalent to the effective interest 

rate theory used in modeling bond price dynamics (Derman and Kani, 1997). 

2.2.3.4. Summary of implied volatility lattice methods 

There are three types of implied volatility lattice methods. Dupire (1994) and 

Derman and Kani (1994, DK) pioneered the implied volatility tree (IVT); Rubinstein 

(1994) developed the implied binomial tree (IBT); and Clewlow and Grimwood (1997) 

utilized finite difference methods as an alternative to the IVT tree process. The 

differences in the IBT and IVT techniques are in the assumptions and application under 

investigation, the finite difference method is equivalent to the IVT. The IVT produces 
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the skewed terminal distribution implied by the market whereas, the IBT restrict the 

results to an a-priori specified terminal distribution. Derman, Kani, and Zou (1996); 

Derman and Kani (] 997), Derman, Kani, and Chriss (1996) and Chriss (1997) extend DK 

to include trinomial trees and American options. This research utilizes binomial methods 

to implement NT because the IBT method's a-priori restriction on the terminal 

distribution. 

Implied volatility trees are implemented in the same manner as forward rate 

models of interest rates. Initially, a set of options are used as inputs with a varied cross

section of strike prices and maturities. 13 A method for translating between price space 

and volatility space is needed for the set of options. Additionally, an interpolating 

function for the volatility surface of these options is required. Finally, IVT uses forward 

induction to build the tree structure. 

2.2.3.5. Assumptions of lattice methods 

All of the methods previously discussed assume that markets are efficient with no 

arbitrage conditions and option pricing models like the COPM are misspecified (Chriss, 

1997). The IVT of a number of researchers were developed under similar assumptions 

with technical conditions to ensure the IVT correctly prices the contingent claim (Derman 

and Kani, 1994, Derman, Kani, and Zou, 1996, Chriss, 1996 and 1997, Clew low and 

Grimwood, 1997, and Derman, Kani, and Chriss, 1996). The assumptions and technical 

conditions are 

Assumption: 
Markets are efficient with no arbitrage opportunities (Derman and Kani, 1994, 
Derman, Kani, and Chriss, 1996, Clewlow and Grimwood, 1997, and 
Finucane and Thomas, 1997); 

13 Rubinstein (1994) Implied Binomial Trees specify only a cross section of options with different strike 
prices for a given time to maturity and a pre-determined terminal distribution. 
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Technical Conditions: 
I. The commodity follows a binomial or trinomial process (Rubinstein, 

1994), 
2. The tree is recombining (Rubinstein, 1994), 
3. Negative transition probabilities do not exist (Barie and Cakici, 1995), 
4. The branching process is risk neutral at each time step (Barle and 

Cakici, 1995), 
5. The discount rate is constant over the time to expiration or is 

exogenous (Rubinstein, 1994), and 
6. The volatility at each node, as specified by the volatility function, 

dominates other stochastic or jump components of volatility (Derman, 
Kani and Zou, 1997). 

Derman and Kani ( 1994) specify the no arbitrage condition as the forward price 

equal to the future value of the current commodity level: F = s * exp(r * Dt). Technical 

condition 2 may be relaxed where a non-recombining tree is used, but this author is not 

aware of any research implementing an IVT in this manner. 

2.2.3.6. Parameters 

DVM is an attempt to capture the leptokurtosis in the terminal distribution of the 

underlying asset using implied volatilities estimated from traded options. Constructing 

an implied volatility tree requires a technique for interpolating volatilities for different 

strike prices of non-traded options. There are many methods of interpolation. A simple 

method for interpolating is ordinary least squares (OLS) or other econometric technique 

(Pena, Rubio, and Serna, 1999, Dumas, Fleming, and Whaley, 1998, and Ncube, 1996). 

Numerical methods for interpolation are cubic, bicubic splines, and Edgeworth 

Expansions (Bates, 1991, Chriss, 1997, and Clew low and Grimwood, 1999, Derman, 

Kani and Zou, 1996). Brown and Randall (1999), Chriss and Morokiff (1999), and 

Demeterfi, Derman, Kani, and Zou (1999) specify subjective volatility functions based on 

pragmatic observations of markets. Numerical methods can exactly fit the volatility 

structure but do not allow for interpretation or analysis of the estimation results. In 
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contrast, regression and econometric techniques allow for interpretation of the estimation 

results. Finally, the subjective models are valid only in their specific application. 

Derman (1999) provides the only volatility specification that relates financial theory with 

empirical observations and this is important to development of DVM's. 

The numerical methods provide an algorithm for interpolating volatility for use in 

the IVT procedures. The other methods specify the volatility as a function of the ATM 

volatility, moneyness, strike, time, or delta. This function is normally a linear relation 

that may contain quadratic terms in strike or time. 14 These specifications will be 

discussed more in the following chapter. A general volatility function can be defined as 

The A TM volatility is the intercept and the other terms scale this value up or down 

depending on the observed volatility skews. 

2.2.3.7. Benefits and weaknesses 

A deterministic volatility function will incorporate leptokurtosis in the terminal 

(8) 

distribution of prices than are observed in the markets. This is exhibited in Figure 6. In 

the CRR binomial tree with constant volatility is depicted in Figure 7 Panel A, and a 

skewed tree utilizing DVM is depicted in Figure 7 Panel B. This will allow the pricing of 

options and calculation of risk management metrics that account for the skew. 

Past empirical research is multifarious concerning DVM's benefits and 

weaknesses. Bates ( 1996) compares deterministic volatility with stochastic volatility and 

jump diffusion models, and finds that over a short time to expiration, deterministic 

volatility out performs the stochastic model. Bates finds that with longer expiry options, 

14 Brown and Randall (1999) use a non-linear functional form containing hyperbolic tangent and secant 
functions. 
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the stochastic component dominates. Ncube ( I 996) uses panel data econometric 

procedures to estimate deterministic volatility functions in FTSE l 00 index options and 

finds volatility estimated with this methodology outperforms implied volatility estimates 

in minimizing pricing errors. Dumas, Fleming, and Whaley (I 998) in their research 

conclude the more flexible a deterministic model is, the more reliably it estimates the 

volatility structure. Also, the longer the forecast period, the less accurate the predictive 

capabilities the model becomes relative to the COPM model. They also find that the 

hedging performance of the COPM is superior relative to their deterministic volatility 

model. Buraschi and Jackwerth (1999) find that DVM' s are inconsistent with the no 

arbitrage assumption, but are consistent with stochastic volatility models for A TM 

options. Additionally, they find that options at strike levels away from the money are 

driven by an additional factor related clientele utility considerations. 

Hull (2000) provides an interesting comment about DVM and volatility surfaces. 

He notes that traders do price options using volatility surfaces and the COPM. This 

relegates the COPM to an interpolation formula that translates volatility to the correct 

market prices. Changing the pricing model changes the volatility surface, but not the 

option price. Rebonato ( 1999) is even more critical of both DVM and the COPM. He 

states "the smiley implied volatility is the wrong number to put in the wrong formula to 

obtain the right price." Both authors are critical of the DVM to correct the problems 

associated with the violation of COPM assumptions, but even with their criticism, both 

state that these types of models may be applicable to interest rates, commodities, and 

other assets. 
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Deterministic volatility models have their detractors, but traders do price options 

using these methods as Hull (2000) states. Under these conditions, research of a DVM 

that is grounded in financial theory will benefit the financial industry and extend the 

current research in commodities as suggested by Hull and Rebonato. 
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Chapter 3 

3. Theoretical framework 
The proposed smile consistent volatility model (SCVF) will be derived in this 

section, and the framework for implementing the model will be discussed. The COPM 

and the Clewlow and Strickland (CS) model are benchmarks for the SCVF. The COPM 

is used in the industry as the standard model for risk management, and for this reason is a 

benchmark. The CS model is a common alternative and this model nests within the 

proposed SCVF. The following sections present these models, the methods for 

estimating the parameters of the three models, and valuation techniques for these models. 

3. 1. Smile consistent volatility model 

3.1.1. Derivation of smile consistent deterministic volatility function 

A deterministic volatility function (DVF) must satisfy the regularity conditions in 

section 2 and link the DVF with implied volatility in a parameterization that incorporates 

moneyness and time to expiration. Derman (1999) arid Derman, Kamal, and Zou (1996) 

are the only authors that attempt to link the volatility function of the diffusion equation 

for the underlying asset with implied volatilities. Dumas, Fleming, and Whaley (1998, 

DFW), Pena, Rubio, and Serna (1999, PRS) parameterize the DVF correctly but these 

authors introduce specification error in their models. DFW assume that the implied 

volatility and local volatility are equivalent measure of the DVF. This is not a valid 

assumption (Chriss, 1997). PRS apply their log-transformation on the moneyness 

variable and not the time to expiration variable. Authors applying the DVM in practical 

examples parameterize implied volatility with ad hoc specifications that is only 
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applicable in their specific applications (Brown and Randall, 1999, Chriss and Morokiff, 

1999, and Demeterfi, Derman, Kamal, and Zou, 1999). 

The goal is to obtain a DVF that is internally consistent with multi-factor models. 

Term structure models have a volatility specification that is time and price level 

dependent. A deterministic volatility function should have the same structure to account 

for price level as well. Derivation of the DVF begins by specifying the relationship of 

the underlying price volatility with the instantaneous volatility, price level, and time to 

expiry. The chosen specification for this research uses a quadratic price level variable to 

capture non-linear skewness in the implied volatilities. The specification in log-space is 

(9) 

This equation is a linear because of the log transformation. This is an extension of 

Derman ( 1999) with the addition of the time and quadratic price level terms. The last 

term adjusts the underlying volatility for price level that will capture the quadratic 

(skewed) volatility smile, thereby allowing for OTM (ITM) calls (puts) to have higher 

volatilities and ITM (OTM) calls (puts) to have lower volatilities. The first three terms 

on the right hand side of (8) are based on Ball and Roma's (1994) and Taylor and Xu's 

(1994) theoretical results that show stochastic volatility can be a function of price level 

and time. The proposed DVF follows Rebonato's "Floating Smile" and Derman's "Sticky 

Implied Tree Smile" rules discussed in Chapter 2. 

The implied volatility, IK,T, is the average over all possible price paths to finish 

ITM for a call option. The implied volatility is found by integrating over the time to 

expiration and the price/strike level in log space as 

27 



TK 

L,K,T = T()-F) J Ja(f ,t)dfdt. 
OF 

By substituting (9) for a(f,t), this equation becomes 

TK 

L,K,T = T(x'-F) J J{ao + /JJ + yt+ /J2f 2 }dfdt • 
OF 

The solution to this double integral is 

I, = a + /Ji ( K + F) + y T + /32 ( K 2 + KF + F 2 ) • 
K,T O 2 2 3 

Equation (9) is substituted for the variable a0, resulting in the DVF in log-space for 

implied volatility 

I, K ,T = (J' F ,T + ~' ( K - F) --f T + ~2 ( K 2 + KF - 2F 2 ) • 

(I 0) 

(11) 

(12) 

(13) 

The third term in (5) increases volatility as the strike increases (decreases), and as the 

underlying price decreases (increases). Rewriting (5) and transforming from log-space, 

we obtain 

I-~.r = a~.r exp{a1F(f-l)- K(T-t) +a2F 2 ( ( ~7)2 + ~7 -2 }} , (14) 

where a1 is /3112, a2 is /3213, and Kis '}12. The variables .E' and dare the transformations 

of .E and a from log-space. Equation (6) reduces to an internally consistent volatility 

structure (Clewlow and Strickland, I 999, Schwartz, I 997, and Ritchken, I 996) by 

restricting a1 and a2 equal to O or when the strike equals the forward, (ATM or K=F) as 

(15) 

This structure assumes no skewness and the implied volatility is equal to the forward 

volatility. Equation (7) is a mean-reverting model that is an exponentially dampened 

volatility structure (Ritchken, 1996). This structure is the volatility structure of the HJM 
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class of term structure models and the multi-factor model of Clew low and Strickland 

( 1999) and Schwartz ( 1997) for price process with E and d replaced by the forward 

volatilities and the long run mean of volatility respectively. 

The estimated parameters a 1, a 2, and ~ allow interpolating or predicting 

volatilities for options that are not traded. This method for predicting volatilities is 

needed for building implied volatility trees. The following section provides details of the 

IVT method chosen for this research. 

3.1.2. Model 

3.1.2.1. IVT implementation 

This section presents the construction and implementation of an IVT. The 

description presented here summarizes methods originally derived by Dupire (1994) and 

Derman and Kani ( 1994) with extensions by Chriss ( 1996 and 1997). The notation used 

in this procedure is listed in Table IV (Haug, 1998). 

The first step in constructing an IVT requires a set of input options across 

multiple strikes and times to expiration. These options are inputs to build a volatility 

surface using a chosen interpolation technique. At this point, the interpolation technique 

and construction of the volatility surface is assumed to be completed, and building the 

IVT can begin. The outcome will be a binomial tree that incorporates the information 

from the implied volatility surface or a "skewed" binomial tree. 

The IVT begins at time step n and requires the calculation of n+2 commodity 

prices and n+ I transition probabilities or 2n+3 parameters, where 2n+2 are known at time 

step n. These known parameters are n+ 1 forward prices and n+ 1 option prices expiring at 

time Tn+l· The transition probabilities, Uprob,n,i, are risk neutral probabilities for 
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transitioning from node (n,i) to (n+J,i+l). The forward prices follow the no arbitrage 

condition that makes the tree risk neutral: 

F11,i = U proh,11,iS11+I,i + (] - U proh.11.i )S11+l,i+l · (16) 

Then+ 1 options defined as Cn,i and Pn,i are theoretical options calculated with volatilities 

defined by the volatility surface under COPM assumptions. 15 The market value of a put, 

Pn,i, with strike price corresponding to the current commodity level Sj-J,k and expiring and 

time j is summed over all nodes at the time of expiration multiplied by the Arrow-Debreu 

prices. The market value of this option at time j is 

p j,K = e-r!::.t I~=O A;-1,k {u proh,j-1,k max(K - S j,k+I) + (] - U prob,j-1.k) max(K - S j,k)} 

where K = S;-i,k 

(17) 

The market value of a call, Cn,i, is defined in a similar manner. The Arrow-Debreu prices 

are state prices that have a cash flow of $1.00 in period n and state i but O elsewhere. The 

Arrow-Debreu prices are determined for each period n+l at period n for all states i as 

follows 

{

u 11 ,11 A11 ,11 e-r1 if i = n + 1 

A,,+1,; = (u,,,;_1 A11 ,_1 + (I_~ U 11 ,; )l11 ,; )e-n ~f ~ ~ i :::; n 

(1- u11 ,0 )l,,,0e 1f z - 0 

(18) 

Forward induction is used to construct the IVT at each node. The value of Pj,K at node j-

1,k can be determined from (9) and by recognizing that at nodes above j (k>j) the value a 

put is zero and below j (k<j) the value is positive, therefore the value of a put, vPu\-i,k is 

V j-1,k = e-r!::.t {u j-1,k (K - s j,k+I) + (1- uj-1,k )(K - sj,k)} 

= I:=0 {;i,j-1.k ( e-r!::.t K - sj-1,k)} 
(19) 

15 These options could use the Cox, Ross, and Rubinstein (1979) or As Chriss (1997) points out, a closed 
form model like Black (1976). 

30 



Using (9) and solving, the put value is 

"j-1 { ~ ( -rAtK S )} 
P_;,K - L..k=o /1,J-t,k e - J-1.k vpu; . =-----'--'---------

.1- ,.I ~ 
/1,. I . 1- ,.I 

A similar definition for the tree value of the call, vcanj-J,k is 

".i-1 {J (S -rAt K)} 
Veal/ = C j,K - L..k=O .i-1,k j-1,k - e 

j-1,.i 

The up and down transition probabilities are respectively 

e'/lJ K-S 
u = d 

prob S - S 
u d 

s -erAt K 
and d prob = _u __ _ 

Su -Sd 

(20) 

(21) 

(22) 

The CRR binomial tree provides that Su=K*u and Sd=K*d where u and dare the up and 

down transition jumps and d=llu. Substituting these relationships in dprob above, the up 

transition probability becomes 

v1·-1; +K u= . 
-rAtK e -vJ-1,; 

(23) 

This function of this equation is to determine the up and down commodity levels 

respectively based on the choice of centering conditions. 16 The choice for centering is the 

spot as in Derman and Kani (1994) and Chriss (1996 and 1997) where 

Su= Ku= SJ-t,;u 

s d = Yu = s j-li . 

16 A second choice is centering at the forward with Su and Sd are 

s = e'/lJ Ku = erAt s. .u and s = e'/lJ KI = e'/lJ s j-1,i I . 
u 1-1., d 7u /u 

The differences in these equations and the results in DK come from the choice of the strike set at the 
current commodity level. The results of DK are obtained by replacing K with the forward relationship, 
F=e',jJS, and v;.1,; with the above equations. 
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The implied local volatility at each node in the tree is the logarithmic spacing of Derman 

and Kani (1994) calculated as 

a - 1/ ~ (l- )I (s,,+1,;+1/ ) 
11,i - I J"iiuproh,11,i uproh,11,i n /S11+l,i • (25) 

A problem that occurs with this methodology is that a probability is not in the 

range O<uprob<l. This happens with the forward price is not between Su and Sd or a 

violation of no arbitrage conditions occurs. There are several alternatives for correcting 

this type of problem. One alternative, presented by Chriss ( 1997), is applicable to the 

futures options. This method is to ensure that proper spacing of the futures and current 

nodes through the local volatility. To ensure proper spacing a new s·u or s·d need to be 

calculated. Defined these as 

• S · .S · I is: • S .. ls· I is:! S = S.. = 1•1 .1- ,i+ and S = S .. = .1,i+ 1- ·1-
u ./,HI S d J,1 S " 

j-1,i j-1,i 
(26) 

The second method is to grow the tree at the forward curve thereby displacing the time 

step to ensure maintaining the no arbitrage condition (Derman, Kani, and Chriss, 1996). , 

Trinomial trees are another solution. 17 Chriss (1997) method is implemented in this 

research. The basic algorithm for constructing an NT is present in Table V. 

The NT produces a price, Arrow-Debreu, up probability, down probability, and 

local volatility tree. The price and Arrow-Debreu trees will value vanilla options and 

exotic options. This tree also determines hedge parameters. 

17 Trinomial trees are an option as seen in Derman, Kani, and Chriss (1996), Haug (1998), and Clewlow 
and Grimwood ( 1997). 
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3.1.3. Hedge parameters 

The delta of an option is the change of the option with respect to the change in the 

underlying asses or afaF . The IVT price tree determines the delta of the option 

following the methods of standard binomial trees (Hull, 2000) for small changes in the 

underlying as 

C -c 
~ = I.I 1,0 

Fl,l - Fl,O ' 
(27) 

where, c;,i is the value of the option at node i,j and F;,i is the underlying asset price at node 

l,J. 

3.2. Classic option pricing model 

3.2.1. Model 

The Classic Option Pricing Model (COPM) of Black (1976) is 

where F is the maturity of the forward, Lit is the maturity of the option, K is the strike 

price, 

d _ ln(F I K) + 1 ~UT2 ) d 
i - a-Iii 'an 

d2 = d1 - a-Iii. 

The value of the put is 

p(F,a,r,t,K) = e-r<T-t) [ KN(-dz)-FN(-d1)], 

3.2.2. Parameter estimation 

The COPM only unknown parameter is a. Equation (20) or (22) is used to 

(28) 

(29) 

(30) 

estimates this parameter by inverting the equation and using a traded option price. The 
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Newton-Raphson technique is the method for finding the solution. This provides an 

implied volatility for each expiration and strike combination of forwards. 

3.2.3. Hedge parameters 

The delta of the COPM is required to conduct the hedging performance for this 

study. The delta of the option is the first derivative with respect to the price. The delta 

for a call and a put respectively is 

:; = e-rT N ( d1 ) and !; = e-rT [ N ( d1 )-1] . 

ATM implied volatilities estimated in the previous section determine the hedge 

parameters. 

3.3. Clew/ow and Strickland commodity model 

3.3.1. Model 

(31) 

CJewJow and Strickland (1999, CS) derive an option pricing formula for pricing 

options of forwards and futures. The solution for valuing a European option is 

c(t, F(t, s); K,T, s;o-0 , y) = e-r<T-r) [ F(t, s)N(d1)-KN(d2 )] (32) 

where Fis the maturity of the forward, T-t is the maturity of the option, K is the strike 

price, 

d1 = [in( F~.,))+f w2]/ J;l, and 

d2 =di -fw. 
The value of the put can be valued using put-call parity. The volatility of the forward 

price returns from t to Tis integrated to determine w2 as 

w2(t,T, s) = r a;e-2r<.,-u)du 

_ aJ [ -2y(s-T) -2y(s-l) J -2r e -e 

3.3.2. Parameter estimation 

(33) 

(34) 

The parameters 0-0 and yrequires estimation. The Joss function, using near-the

money options with different expirations as inputs, accomplishes this task. The objective 
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is to find the value of the parameter set that minimizes the loss function. The loss 

function with the market price of the option, c *, and (24), is 

Min (c'-c(t,F(t,s);K,T,s:a0 ,y)}2 

s.t. a 0 > 0 

Parameters a0 and r, are estimated using traded options, both puts and call, that are 

within 10% of the ATM option. These parameters provide the term structure of 

volatilities. 

3.3.3. Hedge parameters 

(35) 

The Delta of the CS model is the first derivative with respect to the price, as with 

the COPM. The delta for a call and a put respectively is 

(36) 

Modifying the volatility parameter of the COPM Delta calculation allow for determining 

the hedge parameters. This modification uses the volatility calculated with (26). 
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Chapter 4 

4. Model evaluation 
The evaluation of the smile consistent volatility functions (SCVF) is against two 

benchmarks, Classic option pricing model (COPM) and the Clew low and Strickland 

(1999, CS) commodity model. The following sections describe the data used in 

implementing the SCVF and benchmark models, a discussion of the SCVF parameter 

estimates based on the procedures outlined in section 3, a comparison of pricing errors of 

the SCVF verses the benchmark models, and a hedging application for evaluating the 

performance of the SCVF verses the benchmark models. 

4. 1. Data requirements 

Volatility of a price (return) is a measure of the dispersion of an asset price 

(return) about its mean level over a fixed time interval (Abken and Nandi, 1996). The 

normal definition of volatility is the standard deviation of the price series. In option 

pricing models, expected price volatility is required. Options and futures prices are used 

to determine market's expected volatilities required in this study. The expected volatility 

is implied volatility estimated by procedures discussed in section 3. 

4.1.1. Options and Futures Data 

The data includes call and put options for crude oil and natural gas futures for the 

years 1995 through 1999. This research uses all traded options across strike prices and 

expiration months with premiums that are greater than zero. The data is from the New 

York Mercantile Exchange and is composed of futures and options on futures settlement 
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prices, open interest, and transacted volumes. The implied volatilities are cakulated for 

each option every trading day to expiration using COPM. 18 

The focus of this study is on medium and long time to expiration options. 

Options with a short time to expiration are excluded due to liquidity effects and the 

extreme measures of volatility in the short expiry options (Taylor and Xu, 1994, Dumas, 

Fleming, and Whaley, 1998, DFW, and Bakshi, Cao, and Chen, 1997, BCC). All options 

with less than 10 days to expiration are excluded in this study. 

Liquidity of an option, time to maturity, and moneyness influence implied 

volatility. These characteristics cause. option prices to be highly sensitive to changes in 

volatility. Previous studies focus on short to medium term options ranging from 30-60 

days to expiration (Hamid, 1998, Fofana and Brorsen, 1998, Resnick, Sheikh, and Song, 

1993, BCC, Ncube, 1996, and DFW). Other studies analyzed longer term options over 

90 days to expiration (Engle, Kane, and Noh, 1997, Gesser and Poncet, 1997, Heynen, 

Kemna, and Vorst, 1994). The diversity of estimation periods used in option research 

depends on whether the purpose of the study is the development of a pricing model, 

development of a volatility model, or research on informational characteristics of a 

pricing structure. Pricing models require liquid options for estimating and testing the 

pricing model's performance, whereas volatility models and informational analysis 

require longer expiration times to test the volatility estimates and the model's 

performance. This research is a combination of these three research areas. 

18 Deterministic or stochastic time varying interest rates or the daily U.S. Treasury Bill Yields could be 
used for the implied volatility calculations. This adds complexity to the model and the sensitivity of the 
implied volatilities to changes in interest rates is sma11. 
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The studies previously mentioned exclude options that are deep ITM or OTM due 

to liquidity concerns and sensitivity to volatility. The moneyness range varies from as 

small as ±6% to ±25%, again depending on the purpose of the study. Building implied 

trees and estimating DVF require a broad range of options. Implied trees need to build a 

term structure volatility relationship for estimating future implied option prices. 

Excluding deep ITM or OTM options excludes useful market information imbedded in 

these options about the evolution of volatility over time. This study has transaction 

volume for each option and will use zero transaction volume as the exclusion rule for 

illiquid options. This paper addresses the behavior of volatility over time and will not 

exclude options based liquidity as measure by the transaction volume not moneyness. 

4.1.2. Interest Rates 

Each option requires a risk free rate of interest as an input to the option pricing 

model. Time to expiration of most energy options is less than 18 months. This research 

assumes a risk free asset exists, which are US Treasury Bills (T-Bill) and US Treasury 

Notes (T-Note). The mid-price is used in this analysis. The US Government treasury 

price data is obtained from the Wall Street Journal and Bloomberg. Each option is 

matched with a T-Bill or T-Note by expiration dates where the selected T-Bill or T-Note 

matures at or after the expiration of the option. Options that expire less a year have a 

matching T-Bill for each week. Options with expiry over l year have no more than one 

week of time differences in T-note maturity and option expiry. 

T-Notes are quoted in yields and T-Bills are quoted in prices. T-Bills require 

conversion to a yield. T-Bills are quoted using the banker discount method based on 360 

days per year. The discount yield is Yv = D * 36% * t where Dis the quoted discount 
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yield, Fis the face amount, and tis the time from the settlement date to the maturity date. 

This yield is converted to a Bond Equivalent Yield (BEY) that will account for 

reinvestment opportunities and 365 compounding days. The BEY depends on whether 

there are more or less than 182 days to maturity. The formulas for converting the 

discount yield to BEY are 19 

t::; 182: 

BEY - 365 * Yvf 
- /360-t* Yv 

t > I 82: 

BEY= - 2*~65 + 2~{~65)
2 
-{ 2*~65 -1 ){1-y;',) 

2*1/ _ J 
/365 

(37) 

Bid and Asked yields are calculated, and the average of these yields determines 

the mid yield for each T-Bill. T-Notes are quoted in BEY and the mid yield is used in 

this research where the definition of the mid yield is the average of the bid and ask yields. 

4.2. Smile consistent volatility model 

4.2.1. Smile consistent volatility model parameter estimation 

The derived deterministic volatility functions (DVF) from Section 3 are equations 

(4) and (5). Equation (4) is the first model which contains the unknown expected 

volatility parameter, aF,T, and equation (5) is the second model where the fundamental 

volatility, a0 is an estimated parameter. The models are 

Model 2: SigmaO: r. = CT. + /Ji (K + F) + y T + /32 (K 2 + KF + F 2 ). (39) 
K,T O 2 2 3 

19 See Fabozzi, Frank J. and T. Dessa Fabozzi (1989) Bond Markets, Analysis and Strategies, Prentice 
Hall, Englewood Cliffs, NJ 1989, Page 86-87 for more details on bond values and yield calculations. 
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These equations estimate the volatilities used in the implied volatility tree (IVT) 

algorithm. The variable dF,T of the underlying price is a function of the instantaneous 

volatility that is unobservable. This research wi11 replace dF.T with the ATM implied 

volatility, dATM,T· This allows a cross section of options with the same maturity to be a 

function of the ATM volatility and the last three terms on the right hand side of Model 1. 

This is consistent with Derman ( 1999), Brown and Randall ( 1999), Chriss and Morokoff 

(1999), and Demeterfi, Derman, Kamal, and Zou (1999). Model 2 removes the 

dependency of the volatility surface on the ATM volatility for a given expiration, and 

provides an estimate of the fundamental instantaneous volatility for all expirations. 

The DVF is estimated daily to obtain parameter estimates used to construct the 

volatility surface. The parameter estimation will utilize the cross section of traded 

options implied volatilities and the associated exogenous variables to estimate the two 

relationships above daily. The estimation technique will be ordinary least square (OLS). 

4.2.1.1. Smile Consistent Volatility Model Selection Criteria 

There are two critical aspects of the data to consider in the DVF parameter 

estimation stage: stale prices and put-call parity violations exhibited in different implied 

volatilities for puts and call for the same strike price. The two option data series contain 

all traded options that have open interest on the exchange. Some option prices are stale 

prices, which are determined by zero traded volume for an option at each strike price on 

each day. These stale prices may affect the parameter estimates. Calls and puts for the 

same strike price have different implied volatilities. This can be seen in Figure 8 for 

crude oil and Figure 9 for natural gas. This can cause convergence problems and affect 

the parameter estimates. Past research uses the prompt forward month as the spot price 

due the characteristic of the spot discussed above (Schwartz, 1999, Gibson and Schwartz, 
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1991, and Brennan and Schwartz, 1985). The prompt contract exhibits unstable skews 

due to erroneous volatilities for deep ITM and OTM options. The prompt contract causes 

convergence problems and dominates the parameter estimates because of the instability 

in the volatility. The research objective of this is estimating the medium and long term 

price structure, so excluding the prompt contract is evaluated. There are eight scenarios 

for each commodity for stale prices, put/can parity violations, and prompt contract 

instability. The eight scenarios are: 

1. stale prices with all puts and calls with the prompt month, 
2. stale prices with aU puts and calls without the prompt month, 
3. stale prices with only OTM puts and call with the prompt month, 
4. stale prices with only OTM puts and can without the prompt month, 
5. excluding stale prices with all puts and caUs with the prompt month, 
6. excluding stale prices with all puts and calls without the prompt month, 
7. excluding stale prices with OTM puts and calls with the prompt month, and 
8. excluding stale prices with OTM puts and calls without the prompt month. 

Evaluation of the exclusion rules uses the adjusted-R2 of the models. This model 

selection rule is chosen because additional variables can increase the value of the 

measure without accounting for the decrease in degrees of freedom. The purpose of the 

DVF is for prediction and smoothing of the volatility surface so the last two problems are 

of minimal concern. The adjusted-R2 from Green (1997) is 

(40) 

where n is the number of observations, k is the number of exogenous variables, and R2 is 

the R-squared of the regression. 

4.2.1.2. SCVF Model Selection Results 

The model selection criteria is presented in Table VI, which shows the mean, 

standard deviation and ranges of the adjusted-R2 each model. The highest adjusted-R2 is 

for the exclusion of stale prices with small differences when the ITM money calls and 
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puts are excluded, or scenario 6. The adjusted-R2 for crude oil Model 1 is 94.9 for both 

cases that use OTM only calls and puts and uses all moneyness of calls and puts. The 

adjusted-R2 for Model 2 is 71.0 and 69.8 for each moneyness case respectively. The 

adjusted-R2 for the natural gas Model l is 93.7 and 94.2 for each moneyness case and for 

Model 2 is 71.5 and 70.03. The exclusion of the ITM calls and puts makes little 

difference for crude oil or natural gas where stale prices do influence the models 

explanatory power. Therefore, the model selected for further investigation is scenario 6 

above using all call and put options while excluding stale prices and the prompt contract 

month. The negative mean adjusted-R2 can be explained by the fact that this model does 

not contain an intercept (Green, 1997). 

The univariate statistics for the parameters of Model 1 and Model 2 are presented 

in Table VII for crude oil and Table VIII for natural gas. The models differ in the 

resulting number of daily parameter sets because of convergence problems for 3 days in 

natural gas and this commodity is missing 16 days of option data in March of 1998 and 

July of 1995. The detail of each daily set of parameters is not presented here because 

there are 1252 daily estimates for crude oil and 1234 for natural gas. The univariate 

statistics for the number of cross section observations used to estimate the daily DVF 

models is presented in Table IX of scenario 6 for the entire sample and for each year. 

This shows that the mean number of observations increased each year increasing the 

ability of the DVF to "fit" the volatility surface. The minimum and maximum values 

provide the range of daily cross sections. These also increased over the sample period. 

The average daily observations for crude oil were 63 and natural gas were 43. The 
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minimum for crude oil and natural gas were 20 and 4 respectively with the maximums of 

149 and 119. 

Probability plots show that the errors are symmetric with longs ends in both tails 

(Curtis, 1999). This means that there is a loss of efficiency estimating the models (Green, 

1997). Extreme observations dominate these errors. The dominance of extreme 

observations is seen with model 2 in the mean value of the parameter sigmaO and the 

differences in the gamma parameter of model 1 and 2. The mean value of sigmaO is 

l.03e24 for crude oil and 2.9le32 for natural gas with interquartile ranges of 419.3 and 

0.4 respectively. The mean values for sigmaO are unreasonable values while the 

interquartile ranges are acceptable. The values of gamma change magnitude and sign 

drastically between the two models. Each of these facets could cause problems with the 

model evaluation stage. 

Model 1 is selected over Model 2 based on the adjusted-R2 statistic better 

accuracy of model 1. These two models differ in their specification and so each model is 

compared against the benchmarks in the analysis of the pricing errors and hedging 

application. 

4.2.1.3. Implied Volatility Tree Results 

Implementation of the implied volatility tree (IVT) is as described in Chapter 3. 

IVTs are built for each commodity and contract per trade day of the data. The number of 

time steps is selected as 30 for each IVT after evaluating estimated terminal distributions 

for 30, 40, and 50 time steps, and finding there was not significant differences in the 

distributions. This test was conducted on a subset of sample of days because of 
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computational limitations.20 The computational limitations also required the 

implementation of the Bjerksund and Stensland (1993) American option approximation 

instead of a CRR tree during construction of the IVT that Chriss (1997) suggested as an 

alternative. Volatility is capped at le100. 

4.3. Pricing errors 

The COPM and CS models pricing errors are evaluated against the two models of 

the proposed SCVF. The pricing error is defined as the actual price of the option less the 

model predicted price. This research utilizes two nonparametric tests to evaluate the 

pricing errors. Nonparametric test are chosen because no distributional assumptions are 

made about the data and therefore, are not sensitive to violations of non-normality as the 

F-Test is (Conover, 1980). The Wilcoxon Sign Rank Test evaluates the expected values 

of the pricing errors and the Squared Ranks Test for Equal Variances evaluate the 

variances of the pricing errors (Conover, 1980). 

The Wilcoxon Sign Rank Test has the following one tailed hypothesis: 

H0 : E(X) 2: E(Y), 
Ha: E(X) < E(Y). 

The null hypothesis, Ho, is rejected at significance level a ( .05) if the test statistic, T 1 is 

greater than the critical value OlJ-a· The test statistic, T1 is 

T, = """ R.jf",, R2 \Yz 
I .£..Ji=] I ~i=l I I ' (41) 

where Riis 

R. = {+ Rank(D;) if D; ~ 0 
I -Rank(D;) if D; < o' 

(42) 

20 It took 3 days/model, on a Dell 8300 with a 3GHz processor to build each model's IVT using 30 time 
steps. 
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and D; = IY; - X;I. The variable Y is the benchmark model's pricing error and Xis the 

proposed model's pricing error. This test compares the ranks of the differences of the 

pricing errors of the benchmark and the alternative model. 

The Squared Rank Test for Equal Variance has the following one tailed 

hypothesis: 

H0 : X and Y are identically distributed, except for possible different means, 
Ha: VAR(X) < VAR(Y). 

The null hypothesis, Ho, is rejected at significance level a (.05) if the test statistic, T1 is 

less than the critical value ffia. The test statistic, T1 for samples that have ties in the rank 

orders is 

T="n R(U), 
.L.i1=] I 

R 2 = _I {"" R(U. )2 + "m R(V. )2 }, and N .L.i,=1 I .L.i,=1 I 

4 "N R4 = "" R(U ) + "m R(V )4 • .L.ii=l I .L.,i=I I .L.,i=I I 

(43) 

(44) 

(45) 

(46) 

The variables U and V are the absolute deviations of the pricing errors from their means, 

as follows: 

(47) 

R(*) is the rank function and N=n+m. This statistic tests whether the alternative model's 

variance of pricing error is less than the benchmarks variance of pricing error. 

4.3.1. Pricing error results 

The univariate statistics of the pricing errors for natural gas and crude oil are 

presented in Tables X-XV. These results show that the average pricing error for the 

COPM using the A TM volatility and the SCVF models consistently under values options 
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for natural gas (the average pricing error is positive), while the CS model consistently 

over values options for natural gas (the average pricing error is negative). This result is 

also found for the crude oil put options, but the ITM call options exhibit instances where 

all the models over value options. The ranges of pricing errors, as shown by the 

minimum and maximum values, show that the COPM has the smallest range for both 

natural gas and crude oil. The SCVF models produce the smaller range of pricing errors 

for OTM and across the traded options only class of natural gas, while the CS model has 

a smaller range of pricing errors for stale options and ITM options. The SCVF model 2 

consistently produces smaller ranges of pricing errors across all option classes verses the 

CS model. The SCVF model 1 exhibits over valuation of extreme magnitudes for call 

options that occur on I 4 days of the I 252 trading days in the sample. The elimination of 

these days causes the results of the ranges of the SCVF model 1 pricing errors to become 

consistent with model 2. The standard deviations of pricing errors for both natural gas 

and crude oil exhibit the same results, with the COPM have the smallest standard 

deviation of pricing errors followed both SCVF models, when adjusting for the I 4 

extreme days for crude oil, and finally the CS model. 

The Wilcoxon sign rank statistic tests the hypothesis that the mean pricing error 

of the alternative is greater than or equal to the mean pricing error of the benchmark is 

shown in Tables XVI-XVIII. All cases except the COPM verses the CS models reject the 

null hypothesis. The test of the COPM verses the CS model is complicated by the pricing 

error results that showed the CS model consistently over priced options resulting in a 

negative pricing error. The sign of the pricing errors affects this test statistic when the 
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pricing errors are of opposite sign. This is a deficiency of this test and a reason why the 

squared rank test of equal variances is employed. 

The squared rank test for equal variances tests the null hypothesis that the two sets 

for pricing errors are identically distributed. The test results are also shown in Tables 

XVI-XVII. The null hypothesis that the COPM and the alternative model have identical 

variances is not rejected for any of the alternative models, but is for the CS model. 

The Wilcoxon test indicates the mean pricing error of the SCVF models 

equivalent or greater than the mean of the COPM benchmark. The Squared rank test 

implies that the COPM and SCVF variance of pricing errors are equivalent or the simple 

model is as good as or better than the SCVF. 

4.4. Hedging application 

The hedging parameters from the NT provide a method for evaluating the 

performance of the proposed volatility specification that prices options under a skew. 

This study will undertake hedging performance based on four practical situations. Crude 

oil and natural gas have four natural hedging requirements. First, a producer of crude oil 

and natural gas is long the ·commodities. The producer has a break-even price for the 

commodity and can hedge this price or buy insurance by purchasing puts. Second, if a 

refinery is short crude oil to process into refined products. The refiner can purchase 

forwards to hedge the required capacity or purchase calls to hedge. The refiner also has a 

break-even price for the cost of crude oil. Crude oil prices above this price will incur 

losses to the refinery. Last, a local distribution company (LDC) or gas utility is required 

to provide gas service to its customers. This is a short position in natural gas and a hedge 

for gas would be the purchase of forwards or calls to cover the load. This case is not as 

clear as the other two cases. The LDC can pass through gas cost to the customers, so one 
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would think that the cost of gas is immaterial, but customers are often given the choice to 

purchase their gas at a fixed price over specified period of time. This exposes the LDC to 

price risk that sets a maximum break-even cost for gas, and therefore calls can provide 

insurance. 

All the above cases are real situations. The range of operating costs for domestic 

crude oil production is between $12 to $18 per barrel and a similar dollar per mmbtu 

value for natural gas. This will allow for establishing a floor price for crude oil and 

natural gas with the ability to purchase OTM puts and track the hedge portfolio. 

Similarly, a refinery has a break-even cost for crude oil. The LDC will establish a 

summer price and winter price for gas based on the average price from the forward curve 

at the initiation of the evaluation period. The transaction costs for futures are $100 per 

contract, or $0.01 /mmbtu for natural gas, and $0.10/barrel for crude oil. The transactions 

costs for options are $3.50 per contract, or $.00035/mmbtu for natural gas, and $0.0035 

for crude oil.21 The assumption of credit quality counterparties or letters of credit will 

mitigate margin requirements. 

The quantities to be hedged are monthly quantities of crude oil and natural gas. 

The production cases will monthly production in the amounts of 10,000 barrels of crude 

oil and 1,000,000 mmbtu of natural gas. The refiner will require a monthly quantity of 

10,000 barrels of crude oil, and the LDC will have a 1,000,000 mmbtu load requirement 

monthly. 

Hedge portfolios are constructed weekly for 3 month hedge horizon for crude oil 

and 6 month horizon for natural gas. The portfolios remained static for the hedge 

21 The transction cost estimates were provided by the Williams Energy, Marketing, ang Trading Natural 
Gas, Crude, and Refined products trading desk. 
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window. Hedge portfolios use deltas from the IVT, COPM model, and the CS model. 

There are 260 hedge portfolios for the two crude oil applications, 255 portfolios for the 

natural gas producer application, and 256 portfolios for the natural gas LDC application. 

4.4.1. Hedging application evaluation 

Evaluating the hedging application utilizes the squared rank test for equal 

variance and Deibold and Mariano (1995, DM) test as evaluation criteria. These tests are 

employed because of limitations of other statistics like F-test and T-test when 

disturbances of the errors violate normality (Deibold and Mariano, 1995 and Green, 

1997). The DM test is used when the forecast errors of the hedging application contain 

autocorrelation. 

The DM statistic uses a pair of forecasting models with a step ahead forecast error 

of (e1,1, e2,1) for sample size t. The null hypothesis of the expected pricing performance 

for an error function g(*)=ei,t is E[g(e1,,) - g(e2,, )] = 0, fort = 1, ... , n. The error functions 

can be a quadratic loss functions or other functions that measure the dispersion of the 

errors. This research is using the squared error function or g( e )=e2 or 

d, = g(e1,, )- g(e2., ), fort= 1, ... , n. The DM is 

where the mean and variance are defined asymptotically as 

n [ h~ ] d = n-1 ~d,and V(d) ""n-1 Yo+ 2~ Yk . 

The step ahead forecast length is h, and the autocovariance is 
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The DM statistic has an asymptotical standard normal distribution. This test relies on 

approximately unbiased estimator of the variance of the sample mean of the loss 

differential (Harvey, Leybourne, and Newbold, 1997, HLN). HLN suggest an MDM for 

the variance of SvM which is 

s* =S [n+l-2h+n-1h(h-l)]Yi 
DM DM n 

(51) 

This modified DM statistic is distributed students-t with n-1 degrees of freedom. The 

hedging application uses a three month hedge window for crude oil and six month 

window for natural gas. The step ahead forecast length, h, for crude oil is three months 

and six months for natural gas. 

4.4.2. Hedging application results 

The results of hedging applications based on the squared rank tests for equal 

variance are presented in Table XVIII and the MDM tests are presented in Table XIX. 

The squared rank test for equal variance tests show that all models have lower portfolio 

variances than the unhedged portfolio. The CS model verses the COPM benchmark for 

both crude oil and natural gas fail to reject equal portfolio variances for the consumption 

scenario. The CS model verses the both models 1 and 2 fails to reject the equal portfolio 

variances for natural gas for the producer scenario. The SCVF models exhibit that their 

portfolio variances are lower than the benchmark models in the other hedging 

applications. The possible portfolios for the hedging applications have a maximum of 

256 portfolios and a minimum of 139. The differences in the numbers of observations 

are because options that are required to hedge the downside or upside risks do not exist or 

are illiquid in the sample. 
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The MDM test is employed due the autocorrelation in the hedging errors because 

the portfolios' ability to maintain minimum variance is based on the hedging performance 

over the hedge window. The MDM tests indicate that the SCVF models and the 

benchmark COPM have smaller variance than the CS benchmark. The hedging 

performances of crude oil for both the consumer and producer scenarios do not exhibit 

any differences. The hedging performance for natural gas is mixed with variations of the 

SCVF verses the COPM being equivalent for consumer model 2 and the producer for 

both models 1 and 2. 

The hedging performance exhibited statistical differences based on the squared 

rank test statistics when analyzing the minimum portfolio variation at the end of the 

hedge period. The proposed SCVF does not out perform the COPM when accounting for 

autocorrelation of the hedge variances based on the MDM statistics. Autocorrelation of 

the hedges is an important property of financial risk management indicating that the 

MDM tests have more power than the squared rank tests. 
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Chapter 5 

5. Factors of volatility 
There are economic factors and risk management characteristics of commodity 

markets that affect volatility through changes in price levels. Economic factors of supply 

and demand distort the true volatility of an option resulting in the volatility smile 

(Sullivan, 1993). Specifically crude oil and natural gas are physical commodities with 

storage and transportation issues affecting the commodity's price volatility. Risk 

management and speculative activities affect market depth and liquidity. Gesser and 

Poncet (1997) show that market microstructure characteristics of participants' behavior in 

trading and hedging activities effect volatility in equity and index markets. Murphy 

(1994) states that volatility is effectively a price where actual volatility depending on the 

willingness of buyers to absorb risk and sellers to lay off risk. This is consistent with 

Natenberg, Meisner, and Boyle (1990) that stated option traders are trying to pick the 

appropriate volatility to hedge their risks. Murphy ( 1994) further explains that the 

skewness is a result of unexpected movements in price, dynamic hedging of risk and 

liquidity effects of near-the-money options. 

In this study, variables used for analyzing financial components of volatility 

structures listed as "positions" contained in the Commitment of Traders Report published 

by the Commodity Futures Trading Commission. Variables used for analyzing supply 

and demand components are inventory statistics published by both the American 

Petroleum Institute and American Gas Association. Additional factors analyzed are a 
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market momentum variable and seasonal effects. These data sources and characteristics 

are discussed in the following sections in more detail. 

5.1. Data requirements 
Supply and demand variables are inventory statistics compiled by the American 

Petroleum Institute (API) and American Gas Association (AGA). Risk management 

variables are contained in the Commodity Futures Trading Commission (CFTC) 

Commitment of Traders Report. The timing of the release of the information from these 

agencies is important for market participants. 

API and AGA statistics release their data on Wednesday of each week.22 The 

weekly inventories of crude oil products for the United States provide data on changes in 

supply that will affect price volatility. The AGA inventory reportincludes available 

storage capacity and changes in storage inventories. Both API and AGA provide true 

measures of supply and demand for these commodities.23 

The Commitment of Traders Report is available for the financial instruments on 

the NYMEX. The CFTC compiles this report, which contains open interest, reportable 

positions, nonreportable position data, and spread position data for commercial and non

commercial traders. A commercial trader is a party that transacts in derivative securities 

for hedging purposes, and a non-commercial trader is a speculator that is transacting for 

reasons other that hedging. Reportable positions are for holdings equal to or exceeding 

the minimum reporting level established by the CFTC (www.cftc.gov) and exchanges. 

22 The Energy Information Administration replaced the AGA weekly inventory report in April of 2002 and 
changed the release date to Thursday. This change of responsibilities was due to irregularities in the data 
reported found in 2000-2001 to AGA and the potential liability of the AGA. The actual AGA data is no 
longer available though the AGA will provide their corrected historical data. 
23 Williams Energy, Marketing, and Trading thankfully provided this data. 
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Nonreportable positions are the differences between open interest and reportable 

positions. These show the long and short positions of traders and how Jong or short the 

market is. A spread position is the short (long) position that covers a long (short) 

position of a non-commercial trader. The position of a trader can indicate the supply and 

demand for a commodity in the future. Long (short) positions in the financial 

instruments indicate future supply shortages (surpluses) of the underlying commodity or 

demand increases (decreases). These are variables used for analyzing liquidity concerns 

(Murphy, 1994) and supply and demand considerations (Sullivan, 1993). Trader's 

commitments are a proxy for the market participant's hedging activities that Gesser and 

Poncet ( 1997) discussed. 

The market momentum variables show current trends in the market. The changes 

in the supply and demand views of market participants affectthese trends. The long term 

momentum variable is a 60-day moving average of historical prices. The short term 

momentum variable is a 20-day moving average. These provide insights about changes 

to underlying economic factors and price levels. The slope or changes in these moving 

averages provide indications of market volatility levels. Flat moving averages indicate 

that volatility is relatively time invariant, while steep slopes indicate increasing volatility 

that varies with time. In addition, a common technical buy (sell) rule is when a short 

term moving average crosses above (below) a longer term moving average indicating a 

buy (sell) of the financial instrument. These moving averages indicate whether a market 

is trending up or down and provide insights on volatility. The changes in the moving 

average provide inferences about the magnitude of the change in the volatility or 
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direction of volatility change. A generalized n-period moving average for price (MA0 ) is 

calculated as follows 

""'"'" FY. MA =~i=I I 

n n ' (52) 

where Fis the commodity price and n is the number of periods. 

5.2. Methodology 

The DVF's daily parameters from models 1 and 2 can be interpreted as volatility 

skew and term structure components where B 1 and B2 are the skew component and y is 

the term structure component. The skew component B1 is the slope of the skew and B2 is 

the rate of change in the slope of the skew for changes in moneyness. The term structure 

component, y, causes the volatility surface to vary in time as the yield curve of interest 

changes with time. Changes in the magnitude of these variables change the shape of the 

volatility surface causing portfolio values to change and hedge ratios to change. Portfolio 

values and hedge ratios changing are key concerns for trading and risk management 

activities. 

The component estimates, B1, B2, and y, are regressed on the market momentum 

variable, the liquidity variables from the CFTC, seasonal components, and economic 

supply and demand variables from the API and AGA. The regression equations for 

Natural Gas and Crude Oil are 

Natural Gas: Parameterk = a1,kAGAEast+a2,kAGAProd + 
a3,k ShortTermMA I LongTermMA + a4 ,k HedgeLong % + 

a5,kHedgeShort% + a6,kSpread% + L~ h;,kSeasoni,k + errork 

Crude Oil: Parameter;, = a1,k ln(TotalDomestic) + a2)n( Imports) 

a3,kShortTermMA I LongTermMA + a4,kHedgeLong% + 

a5,kHedgeShort% + a6,kSpread% + L; h;,kSeason;,k + errork 
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where ai,k and bi,k are parameters to be estimated and errork is the regression error. The 

variables specific to natural gas are AGA inventories for the percentage of the in U.S. 

production region (AGAProd) and percent of the eastern U.S. consuming region 

(AGAEast). The seasonal dummy variables for natural gas are injection season: April 

through October (Season1,k), and withdrawal season: November through March 

(Season2,k). The variables specific to crude oil are the API inventory variables, which are 

the natural log of total domestic inventory and natural log of total imports. The seasonal 

dummy variables for crude oil are constructed from refineries product cycles, where the 

products are unleaded gasoline and heating oil. The unleaded season is spring and 

summer (Season 1,k and Season2,k), and for is heating oil season during fall and winter 

(Season3,k and Season4,k). The market variables for depth and liquidity for both 

commodities are the CFTC's commitment of trader's positions: percent of long hedgers 

defined as long reportable positions divided by open interest (HedgeLong% ), percent of 

short hedgers defined as short reportable positions divided by open interest 

(HedgeShort% ), percent of Spreads defined as Spread positions divided by open interest 

(Spread%). The market momentum variable is the ratio of the 20-day short term moving 

average divided by the 60-day moving average of spot prices 

(ShortTermMA/LongTermMA). 

The endogenous variables, P1, fh, r, are from the daily parameter estimates from 

the DVF models 1 and 2, and a0 from model 2, discussed previously, are regressed on the 

exogenous variables to determine how market factors impact volatility. An important 

aspect of the variables from models 1 and 2 are the correlations of these variables within 

each model, which is shown in Table XX. Notice that fi1 and fi2 are significantly 
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negative]y corre]ated for both models and 60% corre1ated with a0 for natural gas. This 

correlation of parameters imp]ies that contemporaneous]y correlation is an issue that 

influences the ana1ytica1 results. Seemingly unrelated regression (SUR) is utilized to 

estimate the regression equations for mode] 1 and model 2 parameters. The estimation 

method for SUR is 

Y1 e1 

[x, 0 

~ ]+ = 0 X2 (54) 

0 0 X3 

Yn en 

Y1 ... Yk is P1,1 ... , P1.k, Y1 ... YI is P2,1 ... ,p2,1, Y1 ... Ym is 'YU···, 'YI.m for model 1 where 

k+J+m=n, and Xi is the exogenous variable in (2). Model 2 has the additional component 

y1 •.. Ys is a0,1 •.• , CTo,s and k+l+m+s=n with Xi is the exogenous variable in (2), but is 

excluded from this factor analysis due to the instability of this variable. The test for 

contemporaneous correlation of the SUR model a Breusch-Pagan test for 

contemporaneous correlation and the test statistic with v=3 equations is 

2 = n I':= L,;:1[CT~~.i ]- z(v(v -1) 1). 
J 2 ' 1 (j' . . (T. /2 

},] l,l 

(55) 

Autocorrelation in the errors is tested in addition to contemporaneous correlation 

across the equations. The Durbin-Watson test statistic for both positive and negative 

correlation is 

(56) 
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This test statistic is based on the hypothesis that the errors are an autoregressive process 

of order one, AR(l). The AR(l) process is 

e, = pe1_1 + e, , (57) 

where the null hypothesis is p=O. Values of d close to two indicate no autocorrelation in 

the errors. 

5.3. Factors of volatility results 

The analysis of volatility factors of crude oil and natural gas models 1 and 2 

contains the tests for contemporaneous correlation, tests for autocorrelation in the errors, 

regression results, and seasonality tests. The test for contemporaneous correlation and 

the covariance matrix of residuals for (2) are presented in Table XXI. The Breusch

Pagan test statistics are highly significant for both commodities for each model. Crude 

oil is 1309.4 and 1251.9 for models l and 2 respectively, and natural gas is 1217.0 and 

1284.9. SUR regressions can improve efficiency. The final Durbin-Watson statistics are 

presented in Table XXII. The Durbin-Watson statistics are all close to two after 

adjusting for autocorrelation. Crude oil required three moving average terms in the skew 

equations for models 1 and 2, and required four moving average terms only for the term 

structure equation, y, equation. Natural gas exhibited autocorrelation in the term structure 

equation for model 1 where a single moving average term corrected the autocorrelation. 

There where two moving average terms required for the skew equations for model 2 and 

three terms for the term structure equation. The moving average terms that adjust for 

autocorrelation are all statistically significant and negative, as shown in Table XXIII for 

crude oil and Table XXIV for natural gas. The sign of the moving average terms 

indicates strong negative autocorrelation in the data. 
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Final parameter estimates for the factors of volatility are presented in Table XXIII 

for crude oil and Table XXIV for natural gas. A goal of this research is to investigate 

factors that influence volatility. The supply and demand factors for crude are the natural 

log of total domestic production and natural log total imports and for natural gas are the 

percentage of the production zone storage levels and eastern consuming region storage 

levels. 

The sign of the volatility skew and term structure components is important for 

interpreting the impact of the volatility factors. The average values of these components 

are shown in Table VIII for crude oil and Table IX for natural gas. Crude oil and natural 

gas have the sign of second skew component, ~2, and the term structure component, y-4, 

as positive for both models. The first skew component, ~1, is negative in model 1 for 

both commodities, while in model 2 it is negative for crude oil and positive for natural 

gas. A direct relationship of a volatility factor with a skew or term structure component 

is when both the component estimate and the volatility factor parameter have the same 

sign. For example, a volatility factor's parameter estimate that is positive and a skew 

component that is also positive causes an increase in the skew for increases in a volatility 

factor. 

The significant volatility factors of crude oil of the skew components for model 1 

are natural log of imports, the hedge long percent, hedge short percent, and the spread 

percent variable. The positive parameter values for imports, hedge long percent, and 

spread percent imply a direct relationship with the volatility. This direct relationship 

24 This component is negative in the Tables VIII and IX for model 1, but the equation for estimating in also 
negative resulting in a positive value for y. 
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causes the skew to increase as one of these variables increase. The value of the hedge 

short parameter is negative causing skew to decrease with increases in this factor. The 

relationships reverse with respect to the second skew component for each of the 

variables. The negative values for imports, hedge long percent, and spread percent have 

the curvature of the skew decreasing as these variables increase. 

The significant volatility factors of crude oil in model 2 with the two skew 

components are the same as for model 1 except the domestic production parameter 

becomes significant. The volatility factors sign reverses with respect to the skew 

components with the sign of the parameters consistent with the previous results. Positive 

parameters values for the first skew component imply a direct relationship and negative 

parameters an inverse relationship with respect to changes in the fundamental factors. 

The term structure equation for crude oil of model 1 has two significant 

parameters, which are the hedge short percentage, and the natural log of domestic 

production. The hedge short percentage is negative implying an inverse relationship with 

the volatility term structure. The domestic production parameter is positive therefore 

having a direct relationship with the volatility term structure. The time effects decrease 

as the hedge short positions increase, and increase as domestic production increases. The 

term structure for crude oil of model 2 has hedge short percentage, the natural log of 

imports, the ratio of the short term to the long term moving average prices or momentum 

ratio, and the hedge long percentage parameters significant. The hedge short percentage 

and the momentum parameters are directly related to the volatility term structure, while 

the imports and hedge long percentage inversely related to the volatility term structure. 
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The first skew component of natural gas in model 1 has a positive parameter value 

for the production percentage implying that as this variable increases the skew increases. 

Model 2 of natural gas has the production percentage negative with the first skew 

component while it is positive for the second skew component implying that as this 

variable increases the slope of the skew decreases while the curvature increases. The east 

percentage is positive for the first skew component and negative for the second causing 

the slope and curvature to decrease as this variable changes. 

The volatility term structure component for model I has the momentum ratio and 

the hedge long percentage both with negative parameters implying that as these variables 

increase the time effect decrease. The spread percentage is positive for model 2 for the 

volatility term structure component implying a direct relationship with the volatility term 

structure meaning time effects increase as production inventory increases. The east 

percentage, momentum, and hedge long percentage are inversely related to the volatility 

term structure of natural gas implying that as these variables increase, the time effects 

diminish. 

Tests for seasonal effects in the parameters are presented in Table XXV. The 

seasonal effects for the volatility skew and term structure of crude oil skew in both 

models is for the summer or unleaded season as seen in the Panel A of Table XXV. The 

differences in the magnitude of these parameters is small supporting only slight 

seasonality across the skew and term structure for crude oil as empirically observed in 

Figures 1 and 2. Natural gas has no seasonal components for the skew parameters as 

shown in Panel B, but has differing injection and withdrawal seasonal effects for the term 

structure as shown in section Gamma. This supports empirical observations from Figures 
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4 and 6 that there exists seasonality in the term structure of natural gas. Different 

seasonal effects are evident for the skew and term structure components for both crude oil 

and natural gas in both models, though only marginally for crude oil's model 2, as shown 

in section Across Equation of Panels A and B. 

5.3.1. Day of the week analysis 

The API, AGA, and CFTC statistics are released on different days during the 

week. The analysis of effects by API and AGA inventory release date has CFTC 

information that is from the previous two weeks. The timing of the information releases 

is a characteristic directing an analysis of volatility factors by weekday classifications. 

The analysis by day of week controls for the nonsynchronous release of information by 

using only information available from the previous release date. 

Tests for contemporaneous correlation and autocorrelation are shown in Table 

XXVI for weekday effects. Contemporaneous correlation is present in both 

commodities. The first skew variable, ~1, and the second skew variable, ~2, are 

negatively correlated as previously shown. The term structure variable, y, exhibits 

economically insignificant correlation with the other two variables for crude oil, while 

being economically significant for natural gas as shown in Table XXVII panels A and B. 

The Durbin-Watson statistics are presented in Table XXVIII and show that 

autocorrelation can be controlled. 

The inventories statistics from the API and the AGA are released on each 

Wednesday for the previous week, while the CFTC releases their information for the 

previous week on Friday. The sign convention for the skew parameters is consistent with 

previous results where the sign of the skew curvature component is the opposite of the 

skew slope component. 
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The weekday analysis of crude oil's significant factors of volatility from the API 

and CFTC are shown in Table XXIX The API variables are significant on the days 

around the Wednesday release date. This result implies the market starts interpreting the 

API statistics the day before the release using proprietary forecasting models and 

continues updating their forecasts after the release of the data. The natural log of imports 

is significant on Tuesday and Thursday for both skew variables for both models, and is 

significant for the term structure equation for model 2. Imports are the swing component 

of total supply for the United States. Decreases (increases) in domestic production cause 

imports to increase (decrease) depending on the demand for crude oil. Imported levels of 

crude oil tend to dominate the effects of domestic production on the volatility skew and 

term structure. The CFTC variables hedge long percent, hedge short percent, and spread 

percent all are significant during the week for both models. The spread percent is 

important for the skew components but not the volatility term structure. These variables 

provide market information of liquidity and depth, additionally market intelligence is 

gained because these variables are the registered hedgers. The amount short (long) the 

market is will shift the skew and term structure of volatility. 

The weekday analysis of natural gas' significant factors of volatility from the 

AGA and CFTC are shown in Table XXX. The AGA inventory variables are significant 

for the skew components on Tuesday in models 1 and 2. This is the day before the AGA 

releases inventory numbers for the previous week. Traders typically begin resetting their 

positions and speculating on Tuesday based on proprietary forecasts of the AGA numbers 

the following day. The results also show that on Wednesday the eastern inventory values 

significantly impact the volatility term structure. Changes in these numbers cause the 
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volatility term structure to shift based on the demand forecasts and natural gas storage 

levels for following months. An increase (decrease) in eastern consumption results in 

stockouts (surpluses) in inventories of storage in succeeding months. Companies will 

have to cover the stockouts or liquidate the surpluses. The Friday significance of these 

variables allows firms time to analyze the results of their fundamental models, decide on 

alternative actions, and implement them. The momentum ratio is significant for natural 

gas across most weekdays for the term structure equation of both models, showing that 

trends in the market are important. Natural gas has a cyclic behavior and trends up and 

down during each year. The magnitude of these trends is important. The trend, along 

with the inventory levels, causes the term structure of volatility to change. The CFTC 

variables hedge long and hedge short percentages are important for the volatility term 

structure. These variables are providing liquidity, depth, and market inte11igence for 

natural gas consistent with the results for crude oil. 

The Wald tests of equal seasonal components by day of the week are presented in 

Table XXXI for natural gas and Table XXXII for crude oil. The weekday analysis for 

seasonal effects is consistent with previous results. Crude oil has a summer or unleaded 

seasonal aspect for the skew and natural gas has no seasonality components in the skew. 

Crude oil has summer seasonality in the volatility term structure and natural gas also 

exhibited seasonality for this component. 

5.3.2. Elasticity of Factors 

The two classes of volatility factors are supply and demand economic factors and 

risk management factors. This research showed that both sets of factors contribute, in 

varying degrees of magnitude, to explaining the skew and term structure of volatility. 

The elasticity of a factor is the marginal contribution of the factor to changes in the skew 
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and term structure components. Elasticity is defined as the percentage change of the 

dependent variable divided by the percentage change in the independent variable 

(Pindyck and Rubinfeld, 1991) as 

(58) 

where Yi is the skew or term structure parameter, Xi is an independent factor, and Bi is a 

skew or term structure component. The average, Xi , of the skew and term structure 

parameter values are shown in Tables VII and VIII for crude oil and natural gas. 

The elasticities of the significant factors for natural gas and crude oil are 

presented in Table XXXIII. The absolute magnitude of an elasticity provides a ranking 

for the marginal contribution of a volatility factor, and the marginal contribution of a 

factor can be used to determine the average change in the skew and term structure 

components. 

The elasticities for the economic factors for the skew and term structure 

components of crude oil for models 1 and 2 provide the largest marginal contribution to 

the volatility components followed by the risk management factors. Natural gas is 

consistent with crude oil for the skew components, where the economic factors provide 

the largest marginal contributions for models I and 2 followed by the risk management 

factors. The term structure component for natural gas has the hedge long percentage 

have the largest marginal contribution. 

These elasticities provide prediction capabilities or sensitivity analysis of the 

changes in the volatility surface. For example, the natural log of total imports of crude 

oil for model 2 has elasticities that imply the slope component of the skew decreases 
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18.43%, the curvature component decreases 19.28%, and the term structure component 

decreases 4.4% for a one percent increase in the factor. Using the average components 

from Table VII, the slope component of the skew would change from -0.571 to -0.466, 

the curvature component would change from 0.015 to 0.012, and the term structure 

component would change from 1.117 to 1.068. A one percent change in the spread 

percentage, the smallest elasticity for model 2 of crude oil, has the slope component 

changing to -.568, the curvature component to .015, and the term structure changing to 

1.118. The impact of a one percent change in the spread percentage is minimal when 

compared to the one percent change in the natural log of total imports. This example 

shows the magnitude of an elasticity is important for the volatility surface and can be 

applied to all the volatility factors. 
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Chapter 6 

6. Summary 
An alternative specification, termed the "Smile Consistent Volatility Function" 

(SCVF), of the volatility function for valuing financial derivatives was presented. This 

SCVF was applied to energy commodities natural gas and crude oil. The SCVF is 

consistent with the volatility skew, "Volatility Smile," and term structure empirically 

observed in market data. The three parameters of the SCVF can be interpreted as a slope 

component, a curvature component, and a term structure component. This SCVF extends 

past research in Deterministic Volatility Models (DVM). The objectives of this research 

were to derive the relationship of the SCVF with implied volatilities, evaluate pricing and 

hedging performance of the SCVF against two benchmarks, and evaluate the power of 

market factors in explaining volatility. The parameters of the SCVF were estimated 

using ordinary least squares. The estimated SCVF parameters were used to construct 

Implied volatility trees (IVT) for each trading day. The IVT for each trading day was 

used to determine the model prices for traded options and the option's hedge parameter, 

delta. The time series of SCVF parameters were regressed on economic, risk 

management, and seasonal factors to examine factors affecting volatility. 

Implementing the IVT's required two steps. Estimating the SCVF parameters 

was the first step, and constructing the IVT was the second step. Two important results 

emerged during the SCVF parameter estimation phase. First, the residual errors were not 

normal and attempts to overcome this were unsuccessful. Second, estimating the SCVF 
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parameters and constructing the IVT on a daily basis was computationally expensive 

requiring 3 weeks at maximum CPU computer usage and several hundred gigabytes of 

dedicated storage. The second aspect is important because past research has not 

addressed the computing requirements for this type of procedure. 

The one problem that exists with building IVT is invalid transition probabilities 

that are less than zero or greater than one. This research found the frequency of invalid 

probabilities increased the further away from the money an option was and the shorter the 

step size of the IVT. The trade off is that accuracy is improved using shorter step 

lengths, but efficiency decreases because of the need to correct the increased occurrence 

of invalid probabilities. 

The second objective was to evaluate the SCVF pricing performance by 

comparing pricing errors of the model verses market prices of options. The hedging 

performance of the SCVF was evaluated by comparing the volatility of SCVF hedge 

portfolios verses benchmark hedge portfolios. The SCVF was compared to two 

benchmarks, the industry standard classic option pricing model (COPM) and the 

Clew low and Strickland commodity model (CS). Nonparametric tests of the difference 

in the mean pricing errors and difference in the variance of the pricing errors both 

indicate the SCVF model is equivalent to the COPM benchmark, or the simple model is 

as good as or better than the SCVF. Hedge performance of the SCVF was different than 

the benchmark, based on the squared rank test. The test revealed the SCVF had lower 

volatility of the hedge position value at the end of the hedge period. The proposed SCVF 

does not out perform the COPM when accounting for autocorrelation of the hedge 

variances based on the MDM statistics. In summary, the SCVF performed marginally 
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better than the CS model in both pricing and hedging performance, but the SCVF was 

insignificantly different from the COPM. 

The analysis of factors of volatility provided insights on changes in the skew and 

term structure of volatility. The three endogenous variables were contemporaneously 

correlated, requiring concurrent estimation of the parameters of the factors of volatility 

using Seemingly Unrelated Regressions. The regression errors exhibited autocorrelation, 

which required the addition of moving average terms to correct. The analysis of 

volatility factors produced an estimated relationship that has a sign relationship between 

the factors and the skew parameters. The SUR estimated coefficients reveal the sign 

convention that a positive (negative)parameter for the first skew variable of a factor 

would have a negative (positive) parameter for the second skew variable for the same 

factor. This implies the skew is increasing (decreasing) at a decreasing (increasing) rate. 

This is consistent with the quadratic skew structure that is observed empirically. The 

analysis of economic and risk management factors showed that these factors impact the 

skew and term structure of both crude oil and natural gas. The seasonality analysis 

showed that the skew and term structure of crude oil volatility has a seasonal component 

for the unleaded season. The estimated coefficients of the seasonal components indicate 

that the changes of downstream products to unleaded gasoline during the production 

cycle marginally impact the volatility structure. The term structure of natural gas 

volatility has a seasonal component. The estimated coefficients of the seasonal 

components indicate different volatility regimes during the two natural gas seasons. 

The elasticities of natural gas volatility skew component with respect to supply 

and demand factors were the largest, and risk management factors were smaller. These 
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estimated elasticities indicate that supply and demand factors contribute more to changes 

in natural gas volatility skew than risk management factors. The elasticities for the 

natural gas volatility term structure with respect to the risk management factor, hedge 

long percent, was the largest. This estimated elasticity indicates that the hedge long 

percent dominates changes in the natural gas volatility term structure. The elasticities of 

crude oil volatility skew and term structure with respect to supply and demand factors 

were the largest, and risk management factors were smaller. These estimated elasticities 

indicate that supply and demand factors contribute more to changes in crude oil volatility 

than risk management factors. The magnitude of an estimated elasticity's marginal 

contribution to changes in volatility allow for predicting changes in the volatility surface 

using fundamental forecasts of volatility factors. 

6.1. Conclusions 
This research has investigated a Deterministic Volatility Function (DVF) that is 

consistent with the volatility smile (SCVF) exhibited by empirical data in crude oil and 

natural gas markets. Key findings are that a Classic Option Pricing model pricing and 

hedging performance are comparable to SCVF pricing and hedging performance. The 

SCVF exhibits instability in the parameter estimates that are unreasonable in magnitude. 

The SCVF may be over parameterized and increases the complexity of the valuation 

process (Brooks, 1993, Derman and Kani, 1994, and Dumas, Fleming, and Whaley, 

1998). Implementing the implied volatility tree is computationally expensive with 

respect to time and computer memory to manage the data and resulting output. 

The DVF provided a means to analyze factors that explain volatility. American 

Petroleum Institute and American Gas Association weekly inventory statistics are 
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statistically related to shifts in the volatility skew and term structure. Commodity Futures 

Trading Commission statistics of market participants "positions" are also important 

explanatory variables of changes in the volatility surface. The magnitude of an elasticity 

of a volatility factor is useful in measuring marginal contribution of the factor to changes 

in volatility, and this can aid in calibrating fundamental forecasting models by 

determining the volatility of the terminal price distribution utilizing the factor elasticities. 
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Table I. Description of futures and options contracts of the crude oil and natural gas commodities traded on the 
New York Mercantile Exchange. 

Trading Unit/ Trading Times/ Trading Expiration/ Special 
Trading Months Contract Quote Option Strikes Delivery 

Requirements 

Options Futures Outions Futures 

Light Sweet Crude Oil 

trude Futures lOOOBBLSs Open outcry scheduled 9:45am - 3 days before the futures expiration . 3rd Business day prior to 
3: 10pm with after hours trading Exercise of the option is any day up ~he 25'h of the month. 
4:00pm-8:00am Monday-Thursday to the last trading day by 5:30pm or 
and Sunday 7:00pm-8:00am. ft5 minutes after close whichever is 

later. 

12 consecutive months plus 30 consecutive months, plus $ and ¢/BBLS 0.50 above and below the at-the-money strike price and 2.50 
months 18, 24, 36 on a June- months 36, 48, 60, and 72. above the highest an lowest existing strike price for a total of 
December Cycle. 61. 

Henry Hub Natural Gas 

Natural Gas Futures lOOOOMMBtu Same as Crude Oil Immediate day before the futures 3rd business day preceding ~niform rate of 
and early exercise is the same as the start of the delivery flow delivery over 
Crude Oil. month the month 

12 consecutive months plus 36 consecutive months $ and ¢/MMBtu Strike prices in 0.05 increments above and below the at-the-
months 15, 18, 21, 24, 27, 39, 33, money strike price, and 0.25 increments above and below the 
36 on a June-December cycle. highest and lowest s strike prices for a total of 81 options in 

the nearby 3 month contracts and 61 options in the other 
klelivery months. 

Notes: Bbls - Barrels or 42 000 US Gallons and MMBTU- Million British thermal. 

~ 
tT -CD 
tn 



Table II Options pricing model diffusion equation parameter comparison 

Model Drift: µJF,t) Volatility: Of' F, t) DVF:o{'F,t) 
Assets 

Black and Scholes r (j 

Merton r-q (j 

Garman and Kohlhagen r-r1 (j 

Black (j 

Cost of Carry r-c (j 

Interest Rate 
Ho and Lee e (j 2 Or (T-t) 
Vasicek e-ar. (j (je-a(T-1) 

I 

Cox-Ingersoll-Ross el -air, a1J;, a 1.F, a%/t,T) 
25 

Black- Karasinski el -a,r, Oi 

25 B(t,T) is the solution to the Riccati differential equation. 
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Table III. Multi-factor model drift and volatility function summary. 

Drift: Volatility: Volatility Volatility of Convenience Volatility of Convenience 

Model/Process µ(F ,t,r, .:5) a; (F,t) Drift: Volatility: Yield Drift: Yield: 

f(aFJ) g(aF,t) f(ot) g(O"F,t) 

Spot Process for Equities and Commodities 

BCC [ 'i - lrµJ] 
Jo- where 

[ 8, - !CvO"F.t] av[ci;; r-=l/2 

Schwartz [ K-A6 -o] Constant av Constant CF,5 

Forward Curve Process for Interest Rates and Commodities 
Clewlow and 
Strickland ae (-.. (T-t)) 

Heath, Jarrow, 
and Morton ae (-.. (T-t)) 

Stochastic Volatility Process 
Hull and White er, (F,t) 
and Wiggins Constant Constant 
Scott, Johnson 
and Shanno, D"y.p;; Heston, and Ball er, (F, t) 

Constant and 
and Roma OU process 

The parameters are as previously defined and Ki is speed of adjustment, 0v long run mean of volatility, O"v is volatility of volatility, Ai is the market 
price of risk for parameter i, and X is the magnitude of the jump component. 



Table IV. Implied volatility tree procedure description of notation. 

n 
i 
S11,i 

F11,i 

Cn,K 

Variable 

Cn.K 

Pn.K 

Pn,K 

An,i 
llprob,n,i 

dproh.n.i 

Vpuj-1,k 
call 

V j-1,k 

Vi-1.k 

Description 
time step, 
position node in tree starting at 0, 
current commodity price at time step n and node i, 
forward commodity price at time step n and node i, 
market value of an European call option with strike, Kand 

expiring at time n, 
market value of an American call option with strike, K 

and expiring at time n, 
market value of an European put option with strike, K and 

expiring at time n, 
market value of an American put option with strike, K and 

expiring at time n, 
Arrow-Debreu price at time step n and node i, 
up transition probability, 
down transition probability, 
value of Pn.K at timej-J at node (j-1,k), 
value of Cn.K at time j-1 at node (j-1,k), 
reduced form of tree value of call or put at time j-1. 
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Table V. Implied volatility tree building algorithm. 

Step Description 
1 Initialization of inputs 

A Estimate SCVF parameters from input option prices and implied volatilities. 
B Input initial commodity level for node (0,0). 
C Set initial Arrow-Debreu price to 0. 

2 Set the centering condition and begin building the next time step outward 
from the middle node. 

3 
4 
5 

6 
7 
8 
9 
10 

Determine the market price of an option at the next time step. 
Determine the tree value of the option from STEP 2 for node (n,i). 
Determine the up and down commodity levels for the nodes branching from 

current node. 
Determine the up and down transition probabilities. 
Compute Arrow Debreu prices over next time step. 
Do STEPS 2-7 until the tree is constructed. 
Calculate the local volatility tree using. 
Output desired results of implied commodity tree, transition ·probabilities, 

Arrow-Debreu prices, and Local volatility tree. 
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Table VI. Adjusted-R2 Statistics for Model 1 (ATM) and Model 2 (SigmaO) 
estimated daily from 1/l/1995-12/31/1995. 

Call-Put Traded Options 
Commodity Model Promot Flaa Onlv MEAN STD MAX 

NO 0.371 2.028 0.942 
OFF 

YES 0.905 0.262 0.998 
1 

NO 0.281 2.441 0.932 ON 
Model 1: YES 0.931 0.109 0.997 

ATM NO 0.799 0.097 0.950 OFF 
YES 0.949 0.055 0.999 

2 
NO 0.793 0.102 0.947 ON 
YES 0.949 0.055 0.999 

Crude Oil 
NO 0.474 0.193 0.859 OFF 
YES 0.297 0.740 0.961 

1 
NO 0.526 0.170 0.890 ON 

Model 2: YES 0.414 0.354 0.952 
SIGO NO 0.668 0.116 0.899 OFF 

YES 0.698 0.153 0.970 
2 

NO 0.692 0.126 0.934 ON 
YES 0.710 0.152 0.972 

NO -4.447 132.719 0.995 OFF 
YES 0.923 0.417 1.000 

1 
NO -3.271 90.077 0.998 ON 

Model 1: YES 0.938 0.567 1.000 
ATM NO 0.888 0.125 0.995 OFF 

YES 0.942 0.120 1.000 
2 

NO 0.872 0.208 0.999 ON 
YES 0.937 0.136 1.000 

Natural Gas 
NO 0.411 0.278 0.936 OFF 
YES 0.479 0.795 0.983 1 
NO 0.432 0.255 0.942 ON 

Mode12: YES 0.529 0.443 0.996 
SIGO NO 0.527 0.242 0.927 OFF 

YES 0.703 0.270 1.000 
2 

NO 0.540 0.232 0.927 ON 
YES 0.715 0.250 0.999 

The data filter method with the largest R2 is indicated by bold text. 
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MIN 

-42.149 

-4.105 

-49.850 

-1.091 

0.430 

0.439 

0.439 

0.622 

-0.560 

-15.394 

-0.042 

-3.306 

0.314 

-0.036 

0.342 

0.056 

-4397.111 

-7.784 

-2893.468 

-17.874 

0.045 

-0.834 

-1.650 

-0.880 

-1.203 

-13.417 

-0.788 

-4.931 

-0.043 

-0.960 

0.023 

-0.386 



Table VII Deterministic volatility function parameters: univariate statistics for 
Crude Oil of daily estimated models from 1/1/1995-12/31/1995. 

Model 1 (ATM):Beta1 Model 2 (Sigma0):Beta1 
Basic Statistical Measures Basic Statistical Measures 

Location Variability Location Variability 
Mean ·0.600 Std Deviation 0.663 Mean ·0.571 Std Deviation 0.839 
Median ·0.353 Variance 0.439 Median ·0.315 Variance 0.703 

Range 4.375 Range 9.119 
Interquartile Range 0.644 Interquartile Range 0.808 

Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value Test Statistic p Value 

KolmoQorov-Smirnov D 0.182 Pr> D <0.010 Kolmogorov-Smirnov D 0.150 Pr> D <0.010 
Model 1 (ATM): Beta2 Model 2 (Sigma0):Beta2 

Basic Statistical Measures Basic Statistical Measures 
Location Variability Location Variability 

Mean 0.016 Std Deviation 0.018 Mean 0.015 Std Deviation 0.023 
Median 0.009 Variance 0.000 Median 0.008 Variance 0.001 

Range 0.121 Range 0.257 
Interquartile Range 0.016 Interquartile Range 0.020 

Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value Test Statistic p Value 

Kolmogorov-Smirnov D 0.182 Pr> D <0.010 Kolmogorov-Smirnov D 0.165 Pr> D <0.010 
Model 1 (ATM):Gamma Model 2 (SigmaO):Gamma 

Basic Statistical Measures Basic Statistical Measures 
Location Variability Location Variability 

Mean ·0.037 Std Deviation 0.068 Mean 1.117 Std Deviation 0.590 
Median ·0.028 Variance 0.005 Median 0.989 Variance 0.348 

Range 0.689 Range 3.483 
lnterauartile RanQe 0.077 Interquartile Range 0.710 

Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value Test Statistic p Value 

KolmoQorov-Smirnov D 0.074 Pr> D <0.010 Kolmoaorov-Smirnov D 0.042 Pr> D <0.010 
Model 2 (SigmaO):SigmaO 
Basic Statistical Measures 

Location Variability 
Mean 1.031E+24 Std Deviation 3.649E+25 
Median 3.222 Variance 1.331E+51 

0.000 Range 1.291E+27 
lnterauartile Ranae 419.3 

Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value 

Kolmogorov-Smirnov D 0.510 Pr> D <0.010 
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Table VIII Deterministic volatility function parameters: univariate statistics for 
Natual Gas of daily estimated models from 1/1/1995-12/31/1995. 

Model 1 (ATM):Beta1 Model 2 (Sigma0):Beta1 
Basic Statistical Measures Basic Statistical Measures 

Location Variability Location Variability 
Mean -0.483 Std Deviation 5.531 Mean -0.117 Std Deviation 7.840 
Median -0.373 Variance 30.595 Median 0.388 Variance 61.470 
Mode Range 189.467 Range 184.811 

lnterauartile Range 1.427 lnterauartile Ranae 2.285 
Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 

Test Statistic p Value Test Statistic p Value 
Kolmogorov-Smirnov D 0.317 Pr> D <0.010 Kolmoaorov-Smirnov D 0.263 Pr> D <0.010 

Model 1 (ATM): Beta2 Model 2 (Sigma0):Beta2 
Basic Statistical Measures Basic Statistical Measures 

Location Variability Location Variability 
Mean 0.126 Std Deviation 1.511 Mean 0.033 Std Deviation 1.658 
Median 0.094 Variance 2.284 Median -0.015 Variance 2.750 

Range 52.860 Range 30.858 
lnterauartile Ranae 0.304 lnterauartile Ranae 0.436 

Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value Test Statistic p Value 

Kolmoaorov-Smirnov D 0.335 Pr> D <0.010 Kolmoaorov-Smirnov D 0.286 Pr> D <0.010 
Model 1 (ATM):Gamma Model 2 (SigmaO):Gamma 

Basic Statistical Measures Basic Statistical Measures 
Location Variability Location Variability 

Mean -0.019 Std Deviation 0.099 Mean 1.677 Std Deviation 1.333 
Median -0.015 Variance 0.010 Median 1.648 Variance 1.778 

Range 2.687 Range 15.576 
Interquartile Range 0.055 lnterauartile Ranae 1.633 

Goodness-of-Fit Tests for Normal Distribution Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value Test Statistic p Value 

Kolmogorov-Smirnov D 0.181 Pr> D <0.010 Kolmogorov-Smirnov D 0.046 Pr> D <0.010 
Model 2 (SigmaO):SigmaO 
Basic Statistical Measures 

Location Variability 
Mean 6.977E+62 Std Deviation 2.451 E+64 
Median 0.091 Variance 6.007E+128 

Range 8.609E+65 
lnterauartile Ranae 0.3 

Goodness-of-Fit Tests for Normal Distribution 
Test Statistic p Value 

Kolmogorov-Smirnov D 0.511 Pr> D <0.010 
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Table IX. Univariate statistics of the number of observations for each cross section 
DVF estimation. 

Panel A: Crude Oil 
YEAR N MEAN STD MIN MAX YEAR N MEAN STD MIN MAX 

Model 1: ATM Model 2: SIGMAO 
ALL 1252 63 23 20 149 ALL 1252 63 23 20 149 
1995 250 41 9 20 65 1995 250 41 9 20 65 
1996 251 60 17 23 121 1996 251 60 17 23 121 
1997 252 57 14 25 100 1997 252 57 14 25 100 
1998 251 73 21 36 142 1998 251 73 21 36 142 
1999 248 86 22 42 149 1999 248 86 22 42 149 

Panel B: Natural Gas 
YEAR N MEAN STD MIN MAX YEAR N MEAN STD MIN MAX 

Model 1: ATM Model 2: SIGMAO 
ALL 1234 43 21 4 119 ALL 1234 43 21 4 119 
1995 244 21 10 4 80 1995 244 21 10 4 80 
1996 251 37 17 9 108 1996 251 37 17 9 108 
1997 248 48 22 7 119 1997 248 48 22 7 119 
1998 243 51 16 13 106 1998 243 51 16 13 106 
1999 248 55 18 16 118 1999 248 55 18 16 118 

84 



Table X. Natural gas options statistics of model pricing errors for all options. 

Call-Put 
Traded COPM: Model 1: Model 2: 

Flag 
Moneyness Options Data ATM cs ATM SigmaO 

Onlv 
Average 0.002 -0.645 0.060 0.090 

All 
Standard Deviation 0.013 0.213 0.056 0.077 

Options Minimum -2.023 -1.964 -2.031 -2.031 
Maximum 0.383 2.674 3.958 3.958 

NOBS 379919 379919 379919 379919 
Average 0.002 -0.635 0.061 0.090 

Options Standard Deviation 0.013 0.201 0.058 0.078 
All Options Not Minimum -2.023 -1.964 -2.031 -2.031 

Traded Maximum 0.383 2.674 3.958 3.958 
NOBS 305441 305441 305441 305441 

Average 0.002 -0.686 0.057 0.092 
Options Standard Deviation 0.012 0.255 0.046 0.073 
Traded Minimum -0.435 -1.386 -0.355 -0.356 

Only Maximum 0.294 1.960 1.492 1.492 
NOBS 74478 74478 74478 74478 

Average 0.001 -0.660 0.059 0.094 

All 
Standard Deviation 0.016 0.207 0.076 0.093 

Options Minimum -2.023 -1.964 -2.031 -2.031 
Maximum 0.383 1.408 3.958 3.958 

NOBS 126516 126516 126516 126516 
Average 0.001 -0.653 0.059 0.093 

Options Standard Deviation 0.016 0.199 0.078 0.093 
All ITM Not Minimum -2.023 -1.964 -2.031 -2.031 Options 

Traded Maximum 0.383 1.408 3.958 3.958 
NOBS 109847 109847 109847 109847 

Average 0.000 -0.704 0.059 0.105 
Options Standard Deviation 0.016 0.246 0.066 0.090 
Traded Minimum -0.435 -1.386 -0.355 -0.356 

Only Maximum 0.294 0.773 1.492 1.492 
NOBS 16669 16669 16669 16669 

Average 0.002 -0.638 0.061 0.088 

All 
Standard Deviation 0.011 0.216 0.043 0.067 

Options Minimum -0.250 -1.310 -0.225 -0.251 
Maximum 0.273 2.674 0.462 0.572 

NOBS 253403 253403 253403 253403 
Average 0.002 -0.626 0.062 0.088 

Options Standard Deviation 0.011 0.201 0.044 0.067 
OTM Not Minimum -0.250 -1.285 -0.225 -0.251 

Traded Maximum 0.273 2.674 0.451 0.572 
NOBS 195594 195594 195594 195594 

Average 0.002 -0.681 0.057 0.088 
Options Standard Deviation 0.011 0.258 0.039 0.067 
Traded Minimum -0.249 -1.310 -0.116 -0.121 

Only Maximum 0.157 1.960 0.462 0.504 
NOBS 57809 57809 57809 57809 

Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume for the dav the price is recorded. 
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Table XI. Natural gas options statistics of model pricing errors for call options only. 

Call-Put 
Traded COPM: Model Model 2: 

Flag 
Moneyness Options Data ATM 

cs 1: ATM SigmaO 
Only 

Average 0.003 -0.656 0.048 0.081 

All 
Standard Deviation 0.014 0.231 0.052 0.074 

Options Minimum -2.023 -1.964 -2.031 -2.031 
Maximum 0.383 2.674 2.092 2.092 

NOBS 204092 204092 204092 204092 
Average 0.003 -0.647 0.046 0.078 

Options Standard Deviation 0.014 0.215 0.054 0.075 
All Options Not Minimum -2.023 -1.964 -2.031 0 2.031 

Traded Maximum 0.383 2.674 2.092 2.092 
NOBS 160417 160417 160417 160417 

Average 0.003 -0.689 0.053 0.092 
Options Standard Deviation 0.013 0.278 0.043 0.073 
Traded Minimum -0.249 -1.329 -0.173 -0.173 

Only Maximum 0.294 1.960 1.492 1.492 
NOBS 43675 43675 43675 43675 

Average 0.000 -0.654 0.039 0.070 

All 
Standard Deviation 0.017 0.207 0.071 0.086 

Options Minimum -2.023 -1.964 -2.031 -2.031 
Maximum 0.383 0.556 2.092 2.092 

NOBS 72404 72404 72404 72404 
Average 0.000 -0.647 0.037 0.065 

Options Standard Deviation 0.018 0.199 0.072 0.084 

Calls ITM Not Minimum -2.023 -1.964 -2.031 -2.031 
Traded Maximum 0.383 0.548 2.092 2.092 

NOBS 62760 62760 62760 62760 
Average 0.000 -0.697 0.052 0.097 

Options Standard Deviation 0.012 0.249 0.066 0.089 
Traded Minimum -0.165 -1.329 -0.173 -0.173 

Only Maximum 0.294 0.556 1.492 1.492 
NOBS 9644 9644 9644 9644 

Average 0.005 -0.657 0.053 0.087 

All 
Standard Deviation 0.012 0.242 0.036 0.067 

Options Minimum -0.250 -1.310 -0.225 -0.251 
Maximum 0.273 2.674 0.358 0.572 

NOBS 131688 131688 131688 131688 
Average 0.005 -0.646 0.052 0.086 

Options Standard Deviation 0.011 0.224 0.037 0.067 
OTM Not Minimum -0.250 -1.285 -0.225 -0.251 

Traded Maximum 0.273 2.674 0.343 0.572 
NOBS 97657 97657 97657 97657 

Average 0.004 -0.687 0.053 0.090 
Options Standard Deviation 0.013 0.286 0.035 0.067 
Traded Minimum -0.249 -1.310 -0.116 -0.121 

Only Maximum 0.157 1.960 0.358 0.504 
NOBS 34031 34031 34031 34031 

Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume tor the day the price is recorded. 
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Table XII. Natural gas options statistics of model pricing errors for put options. 

Call-Put 
Traded COPM: Model Model 2: 

Flag 
Moneyness Options Data ATM cs 1: ATM SigmaO 

Only 
Average 0.000 -0.633 0.075 0.101 

Standard Deviation 0.011 0.191 0.058 0.078 
All Options Minimum -0.435 -1.386 -0.355 -0.356 

Maximum 0.183 1.408 3.958 3.958 
NOBS 175827 175827 175827 175827 

Average 0.000 -0.623 0.078 0.103 

Options 
Standard Deviation 0.011 0.183 0.059 0.079 

All Options Minimum -0.344 -1.347 -0.334 -0.336 Not Traded 
Maximum 0.183 1.408 3.958 3.958 

NOBS 145024 145024 145024 145024 
Average -0.001 -0.682 0.063 0.092 

Options Standard Deviation 0.011 0.218 0.049 0.073 
Traded Minimum -0.435 -1.386 -0.355 -0.356 

Only Maximum 0.138 0.773 0.929 0.929 
NOBS 30803 30803 30803 30803 

Average 0.002 -0.667 0.087 0.127 
Standard Deviation 0.014 0.206 0.075 0.092 

All Options Minimum -0.435 -1.386 -0.355 -0.356 
Maximum 0.162 1.408 3.958 3.958 

NOBS 54112 54112 54112 54112 
Average 0.002 -0.660 0.089 0.129 

Options 
Standard Deviation 0.013 0.199 0.076 0.093 

Puts ITM Minimum -0.344 -1.347 -0.334 -0.336 Not Traded 
Maximum 0.162 1.408 3.958 3.958 

NOBS 47087 47087 47087 47087 
Average -0.001 -0.714 0.069 0.115 

Options Standard Deviation 0.019 0.242 0.066 0.089 
Traded Minimum -0.435 -1.386 -0.355 -0.356 

Only Maximum 0.092 0.773 0.929 0.929 
NOBS 7025 7025 7025 7025 

Average -0.001 -0.618 0.070 0.089 
Standard Deviation 0.008 0.182 0.047 0.068 

All Options Minimum -0.107 -1.298 0.002 -0.055 
Maximum 0.183 0.416 0.462 0.439 

NOBS 121715 121715 121715 121715 
Average -0.001 -0.605 0.072 0.090 

Options 
Standard Deviation 0.009 0.172 0.048 0.068 

OTM Not Traded Minimum -0.099 -1.209 0.002 -0.055 
Maximum 0.183 0.322 0.451 0.439 

NOBS 97937 97937 97937 97937 
Average 0.000 -0.673 0.062 0.085 

Options Standard Deviation 0.006 0.210 0.043 0.067 
Traded Minimum -0.107 -1.298 0.002 -0.042 

Only Maximum 0.138 0.416 0.462 0.427 
NOBS 23778 23778 23778 23778 

Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume for the day the price is recorded. 
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Table XIII. Crude oil options statistics of model pricing errors for all options. 

Call-Put Traded COPM: cs Model 1: Model 2: 
FlaQ Monevness Options Only Data ATM ATM Sigmao 

Average 0.001 -5.539 0.201 0.364 
Standard Deviation 0.337 1.332 4.611 0.605 

All Options Minimum -9.550 -13.435 -800.184 -9.714 
Maximum 7.630 17.422 12.700 12.700 

NOBS 322734 322734 322734 322734 
Average 0.018 -6.120 0.252 0.394 

Options 
Standard Deviation 0.154 1.371 0.699 0.378 

All Options Minimum -5.910 -12.041 -187.718 -6.140 
Traded Only 

Maximum 7.483 13.208 7.990 7.990 
NOBS 97036 97036 97036 97036 

Average -0.007 -5.289 0.179 0.351 

Options Not 
Standard Deviation 0.389 1.233 5.494 0.679 

Minimum -9.550 -13.435 -800.184 -9.714 Traded 
Maximum 7.630 17.422 12.700 12.700 

NOBS 225698 225698 225698 225698 
Average -0.055 -5.671 0.185 0.346 

Standard Deviation 0.511 1.370 3.958 0.845 
All Options Minimum -9.550 -13.435 -800.184 -9.714 

Maximum 1.948 5.075 12.700 12.700 
NOBS 117803 117803 117803 117803 

Average -0.010 -6.345 0.229 0.400 

Options 
Standard Deviation 0.213 1.378 0.462 0.489 

All ITM Minimum -5.910 -12.041 -26.002 -6.140 
Options Traded Only 

Maximum 1.948 2.299 7.400 7.400 
NOBS 25597 25597 25597 25597 

Average -0.068 -5.484 0.173 0.330 

Options Not 
Standard Deviation 0.565 1.308 4.467 0.919 

Traded Minimum -9.550 -13.435 -800.184 -9.714 
Maximum 1.240 5.075 12.700 12.700 

NOBS 92206 92206 92206 92206 
Average 0.033 -5.463 0.210 0.375 

Standard Deviation 0.160 1.303 4.947 0.406 
All Options Minimum -0.900 -10.871 -790.617 -2.403 

Maximum 7.630 17.422 8.010 8.010 
NOBS 204931 204931 204931 204931 

Average 0.027 -6.040 0.261 0.392 

Options 
Standard Deviation 0.125 1.359 0.766 0.330 

OTM Minimum -0.328 -10.871 -187.718 -1.979 Traded Only 
Maximum 7.483 13.208 7.990 7.990 

NOBS 71439 71439 71439 71439 
Average 0.036 -5.154 0.184 0.366 

Options Not 
Standard Deviation 0.176 1.160 6.104 0.441 

Traded Minimum -0.900 -10.771 -790.617 -2.403 
Maximum 7.630 17.422 8.010 8.010 

NOBS 133492 133492 133492 133492 
Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume for the dav the price is recorded. 
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Table XIV. Crude oil options statistics of model pricing errors for call options. 

Call-Put Traded COPM: cs Model 1: Model 2: 
FlaQ Monevness Options Only Data ATM ATM SiQmao 

Average -0.011 -5.597 0.005 0.205 
Standard Deviation 0.441 1.353 6.039 0.637 

All Options Minimum -9.550 -13.435 -800.184 -9.714 
Maximum 7.630 17.422 12.700 12.700 

NOBS 187104 187104 187104 187104 
Average 0.020 -6.176 0.194 0.349 

Options 
Standard Deviation 0.198 1.378 0.873 0.376 

All Options Traded Only Minimum -5.910 -12.041 -187.718 -6.140 
Maximum 7.483 13.208 7.990 7.990 

NOBS 57984 57984 57984 57984 
Average -0.024 -5.337 -0.080 0.141 

Options Not 
Standard Deviation 0.513 1.258 7.244 0.715 

Minimum -9.550 -13.435 -800.184 -9.714 Traded 
Maximum 7.630 17.422 12.700 12.700 

NOBS 129120 129120 129120 129120 
Average -0.119 -5.608 -0.188 -0.030 

Standard Deviation 0.690 1.432 5.362 0.886 
All Options Minimum -9.550 -13.435 -800.184 -9.714 

Maximum 1.948 1.020 12.700 12.700 
NOBS 63091 63091 63091 63091 

Average -0.023 -6.318 0.104 0.250 

Options 
Standard Deviation 0.276 1.376 0.490 0.460 

Calls ITM Traded Only Minimum -5.910 -12.041 -26.002 -6.140 
Maximum 1.948 0.463 6.740 6.740 

NOBS 15087 15087 15087 15087 
Average -0.149 -5.385 -0.280 -0.118 

Options Not 
Standard Deviation 0.774 1.375 6.139 0.965 

Traded Minimum -9.550 -13.435 -800.184 -9.714 
Maximum 1.040 1.020 12.700 12.700 

NOBS 48004 48004 48004 48004 
Average 0.045 -5.591 0.103 0.325 

Standard Deviation 0.204 1.312 6.353 0.414 
All Options Minimum -0.483 -10.871 -790.617 -2.403 

Maximum 7.630 17.422 8.010 8.010 
NOBS 124013 124013 124013 124013 

Average 0.035 -6.126 0.226 0.384 

Options Standard Deviation 0.159 1.376 0.971 0.334 
OTM 

Traded Only Minimum -0.277 -10.871 -187.718 -1.979 
Maximum 7.483 13.208 7.990 7.990 

NOBS 42897 42897 42897 42897 
Average 0.050 -5.308 0.038 0.294 

Options Not 
Standard Deviation 0.223 1.183 7.823 0.447 

Traded Minimum -0.483 -10.771 -790.617 -2.403 
Maximum 7.630 17.422 8.010 8.010 

NOBS 81116 81116 81116 81116 
Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume for the dav the orice is recorded. 
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Table XV. Crude oil options statistics of model pricing errors for put options. 

Call-Put Traded COPM: cs Model 1: Model 2: 

Flag Monevness Options Onlv Data ATM ATM SigmaO 

Average 0.016 -5.459 0.472 0.583 
Standard Deviation 0.038 1.297 0.392 0.476 

All Options Minimum -4.090 - I 0.897 -3.180 -3.176 
Maximum 1.240 5.075 8.470 8.470 

NOBS 135630 135630 135630 135630 
Average 0.014 -6.038 0.339 0.460 

Options 
Standard Deviation 0.024 1.356 0.264 0.372 

All Options Traded Only Minimum -0.610 -10.876 -0.080 -0.030 
Maximum 0.528 2.299 7.400 7.400 

NOBS 39052 39052 39052 39052 
Average 0.017 -5.225 0.526 0.633 

Options Not 
Standard Deviation 0.043 1.195 0.421 0.504 

Traded Minimum -4.090 -10.897 -3.180 -3.176 
Maximum 1.240 5.075 8.470 8.470 

NOBS 96578 96578 96578 96578 
Average 0.018 -5.743 0.616 0.778 

Standard Deviation 0.046 1.292 0.468 0.532 
All Options Minimum -4.090 -10.897 -3.180 -3.176 

Maximum 1.240 5.075 8.470 8.470 
NOBS 54712 54712 54712 54712 

Average 0.009 -6.384 0.408 0.615 

Options 
Standard Deviation 0.026 1.381 0.349 0.447 

Puts ITM Minimum -0.610 -10.876 -0.080 -0.030 Traded Only 
Maximum 0.528 2.299 7.400 7.400 

NOBS 10510 10510 10510 105!0 
Average 0.020 -5.591 0.666 0.817 

Options Not 
Standard Deviation 0.049 l.221 0.479 0.544 

Traded Minimum -4.090 -J0.897 -3.180 -3.176 
Maximum 1.240 5.075 8.470 8.470 

NOBS 44202 44202 44202 44202 
Average 0.015 -5.267 0.375 0.452 

Standard Deviation 0.032 1.264 0.293 0.382 
All Options Minimum -0.900 -J0.797 0.010 0.020 

Maximum 0.335 0.807 1.835 2.267 
NOBS 80918 80918 80918 80918 

Average 0.016 -5.910 0.313 0.403 

Options 
Standard Deviation 0.023 1.323 0.220 0.322 

OTM Minimum -0.328 -10.797 O.OJO 0.020 Traded Only 
Maximum 0.278 0.565 1.831 2.173 

NOBS 28542 28542 28542 28542 
Average 0.014 -4.916 0.409 0.478 

Options Not 
Standard Deviation 0.036 1.080 0.321 0.408 

Traded Minimum -0.900 -9.149 0.020 0.020 
Maximum 0.335 0.807 1.835 2.267 

NOBS 52376 52376 52376 52376 
Pricing errors are the actual prices less the model's predicted prices where negative (positive) average pricing 
errors indicate the model over (under) estimates an option's value. Options that are classified as not traded 
have no transaction volume for the day the price is recorded. 
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Table XVI. Natural gas options pricing error nonparametric tests of alternative 
models verses benchmark. 

ALL 

ALL ITM OTM 

ALL 
Traded ALL Traded ALL Traded 

Method NAME Options Only Options Only Options Only 

COPM vs Model 1: ATM -519.55 -235.74 -283.34 -110.59 -434.79 -208.14 

Wilcoxon Sign 
COPM vs Model 2: SigmaO -523.14 -235.88 -291.46 -110.97 -434.44 -208.14 

Rank Test COPM vs CS 529.50 233.08 307.05 111.33 431.34 204.76 

CS vs Model 1: ATM -531.18 -234.54 -307.57 -111.60 -433.06 -206.28 
CS vs Model 2: SigmaO -531.51 -234.84 -307.70 -111.71 -433.36 -206.55 

COPM vs Model 1: ATM 542.50 235.02 316.69 113.50 442.22 206.19 

Squared Rank COPM vs Model 2: SigmaO 622.82 276.75 365.41 132.77 503.93 241.97 
Test for COPM vs CS 690.75 321.67 389.92 150.45 568.90 284.44 
Variance CS vs Model 1: ATM -480.70 -253.55 -246.51 -113.11 -412.26 -226.71 

CS vs Model 2: SigmaO -302.40 -174.05 -137.55 -72.74 -269.20 -159.36 

NOBS 
m 379919 74478 126516 16669 253403 57809 
n 379919 74478 126516 16669 253403 57809 

Calls 
ALL ITM OTM 

ALL Traded ALL Traded ALL Traded 
Method NAME Options Only Options Only Options Only 

COPM vs Model 1: ATM -367.98 -180.13 -191.70 -83.16 -312.45 -159.65 

Wilcoxon Sign 
COPM vs Model 2: SigmaO -375.02 -180.41 -206.19 -83.82 -312.17 -159.67 

Rank Test COPM vs CS 386.30 177.12 232.57 84.71 308.57 155.60 
CS vs Model 1: ATM -387.98 -178.74 -232.87 -84.93 -310.48 -157.30 

CS vs Model 2: Sigmao -388.40 -179.11 -232.98 -85.04 -310.90 -157.66 
COPM vs Model 1 : ATM 364.24 168.81 223.42 86.11 294.66 147.06 

Squared Rank COPM vs Model 2: SigmaO 449.31 209.33 272.56 102.55 361.24 183.06 
Test for COPM vs CS 514.82 248.09 305.23 116.67 416.82 219.32 
Variance CS vs Model 1: ATM -392.08 -204.14 -222.33 -92.02 -328.48 -182.33 

CS vs Model 2: SigmaO -248.25 -140.05 -138.33 -59.86 -207.88 -127.04 

NOBS 
m 204092 43675 72404 9644 131688 34031 
n 204092 43675 72404 9644 131688 34031 

Puts 

ALL ITM OTM 

ALL Traded ALL Traded ALL Traded 
Method NAME Options Only Options Only Options Only 

COPM vs Model 1: ATM -363.14 -152.00 -201.46 -72.59 -302.14 -133.54 
COPM vs Model 2: SigmaO -363.06 -151.93 -201.43 -72.52 -302.06 -133.52 

Wilcoxon Sign 
COPM VS cs 362.32 151.66 200.56 72.25 301.88 133.37 Rank Test 

CS vs Model 1: ATM -362.80 -151.87 -201.05 -72.42 -302.08 -133.50 
CS vs Model 2: Sigmao -362.86 -151.91 -201.12 -72.46 -302.11 -133.53 
COPM vs Model 1: ATM 390.36 163.31 213.65 73.38 328.65 146.76 

Squared Rank COPM vs Model 2: Sigmao 432.76 181.80 236.11 84.11 356.27 160.18 
Test for COPMvs CS 462.03 205.00 254.22 95.34 388.85 181.75 
Variance CS vs Model 1: ATM -300.24 -151.71 -157.87 -68.26 -256.53 -134.91 

CS vs Model 2: SigmaO -174.22 -102.78 -83.55 -43.14 -165.52 -95.42 

NOBS 
m 175827 30803 54112 7025 121715 23778 
n 175827 30803 54112 7025 121715 23778 

Wilcoxon Sign Rank Test tests the null hypothesis that the benchmark model's (COPM or CS) pricing error is less than or 
equal to the alternative model's pricing error at the critical value (alpha=.05) of 1.64. Squared Rank Test for Equal 
Variances tests the null hypothesis that the benchmark model's (COPM or CS) variance of pricing errors and the 
alternative model's variance of pricing errors are identically distributed at the critical value (alpha=.05) of -1.64. Bold 
indicates failure to reject the null hypothesis at the 5% level 
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Table XVII. Crude oil options pricing error nonparametric tests of alternative 
models verses benchmark. 

ALL 

ALL ITM OTM 

ALL 
Traded ALL 

Traded ALL 
Traded 

Method NAME Options Onlv Options Onlv Options Onl'J 
COPM vs Model 1 : A TM -386.7 -256.7 -180.8 -120.0 -358.9 -226.8 

Wilcoxon COPM vs Model 2: SigmaO -409.2 -260.6 -205.8 -126.0 -367.8 -228.2 
Sign Rank COPM vs CS 491.9 269.7 297.2 138.6 391.9 231.4 

Test CS vs Model 1: ATM -491.2 -269.7 -297.0 -138.5 -391.3 -231.4 
CS vs Model 2: SigmaO -491.9 -269.7 -297.2 -138.6 -391.9 -231.4 
COPM vs Model 1: ATM 443.9 267.5 242.4 128.3 374.2 234.0 

Squared COPM vs Model 2: SigmaO 545.6 320.5 295.5 158.7 464.0 277.1 
Rank Test 

COPM vs CS 660.9 385.9 367.5 194.8 546.6 333.1 for 
Variance CS vs Model 1: ATM -476.1 -322.9 -232.8 -158.8 -427.0 -282.6 

CS vs Model 2: SigmaO -391.1 -264.2 -186.5 -129.9 -347.9 -230.1 

NOBS 
m 322734.0 97036.0 117803.0 25597.0 204931.0 71439.0 
n 322734.0 97036.0 117803.0 25597.0 204931.0 71439.0 

Calls 
ALL ITM OTM 

ALL 
Traded ALL Traded ALL Traded 

Method NAME Options Onl'ol Options Onl';I Options Onlv 
COPM vs Model 1 : A TM -211.9 -189.9 -2.9 -75.1 -259.0 -173.0 

Wilcoxon COPM vs Model 2: SigmaO -249.5 -195.9 -51.4 -85.7 -272.2 -175.1 
Sign Rank COPM vs CS 374.5 208.5 217.5 106.4 304.8 179.3 

Test CS vs Model 1: ATM -373.6 -208.4 -217.2 -106.3 -304.0 -179.2 
CS vs Model 2: SigmaO -374.5 -208.5 -217.5 -106.4 -304.8 -179.3 
COPM vs Model 1 : A TM 319.3 188.1 128.1 83.0 260.0 164.4 

Squared COPM vs Model 2: SigmaO 348.3 241.2 108.7 112.4 343.6 210.9 
Rank Test 

COPM vs CS 498.9 298.2 256.1 149.8 424.0 257.8 for 
Variance CS vs Model 1: ATM -370.3 -258.2 -189.7 -129.3 -337.8 -225.7 

CS vs Model 2: SigmaO -336.4 -208.6 -183.0 -107.1 -280.7 -178.8 

NOBS 
m 187104.0 57984.0 63091.0 15087.0 124013.0 42897.0 
n 187104.0 57984.0 63091.0 15087.0 124013.0 42897.0 

Puts 
ALL ITM OTM 

ALL 
Traded 

ALL 
Traded 

ALL 
Traded 

Method NAME Options Onh Options Onlv Options Onl'ol 
COPM vs Model 1 : ATM -318.9 -171.1 -202.6 -88.8 -246.4 -146.3 

Wilcoxon COPM vs Model 2: SigmaO -318.9 -171.1 -202.6 -88.8 -246.4 -146.3 
Sign Rank COPM vs CS 318.9 171.1 202.6 88.8 246.4 146.3 

Test CS vs Model 1: ATM -318.9 -171.1 -202.6 -88.8 -246.4 -146.3 
CS vs Model 2: SigmaO -318.9 -171.1 -202.6 -88.8 -246.4 -146.3 
COPM vs Model 1: A TM 355.6 191.2 227.0 99.0 277.6 165.4 

Squared COPM vs Model 2: SigmaO 388.2 211.6 241.4 108.7 297.8 179.3 
Rank Test 

COPM vs CS 428.2 245.3 266.6 126.5 341.5 210.8 for 
Variance CS vs Model 1: ATM -297.0 -200.1 -167.6 -100.9 -254.9 -172.6 

CS vs Model 2: SigmaO -229.4 -162.3 -132.2 -82.0 -210.5 -144.8 

NOBS m 135630.0 39052.0 54712.0 10510.0 80918.0 28542.0 
n 135630.0 39052.0 54712.0 10510.0 80918.0 28542.0 

Wilcoxon Sign Rank Test tests the null hypothesis that the benchmark model's (COPM or CS) pricing error is less than or 
equal to the alternative model's pricing error at the critical value (alpha=.05) of 1.64. Squared Rank Test for Equal 
Variances tests the null hypothesis that the benchmark model's (COPM or CS) variance of pricing errors and the 
alternative model's variance of pricing errors are identically distributed at the critical value (alpha=.05) of -1.64. Bold 
indicates failure to reject the null hvoothesis at the 5% level 
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Table XVIII. Squared rank test for equal variance for unhedged portfolio, COPM, 
Clewlow and Strickland model, Model 1: ATM, and Model 2: SigmaO. 

Commodity Case Model Forecast Error Model Statistic Value 
Unhedged-COPM 16.754 

Un hedged-CS 5.443 
Unhedged-lVT 21.167 

Model 1: ATM COPM-IVT 18.286 
COPM-CS -14.808 

CS-IVT 20.831 

Consumer NOBS 245 
Unhedged-COPM 7.083 

Un hedged-CS 7.069 
Un hedged-I VT 19.251 

Model 2: Sigmao COPM-IVT 17.853 
COPM-CS -0.045 

CS-IVT 17.879 

Crude Oil NOBS 211 
Unhedged-COPM 2.500 

Un hedged-CS 7.736 
Un hedged-I VT 18.270 

Model 1: ATM COPM-IVT 17.828 
COPM-CS 5.667 

CS-IVT 16.382 

Producer NOBS 192 
Unhedged-COPM 0.027 

Un hedged-CS 6.928 
Un hedged-I VT 15.551 

Model 2: SigmaO COPM-IVT 15.352 
COPM-CS 6.607 

CS-IVT 13.715 
NOBS 139 

Unhedged-COPM 22.444 
Un hedged-CS 10.504 
Un hedged-I VT 20.803 

Model 1: ATM COPM-IVT -21.295 
COPM-CS -22.221 

CS-IVT 19.252 

Consumer NOBS 255 
Unhedged-COPM 14.719 

Un hedged-CS 9.266 
Un hedged-I VT 21.528 

Model 2: SigmaO COPM-IVT 18.521 
COPM-CS -9.431 

CS-IVT 20.683 

Natural Gas 
NOBS 253 

Unhedged-COPM 17.130 
Unhedged-CS 17.921 
Un hedged-I VT 21.651 

Model 1: ATM COPM-IVT 20.751 
COPM-CS 15.196 

CS-IVT -8.102 

Producer NOBS 256 
Unhedged-COPM 12.271 

Un hedged-CS 21.407 
Unhedged-lVT 17.613 

Model 2: SigmaO COPM-IVT 16.090 
COPM-CS 20.804 

CS-IVT -5.362 
NOBS 253 

Squared Rank Test for Equal Variances tests the null hypothesis that the benchmark model's (COPM or CS) 
variance of hedging errors and the alternative model's variance of hedging errors are identically distributed at the 
critical value {alpha=.05) of -1.64. Bold indicates failure to reject the null hypothesis at the 5% level 
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Table XIX. Modified Diebold and Mariano statistics for hedging performance of 
the COPM, Clewlow and Strickland model, Model 1: ATM, and Model 2: SigmaO. 

MDM 
Commodity Case Model Forecast Error Model Statistic 

COPM-CS 15.340 
Model 1: ATM COPM-Model I: ATM -5.677 

Consumer 
CS-Model I: ATM -5.678 

COPM-CS 29.003 
Model 2: SigmaO COPM-Model 2: SigmaO -9.268 

Crude Oil 
CS-Model 2: SigmaO -9.268 

COPM-CS -1.770 
Model 1: ATM COPM-Model I: ATM -4.773 

Producer 
CS-Model I: ATM -4.773 

COPM-CS -6.470 
Model 2: SigmaO COPM-Model 2: SigmaO -5.528 

CS-Model 2: SigmaO -5.528 
COPM-CS 0.978 

Model 1: ATM COPM-Model l: ATM 0.978 

Consumer 
CS-Model I: ATM -13.654 

COPM-CS 18.295 
Model 2: SigmaO COPM-Model 2: SigmaO -12.473 

Natural Gas 
CS-Model 2: SigmaO -12.473 

COPM-CS -0.978 
Model 1: ATM COPM-Model I: ATM -7.760 

Producer 
CS-Model I: ATM 0.968 

COPM-CS -0.979 
Model 2: SigmaO COPM-Model 2: SigmaO -9.165 

CS-Model 2: SigmaO 0.965 
Modified Diebold and Mariano test has the null hypothesis that the differences of the squared hedging errors 
of benchmark (COPM or CS) and the alternative models are equal to zero at the critical value (alpha=.05) of 
-1.651. Bold indicates failure to reject the null hypothesis at the 5% level 
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Table XX. Parameter correlations for Models 1 and 2. 

Model 1: ATM 
Commodity: Crude Oil Commodity: Natural Gas 

Parameter Betal Beta2 Gamma Betal Beta2 Gamma 

Betal 1.000 -0.996 -0.082 1.000 -0.997 0.017 

Beta2 -0.996 1.000 0.128 -0.997 1.000 -0.015 

Gamma -0.082 0.128 1.000 0.017 -0.015 1.000 

Model 2: SigmaO 
Parameter Betal Beta2 Gamma SigmaO Betal Beta2 Gamma SigmaO 

Betal 1.000 -0.997 -0.298 -0.224 1.000 -0.996 -0.139 -0.605 

Beta2 -0.997 1.000 0.294 0.228 -0.996 1.000 0.147 0.604 
Gamma -0.298 0.294 1.000 0.001 -0.139 0.147 1.000 0.051 
SigmaO -0.224 0.228 0.001 1.000 -0.605 0.604 0.051 1.000 
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Table XXI. Tests for contemporaneous correlation for crude oil and natural gas 
models 1 and 2. 

Panel A: Crude Oil 
n V Statistic Pr> ChiSq 

Model 1: ATM 1231 3 1310.748 1.000 
Model 2:SiamaO 1231 3 1251.056 1.000 

Covariance of Residuals 
Beta1 Beta2 Gamma 

Model 1: ATM 
Beta1 0.231 -0.006 -0.005 
Beta2 -0.006 0.000 0.000 
Gamma -0.005 0.000 0.003 

Model 2:SigmaO 
Beta1 0.464 -0.013 -0.031 
Beta2 -0.013 0.000 0.001 
Gamma -0.031 0.001 0.188 

Panel B: Natural Gas 
n V Statistic Pr> ChiSq 

Model 1: ATM 1222 3 1216.973 1.000 
Model 2:Sigmao 1220 3 1284.906 1.000 

Covariance of Residuals 
Beta1 Beta2 Gamma 

Model 1: ATM 
Beta1 30.390 -8.292 0.013 
Beta2 -8.292 2.274 -0.003 
Gamma 0.013 -0.003 0.010 

Model 2:SigmaO 
Beta1 57.797 -15.514 -1.308 
Beta2 -15.514 4.196 0.344 
Gamma -1.308 0.344 0.951 

Bold indicates significant at the 5% level. 
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Table XXII. Durbin-Watson statistics for residual autocorrelation for crude oil and 
natural gas models 1 and 2. 

Panel A: Crude Oil 
Model 1: ATM 

Equation Order DW Pr< DW Pr> DW 

Beta1 1 1.962 0.188 0.812 
Beta2 1 1.946 0.122 0.878 
Gamma 1 1.925 0.062 0.938 

Model 2:SiamaO 
Beta1 1 2.012 0.495 0.505 
Beta2 1 2.008 0.468 0.532 
Gamma 1 1.924 0.061 0.939 

Panel B: Natural Gas 
Model t: ATM 

Equation Order DW Pr<DW Pr> DW 

Beta1 1 1.947 0.130 0.870 
Beta2 1 1.956 0.168 0.832 
Gamma 1 2.009 0.483 0.517 

Model 2:Sigmao 
Beta1 1 1.797 0.000 1.000 
Beta2 1 1.802 0.000 1.000 
Gamma 1 1.923 0.063 0.937 
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Table XXIII. SUR parameter estimates for crude oil models 1 and 2. 

Model 1: ATM Model 2:Sigmao 
Parameter Estimate Std Err t Value Pr> ltl Estimate Std Err t Value Pr> ltl 

Beta1 
Ln(Total Domestic) 0.819 0.615 1.333 0.183 1.680 0.790 2.128 0.034 
Ln(Total Imports) 0.800 0.223 3.586 0.000 1.174 0.299 3.928 0.000 
ShortTermMA/LongTermMA -0.260 0.596 -0.437 0.662 -0.499 0.767 -0.651 0.515 

Hedgelong% 8.876 1.430 6.209 0.000 10.856 1.859 5.839 0.000 
HedgeShort% -2.274 1.279 -1.778 0.076 -3.637 1.666 -2.183 0.029 
Spread% 7.346 1.617 4.542 0.000 5.742 2.077 2.764 0.006 
Spring -23.488 7.581 -3.098 0.002 -37.800 9.738 -3.882 0.000 
Summer -23.643 7.582 -3.118 0.002 -38.098 9.740 -3.912 0.000 
Fall -23.453 7.563 -3.101 0.002 -37.799 9.716 -3.891 0.000 
Winter -23.495 7.566 -3.105 0.002 -37.931 9.719 -3.903 0.000 
MA(e .,) Beta1 -0.464 0.019 -24.538 0.000 -0.338 0.020 -17.234 0.000 
MA(e .2l Beta1 -0.289 O.Q19 -15.269 0.000 -0.237 0.020 -12.092 0.000 

Beta2 
Ln(Total Domestic) -0.006 0.017 -0.328 0.743 -0.028 0.022 -1.305 0.192 

Ln(Total Imports) -0.022 0.006 -3.555 0.000 -0.033 0.008 -3.989 0.000 
ShortTermMA/LongTermMA 0.002 0.016 0.150 0.880 0.013 0.021 0.616 0.538 

Hedgelong% -0.230 0.039 -5.826 0.000 -0.282 0.051 -5.523 0.000 
HedgeShort% 0.052 0.035 1.476 0.140 0.081 0.046 1.782 0.075 
Spread% -0.209 0.045 -4.669 0.000 -0.166 0.057 -2.910 0.004 
Spring 0.432 0.209 2.062 0.039 0.818 0.267 3.063 0.002 
Summer 0.436 0.209 2.081 0.038 0.826 0.267 3.093 0.002 
Fall 0.431 0.209 2.066 0.039 0.819 0.267 3.073 0.002 
Winter 0.432 0.209 2,069 0.039 0.823 0.267 3.085 0.002 
MA(e .,) Beta2 -0.466 0.019 -24.679 0.000 -0.334 0.020 -17.051 0.000 
MA(e .2) Beta2 -0.290 0.019 -15.359 0.000 -0.235 0.020 -11.992 0.000 

Gamma 
Ln(Total Domestic) 0.530 0.072 7.390 0.000 -0.361 0.666 -0.541 0.588 

Ln(Total Imports) 0.018 0.025 0.712 0.476 -0.548 0.219 -2.496 0.013 
ShortTermMA/LongTermMA -0.013 0.069 -0.182 0.856 1.879 0.642 2.928 0.003 
Hedge Long% 0.231 0.164 1.406 0.160 -3.927 1.484 -2.646 0.008 
HedgeShort% -0.452 0.147 -3.077 0.002 2.940 1.321 2.226 0.026 
Spread% 0.271 0.189 1.437 0.151 1.895 1.756 1.079 0.281 

Spring .5;735 0.885 -7.610 0.000 9.248 8:228 1.124 0.261 

Summer -6.749 0.885 -7.625 0.000 9.510 8.229 1.156 0.248 

Fall -6.721 0.883 -7.612 0.000 9.367 8.209 1.141 0.254 

Winter -6.736 0.883 -7.625 0.000 9.335 8.212 1.137 0.256 

MA(e .,) Gamma -0.295 0.027 -11.055 0.000 -0.407 0.028 -14.542 0.000 
MA(e .2) Gamma -0.207 0.028 -7.524 0.000 -0.347 0.030 -11.704 0.000 
MA(e .3) Gamma -0.161 0.027 -5.863 0.000 -0.246 0.030 -8.300 0.000 
MA(e -4) Gamma -0.115 0.027 -4.327 0.000 -0.170 0.028 -6.047 0.000 
Bold indicates significance at the 10% level 
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Table XXIV. SUR parameter estimates for natural gas models 1 and 2. 

Model 1: ATM Model 2:Sigmao 
Parameter Estimate Std Err t Value Pr> ltl Estimate Std Err t Value Pr> ltl 

Beta1 
MGAProd% 3.919 1.935 2.026 0.043 -7.008 3.324 -2.109 0.035 
~AGAEast% -1.276 1.532 -0.833 0.405 5.856 2.632 2.225 0.026 
ShortTermMA/LongTermMA -0.021 1.582 -0.013 0.990 1.768 2.703 0.654 0.513 
Hedge Long% -6.169 6.978 -0.884 0.377 -1.730 11.873 -0.146 0.884 
HedgeShort% 14.355 11.703 1.227 0.220 -1.967 19.526 -0.101 0.920 
Spread% -9.054 6.446 -1.405 0.160 15.910 11.029 1.443 0.149 
Injection: April-October -9.424 7.287 -1.293 0.196 0.574 12.160 0.047 0.962 
Withdrawal: November-March -8.802 7.275 -1.210 0.227 1.345 12.138 0.111 0.912 
MA(e -1) Beta1 -0.152 0.020 -7.578 0.000 
MA(e -2l Beta1 ·0.105 0.020 -5.243 0.000 

Beta2 
MGAProd% -0.778 0.529 -1.469 0.142 1.591 0.905 1.757 0.079 
MGAEast% 0.224 0.419 0.534 0.594 -1.192 0.717 -1.662 0.097 
ShortTermMA/LongTermMA -0.052 0.433 -0.119 0.905 -0.365 0.736 -0.496 0.620 
HedgeLong% 1.903 1.909 0.997 0.319 0.321 3.233 0.099 0.921 
HedgeShort% -4.354 3.202 -1.360 0.174 0.125 5.313 0.024 0.981 

Spread% 2.015 1.764 1.143 0.253 -3.653 3.004 -1.216 0.224 
Injection: April-October 2.743 1.993 1.376 0.169 0.093 3.309 0.028 0.978 
Withdrawal: November-March 2.574 1.990 1.293 0.196 -0.D12 3.303 -0.003 0.997 

MA(e -1) Beta2 -0.164 0.020 -8.129 0.000 
MA(e.2) Beta2 -0.107 0.020 -5.354 0.000 

Gamma 
~AGAProd% -0.032 0.038 -0.820 0.413 0.617 0.627 0.983 0.326 
~AGAEast% 0.000 0.030 0.013 0.990 -1.082 0.497 -2.178 0.030 
ShortTermMA/LongTermMA -0.067 0.031 -2.124 0.034 -1.975 0.504 -3.919 0.000 
HedgeLong% -0.227 0.138 -1.643 0.101 -10.990 2.182 -5.037 0.000 
HedgeShort% 0.079 0.230 0.344 0.731 4.053 3.408 1.189 0.235 

Spread% -0.016 0.128 -0.126 0.900 4.450 2.060 2.160 0.031 
Injection: April-October 0.167 0.143 1.166 0.244 7.889 2.129 3.706 0.000 
Withdrawal: November-March 0.173 0.143 1.208 0.227 8.942 2.124 4.209 0.000 
MA(e -1) Gamma -0.116 0.028 -4.077 0.000 -0.152 0.020 -7.578 0.000 
MA(e -2) Gamma -0.376 0.028 -13.626 0.000 
MA(e .3) Gamma -0.288 0.028 -10.120 0.000 
MA(e -il Gamma -0.195 0.028 -7.032 0.000 
Bold indicates sianificance at the 10% level. 
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Table XXV. Wald Tests for seasonal components of crude oil and natural gas 
models 1 and 2. 

Panel A: Crude Oil 
Model 1: ATM Model 2:Sigmao 

Test Statistic Pr> ChiSq Statistic Pr> ChiSq 

Beta1 
Spring:Fall 0.257 0.612 0.000 0.991 
All Season Equal 9.081 0.028 15.812 0.001 
Summer Different 0.412 0.814 2.750 0.253 

Beta2 
Spring:Fall 0.001 0.971 0.121 0.728 
All Season Equal 6.735 0.081 14.227 0.003 
Summer Different 0.222 0.895 3.040 0.219 

Gamma 
Spring:Fall 2.913 0.088 2.419 0.120 
All Season Equal 12.091 0.007 13.355 0.004 
Summer Different 3.872 0.144 2.604 0.272 

Across Eauations 
All Springs Equal 74.610 0.000 15.454 0.000 
All Summers Equal 75.037 0.000 15.731 0.000 
All Falls Equal 74.668 0.000 15.548 0.000 
All Winters Equal 74.927 0.000 15.634 0.000 

Panel B: Natural Gas 
Model 1: ATM Model 2:Sigmao 

Test Statistic Pr> ChiSq Statistic Pr> ChiSq 

Beta1 
lniection:Withdrawal 3.352 0.067 1.765 0.184 

Beta2 
lniection:Withdrawal 3.321 0.068 0.436 0.509 

Gamma 
lnjection:Withdrawal 0.708 0.400 94.939 0.000 

Across Eauations 
All Injections Equal 1.769 0.413 13.190 0.001 
All Withdrawals Equal 1.571 0.456 16.880 0.000 
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Table XXVI. Tests for contemporaneous correlation for crude oil and natural gas 
models 1 and 2 by day of week. 

Panel A: Crude Oil 
Model 1: ATM 

Weekday n V Statistic Pr> ChiSq 

Monday 237 3 255.648 1.000 

Tuesday 258 3 276.215 1.000 

Wednesday 257 3 264.092 1.000 

Thursday 251 3 265.537 1.000 

Friday 243 3 263.390 1.000 

Model 2:Siamao 

Weekday n V Statistic Pr> ChiSq 

Monday 237 3 253.524 1.000 

Tuesday 258 3 257.724 1.000 

Wednesday 257 3 279.746 1.000 

Thursday 251 3 263.036 1.000 

Friday 243 3 242.945 1.000 

Panel B: Natural Gas 
Model 1: ATM 

Weekday n V Statistic Pr> ChiSq 

Monday 234 3 237.259 1.000 

Tuesday 234 3 245.448 1.000 

Wednesday 257 3 314.263 1.000 

Thursday 257 3 314.715 1.000 

Friday 253 3 302.650 1.000 

Model 2:Siamao 

Weekday n V Statistic Pr> ChiSq 

Monday 253 3 245.131 1.000 

Tuesday 247 3 262.150 1.000 

Wednesday 247 3 272.165 1.000 

Thursday 240 3 306.509 1.000 

Friday 240 3 236.764 1.000 
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Table XXVII. Covariance matrix of residuals for tests of contemporaneous 
correlation for crude oil and natural gas models 1 and 2 by day of week. 

Panel A: Crude Oil 
Beta1 Beta2 Gamma Beta1 Beta2 Gamma 

Model 1: ATM Model 2:Sigmao 
Monday Monday 

Beta1 0.207 -0.006 -0.005 Beta1 0.597 -0.016 -0.073 

Beta2 -0.006 0.000 0.000 Beta2 -0.016 0.000 0.002 
Gamma -0.005 0.000 0.003 Gamma -0.073 0.002 0.240 

Tuesday Tuesday 

Beta1 0.195 -0.005 -0.005 Beta1 0.361 -0.010 0.013 
Beta2 -0.005 0.000 0.000 Beta2 -0.010 0.000 0.000 
Gamma -0.005 0.000 0.003 Gamma 0.013 0.000 0.204 

Wednesday Wednesday 

Beta1 0.245 -0.007 -0.003 Beta1 0.436 -0.012 -0.070 
Beta2 -0.007 0.000 0.000 Beta2 -0.012 0.000 0.002 
Gamma -0.003 0.000 0.003 Gamma -0.070 0.002 0.230 

Thursday Thursday 

Beta1 0.189 -0.005 -0.004 Beta1 0.365 -0.010 -0.044 
Beta2 -0.005 0.000 0.000 Beta2 -0.010 0.000 0.001 
Gamma -0.004 0.000 0.004 Gamma -0.044 0.001 0.191 

Friday Friday 

Beta1 0.295 -0.008 -0.007 Beta1 0.477 -0.013 -0.020 
Beta2 -0.008 0.000 0.000 Beta2 -0.013 0.000 0.000 
Gamma -0.007 0.000 0.004 Gamma -0.020 0.000 0.246 

Panel B: Natural Gas 
Beta1 Beta2 Gamma Beta1 Beta2 Gamma 

Model 1: ATM Model 2:Sigmao 
Monday Monday 

Beta1 110.525 -30.638 0.071 Beta1 15.116 -3.983 0.329 
Beta2 -30.638 8.503 -0.020 Beta2 -3.983 1.099 -0.117 
Gamma 0.071 -0.020 0.006 Gamma 0.329 -0.117 1.403 

Tuesday Tuesday 

Beta1 7.695 -1.876 -0.039 Beta1 61.488 -16.889 -1.469 
Beta2 -1.876 0.467 0.011 Beta2 -16.889 4.668 0.403 
Gamma -0.039 0.011 0.007 Gamma -1.469 0.403 1.035 

Wednesday Wednesday 

Beta1 14.987 -3.971 0.205 Beta1 142.236 -38.287 -3.161 
Beta2 -3.971 1.060 -0.055 Beta2 -38.287 10.333 0.844 
Gamma 0.205 -0.055 0.025 Gamma -3.161 0.844 1.331 

Thursday Thursday 

Beta1 15.272 -4.178 -0.113 Beta1 64.004 -17.206 -3.729 
Beta2 -4.178 1.152 0.031 Beta2 -17.206 4.652 1.039 
Gamma -0.113 0.031 0.007 Gamma -3.729 1.039 1.589 

Friday Friday 

Beta1 8.378 -2.200 -0.058 Beta1 24.814 -6.431 0.079 
Beta2 -2.200 0.588 0.017 Beta2 -6.431 1.691 -0.032 

Gamma -0.058 0.017 0.004 Gamma 0.079 -0.032 0.942 
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Table XXVIII. Durbin-Watson statistics for residual autocorrelation for crude oil 
and natural gas models 1 and 2 by weekday. 

Panel A: Crude Oil 
Model 1: ATM Model 2:SigmaO 

Equation Order DW Pr< DW Pr> DW DW Pr< DW Pr> DW 

Monday 

Beta1 1 1.843 0.067 0.933 2.095 0.656 0.344 

Beta2 1 1.853 0.078 0.922 2.089 0.638 0.362 

Gamma 1 1.841 0.056 0.944 1.877 0.101 0.899 
Tuesday 

Beta1 1 2.067 0.604 0.396 2.056 0.570 0.430 

Beta2 1 2.057 0.574 0.426 2.054 0.562 0.438 

Gamma 1 1.989 0.317 0.683 1.954 0.265 0.735 
Wednesday 

Beta1 1 2.013 0.435 0.565 1.846 0.062 0.938 

Beta2 1 1.995 0.378 0.622 1.843 0.059 0.941 

Gamma 1 1.922 0.159 0.841 1.872 0.085 0.915 
Thursday 

Beta1 1 1.988 0.343 0.657 1.968 0.280 0.720 

Beta2 1 1.973 0.301 0.699 1.969 0.282 0.718 

Gamma 1 1.863 0.074 0.926 1.914 0.164 0.836 
Friday 

Beta1 1 1.918 0.173 0.827 2.064 0.571 0.429 

Beta2 1 1.886 0.117 0.883 2.048 0.518 0.482 

Gamma 1 1.924 0.163 0.837 1.903 0.147 0.853 

Panel B: Natural Gas 
Model 1: ATM Model 2:SigmaO 

Equation Order DW Pr< DW Pr> DW DW Pr< DW Pr> DW 

Monday 

Beta1 1 2.136 0.733 0.267 1.997 0.328 0.672 

Beta2 1 2.123 0.699 0.301 1.929 0.167 0.833 

Gamma 1 1.960 0.232 0.768 1.990 0.325 0.675 

Tuesday 

Beta1 1 2.083 0.602 0.398 2.004 0.355 0.645 

Beta2 1 2.133 0.747 0.253 2.022 0.409 0.591 

Gamma 1 2.019 0.406 0.594 2.016 0.405 0.595 

Wednesday 

Beta1 1 2.098 0.645 0.355 2.237 0.934 0.066 

Beta2 1 2.066 0.547 0.453 2.236 0.932 0.068 

Gamma 1 2.081 0.592 0.408 1.934 0.183 0.817 

Thursday 

Beta1 1 1.921 0.149 0.851 2.151 0.781 0.219 

Beta2 1 1.922 0.151 0.849 2.151 0.781 0.219 

Gamma 1 2.034 0.434 0.566 2.005 0.365 0.635 

Friday 

Beta1 1 1.903 0.129 0.871 2.212 0.889 0.111 

Beta2 1 1.924 0.166 0.834 2.231 0.914 0.086 

Gamma 1 2.061 0.520 0.480 1.981 0.293 0.707 
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Table XXIX. Weekday analysis of the signs for crude oil's significant factors of volatility from API and CFTC. 

Model 1: ATM Model 2:Sigmao 

Parameter Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday 

Beta1 

Ln(Total Domestic) 

Ln(Total Imports) ..L ..L ..L 

ShortTermMA / LonqTermMA .l. 

Hedqelonq% ..L ..L .L .l. .L .L .L 

HedqeShort% - ..L 

Snroc,rlO/~ 

Beta2 

Ln(Total Domestic) 

Ln(Total Imports) - - - -
ShortTermMA / LonqTermMA 

Hedqelonq% - - - - - - - -
HedqeShort% - -
Soread% 

Gamma 

Ln(Total Domestic) .l. ..L ..L ..L ..L 

Ln(Total Imports) - - -
ShortTermMA / LonqTermMA ..L 

Hedoelono% -
HedqeShort% ..L .L ..L 

~nr<>"rl°in 



~---- --- ------ ---- ------------··-·------------ --- ---------·---~------~-~------

Table XXX. Weekday analysis of the sign for natural gas' significant factors of volatility from AGA and 
CFTC. 

Model 1: ATM Model 2:Sigmao 

Parameter Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday 

Beta1 

AGAProd% + -
AGAEast% + + 

ShortTermMA / LongTermMA 

Hedge Long% 

HedgeShort% + 

Spread% 

Beta2 

AGAProd% 

AGAEast% 

ShortTermMA / LongTermMA 

Hedge Long% 

HedgeShort% -
Spread% 

Gamma 

AGAProd% -

AGAEast% -
ShortTermMA / LongTermMA - - - - - -

Hedgelong% - - - -

HedgeShort% + 

Spread% 

Friday 

-
-
-



Table XXXI. Wald Tests for seasonal components by day of week for crude oil 
models 1 and 2. 

Model 1: ATM Model 2:SigmaO 
Test Statistic Pr> ChiSq Statistic Pr> ChiSq 

Monday Monday 
Beta1 

Spring:Fall 0.025 0.874 1.145 0.285 
All Seasons Equal 0.560 0.905 1.610 0.657 
Summer Different 0.252 0.882 1.242 0.537 

Beta2 
Spring:Fall 0.000 0.989 1.370 0.242 
All Seasons Equal 0.350 0.950 1.767 0.622 
Summer Different 0.137 0.934 1.473 0.479 

Gamma 
Spring:Fall 0.922 0.337 0.043 0.836 
All Seasons Equal 2.486 0.478 0.977 0.807 
Summer Different 1.569 0.456 0.090 0.956 

Across Equations 
All Springs Equal 9.915 0.007 2.189 0.335 
All Summers Equal 9.981 0.007 2.224 0.329 
All Falls Equal 10.010 0.007 2.227 0.328 
All Winters Equal 9.930 0.007 2.219 0.330 

Tuesday Tuesday 
Beta1 

Spring:Fall 0.220 0.639 0.095 0.758 
All Seasons Equal 1.303 0.728 1.780 0.619 
Summer Different 1.300 0.522 1.209 0.546 

Beta2 
Spring:Fall 0.111 0.739 0.238 0.626 
All Seasons Equal 1.308 0.727 1.928 0.588 
Summer Different 1.307 0.520 1.473 0.479 

Gamma 
Spring:Fall 0.366 0.545 0.071 0.790 
All Seasons Equal 2.731 0.435 0.396 0.941 
Summer Different 0.671 0.715 0.272 0.873 

Across Equations 
All Springs Equal 19.013 0.000 3.424 0.181 
All Summers Equal 19.090 0.000 3.462 0.177 
All Falls Equal 19.029 0.000 3.451 0.178 
All Winters Equal 19.111 0.000 3.475 0.176 

Wednesday Wednesday 
Beta1 

Spring:Fall 0.538 0.463 2.212 0.137 
All Seasons Equal 2.175 0.537 4.886 0.180 
Summer Different 1.593 0.451 3.749 0.153 

Beta2 
Spring:Fall 0.406 0.524 2.072 0.150 
All Seasons Equal 1.917 0.590 4.628 0.201 
Summer Different 1.425 0.490 3.588 0.166 

Gamma 
Spring:Fall 0.522 0.470 0.790 0.374 
All Seasons Equal 3.967 0.265 7.888 0.048 
Summer Different 1.371 0.504 0.814 0.666 

Across Equations 
All Springs Equal 11.840 0.003 3.131 0.209 
All Summers Equal 11.912 0.003 3.129 0.209 
All Falls Equal 11.827 0.003 3.087 0.214 
All Winters Equal 11.911 0.003 3.142 0.208 
Table continued on next page. 
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Model 1: ATM Model 2:Sigmao 
Test Statistic Pr> ChiSq Statistic Pr> ChiSq 

Thursday Thursday 
Beta1 

Spring:Fall 0.079 0.778 0.000 0.994 
All Seasons Equal 7.246 0.064 2.722 0.437 
Summer Different 0.296 0.862 0.199 0.906 

Beta2 
Spring:Fall 0.026 0.872 0.002 0.967 
All Seasons Equal 6.228 0.101 2.643 0.450 
Summer Different 0.173 0.917 0.252 0.882 

Gamma 
Spring:Fall 0.005 0.945 1.516 0.218 
All Seasons Equal 2.668 0.446 7.818 0.050 
Summer Different 2.379 0.304 1.979 0.372 

Across Equations 
All Springs Equal 4.525 0.104 0.429 0.807 
All Summers Equal 4.589 0.101 0.456 0.796 
All Falls Equal 4.539 0.103 0.437 0.804 
All Winters Equal 4.576 0.101 0.440 0.803 

Friday Friday 
Beta1 

Spring:Fall 0.000 0.989 0.072 0.789 
All Seasons Equal 0.570 0.903 4.585 0.205 
Summer Different 0.465 0.792 4.584 0.101 

Beta2 
Spring:Fall 0.038 0.846 0.174 0.676 
All Seasons Equal 0.735 0.865 5.034 0.169 
Summer Different 0.534 0.766 5.024 0.081 

Gamma 
Spring:Fall 2.462 0.117 0.048 0.827 
All Seasons Equal 4.440 0.218 2.743 0.433 
Summer Different 2.512 0.285 2.434 0.296 

Across Equations 
All Springs Equal 16.584 0.000 3.232 0.199 
All Summers Equal 16.600 0.000 3.237 0.198 
All Falls Equal 16.543 0.000 3.251 0.197 
All Winters Equal 16.613 0.000 3.204 0.201 
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Table XXXII. Wald Tests for seasonal components by day of week for natural gas 
models 1 and 2. 

Model 1: ATM Model 2:SigmaO 
Test Statistic Pr> ChiSa Statistic Pr> ChiSa 

Monday Monday 

Beta1 
lnjection:Withdrawal 1.705 0.192 2.544 0.111 

Beta2 
lnjection:Withdrawal 1.669 0.196 0.733 0.392 

Gamma 
lnjection:Withdrawal 0.013 0.908 36.528 0.000 

Across Equations 
All Injections Equal 0.488 0.784 1.605 0.448 
All Withdrawals Eaual 0.407 0.816 2.426 0.297 

Tuesday Tuesday 

Beta1 
lnjection:Withdrawal 1.201 0.273 0.008 0.927 

Beta2 
lnjection:Withdrawal 1.310 0.252 0.119 0.730 

Gamma 
lnjection:Withdrawal 4.195 0.041 55.741 0.000 

Across Equations 
All Injections Equal 8.122 0.017 5.361 0.069 
All Withdrawals Equal 7.514 0.023 7.066 0.029 

Wednesday Wednesday 

Beta1 
lnjection:Withdrawal 0.096 0.756 1.077 0.299 

Beta2 
lnjection:Withdrawal 0.105 0.745 0.637 0.425 

Gamma 
lnjection:Withdrawal 0.161 0.688 37.220 0.000 

Across Equations 
All Injections Equal 0.197 0.906 2.632 0.268 
All Withdrawals Equal 0.180 0.914 3.729 0.155 

Thursday Thursday 

Beta1 
lnjection:Withdrawal 0.094 0.759 0.003 0.953 

Beta2 
lnjection:Withdrawal 0.082 0.775 0.057 0.811 

Gamma 
lnjection:Withdrawal 0.970 0.325 25.106 0.000 

Across Equations 
All Injections Equal 0.988 0.610 5.114 0.078 
All Withdrawals Equal 1.028 0.598 6.243 0.044 

Friday Friday 

Beta1 
lnjection:Withdrawal 0.336 0.562 1.175 0.278 

Beta2 
lnjection:Withdrawal 0.441 0.506 0.521 0.470 

Gamma 
lnjection:Withdrawal 0.011 0.917 37.297 0.000 

Across Equations 
All Injections Equal 1.032 0.597 10.883 0.004 
All Withdrawals Equal 0.981 0.612 12.751 0.002 
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Table XXXIII. Elasticity measures of volatility factors for crude oil and natural 
gas. 

Panel A: Crude Oil 
Model 1: ATM 

Betal Beta2 Gamma 
Ln{Total Domestic) -183.90 
Ln{Total Imports) -11.97 -12.06 
Hedge long% -11.72 -11.18 
HedgeShort% 3.02 -9.87 
Spread% -0.69 -0.73 
ShortTermMA/LongTermMA 

Model 2:SiamaO 
Betal Beta2 Gamma 

Ln{Total Domestic) -37.26 
Ln{Total Imports) -18.43 -19.28 -4.40 
Hedge Long% -15.04 -14.65 -2.78 
HedgeShort% 5.07 4.26 2.10 
Spread% -0.57 -0.62 0.10 
ShortTermMA/LongTermMA 1.69 

Panel B: Natural Gas 
Model 1: ATM 

Betal Beta2 Gamma 
AGAProd% -4.96 
AGAEast% 
Hedgelong% -8.96 
HedgeShort% 
Spread% 
ShortTermMA/LongTermMA -3.57 

Model 2:SigmaO 
Betal Beta2 Gamma 

AGAProd% 36.58 11.07 
AGAEast% -30.03 -8.15 -0.39 
Hedge long% -4.87 
HedgeShort% 
Spread% 0.13 
ShortTermMA/LongTermMA -1.19 
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Figure 1. Volatility smiles for left skew, right skew, and volatility sneer. 
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Figure 3. NYMEX log returns of crude oil futures volatility term structure by 
month and promptness: 1/1996 - 12/1999 
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Figure 4. NYMEX natural gas futures volatility term structure by month and 
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Figure 6. Implied verse lognormal distribution, reproduce from Hull (2000). 
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