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ABSTRACT

The finite element method may relieve some of the 
problems associated with numerical modelling of the atmos­
phere. The method reduces the problem of nonlinear computa­
tional instability, allows arbitrary placement of grid points, 
and offers greater flexibility in the handling of boundary 
conditions. In addition, the finite element method has been 
shown to be more accurate for some types of problems.

This research concentrates on the ability of the 
finite element method to serve as the means of solving the 
equations which describe flow in the atmosphere and provides 
answers as to the type of finite element approximation best 
suited for meteorological research. Five different finite 
elements using both linear and quadratic interpolation are 
tested in the space domain. Several time differencing schemes 
are also tested with the elements in order to determine the 
most accurate and efficient configuration. In addition, the 
concepts of lumped and consistent mass are examined and tested 
as well as alternative methods of handling the computer im­
plementation of the method.

It is found that the finite element method using the 
four-node bilinear rectangular element provides the most
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accurate handling of the spatial derivatives. Combined with 
the Crank-Nicholson time difference scheme using consistent 
mass, the four-node element is not only the most accurate in 
the handling of advective flow but also controls the growth 
of gravity waves the longest. This study also shows that 
when explicit time difference schemes such as the Leap-frog 
scheme are used with consistent mass the degradation in 
results when compared to the Crank-Nicholson method is min­
imal .

From the standpoint of computational efficiency, the 
finite element method is shown to be competitive with certain 
finite difference methods under certain special conditions.
For constant grid spacing the finite element version of a 
simple vorticity-^stream function model using the four-node 
bilinear element can be converted into an expression identical 
to the Arakawa Jacobian in space. However, unlike Arakawa's 
method, the finite element method includes consistent mass, 
a more accurate distribution of the mass than found in conven­
tional finite difference methods which use the lumped mass 
concept. This special finite difference form of the finite 
element method requires slightly more computation but is 
more accurate than its finite difference counterpart.

It is evident that further study of the finite ele­
ment method as an alternative to finite difference methods 
is warranted. Its use in the future may solve many existing 
problems in current atmospheric models as well as providing 
more accuracy in the solutions of the equations.
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THE USE OF THE FINITE ELEMENT METHOD 
IN METEOROLOGICAL MODELLING

CHAPTER I 

INTRODUCTION

A large percentage of current meteorological research 
involves the development of numerical models. The majority 
of thoee models are designed using the finite difference 
method (FDM) to represent the derivatives in the differential 
equations. The use of the FDM in meteorological models leads 
to difficulties in several areas. For example, many differ­
encing schemes result in damping of important waves, inaccur­
acies in phase speeds, or computational instability (Messinger 
St Arakawa, 1976). In addition, finite difference methods are 
not equipped to handle irregular boundaries. Finally, one of 
the most difficult situations for the FDM is grid nesting, an 
important feature in numerical forecasting which allows for 
grid refinement in areas of interest so that smaller scale 
features can be identified and predicted with greater accuracy.

One method which may relieve some of the problems of 
finite differencing is the finite element method (FEM). The 
FEM employs local interpolating functions over finite sub-



domains which are connected together to approximate the glo­
bal system. The governing partial differential equations 
are expressed in integral form. Normally this is accomplish­
ed using the Galerkin method which allows for easy derivation 
of the integral form of complex systems of partial differen­
tial equations. Details on the Galerkin method are given in 
Appendix A.

Because integral equations are solved, the FEM satis­
fies important global conservation laws associated with the 
model equations, regardless of the shape of the domain. Thus, 
computational instability is much less of a problem. The 
nodal (grid) points may be placed arbitrarily so that fine 
resolution can be used in an area of interest, with coarse 
resolution in areas of weak gradients. Higher order approx­
imations are easily used without special boundary conditions. 
There is greater flexibility in the handling of boundary con­
ditions. Finally, the FEM has been shown to be more accurate 
than the finite difference method for some types of problems.

In summary, the finite element method and finite 
difference method are fundamentally different. Finite dif­
ference equations are derived from truncated Taylor Series 
expansions. The assumption is that these approximations 
offer sufficient accuracy for the representation of differ­
ential equations which govern physical processes. In some 
finite difference methods, the concentration is on the partial 
differential equation and the approximation of derivatives at



a point. The finite element method is global in nature; it 
is a variational method which uses integral equations.

This research concentrates on the ability of the FEM 
to serve as the means for solving the equations which des­
cribe flow in the atmosphere and provides answers as to the 
type of finite element approximation best suited for meteor­
ological research. The FEM is examined in several different 
ways in order to determine the more accurate and cost-effec­
tive ways in which it can be employed. Five different ele­
ments using both linear and quadratic interpolation are test­
ed in the space domain. These elements and interpolation 
functions are discussed in Appendix A. Several time differ­
encing schemes are tested with thé elements in order to det­
ermine the most accurate and efficient configuration. In 
addition, the effect of using consistent versus lumped mass 
is tested. This difference is concerned with the handling 
of the time derivative. When lumped mass is used, the mass 
of an element is said to be equally distributed to the nodes 
(or mesh points). In contrast, consistent mass means that 
there is a weighted distribution of the mass. Lumped mass 
is analogous to the finite difference method and is a com­
promise which can be made in the FEM. Consistent mass natur­
ally arises in the finite element formulation. This concept 
is discussed in detail in Chapter III.

The tests described above are performed using three 
different formulations for flow in a periodic channel. First



a vorticity-stream function formulation with known analytic 
solution is used for all the tests described above. Then the 
same type of flow is studied using the penalty method for 
comparison. In the penalty method the pressure terms are 
eliminated in the functional; however, the model allows for 
approximate pressure calculations. Only the tests involving 
element accuracy are repeated for the penalty model. Finally, 
the shallow water equations are used to study element accur­
acy, time differencing methods, and the conservative proper­
ties of the FEM.

Most of the published research on the FEM by meteor­
ologists has involved a specific problem with the FEM applied 
in a specific manner. There has been no careful investiga­
tion as to what type of finite element approximation is best 
suited to meteorological problems. This research provides a 
strong foundation for further application of the FEM in ad­
vanced meteorological models. The results presented here 
show that it is feasible to apply the FEM to non-linear flow 
problems where advection is significant. A four-node quadri­
lateral element with linear interpolation provides the best 
results and the FEM is shown to be more accurate than the FDM.

Chapter II provides insight into the historical devel­
opments of the FEM, as well as the relationship of this work 
to published research. Chapter III gives the methodology 
including a discussion of the governing equations and numer­
ical procedures. The results are presented in Chapter IV and



conclusions and remarks in Chapter V. There are appendices 
describing the finite element approximation in detail and 
the numerical stability for the four-node rectangle.



CHAPTER II 

BACKGROUND 

Historical Development

The variational approach to the solution of differ­
ential equations is the basis of such discoveries as Hamil­
ton's Principle on the mechanics of moving particles, the 
Schrodinger wave equation, and contributed to Einstein's dev­
elopment of the theory of relativity (Simmons, 1972). The 
variational method of solving differential equations is quite 
elegant for certain special cases; however, its general appli­
cability has been delayed until modern times due to technical 
problems. Approximate methods were introduced by Rayleigh 
and Ritz during the late 1800's in which the variables were 
expressed as a linear combination of some approximating func­
tions and the integral over the domain of the error was mini­
mized. The method received considerable attention but it is 
difficult to apply for problems with irregular boundaries or 
complex boundary conditions and cannot be used for nonlinear 
problems.

A break occurred in the 1940's when Courant solved 
the St. Vincent torsion problem by approximating the warping



function through a combination of linear triangles assembled 
over the domain and formulating the problem using the prin­
ciple of minimum potential energy (Oden, 1972). It is found 
that if the elements are relatively small, the variation of 
functions within them can be adequately represented by a 
low-order polynomial. If certain continuity requirements 
were met along the element boundaries, complex systems could 
be reasonably solved.

The method came to the forefront in the 1960's when 
its use became widespread, particularly in areas such as 
airframe design. Since the advent of large scale computer 
systems, the use of the FEM has grown rapidly in several 
areas of engineering; however, it has only been in the 1970's 
that interest in the method has begun to develop among meteor- 
olgists.



Current Literature

Other than the University of Oklahoma, School of 
Meteorology, there are four main groups investigating the 
application of the FEM to meteorological problems.

Naval Postgraduate School, Monterey, California 
Meteorological Office, Bracknell, England 
Atmospheric Environment Service, Quebec 
Lawrence Livermore Laboratory, Livermore, California 

Additionally, there has been some related research by civil 
engineers and oceanographers such as Kawahara (1977 a, b, c), 
Platzman (1978), and Fix (1975) who have employed the shallow 
water equations. This survey of current literature will 
provide a capsule description of the state of meteorological 
FEM research and emphasize the need for this study.

Work at the Naval Postgraduate School culminated with 
the publication of Kelly and Williams (1976) which was a study 
of barotropic flow in a periodic channel. The model used was 
the shallow water equations. The two space dimensions were 
approximated using the linear FEM over triangular elements.
The time integration was performed using centered (Leap-frog) 
finite differencing with consistent mass. Several grid 
arrangements were attempted using well-behaved initial con­
ditions (wave number 1). The results displayed after 48 hours 
of time integration were disappointing. There was mild im­
provement only with the addition of a diffusion term or when 
a fine mesh was employed. They tested two different arrange-



merits of the diagonal slant of the triangular elements but 
did not identify whether the noise problems were associated 
with space or time differencing.

The FEM research at the Meteorological Office, Brack­
nell, England has been published by Cullen. His first work 
(Cullen, 1973) showed that the rectangular finite element 
with bilinear interpolation and consistent mass leap-frog 
time differencing results in a more restrictive (by a factor 
of /3) maximum time step than the one required when centered 
finite differencing is used. Additionally; he found that a 
16 X 16 finite element grid gave results comparable to a 32 
X 32 finite difference grid with second order differencing. 
His next publication (Cullen, 1974a) described his investiga­
tion of the shallow water equations using the same model 
problem as used by Grammeltvedt (1969). Cullen found that 
linear FEM approximation and triangular elements gave super­
ior results to the finite difference models tested by Gramm­
eltvedt. Specifically, the FEM handled wave number 1 to 5 
(16 grid points along the channel) with 90 percent accuracy 
or better while the finite difference models with double the 
resolution only achieved 90 percent accuracy for wave numbers 
1 to 3. Additionally, he found that his FEM model generated 
extraneous waves of two grid interval length.

Cullen (1974b) extended his work with the shallow 
water equations. The equations were expressed in spherical 
coordinates and were solved over a linear triangular mesh



where the globe was divided into large icosahedrons which 
were further subdivided into many small triangles. The re­
sulting global grid had 1002 nodes (8-10 degrees apart). 
Initial conditions were the same as used by Phillips (1959) 
but because the icosahedral grid is unsymmetric, Cullen was 
forced to solve the system over the entire globe rather than 
over one octant as Phillips (1959) did. To discretize the 
time domain, Cullen used the Leap-frog method. Rather than 
using a pure FEM, Cullen added a 17-point spatial filter dev­
eloped by Shapiro (1971). With this model, Cullen showed 
that the 1002-node finite element model performed better than 
a finite difference model using 4032 points. However, he did 
encounter noise problems in the model, especially at the in­
tersections of the icosahedrons. He attributed the noise to 
the spatial discretization.

Because of the noise problems, Cullen (1976) contin­
ued his research by looking at the shallow water model in 
combination with artificial smoothing methods. Four smooth­
ing schemes were tried, including fourth order nonlinear 
diffusion terms in all three equations, the Shapiro filter 
used in the previous paper (Cullen, 1976b), the addition of 
nonlinear diffusion terms in the u and v equations only and 
the Sadourney (1973) method. The latter method provided the 
best results. It is designed to damp the gravity waves.

In summary, it is clear that Cullen made important 
advances in the use of the FEM but it should be noted that
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virtually all of his work was done using the linear triangu­
lar element with Leap-frog time differencing.

Some of the more advanced uses of the FEM are being 
made by the Atmospheric Environment Service of Canada. The 
principal researchers have been Staniforth, Mitchell, and 
Daley. Apparently, their original intent was to develop an 
operational regional baroclinie model using the FEM. Stani­
forth and Mitchell (1977) studied the use of semi-implicit 
time integration using the scheme of Kwizak and Robert (1971) 
That scheme was used in conjunction with a barotropic model 
where both bilinear and biquadratic interpolation functions 
were employed. Compared to the finite difference results of 
Kwizak and Robert, the FEM provided superior results espec­
ially in terms of noise reduction and reduced damping. The 
better FEM result was given by the quadratic interpolation 
functions; however, their further use was ruled out by the 
researchers because of the increased computational costs.

Staniforth and Daley (1977) expanded to a three-dim­
ensional, primitive equation model where only the vertical 
coordinate was discretized using the FEM. The horizontal 
domain was approximated through an existing spectral model. 
Staniforth and Mitchell (1978) returned to the shallow water 
equations to investigate the effect of variable-resolution 
grids. They demonstrated that the forecast error is signif­
icantly reduced when a smoothly-varying mesh size is used to 
refine the grid rather than when the grid size changes
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through a discrete jump. Within an area of interest the mesh 
size was held at a constant fine resolution and became more 
and more coarse away from that area. Again, for this problem 
they used the semi-implicit time integration scheme and bi­
linear interpolation over rectangles. An interesting side­
light to this research is their use of Simpson's rule for the 
element integrations rather than the more widely used Gauss 
quadrature method. Simpson's rule slightly compromises 
accuracy for faster speed.

The most recent paper by the Canadian group (Stani­
forth and Daley, 1979) describes a limited area, three-dimen­
sional, baroclinie finite element model. The bilinear inter­
polation previously used was generalized to handle the three 
dimensional model. The model resolution was relatively 
coarse with seven levels in the vertical and 285 km between 
nodes in the fine mesh area. The results were encouraging, 
showing this model to be competitive with an operational 29 
wave spectral model for forecast periods up to 48 hours.

In summary, this Canadian group has made advanced 
application of the FEM using the Kwizak and Robert semi-im­
plicit time integration scheme with the bilinear finite ele­
ment interpolation functions.

In contrast to the Canadian work on large scale 
models, the goal of researchers at the Lawrence Livermore 
Laboratory is to construct a three dimensional boundary layer 
model based on the FEM. Gresho, Lee, and Sani (1977) studied
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the tradeoffs between lumped and consistent mass for linear 
advection and diffusion problems. They found that when lump­
ed mass is employed, the phase speed and amplitude exhibit 
much greater errors. They concluded that lumped mass "ser­
iously compromises the accuracy of the FEM" and recommended 
that the effect of lumped mass be investigated for the non­
linear equations.

Huyakorn, et a3̂ . (1978) compared four elements (six- 
node quadratic triangle as well as the four-, eight-, and 
nine-node rectangles) using the mixed-order interpolation 
method to investigate steady flow through a sudden expansion 
and steady free thermal convection in a square cavity. Their 
results showed that for those types of flow, the nine-node 
Lagrangian element gave the best accuracy. They found that 
the accuracy when using the six-node quadratic triangle was 
highly dependent on the arrangement of the triangles. The 
least accuracy was given by the eight-node serendipity ele­
ment. (see Appendix A for a discussion of the elements).
This result was used by Gresho, et (1978) to test a pre- 
dictor-corrector method for time integration. The method 
consisted of the Adams-Bashforth scheme as the predictor and 
the trapezoidal rule as the corrector. The unique feature of 
their algorithm is the provision for calculation of the time 
truncation error and the subsequent adjustment of the time 
step to reduce the error. This experiment was conducted using 
mixed-order interpolation for flow starting from rest in a
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channel with a sudden expansion. Lumped mass was again tried 
with much better results; however, this improvement was 
thought to be due to the much lower Reynold's number of the 
latter experiment.

Gresho, et a^. (1978) summarize much of their earlier 
work on the Navier-Stokes equations for flow in a channel 
with a cylindrical obstruction. The major thrust of this 
work was to demonstrate the usefulness of their semi-implicit 
time differencing scheme described earlier.

Other related research accomplished by oceanographers 
includes a work by Fix (1975) dealing with mesoscale ocean 
flows. He described a simple vorticity-stream function model 
using quadratic and cubic triangular elements in space. No 
computational results are presented. Similar work is present­
ed by Platzman (1978) who used a linearized set of primitive 
equations for a coarse resolution ocean circulation problem. 
His grid was identical to that of Cullen (1974b). Several 
papers dealing with tidal flow using the shallow water equa­
tions have been presented by Kawahara (1977 a, b, c). Inter­
ested in civil engineering aspects, he has modelled actual 
harbors, tributaries, and lakes using the FEM. The ease with 
which the FEM handles irregular boundaries such as Tokyo 
Harbor is amply demonstrated.

The research described above helps to define some of 
the large problem areas requiring investigation. Other than 
the research at Lawrence Livermore Laboratory, most of the

14



published works have described the use of a particular fin­
ite element (generally the linear triangle) with one time 
integration scheme.

At the University of Oklahoma, School of Meteorology, 
research was begun by looking closely at the FEM itself be­
fore applying the method to a sophisticated model. Using a 
finite difference equivalent to one of the FEM models tested 
here as well as some FDM models, Sasaki and Reddy (1977) 
studied several well-known time differencing schemes as well 
as the variational adjustment technique of Sasaki (1976).
They did not specifically consider the concept of lumped and 
consistent mass but performed their testing using the FDM as 
it is normally formulated. They found that the FDM form of 
the bilinear FEM combined with the Crank-Nicholson time dif­
ferencing scheme provided the best results. This scheme is, 
in fact, a consistent mass scheme; the others tested were not. 
Sasaki and Chang (1979) carried this work further by using a 
consistent mass operator with some of the finite difference 
schemes previously tested. They found improvement in the 
solution for each of the schemes when consistent mass was 
employed.

This research is a continuation of the work described 
above but is broader in scope. Here, the emphasis is on the 
FEM as it applies to the equations governing large scale flow 
in the atmosphere. Using advection-dominated flow with the 
nonlinear equations, the discussion which follows will provide

15



insight into the relative accuracies of several commonly used 
finite elements, the tradeoffs associated with several well- 
known time differencing schemes, the relative merits of lump­
ed and consistent mass, and computational efficiency.
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CHAPTER III

METHODOLOGY

Governing Equations and Finite Element Models 
The objective of this study is to examine the FEM 

approximation in space coupled with various time discretiza­
tion methods in order to determine the most .accurate and 
efficient application of the FEM for use in modelling the 
large-scale flow of the atmosphere. Accordingly, three dif­
ferent models which describe flow in a channel will be used. 
The first two models are derived from the following equation 
set which describes inviscid, incompressible flow in a chan­
nel with no Coriolis force;

(1)
| Ç + u | ^ + v | ^ + | - | |  = 0,

Here u and v are the velocity components in the x and y dir­
ections respectively, p„ is the constant density, p is the 
pressure, t is the time, and (x,y) denotes a point in ,a#, 
open bounded region in two-dimensional Euclidean space with
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boundary denoted by 30.

Vorticity - Stream Function FEM Model

The first model investigated is the vorticity-stream 
function model. The stream function (ip) is defined by

“ = - H'

The vorticity (ç) is given by

' = w  - I f  •

The use of the stream function automatically satisfies (2) so 
that (1), (2), (3), and (4) may be combined giving

1 1 +  = 0 ,
(5)

Ç,

where ^  ” |y the Jacobian operator.

If the domain 0 is subdivided into small elements, 0^ 
the vorticity and stream function may be approximated over an 
element (e) by

Ç® = EÇ? N. and 4»® = N. . (6)i l l  i 1 1

Here, the subscript i denotes the node or grid point i and 
represents the element interpolation or shape functions. 

The interpolation functions have the property that all but 
one are zero at a given node; the one corresponding to that.
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node is unity. Using (6), the application of the Galerkin 
method to (5) results in 

,e

(7)
+ J(i(, ?ç®)} dx dy = 0,

^ ^ ax ay = o .

Therefore, over an element 0̂ ,

[M®] {|| } + [J®] {Ç®} = 0, (8)

[K®] {4̂ } + [M®] {Ç®}= 0, (9)

where M®^ = NuNj dx dy ,

e 3N. ^,e 3N.

ij ‘ If * " W  ax dy .

“e

alj - / /  ax ...
e

3N. 9N. 3N. 3N.

e
It should be noted that the matrices [M®] called consistent 
mass matrix and [K®] are constant and need to be computed and 
stored only once for each element; however, the nonlinear 
matrix [J®] must be recomputed on each iteration and/or time 
step, depending on the time integration scheme used. Compu­
tational details are given in later sections of this chapter.

Penalty FEM

An alternative to the vorticity - stream function 
formulation of (1) and (2) is the penalty method, which is
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also known as the weak-constraint method (Courant, 1943 and 
Reddy, 1979a, b). In the penalty method, (1) are taken to 
be the governing equations and (2) is the constraint. Ex­
pressing (1) in the variational form gives

ôl(u, v; ÔU, 6v) - J J { [ ^  + u ^  + v^] 6u + 6u
(10)

" ‘I? * ^  H  ay.

where '̂i represents the first variation of the functional I 
with respect to u and v and 6u and 5v are the variations of 
u and V respectively. Application of Green's theorem, a 
generalization of the integration by parts gives

iI(u,v;0n,(Sv) =s + %  + ^Wy^ + [WE + ^Ix ^ly ^
(11)

- 5(|^ + ly) } dx dy + S  [t^5u + t^ôv] dS.

P PHere t = —  n , t = —  n , and (n ,n ) are the components x p o x y p o y  x y
of the unit normal to the boundary 3ÏÏ. The integration by 
parts resulted in the boundary term which requires that eith­
er the tractions (t^ and t̂ ) or the variations of u and v be 
specified on 30. For this problem, u and v are held constant 
on 90 making 6u = 0 and 5v = 0 on the boundary 90. With this 
specification and after substituting (2), the expression (11) 
reduces to

6l (u,v? 3u, 5v) ■*" + V'̂ ]̂ 5u
(12)

+ ax ay-
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The substitution of the constraint (2) above does not insure 
that non-divergence will be satisfied; therefore, it is added 
to the variational form (12) as a weak constraint. This is 
analogous to the weak constraint method described by Sasaki 
(1970a,b). Adding the weak constraint to (12) gives

ôl(u,v;ôu,-ôv) = + v|^] ÔU + [|^ +u|^ +v|^] 6v
(13)

+ + Fy)  ̂ dy,

where X is the penalty parameter (or weight).
In order that the functional I attains its minimum it 

is necessary that 6l = 0. It should be noted that in (13), 
the pressure has been eliminated as a variable so that the 
number of unknowns' has been reduced to two. By finding the 
Euler-Lagrange equations for (10) and (13) and then equating 
the like terms, one can find the following relationship for 
the pressure (Reddy, 1979b).

. . 3u 3v̂
I z  ^ <35 + =  -F- U 4 )

This is based on the fact that as the penalty parameter (X)
approaches infinity, the solution (û , v^) to (13) provides
an approximation to the pressure based on the chosen value 
for X. This is the 'penalty' resulting from the elimination 
of pressure as a variable.

For the penalty finite element method, the velocity 
components are approximated as in (6):
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u® = Zu® N. and v® = Zv® N..i l l  i 1 1 (15)

substitution of (15) into (13) gives the semidiscrete Galer­
kin form

(f ■ 3u®,„e 3u®.„e 3u®

3u ®  3 v ®  3 N j

+ ^ ( 3̂  + 3 ÿ  ) ^ 3ÿ"^^ = O'
(16)

?he computational form for (16) is

[C®] {Â®} +[[K®]+X[P®]] {A®} = {0}, (17)

where

[M®] [0] [A®] • col
[C®] = , [K®] =

[0] [M®] [0] [A®]

[P®]

[gXX] [s*̂ ]xy.

[ŝ y] [gyy]
M■i: = / /

3Nj
âîT

3N,

dx dy,

+ N. dx dy,e i 3y^ij = ( f  ' V i

- î ï - f t

■8 -  V 3N.
3y 3y dx dy.

3Ni 3N. 
■3x“ 3y^ dx dy.

For computation, matrices [C®] and [P®] need be computed and
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stored for each element only one time, matrix [K®] is non­
linear and must be recomputed on every time step and/or iter­
ation.

Finite Element Model of Shallow Water Equations

The models described above provide a good test of the 
ability of the FEM to handle the nonlinear effects, which are 
important terms in the governing equations of the atmosphere; 
however, one great difficulty in operational numerical weath­
er prediction is the occurence of fast-moving waves such as
gravity waves. Models must be able to handle these waves
without their energy increasing and consequently destroying 
the forecast. A good model to test these effects is the well 
known shallow water model. The shallow water equations in u 
and V  are the same as (1) except that the Coriolis term 
appears. The third equation which governs the height of the 
free fluid surface results from integration of the contin­
uity equation in the vertical (Haltiner, 1971). The shallow 
water equations are given by

+ "IE + + fu . 0, (18)

#  + + I " #  + = “ •
Here f is the Coriolis term, h is the height of the free
surface of the fluid, and g is gravitational acceleration.
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The semidiscrete Galerkin form of (18) is

N.) dx dy = 0,
e

^ N^ + fu® N.}dx dy=0,
® (19)

^i + ^ ' [ 4 ^  + 4 ^ ]  ^ i ^ ^  ^y=G'
“e

If U/ V, and h are approximated over a typical element by u®
= Eu® N. , V® 

i ^ ^
'= Ev? 

i ^
Ni, and h®= Eh! 

i 1
N^ then (19)

[M®] {Û®} + [A®] {u®} = {F^} ,

[M®] {V®} + [A®] {v®} = {F^} ,

[M®] {&®} + [L®] {h®} = {0}

where

dx dy. ""ij = • --‘s -

(20)

e
_ _ f f  3N.

F = Z{f M. . V. - g[JjN. dx dy] hj} ,Ui j ID : Og ^

%  “ij “j - g ‘/ /  "i -sj *'j>'

The only matrix in (20) which does not change is [M®]. All 
others must be recomputed for each element on each iteration
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and/or time step.
The matrix equations (8), (17), and (20) are a result 

of the general application of the FEM. At this point a gen­
eral computer program could be written for each model. Once 
the general program is developed, consideration must be given 
to actual space and time discretization which includes the 
development of the element interpolation functions. The fin­
al steps are the selection of the actual mesh for the domain 
of the model and the imposition of the specific initial and 
boundary conditions required for the solution. The discus­
sion which follows details the approach taken in each of these 
areas for the three models considered.
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Numerical Procedure 

Space Discretization

The finite element method involves the approximation 
of functions over subdomains of the global domain (S2) .
The possible shapes of these subdomains or elements are lim­
itless; however, unusual or completely irregular shapes are 
difficult to manage and their corresponding interpolation 
functions are not easily obtainable. The most widely used 
element shapes in two dimensional finite element analysis are 
the triangle and rectangle. The order of the interpolation 
functions used determines the number and placement of nodal 
points within the element shape.

In this study five different elements are tested: the 
three-node linear triangle, the four-node bilinear rectangle, 
the six-node quadratic triangle, the eight-node quadratic 
rectangle, and the nine-node quadratic rectangle. The eight- 
and nine-node elements both use quadratic interpolation but 
the interpolation functions are developed in different ways. 
The determination of the interpolating functions is discussed 
in Appendix A. These interpolating functions correspond to 
the term shown in (6, 7, 8, 9, 15, 16, 19, and 20) so that 
the semi-discrete form of the equations is developed indepen­
dent of the element choice and is then general for any ele­
ment application.

For the problem discussed here, the element size is
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held constant throughout the domain of the problem. This has 
many simplifying effects on the calculations and greatly re­
duces computer storage requirements since element matrices 
such as [M®] in (20) need be calculated for only one element 
and stored rather than for each element. In a model with com­
plex boundaries or where grid refinement is desired this sav­
ings is not possible.

When the element size is constant it is possible to 
reduce the FEM to a finite difference form; however, the re­
sulting finite difference form will be valid only for an in­
terior grid point and special considerations must be made near 
the boundaries. Jesperson (1974) developed a finite differ­
ence form for the vorticity - stream function equation (8) 
using the bilinear rectangle finite element approximations.
The resulting finite difference equation is given by

36 ^^i+1, j'̂ î-l, j'̂ î, j+l'̂ î, j-1^

Giti,i+i+^i+i,j-i+Gi_i^

(^i,i+l"*i+l, j ̂ ̂ i+1, j+l"^ (^i-1, j"'^i, j+1^ ̂ i-1, j+1
f 21 )

^ (*i+i ,i"^i,i-i) Si+i ,i-i+ ̂’̂'i ,i-i"*i-i,]) Si-1,i-i

+(^i,i+i"*i,j-i+*i+i,i+i"^i+i,i-i)Si+i,i 

("^i,i-l"^i, i+l+^i-l,i-l"^i-l, j+l) Si-1, j 

(^i+i,i"^i-i ,i^^i+i,i-i"^i-i ,i-i)Si,j_i 

( ̂i-l ,i"^i+l,j+^i-l,i+l"^i+l,i+l)Si,i+ii
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where d is the spacing between grid points and the subscripts 
indicate the grid point. As noted by Jesperson, the right 
side of (21) is identical to the well-known Arakawa Jacobian; 
however, this expression for the Jacobian was developed in a 
completely different way by Arakawa (1966).

In this study, the results using (21) as well as a 
simple centered space finite difference scheme are compared 
to the results using the five different finite elements. The 
left side of (21) will be discussed in a later section deal­
ing with consistent and lumped mass.

Time Discretization

Several time differencing schemes have been used for 
comparison of their effects on the solution. The Crank- 
Nicholson scheme was chosen as the basis of comparison for the 
different finite element discretizations because it has neu­
tral stability, no computational mode, and therefore should 
have no effect on the phase speed or the amplitude of the 
solution (Mesinger and Arakawa, 1976). The major drawback to 
this scheme is that it is fully implicit and requires itera­
tion at each time step. The Crank-Nicholson method is includ­
ed in a family of schemes known as the 0-family of approxima­
tions (Zienkiewicz, 1977) which may be expressed by

= {q}* + 8At + (1-6) At{q}* , (22)
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where the superscript indicates the time (t=nAt), {q} is the 
unknown function. At is the time step, and 9 determines the 
specific scheme. For example, some of the possible schemes 
are,

9 = 0 ,  Forward (Euler),
0 = 1/2, Crank-Nicholson,
9 = 2/3, Galerkin, and 
9 = 1 ,  Backward.

Of these four schemes, all were used except the Forward dif­
ferencing scheme which was eliminated because linear stabil­
ity analysis indicates that it is always unstable. All of the 
remaining schemes are fully implicit. The Galerkin and Back­
ward methods both damp the amplitude of the solution with the 
greater damping occurring in the Backward scheme. In addition, 
two explicit schemes will be used: the well-known Leap-frog
or centered scheme which is given by

+ 2At {q}^ , (23)

and the Matsuno scheme which is a two-step method 
given by

= {q}^ + At {q}”̂
(24)

= {q}* + At

■the Matsuno scheme results in damping of the solution. The 
Leap-frog scheme suffers from the presence of the computation­
al mode which restricts the choice of time step.
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This restriction may be determined by applying the 
von Neumann stability analysis to a linearized form of the 
advective equation (Mesinger and Arakawa, 1976). For a cen­
tered finite difference scheme applied to the linear version 
of (5) the von Neumann technique gives the well known CFL 
criteria for stability:

n  2 ^  < 1, (25)

where c is the phase speed of the wave and the factor /2 is 
present for the two-dimensional problem. When the FEM is 
applied to the linear version of (5) and the four-node bi­
linear element is used with Leap-frog time differencing the 
time step restriction is

^  cAt < 1 (26)
d — /3

Thus, the FEM imposes a penalty of /3 on the time step (Cullen, 
1974). The time step penalty results because of the coupling 
of the time derivative through the mass matrix. Some detailed 
stability analyses are given in Appendix B.

This coupling of the time derivative shown by the left 
side of (21) is known as consistent mass. Physically, (21) 
states that the advection which is calculated by the right side 
of the equation for the node (i,j) affects the time derivative 
not only at that node but also at the surrounding nodes. In 
contrast, when lumped mass is used the left side of (21) de­
generates to a single term (ç̂  j). The resulting equation

30



is the traditional approach taken in finite difference methods 
and as shown here and by Sasaki and Chang (1979), the results 
using (21) are much more accurate than the traditional finite 
difference approach. As discussed by Zienkiewicz (1977) 
there are several approaches to lumping the mass in the FET4;
however, the simplest method is to make the matrix [M®] in
(8), (17), and (20) diagonal. The latter method is used in 
this study. The choice of lumped or consistent mass greatly 
affects the computational details of the problem being con­
sidered. Computational details will be discussed in the 
following section.

Computational Details

The vorticity equation (8) combined with Crank-Nich­
olson time differencing may be written as either

[[M] + ^  = [[M] - ^  [J]"] {%}*, (27)

or [M] {Aç}= {F} , (28)

where {F} = - ^  + [[M] - ^  [J]*] {;}* ,

+ {Aç}.

From an algebraic point of view (27) and (28) are equivalent 
equations; however, computationally they are quite different. 
When solving (27), the right side of the equation is known. 
The matrix is not known since it depends on the stream
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function at the new time. The procedure for solving (27) is 
to calculate the right side, then calculate based on
a guess, then solve for The stream function equation
(9) is then solved for These new values of \jj serve
as the guess in the following iteration. The iterative pro­
cess is repeated until the solution converges. The coeffi­
cient matrix on the left is recomputed for each element on 
each iteration and assembled into the global matrix which is 
banded and unsymmetric. The result is a set of linear alge­
braic equations which must be solved for The latter
task is extremely time consuming for the computer, especially 
when the number of nodes is large-

The alternative is to use (23). The matrix 
must still be computed but it is multiplied by a guess (values 
from the previous iteration) for and placed into the
force vector. The coefficient matrix [M] is banded and sym­
metric. It must be calculated only once and can be decom­
posed once using Cholesky decomposition (Carnahan, et , 
1969). Then on each iteration, only forward and backward sub­
stitution are required to calculate the solutions. Even 
though the number of iterations required for convergence may 
be greater for (28) than for (27), the overall time savings 
can be substantial.

When using an explicit time differencing method the 
resulting form is similar to (28) and the set of algebraic 
equations can be solved as in (28) with no iteration. The
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latter point makes the Leap-frog differencing scheme very 
attractive computationally. If lumped mass is used the 
matrix [M] becomes diagonal and the solution of (28) is 
relatively simple and fast. The combination of lumped mass 
and (27) results in little, if any, savings. Specific re­
sults from each method will be discussed in Chapter IV.

The Model Problem

For the vorticity-stream function model the domain 
chosen is a channel, 3800 km in length and width.

The initial conditions for the stream function are
given by

^*(x,y) = -Uoy - ipo exp[-a(%2+y2)], (29)

where , iĵg, and a are constants and the origin is at the 
center of the domain. This model problem is identical to the 
one used by Sasaki and Reddy (1979) and Sasaki and Chang (1979) 
and is used here to facilitate comparison of results. The 
initial conditions for vorticity were derived by appropriate 
differentiation of (29). These initial conditions are shown 
in Fig. 1. The boundary conditions are

,y)/l
/Y) /J

,0) = C^, 1
fVr) = c_, J

#(0,y) = p(L 
5(0,y) = 5(L

^(x

east-west boundaries

north-south boundaries
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Pig. 1. Initial conditions for ifj/ç
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where the channel length is L, W is the width, and and 
are constants. For these initial and boundary conditions, 
the model equations (5) have a unique analytical solution.

i|>(x,y,t) = #*(x-Uot,y). (30)

The solution indicates that the circular vortex propagates 
eastward until it reappears on the west edge and returns to 
its initial position after a period of L/U*. For the con­
stants chosen here, that period is exactly 120 hours.

For the penalty method, the initial conditions are 
obtained by using the definition (3) and the initial condi­
tions for stream function (29). The resulting initial con­
ditions for u and v describe the same circular vortex. These 
initial conditions are shown in Fig. 2. As long as the proper 
value for the penalty parameter (X) is chosen, the behavior 
of the vortex should be similar to the behavior experienced 
in the vorticity - stream function model. The boundary con­
ditions used are

u(0,y) = u(L,y) ,
east-west boundaries

v(0,y) = v(L,y), ]
Mu(x,o) = u(x,W) = U o #

 ̂ north-south boundaries
v(x,o) = v(x,W) = 0,

Here the u and v components must both be specified because of 
the boundary term which appears in (11).

In the shallow water equation model, the domain and
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Fig. 2. Initial conditions for penalty method
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initial conditions chosen are the same as used by Grairanelt- 
vedt (1969) and later by Cullen (1974a). The domain is a 
channel 6000 km in length and 4400 km wide. The initial 
conditions are

h(x,y) = Ho+H^ • tanh +Hg * sech^Hï^^sl .
(30)

[0.8 sin {^^) + 0.5 sin ( ^ )  ] ,
where

Ho ~ 2000 m, L = 6000 km,
Hj^~"”220m, W — 4400 km,
H2 — 133m, Y 0= W/2,

-2g = 10 ms

The initial conditions for u and v are determined using the 
FEM with the geostrophic relation,

^ = -J H  ^ = I •

The 'Beta-plane' approximation is made where-in the Coriolis 
parameter (f) is calculated from

f = fo + By,

where fo=1.0*10  ̂and B = 1.5*10 ^. These initial
conditions are shown in Fig. 3. Physically, these initial 
conditions describe a west to east jet-stream which has north- 
south disturbances along its axis (Grammeltvedt, 1969). The 
initial conditions are shown in Fig. 3. The boundary condi-
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tions specified for this model are 

u(0,y) = u(L,y),
v(0,y) = v(L,y), y east-west boundary
h(0,y) = h(L,y),
v(x,0) = v(x,W) = 0. north-south boundary

It is interesting to note that there is a subtle difference 
between the north-south boundary conditions specified here 
and those required in finite difference models. Grammeltvedt 
(1969) was forced to specify boundary conditions for all var­
iables in his models; this is an overspecification in a con­
tinuous model and sometimes called numerical boundary condi­
tions. This additional specification at the boundaries can

IIadversely effect the solution (Sundstrom, 1973) .

The Grid (Finite Element Mesh)

Both the vorticity-stream function and penalty models 
are solved on an evenly-spaced grid consisting of 11 x 11 
nodal points with 380 km spacing. For the shallow water equa­
tions, a grid of 15 x 21 nodal points is employed with 300 km 
spacing in the east-west direction and approximately 315 km 
spacing in the north-south direction. In order to impose per­
iodic boundary conditions in the FEM, the nodal values on the 
eastern boundary are considered to be identical to those on 
the western boundary but their locations are preserved.

As stated earlier, linear and quadratic rectangular
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as well as triangular elements are tested for their relative 
accuracy. Regardless of the element type (i.e., rectangular 
with four-or nine-nodes, or triangular with three-or six- 
nodes) , the number of elements chosen is such that the total 
number of nodes remains the same. That is, one nine-node 
quadratic element replaces four bilinear four-node elements; 
or, two three-node linear triangular elements replace one 
four-node linear element, etc. However, when an eight-node 
quadratic (serendipity) element is used (the center node is 
missing when compared to the nine-node element), the total 
number of nodes is reduced. In the case of the vorticity- 
stream function model, the total number of nodes is reduced 
from 121 to 96. Fig. 4 shows the relative size and arrange­
ment of the elements used. Both the three-and six-node tri­
angles shown in Fig. 5 have been tested with the vorticity- 
stream function model. These results are presented in Chap­
ter IV.

Accuracy Indicators

The results from the vorticity-stream function and 
penalty models using the different time and space discretiza­
tions discussed are compared for lumped versus consistent 
mass, position of the nonlinear terms, convergence rate, pro­
gram size, computer time, and accuracy of the solution. Other 
than accuracy, all the comparisons are straight forward. The 
root-mean-sqaure error (RMSE), given by
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Fig. 4. Arrangement of elements within 
the mesh.
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Z(P.-S.
RMSE =  i —N

where N is the number of grid points, are the forecast 
values, and are the solution values, is used as the basis 
of comparison for accuracy. This measure can be misleading 
if used alone. Here the RMSE is combined with visual examin­
ation of the analytical solution and 120 hour forecast fields 
of the vorticity and stream function.

Comparisons of the results from the shallow water 
equation model are more complicated since the equations are 
non-linear and there is no analytical solution. However, 
there are some facts about the model which can be checked 
and compared.

The absolute vorticity, and the total energy are con­
served in the FEM model. Another parameter conserved in the 
FEM model is the mean wave number (Cullen, 1974b). Because 
of this, the allocation of energy among wave numbers should 
not change significantly during the forecast. Therefore, a 
two dimensional Fourier analysis has been performed on the 
initial height fields as well as the 48“hour forecast height 
fields. These analyses are based on a discussion by Goodman 
(1968) and calculated using an algorithm developed by Duchon^ 
Fig. 6 shows the two-dimensional Fourier analysis of the in­
itial height field. This three dimensional plot shows the

Associate Professor C.E. Duchon, School of Meteor­
ology, University of Oklahoma provided a copy of the algorithm 
for this work.
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relative amplitudes for the combination of wave numbers in 
the X (Along the channel) direction and y (across the chan­
nel) direction. Basically, the height field slopes from 
south to north requiring all wave numbers across the channel 
to be represented. Only wave numbers 1 and 3 are represented 
along the channel. The amplitudes are plotted on a logrith- 
mic scale so that the smaller amplitudes will be visible.
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CHAPTER IV

RESULTS

As described earlier, the three models used were
1. Vorticity - Stream Function,
2. Penalty Method, and
3. Shallow Water Equations.

The tests performed using these models answer the questions 
relating to element choice, selection of time differencing 
scheme, and use of lumped.or consistent mass. Here the test 
results are presented for each of the models. Following in 
Chapter V will be a discussion of the conclusions which may 
be drawn from these test results taken as a whole.

Vorticity - Stream Function Model

Table 1 shows the results for the comparison of the 
five elements tested using Crank-Nicholson time differencing 
and consistent mass. The elements are compared, as to position 
of the nonlinear terms, convergence rate, program size, com­
puter time, and accuracy. The use of (27) with the nonlinear 
terms on the left side of (28) where they are on the right 
makes no difference in the accuracy. For each element, this
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Table 1. Comparison of 5 Finite Elements using Crank-Nicholson Time-Difference 
with Consistent Mass.

Number
Nodes

in
Element

Non-linear 
Terms 

LELeft Side 
R=Right Side

Average 
Iteration 
Per Time 
Step

Program 
Size 

(K Bytes) 
Fortran H

CPU 
Time 
(min) 

120 Hr 
Forecast

RMS Error
Stream
Function

Vorticity

4 R 3 99.8 2:31 1.2 1.4
4 L 3 112,8 7:04 1.2 1.4
3 R 3 105.2 2:51 1.6 2.0
3 L 3 118.0 7:12 1.6 2.0
6 R 4 135.5 4:29 5.3 8.8
6 L 3 149.6 13:39 5.2 8.8
8 R 4 103.9 3:48 7.2 11.2
8 L 3 119.9 9:05 7.1 11.2
9 R 4 132.5 4:31 2.1 3.2
9 L 3 142.7 14:05 2.0 3-1



result is the same. However, the computer time required when 
the non-linear terms are on the left is nearly three times 
as- great. In addition, there is a savings of computer stor­
age when the nonlinear terms are on the right side. The only 
drawback to moving the nonlinear terms to the right side is 
the slight increase in the average number of iterations re­
quired for convergence on each time step in the quadratic 
elements.

Fig. 7 shows the fields after 120 hours of forecast 
for the four-and three-node element using consistent mass.
The analytic solution is presented for comparison. Fig. 8 
gives the same information for the six-and nine-node elements. 
All of the elements give reasonable solutions; however, the 
four-node result is clearly the best. The phase speed for 
the three-and four-node elements is very accurate but the 
amplitude is reduced slightly more in the three-node than the 
four-node solution. The nine-node solution has a phase speed 
which is too small while the six-node solution has phase 
speed which is slightly high. Both methods result in some 
distortion of the field with the presence of noise evident in 
the six-node vorticity field. The results from the eight-node 
element (not pictured) are very poor. The visual comparisons 
are supported by the RMSE given in Table 1. Not only is the 
RMSE the lowest for the four-node element but the program size 
and computer time are also smaller.
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model.
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time difference and consistent mass after 120 hours for the vorticity-
stream function model.



As discussed in Chapter III there are several possible 
configurations of both the three-and six-node elements when 
the nodal spacing is held constant. The triangular arrange­
ment chosen does effect the solution. Table 2 gives the RMSE 
for each of the five configurations (shown in Fig. 5) tested 
for both the three-and six-node triangular elements. For 
both elements, the case in which the triangular slant alter­
nates in the direction of flow gives the lowest RMSE. A vis­
ual examination of the 120-hour forecast for the three-node 
element (Fig. 9a-d) reveals little difference in the fields. 
The vorticity pattern in Fig. 9a,b is slightly distorted in 
the direction opposite to the constant diagonal slant but 
this distortion is riot evident in the six-node element (Fig. 
lOa-d). In the six-node element the case which has constant 
diagonal slant from lower left to upper right (Fig. 10a) has 
the most accurate phase speed and its RMSE is not significant­
ly different from Fig. lOd which has alternating slant in the 
direction of flow. It is evident that the linear triangle 
handles the advection much more accurately than the quadratic 
regardless of the triangle orientation. The diagonal slant 
is examined further for the three-node element using the 
shallow water equations.

Table 1 is based on the use of the consistent mass 
matrix with Crank-Nicholson time differencing. In contrast. 
Table 3 contains the same comparison of elements for the lump­
ed or diagonalized mass matrix. The RMSE is considerably
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Table 2. Effect of Orientation of Triangular Finite Element within Mesh using Crank- 
Nicholson Time Differencing Scheme and Consistent Mass for Vorticity-Stream 
Function Model.

Ulto

Number
of

Nodes
Triangle * 

Orientation RMS Ï 
Stream 

Function
rror

Vorticity

1 2.7 3.6
2 2.2 3.4

3 3 2.9 6.5
4 1.6 2.0
5 3.6 2.4
1 5.8 8.2
2 7.6 12.4

6 3 11.1 10.2
4 5.2 8.8
5 10.1 8.9

* Diagrams of triangle orientation are given in Fig. 5.
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Fig. 9. 120 hour forecast of stream function and vorticity for four
different arrangements of 3-node linear triangular element.
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Table 3. Comparison of 5 Finite Elements using Crank-Nicholson Time Difference with 
  Lumped Mass.____________________________________________________________

Number
Nodes
in

Element

Non-linear
Terms

LELeft Side 
RERight Side

Average 
Iteration 
Per Time 
Step

Program 
Size 

(K Bytes) 
Fortran H

CPU 
Time 
(min) 

120 Hr 
Forecast

RMS
Stream

Function

Error
Vorticity

4 R 3 88.6 2:30 15.6 19.8
4 L 3 112.8 7:14 15.6 19.8
3 R 3 95.1 2:41 14.6 18.6
3 L 3 118.0 7:05 14.6 18.6
6 R 5 120.5 4:50 12.0 18.1
6 L 3 149.6 14:32 10.4 17.4
9 R 4 118.5 3:44 7.0 9.8
9 L 3 142.7 14:11 7.1 10.0

Ul
Ul



higher when the mass is lumped, regardless of the element 
used. Fig. 11 graphically depicts this increase in RI4SE for 
the three-and four-node elements. The phase speed is reason­
ably accurate but the vorticity center moves southward with 
considerable loss of amplitude. As shown in Fig. 12, the six- 
and nine-node elements which use quadratic interpolation pro­
vide the better results when the mass is lumped. It is evi­
dent in the nine-node element that most of the RI4SE is due to 
inaccuracy in the phase speed.

In summary, the four-node bilinear element has result­
ed in the most accurate 120-hour forecast. The phase speed 
and amplitude are close to the analytical solution and the 
RMSE is the lowest. This element is used to compare five 
time differencing schemes using both consistent and lumped 
mass. These results appear in Table 4 (includes comparative 
information on four-node element repeated from Table 1 and 3). 
After 12 0 hours the RMSE for Leap-frog differencing is the 
same as for Crank-Nicholson. Further, it is difficult to 
detect any difference between Fig. 13 which shows the Leap­
frog result and Fig. 7 which shows the Crank-Nicholson result. 
The other difference schemes all give reasonably low RMSE.
As shown in Figs. 13 and 14, the Matsuno, Galerkin, and Back­
ward methods are all accurate in phase speed but damping of 
the amplitude accounts for the increased RMSE. Figs. 15 and 
16 show 120-hour forecasts for the same time differencing 
schemes using lumped mass. These lumped mass results do not
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Fig. 11. Comparison of 4-node and 3-node finite elements with Crank-
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vorticity stream function model.
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Table 4. Comparison of 5 Time-Difference Schemes Using the 4-Node Bilinear Finite 
Element in Space._________________________________________

Time Difference 
Scheme

Non-Linear
Terms

Average
Iteration.

Program 
Size 

(K Bytes) 
Fortran 
H

CPU 
Time 
(min) 

120 hr 
Forecast

RMS Error

C Consistent 
L Lumped

L Left Side 
R Right Side

per
Time
Step

Stream
Function

Vorticity

Leap Frog -C Explicit Explicit 98.4 1:37 1.2 1.4Leap Frog -L Explicit Explicit 98.4 1:30 15.6 19.8
Matsuno -C , Explicit Explicit 98.2 2:59 2.0 2.3
Matsuno -L Explicit Explicit 98.2 3:05 14.4 18.2
Backward -C R 3 99.7 2:27 3.0 3.9Backward -C L 3 112.6 8:13 3.0 3.9
Backward -L R 3 89.6 2:26 13.6 16.9Backward -L L 3 112.5 7:21 13.6 16.9
Galerkin -C R 3 99.8 2:25 1.7 1.9
Galerkin -C L 3 112.6 7:26 1.7 1.9
Galerkin -L R 3 89.6 2:27 14.8 18.7
Galerkin -L L 3 112.5 7:22 14.8 18.7
Crank-Nicholson

—c
R 3 99.8 2:31 1.2 1.4

Crank-Nicholson L 3 112.8 7:04 1.2 1.4
Crank-Nicholson R 3 88.6 2:30 15.6 19.8

—L
Crank-Nicholson

-L
L 3 112.8 7:14 15.6 19.8

cn
KD
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Fig. 13. Comparison of Leap-frog and Matsuno time differencing with
consistent mass after 120 hours using the 4-node finite element for
the vorticity-stream function model.
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Fig. 14. Comparison of Galerkin and Backward time difference with
consistent mass after 120 hours using the 4-node bilinear finite
element for the vorticity-stream function model.
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Fig. 15. Comparison of Leap-frog and Matsuno time differencing with
lumped mass after 120 hours using the 4-node finite element for the
vorticity-stream function model.
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Fig. 16. Comparison of Galerkin and Backward time differencing with
lumped mass after 120 hours using the 4-node finite element for the
vorticity-stream function model.



differ greatly from the previous discussion nor from the re­
sults of Sasaki, and Chang, (1979).

Table 5 gives the results from some finite difference 
schemes for comparison. The Arakawa difference scheme with 
consistent mass is given in (21). As stated previously, this 
scheme is equivalent to the four-node finite element and in­
deed, the results are the same. The only difference in the 
two schemes is that no north and south boundary conditions 
need be specified for vorticity in the FEM but they are nec­
essary to carry out the finite differencing. In this pro­
blem, there was no noticeable difference in the result; how­
ever, this may not always be the case (Sundstrom, 1973). It 
should be noted that for a particular problem, when the el­
ements are a regular shape and of equal size everywhere, the 
FEM can be simplified to a quasi-FD model with corresponding 
savings in computer time and storage. Here the time require­
ment decreased three-fold and the storage requirement was 
half (Table 5). Figs. 17 and 18 show the result for both 
consistent and lumped mass for Arakawa and centered finite 
difference methods. The traditional finite difference prac­
titioner would achieve results similar to those with lumped 
mass. With consistent mass, both the Arakawa and centered 
difference methods give good results. As shown in Table 5, 
the use of consistent mass results in approximately a 40 
percent increase in computer time over the traditional ap­
proach.
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Table 5. Results Prom Finite Difference Methods

Time 
Difference 
Scheme 

C Consistent 
L Lumped

Space
Difference
Scheme

Program 
Size 

(K Bytes) 
Fortran 

H

CPU Time 
(120 Hour

RMS Error
Forecast)
(min)

Stream
Function

Vorticity

Leap Frog-C Arakawa 46.7 0:28 1.2 1.4
Leap Frog-L Arakawa 46.7 0:20 16.7 18.8
Leap Frog-C Centered 46.3 0:27 3.3 5.4
Leap Frog-L Centered 46.3 0:19 12.8 17.5

Matsuno-C Arakawa 46.7 0:37 1.8 3.7
Matsuno-L Arakawa 46.7 0:26 14.0 16.2
Matsuno-C Centered 46.3 0:39 3.0 5.3
Matsuno-L Centered 46.3 0:26 10.9 14.5
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Table 5. Results From Finite Difference Methods

Time 
Difference 
Scheme 

C Consistent 
L Lumped

Space
Difference
Scheme

Program 
Size 

(K Bytes) 
Fortran 

H

CPU Time 
(120 Hour

RMS Error
Forecast)
(min)

Stream
Function

Vorticity

Leap Frog-C Arakawa 46.7 0:28 1.2 1.4
Leap Frog-L Arakawa 46.7 0:20 16.7 18.8
Leap Frog-C Centered 46.3 0:27 3.3 5.4

Leap Frog-L Centered 46.3 0:19 12.8 17.5

Matsuno-C Arakawa 46.7 0:37 1.8 3.7
Matsuno-L Arakawa 46.7 0:26 14.0 16.2
Matsuno-C Centered 46.3 0:39 3.0 5.3
Matsuno-L Centered 46.3 0:26 10.9 14.5
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Fig. 17. Leap-frog time difference with Arakawa Jacobian finite difference
in space. (vorticity-stream function model)



M M  j en Y (3 : |

CTl

Consistent Mass Analytic Solution Lumped Mass

Fig. 18. Leap-frog time difference with centered finite difference in
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Finally, Table 6 shows the results when the three 
best schemes are intergrated for a longer time using differ­
ent time steps. As discussed earlier, 1 hour is the upper 
limit for the Leap-frog integration. Other than the Crank- 
Nicholson method with 2-hour time step, the result is not 
significantly different to 240 hours. By 360 hours the 
Leap-frog scheme is affected by its computational mode but 
the Crank-Nicholson method allows extremely long integrations. 
After 108 0 hours, the Crank-Nicholson method finally gives a 
fairly high RMSE; however, this is due mainly to phase speed 
error. The shape of the fields is quite good.

Penalty-Method

The testing conducted using the penalty method is 
much less extensive than for the vorticity-stream function 
model. Table 7 gives the results from comparison of elements 
using Crank-Nicholson time differencing. The lowest RMSE 
occurs for the four-node bilinear element. It is followed by 
the nine-, six-, and eight-node elements. The order is ex­
actly the same as in the previous discussion. Fig. 19 shows 
the initial and 120-hour forecast for the u and v wind com­
ponents as well as the stream function and vorticity calcula­
ted from the forecast winds. The slight loss of symmetry in 
the forecast u and v fields indicates that the divergence free 
condition is not exactly satisfied. In addition, the model 
has given a reduction in the gradients of u and v which re-
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Table 6. Comparison of Three Best Schemes Listed in Tables 1 and 2 with Runs at 
Different Time Steps.________________________________________________

Scheme: 
rime Step

Leap Frog Arakawa 
PD Consistent Mass

Leap Fro< 
FEM Consis

j 4-node 
3tent Mass

Crank
FEM

-Nicholson
Consistent

4-node 
Mass

rime 1 1 ]
Step (hr) 7 1 2 ] t' 1L
Forecast RMSE RMSE RJ4SE RMSE RÎ4SE RMSE ' RMSETime
(hr) I» Ç Ç 'If Ç fp Ç

"120 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.3 1.5
240 2.2 2.6 2.0 2.5 1.8 2.3 1.7 2.3 1.9 2.3 1.9 2.4 2.3 3.0

360 2.8 3.5 2.9 3.4 2.1 2.9 3.8 6.4 2.4 2.9 2.6 3.2 3.3 4.1

480 4.0 5.3 * 2.8 3.2 3.2 3.8 3.9 4.7

600 * 4.5 5.1 5.7 6.6
720 5.8 6.6 7.2 8.4
840 7.6 9.4 8.9 10.4

960 9.4 11.5 11.6 14.3

1080
•

10.9 13.0 12.6 14.7
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Table 7. Penalty Formulation Element Comparison of 120 Hour Forecast

-vlo

RMS ERROR
CPU TIME (min)ELEMENT VORTICITY STREAM FUNCTION

4 node 4.8 2.6 47:07
6 node 10.6 11.4 91:04
8 node 8.5 11.6 58:48
9 node 6.7 6.3 102:02
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Fig. 19. Initial velocity fields and 120 hour forecast velocity, stream 
function and vorticity fields using the penalty method.



suits in a decrease in the strength of the vorticity center.
The phase speed is as accurate as it was in the vorticity- 
stream function model but there is a slight northward shift 
in the vorticity pattern which was not present in the vortic­
ity-stream function model when the four-node element was 
used (Fig. 7). From Table 6, it is evident that overall, the 
penalty method is not as accurate for this advection-domin- 
ated flow situation as the vorticity-stream function model.

As discussed in Chapter III, approximate values for 
the pressure may be calculated using (14). The calculated 
pressure depends not only on the accurate calculation of 
divergence but also on the proper selection of the penalty 
parameter X. This-parameter can be found through trial and 
error. As discussed by Reddy (1979b), too large a value of 
X results in the degeneration of the governing equations into 
only the continuity equation; too small a value means that 
the continuity equation will not be satisfied. Even when the 
best value for X is found, the continuity equation is not 
exactly satisfied. The resulting pressure values are, at best, 
an approximation.

The benefit from the use of the penalty method is the 
reduction of the number of unknowns, thereby reducing the 
number of equations to two. The form of the equations given 
by (17) is the traditional approach taken in the application 
of the FEM. The computational times given in Table 6 using 
that approach are very long when one considers that the grid
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only contains 11 x 11 points. Several attempts have been 
made to improve the computation time, such as moving the 
nonlinear terms and the penalty term to the force vector, and 
separating the u and v equations in order to reduce the order 
of the system of linear equations which must be solved.
Every such test resulted in reduced accuracy.

It is because of the inaccuracies in the pressure and 
the expense of computation that the penalty method is not 
tested to a greater extent. It is interesting however, that 
the different approach taken in the penalty method results in 
the same relative accuracy of the elements tested.

Shallow Water Equations

Eqs.(18) used for this model present a challenge for 
any type of finite discretization because they allow fast 
moving gravity waves. The gravity waves are initially of 
much lower amplitude than the long waves but they can grow 
and after several time steps they can obscure the features 
of interest in the solution. Much effort has been directed 
toward the control of gravity waves (e.g. Kwizak and Robert, 
1971); however, since the intent of this study is to find the 
best finite element discretization, the gravity waves are 
allowed to develop without any control so that the discreti­
zation may be found which most efficiently discourages their 
growth.

All of the elements previously discussed were tested
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except the eight-node serendipity element which was elimin­
ated because of its poor performance with the vorticity- 
stream function and penalty models. The comparison of run 
times and program size for the models tested is given in 
Table 8. The three equations were solved one at a time in 
each time step and/or iteration (depending on the time dif­
ference scheme). As occurred in the vorticity-stream func­
tion problem, the quadratic (6 and 9 nodes) elements require 
much more computer time and storage than the three-and four- 
node elements. The difference in these statistics between 
the three-and four-node elements is insignificant. Other 
than these two comparisons there are no other quantitative 
comparisons; however, there are qualitative differences in 
the results produced by the elements.

Fig. 20 shows the 4 8-hour forecast (144 time steps of 
20 minutes each) of the height fields, from the six-and nine- 
node elements using Crank-Nicholson time differencing. Also 
shown are the corresponding variance plots from the Fourier 
analyses of those fields. Initially (Fig. 3) there are three 
equally spaced troughs in the channel. The western trough 
is shallow to the north and deeper to the south. The cen- 
teral and eastern troughs are sharper and deeper to the north. 
After 48 hours, the troughs move approximately one-third the 
channel length to the east. As shown, both the six-and nine- 
node elements produce roughly the same trough positions. 
Movement is slightly faster for the nine-node case. It can
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Table 8. Computational Parameters from Shallow Water Equations Model.

Time Scheme Nodes* Position of Non-linear 
Terms 

L = Left Side 
R = Right Side

Time
Step
(min)

CPU
Time
(min)

Program Size 
(K bytes) 

Fortran H

3-(l)** L 20 L05;57 200.3
4 L 20 109:41 194.5
6 L 20 160:52 261.4

Crank- 9 L 20 202:26 253.8
Nicholson 3-(l) R 20 37:14 308.0

3-(2) R 20 42:12 308.0
3-(3) R 20 42:51 308.0
3-(4) R 20 39:30 308.0
3-(5) R 20 54:01 308.0
4 R 20 40:41 293.6

Leap frog 4 Explicit 12 10:01 293.6
Matsuno 4 Explicit 12 21:40 293.6
Galerkin 4 R 20 40:15 293.6
Backward 4 R 20 41:08 293.6

Ln

* Based on 48 hour forecast.
** Number in parenthesis indicates triangle orientation (see Pig. 5).
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Fig. 20. 48 hour forecast height field and Fourier analyses for
6-and 9-node elements, (shallow water equations)



readily be seen that the six-node element has resulted in the 
generation of many short waves at almost every possible wave 
number, particularly at the highest wave numbers. In con­
trast, the nine-node element has not led to the production 
of any short waves. Both elements have produced wave number 
two and wave number five. This may be a natural consequence 
of this method since it conserves the average wave number.

Fig. 21 shows the 48 hour height field and its Four­
ier analysis for the four-node rectangular element using 
Crank-Nicholson time differencing. The position of the 
troughs is very close to the nine-node result but the western 
trough is not as deep as the nine-node case. The Fourier 
analyses of the nine-and four-node elements are different in 
two important respects. For the four-node element, the var­
iance at wave number five along the channel is approximately 
60 percent of the nine-node result. The same difference is 
true for the wave associated with wave numbers two and four 
in the x and y directions respectively. The slightly better 
result for the four-node element is consistent with the vor­
ticity-stream function and penalty models and is significant 
when one considers the difference in computational time be­
tween the two elements. Some comparable results were also 
achieved with the three-node element.

The three-node element is used to show the effect of 
diagonal slant of the triangles. Figs. 22 and 23 show the 
height fields after 48 hours using Crank-Nicholson time

77



TU00 3.
Wave ^  
Number 
(Y -  across  
channel)

Wave Number 
(X -a lo n g  channel)

Fig. 21. 48 hour forecast height and Fourier analyses for 4-node
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differencing for triangle configurations 1-4 (shown in Fig.
5) and the corresponding Fourier analyses. The trough pos­
itions are all the same; however, their character differs 
depending on the triangle slant. For slants 1 and 2, the 
features tilt slightly in the opposite direction of the con­
stant slant. This is analogous to a distortion found in the 
vorticity pattern in Fig. 9. The height fields for slants 1 
and 2 definitely have a smoother appearance than for slants 
3 and 4. This is evident in the Fourier analyses of the 
fields. The alternating diagonal slant appears to encourage 
early development of gravity waves. Of these four, the worst 
case results when the slant alternates across the direction 
of. flow. This is consistent with the vorticity-stream func­
tion result for the same triangle orientation. The constant 
diagonal slant cases appear to give the better results for 
triangles.

Compared to the four-node element (Fig. 21) the result 
for slant 2 is almost the same. For slant 2, there is higher 
variance in the combination of wave number two along the chan­
nel and wave numbers four and five across the channel than 
there is in the four-node case. There is also a development 
in wave number four along the channel which is not present in 
the four-node case. Therefore, it appears that the four-node 
element has slightly better performance in this case.

The four-node element was tested with four other time 
differencing schemes besides Crank-Nicholson:
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1) Galerkin,
2) Backward,
3) Matsuno, and
4) Leap-frog.

As shown in Table 8, all of these schemes were run with the 
equations formulated so that all terms are in the force vec­
tor except the time derivative. Comparing the two four-node 
Crank-Nicholson cases one can see that this formulation re­
sults in a five-fold decrease of computer time. Because no 
iteration is required, the explicit schemes are much faster.

The results from the Galerkin, Backward, and Matsuno 
schemes are all similar. All of these schemes cause some 
damping of the waves. The 48-hour forecast height fields for 
Matsuno and Galerkin schemes as well as their Fourier ana­
lyses are shown in Fig. 24. Compared to the Crank-Nicholson 
result (Pig. 21) both of these schemes give a smoother fore­
cast field. The only difference in the Fourier analyses is 
the lower amplitude for wave number five along the channel for 
both the Galerkin and Matsuno methods compared to the Crank- 
Nicholson results.

The fastest scheme tested is the Leap-frog or centered 
time difference. It requires only one-fourth the computation 
time of Crank-Nicholson and as shown in Fig. 25, it provides 
reasonable results. At 48 hours, there is more generation of 
wave number five along the channel as well as higher cross 
channel wave numbers. The location of the troughs is very
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Fig. 24. 48 hour forecast height fields and Fourier analyses from
shallow water equations using Galerkin and Matsuno time differencing.
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close to the Crank-Nicholson result.
The Leap-frog and Crank-Nicholson schemes are used 

to demonstrate the conservative properties of the finite 
element method. As stated earlier, for the shallow water 
equations, both the total energy and absolute vorticity are 
conserved. Figs. 26 and 27 show the total energy and vor­
ticity plots for both schemes. As expected, the Leap-frog 
scheme with its computational mode becomes computationally 
unstable earlier than Crank-Nicholson. The beginning of in­
stability is evident when one looks at changes in the kinetic 
energy, a quantity which is not conserved. For the Leap-frog 
scheme, the kinetic energy increases less than three percent 
for the first thirty days and then rapidly increases near the 
thirty-five day mark (see Fig. 28). As shown in Fig. 28, the 
increase in kinetic energy is much slower for the Crank- . 
Nicholson scheme.

85



C9
s
” « 
y -

Ï4B. "7Ü 15 2Ô S 30 3f ïü"TIME fUflYS)
00
CTl

20 25 30I ME fOHYS)

Leap-frog Crank-Nicholson

Fig. 26. Total energy (normalized) versus time (days) 
for Leap-frog and Crank-Nicholson schemes using 4-node 
element with shallow water equations.



I H
N

I "Z 0-
- 2-

00

17 Sll
TIME C0.RT5]

iS 3P J7
z
•0

'Z
10 7s Jo Js 3Ô ss ito

TIME tOfiïSl

Leap-frog Crank-Nicholson

Fig. 27. Absolute vorticity (normalized) versus time 
(days) for Leap-frog and Crank-Nicholson schemes using 
4-node element with shallow water equations.



00
00

S > “-i |- IU

g
u

~To'i n i n r ~ i o ~ ^
TIME (0HY5)

lU

b"’-!jC
wo

aN
iu 25 30 35

TIME CDflYS)

Leap-frog Crank-Nicholson

Fig. 28. Kinetic energy (normalized) versus time (days) 
for Leap-frog and Crank-Nicholson schemes using 4-node 
element with shallow water equations.



CHAPTER V 

SUMMARY AND CONCLUSIONS

Several tests of the finite element method's ability 
to handle nonlinear flow problems have been conducted. The 
investigation has concentrated on spatial discretization, 
consistent versus lumped mass, time differencing, and com­
putational arrangement of the equations. When combined, the 
results from the vorticity-stream function, penalty, and 
shallow water equation models provide consistent answers 
about the application of the finite element method.

The results from the three models show superior per­
formance when the four-node bilinear element is used. This 
conclusion is dependent on the total number of nodal or grid 
points remaining the same. For example, if the nine-node 
quadratic elements were the same size as the four-node ele­
ments there would be a four-fold increase in the total num­
ber of grid points and a corresponding increase in computer 
time; however, the accuracy would be greater than the four- 
node element of equal size.

Apparently, the key to element accuracy is related to 
the influence on the solution at a given node by the surround­
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ing nodes. Because of the connectivity of the elements, the 
solution at a node is affected by all the nodes of the ele­
ments which share that nodal point. Zo.r example, when the mesh 
consists of four-node elements each nodal point belongs to 
four elements so that the solution at a given node depends on 
the eight surrounding nodes. This is true at all interior 
nodes. In contrast, a mesh made up of nine-node rectangular 
elements works differently. The corner nodes of the nine- 
node element are part of four elements so that their solution 
is affected by the twenty-four surrounding nodes. The mid­
side nodes of a nine-node element are part of two elements so 
that fourteen other nodes affect the solution. And finally, 
the center node of a nine-no.de element is only influenced by 
the other eight nodes in the same element. Other elements 
have similar relationships. In Fig. 5, it is evident that the 
triangular element can result in different nodal relationships 
depending on the element orientation. The worst case occurs 
for slant 5 where the influence alternates between four and 
eight surrounding nodes. In a system of equations which al­
lows gravity waves this inconsistent influence of the nodes on 
each other could enhance the development of gravity waves.

The use of all elements of one size or shape may not 
always be possible, especially if the finite element method is 
applied to boundary layer work as planned by Gresho, et al. 
(1978a) or to models where it is desirable to have a nested 
fine mesh grid. Further research is required in order to
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determine the effects of variable mesh on the solutions. How­
ever, this study indicated that the rectangular element 
should be the primary element used in advective flow models 
with the triangular element employed only when absolutely 
necessary to accomodate an irregular boundary. The use of 
higher order elements is neither economically nor computa­
tionally desirable.

This study substantiates the findings of Gresho, Lee, 
and Sani (1977) regarding consistent and lumped mass. Study­
ing an advective-diffusive model involving dissipation of 
pollutants they found that the solution suffers when mass 
lumping is applied. Here and in concert with the related 
work of Sasaki and Chang (1979), it is clearly shown that 
regardless of the time differencing scheme used, the accuracy 
of advective calculations is severely reduced by lumping the 
mass. Since the mass is inherently lumped in finite differ­
ence models the loss of accuracy is normally improved by using 
a finer grid resolution. As shown by Cullen (1974a), for some 
problems the finite element method with consistent mass per­
forms as well as a finite difference model with four times the 
grid resoltuion.

Related to the question of consistent versus lumped 
mass is the problem of choosing a time difference scheme.
Aside from the problem of controlling gravity waves it is ap­
parent that when consistent mass is employed, there is little 
difference in the solution as long as the time integration is
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not carried for a long time. As shown, the Crank-Nicholson 
scheme allowed long term time integration with only slight 
changes in the total energy while the Leap-frog scheme al­
lowed faster development of the gravity waves. However, with 
the four-node element, Leap-frog time differencing is four 
times faster than Crank-Nicholson. Based on these results, 
an explicit scheme such as Leap-frog appears to be a good 
compromise, especially if it is combined with some type of 
time filter. Other alternatives include the use of the semi- 
implicit scheme of Kwizak and Robert (1971) as planned in the 
model under development in Canada (Staniforth and Mitchell, 
1978).

The final topic under consideration deals with the 
computational arrangement of the equations. From an economic 
standpoint, much can be gained by rearrangement of the equa­
tions. Computation time can be drastically reduced in the 
finite element method by solving the equations for the time 
rate of change of the variables rather than the variables 
themselves. By using additional storage, the mass matrix can 
be preprocessed and stored, saving additional time. If the 
finite element method is applied to a problem with uniform 
grid spacing then it is possible to transform it into a quasi- 
finite difference model thus increasing the computer effic­
iency. Such a transformation has been made by Jesperson (1974), 
for the vorticity-stream function model and as shown here, re­
sults in a four-fold savings of computer time. Therefore, even

92



though the finite element method is complicated compared to 
conventional finite difference methods it can be made very 
competitive and can result in increased accuracies.

In summary, further research into the application of 
the finite element method is warranted. In particular, the 
following topics should be investigated.

1. Because of the potential uses in meteorology, a de­
tailed examination of the effects of grid refinement 
should be made. Several options such as reduction of 
the grid through the prudent use of triangular ele­
ments, smooth versus abrupt reductions in rectangular 
element size, and moving fine mesh grids inside coarse 
mesh grids should be studied.

2. The use of variational constraints as developed by 
Sasaki (1976) should be investigated. The finite el­
ement method naturally conserves certain properties 
depending on the governing equations; however, as 
demonstrated by Sasaki using finite difference methods, 
some improvement can be made through the use of vari­
ational constraints.

3. Modelling of the equations on the globe should be 
studied. Cullen (1974b) used a specialized triangular 
mesh for this work but did not perform an exhaustive
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study. In particular, the finite element method 
should be able to handle the changing resolution 
caused by the geometry as well as the singularity 
points at the north and south poles.

4. The extension of the model to the vertical dimen­
sion should be examined. Staniforth and Daley (1979) 
have begun development of a baroclinie model; however, 
studies should be made as to the required resolution 
in the vertical when the FEM is employed.

5. Investigations should be made into the modelling of 
terrain in a finite element model. Preliminary stud­
ies can be made with the shallow water equations in 
two dimensions by placing an obstruction in the chan­
nel. More sophisticated studies should then be made 
with three dimensional flow and eventually with baro­
clinie models.
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APPENDIX A 

THE FINITE ELEMENT METHOD 

Introduction

The purpose of this appendix is to provide a capsule 
description of some of the pertinent details about the finite 
element method. Topics discussed are the Galerkin method, 
discretization of the domain, and development of interpola­
tion functions. Additional details may be found in Segerlind 
(1976), Strang and Fix (1973) , Oden and Reddy (1976) , and 
Zienkiewicz (1977).

Galerkin Method

The Galerkin method is a variational method which can 
be applied to linear as well as nonlinear problems because 
there is no requirement that the functional be known.

Suppose the following governing equation is specified

-V^u = f in n, u = 0 on 3S2 (Al)

The solution, u (x,y) is approximated by
N

u(x,y)~ u (x,y) = I u.N.(x,y) (A2)® i=l 1 1

99



where are approximating functions which satisfy some con­
tinuity requirements as well as the boundary conditions. If 
the approximation (A2) is substituted into the governing 
equation (Al) the result is

-V^u^ -f = R(x,y) (A3)

where R(x,y) is the error of the approximation. The Galerkin 
method minimizes this error as follows

J J  R(x,y) N^(x,y) dxdy = 0 , (A4)

or J J  (-V^Ug-f )N^ (x,y) dxdy = 0. (A5)

So, the error is made orthogonal to the set of approximating 
functions. Substituting u^ into (A5) gives

Z (V^ N.(x,y))N. dxdy u . = f f  f N. (x,y)dxdy, (A6)
j Î2 J  ̂ J n

The left side of (A6) can be transformed using the product
rule of differentiation and Green's theorem giving

r r  3N. 3N. 3M. 3N. f T
? 1 ‘ s i  * W  “j = f N. (x,y)dxdy
3 n (A7)

+ ÿ  (UeNi%x +
30

where (n^,n^) are the unit normal vectors to the boundary 
30. Since u is specified (Al) on 30 the boundary term is 
zero and may be dropped. Thus (A7) becomes

[K] {u} = {F}, (A8)
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where
3N. 3N. 9N. 9N.t t -î • QVt* O W ,

îj " // ("?3r -53T -9ÿ-
fi

=  J J  f dxdy.
fi

In this example, the Galerkin method was applied over the 
domain fi. In the finite element method, the Galerkin method 
is applied by defining the approximation (A2) over small 
elements so that there is piecewise continuity within the 
domain. The contributions from each subdomain are summed to 
approximate the global domain.

Discretization of the Domain and Interpolation Functions

The ways of discretizing the domain are only limited 
by the imagination. In general, the governing equations or 
Galerkin integrals determine the minimum order of the approx­
imation. Higher order approximation than that required may 
be used and in some cases may give better results. The geo­
metry of the domain often determines the shape of the ele­
ments and placement of the nodes. Fig. Al shows a domain sub­
divided by the finite difference method. Fig. A2 shows how 
the same domain could be discretized for application of the 
finite element method. Note that in Fig. Al, there are sev­
eral grid points outside the domain which require special 
handling. For the finite element discretization. Fig. A2, 
two elements were used. The domain shown could represent
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Fig. Al. Discretization of domain for finite differences.

flow in a channel with an obstruction. Fig. A2 shows some of 
the flexibility of the finite element method in that finer 
resolution is used over the obstruction and coarser reso.lu- 
tion on the edges. Obviously, there are many possibilities 
for discretization depending on the problem and the domain. 
Discretization of the domain leads to development of the in­
terpolation functions.

Fia. A2. Discretization of domain for finite element method.
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Finite Element Interpolation Functions

There are two basic requirements for interpolation 
functions; completeness and compatibility. Suppose that the 
element equations contain derivatives of order m. The com­
patibility requirement means that at the interelement bound­
aries, the field variable and its partial derivatives up to 
order m-1 must be continuous. The completeness requirement 
means that within an element, all the constant states of the 
field variable and its derivatives up to order m must be re­
presented in the interpolation function. That is, the poly­
nomial used as the interpolation function must contain all 
the terms up to order m.

Suppose we have a system of equations in which first 
order derivatives are the highest order appearing in the 
Galerkin expressions. The compatibility requirement means 
that the minimum order for the interpolation functions is one. 
Assume that the global domain can be discretized using tri­
angular shapes. We can choose the linear approximation

u(x,y) = a^ + a^x + a^y. (A9)

Note that if a node- is placed at each vertex of the triangle 
there are three unknowns (â , â , and â ) corresponding to 
the three nodes. This polynomial satisfies the compatibility 
and completeness requirements. The next step is to determine 
the coefficients a^, â , and a^ for the arbitrary element
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Fig. A3. Typical triangular element.

shown in Fig. A3. 
From (A9) we get

1 :'l . M1 ^2 ^2 (AlO)
1 3̂ -"3 k

or {u} = [A] {a} r
-1{ct} = [A] {u},

where [A]-1 1
det

The determinant (det) of [A] turns out to be two times the 
area of the element. At any point (x,y) in the element
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u = {l X y} {a} = {1 X y} [A]  ̂ {u} , (Ail)

or

where Mi = 1
det

r. -1 - X

= i = - k̂'
^i = -

u = EN.u.,
i  ̂^

(r̂  + X ti y)

j F k

Other Methods of Determining Interpolation Functions

There are several different means of deriving inter­
polation polynomials. The most common method for rectangular 
shaped elements is to multiply the one dimensional polynomial 
for each dimension. That is, in one dimension we have

u(x) = fâ T-b^x or u(y) = + b^y.

If u were a function of x and y we would take the product 

u(x,y) = ag + a^x + a,y + a^xy.

Another method involves the use of Pascal's triangle [24].

Fig. A4. Pascal's Triangle
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The terms connected by the solid line represent the terms 
needed for a quadratic polynomial to be used on a triangular 
element. There are six terms and such an element would have 
six nodes. Note that the dashed line encloses nine terms, 
these nine terms would be used for a nine-node rectangular 
element. The location of the terms relative to the dashed 
box indicated the nodal locations in the rectangle.

Local Coordinates

Previously the element was defined in terms of 
the global coordinates (x,y); however, it is often conven­
ient to define the element in some local coordinate system 
and later transform that system to the global coordinates. 
This is especially true of the triangular element where an 
area coordinate (Segerlind 1976) is convenient (see Fig. A5)

(en:

1

Pig. A5. Area coordinates for the triangle
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three areas (L̂ , L̂ / L̂ )
The point (s, n) in Fig. A5 divides the triangle into

We can define the shape functions 
in terms of these areas. Let L be the total area of the 
element, then

= L^/L i= 1-3

+ L2 + Lj = L

Interpolation Functions for the Elements Studied

Linear Triangle

1

’̂l = L^/L
N2 - %2/L
^3 = L^/L

Quadratic Triangle

I

'̂ 1 L^/L(2L^/L-1)

^2 L2/L(2L2/L-1)

3̂ L2/L(2L3/L-1)

^4 4L,_L̂ /L̂
4L2L2/L:
4L^L]/L2

Linear Rectangle

Nj_= J(l+çç̂ ) (1+nn̂ ) 
i = 1-4
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Quadratic Rectanclfe (Lagrangian)

Ni = I Sn(i-g)(1-n)

N2 = ” ^?n(i+Ç)(l-n)

N3 = ?(!+£) n(l+n)

n(l+ri)

= J n(l+n)

Mg = - (l-nM

Mg = (l-fZ) (l-nM

Quadratic Rectangle (Serendipity)
nJ7_ Corner Nodes: i = 1-4

’1 ' '1

Mid-side Nodes;

?i= 0 N^ = j(l-ç^)(l+nn̂ ) i = 5,7

i1i= 0 (l-n = ) i = 6,8

1rs



APPENDIX B 

LINEAR STABILITY ANALYSIS 

Introduction

The purpose of this appendix is to show the linear 
stability analysis for the time differencing schemes used 
in this report. Because of the superior results achieved 
through the use of the four- node linear element, the stabil­
ity analyses are only performed for that element. The tech­
nique used is the von Neuman method as discussed by Mesinger 
and Arakawa (1976).

Stability Analysis 

Consider the linear advection equation.

where u^ and v^ are positive constants. This equation des­
cribes the advection of the variable 4 at a constant velocity 
c given by,

c = (UgZ (B2)
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The variable (p is assumed to be of the form,

(j)(x,y,t) = $(t) exp[i(kx + ly) ] , (B3)

where k and 1 are wave numbers in the x and y directions, 
respectively.

The finite element method, using the four-node bi­
linear element is applied to (Bl) as discussed in Chapter III 
and Appendix A. By expanding the matrices in the resulting
expression a finite difference form of the finite element
equation is obtained. The resulting expression is

■^[16<J(j,m) + 4 (I ( j+l,m)+^ (j-l,m)+<̂  (j ,m+l) +<J(j,m-l),'

+ $(j+l,m+l) +$(j+l,m-l) +^(j-l,m+l) +$(j-l,m-l)l
(B4)

“4'(j”l/in-1) ) + (<j) ( j+1 ,m+l)-<j) (j+1 ,m-l) )12Ax
~-v

+4 (t|) ( j ,m+l)-cj) (j ,m-l) ) ] 2.2Ay [(*(i+l'M-l)-0(i-l,m-l))

+ (<|) (j+l,m+l)-(|> (j-l,m+l) ) +4 (*(j+l,m) - c j )  ( j-1 ,m) ] ,

where Ax and Ay are the grid spacing in x and y, respectively. 
This expression is valid at any interior grid point. The 
terms such as (j,m) indicate the grid point where x = jAx and 
y = mAy.

Leap-frog

As discussed in Appendix A and Chapter III, the 
matrix form of (B4) is
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[M] {$}(*) = - [K] {$}(*) , (B5)

where [M] is the mass matrix and [K] represents the
linear advection and the superscript indicates the time step, 
For the Leap-frog scheme, (B5) becomes

[M] - [M] = -2At[K] (B6)

Eq. (B3) is written in discrete form;

0^^^(j,m) =0^ exp[i (kjAx + ImAy) ] , (B7)

where is the initial amplitude and is the amplification 
factor to the n^^ power. Using the Eqs. (B4,B6, and B7) it 
can be shown that

x"^^ exp [i (kjAx + ImAy)] (2 + cos lAy) (2 + cos kAx)

-X*"^ exp[i(kjAx + ImAy)] i (2 + cos lAy)(2 + cos kAx) 
/ÿ , u (B8)

= - -g- i X exp [i (kjAx + ImAy)] [sin lAy(2+cos kAx)]
V

+ ^  [sin kAx(2 + cos lAy)]} .

For simplification, assume that Ug=VQ and Ax = Ay = d. Sub­
stituting (B2) into (B8) and simplifying gives

2^  iX ( f H ô l V  + 1 = »• <«)

The term in parenthesis in (B9) has a maximum value of 2//3. 
Making that substitution and solving for X gives

^ A4- 2 kX = -/6 ^  i + (-6 ^,2-" + 1) ̂  . (BIO)
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It can easily be seen that

|A|= 1 if /6 < 1 . (bid

Therefore, the coupling of the time derivative through the 
consistent mass matrix as in (B4) results in a more restric­
tive time step than is found in finite difference applications 
or with lumped mass. A similar analysis is performed by 
Cullen (1974a).

If the left side of (B4) is replaced by the single 
term 0 (j,m) then the stability criteria is

/I £ 1 . (B12)

"Theta-family" of Time Approximations

For the "theta-family" of time approximations dis­
cussed in Chapter III, (B5) becomes

- [M] {*}(*) = -8At [K]{*}(*^l)-(l-8)At[K]{&^*).
(B13)

Using Eqs. (B4, B7, and B13) as well as all the simplifica­
tions used to obtain (BIO) gives

^ 1 - (1-9) pi
1 + 6pi (B14)

where p = /S’

For the Crank-Nicholson scheme, 0 = 1/2, and

Ul = 1.
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Therefore, the Crank-Nicholson scheme is always stable. For 
the Backward scheme,6 = 1, and

If p ^ 0, this scheme is always stable but the solution is 
damped. The larger p is, the larger the damping effect. For 
the Galerkin scheme, 6= 2/3, and

1̂ 1 = 1 t Ep/3

This scheme is also stable under the same conditions as the 
Backward scheme. Damping is also present in the Galerkin 
scheme but the damping is less than in the Backward scheme. 
If the "theta-family" of approximations is analyzed for' 
lumped mass, the only difference in the result is that p =
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