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ABSTRACT

The present study consists of two parts. The first part deals
with small disturbances in inert dusty gases. The effects of viscosity,
thermal conductivity, and particulates on the wave fronts are studied in
detail by means of linearized theory. Laplace transforms are utilized
to obtain asymptotic approximations for large times. The large-time
solution shows a wave behavior with the wave fronts diffused out be-
cause of viscosity, thermal conductivity, and particulates. The inter-
action of nonlinearities and the above-mentioned dissipative effects is
investigated. It is found that at the final stages the wave front is
governed, to the lowest order, by Burger's equation.

The second part treats a model for transient flow in a porous
particle. For simplicity, we assume that the gas inside the porous par-
ticle is identical to the outside so that no mass diffusion would occur.
We also assume that the disturbances are so small that the linearized
theory can be applied. Again, by means of Laplace transforms, the
asymptotic solutions valid for small times and large times are obtained
for the field properties. It is shown that the small-time solution is
not vdlid physically since this region is governed by free-molecule flow.
On the other hand, the large-time solution shows that there is a weak
wave behavior outside the particle, and that the wave fronts diffuse out

due to viscosity. In order to fit the problem concerning small distur-

jv



bances in inert porous-particle dusty gases, the mass ejecting from the
porous particles per unit time per unit volume, u,is determined. With
n known, the corresponding mass-, momentum-, and energy-source term
appearing in the governing equations can be obtained. For more general
models including vaporization and chemical reactions, the governing

equations are derived in Appendix A.
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NOMENCLATURE

speed of sound

specific heat of particle material

specific heat of gas at constant pressure

specific internal energy of gas

specific internal energy of particles

specific enthalpy of gas

convective heat transfer coefficient between particles and
gas

force exerted by a single particle on gas

force per unit volume exerted by particles on gas

mass ejecting from a porous particle per unit time
thermal conductivity of gas

thermal conductivity of particle material

permeability of a porous particle

= KPO/uOGO, dimensionless parameter

mass of an individual particle

number density, i.e., number of particles per unit volume
z Zéﬂ/ko, Nusselt number

gas pressure

gas Prandtl number

= Cpo“o/ko’ effective gas Prandtl number



gas heat flux vector

0y

Qp heat transfer rate per unit volume from particles to gas
3 dimensional position vector
T = aog/;o’ dimensionless position vector
? = e $7L = ¢r, dimensionless position vector
R gas constant
> -
Ry particle Reynolds number based on slip vector IVP-VI
S Laplace transform variable
t dimensional time
T gas temperature
Tp particle temperature
u gas velocity in X direction
uy particle velocity in X direction
u* gas velocity at the surface of the porous particle
V gas velocity vector
Vp particle velocity vector
X nondimensional space coordinate in the direction of motion

Greek Letters

o = Cp/C, specific ratio

%, thermal diffusivity of the poirous particle

a; = “p/;o’ dimensionless parameter

§ dimensional wave thickness

$ dimensionless wave thickness

€ = GO/aOL, dimensionless perturbation parameter
© rate of strain tensor

Xi



a small dimensionless parameter determined from the
boundary condition at the end wall, T'(0,t)=2¢/t/r
1/1*

\
pp/p, density ratio

Hi

second coefficient of viscosity of gas

first coefficient of viscosity of gas

= 2u + X = 4u/3

viscosity of particulate suspension

mass rate ejecting from a unit volume of porous particles
kinematic viscosity of gas

= u/o

effective diffusion coefficient

= 2a/3P 1.

gas density

phase density of particles, i.e., the mass of particles per
unit volume of gas-particle mixture particle radius

= aOS/GO, dimensionless particle radius

velocity relaxation time of particles

temperature relaxation time of particies

a2/y_, dimensi
Vo /vo, mensionless

aot/E, dimensionless wave time

ag»t/Go, dimensionless time

m/4wg2
/ AP,

a2t /v
0 Tu/ 0

aot/L==ar, dimensionless time

viscous stress tensor

Xii



) perturbation velocity potential of gas
¢p perturbation velocity potential of particle phase
¢ = re
) volume fraction of particles
Superscripts
( ) perturbation quantity, dimensionless
() perturbation quantity, dimensionless
Sgbscripts
( )o variable evaluated at ambient condition
( )p particle variable

xiii



PART I

SMALL DISTURBANCES IN INERT DUSTY GASES



CHAPTER 1
INTRODUCTION

1.1 General Description of Dusty-Gas Flows

Interest in problems of mechanics of systems with more than
one phase has developed rapidly in recent years. Situations which
occur frequently are concerned with the motion of a gas containing
small solid particles - the so-called dusty gas flow. Such situations
occur, for example, in the problems of rocket nozzle flows, nuclear
reactors, fuel sprays, air pollution, and lunar ash flows.

The dynamics of dusty gases is modified from the conventional
gas dynamics by further taking into account the effects due to the
presence of the particles, namely: (1) the collisions between indi-
vidual solid particles; (2) the gas-particle interactions through
viscous drag, heat transfer, as well as mass transfer by condensation,
evaporation, or chemical reaction. Moreover, in view of the particles
being unable to follow the rapid changes in the temperature and velocity
of the gas, there may exhibit significant relaxation effects which make
the flow problem of dusty gases greatly different from that of pure
gases. The simplest flows of such a non-equilibrium nature are pro-
duced by shock waves that propagate through a particle suspension. The
structure of the shock waves in such flows was first considered by

Carrier (1958), who treated a stationary normal shock wave arising in



a inviscid dusty gas and determined the dependence of the flow field
on the parameter of interest. According to Carrier, the thickness of
a gas dynamic shock is negligible in comparison with the momentum and
thermal ranges of the particles so long as the solid particles are large
with respect to molecular dimensions. Thus, the structure of a normal
shock wave in a gas-particle mixture may be thought of as a conventional
gas dynamic shock followed by a relaxation zone where particles and gas
come to velocity and temperature equilibrium. A qualitative descrip-
tion of the structure of a normal shock wave in a gas-particle mixture
is 1llustrated in Fig. 1. Upstream of the gas dynamic shock, the gas
and dust are in equilibrium. Immediately downstream of the shock the
velocity of the gas is smaller than that of the dust and the dust will
then be decelerated. The dust will also accept heat from the gas since
the gas temperature has been increased above that of ambient mixture
by the shock. The flow configuration far downstream of the shock will
be a steady one in which the gas and dust will achieve the same velo-
cities and temperatures. Various aspects of the relaxation process
have also been studied by other investigators, for instance, Soo (1961),
Saffman (1962), Temkin and Dobbins (1966), and Schmitt-von Schubert
(1969). These have relied for the most part on the simplifving assump-
tions needed to make the problem tractable.

The general conservation equations obtained on the basis of
particle distribution function are discussed in detail by Marble (1963)
in his paper, "Dynamics of a Gas Containing Small Solid Particles."
In this paper he introduced many significant concepts and parameters

which serve to give the physical insight into the behavior of dusty



gases. Under the assumption of low-Reynolds-number flow of the particles
relative to the gas, Marble proposed two important characteristic
times Ty and Ty corresponding to the velocity and temperature history

of the spherical particles, which are defined by

- m >
'l'v = 1o 1 (].].])
mC
- p -3
T ETER -2 P Ty (1.1.2)

where m is the particle mass, ¢ the particle radius, 1 the gas viscosity,

Cp the specific heat of the gas at constant pressure, k the heat
C_H
conductivity of the gas, and Pr E—E— the gas Prandtl number. Physically,

t,, and Ty are the relaxation times elapsed for a particle to adjust to

v
changes in neighboring gas velocity and temperature. The introduction
of these two parameters greatly clarifies the quantitative concept of
the times for the relaxation processes occurring in the gas-particle
flow. The structure of the flow field of a gas-particle mixture can

be predicted by the value of (and hence o) (1) if T, » then
the flow is "frozen" in which no relaxation processes take place;

(2) if t,~ 0, then the flow is "equilibrium" for which relaxation can
be infinitely fast;(3) if 0< T, <= , one considers a "non-equilibrium"
flow where finite relaxation processes may occur.

Marble's recent work (1970) in this field provides an exten-
sive study of the flows of a dusty gas with examples of shock formation
and linearized theory. More recently, Bhutani and Chandran (1977),
using characteristic coordinate system, augmented Marble's study in
1inearized case to derive a general decay law for steady and nonsteady

weak waves in an inviscid dusty gas.
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As was made by previous investigators, cur physical model of a
dusty gas will be further simplifies by restrictive assumptions. A1l
such simplifications, although they take us furthgr away from physical
reality, nevertheless allow us to obtain an insight into the nature of
real dusty gases by providing us with physical models whose behavior

can be analyzed.

1.2 Physical Models

It is well known thaf, in the linear acoustic theory for a
uniform one-dimensional medium, a disturbance propagates at a constant
velocity with constant wave form and the entropy of the fluid remains
constant. In a more realistic case, this wave motion is modified by
dissipative processes and by nonlinear effects due to convection. The
term dissipative process is meant to include aIi processes which tend
to increase the entropy of the fluid. Dissipative processes of impor-
tance are those due to viscosity, thermal conductivity, chemical reaction,
mass diffusion, radiation, etc. The effects of these dissipative processes
on wave propagation can be quite complex and quite different from each
other. Both the form and speed of propagation of the waves may be
modified by their influence.

The case in which viscosity and thermal conductivity are the
only dissipative mechanisms was first considered by Lagerstrom, Cole, and
Trilling (1949), and later by Lighthill (1956), in treating nonlinear
one-dimensional piston problems. The mathematical analysis of this
problem was further developed in detail by Moran and Shen (1966) by

means of the method of matched asymptotic expansions and a composite



solution uniformly valid for both small and large times was obtained.

It {s to be noted that immediately after the piston is set into motion,
as pointed out by Lighthill, the velocity gradients are very steep

and the viscous terms in Navier-Stokes equations are much more important
then the non-~1inear convective terms. This implies that the linear
theory is valid for some early time. As the wave propagates through the
gas, viscosity and thermal conductivity cause the velocity gradients

to ease, and the nonlinear effects become important. Eventually, for
large time, the waveform-steepening effects of the nonlinear terms
become comparable in strength to the waveform-easing effects of the
viscous terms. The balance achieved between these opposing tendencies
results in the formation of a shock wave which ultimately propagates
steadily into the gas.

The other significant example concerning the dissipative
effects on wave propagation was given by Rasmussen and Lake (1973) who,
instead of treating one-dimensional piston problem, dealt with linearized
wave propagation associated with weak spherical explosions. By making
use of Laplace transform techniques, they obtained asymptotic solutions
which are valid for small times and for large times. It was found that
the small-time solution shows a diffusive character that is akin to the
free-molecule flow theory, and that the large time solution shows a
wave behavior with the wave front and contact discontinuity diffused
out because of viscosity and heat conduction.

Much of the significant 1iterature bearing upon real-gas
effects on one-dimensional wave propagation induced by a piston,

including various dissipative mechanisms with and without nonlinear



effects due to convection, has been reviewed by Lick (1967).

A11 the work described above, however, refers to dissipative
effects on wave propagation in pure gases. The purpose of this study
is to extend the problem to account for the part played by the solid
particles which are present in the gas flow. In the present study,
we shall consider unsteady, one-dimensional, viscous flow of compressible
dusty gases. The basic problem to be analyzed is that of a semi-infinite
particulate suspension, initially in equilibrium, that is disturbed by
an impulsive temperature increase at the boundary end wall. The end-wall
disturbance affects the semi-infinite suspension by means of diffusive
and wave mechanisms. The subsequent development of the flow field is
to be determined. It is expected that the disturbances from the basic
equilibrium flow are so small that, as a first order approximation,
the governing equations can be linearized.

In order to formulate the problem in a reasonably simple manner
and to bring out the essential features, the following assumptions
regarding the motion of the gas-particle mixture are made:

(1) The gas is thermally perfect.

(2) The particles are spherical and are uniform in size.

(3) The particle diameter does not vary, i.e., any mass

transfer between the particles and the gas is excluded.

(4) The temperature within each particle is uniform due to

its small size and high conductivity relative to the gas.

(5) The gravity effect of the mixture is neglected so that

there is no free convection.

(6) The particles do not interact. This assumption requires



that the particle number density is sufficiently small,
so that the momentum eXchange caused by collisions, and the
force resulting from it,is small in comparison with the
viscous resistance to particle motion.

(7) The volume occupied by the particles is negligible. In
fact, the volume fraction of the particles ¢ can be written

as

p

s =k —
s

(1.2.1)

Thus, 1f < = 0 (0.1), and o/p_ =0 (1073), thend = 0 (107%.
The assumption is therefore satisfied if the densfty of
the pértic1e material;% is high compared with the gas
density p and if the density ratio « is not extremely
large.

(8) The random motion of the particles does not contribute
to the pressure of the particle cloud. This assumption
implies that the number of particles is negligible compared
with the number of gas molecules in the same volume.

(9) The Reynolds number for the relative motion of the gas
and particles is small enough that Stokes' drag law is
applicable.

(10) Heat exchange between the particles and the gas occurs
only through convection.

(11) The effect of heat radiation is neglected. It is known,
however, that a cloud of particles is a good emitter

and absorber of radiation compared with a pure gas.



Therefore, the hot particles upstream of the wave radiate
heat to the cold particles downstream. This effect may
increase the wave thickness, particularly as the size of

the particle increases.

1.3 Methods of Attack

In the present analysis, a dusty gas with small « and o
is considered. We start the formulation with the linearization of the
governing equations based on the small perturbation model. The
resultant linearized equations are further simplified by the assumption
that the flow is irrotational due to geometric symmetry. Finally,

a single seventh-order partial differential equation for the perturba-
tion velocity potential is derived. Laplace transforms are utitlized
to obtain asymptotic solutions valid for large times.

The large-time solution shows a wave behavior with the wave
front diffused out due to: (1) the viscosity and thermal conductivity
of the gas; (2) the size and number density of the particles. Further
examination of the results indicates that the linearized theory breaks
down at ¢ = O(;'Z), where t is the dimensionless time and ¢ is a
small dimensionless parameter determined from the boundary condition
at the end wall. The nonuniformity of the linear solution suggests
that the problem at very large times should be attacked by singular
perturbation methods. In this regard, the full equation with the
nonlinear and transport dissipative terms is derived to the first
order corrections. It is shown that at the final stages the wave front

is governed by Burger's equation.



CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 Gas-Particle Interaction

Before we consider the basic equations for the gas-particle
flow, it is helpful to derive the terms in connection with the interaction
between gas and particles. To begin with, denote the local gas velocity
by V and the velocity of an individual particle by Vp. Under the assumption

->
that the particles obey Stoke's drag law, the force f_ exerted upon the gas

p
by a single particle of radius ¢ is

F o=6mn (V. -V 2.1
p = 6w ( b " ) (2.1.1)

Moreover, if n is the number of particles per unit volume, the total

volumetric force exerted upon the gas by the particles is

Fo=nf =tp (V-V) (2.1.2)
p - "p T, VT a
where
°h =nm (2.1.3)
2 Py 32
‘tvs-‘.—-m:—=-9'?s'%- (2.1.4)

°p being the local mass density of the particle phase, Ty, the velocity
relaxation time of the particles, and ps/p the ratio of the mass
density of the particle material to the mass density of the gas. For

10



metallic solids and gases at standard conditions, ps/p is of the order

of 10°,
The definition of L Eq. (2.1.4), reveals that for a given

gas T, {s determined by the size of the individual particles; it .

is proportional to the square of the particle radius. Making the dust

fine decreases T and making it coarse increases T, Further, from

the equation of motion for a single particle

->»
dy
D__+
m—f = fp (2.1.5)
it can be shown that Ty is the time required for a particle to decay

> >

its velocity relative to the gas, Vp -V, to e'] of its original value.
The velocity relaxation time Ty gives some indication of the
gas-particle interaction process when compared with the characteristic
time T, of the fiqw. When rv/rc >>1, the particle enters and leaves
the region of interest before there is an opportunity to alter its state
appreciably, and the particle motijon depends largely on jts initial
conditions. On the other hand, when rv/TC << 1, the particle has time
to adjust to the local gas motion before it has moved appreciably
through the region, and hence the particle motion depends largely
upon the local gas motion and is relatively independent of its previous
history. For values of rv/rc that are neither very large nor very
small, {.e., Tv/rc : 1, the local particie motion is dependent upon
its entire history.
To the same approximation of low Reynolds number flow, the
rate of heat transfer per unit volume Qp from the particles of tempera-

ture Tp to the gas at temperature T may be written as

11



. -2 -~
= - T
Qp n (4rs") h (Tp )
21 4n3k, (25h )
= 7 mmC, () ) (Tp T)
p k
R R | (2.1.6)
2ty P PP
where
mC
= IR (2.1.7)
. 25h
N, = <5 (2.1.8)

T is called the temperature relaxation time of the particles, and Nu is
the Nusselt number based on the particle diameter. The Nusselt number
is usually approximated by the formula for steady flow around a single

sphere given by Knudsen and Katz (1958):

- 1/3  1/2
N, =2.0+0.60 P."/" R, (2.1.9)

where ﬁ. is the gas Prandtl number, and Re is the particle Reynolds
number. The simple formulation Nu = 2, which corresponds to pure
steady-state heat conduction, has also been used (see, e.g., Soo 1961,

Marble 1963, and Rudinger 1964). With Ny = 2, Eq. (2.1.6) becomes

. 1 .
= — T.-T) 2.1.10
G =P G (Tp = ) (2.1.70)
The physical significance of 2 is entirely similar to T, Furthermore,
T4 can be written as
_3
T3 PrTv (2.1.11)



Since the gas Prandtl number Pr is very nearly equal to 2/3, the velocity
and temperature relaxation times are nearly equal. Consequently, the
times for a particle to reach equilibrium velocity and temperature

of the gas are approximately equal.

2.2 Basic Equations

<>
Consider an ideal gas with local velocity V, temperature T,

and density o, containing a cloud of small, solid, spherical particles
having a radius o. The particle cloud is also described by a set of

-
continuum variables V_, T_, and o_ = nm. Because the particles are

p- P P
noninteracting and too massive to have random motion, all particles in
a local volume have the same velocity vector and temperature. Under
the assumptions described in Section 1.2, the conservation equations

for the two phases can be written separately as (see Marble 1963)

Mass
a _ ->»
a_%.;.v -.p V=20 (2.2.])
ap >
P+ =
5t + 7 . pp vp 0 (2.2.2)
Momentum
> ->
ov _ _ = &
° DE vWP+vy -1 + Fp (2.2.3)
DV =
PP _
Py B Fp (2.2.4)
Energy
De _ > _ > . -»> -»> ->
PP =PV VAT E-T.q+ Qp + (Vp - V) Fp (2.2.5)



pp e = - Qp (2.2.6)
where
D _3 ,v. =
Dt = a—t_+ v v (2'2°7)
D >
D_3_ -
bt = 5t + Vp .V (2-28)
-> -p_E - ->
Fp = z (Vp - V) (2.2.9)
_.m
T, T Emon (2.2.10)
. 1
= — - T L.
Qp = ppcp (Tp ) (2.2.11)
mC
= —2P
T % Tk (2.2.12)
-

T, T, and § are the usual stress tensor, rate of strain tensor, and

heat flux vector for the gas and given by

-5
T=2uw+a(v -oNT (2.2.13)
>
s ’7 [V + (7)1 (2.2.14)
g = -k VT (2.2.15)

where 1 and A are the first and second coefficients of viscosity of the

. .
gas, k the gas thermal conductivity, and (W) the transpose of vV.

14



It is of interest to note that the limiting cases for rv+0 and
1+ =. With Eq. (2.2.9), the momentum equations (2.2.3) and (2.2.4)

can be rewritten as

> DV
V. _sp45 <_, DD
p'ﬁf = . 9P +V 71 pp bt (2.2.16)
DV 0
PP _ Py .V
op e - (Tp - 1) (2.2.17)
When T, > 0, Eq. (2.2.17) gives
Vv =7 (2.2.18)
p
and thus Eq. (2.2.16) becomes
<5
(1+c)pPp=-P+7.7 (2.2.19)
where
o}
¢ = -52 (2.2.20)

Egs. (2.2.18) and (2.2.19) show that when t, > 0 (i.e. equilibrium
flow) the particles move with the gas at each point, and that the

flow for T, > 0 is identical with the flow of a pure gas with an
effective density p* = (1 +c)o. The solution for the dusty gas flow

at the Reynolds number Re is then equivalent to the solution for a pure
gas at the increased Reynolds number Re (1 +«). In the other limiting

case as t, »», we have, from Eq. (2.2.17),

v
DV
—g—tﬂ= 0 (2.2.21)
and hence Eq. (2.2.16) becomes
->
0 %% =-F+7 .- (2.2.22)
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Eqs. (2.2.21) and (2.2.22) reveal that, when 7 = (i.e. frozen flow),
the particles move with constant velocity, and the presence of the
particles does not change the gas quantities.

It is also important to note that, owing to the lack of random-
ness in local particle motion and the rigidity of the small solid
particles, there are no pressure and viscous stress terms appearing in
the momentum equation for the particle phase , as shown in Eq. (2.2.4).
And the usual relation for the first law of the gas, Eq. (2.2.5), is
modified By (a) the heat addition Qp from the particle phase, and (b)
the dissipative work (Vp -V . ?p due to particles moving to the gas.
Furthermore, it follows immediately from Eq. (2.2.4) that

D v?@
e (B -V Fy (2.2.23)
This means that the work resulting from gaseous drag on the particles
affects only the kinetic energy of the particle cloud.
In the following analysis, it is more convenient to employ the

energy equation for the gas in the enthalpy form:

D

=gf_3_ > = = . > . TV .
PRE Dt W-F g+ (T -T) Fp (2.2.24)
With dh = deT and dep = CdTp, the governing equations can be recast as
Mass
) -
S+7.o0=0 (2.2.25)
el ppr =0 (2.2.26)
Momentum
' - - P
p9%=-vp+v-‘?.+-2(’\7 - (2.2.27)
T, P



-5
DV p
PP-__Pw .V
Bt 7, (p V) (2.2.28)
Energy
DT _ DP = . = -
o Cp P W+ v :(kVvT)
C o) > ->
2%+ oy -2
t3p o (Tp-T+= (v, - V) (2.2.29)
ryv v
D.T o C
Pp__2pp -
pp c DE 3 Prfv (Tp T) (2.2.30)

where C is the specific heat of the dust particles. The set of equations
becomes complete with the addition of the equation of state for the
perfect gas

P = pRT (2.2.31)
Therefore, there are eleven equations for eleven unknowns: o, o_, P,

p
v, Vp, T, and Tp.
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2.3 Linearized Equations

Consider a uniform ambient state, denoted by the subscript
nought, and the perturbations about this state. We introduce non-

dimensional primed perturbation variables and write

P=P (1+p')

p=py (1 +0')
0y = pPO(1 *ep )
T=T,(1+T")
= + !
Tp To (1 Tp )
> >
v =a, v (2.3.1)
> >
Vp =a.o Vp
wo= g (1 + ué )
k = ko (1 + k')
= <+ !
Cp Cpo(] Cp )
Ty T Ty (1T )

where |p'| << 1, and so on for the other primed variables. a,

denotes the isentropic speed of sound in the ambient gas and is

given by

2 -
d, =Y Po’?0 (2.3.2)

18



y being the ratio of the specific heats of the gas. Further, we define

the nondimensional quantities for time and position vector as

i} L., 2
T = t/'rc s Te ..\Jo/ao (2.3.3)
> T .
r=r/l. s L, =v /a, (2.3.4)
-5
where r is the dimensional position vector, and
So Tiglto = (2ug * Ag) /oy (2.3.5)

is the effective viscosity. If we evaluate the second coefficient

of viscosity by Stokes approximation, A = +2u0/3, then we have

(2.3.6)

The dimensionless del operator will be denoted by V= &

>
ar
The governing equations can now be linearized under the
assumption that the primed quantities and their derivatives are small.
In terms of the nondimensional variables, the linearized governing

equations can be written as

Mass
39' +|
ot + v.\V'=20 (2.3.7)
3p' -
P Ly =
o + v Vp 0 (2.3.8)
Momentum
> > V) >
ﬂl--ﬂ ] _0 1
el +v(v.V)-—wx (xxV')

Y
0
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() '
+ :;-(le - V')
v
->
YN >
A
T*
v
Energy
BT' =Y"] apl } 2 ] 2 KO ] 1
T Y pr T 30 (Tp -T)
r ro Vv
oT!
P _-._2_¢ - (T8 - T')
3t 3 P e p
ro v
State
Pl = pI +Tl
where
Pro T Cpo/ko
Pr L Cpo_/ko 3 Pro

* -
Ty F Ty T
a = Cpo/C

K = Dpo/po

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)



-

Eqs. (2.3.7) - (2.3.13) constitute a closed set for P', o', p* , V',

> p
1 s l’ T .
Vp T', and D
To obtain an idea of the numerical values of TVO’ Teo Lc, and
n . consider air with n = 1.912 x 1074 gm - en! - sec”!, Py =

3 1

1137.35 x 10°° gm - ¢cm ~, and a, = 35356.8 cm - sec .

Then for
spherical particles of radius ¢ = 1.00 u, pg = 2.0 gm - am? f:de.0

= 0.01, we have the values as shown in Table 1.
TABLE 1

NUMERICAL VALUES OF SOME PARAMETERS IN
THE AMBIENT GAS-PARTICLE MIXTURE

0 -
= g--é-az 2.325 x 10”2 sec
0 0
_ Vo _4 Yo -10
e i B} 1.000 x 10 sec
¥y Po 39

6.338 x 10°% cm

C 3 o %o
0
p 3k p -
no=—2=_00 1.358 x 10° cn3
0 4wc3ps

where U is the number of particles in a unit volume of ambient

mixture.

2.4 Reduced Equations

The Tinearized problem can be simplified further by

restricting ourselves to flows that are irrotational by virture of

21



symmetry; vx.;' =0, vx.Vb = 0 identically. For these irrotational
flows, we write
) >
Vi = v¢ (2.4.1)
>
Vb‘ =V ¢p (2.4.2)

where ¢ and ¢_ are the gas and particle perturbation velocity potentials.

p
The momentum equations (2.3.9) and (2.3.10) can now be integrated once
and the time-function of integration can be set into zero without

loss of generality. The governing linearized system of equations then

becomes
Mass
30 42 =
o +y-¢ =0 (2.4.3)
op
hitid HE
o +v 4p 0 (2.4.4)
Momentum
N A AT (2.4.5)
’L'""_Y v $ T’\\‘,¢p-¢ e T
= - 1 -
o T (6, = ¢) (2.4.6)
v
Energy
3T' _ y=1 3P 1 w2 0 LT
e vor'* . (Ty - T) (2.4.7)
ro row
oT
__L=_g__‘§__. '_ ]
5 3 > < (Tp T") (2.4.8)
ro W



State

Pl=pl+Tl

The equations (2.4.3) - (2.4.9) can be combined by elimination into a

single seventh-order equation for ¢:

4 2 2
C] v ¢rtr -V (CZ ¢tr - C3 v ¢)TT * C4 ¢
2 2
-V (CS ¢TT - CG v ¢)T * C7 ¢TTTT
- v (C = Cy 72 6) + (Cop 6 - Cin ¥
8 $1r 9 10 %zt 1
where
* %
Co= v T
1 a
% %
T, T *
Cp= LT (y + PP
] * * * *
C3 =5 (ry o *yrp * ayry)
Cq
_ 1
Cs = &

Cy

] * *
= E(a‘rv + tT +.a‘y)

*

P
r * *
= L[rp () + 1, (o + ve)]

23
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TTTTT

* k% *_ % , * *
{r, =P * TT[Pr + y(1+Ko)].+ Tv[(YKo + a)Pr + ay]}

(2.4.

(2.4.

(2.4.

(2.4.

(2.4.

(2.4.

(2.4.

(2.4.

(2.4.9)

10)

11)

12)

13)

14)

15)

16)

17)



O
[l

'I * % * * *
83 [1:T P + 1, Pr(a + Ko) + Pr(oz + ’YKO) + ay(l + Ko)]

(2.4.18)

Cg =] (2.4.19)
*
Pr

C'IO = — (1 + KO) (e + YK‘O) (2.4.20)
*
Pr

CH == (¢ + Ko) (2.4.21)

Eq. (2.4.10) is the key equation in the present analysis, which is an
extension of the linear wave equations for pure gases (i.e. % = 0)

studied by Lick (1967), Rasmussen and Lake (1973):

4 2 * 2
Y7 6 -V [y + P e . - Vel
2
% =
+Po (o, -7 4) =0 (2.4.22)

The last two terms in Eq. (2.4.10) are the lowest order terms and are
related to the classical wave equation associated with inviscid acous-
tics. The higher-order terms reveal the combined effects due to the

viscosity and thermal conductivity of the gas, and the presence of the

particles.

2.5 Initial and Boundary Conditions

We now consider a semi-infinite particulate suspension,
initially in equilibrium, that is disturbed at a given instant t = 0,

by an impulsive temperature increase at the boundary end wall at x = 0,
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as shown in Fig. 2.

The initial conditions for the perturbation variables are

P' (x,0) =0

p' (x,0) =0

oy (% 0) =0

T' (x, 0) =0

T, (%00 =0 (2.5.1)
¢ (x, 0) =0

¢y (x5 0) =0

by (x5 0) =0

bpx (X2 0) =0

The potential can be determined to be within an arbitrary constant,
which is chosen such that ¢ and ¢p vanish at t = 0.
The boundary conditions are that the perturbations must vanish

at infinity, and that the velocities u' = ¢x and u_ = ¢px must vanish

p
at x = 0 for all times, i.e.,
u' = ¢X (0, 1) =0 (2.5.2)

(0, ) =0 (2.5.3)

The problem before us is to solve the equation

4

3¢ 2 2
TTT _ 3 - 3 ¢
C1 8x4 axz (CZ ¢rr C3 axZ)rr * C4 ¢TTTTT
2 2
2 - 39
- BXZ (CS e CG ax2)r * C7 - (2.5.4)
2 2 2
3 3¢ 3 9y .
-—5(Cq¢__~-C ) + (Con 0 _ = C ).=0
sz 8 Tt 9 aXZ 10 "t7 11 axZ T

subject to the above specified initial and boundary conditions.
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CHAPTER 3
LINEAR SOLUTION

3.1 Solution by Laplace Transforms

The Laplace transform of a function f(x,t) with respect to t

is defined as o

L {F(x,t)} = F(x,s) = f &St £(x,t) dt (3.1.1)
0

where s is a transform variable. A solution can be obtained by trans-
forming Eq. (2.5.4) by means of (3.1.1). Before this is done, however,
it is necessary to evaluate the initial value of the time derivative of ¢
that are involved in the transform of Eq. (2.5.4). It can be shown, from
the momentum equations (2.4.5) and (2.4.6), that ¢, and higher time

derivative of ¢ vanish at v = 0, that is,

o (x,0) =0 s ¢__ (x,0) =0
t R (3.1.2)
brpp (%00 =0, 6 (x,0) =0  etc.
With these conditions, the Laplace transform of Eq. (2.5.4) gives
4. 2-

d ¢ + A d_ﬁb_ + A 3 =
— ¢ =0 (3.1.3)
dx4 1 dx2 2

Where ¢ (x,s) is the Laplace transform of ¢ (x,t), and

A1 = 3 7 (3.1.4)
(C] s” + Cys” +Ccs+ Cg)
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5 4

3
) (C4 s” + C7 ST+ C10 s”)

A

(3.1.5)

2 3 2
(C] s¥ + C3 s© + c6 s + cg)

Eq. (3.1.3) is a fourth-order homogeneous ordinary differential
equation. The general solution for ¢ is

o (x, 8) = B e'Alx + B, e™h2 X 4 Bs eljx *+ B, e*2 X (3.1.6)
where By, B,, By, and B, are constants of integration and

/A1i"r’*12'4’*2
M,o2® 5 (3.1.7)

in which the plus and minus signs refer to A and Aps respectively.

Since ¢ vanishes at x» , B3 and 84 must be zero. Thus, we have

. “Aq X Ay X
¢ (x5 8) = B1 e + 82 e (3.1.8)

Further, by the aid of the boundary condition

we find
B, = - —8B (3.1.9)

Substitution of Eq. (3.1.9) into Eq. (3.1.8) results in

% (x,s) =By (e -—e (3.1.10)

Hence, there remains only one constant for the solution.
The transformed flow variables can be found in terms of &

by means of the transform of equations (2.4.3) - (2.4.8):
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Uv (x, s) = $x (3.1.11)
u', (x,8) =9 =l—— (3.1.12)
P PX 145
v
-| - ] - K’O -
T' (x5 8) = (y+35) &, = vs (1 + ——)% (3.1.13)
1+s t*
TGS =gy T (3.1.14)
5(x, 8) = - 23, (3.1.15)
- 5xx
5! (x,s) =- (3.1.16)
P s(1+s )
- - Ko -
P (xy 8) = b - vs (1 +#——— )3 (3.1.17)
1+s
v
where
g=2_8 (3.1.18)
3 P t*
ro v
- ->\-[ X '}\2 X
b, = - By 2y (e -e ) (3.1.19)
“Ay X Ay =A, X
Boy = Byh2 (e ] "*Tze 27 (3.1.20)
The constant B1 can be determined by the boundary condition for the
temperature at x = 0, which is given by
TH(0,s) = rsY? (3.1.21)
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or

T (0, 7) = Zn/f? (3.1.22)
Here, ¢z is a small dimensionless parameter determined from Eq. (3.1.22)
for some given value of v such that T' (0, t) << 1. Substituting Egs.
(3.1.10) and (3.1.20) into Eq. (3.1.13) and evaluating the value at

x = 0, we obtain

T (0, 5)
By = . - (3.1.23)
- 1 Ys —0
(A = %) Hx+s)x1+12(1+1+5‘%)]

With these results the solution for the transformed problem is now
complete.

The above transformed expressions cannot be inverted exactly
in closed forms. However, asymptotic expansions valid for large

time, 1 , can be obtained.

3.2 Solution for Large Time

The solution for large time, t»= , can be found by expan-
sion of the Laplace transform for small s. In the limit s+0 , the

appropriate expansions for A and Ao defined in Eq. (3.1.7), can be

written as
A =y B[ +by s +0(s5)] (3.2.1)
Ay = 2,5 [1+bys+0 (s5)] (3.2.2)
where
/-1
a] = t—g— (3.2.3)
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2 2

C. C.2 = Cy Cn Cyq + Ca2 C
=6 “1 %% "% b (3. 2.4)
1 -2 C. C,,2
9 ‘11
C
/ 0
a, = = (3.2.5)
2 2
Co Cinl = Co Cyn Coqg + Cq C
b9 %0 "% Yot t 8 Oy (3. 2.6)
2 2 C.n Ci 2
10 41

It is noted that, to the lowest order, M varies like /s and hence is
associated with diffusion; whereas Ay varies 1ike s and hence leads
to wave behavior. Furthermore, since aps b1, 2y, and b2 are func-
tions of the coefficients of the lower-order terms of Eq. (2.5.4),
it follows that, for large time, the lower-order terms of Eq. (2.5.4)
dominate the motion of the suspension. The general features of the
solution for large time can be deduced directly from Eq. (2.5.4).
Initially the motion is diffusive in character as can be seen from
the sixth and seventh terms. A wave which travels at the speed
(Cg/Cg)U2 tends to form, as shown by the eighth and ninth terms.
This wave decays and finally a wave propagating at the speed ((:n/Cm)V2
is formed, as shown by the last two terms. The last wave then diffuses
out due to the combined effects of viscosity, thermal conductivity,
and particles.

Substitution for A and Ao from Eqs. (3.2.1) and (3.2.2)
into Eq. (3.1.23) yields

B1=H—°—2ﬂ[1+0(/’§)]

4
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or

B, =;2£;-37'2-[1 +0 (/5)]

(3.2.7)

With the above asymptotic expansions for Aps Ags and 31, we obtain,

from Egqs. (3.1.10), (3.1.19), and (3.1.20), the following expressions

for ¢, ¢,» and g .

=2 X
'lile

5(x’s)~i—(;§77'a

2
3

[AV)
wn

'A]X ‘sz

- e e
¢x(x,5)~-§-]'(g -5

5xx (x, s) ~ ¢ (°T7§ - —e

wn

'Azx

(3.2.8)

(3.2.8)

(3.2.10)

As a result, the Egs. (3.1.11) - (3.71.17) can be rewritten asympto-

tically to the lTowest order as

- =AqX =XnX
i'_~-._l(e ! -22)
= - -Aq X =AaX
_.L...!L..{.]_.( e 1 - e 2
- =Aq X -AqX
I ._e ]_Dgz
z 5372 S
=1 3 - ‘A-IX -AZX
B . I . e +D ‘:
S F s+ s STE
, -Aq X =AnX
o e ! +_a_2_g2
z 5372 a] S
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(3.2.13)

(3.2.14)

(3.2.15)



-p.l -}‘]X a '}‘Zx
’pl . 5, __e - 28 (3.2.16)
° & (s+q) /5 1 n
p! v (1 +) M0y (Ve ) SR
— Ly 521 e (3.2.17)
a, /S ay a,
where
D=—t—Tal -y (1+)] (3.2.18)
a, a 27 Y o " e
1 72
_ 1
n=— (3.2.19)
'rv*
and again
=2 __o
g-3 .
ro ‘v
(3,2.20)
Tv ~
- —?Q > e T -_%
c a,
It can be.easily seen from the above expressions that ﬁp', Tp', Bp'
= %* -'=-'-'=-'-'=-' =
0 when ¥ 0 and that up u, Tp T, pp o' when rv* 0.

This is consistent with our discussion for the limiting cases when
T e (frozen flow) and rv* = 0 (equilibrium flow) in Sec. 2.2.

The inversion of the terms involving Al can be accomplished
by means of standard Laplace-transform tables. On the other hand,
the terms involving 12 can be inverted by using an alternative

asymptotic form for A (Rasmussen 1975):
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2 ap (Vs + b2 - b) + 0 (s°) (3.2.21)

>
N
{]

where

b=/ b, <0 (3.2.22)

here a, and b being the parameters pertinent to the wave front. With
these considerations in mind, the large-time approximations for the

flow variables are obtained upon inversion of Egs. (3.2.11) - (3.2.17).

3.2.1 Velocity Field for Large Time

The large time approximation for the velocity field is

u' o1 . - .
-c—- - ET [GZ (X, Ts a]) H-l (Xs TS azs b)] (3-2-23)

u '
—%— -~ ";—- [64 (x5 T3 a]s n) - H2 (xs T3 329 b,n)] (3.2.24)

c 1
where
=A X
-1 ,e !
a;x
= erfc (—
:
2
1 =z= £ 1 3
R P §
VT Z 93 470
a;X
2= —— s ® (3.2.25)
2
- XX
Hy ( ; b)-L']ez}x~2ab(/s+b2-b)
1x’T’a2’ = {E ) 2
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1 b (azx - 1) 4a2b X b (azx + 1)
= §-{erfc [———] + e erfc [ 13}
T
(3.2.26)
~A X
6 (% w52, n) =L e
-ia xv/n a,x
=-% e " [e 1 erfc (—— - i vt )
2/t
ia]x/ﬁ a;x 1
+e erfc (— +1 /at )] , n=—% (3.2.27)
2/7 Ty
y e-xzx
H2 (xs TS aza b,n) =L {S g }

232b2x-nt -2a2b2x V1-(n/b%)

_ 1 a,bx -
=5e {e erfc [T277 _ by /]_(n/bz)]
T
2 2
2a,b V/1-(n/b") a,bx —_—
+e 2 erfc [2— + bva/1 - (n/b%)1}  (3.2.28)

T

The features of the solution for the gas velocity distribution can be
deduced from Eq. (3.2.23). Initially the motion is diffusive in nature
as can be seen from the first term 62 (x5 T3 a1)é Far away from the
wall G, (xs T3 al) dies out at least like z™'e~? , where z = a1x/2/?,
and a wave traveling at the speed (az)'] is formed as shown by the
second term H1 (x, T3 355 b), which corresponds to a compression wave
traveling to the right and an expansion wave to the left.

By combining Eqs. (3.2.5), (2.4.20), and (2.4.21), the wave
speed can be written as
// @ * ok,

+ Ko) (o +‘YK°)

DL L

=

W 32

(3.2.29)
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or, for the dimensional speed,

t- o+ KO
Vw = a Vw =3, /1T 7 Ko) © +Yr:0) (3.2.30)

It can be readily seen from this equation that Vw = 3,8 k, = 0, i.e.,

)
in a pure gas the wave propagates at the isentropic speed of sound.

It can also be seen from Eq. (3.2.30) that Vw decreases as Ko increases.
ppolpo
particle mixture decreases when the number density "o of the particles

Note that Ko = = no m/po. Thus, the wave speed in a gas-

increases. Moreover, Eq. (3.2.30) shows that the wave speed is not
affected by particle size; but, as will be seen later, the particle
size does affect the wave thickness. The variation of the wave speed
v . . .
V, With g  is shown in Fig. 3.
To observe the behavior of the decay of the wave, let us

define the thickness of the wave front as

(aH,)
§ = -le"Ei (3.2.31)
( 1
9% “max
From this, we obtain
_ /1T
§ = 2a2b (3.2.32)
or, in terms of the physical quantities,
- /n ;‘0 t
§ = -m— (3.2.33)

Thus, in the Tinearized theory the wave front spreads out like J@ot.

The effect of the thermal conductivity of the gas comes into play
P, P,V
through Prandtl number P; = -Q—EQ——2~, and is then simply to diffuse
0

35



the wave with a diffusivity ko/C

~

Vo© It is noted that

0o Po in the same manner as viscosity

az = fn (KO’ a) (3.2-34)
b = fn (KO’ T;, P:, a) (3.2.35)

and

T
el (28 (3.2.36)

where ois the radius of the particles. Hence the effect of particle
size on the wave thickness is reflected through the factorb. It can be
shown that b decreases as ¢ increases. Therefore, from Eq. (3.2.33),

§ increases when the particles become larger. It can also be shown

nom - .
that a,b decreases as «, (= —%3—) increases. Consequently, § increases

when the number density of the particles increases.

The physical explanation of the diffusion of the wave front
due to particle effect seems to be that the relative motion of the
dust particles and the gas will dissipate energy because of the drag
between the two phases. When the particles become larger, or the
number density of the particles increases, more energy dissipation will
be generated. And this causes the further decay of the wave.

It is interesting to note that the viscosity of a suspension
of small particles is higher than that of a pure gas. Einstein
(1905), in his studies on the theory of Brownian motions, found that
the viscosity of a suspension of small, solid, spherical particles
should be increased by a factor proportional to the total volume of

the spheres suspended in a unit volume of the mixture. Einstein's
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formula can be written as

=
H

s = ¥ (1+2.5 Qo) (3.2.37)

or

=
[

p
0
s = ¥ (1+2.5 Ko ;;) (3.2.38)

where B is the viscosity of the suspension, Ho the viscosity of the
ambient pure gas, and 50 the volume fraction of the particles in the
ambient mixture. Eq. (3.2.38) reveals that the viscosity of the gas-
particle mixture increases when the density ratio %o increases. It
follows that the energy associated with wave will decay faster in a
suspension than in a pure gas. Einstein's theory greatly enhances
the basic understanding of the present subject.

The effect of the particle size on the wave front is
shown in Fig. 4 in which Hy (x, T3 2y, b) is plotted as a function of
x for various values of particle radius &; while the effect of kg ON
the wave front is illustrated in Fig. 5 where various values of T
have been examined.

The velocity distribution for the particle phase appears
to be more complicated than that for the gas phase in that a certain
relaxation time is needed for the particles to follow the gas. This
is simply because a dust particle in the gas has a much larger inertia
than the equivalent volume of gas and will not therefore participate
as readily in the velocity fluctuations.

In order to have a physical insight into the field properties

of the particle phase, it is necessary to further simplify the

functions 64 (x, T3 as n) and H2 (x, 13 P8 b, n). Recall that
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n = 1/r3. In the usual case, rc is very large, i.e., n is very smail
(for example, rz = 2324.71 and n = 0.00043 for & = 0.1 u). The

variation of rz with & is shown in Table 2.

TABLE 2
VARIATION OF rt WITH o

(minon) Ty (mizron) i
0.1 2.32 x 10° 0.6 83.56 x_10°
0.2 9.30 x 10° 0.7 113.88 x 10°
0.3 20.92 x 10° 0.8 148.74 x_10°
0.4 37.18 x 10° 0.9 188.24 x 10°
0.5 | 58.10 x 10° 1.0 232.47 x 10°

This suggests that G, (x, T3 a;, n) and Hy (x, T3 35,b, n) may be
expanded asymptotically in terms of n. After a series of tedious

algebraic manipulations, we obtain

G4 (X, TS a]’ n) = 62 (xs TS 31) +n Gz (X: Ts a]a n),
n << 1 (3.2.39)

HZ (Xa Ts az: b; n) = H1 (X, TS aza b) *n Ha (xs TS aZ’ b: n),

n << 1 (3.2.40)

where

Gy (x, t3 ay, n) = Gg (x, 73 a;) *n Gy (x, 15 39) +0 (nz),

n << ] (3.2.4])
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HE (X, TS az, b, n) = H4 (Xs TS aza b) +n H5 (X, TS 329 b) +0 (ﬂz)’
n << 1 (3.2.42)
and where

a] X

/T R Y
Gg (X, 73 a]) = a;x -% e - (7 3y x"+t)erfc( )

2V

(3.2.43)

4.4
2 a, X as X
6 (x, T3 ay) = (% + %-a12x21 + ;4 ) erfc (—35)

a12x2/4r

T2 a, X a. X -
- [5 (_L) + 2 (_1__)3] e

(3.2.44)
3/ 2/t 2/t

b (azx - 1)

H4 (x, T3 a5, b) = %- {(azx - 1) erfc [ ]

4a bzx b (a2x + 1)

- (a2x +1)e 2 erfc [———]} (3.2.45)
VT

T

T

b(azx-r) 2

1 a2x/r -[——1
H5(x,r;a2,b)=§-{-—b—.;e /T

a X b (a,x -1)
+ [3 (ax -1)% + 2] erfc [—2——
22 4b2 T

2
a,x 4a,bx b(a,x +1)
+ [z (apx +1)% - Zﬁgl e 2 erfe [—-:é:————i

(3.2.46)
Upon substituting Eqs. (3.2.39) and (3.2.40) into Eq. (3.2.24), we
find that

'%‘ ~<§T [6F (x, 5 a;, n) - HE (x, 735 a,, byn)],
n << ] (3.2.47)
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The function Gz describes the diffusive-type relaxation of the
initial disturbance of the particles caused by the interaction with
the gas through drag. As for the gas phase, the disturbance at x = 0
is balanced out by the wave term H§ (x, T3 P b, n), which also
corresponds to a compression wave traveling at the speed (az)']

to the right and an expansion wave at the same speed to the left.
This therefore satisfies the no-slip boundary condition. In order

to fit the zero-velocity boundary condition far away from the wall,
there exists a maximum value near the wave front, as shown in Fig.

6 in which the velocities u'/z and u'p/; are plotted as functions

of x for various values of t. When n is very small, the Tower order
terms GB (x, T3 a]) and H4 (x, 3 2y, b) dominate the velocity dis-
tribution, as can be seen from Eqs. (3.2.41) and Eq. (3.2.42).
Furthermore, it follows from Eq. (3.2.47) that up‘ = 0 whenn =0,
and also from Eq. (3.2.24) that up' = y' when > . Figure 6 clearly
shows the relaxation process experienced by the particles for a

given finite value of n.

The resulting process associated with the initiation of the
motion may be described as follows. The temperature jump at the
boundary end wall causes a pressure wave that moves away from the
wall through the ambient medium. The heat flow from the hot surface
raises the adjacent layers of gas to a higher temperature and initiates
an expansion of gas. The expansion of gas then causes a motion of the

particles due to viscous drag.

3.2.2 Temperature Field for Large Time
The large time approximation for the temperature field is
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found to be

-m|—4

- G3 (X, TS 31) +D [Gz (xs TS 31) - H} (x, T3 329 b)]
(3.2.48)

T" T;
ZE ~'E - {G7 (X, TS a]’ 5) + D [Gs (X, Ts a], E) - H3(X,t;a2,b,€)]},

2 o
£ == . (3.2.49)
3 Pr0 T’\",
where
-A1X
. _.-1 ., e
G3 (x, 3 a1)-L {:37-2- }
— -a]2x2/4r aqX
=2 /% e - a;xerfc (—— (3.2.50)
2/t
] "A-;X
GG (X, TS a]s E) = L {S i £ }
] &t -1a1x/3 a;x
=ze (e erfc (— - ivEr
VT
ia]x/g a;x
+ e erfc (— + i/gt )} (3.2.51)
T
"X-IX
G7 (X, Ts a]s E) = L-] { g
(s +g) /5
. 8T Lja x/E a, X
=218 [ ] erfc (—l-- ivET )
2/t T
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ialx/E a;x
+ e erfc (— + 1 vt )] (3.2.52)
2/t
“AaX
1 e 2

H3 (X, T5 32’ bs E) = L- { }

s + ¢

2a2b2x-ar -2a2b2x¢1-(5/b2) a,bx

e {e erfe[-2— - bv/T /1-(£/b%)]

N —

T

2a2b2x/1- (2/b%) a,bx
e

erfc[

+ +b/T A - (g/62)]r (3.2.53)

T
In Eq. (3.2.48) the functions 63 (x, T3 a1) and 62 (xy T3 a1) are
associated with diffusion and describe the relaxation of the initial
temperature disturbance of the gas caused by the impulsive temperature
increase at the end wall. At x = 0, G3 (x, T3 a1) =2 %% , and

G, (x, 3 a]) is balanced out by H, (x, T3 255 b). Therefore

(0, ) =2 J3 (3.2.50)

which is in agreement with the boundary condition, Eq. (3.1.22). Far
away from the waldl, G3 and 62 die out exponentially, and again a wave
described by H1 (x, T3 a,, b) is formed.

Note from Eq. (3.2.54) that, for any given t, T' (0, t) can
be made as small as desired by choosing ¢ small enough. However, for
a given ¢, T' (0, t) becomes increasingly large as t increases.

The linear solution will therefore break down sooner or later for a
given value of . The range of validity for the linearized theory
will be discussed in the later section.

The nature of the temperature distribution for the particle
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phase can be examined by further simplifying Eq. (3.2.49). Expanding
the functions Gg (x, ©3 ay» £), 6 (X, 75 ap» £), and Hy (x, 15 3y, b, &)

in terms of £ , we have

65 (xs Ts a]s E) = Gz (X, TS a]) + g Gg (xs TS 319 g)a E<<]
(3.2.55)
G7 (xs TS a]9 5) = G3 (xs Ts a]) + £ G? (xs T 31, g)s g<<1
(3.2.56)
H3 (xs Ts aza b,E) = H] (X, T3 azs b) + £ Hg (Xa TS azs ba E),
g<<1 (3.2.57)

where
6% (x, 5 a5 £) = Gg (x, 5 a)) +& Gy (x, 73 a;) +0 (%),
g << 1 (3.2.58)
G; (xs TS a]’ E) = G]O (xa TS a]) + £ 611 (Xs Ts a]) +0 (52)3
£ << 1 (3.2.59)
g << 1 (3.2.60)
and where
1 a;X

610 (x, 3 a]) = (a1 Xt+ 3-a13 x3) erfc (—7:

T

a,x -a,2 2
3/r 2/t (3.2.61)

a. X
G1] (X513 a]) = - (%-a1x12 +-% a13x31 + T%ﬁ alsxs)erfc (El:)
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2.5/2 ax , ayx 4. -a,2x/4 (3.2.62)
-=—[B+9 ()" +2(—)]e

15/ 2/t 2/t

Substituting Egs. (3.2.54) - (3.2.56) into Eq. (3.3.48) gives

111— © - g{G% (x,7339,8) * D[GE(x,73a7,8) - HE(x,732,,b,8) ]},

z 7 1 6 1 3 2

£ << 1 (3.2.63)
The functions G; and Gg describe the diffusion of the initial

temperature disturbance of the particles. At x = 0, Gg and H§ cancel

each other, and G§ varies at least like -13/2 for small ¢&. When x is
large, the diffusion terms die out, and the motion of the particles is
dominated by the wave term H3. Finally, a wave propagating at the
speed (az)'.l " is formed. The temperature ;e}axation process of the
particles is shown in Fig. 7, where EL and —%— are plotted as

functions of x for various values of .

3.2.3 Density Field for Large Time

The corresponding large-time approximation for the density

field is

a

et~ | . . .2 .
z [G3 (Xs Ts a-l) + DGZ (Xa Ty a-‘) a] H-l (xs Ts aza b)]
(3.2.64)
o '
-2 ~'%_ + [Gs (x, T3 a]s n) + DG4 (xs T3 31, n)
4
- E; H2 (X, TS azs b, n)] (3-2.65)

where
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-}\-IX

-1 e
G (x, T3 a7, n) =1L {————}
5 1 (s +n) /s
; e'“T -ia1x/§ a;x
= [e erfc (— -1 /ot )
2/n 2/t
ia]x/E ax
-e erfc (— + i /n1)]
2Vt
= G3 (x, T3 a]) +n Gg (x, =3 as n)sn << 1 (3.2.66)
where
Gg (xs Ts a1s ﬂ) = G]O (X, Ts a]) + n G1] (Xa TS a]) + 0 (ﬂz):
n << 1 (3.2.67)
And again

G4 (xa TS a]s ﬂ) = Gz (X s Ts a]) +n Gz (Xs T 319 n),
n << 1 (3.2.39)

H2 (X, TS a2’ ba n) = H1 (xs T azs b) +n H§ (X, T 323 b, n),

n << 1 (3.2.40)
Substituting Eqs. (3.2.66), (3.2.39), and (3.2.40) into Eq. (3.2.65)

gives

—%_ “n [Gg (X, T3 a19 n) + DGE (xs LE) a]: n)

a
S (kT by 0, n <<l (3.2.68)
'

' p
The density distributions BE and —%— for both phases are shown in
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Fig. 8. Unlike the temperature distributions, the two terms involving
G, (xs T3 a]) and H, (x, 3 ay, b) (or G} (x5 73 a; » n) and H

(x5 T3 3,5 b, n)) do not cancel each other at x = 0. It is noted that
near the wall the density disturbances are negative. This is due to
the fact that the gas near the wall expands because of the sudden
increase in temperature at the end wall. When x increases the mixture
becomes denser and, like velocity distributions, in order to fit the
zero-density boundary condition far away from the wall, there exist

maximum values near the wave fronts.

3.2.4 Pressure Field for Large Time

The large time approximation for the pressure field is

[} (] - K )
%- “y [0 - ———;—gg—ﬂ G, (x, T3 a])
1
v (1 +«,)
t—— Hy (X 15 a5, b) (3.2.69)
172
where
T —a$x2/4r

G'I (X, Ts a'l) =L {'/—S_ } ‘/‘E (3.2.70)

The function G] (x, T3 a1) describes the diffusion of the initial
pressure disturbance of the gas. The disturbance at x = 0 dies out

like - V/2,

Far away from the wall G] (xs T3 a1) decays exponentially.

In fact, the first term of Eq. (3.2.69) is very small. The pressure
distribution is therefore dominated by the wave function H] (x, r;.az, b),
as shown in Fig. 9 in which p'/z is plotted as a function of x for |
various value of +t. It is interesting to note that the effect of H]
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on the pressure distribution is more pronounced for a pure gas with

P: =1 (i.e. Pro = 3/4). For kg = 0, the parameters 3 and a, become

a1 P:

a, = 1
Thus, Eq. (3.2.69) can be written as

By -Lye (x w5 gy

4
Py
X . )
+ ye= H, (x, T3 a5, b) (3.2.71)
r

It follows that the first term vanishes when P; = 1. The pressure
distribution for a pure gas with P; = 1 is therefore totally dominated,

to the lowest order, by the wave function H1 (x, 73 ays b).

3.3 Limitation of the Linearized Theory

For large time, the linearized theory predicts a wave with a
wave thickness increasing indefinitely with time 1ike vx. It is
expected, however, that the solution would be a steady-state wave
front with a finite amplitude. The continual spreading of the wave
front is an incorrect behavior that arises from the omission of the
convective nonlinearities. On the other hand, as mentioned earlier,

the boundary condition, Eq. (3.1.22),

T' (0, ©) = 2‘;Jé§

shows that, for a given ¢, T' (0, t) becomes increasingly large as

t 1increases. The linear solution is therefore not valid at 1+,

47



i.e., it is not uniformly valid. Eq. (3.1.22) leads to an estimate of
the time at which the linear solution begins to break down. Under the
assumption of linearized theory, the primed perturbation variables in
Eq. (2.3.1) and their derivatives are all less than order of unity.

This means that the linear solution becomes invalid when

(0, 7)) =2¢/7=0(1) (3.3.1)

or

(3.3.2)
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CHAPTER 4
NONLINEAR INTERACTION

For large time, the wave front in linearized theory is dominated
by dissipative transport effects. It is known, however, that, for pres-
sure waves in gases, the dissipative and nonlinear effects tend to
counteract each other. In order to delineate the balance between the
dissipative linear terms and the steepening nonlinear terms, let us

isolate the viscosity by means of the dimensionless parameter

v
e a% (4.1.1)

0

where L is some characteristic length pertinent to a given problem.
The parameter € is to be regarded as small so that the transport terms
can be balanced with the nonlinear terms, which are also small. We
then renormalize the variables appearing in Eqs. (2.3.3) and (2.3.4)

and define non-dimensional time and distance as

. at a 2 t
T=E = g =e 1 (4.1.2)
[0}
- >
-> - ea_r
sz=7£—=sF (4.1.3)
0

~ -> ~ -~
We note that v = eV , V' = ¢V , and Vs = sv¢p. In the new variables,

nth-order terms are proportional to e", and we can rewrite Eq.

(2.4.10) and display the lowest two orders as
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C C C

2 22 7 ~2 9 =2
(a" 9% = orx) = elgm ¢zzzn - V0 (go 02z - & V58]

e TT% 10 TTTT C10 C10

+0 (2) (4.1.4)

where
C a + k

2 _ 1 _°“11. 0

3 ~ a22 C]O (o + YKO) (T + KO) (4.1.5)

Thus as the viscous transport effects go to zero, the classical wave
operator prevails, and the first-order correction for small e arises
because of the next higher-order derivatives. The terms of order 82
in Eq. (4.1.4) correspond to the seventh-, sixth-, and fifth-order
derivatives in Eq. (2.4.10).

. (4.1.4) can be reduced further if we realize that to the

~2 2
Towest order Vv ¢ = TT/ae .

Replacing the linear space derivatives
on the right-hand side with the equivalent time derivatives then

yields, correct to order ¢,

2,2 v - oz = e (B ozzz ) + 0 (D) (4.1.6)

TTT
where we have integrated once with respect to T and set the function
of integration to zero, and where

8 Cq

4
e C]O

(4.1.7)

Eq. (4.1.6) does not account for the nonlinearities in the
problem. To obtain the lowest-order nonlinear correction, we
return to the original equations, omit the transport terms for

simplicity since they are already accounted for in Eq. (4.1.6), but
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retain the nonlinear convective terms. We replace the perturbation

quantities in Eq. (2.3.1) by P' = eE, and so on for the other primed

variables, and utilize the normalizations Egs. (4.1.2) and (4.1.3).

The governing equations then become

Mass
~ -> >
Bagovred -GN *+0(H) =0
aT
3P e +
_E+~. + v ~ + 2=
= VeV toev (ppvp) 0 () =0
Momentum
T - 2
z oV T ~ aV .o ~2
3—‘f+.<o-:-9+1—vp telp e+ 5, —L+v(x)
3T ar,zY T P a3
.V
+Kov(,—g-)]+0(ez)=o
<
> * 3V
V -V+e +—LP 49 (ez) = Q
P v o=
9T
Energy
>« aT p dIn . a2
SR el ¢ gD T12
3T 3T 3T o o1
P+ (GNCy F 1531 4o (2) -0
p ‘dTn Tp o plu - €
.. 3P % oT
- ro ‘v p 2y _
Tp T+ e e +0(e) 0
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(4.1.9)

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)



State

P=p +T+e(pT)+0 () (4.1.14)
where

YV = %Cb

v v

vp = V4,

These equations can be manipulated so that the following equation

for the perturbation potential is obtained to the lowest two orders:

2 =2 i} 2 .8 (3.2 i
3, Vo - ¢~ = e[Ey 02 Vo + - (V)" + E5 ¢rxs ]
+0 (9) (4.1.15)
where
3 2
g =2dr= ). Gor (v - 1) (4.1.16)
@7 Y Ry (o + KO)(d + ‘YKO)
k. (1 - v) K
- 0 0
I O CRTon B Sl R’ (4.1.17)
and where
dInC K
- 0o ,dIncC
6= (T, * = () (4.1.18)

p

The first two terms of order ¢ in Eq. (4.1.15) are nonlinear; while

the third term E3 ¢;;; is linear and is due to particle effect since
it is the only dissipative source in the derivation of Eq. (4.1.15).
This can also be easily observed from the fact that E3 = 0 when

k. =0, 1.e., for pure gas without particles the third term dissap-

0
pears. Thus; the diffusion term E3 ¢¥%§ is actually contained in
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Eq. (4.1.6) where the particle effect was considered together with
the other dissipative processes due to viscosity and thermal conduc-

tivity. It is also noted that, when C_ = constant and Kg = 0 (i.e.,

p

for thermally and colarically perfect gas without particles), E3 =0
and E2 =y - 1. Hence in this limit Eq. (4.1.15) reduces to the
form obtained from classical inviscid potential theory.

By combining Egs. (4.1.6) and (4.1.15), the full nonlinear
equation can be written, to the first order correction, as

a5 T80~ bpp = € [E) bung + Ep 6, T2 0 + 2 (70)2] + 0 (<)
(4.1.19)

Note that for pure gases (Ko = 0) with Cp constant Eq. (4.1.19) reads

*
1 -y-P
~ -2
a§ v2¢--¢;;= e l—=—T 9z +(y-1)¢:7 ¢
r
~ 12 2
L2 (777 + 0 () (4.1.20)

aT

In Eq. (4.1.19) the second-degree nonlinear terms appear to order e,
as shown, and the third- and higher-degree nonlinearities appear to
order ez. Therefore, the first-order corrections to inviscid acoustics
are the sum of the first-order linear viscous correction and the first-
order nonlinear inviscid correction. Our goal now is to examine
Eq. (4.1.19) with the terms of sz ignored.

The nature of the interaction of the dissipative and nonlinear
mechanisms can be observed by considering a one-dimensional boundary-

value problem. A series solution of Eq. (4.1.19) by a straight-forward

expansion in powers of ¢ will lead to secular behavior such that the
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first-order correction becomes as large as the zeroth-order term when
x=20 (e-]). We account for this behavior by the method of multiple

scales and introduce new variables defined as

*

e;=>”<-aer,x=e§< (4.1.21)

We further expand ¢ in a series of the form

-~ - * *
¢ (X, T3 e) =9, (£, X e) +eoy (e, X5 ¢)+. . .(4.1.22)

Applying Eqs. (4.1.21) and (4.1.22) to Eq. (4.1.19) leads to the

folllowing equation for % (E*, X)

2
F—_Iz_—'z-‘b*"‘d’ % ¢ **='%El‘2"¢ d* ok % (4.1.23)
2 0 X o0& 0% g 2 0g £ &
Note that U0 z ¢ , is the Towest order velocity contribution, i.e.,
0g
. 2
v =er+0(s) (4.1.24)
Further, let
E, + 2 E, + 2
* -~
n = —272 X = -2 5 e X (4.1.25)
* a251
v = - £, 5 (4.1.26)
Then Eq. (4.1.23) becomes
*
u .+ Uo U L=v U 4 & (4.1.27)
on 0g 0g &

This is the standard form for Burgers' equation, orginally used by
Burgers (1948) to study turbulent motion. It was first shown to be an
approximate equation governing waves propagating in one direction in a

compressible, viscous, heat-conducting fluid by Lagerstrom, Cole and

54



Trilling (1949). Lighthill (1956) later derived the same result more
systematically. Burgers' equation can be solved exactly (Hope 1950,
Cole 1951). A summary of the solutions of this equation is given by

Benton and Platzman (1972).

Note that the nonlinear terms of order ¢ in Eq. (4.1.19) lead

to the convective nonlinear term Uo U , in Eq. (4.1.27), and the
08
dissipative terms of ¢ in Eq. (4.1.19) Tead to the diffusion term

U 4, in Eq. (4.1.27). The effective diffusivity coefficient
0¢ & 2
* ae E]
v = = W> 0 (4.].26)

is a combination of the dissipative and nonlinear effects, which can
be seen from the parameters E](<0) and E2 in Eq. (4.1.19). Recall that
C C c
By = o - g+ (4.1.7)
10 3, Cp 250y

Thus, the origin of the dissipative part of v* can be traced back by
identifying the factors C7, C8’ Cg, and C10 in the original linearized
equation (2.4.10). For pure gases (Ko = 0, Cp = constant), Eq. (4.1.26)
reduces to
1+p "
*_Y‘ r

voE——
P (y +1)

(4.1.28)

Eq. (4.1.28) is identical to the result obtained by Rasmussen (1977)
when the term dealing with the binary-mixture diffusion mechanism is dropped,
which is a partial check on the correctness of our present analysis.

Note also that v* is related to the parameter b in the

linearized theory, Eq. (3.3.22), by the relation
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2

= . > (4.1.29)
2 (E2 +2) b

* a

AV

Thus, the linearized theory yields the correct combination of the terms
arising from viscous, thermal, and particle dissipation that contribute

to the breadth of the wave front, but raised to the wrong power.
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CHAPTER 5
CONCLUDING REMARKS

The problem of viscous, thermal conductivity, and particulates
effects on wave propagation in dusty gases has been studied in detail by
means of linearized theory. Laplace transforms were utilized to obtain
asymptotoc approximations for large times. The large time solution shows
a wave behavior with the wave front diffused out not only due to the vis-
cosity and thermal conductivity of the gas, but also due to the size and
number density of the particles. It was found that the wave front in
linearized theory spreads out indefinitely like the square root of time,
t. This leads to an estimate of the time at which the linear solution
breaks down. The failure of linearizations to yield a uniformly valid
approximation to the solution suggests that the problem at large times,
or far field, must be attacked by singular-perturbation methods.

It was shown that at the final stages the one-dimensional wave
front is governed by Burgers' equation. The incorrect behavior pertain-
ing to the associated linearized theory is delineated by the effective
diffusion coefficient v* which is a combination of the lowest order
dissipative and noniinear effects.

The present problem can be extended to account for the other
dissipative effects due to radiation, chemical reaction, mass diffusion,
or electromagnetic fields. Also spherical and cylindrical disturbances

might be studied fruitfully by this approach.
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Shock (taken from Carrier 1958 and Marble 1963)



Fig. 2. Geometry of the Problem
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PART II

A MODEL FOR TRANSIENT FLOW IN A POROUS PARTICLE
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CHAPTER I
INTRODUCTION

In Part I, the wave propagation in inert dusty gases has been
studied. This problem may be extended to the case when the gas contains
small porous particles. In this case, the field properties for the flow
from a porous particle, especially the flow behavior on the surface of a
porous particle, have to be determined. It is the purpose of Part II of
the present study to consider this point. Before proceeding to the dis-
cussion of our physical model, a brief description of Darcy's law, which

is essential to the flow through porous media, will be presented.

1.1 Darcy's Law

In 1856, as a result of experimental studies on the flow of
water through unconsolidated sand filter beds, Henry-Darcy formulated a
law which bears his name. This law has been extended to describe, with
some limitations, the motion of other Tliquids and gases in consolidated
rocks and other porous media. Darcy's law states that the velocity of a
homogeneous fluid in a porous medium is proportional to the pressure
gradient, and inversely proportional to the fluid viscosity, that is,

K 3P

V=-Eas . (].].])

where v is the apparent velocity, u the fluid viscosity,: and %g the

pressure gradient. The proportionality constant K is the permeability
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of the porous medium. It might be called fluid conductivity and is simi-
lar to the term thermal conductivity. The negative sign indicates that
if the flow is taken as positive in the s-direction, then the pressure
decreases in that direction so that the siope %% is negative.

The permeability K of a porous medium is one of its most useful
properties. It is independent of the nature of the fluid and is determined
solely by the structure of the porous medium. The capillary model (Parker,

Boggs, and Blick, 1969) predicts that
K= EVR s (1.1.2)

where & is the mean pore diameter, and ¢ is the effective porosity defined
as the ratio of the interconnected void volume to the total volume. Thus,
large mean pore diameters and large porosities are associated with large
permeabilities. The value for K calculated from Eq. (1.1.2) is somewhat
inaccurate, but it is useful for making estimates of K. For accurate
values of the permeability one must resort to experiments. It can be

seen from Eq. (1.1.2) that the permeability has the dimension of (length)Z2.
The unit of permeability is the "darcy". A porous medium of one darcy
permeability is one in which a fluid of one centipoise viscosity will

move at a velocity of one centimeter per second under a pressure gradient
of one atmosphere per centimeter.

The linear relationship between the pressure gradient and velo-
city described by Darcy's law, Eq. (1.1.1), is only valid in low-Reynolds-
number flow; for in high-Reynolds~number flow, the pressure gradient in-
creases faster than velocity. Therefore, in the high-Reynolds-number
regime, the modification of Eq. (1.1.1) to account for the nonlinear

effects is necessary. One suggestion for this would be to write the
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gradient %g-as the sum of terms of several powers of v. This has been
made by Forchheimer (1901) who set

%% = av + bv? (1.1.3)

and later by adding a third-order term:
%% = ay + bvd + cv3 (1.1.4)

Here, a, b, and c are constants. Another form was proposed by Missbach
(1937), who set
%£-= av" (1.1.5)

with n undetermined between 1 and 2. Several experiments concerning the
evaluation of the exponent n have been performed by many investigators.
The exact value of n, however, seems to vary from case to case so that no
universal correlation could be achieved.

The Timiting range of Reynolds number below which Darcy's law
is valid has been found up to the order of 10 (King 1940). Nevertheless,
for the great majority of the practical cases, Darcy's law holds for

Re 21 (see Muskat 1937, Sec. 2.2).

1.2 Physical Model

In this problem, we shall consider, at time t=0, a gas in equili-
brium inside a spherical porous particle of radius o, as shown in Fig. 1,
with temperature T = TO(I-A) and density p = p°(1+A), where o > 0. OQut-
side the particle the gas is in equilibrium with temperature and density
denoted by T = To and p = Po The pressures inside and outside the par-
ticle are the same, P = Po‘ As time goes on, the temperature difference

will induce a pressure gradient that, according to Darcy's law, causes
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the gas to eject from inside of the particle. The subsequent gaseous
motion for t > 0 is to be determined. For simplicity we assume that the
gases inside and outside the particle are of the same species so that no
mass diffusion would occur. Further, since the particle is very smaill,
it is reasonable to assume that the temperature of the gas inside the
particle is identical to the temperature of the particle. In this case,
the inner gas temperature can then be solved separately by the energy
equation. Furthermore, we assume that the Reynolds number is Tow enough
such that Darcy's law is applicable. Finally, we assume that the per-
turbation A is much less than unity so that the governing equations can
be linearized.

The methods used here are essentially the same as those used
in Part I. Asymptotic approximations valid for small times and large
times are obtained. As pointed out by Rasmussen and Lake (1973), the
Navier-Stokes equations are not valid when time becomes vanishingly
small. However, the solution for small time is still of some mathematical
interest. The large-time solution shows that there is a wave behavior
outside the particle, and that the wave fronts diffuse out by virtue of
viscosity. This wave behavior in low-Reynolds-number flow, however, is
not so pronounced as that in high-Reynolds-number flow. The mass rate
ejecting from the porous particles per unit volume, p, will be formulated.
With p known, the corresponding mass-, momentum-, and energy-source term
which appear in the governing equations for the flow in porous-particle
dusty gases can be found. These governing equations will be set up for
future research. For more general cases including vaporization and

chemical reactions, the governing equations will be derived in Appendix A.
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CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 Basic Equations

With the assumptions described in the previous section, the

governing equations for the flow of gas are:

r<o:

Mass 2+ 50V = 0 (2.1.1)
Momentum V= - £3Fp (2.1.2)
(Darcy's Law) H

Energy -%I = oy ver (2.1.3)

State P=pRT (2.1.4)
r>a

Mass %9 +T-oV =0 (2.1.5)

Momentum o %¥-= - Tp + VT (2.1.6)

bh _Dp <>, =7 _ 5.2

Energy Por =P T TV V - veq (2.1.7)

State p=op RT (2.1.8)
where K and % are the permeability and thermal diffusivity of the porous

particle. The other symbols are the same as those of Part I and are not

re-defined here. It should be noted that the assumption that T = Tp for
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the gas inside the porous particle has been used in Eq. (2.13), and that

the gas is thermally perfect.

2.2 Linearized Equations

We now wish to linearize these basic equations about a uniform

ambient state and write

T = T0(1 +T')

o = 00(1 tp')

P=p(1+P)

-> >

V = aOV'

(2.2.1)

po= uo(1 + ')

k = k0(1 + k')

Cp = cpo(1 + cp)

%p T %ol * aﬁ)

where, as before, a, defines the isentropic speed of sound at the ambient

conditions:
2 =
ag =y RTo (2.2.2)

Further, we introduce the non-dimensional time, tr, and position vector, v,

defined by
= 22470
T = aot/v0 (2.2.3)
-
> _ -~
r = aor/v0 (2.2.4)

where 50 = (2uo + Ao)/po is the effective viscosity. In addition, since
the present problem deals with spherical symmetry, we shall thus confine

ourselves to irrotational flow, and to introduce a velocity potential
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such that
->
Vi= 94

ar

(2.

where v = 3%-(the barred space variables are dimensional). Based on

2.5)

the above definitions and the assumption that the perturbations are much

less than unity, we obtain the following non-dimensional, linearized

governing equations:

r <ag:
'y 924 =
= + v =0
*
¢ =-Kp'
al' 271
B—T--a VT
PI=pI+TI
Y >a

P' = y(v% -%%)

3T' _ y=123P' 1

+ 5 v2T!

9T Y 9T p
r
P' =o' + T
where
K* _ KPo
HoYo

. .

ap = ap/vo

* _ ~

Pp = 0gv Cpo/ko

(2.
(2.

(2.

(2

(2.

(2.

(2.

(2.

(2.

(2.

(2.

Note that, in deriving equations (2.2.6) and (2.2.10), the momentum

2.5)
2.6)

2.7)

.2.8)

2.9)

2.10)

2.11)

2.12)

2.13)

2.14)

2.15)

equations have been integrated once, and the time-functions have been set

74



equal to zero.
It is convenient to find a single equation for ¢. This can be

done by the method of elimination. The equations for ¢ are thus found to be

r<g

V24 - ?%-%%'= él;. (2.2.16)
r>a0

YP%_- (Y +P )02+ Vo + P (s -7%) =0 (2.2.17)

where, inside the particle, T' can be solved separately by using Eq.
(2.2.7), and hence, in this region, ¢ satisfies a nonhomogeneous diffusion
equation. Outside the particle the equation, Eq. (2.2.17), is fifth order
and is identical to the form obtained by Rasmussen and Lake (1973). The
Towest-order terms in Eq. (2.2.17) are related to the classical wave
equation associated with inviscid acoustics.

For spherical symmetric flow, we have

Vo2 3%
U= S
]
2, = L
v2p = ~(re) . (2.2.18)
V4 =-l(r¢)
r rrre

If we set ¢ = rp, the Tinearized governing equations in terms of & can then be

written as
r<ao:
1 = p 270
er - E; @T =r e (2.2.19)
r>g
+p" * = 0 2.2.20
Yeppppr ~ (v r)¢rrrr'+errr'+Pr(°rr"°rr)r = (2.2.20)
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which have the same form for one-dimensional flow.

2.3 Initial and Boundary Conditions

Here we consider a spherical porous particle of radius ¢ that,
at time t=0, contains a gas with temperature perturbation T' = - A, where
0 < A << 1. We assume that the pressure inside the porous particle is
the same as outside and hence, P' = 0 everywhere at t=0. It follows from
the equation of state, Eq. (2.2.8), that p' = A inside the porous parti-
cle. Outside the particle, of course, ambient uniform conditions prevail
such that p' = 0. At t=0, the velocity is zero everywhere. Accordingly,

the initial conditions can be summarized as

r<o r>ag

T'(r,0) = -4 . T'Y(r,0) =0
p'(r,0) = a p'(r,0) =0
P*(r,0) = 0 P'(r,0) = 0
u'(r,0) =0 u'(r,0) =0
#(r,0) =0 o(r,0) = 0

where o = aOE/CO. The potential can be determined to within an arbitrary
constant, which is chosen such that ¢ vanishes at t=0.

The boundary conditions are that all the perturbations must be
zero at infinity and all quantitites must be finite at the origin, r=0.
The velocity u' must vanish at the origin for all times.

The problem before us is to solve for the flow quantities for
t> 0 by means of linearized governing equations subject to the above
specified initial and boundary conditions. The method of Laplace trans-

forms will be employed to obtain the asymptotic solutions for small times
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and for large times. The detailed analysis for the solution will be

presented in the next chapter.
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CHAPTER 3

SOLUTION OF THE PROBLEM

3.1 Solution by Laplace Transforms

In this section, we wish to solve Equations (2.2.19) and
(2.2.20) by means of the Laplace transforms. Before doing so, it is nec-
essary to evaluate the initial values of the time derivatives of ¢ that
are involved in the transform of Egs. (2.2.19) and (2.2.20). Since
#(r,0) = 0, ¢(r,0) = 0. Further, all the space derivatives of ¢ are
zero when t < 0 for both r < ¢ and r > ¢ since there is no velocity distur-

turbance for t < 0. At t=0, Egs. (2.2.6) and (2.2.10) give

$.(r0) =0 , 0<r<o

and hence

@T(r,O) 0 , 0<rc<o

The governing Equations (2.2.5)-(2.2.8) and (2.2.9)-(2.2.12) can be used
to show that the higher time derivatives of ¢ vanishes at t=0. With these

conditions in mind, the Laplace transform of Eqs. (2.2.19) and (2.2.20)

yields
Err - 2§ = s(rT') + ar r<o (3.1.1)
K
(ys+1) - [(y-I-P*)s2 + P*S]B +P'$3 =0 r>o (3.1.2)
rerr r r’rr r U
Note that the condition T'(r,0) = - A has been used in deriving Eq.

(3.1.1). For clarity, in the following step the solution for the trans-
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formed variables in the two regions (r < o and r > g) will be treated

separately.

(1) Solution for r < ¢

To solve for & in Eq. (3.1.1), the temperature perturbation
should be calculated first. This can be accomplished by making use of

Eq. (2.2.7) which can be rewritten, for spherical symmetry, as

(\T') = (0T (3.1.3)

Taking Laplace transform of Eq. (3.1.3), and noting that T'(r,0) = - A,

we have

- ——( ) = 5 (3.1.4)

This is an inhomogeneous, second-order, ordinary differential equation.

Solving for T! gives

T' (r<o,s) = ——-cosh (r//_3 + —-s1nh (r//§3 - % (3.1.5)

where B' and B are constants. Further, since T' is finite at the origin,

r=0, B' should be zero. Thus, Eq. (3.1.5) becomes

f'(r<c,s) =B sinn (r{/éég) -4 (3.1.6)
r a s
P
Substituting this equation into Eq. (3.1.1), we obtain
3 -=2-3=s58B sinh / ) (3.1.7)
oK

Again, Eq. (3.1.7) is an inhomogeneous, second-crder, ordinary differ-
ential equation. Solving for ¢ and using the condition that ¢ is finite

at r=0, we have

- K* of :
3(r<o,s) = A sinh (r /=) + 8B —;——g sinh (r//égb (3.1.8)
K K=o *p
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or
- K* ar
3r<o,s) = & sinn (r/i:) +B o Bsinn (v /3
K K g %o

It follows that

u'(r<o,s) = $r(r<°’5)

A{—/; cosh /—) -—z-smh (r /51
K K

K* a
+ B — 2 l % cosh (r / ) - *z sinh (r
K - oy p

On the other hand, taking Laplace transform of Eqs. (2.2.5) and (2.2.

yields

- - LA
0'(r<g,s) = = %%’Qrﬁ+§'
2

-P.'(Y‘<U,S)=’ *
r

=~

Further, substitution of & from Eq. (3.1.8) into Egs. (3.1.11) and

(3.1.12) gives

D) *
- Aﬁ;sinh (r/%gb --——gﬁ—;—sinh (r//gg
K K r(K -ap) *p
A S Ba? S
- 2. sinh (r/%gb - —2— sinh (r/l;S
rK K r(K -ap) *p

0p'(r<a,s)

P'(r<cg,s)

oy

+ 4
S

(3.

(3.

(3.

(3.

(3.

(3.

The constants A and B appearing in Egs. (3.1.6), (3.1.10), (3.1.13),

(3.1.14) can be determined from the boundary conditions at r=o.

(2) Solution for r > o

Solving for & from Eq. (3.1.2) and taking into account the

dition that ¢ vanishes as r - », we find for r > ¢ that

80

1.9)

1.10)

(o))
~—

1.11)
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3(r>a,s) = C e M 4 p e~r2r (3.1.15)

(y+Ps2 + Ps +s Aly-P)s+P TP +4(P - 1)Ps %
r r r
A2 = AERD) } (3.1.16)

and C,D are the constants to be determined from the boundary conditions
at r=o.

%*
For simplicity, we assume Pr = 1 and obtain

}\1=/S-
(3.1.17)

s/(1+ys)®

Ao

*
The assumption P, = 1 was also used by Rasmussen and Lake (1973).
%*
Choosing Pr = 1 is not a severe limitation on the analysis and greatly
simplifies the expressions for A; and i, so that the inversion of the

transforms can be facilitated. Recall that the Prandtl number was defined

as . i
0¥ 0"0%po _ Vo Po¥alpo _ 2o Ag Hobpo
r Ko Vo Ko %o Ko

If we evaluate the second coefficient of viscosity by the Stokes approxi-

*
mation, A = - 2u°/3, then we have Pr =4y C /3 ko’ Thus, setting

0 0°po

P: = 1 is equivalent to setting the actual Piandtl number equal to 3/4,
which is quite in accord with actual gases such as air. Therefore, the
assumption P: = 1 will be utilized from Eq. (3.1.17) on through the re-
mainder of this analysis.

The transform of velocity can be found from u' = ¢, as

i'(r>0,s) = {ré-3) (3.1.18)
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Moreover, by means of the transform of Eqs. (2.2.9) and (2.2.10), we

find that -
b
=1 = . rr
o'(r>ag,s) = s (3.1.19)
P'(roa,s) =L (- s + 3,.) (3.1.20)
Finally, substituting for & from Eq. (3.1.15) into Egs. (3.1.18),
(3.1.19), and (3.1.20), we obtain
(1+ray) (1+rap) _
u'(r>o,s) =-C——rz"—"’ e “Ar D —zr e Aar (3.1.21)
e A
pll = o —_ a Al 2 a=Aol
p'(r>0,s) C—ce D=5 e (3.1.22)
- (a2 -s) _ _
P'(r>o,s) = ¢ ———e Mr oy X (x2-5)e Aar (3.1.23)

The transform of the temperature can be found from the equation of state,

T' = P' - 5'. We find that

T'(roo,s) = & [(1+ys)i2 - ys2] e7M1"

D 2 _ ye27 a-hal (3.1.24)
+ 1 [(1+ys)aZ - ys?] e
Note that, since A, = /s, A? - s =0. Thus, Eq. (3.1.23) becomes
P'(rsa,s) = DL (a2-5) 72 (3.1.25)

There are four constants, A,B,C, and D in the above transformed
expressions that remain to be determined. The four conditions needed to
determine these constants are that u', 5', f', and heat flux should be

continuous at r=c when t > 0, that is,
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'y _ -1 _=0 (3.1.26)
r=¢ r=g

{i'y _-4@'r ,=0 (3.1.27)
r=g =g

{P—i'—} _fa0 {_ai'_ = 0 (3.1.28)

areg” kpo o g

My _ =47y , =0 (3.1.29)

r=c r=o

where kpo and kgo are the thermal conductivity of the porous particle and

the gas.

The above continuity conditions result in the following equa-

tions which, in matrix form, can be written as

where

€11

€12

€13

€1y

(€17 £12  E13 £1] [A] [0 ]
€21 &22 &23 &a4 B 0
= (3.1.30)
€31 &322 E33 &3y C 0
| Ew1 Bu2 Euz Bun| | D] LA/SJ
1 . /s
—5 sinh (o /=)
oK ’ K
Q*
——— sinh (o /:—*)
o(K -a) p
(3.1.31)
0
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€21

€22

€23

I

€31

£32

£33

€34

Eul

Eu2

Eyu3

Euy

"

]/-cosh (c/)-—; sinh (0/-)

K* oX
— BT G* cosh (c/;)

(] +0'}\1) 'A]_O'
_‘—2_""0 ~- e

(1 +0'}\2) _)\20
—""2'—0 e

0

%/&-S-;— cosh (o /;—*) - 312' sinh (o
p

(] +Ul1) k
a<s

po
(] +O')\2) k

7 > [(1+v5)22 - ys2]

po

1 . S
5 sinh (o /g)

=2 [(1+y5)a2 - ys2]

S L(1+ys)az - ys2] MO

-1 -
55 [(1+78)a2 - ys2] 729

84

- L sinn (o/—)]

<3

(3.1.32)

(3.1.33)

(3.1.34)



Solving for A, B, C, and D gives

A , -
A=-— [A; sinh (o /a—fs-) + A, cosh (o /;Sg)] e~ (A1 +2)o

8 = [8, sinh (c/—) + B, cosh (c/—)] e~ +2z)e
¢=-2[c, sinh (o/‘) sinh /')
+ Cp sinh (o/_) cosh /_)
+ Cy cosh (o/i-—*) sinh (c/g%)
+ Cy cosh (0/;5_;) cosh (oﬂ%)]eﬁﬂ
D=2 5 [Dy sinh (o/Ki—*) sinh (a/f%)
+ D sinh (c/—f;) cosh ("/&'s—',.f)
+ Dy cosh (c/Ki_*) sirh (q/%)]e‘*1°

k
A= —2 221 (Tean) (14002) [(1+75) (a2 - 22)]

o5(K -a_) “po
K * k
(K -ap) kpo

+ 25 (1+o0) (3% -s)

N |—
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(1+a1y) (32 = $)[(1 +ys)a2 - y52]

(3.1.35)

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)



Ci

Ca

C3

Cy

* '/*
YK o k ]
o e = (1+00) (A2 - $)L(1 +vs)aZ - ys2]
N .
o (K -ap) po Vs

L 20 (14 aa ) (T +00,) [(1#48) (32 -12)]

k
- 522 (140002 - )L +ys)a2 - ys?]

k
522 L (1+001) (a2 - $)[(1+v5)22 - ys2]

po /s

L (1+aa,) + X5 (32-5)

g K

Vo*

k
B © 1 (140 (1 +ys)AZ - ys2]
o‘*(K*-a:) kpo /s :

-— (] +O‘>\2)

k
cq ]KF(K* *) po ,—S GAg [( YS) ¥S ]

- Y _ /5 (22 -
ok VE; : (Xz s)
—_— 2.
o Ay )
P
1 (1+
* 0')\1)
oK
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(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.40)

.41)

.42)

.43)

.44)

.45)

.46)

.47)



=
D, = —E——g—— (V+oxy)[(1 +vs)a% - ys2]

""(K -a ) po /s
D5 (14any) (3.1.48)
oK Vo
P
- a¥ k o1
D3 = =% o —= (T+o0)[(1+v5)22 - y52] (3.1.49)

ol /K*(K*-ap) Koo V5
and
g1 &12 &13 &1y
€21 €&22 &a23 &2y
Q = (3.1.50)

€31 €32 E33 &34

Eyl  &u2  Eu3 Euy

Expanding 2 gives

g = [9 sinh (¢ /) sinh (o /=)
K %p
. s 5
+ Q, sinh (o//:;) cosh (c//C;S
K %
+ Q3 cosh (o /Z) sinh (o f% J
K P

+ @, cosh (c’/l—:;) cosh (o /)1e™ M 220 (36
P

where
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= —JX __ (32 2 2
Q = — (22 - s)[(1+ys)r% - ys2] (3.1.85)
b4 o_,_i_ /K*a‘; 2 1
Tne above transformed expressions with these coefficients can

not be inverted in exact closed form. However, approximate expressions

valied for small time, v - 0, and for large time, t + =, can be obtained.

3.2 Solution for Small Time

The solution for small time t can be found by expansion of the
Lapiace transform for large s. For large s, the A-functions take the

form

(3.2.1)

s S 1 1 1
A2 = -2 L oLy
R AR Al

and thus, to the lowest order, are the same order of magnitude. Sub-
stituting Eq. (3.2.1) into Eqs. (3.1.39)-(3.1.49) and Eqs. (3.1.52)-
(3.1.55) yields

1 ]
Ay = s2[ay; + ayp — + 0(2)]
1 11 12 7 5
, (3.2.2)
1 1
Ay = s2[az; + apy — + 0(2)]
/S- S
By = s2[by; + blz‘%: + 0(%9]
VS (3.2.3)
- <2 1 1
Bo = s%[by; + byp ;: + 0(;?]
s
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a2

dzi

azz =

i1 =

Ci2

C21

C22

< K- (4 [
L " (Y-])a; k
o""(K* *go
- '“P)kpo-%-])
Y'])[ 3K**; g |
- 0
= oa (K -a;)k Y
) po c‘*/EF]
P
. =Dk
/§b3K*k -
-.[ po
1+
L+ (
” /_)]_Y.;LQ_
( ~ gt k : °
SRR "
03/E;.k :
b21/0
(y-1)/0%
1
vy o“K*
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(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)



Cs{

C32
Cul
Cy2
dyj

diz

w11

w12

(vy=-1)a* k

LRy
Yy o3/K' (K -a_ )k
p’ po
(y=1)o* k
= p g0, (y-1)
a*vK - K*
(K ap)kpo a*/K*
o {y-1)
o5/K*a
o1
vaSvK o
p
1
o%*K
di1i/o
Ya* k
p _"qo 1

53 K*- * = * —
( czp)kp0 a3K /a;
dai/o

a* k
p__do

= 3 ok *
a3v/K™ (K -ap)k

po
d3y/o
(Y'])kg
Yy o*K k
po
k
(=D - 1+ g0
po Y osK*k
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(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)



= - 1 - p_90 _ 1
wpy = (y-T1)[( /_) c“(K*-a )k c“K*/;g
wpo = (=1) (1 -'l;)

a>va K
P
k a*

={y-1) "g0 p¢d 4y P

w3y = = [(—=-1) ——-- 1]
o*/K" “po Vy (K -ap)
k

2 y=1) go
w3y = (1 -

2 aS/K* kpo

o _T-vy
w = pr———

4 o*vVK*a®
p
P
yo*vVK*o*

P

(3.2.19)

(3.2.20)

(3.2.21)

With the above expressions, the constants A, B, C, and D, given by Egs.

(3.1.35)-(3.1.38), can now be written for large s as

where

w

*

Ca1 * Ca1 + Cuy y Mo

w* S

day + d31 g A20

w* S

=wyy Ywyy tugy tuy

[]"‘Cl

S
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* ]

/s

[+ 47 =+ 0[]

+ (1)

(3.2.22)

(3.2.23)

(3.2.24)

(3.2.25)

(3.2.26)



x Q12 t Az sk

1]
—
1}

ayy + az1
b* b12 + b22 *%
S — -

1 7 byy + by

% Caz2 * C32 Jv
€1 7 ¢y + C3p + Cy1

¥ Gy +tdyp +d3p 4
d1 = -w

da; + d3;

sk
in which w is defined as

% W12 T wgpy t w3y

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

(3.2.31)

When the above approximations for large s are taken into account, in-

versions for velocity, temperature, and density can easily be found by

means of standard tables of Laplace transforms.

time, we obtain

. a;y taz; | -
u'(r<o,t) . _ {[/f;,f;(r,r;K*) - fFilr,mK )]

A rZ ur

+ a L FHr,1iK") - £ (e k)T

/K*

K ao* bll + b21

*
K -a r

# 0Al= Flrien) = falr,sien)])

Z oF {

94

(rarsan) = fi(rotian)]

Therefore, for small

(3.2.32)



' C21 * C31 + Cy
wiren) 220 [r g (r,e) + (1 + cir)g(rc) + c1gp(r,7)]
w 0
da1 + d3)
- .._rz__.l:)_*_____ [LY hl(r,T)] (3.2.33)
byy + b
T \ 11 21 | . * * - *
(rzc 1) . s [fl(rsT§ap) + blfz(r,r;ap)] -1 (3.2.34)

' Cz1 + C31 * Cu) *
T (rzo,r) n - — [g,(r.c) + caga(rst)]

(y=1)(dyy +d3;)

*
- — Chy(r,t) + dihy(r,7)] (3.2.35)
' ajp *ax * * - *
P (Z<0,T) N T [fi(r,msK ) + a;fo(r,t3K )]
*  byy * by _ * -
- *K * " [fi(ryTia ) + b?fz(r‘,r;a*)] +1 (3.2.36)
(K -ap) w P p
| C21 + C31 * Cyy *
o] (rZU’T) n, m w* [gl(r,-c) + Clgz(r’.‘.)]
dz) + d3;
~om— halr.c) (3.2.37)
where ( XZE; ( N/EZ
"1 a~lo-r)fK -latr)/*
Frlr,mK') = L7 8 + 8 .
/s /s
7 . lo-r)2 _ (otr)?
= [e" 8Kt +e” 4K*T ] , rc<o (3.2.38)
T '
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*
fr(r,t;K )

£5(rtK")

go(rsT)

gl(r3f)

gz(raT) =

ho(r,'r) =

/3
_1{e'(°"")»/% N

e-(c+r)l€5;

}
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T

r

=L s - s
= erfc {—=—} + erfc { ___J
2/K* T 2/K* T
a1 e--(c-r‘VE’F -(o+'r)/ ;'
=L 5=
s s
_ {o+r)?
= zf_ [e” K*'r - & T ]
- [LE_EL erfe {
2/K* KF
-(r-g)vs
L e
Ys
_ {r-g)?
e 4t
’ r >
/1t
-1 e-(r-c)/§
L "{——} = erfc {———& )
/s 2Vt
_l{e-(r-c)/g}
S3/2
-O- 2
%/_ - (r-o) erfc {—-—4 ’
( S
- =\r-c)y
L~18 . } = erfe {(—%
2/t

>

r

<a

=r . (°+tl'erfc (S 1

2/K*t

)

s <@g

(3.2.39)

(3.2.40)

(3.2.41)

(3.2.42)

(3.2.43)

(3.2.44)



_l{e-(r-c)[?sf

hi(r,t) = L —53/2—-}
-g)2 -
e (Lol pgerfe (5%, rso (3.2.45)
™ Y Y /vt
* * -
The functions f:(r,r;ap), ff(r,r;ap), and fz(r,r;a;) can be obtained

simply by substituting a; for K* into the corresponding functions
f;(r,r;K*), ff(r,r;K*), and fE(r,r;K*). Furthermore, the pressure P’
can be found from p' and T' by means of the equation of state.

It is useful to evaluate the non-dimensional time, t = agt/Go
in terms of Reynolds number, o = 560/50, based on the radius of the

porous particle and the speed of sound. We write

2 -
a .t a oa t *
T = g = g o_ = gt (3.2.46)
‘0 0 (o]

Here t* = aot/E is a non-dimensional "wave time", being unity when the
jsentropic acoustic wave has traveled the distance . Thus, for a fixed
physical time, the non-dimensional time t is very small when the Reynolds
number, 8a0/30, is very small. On the other hand, for a fixed Reynolds
number, the time t is very small for small values of the wave time r*,
that is, for t << o/a.

It was mentioned by Rasmussen and Lake (1973) that the Navier-
Stokes equations are not valid for the above small time regime. This
fact can be seen from the following argument. For a gas to satisfy the
continuum postulate, the molecular mean free path A must be small compared
with a significant characteristic length L pertinent to the flow field.

By definition, the ratio /L is termed the Knudsen number, and is denoted
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by Kn’ i.e.,
Kn = A/L

For small times, the characteristic length is the distance a molecule

travels in the time t, approximately L = cot. For other times L = g.

Since x ~ GO/ao, we have

Ky - Qo/agt 1/t (small times) (3.2.47)

~ Go/aOE 1/o (other times) (3.2.48)
Since the Navier-Stokes equations are valid only in the continuum limit
of small Knudsen: number, they are strictly valid only when t and o are
large. Hence, the small time solution given above is not valid physi-

cally owing to the fact that the basic Navier-Stokes equations are not

valid when t is small.

The above solution, however, is of some theoretical interest.
Examination of the above solution shows that the time t appears in con-
junction with the space dimension in the form (r-0)//% which is the usual
form found in heat-conduction problem, which are diffusive in behavior.
The correct description of this problem is determined by free molecule
flow theory (Bienkowski, 1964) wherein it is found that the corresponding
space and time relation is (r-o)/t. Thus, although both solutions show a
diffusive character, the functional dependence on time is not correct for

the small-time Navier-Stokes solution.

3.3 Solution for Large Time

The solution for large time t can be obtained by expansion of
the Laplace transform for small s. The A; function retains its exact

form, A; = Vs, and A, can be written as
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Ap = s(l-hrs)'li
- 1243 2.3 4
=s -5ys?+gyisd o(s*) , s+0 (3.3.1)
or
Ao = 2b[Vs+b2 - b] + 0(s3) s >0 (3.3.2)

where b = (2y)-%. Substituting A, = /s and Eq. (3.3.1) into Egs.
(3.1.39)-(3.1.55), we have

7/2)
(3.3.3)

Ar = Ao + A11Ys + Apps + A1353/2 + Apys? + A1555/2 + Apgs3 + 0(s

Ap3s¥/2 4 Bpys? + Apss™/® + Apes? + 0(s7/?)

>
N
[}

By = Bjo *+ B11v/S + Byps + 31353/2 + Byys? + 31555/2 + Bygs3 + o(s7/2)

(3.3.4)
By = 32353/2 + Bayus? + 32555/2 + Bpgs3 + o(s’/?)
Ciy = Cyo + C125 + Cyys2 + Cygs3 + O(s™)
C, = C21/§ + C2353/2 + C2555/2 + 0(57/2)
(3.3.5)
Cy = C3353/2 + C3552/% + 0(s7/?)
Cy = C4452 + C4653 + 0(57/2)
Dy =Dy + D11/s
Dy = Dp1¥s + Dyps (3.3.6)

D3 = D31/s + D3ps
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where

Apg =

A1

A1

Ary

Ais

= Qo + Q1/5 + Q)p8 + 91353/2 + Q1482 + 255
3/2
= 2175 + Q35 /2 4 2452 + Q55

= 9335

5/2
5/2 0(57/2)

3/2 + 93452 + 93555/2 + 93553 + 0(57/2)

= QuuS52 + Qugs3 + 0(s")

oS(K* - a;) I(pe

GAlo
* *
aX k vy Ka k
= [o+ (v-1)] E * kgo + * 2 * kgo =
o5(K -e_) "po  o5(K -a.) %po
P p
0A12
* *
*
09—l o,
a*(K =-a_) kpo o3 (K -a) kpo g
p P
aA1y
* *
a* k y2 Ko k
% [y - 4] P - g0 B go _

c'*(K*—ap) Koo GS(K*-a;) Koo  ©
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(3.3.7)

(3.3.8)
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gtk
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_3y2 _y?
SU“K* %3
_ 1
*
a*K /Eg
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D32

1]

(y-1)a* k

p o, ¥
bR (K el
VK™ (K ap)kpo o*v/K
- 1)o*
(v 1)ip _ kgo_ r_
a3/K*(K -czp) kpo 0‘*(K*
. A
03/K*a;
- Cyy
1
*
o3K
GDIO
* % *
c*(K -a.) kpo a*K /Eg
UDZI
o ok
% Koo

103

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)



211

Q12

Q13

Q14

Q15

Q16

Q21

0223 =

Q2

Q25

1 Egg
* (]' k )
a®K po
- X5
*
a3k kpo

o g po o po
i K k
L) fow(y-m] g 20+ X 20
o5K a3k “po po
( l) 1 kQO Y j% kgO j%
1- - - +
27 o5K" po 205" © kpo ¢
(1-1) -1 0_15"32
2 GQK kpo g pr
32y 1_fq0 _x2+y2 feo
gl S E ok
805K 3K “po po
- 1
*
o5k /Eg
X [o#(y-1)] —
o3Ya* 5K VaF
P p
*
(1) b a0 ()
o*(K = a*) kpo c‘*K/oTB"
Yo k
_____}(______ _'l) *D - go _ Y
204K /Eg o*(K -ap) kpo cSJEg
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. k
933 = (]-__gg) -

kpo oSV
- *
Q3y = - o _l?ag * kgo - —= kgo
" VKF(K - ap) Koo o4k Kno
y (= 1)a (3.3.21)
- - (1--99 Y . Y- ag Xq0
@35 K oF | aremre* %K
po o3/K a*vK* (K -ap) po
v S0
Q36 =
4 VK* kpo
a*vK oy
(3.3.22)
Que = = Quy

Substituting Eqs. (3.3.3)-(3.3.7) into Egqs. (3.1.35)-(3.1.38), we obtain

A= [+ ALYE + Ags + Ay 4 Aus2 + AssT/Z 4 0(s)]
Q, S sinh (o/%;)
K (3.3.23)
*
B =— .A = [Bo + BT/E + BZs + B’3ks3/2 + BZs2 + 3255/2 + 0(s3)]
Qo s sinh (a/g)
“p (3.3.24)
p etk %30 % * 5/2
C=->% [Cas + C3s™/ % + Cus2 + Cgs™/© + 0(s3)] (3.3.25)
Q.S
o
a eh2d |« * * 5/2 3
D = [Dys + Dus? + Dgs™“ + 0(s3)] (3.3.26)
Q.S
0
where
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+ Age; = 0

s + Mai + Ajas

+ Aol + Ajal
+ Ajo] + Alas

+ ALl + Asal

+Bgey =0
+ B, +
+ Bjo; +

+ Big

— -
+

+ Blaj + Blo}

Apz +

+ Aga

+ Ajng + Agal

+ A3} + Ajal

+ Bjoy

+ Bi{qj + Byay

+ Agses

+ Bjag + BiQ, + Byas

(3.3.30)

*

D, = D3

%*

Dy = Dj + Djoi + Do
Ds = Dj2) + Dja}
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Bio
oBg .
vK*
Biz + = Bas
(3.3.33)
oB3 .
yK*
Biu + 3;%; Bag + —— Bas
oBg
Ya* o K o
VK
a
p
Ya* o
3 vK
“e E—:_S/_Z— C21 + 0* Cos + _O‘E C25 + 3/%_ Cyz *+ = C35 (3334)
[s ] o]
p p
K*a*
1,/
+3 ;g + E%) Cyy + —F Cug
9. Dy, + —= Dy,
3/E§ vK*
oD} (3.3.35)
=a® Dpy - —m s D,
45a;3/2 45K*3/2
= n
2
ni - N2
- n3 + 2nynp - n} (3.3.36)

2 2 L
- ny + (n3 + 2n1n3) - 3ning + n3

2 2 3 5
- ns + (2niny + 2nzn3) - (3nin3 + 3ninz) + 4niny - 0
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In Eq. (3.3.36) nis i=1,2,...,5 are defined by

*
% i=1,2,...,5 (3.3.37)
N: 2 = 151 3Cgeney «O.
j 93
Here
*
Q1 = Q11
Yax —~% JKE *
*
Q2 = Q12 * 921+_p'923+&933+_7294u
a
/_*P (3.3.38)
* o /*
Q3 = Q3 * ‘;R 2y +"“‘ 3y
Q = Ry - 15 *3/2 Q21 * ;;5;’923 + 5 fas * Q33 * — 7~ Q3
p
/Ka
oz* )Qul-»"'—’z_ﬂue
9* = Q5 + Qoy + Qay + K Q
s = Q15 24 — Q34 + — Q3
3/07*7 3vVK* o 36

Further, if we expand the terms sinh (o/5§) and sinh (o i}) in Egs.
K
(3.3.23) and (3.3.24) as

=]

ez/§

sinh (z/s) -% (1- e'ZZ/;)

2/5 &S [1-r (22) + X (22/)° - - (22/8)°

¢ g (228) - (22/8)° + 0(s9)]

226/ /K" or o/ (3.3.39)
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then A, B become

S
'q/r- s dedk
A i;ﬁ . 372 [Ao + A1 S+ Ay s + A /2 4 + A, s2 + As *s¥/2 1 o(s3)]
)
5 (3.3.40)
A\/&? -0@ *%k *%k *% Jok
8= og*E‘e 3/5 [By +By /S +By s +B; s+, s2+Bss’2+0(s)]
0 S
(3.3.41)
where
*%k *
0o = Ao
*%k * * *
Al = A0“1(53K )
%% * * % *
Ay = Ay + Agna(s.K)
*% * * % * * % * (3'3°42)
A3 = A3 + Aznl(ssK ) + A0n3(SsK )
sk * * % * * * * * % *
Aq = Aq + A3n1(S,K ) + Aznz(S,K ) + AO“u(S3K )
*%k %* * % * * % * * * * * % *
As = As + Auni(s,K ) + Agna(s,K') + Agng(s,K ) + Agns(s,K )
and
*% *
BQ = Bo
*%k * %
By = Boﬂl(S;G;)
B** B* + B* *( *)
= S;
TR S (3.3.43)
By = B3y + Bzﬂ1(53d;) + Bon3(5§dg)
*de * * * * * * *
By =By *+ Ban1(5;a;) + anz(S;uB) + Boﬂu(S;aS)

* * * * % * % * %
Bs = Bg + Bun1($;a;) + Banz(S;G;) + ana(S;aE) + Boﬂs(S;G;)

In Eqs. (3.3.42) and (3.3.43), the functions n:(s;K* or a;), i=1,2,...,5,

are given by
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n = - §&

* 2

ng = =~ & + &3

* 3

ng = - &3 + 2518, - &) (3.3.44)
% 2 2 b

ny = - &y * &3 + 28183 - 3818 + &y

* 2 2 3 5

ns = = &5 * 2518y + 28283 - 38183 - 3§18 + 4E1E, - £

in which
&1 = = Tg"IT (22/;)

2

£z = é%-(Zz/E)

§3 = - 7r (22/5)° (z=s/VK or o/ /%) (3.3.45)
&y = é%‘(ZZ/g)q

5
gs = = "6]—!' (22/5_)

With the above expressions for A, B, C, and D, Egqs. (3.3.25), (3.3.26),
(3.3.40), and (3.3.41), the large-time approximations for the temperature,

density, and velocity are found to be

* -
T'rsoy) , 5 3 B} F; (rsel) -0 (3.3.46)
*
A 2ro 90 n=0
] 4 *
Tlroyt) o 1 3 ¢ 6 (rye) - L1 D3H,(r,0) (3.3.47)
A ra. n=1 MM re
0 o)
pllrsest) 1 7 4™ (o)
* sl
2raQ K n=0 " :
K*Ya* 5 ax
- s I B, Fp (rote*) + 1 (3.3.48)
ZY‘UQO(K -ap) n=0 P
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' 4
P (PZ°’T) L 2 c,y 6 (r) - L5 DyHy(r,e) (3.3.49)
rQ n=1 rﬂo
4 Ko 4
u'(r<s,t) . _ -1 *k 4 * %y
£ A F . (r,o3K ) + T B N (r,tsa*)
A 2!"0’9* n=0 " n+l ZPOQZ(K*- a_) n=0 n+l P
— * ,3/2
+ /K" g An Fn (r,t; K ) - ) aé —% g Bn F (r,t30%)
2r209 n=0 2r2090(K -ap) n=0 P
(3.3.50)
4 4
u (Y‘>O‘,‘l‘) 1 [ *
I C G (r,t) +r C G (r,t)]
A rZQ; n=p nrlon p=2 NN
.

Py [DzHl(r,r) + (DZ + rD;)Hz(r,r) + D:H3(r,r)] (3.3.51)
9]

where the functions F's and G's are associated with diffusion and the

functions H's with wave behavior:

_ Lg_rl_ l____L_
F (r<c T3 K %/ [e K*t o 4K ]
- [ZE erfe (-Z=Eg - L epfe (TLy] (3.3.52)
/K* 2VK*T /K> 2vK*1
Fi(reo,1K) = erfc (-2 + erfc (-2 (3.3.53)
1
/K T 2/k
§c r} §c+r
F§(r<c,r;K*) - -L [e 4Kt +e &K'T (3.3.54)
2 2
_ fo-r) _ {otr)
* *
Fi(reo,miK) = —2—[(o-r) e T + (g+r)e 4T |  (3.3.55)

2/wK 13
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(c-r)2 (gtr)2

+ -ri2 = 2 -
Fﬂ(r<o,r;K*) =1 {[(c 2) -2t] e 4K*T + [ﬁﬂigl_ -27] e ak*t
4y'nS K. K
(3.3.56)
(our)? _ {g-r)2
+ * - - *
Fs(r<o,m;K ) = L=l [9M° _ 37 ¢ 4K'T
° 4/aKES 2K
)2 - e
¢ SXr rlotr)® 374 AK%c 3.3.57
= ke [2K*r ] ( )
_ (r-g)?
Gi(rso,t) = =% o 4t (3.3.58)
2Vn73
- (r-0)?
Go(r>0,1) = 4/‘_5 [(r-0)2 -2:]e & (3.3.59)
mT
(r-g)?
- -qg)2 =
Ga(roo,r) = Lzg) ((r=a)? 57 7 & (3.3.60)
5 2'1'
4ymt
(r-g)?
- ) ¥ - =
Gu(r>o,t) = 4/]_5. [(ZT‘Z’) - 3(§T°) +3]e & (3.3.61)
mT
_ b?[r-g)-1]2
Hi(r>o,t) = L‘I{e'(”"’)*Z} = %_(.—f%ﬂe T (3.3.62)
™
Ho(r>o,t) = L™ s e'(r'°)A2}
2
) ) _ b2[(r-g)-z]
= (& [(reo)-1]" + 2b2[(r-0)-c] - 33 Dlr=o) ¢ T
T ymto
(3.3.63)
Hy(rso,c) = L-lgs3/2 o= (r=o)hzy (3.3.64)

The functions Fé'(r,r;a;) and Ff (r,r;as), i=1,2,3,4,5, can be obtained
*
by substituting aE for K into the above corresponding functions. Note

that the xp-function appearing in Eqs. (3.3.62), (3.3.63), and (3.3.64)
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is given by Eq. (3.3.2):
A,=2b[Vs + b2 - b] + 0(s3) , b=(2y)~*

The function H3, Eq. (3.3.64) cannot be integrated analytically by the
author at this time. However, its value on the surface of the particle,

r=¢, can be found. For r=og, H; becomes

3/2, _ _3

Ha(o,7) = L-M(s S
IWARRS

(3.3.65)
The solution for large time t shows that, when r>o, there is a compression
wave traveling away from the particle, which arises from the functions
H's. However, since these terms are very small compared with the dif-
fusion terms, there is no dramatic wave behavior in this problem. It
follows that the diffusion terms play a dominant role throughout all the

flow field. Recall that

T =0 ¥ (3.3.66)
where

o = aOS/GO

T* = aot/a

It follows from Eq. (3.2.48) that, in order for the Knudsen number Kn
to be small, o must be large. Thus, with large o, t will be large when
r* is chosen as of order unity.

The large time behavior of the solution for the temperature
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perturbation as a function of r/c is shown in Figs. 2, 3, 4 for y = 1.4,
*
as = 0.0074, K = 1.3473, kgolkpo = 0.1, o =80,
90, 100, and various wave time t* . These curves indicate that, for
a fixed wave time t*, the temperature perturbation decreases when
o = aOE/SO decreases. This means that, for a gas with constant
viscosity, the smaller the particle, the faster the rate for the tempera-
ture to achieve equilibrium. On the other hand, if the size of the par-
ticle is fixed, then the temperature will approach equilibrium at a
faster rate for the gas with higher viscosity. It is noted that, on
the surface of the particle, the temperature can be written as
% *
T'(o,1) 1, G 3Cs

. p— (= - —) (3.3.67)
9, 2V/nt3  4/ncS

and at the origin

, 5
T0:7) o Lz 87E (r10%) - 1 (3.3.68)
oo n=0 " N P
0
where
ja%) = erf g
Eo(r ap) erfc {2 a*r}
p
2 o ] o
=1-<1 -5 ( ) + ...} (3.3.69)
o2/t 3 2/
0-2
1 T aa*tT
Ei(tia*) = — e 4% (3.3.70)
S
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g
T Go*r
Eo(Tia*) = —Z—e¢ p (3.3.71)
2 P 2/ma*t3
02
2 -
E3(1:;a;) = 4/.]__5. %;- 2t) e 40‘;1 (3.3.72)
™ p
. ) - o2
.o%) = O ot baX*t
4 2 -
*
E5(ta) = L (30, 3) ¢ (3.3.74)

Thus, on the surface of the particle, the temperature varies, to the
lowest order, like 27372 and 1ike 72 at the origin. Far away from
the particle, the temperature perturbation approaches zero. Furthermore,
it should be emphasized here that at r=¢ the slope of the temperature
curve is not continuous. This can be readily seen from the boundary

condition, Eq. (3.1.28):

ral = EQQ 2l
ar peg” kpo ar r=o+
Since kgo/kpo <1, it is apparent that
oT! aT!
[== _ < 5= (3.3.75)
M~ pzg or r=c+

Therefore, the temperature gradient for r approaches o from inside is
less than that from outside. As mentioned previously, the wave behavior
is so weak that there are no wave fronts appearing in these figures. How-

ever, the effect of viscosity on the wave fronts cén.jﬁﬁ]] be
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2T (e} T2
detected from the wave term H = e~0 [(r-o)-r] I,

In Fig. 5, H is
plotted as a function of X = (r-g)/t-1 for r* =1.0and ¢ = 10, 15, 20
It is found that the wave fronts become more diffuse as the Reynolds
number ¢ becomes smaller, i.e., as the viscous effects become more
pronounced.

The corresponding curves for the density-perturbation profiles

are shown in Figs. 6, 7, 8. The variation of density with Reynolds num-

ber ¢ is similar to that of temperature. Note that

cx  3Cs
p'(o,7) . _ 1 3. .55
el - L (3.3.76)
0o 2/t 4v/nt
] 5 Yk * 5
e Btk s 3 ATE (0K - e T B (wek) 41 (3.3.77)
cQoK n=0 cQo(K -ap) n=0

where Ei(r;K*), i=1,2,3,4,5, can be found by substituting K* for a; into
the Ei(r,r;a;) functions, Eqs. (3.3.69)-(3.3.74). Thus, analogous

to the temperature, the density perturbation varies at least 1like r'3/2

at r=g, and like 1 1/% at r=0.
In order to have a physical insight for the pressure pertur-

bation, let us return to Eq. (3.1.23):
Prroo,s) = €L (a1-5) M4 DX (a5-5) e?2"  (3.1.23)

It is noted that, for A; = /s, the first term in the right hand side of

Eq. (3.1.23) disappears, and the pressure becomes

5'(r>c,s) =D %-(Ai-—s) e~her (3.1.25)
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*
Thus, under the assumption that Pr = 1, the pressure outside the par-
ticle is dominated by the wave term, which is due to A,. The asymptotic

solution for the pressure perturbation is found to be

' 5 ox3/2 5 Lk
P (r:o,r) N l 5 A F (ror3K") - L N Fg’(r,t;a*)
2r090/K n=0 ZrUQO(K -ap) n=0 P
(3.3.78)
P'(PZG,T) v X [- DyHp(r,t) + (D - Du)Hy(rat) - DaHs(r,t)] (3.3.79)
Y‘Qo
where

Hy(r>o,t) = L™ (s2 e-(r—c)kz}

2 2
ellred=nl 4 g2 (rog)eqyeZllrzal=cl . pyo(pog)c1- 4

) bz[(r-c)-rjz

_(__lb/:;_ o T (B2L(r r-o )=, 2b2[ (r-0)-1] + 2b21}
T
_ b2[(r-o)-t] ,
T
—1—-—3_";’) e - {bzi(:"’)“] + 2b2[(r-o)-t] - %}
mT
_b2[(r=0)-x]"
5b(r-o e T (3.3.80)
2/nt?
Hs(rsa,7) = L (s3/2 o~(r=o)hsy (3.3.81)
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At r=o0, Eq. (3.3.79) gives

} vt
%
of2

*
1 Y0s -
P lor ts®/2 (3.3.82)

Thus, on the surface of the porous particle, the pressure varies at

-7/2

least like = » which is very small when t is large. On the other

hand, at r=0, we have

5 oX 5
P'Qyr) , 1 _ & A E(T,K) 2z & E(T,a*) (3.3.83)

A osz*K*no cQ(K-u)nOnn

To the Towest order, P'(0,7)/a takes the form

Kk **

. A
P (Og") v 2% E (TiK *y - —9————— E,( 7 50%) (3.3.84)
a@ K aQ (K -a ) P
0 p
Since
Q*K* *
g o
A0 B (3.3.85)
0 K -
p
F T _ *
Bo = cQo
Ey (1K) = erfe (—Z=h v 1 - =Z=+ ... (3.3.87)
Z/K T ViK't
E (t30%) = erfc (——} 1 - —2— + ... (3.3.88)
0 P 2/0:’61 /wo;t
it immediately follows that
. oVa¥ )
P (%,r) v s (3.3.89)
VK" (K -ap)
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Thus, at the origin of the particle, the pressure varies at least like
r_%, which is much larger than the pressure at r=g. According to Darcy's
law, it is this pressure gradient that causes the gas to eject from the
porous particle.

The velocity profiles are shown in Figs. 9, 10, and 11.
Because of the difficulty encountered in the integration of the term
Hs, Eq. (3.3.64), only the velocity inside the porous particle is illus-
trated here. It can Be seen from these figures that the velocity vanishes
at the origin and reaches a maximum value at the surface of the particle.
From Eq. (3.3.51), we have

u'(o,1)
A

~ 21* [(Cs+0aCs) L™ (/5} + (Cs+oCy-Ds) L7Ys3/21]  (3.3.90)

o] Qo

Further, since
* *
Cy + UCZ =0

Eq. (3.3.90) becomes

| * * *
“—(%’-T-)—m (Cs + o Cy - Dg) —3 (3.3.91)
402 vrmt
0
that is, at r=¢, the velocity varies at least like 1_5/2.

3.4 Mass Efflux from Porous Particles

In order to fit the problem of small disturbances in porous-
particle dusty gases, it is necessary to derive the term involving the
mass ejecting from a unit volume of small porous particles per unit time.
If we denote j as the mass ejecting from a porous particle per unit time,

then we have
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* %k

J=4nr 320y (3.4.1)

where p* and u are the density and velocity of the gas at r = g.
Further, let n be the number of particles per unit volume and m be the
mass of each individual particle, and note that u* = aou'(o,r). Then the
mass ejecting from a unit volume of small porous particles per unit time,
1, can be written as

nj _ A4ng? *

=——apop U'(o,t) (3.4.2)

L m  “o°p

where pp = mn is the mass of the porous particles per unit volume. Now,

recall from Eqs. (3.3.91) and (3.3.67) that, to the lowest order,

] * * *
- (Z’T)“’ 2 — (C5 + oCy - Ds)

2 5
4g Qo/ﬂT

and

*
Tl(caf) " 53__
a 2090¢%13

Thus, we have
]
u'(a,r) v " THeat) (3.4.3)
where * * %
x 3(Cs + aCy - Ds)

C *
20C3

(3.4.4)

Substituting Eq. (3.

E-N

.3) into Eq. (3.4.2) yields

- * %
4ns2a p p C

o= mg p T'(o,1) (3.4.5)

Recall that T'(o,t) can be written as

T(a,t)-T
T'(g,1) = ——-T—Z—-Q (3.4.6)
Q
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At this moment, if we treat T(e,t) as the temperature of the particles,

p
then Eq. (3.4.6) can be rewritten as
T -T
T = B

Substituting Eq. (3.4.7) into Eq. (3.4.5), we obtain

*p* (T -T)

e B
H

O

where T has the dimension of time and is defined as

m

=2
4ro a0,

Note that

~
]

B
Vv
aot/ 0

Thus, Eq. (3.4.8) becomes

C**
wo= g T
rutT

T., and To as the temperature of the gas surrounding the particles, T,

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

* ~ .
where T = ag Tu/vo and AT = T_ - T. Therefore, u is proportional to AT

p
and varies like t™ .

The governing equations for the flow in the inert porous-

particle dusty gases are:

Mass
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Momentum

+
-> - - . > ->
o Bg = Fp tod - WP+ T4 AV - ) (3.4.13)
DV
._LE.-_- _+ + > 4
op Dt Fp ppg (3.4.14)
Energy
D—e_=- _'-)- (__),.-)--_._> . -> -+.+
° B% PV«V + 1:9V - V.q + Qp + (vp V) Fp
L ] -l*
+ u[h(T.) - e +§(vp V) ] (3.4.15)
De o .
Py —%{E = - Qp - u[h(Tp) - ep] (3.4.16)

where the terms involving u are the source terms due to the ejection of

mass from the porous particles, and ?p and ép are given by Eqs. (2.2.9)

and (2.2.11) in Part I:

-> P -> >
=B -
Fp 3 (vp V) (3.4.17)
. p.C
Q, = —P——ETT (T, -7 (3.4.18)

The set of equations, (3.4.11)-(3.4.16), is a special case of the
more general set of equations for the flow in reacting, vaporizing, dusty

gases. These general equations are derived in Appendix A.
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CHAPTER 4
CONCLUDING REMARKS

Viscous effects on the linearized wave propagation associated
with the low-Reynolds-number flow from a porous particle has been in-
vestigated by means of the method developed in Part I. The asymptotic
solution for small time is not valid physically since this region is
governed’by free-molecule flow. The large-time solution shows that the
wave behavior in this problem is not so dramatic as that in high-
Reynolds-number flow. The reason for this seems that the viscous effect
in Tow-Reynolds-number flow is stronger than in high-Reynolds-number flow.
As a result, the wave fronts in the flow at low Reynolds numbers dis-
sipate so fast that the diffusion behavior plays a dominant role through-
out all the flow field.

For the problem that involves small disturbances in inert por-
ous-particle dusty gases, the mass-, momentum-, and energy-source term
due to the ejection of mass from the porous particles should be taken into
account. In this regard, the mass ejecting from a unit volume of small
porous particles per unit time, u, has been derived. For future research,
the governing equations for the flow in inert porous-particle dusty gases
have been built up.

Perhaps a more interesting development of this problem could

be obtained by dealing with vaporizable particles and reacting gases. In
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this case, the basic equations would have to be modified to account for

mass diffusion and chemical reactions.
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r<o, t<0 r>a, t<0

T=T (1-2) . T=T,
p=po(]+A) p=p0
P=P, P=P,

Fig. 1. Initial Conditions and Spherical Configuration
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APPENDIX A

MECHANICS OF GAS-PARTICLE MIXTURES*

Time Derivative Following a Region

A Basic tool for understanding and manipulating mixtures of com-
ponents that travel at different average velocities is that of Liebnitz'
Rule. Imagine a closed surface S each point of which travels with a

velocity £. Let the closed surface S surround a region R. The time rate

of change of the volume integral of some quantity Q(¥,t) is

& m Q(¥,t) d m 3 4 +<§Bqa ndS (1)

R

This work follows the notes written by Dr. Maurice L. Rasmussen.
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The nature of this time derivative thus depends upon the velocity of the

surface, £. The derivative is thus said to be taken following the region

with velocity E.

In fluid mechanics a particular velocity of interest is the
-> >
fluid mass average velocity, denoted by V. When Z is set equal to V in

Eq. (1), the region is said to be a fluid region, and the time derivative

operator d/dt is given the special symbol D/Dt. Equation (1) then becomes
D d >
i3 fff Q(r,t)dr = IJ[ 3%-dr + d QV-ndS (2)
R R S

A fluid region is of particular interest because, since the boundary

travels with the mass average velocity, no fluid mass crosses the boundary.

Thus, the fluid mass inside a fluid region will be constant unless fluid

mass is created inside the volume of the region. The derivative D/Dt is

referred to as the fluid material derivative since it denotes following

the fluid material.

The difference between the general time derivative d/dt and the
fluid material derivative D/Dt can be found from the difference of Egs.

(1) and (2):
& 1] adtree = & [[] aFtree + db (- T)-nes (3)
R R S

The two time-derivative operations are not the same because the two sur-
faces involved travel at different velocities, the relative velocity being
E—V. Note at the given instant that the derivatives are evaluated by

Eq. (3), the surfaces S are coincident and the regions R are the same, but

at a later time they will be different since the boundary surfaces are
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moving relative to one another.
->
There are other velocities also of interest. Let Va denote the
->
velocity of species a, and let vp denote the average velocity of the par-

ticulate. Then we have

gt ”J Qdr = J’J-J %% dr +# Qva.ﬁds (4)
R R S
%‘% w Qds = LJ A +<Eﬁ QU +nds (5)

Infinitesimal Regions

Suppose the velocities V, Va, and Vp are continuous and have

continuous first derivatives. By means of the divergence theorem we can
convert the surface integrals in (2), (4), and (5) to volume integrals.

Equation (2) becomes

% I” Qdr = ”J [—Q + div(VQ)ldr (6)
R R

There are corresponding expressions for (4) and (5). For infinitesimal

regions, that is, R - &t - 0, we can write (6) as

2 (08t = 6<[2 + div(lQ)] (7)

where §t is an infinitesimal volume element. Equations (4) and (5) yield

the corresponding relations

D .
5 (0s7) = 6t [2L + div(V 0)] (8)
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o o
o

(Q8t) = se[2} +cﬁv(VpQ)J (9)

For Q = 1, we end up with the results

-[?—t (st) = 6t div V (10)
D, N
5t (81) = 8t div V_ (11)
% "
Dt (87) = 87 div Vp (12)

The divergences of the velocities are thus seen to describe rates of
volumetric strain (dilatation) following the volume element with fluid,
species, or particulate velocities.

By means of vector operations we can also show that

%% = [2 + V. grad] Q (13)
DaQ
- E—— +V -grad] Q (14)
D Q
_DEt- [— + Vp-grad] Q (15)

Equations of Change for Mass

We consider first the equation of change for the mass of species
a. We consider the mass of species o in a region bounded by a surface
that travels with the velocity V;. Thus, no mass of species a crosses
this surface. Changes of mass of species a come about because of source
terms. There are two source terms that we shall consider here. One is

that due to chemical reactions; we denote éa as the mass of species o per

142



unit time per unit volume that is created by chemical reactions. We aiso
suppose that the solid particles can vaporize and liberate gases into the
gaseous mixture. We thus denote ﬁa as the mass creation of species a per
unit time per unit volume that arises because of vaporization of the par-

ticles. We thus write

) [ 60

R R

For infinitesimal regions, this becomes, by means of (8) with Q = 0y

1 D

[ apa . > . .
E;-EE~(pa61) = 7;E-+ d1v(pava) =u, tu, (17)

This equation holds for each species a. If we sum Egs. (17) over all

species o, then we obtain

3 . TN e
SE'(Z‘%) + div(z pava) =Iu tla (18)

We define the total fluid density, p, and the fluid mass average velocity,

>
V, by
-> ->
pPEZo, oV = ¢ pava (19)
Further we realize, since the mass of one species o that is created by
chemical reactions comes at the expense of other species that are
annihilated by the chemical reactions, that
DR 0 (20)
Hence, Eq. (18) becomes
2p . > _ .
3T + div pV = ¢ My | (21)
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This is the equation of change for the fluid mixture as a whole. The term
on the right-hand side reflects the fact that the mass of the fluid mix-
ture increases by virtue of the vaporization of the particulate matter.

In view of (7), one can write (21) alternatively as

2 (o81) = 8t I 3 (22)

THis equation reflects again that the mass of a fluid element is not con-

served, but changes by virtue of vaporization of the particulate matter.
From the above results, we can see immediately that the change

in particulate mass in a volume 8t as we follow it along with the velo-

city qp is given by

D
-D-% (ppét) = - 47 2 My, 123)
or
5t + dlv(ppr) = -3 M (24)

If we add Eqs. (21) and (24) together, we obtain

D (otp ) + divieV + o V) =0 (25)
5t (P °p eV + o V1) =

Let us define the total mass density, Prs and the total mass average

o
velocity, VT’ by

-
or = o+ Py s °TVT = pv + opr (26)

Then, Eq. (25) can be written as

301- ) >
3% + d'lV(pTVT) = 0 (273)
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or
Dy
'ﬁ (DT5T) =0 (27b)
These last two equations assert that the total mass of the fluid and
particulate taken together is conserved.
It is convenient to write the equation of change for each species
mass in terms of the fluid velocity and not the species velocity. To do

that, we note from (3) and the divergence theorem that we can write

D > >
ﬁ- (padt) E D% (paar) + 81 div{pa(va- V)i (28)

Thus, Eq. (17) can also be rewritten as

B (o st) = st[- divio (V -V)} + 1 + o ] (293)
Dt ‘Pa’t T Pat'y My T 9 a
or

apa . - . > > R .

3t + d1V(paV) = - d'!V{pa(Va-V) + My, + W, (29b)

-> ->
The relative velocity Va - V is called the mass diffusion velocity for

species a, and the combination
+ -> <>
I, 20,V -V) (30)

is referred to as the mass diffusion flux vector for species «. From

the definition (19), we have
-.’ -
£j, =0 (31)

The mass flux of a species that is diffusing in one direction is com-
pensated for by the mass fluxes of the other species that are diffusing

in the opposite direction. Summing Eqs. (29b) over all species leads to
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Eq. (21), which, of course, should be the case.
The mass fraction for species a is defined as
b
c & (32)

a” o

i

Since padr = c pét, we can write Eq. (29a) as
aE-c—"i+ D ost) =scf-divi +1 +a] (33)
POT Bt Ca DT \POT T Jo T Hy T Yy

Use of Eq. (22) now leads to the following equation of change for the

mass fraction of species a:

Dc >
—==-divj +a +pn -c¢C_ %1 (34)
° Dt Ja o T Mo a “ Mo

Since = Cy = 1, both sides of the summation of Eqs. (34) for all species

vanish identically.

Equations of Change for Momentum

Because our basic regions of interest are regions of varying
mass, it is necessary to utilize Newton's second law of motion in a form
3 - 3 - +
appropriate for varying mass. For a region of fixed mass, F = ma holds.

For a continuum we write

-d—Eg “I pdr = 0 (35)
R

iF{i m oV dr = F (36)
R

For a region whose bounding surface moves with the arbitrary surface
velocity 2, we utilize Eq. (3) and rewrite (35) and (36) as
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ditj J pdt =#o('§ V)ends = m (37)
J
R S
f ->
Edfj j oVdr = F +# oV(Z = V)+nds
J
R S
_). L]
=F + mVS (38)
where
#p (2 -V)-nds
V=3
#p( )+ ndS (39)
$

The term mVS is actually a momentum flux, but for a particulate suspension

imbedded in a gaseous medium, this flux emanates from the surrounding

surface of each vaporizing particle and thus manifests itself as an

effective momentum-source term. The rate at which mass is added is m, and

the effective velocity at which this mass is added is given by VS, which

is actually the average material velocity at the surface of the boundary S.
We can now write the momentum equation for the fluid mixture

utilizing Eq. (38). The forces F acting on the fluid arise from the sur-

face pressure, p, the surface viscous stresses, ‘t, the body force per

unit volume due to gravity, pE, and the effective body force exerted on

-5
the fluid by the particulate per unit volume, Fp. Thus, we have

%m oV dr = (#pnds+(ﬂ> N3 ds

][ g+ Fy e 055, ar (40)
R
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-> .
The term Vp o, is the effective momentum-source term, per unit volume,
.->' 3 3 -
associated with mVs in Eq. (38). Using the divergence theorem and writing
Eq. (40) for infinitesimal regions, we obtain

D

> _ L <= > = ¥ .
pg (pVet) = etl-vp + divT + og + Fp + \Ip z ua] (41)

Expanding the left-hand side and utilizing Eq. (22) yields the further

result

- -> -> .
F o+ (V -V
o+ (0= (42)

-
DV .
pﬁ=-Vp+d1v?+p-g>+

This is the familiar form of the momentum equation that allows for the
interaction of a vaporizing particulate suspension. The interaction
force Fp as well as the vaporizing rates ﬁa are yet to be specified.
A similar equation to (41) exists for the particulate suspension,

but the pressure and viscous stress terms are omitted. The reason for
this is that the particulate particles have no random motion but undergo
only a smooth streaming motion. They are sparsely distributed in the
fluid and thus undergo no collisions with themselves, and hence exert no
pressure or viscous stresses. Thus, for the particulate we have

B (o se) = oxlo, § - F, - T 1] (43)

Dt ‘"p'p p P p o

-> - .
In this equation the signs on Fp and Vp Ly, are reversed from that of

Eq. (41). Expanding the left-hand side and utilizing Eq. (23) yields

DV
“p'p _

> op8-F (44)

P p P

t
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For this equation the vaporizing effect does not appear since there is
no force induced by a momentum change relative to a particle where the

vapor is emitted spherically symmetrically, as is assumed here.

Equations of Change for Kinetic Energy

The equation of change for kinetic energy are found by taking

the scalar products of Egs. (42) and (44) with their respective velocities.

We obtain
2 -> - > -
o & (%) = - Vewp + Vediv T+ oV.G + V-F
> > > .
+ V-(Vp—V) o, (45)
b, V2 > > >
—E. .—E - . = - .
oo Bt (2) =PpVp G-V, - Fy (46)

These equations are to be used in later developments.

Equations of Change for Energy

The equation of change for the First Law of Thermodynamics that
applies for a region of variable mass, the boundary of which is moving

at the arbitrary velocity 3, is
d v2 Ao V2y > Wy
H?J J p(e+—2—)dr =Q + W +# p(e+—2—)(£-V)-ndS (47)
R S

Here e is the internal energy per unit mass, Q is the rate of heat added
to the system from the surroundings, and W is the rate of work done on
the system by the surroundings. Equation (47) for the energy corresponds

to Eq. (38) for the momentum. To apply Eq. (47) to our fluid region, we
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note that the boundary surface is made up of two parts, an outer encom-
passing surface that moves with the fluid velocity itself, and internal
subsurfaces that surround the particulate particles. The last term in
Eq. (47) corresponds to the energy released by vaporization of the par-
ticulate. If we treat this as a volumetric source term, then Eq. (47)

can be written as
D V2 . . . -V_é
Dt jJJp(e+T)d1 =Q+ W+ JJJ z By {eu(Tp) + 2} de (48)
R R

since the particulate vapor is released into the fluid at the particulate
temperature, and the kinetic energy per unit mass of the particulate
vapor is that of the particulate particles.

The rate of work is made up of a part arising from the pressure
exerted on the vaporizing particulate, which we separate out as

Q'+##p@37%ﬁ&
S

W

W'+ JJJ [z ﬁa gﬁj dt (49)
R (o]

In terms of the enthalpy h

e + (p/o), we write (48) as

+

2 . . . VZ
% |[[ otettpiar = a i+ [[[ 2 iy + B e (50)
R R
where Q' is the rate of work done on the fluid region that is not associ-
ated with the vaporizing of the particulate. The rate of work ﬁ' is
made up of the usual rate of work done by the fluid pressure and viscous

stresses on the surrounding bounding surface of the region, the work done
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by the gravity forces, and the work done by the forces exerted by the
> >

particulate, Vp-Fp, per unit volume. The rate of heat added to the
fluid region comes from the usual heat-flux vector at the surrounding
surface plus a heat, ép, per unit volume coming from the particulate.

For infinitesimal regions, we thus write Eq. (50) as

2 . ->
g Losce+ )1 = acl- aiv & + Q - div(pl) + div(ZD)
VZ

-> > > ..
oV + VoF o+ th (T)) + 23] (51)

P P

Expanding the left-hand side and utilizing Eq. (22) then yields

2
P %% (84"%T) = - div g+ Qp - div(pV) + div(?tV)

> -> >
+ .3 +V_ - F
PV gV Fy
) V2. o
F T, (T) - e R S (52)

Subtraction of the kinetic energy by means of (45) then gives the thermo-

dynamic form

D_e=_- +*- .->-++_+.+++--)-.->
° bt div q Qp p div V + T:vV (Vp V) Fp
. 1,7 =2
+ 5, th (T)) - e+ 5 (V-V)) (53)
where N R
->
TV oz div{T eV) - Vediv'T (54)

> , .
and T is assumed to be symmetric.

The equation of energy for the particulate is analogous to (51)

except that the signs on ép, Fp, and ﬁa are reversed, and the fluid
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dynamic terms 3, P, and T do not appear. We have

—E —E— - - » [ - v L] 4
5t L° sr(ep + )] =sc-0Q + ppr g Vp Fp
V2
y b
- 5 hth (T) + 3] (55)

Expanding the left-hand side and utilizing (23) then gives

4 = - 4 V . -V .
PpBE (&t ) T QptepVy s G-V -
-z ua{ha(Tp) - ep} (56)

Subtracting the kinetic energy by means of (46) then gives

D e

PpD__qg -5 -
pp T Qp T ua{hu(Tp) ep} (57)

The last term in this equation arises because of vaporization of the

particulate.

It is useful to write the energy equation (53) in terms of the

enthalpy h = e + (p/o). We note that
— E = EE, ] v - E -
P Dt (p) = Dt +p div V o b ua (58)

by utilization of (22) and (10). Adding (58) to (53) then yields

>

P

kol
010
|
i
-

QE@""_.—r . ‘*_'*.
pr T W -divg+ Qp + (Vp V)

> (h h+ i@ -9
rrit () - h e LD (59)
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