A CONPARATIVE STUDY OF THE ACHIEVEMCNTS
OF FIRST YEAR ALGEBRA PUPILS
WITH AND WITHOUT HONE
FORK ASSIGNEENTS

A COMPARATIVE STUDY OT THE ACHIEVIGRNPS OF FIRST YEAR ALGEBRA PUPILS WITH AND WITHOUT HOMR TORK ASSIGNMENTS

By

```
            FANNIE SPMNCER
        Bachelor of Science
Oklahoma Agricultural and Mechanical College
            1 9 2 9
```


A THESIS

Submitted to the School of Iducation Oklahoma Agricultural and Mechanical College

In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF SCIENCE
1939

This study was undertaken firgt, to satisfy the mind of the writer as to the value of assigned home work in mathematics and, second, to inform other teachers, principals, superintendents, and parents concerning this much discussed problem in education. It is hoped that the study will be of use to other algebra teachers who are in doubt as to the value of their assigned home work.

I wish to express my appreciation to the following people who helped to make this study possible:
(1) Dr. Merle Willard Glasgow, Principal of the Junior High School, Bartlesville, Oklahoma. His interest in this experiment and his releasing of the writer from extracurricular and other duties for the year made the study a pleasure.
(2) Dr. James Howard Zant, Associate Professor of Mathematics, whose suggestions and advice at the beginning of this study were indeed helpful.
(3) Charles Leonard Kezer, Professor of Secondary Education, my kind and encouraging advisor.
(4) Paul C. Norvell, Principal of the Senior High School, Bartlesville, Oklahoma.
(5) Dr. Marlin Ray Chauncey, Professor of Education.
(6) Herbert R. Wrinkle, Superintendent of Schools, Bartlesville, Oklahoma
(7) Thelma Venice Zinn, Mathematics teacher in Junior High School, Bartlesville, Oklahoma.

Pannie Spencer

comemer

GH2Pre Page
I The Problem and Its Setting 1
II Presentation and Amalysis of Data 12
III Conclusions 58
Bibliocraphy 59

TABLE

> PAGE

I IQ's of Pairs of Algebra Pupils Used in the Study 13
II Differences in IQ's by Pairs 14
III Average Grades Received in Arithmetic for the Previous Year 16
IV Chronological Ages in Months by Pairs 19
V Results of Test 1 after Like Treatment of Groups; Unit: Positive and Negative Numbers 23
VI Results of Test 2 after Group 2 Had Home Work; Unit: Adding and Subtracting Polynomials 25
VII Resul.ts of Test 3 after Like Treatment of Groups; Unit: Multiplication and Division 28
VIII Results of Test 4 after Group 1 Had Home Work; Unit: Factoring 29
IX Results of Test 5 after Like Treatment of Groups; Unit: Fractions 30
X Results of Test 6 after Group 2 Had Home Work; Unit: Trigonometry 33
XI Results of Test 7 after Like Treatment of Groups; Unit: Graphs 34
XII Results of Test 8 after Group 1 Had Home Work; Unit: Equations in Two Unknowns 35
XIII Results of Test 9 after Like Treatment of Groups; Unit: Verbal Problems 42
XIV Results of Test 10 after Group 2 Had Home Work; Unit: Square Roots and Radicals 43
XV Results of Test 11 efter Group 1 Had Home Work; Unit: Quadratic Equations 45XVI Comparison of Means on the Six ExperimentalUnits for Group 1 and Group 247

TABLES (Continued)

TABLES PAGE
XVII Comparison of Neans on the Five Intermittent Units of Like Treatment 47
XVIII Sigma Differences between the Means of the Groups on Tests after the Application Home Work and after Like Treatment 48
XIX Average 2 scores of the Paira on the Three Tests Following Assigned Home Work and the Three Tests Following No Assigned Home Work 50
XX Comparison of IQ's of Pupils Who Had a Higher z Score Average on the Home-Work Tests with Those Who Had a Higher Average on Non Home work Tests 55
XIX Summary of Statistical Computations Used in the Stuay 57

FISULR P4BE
1 Bar Gragh of Sexes of Retrs of Puplls Ysed in the Study 17
2 Curves for Part 1 of the Columbia Resercoz Burevu gest (rechanios 37
3 Curves for Part 2 of the Columbia Rosearch Bureau ingebza Test (Verbel Protiens) 38
4 Frequency Tistribution and Mistogrems of Bcores for croups 1 and 2 on the Columbita Eesearoh rurecu hlebra Test 39
5 Scatter Diagrem and Solution of x for the Reliability of Tees 7 41

CHAPTIER I

THE PROBLEM AND ITS SETTING

Pupils in the first year algebra classes in the Bartlesville Junior-Senior High School during the year 1938-1939 were used for this study. The purpose was to determine whether there is any significant difference in achievements in algebra as measured by teacher-made tests ${ }^{1}$ for pupils who have been assigned home work to prepare and those who have not been assigned home work. The assignment consisted of written work to be handed in daily. Methods of conducting the two groups in classes were the same with the exception of the omission of the assignment of home work in one of the groups.

An attempt was made to answer the following questions:

1. Do pupils show greater achievement when assigned home work is required in algebra?
2. Are home-work assignments as necessary for pupils of higher IQ's as for those of average or low IQ's?
3. Is there any correlation between the $I Q^{\prime}$'s of the individuals and the improvement due to assigned home worik?
4. Do boys profit more or less than girls when home work is required?
5. Do chronological ages relate closely to the achievements made by pupils having assigned home work?

This study was undertaken after several years of discussion concerning home work among the patrons and school officials of the

[^0]school where the writer is employed as an algebra teacher. Much of the opinion was against home work. Complaints came mostly from parents of children in the seventh grade. These children had not been accustomed to very much home work in the grade school, and the amounts assigned by the junior high school teachers together with the child's task of adjusting himself to a new school situation seemed to work a hardship on pupils as well as on parents.

The topic of home work formed the basis of discussion in several teachers' meetings. Principals suggested lessening the amounts assigned, especially in the lower junior high school grades. Some few articles for and ageinst assigned home work were passed around among the faculty to be read, but no results of statistical studies were available. It was found that parents, teachers, principals, and superintendents elsewhere were interested in this subject not only in the United States but in other countries.

Dr. William H. Johnson, Superintendent of Chicago Schools, says that the question of home work, long one of the thorniest problems of the modern schools, can raise a heated pro and con discussion quicker than any other in education.
"Say Pathers: TWhat are teachers paid for, if I must
help Billy with his algebra and ancient history?'
Say teachers: 'It is utterly impossible to cover all of the material in the course of study in the short school hours.' ${ }^{\text {m }}$

The Information Service of the International Bureau of Education for Great Britian reports that the House of Commons recently agreed to a resolution moved by Mr. Rodford, member for Manchester

[^1]and worded as follows:
"That in the opinion of this house it is undesirable that school children should have their evening occupied with home work to the exclusion of rest and recreation, and that whenever practicable, preparations on the school premises should be substituted for home work."3

Some years ago the Scottish Education Department issued a circular on overpressure in schools, and replies to the questionnaires which were sent all over Scotland were examined by Dr. A. Morrison of the Scottish Universities. He found from the replies that his university examinations were to a considerable extent to blame. Another cause of excessive home work wes the fact that in Scotland, after the age of twelve, pupils were no longer taught by one teacher all day, but went to a separate teacher for each subject, and the more zealous the teacher, the more the danger of the total amount of home work being excessive. 4

Replying to the debate in the House of Commons the secretary of the Board of Education, Mr. Oliver Stanley, said that they were actually in the middle of a comprehensive inquiry into the whole question of home work. The chief points in the policy of the Assistent Masters' Association of Scotland are that, (1) home work is a veluable and necessary means of study free from the restrictions of class work, but that it should be strictly limited in amount and definitely apportioned among the various subjects, and (2) that home work should be regulated by staff arrangement and by time table. The

3 J. VeKeen Cattell, "Reports", School and Society, Vol. 43 (1936), No. 1120 , p. 821

4 Ibid.
maximum times per evening should be one-hundred twenty minutes for pupils between fourteen end sixteen years of age and for pupils over sixteen there should not be a rigid time table but they should be encouraged to direct their own studies. ${ }^{5}$

The Berlin Correspondent of the Journal of the American Medical Association wrote in 1932 that the overburdening of the school child is still a subject of much discussion. The Minister of Instruction of France has appointed a commission to study the matter of overpressure which always impiles too much home study. The report of the school medical officer of the London County Council for 1929 devotes two pages to the question of overpressure, and five physicians are quoted as finding many cases of nervousness and debility due to excessive home work. He concludues by saying,
"It is the duty of school authorities to consider the result not merely upon scholastic advancement but upon health and physique in every individual case, and to insure that in every twenty-four hours, there is not only time for work, for meals, for physical exercise, and for sufficient sleep, but also healthful relaxation and recreation." 6

In the London Times (educational supplement, April 12, 1930) a correspondent from the Irish Free State expresses the thoughts of thousands of American parents when he says, on the subject of home study in secondary schools,
"The question gets little or no consideration from teachers as a body. It gets plenty of unwilling consideration from parents but their epproval or disapprovel hardly counts."7

5 Ibid., p. 822
6 J.F. Rogers, M.D., "Home Study", Hygeia, Vol. 14 (1936), No. 9, p. 812

7 Ibid.

Dr. Carr, a medicel officer in the Derbyshire schools remarks that the subject of home study has never received the attention it deserves.

James Frederick Rogers, M.D., consultant in Hygiene, of the United States Eureau of Educstion says that over a hundred articles on the subject of home work have appeared in educational journals in the past querter century, and probsbly thousands in the lay press. The following are representative phrases used by these writers in epproval or condemnation of the practice.

Pros

Home study results in:
self reliance thoroughness
independence
responsibility
honesty
neatness
habits of study
accuracy
obedience
Home study keeps children at home
Improves home
Cultivates "quiet reading
and profitable thought"
Gultivates love of home
Mekes less work for teachers
Saves money of taxpayer
Home is best place to study.

Cons
Home study results in: reliance on others waste of time cheating deceit lying
slovenly work nervousness loss of sleep injury

Home study leaves pupil no time for play No time to "loaf and invite his soul"
No time for music, art, clubs No time for home duties and pleasures
Makes work for parents Homes are poor place to study.

Surely no teacher believes that all his pupils could be mede accurate and honest by home work or that they could all be rendered slovenly or cheats. Not all children are made home lovers by home study nor are all made 111 thereby. It is evident that undesirable traits in the child are sometimes brought to the surface and intensified by home study and surely this is the last thing that education should do.

"Froin the mere mixing of the above 'fors' and 'ageinsts" is obtained only a disturbance in the test tube, a bubbling, accompanied by heat but with little light." ${ }^{\text {s }}$
 Mr. Rogers says that there can be little doubt that home study

 is not undesirable provided (I) that the home is healthful and reasonebly quiet; (2) thet the stuay imposed is not excessive in amount, (3) that it is not too exacting in nature, and (4) that the chila knows what he is to do and how to do it. Individual differences should be provided for in home vork as in class work. Hone study ought never to be hemful for any but helpful and healthful for all. It should be so hendled that it will not deserve to be called a "big, bad wole" by educators, parents or pupils. ${ }^{9}$The United States Bureau of Education gave the opinion that, nationally, the argument of home work vs. no home work had simmered down to a static atate of compromise in that educators had come to the general agreement that some home work was good, too much bad, that it must be coordinated by the various teachers, and must be pleasent and entertaining. 10

Mrs. Clara Savage Littledale, editor of Parents' Magazine, asked her readers this question, "Do you believe in home work?" Answers poured in from parents, teachers, superintendents, and children. A few of the letters have been copied in part below.
"Yes --- Very arly in our children's lives we instilled a love of learning things. When they reached the higher grades

8 Tbid. , p. 809
9 Ibia., p. 851
10 Dr. Wm. H. Johnson, "Home Work Ho", Literary Digest, Vol. 123 (1937), No. 1, p. 32
we made school and all its interests a big part of all our lives. We had an early dinner and the children's time was their own to play between the letting out of school and the dinner hour. Immediately after dinner we all, father, mother, and children, went into a study hour. The children were provided with a simple table with a bookcase and a drawer that held sharpened pencils, erasers, paper snd all things needful to efficient work. Quiet prevailed during this hour unless questions were asked or help was needed. The children had been taught early that a happy attitude toward their work made for quick progress in any line of study. Why the modern child rebels against a little home study or why parents hold this time up to him and the morld as a blot against the school system, I, as a parent, fail to see."

- Marjoria Street, Iowa
"No --- My observations, based on my pest experiences as a high school teacher, show that home study brings about, first, poor study habits; second, discipline problems; third, dissention between parents and teachers. The modern home with its close quarters and resulting lack of a quiet, confortable study place, the radio, and the unthinking demands of the parent make it impossible for a child to concentrate and to do his work carefully. The result is, "get through with it any old way" study habits. The student who does his work at home nisses the benefits of supervised study."
- Bermita Faye Fraser, Washington
"Yes --- Hork outside of the class room seems to be necessary as a supplement to school instruction after the first few years of school life. The school time of pupils, except in the early grades, is elmost completely required for explanations, recitations and tests. The knowledge gained in the class room must be driven home and that can only be accomplished by practice and reflection. That means supplementary work, usually feasible only at home."
- Whm. D. Cranstoun, New York
"No --- Games, fair play, family relationships and business contacts are necessery to the growing mind. The art, and art it has grown to be, of making a living must come right al.ong with book learning if the student is to be equipped for life at the end of twelve years. Not more than one out of ten get to complete or even start a higher educational course. They must, to meet and know the world into which they are going to work, have more practical training, This they must gain after school hours and during vacation. Book learning has its place but there are other things needed to complete twelve years of training, that is, religious education, home relations, legitimate recreation, epprenticeship to business and farming, nature lore and just plain 'learnin'
folks. Let the home, church and just living have some leeway during these impressionable years."
- Mrs. Warren D. Morgan, Wisconsin ${ }^{11}$

Pupils are vitally interested in the question. The composition
below is one written by a junior in the Bartlesville High School and
handed to her Faglish teacher for extra work. The subject of home
work had been mentioned but briefly one day in class. This under-
standing teacher has led her pupils to express their thoughts on
topics nearest their hearts, because they know that all is received
with sympathy and strictest confidence.
"Question: Home Work to be or not to be
The student weary plods his homeword way, ignoring drugstores and school chums. He enters the door, drops his armload of books and plunges into soup eating, looking neither to the right nor to the left.

The repast finished, the student begins work, first glancing longingly at the outside, the copy music, and piano. He sighs and starts on his shorthand which is assigned every dey, holiday or no, and which must be done first.

Two hours later the student f inishes his shorthend and thinks about misguided teachers who think the only way to get students to learn is by giving them home work every night.

Now for the term paper. The student rises in search of an apple. Baby sister and all the neighbors' baby sisters run through the raom several times. Father talks in booming voice over the telephone. Big sister is practicing the violin. Mother runs the vacuum. The student gets a despairing expression on his face and vonders what would happen if he stood up in class the next day, and screamed and went into a fit. The idea is rather appealing.
'Treedom of speech is important'--concentrate, says the student's better judgment. Forget it says something else. Three hours have elapsed. The student's brain is tired. He is tired, and muses on the morrow when all must be repeated. Useless. Hopeless. No fun. No time for music. Work. Routine. Monotony.

Bed time. Student retires with whirling brain. Notes of music. Shorthand curlyques. Nightmares. He awakens still dead tired. He staggers to the breakfast table and puts his egg in his coffee cup. Ah, he miserably thinks, I may go crazy yet.

[^2]
If there is a pleasanter side to this, let it be presented, but this student will always feel resentful toward home work. Teachers, have mercy! ${ }^{\text {T12 }}$

An experiment with two classes in elgebra in the University of Chicago High School by E.R. Breslich seamed to produce the following results: Section A which was assigned the usual home work but with no previous supervised study responded to a test with an average mark of 62.8 , while Section B which had been taught how to study but given no home work averaged 65.5. (In the final examinations of the preceding semester the average grades of the sections were A, 81.5 and $B, 79.4$.$) The following chapter in the algebra was covered$ in six lessons. For these lessons Section A worked under supervision, and Section B did home work. In the following test the average grade of the $A^{\prime} s$ was 77.5 and the $B^{9} s, 86.4$. According to the investigator the power obtained by Section B in the preceding chapter, while working under supervision persisted and was strong enough to be helpful in the following chapter. Possibly this was the case, but the marks achieved in the second test seem to argue for home study or at least for well directed home study. 13
M. A. Steiner of Ingram, Pennsylvania has made a study to find the effect of home-study assignments upon the standard test scores of seventh grade pupils in arithmetic and English. A class of thirtynine pupils just entering the seventh grade of a four-year junior high school was used in this research. The experiment extended over

[^3]the first semester of 1933-34, a period of eighteen weeks. Since a similar investigation made two years before in the same school had been limited to arithmetic and resulted in no appreciable difference, the two subjects were included in this study.

The seventh grade class in each case was divided into two equivalent groups on the basis of mental ability and achievement tests. One half of the class was given daily assignments in English and the other group had assignments in arithmetic. The same class instruction was given in each class. All home study assignments were corrected by the teacher and returned the following day for correction. The nature of the experiment was explained to the pupils and their cooperation requested. The assigments included no new material. An analysis of the semester failures in arithmetic shows that five pupils of the home work group failed and only two of the no home work group. Five of the seven English failures belonged to the home work group. It would seem that home study assignments in neither arithmetic nor English had any effect upon a pupil's ability to pass the semester's work in either subject. The regular classroom instruction was the deciding factor in this as well as the improvement of pupils as measured by the objective tests. In this experiment the full value of home study assignments was probably not revealed because the pupils did not have the benefit of a free classroom discussion of the work done at home but had to depend upon such comments as might be written by the teacher in marking their papers. ${ }^{14}$

[^4]In the Bulletin of High Points in the Work of the High Schools of New York City a summary is given concerning questionnaires returned by pupils of the sonior class of the Manuel Training High School in regard to home study. It states that objection may be raised to this questionnaire and the findings therefrom on the ground that the questions called for mere personal opinions and estimates which are necessarily approximate at best and even erroneous, occasionsliy. While this is readily admitted, the writer, Harry Bisner of the Department of Mathematics, contends that the point of viev of the pupils is important as the initial step in a scientific study of home work in high schools.

A second step in this project was a questionnaire subnitted to the teachers to get their attitude toward the effectiveness of home work as an aid to instruction. Mr. Eisner believes that to supplement this second phase of the inquiry there should be instituted a series of scientific experiments to ascertain the optimum amount, content, and other pertinent attributes of home work in the various secondary school subjects. He says,

WThis presents a large field for research in which little has thus far been accomplished. When such experiments have been performed by qualified teachers throughout the school system and the results made available for study, we shall then be well on the road to a solution of the whole vexing problem. ${ }^{15}$

[^5]
CHAPTRER II

PRESBINTATION AND ANALYSIS OF DATA

All pupils who entered the five algebra classes in the Bartlesville Junior-Senior High School in the fall of 1938 were given Form A of the Otis Self-Administering Tests of Mental Ability the first week of school. On the basis of the results of this test, the grades made in arithmetic the previous year, and the class in school, it was possible to make eighty pairs from the one-hundred ninety-three pupils enrolled. This number was reduced to seventyseven by withdrawals so that the conclusions of this experiment have been bsed on that number. The writer was the teacher of all of these pupils.

Table I shows the IQ's of the pupils by pairs with the average for Group 1 being 110.7 and for Group 2, 110.5. The coefficient of correlation, which shall be designated as $\underset{r}{ }$ hereafter in this paper, was found to be almost 1. It is practically certain then that on the basis of IQ's the groups were well equated.

Table II shows that there were seventeen pairs of pupils with the same IQ's, thirty pairs with a difference of one point, fourteen pairs with a difference of two points, thirteen pairs with a difference of three points, and three pairs with a difference of four points.

The pupils' average grades in arithmetic the previous year were considered so that a pupil with an IQ of 106 and a grade of C- would not be paired with a pupil of the same IQ but with a grade of A. This in a small degree helped to indicate differences in application, interest, study habits, attendance, health, and other influences on

TABLE I

Iq'S OF PAIRS OF ALGEBRA PUPILS USED IN THE STUDY

Pairs	Group 1	Group 2	Pairs	Group 1	Group 2
1	117	119	40	109	106
2	109	110	41	117	114
3	112	111	42	118	121
4	109	111	43	109	106
5	113	116	44	124	124
6	113	111	45	121	120
7	116	117	46	120	120
8	111	112	47	120	121
9	90	89	48	120	121
10	99	96	49	120	119
11	106	109	50	118	118
12	114	114	51	104	103
13	114	115	52	104	105
14	114	114	53	105	105
15	113	111	54	105	105
16	115	115	55	106	105
17	114	113	56	122	124
18	115	115	57	119	118
19	117	117	58	99	96
20	90	86	59	96	94
21	104	107	60	97	96
22	110	109	61	98	96
23	113	113	62	106	102
24	106	109	63	101	103
25	106	104	64	102	106
26	118	118	65	107	108
27	115	212	66	119	119
28	117	117	67	104	106
29	119	119	68	115	112
30	110	109	69	128	129
31	118	116	70	90	89
32	114	115	71	115	116
33	113	112	72	121	118
34	114	113	73	106	104
35	112	110	74	116	115
36	112	112	75	114	115
37	107	108	76	115	116
38	108	109	77	96	98
39	106	107			
$r=1-$			Tal	8529	8512
			verage	110.7	110.5

TABLE II
DIIFERENCES III IQ'S BY PAIRS

Difference	Prequencies
0	17
1	30
2	14
3	13
4	3

Arithmetic Mean $=1.4$
Standard Deviation $=1.27$
school achievements. Most of these ninth grade algebra pupils had been taught in the eighth grade by two different teachers in our own school the previous year and sll of them had been given the same tests so that as far as is possible with two different teachers the grades were a fairly reliable index. About six per cent of the remainder of the ninth grede pupils were new, most of them coming from rural schools. As far as was possible they were paired with each other. All of the tenth grade pupils included in the experiment were taught the previous year by one teacher in composite mathematics classes. The grades of the two groups are shown by pairs in Table III. Assigning to the grade of A the value of five points, to B, four points, to C, three points, and to D, two points, the average grade was between 3.75 and 4.00 which was interpreted as a B- average for each group. Ninth grade pupils were paired with ninth grade pupils and tenth grade pupils with tenth grade pupils. As far as possible, pairs were formed with like sexes. Twenty-one of the ninth grade pairs were male, sixteen were female, and eighteen were pairs mede with opposite sexes. Eight of the tenth grade pairs were male, three famale and eight pairs of opposite sexes. One pair was made with boys from the eleventh grade who were taking algebra for the first time. All repeating algebra pupils were excluded from this study. In order to have as many pairs as possible two pairs were made with girls in the ninth grade paired with girls in the tenth grade. Figure 1 represents graphically the total number of pairs of like sexes in comparison with those of opposite sexes.

Chronological age was not a factor in the pairing of the pupils for this study but the ages are shown in months by pairs in

TABLE III
AVERAGE GRADES RECEIVED IN ARIMMIETIC FOR THE PREVIOUS YEAR

Pairs	Group 1	Group 2	Pairs	Group 1	Group 2
1	B-	ct 4	40	D	D
2	A	A	41	B-	B
3	c	c	42	B	B
4	A	B	43	B	B
5	C	C	44	A-	A
6	c	c	45	B-	B-
7	A	A.	46	A-	A
8	A	A-	47	A	A
9	c	c	48	B	B
10	B	c	49	B	B
11	c	c	50	B	B-
12	B	B	51	B	c
13	C	c	52	B-	B
14	B	B	53	c	c
15	c	c	54	0	B
16	B	B	55	A	A
17	B	B	56	A-	A-
18	B	B	57	B	B
19	B	B	58	c	ct
20	D	D	59	c	c
21	c	c	60	D	D
22	B	B	61	c	C
23	c	c	62	c	ct
24	B	B	63	c	C-
25	B	B	64	c	c
26	B	B	65	c	B-
27	B	B	66	3	A
28	C-	D	67	ct	c
29	B-	A-	68	A	B
30	B-	c	69	B	A
31	c	c	70	c	B-
32	A-	A	71	B	A-
33	B	B	72	B	B
34	B	B	73	B-	B-
35	B	c	74	B	B
36	B	B	75	c	C
37	B 4	A	76	B	A-
38	B	B	77	B	B
39	c	C-			

Table IV so that achievement in individual cases might be studied. It is interesting to note that the average age for Group 1 is 173.52 months and for Group 2 is 172.65 months, or a difference of only .87 month. It might be mentioned here that for the most part average pupils and others who heve made low grades in eighth grade arithmetic are urged to take ninth grade arithmetic in preference to algebra to satisfy the requirement for graduation. If they insist on taking algebra they may do so in the tenth grede.

Pupils of the second and ifith period elasses were used for Group 2 and these classes were filled to capacity making forty pupils in each class. Each oi these eighty pupils was paired vith some one in one of the other three classes and these are referred to as Group 1 in the study. Left over pupils not included in the study were also in one of these threa classes. It was necessary to make several changes in schedules during the second week of school but in this the principals willingly cooperated and helped the writer in every way possible.

The mathematics club which the writer had sponsored for eight years was dropped for the period of the study in order that algebraic achievement would not be influenced outside of the regular class in any controllable way except by assigned home work. This extra time given the writer after three 0^{\prime} clock, was used to help pupils who had been absent to meke up the work so that absences were not considered important in the results of this study, especially when they occured early in the unit. Pupils were not informed concerning the experiment. A normal setting was desired.

TABLIS IV
CHRONOLOGICAL AGES IN MONTHS BY PAIRS

Pairs	Group 1	Group 2	Pairs	Group 1	Group 2
1	177	176	40	172	183
2	180	183	41	176	168
3	171	164	42	167	166
4	181	169	43	172	169
5	169	164	44	164	167
6	168	168	45	160	168
7	182	176	46	170	177
8	176	173	47	166	169
9	184	185	48	165	157
10	167	170	49	171	176
11	169	163	50	170	167
12	167	157	51	176	165
13	185	182	52	169	175
14	173	187	53	185	177
15	174	164	54	165	175
16	154	169	55	167	159
17	170	176	56	170	160
18	173	169	57	166	176
19	170	167	58	186	163
20	192	211	59	191	171
21	180	186	60	191	189
22	199	203	61	182	178
23	170	172	62	177	180
24	181	183	63	175	171
25	179	177	64	182	179
26	159	166	65	167	165
27	167	176	66	168	176
28	164	175	67	171	170
29	173	167	68	165	181
30	173	167	69	162	159
31	169	164	70	178	169
32	172	166	71	184	173
33	174	174	72	167	172
34	169	174	73	176	174
35	173	168	74	169	169
36	166	175	75	165	166
37	175	176	76	170	173
38	176	168	77	187	178
39	187	178			

The term "home work" is used here to mean preparation outside of the regular classroom, and without teacher supervision. In a few cases the assignment was prepared in a study hall period but most of the pupils needed to do their work at home as their daily program included a full schedule of classes. Throughout the paper the word "assigned" is to be understood when home work is mentioned. Some pupils do home work whether assigned or not. This study was for the purpose of determining whether regularly assigned home work makes a difference in the achievements of pupils when compared with pupils to whom no work was assigned but on whom no restrictions were placed.

The assignments were of the nature of a finishing-up process to complete what had been started in class and, to drill on operations already understood. No new work was included in the assignments. This study was carried on according to the purpose of home work as given in The Teaching of Mathematics by J. W. A. Young.

The purpose of home work is (1) to drill on operations whose theory is understood, (2) to impress on the memory those few things which need to be memorized, (3) to inculcate neatness and, (4) to give opportunity for quiet thinking. ${ }^{1}$

The most effective home work is that which has the character of completing the class work of the previous day, not of preparing for the next. It is not advisable to assign work unless it has been sufficiently developed in the class to enable even the dull pupils to apply their time with success and profit. The pupil should never be set to struggle with new matter except under supervision of the teacher. ${ }^{2}$

The course of study divides the text of first year algebra

[^6]into eleven units. The plan of this experiment was to treat all pupils in the two groups alike on the first unit in the matter of home work. Written assignments were made when it seemed necessary to fix a certain skill, but often no work was assigned especially over a week end. On the second unit Group 1 was given no home work at any time but Group 2 had home work regularly, After the groups were treated alike on the third unit, Group 1 was given regularly assigned home work on the fourth unit while Group 2 had none. On the fifth unit the groups were treated the same again, then Group 2 had home work on unit six. This plan was followed throughout the year, making six units on which the groups were treated differently in the matter of home work. These are called the "experimental units".

The periods between the experimental units where like treatment was given were to equate the groups again if any difference had been brought about by the home work factor. All home work assignments consisted of a certain number of exercises or problens to write and be handed in the following day. The essignments were such that on the average forty-five minutes would be ample time for the average pupil to prepare. Pupils soon learned that when work was assigned the paper must be prepared if they were to escape an hour study hall which the writer conducted after school but in which no assistance was given except to pupils who had been absent. Very seldom was it necessary to keep pupils after school except on the first day assignments had been given following a unit free from home work. It seemed to be necessary to establish the habit again. Closer attention in class was noticed by the writer when papers had
to be written outside.
The class period, approximately one hour in length, was conducted in the same manner for all pupils. Explanations, discussions, blackboard practice, workbook drills, tests, reviews, methods of study, etc., filled the hour so that it wes necessary to prepare the assignments outside of class. In classes not given home work, the class was dismissed by saying, "We shall continue with this kind of work tomorrow, " or "We shall begin a new unit the next hour". Occasionally, an ambitious pupil would hand in some exercises when no assignment had been made. These were always accepted by the writer but with no words of praise as might have been given under different circumstances. Generally, it was easy to believe that not many had thought about the work since leaving the class the previous day. When sent to the blackboard on the following day, the group which had prepared home work responded more quickly and readily and solved the problems in less time. The non home-work group floundered around and needed more time to remember how they were told to solve the problems in the previous class hour. Home-work classes were allowed to ask questions concerning any problem in the assignment with which they had trouble. These same problems were made a topic of discussion in the non home-work classes.

Table V shows the results of Test 1 after the two groups had been treated slike on the unit, "Positive and Negative Numbers" for a period of fourteen days with an attendance of 1,051 days for Group 1 and 1,055 days for Group 2. The range of scores for Group 1 was from 22 to 121 and for Group 2 was 26 to 123 from a possible

TABLE V

RESULTS OF TEST 1 AFTER LIKE TRRATMEATI OF GROUPS
UNIT: POSITIVE AND NBGATIVE NUNBERS

Scores	Group 1	Trequencies Group 2
$123-129$	0	1
$116-122$	4	6
$109-115$	7	5
$102-108$	8	7
$95-101$	10	9
$88-94$	6	8
$81-87$	10	6
$74-80$	6	9
$67-73$	5	7
$60-66$	8	6
$53-59$	8	6
$45-52$	1	1
$39-45$	1	1
$32-38$	1	1
$25-31$	1	0
$18-24$	1	

$$
\frac{\text { diff. } \mathrm{sv} .}{\sigma_{\text {diff. }}}=.12 \sigma
$$

125 points. The mean for Group 1 was 83.16 and for Group 2 was 83.44, showing only . 28 of a point difference. The standard error of the mean for Group 1 is 2.58 and for Group 2 is 2.63 , showing that the true mean for Group 1 would be almost certain to be between the limits of 75.42 and 90.90 , and Group 2 would be between 75.55 and 91.33. The difference in sigmas between the two means being . 12 shows only about five per cent better than guess that Group 2 would exceed Group 1 on the same or similar tests at other times. According to agreement among workers with tests the \underline{E} of .55 shows a substantial or marked relationship.

Table VI shows the results of Test 2 after Group 2 had assigned home work on the unit, "Adding and Subtracting Polynomials". The unit required a period of twelve days. Group 1 attended 890 days and Group 2 attended 863 days. The range of test scores for the home-work group was from 38 to 95 and the non home-work group was from 35 to 95 . The mean for the home-work group was 78.50 and for the non home-work group was 77.10 showing a difference of 1.40 . The highest possible score on this test was 95 points. The difference in sigmas is .93 showing that in about 88% of the cases the homework group would surpass the non home-work group. The \underline{r} is .62 . This degree of marked relationship between the achievements of the groups may be explained by the fact that algebra was a new subject, enthusiasm was grest, interest was keen, and pupils did home work whether required to do it or not.

In explanation to pupils as to why some of the classes were given written work to hand in and others not, the writer mentioned

TABLE VI

RESULTS OF TEST 2 ATTER GROUP 2 HAD HOME WORK UNIT: ADDING AND SUBTRACTING POLYNOMTALS

Scores	Froup 1	Frequencies Group 2
$93-97$	10	10
$88-92$	14	14
$83-87$	10	17
$78-82$	9	9
$73-77$	11	7
$68-72$	8	4
$63-67$	2	5
$58-62$	4	1
$53-57$	2	2
$48-52$	2	3
$43-47$	1	3
$38-42$	1	0
$33-37$	3	0
$28-32$	0	

$$
\frac{\text { diff. av. }}{\sigma_{\text {diff. }}}=.93 \sigma
$$

that it was impossible to check so many papers thoroughly every day so classes would teke turns in preparing papers. The experiment being in its infancy the writer made the possible mistake of telling the non home-work classes what assignment had been made to the other classes whose turn it was to hand in work. Often when the class was asked if there were a particular exercise which they would like to see solved on the board, the same one was asked for in the non home-work classes as in the home-work classes, showing that the same exercises had been tried outside of class. Also, the writer not being used to scientific methods of research, and being a conscientious teacher, found herself trying to make up to the non home-work group for what she thought that they might have lost by no assignment by crowding in a little more drill at the blackboard in class.

As the school year continued and the newness of algebra wore off, and pupils became engaged in the many activities which a school has from Christmas to the end of the year, the desire to work on algebra outside of cless when not required to do so seemed to be lessened. Pupils were never told that they should not work on algebra outside of class unless a regular assignment were made as was the case in Mr. Steiner's experiment in English and Arithmetic. ${ }^{3}$ The writer did not wish to have an artificial set-up but preferred the pupils to react in a normel situation.

The difference in gigmas between the two means of Test 2 is . 93 which shows that in 82 out of 100 cases the average of the home-work
group would exceed the non home-work group average. Table VI indicates that the factor of home work has had but little influence upon the relative achievements of the two groups; however, what does exist is in favor of the homework group.

Table VII shows the results of Test 3, containing 115 possible points, after like treatment of the groups on the twenty-day unit, "Multiplication and Division". Attendence for Group 1 wes 1,499 days and for Group 2 wes 1,484 days. The renge of scores for Group 1 was from 25 to 112 and for Group 2 was from 38 to 112. The mean for Group 1 was 77.65 and for Group 2 was 78.20 , showing a small difference again in favor of Group 2 on like treatment but not so great as was indicated in Test 2 when this same group was doing home work. The \underline{r} of .68 indicates a marked relationship. It is about sixteen times its probable error. The . 3 sigma difference between the means shows that in 62% of the cases Group 2 would exceed Group 1 which is only about 12% better than guess.

Table VIII shows the results of Test 4 after Group 1 had assigned home work on the eighteen-day unit, "Pactoring". Group 1 attended 1,349 days and Group 2 attended 1,345 days. The range of scores for the home-work group was from 55 to 142, and for the non home-work group from 40 to 141 , with a possible maximum score of 144. The mean for the home-work group was 104.72 and for the non home-work group was 100.17 , making a difference of 4.55 points in favor of the home-work group. The \underline{x} of .39 shows a low correlation. It is only about six times its probable error. The difference of 1.74 sigmas between the means of the groups indicates that in about 96% of the

TABLE VII

RESULTS OF TEST 3 AFTER LIKE TREATEIENT OF GROUPS UNIT: MULTIPLICATION AND DIVISION

TABLE VIII

RESULTS OF TEST 4 AFTER GROUP 1 HAD HOME WORK UNIT: PACTORING

Scores	Prequencies		
137-143	1	2	
130-136	5	5	
123-129	10	8	
116-122	9	4	
109-115	8	11	
102-108	19	12	
95-101	1	10	
$88-94$	9	5	
81-87	4	4	
$74-80$	4	4	
$67-73$	6	3	
60-66	0	5	
$53-59$	1	1	
46-52	0	1	
39-45	0	2	
	Mean 104.72	Mean	100.17
	$\mathbf{r}=$. 39	
	diff. av .	1.740	
	σ dipf.		

cases the home-work group would surpass the non home-work group. Apparently as a result of the home-work factor Group 1 made a definite improvement. This is particularly significent in that this is the first time that home work has been assigned to Group 1, and is also the first time that Group 1 has surpessed Group 2 when tested. Table IX shows the results of Test 5 after like treatment of the groups on a twenty-day unit on "Fractions". Attendance for Group 1 was 1,505 days and for Group 2 was 1,481 days. The range of scores for Group 1 was from 15 to 72 and for Group 2 from 9 to 78, with the mean for Group 1 being 48.70 and for Group 2 being 46.55 from a maximum possible 78 points. It will be noticed that on the first two tests after like treatment of the groups that Group 2 showed the higher means by a small mergin. In this and the next test after like treatment, Group 1 shows a higher mean. The \underline{x} of . 41 shows a substantial relationship though not as high a degrae as was shown after Tests 1 and 3 after like treatment of the groups. The sigma difference between the means, 1.07 , shows that in about 86% of the cases Group 1 would be above Group 2.

Table X gives the results of Test 6 after Group 2 had assigned home woric on a seven-day unit, "Trigonometry". Group I had an attendance of 526 days and Group 2 of 519 days. The range of scores for the non home-work group was from 25 to 108 and of the home-work group from 25 to 108 with a maximum of 108 possible points. The mean for the non home-work group was 79.00 and for the home-work group was 81.70. Again a difference of a few points was shown in favor of the home-work group. The \underline{x} of .25 shows a negligible or

TABLIS IX

RESULTS OF TEST 5 AFTER LIKE TREATGMNT OF GROUPS UNIT: PRACTIONS

table X

RESULTS OF TEST 6 AFTER GROUP 2 HAD HOME WORK UNIT: TRIGONOMETRY

low degree of correlation. It is only three times its propable
error. 1.10 sigmas difference between the means shows that $\mathrm{LnI}_{\mathrm{If}} 13 \mathrm{R} A \mathrm{R}$ Y about 86\% of the cases the home-work group would surpass the 0 fioh 271939 home-work group. This may be extra significent in that in the unit just prior to this one, where both were treated alike, Group 1 surpassed Group 2.

Table XI gives the results of Test 7 after enother like treatment of the groups on a thirteen-day unit, "Graphs". Group 1 attended 968 days and Group 2 attended 943 days. The range of scores for Group 1 was from 38 to 98 and for Group 2 wes from 30 to 100 with the means being 72.60 and 71.50 , respectively. The maximum possible score was 100 points. The \underline{r} of .40 is about the same as that for Test 5 after like treatment of the groups. A difference of . 54 sigma between the means of the two groups indicates that in 71% of the cases the mean of Group 2 would not exceed that of Group 1, or the meen of Group 1 would not fall below that of Group 2. This is not half way between a guess and complete reliability. Up to this time Group 1 has exceeded Group 2 twice In the meen score, and Group 2 has exceeded Group 1 twice in the like treatment tests.

Table XII shows the results of Test 8 after Group 1 had assigned home work on en eleven-day unit, "Gquations in Two Unknowns". Group 1 attended 834 đays and Group 2 attended 830 days. The range in scores for the home-work group was from 20 to 102 and for the non home-work group from il to 104. The mean. for the former group was 74.65 and for the latter group "69.35. The

TABLE XI
RRSULTS OF TEST 7 AFPER LIKE TREATITENT OF GROUPS UNIT: GRAPHS

Scores	Frequencies	
Group 1		

TABLE XII
RESULTS OF TEST 8 AFPER GROUP 1 HAD HOME WORK UNIT: EQUATIONS IN TWO UNKNOWNS

difference of 5.30 points was again in favor of the home-work group. The \underline{x} of .28 is about four times its probable error and again indicates very low correlation. The sigma difference between the means is 2.18 showing that it is quite probable ($98 \frac{1}{2}$ chances in 100) that the non home-work group would not exceed the home-work group in achievement on a similar test. This is the nearest approach to absolute certainty in any test thus far.

At this point in the study after each group had had the same number of units of assigned home work and the same number of units of no assigned home work, as well as the same number of units of like treatment, the writer thought that it might be well to give a standardized algebra test to see whether the two groups were equal. Accordingly, Form 1 B of the Columbia Research Bureau Algebra Test was given to all pupils included in the study. This test has two parts requiring forty minutes for each pert. There are thirty-nine possible points to be mede on the "Mechanics" of Part 1 and twentyfour possible points on the "Problems" in Part 2. Figure 2 shows the number of pupils in each group making each score from 17 to 39 on the mechanics of Part 1. The mean score for Group 1 is 29.28 and for Group 2 is 29.99. Figure 3 shows the frequencies of each score from 4 to 24 for the groups on the verbal problems of Part 2. The mean for Group 1 is 15.9 and for Group 2 is 16.7 . From the totel of 69 points were found the means 45.18 and 46.69 for Groups 1 and 2, respectively. Figure 4 is a frequency distribution and histograms of the total scores for Groups 1 and 2 on the Columbia Research Test. Again the \underline{x} of .61 shows a marked relationship. The reliability

Curves for Part II - Columbia Research Bureau - Algebra Test (Verbal Problems)

coefficient between the two forms of the Columbia Research Test is is given as . 87 .

The writer checked the reliability of her test of one hundred points given after like treatment of the groups on the unit of graphs by checking the correctly answered even numbered questions against the odd numbered ones. The scatter diagram in Figure 5 shows the distribution of scores for this test. Below the diagram is the solution of \underline{r} which was found to be .91. Table XI above gave the mean for Group 1 to be 1.10 points higher than for Group 2, while the standerdized test gave a difference in the means of 1.51 in favor of Group 2. The writer feels that the two groups were as nearly equated as the factors considered would permit.

Table XIII shows the results of Test 9 after like treatment of the groups on the five-day unit of verbal problems. Bach group attended 370 days. The range of scores for Group 1 was 17 to 104 and for Group 2 from 18 to 104 out of a possible score of 104 . The mean for the former was 55.07 and for the latter was 58.30. The \underline{r} of .75 shows a high degree of relationship. This was the only test during the year that was wholly thought problems.

Table XIV shows the results of Test 10 after Group 2 had assigned home work on the nine-day unit, "Square Roots and Radicals". Group 1 attended 665 days and Group 2 attended 673 days. The range In scores for the non home-work group was 47 to 181 and for the home work group from 61 to 178 out of a possible score of 181 . The mean for the non home-work group was 126 and for the home work group was 145.5 with a difference of 19.5 points in favor of the home work group. The \underline{r} of .43 shows a substential relationship but the sigma

ara	12	15	18	21	24	27	30	33	36	39	42	45	46	51
51										1		1	1	2
48										4	1	1	1	
45					1			1	2	2	3	3	4	
42							1	3	2	8	4	4	4	1
39								4	3	5	4	1		1
36					1	3		5	6	2				
33					2	1		5	3	5			2	
30				1	3	3	2		1	2				
27			1	3	2	6	2	1						
24	1			1	1	2		3						
21		1			3									
18				1	1									
15	1	1												

Even (y) Reliability of Test 7 Odd (x)
$C=-.8$
$C^{2}=.64$
$C=3 \times(-8)=-2.4$
$A v=36.6$
$\sigma=2.75$

$$
\Sigma x y=1006
$$

$r=\frac{\frac{1006}{10.3}-(-8) \cdot(.06)}{(2.75)(2.81)}=.83$
for half of test

TABLE XIII

RESULTS OF TEST 9 AFTER LIKE TREATMENT OF GROUPS UNIT: VERBAL PROBLEMS

TABLE XIV
RESULTS OF TEST 10 AFTER GROUP 2 HAD HOME WORK UNIT: SQUARE ROOTS AND RADICALS

difference between the means of 4.87 shows absolute certainty thet the home-work group would surpess the non home-work group in the classes taught by the writer. This surpassing of Group 1 by Group 2 is significant in that in the previous experiment where Group 1 was assigned home work, the number of chances ($98 \frac{1}{2} \%$) in their favor was almost as great as are now in favor of Group 2.

Before the last experimental unit, a unit where like treatment was given the groups, was omitted in order to see whether any different results would be obtained when home work was assigned to one group. Table XV shows the results of Test II after Group 1 had assigned home work on the seven-day unit, "Quadratic Bquations". Both groups had been treated alike on solving quadratic equations by the method of factoring several weeks previously when the chapter on factoring was completed. This later unit reviewed that method and included the two other methods--completing the square and by the formula. No assigned home work was given to Group 2 on these last two methods named but all three methods were included in the test at the end of the unit. Group 1 attended 519 days snd Group 2 attended 517 days. The range of scores for the non home-work group was from 16 to 81 and for the home-work group from 24 to 81. The highest possible score was 81 points. The mean for the non homework group was 52.20 and for the home-work group wes 57.70. Again a noticeable difference of 5.50 is in favor of the home-work group (Group 1). On the previous unit Group 1 which did not have assigned home work was far surpassed by Group 2. The sigma difference of 2.86 is again absolute certainty that the group having home work would surpass the non home-work group but this difference is not as great as on the previous test where a difference of 4.87 sigmas

TABLE XV
RESULTS OF TEST 11 AFTER GROUP 1 HAD HOME WORK UNIT: QUADRATIC EQUATIONS

Scores	Frequencies			
78-82	3		3	
$73-77$	12		6	
68-72	12		8	
63-67	6		5	
58-62	10		5	
53-57	9		11	
48-52	4		9	
43-47	4		7	
38-42	9		9	
33-37	2		4	
28-32	3		7	
$23-27$	3		2	
18-20	0		0	
13-17	0		1	
	Mean	47.70	Kean	52.20
	$\mathbf{r}=.39$			
	diff. av. $=2.86 \sigma$			
	O diff.			

was shown in favor of the home-work group. This might be explained by the fact that about 20% of this test was on the factoring method of solving quadratic equations and this method had been handled similarly in each group prior to this unit.

Table XVI gives a summery of the means for the two groups when turns were taken in the matter of assigned home work on the six experiaentel units scattered throughout the school year. Differences between the means of the groups ranged from 1.40 to 19.5 points, each time being in favor of the group having assigned home work.

Table XVII gives a summary of the means for the two groups when like treatment was given on five intermittent units. The range of differences is from .28 to 3.23 points, sometimes in favor of Group 1 and sometimes in favor of Group 2.

Table XVIII gives the standard differences between the meens as measured on the base line. In each case the difference found for the experimental unit was greater then that found in the immediately preceding like treatment unit. It would seem that the home-work factor brought about this greater difference in the achievements of the groups. As the year continued there seemed to be an increasingly greater difference between the achievements of the groups as home work was assigned. This may have been due to the fact that the newness of the subject as well as the early fall school enthusiasm wore off until finally only the required home work was being done in algebra. Another cause might have been that easy material is given in the beginning of the course and this could be echieved without much additional class work but such difficult topics as

TABLE XVI
COMPARISON OF MEANS ON THE SIX EXPERTMENTAL UNITS
FOR GROUPS 1 AND 2

Test No.	Group 1 Mean	Group 2 Mean
1	No home work - 77.10	Home work - - 78.50
2	Home work - - 104.72	No home work - 200.17
3	No home work - 79.00	Home work - . - 81.70
4	Home work - - 74.65	No home work - 69.35
5	No home work - 126.00	Home work - 145.50
6	Home work - - 52.20	No home work - 57.70

TABLE XVII

COMPARISON OF MBANS ON THE FIVE INTERMITTENT UNITS OF LIKE TREATMENT

Test No.	Group 1	Group 2
1	83.16	83.44
2	77.65	78.20
3	48.70	46.55
4	72.60	71.50
5	55.07	58.30

TABLE XVIII
SIGMA DIFPERENGES BETOEEN THE NBANS OT THE GROUPS ON TESTS AFTER THE APPLICATION OF HOME WORK AND AFTER LIKE TREATMENT

Test Number	Experimental Units	Like Trestment
1	$.93 \sigma$	$.12 \sigma$
2	1.74σ	$.30 \sigma$
3	1.10σ	1.07σ
4	2.18σ	$.54 \sigma$
5	4.87σ	1.70σ
6	2.86σ	

factoring, fractions, and quadratics coming later in the course need much more practice. Finally, the many activities of the school as well as outside activities later in the year claim a large per cent of the pupils time so that less and less time is available for home work and if not required, it is likely not to be done.

Table XIX gives the average \underline{z} scores of the seventy-seven pairs of pupils included in this study. The individual scores made on the tests following the six experimental units were changed to \underline{z} scores for the purpose of studying individual cases. Bach pupil's average position was found on the three unit tests on which he was not given home-work assignments, then again on the three unit tests on which he did have assignments. These figures are given in the first two colums and his net gain in the third column. Positive scores are those above the mean of his group and negative scores are those below the mean of his group. For example the first pupil in Group 1 made an average z score of .722 when he had no home work and . 766 when he had home-work assignments. His not gein was .044 showing a higher position after the home-work units. Pupil No. 7 In Group 2 changed his position from -.247 to $t .279$ when he did home work. His net gain was .526. Pupil No. 56 in Group 2 was able to achieve a higher position when no home work was given. This was probably due to the fact that he is a conscientious pupil of high IQ and he studied whether he had assigned home work or not. He may not have really done any better work on the non home-work units but his relative position was improved because the mean of his group slipped down in the non home-work units.

TABLE XIX

AVERAGE Z SCORES OF THE PAIRS ON THE THRUSE
TESTS FOLLOMING ASSIGNED HOMS WORT AND THE THREE PESTS FOLLOTIING MO ASSICMIED HOME WORIS

Pairs	$\mathrm{H}_{6} \mathrm{~W}$	$\begin{aligned} & \text { Croup I } \\ & \text { No How. } \end{aligned}$	$\begin{aligned} & \text { Yot } \\ & \text { Gain } \\ & \hline \end{aligned}$	Hello	$\begin{aligned} & \text { Croup } 2 \\ & \text { Ho How. } \end{aligned}$	$\begin{aligned} & \text { Net } \\ & \text { Gain } \\ & \hline \end{aligned}$
1	.766	. 722	. 044	. 211	. 624	-. 418
2	-.381	. 120	-. 501	. 312	. 034	. 346
3	-294	-1.385	1.591	-1.611	. 137	-1.748
4	. 824	. 970	-. 145	. 703	1.174	-.471
5	. 049	-.094	. 143	-875	-. 256	-. 619
6	-. 645	-1.775	1.130	-1.685	-1.205	-480
7	1.020	. 628	.392	. 279	-. 247	. 526
8	.969	. 631	. 338	. 284	. 686	-402
9	-. 425	-1.033	. 608	-. 637	-.897	. 260
10	. 246	-.930	1.176	-1.002	. 153	-1.155
11	.411	-382	.029	-. 548	. 211	-.759
12	.386	. 686	-3300	-. 116	-.365	. 249
13	-. 979	-. 431	. 548	-. 815	-. 025	-790
14	.465	1.046	-. 581	-. 104	-. 691	-.795
15	. 814	. 771	.043	. 430	-1.171	1.601
16	- 172	-. 184	.012	.311	. 893	-.582
17	.506	. 084	. 422	. 309	. 505	-. 196
18	. 176	. 099	. 077	. 585	. 944	-.359
19	-246	. 086	--332	. 037	-. 805	. 842
20	-. 366	-1.662	. 796	-1.223	-1.075	-. 148
21	--242	-1.188	.941	-238	-. 410	. 648
22	.288	.650	--342	-. 359	-. 832	. 473
23	-. 292	-. 513	. 221	-. 402	-. 894	. 492
24	. 216	. 123	. 093	. 693	-1.168	. 475
25	-691	. 794	-. 103	. 140	. 328	-. 188
26	. 597	.452	. 145	-. 182	-. 892	. 710
27	-. 199	-. 254	. 055	. 606	1.137	-551
28	-1.375	-1.527	. 152	-1.228	-. 855	-.373
29	. 417	. 994	-. 577	. 656	1.362	-.706
30	-.096	-. 525	. 129	-. 293	. 017	-*310
31	. 101	-.092	. 193	-.721	-.489	--232
32	--629	. 760	. 869	. 989	. 973	. 016
33	-235	-451	-. 216	. 271	. 093	. 178
34	. 552	. 239	. 313	. 784	. 256	. 528
35	-. 216	-1.471	1.255	-1.701	-. 825	--876
36	1.456	. 962	.494	. 359	. 331	. 028
37	.235	-324	-.089	. 691	1.030	-3339
38	-. 292	-. 131	-. 161	-1.007	-. 699	-.308
39	--729	-. 988	-259	-. 187	. 343	-. 530
40	-1.239	- 507	-.732	1.068	-1.588	. 480

TABIE XDX (continued)

Pairs	Hollo	$\begin{aligned} & \text { Group I } \\ & \text { Wo HoWo } \end{aligned}$	$\begin{aligned} & \text { Not } \\ & \text { Gain } \end{aligned}$	H.W\%	$\begin{aligned} & \text { Group 2 } \\ & \text { Ho H*No } \end{aligned}$	$\begin{aligned} & \text { Not } \\ & \text { Gain } \\ & \hline \end{aligned}$
41	. 113	. 402	-. 289	. 837	1.115	-. 278
42	-. 497	-.349	-. 148	. 036	. 800	-.764
43	-1.108	-1.579	.471	-. 397	. 071	-.468
44	1. 656	. 975	. 681	1.149	1.538	-.389
45	. 181	. 399	-. 218	. 746	. 602	. 144
46	. 937	1.139	--202	1.006	1.227	-221
47	-959	1.138	-. 179	1.091	1.273	--182
48	. 783	. 805	. 042	. 660	. 543	. 117
49	. 981	1.032	-051	1.078	. 837	. 241
50	. 259	. 528	-. 269	-. 463	-1.336	. 873
51	-415	. 096	. 319	--429	. 064	--498
52	. 305	. 075	. 226	-. 099	. 558	-. 657
53	-1.378	-1.252	-. 146	. 671	-034	. 705
54	--288	-.762	. 474	. 009	. 285	. 275
55	-.621	- 259	--362	. 984	-1.597	. 613
56	1.203	1.148	. 055	. 897	1.167	- 270
57	-. 475	-. 105	-. 372	.067	- 699	-682
56	-1.592	-1.200	-.392	-.928	-. 117	-. 811
59	-1.216	-. 414	-. 802	-2.388	-1.795	-.588
60	-1.973	--822	-1. 151	-286	-. 923	. 637
62	. 138	. 077	. 061	.093	-.022	. 115
62	-1.898	-.816	-.082	. 425	. 169	. 256
63	-1.631	-. 913	-. 718	-.708	-. 614	-.094
64	-*646	-. 118	-.528	-091	-. 477	. 386
65	. 392	. 524	--132	-1.149	--878	-. 271
66	1.768	. 902	. 866	. 612	1.576	. 866
67	. 195	. 682	- 488	--475	-. 166	-309
68	. 667	. 598	. 069	. 345	. 573	-.228
69	. 528	1.047	-. 519	1.059	1.414	-. 375
70	-565	-1.209	. 644	-2.758	-1.487	-1.271
71	. 871	1.004	-. 133	. 623	. 816	-. 198
72	-.382	. 314	--696	-. 253	-450	. 197
73	-1.861	-1.948	. 087	-1.327	-1.113	--214
74	1.335	1.258	. 137	. 012	. 303	--291
75	.332	. 595	-. 273	-. 153	-.735	. 582
76	. 830	. 456	.374	. 932	. 388	. 544
77	-455	- 557	.202	. 326	- 625	--299

Seventy-one pupils had a higher \underline{z} score average when home work was assigned, while the other eighty-three were able to raise their relative position when no work was assigned. This might be explained similarly to the above case of pupil No. 56 in Group 2.

Of the total of one hundred fifty-four pupils, eighteen improved consistently on each test following the assignment of home work when compared with the immediately preceding non home-work test. ${ }^{4}$ Their IQ's are listed below.

IQ	No. of	IQ	No. of	IQ	No. of
	Pupils		Pupils		Pupils
119	1	114	1	102	1
118	1	113	2	99	1
117	1	112	2	92	1
116	2	111	2	90	1
115	1	104	1		

Of the total number of pupils in this study forty-eight raised their standings on two out of the three home-work tests ${ }^{5}$ when compared with the immediately preceding non home-work tests. Their IQ's are listed below.

IQ	No. of	IQ	No. of	IQ	No. of	
Pupils		Pupils		Pupils		
124	1	112	2	96	2	
120	1	111	1	90	1	
119	1	110	2			
118	5	109	4			
117	2	107	1			
116	2	106	7			
115	5	105	3			
114	4	104	1			
113	2	103	1			

Pifty-seven of the total number of pupils showed improvement on one of the home-work tests in comparison with the immedietely

4 A test given after no assigned home work on the unit.
5 A test given aiter assigned home work on the unit.
preceding non home-work tests. Their I\&'s are listed below.

IQ	No. of Pupils	IQ	No. of Pupils	IQ	No. of Pupils
128	1	114	2	105	3
124	1	113	4	104	4
122	1	112	2	102	1
121	3	111	1	99	1
120	3	110	1	98	2
119	1	109	5	96	1
118	2	108	2	94	1
117	3	107	2	89	1
115	6	106	2	86	1

Thirty-one of the total number of pupils showed no improvement on any home-work test in comparison with the previous non home-work test. In fact, their average \underline{z} scores were higher on the non homework tests. Their IQ's are as follows:

IQ	No. of Pupils	IQ	No. of Pupils	IQ	No. of
Pupils					

Summarizing the above information it seems that with the pupils of higher IQ's ${ }^{6}$ that assigned home work is less effective. In the first group above ${ }^{7}$ there is only one pupil above an IQ of 118 , and this is an IQ of 119. In the second group ${ }^{8}$ there are three pupils from 118 to 124 IQ's. In the third group ${ }^{9}$ there were ton pupils

6 IQ's above 118.
7 The group which improved consistently on each home-work test
8 The group which improved two out of three times
9 The group which improved one out of three times
from 118 to 128 IQ's and in the fourth group ${ }^{10}$ there are ten pupils from 118 to 129 IQ's. The IQ's at the lower end of the scale shows no consistency.

Table XX shows the IQ's of the seventy-one pupils who had higher \underline{z} score averages on the three home-work tests in comparison with the eighty-three who had a higher average on the non home-work tests. The IQ has no effect on the achievements of the group when home-work is assigned as shown by the $\underline{\underline{r}}$ of .03 which is negligible, but it can be seen in the table that in the former group there are six pupils above 118 IQ while in the latter group there are eighteen above 118 IQ which might be a slight indication that home work is needed less by the pupils of higher IQ's.

A correlation coefficient was found to determine whether the age effected the achievement of pupils given assigned home work. An \underline{Y} of . 004 showed no relationship to exist among the pupils of this group whose ages ranged from 154 months to 211 months.

A study of the number of boys who improved when home work was assigned wes compared with the number of girls who improved with home work to determine whether that factor effected the work of boys or girls more. Forty-one of the seventy-one pupils who made a higher z score average on the home-work tests were boys but a larger number of boys were included in the experiment than girls. Altogether there were eighty-six boys and sixty-eight girls who made up the total one

10 The group which hed a higher relative position without the home-work factor

Table XX

COMPARISON OF IQ'S OF PUPILS WHO HAD A HIGHER 2 SCORE AVERAGE ON THE HOME-NORK TESTS WITH THOSE

WHO HAD A HIGHER AVERAGIS ON NON

HOME-MORK
TESSS

121

118

117
116
115

114

113
112
111
110
109
108
107
106
105

104

103
102
101
100

99

98
97
96
95
94
93
92
91
90
89
88

87

86

Higher Home-Work Average

Number of Pupils
Number or Pupils

Higher Non Home-work
Average

1
2
2
1

Total
71 pupils

IQ
129
128
127
126
125
124
123 122
121
120
119
118
117
116
115
114
113
112
111 110 109 108 107 106 105 104 103 102 101 100 99

98

97
96 95 94 93

Number of Pupils
1
1

2

4
5
5
2
3
3
5
6
2
2
4
2
5
3
3
5
3
3
2
1
1
1
1
1
3
1

1
1
88
87
86

Total 83 pupils
hundred fifty-four pupils in this study. The per cent of boys having a higher average in the tests was about $3 \frac{1}{6} \%$ higher than that for the girls. Since girls are supposed to do better in school than boys, this per cent might have been greater with an average group. Table I showed the average IQ of this group to be about 10 points above the general average. A more extensive study might show that boys profit more by written home-work assignments than girls.

Table XXI gives a summary of the statistics used in the interpretation of the results of the eleven tests used in this study.

TABLES XXI
SUMEARY OF STATISTICAL COMPUTATIONS
USED IIT THE STUDY

Tests	Oroup 1 Sigua	Croup 2 Signa	Group 2 Mean	Group 2 Near	\underline{r}	Group 2 Signa av.	Group 2 Signa av.	σ diff.	diff. bew twoon means	$\frac{\text { diffo avo }}{\sigma \text { diffo }}$
1.	3.24	3.30	88.16	83.24	-55	2.58	2.63	2.26	. 28	.12
2.	3.08	3.00	77.10	78.50	-62	1.75	1.71	1.50	1.40	.98
S.	4.20	3.86	77.65	78.20	-68	2.40	2.20	1.85	. 55	. 30
4.	2.73	3.33	104.72	100.17	. 39	2.18	2.65	2.69	4.55	1.74
5.	3.10	3.45	48.70	46.55	. 41	1.76	1.94	2.00	2.15	1.07
6.	3.65	3.32	79.00	81.70	. 25	2.08	1.89	2.44	2.70	1.10
7.	3.23	3.27	72.60	72.50	. 40	1.84	1.86	2.02	1.10	. 54
8.	3.29	3.81	74.65	69.35	. 28	1.87	2.17	2.43	5.30	2.18
9.	4.76	4.79	55.07	58.30	.75	2.71	2.73	1.92	3.23	1.70
10.	5.09	4.23	126.00	145.50	-43	4.06	3.37	4.00	19.50	4. 87
11.	5.02	3.09	57.70	52.20	. 39	1.72	1.76	1.92	5.50	2.86

CHAPTER III
CONCLUSIONS

The results of the six experimental units, which were chosen from the algebra course of study for the Bartlesville Junior-Senior High School and carried out by the writer, suggest the following conclusions:

1. Daily home-work assignments in algebra had a positive effect on the achievements of these groups of pupils as a whole.
2. The factor of home work seemed to be of increasingly greater effectiveness as the year progressed.
3. Since the daily home-work assignments were planned to keep a pupil of average ability busy for only about forty-five minutes, they were not excessively burdensome on the pupils in proportion to the benefits obtained. Many pupils prepared their assignments in about twenty minutes as the average IQ of the group was relatively high.
4. The IQ is not closely related to the effect of the factor of assigned home work of these algebra pupils.
5. The factor of assigned home work seems to be of less importance for the achievements of pupils of IQ's above 118.
6. The chronological age has no effect on the achievements of pupils when considering the home-work factor.
7. A small mergin in per cent is in favor of the boys improving their rating when home work is assigned more than the girls.

BIBLIOGRAPHY

1. Bassett, Dr. Arthur E. "Conservation of the School Children". Literary Digest, Vol. 118. Funk and Wagnalls Company Publishers. September 29, 1934. pp. 24-25.
2. Bundesen, Dr. Herman N. "Home Work Versus Health". Ledies Home Journal, Vol. 55, No. 9, Curtis Publishing Company. September 1938. pp. 70-72.
3. Cattell, J. McKeen. "Reports" (an editorial). School and Society, Vol. 43, No. 1120. Published by the Science Press. June 13, 1936. p. 821.
4. Eisner, Harry. "Home Study". The School Review, Vol. 38, No. 3, Published by the University of Chicago. March 1930. pp. 174-175.
5. Fishbein, Dr. Morris. "Is There Too Much Home Work?" Hygeia, Vol. 17, No. 4. Published by the American Medical Association. April 1939. pp. 371-372.
6. Johnson, Dr. Wm. H. "Home Fork Ho". Literary Digest, Vol. 123, No. 1. Funk and Wagnalls Company Publishers. February 13, 1937. pp. 31-32.
7. Long, Sara Liston. "About Tomorrow's Lessons". The American Home, Vol. 20, No. 4. Published monthly by the Country Life American Home Corporation. September 1938. p. 13, p. 56
8. Naberry, Arthur L. "A School that Requires No Home Work". Literary Digest, Vol. 119. Funk and Wagnalls Company Publishers. March 23, 1935. p. 24
9. Miller, Marion. "Home Work Blues". Delineator. February 1935. Published by Butterick Company. p. 4
10. Rogers, Dr. J. F. "Home Study". Hygeia, Vol. 14, No. 2. Published by American Medical Association. September 1936. pp. 808-812, 848-851.
11. Savage, Mrs. Clara. "Do You Believe In Home Work?" Perents" Magazine, Vol. 11, No. 1. Published by George J. Hecht. Jenuary 1936. p. 14
12. Steiner, M.A. "Value of Home Study Assignments". School and Society. Vol. 40, No. 1019. Published by The Science Press. July 7, 1934. pp. 20-24

BIBLIOGRAPHY (Continued)

13. Washburne, Carleton. "How Nuch Home Work?" Parents' Magazine. Vol. 12, No. 11. Published by George J. Hecht. November 1937. p. 16
14. Young, J. W. A. The Teaching of Mathematics. Published by Longmen's Green, and Compeny, 1919. pp. 130-140

[^0]: 1 Tests were made by the writer.

[^1]: 2 Dr. Vm. H. Johnson, "Home Work Ho", Literary Digest, Vol. 123
 (1937), No. 1, p. 31

[^2]: 11 Clara Savage Littledale, "Do You Believe in Homework?" Parents' Magazine, Vol. 11 (1936), No. 1, p. 14.

[^3]: 12 This pupil writer is a prominent member of the orchestra and comes from a family greatly interested in music.

 13 J.F. Rogers, op. cit., p. 810

[^4]: 14 M.A. Steiner, "Value of Home Study Assignments", School and Society, Vol. 40 (1934), No. 1019, pp. 21-24

[^5]: 15 Education Faculty of Chicago University, "Educational News and Rditoriel Comment-'Home Study'". The School Review, Vol. 36 (1930), No. 3, p. 175

[^6]: 1 J. W. A. Young, The Teaching of Mathematics, p. 132
 2 Ibid.

