ORTMOM1

LIBRARY
OCT 271029 :

SEX RATIO IN PIGS

BY
Kenneth C. Frantz
Bachelor of Science
Panhandle Agricultural and Mechanical Collage 1938

Submitted to the Department of Animal Husbandry Oklahome Agricultural and Hechanical College in partial fulfilment of the requirements
for the degree of
MASTER OY SCIENCE
1932

O. ADO 1

LIBRARY

OCT 271939

APPROVED:

AGKNOWLEDGMENTI

The author is indebted to Dx. O. S. Willhan of the Department of Animal Husbandry of Okla homa Agricultural and Mechanical College for advice, suggestions and criticism during the course of this problem.

TABLIS OT CONTENTIS

page
vi INTRODUCTION vi
ROVIEF OF LTTERATURE 1
A. Sex Ratio in Pigs. 1
B. Sex Ratio in Cattle. 8
C. Sex Ratio in Sheep. 11.
D. Sex Ratio in Horses, Mules and Himies. 13
ANALYSIS OF DATA 14
A. Material. 14
B. Method of statistical Analysis. 15
C. Discussion and Results. 16
SUMMARY AND CONCLUSIONS 26
LITERATURE CITED 27

INTRODUCTION

There are slight but consistent deviations from equality in the sex ratio anong animals in general. There is usually a higher percentage of males than females among a population at birth. The sex ratio is important as it partially regulates the degree in which selection can be practiced.

In pigs there appears to be more males than females among the offspring. Since a much larger percentage of females than males has to be saved for replacements each generation any decrease in percentage of females would cause a marked decrease in the selection intensity among females.

Observations sometimes leave the impression that certain families or groups of individuals have distorted sex ratios. It is not uncommon to hear some breeders make the statement that certain individuals or groups of individulas in their stock are male or female "getters". There sometimes seems to be a higher percentage of males born during one season than another.

The aim of the problem reported in this paper is to find the sex ratio of the pigs farrowed at the Oklahoma Agricultural and Mechanical College and Experiment station from the accumulative records from 1925 to April 1, 1939, to study the influence of the seasons upon the sex ratio of pigs, and to determine if there is any significant tendency for the progeny of a sow or boar to contain a high percentage of oither male or ferale pigs.

REVIEIV OF IITERRATURE

Sex Ratio in Pigs

Lush, Hetzer, and Culbertson (12) analyzed the data from 506 litters containing 3,639 pigs, all of which were produced by gilts about one year old at time of farrowing. All litters were farrowed in April and May, except nine in June, one in July and three in August. The sex ratio of this population was 51.1 ± 0.6 percent males.

Carmichael and Rice (1) working with 720 litters, containing 5,840 pigs, found that there were $2,933 \mathrm{males}$ and 2,824 females with the sex on 183 not recorded, which is a sex ratio of 51.9 percent males to 48.1 percent females. Their data are given in table 1. There seemed to be no noticeable correlation between litter size and sex, a higher percentage of males being found in a majority of different sized litters rather than merely a tendency for this sex to predominate in those of certain sizes. Of 4,363 pigs on which the sex and length of gestation period were recorded, 2,289 were males and 2,074 were females. The sex ratio of this group was 52.5 percent males to 47.5 percent females. There tended to be no correlation between the length of gestation period and sex of the progeny. To study the influence of age of dam upon the sex ratio of pigs, 5,595 pigs were grouped on the basis of the age of their dams. In this population there were 2,922 males and 2,673 females, which is a sex ratio of 52. 2 percent males to 47.8 percent females. These data are shown in table 2. There is no significant difference between

Table 1
Relation of Size of Litter to Sex of Pigs. *

No. of pigs per litter	Total No. studied	No. of pigs of each sex Males	No, sex not recorded	
1	6			
2	30	2	4	-
3	57	15	15	-
4	180	30	20	-1
5	305	137	157	11
6	420	195	213	12
7	623	255	347	21
8	784	374	397	13
9	684	331	329	24
10	910	449	432	19
11	438	292	326	20
12	338	237	226	17
13	224	149	179	10
14	75	101	105	18
15	48	11	45	1
16	18	8	21	16
18	20	12	10	-
20	5,840	2,724	2,933	-

No. in litters
of 8 pigs or
less
2,405
1,105
1,242
No. in litters
of more than
8 pigs
3,435
$1,619 \quad 1,691$
Taken from Carmichael, W. J., and Rice, John B. Variations in Farrow: With Special Reference to Birth Rate in Pigs. I11. Agri. Exp. Sta. Bul. 226:86, (1920).
the sex of the pigs of young and old sows. In only one case was there a reversal of the sex ratio and that was in the 8 year old group which had only 7 pigs.

Table 2
Relation of Age of Dam to Sex of Pigs.*

Taken from Carmichael, W. J., and Rice, John B. Variations in Farrow: With Special Reference to Birth Weight in Pigs. Ill. Agri. Exp. Sta. Bul. 226:9, (1920).

Hushby (7) observed in 203 litters which contained 1,748 pigs, a sex ratio of 51.9 percent males to 48.1 percent females. The adult sow seemed to be more fertile than gilts. The mortality rate was higher among the large litters.

McKenzie (13), working with Duroc-Jersey swine, registered or eligible for registration, found that in a population
of 2,011 pigs there were 1,034 males and 977 females, including 90 dead males and 75 dead females. Of all pigs born 51.42 percent were males and 54.55 percent of all pigs born dead were males.

Sinclair and Syrotuck (20) found the proportion of males to females in 277 farrowings containing 2,533 pigs, to be 53.69 percent males to 46.31 percent females. To study the influence of age of dam upon the sex of pigs, they grouped the 277 litters according to age of dam. Their data are given in table 3, showing the age of dam, number of sows farrowing, number of pigs, and the percent of males and of females. The ratio between the two sexes tends to remain quite constant with sows of various ages. In no case was there more females than males.

Table 3
The Influence of Age of Sow on the Sex Ratio.*

China inbreeding experiment. In the spring of 1923 there were 28 male and 8 female pigs farrowed. The following year the distribution of sexes was more evenly balanced but there was still a high percentage of males. The 189 first generation pigs consisted of 111 males and 88 females, which is 58.73 ± 2.41 percent males. The 64 second generation inbreds consisted of 38 males and 25 females or 60.93 ± 4.11 percent males. The proportion of males among the noninbred Poland China hogs was 52.35 ± 1.31 percent. The proportion of boars among the combined first and second generations inbreds was 59.29 ± 2.04 percent. The difference between this and the proportion of males among the noninbred Beltsville Poland China stock is 6.94士2.42 percent which is just on the border line of significance. If the comparison is made with the ligure 52.34 ± 0.22 the difference is slightly greater than three times its probable error and might therefore be considered significant. Observations on the sex ratio in the groups of other inbred swine raised at the Beltsville station have failed to verify the results obtained with the Poland China breed. This points to the fact that this is a pecularity of this single inbred line.

Krallinger (10) found the sex ratio of 47,505 pigs to be 50.57 ± 0.23 percent males. Litters of individual sows and boars showed considerable variation in the sex ratio and it was concluded that the individuals of both sexes carried factors which tended to modify the sex ratio. The smaller litters (2 to 10) showed 1.08 ± 0.46 percent more males than the larger litters (11 to 20). The season of the year did not
show a definite relation to the fluctuations in the sex ratio. The percentage of males in first litters appeared to be slightly greater than the percentage in succeeding litters, although the difference was not satistically significant.

Crow (4) gives the following figures showing the wastage among pigs between birth and weaning. The secondary sex ratio, or the ratio at birth, among 2,336 pigs is 50.71 percent males to 49.29 percent females, where as that among the 2,489 which lived till weaning time had fallon to 48.56 percent males to 51.44 percent females. The percentage loss among the males was 38.6 and that among the fomales was 33.7 .

Severson (19) anlayzed the data from 393 litters, containing 3,779 pigs of five pure breeds, the sex ratio was 52.3 percent males to 47.7 percent females. The data in table 4 shows the number of sows farrowing, number of pigs , and the percent males and fomales by breeds. In no breed was there more males than fomales.

Table 4:
Showing Number of Pigs and Sex Ratio by Breeds.*

Breed	$\begin{aligned} & \text { Sows } \\ & \text { farrow- } \\ & \text { ing } \end{aligned}$	No. of pigs	$\frac{\text { Per }}{\text { Hales }}$	$\frac{\text { cent }}{\text { Females }}$	$\begin{gathered} \text { Av. } \\ \text { litter } \\ \text { size } \end{gathered}$	Dead at birth
Yorkshire	78	913	53.6	46.4	11.7	3.6
Duroes	70	707	51.9	48.1	10.7	3.3
Chester White	81	775	51.1	48.9	9.6	3.0
Berkshire	82	711	52.0	48.0	8.7	1.4
Poland China	82	673	52.5	47.5	8.2	7.0
Total or av.	393	3,779	52.3	47.7	9.6	3.6

[^0]Parkes (16) studied 583 pig fetuses of all ages, and found 331 to be males and 252 to be females, giving a male percentage of 56.8 , which is higher than the approximate equality between the sexes that seems to exist at birth. Parkes states that:
"These 583 fetuses when classifled by weight ($0-100$ gms., $101-300 \mathrm{gms}$. 301 - gms.) gave the following percentages of males for the respective groups; $59.1,57.0$, and. 53.2. In other words, the percentage of males decrease as gestation proceeds, a. result which can only be brought about by a differential mortality of males and femes. It would appear that the percentage at concoption was approximately 60 percent or 150 males per 100 females.

In studying the influence of time of mating during the oestrus cycle on the sex ratio of pigs, Krallinger and Schott, (11), made tests of 394 sows of which 46 were allowed to mate a few hours after onset of heat and the rest on the following day. They found that there was no significant variation in fertility, the number of litters produced per 100 matings being 65.8 for late and 63 for early matings. If summer matings are considered separately, however, early matings show a higher percent of fertility (67.5) than late ones (63.8). The average litter size was 10.05 for late and 9.83 for early matings, and the average number of young per mating 6.61 and 6.20. The sex ratio was 53.3 percent males to 4.7 percent females for the early matings and 53.9 percent meles to 46.1 percent females for the late matings. They concluded that the time of mating has no eifect on fertility and sex ratio.

Sex Ratio in Gattie

Roberts (17) obtained data Iroil Private Herd Books for a study of 4,912 calves of the Dairy Shorthorn and Welsh Black Cattle. The sex ratio for the two breeds was 49.82 percent males to 50.18 percent fenales. There was a higher preponderance of meles in the "elsh Block Cattle than the Dairy Shorthorn breed. of 2,087 Shorthorn calves 1,028 were males for a ratio of 49.26 percent males to 50.74 percent females, as compared to 2,825 Welsh Black calves of which 1,419 were males, making a sex ratio of 50.22 percent males to 49.78 percent females. Considerable variation of the ratio was found from herd to herd. One herd had only 43.28 percent males to 56.72 percent females while in another there was 58.18 percent males to 41.82 percent females. He also reported one herd with 286 calves over a period of 9 years with a ratio of 50.00 percent males to 50.00 percent females. The ratio for the months of March to August, inclusive, is compared to that of the other six months. There were 2,889 calves born in the March-August period of which 1,406 were males and 1,483 were females making a sex ratio of 48.67 perceet les to 51.33 percent females. During the other period tiere were 2,023 calves born which included 1,041 males and 982 females for a ratio of 51.46 percent males to 48.54 percent females. Thus in the season of a higher birth rate a lower percentage of meles was obtained. This varied a little if the two breeds were regarded separately, although to a greater degree in the Welsh Black Catile. The data in table 5 shows the percentage of males by periods for the two breeds.

Table 5

Percent Males by Periods for Dairy Shorthorn and Welsh Black Cattle.*

50.45 percent males. The data in table 6 shows the number of calves, the number of males and females, and the percent males by breeds.

> Table 6
> Data Showing the Number of Calves Born and the Sex Ratio by Breeds.*

Breed	No. of cal ves	No. of males	No. of femal es	Percent males
HolsteinFriesian	3,250	1,580	1,670	
Ayrshire	-680	1,333	1,347	48.67
Guernsey	782	349	433	44.63
Jersey	606	312	294	51.49
Hereford	2,878	1,452	1,426	50.45
Total or av.	8,196	4,026	4,170	49.12

A Wisconsin study (22) in which 124,000 births were tabulated and classified showed the ratio of male calves born was 51.50 percent males to 48.50 percent females, with no significant variation in this respect between the several breeds that were studied. No evidence was found to show that a cow or bull had more male calves when a particular parent is young or old. The ratio between male and female calves remains practically constant regardless of age of sire or dam. There was no significant difference in effect of season of year on the sex ratio. Of all twin calves born 49.07 percent were males and 50.93 percent were females. This is probably
explained by so large a number of males born so early in the gestation period that they fail to live. It has been deraonstrated that in the case of abortions and stillbirths in many species of mannals that more males than femeles are thus expelled from the mother's uterus prematurely or dead. Data secured in this study show a ratio for aborted calves of 58.36 percent males to 41.14 percent females.

Jewell, as quoted by Parkes (16), investigated the foetal sex ratio among cattle and found that the sex ratio of 1,000 fetuses was 55.20 percent males to 44.80 percent females, which is a much higher figure than any which has been found for calves at birth. This result indicates that the cow falls in with the better known cases where intrauterine mortality falls preponderantly upon the males. This also indicates that in the cov the percent males at conception is very much above the percent males at birth.

Sex Ratio in Sheep.

Johansson (8) obtained records of 13,241 lambs from mothers with complete lambing records, including stillbirths and found that 49.30 ± 0.435 percent were mal es or 97.2 males to 100 females. The sex ratio was practically the same for all the breeds studied, for lambs born at different seasons of the year, and irrespective of the age of the mother. The sex ratio for single births and for twins was almost identical. The percentage of males among triplets was sligintly lower although the difference was not significant. A sexually selective mortality was found to occur during the later
stages of pregnancy and during the first month after birth. The sex ratio for 305 stillborn lambs being 55.77 ± 2.858 percent males and for 1,088 lambs which died furing the first month after birth, 54.32 ± 1.510 percent males.

Chapman and Lush (2) studi ed the records of 1,019 lambs 216 of which were born as singles, 722 as twins, and 81 as triplets. Among the eingles 47.7 percent were males, among the twins 49.6 percent were males and among the triplets 40.7 percent were males. Four hundred and ninety-three of the 1,019 lambs were males, wich is 48.4 percent of the total. The difference in the percentages of males found among singles, twins and triplats were not statistically significant. About five percent of the lambs were stillborn. Almost the same proportion were stillborn among the singles and twins. I'wenty-two of the stillborn lambs were male and 27 were female--an insignificant difference between the two sexes in prenatal mortality.

Heaning (6) reports that anong a population of 1,742 lambs there was 875 males and 867 females which is 50.20 t 1.20 percent inales. of 1,294 males born as twins 645 were males and 649 were females which is a sez ratio of 49.84 percent males to 50.16 percent females. To stuãy the ratio of males to females among sheep fetuses records were collected for 972 prenatal lambs. This population included 495 males and 477 females which is 50.9 ± 1.60 percent meles.

Sex Ratio in Horses, Mules and Rimies.

In studying the sex ratio among horses Craft (3) round that in a population of 1,249 foals. there were 656 males and 593 ferales for a sex ratio of 52.52 ± 0.95 percent neles to 47.48 ± 0.95 percent females. In this population there were 1,207 live born single birth foals, 626 males and 581 females; 20 stillbom males and 8 stillborn females; 14 sets of twins, 3 pairs of males, 4 pairs of one male and one female each and 7 pairs for which tho sex was tot recorded. The sex ratio for the liveborn foals was slightly lower than for the wole population being 51.9 percent males to 48.1 perent females. "the ser records collected $\operatorname{Ior} 1,416$ mules, 627 males and 789 females, sired by 98 different jacks showed the sex ratio to be 44.28 percent males to 55.72 percent fonles. There seemed to be no evident tendency for a certain jack as compared to others to sire a preponderance or roals of one ser.

In response to an inquiry mede by Dr. Craft for information concerning the sex ratio of himies (the progeny from the femele ass, or jemet mated to the stallion), Mx. Wyeh of the Department of Agriculture, vublin, Ireland states:
"Regarding the sex ratio anong himies it wo uld appear from the reports furnished by our local offices after examination of upwaras of 1,000 aninals that females predominate. The percentage works out at 58 percent feales and 42 percent males. On the other hand in the mules the number of males appears in excess of females, the proportion being 61 percent males and 30 percent fersies. *

SVELVGF O DAPA

Matertal

Date were collected on 362 litters, containing 2,917 Duroc-dersey pigs farrowed in the experimental herd at the Oklahom Agriculturel rxperiment station from 1925 to April 1, 1939. Complete farrowing records were available shoting the date of farrowing, the number of pigs per litter, the litter number and the sex of each pif except in those cases where the pig was so badly deteriorated thet the sex could not be daterafned.

During the same perion 314 litters of pige were farrowed In the college herd. This grow was made up of Poland ohims, Berkshires, Hampshires, Duroc Jerseys and Chester Whites. The Chester White breed was added to the herd in 1934. Due to incomplete records; either the date of farrowiag, the breeding, or the sex of some of the pigs nothaving been recorded only 265 litters, containing 2,514 pigs, could be used in the study.

The sex ratio wey celoulated for the 627 2ittere containing 5,231 pige, as a grop, by breeds and ror the stinlorm pigs. The pics were crouped by litter size to stray tha influence of littor size mpoz tho sex ratio.

Recorde of sove having three ow more farroviry reeords etallable were grouped accorcins to litter nomber so as to study the influence of Iitter nuabor upon sex ratio.

The records of the boars havine sired 10 or more litters each vere studied to see if there was a tendency for a boar
bo cire a preponderance of brs sex amone his progeny. The sane athay mes made for sown hating 3 or me foprowine records avts leble.

Al Iftters on wheh the ramoming date was available were grouped by monthe to study the intuenee of the months and sason of farsoring zoon the sex ratio.

Wethod of statistical Analysis ther
The sicnificonce of this data was tected statistically according to the methods set for by Bnedecor (2l) and Bisher (5).

Ohi square was used to masure the goodness of itit in the sex ratio of each grow of Iftters havine 5, 6. 7 and 8 pigs each according to Snedecor .

The variance in the percentage of mules was analyzed according to Fisher.

Discussion and Results
Data mere coliected and analyzed row 627 Iitters or
 2,456 females with sex on 18 not recomacd, watime a sex ratio of 52.93 percent males to 47.07 percent 10 ales. The deta in table 7 shows the nuber of pigs, the pereentage of ates and the nuaber of pigs per jitter by breeas. In only one case was bure a reversal of the sox ratio and that wam ano the Polanas.

200107
Date Showing the puaber or Pigs and the Fercent Males by Mreeds.

Breed Wo	wo. of litters	Ho. of pige	18. of m les	SHO. of fenales	Perceat males	$\begin{gathered} \text { Mgs } \\ \text { per } \\ \text { Itter } \end{gathered}$
Durocs	421	3,481*	1,845	1,623	53.20	8.87
Hampshires	63	531	270	261	50.35	8.43
Berkshires	62	525	291	234	55.43	3.45
polands	63	526	259	267	49.24	8.33
Chester White	e 18	168	97	71	57.74	9.33
Total or av.	627	5.281	8,762	2,436	52.93	e. 34

* Sex on 13 not recorded.

The farrowing records of 62 sows which had had three or more litters were analyzed to see if there was any bignificant Variation in the sex ratio between their sirst, second, third and fourth litters. The first littor group had the hichest percent males with 56.1 percent as compared with 52.22 percent for the third littor grour which was the lovest percentage of meles for any group as is soon in table 8 .

 ary owe group of intues (binst, sebonk, band or fourthl tor the some gare, ab car be sean in bablay.

Tabie 8
Comparison of sex Ratio ani Number or ptes in the

Littes nunber	Ho. of 	$\begin{aligned} & \text { To. } \\ & \text { of } \\ & \text { pies } \end{aligned}$	No. of wacs	Mo. of femalas	$\begin{aligned} & \text { lo. } \\ & \text { mt } \\ & \text { rec. } \end{aligned}$	Eercont gaves	$\begin{gathered} \text { AT* } \\ \text { 2t tuer } \\ \text { size } \end{gathered}$
1	53	428	239	187	2	56.10	7.38
2	82	496	270	285	2	54.55	8.00
3	62	523	272	249	2	52.21	8.44
4	35	$88^{\text {c }}$	155	133	3	53.68	3.35
Totel or averace	- 217	3,738	936	794	8	54.10	8.01

Tuble 9
Analysis of Texhoree for Bexcentage of Lelsa Detweon Piact, Sacont Thtel on Moartin Groupe of tutars.

source or variance	Degrees of freedom	sum of squeres	Faxiamee or mean eq.
Total	216	63,736.33	
Between groups	3	363.04	121.01
Within groups	218	$68,375.34$	321.00

The 62 sows on which farrowing records were availa ble Sor three or hore litters had a total of 233 litters containing 1,888 pigs. Sixteen of these litters were not used in the above stuay because they were the fifth, sixth, or seventh litters. In the population of 1,888 pigs there was 1.016 males and 867 females, with ser for 9 wot recorded. The sex ratio for this group was 53.86 percent nales to 46.14 percent reneles. The data in table 10 shows that there is no significant aiference between sown.

Table 10
Analysis of Variance on the Besis of Bercentage of Males per Litter for sowe.

Source of variance	Degrees of freedon	Sun of squares	Variance or nean sg.
Total	232	$101,060.43$	
Between sows	61	$23,914.42$	392.04
Within sows	171	$77,15.01$	451.18

The records of the progeny of 11 boars, that had sired 10 or more litters each were anelyzed to detarnine whetwer or not the individual boar has a tendency to sire a preponder ance of offepring of one sez anong his progeny. These ll boars sired 803 litters, containing 1,640 pigs of whi ch the 6 were 869 males and 764 femes, with 7 not recorded. The percent or rales anomg this populetion vas 53.21.6.4l. The data in table 11 shows that only in two cases was there a reversal of
the sex ratio, havixe more males then remales. Boar Wo. $51 A_{4}$ sired 52 litters, containing 385 pifs, which hed a sex ratio of 49.74 pereant meles to 50.26 percent femtes. Ee mes sired by $751 \mathrm{~A}_{3}$ which sired 24 litters, conteintng 180 piss, Which had a sex ratio of 58.66 percent mates to 42.34 percent fenalos. The table also shows the number of litters, the nuaber of pigs and the average litter size for each boar. The analysis of varinnce applied to this stady showed no significant tendency for a boar to sire a high percentage of offspring of either sex among his progeny.

Table 11
Data on Progeny of 11 Boars, shoving Mumber of Litters, Number of Pige and the Ser Ratio of the Pigs.

Boar Mo.	Wo. 11ttc	Piss sirea	No. of mailes	No. of fentes	I0. not rec.	Percent nales	Litter size
23442	23	176	95	81	-	53.98	7.65
751A3	24	180	105	74	1	58.66	7.50
51运	52	385	191	193	I	49.74	7.40
811A6	16	137	70	67	-	51.09	8.56
$792 \mathrm{~B}_{4}$	15	113	68	43	2	61.62	7.53
375	10	87	44	43	-	50.57	8.70
536	12	18	62	56	-	52.54	9.83
013	10	80	45	35	-	56.25	8.00
S.A.	16	128	70	55	3	56.00	8.00
Su. A.	14	127	67	60	-	52.76	9.07
N.P.S.A.	11	109	52	57	-	47.17	0.91
Total or							

A total of 627 1itters was studied, classified and divided on the basis of litter size, the first clase having 3 pigs or less per litter gnd a separate class for each size Iitter up to 15 piss or inare per Iittor. All IIttors on 15 pigs of rate vere included in the eate dress due to the small number of suoh littors. The percentage of males anone the population of 5,931 piger wes 52.93 , and ondy in the class of 4 pigs per litter was there more Iemales than males, the ratio being 48.15 percent males to 51.85 porcent fenales for the 27 lituers, 108 pige, as is shown in the data $1 n$ bato 12. This wes the smellest number of ples in any class. The highest percentage of nales wan fit the secont sxillest eroup. the elase of 3 or less in whoh there were 111 pigs, 66 tales and 42 renales with the sex on 3 not recorded, waking the sex retio 61.11 percent mal ee to 30.89 percent penales.

The largest awoer of Hitters ir any lase tas the 10 pig Ifter chas wheh had 38 Iltors containime 820 pigs. The sex matio tox this roup mas 51.2 pe percent meles to 48.79 percent fenales, as is shown by the data in table 12. In only one case anong the 11 thews of 8 pies or less was there ofther a reversal of the sex ratio or a smaller percontage of males then was found fon the average or the ontire population. In the clssses of 9 pigs ox bore, th no cose was there a reversal of the sex ratio in only in two classes ves there moxe males than the average tor the population.

There were 310 litberg whi ch hat 8 pigs or less and 317 1ithers with 9 pigs or more. The sex ratio for the $1,802 \mathrm{p} 1 \mathrm{gs}$

Table 12
Classifi cation by Iitter Size.

Lit. size	$\begin{aligned} & \mathrm{No} . \\ & \text { 1it. } \end{aligned}$	No. pigs	NO. M	$\begin{gathered} \text { No. } \\ \text { F } \end{gathered}$	No. not rec.	$\begin{aligned} & \% \\ & \text { M } \end{aligned}$		$\underset{\mathrm{F}}{1 \mathrm{Lborn}}$		pigs born dead
3 or										
1ass	47	111	66	42	3	61.11	1	2	33.35	2.78
A	27	108	52	56	-	48.15	1	3	25.00	3.70
5	44	220	117	103	-	53.18	14	9	60.87	10.45
6	53	318	178	140	-	55.97	10	17	37.04	8. 49
7	67	468	258	209	2	55.25	18	15	54.55	7.03
8	72	576	327	248	1	56.87	11	12	47.83	4.00
9	76	684	349	333	2	51.17	18	8	69.23	3.81
10	82	820	419	392	2	51.22	20	12	62. 50	3.91
11	71	781	399	382	-	51.09	23	27	57.50	6.40
12	43	515	261	245	1	50.68	17	20	45.95	7.17
13	21.	273	138	134	1	50.74	11	6	64.71	6.25
14	14	196	113	83	-	57.65	15	6	71.43	10.71
over	10	159	85	78	1	53.80	13	8	62. 90	12.66
Total av.	or 627	5,231	2,762	2,456	15	52.93	172	145	54.26	6.07
8 or less	310	1,802	998	798	6	55.57	55	58	48.67	6.29
$\begin{aligned} & 9 \text { or } \\ & \text { over } \end{aligned}$	317	3,429	1,764	1,658	7	51.55	117	87	57.35	5.96

in the first group is 55.57 percent 1 es to 44.42 percent females as show in table 12. In the 317 litters, 3,429 pigs, there was 1,764 males and 1,658 females with 7 pigs not recorded, for a sex ratio of 51.55 percent males to 48.45 percent femeles. This is the same result as that reported by Camichael and Rice who found a higher preponderance of males
in the litters of 8 pigs or less than in those of larger nurbers. There being a smaller percentage of males among the larger litters than the small may be partially due to more males dying during the gestation period and being reabsorbed in the uterus. Parkes found that the percentage of males decreased as the gestation period advanced.

The sex ratio of 317 stillb orm pigs, 172 males and 145 females, was 54.26 percent males to 45.74 percent females. This compares quite clasely with that of McKenzie who fo und 54.56 percent of the $s t i l l b o m$ pigs to be males. The percent of stillborn pigs was 6.07 which is 2.47 percent higher than that reported by Severson who found 3.6 percent. The percentage of stillborn pigs among litters of 8 pigs or less was 6.29 percent which is slightly, though not significantly, higher than that of those litters heving 9 pigs or more which was 5.96 percent.

Litters of 6 pigs each were divided on the basis of sex ratio within the litter. Among this population of 318 pigs, 53 litters, there were 178 males and 140 females which is a sex ratio of 55.97 percent males to 44.03 percent females. Chi square was tried on this group to test the goodness of fit of the binomial distribution on the basis of the sex ratio given above and was found to fit quite closely as may be seen from table 13. The Chi square value of 2.9787 is highly significant as one would expect the sex ratio to vary more than this 80 percent of the time. Chi square was also applied to see if there was a significant deviation from a ratio of

50 percent males to 50 percent females. The velue of 7.0657 is not significant as more variation would be expected over 30 percent of the time. This group could have been taken from a population with a sex ratio of 50 percent males to 50 percent females. The same studi es were made for the groups of litters of 5,7 and 8 pigs each. The results compare quite closely with that of the above study.

Table 13
Application of Chi square to Litters of 6 Pigs Bach.

Pigs of each sex per 1.1tter*	No. of litters observed.	Por 55.97% males		For 50% mal es	
		No. of litters expected	$\frac{\text { Chi }}{\text { square }}$	No. of 11tters expected	$\frac{\text { chi }}{\text { square }}$
A_{6}	$2^{\prime \prime}$	1.63	. 0840	. 83	1.6493
$A_{5}{ }^{\text {B }}$	8	7.70	. 0116	4.97	1.8473
$\mathrm{A}_{4} \mathrm{~B}_{1}$	16	15.11	. 524.2	12.42	1.0319
$\mathrm{A}_{3} \mathrm{Br}_{3}$	13	15.90	. 5238	16.56	. 7653
$\mathrm{A}_{2} \mathrm{~B}_{4}$	9	9.38	. 0154	12.42	. 9417
A B_{5}	5	2.95	1.4246	4.97	.0002
B_{6}	-	0.39	. 3900	. 83	. 8300
Tot al	53	53.06	2.9787	53.00	7.0657

* males $B=$ females

To study the inf luence of month on the sex ratio 622 litters were classified on the basis of the month in which they were Iarrowed. The data in table 14 shows that in only
two cases was there a reversal of the sex ratio, January, which had only 39.23 percent meles in five 11 tters and July, with 49.33 percent males in 19 litters. June with only 13 littors had 61. 54 percent males in a population of 67 pigs for the highest percentage of males of any month.

Table 14

Data on Litters Grouped by Months, Showing Number of Litters, Number of Pigs, and Percent Males.

Month	No. of litters	No. of pigs	No. of males	No. of females	No. not rec.	Percent males
Jan.	5	46	18	28	-	39.13
Feb.	51	418	222	196	-	53.11
Mar.	138	1,123	583	539	1	51.96
April	111	958	523	433	2	54.71
May	52	447	233	214	2	52.13
June	13	67	40	25	2	61.54
July	19	150	74	76	2	49.33
Aug.	64	527	291	234	2	55.43
Sept.	76	670	357	313	-	53.28
Oct.	62	567	285	276	6	50.80
Nov.	18	155	83	72	-	53.55
Dec.	13	80	43	37	-	53.75

The 622 litters were grouped according to the month in which they were farrowed to st udy the sex ratio by seasons. The April-June period contained 176 litters in which there were 796 males and 672 females which is $54.2 \approx$ percent males. The October-December gro up had the lowest percentage of males
which was only 51.63 percent. The data in table 15 shows the number of litters, number of pigs and the percent males for each season.

Table 15
Data Showing Number of Litters, Number of Pigs, and Percent Males, by Seasons.

| Season | No. of
 litiers | No, of
 pigs | No. of
 males | No. of
 females | No.
 not
 rec. | Percent
 males |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Jan.-Mar. | 194 | 1,587 | 823 | 763 | 1 | 51.89 |
| Apr.-June | 176 | 1,472 | 796 | 672 | 4 | 54.22 |
| July.-Sept. | 159 | 1,347 | 722 | 623 | 2 | 53.68 |
| Oct.-Doc. | 93 | 802 | 411 | 385 | 6 | 51.63 |
| Total or av. 622 | 5,208 | 2,752 | 2,443 | 13 | 52.97 | |

The anelysis of varience applied to this study showed that there is no significant difference in the sex ratio between seasons, as may be seen in the data in table 16.

Table 16
Analysis of Variance on the Basis of Percentage of Males per Litter for Seesons.

Source of Variance	Degrees of freedom	Sum of squares	Variance or mean sq.
Total	621	$213,865.94$	
Betwoen seasons	3	$1,089.84$	363.28
Within seasons	618	$211,776.16$	342.68

2. The sex ratio for the popnlation of 5,231 pies was 52.93 percent males to 47.07 percent femeles.
3. There is no aignificant tendenoy for a sow or bont to have a higher proponcorace of medos thon fewates among his or ber offspring.
4. There is no sieniftoant differenco between the gex ratio of the first, seorm, thixd, or fourth littors.
i. Small intters (8 pigs or less) seem to have a tondenoy to have a higher proponderance of weles than does the
 is not signt fi acet.
5. The aplication of Chi square to the difforent reatura
 ontion on the basis of the ssm ratio fiepupe for tho size libter.
6. The appleation of Oni sunare abotat no algaificant deviation from a ratio of 50 pereent mes to 50 perceat fenales among any of the groupe ot lituers to whien it was appliea.
7. There is no significant vaxiation between the monthe or seasons of the year.

Literature Cited

(1) Carmichael, W. J. and Rice, John B.

Variations in Farrow: With special Reference to Birth Weight in Pigs. Ill Agri. 14xp. Sta. Bul. 226, (1920).
(2) Chepman, A. B. and Lush, J. L.

Twinning, Sex Ratios, and Cenetic Variability in Birth wei tht in sheep. Jour. of Hered. 23:473-478, (1932).
(3) Crait, W. A. Sex-Ratio in the Hybrid Mamals. Quarterly Rev, of Biol. 13:19-40, (1938).
(4) Crew, P. A. B. The sex Retio. An. Nat. 71:589-577, (1937).
(5) Fisher, R. A. Statistical liethoc for Hesearch worker. Oliver and Boyd. London, (1936).
(6) Henning, William L. - Prenatal and Posinatal Sex Ratio in shoep. Jour. Agri. Res. 58:565-580.
(7) Hushby,
(Fiorweg. Agric. Coll.) Statistiske oplysninger vedkomende svinebesetninger ved Foringsforsokene ved Horges Iandbrukshoiskole. (Statistical Data Concerning the Rigs used for Bxperiments at the Norwegian Agri aultural College) 35 Beretn Foringsforsokene, Meldinger fra Norges Landrukshoiskole 92 pp 20 figs. (1933). Original not seen. Abstracted in Animal Breeding Abs. 2:336, (1933).
(8) Johansson, Ivar. Multiple Births in Sheep. An. Soc. An. Prod., Proc. 285-291, (1932).
(9) Knott, J. C.

A Study of the Gestation Period of Holstein-Triesian Cows. Jour. Deiry sci. 15:87-98, (1932).
(10) Krallinger, H.

On Some Factors Influencing Sex Ratio (Trans. Title). (Zuchtungskunde, 5 (1930), No. $11 \mathrm{pp} 490-502$.) Original not seen. Abstracted in Experiment Station Records. 65:526, (July-Dec. 1931).
(11) Krallinger, H. F. and schott, A. (Inst. F. Tierzuchtung, Tschechnitz) Untersuchungen uber Ceschlechtselben und Forlpflanzung der Haustiere.

II Der Kinfluss des Decktermins innerhalf der Rousche der Schiveine auf iher Fruchtoborkeit und dad Geschlechlsverhaltnis der Nackkomnen. (Studies on the Sexual Life and Reproduction of Livestock. II the Influence of time of Mating during Oestrus on Pertility and Sex Ratio of Progeny in the Pig.) Arch. Tierernahrg. Tiarz. 9:41-49, (1933) Original not seen. Abstracted in Animal Breeding Abstract. 1:110, (1932).
(12) Lush, J. L., Hetzer, H. O. and Culbortson, C. C. Factors Affecting Birth Weight of Swine, Genetics. 19:329-43, (1934).
(13) McKenzie, F. F. Grawth and Reproduction in Swine. Mo. Agri. Exp. Sta. Res. Bul. 118, (1928).
(14) MePhee, Hugh C., Russel, I. Z. and Zoller, John. An Inbreeding Experiment with Poland China swine. Jour. of Hered. 22:393-403, (1931).
(15) Morgan, R. F. and Davis, H. P. Influence of age of Dairy Cattle and Seas on of the Year on the Sex-Ratio of Calves and Services Required for Conception. Neb. Agri. Exp. 3ta. Res. Bul. 104, (1938).
(16) Parkes, A. S. Studies on tine Sex-Ratio and Related Phenomena. Jour. Agri. Scit. 15:285-299, (1925).
(17) Roberts, E. J. Some Observations on the Secondary Sex-Ratio in a Group of Dairy Shorthorn and. Welsh Black Cattle. Jour. Agri. sici. 20:359-363, (1930).
(18) Roberts, Elmer and Yapp, W. W. No Preponderance of sex in Sires Offspring. Ill. Sta. Report. 175, (1928).
(19) Severson, A.

Prolificacy of Sows and Mortality of Pigs. Am. Soc. An. Prod., Proc. 68, (1925).
(20) Sinclair, K. D. and syrotuck, M. Age as a Factor in Swine Production. Sci. Agri. 8: 492-496, (1928).
(21) Snedecor, George il. Statistical Methods. Collegiate Press Inc., Ames Iowa (1937).
(22) Wisconsin, Annual Report of Direcotss. No foundation for Belief some Bulls have ability to Control Sex of Offspring. Wisconsin Agri. Exp. sta. Bul. 420:113, (1929-30).

[^0]: * Taken from Severson, A. Prolificacy of Sows and Mortality of Pigs. An. इoc. An. Prod., Proc. p68, (1925).

