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Abstract

Borehole instabilities can be encountered at any stage in the life o f a well, including 

drilling, completion and stimulation, flow tests, production, and depletion. Borehole 

instabilities are the main cause o f drilling difficulties, resulting in substantial 

expenditures, expensive loss o f time, sometimes even in the loss o f part o f or even whole 

boreholes.

One o f the most prominent features o f rock formations is the presence o f joints and 

fractures at all scales. Many petroleum reservoirs are situated in fractured porous 

formations. When boreholes are drilled in such formations, wellbore stability has been a 

major concern. In order to accurately predict the wellbore behavior in fractured porous 

media, the matrix and fracture deformations as well as fluid flow in both pores and 

fractures need to be fully-coupled. This study was carried out to analyze the stability o f 

boreholes in naturally fractured reservoirs.

The analytical method is applied to solve wellbore problems in elastic and plastic 

media, the closed-form solutions are given to validate the numerical solutions.

The naturally fractured reservoir was treated as a dual-porosity medium consisting o f 

the primary rock matrix system and the fractured system. The fracture and matrix 

systems in the fractured reservoir are distinctly different in both porosity and 

permeability. The global flow occurs primarily through the high-permeability, low- 

porosity fracture system surrounding the matrix rock blocks. The matrix blocks contain 

the majority o f the reservoir storage volume and act as local source to the fracture 

system. The fractures are interconnected and provide the main fluid flow path to the 

wells. Assuming the matrix and fractures in the fractured medium to be ‘separate and 

overlapping', and applying the double effective law. the dual-porosity formulations that 

couple matrix and fracture deformations and flu id flow in the matrix and fracture 

systems for the fractured porous formations were presented.

To overcome the solution difficulties in the most general case, the numerical method 

was applied to solve the dual-porosity formulations. The finite element solution and a 

windows-based pseudo-three-dimensional finite element software for any directional
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wellbore drilled in dual-porosity media were given, in which the mud weight 

considerations were presented for the permeable and impermeable boundary conditions. 

These allow to simulate borehole drilling  with mud cake case as well as wellbores 

supported by a casing. Furthermore, the elastoplastic finite element method and 

computational procedure were presented in the dissertation.

The proposed theoretical formulation and the finite element model were validated with 

several cases where the analytical solutions are available. The one-dimensional single­

porosity consolidation problem was used to verify the numerical algorithm for the 

coupled deformation and fluid flow systems. The finite element model was also 

validated against analytical solutions o f elastic wellbore problems and single-porosity 

inclined wellbore problems with permeable and impermeable boundary conditions. In 

addition, an one-dimensional dual-porosity elastoplastic anisothermal consolidation 

solution was presented, which can be used for future validations.

The effects o f single- and dual-porosity, time, hole inclination, fracture spacing and 

stiffness, permeabilities, and mud weight on the borehole solutions were parametrically 

studied. This allows a better understanding o f the developed finite element model and 

the physical characteristics o f the borehole problems. The failure criteria, including 

compressive failure, tensile failures (spalling and fracturing), shear failures (Mohr- 

Coulomb and Driicker-Prager/collapse) were introduced into the numerical model and 

failure stresses and failure areas around boreholes were examined.

Several application examples including inclined and horizontal wellbore in different 

in-situ stress regions, the best trajectory selections for horizontal borehole, rock cutting 

mechanism, and stress-dependent permeability around wellbores were investigated. The 

upper and lower bound critical mud weights were determined and the most stable 

orientations o f the borehole were discussed.
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Chapter 1

Introduction

1.1 Industry Concerns

The oil and gas industry is developing increasingly difficu lt reservoirs, challenging 

traditional approaches and proving the importance o f rock mechanics. A  large number o f 

current oil and gas reservoirs in the world, including some major fields in the G u lf o f 

Mexico, Campos basin, offshore Brazil, China Bohai Bay, are located in formations 

involving geologicallv voung unconsolidated sands where grains are either lightlv 

cemented or even unbonded (Monus et al., 1992). Main problems associated with these 

weak formations are wellbore stability and sand production. One area where operators 

experienced immense wellbore problems is the US G ulf Coast, where wellbore collapse 

and sanding are plaguing many completions because of the presence o f unconsolidated 

sands and reactive shales (Li, 1998). In soft, weak rocks, the deformation, failure and 

flow processes are dominated by non-linear stress-deformation responses, high flu id 

flow rates, and shearing accompanied by dilantancy or compaction. Borehole stability 

issues in these formations have different characteristics; hence, new approaches and 

models are required.

Many innovative technologies have been applied in the oil and gas industry, such as 

underbalanced drilling, high pressure jet drilling, re-entry horizontal wells, and 

multilaterials from a single well which have definitely increased the demand for wellbore 

stability studies. Recently, technological advances have been pushing the reach o f 

boreholes beyond 25,000 ft in length (Ramos et al., 1996). Highly inclined, extended- 

reach wellbores must remain open for prolonged time periods, not only during the 

drilling program but also over the life o f a reservoir. New challenges also emerged since



the increasing use o f horizontal wells, drilling  in naturally fractured media, in very deep 

formations, and d ifficu lt geological conditions, where wellbore stability is o f major 

concern (W illson and W illis, 1986). For example, a 8,715 m deep well was drilled in 

crystalline rock in Germany and some types o f wellbore instabilities (breakouts, washout 

zones, undergauge sections) were observed (Hoffers et al., 1994). Some wellbore 

instabilities associated with complex geologic conditions, where the stress regime is 

controlled by active faulting wave, are reported in the Cusiana field (Colombia), the 

Pedemales field (Venezuela), the Alberta Basin (Canada), the Tarim Basin (China), 

certain areas o f the Norwegian Sea, and offshore Indonesia (Willson et al., 1999; Plumb 

et al., 1998; W iprut and Zoback, 1998; Ramos et al., 1998). When boreholes are drilled 

in a naturally fractured formation, excessively high mud density allows the drilling  flu id 

to penetrate into fractures, mobilizing the rocky blocks and intensifing ovalisation 

(Charlez. 1999). When this occurs, the fractured blocks are no longer subject to the mud 

overbalance pressure, and the destabilized blocks can cave into the wellbore as a result 

o f swabbing the formation when tripping (Willson et al.. 1999). When boreholes cross a 

fault, mud may invade the discontinuity plane. Apart from mud losses, penetration o f the 

flu id  reduces the normal stress and induces a displacement along the crack planes which 

might shear the well, as shown in Figure 1.1.1 (Maury and Zurdo. 1996). The 

consequences can quickly become dramatic and could lead to partial or even total loss of 

a well. Two case histories in Aquitaine, France were described that resulted in the loss o f 

the wells and the need for the drilling o f two new wells, costing in the range o f USS30 

m illion (Maury and Zurdo. 1996).

Wellbore instability can result in lost circulation where tensile stresses have occurred 

(Figure 1.1.2a); breakouts and hole closure in case o f compressive failure (Figure 

1.1.2b). In severe cases the borehole instability can lead to stuck pipe and, eventually, 

loss o f the open hole section (McLean and Addis, 1990). The borehole stability problem 

can be considered by separating the potential rock failure mechanisms into the following 

four categories (Roegiers, 1990);

1) failures related to pre-existing or drilling-induced formation damage;

2) failures caused by the induced stress concentrations;

3) failures attributed to deliberate or unintentional additional stresses; and.



4) failures related to shock-wave loading.

Figure 1.1.1 Example o f borehole shearing observed when crossing a fault mapped 

using a BHTV (after Maury and Zurdo. 1996)

Borehole instabilities are the main cause o f drilling  difficulties, resulting in an 

expensive loss o f time, sometimes in a loss o f part o f or even whole boreholes. Wellbore 

instabilities make logging very d ifficu lt to perform and also to interpret (Maury and 

Sauzay. 1987). A bad condition o f the borehole wall alters artific ia lly the annulus zone 

corresponding to the depth o f investigation o f most o f the logging tools. The shape of the 

borehole can be strongly modified giving an elongated hole in one direction, diameter 

reduction in the other direction and also almost circular cavings in places. Cuttings 

removal can be affected, plugging the annulus and making trips d ifficu lt; moreover it can 

induce casing collapse. Wellbore instabilities result in substantial expenditure, loss of 

time and sometimes equipment with estimates running into a conservative US$ 500 

m illion per year worldwide (Bol et al, 1992; Mody and Hale, 1993; Dusseault, 1994). In 

the Cusiana field in Colombia, even though some measures to prevent borehole



instability were taken, extensive breakouts in fissile and naturally fractured shales -  o f 

up to 44” in 12"A” hole -  occurred (Willson et al., 1999). Approximately 10% of the well 

costs in the Cusiana field are spent coping with bad holes, mainly because o f abnormally 

high tectonic stresses induced by an active thrust-faulting environment (Addis et al., 

1993; Last and McLean, 1995). Borehole instabilities in naturally fractured reservoirs are 

reported in Venezuela (Roegiers, 2001). In addition to the cost associated with borehole 

instability while drilling, borehole stability also has a substantial impact on reservoir 

productions (Bradley, 1979).

Lost circulation

(a)

Hole enlargement

Hole reduction

/  /

(b)

Figure 1.1.2 Schematic o f stress-induced wellbore instabilitv

There are several stages in the life o f a well, i.e., drilling, completion and stimulation, 

and flow tests, production, and depletion. Borehole instabilities can be encountered in all



these stages (Ramos et al., 1996). In the drilling stage, the main concerns are to 

determine the mud composition and density which w ill maintain the integrity o f the well, 

without the loss o f drilling fluids. During the completion and stimulation stage, the 

reservoir must be connected to the well via perforations. This operation could fail i f  the 

rock adjacent to the cemented casing is non-brittle. Prior to fu ll production, downhole 

tests include open-hole logging, flu id sampling, build-up, drawdown, injection, and 

deliverability tests. It is possible to induce wellbore failure and collapse during these 

processes. As hydrocarbons are depleted, the drained region compacts which could 

induce solids production, casing damage, surface subsidence and wellbore failure. A ll 

three stages in the life o f a well, borehole integrated stability analyses are important to 

ensure the reservoir economical production and minimize the costly problems induced 

by the wellbore instabilities.

1.2 Literature Review

Study o f borehole (circular opening) stability in naturally fractured reservoir is o f critical 

importance in a number o f disciplines including petroleum, c iv il, mining, and geothermal 

engineering. Study o f borehole stability in naturally fractured porous media deals with 

several different disciplines and research areas, including solid mechanics, 

poromechanics, flu id mechanics, fractured porous media, coupling fluid flow and rock 

deformation etc. This review includes mainly three aspects, namely, wellbore stability, 

naturally fractured reservoir, and dual-porosity poromechanics.

1.2.1 Wellbore Stability

1.2.1.1 Elastic model

Hubbert and W illis  (1957) first applied Kirsch’ s elastic solution (refer to Boresi and 

Chong, 1974) to predict the stability o f a vertical borehole subjected to a non-hydrostatic



far field stress and constant borehole flu id pressure. For a borehole o f arbitrary 

trajectory, Fairhurst (1968) derived a solution for the stress distribution around an 

inclined borehole by including the stresses induced by anti-plane shear. The stability of 

unsupported or pressurized inclined boreholes has been the subject o f many 

investigations since the late 1970’s. Early analyses addressing stress-induced lost 

circulation and borehole collapse were presented by Bradley ( 1979), in which the rock 

was assumed to be a linear elastic material, and flu id flow into or out o f the formation 

was not considered.

The inclusion o f stress-dependent elastic moduli into wellbore stability analyses was 

investigated by Santarelli (1987) and Santarelli and Brown (1987). Using a power law 

variation for Young's modulus as a function o f the confining stress for a vertical 

borehole in an elastic medium with isotropic horizontal stresses, a generalized 

representation o f Hooke’ s law was presented. The conclusions drawn from these studies 

were that the maximum tangential stress computed at the borehole was found to be lower 

than those predicted by linear elastic theory and that the maximum tangential stress 

concentration occurred within the rock, and not at the borehole wall for specific loading 

conditions.

Aadnoy (1987) and Aadnoy and Chenevert (1987) developed a semi-analytical model 

which took into account the influence o f rock anisotropy on inclined borehole stability; 

but, this model can only solve for the stresses along the borehole wall, and it was limited 

to an isotropic shear failure criterion. Roegiers and Detoumay (1988) gave an expression 

for the stresses and displacements and fracture in itiation at inclined borehole walls. Ong 

and Roegiers (1993a, 1993b) modified Aadnoy's model by presenting the stress as a 

function o f borehole radii and adopting an anisotropic shear failure criterion. Ong (1994) 

further improved and developed this anisotropic borehole model. Based on Ong and 

Roegiers’ model, a wellbore stability analysis software (Bore-3D) was developed which 

is extensively used in oil and gas industry (L i et al., 1997). Gupta and Zaman (1994) 

presented borehole stability analyses for transversely isotropic media. Since only 10% of 

the rock formations exhibit isotropic material properties, and 30% o f the rocks have an 

anisotropy ratio o f more than 1.5 for Young’s modulus (Ong, 1994), the anisotropic 

model is more realistic.



The chemical effect o f drilling  flu id on shales is an important factor affecting wellbore 

stability. Mody and Hale (1993) presented a model that couples the mechanics and 

chemistry o f drilling flu id with shale interactions. Sherwood and Bailey (1994) gave a 

modified form o f Biot's linear theory o f poroelasticity for shale swelling around a 

cylindrical wellbore in the case o f an a.\isymmetric, plane strain situation.

The borehole solution using linear elasticity is still widely used in the industry for mud 

weight design and borehole stability analyses because o f its ease o f use and because it 

needs only a few parameters.

1.2.1.2 Poroelastic model

For rocks that are permeated with fluids, the diffusion o f pore pressure strongly modifies 

the effective stress field around a borehole. The analysis o f borehole problems is based 

on the linear poroelasticity theory (Biot, 1941. 1935; Detoumay and Cheng. 1993). Bratli 

et al. (1983) gave the solution for a borehole in a hydrostatic stress field. Detoumay and 

Cheng (1988) presented the poroelastic solution for a borehole in a non-hydrostatic stress 

field by assuming a vertical borehole and a plane strain deformation geometry. For 

inclined boreholes drilled in isotropic media. Cui et al. (1997a) derived an analytical 

solution by applying the generalized plane strain concept. Abousleiman et al. (1995. 

1996) gave a poroelastic solution for a special case o f transversely isotropic materials 

and a poroviscoelastic solution for borehole and cylinder problems. When drilling very 

deep formations, the thermal effect has a potential impact on the stress and pore pressure 

distributions and wellbore stability. Li et al. (1998) presented a fu lly  coupled 

thermoporomechanical model and concluded that thermal effect induces high pore 

pressure which could be crucial to wellbore stability. Ekbote et al. (2000. 2001) gave the 

analytical solution coupling thermal, chemical poroelastic solution and a wellbore 

analysis software (Pbore-3D) was developed (Cui et al.. 1999b).

1.2.1.3 Elastopiastic and nonlinear model



The linearly elastic model is the base case because it assumes that failure is equal to the 

elastic lim it, thus acquiring the label as ‘conservative’ or pessimistic (Charlez, 1994). An 

elasto-plastic method implies that even after portion o f the borehole might be stressed 

beyond their elastic lim it, the non-elastc region remains intact and load-bearing, i.e. not 

in a collapsed state. Elasto-plastic models extend the stress-strain analysis beyond the 

elastic lim it. A mathematically convenient formulation is to assume that no stresses 

exceed the elastic lim it, i.e.. perfect plasticity, the most common feature among elasto- 

plastic models.

A number o f elastopiastic and nonlinear analytical and semi-analytical models for 

analyzing wellbore stability have been developed. Gnirk (1972) recognized the existence 

of a plastic zone around an uncased hole, and calculated wellbore pressures to prevent 

yielding, assuming no fluid flow occurred. Risnes et al. (1982) presented an analytical 

solution describing the extent o f the plastic zone about an uncased well during 

drawdown. In nonlinear elastic models (Santarelli 1987) the stress rate is a homogenous 

linear function o f the deformation rate, with Young's modulus dependent on hydrostatic 

pressure. The nonlinear and elastopiastic models include damage mechanics models (e.g. 

Cheng and Dusseault. 1993; Shao and Khazrai. 1994). bifurcation models (e.g. 

Papamichos et al.. 1994), elastic-perfectly plastic models (e.g. Detoumay. 1986; 

Detoumay and Fairhurst. 1987). strain hardening elastopiastic models (e.g. Bradford and 

Cook. 1994) and strain weakening, elastic-brittle-plastic models (e.g. Ladanyi, 1974; 

Kennedy and Lindberg, 1978; Wang and Dusseault, 1991; Hawkes and McLellan, 1996). 

Most models are only applicable to the hydrostatic stress state and do not consider tluid 

effects.

1.2.1.4 Numerical methods

Numerical methods include mainly the finite element method, the finite difference 

method, the boundary element, and the discrete element method. Goodman (1966) 

analyzed the distribution o f stresses around circular openings and described the effect o f 

weakness planes on them. The boundary element method was used to study borehole 

breakouts (Zheng et al (1989)). Kwong and Kaiser (1991) studied borehole breakouts in



rock with anisotropic strength and local weaknesses by using a 2D finite element model 

in which the weakness planes are represented by elements with lower strength. They 

noted that i f  the in-situ stress ratio is close to unity, the presence o f weakness planes does 

not greatly affect the development o f a continuous, uniform yield zone, as predicted by 

analytical or numerical solutions for a homogeneous continuum. Shen and Barton 

(1997) used the distinct element method to investigate the effect o f jo in t spacing on the 

size and shape o f the distributed zone around circular openings. Hoek et al. ( 1995) noted 

that further experience is required in the application o f the distinct element method to 

explore its potential and limitations. This is because rock Joint configuration and spacing 

cannot be faithfully reproduced in a model, and rock Joint properties cannot be tested 

except for a few Joints with limited sample size (Bashin and Hocg, 1998).

Recently, reviews o f modeling technology, wellbore stability, and drilling  advances 

were given by McLean and Addis (1990), Charlez (1994), Payne et al. (1995), and 

Ramos et al. (1996). The significant advances belong to rock mass characterization, 

computation, modeling, monitoring, and logging tool developments. The availability of 

PC computers with numerical codes such as finite elements, finite differences, 

displacement discontinuity elements or boundary elements for wellbore stress-strain 

analyses have contributed to wider field applications and acceptance o f rock mechanics 

models.

Application o f the finite element to poroelasticity began in 1969 by Sandhu and 

Wilson for a special case o f incompressible flu id and solid constituents for soil 

mechanics applications. Several other papers also appeared within the next few years 

(Christian and Boehmer, 1970; Ghaboussi and Wilson, 1973). A ll these papers were 

limited to a special version o f linear poroelasticity. Since then, this work has been 

extended to the cases o f compressible constituents (Ghaboussi and Wilson, 1973). 

dynamic problems (Zienkiewicz and Shiomi, 1984), nonlinear and thermally coupled 

problems (Lewis and Schrefler, 1987). Some efforts were made using the finite element 

method to model wellbore stability problems in porous medium. Aoki et al. (1993. 1994) 

studied the stability o f the inclined boreholes in saturated shales using the finite element 

method. The induced pore pressure is included in the anisotropic constitutive model. Cui 

et al. (1997b) formulated a pseudo three-dimensional finite element program for coupled



anisotropic, nonlinear poroelasticity to simulate inclined wellbore problem in porous 

media. Li (1998) presented a fu lly coupled thermal-mechanical-hydraulic finite element 

model to analyze wellbore stability in porous media. Some commercial codes such as 

ABAQUS® can also treat poroelasticity problems. The finite element method that 

couples fluid flow  and rock deformation in dual-porosity media has been reported by 

authors such as Khaled et al., 1984; Meng, 1998; but, those studies focused either on 

consolidation problem or on fluid flow problems. More recently, the finite element 

method, using the dual-porosity theory, was applied to borehole problems and some 

preliminary results were obtained (Bai et al., 1999; Zhang et al., 2000; Nair et al., 2000).

1.2.2 Naturally Fractured Reservoirs

One o f the most prominent features o f the earth's upper crust is the presence o f joints 

and fractures at all scales (Brown and Scholz, 1986). Nearly every physical property of 

crustal rock such as mechanical properties; hydraulic, thermal, and electrical 

conductivities; and acoustic properties is determined to some extent on the these 

fractures and the fluids they contain. The success o f many applications such as efficient 

recovery from fractured reservoirs, hazardous waste disposal, and geothermal energy 

extraction depends on a thorough understanding o f fracture behavior. Many petroleum 

reservoirs are situated in fractured porous formations (Pruess and Tsang, 1990). Roegiers 

(2001) even maintains that all reservoirs are naturally fractured reservoirs, but that some 

of them may not behave as fractured reservoirs. Natural fractures affect all phases o f the 

petroleum reservoir life from the accumulation o f oil to the techniques used to manage 

oil production. The existence o f fractures in oil reservoirs was known as early as the 

1860's. However, in the last thirty or forty years, a significant interest in the effect o f 

fractures on oil production has been developed. This interest was sparked by the 

discovery o f the giant fields in the M iddle East and the Spraberry Trend o f West Texas. 

The interest aroused by these discoveries made the industry more aware o f the presence 

and effects o f fractures in other reservoirs (Kazemi and Gilman, 1993).

Naturally fractured reservoirs compose a wide variety o f rock mineralogy (carbonate.
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diatomite, granite, schist, sandstone, shale and coal), porosity and permeability. 

Carbonates include limestone, dolomite and chalk. Fractured limestones are prevalent in 

the giant and pro lific  fields o f the Middle East. Fractured dolomites are exemplified by 

the San Andreas formation in many West Texas fields, and fractured chalks are found in 

Texas (Austin Chalk), the North Sea (Ekofisk) and other parts o f the world (Kazemi and 

Gilman, 1993).

For solving fractured reservoir problems, there are two distinctly different approaches. 

The multi-porosity model approach characterizes a fractured rock mass as a statistically 

homogeneous medium consisting o f a combination o f fractures and porous rock matrix 

(Evans, 1981): the probability of finding a fracture at any point in the system is the same 

as finding one at any other point. The discrete model approach, on the other hand, 

attempts to model the actual geometry of both the fractures and the porous rock matrix 

(Evans. 1981). Thus, it is necessary to determine from the field, the geometry, locations, 

orientation, aperture variations and fluid-mechanical properties o f each fracture, and to 

incorporate this information into the mathematical model. This could need a huge 

amount o f computational time. This dissertation lim its itself to the use o f the dual- 

porosity model to simulate naturally fractured porous media.

1.2.3 Dual-porosity Approach

In the dual-porosity approach, the naturally fractured reservoirs are often classified as a 

system containing two different physical domains. The primary rock matrix contains 

large amount o f fluids but has a rather low permeability; and the fractures constitute a 

small volume but have the ability to transmit a large portion o f flow through the 

reservoir. The naturally fractured reservoir is usually conceptualized as a double-porosity 

medium: one porosity represents the matrix blocks and the other represents the fractures 

and vugs.

Naturally fractured reservoirs are often modeled by the dual-porosity model proposed 

first by Barenblatt et al. (1960). They considered the reservoir as two overlapping 

continua: matrix and fractures. Flow between the matrix and the fractures was accounted
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for by the introduction o f source functions. However, they did not consider the effects o f 

stresses on both the matrix and fractures.

Warren and Root (1963) utilized a three-dimensional, interconnected network of 

fractures and developed an analytical solution to describe the flow through dual-porosity 

media. They assumed that the fractures are all interconnected, and that they were equally 

developed in three principal directions: thus, the fractured reservoir is isotropic in a 

macroscopic sense. They gave a radial model for well transient testing purposes. In their 

model, the double-porosity medium had two classes o f porosity. The primary porosity 

was controlled by deposition and lithification. The void systems o f sands, sandstones and 

limestones were typical o f this class. The secondary porosity, on the other hand, was 

controlled by fracturing and jo inting. Vugs, joints and fissures which occur in formations 

such as shale, siltstone, schist, limestone or dolomite were typical o f this class o f 

porosity. In Warren and Roots model, the matrix rock containing the primary porosity 

was homogeneous and isotropic and was contained w ithin a systematic array o f identical, 

rectangular blocks. These blocks provided flow to the fractures which, in turn, 

transported the flu id to the well. Superimposed on this system was an orthogonal system 

o f continuous, uniform fractures which were oriented such that each fracture was parallel 

to one o f the principal axes o f permeability. Fluid flow in the reservoir occurred through 

the fractures, which were anisotropic, with local exchange o f fluids between the fracture 

system and matrix blocks, but, flow communication between matrix blocks did not 

occur.

Odeh (1965) attempted to generalize the concept o f Warren and Root to accommodate 

a fractured reservoir in which the pattern o f fractures was not known. In his model, the 

matrix blocks acted like sources which continuously feed the fractures. The net fluid 

movement toward the wellbore occurred only in the fractures and the fractures’ flow 

capacity as well as the degree o f fracturing o f the reservoir were uniform.

The solutions presented by Warren and Root, and Odeh were subsequently extended 

by Kazemi et al. (1969). Kazemi s model differed from Warren and Root’s model in that 

the reservoir consisted o f a set o f uniform ly spaced horizontal matrix layers with a set of 

horizontal fractures as spacers. The fractures were arranged horizontally, whereby the 

fracture flow converged radially towards the wellbore. According to this assumption, a
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"layer cake”  model wherein the porous blocks and fractured matrix each occupied a 

different layer was presented. O f significance in this model was the recognition that 

porous medium flow was not only orthogonal to the fractures, but also responded as a 

continuum over the entire model. As a result o f this conceptualization, two mass balance 

equations appeared: one for the fractures and the other for the porous blocks. The 

equations describing the layer cake model were solved numerically.

Aifantis (1977) introduced the concept o f multi-porosity to consider diffusion 

processes in multi-porous media. Wilson and Aifantis (1982) extended the dual-porosity 

concept to examine coupled flow-deformation scenarios in fractured poroelastic media 

using analytical means. Similar numerical approaches were made by Khaled et al. 

(1984). Their model provided a suitable framework in which the flow-deformation 

behavior o f dual-porosity media was fu lly  coupled. Barenblatt's equations can be 

recovered from Aifantis' equations as a special case when the rock is assumed to be rigid. 

Aifantis' theory first provided an alternative derivation o f his fissured rock equations 

through a proper extension o f Biot's classical model o f flow in single porosity media; 

and. secondly, developed a finite element methodology for the numerical solution o f the 

relevant equations. The derivation o f the governing equations is done by viewing the 

system as an elastic skeleton infiltrated by a two-state fluid, one flowing through the 

fractures and the other flowing through the pores. Constitutive assumptions were made 

for both the flu id strains and total stress. In conformity with the classical theory o f Biot. 

the basic postulates are the equilibrium equation for the total stress and a two-state 

Darcy's law specifying the flow process in the two types o f pores. Under assumptions of 

solid isotropy, small strains, slight fluid compressibility, absence o f macroscopic 

viscosity and complete saturation, five second-order linear partial differential equations 

for five unknowns (three solid displacements and two flu id pressures) are derived.

Elsworth and Bai (1992) presented a constitutive model to define the linear poroelastic 

response o f fissured media and determine the influence o f dual-porosity effects. In their 

model, a stress-strain relationship and two equations representing conservation o f mass 

in the porous and fractured material are required. Bai et al. (1993) presented a 

generalized formulation for the multi-porosity/multi-permeability poroelastic media. 

Later, a series o f papers were published to study the flu id flow and solute transport in
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dual-porosity media (Bai et a!., 1994; Bai and Meng. 1994; Bai and Roegiers, 1994; Bai 

et al., 1995; Bai and Roegiers, 1995; Bai et al., 1995). Bai and Roegiers (1997) extended 

the dual-porosity theory and proposed a triple-porosity analysis o f solute transport. 

Zaman et al. (1998) presented a flu id flow model in heterogeneous dual-porosity media.

Lewis and Sukirman (1993a, 1993b), and Ghafouri and Lewis (1996) developed a 

model to study the fractured porous media via the dual-porosity concept. They 

considered that the imposed external loads and /or well production both create a pressure 

gradient between the flu id within the matrix pores and the flu id in the adjacent fractures. 

The flu id within the matrix is squeezed out into the fissured continuum due to the 

produced gradient. Hence, flow towards the producing well takes place through the 

fissured network. In their model, the fractured porous media are divided into two 

overlapping but distinct continua, the first represents flow and deformations in the 

porous matrix while the second represents flow in the fissures. They assumed that only 

pressure in the matrix affects the equilibrium equation and the pressure in the fissures 

has no influence; in addition, the compressibility o f the fissures is ignored.

Lewis and Ghafouri (1997) considered multiphase flow through deformable fractured 

porous media. Their model was based on the theory of double-porosity and accounts for 

the significant influence o f coupling between fluid flow and solid deformations. A 

Galerkin-based finite element method was applied to discretize the governing equations 

both in space and time domains. Their formulations are not derived from theory.

Meng ( 1998) presented oil and water flow through deformable fractured porous media 

using the dual-porosity theory. In his model, the porous matrix blocks and fractures were 

considered as overlapping systems. Nair (2001) presented oil and gas flow through 

deformable dual-porosity media.

When using the dual-porosity method, it should be noted that this approach is limited 

and only meaningful i f  the size o f elements (in the finite element method) or gridblocks 

(in the finite difference method) are less than that o f the matrix block (Mattax and 

Dalton. 1990).

Based on this literature review, it is found that to date, few of the existing models have 

been utilized to specifically study the combined effect o f flu id flow  and elastopiastic
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behavior in naturally fractured reservoirs. Some published papers take into account the 

coupling effect between flu id flow and solid deformations o f the reservoir, but the 

reservoir is considered as a homogeneous porous medium. Although many models are 

used to simulate wellbore stability in deformable fractured porous reservoirs, the solid 

phase is only considered as an elastic medium. Some models consider the solid phase as 

an elastopiastic medium, however, fluid flow effects in naturally fractured reservoirs are 

ignored. This dissertation presents the detailed fundamental theory and the numerical 

solutions for the coupled effect o f flu id  flow and solid elastopiastic behavior in 

deformable fractured reservoirs and provides wellbore problem solutions.

1.3 Objectives

The objective in this dissertation is to present an elastopiastic wellbore stability model 

that couples solid mechanics and fluid flow using the double porosity theory to simulate 

naturally fractured reservoirs. Specifically, there are four main objectives:

• Present the analytical solution for wellbore problems for simple cases, which can be 

used to verify the numerical solution. For the complicated cases, the Unite element 

analysis w ill be applied.

•  Present a finite element formulation coupling solid deformations and flu id flow in 

naturally fractured elastopiastic media employing the dual-porosity poromechanical 

theory.

• Develop wellbore stability analysis codes that incorporate the elastic, single-porosity, 

dual-porosity poroelastic and elastopiastic effects.

• Investigate different failure criteria and wellbore failure mechanisms.

1.4 Dissertation Description and Outiine

Chapter 1 includes the general introduction laying out the objectives for this dissertation.
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A critical literature review o f wellbore stability modeling and fu lly coupled rock 

deformation and flu id flow system in naturally fractured media is given.

Chapter 2 gives the theoretical background of the wellbore problems. Different 

analytical solutions, such as, elastic and elastopiastic solutions are given. These can be 

used to validate the numerical model.

Chapter 3 presents the dual-porosity concept and double effective law. According to 

these, the formulations for separate and overlapping dual-porosity media are developed.

Chapter 4 contains the details o f the numerical implementation and finite element 

formulations. The generalized plane strain theory is applied, which is able to solve three- 

dimensional problems by using two-dimensional geometry settings. The wellbore finite 

element solutions in elastopiastic dual-porosity medium are accomplished. Different 

wellbore boundary conditions are investigated for simulating practical cases.

Chapter 5 focuses on the validation o f the numerical algorithm. The theoretical 

formulations and numerical solutions are validated against pure elasticity, consolidation 

cases and wellbore problems where the analytical solutions are readily available. Also, 

by using the finite difference method dual-porosity thermal elastopiastic consolidations 

are given, which can be used for new model validation in the future.

Chapter 6 c.xamines the parametric inlluence. Through the parametric changes, the 

model allows the study o f behaviors for pure elasticity, single-porosity, and dual­

porosity problems. In addition, time-dependent, and fracture and matrix parametric 

effects are investigated.

Chapter 7 presents the wellbore failure analyses. Various wellbore failure criteria are 

examined and applied to analyze the wellbore instabilities, such as collapse, spalling, and 

fracturing.

Chapter 8 includes the application o f the numerical model. Stress-dependent 

permeability around a wellbore, drilling mud selection, wellbore stability and rock 

cutting problems are numerically simulated.

Finally in Chapter 9, summary, conclusions and recommendations for future studies 

are given.
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Chapter 2 

Theoretical Background of Wellbore 

Problems

2.1 Elastic Solution

2.1.1 Vertical Borehole in An isotropic Stress Field

Consider the plane strain solution (i.e. strain in c-direction. e- = 0) o f a wellbore loaded 

on its external boundary by an isotropic stress, cr. and on its internal boundary by a tluid 

pressure. (Figure 2.1.1); this is known as Lame's problem (Charlez. 1997).

Figure 2.1.1 A borehole in an isotropic stress field.

In cylindrical coordinates, the stress components at a distance r  from the wellbore are
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given by:

(J , =  (7

c r „ = a

cr. = cr

r

r

+ P J L
r

( 2 . 1. 1 )

where R is the wellbore radius; r  is the distance from the wellbore; a>. and are the 

radial, tangential and vertical stress components, respectively; Trf>. and are the 

shear stress components; cr and ct;. are the horizontal and vertical stresses in the far-fie Id 

stress field, respectively.

At the wellbore, r  = /?, one obtains:

0"r =
= 2cr -  

o . = a.
P„ ( 2 . 1.2 )

It can be seen that stress concentrations occur due to well drilling.

The radial displacement or well convergence, can be computed using the following 

e.xpression:

II. =
(7 -/7 , R' 

2G r
(2.1.3)

where G is Lame's constant.

2.1.2 Vertical Borehole In An Anisotropic Stress Field
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Kirsh’s problem refers to a borehole subjected to a bi-axial stress state cTh . O), {cth > ct;,)( 

Figure 2.1.2). The solution for the various stress components is now as follows:

cr, =
(CT„ , 4R- 3R

I  T -  +  — 7

i  \

r
1 +

3/?

/?-
cos I d  + p„. —  

r '

R'
cos 20 -  —

r

cr. =cr. - V
AR- {a „

cos 20

= -
, 2/?' 3/?

u  — —
4 \

sin 20

(2.1.4)

In particular, at the borehole wall, one can obtain the tangential stress component:

Oy = ( o „  + o J - 2 ( o „  - o „ ) c o s 2 6 - p „ (2.1.5)

or.

I (^0 =
|cr„ =3cr„ -  cr, -

at 0 = 0' 

at 0 = 90'
(2 . 1.6 )

Figure 2.1.2 A vertical borehole in an anisotropic stress Field.
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2.1.3 Inclined Borehole in An Anisotropic Stress Field

For an inclined borehole, Bradley (1979) gave the stress distribution around a borehole 

located in an arbitrary stress field;

=
(CT, +(T ,)

-

, - 4
r '

AR- 3Rj  \

1 +
3R'

cos20 + r„.
r / V

{ ,  3/?- "l
cos 2 0 - r , . l + —

j rV /

, 4R- 3R-"
s\n20+ —

■ 0/3Sin 10 -  —

R R'
cr, = cr_ -2 i/(c r, -  cr J — cos2 0 - 4 t T „ — sin 2£?

‘̂ rO -
cr. -c r

^ - ^ s i n 2 0  + r .,c o s 2 0 | 1 + ^ - ^  
2 1 r- r

: \
= ( r ,.  sin0 + r,. COS0)

= ( - r , ,  sin0 + r^. cos0)

(2.1.7)

where cr and rw ith  subscript o f r  and 0are the normal and shear stresses in a cylindrical 

coordinate system with the c-direction parallel to the drilling  direction, a  and r  with 

subscript o f .v. y and c are the normal and shear stresses in a Cartesian coordinate system 

which has the same c-a,\is as the cylindrical system, with the c-direction parallel to the 

drilling direction, 0 is  the azimuthal angle measured from the .v-axis. The conversion o f 

this Cartesian coordinate system's stresses from in-situ principal stresses can be done 

through coordinate transformation (Jaeger and Cook, 1979), which is given in Chapter 4.

The stress at the wellbore wall can be written as:
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O’r = P.
C7g =<T, +cr^ + -2(cr^ - ( T J c o s 2 ^ - 4 r „  sin2^

<7. =(7_ - v [2{(T^ - c r jc o s 2 0  + 4 r„  sin20]

Tg, = 2 ( - r , .  sin 6  + r „  cosd)

=0 
r_ =0

( 2 . 1 . 8 )

2.2 Elastopiastic Solution

Considering a plane strain circular infinite domain loaded on its internal boundary by a 

pressure and at in fin ity by an isotropic far-field stress rr (Figure 2.2.1) in an ideal 

elastopiastic material.

w /

Figure 2.2.1 A borehole in an ideal elastopiastic material.

Assuming (To > <7r and an ideal plastic rock formation with a Mohr-Coulomb type 

yield locus, i.e..
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Og =a^ .+ qo^ (2 .2 . 1)

where cr,. is the uniaxial compressive strength o f the rock, r/ = ( l + s in 0 )/( l-s in< J) and 0 

is the angle o f internal friction.

The equation o f equilibrium is given by:

dr r
(2 .2 .2 )

Substituting Equation (2.2.1) into Equation (2.2.2) and solving it, one obtains:

a
a  g = —^  + C,cjr 

l - r /

(2.2.3)

(2.2.4)

Using the boundary condition (for r  = R, o> = p»). a value for C/ can be obtained:

l - q
\ - q (2.2.5)

Therefore, in the failed zone the stresses are given by (Roegiers. 1999):

<̂ 0 = — ^  + q
l - q

a. Y r

P , v

I -  f/ I R

(T Y r
( 2 .2 .6 )

In the elastic zone, the stress can be obtained from elasticity theory, i.e.



c,
CT„ =0- + - ^

C,
=o" — r

(2.2.7)

When r  = /?p (/?  ̂is the radius o f the failed zone), the radial stress can be obtained both 

from Equations (2.2.6) and (2.2.7). Using the continuity o f the radial stress for r  = Rp, 

the value C-- can be obtained.

l - q
P.. -

cr. Y r

l - q  \ R
= a  +

C,

and.

C, = R:   (T H-
l - q

R..
P.. -

( 2 .2 .8 )

(2.2.9)

Therefore, the stresses in the elastic zone are as follows:

( T . = a  +

O’*  = o- -

1 - f /

cr

- C T  +

  <T +
l - q

P.

P„

q - l

R r\ /
q - \  ■

R rV /

( 2 .2 . 10)

In the elastic region, when r  = Rp, the stresses also satisfy Mohr-Coulomb's failure 

criterion; i.e.

Og = o ,  + q  O, (2 .2 . 11)

where cr/ is the uniaxial compressive strength for the failed rock, 

r/' = ( l + s in d ') /( l-s in d ')  and 0 'is  the angle o f internal friction for the failed rock. 

Substituting Equations (2.2.10) into Equation (2.2.11), one gets the failure radius:
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" 1 I ( 2 . 2 . 1 2 )

Equation (2.2.12) shows that the entire rock block w ill remain purely elastic i f  the well 

pressure is such that:

>
{2a - o [ )  

( r / + l )
(2.2.13)

The elastopiastic solution and the purely elastic solution are compared in Figure 2.2.2. 

in which the parameters used are listed in Table 2.2.1. The calculated plastic radius is Rp 

= l.3R. In the plastic zone, the tangential stress strongly reduces compared to the elastic 

solution. However, the radial stress only reduces slightly. Tangential stress reduction in 

the well v ic in ity means that the difference o f the radial and tangential stresses w ill be 

considerably reduced. This is why an elastopiastic model is much less pessimistic 

regarding borehole instability than a purely elastic model.

Table 2.2.1 Parameters used for clastic and elastopiastic calculations

Parameters Magnitude

Far-field stress cr(MPa) 50

Fluid pressure (MPa) 10

Uniaxial compressive strength CTc(MPa) 20

Compressive strength for failed rock cr'. (MPa) 10

Angle o f internal friction 0, 0 '{° ) 30
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Figure 2.2.2 Stress states around a borehole in elastic and elastopiastic solutions.
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Chapter 3 

Dual-porosity Poromechanics

3.1 Dual-porosity approaches

3.1.1 Dual-porosity Concept

Many rock formations are heterogeneous due to the existence o f discontinuities and 

natural fractures. Thus, the porous rock as a homogeneous continuum with an associated 

single porosity may not simulate properly the rockmass behavior. However, the chaotic 

distributions o f the natural fractures and discontinuities within the rock mass make it 

almost impossible to model each fracture independently. I f  these fractures and rock 

matrix can be considered using a multi-porosity continuum concept, the task o f modeling 

such rock masses becomes reasonable. Naturally fractured reservoirs are often treated 

ideally as different dual-porosity media (Barenblatt et al., i960; Warren and Root, 1963: 

Kazemi et a l„ 1969: Aifantis, 1977; Kazemi et a l„ 1993: Bai et al., 1993: Bai and 

Roegiers, 1994; Lewis and Ghafouri, 1997: Zaman et a l„ 1998; etc.), which has two 

classes o f porosity (Figure 3.1.1). The void systems o f sands, sandstones and limestones 

are typical o f dual-porosity media: the primary porosity being controlled by deposition. 

The secondary porosity, on the other hand, is controlled by fracturing and jo inting. Vugs, 

Joints and fissures which occur in formations such as shale, siltstone, schist, limestone or 

dolomite are typical o f this class o f porosity.
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Figure 3.1.1 Dual-porosity models for the naturally fractured reservoir (from Kazemi et 

al.. 1993).

In the dual-porosity model, a fractured rockmass is thought o f as a number o f porous 

blocks separated from each other by a system o f randomly distributed fractures (as 

shown in Figure 3.1.2). Thus, the fracture and matrix systems in the fractured rock are 

distinctly different in both porosity and permeability. The global flow occurs primarily 

through the high-permeability. low-porosity fracture system surrounding the matrix rock 

blocks. The matrix blocks contain the majority o f the reservoir storage volume and act as 

local source or sink terms to the fracture system. The fractures are interconnected and 

provide the main fluid How path to the wells.
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porous b lock fracture

Figure 3.1.2 Schematic dual-porosity medium

In this dissertation, the naturally fractured reservoir is assumed as an ideal dual­

porosity. dual-permeability model' (such as sugar cubic model' in Figure 3.1.1) as 

shown in Figure 3.1.3. In this model, the system including matrix and fractures is 

considered as a continuous medium; therefore, continuum mechanics can be applied to 

deal with this problem.

' In this dissertation, dual-porosity refers to dual-porosity and dual-permeability.
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Figure 3.1.3 Naturally fractured and ideally dual-porosity reservoirs.

3.1.2 Separate and Overlapping Models

There are two different kinds o f approaches to model dual-porosity media. One assumes 

that the medium is ‘overlapping’ between the matrix, and fractures; the other assumes 

that the matrix and fractures in the medium are ‘separate and overlapping’ . The total 

volume in the overlapping model is the sum of the volumes o f pores, fractures and solids 

(Aifantis, 1977, 1980; Meng. 1998). However, in the separate and overlapping model, 

the total volume is the sum of the volumes o f pores and solids or of the volumes o f 

fractures and solids, i.e..

(3.1.1)

where V is the total volume, V,„„ is the void space occupied by fluid in the matrix, V,i is 

the solid volume in the porous medium (Figure 3.1.4), is the void space occupied by 

fluid in the fractures. K : is the solid volume in the fractured medium (Figure 3.1.4).
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Figure 3.1.4 Separate and overlapping model in dual-porosity media.

3.2 Double Effective Stress Law

The relationship between changes in total stress (a,j) and effective stress {a,/) is given by 

Terzaghi (1943) and Biot (1941, 1955). For dual-porosity media, the effective stress can 

be e.xpressed as:

^mmi ^mnii

<y,n, =
(3.2.1)

where subscript 'ma and ' f r  represent matri.x and fracture, respectively.

For separate overlapping porous medium and fractured medium, the local stress 

equilibrium requires that changes in total stress within adjacent phases must remain in 

equilibrium, such that (Elsworth and Bai. 1992):

(3.2.2)
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The linear elastic constitutive relationships among the effective stresses and strains for 

the separate matrix and fracture systems are defined as:

^  m a i l  ^ m n i i U ^ m a U

^  f r t j  ~  ^  f n i k l ^  f r k !

(3.3.3)

The inverse relations from above two equations can be expressed as:

(3.2.4)

where D„„„ju and D/nju are the elasticity tensors for the rock matrix and for the fractures. 

Cmniju and C,r,,u are the compliance tensors for the rock matrix and the fracture systems, 

respectively.

The total strain due to the elastic deformation in each o f the svstems is given bv:

1̂/ n̂mki ^  trkl (3.2.5)

Substituting double effective law. i.e.. Equations (3.3.1) into Equations (3.2.4) while 

combining with Equation (3.2.5) one obtains:

or.

^ 1 /  ( ^ / m i i / W  ^  ^ k l  ^ m a i i k l ^ m a  P m a ^  U  ^  i r i i k t ^  f r  P k l

^ 1 1  ~  ^ m f  ( ^ U  ^ m a k l m n ^ m i i  P m i i ^ m n  ^  I r k l m n ^  f r  P  mn  )

(3.2.6)

(3.2.7)

The combined elasticity matrix can be defined explic itly in the three-dimensional 

geometry for an isotropic medium as (Bai et al.. 1995):

^ m l  ma i f k l  ^ f n i k l  ) (3.2.8)
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therefore.

m r i j U

t i n ' A n : 'A  133 0 0 0

: : i  1 'A n33 0 0 0

3311 ' A 3: : ' A 333 0 0 0

0 0 0 '^4444 0 0

0 0 0 0 ' A 5555 0

0 0 0 0 0 '^b«)6

(3.2.9)

The compliance matrices are given as follows:

I - V - V 0 0 0
- V I - V 0 0 0
- V -  V - ] / 0 0 0
0 0 0 2( 1 + u ) 0 0
0 0 0 0 2(1 + 1/) 0
0 0 0 0 0 2(1+ v

(3.2.10)

^  IrilU r-

0

0 0 

I

0 0 

0 0

0

0 0 

I
0 

I

0 0 0 0

0 0

0

0

0

0

1

0

0

0

0

0

I

(3.2. I I )

and.

m r i f U

I  ̂ 2(I + u) I I
—  +  ■

3v : /
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(3.2.15)

where K„ and K̂ h are the fracture normal and shear stiffness, respectively.

3.3 Dual-porosity Formulations

A typical dual-porosity formulation is usually written as (Barenblatt et al.. 1960):

dp.
(3.3.1)

where p„,a and pfr are the fluid pressures for the matrix and fractures, respectively; k„,a 

and pfr are the permeabilities for the matrix and fractures, respectively; fj. is the fluid 

dynamic viscosity. and /i/r are the porosities for the matrix and fracture, respectively; 

c,na and Cfr are the compressibilities for the matrix and fractures, respectively; i is the 

time, r  is the geometric leakage factor. It can be seen that no solid deformation is be 

considered in this formulation.

Alternatively, Barenblatt et al. (1990) proposed a more complete dual-porosity 

formulation than that expressed by Equations (3.3.1) by considering the cross-phase 

storativity interaction;
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dp,

M dt

- J ^ 'P , r = C , r n i r ^ - c  n
a, ^  ^ a.

m / m a

dp

•+ ^ iP lr  -  Pm„ )
(3.3.2)

-  T (p   ̂ )

where c,„f and c/„, are the cross-coefficients.

The governing equations for solid deformations and flu id phase in the dual-porosity 

poromechanical formation may be expressed as follows (Wilson and Aifantis, 1982; Bai 

et al., 1993):

G«,, + ( / l  + G)/q.,j, = 0

k.
P n u i X k  ^ m n ~ Pm„ + i'^iPtr -  Pm„ ) + ‘■In

dt dt
(3.3.3)

de,
-  ~ZPtrXk -  P,r -  (W(p,, -  P„„ ) + q,r

where, X and G are Lame's constants, a,„„ and a,r are the effective stress coefficients for 

the matrix and fractures, respectively; ^  is the relative compressibility representing the 

lumped deformability o f the fluid and the solid, // is the solid displacement, fu  is the 

total body strain, co is the transfer coefficient and co = 60k„J{jLLs') for three mutually 

orthogonal fracture sets (Warren and Root, 1963), ,v is the fracture spacing.

For the separate and overlapping model, the double effective stress law needs to be 

considered, and combined elasticity matrix D,„, defined in Equation (3.2.9) and other 

related elastic constants need to be introduced to Equations (3.3.3). Then, the governing 

equations for solid deformation and fluid phase in the dual-porosity poromechanical 

formation are slightly different and may be written as:
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+ or„„ p „ „  , +  cc ,rD „, C J, , -  0

Â.-
n  -  ry n  r
H m a . k k  ^  ^ ma  ^ m f  ^  nui i j kl “  -  P ,n n  P f r -  P n u , ) ^  n

dt dt

k. de,.
- ~ ^ p  , r M  =  D „ ,  +

3f

(3.3.4)

where. Xmr and G,„f are Lame's constants for the combined dual porosity media, which 

can be obtained by the following relationships;

2(1 + y) 

I'D...
À  —  ■

(l + r’)(l-2t'

(3.3.5)

(3.3.6)
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Chapter 4 

Finite Element Implementation of 
Poro-mechanical Solutions

4.1 Introduction

In solving practical problems, numerical approaches are often superior to analytical 

methods due to their versatility in replicating the complex geologic and hydrological 

conditions that exist in nature. Nearly all the numerical procedures involve replacing the 

continuous form o f the governing differential equation by a finite number o f algebraic 

equations. To develop these equations, it is necessary to subdivide the problem region. 

Three o f the most widely used numerical methods are the finite difference, the finite 

element and the boundary methods. Among these three, the finite element method is 

perhaps the most versatile technique since it can handle irregular meshes and boundary 

conditions and is able to represent heterogeneities in a medium.

The basic mechanism of fluid flow in fractured porous media may be explained as 

follows: applied external loads and/or well production both create a pressure gradient 

between the flu id w ithin the matrix pores and the fluid in the fractures. The flu id within 

the matrix is squeezed out into the fractured medium due to this gradient (Meng, 1998) 

(When the flu id is injected, the opposite result w ill take place.). Subsequently, flow 

towards the producing well takes place through the fissured network. In this dissertation, 

the naturally fractured reservoir is considered as two separate and overlapping continua, 

one representing the porous matrix while the other represents the deformable fractures. 

Based on the dual-porosity poromechanics and generalized plane strain concepts, the
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derivations o f the governing equations for flu id flow in a deformable naturally fractured 

reservoir include the equilibrium and the continuity equations and the finite element 

formulations w ill be given in the ongoing sections.

The following assumptions were made;

•  The reservoir is treated as a dual-porosity medium. One porosity is associated 

with the primary rock matrix and the other is associated with the fractures;

•  The fracture network is idealized as an equivalent porous continuum; this 

piecewise continuum is represented by an equivalent anisotropic permeability, 

controlled by fracture spacing and mean aperture.

•  The rock is a compressible solid subject to small deformations;

•  Fluid velocities in both the rock matrix and the fractures are assumed to be small. 

In such case. Darcy's law is valid;

• The analysis is related to a macroscopic level that contains a representative 

sample o f rock matrix and fracture geometry;

• The fluid pressures, porosities, permeabilities and other properties o f both the 

matrix and fractures are considered separately;

• The fluid flow in the porous matrix and the fracture is controlled only through a 

interchange term which is assumed to be in quasi-steady state; and,

• The rock matrix and fracture systems are assumed to be fu lly  saturated.

4.2 Finite element method

Javandel and Witherspoon (1968) introduced the finite element method into the fluid 

flow through porous media problems. Finder and Frind (1972) were among the first to 

utilize the finite element method for prediction o f regional aquifer performance. Gupta 

and Tanki (1976) reported an application o f a three-dimensional finite model for the 

simulation o f flow in California. For heterogeneous systems with complex geometries 

and arbitrary boundary conditions, the finite element method is effective (Desai and
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Johnson, 1972; Ghaboussi and Wilson, 1973). The single porosity poroelasticity, 

originated by Biot (1941, 1955) has been implemented with numerical tools (Verruijt, 

1969; Zienkiewicz et al., 1977; Huyakom and Finder, 1983; Simon et al., 1984; Lewis 

and Schrefler, 1987; Cul et a l„ 1997b).

The dual-porosity conceptualization o f a fractured medium considers fractures and 

porous blocks to behave as separate but interacting continua. Both the fluid flows and 

solid deformations in the rock matrix and fractures are affected by the interaction 

between the two systems. The numerical method of dual-porosity poroelasticity has 

been presented (Huyakom and Finder, 1983; Khaled et al, 1984; Elsworth and Bai, 1992; 

Meng, 1998.).

This dissertation develops a three-dimensional finite element model based on the dual­

porosity poroelastic and poroelastoplastic conceptualizations and generalized plane strain 

theory. The finite element implementation and computer code for directional wellbore 

problems is also presented.

4,3 Generalized Plane Strain Concept

Most problems in engineering applications are three-dimensional in nature. A class o f 

problems, such as, tunnels, we 11 bores and dikes are characterized by a cross-sectional 

geometry that is usually invariant along the longitudinal direction. These problems are 

defined as pseudo-two-dimensional geometry. However, anisotropic material properties 

and nonhomogeneous in-situ stress conditions generally render these problems three- 

dimensional. I f  a three-dimensional solution technique is applied, the computational 

efforts become intensive when time is a dependent variable. Under certain conditions;

e.g., the boundary conditions along the generator are invariant, then, it is possible to 

develop a two-dimensional solution algorithm. One such condition is defined by the 

generalized plane strain problem. In these situations, material anisotropy and a three- 

dimensional stress and strain state are considered, but they have a functional dependence
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o f only two spatial variables (Cheng, 1998). Therefore, only a two-dimensional domain 

discretization is needed for numerical solutions.

The generalized plane strain analytical solutions for elastic continua have been 

presented by Saada (1974) for the case o f a rotating cylinder free to deform in the 

longitudinal direction. In the case o f wellbore and tunnel solutions in anisotropic media, 

the analytical development has been presented by Lekhnitskii (1981) and Amadei 

(1983). Numerical solutions in the generalized plane strain conditions, using the 

boundary element method, were developed by Brady and Bray (1978). Also, finite 

element solutions for these conditions were developed by Pande et al. ( 1990).

However, the above developments and applications were all designed for elastic 

continua and time was never a factor. In engineering applications, where saturated 

porous media are the common encounter, pore flu id pressure perturbations need to be 

taken into account. In general, when flu id saturated homogeneous porous rocks are 

subjected to an external load, a coupled hydro-mechanical response w ill take place. This 

phenomenon and its corresponding physical behavior are well prescribed and modeled 

using Biot's theory o f poroelasticity (Biot, 1941). It has been demonstrated that 

poroelastic solutions present quantitative and qualitative results that are very different 

from their elastic counterparts.

Analytical solutions for several poroelastic generalized plane strain problems have 

been developed (Abousleiman et al., 1996; Cui et al., 1997a; Abousleiman and Cui, 

1998; etc.). Also, the finite element formulation and solutions for single porosity porous 

media have been developed by Cui et al. (1997b). Recently, a dual-porosity poroelastic 

generalized plane strain finite element solution has been presented and the dual-porosity 

poroelastic behaviors o f wellbores subjected to an inhomogeneous in-situ state o f stress 

were studied (Bai et al.. 1999; Zhang et al.. 2000).

It is well-known in plane strain problems, i.e., in an .v-v plane, that the displacement 

and the shear stresses are restricted along the c-direction. In the generalized plane strain 

scenarios, however, these restrictions are removed. As a result, the number o f tensor 

components for stresses and strains are identical to that o f a three-dimensional setting. In 

a general generalized plane strain formulation, it is assumed that boundary conditions in 

the form o f surface tractions, pore pressure, displacements, and normal fiux, do not
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change along the c-direction. As a result, and taking into account the dual-porosity 

continuum concept where fluid pressure exists in the porous matrix, as well as in the 

natural fracture system, the displacements, stresses, strains and pore pressure are only 

functions o f .v, y and time t, i.e.,

u'^f.v, y ,0  = {«,,/< ,,//,) (4.3.1)

e"(.r, y ,f)  = 1 (4.3.2)

(.V, y , / ) = , r , . , r , } (4.3.3)

p^(.v ,y ,r) = (4.3.4)

where the superscript T ’ represents the vectorial transposition, £ and y ^te the 

components o f strain.

It IS obvious that the : -component stresses and strains do not vanish and the above 

quantities are independent o f :. Taking into consideration the z-independcncc, the St. 

Venant compatibility equations are reduced to the following forms:

d y  o.v o.voy

a ' / : ,  a ' r . :
d.vdy dx'

a v . :  a V -
a.vdv d.v ■

= 0 (4.3.6)

= 0 (4.3.7)

^  = 0 (4.3.8)
a.v

^  = 0 (4.3.9)
a.v"

^ - ^  = 0 (4.3.10)
dxdv
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From the above three equations, one knows that E,, must be a linear function o f x and 

y, i.e.,

£ . =  A{t).x + B U ) y  + C{t) (4.3.11)

where. A, B and C are arbitrary functions o f time.

By using the kinematic equation.

f .  (4.3.12)
‘ dz

it is easy to obtain the displacement components (Cheng, 1998)

». = [A { t ) x  + B{t )y + C{t)]z + l i i x . y J )  (4.3.13)

», = -  D{t)yz + F{ t)z  + f i x .  y. t )  (4.3.14)

», = - ^ ^ z '  -  D(t)xz + H( t )z  + .^ix, y. t )  (4.3.15)

W ithout considering the torsion and pure bending solutions, which do not generate 

pore pressure due to the lack o f volumetric deformation, one shows A = B = D = F = H  

= 0 (Cheng, 1998). Thus, the displacements are simplified and become:

». = C i t ) z  + l i i x ,  y . t )

», = f i x .  y . t )  (4.3.16)

»v = ,‘?(-V.yT)

It should be noted that the elastic counterparts o f the above three equations are the 

“ complete plane strain”  case studied by Brady and Bray (1978). Lekhnitskii (1981) 

referred to the case o i A  = B = D = F  = H  = Oas “ generalized plane strain". In the
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present study the Equations (4.3.16) are adopted, in which the plane strain, a warping 

and uni-axial strain components are included.

4.4 Finite Eiement Discretization for 

Poroelastic Soiution

4.4.1 Finite Eiement Mesh

The first step in the solution o f the coupled flu id flow and solid deformations problem by 

the finite element method is to discretize the problem domain. This is done by replacing 

the problem domain with a collection o f nodes and elements referred to as the finite 

element mesh (Figure 4.4.1 ). Elements may be o f any size and the size and shape o f each 

element in the mesh can be different. In this dissertation, elements with four-nodes are 

chosen for the generalized plane strain problem. The values o f the material properties are 

usually assumed to be constant w ithin each element but are allowed to vary from one 

element to the next. This property o f the finite element method makes it possible to 

simulate nonhomogeneous problems.

The level o f computational effort required to obtain a solution w ill be determined to a 

great extent by the number o f nodes. A coarse mesh has a smaller number o f nodes and 

meshes and w ill give a lower precision than a fine mesh. However, the larger the number 

o f nodes and meshes, the greater w ill be the required computational effort and cost. 

Therefore, when preparing the finite element mesh it is important to know the precision 

o f the solution obtained. In this dissertation, the comparison between the analytical and 

finite element solutions is made to determine the rational numbers o f elements.
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Figure 4.4.1 Discretization o f generalized plane strain problem domain.

4.4.2 Weighted Residuals Method

The second step in the finite element method is to derive an integral formulation for the 

governing equations. This integral formulation leads to a system of algebraic equations 

that can be solved for values o f the field variable at each node in the mesh. Several 

methods can be used to derive the integral formulation for a particular differential 

equation. The method o f weighted residuals is a more general approach that is widely 

used in fluid flow and solid deformation modeling (Istok, 1989).

In the method of weighted residuals, an approximate solution to the boundary or in itial 

value problem is defined. When this approximate solution is substituted into the 

governing differential equations, an error or residual occurs at each point in the problem 

domain. Then the weighted average o f the residuals for each node in the finite element 

mesh is forced to equal zero.

Consider a differential equation o f the form:
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Z.[<I)(.r. y. : ) ] -  F{.x, y, : )  = 0 (4.4.1)

where L is the differentia! operator. 4> is the field variable, and F  is a known function. 

An approximate solution, <t>, is defined as:

d>(.t. y .c ) = ^  A,(.v, y, c)0 , (4.4.2)
i-l

where N, are shape functions; d>j are the unknown values at the nodes; and m is the 

number o f nodes in the mesh. When the approximate solution is substituted into

Equation (4.4.1), the differential equation is no longer satisfied exactly and has the

following residual term:

d>(.v, v , : l -  F(.v, y.z)  = F(.v, V, : )  (4.4.3)

where R is the residual or error due to the approximate solution. The residual varies 

from point to point w ithin the problem domain. A t some point it may be large and at 

other points it may be small.

In the method o f weighted residuals, the weighted residuals at the nodes are forced to 

be equal to zero, i.e.,

jJ|VT(.r, \ \z )R{x ,y ,z)dQ. =  0 (4.4.4)

where VVf.v.y.cj is a weighting function and Ï2 represents the problem domain. 

Substituting Equation (4.4.3) into Equation (4.4.4) gives:

| | |W ^ (A -,y ,c ){^ 0 ( .v ,  y , c ) ] -  F ( .v ,y ,c )  W Q  =  0  (4.4.5)
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so that the partial differencial equation has been replaced by an equation in the 

discretised space variables. The problem now reduces to one o f Finding the values <t>j at 

the nodes. Galerkin’s method is the most widely used in the finite element method to 

achieve this.

The Galerkin’s method is then used whereby the weighting function for a node is 

identical to the interpolation function (shape function) used to define the approximate

solution <t>.

4.4.3 Shape function

In the finite element method, the interpolation or shape functions are used to map the 

element displacements and flu id pressures at the nodal points, in other word, the shape 

function. N„  is used to obtain the expressions for the variation o f the unknown variables 

within an element in terms o f the nodal values. Let <b(.v.y.c) = unknown functions, then 

one can write;

{«t>(.v. v .c )}=  [n ]{4>(.v . y.c), }=  [a/, N, ■■■ ]■

d).

(4.4.6)

The element. N„  o f this matrix must be such that it takes on a value o f unity when 

evaluated at the geometric coordinates o f the i'*’ selected node and has zero value at all 

the other remaining selected nodes. It should be noted that the shape function. N„  must 

satisfy the following conditions (Zienkiewicz. 1977):

•  The number o f shape functions. A/,, must be equal to the number o f nodal values 

of the element at the selected nodes;

•  Continuity must be provided at nodes and also at element interfaces;

45



•  The shape function must provide completeness for rigid body displacements and 

satisfy the constant strain criterion; and,

• The shape function must possess derivatives to the highest order appearing in the 

variational functional or the differential equation for the problem.

For the flu id pressure approximation at phase /, one has:

p ' = M p i  (4.4.7)

where M  is the shape function for the flu id  pressure pi 

A t nodal level, for four-point two-dimensional element:

P ' i P „  ('^ '^8)
/-I

For the eight-point three-dimensional elements:

/ = 1

The vector o f shape function for pressure. M , can be given in following forms:

W hile for eight-point three-dimensional elements:

O
(4.4.10)

M, = l ( l  + g)(l -p)( l -^)  
8

(4.4.11)

A/, = ;^ ( I  + ^ ) ( I - P ) ( l  + C) 8
(4.4.12)

M , = - ^ ( 1 - ^ ( 1 - p ) ( I  + 0  8
(4.4.13)
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M , = i ( l  + ^ ) ( l + ^ ) ( l - 0  (4.4.15)
O

M , = - i l  + ^ ) { l  + n ) i l  + C) (4.4.16)
8

M , = - ( l - s - ) ( l  + ^ )( I + (T) (4.4.17)
8

and for four-point two-dimensional elements:

M , = - ( [ - ç ) ( [ - n )  (4.4.18)
4

+ (4.4.19)
4

M , =-5-(l + ^=)(l + t7) (4.4.20)
4

+ (4.4.21)
4

where r| and Ç represent local coordinates, and - 1 < ^ 1 .  - l< r )< l and -1<Ç< 1.

A sim ilar expression for the approximation in mapping nodal displacements can be 

described as:

u* = Nu (4.4.22)

at nodal level, for four-point two-dimensional elements:

(4.4.23)
j=\ i=\
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for eight-point three-dimensional elements:

/ = ! ;=i / = !
(4.4.24)

where u is a vector o f nodal displacements, N is a vector o f shape function for 

displacement. In this approach, N is identical to M. For simplicity, the superscript **' for 

variables in the above equations indicate that the finite element approximations are 

omitted in the subsequent description.

Strains within a single element are related to nodal displacements through the 

derivatives o f the shape functions B as:

E = Bu (4.4.23)

where B is the strain-displacement matrix.

The generalized plane strain solutions maintain compatibility with the primary 

unknown terms equivalent to the three-dimensional formulation, but geometrically they 

are not related to the z-coordinate, sim ilar to the two-dimensional cases. With reference 

to the finite element formulation, the major differences among the generalized plane 

strain, the plane strain and the three-dimensional situation are exhibited in the strain- 

displacement matrix B. In a two-dimensional geometry the matrix B can be expressed 

as:

B =

a 0
dx

a0
d\'

a à
av a.v

N (4.4.26)

For a three-dimensional geometry, B is slightly more complicated:
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a
àv

0

0

d

0 

a
ay 

0

_ 2  
av a.v
0 i -  f

ac àv 

a.v
a
dz

0

0

a
dz

0

0 —

N (4.4.27)

For the generalized plane strain formulation. B can be written as:

B =

a 0a.v 0
a0 av 0

0 6 0
a a 0
dy a.v

a
0 0 a7

â0 0 âJ

N (4.4.28)

The partial derivatives o f the shape functions are given by:

a/v, a(v,
a; a.v
a(v, r j a/v,
a/7  ̂— J i av
a/v, dN,

dz

(4.4.29)
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where, J  is called the Jacobi an determinant (Zienkiewicz. 1977) and can be found 

explicitly in terms o f the element local coordinates, (ç. t], ^  ). and the element nodal

J =

y. :). i.e..

dx a.v dz

dç â ; a ;
dx dy dz

dr? d ^ dr?
dx d \ dz

a ? â ; a ; .

'dN, a/v.

a ; a ;
a/v, a/v.

dr? dr?
a/v, a/v.

L a ; a ;

s f  .V, s f  >•, I

-'■'i >’i
-V, V,

\ ^ K l - 

dN,

(4.4.30)

Equation (4.4.29) can. therefore, be rewritten as follows:

dN, dN,

dx
dN,

■ = J- '

a ;
dN,

dv
dN,

dr?
dN,

. dz a ;

(4.4.31)

4.4.4 Conservation equations

The general force equilibrium equation in generalized plane strain domain is given by:

j  B^D„fa(Td.Q -  9f = 0 (4.4.32)
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where, i2  is the area o f integral domain for generalized plane strain problem and the 

volume of integral domain for three-dimensional problem, and f  is a vector o f applied 

boundary tractions.

Substituting the dual-porosity stress-strain relationships (Equation 3.2.10) and 

= Mdpi (differential o f Equation 4.4.7) into Equation (4.4.32) in terms of nodal 

variables, one obtains:

= f (4.4.33)

where, C/ is the matrix compliance matrix defined in Equation (3.2.13) and C/ = C„u„ju . 

C: is the fracture compliance matrix defined in Equation (3.2.14) and C: = Cfmu.

Substituting Equation (4.4.25) and dividing through by At. the momentum balance in 

finite element form can be expressed as:

| bX , b|^  JQ + i [ o , f  B X ,C ,m M ^ ./n  1=^ (4.4.34)

or.

K  — + = (4.4.35)
at ‘ at - at at

where detailed expressions o f the coefficients are given in Appendix .A.

The integration o f the equation usually requires the use of numerical techniques, and a 

standard method is that o f Gaus.sian qiuiclraturc. where the integrands are evaluated at 

specific points o f the element and boundary surfaces and then weighted and summed 

(Zienkiewicz, 1977). The dual-porosity mass balance equations (Equations 3.3.9 and 

3.3.10) in finite element form may be given for each system as following:

For the rock matrix system:

51



i f  M ^ k ^ V M d Q p ^
Mi i  at

-  p„„ J  M ^ M d Q ^ ^  + cü\ M^MdQAp +  J  M^MdQq^
(4.4.36)

at

or.

For the fracture system:

i |  M^k,,VMJQp„ = û -,jN ^ m D ^ ,C ^ B J Q ^ - j  -  coj \r \L /Q A p  + j  ,
M Ü u u dt u

(4.4.38)

where, Ap = Pj  ̂ -  p ^  , = ( I I 10 0 0). to is the interporosity flow coefficient and.

a  is Biot effective stress coefficient (Biot. 1941). which can be evaluated as:

« . , , = 1 - ^  (4.4.3'))

a,^ = 1------^  (4.4.40)

where and K \ i, are the bulk moduli o f the skeleton for the matri.x blocks and the 

fractures, respectively, and K, and K/y are the bulk moduli o f the solid grains and 

fractures, respectively. Since K[^ «  a ,, = 1, and (3 is the relative compressibility.

which can be written as:

B + — 'Las. (4.4.41)
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in which K f and K„ are the bulk moduli o f the flu id and the normal stiffness o f the 

fractures, respectively, n,„a and i ifr  are the matrix and fracture porosities, respectively, 

and ,y is the fracture spacing, 

or.

+ ( Q - L , ) P f , (4.4.43)

Detailed expressions o f the above coefficients are listed in Appendix A. Equations 

(4.4.35), (4.4.37) and (4.4.43) represent a set o f differential equations in time and can be 

expressed in matrix form as follows:

■ d f
0 0 0 u K R. R ; cl

u dt
0 Q -  L , - Q Pma -t- M , - N , 0

lit Pmn = -Qma
0 - Q Q — L , .P rr . M , 0 -N ,_ .P rr. -q r r

(4.4.44)

The discretization in space has been completed; Equation (4.4.44) now represents a set 

o f differential equations in time. The values o f u, p„a and prr at different values in time 

may be obtained by means o f appropriate time-stepping algorithms.

4.4.5 Finite Element Discretization in Time

The finite element formulation can be obtained by integrating in time. Using a fu lly  

im plic it finite difference scheme in the time discretization domain, such that:

ciu I* \l

dp

= - ( u ‘ * ' * - u ‘ ) 
A/

1
dt

l - A ï

dt A/
(4.4.45)
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Substituting Equation (4.4.45) into Equations (4.4.44), the finite element equations in 

matrix form for the dual-porosity poroelastic medium can be expressed as follows:

1

J/

K R, R,
M, (Q —L,)J /  —N[ — QJ/
M ,  - Q M  ( Q - L , ) J / - N ,

1
J/

u

P m a

Prr

■ f '
/ - A ; ■ f '

K R, R, u ---
A tA t

M, - N . 0 P m a + Q m a
- 0

M , 0 - N , _ .Prr. Qrr 0

(4.4.46)

4.4.6 Initial condition and ramp loading

It is generally assumed that the rock displacement u and pore pressure p are continuous 

functions in time. However, this assumption cannot be made at the time that the loading 

is instantaneously applied (Bai and Meng, 1994). As a result, special treatment o f the 

initial condition is required. Normally, the initial displacement field and fluid pressure 

distribution can be evaluated through solving the static undrained governing equation:

K R. R: u ' O '

M, (Q -  L, ) -  N - Q P m a = 0

M , - Q (Q — L ,)  — N , .Prr. 0

(4.4.47)

However, for slightly compressible fluids, the static governing equation may be ill-  

conditioned and an alternative method is to use a ramp loading to approximate the initial 

conditions. As shown in Figure 4.4.2. a linear function in the first time step is used to 

avoid violent oscillations that may result from the step loading.
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f ( t )

>■ Tim e
to to

Figure 4.4.2 Ramp loading in approximation of in itial condition

4.4.7 Computational Procedure and Computer Code

There are 5 unknowns (n, . . u- . p„ui ■ Pir) and 5 equations per node, therefore,

displacements and pressures can be solved from Equation (4.4.46). Stress and strain, 

then, can be obtained through the following relations:

I

^  I) ^  P r r u i ^ m n  ^  IrUmn̂  ; r  P / r ^  m n ' ^

(4.4.48)

(3.2.10)

The finite element equations (Equation 4.4.46) are solved by using a Fortran program 

according to the flowchart shown in Figure 4.4.3. The iterative steps to solve this 

problem are as follows:

(1) Start from i  = to. input data for given in itia l values o f boundary forces, pressures, 

displacements and solid, matrix and fracture properties;

(2) Solve unknowns, u. p„u,. Pfr. at each Gaussian points:

(3) Calculate strains and stresses from u. pma.Pfr. at each Gaussian points:



(4) Go to next time step and repeat steps (2) and (3).

Input data for nodal points

No

Yes

C END )

START

Time step

Output results

Solve for 0 .= , E.

Next node

Next time -stepNodal level

Solve for all Ujj. p;

Figure 4.4.3 Finite element solution procedure.

The preprocessor and postprocessor are written in M icrosoft Visual Basic language^ 

Figure 4.4.4 illustrates the structure and functions o f this finite element code (lASRS).

Pre-processor

Boundary forces

Material properties

Central-processor

Input data

Postprocessor

Graphical plots

Spatial lines Temporal lines

FEM calculationsGenerate FE mesh

2-0 contoursBoundary constrains

Software

Figure 4.4.4 Structure o f the finite element code.
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4.4.8 Elasticity and Steady-state Flow

The proposed finite element model and the computer code can easily be used for other 

problems that include elasticity, steady-state flow, single-porosity, and dual-porosity 

problems. The formulations are derived directly from Equations (4.4.35), (4.4.37) and 

(4.4.43), which are the basic equations for the coupling problems o f solid deformations 

and fluid flow in dual-porosity media.

For pure elastic problems. Equation (4.4.46) could be simplified according to the 

following conditions:

•  Fluid pressures have no influence on the solid media;

•  No time effect; and,

•  No fracture effect, which means that the solid material is sim ilar to a single­

porosity homogeneous medium.

For steady-state fiow conditions, the following items need to be considered in 

Equation (4.4.46):

•  No time effect;

•  No fracture influence;

•  Solid material is an homogeneous medium;

•  No flu id exchange between rock matrix and fracture;

•  Single-phase fluid flow; and,

•  No volumetric strain effect on the flu id  flow.

Under all the above assumptions. Equation (4.4.46) can be simplified as;

K 0 o' u ■ f ■

0 0 P m a = 4 m u

0 0 0 .Prr. 0
(4.4.49)

Equation (4.4.49) can be used to solve pure elastic and steady-state flow problems.
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4.4.9 Single-porosity Poroelasticity

The proposed model can also be used to simulate the coupled processes between the

solid rock deformations and fluid flow for single-porosity porous media. Neglecting the

contribution from the fracture flu id  pressure; hence, for single-porosity media, the 

follow ing changes need to be considered in Equation (4.4.46):

•  No fracture influence on the porous media; and,

• No flu id interchange between the rock matrix and the fractures.

Therefore. Equation (4.4.46) can be sim plified as:

1
At

K R, 0

M , — L, J t — N, 0 

0 0 0

u

P m a

P r r

f ■ f ■
K R. O' u ' ----

AtAt
M , - N , 0 P m a

+ 9 m a 0

0 0 0 .Prr. 0 0

(4.4.50)

1

At

Equation (4.4.50) can be used to solve :he coupled solid deformation and flu id flow 

problems for single porosity medium.

4.5 Finite Eiement Method for 
Poroeiastopiastic Solution

In practical finite element analyses two main types o f solution procedures can be adopted 

to model material non-linearity. The first approach involves ‘constant stiffness' iterations 

in which non-linearity is introduced by iteratively modifying the ‘ load vector'. The 

global stiffness matrix in such an analysis is formed. Each iteration thus represents an 

elastic analysis (Smith and Griffiths. 1988). The second approach is referred to as the
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variable or tangent stiffness method. The method takes into account the reduction in 

stiffness o f the material as failure is approached.

The constant stiffness methods use repeated elastic solutions to achieve convergence 

by iteratively varying the loads on the system. W ithin each load increment, the system of 

equations:

KA u‘ = A p ' (4.5.1)

must be solved for displacement increment Au‘ . where i represents the iteration number. 

The total strain increments can be obtained by:

Ac' = BAu (4.5.2)

When the maternal is yielding, the strain w ill contain both elastic and plastic

components; thus,

Ac' = (A c ' +AcP)' (4.5.3)

Only the elastic strain increments Ae'"' generate stresses through the elastic stress-strain 

matrix; hence.

Aff‘ = D „ f(A c ') ' (4.5.4)

These stress increments are added to stresses already existing from the previous load 

step and updated stresses are then substituted into the failure criterion.

In general, the load increment vector Jp ' holds two types o f load:

A p '= A p ^ + A p b  (4.5.5)
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where 4pa is the actual applied load increment and dpb is the body-loads vector that 

varies from one iteration to the next. The body-loads can be obtained from the ‘ in itial 

stress’ method.

4.5.1 Initial Stress Method

The initial stress method involves an explicit relationship between increments o f stress 

and increments o f strain (Smith and Griffiths, 1988). The elastoplastic stress-strain can 

be described by:

Ao = D%Ac (4.5.6)

where D%. = . D*’mf is the plastic modulus.

The total strain increment is assumed to be the sum o f the elastic and plastic strain 

increments:

A e  =  A e ' +  A e ’’ ( 4 .5 .7 )

The body-loads Apb' in the stress redistribution process are changed at each iteration 

by summing the following integral for all elements that possess yield Gauss points, 

namely:

n il

A p ' =  ^ j j jB '" ( D L A E ) ',W y r / :  (4.5.8)
eU rn i’n t\

For perfect plasticity it is assumed that once a stress state reaches a failure surface, 

subsequence changes in stress may shift the stress to a different position on the failure 

surface, but not outside it (Smith and Graffiths, 1988); thus.
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^ A o  = 0 
da

(4.5.9)

w here /is  the yield function.

A llow ing for the possibility o f non-associated flow, plastic strain increments occur 

normal to a plastic potential surface. The plastic strain increment can be obtained from 

the flow rule; i.e.

à E ^ = c l À ^
aa

(4.5.10)

~)f

where dk is  à positive scalar factor of proportionality, and clÀ =

The plastic modulus can be e.\pressed explicitly in the following form:

D'' - (4.5.11)

where

df

In terms o f the elastic constants G,„/ and v', and the coefficients Bo . Bi .and B: (refer to 

Table 4.5.1 ) tor different yield surfaces, li and H,j can be expressed as follows:

h = 2Gmi 3B,T H J , + — B~ J '  + 6B|B, J ,

B,

l - 2 v
(4.5.12)
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where 7: and J\ are the invariants o f the stress and stress deviator tensor (refer to 

Appendix B), s,, is the deviatoric stress, ,v,̂  = /3 ,  // is the stress invariant (refer to

Appendix B) and / 3 .

Table 4.5.1 Constants Bj defined by different yield surfaces (Chen and Han. 1995)

Yield

surface

Bn B, B:

von

Mises

0 I 0

Tresca 0 [sin(0 + j ) / y J j , 1(1 +cot(0 + f)cot30| [ - V3sin(0 + ^ ) / j , sin 30]

Mohr-

Coulomb

sind
3

[sin(0 + 1(11 +cot(0 + x)cot 301 

+ sinolcot(0 + f  ) -cot30|/V31
----- (----- [sin(0 + t)sind - V3cos{0 +
27, sin 30

Driicker-

Prager

a 0

Where 0 = arccos
3V3 y ,

J1

4.5.2 Bi-linear Stress-strain Relationship

In general, the stress-strain behavior o f rock is non-linear, especially in the case where 

external loads exceed the elastic strength o f material and the material becomes plastic. In 

this study, a strain-hardening and bi-linear stress-strain relationship is assumed, as shown 

in Figure 4.5.1. Several yield criteria are used to determine the elastic and plastic 

transition o f the rocks (refer to Chapter 7).
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stress

mfa

0
e strain

Figure 4.5.1 Bi-linear stress-strain relationship.

The computed steps to solve this problem using the finite element method are as 

follows (Figure 4.5.2):

(1) Start from t = to, input data for given initial values o f boundary forces, pressures, 

displacements and solid, matrix and fracture properties;

(2) Solve unknowns, u. Pma-Pfr. at each nodal point;

(3) Calculate strains and stresses from u, p„„„ p/r, at each Gaussian point;

(4) Check whether or not failure occurs using a particular failure criterion.

(5) I f  materials have failed, calculate plastic modulus ) and repeat steps (2) and

(3) and go to step (6). Othenxise. go directly to step (6).

(6) Go to next time step and repeat steps (2). (3). (4) and (5).
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Yes
Check failure?

No

No

C END )

START

Time-step

Output results

Next node

Solve for Œ . , E,

Next time-step

Calculate q -

Nodal level

Solve for all Uÿ, p.

Input data for nodal points

Figure 4.5.2 Flowchart for the Bi-linear analysis.

4.6 Weilbore Problem Solution

4.6.1 Stress Conversion for Inclined Borehole

In recent years, in order to improve o il recovery efficiency, horizontal and inclined 

boreholes have been implemented with some success. Directional borehole instability
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then becomes a major concern. In order to model such situations, some stress 

transformations and conversions are required.

4.6.1.1 Stress conversion formulation

For an inclined borehole with its axis inclined with respect to the principal axes o f the 

far-field uniform stresses, as shown in Figure 4.6.1, the following equations can be used 

to convert the global coordinates (far-field stress coordinate, .v', z') into the local

coordinates (borehole coordinate, x, y, c, see Figure 4.6.2) system.

where.

5.

S, /-

Lx'Li'

5 .

I x x - I x x ' COS(0, COS (p. siny?, cos^, - s in ^ .

L x ' -s 'm c p ^ cos^, 0

I . ' L- coscp^  sin</7. sin 1)9, s in ^ . cos (p.

(4.6.1)

(4.6.2)

Sx'. Sx ', and 5;- are the far-field stresses, 5 ,. Sy, 5 ;. 5 n . 5v;and S-_x are the local borehole 

coordinate stresses, (Px is the angle between the global and local coordinates (Figure 

4.6.2), (p- is the borehole deviation. After the conversion, the finite element analysis can 

be worked out in the local coordinates, i.e., the section perpendicular to the borehole 

axial direction (Figure 4.6.3).
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X

Figure 4.6.1 Schematic diagram for an inclined borehole

/

Figure 4.6.2 Local and global coordinate systems for an inclined borehole.

66



Syz Syx
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•0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X(m)

Figure 4.6.3 Finite element mesh in local coordinate system.

4.6.1.2 Boundary stress and forces determination

In the finite element analysis, the common approach is to subtract the constant far-field 

stresses and pore pressures from the field quantities. The boundary conditions are thus 

modified, i.e.. on the outer boundary surfaces o f the finite domain, all the tractions and 

pore pressure vanish, and at the borehole wall the equivalent stresses and pressures are 

given. After solving this problem, the final solution can be obtained by adding back the 

constant background stresses and pressures.

The equivalent stresses and pressures at any node at the borehole wall can be 

calculated by using the fo llow ing equations:
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o,  = / 5 ,  +mS^^

= mS^ + + /5 ^

r,v =nS.  + /5 ,, +/nS,,

Pmn -  ~Pla 

P,r = - P I

(4.6.3)

where. /. m. and n are the direction cosines between the normal to the inclined plane and 

the .r. y, and :  axes, respectively.

The boundary nodal forces along the weilbore can be determined by using the 

following equations:

= o , / \
= c ^ A  (4.6.4)

where A is the elemental area shown in Figure 4.6.4.

A Fortran code was written according to Equations (4.6.1) to (4.6.4) to transform the 

in-situ stress (far-field stress) to borehole local stresses and calculate the boundary nodal 

forces for different finite element domains. This code can be used for the data 

preparation in the finite element calculation. For any given in-situ stress and borehole 

deviation, this code can automatically calculate the boundary nodal forces and generate a 

data file that applied for the finite element calculation.

Figure 4.6.4 Boundary nodal forces at borehole wall.
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4.6.2 Stress Transformation from Cartesian 

Coordinates into Polar Coordinates

In the analysis o f stress and pore pressure distributions in and around the weilbore, the 

polar coordinate system is generally adopted. For the generalized plane strain 

formulation, the stresses in polar coordinates are related to the Cartesian coordinate 

stresses according to the following rules:

( T =  a . cos ' 6  + (T, sin ■ 0  + 2  r  „  sin d cos 6

(4.6.5)

cr„ = (T, sin ■ £? + cos '  0 -  I t sin 6? cos 0 

cr. = cr.

, 0  = (cr^ -  £T, )sin £? COS 0  + r ,,  (cos " 0  -  sin '  0  )

T^ = r ,. cos 0  + r , .  sin 0

T̂  ̂ = r c o s  6? -  r,.  sin 6?

where r  and 6? are the radius and the angle with reference to the center o f the weilbore in 

the polar coordinate system.

The strains relate to the Cartesian coordinate strains as:

f ,  = f ,  cos ■ 0  + f  ̂  sin ■ 0  + 2 y,^ sin d cos 9 

fy  = f  ̂  sin '  ^  + f , cos ■ 0 -  l y  sin 9  cos 9

£ ,  =  £ ,

Y, 0  = )sin 6? cos 0  + (cos ‘ 0  -  sin ’ 0  )

= y,. cos 9 + y,. sin 9 

Yo, = y . :  c o s g - y , ,  sin 6?

(4.6.6)
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4.6.3 Fluid Mudweight Considerations at the 

Borehole Wall

4.6.3.1 Permeable boundary

During the hole drilling, the suitable mudweight o f the drilling flu id plays a very 

important role in protecting the borehole wall from breakouts and failures. The 

mudweight pressure, acts both as a radial stress and a flu id pressure at the borehole 

wall when the weilbore formation is permeable. Figure 4.6.5 illustrates the superposition 

principle allowing to consider the mudweight pressure at the borehole wall for the dual­

porosity finite element modeling. In this figure p" represents both the initial pore and 

fracture pressures. Considering mud pressure effects, the stresses at the borehole wall 

can be expressed as:

o , = / (5, -  ) + «5.,

(T̂  = m (5, -  ) + nS., + )

= nS. + /5., + mS^. (4.6.7)

P™, = - p in  + Pn

P ,r  =  - P / r  +  p..

where 5 „„ . S„,y. and 5„,vt are stresses induced by the mud pressure (/7„ ) as the radial 

stress, which can be obtained by:

= ^'P„

= ' " 'P «  (4.6.8)

= /'"P..
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Fluid pressure due to 
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Figure 4.6.5 Superposition o f mudweight pressure at the borehole wall for the 

permeable case in the FEM model

4.6.3.2 Impermeable boundary

Mud cake can be formed during drilling  which may make the borehole wall 

impermeable. In this case, the flow rate at the borehole wall is zero and the mudweight 

pressure, p». acts only as a radial stress at the borehole wall under such conditions. 

Figure 4.6.6 illustrates the superposition principle for considering the mudweight 

pressure at the borehole wall for the dual-porosity finite element modeling. Therefore, 

the stresses at the borehole wall can be written as:
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o,  - / ( 5 ,  ~ S ^ J  + ni{S^  ̂ +

<̂ v = -  -̂ m J  + + /(-^n “  )

r „  =nS. + IŜ . + mS^.

Pma -  Prr

P , r = - P l

where S „„. S,„y, and 5„,wcan be obtained by Equation (4.6.8).

(4.6.9)

Sxy Sxz P Syz
Sx 0  Sx

Sy

+

Pw

T f

G"

^ = i= d )  
Sy

Sxy S x zJ ^  P Syz

IT

Sr = Pw

+

Radial stress due to mud pressure

Figure 4.6.6 Superposition o f mudweight pressure at the borehole wall for the 

impermeable case in the FEM model.
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Chapter 5

Finite Eiement Modei Vaiidation

5.1 Introduction

The formulations presented in the foregoing chapters were coded using the Fortran 

language in pseudo-three-dimensional and time domain, using four-node rectangular 

elements. Some analytical problems should be examined to validate the computer 

program. However, there are no suitable dual-porosity analytical problems available in 

the current literature; only a few simple elastic and poroelastic analytical solutions exist.

Among those validation problems, the poroelastic one-dimensional consolidation 

problem is a classic example for the coupled fluid-rock system. Elastic and poroelastic 

analytical solutions for inclined weilbore problems were also validated. In addition, the 

dual-porosity elastoplastic non-isothermal one-dimensional consolidation solution is 

given in this section. It can be used for validating the finite element solution.

5.2 One-dimensional Consolidation

One-dimensional consolidation is one o f the most well-known examples o f poroelasticity, 

and its analytical solution for single porosity homogeneous medium is available. The 

solid column displacements and the single-phase fluid flow are fu lly  coupled in this 

problem.

A porous media column is subjected to a constant load F  and confined on the sides and 

bottom by rigid, frictionless, impermeable walls. The boundary and loading conditions of
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the column are depicted in Figure 5.2.1. The analytical solution for the pore pressure in 

this one-dimensional consolidation problem using Biots poroelasticity theory (Biot, 

1941) is given by Detoumay and Cheng (1993) as:

p ( x j )  = p X \ - F { X . T ) ]  (5.2.1)

where.

and.

% = - .  r  (5.2.4)
L 4L-

in which c is the material compressibility, m is a coefficient and m = 1,3.5 .... B is 

Skempton’s coefficient (Skempton, 1954), L  is the column length, .v and t are the 

coordinate and time, respectively; iT is the instantaneously applied stress, and is the 

undrained Poisson's ratio.

The related equations for the relationships among poroelastic parameters are listed 

below:
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E = 2G (l + w) ^  Young’s modulus 

3 ( r  -K )
a  = Bolt’s coefficient

2G(v —i/)
M  = — ^-----   > Biot modulus

K  =

o r - ( l - 2 i/„ ) ( l - 2 v') 

E

3(1-2 v )  

K
=

( l - o r )

> Bulk modulus o f skeleton 

Bulk modulus o f solid grain

\ c c - 0  0  -  . r
—  = -------- + -------- > Storage coefficient
M  K,

k ^   ̂ or (I - 1/,. )(1 -  2v̂ _  mobility

(5.2.5)

At the top o f the layer, the analytically derived settlement is given by;

u =
a ^ L ( l - 2 v J

2 G H - V )
1 +

V - V

( I -  )( I -  2v )
f i T ) (5.2.6)

where.

/ ( T ) =  S  - ? - y [ l - e x p ( - m V r ) ]
m = I..V  ^

(5.2.7)

and G is the shear modulus.
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P = 0

no flow

no flow

Figure 5.2.1 Consolidation problem and boundary conditions {p is the pressure).

The column, with L = 1 m. is subjected, at / = O'" sec, to a vertical uniform 

compressive distribution o f cr, = 1 MPa on the top surface; the surface is otherwise free 

from stress and exposed to the atmosphere. Twenty elements and forty nodes are used in 

the finite element calculations. W ith the input material parameters given in Table 5.2.1, 

the finite element solution using the developed dual-porosity model are compared with 

the results from the analytical solution. Applying an exceptionally large fracture stiffness 

and fracture spacing which approximate an equivalent homogeneous single-porosity 

medium, the maximum temporal displacements and spatial pore pressure at different 

times calculated by the analytical and numerical methods are compared in Figures 5.2.2 

and 5.2.3. Excellent agreement is achieved for the displacements. As far as the pore 

pressures are concerned, only small discrepancies can be observed for the early-time (r = 

0.005) scenario, this is caused by the effect o f in itial conditions in the finite element 

method.
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Table 5.2.1 Parameters for comparative analysis in i-D  consolidation

Parameter Definition Magnitude Unit

E Modulus of elasticity 2.4 M N/m '

G Shear modulus 1 . 0 M N /m '

a Biot coefficient 1 . 0 -

V Poisson's ratio 0 . 2 -

l^f Fluid bulk modulus 419.7 MN/m"

ĥtui Matrix porosity 0 . 0 2 -

"/r Fracture porosity 0 . 0 0 2 -

K. Grain bulk modulus 1 0 " ’ M N /m '

B Skempton coefficient 1 . 0 -

K Undrained Poisson’s ratio 0.5 -

Emil / ^ Matrix mobility 0.375 M ’‘/(M N s)

K,r/M Fracture mobility 3.75 M-’/lM N  s)

Kn Fracture normal stiffness 1 0 ' M N /m '

Ell, Fracture shear stiffness 1 0 ' M N /m '

s Fracture spacing 1 0 ^ M
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Figure 5.2.2 Comparison o f temporal displacement at top column.
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Figure 5.2.3 Comparison o f spatial pore pressure along the column.
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5.3 Dual-porosity Elastoplastic One- 
dimensional Consolidation

In this section, one-dimensional dual-porosity elastoplastic anisothenmal consolidation is 

presented which can be used for future validations o f the elastoplastic non-isothermal 

finite element solution.

5.3.1 Mathematical Formulation for One-dimensional 

Consolidation

5.3.1.1 Elastoplastic stress-strain relationships for duai-porosity media

Consider a fractured porous rock column o f height li (Figure 5.3.1), which is laterally 

confined and positioned over a rigid, impermeable, and adiabatic base. The .v-a.xis 

pointing downwards is the axis o f symmetry o f the column, the top surface (.v = 0) is 

assumed to be a free drainage surface. A  uniform ly distributed load o f intensity Fn per 

unit cross-sectional area is applied instantaneously at the top o f the column, and results in 

the consolidation o f the column, along w ith the dissipation o f pore and fracture pressures 

and temperatures from the top as shown in Figure 5.3.1. As time elapses, the induced 

stress becomes progressively larger until it exceeds the material yield strength and part o f 

the column, .17,, develops plastic deformations.

For such a problem, the compressive column is in a three-dimensional state o f stress, 

but can be simplified geometrically as a one-dimensional case. For the dual-porosity 

porous media, the effective stress in the column, considering the stress coupling due to 

the compression o f solid grains and fractures, interstitial pore and fracture pressures, and 

the variations o f fluid as well as solid temperatures, may be written as:

79



= + D ,,(C ,0 :,p, +C ,û :,p , + C ,/3 ,r ,) (5.3.1)

where d  is the effective stress in the material; cr̂  is the total stress (the tensile stress is 

positive); pi, p:  are the matrix and fracture pressures; Ti, T? are the matrix and fracture 

temperatures; C/. C: are the matrix and fracture compliance matrices defined in this one­

dimensional case as:

Plastic
zone

Elastic
zone

Figure 5.3.1 Schematic one-dimensional column.

C, = —

K s

(5.3.2)

(5.3.3)
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where E, rare  Young’s modulus and Poisson ratio, respectively; K„ is the fracture normal 

stiffness; s is the fracture spacing.

D,, = -----   ; (5.3.4)

O'/, Cf: are Biot's coefficient for matri.x. and fractures, respectively, cri = 1 -  K/K, and 

« 2 = 1 -  K/{K„ .v); K  is the bulk modulus o f the skeleton for the matrix blocks; K, is the 

bulk modulus o f the solid grains; (5i, fiz are the thermal expansion factors for the matrix 

and fracture, respectively defined as;

f^ i “  - ^ i : )  ( 5  3  5 )
1)3, = or,,,(3/l,, + 2G,,)

where, am, a ,:  are the expansion coefficients for the matrix and fracture, respectively; 

and.

G p  = — — —  (5.3.6)
2(1 + 1/)

/ I , ,  = -------- ^ ---------  (5.3.7)
( l + v ' ) ( l - 2 v')

In general, the stress-strain behavior o f rock is non-linear, especially in the case where 

external loads exceed the elastic strength o f material and the material becomes plastic. In 

this study, a strain-hardening bi-linear stress-strain relationship is assumed. The Tresca 

yield criterion is used to determine the elastic/plastic transition o f the column. Thus, the 

plastic yield condition can be expressed as;

o ' + O o= 0  (5.3.8)
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where, ao is the yield stress o f the material.

Since the maximum load is imposed at the top o f the column, accompanied by fluid 

drainage, yielding w ill be initiated at that location. As time elapses, the induced plastic 

zone propagates downward. The strains in the elastic and plastic zones (with superscript 

p) for the dual-porosity medium can be defined as:

F = —  (5.3.9)
^ 1 2

(5.3.10)

where, e and are the elastic and plastic strains, respectively.

5.3.1.2 Fully coupled thermal elastoplastic formulation for a dual­

porosity medium

In the solid phase, temporal and spatial changes are averaged over the matrix and the 

fractures. In the fluid and temperature phases, temporal and spatial changes in fractures 

and matrix blocks are incorporated individually. For the dual-porosity media, the fu lly  

coupled governing equations o f a porous thermal and mechanical model for solid, fluid, 

and temperature fields may be modified according to Bai and Roegiers (1994); i.e..

—  Pm .u - c ( „ D „ C „ ^ ^ - < f > ' „ ^ ^  + a i ^ ^ ± c u ( A p )  = 0 (5 .3 .1 2 )
// df at at

* X , u  - T : / 3 , . ^ - s : ^ ± r ( A T ) = 0  (5.3.13)

where, /» = 1 , and 2  represent the matrix and fractures, respectively; crand P are the fluid 

pressure and thermal ratio factors; k is the permeability; 0 is the lumped compressibility;
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k’ is the thermal conductivity; ju is the flu id dynamic viscosity; wand f ’ are the flu id  and 

thermal transfer coefficients, respectively; co= 60ki/(jus~)\ F ’ =60fc‘ / i "  ; u is the solid 

displacement; p is the fiu id pressure; T  is the temperature; %  is the total body strain; Ap 

and AT are the pressure and temperature differences between the matrix blocks and 

fractures, respectively; S' is the lumped intrinsic heat capacity; and, r ” is the reference 

temperature.

With reference to the governing equations, a fu lly coupled one-dimensional dual­

porosity thermoporoelastic formulation may be described as;

where.

C,a, ^  + C .a . ^  + C, A  ^  + C .^ , ^  
d.t d r ax d r

/ /  d r:

k . d ' p .   ̂ „ d'H . dp, dr,

.  dY, 
dr-

d ' l i  d r

K, K,

«, I - / J ,
(p. = - ^  + -

(5.3.14)

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)

(5.3.22)

(5.3.23)

m = 1 ,2 , represent the matrix and fractures; a, . cr, are the coefficients o f thermal 

expansion for the flu id and solid, respectively; A:,/. A;,, are the thermal conductivities for
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the flu id  and solid, respectively; pf  , ps are the densities for the fluid and solid, 

respectively; cy c, are the heat capacities for the flu id and solid, respectively;

^ 1: “  - ^ i :  •

The boundary and in itial conditions are:

= ——  (constant strain at the top) 
dx 77,:

/5,(0,/) = p ,( 0 ,r) = 0

r , ( 0 ,r) = r ,(o , f)  = o

dpfUi.i)  _ d p .U u )  _ Q hydraulic gradient at the bottom)

i i i l i j )  =  0  

p,(.v,0 ) = 

p,(.v,0 ) = 77 ,„

r,( .t,0 ) = r„,

r,(.v ,o ) = r,Q

Integrating Equation (5.3.15) with respect to .v, and then substituting the result into 

Equations (5.3.16), (5.3.17), (5.3.18) and (5.3.19). the follow ing equations can be 

obtained for the elastic zone:

d l l  _  — +  D | , ( C ,0 : |P |  +  C . o . p ,  +  C ,)6 ,T | +  )

0.V 77,,
(5.3.24)

^  I" ̂  I" ̂ + <5.3.26)

+ '  ' 5 3 - 7 )
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9 'T , _ 9/7, dp.   ̂ 97, 97, ^
- j j f  = S „ - ^  + S« iT, - T,) (5.3.28)

where detailed explanations o f the coefficients are given in Appendix C.

Similarly, the modified governing equation for the plastic zone can be expressed as:

dl l ” F„ + DC,(C,"(z,/7,^ + C,GT,/7f + 7," + C , j3 n f  ) + CT, cr,

dx /7u Hr.

9.V 9f 9f

9 : 7

(5.3.29)

(5.3.30)

(5.3.31)

(5.3.32)

(5.3.33)

where the superscript 'p ' represents the plastic zone, and detailed expressions o f the 

coefficients are given in Appendix C.

The continuity conditions must be satisfied at the interface between the elastic and the 

plastic zones, i.e.

7,

7:

r,

7

= 11”

=. = 7 / ’

=7:

= 7 "
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The explicit finite difference method is employed. The governing Equations (5.3.24) 

through (5.3.28) for the elastic zone can be discretized as:

A.r rjr.

Pu . ,~ \~ ~ P u . i - ^  Pu.,-i  _  P u ^ x . , - P u . , ,  P:,^\.I -  Pz,.,

A,v= A / A,

+ S,,<P„., -  P:,, ) + Su ' + S,5 ' ‘

(5.3.34)

(5.3.35)

A/ "  A/

P i t . r \ ~ ~ P i , . i ' ^ P i i . i - \  _ Pii'i.y “ Pi../ , „ P:.'i./“ P:.,/
= .?2i ------1A.V- A/ ■

+ .?2.i(P:,./ -  P,.., ) + + .?:3 —

_ Pli-1./ “ Pl.,/ , P 1: I ~  PI t . I

I P  "  I, A.

+ S u  + s „ * s , ( T „ , - r , . , )

+7'., _ Pi,.|., ~ Pi,./ , , P:,-i./ ~ P:..,
A.V- ^ t  M

*  S u  ' +  s «  -  r „ ,  )

(5.3.36)

(5.3.37)

(5.3.38)

where subscripts 1 and 2  represent the matrix and fractures, respectively; /, j  are 

increment numbers o f differential mesh for time and depth, respectively.

The governing equations (5.3.29) through (5.3.33) for the plastic zone can be 

discretized as:

».Vi -  < ,  Dxz^CxC^xPi, + CzĈzPL,  + C A V .., + C . P J I ,  ) + ^ 0

A.V /7u Pi:

Pn./m ~-Ph.; Ph./-i _ p Pu^i.i  ~  Pu.j . p P:,'i./ " P:,./
“  u?ii T ,?i:

A.X- Ar At
j p  _ j p  j p  _ - r / ’

+ go(Pu./ -  P L )  + gw + gi" "•■■■
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,  PU,-PL,  , PL,., -
Ï ?  A, A,

T P  _  T P  T P  _

+ g f i(p L ,  -  p ,L  ) + gf, " "  + gj;, — ^

r,,':,., -  27,L  + T,::,., ^ p , ^  -  p f,,

T P  _ T P  T P  ^ T P

+ &c " "  + SÏS (T .r ,- 7 \ : , )

TL,., -  2T:L + 7 ,:,.,  ̂ p ,:,, -  p,% ,  ̂ P L „  -  p f„
& r  A/ Af

T P  — T P  T P  — T P

+ g :  ' + g :(7 :L  -  7,L )

The boundary and in itial conditions can be discretized as:

(5.3.41)

(5.3.42)

(5.3.43)

Pu. ,  "  P:W = 0 . T u . ,  =
7 .,, -  0. at . 1= 0

Pu. / - I =  P : , . r  L , =  T u . j • L ,.,., = 7 : „ ,  =0 . a t  . r  = /j

P w P:,./ -  P:o- T u „  = 7,0. 7 .,, =7.„ .at  r = 0

5.3.2 Analyses of Dual-porosity Isothermal 

Consolidation

In order to examine the elastoplastic solution, a dual-porosity elastoplastic isothermal 

consolidation model is studied first. The calculated results are compared with the single 

porosity elastoplastic solution (Zhang et al.. 1999). The particular objective is to identify 

the differences between double and single porosity elastoplastic consolidation. The 

selected parameter ranges, with respect to the hydraulic, mechanical and geometrical 

categories, are listed in Table 5.3.1. The pore and fracture pressures, p/, p : displacement. 

u: and plastic zone depth. .Vp. are normalized with respect to their in itia l values. The 

dimensionless time is defined in following form:
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Table 5.3.1 Selected poroelastoplastic parametric ranges

Category Symbol Value or range Unit

Hydraulic ki 1x10 m*

b 1.062 mm

k: 1x 1 0 1 x 1 0 m"

H 2 0 kg/(m,h)

Hi 0.5 -

H: 0.05 -

Pto 8x10" Pa

Pl2 8 x 1 0 " Pa

Mechanical V'' 0.25 -

v '' 0.45 -

£" 5x10" Pa

ET 5x10* Pa

K 7.5x10" Pa

5x10" Pa

K. 2x10'" Pa

1.5x10" Pa

Fo 3x10' Pa

cr,, 2.5x10" Pa

s 2 0 m

Geometric h 1 0 0 m

X 6 m

r  =
h-

(5.3.44)
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where h is the height o f the consolidating column; Cv is the coefficient o f the 

consolidation; and,

c. = ^  (5.3.45)

The point o f interest is selected at 6  m from the top o f the column. The material at this 

location is expected to change from the in itial elastic state to the plastic state as time 

increases. The following equation is used for evaluating the fracture permeability, k:, 

(Bai et al., 1993):

k^ — —— (5.3.46)

where, h is the fracture aperture.

A comparison o f temporal pressure dissipation between the single- and dual-porosity 

models with various fracture spacings is given in Figure 5.3.2. It is apparent that the 

pressure dissipates faster as the medium is more fractured. When the fracture spacing is 

large enough (such as s = 1 0 0 0  m representing the intact porous rock), the pore pressure 

matches the single porosity solution (Zhang et al., 1999). The one-dimensional Mandel's 

effect (Mande 1, 1953) is induced by the pressure transfer between the matrix and 

fractures in the dual-porosity medium. It is obvious that Mandel's effect is greater for 

more fractured medium (Figure 5.3.2), because this medium has a larger deformation. A 

corresponding behavior for the temporal solid normalized displacements is shown in 

Figure 5.3.3. More highly fractured media represent greater initial displacements and 

more gradual changes in displacements. In view o f temporal evolution o f the normalized 

depth o f the plastic zone defined as the plastic depth over the column height. Figure 5.3.4 

gives different normalized plastic zones (plastic zone length/column length) for single- 

and dual-porosity media. It indicates that media changes to plasticity faster for more 

intense fractured media. The temporal evolution o f fracture pressure appears to be less 

uniform, especially at later stages o f pressure dissipation, as shown in Figure 5.3.5. It can
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be seen that as fracture spacing increases, fracture pressure dissipation reduces in an 

earlier time; however, the pressure dissipation increases at larger times. For 

dimensionless time r = 10“* to 10'̂ , the pressure appears to be the non-monotonic, 

especially for small fracture spacing; this may be associated with the Mandel’s effect in 

pore pressure shown in Figure 5.3.2. The variable fracture pressure changes can be 

attributed to the fluid exchanges between the fractures and the porous matrix.

For different elastic and elastoplastic moduli, the temporal matrix pressure is depicted 

in Figure 5.3.6. It is obvious that the pressure dissipates faster with stiffer material 

moduli. Slight pressure buildup at early stages of pressure evolution, known as Mandel's 

effect (Mandel, 1953) can be observed. The temporal displacements are shown in Figure 

5.3.7, where less stiff material moduli lead to a more dramatic displacement 

magnification. The temporal fracture pressure for various elastic and elastoplastic moduli 

is shown in Figure 5.3.8. Between dimensionless time r = 10“* to 10'̂ , the pressure 

appears the non-monotonic behavior, especially for small elastoplastic modulus; this may 

be associated with the Mandel’s effect in pore pressure shown in Figure 5.3.6. Again, 

non-uniform pressure profiles (indicated as the dramatic pressure slope changes in Figure 

5.3.8) are evidence of fluid exchange between the fractures and the matrix.

=  0.8 - -

s=20m 
s=30m 
8=50 
5=100 
8=1000m 
Single

CO 0 . 6  - -

ii#l I I I mm—I I 1111»! I iiiiiin I n iiml - iTTiTm
1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00

Dimensionle8s time

Figure 5.3.2 Temporal pressure comparison between single- and dual-porosity models.
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Figure 5.3.3 Temporal displacement comparison between single- and dual-porosity 

models.
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Figure 5.3.4 Temporal plastic zone comparison between single- and dual-porosity 

models.
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Figure 5.3.5 Temporal fracture pressures for different fracture spacings.
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Figure 5.3.6 Temporal matrix pressures for different elastoplastic moduli.
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Figure 5.3.7 Temporal matrix pressures for different elastoplastic moduli.
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Figure 5.3 .8 Temporal fracture pressures for different elastoplastic moduli.
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5.3.3 Analyses of Duai-porosity Non-isothermal 

Consolidation

The input poromechanical parameters were listed previously in Table 5.3.1, while the 

thermal parameters are given in Table 5.3.2.

Table 5.3.2 Selected thermal parameters

Thermal Symbol Value Unit

af I x I O ' l/°C

OCs I x lO ^ l/°C

10 0 0 JA m .h .T )

100 JAm.h.'C)

Pf 10 0 0 kg/m ’

A 5 0 0 kg/m’

0 2 0 0 J /(k g .T )

c\ 5 0 0 J /(k g .T )

Tu> 100 T

Ty, 100 T

A comparison o f matrix pressure for three different scenarios, i.e.. single-porosity, 

isothermal dual-porosity, and non-isothermal dual-porosity, is shown in Figure 5.3.9. It is 

interesting to note that the Mandel's effect is most pronounced for the non-isothermal 

case, which also has the fastest pressure decline; this is due to the fact that the non- 

isothermal case has a larger total stress (refer to Equation 5.3.1). which induces a larger 

deformation. For the temporal fracture pressure, a comparison between isothermal and 

non-isothermal dual-porosity cases is given in Figure 5.3.10. It is seen that flu id  exchange 

observed as the pressure slope change is apparent only for the isothermal case.
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Figure 5.3.9 Matrix pressure comparison for single-, dual- and thermal dual-porosity 

consolidations.
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Figure 5.3.10 Fracture pressure comparison for dual- and thermal dual-porosity 

consolidations.

For temporal temperature variations. Figure 5.3.11 depicts significant differences 

between the matrix and the fracture temperatures, with the latter dissipating much faster.
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This is physically understandable since the fluid acts as a heat carrier, which flows much 

faster in the fractures. The temporal matrix pressure is shown in Figure 5.3.12. Different 

from the isothermal case (refer to Figure 5.3.2), the initial pressure buildup (i.e., Mandel 

effect) seems to be more significant, implying noticeable impact of heat expansion.

The temporal temperature profiles in the matrix are illustrated in Figure 5.3.13 for the 

fractured porous media with various fracture spacings. Again, a more intense fractured 

media leads to a more rapid temperature dissipation. The slope changes in the 

temperature profiles, ranging from convex to concave, are the consequence of the 

exchange of thermal flux between the fractures and the porous matrix. In comparison, the 

changes of temperature in the fractures are much less dramatic, as shown in Figure 

5 .3 .14. This is due to less variations of temperature within the fracture.
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Figure 5.3.11 Temperature comparison for dual- and thermal dual-porosity 

consolidations.
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Figure 5.3 .12 Temporal matrix pressure for different fracture spacings.
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Figure 5.3.13 Temporal matrix temperature for different fracture spacings.
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Figure 5.3.14 Temporal fracture temperature for different fracture spacings.

Using various thermal fluid conductivities. Figures 5.3.15 and 5.3,16 indicate the 

distributions of the matrix and fracture temperatures, respectively. In Figure 5.3.15, the 

larger fluid thermal conductivity leads to more significant temperature slope changes, 

along with a faster temperature dissipation in the matrix. In Figure 5.3.16, the larger fluid 

thermal conductivity results in an earlier temperature dissipation in fractures.

 K s f = 1 5 0 0  i
 K s f = 1 0 0 0
 K s f = 3 0 0
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T3 ra 0 .6  -
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Figure 5.3.15 Temporal matrix temperature for different fluid thermal conductivities.
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Figure 5.3.16 Temporal fracture temperature for different fluid thermal conductivities.

5.4 Inclined wellbore problems

5.4.1 Inclined Borehole Without Mudweight

The proposed finite element model was also validated by analyzing an inclined borehole 

problem. The geometric loading is depicted in Figures 4.6.1 and 4.6.2. The Cartesian 

coordinate system (x'y’ï )  is chosen to coincide with the principal axes of the in-situ 

compressive stresses, respectively, designated as &, Sy and S:. The initial formation pore 

pressure is denoted by p°. It should be noted that the borehole axis is not coincident with 

the components of the in-situ stresses. In other words, ‘inclined’ is used to indicate that 

the borehole axis is inclined to the principal axes (x'y'z') of the far field stresses. When 

the borehole coordinate system {xyz) is adopted, shear stresses are generated on the 

borehole wall. The local coordinate system (Figure 4.6.2) is formed by a rotation of the
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azimuth angle, (p^. about the ./-axis, and then by an inclination o f the zenith angle, (p- , 

from the /-ax is  toward the c-axis.

Then, at the local coordinate system, the boundary conditions at the far field ( r  —> <» ) 

are characterized by the normal stresses:

o-;’ = S ,, t r " = 5 , ,  c r ^ = 5 ,  (5.4.1)

and the shear stresses:

(5.4.2)

as well as the matrix and fracture pore pressures:

= (5.4.3)

where the superscript O' indicates the virgin (in itia l) state.

In the analysis, the in-situ stresses and in itia l pore pressures were: 5,- = 29 MPa, 5v- = 

20 MPa, S;- = 25 MPa, and p” = p„^ = =10 MPa. The wellbore inclination is defined

as (Px = 0° and % = 70°. The wellbore radius is R = O.I m. The load at the wellbore is 

assumed as being applied instantaneously. In the local coordinate system (after 70 

inclination) , these values are determined by Equation (4.6.1) as: S, = 25.5 MPa. 5v= 20 

MPa, 5; = 28.5 MPa, = 1.3 MPa, S „ = 5v: = 0 MPa and p" = =10 MPa.

The formation materials are assumed to be isotropic, characterized by the following 

properties: elastic modulus E = 20.6 GPa, Poisson ratio r  = 0.189. Biot modulus M  =15.8 

GPa, B iot’s effective stress coefficient or„„, = 0.771, permeability k,„a = I x  10" dare y, and 

flu id  dynamic viscosity = 0.001 Pa s. The analytical solution for this particular 

generalized plane strain poroelastic problem was provided by Cui et al. (1997). The 

corresponding equivalent parameters for the dual-porosity poroelastic model are listed in 

Table 5.4.1. in which the selection o f an exceptionally large fracture spacing, s. denotes 

the approximation o f a homogeneous single-porosity medium.
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Table 5.4.1 Parameters for inclined borehole analysis

Parameter Unit Magnitude

Elastic modulus (£) GN/m- 2 0 . 6

Poisson s ratio (v) - 0.189

Fracture stiffness Ksh) M N/m '/m 4.821x10"

Fluid bulk modulus {,Kf) MN/m ‘ 419.17

Grain bulk modulus (AT,) GN/m- 48.21

Matrix porosity («„,„) - 0 . 0 2

Fracture porosity (/»/>) - 0 . 0 0 2

Matrix m'^bility {h,„a/ju) M V M N  s 1 0 " ’

Fracture mobility ikfr/^i) M'*/MN s 1 0 '’

Fracture spacing (.v) m 1 0 '

Figures 5.4.1 and 5.4.2 represent the pore pressure variations into the rock formation. 

The comparative results between the analytical solution and the numerical dual-porosity 

solution, for large .v, along the radial directions Q = 84.4° and 0  = 5.7°, are shown at two 

different times. It is noted that the pore pressure distribution along the radial direction 0 = 

84.4° at the early time is non-monotonic, with a peak value appearing at a short distance 

from the wellbore wall, which is attributed to the poroelastic effect (Detoumay and 

Cheng, 1993, Cheng et al., 1993). Except for a small discrepancy, the numerical results 

appear to agree well with the analytical solution.
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Figure 5.4.1 Comparison between the finite element and analytical solutions for pore 

pressure (0  = 84.4°)
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Figure 5.4.2 Comparison between the finite element and analytical solutions for pore 

pressure (0  = 5.7°)
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For the same data set, the Terzaghi’s effective radial stresses, defined as the difference 

between the total radial stress and the pore pressure, are plotted in Figure 5.4.3 and 5.4.4 

for 9 =  84.4° and 9 =  5.7°. Except for a slight difference in the near-wellbore region, the 

analytical and finite element solutions match well. The tensile region developed at early 

time is due to the non-monotonic pore pressure distribution, consistent with the case 

reported in Cheng et al. (1993). The contour o f Terzaghi’s effective radial stress 

calculated by the proposed model for t = 100 seconds is drawn in Figure 5.4.5 and the 

counterparts o f analytical solutions along five radial sections are compared. The 

analytical and numerical solutions again agree well.
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Figure 5.4.3 Comparison between the finite element and analytical solutions for 

Terzaghi's effective radial stress {9  = 84.4°)
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Figure 5.4.5 Comparison between the finite element and analytical solutions for 

Terzaghi's effective radial stress along different radial sections for r = 100 seconds.
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Figure 5.4.6 is the total tangential stresses for two different radial directions ( 6 =  5.7 

and 84.4°) and two different times (/ = 1.3 and 21.6 min), it can be seen that very 

excellent agreements are obtained for the larger time (r = 21.6 min). For the smaller time 

(r = 1.3 min), there are slight differences in the near wellbore region, which are induced 

by initial conditions, time steps and boundary effects in the finite element method.

Also, good matches are obtained for the total axial stress stresses for two different 

radial directions { 9 = 0  and 90°) and two different times (f = 1.3 and 21.6 min), (refer to 

Figure 5.4.7).
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Figure 5.4.6 Comparison between the finite element and analytical solutions for 

tangential stress along different radial sections { 9=  5.7°. 9=  84.4°) and times {t = 1.3 

min, t = 2 1 . 6  min).
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Figure 5.4.7 Comparison between the finite element and analytical solutions for axial 

stress along different radial sections ( 0 = 0 ° , / ? =  90°) and times (/ = 1.3 min. f = 21.6 

min).

5.4.2 Inclined Borehole With Mudweight

For permeable models, the dual-porosity solution, assuming extreme large spacing 

(.V = 10' ) can be used to present the approximation o f the single porosity case. For this 

consideration, the dual-porosity model was compared with the solution o f PB0RE-3D -  a 

software for single porosity poroelastic analytical solution (Cui et a l„ 1999; Ekbote, 

2001). The parameters used are the same as in the previous section except that a mud 

pressure (p„ = 12 MPa) was applied along the wellbore. Along two different radial 

sections ( 6? = 30°, G = 90°), the numerical solution and analytical solutions for pore 

pressures, radial and tangential stresses are compared in Figures 5.4.8 to 5.4.13. It can be

106



seen that the proposed finite element solutions have excellent matches with the analytical 

solutions, except for small discrepancies at the wellbore for radial and tangential stresses.
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Figure 5.4.8 Comparison between the finite element and analytical solutions for pore 

pressure { 0 =  30°).
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Figure 5.4.9 Comparison between the finite element and analytical solutions for pore 

pressure { 6=  90°).
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Figure 5.4.10 Comparison between the finite element and analytical solutions for 
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Figure 5.4.13 Comparison between the finite element and analytical solutions for 
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For the impermeable case, the dual-porosity finite element model w ith extreme large 

spacing and zero pore and fracture pressures present the approximation o f the elastic 

solution. The analytical solution for this inclined borehole problem is calculated using 

Equations (2.2.17) and (2.2.18). The parameters used for the finite element model were 

same as in the previous section except a mud pressure (/?„ = 10 MPa) is applied along the 

borehole wall. Along the radial section (0 =  30°), the numerical solution and analytical 

solutions for radial and tangential stresses are compared in Figure 5.4.14. It can be seen 

that the proposed finite element solutions have good matches w ith the analytical solutions 

except small discrepancies near the borehole wall.

6  = 3030 -

%
2

•  FEM, tangential 
■ FEM. radial 

Elastic, tangential 
—  Elastic, radial

w

2.5 321.51

Radial distance (r/R)

Figure 5.4.14 Comparison between the finite element and analytical solutions for total 

radial and tangential stresses along the radial sections 0 =  30° for impermeable model.

In this chapter, the presented numerical solution was validated by elastic, single­

porosity analytical solutions for wellbore and consolidation problems, and excellent 

agreements were obtained. Furthermore, the one-dimensional dual-porosity elastoplastic 

non-isothermal consolidation was presented and can be used for future validations. The 

dual-porosity parametric analyses w ill be given to further examine the proposed finite 

element model in the following chapter.
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Chapter 6 

Parametric Study

In this chapter, examples are given to demonstrate how certain parameters in dual­

porosity media affect the pore pressure and stress results. The in-situ stresses, initial pore 

pressures, geometry and material properties used in the ongoing analyses are identical to 

those listed in Section 5.4 and Table 5.4.1 except for the fracture spacing s = Im. A ll the 

results are presented at a borehole inclination angle (p-= 10° except Section 6 .6 . Figure 

6 . 1  shows the far field and local stress states; it can be seen that the .v-direction ( 0 = 0 °) 

is the local maximum stress direction and the y-direction (0 =  90°) is the local minimum 

one.

In the following parametric analyses, time, hole inclination, fracture parameters, 

matrix permeability, mud weight and mud cake effects are considered. For each analysis, 

only one specific parameter was allowed to be varied.

Pma
Pfr

0

= 25.5 MPa\^
Oy = 20.0 MPa

= 28.5 MPa
T^= 1.3 MPa
P°nu = P"^=IOMPa

1

Original conditions 
(far-field stress):

S \  = 29 MPa 
S \  = 20 MPa 
S', = 25 MPa
P*’ma =  0 "  tr =  lO  M P a

111



Figure 6 .1 State of stress in the borehole local coordinate after 70° inclination.

6.1 Dual-porosity Effect

The pore pressure distributions at r = 100 s and 0 = 0 °  and 90° for the single-porosity 

model as well as the ones for the dual-porosity model are compared in Figures 6.1.1 and 

6.1.2. The difference is evidenced by the increase in pore pressure in the matri.x for the 

dual-porosity media due to the associated large fracture compliance which induces the 

non-monotonic pressure distribution (Figure 6.1.2). A similar comparison can be made 

for Terzaghi’ s effective radial stresses (Figures 6.1.3 and 6.1.5). Although the pore 

pressure induced by dual-porosity effect increases, the tensile stress does not increase, 

but decreases (Figures 6.1.3 and 6.1.5). This is due to the fact that the total radial stress 

has a larger increment than the pore pressure for the dual-porosity medium, as shown in 

Figures 6.1.4 and 6.1.6. Therefore, the effective compressive stress, which equals to the 

difference o f the total stress and the pore pressure, increases and the effective tensile 

stress decreases, which reduces the potential for borehole spalling. The reason of this 

phenomenon in the dual-porosity medium is that the total deformation increases due to 

the introduction o f a fracture elastic modulus fC„s in the dual-porosity governing 

equations shown in Chapter 3. which leads to increase in the total radial stress.

The dual-porosity models lead to little changes in Terzaghi’ s effective tangential 

stresses (Figure 6.1.7) and to a small increase in the effective a.\ial stress, as shown in 

Figure 6.1.8. which are also associated with the introduction o f the fracture compliance. 

Comparing to the in-situ stress magnitudes, stress concentrations occur at the wellbore 

due to drilling.
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24

TO
Q-
2

cn 16 -
CO

2
In 1 2 -

Dual-porosity, s = 0.1 m 

Single porosityI
2.52 31 1.5

Radial Distance (r/R)
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6.2 Time-dependent Effects

The following analyses are for the dual porosity media (.v = Im). In Figures 6.2.1 through

6.2.3 the pore pressure distributions around the wellbore is presented at three different 

times. Observe that the pore pressure concentrations in the near field occur at smaller 

times (for t = 10 s in  Figure 6.2.1 and t = 100 s in Figure 6.2.2) around the minimum 

stress direction (9  = 90°). The pore pressure decreases as time increases, as shown in 

Figures 6.2.1 to 6.2.3. The pore pressure responses at different times can clearly be seen 

in different radial directions in Figures 6.2.4 through 6.2.6. The pore pressure in the near 

field is larger as 0 increases, which is due to Skempton’s effect, because at 90° a larger 

far-field compressive normal stress prevails (See Figure 6.1). Note also that at 60° 

(Figure 6.2.5) and 90° (Figure 6.2.6) non-monotonic pressure distributions and pressure 

peaks are found at a small distance inside the wall at small times, which is attributed to 

the poroelastic effect. At larger time, this effect disappears. At large distances, the pore 

pressure approaches asymptotically the far-field value o f 10 MPa; and, as time increases, 

this poroelastic effect become negligible.

t =  lO s

- 0.1 - 0.0

Distance from hole center (ml

Figure 6.2.1 Pore pressure distribution around the wellbore at t = 10 s.
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Figure 6.2.2 Pore pressure distribution around the wellbore at t = 100 s.
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Figure 6.2.3 Pore pressure distribution around the wellbore at t  =  1000 s.
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Figure 6.2.6 Pore pressure around the wellbore at £? = 90° for different times.

The Terzaghi's effective radial stress distribution contours for three different times, t = 

10 s. r = 100 s and t = 1000 s. are ploted in Figures 6.2.7 to 6.2.9. The results clearly 

show a tensile region near the wellbore at small times in Figures 6.2.7 and 6.2.8. The 

elliptical tensile stress area around the wellbore is larger in the minimum stress direction 

than that in the ma.ximum stress direction. Away from the tensile stress area, the stress 

gradually approaches to the local far-field stress. Futhermore, the tensile radial stress 

magnitude in the near field is much larger in the minimum stress direction {9  = 90°) 

than that in maximum stress direction {9  = 0°), as shown in Figures 6.2.10 and 6.2.11. 

This is due to higher pore pressure values (refer to Figures 6.2.4 and 6.2.6). It can also be 

seen that radial stress has very strong time effects; i.e., the tensile stress reduces 

significantly as time elapses. There is no tensile stress as time becomes large enough as 

illustrated in Figure 6.2.9.
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Figure 6.2.7 Radial stress distribution around the wellbore at / = 10 s.
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Figure 6.2.9 Radial stress distribution around the wellbore at i = 1000 s.
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Figure 6.2.10 Effective radial stress in the maximum stress direction for different 
times.
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Figure 6.2.11 Effective radial stress in the minimum stress direction for different times.

Figures 6.2.12 to 6.2.14 show Terzaghi's compressive tangential stress contours 

around the wellbore for three different times It is observed that a significant increase in 

stress concentration occurs in the minimum stress direction. In addition, as time 

increases, the tangential stress increases. Figure 6.2.15 plots the tangential stress as a 

function o f the radial distance at different times for the two angles. 0 = 0 °  and 6 = 90°. 

It is obvious that stress concentration is less pronounced in the maximum stress direction 

(0 = 0°). Note also that the effective tangential stress does not have the non-monotonic 

distribution as for the effective radial stress as shown in Figures 6.2.10 and 6.2.11. This 

is due to the fact that the total tangential stress has a non-monotonic distribution (Figure 

6.2.16) which has similar shape as the pore pressure (such as Figure 6.2.6). As a result, 

the effective tangential stress, which is the difference o f the total tangential stress and 

pore pressure, has no monotonie distribution.
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Figure 6.2.12 Tangential stress distribution around the wellbore at / = 10 s. 
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Figure 6.2.13 Tangential stress distribution around the wellbore at r = 100 s.
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Figure 6.2.14 Tangential stress distribution around the wellbore at t = 1000 s.
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Figure 6.2.16 Total tangential stress distribution, at 6? = 0° and 9 = 90°. for ( = 100 s.

Figures 6.2.17 and 6.2.18 show Terzaghi's compressive axial stress as a function of 

the radial distance and time for 0 = 0 °  and 9 = 90°. It can be seen that the axial stresses 

at the wellbore exhibit an increase in stress level. The stress concentration at the 

wellbore is less pronounced in the maximum stress direction {9  = 0 ° )  than that in the 

minimum stress direction (9 = 90°). At small times a minimum value is found at a small 

distance inside the borehole wall. At large distances, the effective axial stress approaches 

asymptotically the local far-field value o f 18.5 MPa (28.5 MPa for total stress, refer to 

Figure 6.1). as expected. These figures also show that the axial stresses increase and non­

monotonic stress distributions disappear as time increases.
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Figure 6.2.17 Effective axial stress distribution in the maximum stress direction for 
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different times.
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6.3 Fracture Spacing Effects

Figures 6.3.1 and 6.3.2 show the effect o f fracture spacing on the pore pressure 

distributions. Fracture spacing represents fracture density: the smaller fracture spacing 

representing denser fractures, causes pore pressure increases and more pronounced non­

monotonic pressure distributions. The reason is that smaller fracture spacing results in 

smaller fracture elastic modulus {K„s). which causes larger fracture deformations. As 

fracture spacing increase gradually the pore pressure decreases, as shown in Figures

6.3.3 and 6.3.4. When the fracture spacing is sufficiently large (such as .v = 100 m), the 

spacing variation has no further influence on the pore pressure. In this case, the 

formation is approaching a single-porosity medium (intact porous rock); hence, the dual­

porosity solution is close to the single-porosity solution.
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Figure 6.3.1 Pore pressure distribution around the wellbore at r = 100 s. s = 0.1 m.
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Figures 6.3.5 and 6.3.6 are effective radial stress contours at t = 100 s for fracture 

spacing o f s = 0.1 m and s = 10 m. It can be observed that a larger fracture spacing 

causes a smaller tensile stress area. The tensile stress magnitude and area are bigger in 

the minimum stress direction. Figures 6.3.7 and 6.3.8 show the radial stress responses 

along the minimum and maximum stress directions. It is seen that the effective 

compressive radial stress increases and the tensile stress decreases as fracture spacing 

decreases. This is due to the larger fracture compliance (\IK „s) inducing larger total 

radial stress, as discussed in section 6 . 1 . It can be concluded that tensile failure is rather 

d ifficu lt to achieve for highly fractured porous media, particularly in the maximum stress 

direction.
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Figures 6.3.9 and 6.3.10 are the tangential stress contours at / = 100 s for fracture 

spacing of 5 = 0.1 m and 5 = 10 m. Observe that the maximum stress concentration 

occurs in the minimum stress direction. It can be seen from Figures 6.3.11 and 6.3.12 

that the effective tangential and axial stresses increase as fracture spacing decreases. 

These are induced by the large fracture compliance, in which the fractures are considered 

as deformable.
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6.4 Fracture Stiffness Effects

In this section, the fracture normal stiffness effects on the dual-porosity model are 

examined. Figures 6.4.1 and 6.4.2 are pore pressure contours for two different fracture 

stiffnesses, K„ = 4.821 and 48.21 GPa. at t = 100 s. It can be seen that the pore pressure 

magnitude is much larger for smaller fracture stiffnesses. Figures 6.4.3 to 6.4.4 are pore 

pressure responses for different fracture stiffnesses along the maximum {6  = 0 °) and 

minimum stress directions {9  -  90°). It is obvious that the pore pressure in each 

azimuthal direction increases as the fracture stiffness becomes increasingly smaller, 

which is associated larger fracture compliance (l/^„.v). When the stiffness is large 

enough, representing nearly no deformation in the fractures, the pore pressure no longer 

varies with fracture stiffness.

Figures 6.4.5 and 6.4.6 are the effective radial stress contours for K„ = 4.821 and 48.21 

GPa, at t = 100 s. It can be observed that there is no tensile stress for smaller fracture 

stiffnesses. The reason is that a larger fracture compliance exists for small fracture
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stiffness, which causes larger total stress, as discussed in section 6.1.1. The comparisons 

for effective radial stress along different radial directions indicate that the compressive 

stress increases while tensile stress reduces as the stiffness decreases, as shown in 

Figures 6.4.7 and 6.4.8. The radial tensile stress is insignificant when the fracture 

stiffness is very small. Figures 6.4.9 and 6.4.10 show that the tangential stress increases 

as fracture stiffness decreases.
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Figure 6.4.1 Radial stress distribution around the wellbore at r = 100 s and for K„ = 

4.821GPa/m.
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6.5 Matrix and Fracture Permeability 

Effects

The influence of matrix and fracture permeability variations on the dual-porosity model 

are demonstrated for three cases, k„J kfr = 1,0.1 and 0.01 in this section. Figures 6.5.1 

and 6.5.2 are pore pressure responses along the maximum and minimum stress directions 

a t / =  100 s. It can be observed that the decreasing matrix and fracture permeability ratio 

causes a higher pore pressure magnitude. When the permeability ratio is large enough, 

such as kmJ kfr = \'m  Figure 6.5.1, there is no non-monotonic pore pressure distribution, 

or poroelastic effect. The pore pressure contours in Figures 6.5.3 and 6.5.4 show this
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phenomenon clearly. A  smaller matrix and fracture permeability ratio means that the 

matrix has a relatively smaller permeability, which induces more poroelastic effects 

(Cheng et al., 1993). The reason is obvious, for larger matrix permeability faster fluid 

flow occurs and the pore pressure concentration is less pronounced.

As a consequence, there is no tensile radial stress for the larger permeability ratios 

(refer to Figures 6.5.5 and 6.5.6). In addition, effective radial stress increases in the near 

field as the permeability ratio increases, as shown in Figures 6.5.7 and 6.5.8.

Figures 6.5.9 and 6.5.10 show the effect o f the matrix and fracture permeability ratio 

on the effective tangential and axial stresses. The increasing permeability ratio causes 

increases in the tangential and axial stresses.

The reason that the stresses increase as the permeability ratio increases can easily be 

explained from the dual-porosity governing equations (Equations 3.3.8 to 3.3.10). It can 

be seen from these equations that any increase in matrix permeability (i.e., the 

permeability ratio increases when fracture permeability is constant) causes solid 

deformation to increase, which induces an increase in the total stress.
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6.6 Borehole inclination Effects

To assess the effect o f borehole inclination, in Figure 6 .6 . 1  the pore pressures responses 

at [ = 100 s, 6? = 0 °  for four different inclination angles, 0°, 40°, 70° and 90° were 

examined. Note that a hole inclination angle o f (p- = 0° represents a vertical hole. It is 

shown that the inclination increases the pore pressure magnitude in this case example, 

which is more obvious through comparing the pore pressure contours in Figures 6.6.2 

and 6.6.3. This is the consequence o f the extra pore pressure generated by Skempton's 

effect. At (Pz = 0° the relevant local far-field compressive stress at 0 = 0° is = 29 MPa, 

Gy = 20 MPa which is changed to = 25 MPa, Oy = 20 MPa at (pz = 90° due to the 

inclination (refer to Figure 6.6.4). Figure 6.6.5 shows the same pore pressure response 

but at the azimuthal angle 6  = 90°. In this case, the trend is reversed: pore pressure 

decreases with increasing inclination. This is due to that the relevant far-field
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compressive stress reduces from a , = 29 MPa with a 0° hole inclination to Ox = 25 MPa 

with a 90° hole inclination.
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Figures 6 .6 . 6  and 6.6.7 explore the intluence o f hole inclination at t = 100 s, 0 = 0 °  

and 0 = 90°. The inclination causes a reduction in compressive radial stress and an 

increase in tensile radial stress. This trend is more pronounced at the azimuthal angle 6 

= 0° (See Figures 6 .6 . 8  and 6.6.9), because the local far-field total stress varies from = 

29 MPa (Effective stress 19 MPa) at a hole inclination % = 0° to = 25 MPa (Effective 

stress 15 MPa) compared to a hole inclination (p- = 90°; however, at an angle o ï 9 = 90°, 

the local far-field total stress does not change (Oy = 20 MPa) from a hole inclination (p- = 

0° to (p- = 90° (Refer to Figures 6 .1 and 6.6.4).

Figures 6.3.10 and 6.3.11 demonstrate the effect o f borehole inclination on effective 

tangential and axial stresses at the azimuthal angle 0  = 0 °. It is clear that at larger 

inclination angles the tangential stress decreases and the axial stress increases because 

the inclination from (p- = 0° to (p- = 90° causes the local far-field total stress from o , = 29 

MPa, = 25 MPa to = 25 MPa, = 29 MPa (See Figure 6.6.4).

Form the above analyses it is obvious that the effects o f hole inclination on wellbore 

pressure and stresses depend strongly upon the far-field stress. For the given boundary
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and far-field stress conditions, the borehole inclination can be optimized in order to

avoid high stress concentration around the wellbore.
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6.7 Mud Weight Effects

Rock failure is likely to take place when a borehole is drilled with air or with insufficient 

mud pressure to support it before casing is placed. However, too large mud pressures 

may induce borehole instability by tensile fracturing leading to unacceptable mud losses. 

In the present analysis, the borehole depth was assumed to be 1000 m and four values o f 

mud weight density were examined, i.e., p „ = 0.006, = 0.01, = 0.02 and p» = 0.025

M N /m ’ corresponding to mud pressures o f p» = 6 , p,, = 10, p., = 20, and p» = 25 MPa, 

other parameters remaining the same, as in previous analyses. Figures 6.7. L and 6.7.2 are 

the pore pressure responses along the maximum and minimum stress directions { 6 = 0 °  

and 6 = 90°) at t =100 s. It is clear that the pore pressure has the same magnitude as the 

mud pressure at the borehole wall; and that pore pressure decreases dramatically away 

from the wall when the mud pressure is high. It can be observed from the pore pressure 

contours in Figures 6.7.3 and 6.7.4 that only for small mud pressure cases, such as p„ = 6  

MPa, does the pore pressure have a non-monotonic distribution inside the hole along the 

minimum stress direction.

Due to the mud pressure, there are no tensile radial stresses inside the borehole except 

for the case o f very small mud pressure values (e.g. p„ = 6  MPa), as shown in Figures

6.7.5 and 6.7.6; instead, a non-monotonic stress distribution appears for higher mud 

pressures, as shown in Figures 6.7.7 and 6.7.8. Furthermore, the increasing mud pressure 

causes increases o f the compressive radial stress; this is due to that fact that the mud 

weight acts on the we 11 bore wall as an additional radial stress component.

Figures 6.7.9 and 6.7.10 show the effective compressive tangential stress response 

along the maximum and minimum stress directions at t = 100 s. It is obvious that the 

compressive tangential stress decreases as the mud pressure increases, which reduces the 

high stress concentration around the wellbore. From Figures 6.7.11 and 6.7.12 it is noted 

that the effective tangential stress becomes tensile along the local maximum stress 

direction ( 0 = 0 ° )  for high mud pressures (e.g. p„ = 25 MPa). This illustrates that the 

borehole w ill fail in tension or fracturing when the tensile tangential stress is larger than

154



the formation tensile strength. However, there is no tensile stress induced at the borehole 

wall along the local minimum stress direction (£?= 90°, Figure 6.7.10).

Figures 6.7.13 and 6.7.14 demonstrate the effective compressive axial stress responses 

along the minimum and maximum stress directions, at / = 100 s. The increasing mud 

pressure reduces the axial stress concentration around borehole in the near field.
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Figure 6.7 .1  Pore pressure along the maximum stress direction at t = 100 s for different 

mud pressures.

CD
0 .

23(/)
2Q.
2
o
a.

25
Pw = 6 MPa 

Pw = 10 MPa 

Pw = 20 MPa 

Pw = 25 MPa

20 0=90

15

10

5

0

2.5 31.5 21

Radial distance (r/R)

Figure 6.7.2 Pore pressure along the minimum stress direction at t =  100 s for different

mud pressures.
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Figure 6.7.4 Pore pressure distribution at f=  100 s fora mud pressure o fp» = 25 MPa.
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6.8 Mud Cake Effects

Borehole instabilities in poorly- and un-consolidated formations is mainly due to that the 

formation cannot be supported by hydrostatic overbalance alone. As a result, the 

unconsolidated sands often fall into the hole and pack o ff around the d rill string. 

Problems also occur i f  insufficient filtercake is deposited on loose, unconsolidated sand 

to prevent it from flowing into the wellbore. The unconsolidated formations are highly 

permeable and any mud or water that invades the pore spaces also destabilizes the hole. 

To drill these formations, the mud should provide a good-quality filtercake to help 

consolidate the formation so that mud pressure can induce confining pressure and 

stabilize the formation. A  drilling mud with a low filtrate water loss w ill form a thin, 

tough mud cake; ideally it should function as an impermeable medium. In order to 

demonstrate the mud cake influence, two cases was examined: a borehole with an 

impermeable mud cake and larger matrix permeability {k„ui = 1 0  dare y ) and one 

without a mud cake, but a very small matrix permeability (k,„„ = lO '" darcy). The mud 

pressure was assumed as 10 MPa.

Figures 6.8.1 and 6.8.2 represent the pore pressure distributions along maximum and 

minimum stress directions at r = 100 s for the wellbore with and without mud cake. For 

the wellbore with mud cake, the mudweight pressure acts only as an additional radial 

stress component at the borehole wall; therefore, there is no effect of the mud on the pore 

pressure at the borehole wall. However, for the wellbore without a mud cake, although 

the matrix permeability is very small, it is still permeable and the pore pressure at the 

borehole wall is same as the mud pressure, which illustrates the interaction between the 

mud weight and formation pore pressure.

Figures 6.8.3 and 6.8.4 are the radial stress distributions along the maximum and 

minimum stress directions for the wellbore with and without mud cake. It can be 

observed that tensile stresses still prevail inside the wellbore in the minimum stress 

direction for the wellbore without mud cake (Figure 6.8.4); hence, the mud pressure is 

insufficient. The mud pressure for the permeable case not only provides wellbore radial 

support, but also provide a pore pressure that is equivalent to the mud pressure in the 

near field. As a consequence, the effective radial stress is reduced. However, for the
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impermeable case, such as a wellbore with mud cake, the mud pressure only provides the 

radial support. It can be seen that effective radial stresses in both cases only have little 

difference near the wellbore, which is induced by pore pressure difference.
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Figure 6.8.1 Pore pressure along the maximum stress direction at t = 100 s for 

wellbores with and without mud cake.
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Figure 6.8.2 Pore pressure along the minimum stress direction at t = 100 s for

wellbores with and without mud cake.
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Figure 6.8.5 is the effective tangential stress distribution for wellbores w ith and 

without mud cakes. It is noted that the tangential stresses only have a very slightly 

difference.
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Figure 6.8.5 Tangential stress along the maximum and minimum stress directions at t 

1 0 0  s for wellbore with and without mud cakes.

The dual-porosity, time-dependent, fracture spacing, fracture stiffness, permeability, 

borehole inclination, mud weight and mud cake effects were analyzed in this chapter. 

The results demonstrated that dual-porosity media generate larger pore pressures and 

smaller tensile stresses than single-porosity media. Pore pressure and effective tensile 

radial stress decrease as time increases, and the tensile radial stress disappears when time 

is sufficiently large. For different fracture parameters, pore pressure increases and the 

tensile stress decreases as the fracture spacing and stiffness decrease. When the spacing 

and stiffness are large enough, the dual-porosity solution approaches the single-porosity 

solution. Sufficient mud weight can avoid the tensile radial stress along the borehole; 

however, high mud weight pressure can induce tensile tangential stress at the wellbore. 

which causes wellbore fracturing. Different wellbore failure criteria w ill be assumed to 

describe the wellbore breakout and tensile failures in the next chapter.
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Chapter 7 

Wellbore Failure Analyses

Boreholes fail either by exceeding the tensile strength, the compressive strength or by 

exceeding the shear strength o f the rock formation; mainly caused by the effective stress 

concentration near the wellbore due to the far-field stress and the specific borehole 

orientation. It is commonly accepted that wellbore failure is controlled by Terzaghi’ s 

effective stress concept (Cui et al., 1999a):

o ' = a - ô n „ „  (7.1)

where p,„a is the pore pressure.

Four kinds o f failures: compressive, tensile, Mohr-Coulomb and Driiker-Prager are 

considered in this chapter.

7.1 Compressive Failure
The compressive failure criterion often used in borehole stability analysis is that the 

Terzaghi effective compressive tangential stress at the borehole wall equals the uniaxial 

compressive strength o f the rock formation, i.e.:

(7.1.1)

where Oo is the total tangential compressive stress, is the uniaxial compressive 

strength o f the formation.

This failure criterion shows that the formation w ill fail when the effective compressive 

tangential stress is larger than rockmass compressive strength. The effective compressive 

failure stress can be defined as:
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(7.1.2)

where (T,„,„p is the effective compressive failure stress. When the compressive failure 

stress is below zero, the compressive failure w ill occur.

Applying this criterion, assuming that the compressive strength o f the formation is a, 

= 41 MPa, and other parameters remain same as in the previous chapter, the compressive 

failure area and failure stress can be obtained. Figure 7.1.1 is the compressive failure 

area around the borehole for a stress-free wellbore inclined at an angle 70° and for t = 

100 s. Note that the points in the figure are Gaussian points' in which failure occurs. The 

compressive failure is mainly concentrated around the borehole crown, i.e., the minimum 

stress direction (0  = 90°, as shown in Figure 6.1), where the borehole breakout is more 

likely to occur. Figure 7.1.2 shows the effective compressive stresses along the minimum 

stress direction at t = 100 s for three hole inclinations, i.e., % = 0°, 70° and 90°. In this 

figure the failure, according to Equation (7.1.2), occurs when the stress is less than zero. 

It can be observed that for this given case the failure stress has larger negative values 

(meaning instability) and the unstable area increases as the hole inclination decreases.

1 = 100 Seconds
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Figure 7.1.1 Compressive failure area for a stress-free borehole wall.

Gaussian points are the integrated points in each element, in which the stresses are calculated.
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Figure 7.1.2 Effective compressive failure stresses for different hole inclinations along 

the minimum stress azimuth at t = 1 0 0  s.

7.2 Tensile Failure

There are two possible modes o f tensile failure. One mode is due to fracturing at the 

borehole wall. As the mud pressure in the wellbore is increased, the stresses in the rocks 

become tensile, resulting in fracturing o f the rock and lost circulation problems. The 

second mode is the outburst failure (or spalling) due to a tensile effective radial stress 

caused by a very rapid depressurizing borehole (Cheng et al.. 1993).

7.2.1 Spalling Failure

The spalling criterion is that the effective radial tensile stress in the borehole equals the 

formation tensile strength, that is:
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o ' r = o , - p „ „ = T  (7.2.1)

where oy is the total radial tensile stress and T is the tensile strength o f the formation.

The effective spalling stress can be defined as:

o ^ ,» = T  + o : (T 1 2 )

where cr,p„// is the effective spalling stress, note that a'r is negative.

This failure criterion shows that the borehole rocks w ill burst out when the effective 

tensile radial stress is larger than the rockmass tensile strength. Usually, the formation 

tensile strength is very small; and. especially for fractured formations, can be considered 

as zero. It is assumed that the tensile strength of the formation is T = 1.5 MPa in this 

section.

Figure 7.2.1 is the spalling area around the borehole for a stress-free wellbore for 

boreholes inclined at 70° and for t = 100 s. It can be observed that the spalling failure 

does not start at the borehole wall, but a short distance away inside the formation where 

the borehole is subjected to larger radial tensile stresses, and mainly occurs around the 

minimum stress direction. The phenomenon o f rock failure inside borehole was often 

reported (e.g., Detoumay and Roegiers, 1986; Roegiers, 1990; Cheng et al.. 1993). 

Figures 7.2.2 and 7.2.3 show the effective spalling stresses along the minimum and 

maximum stress direction at t = 100 s for three hole inclinations, i.e.. <p- = 0°. 70° and 

90°. Observe that along the maximum stress direction spalling occurs only for boreholes 

with very large inclinations; however, along minimum stress direction spalling takes 

place for any inclination.
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7.2.2 Fracturing Failure

The failure criterion for fracturing is that the effective principal tensile stress (i.e., minor 

principal stress) at the borehole wall equals the formation tensile strength, that is:

o : = T (7.2.3)

where, a 't is the effective principal tensile stresses (note that a'jt is the negative value). 

The effective fracturing stress can be defined as:

0 , r n r = 0 ; + T (7.2.4)
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where cr,p„ii is the effective fracturing stress. When the fracturing stress is below zero, 

fracturing w ill occur.

With sufficient mud pressure support, the wellbore spalling and compressive failure 

can be controlled. However, the tensile failure or fracturing may be induced in the 

wellbore when the mud pressure is too high. Figure 7.2.4 shows the tensile failure area 

for a hole inclination o f 70° at t = ICO s and for a mud pressure /?„ = 25 MPa. It is seen 

that the fracturing takes place mainly around the maximum stress direction. From Figure 

7.2.5, the effective fracturing stress has larger negative values and the unstable area 

increases as the inclination decreases.
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Figure 7.2.4 Fracturing area for mud pressure pw = 25 MPa.
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7.3 Mohr-Coulomb Failure

Shear failure may occur around the borehole when the shear strength o f formation is 

exceeded. Away from the wall o f the borehole, where the radial stress may produce 

increasing confinement, shear failure is more likely to occur. The Mohr-Coulomb failure 

criterion can be used to determine such a failure mechanism. This criterion can be 

expressed as (Figure 7.3.1):

r = c + o ' Vàx\$ (7.3.1)

where 0 is the angle o f internal friction and c is the cohesion.

In the principal space, (a 'l.a 'z .a 'i). the Mohr-Coulomb failure criterion is represented 

by a right, irregular hexagonal pyramid whose axis is equally inclined with respect to the 

principal axis as shown in Figure 7.3.2 (Shield, 1955). In the principal form, it is:
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Figure 7.3.1 Mohr-Coulomb failure criterion.

/

a

Figure 7.3.2 Mohr-Coulomb failure criterion in the principal stress space.
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o, = o, + qO (7.3.2)

where cf,. cr  ̂are the effective principal stresses, ( j',>  a ]  and r/ = ( l + sin0 ) / ( l - s in d ) .  

The effective Mohr-Coulomb failure stress can be defined as;

m o h r = o, + qa^  -  a, (7.3.3)

where CTm«/ir is the effective Mohr-Coulomb failure stress. When the Mohr-Coulomb 

failure stress is below zero, failure w ill occur.

Figure 7.3.3 is the Mohr-Coulomb failure area around the borehole for a stress-free 

wellbore inclined at an angle o f 70° and at t = 100 s, assuming that the compressive 

strength o f the formation rock is 41 MPa and the angle o f internal friction is 30°. It is 

obvious that the Mohr-Coulomb failure mainly concentrates around the borehole crown, 

i.e., in the minimum stress direction. As the hole inclination increases, the effective 

Mohr-Coulomb stress has a smaller negative magnitude and the unstable area decreases 

(Figure 7.3.4).
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Figure 7.3.3 Mohr-Coulomb failure area for a stress-free borehole wall.
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7.4 Drücker-Prager Failure

The effect o f the intermediate principal stress is not considered in any of the failure 

criteria mentioned above. Research results have shown (e.g. Mogi. 1972) that the 

intermediate principal stress plays an important role in the failure o f rocks. The effect of 

the intermediate principal stress on the failure o f rock can be conveniently represented 

by the well-known Driiker-Prager yield condition:

= 2>cd[ + K (7.4.1)

where or and AC are material constants and the detailed expressions o f / '/  and Jz can be 

found in Appendix C.

The effective collapse stress can be defined as (Bradley, 1979):
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<7,., = 7>al{ +  K -  -^77 (7.4.2)

where (T,i is the effective collapse stress. When the collapse stress is negative, collapse 

w ill occur.

The Driiker-Prager yield condition is an extended form of the Mohr-Coulomb failure 

criterion. In the principal stress space. Equation (7.4.1) represents a cone with the same 

axis as the pyramid resulting from Shield's representation o f the Coulomb criterion 

(Shield, 1955). The section in the deviatoric plane shows that it is possible in various 

ways to relate the two failure criteria (Figure 7.4.1). For plane-strain conditions it is 

recommended that the inside cone tangent to the pyramid is used (Kovari, 1977). In this 

case the conversion formulae for the material parameters from the Coulomb criterion to 

the Driiker-Prager criterion are (Figure 7.4.1):

t a n £ _  (7 ,4 ,3 ,
■̂ 9 + 1 2  tan ’ 0

K =  , (7.4.4)
y  9 - I-1 2  tan‘ <2)

When the external pyramid envelope is used, the conversion formulae for the material 

parameters from the Coulomb criterion to the Driiker-Prager criterion are:

«  = ,7 4 . ; ,
V 3 (3 -s in ( ,)  ,

ô ç c o s ^  (7 .4 .6 )
V 3 (3 -s inc))

When the internal cone envelope coincident at 0 = 7t/6 is used, the conversion

formulae for the material parameters from the Coulomb criterion to the Driiker-Prager

criterion are:

177



a  =

K -

2 sin^) 

V3(3 + sin 0 )

6 ccos 0  

V3(3 + s in 0 )

(7.4.7)

(7.4.8)

M ohr-Coulom b

External envelope

Internal cone  
coincident 
at 0 = -n /6

Internal envelope

Figure 7.4.1 Coulomb yield surface and different possibilities for corresponding 

Drticker-Prager yield conditions.

Table 7.4.1 lists the material parameters o f the Driiker-Prager criterion obtained for 

the above conversion formulae when the material strength parameters are <p = 30° and c 

= 11.5 MPa. Obviously, the Driiker-Prager material parameters for the three envelopes 

are different.

Based on the failure envelope plots compiled for various rocks (Woodland. 1990). 

material parameters tz and /c in Driicker-Prager failure criterion can range from 0.13 to 

0.37. and from 5.5 MPa to 25.5 MPa, respectively. For the present analyses, it is 

assumed that a  =0.14 and K = \2 MPa.
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Table 7.4.1 Material parameter conversion from the Coulomb criterion ((p= 30° and c = 

11.5 MPa) to the Driiker-Prager criterion

Envelope a K (MPa)

Inside cone tangent to the pyramid 0.16 9.6

External pyramid envelope 0.23 13.8

Internal pyramid envelope 0.16 9.9

Figure 7.4.2 is the Driicker-Prager failure (collapse) around the borehole for a stress- 

free we 11 bore inclined at an angle o f 70° and at t = 100 s. The collapse occurs mainly 

around the minimum stress direction. In the maximum stress direction (borehole 

sidewalls) there is no collapse. Figure 7.4.3 shows that as the hole inclination increases, 

the effective Mohr-Coulomb stress has a smaller negative magnitude and the unstable 

area decreases.
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Figure 7.4.2 Collapse failure area for a stress-free borehole wall.

179



CO
û.

CO
CO

i
CO

0U)
Cl
JO
Ô
O

12

8

4

Stable
0

Unstable

Inclination angle 0 (degree 
Inclination angle 70 (degrees 
Inclination angle 90 degrees

•4

-8
2.5 321.51

Racdial distance (r/R)

Figure 7.4.3 Effective collapse stresses for different hole inclinations along the 

minimum stress direction at i = 1 0 0  s.

180



Chapter 8 

Model Application

The developed dual-porosity finite element model can not only be used to analyze 

we 11 bore problems, but can also be applied to other mechanical problems, such as 

tunneling, slope stability problems, surface subsidence, hydraulic fracturing simulation, 

fracturing pressure determination, roadways, room and pillar stability problems, and 

coupled hydraulic and mechanical problems. This chapter presents some applications of 

the finite element model to practical problems, including inclined and horizontal 

boreholes, stress-dependent permeability and rock cutting problems.

8.1 Inclined and Horizontal Wellbores

The capabilities o f the finite element model have been demonstrated in wellbore 

problems presented in the previous chapters. For practical purposes, the model used here 

focussed on simulation o f borehole stability and selection o f the critical drilling mud 

weight. Several cases were analyzed, such as, boreholes drilled in a normal stress region 

(i.e., (Tv > (Tfi > ai, ), in a tectonic stress region (ct// > (T > O), ) and in a faulted zone.

8.1.1 Wellbore in Normal Stress Region

The following specific geometry and material properties were used in the ongoing 

analysis. The radius o f the borehole is /? = O.l m. The rock is a G ulf o f Me.xico shale 

with the following properties: G = 7.6 x 10" MPa, v = 0.219, = 0.461, B = 0.915, n =

0.02, k = Ix  10 dare y with n  = 0.001 Pas (Cui et al., 1999a). Table 8.1.1 lists the 

poromechanical parameters used in the analysis, in which some parameters were 

calculated from this given material properties using Equation (5.2.5).
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The Far-Held stresses and pore pressure were: St- = o>/ = 18 KPa/m, Sy- = CT/, = 14 

KPa/m, S; = (Tv = 22.6 KPa/m, pu = 10.4 KPa/m (Bradley, 1979). A ll the analyses were 

carried out at the true vertical depth o f 1 0 0 0  m and concentrated on the borehole failure

and mud weight selection.

Table 8.1.1 Parameters for analyses o f the borehole in normal stress region

Parameter Unit Magnitude

Elastic modulus {E) GN/m- 18.53

Poisson s ratio (v) - 0.219

Fracture stiffness {K„ , K,i,) MN/m7m 4.821x10°

Fluid bulk modulus {K/) MN/m* 173.45

Grain bulk modulus (K,) GN/m- 323.23

Matri.x porosity ( a j „ , „ ) - 0 . 0 2

Fracture porosity (tifr) - 0 . 0 0 2

Matrix mobility M"*/MN s IQ-io

Fracture mobility (kfr/^) M ‘‘/M N s 1 0  "

Fracture spacing (.v) m 1

Uniaxial compressive strength (o; ) MN/m" 41

Internal friction angle {(p) 0 30

Material strength parameter (a) - 0.14

Material strength parameter (&7 MN/m" 1 2

In order to demonstrate the characteristics o f borehole failures, a stress-free wellbore 

(no support) was first e.xamined. Boreholes with three different inclination angles, i.e.. q)- 

= 0, 50. and 90° were analyzed.

Figures 8.1.1 and 8.1.2 are Mohr-Coulomb failure areas around the borehole at t = 100 

s for hole inclination 50° and 90°. It is obvious that the borehole inclination increases the 

failure area. Note from the calculation that no failure occurred when the hole inclination
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is 0°. The reason is that inclination increases local stress as well as stress differences 

along the wellbore sections and therefore induces larger failure zone. Figure 8.1.3 shows 

that the local stress in the wellbore section are ov = 18 MPa. o; = 14 MPa for a vertical 

borehole (% = 0°) and = 22.6 MPa, = 14 MPa for a horizontal borehole (% = 90°).
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Distance from borehole center (m)

Figure 8.1.1 Mohr-Coulomb failure area in the normal stress region at i = 100 s for a 

borehole inclination o f 50°.
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Figure 8.1.2 Mohr-Coulomb failure area in the normal stress region at r = 100 s for a

borehole inclination o f 90°.

Oricinal conditions
(I'ar-field stress):a = 14 MPa Ĝ = 14 MPa
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Figure 8.1.3 State of stress in local system for a borehole drilled in two different

orientations (^; = 0 and 90°).
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Figures 8.1.4 and 8.1.5 show collapse areas around the borehole wall at t = 100 s for 

hole inclinations o f 50° and 90°. The collapse area increases with the hole inclination 

since the stresses and stress differences increase in the case o f a normal stress region.

Figures 8.1.6 and 8.1.7 are the spalling areas around the borehole section at t = 100 s 

for the same hole inclinations. It can be seen that spalling decreases with the hole 

inclination. This is due to that spalling depends directly on the tensile radial stress; in the 

normal stress region the inclination increases the compressive radial stress and decreases 

the tensile radial stress, as shown in Figure 8.1.8.
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Figure 8.1.4 Collapse area in the normal stress region at i = 100 s for a hole inclination 

o f 50°.
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Figure 8.1.5 Collapse area in the normal stress region at t = 100 s for a hole inclination 

o f 90°.
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Figure 8 .1.6 Spalling area in the normal stress region at t = 100 s for a hole inclination 

ofO°.
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Figure 8.1.7 Spalling area in the normal stress region at t = 100 s for a hole inclination 

o f 90°.
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Figure 8.1.8 Effective radial stresses along borehole sidewall for a normal stress

regime at r = 100 s for different hole inclinations.
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With mud pressure support, borehole failure can usually be avoided; however, the 

borehole may be fractured and circulation loss may occur. Applying the presented finite 

element model, a range of mud weights for a stable hole was evaluated at each 

inclination angle. Figure 8.1.9 presents the envelopes that define such a safe range.

From this figure, some general observations can be made for boreholes drilled in a 

normal stress regime, i.e., as the inclination increase, the safe range of mud weight for 

collapse and fracturing decreases. At lower inclination angels, say ^  < 35°, the borehole 

does not collapse for any mud weight. Therefore, in the normal stress region the lower 

deviational or vertical boreholes are more stable.

Figure 8.1.10 represents the safe range of mud weight for spalling and fracturing at t 

=100 s. It shows that the safe range is not much dependent on hole inclination angles.
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Figure 8.1.9 Mud weight range varying with the hole inclinations for collapse and 

fracturing a tf=  100 s.
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Figure 8.1.10 Mud weight range varying with the hole inclinations for spalling and 

fracturing at / = 100 s.

8.1.2 Wellbore in Tectonic Stress Region

In this section, the examined case is same as the example studied in the previous chapters 

but the maximum in-situ stress is in the horizontal plane (refer to Figure 6.1). The 

calculations were conducted at the true vertical depth of 1000 m.

Figures 8.1.11 and 8.1.12 are Mohr-Coulomb failure areas at f = 100 s for hole 

inclinations of 0° and 90°. It can be seen that the failure area decreases as the inclination 

angle increases. This is due to that the inclination reduces the stress and stress 

differences. In this case, the stresses vary from <% = 29 MPa, ĉ . = 20 MPa at inclination 

^ = 0° to become % = 25 MPa, cç. = 20 MPa at inclination % = 90°, as shown in Figure 

6.6.4. Same conclusions can be drawn as for the collapse failure (Figures 8.1.13 and 

8.1.14).
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Figure 8.1.11 Mohr-Coulomb failure area in the tectonic stress region at t = 100 s for a 

borehole inclination o f 0°.
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Figure 8.1.12 Mohr-Coulomb failure area in the tectonic stress region at i  =  100 s for a

borehole inclination o f 90°.
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Figure 8.1.13 Collapse area In the tectonic stress region at t = 100 s for a borehole 

inclination o f 0°.
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Figure 8.1.14 Collapse area in the tectonic stress region at r = 100 s for a borehole

inclination o f 90°.
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Figure 8.1.15 is the envelopes that define the safe range of the mud weight for 

collapse and fracturing as a function of the inclination angles at t =100 s. It shows that 

the safe range of mud weight increases considerably with the hole inclination. 

Comparing with Figure 8.1.9, it can be concluded that the influence of the inclination on 

safe range of mud weight in the tectonic stress region is reversed with respect to the 

normal stress case.

Figure 8.1.16 represents the safe range of the mud weight for spalling and fracturing 

with respect to hole inclination angles. It observes that the mud weight envelope for 

spalling is not much dependent on borehole inclinations.

Therefore, in a tectonic stress regime, the higher the borehole deviation, the more 

stable the boreholes.
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Figure 8.1.15 Mud weight range varying with the hole inclinations for collapse and 

fracturing a t f =  100 s in a tectonic stress regime.

192



90

0}
2
O)
0)T3
C
O
■s
S
■O
0)
o
X

50

10

0

------Fracturing j

-
i Spalling

Spalling Stable area /  Fracturing
area area

- — T— 1----- ----- 1----- 1----- !----- r T------1—' "I *— 1-----T------1-----
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Mud weight (kPa / m)

Figure 8.1.16 Mud weight range varying with the hole inclinations for spalling and 

fracturing at / = 100 s in a tectonic stress regime.

8.1.3 Drilling Directions for Horizontal Wellbores

Many oil companies provide horizontal drilling strategy guidelines that call for drilling 

in the direction of the minimum horizontal stress. Their approach for best trajectory 

selections and drilling guidelines is to minimize the maximum value of stress 

concentration on the borehole wall by controlling the drilling direction and mud weight 

used during drilling. However, such an approach may not always be true for all 

conditions. The following analyses examine wellbore failures for the following two 

options: parallel and perpendicular to the maximum horizontal stress directions.

8.1.3.1 Horizontal borehole in tectonic stress regime

The case example is same as that presented in Section 8.1.2. The borehole collapse 

failure area is given in Figure 8.1.14 for drilling parallel to the maximum horizontal 

stress without internal support. Figure 8.1.17 presents the collapse failure area for the 

borehole drilled parallel to the minimum stress without any internal support. Comparing
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Figures 8.1.14 and 8.1.17, it is obvious that there is much larger failure area for the hole 

drilled parallel to minimum stress direction. Comparing the local stress configurations 

around wellbore, it is observed that the stress difference for the borehole in the 

maximum stress direction is Aa = 5 MPa (Figure 8.1.14), the stress difference for the 

borehole in the minimum stress direction is Aa = 4 MPa (Figure 8.1.17); but, the latter 

has much larger failure area. Therefore, the bigger stress difference does not induce 

larger borehole failure, which is not consistent with the conventional understanding. This 

is due to that the Driiker-Prager criterion is applied for the collapse failure analysis, in 

which the intermediate stress plays a role.

Although the selected mud pressure can keep the borehole from failure during drilling, 

however, during open-hole production the bottom hole pressure equals the pore pressure, 

assuming that no mud cake exists around the wellbore. In the present case, the bottom 

pressure is 10 MPa during production. Figure 8.1.18 represents the collapsed area for a at 

bottom hole pressure pv. = 10 MPa, t = 100 s in case o f a horizontal borehole drilled 

parallel to the minimum stress. It is observed that collapse failure still exists. From 

Figure 8.1.15. there is no any collapse failure for the horizontal hole drilled parallel to 

the maximum stress during open-hole production (the bottom pressure is 10 MPa),

Figures 8.1.19 and 8.1.20 are the Mohr-Coulomb (shear) failure areas for a borehole 

without internal support drilled parallel to the maximum and minimum stresses 

directions. It can be seen that there is a larger shear failure area for the hole drilled 

parallel to the minimum stress, although the stress difference is larger in the maximum 

stress direction (Acr= 5 MPa) than that in the minimum stress direction (Acr= 4 MPa). 

The modeling results show that during the open-hole production (bottom pressure is 10 

MPa) there is no shear failure for the hole parallel to maximum stress, however, it has 

shear failure to take place for the borehole parallel to the minimum stress (Figure 

8 . 1.2 1 ).

Therefore, it can be concluded that in a tectonic stress regime a horizontal borehole 

drilled parallel to maximum stress direction is more stable during both drilling  and 

production, which is not coincident with the traditional drilling guidelines. D rilling in 

this direction also allows a single fracture parallel to the borehole to be generated during
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stimulation, since natural fractures are usually perpendicular to the present-day minimum 

horizontal stress.
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Figure 8.1.17 Collapse area in the tectonic stress region at t = 100 s for a horizontal 

borehole drilled parallel to the minimum stress.

0.3
X Collapse failure 
—  FEM mesh

sc(0
b

0.1 0.2 0.3-0.3 - 0.2 - 0.1 0

Distance from borehole center (m)

Figure 8.1.18 Collapse area in the tectonic stress region for a horizontal borehole

drilled parallel to the minimum stress during production (bottom hole pressure 10 MPa).
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Figure 8.1.19 Shear failure area in the tectonic stress region at r = 100 s for a horizontal 

borehole drilled parallel to the maximum stress.

0.3

0.2-

0)Üc
CO

Q 0.1

25 MPa -0.3

i
29 MPa t = 100 Seconds

» Mohr-Coulomb failure 

- FEM mesh

#
-I 1 r -I r

- 0.2  - 0.1 0  0.1

Distance from borehole center (m)

—I------- r
0.2 0.3

Figure 8.1.20 Shear failure area in the tectonic stress region at i  =  100 s for a horizontal

borehole drilled parallel to the minimum stress.
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Figure 8.1.21 Shear area in the tectonic stress region for a horizontal borehole drilled 

parallel to the minimum stress during production (bottom hole pressure 10 MPa).

8.1.3.2 Horizontal borehole in normal stress regime

The following in-situ stress configurations are used in this analysis: the maximum 

vertical stress 69 MPa, the maximum and minimum horizontal stresses are 55.2 MPa and 

48.3 MPa, respectively. The pore pressure is 31.7 MPa and the unconfined strength is 

58.6 MPa (Zheng, 1998). The material parameter is /c = 18 MPa, other parameters are 

same as Table 8.1.1.

Figures 8.1.22 and 8.1.23 are the shear failure area for a borehole drilled parallel to the 

maximum and minimum stress directions without any internal support. It can be seen 

that there are larger shear failure areas for the hole drilled in the maximum direction. 

This is due to that in the Mohr-Coulomb failure criterion only the maximum and 

minimum principal stresses are considered and drilling  in the minimum stress direction 

reduces the local far-field stress difference. In Figure 8.1.24. it is clear that the effective
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Mohr-Coulomb stress has a bigger negative magnitude, meaning less stable, for the hole 

drilled parallel to the maximum direction. Figures 8.1.25 and 8.1.26 show the shear 

failure areas in the two directions during open-hole production (no mud cake effect), in 

which the bottom pressure is 31.7 MPa. It can be seen that there is a slightly larger shear 

failure for the hole drilled parallel to the minimum stress direction. Thus, it can be 

concluded that in a normal stress regime the hole drilled parallel to the minimum stress 

direction has less shear failure region during drilling, but, has a little bit larger shear 

failure during open-hole production.

During both drilling  and open-hole production the collapse area is always larger for 

the hole drilled parallel to the minimum stress direction than that to maximum stress 

direction (See Figures 8.1.27, 8.1.28, 8.1.29 and 8.1.30), because the intermediate 

principal stress is considered in the Driicker-Prager failure criterion.

Therefore, in the normal stress regime the horizontal borehole drilled parallel to 

maximum stress direction is more stable during open-hole production.
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Figure 8.1.22 Shear failure area in normal stress region at r = 100 s for a horizontal

borehole drilled parallel to the maximum stress.
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Figure 8.1.23 Shear failure area in normal stress region at t = 100 s for a horizontal 

borehole drilled parallel to the minimum stress.
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Figure 8.1.24 Mohr-Coulomb failure stresses in the hole crown at t = 100 s for a 
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Figure 8.1.25 Shear failure area in normal stress region at t = ICO s for a horizontal 

borehole drilled parallel to the maximum stress during production (bottom pressure 31.7 

MPa).
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Figure 8.1.26 Shear failure area in normal stress region at t = 100 s for a horizontal 

borehole drilled parallel to the minimum stress during production (bottom pressure 31.7 

MPa).
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Figure 8.1.27 Collapse area in normal stress region at i = 100 s for a horizontal 

borehole drilled parallel to the maximum stress.
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Figure 8.1.28 Collapse area in normal stress region at t = 100 s for a horizontal

borehole drilled parallel to the minimum stress.
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Figure 8.1.29 Collapse area in normal stress region at r = 100 s for a horizontal 

borehole drilled parallel to the maximum stress during production (bottom pressure 31.7 

MPa).
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Figure 8.1.30 Collapse area in normal stress region at t = 100 s for a horizontal 

borehole drilled parallel to the minimum stress during production (bottom pressure 31.7 

MPa).
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8.1.4 Wellbore in Faulted Areas

Instability can easily occur when a borehole penetrates a pre-existing fault or planes 

having low or no cohesion. The finite element model can deal with this problem by 

using different material parameters in the finite element mesh. Figure 8.1.31 shows a half 

circular opening in a formation weakened by a fault zone in which the attitude o f the 

fault is same as the borehole drilling direction. The state o f stress and material 

parameters o f the normal rock regime are same as the example given in Section 8.1.2 and 

previous chapters (Table 5.4.1, Chapter 5 and Chapter 7). The material parameters in the 

normal rock and faulted region are given in Table 8.1.2. In the faulted area, the rock has 

much lower strengths. Young’s modulus and higher permeabilities than those in 

surrounding rocks. In the following analysis, the hole inclination is assumed to be 70°, 

and the true vertical depth o f the hole is 1000 m.
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Figure 8.1.31 Finite element mesh for a half o f borehole with weak rock zone.
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Table 8.1.2 Material parameters in the weak and normal rock region

Parameter Unit Weak rock Normal rock

Elastic modulus (E) GN/m- 10.6 20.6

Poisson s ratio (v) - 0.25 0.189

Fracture stiffness {K„, K,t,) M N/m '/m 4.821x10" 4.821x10"

Fluid bulk modulus {Kf) MN/m" 419.2 419.2

Grain bulk modulus (AT.) GN/m- 48.21 48.21

Matrix porosity («,„„) - 0.02 0.02

Fracture porosity («/>•) - 0.002 0.002

Matrix mobility M'^/MN s I O'*' 1 0 "’

Fracture m obility ik/r/u) M'^/MN s 10^ 10"

Fracture spacing (.s) m I 1

Uniaxial compressive strength (o; ) MN/m" I I 41

Internal friction angle {(p) O 30 30

Material strength parameter ( cz) - O.I 0.14

Material strength parameter ( AC) MN/m" 5.5 12

Tensile strength (7  ) MN/m" 0 1.5

Figures 8.1.32 and 8.1.33 are collapse and shear failure areas for the inclined borehole 

intersected with a weak rock zone. It can be seen that the failures occurred not only 

along the local minimum stress direction (borehole crown), but also near and in the weak 

rock region. This is due to the fact that the weak rock has a much lower strength and. 

furthermore, there is a much larger stress concentration at the interface between the 

normal and weak rocks. Figure 8.1.34 shows the fracturing areas for an inclined borehole 

with a mud pressure o f 24 MPa. It demonstrates that fracturing induced by high mud 

pressure appears mainly in the weak rock zone because it has a much lower tensile 

strength and mud pressure can penetrate easier to this highly fractured formation. It is
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also observed that the fracturing near the weak rock zone does not occur in the maximum 

stress direction, only far from the weak rock zone, the fracturing takes place around the 

maximum stress direction as the homogeneous borehole does.
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Figure 8.1.32 Collapse area in tectonic stress regime for t = 100 s in case o f an 

inclined borehole intersected with a weak rock zone without any internal support.
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Figure 8.1.33 Shear failure area in tectonic stress regime at t = 100 s for an inclined 

borehole intersected by a weak rock zone without any internal support.
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Figure 8.1.34 Fracturing area in tectonic stress regime at t = 100 s for an inclined 

borehole intersected by a weak rock zone with a mud pressure o f 24 MPa.
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8.2 Wellbore in Poorly-consolidated 

Formations

The dual-porosity finite element model was also applied to analyze borehole stability in 

poorly consolidated rocks. The case application selected was the QK17-2 oil field, 

located offshore in the western part of Bohai Bay, China. The geology o f the QK17-2 oil 

field is characterized by massive sand-shale sequences from the tertiary and quaternary 

periods (L iu et al., 1999). Three exploration wells had already been drilled. The well 

records indicated that wellbore stability would be a concern for new wells. The in-situ 

stresses and mechanical parameters at well depth 1729.85 m are as follows:

The in-situ stresses and initial pore pressures are: cr,. = 36.32 MPa, an = 38.97 MPa, 

<Th = 27.16 MPa, andp '  = 17.3 MPa (Liu et al, 1999), which wellbore inclination is (p- = 

40" (well deviation). The wellbore radius is /? = 0.1 m. In the local coordinate system, 

these values are calculated as: = 37.9 MPa, 5y = 27.2 MPa, 5; = 37.4 MPa, 5^ = 1.3

MPa, S„ = Sv: = 0 MPa, and p" = p „J ’ = pfr" = 17.3 MPa. It can be seen that the .r- 

direction is the maximum stress direction. The formation materials are assumed to be 

isotropic, characterized by the following properties: elastic modulus, E =15.6 Gpa; 

Poisson ratio, v =  0.25; Biot modulus, M  = 11.6 Gpa; Blot's effective stress coefficient, a  

= 0.8; permeability, k = lx  10 m" and fluid dynamic viscosity, /u = 0.001 Pa s. The 

corresponding parameters for the dual-porosity poroelastic model are listed in Table 

8.2.1.

In the present study, the mud weight density was taken as p» = 15 KPa/m (mud 

pressure is 25.9 MPa). Permeable and impermeabile models were examined. The 

analyses were concentrated on the minimum stress direction ( 9 =  90°) because it was 

prone to have shear and collapse failures (see previous section). In Figure 8.2.1 it can be 

seen that for the impermeable model the pore pressure at the borehole wall is not same as 

the mud pressure because the wellbore is impermeable; but, there is still poroelastic 

effect which induces the pore pressure increase near wellbore. However, for the 

permeable model, the pore pressure at the borehole wall is same as the mud pressure.
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Due to the mud pressure, there are no tensile radial stresses (Figure 8.2.2) and for the 

impermeable model one induces larger radial stresses at the wellbore. This is due to the 

fact that no fluid penetrates into the wellbore and the mud pressure acts only as a radial 

stress in the impermeable model. It w ill be noted that the effective tangential stress is 

slightly larger for the impermeable model (Figure 8.2.3); this is due to the fact that the 

impermeable model has smaller pore pressure values in the near field (see Figure 8.2.1).

Table 8.2.1 Parameters for inclined borehole analysis

Parameter Unit Magnitude

Elastic modulus (£T) GN/m" 15.6

Poisson’s ratio (v) - 0.25

Fracture stiffness { K „ . K,i,) M N/m '/m 3.0x10"

Fluid bulk modulus (Kf) M N /m ' 326

Grain bulk modulus (K,) GN/m- 38

Matrix porosity (/!,„„) - 0.02

Fracture porosity (»,/) - 0.002

Matrix mobility ik„u,/jii) M-'/MN s 10-10

Fracture m obility {k,r/fi) M'^/MN s 10‘’

Fracture spacing (.v) m 10

Uniaxial compressive strength (a,) M N /m ' 10

Internal friction angle (<p) O 30
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Figure 8.2.1 Pore pressure response for permeable and impermeable models in the 

minimum stress direction at t = 100 s.
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Figure 8.2.2 Radial stress response for permeable and impermeable models in the

minimum stress direction at t =  100 s.
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Figure 8.2.3 Tangential stress response for permeable and impermeable models in the 

minimum stress direction at t = 100 s.

Figure 8.2.4 is the Mohr-Coulomb failure stresses for permeable and impermeable 

cases for a mud weight density p» = 15 KPa/m and at time t = 100 s. It can be seen that 

for same mud weight the borehole is stable for the impermeable model; however, it is 

unstable for the permeable model. In order to control failure one needs to increase the 

mud weight; but. i f  the mud pressure is too high, it w ill induce fracturing. Figure 8.2.5 

shows that the borehole is unstable for any hole deviation for the permeable model. For 

the impermeable model, in which the mud flu id can not invade the pore spaces, a 

suitable mud weight can avoid the borehole failure and fracturing (refer to Figure 8.2.6). 

Thus, the impermeable mudcake provides a better support to help consolidate the 

formation and stabilize the borehole. In addition, the impermeable mudcake can be 

deposited on loose, unconsolidated sand to prevent it from flowing into the wellbore.
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Figure 8.2.4 Effective Mohr-Coulomb failure stresses for permeable and impermeable 

models in the minimum stress direction at r = 100 s.
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8.3 Stress-dependent Permeability around 

Weiibores

The stress-dependent permeability in fractured media can be written as following (refer 

to Appendix D for detailed derivations):

1 1
+ •

A :.6,
[a <t , - i/(A£T^ + A ( T j ] i  (8.3.1)

where koi, and are the permeabilities along the A-direction before and after stress

changes. / = .v, y. c; j  -  y, .v; i = .v, y; i  ^  j  ^  k.
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Introducing this equation into the finite element model, the permeability variation due 

to stress changes induced by borehole drilling and reservoir development can be 

obtained. In the case study, a borehole drilled in a normal stress regime were examined, 

in which the state o f stress and material parameters are identical to that in Section 8.1.1 

and Table 8.1.1 except for the borehole inclination which is now 70". The horizontal and 

vertical permeability (permeabilities in x- and y-directions, respectively) variations in the 

fractured formation were analyzed. Note that the results plots in the follow ing figures are 

the ratio between the changed permeability and the original permeability (kk/kok)-

Figures 8.3.1 and 8.3.2 are contours o f permeability ratios in horizontal (.v) and 

vertical (y) directions, respectively. It can be observed from Figure 8.3.1 that the 

horizontal permeability increases around the borehole crown area and decreases around 

the sidewalls. Figure 8.3.2 indicates that the vertical permeability decreases around the 

borehole crown and increases around the sidewalls. Figure 8.3.3 shows the horizontal 

permeability variations around the borehole due to stress changes induced by the hole 

e.xcavation. In this figure, the permeability increase zone refers to changes exceeding 1.3 

o f the original permeability, and the permeability decrease zone refers to changes less 

than 0.7. Figure 8.3.3, the permeability increase and decrease zones are clearly 

determined. Figure 8.3.4 gives the vertical permeability increase and decrease zones.
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Figure 8.3.3 Permeability variations in the .v-direction in the fractured formation due to 

borehole excavation.
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Figure 8.3.4 Permeability variations in the y-direction in the fractured formation due to 

borehole excavation.
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8.4 Rock Comminution

There are two types o f rock failures, one induced by bit indentation; the other caused by 

the bit dragging or shearing. The present study concentrates on the rock indentation by 

the drilling  bit. Figure 8.4.1 is the finite element mesh used to analyze the interaction 

between the bit and the formation. Plane stress conditions are assumed to be valid. Two 

cases were examined, one is the normal stress regime; the other is the tectonic stress 

regime. Applying Mohr-Coulomb and tensile failure criteria, assuming that the 

compressive strength o f the formation is cr, = 20 MPa, tensile strength is T = 0 MPa. A ll 

other parameters are sim ilar to those given in Table 8.2.1, the shear and tensile failure 

areas due to the cutter loading in different stress regions can be obtained from the finite 

element model.

Figure 8.4.3 presents the formation shear failure in the case when the cutter loading is 

40 MPa. It is obvious that the shear failure mainly concentrates on the downward o f the 

cutter. Figure 8.4.4 is the formation tensile failure in normal stress region for the cutter 

loading 50 MPa. The tensile failure also occurs in downwards o f the cutter.

Distance from cutter center (r/IOR)

-0.8 -0,6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

o

•0 ,2 *

c  - 0 . 8 -

i c

Figure 8.4.1 Finite element mesh for drilling bit cutting problem.
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Figure 8.4.2 Stress con Migration for the bit and rock interaction in normal stress regime.
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Figure 8.4.3 Formation shear failure area around the cutter in normal stress regime for 

cutter loading 40 MPa at t = 100 s.
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Figure 8.4.4 Formation tensile failure area around the cutter in normal stress regime for 

cutter loading 50 MPa at i = 100 s.

The other case is the rock cutting in a tectonic stress regime, as shown in Figure 8.4.5. 

Figures 8.4.6 and 8.4.7 show the formation shear and tensile failure due to the cutter 

loadings {p = 40 MPa) at t = 100 s. It is obvious that the maximum shear and tensile 

failures concentrate two wings o f the cutter and there is basically no failure to occur in 

the cutter downward direction.

It can be concluded that the state o f stress has a significant impact on the rock 

comminution. When rock cutting is performed in a normal stress regime, the rock shear 

and tensile failures concentrate downwards; however, in a tectonic stress regime, the 

rock shear and tensile failures are located on two sides o f the cutter (Figure 8.4.9).
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Figure 8.4.9 Schematic diagram of formation failure around the cutter in tectonic stress 

regime.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

The naturally fractured reservoir was modeled by using a dual-porosity poromechanics 

approach, in which rock matrix and fractures have different mechanical and hydraulic 

parameters. Using separate and overlapping rock matrix and fractures models subjected 

to double effective laws, in which deformations and flu id flow in the matrix and 

fractures are fu lly  coupled, the dual-porosity formulation was presented. The finite 

element numerical method was applied to solve the coupled equations. The solution was 

validated by comparing with a consolidation problem and by validating elastic and 

single-porosity analytical solutions. Wellbore problems were examined and dual­

porosity borehole solutions were given for different boundary conditions in naturally 

fractured reservoirs. Through case studies and example applications, it was found that 

the developed numerical model was a powerful means to solve different and d ifficu lt 

problems in petroleum engineering as well as in other engineering areas. The major 

conclusions drawn in this dissertation can be summarized as follows:

1. Using the separate and overlapping model, the governing equations for solid 

deformations and flu id flow in dual-porosity media were presented as a model 

for naturally fractured porous media. The solid deformation, flu id flow and 

transfer between rock matrix and fractures were fu lly  coupled.

2. Applying dual-porosity poro-mechanics and generalized plain strain theory, a 

windows-based pseudo-three-dimensional finite element software, which can 

generate automatically the finite element mesh and give graphical outputs, has 

been developed for simulating inclined borehole stability and flu id flow in 

naturally fractured reservoirs. In addition, a finite difference software was
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developed to model non-isotheimai consolidation problems in elastoplastic dual- 

porosity media.

3. As one o f the important application areas, wellbore problems were investigated. 

Through stress conversion and transformation as well as fluid mudweight 

considerations, the finite element solution was shown to be suitable to model any 

directional borehole with different boundary conditions.

4. The developed numerical code has been extensively verified by considering the 

known solution o f the one-dimensional consolidation problem and by validating 

wellbore problems with known elastic and poroelastic analytical solutions.

5. The developed code can be used for simulating different mechanical problems 

including elastic, steady flow, single-porosity and dual-porosity problems.

6. Parametric analyses showed that neglecting any one o f fracture deformation, 

poroelastic and dual-porosity effects, the pore pressure near wellbore w ill be 

underestimated. And, the non-monotonic pressure distribution and tensile radial 

stress occur at a small distance inside the borehole wall at small times, which are 

attributed to the poroelastic effect. The tensile stress induced by the poroelastic 

effect is an incentive factor o f borehole outburst failure, or spalling.

7. Several failure criteria were incorporated to the finite element model in order to 

simulate different wellbore failure types. They included the compressive, 

spalling, fracturing, shear and collapse failure criteria.

8. The case studies showed that the lower deviational or vertical boreholes are 

more stable in the normal stress regime. However, in a tectonic stress regime the 

higher the borehole deviation, the more stable the boreholes.

9. The horizontal borehole drilled parallel to the maximum stress direction is more 

stable during both drilling  and production in a tectonic stress regime, which is 

not coincident with traditional d rilling  guidelines. D rilling  in this direction also 

allows a single fracture parallel to the borehole to be generated during 

stimulation, since natural fractures are usually perpendicular to the present-day 

minimum horizontal stress. In a normal stress regime the horizontal borehole 

drilled parallel to maximum stress direction is more stable during open-hole 

production.
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10. When a borehole penetrates a pre-existing fault, failures occurred not only along 

the local minimum stress direction, but also near and in the weak rock region. 

And, fracturing induced by high mud pressure appears mainly in the weak rock 

zone because it has a much lower tensile strength and mud pressure can 

penetrate easily into this highly fractured formation.

11. The impermeable mudcake provides a better support to help consolidate the 

formation and stabilize the borehole, this is critically important for a borehole 

drilled in an unconsolidated formation.

12. Stress-dependent permeability was studied and permeability variations induced 

by stress changes due to the borehole perturbation was examined. The results 

indicated that the skin factor is not a constant around the wellbore.

9.2 Recommendations for Future Research

New simulation and computational methods appear, which challenge current technology 

in petroleum engineering and push continuously progress. Also, new problems and 

challenges are met in the field. Under those circumstances, research methods and 

simulating tools on wellbore stability as well as reservoir simulation need to satisfy new 

requirements. The future research in wellbore stability should include the following 

aspects:

1. Incorporate temperature effects in the coupled dual-porosity equations for deep 

formations where such effects cannot be neglected.

2. Incorporate chemical effects in the dual-porosity equations for chemically 

sensitive formations.

3. Extend the current model to multi-phase fluid flow problems.

4. Extend the present model to elasto-visco-plastic and other mechanical models to 

make it solve more complex formations.

5. Incorporate the effect o f non-Darcy flow, particularly for flu id  flow in fractures.
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6. Improve the code interface to make the software more user-friendly, and extend 

the software to real three-dimensional solutions.
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Appendix A

Terms In Finite Element Matrices

The following equations are the terms o f the finite element formulations given in 

Chapter 4:

K  = (A .l)

R . (A.2)

R , = B^D„fCf,mMJS2 (A.3)

L , = 1  f V \ r k ^  VM dQ  (A.4)
/J.

L , = -!- f  V M ^k . V M d n  (A.5)- f_i Jn

N , (A.6)

N , = (A.7)

Q = - r< ;f\rM c /r>  (A.8)
JU

M .= « ™ £ N "D „ ,C „ ,m B ^ Q  (A.9)

M , = (A. 10)

f  = | N f V r  (A. 11)

Q m a  =  1 - )

q,, = (A. 13)
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Appendix B 

Invariants of the Stress and Stress 

Deviator Tensors

There are three invariants o f the stress, three invariants o f the effective stress, three 

invariants o f the stress deviator, and three invariants of the effective stress deviator in 

poro-mechanics. These invariants used in Chapter 4 and Chapter 7 are listed as follows:

•  Invariants o f the stress

/, = o „  = 0 ,  +0^ + a .  (B .l)

/ :  = +(T.(T, + (T/T, -  r ;  -  r ;  -  r;, (B.2)

+ 2 r ^ r ,J , ,  - o r j ;  - c r j i  - a j l  (B.3)

•  Invariants o f the effective stress:

/ '  = o ' = o ' + o ' + o !  (B.2)

/ :  = «  + «  + o -> ' - f n  (B.3)

f'y = + (B-4)

Invariants o f the stress deviator:
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V, = .v„ = 0 (B.5)

^ :  = = ^ [ ( 0 - , - c T j - + ( o - , - o - . ) ' ]  + r ;  + r ; + r ,  (B.6)

•̂ 3 ~ ~ ^ S \: ~ ‘̂ :^rv (B.7)

where .Vy is the deviatoric stress, .v,̂  = i „ .  -i', = (2 o , -  a^ - o . ) /3 ,e tc .

Invariants o f the effective stress deviator are same as the invariants o f the stress 

deviator.
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Appendix C 

Terms in Eiastopiastic One­
dimensional Consolidation

The follow ing equations are coefficients o f the one-dimensional elastoplastic 

consolidation formulations in Chapter 5:

'' 0,-,C-cr,- . '

i:

H(ü

k,

■?u =
H r.

+ a,h\

A,,7,:

= ■
k.rjr.

nr.
+ Ç5,

Si, =
HCÜ

k.

/tD|-,C,C,or,y3,

(C .l)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

( C . l )

(C.8)

(C.9)
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Appendix D 

Stress-dependent Permeability in 

Fractured Media

D.1 Introduction

The fractured rock mass can be described as a composition o f series o f blocks o f intact 

rock separated by natural fractures. Fluid flow through the rock mass is determined both 

by the properties o f the rock matrix and the fractures. The rock matrix usually has such 

low permeability that the fractures are dominant and tlu id flow occurs mainly through 

fractures. Conceptualization o f flow  in a single fracture can be given through the parallel 

plate analogy where a fracture is idealized as a planar opening having a constant 

aperture. The magnitude o f permeability o f a single fracture, parallel to its plane, is the 

given by:

k, = —  (D . l. l)
'  12

where b is the effective fracture aperture, and X:, is the fracture permeability.

The permeability o f a set o f parallel fractures is constant in every direction parallel to 

the set and its magnitude is given by:

r'y

(D.1.2)
12.9

where is the set permeability, and .v is the mean fracture spacing.
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The permeability change in the fracture set due to the aperture change can be 

expressed as follows:

, (b + Aby' 
k =

(D.1.3)

b

where k is the permeability change due to the aperture increment Ab, and ko = Ir/I2 s .

W ith changing stresses, the aperture, the relative contact surface area and the degree 

o f asperity contact o f a fracture change. Thus, flu id flow through fractures and the 

subsequent permeabilities o f the rock mass are directly related to stress and resultant 

deformations. A lot o f in-situ and laboratory experiment results have shown the flow 

through fractured rock to be highly sensitive to changes in effective stresses. Various 

authors have proposed many models to describe the variation o f fracture permeability 

w ith stress. In the present study, fracture aperture and permeability changes due to three- 

dimensional stress variations in the fractured media are studied.

D.2 Permeability-stress Relation in 
Fractured Media

In order to determine stress-dependent permeability in fractured media, both the fracture 

aperture variation and the rock matrix deformation need to be considered. To derive the 

permeability and stress relation, an idealized three-dimensional regularly spaced 

fracture-matrix svstem is assumed, as illustrated in Figure D.2.1.
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Figure D.2.1 Coupled fracture-matrix system with stresses.

The change o f total displacement along .v-direction is the sum of the fracture 

displacement change and the matrix displacement change; i.e.

A«„ =  Ah ,, + A h ,, (D.2.1)

where A i i , x .  An/,, and A h „  are the displacements o f total fracture-m atrix system, fracture 

and rock m atrix, respectively.

Therefore, the displacement across the fracture can be obtained by:

Aff,. =  A h„ -  Ah ,, (D.2.2)

The above equation can be expressed as the strain form:

A h „ = ( x , + 6 ,  )A f„  -  .v,A £ , (D.2.3)

where .s\ and are the fracture spacing and aperture along .v-direction, respectively: A f„  

and ASrx are the total and matrix strains, respectively.

The total strain along x-direction can be obtained according to Hooke's law:

A f „  = —5—[act, - i/ (A ct, + ACT.)] (D.2.4)
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where is the Young’s modulus o f the rockmass in .v-direction.

According to Hooke’s law, the matrix strain along the .v-direction may be discribed by:

A f,, = — [A(T, -v (A c t^  + A (J .)] 
E.

(D.2.5)

where, Er is the Young’s modulus o f the rock matrix.

Substituting Equations (D.2.4) and (D.2.5) into Equation (D.2.3), one can obtain the 

change o f the fracture aperture due to the stress variation; i.e.

A//,, = + 6 .)  -y. '

E.
[act, - i/(Acr^-t-A (J.)] (D.2.6)

The Young’s modulus o f the rockmass (E,,») related to the properties o f the intact rock 

matrix and the fractures can be expressed as follows:

(D.2.7)

where K,u is the fracture normal stiffness in .v-direction.

Substituting Equation (D.2.7) into Equation (D.2.6), the fracture displacement in .v- 

direction can be obtained:

= K.. E,
[a c t  ̂ -  v'(A <7^  +  A c t . )] (D.2.8)

The fracture permeability in the direction perpendicular to .v-direction can be 

calculated directly from the parallel plate analog defined in Equation (D.1.3). With 

reference to Equations (D.2.8) and (D.1.3), the change of fracture permeability may be 

evaluated as:

247



=^'ü: I - K „ s ,  E ,b,
[a c t , - \ / ( A ( T ^  +  A c r j j i  ( D . 2 . 9 )

where koz and k- are the permeabilities along c-direction before and after stress change, 

respectively.

The generalized permeability-stress relation may be written according to the above 

equation:

1 *
AT,,.,

where km and kk are the permeabilities along /(.--direction before and after stress changes, i 

-  .t, y. c; j  = y. .v. i = .v, y; / #  y #  k.

Only one set o f fractures is examined in the above analysis. When three parallel 

fracture sets exist in the .v-. y- and ^-directions, respectively, permeability changes along 

(r-direction may be written as:

[act, -i/(Acr^ + A c r j]

+ - [a c t  ̂ - vT A ct, +  Acr^ ) ]

(D .2.11)
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