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ABSTRACT

The energy-momentum and angular momentum emission rates for an
arbitrarily moving charge (whose speed is less than that of light in the
medium) in a uniform transparent medium are calculated in manifestly
covariant form. The calculations are executed for three types of stress
tensors: Minkowski, Abraham and Marx. Among other things it is found
that the energy-momentum emission rates for the latter two tensors are
equal and differ from that of the former. Further, the angular momentum
emission rates for all three tensors are found to be equal. Only for the
Marx tensor is this rate independent of the orientation of the associated -
asymptotic space-~like surface.

Then, the calculations are extended to a dyén of electric
charge e and magnetic charge me It is shown that all three tensors iake
the same form as those of the electric charge case except that e2 is
replaced by e2+(€/u)m2. Thus, it may be concluded, as far as radiation
‘ is conperned, that a magnetic monopole behaves like a charged particle of

effective charge (&/4)%m.
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COVARIANT ELECTRODYNAMICS IN A MEDIUM
CHAPTER I

INTRODUCTION

Background

The treatment of electrodynamics of systems where a medium is
present has given rise to a long-~lasting discussion in connection with
the construction of the electromagnetic stress tensor. Some authors took
a microscopic line of approach in constructing the electromagnetic stress
tensor. De Groot and Suttorp developed a macroscopic electromaénetic
stress tensor from the microscopic point of view, henceforth designated
by a subscript G:1

T =1/ 40 )(F e 2 B (/6 0 g Ve 7 )

where the antisymmetric field tensor F* is composed of the electric
field E=(F4',7%%,747) and the magnetic field B=(7°,F ,F'°); the anti-
symmetric nolarization tensor Mﬂw ig defined by the electric polarizafion

P=(i1'4,1%4,1°%) and the magnetic polarization M=(M%2,M° il 2); E*=F4-

1S. R. de Groot and L. G. Suttorp, Foundations of Zlectrodyna-
mics (Amsterdam: North-Holland Publishing Co., 1972), Ch. V.

1
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4V cf%=g/41(1/c2)v”v”; V¥ is the 4-velocity of the medium; and the
metric is given by g*’=diag(1,1,1,=-1).

Another example of the microscopic approach to the construction
of the macroscopic stress tensor is that of Peierls, designated by P:2

SE=(1/4m)L{(w/e) 3e(1-u?/c?) iE -nEe

+3g ™ f1-0(1-u%/c?) 223K (1,k=1,2,3) (1.2)
where ¢ and u are speeds of light in vacuum and in the medium, respec-
tively, and T=0=1/5.

Bven though the microscopic approach is advantageous from a
fundamental point of view, the macroscopic stress tensor obtained in this
way consists of terms in which the material and field parts are co-
related in such a complicated way that there is no unique way of sorting
the field part out of the total stress tensor. For example, the total
stress tensor presented by de Groot and Suttorp is composed of many terms,
among which eq. (1.1) is the only term that depends, in its explicit
. form, exclusively on the macroscopic fields, polarization and velocities.

The macroscopic approach, though less fundamental than the mi=
croscopic method, has the advantage over the microscopic method of being

3

closely related to observation.

2R. Peierls, F. R. S., "The Momentum of Light in a Refracting
Medium,” Proc. R. Soc. Lond., A37 (1976), pp. 475-491.

3For a fuller discussion of this matter, see, for example,
I. Brevik, "Electromagnetic Energy-iomentum Tensor with Material Media,"
Danske Vidensk. Selsk., 27, no. 11 (1970); 37, no. 13 (1970), and I.
Zrevik, Experiments in Phenomenological Electrodynamics and the
Electromagnetic Energy-riomentum Tensor (Norway: Universitr of Trondhneim,

1978).
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Some of the electromagnetic stress tensors obtained by macro-
scopic methods are:

Minkowski: T§”=(1/4ﬂ)(F”"H;'+%g”pF“€Hap) (1.3)

Abraham: TZ”:TI‘,‘I”+(1 [4mp) (1 [au) Q(F“"‘Ie;x f Vg 't

e VU VAV /c?) (1.4)
Marx: T&=(u/c) 2Ty ~(1/490) (1 Ja) {77 et v
VA (e ¥ Vay Ja2ulsiTt Fap Mo (1.5)

Einstein-Laub:

k

etpRatsR-22t5(8240%), (1/c)ExH )

15 =(1/4m) (1.6)

(1/c)ExH, wundefined
where u2=(1—u2/02)"1, and # is magnetic permeability of the medium.

The purpose of the present work is to apply some of these
tensors--linkowski, Abraham and Marx-- to calculate the asymptotic
energy-momentum and angular momentum emission rates for an arbitrarily
moving charged particle, whose speed is less than that of light in the
medium, in a uniform transparent medium. Then the calculation will be
extended to a dyon. We will calculate the field tensor and the electiro=-
magnetic stress tensor for a dyon of electric charge e and magnetic
charge m. Then it will be shown that the dyon behaves like a particle
of effective charge e(1+sm2/4e2)%.

It is, however, not intended 1o discuss the merits of one
tensor over anotiher. Ye are interested in developing a macroscopic
formulation of electrodynamics in the presence of a medium that paral.

4

lels the modern formulation of electrodynamics for the vacuum case.

4See, for example, F. Rohrlich, Classical Charged Particles
(Reading, Mass.: Addison-Wesley Publishing Co., Inc., 1965).
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Towards this end we will make extensive use of a paper found
elsewhere.5 In this paper a covariant formulation of electrodynamics in
a transparent, uniform, boundaryless medium with constant permeabilities,
¢ and 4 in the medium rest frame, is developed. As part of this formu-
lation the relevant Maxwell's equations were found as well as an
explicit expression for the field tensor-~due to an arbitrarily moving
point charge--expressed in terms of the charge's retarded kinematic
properties.6

As the present discussion will draw heavily on certain portions

of Cohn's paper, we first briefly summarize relevant results in that

paper. Maxwell's equations take the form

r~

T4 0P = (1 faw) 4, (VFR VO, = dep o) 37 (1.7)

2=02/gu; in the medium rest frame, henceforth denoted by a

where u
naught subscript, J{B)=(i’°f)(o)’ and
o o (1.8)

where F#4” ig defined as

P56 5, (1.9)
and
F.‘/x"u —Eg/agvpl?‘*“'ﬁ (1.10)

5J. Cohn, "Covariant Electrodynamics in a Medium, I," Annals
of Physics, 114 (1978), pp. 467-478.

6Covariant formulation of Maxwell's equations similar to this
are found in many standard works of electrodynamics. See, for example,
L. Sommerfeld, Zlectrodynamics, Lectures on Theoretical Physics, Vol.
III (Hew York: Academic Press, Inc., 1952), Pt. IV, or W. Pauli, Theor;
of Relativity (Oxford,London, lew York, Paris: Pergamon Press, 1958),
PP. 99-104. In their treatment, lMaxwell's equations take the form
B4 ,5=(4m/c)J*, and ™, =0, And when arriving at this result, they
agssumed that H#” follows the Lorentz transformation.
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Thus, M*4/, in the medium rest frame, is

0, B,, =E., 3

3’ 2, 1
£, 0, B, B

F*z‘gf » T v (1.11)
E2’ -E1, O ] B3

=By, =By, =Bz, O (0)

The £ and u entering here are the rest frame values,
In the case of a point charge moving arbitrarily in the medium,
these equations were solved in a manner very like that in the vacuum

case to give

P =(2e4/en)[ (1/p2) 77 a7 VL TR

ry VFY TR ()[BT - EIHYT Loy (1412)

where: 6% 87 =5(* 1”6”8 ; as(u-c)/c3; v* is the 4-velocity of the
particle; V{B)=671,7u)(O)=(v“-Av’V;Vﬂ)(o); %{6)=(Vz,7c/yc)(o)=
(vﬂ-(ﬂ/é#cz)vdv V#)(O); 54=d%*/dt and ¥“=d¥*/dt, where dT denotes the
proper time interval, and c2ar?=cat-as?; ; R(O) (x—z,lx—z;)(o), where
X and z denote the field and particle locations, respectlvely;_f is
defined by the relation, ﬁd’\‘r; ==fu; p=1=843 (72=(1-V2/02)_1; and

N =Ry = B, 7, ) /(Fa) (1.13)

Before being able to carry out the calculations we are ulti-
mately interested in, we must first briefly mention certain basic

relations that will be used over and over again. Towards this end we

devote the next section.

Preliminaries

As in the vacuum case, we define R(E)=(575,0At)(o),.yhere st
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ig the time required for the wave in the medium to go from 2z to x. Then,
we may write Rf%fm(Uﬂ+V”7u)(o), where U{B)=(§,O)(O) is a unit position
vector in the medium rest frame, and f is just lgrg((o). Thus,
REP(UA+V¥/u) (1.14)
Recalling the definition of ¥*, we then have obviously,
Rep(u"+v%/e) (1.15)
Further, from the relation, 'ﬁdV; ;ﬁ.’v‘:-c?, we have that

N =(p fuf) (TAuv?/c?) (1.16)

By direct calculation, we now have the relation,

Vove=7c? (1.17)
and thus

FAvAar VA2 (1.18)

Similarly,

Pty iy o oT4 (1.19)
and

V. ¥==%uc (1.20)

Again, from the general form for a“, we have, by calculating

in the medium rest frame,
V' ausv.a::—frd’w_r._a_. (1 '21)
where v and a2 refer to medium rest frame values.

Similarly, we have the additional relations,

e pVoaT*  Fa’(1/nc) Va7 (1.22)
and
U%=U.%=U.v, U.3=0.3=U.a (1.23)

Further, we have
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%.%72112(1/4 2_4 /1/2) , Fod=—(7/x 2) (2-1 /az)v.a (1.24)
where'ﬂ2=(1-v2/u2)-1.

Direct calculation now gives

R.E=p(U.aruv.a/c?)=Futea (1.25)
as well as

NU=s/uf, NoVemp/F,  Ab=@P/utup? (1.26)
and also

ha=(p/uF) (VoaruVoa/c?), N3=(p/uf)(U.aru’V.a/c)

A.§=(P/u?)(U.a+u3V.a/c4), Nev=(P/uf) (U.v=ru) (1.27)

N¥=(p uf) (Uav=ru/c), NFamts1/a’F

We finally mention that we shall choose our co-ordinate
system—-in the medium rest frame--so that v is along the 3-axis; a and
v define the 1-3 plane; the angle between v and r is called &, and the
angle between a and v is called 3.

Thus,

g;vko)=(0,0,v); g;g(o)=(a.sin§, 0, 2.cos¥)

U(6)=(sine.cogf,sin@.siqf,cose, 0) (1.28)

a(B)=(72a.sin§, 0, =V.a/v, =V.a/c)

With these preliminaries out of way, we are ready to begin

the calculations proper.



CHAPTER 1II
EMISSION BY A CHARGE
Calculation of Stress Tensors

There seems to be several reasonable candidates for the elect-
romagnetic stress tensor in a medium: In this work we shall consider
the Minkowski, Abraham and Marx tensors,7 and shall calculate asymptotic
emissions for each. In this section we shall find the expressions for
these tensors explicitly in terms of the charge's retarded kinematic
properties.

Minkowski. Before we begin the calculation of any of these
tensors we first note that one can substantially simplify the expression
for the field tensor as given by eq. (1.12). This follows from the
observation that-=by direct calculatione-

¥ v, v =0 (2.1)

and also
P VAV WV F=02c (1 /2= 2) (2.2)

Thus, we have the simpler expression

F*=(2ep/cu){ (1527221 / 2-1/<r2)$[7\‘g+(u/f)(§°"/1“j-/1.a’wﬁ“’)} (2.3)

7

I.Brevik, op. cit., discusses the merits of the various tensors.
8
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Now, we take the Minkowski tensor as

T£”=(1/4wﬁ)(F”‘§a”+%g"”F'('d§¢ﬁ ) (2.4)

In arriving at the final form for the expression of this tensor
we shall present the calculations in some detail. We will then feel
justified in presenting the similar calculations for the Abraham and
Marx tenscrs much more briefly.

We begin by expressing'ﬁﬂy in terms of P according to the

equation

P8/ v (V%) (2.5)

Then we have

™ =(1/dap) [P +(1b(u)2(FWF”BVdV;, -F/#]%“Z, )
e (P05, - @) FeE Ty )] (2.6)
We now substitute the expression for A given by eq. (2.3)
into the above, giving a somewhat lengthy expression. We exhibit a few

of the "pieces" explicitly. For example, we find that

# 5, (/o0 2[4 Y (1 1y BN (s p - P 5 5D)
+@ 2Pl 0) P N (=1 S 475 f 5P
+v.a(f/o(2cz§ +YP 2/o<4u2332)} (2 2){ 207 /oY 5Y2 (M 1a)?

47f2/a4u F2(Veahea) ~(2p%k4ct5?)(V.0)?
+(29% %) (5.5)} ] (2.7)
and also that

Fﬂdvg=(e#/cu)[(404?)2(1ﬁ¥2-1/12)(-7u%N“ ff%ﬂ/”)
+(u/p Y (5B v B N a1 45750} ] (2.8)

We also find that
of_ v

F“PF,,F ~(2/%a®)FE, Vg Vy ==2(eAfcn) (7 c/) (1 /P12 F (2.9)
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From these expressions and others we then finally obtain the

form

o' =(1/a) (epfen) (7o) (1 P11 2
+72c2u/J’-?'3(1/42-1/72)B”v+(u/]>')20/‘p3 (2.10)
where )
2 rafr) 2P =W -1 ) (e 16 Y
DD W3 (2.11)
B ==27(V.a/x 2+7(u/7" ) 24 AW H( AR 2’“)4—/! .a(A”$V+Au %’u)
+(1/an) 202 Y8V (1 fuw) 2(P 5 ) A ¥
(V) p . a(=ruBear?up 45 ) v a(ul P 2np f AR (2.12)

=] BE(rup)2(Ma) 2BV ahak e (aV e c?) o Aﬂ(/\”zn"/g)
2.1

The above is the form for the Minkowski tensor expressed in
terms of the particle's retarded kinematical properties.

Abraham. We take Abraham's tensor to be

) =1l (4 Japa®e®) (74, 2 v”-%zfg B v v) (2.14)
And by a similar calculation to that for the Minkowski tensor,
we find that
<1/t ) (e o) (7o) 12117220 u (ufp) 26
2Pl (10211728 ) (2.15)
where
Y VS RV R e CL RS T R
g (2.16)
P (P +p 2V I PuP %) (BB wtea )
+2¥V. 8l o Pr(uVeak c2)2)  (2.17)
EW=-27(V.a/o(2+7u2A.a/r’z)/}"/ly +(,{/‘az,y+/l’)5_.ﬂ)+/l.a( VY s

2 2» ,v2p2,,2 2,242 2P 2P,
.V#V’P\.a(-fo’/d c P+ PB Y F )+V.a(;%-,u—-?‘+d,t“?) (2.18)
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Marx. For Marx's tensor, we have

ngl):T)S’ﬂ:(u/c) 2[fl.*r’,f"_-( 1/ g 22y vy, f v
274 (F“FE 7v;8 \ 202,377 % )}] (2.19)

Again, by direct calculation, we find that

2=(e%u/tnet){ (7o /)41 b 2=1/nP) 2 (w/f) 2
+ 72c2u/;3)(1/u2-1/72)x/’”} (2.20)

where
B (/e KT =(P [P0 (7 43°V
~(7/a2)(1=TH2) (P [F) A VPRV
w(VA/2020%) (1-4 3P/ +27 %P P 5 %2 ) -2 (2.21)
Kﬂy=-22ﬂefl(V.aﬁx2{?u2ﬁ/2)ﬂ.g}(«”§P+A”§ﬂ)+A.aL«”%U+A”$F)
+( Pl 2% (HVr 2V 1 (2 fPu%F) Ao a(FHEF VA
~(1/xu) 2(A4 V”+}1”V"){ u2(1-27PF25) N carVaa(1-1 k242 77/ )}

(2Pt PV TN a1 2P h FIe(Vaafa®) (1 /uzm"(fg%%

(2% PP 2B (rutafy) 2 20Veaheafx?
+(uV.anc2)2} (2.23)

For future reference we briefly comment here on the charge-

free 4-divergences of these three tensors.

' . ~ u¥
We first note that, from the definition of ¥ (eq. (2.5)),

we have that

Fo‘ﬁi;dﬁ,y=§a¢Fdﬁ,U (2.24)

and therefore that

T{,I”’,p:—:o where J° =0 (2.25)
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We note here, however, that TI{IW,/(#O, due to the lack of symmetry
of the tensor.

Using the relation, eq. (2.24), one similarly shows that

T =(1/amprPa) (B4 Py e ¢y v

~(2/*)F yB V) (2.26)

which is not identically zero.

And finally, for the Marx tensor, we obtain, in the charge-
free case, the relation

74" w20 (2.27)

Energy-Momentum Emission

We are now ready to calculate the energy-momentum asymptoti-
cally emitted by an essentially arbitrarily moving charge in a medium.
The only constraint on the charge's motion is that, at all times, v< u.

Before making this calculation for the three tensors, we pause
to rather carefully discuss the involved concepts.

In the vacuum case we define the asymptotic energy-momentum

emission as8
A 'Y
AP _},3.;2 (1/c()6£;1' dg; (2.28)

where, as shown in figure 1, (49) is the space-like annulus trapped
between the relevant light cones, at proper time T and T+4T, In this
case we can replace the integration over (A®) by one over a time-like

"ribbon" surface (also indicated in figure 1) which is constructed to'

8See, for example, F. Rohrlich, OD. cit.



135

ct

ribbon

light~cones

Fig. 1. Vacuum asymptotic surfaces involved in energy-

momentum and angular momentum emission
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be parallel to the charge's retarded 4-velocity v*4 This replacemeht is
possible since T‘“ﬁy:O in charge free space here and because the contri=
bution coming from integration over the relevant light-cone portion

vanishes as P»x. One thus ends up with the familiar expression
Afse s
aP4/de= fl’.g.glsfl‘/wu,,?zdﬂ (2.29)

for the energy-momentum emission rate. And finally, the above statements
also imply in this case that the energy-momentum emission rate is inde=-
pendent of the orientation of (4¢),

In the case where a medium is present we must be careful as
some of the above statements may no longer hold. We begin by defining

(see figure 2) in general, the asymptotic energy-momentum emitted as
K. My

AP =Lim (1/c)}T ag; 2,30

Lip (1/0)]1" a5 (2.30)

where (A0) is the space-like annulus trapped between the relevant
"u—cones"g, at times T and T+aT,
) wo - ) . .
Now, in case T” ,y=0 (as with TM ) we can again integrate
over surfaces other than (AC), So we again introduce (see figure 2) a
time ~like ribbon surface which, however, is to be parallel to V*L
(rather than v#as in the vacuum case) for ease of computation. The

expression for AP* then becomes
- . v t AV u
AP”‘:;%n (1/e){-f2* a0 )+ST do;;( ) (2.31)

where d(;%t) and dxﬁﬁu) denote, respectively, the vector area elements

for portions along the ribbon and along the u-cone, and where dq;(u) is

9We mean here, the analogue of the light cone; i.e. the wave
surface as it propagates through the medium. The equation of the u-cone
is given in Appendix II.
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Fig. 2. Medium asymptotic surfaces involved in energy-

momentum and angular momentum emission.
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future pointing and dq;(t) points away from the retarded charge. In
obtaining the signs in this equation due account must be paid to using
the appropriate "indicators" in Gauss' 1aw.10

In this case (i.e. where p#’,,=0) there is still a problem if
the contribution coming from the u-cone does not vanish as f-» », For
then, the expression for 4P* will depend on the orientation of (A%), a
rather unwelcome prospect. However, since a medium is present we will,
in this case, choése-@baﬁ to be the preferred annulus orthogonal to VA4
If, on the other hand,the u~-cone portion vanishes, then we may
choose any space-like orientation for (£9), We shall find that, for
both Tgu) and Tgw , the u-cone contributions vanish, so that for these
tensors, the orientation of (407) is immaterial.

Again, in case that T‘”ﬂy#o, as with Tﬁ” s there is no point
in introducing otﬁer surfaces and so we shall integrate directly over
(40%). We will learn, however, that even in this case the result is the
same as if we had introduced other surfaces. Finally, in this case we
also see that AP* will depend on the orientation of (A0?), which we then
choose to be the preferred direction oxrthogonal to v4

It is shown in Appendices I and II that the expression for the

surface elements are, respectively,

do;,(t)= ,#F dacdr (2.32)
and

ag (“)zufzﬁ, d0cdt (2.33)

10

See, for example, J. L. Synge, Relativity, The General Theory
(Amsterdam: North~Holland Pub. Co., 1960), T. 46.
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where dﬂ:dﬂzo) is the invariant solid angle in 3-space.
Therefore, for a stress tensor ™ such that T/DZyEO, in charge

free space, we have
. ~ ~2
dPA/d‘C=’]§.gl (1/e){ =1y, cgf a0 +f 1§ ca 2 § (2.34)

We are now ready to calculate the energy-momentum emission
rate from the three tensors.
Minkowski. As can be seen from the above equation, we only
need be concerned with terms of orderj‘@'-2 in Tﬁ”). We denote such terms
Yy
as T(-2)o
From eq. (2.10) we then have
Y mf %
0 =(#e2/41702)(1/§2)(/(“R”/uf){-a..'gr(‘/u/\.a/ﬂ)Z
M(-2)
+(27/5®)V.aheas(uv.afac?)?} (2.35)
We immediately note that TA“) A, =0, since R*Ay =0, indicatin
Y M(—2) )y =U, i =Uy ing
that the u~cone contribution to the radiation rate vanishes, so that the
associated emission rate is independent of the orientation of (s0~) in
this case. Therefore, for the Minkowski case we only have to consider

contributions from the ribbon surface. Concerning this expression we

can write
2 4 M 2

M( 2)Uy-(/‘le [awc®a®)2(82 /54 (Vv ?/c?) (2.36)
where we have used the fact that R.U=f, and f denotes the quantity in
parenthesis in eq. (2.35)

Thus, we can write the emission rate in the form

]
8By ar=-(#e?/avcu?) (3 ruav’c?) (2.37)

where

35 (p/p) r0fa0 (2.38)
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and
={(e/p)%a0 (2.39)

The evaluation of these quantities is very lengthy and we just
present the results here. The relevant integrals used in the calculation

are tabulated in Appendix III.

We find
a=(41/3)0"49°)[ (38 Brara)+D(V.a/v)? ] (2.40)
where ,
12272 fu 27246 fuP=3 Jox b=t fo 2% 3 fo B2 (2.41)
and

B”:(4ﬂ/3)(f4/73u)[2V.aa@+(-3§.§;a.a)(vﬂ77-vf
+(V.a/v)2{vix2+D)/7-V/?2/72+D1ﬁ] (2.42)

Thus, we finally have

dPﬁth:-Cde%’4/37302u5)[K-3§.§+a.a)(v’71-VA%x2)+2V.aa“
+(Vea/v) 4 (240) vy vl 2 2D l®)F ] (2.43)

as the expression for the asymptotic energy-momentum emission rate in
the Minkowski case, whére terms on the right hand side take their re-
tarded values.

It is interesting to compare this result with that of the
customary vacuum case. To achieve the vacuum situation we must set g£=1,
#=1, « =o and )’=Y. Further, as the ribbon surfaces used in the two cases
are defined with respect to the retarded charge and with respect to the
medium, repectively, we must require that vA=V4, This, of course, implies
that the retarded velocity of the charge relative to the medium is zero,

so that V.a=0 in this case. We then obtain the relation
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(@4av) . =(267/30%)a v (2.44)

which is the customary Larmor expression.11

Finally, it is informative to note that the expression, eq.
(2.43), for the radiation rate does not imply that the energy emission
rate, dB/dt, is an invariant, as it is in the vacuum case. We can see
this as follows: To make the case simple, assume that, in the medium
rest frame,the charge's 3-velocity and acceleration are orthogonal.
Then V.a=-74z.g.=0. Now, setting #=4, eq. (2.43) yields

F/'dE/dt:—(#ez/Eczus)[(-3§.’.§+a.a)(7c/<7-7c/><2}y’4/73)] (2.45)
where 7=(1-w72/c2)'% refers to the velocity Vv of the charge relative to
the arbitrary frame under consideration, and involves the .velocity of
the medium in this frame. We note that ¥#%5, as the charge is moving
relative to the medium in this case. Thus, dividing through by & leaves
a term, namely, ¥/5, on the right hand side, which is frame dependent.
So, dE/dt is not invariant. However, we do see that this rate is invari-
ant if v is zero.

Abraham. In calculating de /dT we are again only interested
in T;(lfz). From eq. (2.15) we have that

Ty~ a10P) (172 NN a5 BV [u®e%?) (2.46)

x(-z.ga-(o'u/l.a/n/’)2+27V.ad.a/o(2+(uv.a/o(c2)2)

Now, as discussed before, TK“” 4##0 in charge free space, so we

shall integrate over (Ad) itself in calculating d.PX/d‘c. In appendix IV

the expression for the 4-surface element for (40*) is shown to be

’ 11F. Rohrlich, 0P e Ci‘to, Pe 111,
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do*esf (u/c)dldTv4 (2.47)
where we select the preferred orientation of (40%) to be orthogonal to

v4

Now,

aPy/dr=Lin (u/®) 57 12, a2 (2.48)
From eq. (2.46), we have that
(o/o®)m (" % ==(uue®/ ety (s /) (2.49)

where f denotes the second expression in parenthesis on the right hand
side in eq. (2.46), which is the same as the f introduced earlier.
As will Dbe shown in the next subsection, the above relation is

enough to guarantee that
de /dr:dpé“/dt (2.50)
So we now proceed to the consideration of the Marx emission

rate.

We pause to point out, however, that in the above relation,
(49°) is chosen orthogonal to V/for the Abraham case, but can have any

(space-like) orientation in the Marx case.

Marx. In calculating dngdt, we again only need terms in Tgw
of ordernf-z.
From eq. (2.20) we have that
AP vy 2.2 2.2 4 2
= M
Ts(_z)_f(RﬂR /u_g Y#e“u/4re Y(/F) (2.51)

where f has been defined earlier.

Since Té“;yéo in charge free space, we have that

dPé‘/dr:f{,_)ig( 1/c )U—'I‘é" U, 5% ca +5T§“’u§2c Maof (2.52)
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MY
s(=2

that Tgy,pzo (no charge present), implies that any orientation of (at)

From eq. (2.51) we find that T )Ay=0, which, with the fact
is satisfactory here.

Now, from eq. (2.51) we have that
14y U==(e?/ et £(p fp4)R” (2.53)

and comparing this with eq. {2.49), we see that we have eq. (2.50).

Proceeding with the calculation then of dPngt, we have
apt/ avs-(ue?/ 4nc*) (847 ) (2.54)

where A and B here are the same as introduced in egs. (2.38) and (2.39),
and given in eqs, (2.40) and (2.42).

We then obtain

dPﬁydr=dP§7dr=-Cue2/3uc4)@’4/13)[(-3§.§+a.a)v’7r+2v.aa”
+(Voa/v)*{(2sD) vy =27/ %4 ] (2.55)

as the emission rate for the Abraham and Marx cases.

Again, we see that in the vacuum case these expressions reduce
to the customary Larmor rate given by eq. (2.44).

Further, we also notice that the emission rate above does not
imply that dE/dt is an invariant in general. This is because the o's
involved in v#and v4 are different in general, and no cancellation
between‘them can occur., On the other hand, for the special case where
V.a:—?%xﬂg (say, if via, or v=0) then we do see that no such cancella-

tion is necessary and dE/dt is then invariant.

Angular Momentum Emission

L]

In this section we calculate the asymptoiic angular momentum
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emitted by an arbitrarily moving charge (with v{u) in the three cases.
We first briefly recall the definition of this quantity in the

vacuum case, which is

AJ”:;.EE (1 /02 é,, 5 ”dq; (2.56)
where
FH 0 A ptfyY (2.57)

and (40%) again denotes (see figure 1) the space-like annulus trapped
between the light cones emitted at<T and T+ar.

In the vacuum case, J“/“ﬁdEO (no charge present) as a conse-
quence of the symmetry of Tﬂv and the fact that it is divergenceless.
As one can also show that contributibns to AJ#Y coming from the flux
through the light-cone vanishes as f-w, one also has that 4J% is inde-
pendent of the orientation of CAW).12 In this case one can also replace

the integration over (Ac) by one over a suitéble ribbon surface13

yielding

dJ’up/dc=-?Lj.ox‘p (1/e)§ 7 cs®u a0 (2.58)

In the medium case things are more complicated and seem some-
what less elegant. Recalling the properties of the three tensors we
realize that the angular momentum emission rate in the Minkowski and
Abraham cases will depend on the orientation of (Aoﬁ; in the férmer case
because Tﬁp is not symmetric, and in the latter case because Tfﬂ is

not divergenceless. Only Tgv, since it is both symmetric and divergence-

127, Cohn and H. Wiebe, "Asymptotic Radiation from Spinning
Charged Particles," J, of Math. Phys., 17 (1976), pp. 1496=1500,

13

Ibid.
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less might yield a divergenceless angular momentum density, which would
therefore yield an emission rate independent of the orientation of (407,
And, upon examining the quantity, Té%iB)AV , we do find that it is zero,
so that the u-cone contribution in this case can be neglected, so that
in this case the emission is independent of the orientation of (&0%),
Thus, in the former two cases we choose the orientation of (A%) to be
preferred direction orthogonal to Vﬂ, and in the Marx case the orienta-
tion of (a¢") is arbitrary. For convenience, however, even in this case,
we also choose (ACY) orthogonal to V4

We then take for the emission rate, in all three cases, the

expression
ar*/as=Lim (1/)f(@ -1 )55 (u/c) Yal: (2.59)

where (A¢") is orthogonal to V/t and we have used eq. (2.47).

We also choose our origin (in space-time) to be at the retarded
charge event, so that x*=R”.

In the limit as pg-w, we shall have to pay attention to contri-

' »
butions coming from T(i3) and T(ﬁg). So, we can write

a3t fa=aify) favsas (g an (2.60)
where
( 2)/‘3?5—-(11/0 )5['?( 2)R —T( 2)R Imfj’vdﬂ (2.61)
and
aJ( 5)/‘1“-(“/" )f[T( )R "T( 3)3 Jysfao (2.62)

We now consider dJ(:z)/dv.

Considering the expressions, egs. (2.35), (2.46) and (2.49)



24
for the three tensors, to order ?'2, we have that

Q?L2)«" 5(-2)% " A( 2)v =-(ue?/4w®) £/ (r/PMR (2.63)

We see that these expressions have a form which is proportion-

al to R”. Therefore, we have that, for all three tensors

-2)/dr_o (2.64)

Now,

ar® fav=as(’y far=(u/eA)f (1 TR U a0 (2.65)

and from egs. (2.10), (2.15) and (2.19), we find the relevant expressi-

ons to be inserted in the right hand side above,

By direct calculation it can be shown that, Tﬁ{_B)v TA?Z3) and
Té“(y_s) all have this form

T{f;)‘(aﬁxf'fa/f -fA ¥ /j'+(f‘V-a/d cf-/fﬁ.a/o( f)V
scr” § (2.66)

where X is the same in all three cases, and C is a scalar quantity that

is different for the three tensors. Of course, because of the form of

eq. (2.65) the term involving the factor C makes no contribution to the

emission rate.
Thus, we obtain the relation
ad? fac= ar’ fac=a3,” [ar=asg’/av
e/ ae?yr (1 e 21 /y ) (e 52 ol g /)
~(P/8) a5 4 (0 [7) (VoafaPeP=7haln 2YEHT” ] (2.67)

where we use the notation that

Mg A (4B -a"3")
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Once again using the integrals in Appendix III, we then finally

obtain the relation
a4 far==( 4% */3uc% %) (1 v =1 fr2)v#a"’ (2.68)

as the asymptotic angular momentum emission rate for the Minkowski,
Abraham and Marx cases,
We note that the vacuum case where u=c, «-»w, 7=7,4=1,¢=1,

this becomes

=(2¢%/3¢7)(v/a?<v*27) (2.69)

14

A /o
. (dJ /d")vac.

which is the customary vacuum result.

Summary and Discussion

In this section we briefly summarize the results of the chapter.

We have calculated expressions for the asymptotic energy-momen-
tum and angular momentum emissions from an arbitrarily moving charge in
a medium, where v{ u. These calculations were made for the lMinkowski,
Abraham and Marx stress tensors. In the case of energy-momentum emission,
we find that the emission is independent of the orientation of (&%) in
the Minkowski and Marx cases, and dependent on the orientation in the
Abraham case. In the latter case we took () to be orthogonal to V*
Also, the emission rates as given by the Abraham and Marx tensors were
found to be the same. Furthermore, in the Minkowski case we found that
the energy emission rate, d&/dt, is not an invariant as it is in the

vacuum case, uniess the retarded charge is momentarily at rest in the

Yryi4,
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medium. In the Marx and Abraham cases, the energy emission rate is an
invariant, provided that the particle's retarded 3-velocity and ac-
celeration (relative to the medium rest frame) are orthogonal. The
angular momentum émission rates were then calculated in the three cases,
and found to be the same. Only in the Marx case was it found that

a3#/atr was independent of the (space-like) orientation of (49,



CHAPTER TIII

EMISSION BY A DYON

Field of a Dyon

In this chapter we intend to examine the energy-momentum and
angular momentum emission rates for a dyon of electric charge e and
magnetic charge m in a uniform t{ransparent medium. For this purpose we
agsume the validity of the following Maxwell's egquations in the medium

rest frame:

xB=(4mpu/c) I+ (64 /c)E (3.1)
UxB=-(1/c)B~(4u/c)s (3.2)
| S.Bedo- (3.3)
V-E=(41/e) f (3.4)

where o- is the magnetic charge density and 3 is the magnetic current
density, respectively, in the medium rest frame, Then, using the defini-
tion of ¥ in eq. (2.5) and F*#” in eq. (1.9), we can write the gene- -
* ralized Maxwell's equations, egqs. (3.1)=(3.4), in the covariant form
XMV A
I.‘(O) W—(ArT/‘/C)J(O) (3-5)

Y A M
F*(O),V— (4TF/C)S(O) (5'6)

27
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where Sz‘g)=(_s_, ca)(o). Therefore, in any inertial frame, Maxwell's equa-

tions are
T4 =(dmpfc) 3/ (3.7)
F*# ,, ==(47/c)s” | (3.8)
We now wish to express F*” in terms of four potentials
¢"=(¢, U) and ¥%(¥, V) which satisfy the following equations in the

medium rest frame:

'¢==(4wp/c)I (3.9)
a'U=-(4v/€) £ (3.10)
g'¢=-(4r/c)s (3.11)
O V==( 4w/eH) 0 (3.12)

where q'=v'~(¢4/0%)(2%/2%).
Towards this end we will, firstly, express E and 3 in terms of

the potentials. By taking the curl of eg. (3.1), we obtain

xE=T(T. B) ~ T B=( 4/ )T (E4/c) Vs (3.13)

Substitution of eq. (3.2) for YxE and eg. (3.3) for .3 yields

0" B=dmve=( 4w/ )qxd+ (4mgu/c?) S (3.14)

This becomes, after using egs. (3.9)-(3.12),

o [B-{-eA TV Uxb-(e4/0) 3] =0 (3.15)
The argument of g' is a certain vector A which satisfies

3 A=0 (3.16)
Then

Be- STV Tx$-( g/ 0 )4 (3.17)

Similarly, by taking the curl of eq. (3.2) and using the above

method, we obtain the expression for E in terms of the potentials:
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B=—qU~qxf=(1/c)4+C (3.18)

where C=0.

Since, from eqs. (3.17) and (3.18), B and E are left unchanged

by the transformations

& — b9/
§ — Y4 '

. (3.19)
U —> U=(1/c)A

V —— V=(1/c)F

where A and [ are arbitrary, we have the freedom of choosing the poten=:-

tials such that

and

form:

where

15
Tod+(84/c)U=0 (3.20)

L+ (4 /) V=0 (3.21)

The gauges, eqs. (3.20) and (3.21), can be written in covariant

a,,;(%fo, and @Q’)Z‘Ofo (3.22)
oy =(E50) ()= =(1 faw) 0 ) (5.23)
Floy=(Losrm) oy=(9'(1 /) 2" v ) (3.24)

Thus, in any inertial frame, the gauges for the potentials are

@%ﬁo, and a{¢°(=0 (3.25)

15J. D. Jackson, Clagsical Electrodynamics (New York, London,

Sydney: John Wiley & Sons, Inc., 1967), pp. 180-181.
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Now we proceed to show that A and C can be absorbed into the
gauge transformations, eq. (3.19).
From eq. (3.17), we have
TRA=URB-N(V 249 (64 /0) 0k (3.26)
Using eq. (3.1), and substituting g'+(£7”/02)(a2/at2) for \412, we obtain
Tt=(50/0%) (9%4/31%) -1(0.4)+ (51 /c) (3/3) (Txt4E) (3.27)

This equation finally becomes, utilizing eq. (3.18),

Txt=-N(T .0+ (s4/c)0)+(E4/c) @ C/at)
=(g4/c) (2C/31) ' (3.28)
And
Do d= W BrEu T 2V (30 /C)T ¥
=(s4/c)(3/3t) (N o+ (54 /c)T)=0 (3.29)

Thus, we can write

A=Uxg (3.30)
Similarly, the curl and div of C are found to be

xC=-(1/c)(35/at) (3.31)
.C=0 (3.32)

Thus, C can be written as

C=-qxy! (3.33)

Substituting eq. (3.30) into eg. (3.31), and eq. (3.33) into
eq. (3.28), we find that

xA=~(E4 /c ) x¥* (3.34)
and |

VC=~(1/c N 2" (3.55)
Therefore, A and C are, in general, of the form

A==(gt/c) ¥~ T (5.36)
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and .

==(1/e)br -0 (3.37)

Now we observe that A and C are left uncnanged by the trans-
formationss

4 — 4

gr o g
B s U Ao (3.38)

V' — V'=F/ec
Again we have the freedom of choosing these potentials to satisfy

Vo' + (gt /e) =0 (3.39)
and |

g+ (eH/e) V=0 (3.40)

By taking the curl of eqs. (3.30) and (3.36), and using egs.
(3.33) and (3.37), we find that

0" =N (T +(s4/c)T")=0 (3.47)
Similarly, oy taking the curl of egs. (3.33) and (3.37), and using egs.
(3.30) and (3.36), we obtain

0" =N(T.g'+(g4/c) V" )=0 (3.42)
By taking the div instead of the curl, we obtain

a'v'=0 (3.43)

g'u'=0 (3.44)

Now we substitute 4 and C into egs. (3.17) and (3.18), respec-

tively, to obtain

BtV (VAT )+9x($432 )= (gu /c) (Lr3) (3.45)
B==(U+501 ) (439 ) -(1/c) @4 38") (3.46)

since A=Yx'=-(54/c)$! -4 V' =3(Yxd ~(s# /c)Y' -4V ) and
C==Yx'=-(1 /c)i' ~Ur=-z(vx¢'+(1 /c)é'wU' Yo
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Furthermore, we observe that the "new" potentials ("old" potential+% of
"primed" potential) obey all the equations governing the "old" poten-
tials, that is, eqse (3.9)=(3.12) and (3.20)=(3.25). Thus, by choosing
the "0ld" potentials to denote the "new" potentials, we restore these
equations and

BTV xg=(52/) (5.47)

E=-T0-0xy~(1/c)$ (5.48)

We now wish to express the field tensor in the covariant form.

From eqs. (3.47) and (3.48), we obtain
Fap =(0U/ax)4 (0 45/53=04y/32)+(1/2) (2%, /o)
P 1-d e e (3.49)
7 2=33=-£/' (2V/22)+ (2 fax=04, [ay)=(54/c) (*¢ /o 1)

=(¢*2'1-'¢1 '2)+e,‘u 312#% sol (3.50)
which may be generalized to give
oghrioghdiougt ¥,y (3.51)
Fil_ghoi_ghod, G040 g (1:321,2,3) (3.52)
Combining these two equations together, we finally have
Fﬂ1’=(¢”v/f_¢ﬂa” )
e e (1 )Py, (Ve e 5,4 (3.53)
Inversely, it can be easily shown that the expression for Fﬂp
in eq. (3.53) with the gauges given by eq. (3.25) satisfies Maxwell's
equations, egs. (3.7) and (3.8).

For brevity of notation let us introduce new quantities:

£ 2! 4" (3.54)
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and

T e (3.55)

Then, A can, in general, be written as

=t S (1 ) 2y, (P87 487 ) (3.56)
where
b*ﬂp=%aﬁ”%ﬂb «f

48 9 and b;v =g dg'ljdb* .

A
The potentials ¢f‘and ¢” for a dyon are the solutions to egs.

(3.9)-(3.12).

They are16
¢”=( e/a/c)%ﬂ/ﬁjret. (3-57)
pr=(m/ ) L) (3.58)

where e and m are the electric and magnetic charge of the dyon.
We, thus, find that

£ =(2e8/cu)] (7e/F)2(1 /2= fy DFRD

(/) (BTN -.aFY o (3.59)

And this is the same as that of an electrically charged particle, eq.

(2.3). Also,
v ==(mjue) ox* (3.60)
The field tensor for a dyon, then, becomes
F””:f‘”+(ma/e)f*”v-(1/¢c)e(ma/e)yﬂ” (3.61)

wnere

4
107, conn, op. cit.



34
v =V, (- 47724 ex*7 ) - (3.62)

Blectromagnetic Stress Tensor

In this section we will calculate various stress tensorg-—-
Minkowski, Abraham amd Marx-~-for the field produced by a dyon. As before
the dyon is moving arbitrarily in the medium, and its speed is less than
that of light in the medium.

Minkowski. The Minkowski tensor given by eq. (2.6) can be

expressed as, using £, v and y#*,

=1/ 4) (227" 4 (me /o) 2§ (£xe%Y" (1 /) 2 xyryewy”

+(1/ue) )™} +(me/e) §(eexsxel” o(1/uc)(eyryel 1)

(3.63)
where
(ab)” 22”0 +(1 ) A 11 v, Vﬂ-aﬂﬂ‘pf 7 v
sig?(a v, +(2/%®)2 87V, 7,) (3.64)
(b)Y s(a)” +(8)”
and
((a+d)(c+d) )’W =( ac+a.d+bc+bd)ﬂu (3.65)

The first term in eq. (3.63), which is the contribution of electric
charge to the tensor, is already evaluated in terms of the particle's
retarded kinematic properties and is given by eq. (2.10). We now wish to
calculate the second term which is the contribution of magnetic charge.

From the definition eq. (3.64),

(grpe Y™ o P 0% V(1 fuw) 2 (£x A pxP 2 _pxhl £5° v, )

s5e (00 £1 + (/D) e 057 ) (3.66)
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From the definition of y#, eq. (3.62), (yy)*’ is
Y
vy =y*y” +(1/«u)2(y"‘"y"'eV,‘@-y"”g:fg“ v, v")
+%g"”(y°"9g¢ +(2/«2u2)y°"gst;’vd v,) (3.67)

We will use the following identities, which can be easily shown by using
the definition of y#”, to express the above equation in terms of £x/ V:
pa g A af 20 Mo
Yy, =V'V £* f"{; V,G+c 1% £* Vde
o 2 . ud
7V, =S e,

N % =chexrienfy Ve

7y, WQ,:--an"‘f*"’fg £47 V, 7, (3.60)
Al % 73,7, =ctex £% "V, v,
and
v . —202ex?f fe;," T,V
Then, eq. (3.67) becomes
() =(ch/u?) e exf A PPt en T,
g (/) e £ V7, (3.69)

And,
( ryeyr* )’ __,f-x—/‘dy; v +y/‘°‘ %%
+(1 ) 2 £xyf vdv9+y"‘“f*”«‘9 Vg
gt 5% vy /"f?f?"‘ v, V)
+9:g"‘”{ orx y,,,# +( 2/o<2u2) (f*"‘/}% 7 v, 4+~ 4 f*/vd v, )}
a(262/u?) e ey,

v en 7 ~(c/u) 2V’ ot %en %
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+(1/x) VAP %P en,7 v, ¥, (cfu) 2 ex P v, ‘&(Vv )
3.70

where the following relations are used:
f*/‘d& Y_sexMiexfy Vs —txA ex” ¢ VY yA%En” —pwsd exfy Vg
Ve Ty oy copnel on” v 5 y A exhy V= sty 2
=cl et pxf Vs yMex” Vy==VextB ox7 vy, pod Y Y=
Zexiex Ty 5 ana y¥ 147 ¥, =2 e a7 vy (3.71)
By combining eqs. (3.66), (3.69) and (3.70), we obtain
(£22%)2°=(1 f ) 2 £xyry ) u (1/c) Ay Y =er M en,”

-(1/nc) 2(1‘*/‘“’(1‘*”9 Ve Vp R TGl V)

4 2 2
sig” (0 pyg -(2f’e?) el ox7 v ) (372)
To express eq. (3.72) in terms of fﬂp, we will use the identities:

f*ﬂ“ f"g‘y =f/”(f;)) +:5'g/‘”fd€ f“ﬁ H f*"‘a f*;(p =-fd‘ﬁf¥€ ;
pxhtpphy VF=c2i"M Y vtere f B At 4 e A fup

-0, Ve (P g 20757 v v,) (3.73)
Then, finally, eq. (3.72) becomes

(oxexy (1 o) 2 2xgayer o (1 fue) vy =(u/e) (22 (3.74)

Next, we will consider the last term which represents the
interference between electric and magnetic charges. Straightforward
cé.lculatioﬁ shows that

(£oxaere ) 226”1 (1fu)2(2s P v 4, % - £5" v,

-f*/’f@fﬁ*vdv’)&g-“”(zf"a %o +(4/o<2u2)f°(€fj%7 V4 V)

=(2/x242) nars Yy Yy +3(1 fxu) A f“‘pfe;@
sie* ok n) oy (3.75)

¢ 1%
where a'p” =%(a'ab +an)J), and
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(Eyrre = (24052 7705”1+ (1) 2(£7* P, Wy ey 570, v,
_fﬂﬂ};eo( v v}’_y/(ﬂi;gcx' v, )
+hg” (2t Yy +(2/u) 2¢%¢ % 7v,%,)
=2(c/u) 2t M o 3(cfu) P e F oy

+(cHfu?) g et % (3.76)
Thus,combining eqs. (3.75) and (3.76), we have
(£ere£%2)*” (1 fuc) 2(£y+y£) =0 (3.77)
where the following equation is used:
£4%m> =g 1% £x (3.78)

Therefore, by substituting egqs. (3.74) and (3.77) into eq.

(3.6%), we obtain the Minkowski tensor for a dyon:

Té”:(1/4Ew)(1+(u/c)2(m€/e)2)(ff)kp
=(1+(2/p) (/&) )T (3.79)

where we substituted (u/c)2=1/€#, and the subscript (e) indicates that
it is the case for electric charge without any magnetic charge and is
given by eq. (2.10).

We now proceed to calculate the Abraham and Marx tensors.

Abraham. The Abraham tenSor is given by eq. (2.14):
) 2 -
Ta4=T”+ (1 /aa) (F/‘"F,,,"v,gv“-m/c) F"'g'r;”vﬁv,v/‘v")(1/4w,u) (3.80)
Using eqs. (3.68) and (3.71), we find that

gy, =25 vy a (mefe) 2 e o (1) 2(emy b uyhanf )
+(1/6e) g P 3 Y v (me/)] (2208 f wxmief )

~(1/ue)2(e#y B ey e f Ly,
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=f’m:§€ Vp+(u/c)2(m8/e)2(f*“°‘f*;,€ Vg

+(1/ae) 202 o7 4, v, V4 % (u/c) 2(me/e)v o1 (3.01)

and R
F“P F('g"vdv, = fgyvu v.,+(u/c)2(ms/e)2(f*7°‘ f;F Vg Vy
-1 e en 7 v, g, Jb(ne/e)ule on g (3.82)

Thus, using eq. (3.73),

PRV P (1/6) 57 BT v v, v (e v
+(1/c)zfxef‘ngdV1V/‘VP)+(u/c)2(m€/e)2(1‘*,@1‘*& ¢ v(;v”
+(1/)2ex 0 17 vy, VAVY)
=(1+(u/c)?(me/e) ) (75 Fyp v

+(1/)2vv e 57 v, v, (3.83)

Substituting egs. (3.79) and (3.83), we obtain

(14 ) (n/0) )2 o (3.50)

Marx. The Marx tensor is given by eq. (2.19):

Té“’:(u/c)zwﬁ’-( 1/uc)2(1/ ) Ve B Vs
ARCVINE o SAAA s WO BN R
Using egs. (3.81) and (3.82) and
i By =% 40 +(me/e)2(ex 1y ~(2/%?) 15 Yo +(1/xc) b Le
+(me/e) (257 11, ~(2/a%62) 7 y0)
= fup +(me/e) 2 (£xe s =(2/x 262y (2-1 /qz)f*‘*Pf*f,”’ v, V,)
+(m£/e)(2-1/°<2)f°‘?f*ap (3.86)

we obtain that

e, %43V (~(1 k) F P B Y, ‘I'i'*%F:/ﬂFuP )=(14(w/c)*(me/e)

v egf ) AT (=(3 fw) 26 fp" R fup » (3.87)
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Substituting this and eq. (3.79) into eq. (3.85), we have
3.68)

T2 =(1+(& /1) (n/€)?)41

As we have observed in this section, all three tensors for a

dyon differ from those of the elecirically charged particle without

magnetic charge by a factor of 1+(€Au)(m/e)2. For all three tensors,

explicitly, we have

Tor=(1+(E 1) (/)21

For further comparison with the elecirical case, we will

briefly mention the 4-divergences of the three tensors.

Calculation of 4-divergence. Using eq. (2.24),

F/‘“,,,%'; gﬂdﬂrF*ﬁ gwg g 3 Fx51

87 o g,
'*&éq 57 oY Fw5

==} ﬂdeﬂ?&p,»—(4V/°)§*ﬂ“sd

and

we find that
¥, =(1/e) (P, =(1 /1) F* s,

-qﬂ =

and
4 ,=(a?/ D) (P - (1), )

~(1 k)2 gy (1)l i, v

Therefcre,

TT{ILW,;) =0, when J%=5=0

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)
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and

47,20, when J/'=5/=0 (3.95)

But Tﬁv,p is not identically zero, when there is no charge
present; this can be shown from the following equation:

by
T/Au w =Tf\,‘1w’y+(1/4'”/“)(1/0“1)2(1?/‘4,)'3:‘ f VAVIJ

~(2/e2yrC, 5, V) (5.96)

F7
Discussion

The electromagnetic stress tensors--llinkowski, Abraham and
Marx~--for a dyon of electric charge e and magnetic charge m, moving
arbitrarily in a uniform medium with the speed less than that of light
in the medium,are the same as those for eleciric charge of "effective"
charge e¥*, where

ex=e(1+(¢ ) (n/e)?)? (3.97)
Furthermore, the 4-divergences of the three tensors, in the charge free
case, have the similar relation, i. €., tne ilinkowski and Ilarx tensors
are divergenceless in both electric charge and dyon case, and the 4-
divergence of the Abraham tengor is not identically zero in both cases.,

Therefore, the energy-momentum and angular momentum emission
rates for a dyon moving arbitrarily (whose speed is less than that of
light in the medium) in a uniform transparent medium are the same as
those for electric charge, except that e is replaced by e*. And all the
arguments discussed in the previous chapter concerning energy-momentum
and angular momentum emitted by a charged particle are applicable to a

dyon. We will not repeat them here.
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Despite their resemblances in many ways, the difference vet-
ween an elciric charge and a dyon is conspicuous, Since the difference
arises due to the existence of magnetic charge, let us consider the
magnetic monopole case. By setting e=0, we find .that "effective" charge

of a magnetic monopole, m¥*, is

L
=

m*=(€ /u0) *m (3.98)

In a vacuum we cannot distinguish the magnetic monopole from the
electron qualitatively, in the sense that the electromagnetic tensors for
them are indistinguishable, except for their charges. But in a medium the
magnetic monopole behaves like a particle of medium-dependent charge.
Thus, the phenomena related to it and its motion would be significantly
different from those of the eleciron. If we could arrange a layer of
media and observe certain phenomena such as radiation or the motion of
a particle moving through the layer, it would be possible to tell the
difference between the electron and the magneiic monopole.

The theory developed in this paper does not provide us witn
the tool to analyze radiation of a charged particle moving through an
inhomogeneous medium, but we still expect that the effective charge of
the magnetic monopole is medium dependent.17

It should be remarked nere that, even though the theory pre-

sented in this chapter reveals certain properties of magnetic charge,

we cannot claim that the tensors considered represent the real situation

17
Pe B, Price, E. X. Shirk, W. Z. Osborne and L. S. Pinsky,
"Evidence for Detection of a Woving llagnetic ionopole," Phys. Rev, Lett.
35(1975), vp. 487-490, ip apalyzing the image on Cherenkov detector, used
the formula, Intensitywm“(n“=(u/v)“). This agrees with eg. (3.98), if we
set y=1. See,also, D. X, Tompkins, Phvs, Rev. 13838 (1965), pp. 248-250.
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correctly. Hevertheless, it is suggestive that all three tensors--
Minkowski, Abraham and Marx-- agree on at least one point: A dyon be-
haves like a charged particle of effective cnarge e* and there is no
interference effect due to the simultaneous existence of the two types
of charge.

It should also be remarked that, if fhe existence of the dyon
is assumed, it is possible that ordinary matter may contain a certain
amount of magnetic charge, and Maxwell's equations (3.1)=(3.4) may have

to be changed accordingly.18

18L. L. Vant-Hull, "Experimental Upper Limit on the “agnetic
Monopole Moment of Electrons, Protons, and leutrons, Utilizing a Super-
conducting Quantum Interferometer," Phys. Rev., 173 (1968), pp. 1412-
1413, measured the magnetic charge on the n *tron and the difference
m(proton)-m{electron) to be less than 2x10™ " Wb, and the electron less
than 8x10™7 WE; And V.2, in the absence of magnetic monopole, is less
than 1.2x10" ' "Wb/kg.




APPENDIX I
RIBEON SURFACE AREA ELEMENT

Here we calculate the expression for the ribbon surface area
element, da;;(f'). We refer to figure 2.
Now, the ribbon surface is defined relative to the medium rest

frame so that, in any frame, we have
dq,(t)=f2Up dx4(o)dﬂ (1.1)
where dﬂsdﬂ(o).

We may write this as

dO},(t)=P2U,,(5x4(0)/at)dtdﬂ (1.2)
But, since 2

ax4(o)/at=—/\220)=03/? (1.3)
we have

ag (Mg oppanar (1.4)

™97, Cohn, Annals of Physics, 114 (1978), p. 476.
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APPENDIX II
THE SURFACE AREA ELEMENT ON THE u~-CONE

Here we calculate the expression for the surface area element
on the u-cone. We refer to figure 3.
Now, the u=cone is defined, in the medium rest frame, by the

condition that

rP=u’t2=(u/c)?(xh)? (11.1)

For variations on the u-cone we then have, in the same frame
zor=(u/e) et and SR(\=Gr, et (11.2)

Defining the vector c” by the relation

Cloy=(zs (u/e)*h) (11.3)
we then have
$r/C,=0 (11.4)

So, ¢ is orthogonal to the u-ccne.
We note that C* is space-like, with a time varying magnitude,
ie €4,
0¥, ="t/ 2 (1I.5)
Define the unit normal to the u-cone as
=01 s fly=@/x) (z,ut/e) (11.6)
44
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From figure 3 we have the relation between the measures of the
area elements on the u-cone and on the associated projection on the

space hyper-plane as

po=(1/ 13 ny]) A5 (11.7)
Therefore,

807z do- = 1/ p dr=p?apatn” /y ‘(10) (I1.8)
Now,

7%0)=67/c)u » (11.9)

as follows from egs. (II.5) and (II.6).

Thus we have

a0”=(c/ru)pParany’ (11.10)
Further, we noté that, from eq. (II.6), we can write

nf=( /)[R ~p(1=u/c) V*/c] =(7/p)uf” (11.11)

where we have used eq. (1.16).
So, we have as the momentary expression for the u-cone area

element,
' d0’:=cs>f"/\udfd0- (I1.12)
Now, we have from eq. (II.1) that
ydf:x%o)dxéo)(u/c)z (11.13)

so that

fdp:x‘(lo)(a x‘(‘o)/ac)(u/c)2dr=x‘(‘o)(‘§/9><u/c)2dv (I1.14)

-Utilizing the relation

x?o)/?=c/u (1I1.15)
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that follows from eq. (II.1), and inserting these results into eq.

(II.12), then finally gives for the u~cone area element,

ao’=cf?uf’ a2aT (11.16)
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ct

< Uu=cone

portion

d_o,l)
u.

Relevant surfaces for finding

Figc 3.



APPENDIX III
RELEVANT INTEGRALS

Here we tabulate certain relevant integrals needed for evalu-

ating the energy-momentum and angular momentum emission rates,

C(p/p) 2 u#ar=(amd fur®) (v ") (IT1.1)
S(P/f)%-auﬂdﬂ=(4ﬂl4/37 4)[8."-(47'2% a/’7u2) v

+(V.a/u®) (0%u2/c?) V4] (II1.2)
(8 /7) 0 aa=(16m8/3u17) (v-17") (111.5)

S(P/?') 5(U-a-)2U'ud-0-‘=(117‘:‘1'6/3u'76)[a..afa-(V.a./v) 2{3(2'7'2-1 )
" -1/ Zﬂ(v"-vv") (II1.4)

(¢ /5) 0. au*an=(arv®/31%) [+ (6/7u°) Voav”

+(1/7®)Via(1-1 fu2-67)v*] (111.5)
§(2/5) 20" a0=(ter'®/5u7%) (67%-1) (vHorv) (111.6)
§( P/p) 0=t/ (1I1.7)
§(p/7) . adn=n(167/3) (v/u) (Voa/v) @S %) (I11.8)
/) ban=(aer /31 %) (4r2-1) (111.9)

§(#/7)° (1.2)%a0=(47%/37%) (V.a/v) 2 (67251 /72)
+(47v%/37%)a.a (III.10)

48
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S(f/ﬁ)5u.adn=j(4v1'6/sv5)(v/u)(v.a/v)(61'2-1) (111.11)

S(P/ﬁ)5d9=(4w'6/»/5)(27'2-1) (1I1.12)



APPENDIX IV
THE SURFACE AREA ELEMENT ON (a0%)

Here we calculate the expression for the surface area element
on (A%), where the orientation of (A®) is chosen orthogonal to Vigh
We refer to figure 4.

Now,

d0”=(V’ [e)p2dpa (17.1)

In the medium rest frame, f:(u/c)xlz'o), so that df:(u/c)dx%o).
However, dx?o)=(3x?o)/9t)d"""‘zzo)' from eq. (I.3).

Thus,

dv”=-(Vv/c))°2/\z1(o)(u/c)d0dv , (1v.2)

However, /\?O)=f/°F’ as a consequence of eq. (1.16), so that

we finally have

a0 =(u/c)pf aoar v” (1v.3)
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