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ABSTRACT

In a typical facility location formulation a new 
facility is located wirh respect to a function involving 
each of the distances between the new facility and each 
existing facility. But in a distribution system, where the 
new facility to be located is a distribution point, service 
vehicles are many times dispatched to service more than one 
customer (existing facility) in a trip. Therefore the new 
facility should be located such that the length of these 
tours is minimized.

This paper examines this problem in many of its 
variations: discrete, continuous, deterministic, probabil
istic, single-facility, multifacility, capacitated and 
uncapacitated. Some properties were developed and exact 
and heuristic solution procedures were found for some of 
the problems.
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CHAPTER I 

INTRODUCTION

1.1 Motivation
The impetus for looking at this problem came from 

some work that was done for a solid waste collection system 
of a major city. While studying their solid waste disposal 
system the problem arose of where to locate disposal sites. 
During the course of the study the portion of the city under 
consideration had been divided into over 500 small regions 
each with some demand of garbage pickup services. So, in 
the language of facility location literature, the problem 
was to locate a number of new facilities (disposal sites) 
with respect to existing facilities (regions).

Assuming that the principal objective was to minimize 
the total distance traveled by the fleet of trucks, then the 
problem seems to be a typical facility location problem. 
Typical facility location formulations assume that each trip 
is made using the Eucleadian distance between a new facility 
and one existing facility. In this problem, and in many 
distribution problems, trips are made from the new facility 
to cover more than one existing facility. In fact in the
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garbage problem a truck would leave an established depot, 
service several regions, go to a disposal site, possibly 
service more regions, return to a disposal site and then 
return to the same depot. Therefore the objective would 
be to locate the disposal sites so that the total distance 
traveled would be minimized. Supposedly each of these trips 
would be a minimum-traveling-salesman tour* and would be in 
the order stated above.

But the problem is further complicated by the fact 
that each truck has a limited capacity, thus putting a limit 
on the number of regions that can be serviced in one trip. 
Also the number and types of disposal sites that are needed 
would have to be determined. This is complicated by the 
fact that different types of disposal facilities (landfills, 
transfer stations) have different disposal costs which vary 
further according to who owns and administers them.

The problem is quite similar when deliveries are made 
instead of pickups. In this case one may need to locate a 
warehouse or distribution center where trucks are dispatched 
to make deliveries to more than one customer in each trip.

The basic problem of locating a facility with the 
objective being the minimum-traveling-salesman tour through 
the existing facilities has been defined by Eilon, et al. 
(1971) and Burness and White (1976), each of which offered

*A minimum-traveling-salesman tour is a trip of 
minimum length through a number of points, each of which 
is visited once and only once.
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solution methods to specific versions of the problem. Con
sideration of this problem also appeared in Griffiths (1968) 
and Webb (1968), who related tour distance to Euclidean 
distance, and Beattie (1973), who presented a case study of 
a problem of this type.

Since this type of formulation applies in many real- 
world distribution problems and since there has apparently 
been few published works on the subject, there seems to be a 
need for a formal look at this problem in its many variations, 
This research will attempt to investigate the problem more 
thoroughly, make some general observations of its properties, 
and propose methods of solution and test some of them. The 
disposal site selection problem mentioned above was not 
solved but did serve as motivation for this research.

1.2 Organization of This Paper
In this chapter a general introduction to the type 

of problems has been presented. Chapter II will contain a 
general literature review and a complete taxonomy of the 
traveling-salesman facility location problem along with a 
review of all related topics. Some properties were found 
and these are presented in Chapter III. The specific 
problems that were given attention were divided into two 
groups. Chapter IV discusses deterministic formulations 
and Chapter V contains work on the probabilistic formula
tions. Finally, Chapter VI includes a summary, conclusions 
and recommendations for further research.



CHAPTER II

PROBLEM FORMULATION AND RELATION TO PREVIOUS WORK

An excellent survey of location theory is Francis and 
White (1974). Much of the notation, formulation and facility 
location concepts used in this research parallel the ones 
found there. Other good surveys and bibliographies on loca
tion theory are Francis and Goldstein (1974), Lea (1973), 
Revelle, Marks and Liebman (1970), and Scott (1970).

2.1 The General Location Problem
In a very general sense the modeling of a facility 

location problem involves making a location decision based 
on a model similar to:

P2.1 minimize f(X.,...,X^) = Z v.^d(X.,X.)
X-sEg  ̂ l<j<k<n  ̂ ^

m n
+ 1 1  w..d(X.,P.) + F(n)

i=l j=l 31 ] 1
The terms are

m = number of existing facilities, 
n = number of new facilities,
Xj = (Xj,yj), the coordinate location of the new 

facility.



= (a^,b^), the coordinate location of the i^^ 
existing facility, 

d(U,V) = distance between points ü and V (measured in any 
metric),

V - ,  = cost per unit time per unit distance traveled 
between new facilities j and k,

Wji = cost per unit time per unit distance traveled
between existing facility i and new facility j,

F(n) = cost per unit time of constructing and operating 
n new facilities (this assumes that each facility 
has a similar cost structure).

Problem P2.1 can be reformulated to better fit the 
specific problem being solved: If n is known the term F (n)
can be disregarded in the solution procedure since it is a 
function of n only. And, for the same reason, if n is a 
variable the problem can be solved for each value of n of 
interest and only then would F(n) be brought in to compare 
total costs of the alternatives.

The problem can be complicated by adding constraints: 
The distance norms must be defined and can then be limited 
to certain values; the possible locations of the new facili
ties can be constrained to certain discrete locations; or 
the structure of the w j 's may be amended in order to 
find the optimal allocation of new facilities to old facili
ties.
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2.2 The Traveling-Salesman Facility Location Problem (TSLP)

The problem that this research effort deals with 
differs from the typical location problem in that the new 
facilities are to be located such that the traveling-salesman 
tours between each new facility and the existing facilities 
that it serves are minimized.

The objective function can be formulated as:
n

P2.2 minimize f(X,,...,X„) = 2 c(X.,{w. .},S)
X sEg  ̂ j=l =>

+ 2 v.,d(X ,X )
l£j<k<n  ̂ ^

In this case everything is the same as defined for P2.1
except

{Wji> = the set of all wy^'s
S = the set {P\, i=l,...,m}, and 

c(Xj,{Wj^},S) = a function giving the cost of a minimum
traveling-salesman tour through S (or sub
sets of S) and X^ based on 

Problem 2.2 will be simplified by assuming that v = 0 
for all j and k, i.e., there will be no interaction between 
new facilities. This is not an unrealistic assumption for 
many distribution problems. For example, in the solid waste 
problem each depot is an independent dispatching site— a 
truck leaves from and returns to the same depot. There are 
service vehicles that travel between depots, but this travel 
is insignificant compared to that of the garbage trucks.

Now the problem can be reformulated as



n
P2.3 minimize f(X-,...,X ) = Z c(X.,{w..},S)

XjSEg ^ ^ 3=1 ^

The structure of the function c will depend on the specific 
problem to be solved.

2.2.1 The Traveling-Salesman Problem ■
Imbedded within the TSLP is, of course, one or more 

traveling-salesman problems. A traveling-salesman problem 
involves finding the minimum-cost tour between a group of n 
cities, existing facilities or demand points that each must 
be visited exactly once.

A complete review of the work on the traveling- 
salesman problem was not directly relevant to this research. 
But a fairly extensive review of the literature is presented 
in Appendix I,

It is assumed throughout that the distance between 
two points is the minimum distance. Bellmore and Nemhauser 
(1968) pointed out that this must be true to assure that the 
optimal traveling-salesman tour will visit each city once and 
only once.

2.2.2 Tour Length Estimation in the TSLP
Previous work has been done relating tour length in 

capacitated problems to Euclidean distances between the new 
and existing facilities. This was in an effort to use exist
ing facility-location techniques in problems where vehicles 
make multiple stops. This could be simply done if a linear
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function could be found relating total length of all tours 
to the total of all Euclidean distances.

This was done using regression analysis by Griffiths 
(1968). The results were used in an actual location problem 
and the solution was deemed acceptable. But Webb (1968) 
continued investigations along these lines and concluded 
that a simple linear function could produce misleading 
results.

Eilon, et al. (1971) criticized the above work 
because they did not explicitly consider the average value 
of the maximum number of customers that can be supplied in 
one route. Eilon, et al. carried out experiments on ran
domly generated data and concluded that:

(1) There is a very well defined relationship between the 
sum of the Euclidean distances and the total of the 
tour lengths,

(2) The position of the depot does not affect this 
relationship appreciably,

(3) The standard deviation of a normally distributed 
customer demand affects the relationship in a well 
defined way.
This seems to indicate that one can get at least a 

very good initial solution to some TSLP formulations by 
solving the problem as a standard location problem and this 
idea was used in this research.
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2.3 Taxonomy of the Problem

The general framework of the TSLP is shown in Figure
2.1. Typical variations of the problem will now be dis
cussed.

2.3.1 Objective of the Cost Function -
In location problems where the objective is directly 

tied to distance one is usually interested in minimizing 
total distance traveled (minisum) or in minimizing the maxi
mum distance traveled (minimax). The minimax formulation 
is typically used in service or emergency facility location 
problems and its solution methods are different from those 
of the minimum distance problem.

To limit the scope of this investigation the minimax 
problem will not be discussed.

2.3.2 Continuous or Discrete Space
In some cases one may be interested in finding the 

sites for the new facilities anywhere in the plane that 
minimizes the costs and meets capacity constraints. In 
other cases the new facilities are restricted only to pre
determined discrete sites (this is known as the plant or ware
house location problem if there are fixed costs on the new 
facilities or the p-median problem if there are no fixed 
costs).

There is also the problem of locating the new facil
ity on the transportation network that joins all existing
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facilities. It has been found that an optimal solution to 
this problem can always be found on a node of that network 
(Hakimi, 1965), thus the problem is rendered a discrete 
problem. This result is extended to the TSLP problem on a 
network in the following chapter.

2.3.3 Deterministic and Probabilistic Formulations
In the general facility location problem P2.1 it 

is conceivable that either of the terms v., or P. could 
vary probabilistically. But in this research these terms 
will always be assumed, without loss of generality, to be 
deterministic. Other probabilistic variations will be 
examined.

Let be the probability that existing facility i 
will be visited in a given time period. If = 0 then a 
tour from a new facility may not need to include i. Eilon, 
et al. (1971) present this formulation with the idea of 
using simulation to find the best new facility site.

Eilon, et al. (1971) state the following problem:
Let h(r) be the probability that r existing facilities 
require service in a given time period. They then recommend 
a method of locating the new facility using their estimations 
of the length of traveling-salesman tours.

A third probabilistic formulation was examined by 
Burness and White (1976). In this work is the probabil
ity that subset is serviced in one tour, and the following 
function is to be minimized.
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f(X) = I q.d(X,S.), 
i=l ^ 1

where
k U i=l
U - S

k = number of subsets
d(X,S^) = distance of minimum traveling-salesman tour through 

X and existing facilities of S^.
The probabilities in each of the above formulations 

are based on given time periods. More realism could be 
added to the problem by making these probabilities functions 
of time. In this case, when a truck is dispatched only a 
subset of the existing facilities would require service, but 
during the course of the trip others may very well develop a 
demand. These new demands could be handled at a later time 
or by another truck dispatched on a different route.

Aly (1975) has investigated the probabilistic vari
ations in the interaction terms, w.. and v.., in typical3 X JK.

facility location problems and demonstrated two types of 
variation in wy^. In one, the weight is a cost per distance 
traveled and the function to be minimized uses the expected 
value of Wj^.

The other possible probabilistic variation in weights 
comes about when they represent the frequency of trips. In 
typical facility location problems this involves a random 
sum of distances that is to be minimized. The complexities
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when one is dealing with traveling-salesman distances is 
obvious and it seems that this type of problem could better 
be modeled as above.

2.3.4 Single-Facility or Multifacility Formulation
It will be assumed that all new facilities to be 

located will provide equivalent services. This assumption 
can be extended to say that at the final solution each new 
facility will service its own subset of existing facilities 
and will have no interaction with facilities outside of this 
subset. Therefore a multifacility problem in this research 
will involve allocation of facilities and single facility 
location problems within subsets of existing facilities.

Location-allocation problems have been investi
gated in the literature by Cooper (1963, 1964, 1967) for 
the continuous case, and one can consider the typical plant 
or warehouse location models (for example, Ellwein and 
Gray, 1971) or the p-median problem (Narula, et al., 1977) 
as location-allocation in discrete space.

2.3.5 Capacitated Problem
If a problem is uncapacitated there is no limit on 

the number of existing facilities that can be visited in a 
tour. But in many cases the vehicle has a limited capacity 
of load that it can handle. Similarly there may be a limit 
on the amount of time that a tour can take.

These types of constraints necessitate multiple
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vehicles or at least multiple tours to service all points.
A routing problem with these constraints (assuming locations 
of depots are known) has been called the transportation- 
routing problem, the vehicle-dispatch problem or the 
vehicle-scheduling problem. This problem is important to 
this research and a survey of the literature is given in 
Appendix II.

2.4 Heuristics in Distribution Problems
In the discussion of the traveling-salesman problem 

and the vehicle-dispatch problem in Appendices I and II it 
was mentioned that the most successful methods of solution 
have been the heuristic approaches. Both of these problems 
are np-complete (Karp, 1975), implying that the run-time 
of an optimal solution method can be expected to increase 
exponentially with the number of stops. The same is true in 
location theory with the location-allocation problem. Prac
tical problems of large size cannot be solved optimally in 
a practical time.

Webb (1972) discusses the costs and benefits of find
ing the best possible solution to a vehicle routing problem. 
There are several things to consider:

(1) Practical problems can involve hundreds or some
times thousands of stops. Therefore, because of 
run-times, an optimal solution is impossible.

(2) In a given application one should be convinced that 
the rewards of increased computation exceed the cost
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of computer time and analyst time.

(3) It was found that the standard error of estimates of 
distances may be more than 10% and that of journey 
duration may be more than 25%. This implies that
a small improvement in solution quality may be 
nonexistent in real terms.

(4) The objectives of the route planners and those 
doing the route work may not be the same. Also, 
their respective knowledge of the road network and 
its constraints may not be the same. It was found 
that the routes driven may not only be different 
from the routes that were planned but are usually 
considerably longer.
Considering these points when locating a facility 

with respect to at least "good" routes, one should remember 
that after the facility has been brought into service, the 
routes that are used may be very much different from those 
used in the location problem. This does not argue against 
getting the best possible solution, it only puts the problem 
in a realistic perspective.

2.5 Scope of this Work
The solution of all problems shown in Figure 2.1 

is too great a task to be attempted in this one work— even 
with the simplifying assumptions made previously. So cri
teria for selecting the formulations to be researched will 
be those that seem to be most tractable, those that would
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seem to have the widest application and those that might 
have the most immediate application. Principally, discrete 
problems will be studied. In large area problems this is 
probably the most realistic since usually only certain sites 
can be considered. But observations in continuous problems 
were made and will be discussed.

In studying the problems they were most easily 
approached by dividing them between deterministic and 
probabilistic problems (see Figure 2.1). Of the deterministic 
problems, for the continuous case the uncapacitated problems 
were examined and for the discrete case the capacitated 
problems were examined. This included both single- and 
multifacility problems.

For the probabilistic cases, the single-facility 
problem was studied for both capacitated and uncapacitated 
cases. This was done for both continuous and discrete 
spaces.



CHAPTER III

DOMINANCE PROPERTIES

Certain general properties of the traveling-salesman 
facility location problem can be derived. IJhen possible 
these will serve to reduce the size of the solution space.

3.1 Dominance in the General Location Problem
Wendell and Hurter (1973) proved the following 

property of the general location problem when the objective 
was to minimize problem P2.1.

Property 1
If 1. the location is to be on a plane,

2. all of the distance norms are the same, and
3. the costs are a nondecreasing function of dis

tance (the greater the distance, the greater the 
cost),

then a solution at least as good as any other can be 
found in the convex hull formed by the existing facili
ties.

17
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3.2 Properties of the TSLP

For the TSLP, Property 1 can easily be extended to 
Property 2
Property 1 holds true for the traveling-salesman facil
ity location problem.

Proof; One can consider the TSLP as a typical facility 
location problem with respect to the first and last existing 
facility visited in each tour. Thus Property 1 holds for 
the convex hull formed by these facilities. But this convex 
hull is contained in the convex hull of all existing facili
ties. The property is proven.

It will be assumed in any solution procedure presented 
in this paper that if there are enough feasible location 
possibilities within this convex hull, then nothing will be 
considered outside of it.

Property 3
For the unweighted, continuous, deterministic, single
facility, uncapacitated TSLP, the optimal solution is 
any point on the minimum-traveling-salesman tour through 
the existing facilities.

Proof: Burness and White (1976) stated this as being
obvious. The simple argument is as follows: Since it was
previously assumed that the distances between existing 
facilities was minimum, then if the new facility site was 
anywhere other than on one of the minimum tour links then 
the tour length would be increased.
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Many times a location problem is constrained to a 

network whose nodes are the existing facilities and poten
tial facility sites and the arcs are the transportation 
links between these points.

Property 4
If the solution of a continuous, deterministic TSLP 
problem is constrained to be on the transportation 
network joining existing facilities and potential 
facility sites, then an optimal solution can always 
be found on a subset of the nodes of that network.

Proof; For the uncapacitated case this follows immediately 
from Property 3. The capacitated case is proven in the 
following argument.

Assume that the optimal location X* of a new facility 
is somewhere on the link between nodes a and b which are on 
the same tour. Let a' and b’ be two nodes on another tour 
between which it is determined that X* will lie on the 
transportation network. This can be visualized as in Figure
3.1.

tour 2

X*

tour 1

Figure 3.1. Location of new facility in a network.
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Assume the most general case where all links (a',a).- (a'^b), 
(b',a) and (b',b) exist.

Note that tour 2 will include the links which deter
mine the minimum of (d^fd^^d^fd^) where

d^ = d(a',a) + d(a,X*) + d(X*,b) + d(b,b')
d, = d(a’,a) + d(a,X*) + d(X*,a) + d(a,b')
d^ = d(a',b) + d(b,X*) + d(X*,a) + d(a,b')
d^ = d(a',b) + d(b,X*) + d(X*,b) + d(b,b')

and
d(ü,V) = distance from U to V.

Now assume that X* lies on one of the nodes a or b. 
Then tour 2 will include the links which determine the mini
mum of (d̂ ,dĵ ) where

d^ = d(a',a) + d(a,b') (X* = a)
d^ = d(a',b) + d(b,b') (X* = b)

Since, by an earlier assumption, any link is the 
minimum distance between its end points then

(1)
4b ̂  4j
4b i 4,

There are two cases;
1) If d^ < d^ then from (1) d^ £ min(d^,d2 ,d2 ,d̂ ) 

and X* = a.
2) If d^ < d^ then from (1) d^ < min(d^,d2 ,d2 ,d̂ ) 

and X* = b.
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This argument can be successively applied to each 

tour in the system.

This is a result similar to that of Hakimi (1965) 
and Levy (1967) except that they were not concerned with 
traveling-salesman tours. The effect of this property is 
that continuous problems on a network can be solved as 
discrete problems if a discrete solution procedure is 
available.



CHAPTER IV

DETERMINISTIC FORMULATIONS

4.1 Introduction
This chapter will present deterministic formulations 

of the TSLP. Continuous space problems that are studied 
are both the single- and multifacility uncapacitated prob
lems. The discrete problems investigated are the single- 
and multifacility capacitated problems.

4.2 Consideration of Existing Facility Weights
Property 3 solved the simplest TSLP, the continuous, 

deterministic, single-facility, uncapacitated problem. But 
no consideration was made of weights associated with each 
existing facility. Now assume that we have weights which 
represent costs per unit distance of travel from the exist
ing facility to the new facility.

In the usual facility location problems each weight 
can easily be multiplied times the distance between the 
existing facility it is associated with and the new facility, 
But if the distances are traveling-salesman distances then 
problems arise. The trip from an existing facility back to 
the new facility may not be direct but through a series of

22
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other existing facilities. Therefore it seems that the 
weight per unit of travel should be ever increasing (or 
ever diminishing) as the tour visits each customer. In 
certain instances, e.g., when the facility changes the 
demands on a vehicle or when there is a cost associated with 
the time in transit of items being delivered, this may be 
realistic, but as will be shown below, the computational 
problems will be greatly compounded.

Assume that a route through the existing facilities 
is given. By Property 3, in the case of no weight, the 
optimal solution is anywhere on the route. With weights, 
the solution will be on this route but in a distinct loca
tion.

The route can be visualized as a circle with its 
circumference being the total distance of the route and all 
existing facilities are layed out along the circumference. 
One of the existing facilities is labeled as facility 1 and 
the remainder are numbered 2,3,...,m going in the direction 
of the route ^Qund the circle. Define the following 

d^ = distance along the route from facility 1 to 
facility i.

X = distance along the route from facility 1 to the 
new facility.

D = total distance of the route. 
d^(x) = distance from facility i to the new facility

located at x along the direction of the route.
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= weight of facility i.
This model can be shown as in Figure 4.1,

new facility

Figure 4.1. Visualization of an uncapacitated route.

in the direction of the route then dĵ (x) = x-d^
Note that if facility i lies before the new facility

But if
facility i lies ahead of the new facility then d^(x) = 
(D-d^)+x, where (D-d̂ ) is the distance from the new facility 
to facility 1 (reference point). Or,

dU(x)

or.

(x)

■{

■{

x-d^. d. < X 1 —
(D-d^)+x, dU > X

x-d^.
(D-d^)+x, i = p+1.

where p is the maximum value of i such that d^ £ x.
The minimum must now be found of the cost.

m
z = Z w. d. (x) 

i=l  ̂ ^
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p m

= Z w.(x-d.) + Z w.(D-d.+x) 
i=l  ̂ ^ i=p+l ^ ^
m m  m

= Z w.x - Z w.d. + D Z w.
i=l  ̂ i=l  ̂ i=p+l ^
m m

Letting W = Z w- and noting that Z w.d. is constant, 
i=l i=l 1 1

m
z' = xW + D Z w.

i=p+l ^

z'

dd Dd2 m
\ X

Figure 4.2. Graph of z '.

Figure 4.2 is a plot of z'. Notice that the minimum 
will obviously fall on one of the existing facilities, or,
X = d^ for some i. Therefore the minimum for a given 
direction of travel will be at facility j for

m
min {d.W + D Z w-} 
l<j£m  ̂ i=j+l

And for a route in the opposite direction:
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j-1min {D Z w. - d.W} 

l^j£m 1=1 3
This will give the optimal location on a given route. 

Perhaps this could be incorporated into an algorithm that 
would produce a location associated with a minimum weighted 
distance route.

This is the only case where weights will be con
sidered explicitly. In the TSLP, the cumulative aspect of 
the weights increases the computational problems immensely.

These computational problems might be lessened at 
the expense of reality by assuming that the whole tour has 
one weight equal to the sum of all weights in the tour (which 
might be related to truck capacity).

A second interpretation might arise if the weights 
have no effect on the cost of travel. This might be the 
case if the vehicle is delivering or picking up demands 
based on the weight but its cost of travel is not affected 
and the stop is made no matter what the demand is. Here 
the weights would have no mathematical effect on the routing 
unless the vehicle has some capacity limit.

The weights might also be viewed as the frequency of 
demand or the number of trips required per unit of time.
This would very much depend on the planning time horizon 
and on whether the facility required service as soon as it 
was demanded. Assuming that the times of the occurrences 
of the demands are known with certainty, the new facility
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might be located with respect to subtours through the 
facilities that required service in a given interval of 
time.

Webb (1972) has warned against using weighted 
distance, where the weight is the amount of goods trans
ported, as a measure of cost in a distribution system.
This approach can be very deceiving since many times the 
relationship between cost and weighted distance is a 
function of the type of vehicle used. Also a large part 
of the expenditures in a distribution system are on labor, 
thus decisions should be based on careful consideration 
of how labor should be used. This fact, along with the 
rising energy costs, make time on the road more important. 
Therefore, simple minimization of distance traveled would 
be a prime objective in distribution system design. One 
would probably be more interested in the "weights" as they 
related to capacity restrictions.

4.3 The Discrete, Single-Facility, Uncapacitated Problem

The objective will be to minimize the total dis
tance of the tour connecting all of the existing facili
ties and one new facility. There are no capacity 
restrictions.

This problem might be rendered trivial in the 
special case shown in
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Observation 4.1

If any of the potential new facility sites are the 
same as any of the existing facility sites, then 
distance of the tour would be minimized by locating 
on one of these sites.

Observation 4.2

If a potential site falls on one of the minimum tour 
links joining the existing facilities, then the dis
tance would be minimized by locating there.

If neither of the above cases holds then other
approaches must be tried. Let N be the number of the 
potential sites where the new facility can be located.
For each of the N sites a traveling-salesman problem can 
be solved with one of the sites appended to the list of 
existing facilities. One then chooses the site which gave 
the minimum-length tour.

Another method will be proposed which will allow 
the solution of just one traveling-salesman problem and 
this solution will indicate the minimum distance site for
the new facility. The network that is solved is made up
of the m existing facilities plus 2N different nodes which 
are added as follows.
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Let all of the existing facilities be numbered 
1,2,...,m and the matrix of distances between these facil
ities be D which is made up of d(i,j) i,j = l,...,m. The 
new matrix will be D' with elements d'(i,j) i,j = l,...,m+2N. 
Let the proposed sites be numbered 1,...-,N and d(i,j) be 
the distance from existing facility i to proposed site j 
or from proposed site j to existing facility i. This 
assumes that these distances are symmetric but this is not 
necessary.

These elements are used to make up the matrix D' 
shown in Figure 4.3 for N = 3. A traveling-salesman prob
lem is then solved on the network represented by this 
matrix. Any of the methods reviewed in Appendix I can be 
used, except the r-optimal method which requires a symmetric 
distance matrix.

To facilitate discussion of the new network, rename 
the new nodes of Figures 4.3 and 4.4 as follows : nodes m+1,
m+2 and m+3 are A, B and C? and nodes m+4, m+5 and m+6 are 
A ', B ' and C'.

Note from the figures that the only arcs in the 
appended network that have costs are those joining it to 
the network of existing facilities. The idea behind this 
is that if, for example, A is the minimum distance location, 
the tour will enter A and incur the appropriate cost. The 
tour will then visit all of the other nonprimed nodes and
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node 1 m
A

m+1
B

m+2
c

m+3
A'

m+4
B’

m+5
c

1 d(l,l) . . d(l,m) d(l.l) d(l,2) d(l,3) 00 00 oo

. . • • • • • • •
• • . • • . •

m d(m,l) . . d(m,m) _d(m,l) d/m,2) £(m,3) 00 00 oo

A m+l OÙ ^ 00 00 G 09 0 00 oo

B m+2 00 , • 00 00 00 G 00 0 oo

C m+3 00 , • 00 G 00 00 00 00 0
A' m+4 d(l,l) . . d(m,l) 00 00 00 00 00 0
B' tri-5 d(l,2) . .  d(m,2) , 00 oo 00 0 00 00

C m+6 d(l,3) . .  £(m,3) 00 00 00 00 0 00

Figure 4.3. The Matrix D* with N=3.

Existing
Facility
Network

Figure 4.4. Representation of Network D* with N=3.
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then all of the primed nodes at no cost and then leave 
through A', again incurring the appropriate cost.

This type of circuit is probable since in minimizing 
distance the route would tend to avoid those links with 
positive distances in favor of those with zero distances. 
Thus only one arc from the existing facility network to the 
appended network would be traversed as would only one arc 
going the opposite direction.

It would also be the case that the same number of 
primed nodes as nonprimed nodes would be visited in a tour 
through the appended network. If that were not the case a 
node would be "stranded” and could not be visited later.
For example, if a tour went from an existing facility to A, 
B, B ' and then back to an existing facility, then node A' 
could not be visited.

To assure that only one circuit be made through the 
appended network it might be necessary to add a constant, 
fictitious cost to each of the d(i,j)'s. This would further 
force the tour to avoid those arcs. In fact, if all of the 
distances were scaled to be compatible with the fixed costs 
of opening facilities on each of the potential sites, then 
these fixed costs could be added to the d(i,j)'s and the 
model would take this into account.

4.4 The Discrete, Single-Facility, Capacitated Problem 
This problem involves finding the location for a 

single new facility among a set of predetermined, discrete
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sites. The objective is to minimize the distance of a set 
of tours that will serve each of the existing facilities.
Each of these tours are limited by the capacity restrictions.

The obvious method of solving this is to solve vehi
cle routing problems using each of the new facility candi
dates in turn as depots. There are heuristic methods of 
solving the vehicle routing problem, e.g., the savings 
method (see Appendix II), that handle very large problems 
in just a few seconds. One then selects as the new facility 
the candidate giving the least distance tours.

4.4.1 Heuristic for the Discrete, Single-Facility,
Capacitated Problem
Another method could use the relationships developed 

by Eilon et al. (1971). Here one could roughly find the 
point where tour distances were minimized by finding the 
point where the total of Euclidean distances between the 
candidate site and each existing facility was minimized.

To test this approach for the discrete problem 15 
different customer sets were generated in a 100 by 100 square. 
The coordinates of the stops came from a uniform distribution 
with a range of 0 to 100 and the demands were generated from 
a normal distribution with mean 50 and a standard deviation 
of 15. There were 5 sets with 25 customers, 5 with 50 cus
tomers and 5 with 100 customers. Each of the sets were 
solved with four different capacities of 200, 300, 500 and 
1000 units. This would mean an average number of stops per
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route of 4, S, 10 and 20. For each of the 60 problems there 
were 10 candidate sites whose coordinates were generated 
from a uniform distribution of range 0 to 100-

For each candidate site in each problem a routing 
problem was solved. The method used was a variation of the 
savings method discussed in Appendix II. This method incor
porated a list searching technique from Matthaus (1976) and 
a modified savings function introduced in Gaskell (1967).
The algorithm was coded in FORTRAN IV on an IBM 370/158.
and test results appear in Appendix II. The steps of the'
algorithm follow.

4.4.2 Algorithm for Single-Terminal Vehicle Routing

The data:
M = number of stops 

D(I,J) = distance from stop I to stop J 
DT(I) = distance from terminal to stop I

The algorithm variables:
A = list of terminal distances which is sorted and 

used to select linkages 
BSTDIS = the best distance of all routes found so far 

lA = list of stops associated with the values in A 
J1,J2 = temporary variables for stops being considered for 

linking
K1,K2 = the best stops found for linking in one iteration 
LINK = logical variable indicating whether any stops were
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linked on a route 

PARA = route-shaper parameter in the modified savings 
function 

S = savings 
SO = best savings found in an iteration 

SPARA = the parameter associated with the best route found 
TDIST = total distance of a route

The algorithm:
1. BSTDIS = a large number 

PARA = .2
2. Initialize data structure such that each stop is a 

single route.
3. A(I) = DT(I), IA(I) = I; for I = 1,...,M.

Sort A and lA in descending order of A.
4. SO = a very small number 

LINK = FALSE
1 =  1

5. J1 = IA(I) / J1 is the stop associated with index I.
6. If A (I) + A(I+1) <. SO then go to step 16, there cannot

be an improvement.
7. J = I + 1
8. J2 = IA(J), J2 is the stop associated with index J.
9. If A{I) + A(J) £ SO then go to step 15, there cannot be

an improvement.
10. If J1 and J2 are on the same route, or if joining J1 and

J2 will exceed capacity or distance constraints, then
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go to step 14.

11. Calculate savings: S = DT(Jl) + DT{J2) - PARA*D(Jl,J2).
12. If S £ SO then go to step 14.
13. Save values: SO = S, K1 = Jl, K2 = J2, LINK = TRUE. .
14. If J = M then go to step 15,

otherwise, J = J+1 and go to step 8.
15- If I = M-1 then go to 16,

otherwise, I = I+l and go to step 5.
V

16. If LINK = FALSE then go to step 20.
17. Update data structures such that the route containing

Kl and K2 are linked at K1 and K2.
18. If Kl or K2 are no longer at the end of a route they are

no longer considered for linking. Replace their entries 
in A with a very small number and resort A. Go to step
4.

19. Calculate total distance of the routes, TDIST.
20. If TDIST < BSTDIS then BSTDIS = TDIST and SPARA = PARA.
21. If PARA = 2 then go to step 22,

otherwise, PARA = PARA + .2 and go to step 2.
22. The best route is the one associated with SPARA and the

best distance is BSTDIS. STOP

4.5.3 Test Results
The results are shown in Table 4.1. The objective

was to correlate the route distances with the sum of the
Euclidean distances between the depots and the customers.
A summary is given in Table 4.2.
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TABLE 4.1

RESULTS OF EXPERIMENTS TO RELATE RADIAL 
DISTANCES TO ROUTE DISTANCES

Number of customers = 25

Problem Candidate Euclidean Route Distances
set site Distances

------------------------------------ Capacities
200 300 500 1000

1 2505 (4)6 936 (4) 753 (4) 619 (4) 495 (3)
2 3301 (9) 1149 (9) 912 (9) 711 (10) 530 (9)
3 1964 (1) 791 (1) 669 (1) 526 (1) 470 (1)
4 2089 (2) 883 (2) 674 (2) 569 (2) 478 (2)
5 3016 (7) 1061 (7) 828 (7) 640 (6) 523 (6)
6 3291 (8) 1146 (8) 898 (8) 710 (9) 529 (8)
7 3362 (10) 1152 (10) 913 (10) 680 (8) 561 (10)
8 2611 (5) 967 (5) 757 (5) 648 (7) 495 (4).
9 2832 (6) 1009 (6) 808 (6) 632 (5) 525 (7)

10 2361 (3) 917 (3) 742 (3) 605 (3) 498 (5)

Correlat ions: .9903 .9919 .9447 .9436

1 1889 (1) 758 (1) 610 (1) 499 (1) 432 (2)
2 2305 (7) 871 (7) 687 (7) 538 (7) 456 (6)
3 2087 (4) 808 (3) 656 (4) 508 (2) 423 (1)
4 3136 (9) 1139 (10) 832 (9) 643 is) 514 (10)
5 3174 (10) 1100 (9) 849 (10) 644 (10) 499 (9)
6 2490 (8) 932 (8) 739 (8) 573 (8) 458 (7)
7 2240 (6) 845 (6) 671 (6) 536 (6) 453 (5)
8 1941 (2) 775 (2) 627 (2) 512 (3) 434 (3)
9 2150 (5) 825 (5) 658 (5) 528 (5) 438 (4)

10 2064 (3) 815 (4) 654 (3) 517 (4) 460 (8)

Correlat ions: .9950 .9959 .9936 .9320

1 3054 (7) 1132 (7) 830 (7) 643 (7) 502 (6)
2 3208 (10) 1159 (9) 871 (10) 668 (10) 515 (9)
3 3016 (6) 1109 (5) 816 (6) 649 (8) 504 (7)
4 2415 (4) 942 (3) 724 (4) 591 (4) 489 (2)
5 1876 (1) 801 (1) 640 (1) 543 (2) 502 (5)
6 3173 (9) 1162 (10) 850 (8) 640 (6) 513 (8)
7 3097 (8) 1135 (8) 853 (9) 661 (9) 532 (10)
8 3005 (5) 1114 (6) 794 (5) 624 (5) 490 (4)
9 2310 (3) 943 (4) 698 (3) 564 (3) 464 (1)
10 1933 (2) 813 (2) 654 (2) 534 (1) 490 (3)

Correlat ions: .9980 .9887 .9759 .5604

* Numbers in parenthesis are rankings.



37
TABLE 4.1— Continued

Number of customer = 25

Problem Candidate Euclidean Route Distances
set site Distances

Capacities 
200 300 500 1000

1 2307 (5) 857 (4) 684 (5) 564 (6) 469 (6)
2 2587 (7) 977 (7) 748 (7) 575 (7) 484 (7)
3 2150 (3) 837 (3) 660 (3) 532 (3) 462 (4)
4 2841 (8) 1038 (8) 776 (8) 616 (8) 487 (8)
5 1783 (1) 732 (1) 590 (1) 493 (1) 438 (1)
6 2979 (9) 1061 (9) 810 (9) 620 (9) 512 (9)
7 2330 (6) 859 (5) 691 (6) 563 (5) 461 (3)
8 3852 (10) 1323 (10) 986 (10) 729 (10) 557 (10)
9 2262 (4) 870 (6) 673 (4) 552 (4) 466 (5)
10 2109 (2) 792 (2) 643 (2) 528 (2) 461 (2)

Correlations : .9958 .9985 .9950 .9870

1 2398 (5) 997 (5) 751 (3) 610 (6) 525 (7)
2 3035 (9) 1175 (9) 904 (9) 668 (9) 556 (10)
3 2942 (8) 1158 (7) 860 (8) 621 (7) 521 (5)
4 1800 (1) 843 (1) 677 (2) 521 (1) 481 (1)
5 2883 (7) 1161 (8) 835 (7) 651 (8) 547 (9)
6 2282 (3) 981 (3) 768 (4) 596 (4) 495 (2)
7 2345 (4) 979 (4) 775 (5) 588 (3) 504 (3)
8 3102 (10) 1187 (10) 908 (10) 674 (10) 523 (6)
9 2631 (6) 1067 (6) 776 (6) 603 (5) 535 (8)
10 1931 (2) 881 (2) 661 (1) 533 (2) 503 (3)

Correlat ions : .9966 .9689 .9584 .8106
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TABLE 4.1— Continued

Number of customers = 50

Problem Candidate Euclidean Route Distances
set site Distances

Capacities
200 300 500 1000

1 1 5263 (4) 1881 (4) 1357 (4) 1015 (4) 776 (4)
2 6435 (9) 2200 (9) 1630 (9) 1133 (9) 876 (9)
3 3969 (1) 1507 (1) 1123 (1) 883 (1) 682 (1)
4 4147 (2) 1549 (2) 1173 (2) 896 (2) 728 (2)
5 6104 (7) 2126 (7) 1509 (7) 1094 (7) 810 (7)
6 6419 (8) 2195 (8) 1627 (8) 1132 (8) 876 (10)
7 6856 (10) 2328 (10) 1647 (10) 1195 (10) 812 (8)
8 5501 (5) 1946 (5) 1387 (5) 1083 (6) 770 (5)
9 5743 (6) 2013 (6) 1451 (6) 1082 (5) 802 (6)

10 4581 (3) 1693 (3) 1270 (3) 980 (3) 756 (3)

Correlations: .9990 .9908 .9852 .8919

2 1 4189 (2) 1482 (2) 1147 (2) 837 (1) 656 (2)
2 4336 (4) 1511 (3) 1176 (3) 870 (5) 673 (6)
3 4809 (8) 1644 (8) 1261 (8) 910 (8) 682 (7)
4 5878 (10) 1929 (10) 1457 (10) 1021 (10) 741 (10)
5 5600 (9) 1857 (9) 1383 (9) 973 (9) 735 (9)
6 4398 (5) 1542 (4) 1180 (5) 894 (7) 660 (3)
7 4058 (1) 1452 (1) 1138 (1) 838 (2) 688 (8)
8 4418 (6) 1536 (5) 1207 (7) 883 (6) 666 (4)
9 4467 (7) 1557 (7) 1177 (4) 848 (3) 666 (5)
10 4279 (3) 1553 (6) 1191 (6) 867 (4) 654 (1)

Correlations : .9953 .9911 .9685 .9043

3 1 6346 (8) 2061 (8) 1492 (8) 1043 (8) 744 (4)
2 6627 (10) 2132 (10) 1557 (10) 1084 (10) 790 (10)
3 6282 (7) 2029 (7) 1472 (6) 1030 (6) 760 (7)
4 5025 (4) 1714 (4) 1288 (4) 959 (4) 758 (6)
5 3861 (1) 1398 (1) 1091 (1) 835 (1) 696 (1)
é 6451 (9) 2096 (9) 1534 (9) 1052 (9) 763 (8)
7 6110 (5) 1955 (5) 1489 (7) 1037 (7) 778 (9)
8 6145 (6) 2003 (6) 1460 (5) 1024 (5) 747 (5)
9 4790 (3) 1673 (3) 1280 (3) 920 (3) 719 (3)
10 3979 (2) 1443 (2) 1123 (2) 850 (2) 705 (2)

Correlations: .9982 .9954 .9930 .8682
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TABLE 4.1— Continued

Number of customers = 50

Problem Candidate Euclidean Route Distances
set site Distances

200
Capacities 

300 500 1000

1 4834 (5) 1654 (4) 1191 (6) 896 (6) 680 (5)
2 5073 (7) 1806 (7) 1258 (7) 903 (7) 684 (7)
3 4361 (3) 1593 (3) 1115 (3) 821 (3) 618 (2)
k 6030 (9) 1971 (8) 1396 (9) 990 (9) 706 (9)
5 3869 (1) 1393 (1) 998 (1) 772 (1) 594 (1)
6 5787 (8) 2018 (9) 1388 (8) 971 (8) 704 (8)
7 4848 (6) 1659 (5) 1171 (5) 875 (5) 684 (6)
8 7286 (10) 2341 (10) 1624 (10) 1123 (10) 837 (10)
9 4616 (4) 1668 (6) 1170 (4) 856 (4) 638. (3)
10 4202 (2) 1465 (2) 1057 (2) 805 (2) 640 (4)

Correlations: .9874 .9951 .9969 .9522

1 4563 (4) 1751 (4) 1260 (4) 946 (4) 755 (5)
2 6555 (10) 2294 (10) 1639 (10) 1137 (10) 839 (10)
3 5712 (9) 2095 (9) 1489 (9) 1058 (9) 813 (9)
4 3535 (1) 1454 (1) 1085 (1) 836 (1) 681 (1)
5 5440 (7) 1969 (6) 1406 (6) 1037 (7) 785 (8)
6 4810 (5) 1809 (5) 1339 (5) 98) (5) 742 (4)
7 4295 (3) 1649 (3) 1221 (3) 908 (3) 705 (2)
8 5624 (8) 2031 (8) 1488 (8) 1043 (8) 773 (7)
9 5391 (6) 1993 (7) 1459 (7) 1027 (6) 771 (6)
10 3940 (2) 1576 (2) 1173 (2) 888 (2) 716 (3)

Correlations: .9982 .9944 .9960 .9632



40
TABLE 4.1— Continued

Number of customers = 1 0 0

Problem Candidate Euclidean Route Distances
set site Distances

Capacities 
200 300 500 1000

1 10,542 (4) 3451 (4) 2467 (4) 1710 (4) 1194 (4)
2 12,871 (9) 4105 (9) 2861 (8) 1964 (8) 1348 (9)
3 7,963 (1) 2779 (1) 2008 (1) 1414 (1) 1080 (1)
4 8,568 (2) 2933 (2) 2130 (2) 1525 (2) 1110 (2)
5 11,807 (7) 3823 (7) 2710 (7) 1889 (7) 1274 (7)
6 12,830 (8) 4104 (8) 2873 (9) 1965 (9) 1364 (10)
7 13,127 (10) 4219 (10) 2940 (10) 1998 (10) 1333 (8)
8 10,829 (5) 3566 (5) 2568 (6) 1749 (5) 1240 (5)
9 10,957 (6) 3598 (6) 2556 (5) 1776 (6) 1258 (6)

10 9,045 (3) 3071 (3) 2242 (3) 1565 (3) 1140 (3)

Correlations: .9996 .9981 .9968 .9879

1 8,082 (1) 2719 (1) 1948 (1) 1400 (1) 1074 (4)
2 8,815 (5) 2930 (6) 2106 (7) 1459 (4) 1093 (7)
3 8,953 (7) 2925 (5) 2093 (6) 1505 (7) 1074 (5)
4 12,777 (10) 3931 (10) 2732 (10) 1875 (10) 1253 (10)
5 11,841 (9) 3691 (9) 2589 (9) 1795 (9) 1235 (9)
6 9,669 (8) 3110 (8) 2190 (8) 1578 (8) 1125 (8)
7 8,552 (3) 2848 (4) 2021 (2) 1430 (2) 1090 (6)
8 8,501 (2) 2839 (2) 2034 (3) 1442 (3) 1036 (1)
9 8,645 (4) 2845 (3) 2063 (4) 1462 (5) 1058 (3)
10 8,940 (6) 2945 (7) 2088 (5) 1490 (6) 1037 (2)

Correlations: .9994 .9980 .9974 .9487

1 13,111 (9) 4102 (8) 2856 (8) 1912 (8) 1260 (9)
2 13,087 (8) 4112 (9) 2874 (9) 1925 (9) 1249 (8)
3 12,647 (7) 4004 (7) 2782 (7) 1911 (7) 1222 (6)
4 9,651 (4) 3171 (4) 2282 (4) 1558 (4) 1107 (4)
5 8,315 (1) 2786 (1) 2007 (1) 1467 (1) 1055 (2)
6 11,536 (6) 3711 (6) 2625 (6) 1763 (6) 1238 (7)
7 13,484 (10) 4240 (10) 2900 (10) 1976 (10) 1288 (10)
8 10,949 (5) 3541 (5) 2503 (5) 1721 (5) 1218 (5)
9 8,789 (3) 2983 (3) 2115 (3) 1515 (3) 1072 (3)
10 8,575 (2) 2880 (2) 2048 (2) 1487 (2) 1042 (1)

Correlations: .9994 .9982 .9966 .9659
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table 4.1— Continued

Number of customers = 1 0 0

Problem Candidate Euclidean Route Distances
set site Distances

200
Capacities

300 500 1000

1 10,254 (6) 3323 (5) 2354 (6) 1637 (7) Il40 (7)
2 9,866 (5) 3328 (6) 2319 (5) 1602 (5) 1134 (5)
3 8,622 (2) 2975 (3) 2088 (3) 1479 (2) 1058 (3)
4 12,695 (9) 3998 (9) 2819 (9) 1891 (9) 1263 (9)
5 8,174 (1) 2810 (1) 2040 (1) 1444 (1) 1056 (2)
6 11,137 (8) 3697 (8) 2559 (8) 1738 (8) 1192 (8)
7 10,289 (7) 3336 (7) 2356 (7) 1624 (6) 1135 (6)
8 14.631 (10) 4551 (10) 3184 (10) 2047 (10) 1349 (10)
9 9,096 (4) 3136 (4) 2182 (4) 1534 (4) nil (4)
10 8,895 (3) 2961 (2) 2077 (2) 1503 (3) 1044 (1)

Correlations: .9551 .9972 .9983 .9871

1 9,281 (4) 3286 (4) 2297 (4) 1545 (4) 1099 (4)
2 13,544 (10) 4506 (10) 3118 (10) 2070 (10) 1340 (10)
3 10.943 (7) 3624 (7) 2536 (7) 1760 (9) 1172 (7)
4 7,345 (1) 2723 (1) 1904 (1) 1373 (1) 1013 (1)
5 10,962 (8) 3736 (9) 2618 (9) 1732 (7) 1187 (9)
6 10,035 (5) 3503 (5) 2414 (5) 1708 (6) 1166 (6)
7 8,394 (3) 2924 (3) 2098 (3) 1486 (3) 1028 (2)
8 11,031 (9) 3669 (8) 2568 (8) 1749 (8) 1155 (5)
9 10,440 (6) 3535 (6) 2480 (6) 1695 (5) 1174 (8)
10 7,774 (2) 2758 (2) 1991 (2) 1411 (2) 1052 (3)

Correlations: .9946 .9970 .9929 .9732
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TABLE 4.2 
AVERAGE CORRELATIONS FROM TABLE 4.1

Number of 
Customers

Capacities Average
200 300 500 1000

uvei AJ-i
Capacities

25 .9951(1) *.9888(1.2) .9735(1.2) .8467(2) .9510(1.35)
50 .9956(1) .9934(1) .9879(1.2) .9160(1.4) .9732(1.15)
100 .9976(1) .9977(1) .9964(1) .9726(1.8) .9911(1.2)

Average 
Over All 
Customer 
Sets

.9961(1) -9933(1.07) .9859(1.13) .9117(1.73) .9717(1.23)

*Starting from the location of minimum Euclidean distance, this 
is the average number of routing problems that must be solved to 
find the optimal location.
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It is obvious that the correlations were extremely 

high for all cases except perhaps the problems with a capa
city restriction of 1000 units. In general there were high 
correlations with low capacities and a large number of cus
tomers. The good correlation with low capacities makes sense 
because low capacity approaches the case of single customer 
routes where tour distance is equal to Euclidean distance.

This also holds true with the number of times that 
the location of minimum Euclidean'distances corresponds with 
the location of minimum tour distances. With a capacity of 
200 units the two minima correspond in every case. Other 
than that the correspondence held in almost every case. In 
the worst case routing problems for the four minimum Euclidean 
distance locations would have to be solved to find the minimum 
tour distance location. This occurred in a problem with 25 
customers and a capacity of 1000 units— the case which had 
the lowest average correlation. In 56 out of 60 cases the 
solution of two routing problems would find the minimum dis
tance location. The probability of this happening by chance 
is (|g).2^®.8^, which is essentially zero.

This all suggests a heuristic; If it is felt that 
because of a lack of computing resource only K vehicle 
routing problems can be solved, then select the K candidates 
which give the minimum sum of distances between them and the 
existing facilities and solve a vehicle routing problem for 
each of these K candidates. The one giving the minimum tour
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distance is selected. If it is impossible to solve any 
routing problems then the location of minimum Euclidean 
distance would probably be near optimal, especially if there 
are several stops and a low capacity.

The results reported here might be made stronger by 
investigating how particular spacial arrangements of the 
customers affect the locations. For example, the effect of 
a certain percentage of the demand clustered in a certain 
area.

4.5 The Discrete, Multifacility Capacitated Problem
In this case there are m existing facilities or 

customers and n new facilities or depots to be located from 
a collection of N discrete possibilities. Krolak et al.
(1972) found that their method could be applied to this 
problem if there was no constraint on the number of new 
facilities. A multiple-depot vehicle-routing problem is 
solved using all new facility possibilities and the ones not 
used in the final solution are discarded. It seems that 
any multiple-depot vehicle scheduling procedure could be used 
to this end.

But one may be interested in finding exactly n new 
facility sites. The same type of heuristic used with the 
single-facility problem can be suggested here. One can 
solve a discrete, location-allocation problem using Euclidean 
distances instead of tour distances. The n new facilities 
found with this procedure could then have the customers
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reallocated to then using a conventional multiple-depot 
routing algorithm.

4.5.1 Problem Testing
This idea was tested on problems with data generated 

the same way as with the previously discussed single-facility 
experiments. In this case there were two sets each of 25,
50 and 90 customers.

It was assumed all fixed costs of the facilities 
were equal, so the Euclidean distance problem that was 
solved was the p-median problem:

n n
P4.1 minimize Z 2 a.d..x..

i=l j=l ^
n

subject to 2 x..=l, i=l,...,n
j=i

X.. < X.., X.. = 0 or 1, i,j = 1,...,n - ]] 1]
where: x^^ = 1 if facility i is assigned to facility j,

a^ = demand of node i, 
d^j = distance from node i to node j.
This problem and its solution are reviewed in 

Appendix III. A method is described there which was used by 
Narula et al. (1977) and was coded in FORTRAN IV for use 
here. This method solves the Lagrangian dual of the problem 
by iteratively searching the solution space in the direction 
of the subgradient. The procedure is described as follows.
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The Lagrangian relaxation of the problem with respect 

to the first constraint and for a given nonnegative n-vector 
is

n n n
L, (A) = min Z 2 (a.d. . - A-)x. . + 2 A.-
^ X i=l j=l  ̂  ̂ i=l ^

n
subject to 2 X . . = p 

j=l
x^j <. Xjj, x^j = 0 or 1, irj = l,...,n.

The Lagrangian dual of this is
max L, (A)
A>0

and subgradient optimization (Held et al., 1974) is used to
solve this dual problem. The algorithm follows.

îj1. Select an initial point: A? = min{a.d..} Vi. k = 01 î j ^
2. D. = 2 min{0,a.d.. - A.} vj

3 i=l  ̂ ^
V3. Select the p smallest values from D^. The sum of these 

values is S.

k k4. L,(A^) = S + 2 A?
^ j=l ^

5. d^ = min{a.d. .} Vi where P is the locations with the p
 ̂ jeP ^

Vsmallest D^.
3c Ic6. Lp = sum of n-p largest d .̂

7. S^ = 1 - I X . . where x.. = {  ̂ ^i^ij < 0
 ̂ jeP ̂   ̂ 0 otherwise.

8. Terminate if S^ = 0 Vi or if L, (Â ) = L^
1  a p
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9. Calculate t^ such that 0 < t^ < ir (Lp*-L^(X^) )/| S^l ̂  . 

where L^* = min r —
Tf Tf If10. X = X + t S , k =  k+1 and go to step 2.

For convenience all demand points were used as poten
tial new facility sites— as the above algorithm implies.
Any other configuration of candidate sites could easily be 
handled.

The p-median problem was solved for two new facili
ties and for five new facilities using each problem set.
This gave the optimal Euclidean distance location-allocation 
for each data set. Then nine other sets of facility sites 
were selected and minimum distance allocations were made for 
them. These distances are shown under the "Euclidean dis
tance" column in Table 4.3. The alternate sites for the 
five-new-facility problems were selected at random. Those 
for the two-new-facility problems were made up of the optimal 
sites in the five-facility problem.

Then multiple-depot routing problems were solved 
using each of the site sets as depots. These were solved 
with capacities of 200, 500 and 1000 units using the algorithm 
of Matthaus (1976, see Appendix II). Correlations were then 
calculated (Table 4.3).

4.5.2 Results
As with the single-facility experiments the correla

tions were highest with low capacity and a high number" of
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table 4.3

RESULTS OF MULTIFACILITY EXPERIMENTS

Problem
Set

Number of Customers =25 
Number of New Facilities = 2
Set of 

Candidate 
Sites

Euclidean
Distances

Route Distances 
Capacities

200 500 1000

1 1* 692 (1) 673 (2) 512 (3) 470 (3)
2 727 (3) 7 05 (3) 510 (2) 481 (5)
3 1353(10) 1056(10) 609 (8) 490 (6)
4 1047 (8) 869 (7) 541 (6) 423 (1)
5 773 (4) 718 (4) 518 (5) 493 (7)
6 1060 (9) 915 (9) 559 (7) 494 (8)
7 905 (6) 842 (6) 512 (4) 469 (2)
8 694 (2) 672 (1) 616 (9) 570(10)
9 864 (5) 874 (8) 663(10) 473 (4)

10 938 (7) 812 (5) 486 (1) 495 (9)
Correlations : .9609 •2338 2856

2 1 636 (1) 616 (1) 607 (9) 458 (5)
2 1054 (9) 846 (8) 531 (2) 469 (7)
3 852 (6) 736 (6) 525 (1) 445 (1)
4 684 (4) 652 (4) 675(10) 491 (9)
5 642 (2) 620 (2) 574 (4) 461 (6)
6 890 (7) 776 (7) 575 (5) 543(10)
7 677 (3) 651 (3) 598 (6) 457 (2)
8 739 (5) 700 (5) 606 (8) 457 (3)
9 1003 (8) 910 (9) 601 (7) 457 (4)
10 1063(10) 910(10) 563 (3) 474 (8)
Correlations : .9750 5363 •1495

Given the demand distribution.
the expected number of

Customers per tour 4.000 10.000 20.000
Tours 6.250 2.500 1.250
Tours per facility 3.125 1.250 -625

*Site set number 1 is the optimal p-median location.
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TABLE 4.3— Continued

Problem
Set

Number of Customers = 25 
Number of New Facilities = 5
Set of 

Candidate 
Sites

Euclidean
Distances

Route Distances 
Capacities

200 500 1000

1 341 (1) 460 (1) 550 (7) 622 (7)
2 426 (3) 588 (7) 519 (2) 604 (5)
3 oil (9) 644 (9) 542 (5) 512 (1)
4 483 (6) 633 (8) 586 (8) 566 (3)
5 421 (2) 558 (3) 547 (6) 603 (4)
6 450 (5) 571 (6) 528 (3\ 620 (6)
7 500 (7) 525 (2) 634 (9) 541 (2)
8 448 (4) 559 (4) 639(10) 622 (8)
9 666(10) 747(10) 443 (1) 737(10)
10 531 (8) 568 (5) 531 (4) 641 (9)
Correlations ; .8488 — •4191 1805
1 364 (1) 499 (1) 680(10) 572 (5)
2 500 (4) 593 (2) 672 (9) 690(10)
3 487 (3) 626 (6) 642 (6) 631 (7)
4 515 (6) 607 (3) 644 (7) 654 (.8)
5 517 (7) 645 (8) 558 (2) 546 (4)
6 502 (5) 618 (5) 571 (4) 627 (6)
7 605 (9) 643 (7) 528 ID 505 (2)
8 603 (8) 645 (9) 639 (5) 479 (1)9 440 (2) 608 (4) 656 (8) 687 (9)
10 729(10) 768(10) 562 (3) 509 (3)
Correlations: .9241 -.15330 5049

Given the demand distribution, 
the expected number of 

Customers per tour 
Tours
Tours per facility

4.00 10.00 20.00
6.25 2.50 1.25
1.25 .50 .25
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TABLE 4.3— Continued

Problem
Set

Number of Customers = 50 
Number of New Facilities = 2
Set of 

Candidate Euclidean
Route Distances- 
Capacities

Sites JL% UUiiUCb
- 200 500 1000

1 1421 (1) 1218 (1) 815 (4) 694 (3)
2 1831 (7) 1445 (7) 908 (7) 772 (5)
3 1447 (3) 1323 (5) 783 (1) 685 (2)
4 1894 (8) 1472 (8) 933 (8) 822(10)
5 1505 (4) 1242 (3) 812 (3) 796 (7)
6 1701 (6) 1383 (6) 817 (5) 811 (8)
7 1555 (5) 1293 (4) 851 (6) 819 (9)
8 2117 (9) 1619 (9) 934 (9) 782 (6)
9 1426 (2) 1238 (2) 784 (2) 680 (1)
10 2205(10) 1696(10) 956(10) 763 (4)
Correlations : .9811 •9343 •4639
1 1475 (1) 1279 (4) 872 (7) 784(10)
2 1477 (2) 1266 (3) 780 (1) 656 (1)
3 1662 (5) 1428 (7) 818 (3) 696 (5)
4 1980 (9) 1511(10) 868 (6) 693 (3)
5 1959 (8) 1455 (8) 878 (8) 734 (8)
6 1744 (6) 1427 (6) 926(10) 689 (2)
7 1999(10) 1463 (9) 846 (5) 699 (6)
8 1892 (7) 1401 (5) 798 (2) 694 (4)
9 1548 (3) 1233 (1) 830 (4) 712 (7)
10 1565 (4) 1263 (2) 879 (9) 783 (9)
Correlations. .8941 1861 2680

Given the demand distribution, 
the expected number of 

Customers per tour 
Tours
Tours per facility

4.00
12.50
6.25

10.00
5.00
2.50

20.00
2.50
1.25
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TABLE 4.3— Continued

Problem

Number of Customers = 50 
Number of New Facilities = 5
Set of 

Candidate Euclidean
Route Distances 
Capacities

Sites 200 500 1000

1 1 780 (1) 1030 (3) 819 (5) 763 (6)
2 1077 (5) 1021 (2) 792 (4) 694 (1)
3 1217 (9) 1085 (7) 890 (7) 809 (8)
4 979 (2) 949 (1) 754 (1) 699 (2)
5 1009 (3) 1034 (4) 900(10) 833 (9)
6 1091 (6) 1037 (5) 791 (3) 759 (5)
7 1099 (7) 1050 (6) 779 (2) 796 (7)
8 1234(10) 1367(10) 879 (6) 719 (4)
9 1060 (4) 1190 (9) 899 (9) 841(10)

10 1111 (8) 1168 (8) 893 (8) 716 (3)
Correlations : .5658 •3362 -.0193

2 1 850 (1) 1066 (4) 786 (3) 674 (3)
2 1198 (7) 1041 (1) 724 (1) 651 (1)
3 1163 (3) 1075 (5) 828 (5) 759 (7)
4 1182 (5) 1100 (6) 840 (6) 773 (8)
5 1020 (2) 1108 (7) 895(10) 815 (9)
6 1169 (4) 1046 (2) 869 (9) 887(10)
7 1213 (8) 1056 (3) 783 (2) 651 (2)
8 1279 (9) 1181 (9) 850 (7) 754 (6)
9 1193 (6) 1117 (8) 851 (8) 691 (4)

10 1570(10) 1306(10) 823 (4) 712 (5)
Correlations: .7316 .0 - «0536

Given the demand distribution.
the expected number of

Customers per tour 4.0 10.0 20.0
Tours 12.5 5.0 2.5
Tours per Facility 2.5 1.0 .5
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TABLE 4.3— Continued

Number of Customers =90 
Number of New Facilities = 2

Problem
Set

Set of 
Candidate Euclidean

Route Distances 
Capacities

sites j. 5 tant
200 500 1000

1 2573 (1) 2005 (3) 1105 (1) 1003 (2)
2 2607 (2) 1913 (1) 1122 (3) 927 (1)3 3290 (7) 2283 (7) 1315 (6) 1029 (5)
4 4001 (9) 2641 (9) 1380 (8)1086(10)
5 3616 (8) 2485 (8) 1353 (7) 1026 (3)
6 3144 (6) 2213 (6) 1389 (9) 1078 (7)
7 4185(10) 2773(10) 1461(10) 1082 (8)
8 3056 (5) 2167 (4) 1208 (4) 1044 (6)
9 2677 (3) 1963 (2) 1114 (2) 1026 (4)
10 2891 (4) 2180 (5) 1298 (5) 1084 (9)
Correlations: .9898 .8777 .6027
1 2458 (1) 1973 (1) 1119 (2) 979 (3)
2 2817 (4) 2167 (4) 1234 (4) 983 (5)
3 2820 (5) 2217 (5) 1399(10) 1089(10)
4 2479 (2) 2055 (3) 1113 (1) 976 (4)
5 3345 (6) 2511 (7) 1299 (5) 959 (1)6 3373 (7) 2469 (6)1341 (6) 1034 (7)
7 3569 (8) 2582 (8) 1398 (9) 1054 (8)
8 3585 (9) 2641(10) 1396 (8) 1067 (9)
9 3619(10) 2616 (9)1362 (7) 997 (6)
10 2596 (3) 2021 (2) 1155 (3) 970 (2)
Correlations:

Given the demand distribution, 
the expected number of 

Customers per tour 
Tours
Tours per facility

.9924

4.00
22.50
11.25

,8433

10.00
9.00
4.50

,4152

20.00
4.50
2.25
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TABLE 4.3 — Continued

Problem
Set

Number 
Number of
Set of 

Candidate 
Sites

of Customers = 
New Facilities

Euclidean
Distances

90 
= 5

Route Distances 
Capacities

200 500 1000

1 1 1415 (1) 1322 (1) 1015 (2) 929 (2)
2 2769(10) 2110(10) 1228(10) 1026 (6)
3 1799 (3) 1630 (4) 1164 (7) 1051 (7)
4 2464 (8) 1830 (7) 1148 (5) 926 (1)
5 2089 (5) 1711 (5) 1154 (6) 1054 (8)
6 2564 (9) 2029 (9) 1146 (4) 1169(10)
7 2147 (6) 1784 (6) 1029 (3) 1019 (5)
8 2272 (7) 1868 (8) 1213 (9) 1143 (9)
9 1676 (2) 1498 (2) 992 (1) 994 (4)

10 1889 (4) 1579 (3) 1183 (8) 982 (3)
Correlations: .9792 •6382 4289

2 1 1509 (1) 1510 (1) n i l  (4) 1101 (8)
2 1696 (2) 1598 (2) 1118 (6) 931 (4)
3 3066(10) 2310(10) 1328 (8) 1257(10)
4 2674 (9) 2080 (9) 1336 (9) 1070 (6)
5 2236 (7) 1843 (7) 1350(10) 1076 (7)
6 1942 (4) 1686 (3) 1112 (5) 898 (1)
7 1852 (3) 1686 (4) 1101 (3) 918 (3)
8 1970 (5) 1768 (6) 1052 (1) 1060 (5)
9 2031 (6) 1761 (5) 1073 (2) 1225 (9)

10 2342 (8) 1971 (8) 1193 (7) 899 (2)
Correlations: .9944 •7769 4408

Given the idemand distribution.
the expected number of

Customers per tour 4.0 10.0 20.0
Tours 22.5 9.0 4.5
Tours per facility 4.5 1.8 .9
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customers— probably because this comes closest to a Euclidean 
distance problem. Looking at it in other ways, few customers 
per tour or a large number of tours give high correlations 
as does a high number of tours per facility (Table 4.3).

A linear regression was done to see the effect of 
the expected number of tours on the correlations. With an 
intercept of .031 and a slope of .055 it was found that with 
14 expected tours one might get a correlation of .8. With 
16 expected tours a correlation of more than .9 was predicted. 
This all implies that the uncapacitated problem cannot be 
approached in this way since there would be very few tours.

The same trend was found in the number of times that 
the minimum Euclidean distance location matched the minimum 
route distance location. The correspondence rarely occurred 
with capacities of 500 and 1000 units, but with a capacity of 
200 units the first or second lowest Euclidean distance loca
tion corresponded to the minimum route distance location in 
10 out of 12 cases. The probability of this occurring by 
chance is (Jq).2^°.B^ = .0000043.

Another observation can be made from the results of 
this experiment. Note that where there was poor correlation 
there were many site sets with route distances almost equal.
In fact, since the routing algorithm was a heuristic it is 
very hard to make statements about the relative magnitude 
of the route distances when they are so close. This all 
implies that when there is a high capacity and few tours
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there is probably several acceptable configurations of new 
facilities.



CHAPTER V

PROBABILISTIC TRAVELING-SALES>ÎAN FACILITY 
LOCATION FORMULATIONS

5.1 Introduction
This chapter will discuss certain formulations of the 

probabilistic traveling-salesman facility location problem 
(TSLP). Continuous, discrete, capacitated and uncapacitated 
aspects of the problem will be presented, but emphasis was 
placed on the single-facility case because this was found 
to be most tractable.

The different types of probabilistic variations in 
location problems were mentioned in Chapter II. This research 
examined the case where there is a probability on whether an 
existing facility will require service or not.

In preliminary studies the objective of this research 
on the probabilistic TSLP was to find an expression for the 
expected value of the length of a tour based on the location 
of the new facility. This term could then be minimized to 
find the new facility location. As will be seen this was not 
found to be practical. Instead, an approximation procedure 
was used for the continuous problem and simulation seemed to 
be the best approach for the discrete problem.

56
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5.2 The Continuous Problem

The single-facility, uncapacitated case of this 
problem was examined by Burness and White (1976). As will 
be discussed, their approach was time consuming and did not 
guarantee an optimal solution. The attempt was to

n
P5.1 minimize f(X) = Z p.d(X,S.)XeE2 i=i ^ ^
where X = new facility location

S^= a subset of existing facilities 
p^= probability that will demand service 

d(X,5j )̂= distance of traveling-salesman tour through X and

"i*
The procedure is stated as follows. Given a starting 

solution,
1) Solve a traveling-salesman problem for every subset, 

each of which includes the current solution.
2) Solve a single-facility location problem with respect 

to the end-points of the tours where the weights are 
the Pĵ 's.

3) Repeat steps 1 and 2 until there is no change in the 
solution.

4) Repeat steps 1 through 3 with different starting 
solutions.
This gave very good solutions but, as mentioned, 

there is no guarantee of optimality. More importantly, the 
procedure is very time consuming because of the number of
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traveling-salesman problems that must be solved. The biggest 
problems that they reported solving had ten customers and all 
possible subsets (1023). The average solution time with one 
starting solution was 6.5 minutes. As they pointed out, a. 
realistic problem would not involve every possible subset, 
but the time problem lies not just in the number of subsets 
but in the size of the subsets. Therefore this approach is 
limited to small problems.

5.2.1 The Continuous, Single-Facility, Capacitated Problem
The previous procedure could be modified to handle 

capacitated problems. This could be done in step 1 by solv
ing a vehicle routing problem instead of a traveling-salesman 
problem. In fact, since good vehicle routing heuristics 
usually require less solution time than traveling-salesman 
codes, then the capacitated problem would probably be solved 
much faster.

5.2.2 Expected Distance of a Tour
If one is given a set of probabilities or density 

functions describing the system under consideration, it seems 
that if a term could be found for the expected distance of a 
tour then minimization of this term would solve the problem. 
Such a term was developed in Appendix IV but it was found 
that, at least in this form, the use of this term was imprac
tical. So the following procedure was developed.
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5.2.3 Approximation Procedure for the Continuous Problem

Consider again Problem P5.1. The difficulty with the 
Burness and White (1976) procedure was the time involved in 
solving many traveling-salesman problems. Perhaps this can 
be overcome by using a result from Eilon et al. (1971). They 
found that for about ten or more cities the tour length, 
using Euclidean distances, can be estimated by

a /n  Æ  , 
where n = number of cities

A = area containing the cities 
a = constant.

By simulation and regression Eilon et al. found the value of 
a to be .75.

Now define
n

P5.2 minimize f(X) = I p.d(X,S.)
XsEg i=l

where all definitions are the same as P5.1 except
/ distance of optimal traveling-salesman tour ifI |S.| < 2.

d(X,S. ) = f ^ _ _ _  _
I .75/JS. 1+1 /Â if I S. I >. &, where A is the area of 
V the minimum rectangle containing and X.

£ = the number of cities beyond which it is decided that
the estimation is valid.

The problem P5.1 is a nonlinear function and any
efficient unconstrained nonlinear programming method could
be utilized.
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5.2,4 Testing of the Approximation Procediire

The approximation procedure was tested using COMET 
NLP code (Staha, 1973). This is a general purpose NLP code 
and was used because of its availability. The traveling- 
salesman problems were solved using a code which utilized 
the 3-optimal method (Lin and Kernighan, 1973) discussed in 
Appendix I. Based on the results of Eilon et al. (1973) the 
value of Z was set at ten.

The first problems tested were two from Burness and 
White (1976). There were only four cities, so the estima
tion term was never used and exact traveling-salesman 
problems were solved. This allowed a comparison of solu
tions and they were the same with both methods.

Two five-city problems were uniformly generated in a 
100 by 100 square and all possible subsets were used. Again 
the estimation term was not used so the solution of these 
problems could be compared with ones in Burness and White.
They solved six-city problems in an average of 15.5 seconds, 
but this was with only one starting solution. The five- 
city test problems were solved in an average of about 29 
seconds. The solutions in Burness and White were found in an 
average of four iterations but more starting solutions would 
be necessary to get a higher probability of finding the 
optimum. The NLP method took 14 iterations and found the 
optimum.

Eight other problems were similarly randomly generated
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with 100 cities and 40 subsets. The subsets were 10 each of 
average sizes of 10, 20, 30 and 40 cities. Because of storage 
restrictions the maximum sized subset had 50 cities. The 
average time to solve these problems was about 2.8 minutes.
The largest problem that Burness and Ifhite reported had 10 
cities and all possible subsets. Their average time was 6.5 
minutes with one starting solution.

They solved problems with many more subsets than 
were solved in this study but their largest subset had 10 
facilities plus the new one. As they pointed out, a realistic 
problem probably would not involve every possible subset.
The new method is slowed by the number of subsets of size 
less than i but not by the size of the subsets greater than Z.

5.3 The Discrete, Single-Facility Problem
This problem differs from that of section 5.2 because 

in this case there are only discrete candidate sites to be 
evaluated for the new facility or depot. Once again the idea 
of using a term for the expected length of a tour has intu
itive appeal. Each alternative site could be evaluated 
using this term. But the term would be the same as the one 
developed in Appendix IV and the problems with its size would 
be the same as those discussed there.

5.3.1 Solution Procedure
Eilon et al. (1971) suggest solving these probabilistic 

formulations with simulation but they never reported any
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results. Given the complexity of the problem this may be the 
most efficient approach.

For this problem let p̂  ̂be the probability that cus
tomer i demands service in a given time period. Then for • 
each possible depot site, successively simulate customer 
sets and, depending if there are capacity restrictions, 
solve a traveling-salesman problem or vehicle-routing problem 
on each of these sets. The sites with the least total tour 
length would be selected.

5.3.2 Simulation Results
The discrete, probabilistic, single-facility, 

capacitated problem was solved using the simulation approach 
mentioned above. This was tested on three customer sets of 
25 customers and three of 50 customers. The coordinates were 
generated from a uniform distribution in a 100 by 100 square 
as were the coordinates of 10 new facility candidates for 
each customer set. Each set was used with capacities of 
200, 500 and 1000 units. Thus there were 18 problems. The 
probabilities that each customer would require service was 
also generated from a uniform distribution with a range from 
0 to 1. The demands of the customers were assumed to be 
normal with mean 50 and standard deviation of 15.

For the 25 customer problems 500 simulation trials 
were run and for the 50 customer problems there were 100 
trials. The savings method without the route-shaper parameter 
(see Appendix II) was used for the routing. The simulation



TABLE 5.1
RESULTS OF EXPERIMENTS TO RELATE RADIAL DISTANCES AND DETERI4INISTIC 
_____DISTANCES TO EXPECTED DISTANCE IN A PROBABILISTIC PROBLEM

Number of customers ■ 25 
Number of simulation trials " 500

Site
Euelidean 
' distance

200

Route distances
Capacities 

500 1000
Deterministic ProbabiliStic Deterministic ProbabiliStic Deterministic ProbabiliStic

1 3174 (9)* 1098 (10) 313,384 (4) 641 (8) 305,404 (7) 514 (6) 297,492 (8)
2 2221 (3) 847 (2) 257,553 (2) 556 (3) 231,822 (2) 473 (1) 225,289 (1)
3 2840 (5) 1003 (4) 343,363 (7) 637 (7) 280,572 (3) 535 (10) 260,399 (3)4 2928 (6) 1053 (8) 388,399 (9) 641 (9) 293,836 (5) 520 (7) 283,888 (5)
5 1835 (1) 745 (1) 238,516 (1) 533 (1) 231,475 (1) 474 (2) 225,329 (2)
6 2971 (8) 1042 (7) 300,372 (3) 615 (5) 290,400 (4) 500 (4) 284,255 (6)
7 2120 (2) 851 (3) 326.504 (6) 555 (2) 301,257 (6) 491 (3) 286,419 (7)8 2641 (4) 1011 (5) 401,620 (10) 611 (4) 378,103 (10) 505 (5) 362,938 (10)
9 3325 (10) 1140 (6) 324,121 (5) 657 (10) 315,60c (9) 525 (8) 307,142 (9)10 2965 (7) 1056 (9) 361,714 (8) 628 (6) 306,725 (8) 526 (9) 263,278 (4)
Correlation with :
radiai distances : .5061 .5099 .4793Correlation with deter-
ministic route distances: .6095 .5515 .4328

1 2719 (7) 1049 (7) 358,321 (7) 591 (6) 317,432 (7) 488 (6) 304,702 (7)2 2795 (8) 1054 (8) 346.297 (6) • 626 (10) 299,099 (5) 511 (10) 282,880 (5)
3 2190 (4) 922 (4) 285,248 (1) 572 (5) 244,486 (1) 444 (2) 237,881 (1)4 2453 (5) 981 (5) 341,935 (5) 553 (4) 307,138 (6) 474 (5) 294,487 (6)
5 2881 (9) 1077 (9) 400,829 (9) 611 (9) 349,235 (9) 493 (7) 334,566 (9)6 1981 (2) 855 (3) 287,512 (2) 542 (3) 262,698 (2) 446 (3) 258,049 (2)
7 2656 (6) 1015 (6) 372,329 (8) 599 (8) 326,311 (8) 499 (8) 305,680 (8)
8 2042 (3) 820 (1) 301,207 (4) 514 (1) 268,365 (3) 431 (1) 262,119 (3)
9 1937 0) 840 (2) 295,136 (3) 526 (2) 280,024 (4) 457 (4) 271,764 (4)
10 3177 (10) 1148 (10) 428,830 (10) 595 (7) 370,006 (10) 509 (9) 354,842 (10)
Correlation with
radiat distances: .9468 .8891 .8684
Correlation with deter-
ministic route distances: .9164 .6117 .7911

1 2631 (6) 929 (6) 358,190 (8) 562 (7) 325,414 (8) 446 (8) 310,430 (8)
2 2580 (5) 919 (5) 375,494 (9) 533 (4) 336,621 (9) 439 (6) 320,179 (9)
3 3517 (10) 1169 (10) 411,973 (10) 647 (10) 364,795 (10) 489 (10) 337,466 (10)
4 2550 (4) 911 (4) 323,876 (5) 536 (5) 304,796 (6) 417 (4) 284,955 (6)
5 2635 (7) 939 (7) 353,805 (7) 536 (6) 321,922 (7) 422 (5) 299.500 (7)
6 2104 (2) 784 (2) 255.230 (2) 501 (2) 220,580 (2) 411 (2) 208,431 (2)
7 3024 (8) 972 (8) 321,934 (4) 594 (8) 275,859 (4) 442 (7) 259,017 (5)
8 1976 (1) 743 (1) 228,303 (1) 475 (1) 203,715 (1) 408 (1) 191,627 (1)
9 3143 (9) 986 (9) 339.368 (6) 630 (9) 281,307 (5) 463 (9) 248,606 (4)
10 2128 (3) 793 (3) 259,708 (3) 509 (3) 256,965 (3) 415 (3) 248.569 (3)
Correlation with
radial distances: .8281 .7138 .6380
Correlation with deter-
ninlsitic: route distances: .9006 .6225 .6211

* Numbers in parenthesis are rankings.
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TABLE 5.1— Continued

Number of customers “ 50 
Number of simulation trials » 100

Cust. Euclidean
set Site distance

200

Route distances
Capacities

500 1000

Deterministic Probabil IStic Deterministic Probabi1iStic Deterministic ProbabiIiStic
1 6921 (9) 2207 (9) 160.304 (9) 1143 (9) 128.152 (9) 781 (9) 121.867 (9)
2 4989 (3) 1689 (3) 124,834 (3) 923 (3) 108.776 (3) 705 (3) 105.526 (3)
3 5974 (7) 1999 (6) 143.098 (6) 1055 (7) 121.256 (5) 732 (5) 109,210 (4)
k 5749 (5) 1972 (5) 130.624 (4) 1026 (5) 126.273 (6) 730 (4) 116,280 (8)
5 4052 (1) 1450 (1) 108.930 (1) 825 (1) 90.872 (1) 678 (2) 95,031 (1)
6 6533 (8) 2110 (8) 153.285 (8) 1091 (8) 127.108 (7) 760 (8) 115,373 (7)
7 4135 (2) 1545 (2) 110,416 (2) 841 (2) 96.423 (2) 651 (1) 99,505 (2)
8 5227 (4) 1816 (4) 134.173 (5) 982 (4) 116.175 (4) 749 (6) 112,863 (5)
9 7225 (10) 2291 (10) 165,681 (10) 1178 (10) 127.489 (8) 797 (10) 115,173 16;
10 5969 (6) 2005 (7) 145.014 (7) 1036 (6) 146,799 (10) 755 (7) 140,127 (10)
Correlation with
radlal distances: .9860 .8036 .6449
Correlation with deter-
ministic route distances: .9751 .8054 .6909

1 5493 (7) 1884 (7) 137.594 (7) 972 (6) 118,755 (10) 745 (8) 109.504 (10)
2 5504 (8) 1896 (8) 147,324 (10) 996 (7) 115.555 (8) 758 (9) 99,090 (6)
3 4611 (4) 1626 (4) 139,528 (8) 930 (4) 118,412 (9) 724 (5) 108,136 (9)
4 5010 (5) 1757 (5) 127,540 (4) 952 (5) 107,091 (6) 730 (7) 97.984 (5)
5 5885 (9) 1964 (9) 130,850 (5) 1043 (9) 104,331 (3) 694 (3) 93.292 (4)
6 4o6l (1) 1496 (1) 125,094 (3) 868 (2) 106.745 (4) 696 (4) 100,131 (8)
7 5311 (6) 1840 (6) 142,843 (9) 1005 (8) 110,777 (7) 768 (10) 100,115 (7)
8 4363 (3) 1545 (3) 119,763 (2) 873 (3) 99.267 (2) 690 (2) 90.625 (2)
9 4o66 (2) 1521 (2) 115.239 (1) 853 (1) 98.353 (1) 668 (1) 90.051 (1)
10 6435 (10) 2105 (10) 137.000 (6) 1103 (10) 106,905 (5) 725 (6) 91,249 (3)
Correlation with
radial distances: .6312 .3076 -.0164
Correlation with deter-
fflinistic route di stances: .6478 .3084 .5691

1 5263 (4) 1698 (4) 127,790 (5) 891 (4) 114,500 (6) 710 (5) 105.053 (6)
2 5287 (5) 1702 (5) 123.510 (4) 928 (5) 106,368 (5) 709 (4) 107.998 (8)
3 6928 (10) 2204 (10) 142,564 (8) 1044 (10) 122.790 (9) 788 (10) 114.742 (9)
4 5487 (6) 1810 (7) 136,589 (7) 970 (7) 116.491 (7) 734 (7) 104.459 (5)
5 5622 (7) 1808 (6) 156,898 (10) 963 (6) 133.900 (10) 712 (6) 131.280 (10)
6 4271 (2) 1498 (2) 108,111 (1) 818 (I) 95.248 (2) 681 (2) 87.818 (1)
7 5918 (8) 1928 (8) 142.928 (9) 1002 (8) 117.832 (8) 783 (9) 107.540 (7)
8 3974 (1) 1401 (1) 110.936 (3) 827 (3) 100.347 (3) 677 (1) 95,616 (3)
9 6090 (9) 1963 (9) 131,401 (6) 1014 (9) 106.217 (4) 750 (B) 103,501 (4)
10 4316 (3) 1503 (3) 108,448 (2) 821 (2) 94,326 (1) 685 (3) 90,497 (2)
Correlation with
radIal distances: .8006 .7164 .6866
Correlation with deter- .4829mlnlstlc route dlstances: .7763 .7232
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of each depot candidate took about 10 seconds. The results 
are shown in Table 5.1.

Also, for each problem the sum of the Euclidean dis
tances were calculated and a standard routing problem was 
solved disregarding the probabilities. This was done using 
the same savings algorithm described in section 4.4.1. 
Correlations were calculated and are also shown in Table 5.1. 
The trends were similar to those reported in Section 4.4 but 
the results were not quite as strong. Particularly, there 
was less correlation with higher capacity as found in 
Section 4.4 but overall the correlations were smaller. The 
average correlation with Euclidean distances was .6533 and 
the correlation with deterministic routes was .6686.

But in almost every case the best location in the 
probabilistic problem coincided with the best or second 
best location using both Euclidean distances and deterministic 
routing. This happened 13 out of 18 times using Euclidean 
distances and 16 out of 18 times using deterministic routing. 
This had probabilities of occurring by chance of just over 
zero for both cases.

These results seem to say that the simulation pro
cedure need not be carried out on all candidate sites. The 
simulation analysis is very simple but can be time consuming 
with very large problems and with a large number of trials.

A more complex simulation analysis could be per
formed if the probabilities were time varying. In this case
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a given number of vehicles may be available and are dispatched 
as orders are accumulated. Even the working hours of the 
new facility could enter into the simulation.

Another area of further work might be to investigate 
the effect of different probability distribution assumptions 
and also the spatial arrangements of customers on the optimum 
locations and the corresponding correlations between Euclidean 
distances and traveling-salesman distances.



CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions
1. The traveling-salesman problem and the vehicle-routing 

problem are both np-complete— as is the discrete 
location-allocation problem. Thus nearly every formu
lation of the TSLP is np-complete. This implies that 
even when an optimal solution procedure is available 
the computational time might be excessive. On top of 
this it has been argued that optimal solutions are mostly 
unnecessary in distribution problems because of inaccura
cies in data and realistic considerations of the solu
tion's actual implementation. Therefore the principal 
thrust of TSLP research should not necessarily be toward 
demonstrating optimality.

2. Two dominance properties of the simple facility location 
models were extended to the TSLP; (1) An optimal solu
tion can always be found in the convex hull formed by the 
existing facilities and (2) In locating on a network an 
optimal solution can always be found on the nodes.

3. Four deterministic problems can be solved to optimality

67
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if their associated traveling-salesman problems can be 
solved to optimality. These are the continuous, uncapaci
tated problem for both the single- and multifacility 
cases, and the discrete, single-facility problem for both 
the capacitated and uncapacitated cases. Although it can 
be solved to optimality, a very accurate heuristic was 
found for the discrete, single-facility, capacitated 
problem.

4. The work with discrete, deterministic problems showed 
that there is a very high correlation between tour dis
tances and Euclidean distances, thus for many TSLPs 
ordinary facility location techniques are all that are 
necessary. This affirms initial results of Eilon et al.
(1973) .

5. The discrete, deterministic, single-facility, uncapaci
tated problem was extended to consider weighted distances.
This demonstrated the difficulties of using weighted 
distances in problems involving multiple-stop tours.
This, along with the argument that weighted distance is 
not a good measure of distribution costs, tends to argue 
against this cost measure in the TSLP.

6. Burness and White (1976) gave an iterative, heuristic 
solution procedure for the continuous, probabilistic, 
single-facility problem which can be used on the capaci
tated and uncapacitated cases. Their method was not good
for large problems because several traveling-salesman problems
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must be solved. A general NLP procedure was utilized in 
this research for the uncapacitated problem. This 
approach utilized approximations for tour distances and 
proved to be efficient for large problems.

7. It was concluded that simulation is probably the best 
approach for the discrete, probabilistic, single-facility 
problem. Each candidate site is evaluated by successively 
generating customer sets according to some probability 
distribution and then solving routing problems on these 
sets.

8. Correlation experiments were done for the discrete, 
probabilistic, single-facility, capacitated problem, just 
as they were for the deterministic case. Once again it 
was found that Euclidean distance was a good indicator
of expected distance in the probabilistic problem. An 
even better indicator was the distance of the deterministic 
routes.

6.2 Recommendations for Further Research
1. Only eight of the sixteen problems defined above were 

addressed in this paper. Obviously much work could be 
done on the remainder of the problems.

2. The correlation experiments of Sections 4.5, 4.6 and 5.5 
were done using Euclidean distances. These should also 
be done using rectangular distances.

3. These correlation experiments should also be done to 
test different spatial arrangements of demand.
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4. A Markovian approach to the probabilistic problems might 

be possible with cleverly conceived system states.
5. The simulation experiments of Section 5.3.2 for the dis

crete, probabilistic, single-facility, capacitated prob
lem could be made more complex by allowing the probabili
ties to be time varying.

6. Different probability distributions of demands should be 
tried on all problems.



REFERENCES

Aly, A. A. Probabilistic Formulations of Some Facility
Location Problems, unpublished dissertation, Virginia 
Polytechnic Institute and State University, Blacks
burg, Virginia, 1975.

Beattie, D. W. "Improving the Structure of a Distribution 
System," Operational Research Quarterly, Volume 24, 
Number 3, 1973, pp. 353-364.

Bellmore, Mandell and John C. Malone. "Pathology of Traveling- 
Salesman Subtour-Elimination Algorithms," Operations 
Research, Volume 19, Number 2, 1971, pp. 278-307.

Bellmore, Mandell and Saman Hong. "Transformation of Multi
salesman Problem to the Standard Traveling-Salesman 
Problem," Journal of the Association for Computing 
Machinery, Volume 21, Number 3, 1974, pp. 500-504.

Bellmore, M. and G. L. Nemhauser. "The Traveling Salesman
Problem: A Survey," Operations Research, Volume 16,
Number 3, 1968, pp. 538-558.

Beltrami, E. J. and L. D. Bodin. "Networks and Vehicle
Routing for Municipal Waste Collection," Networks,
Volume 4, 1974, pp. 65-94.

Bumess, Robert C. and John A. White. "The Traveling Sales
man Location Problem," Transportation Science, Volume 10, 
Number 4, 1976, pp. 348-360.

Cassidy, P. J. and H. S. Bennett. "TRAMP— A Multi-depot 
Vehicle Scheduling System," Operational Research 
Quarterly, Volume 23, Number 2, 1972, pp. 151-163.

Christofides, Nicos and Samuel Eilon. "An Algorithm for the 
Vehicle-Dispatching Problem," Operational Research 
Quarterly, Volume 20, Number 3, 1969, pp. 309-318.

Christofides, Nicos and Samuel Eilon. "Algorithms for Large-
Scale Traveling-Salesman Problem," Operational Research 
Quarterly, Volume 23, Number 4, 1972, pp. 511-518.

71



72
Christofides, Nicos. "The Vehicle Routing Problem," NATO

Conference on Combinatorial Optimization, July, 1974, 
Paris.

Clarke, G. and J. W. Wright. "Scheduling of Vehicles from a 
Central Depot to a Number of Delivery Points," 
Operations Research, Volume 12, Number 4, 1964, pp. 
568-581.

Cooper, Leon. "Location-Allocation Problems," Operations 
Research, Volume 11, Number 3, 1963, pp. 331-343.

Cooper, Leon. "Heuristic Methods for Location-Allocation 
Problems," SIAM Review, Volume 6, 1964, pp. 37-53.

Cooper, Leon. "Solution of Generalized Locational Equili
brium Problems," Journal of Regional Sciences,
Volume 7, 1967, pp. 9-11.

Eilon, Samuel, G. D. T. Watson-Gandy and Nicos Christofides.
Distribution Management; Mathematical Modeling and 
Practical Analysis, New York : Hafner Publishing
Company, 1971.

Ellwein, Leon B. and Paul Gray. "Solving Fixed-Charge 
Location-Allocation Problems with Capacity and 
Configuration Constraints," AIIE Transactions,
Volume 6, Number 4, 1971, pp. 290-297.

Francis, R. L. and J. M. Goldstein. "Location Theory: A
Selective Bibliography," Operations Research, Volume 
22, 1974, pp. 400-409.

Francis, R. L. and J. A. White. Facility Layout and Location: 
An Analytic Approach, Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1974.

Garfinkel, R. S. and George L. Nemhauser. Integer Program
ming, New York: John Wiley and Sons, 1972.

Gaskell, T. J. "Bases for Vehicle Fleet Scheduling," Opera
tional Research Quarterly, Volume 18, Number 3, 1967, 
pp. 281-295.

Gillett, Billy E. and Leland R. Miller. "A Heuristic Algorithm 
for the Vehicle Dispatch Problem," Operations Research, 
Volume 22, Number 2, 1974, pp. 340-349.

Gillett, Billy E. and Jerry G. Johnson. "Multi-Terminal
Vehicle Dispatch Algorithm," Omega, Volume 4, Number 
6, 1976, pp. 711-718.



73
Golden, Bruce L. "Evaluating a Sequential Vehicle Routing 

Algorithm," AIIE Transactions, Volume 9, Number 2, 
1977, pp. 204-208. Note and Response: AIIE Trans
actions , Volume 9, Number 4, 1977, pp. 426-427.

Golden, B. L., T. L. Magnanti and H. Q. Nguyen. "Implement
ing Vehicle Routing Algorithms," Networks, Volume 7, 
1977, pp. 113-148.

Griffiths, D. 0. "The Use of Regression Analysis in a Depot 
Location Exercise," Applied Statistics, Volume 17, 
Number 1, 1968, pp. 57-63.

Hakimi, S. L. "Optimum Distribution of Switching Centers in 
a Communications Network," Operations Research,
Volume 13, Number 3, 1965.

Held, R. L. and R. M. Karp. "A Dynamic Programming Approach
to Sequencing Problems," SIAM Review, Volume 10, 1962, 
pp. 196—210.

Held, M. P., P. Wolfe, and H. Crowder. "Validation of Sub
gradient Opt imi z at ion," Mathematical Programming, 
Volume 5, 1974, pp. 68-88.

Holmes, R. A. and R. G. Parker. "A Vehicle Scheduling Pro
cedure Based upon Savings and a Solution Perturbaion 
Scheme," Operational Research Quarterly, Volume 27, 
Number 1, 1976, pp. 83-92.

Hong, Saman and Manfred W. Padberg. "A Note on the Sym
metric Multiple Traveling-Salesman Problem with 
Fixed Charges," Operations Research, Volume 25,
Number 5, 1977, pp. 871-874.

Isaac, Akkanad M. and Efraim Turban. "Some Comments on the 
Traveling-Salesman Problem,” Operations Research, 
Volume 17, 1969, pp. 543-546.

Karp, Richard M. "On the Computational Complexity of Combi
natorial Problems," Networks, Volume 5, Number 1,
1975, pp. 45-68.

Karp, Richard M. "Probabilistic Analysis of Partitioning 
Algorithms for the Traveling-Salesman Problem in a 
Plane," Mathematics of Operations Research, Volume 2, 
Number 3, 1977, pp. 209-224.

Knight, K. W. and J. P. Hofer, "Vehicle Scheduling with Timed 
and Connected Calls: A Case Study," Operational
Research Quarterly, Volume 19, Number 3, pp. 299-310.



74
Krolak, P., Wayne Felts and James Nelson. "A Man-Machine 

Approach Toward Solving the Generalized Truck Dis
patching Problem," Transportation Science, Volume 6, 
1972, pp. 149-170.

Khumawala, Basheer M. "An Efficient Algorithm for the p- 
Median Problem with Maximum Distance Constraints," 
Geographical Analysis, Volume 5, Number 4, 1973, 
pp. 309-321.

Lam, Tenny N. "Comments on a Heuristic Algorithm for the
Multiple Terminal Delivery Problem," Transportation 
Science, Volume 4, 1970, pp. 403-405.

Lea, A. C. "Location-Allocation Systems : An Annotated Bibli
ography," Discussion Paper number 13, Department of 
Geography, Toronto: University of Toronto, 1973.

Lentra, J. K. and A. H. G. Rinnooy Kan. "On the Expected
Performance of Branch-and-Bound Algorithms," Opera
tions Research, Volume 26, Number 2, 1978, pp. 347-349,

Levy, J. "An Extended Theorem for Location on a Network,"
Operational Research Quarterly, Volume 18, Number 4, 
1967.

Lin, Shen. "Computer Solutions to the Traveling-Salesman
Problem," Bell Systems Technical Journal, Volume 44, 
1965, pp. 2245-2269.

Lin, S. and B. W. Kernighan. "An Effective Heuristic 
Algorithm for the Traveling-Salesman Problem," 
Operations Research, Volume 21, Number 2, 1973, 
pp. 498-516.

Little, J. D. C., K. G. Murty, D. W. Sweeney and C. Karel.
"An Algorithm for the Traveling-Salesman Problem," 
Operations Research, Volume 11, 1963, pp. 979-989.

Matthaus, Fritz W. "Saving Approach to the Multiple Termi
nal Delivery Problem," Transportation Science,
Volume 10, Number 2, 1976, pp. 216-221.

McDonald, J. J. "Vehicle Scheduling— A Case Study,"
Operational Research Quarterly, Volume 23, Number 4, 
1972, pp. 433-444.

Miller, C. E., A. W. Tucker and R. A. Zemlin. "Integer 
Programming Formulations of Traveling-Salesman 
Problems," Journal of the ACM, Volume 7, 1960, 
pp. 326-329.



75

Mole, R. H. and S. R. Jameson. "A Sequential Route-
building Algorithm Employing a Generalized Savings 
Criterion," Operational Research Quarterly, Volume 
27, Number 2, 1976, pp. 503-511.

Narula, S. C., U. I. Ogbu and H. M. Samuelsson. "An
Algorithm for the p-Median Problem," Operations 
Research, Volume 25, Number 4, 1977, pp. 709-713.

Norback, John P. and Robert F. Love. "Geometric Approaches 
to Solving the Traveling-Salesman Problem," Manage
ment Science, Volume 23, Number 11, 1977, pp. 1208- 
1223.

Papadimitriou, C. H. and K. Steiglitz. "Some Examples of 
Difficult Traveling Salesman Problems," Operations 
Research, Volume 26, Number 3, 1978, pp. 434-443.

ReVelle, Charles S. and Ralph W. Swain. "Central Facilities 
Location," Geographical Analysis, Volume 2, Number 1, 
1970, pp. 30-42.

ReVelle, C., D. Marks and J. C. Liebman. "An Analysis of
Private and Public Secto'r Location Models," Manage
ment Science, Volume 16, 1970, pp. 692-707.

Russell, Robert A. "An Effective Heuristic for the M-Tour 
Traveling-Salesman Problem with Some Side Condi
tions, " _Ogerations__Research, Volume 25, Number 3,
1977, pp. 517-524.

Scott, Allen J. "Location-Allocation Systems : A Review,”
Geographical Analysis, Volume 2, Number 1, 1970, 
pp. 95-119.

Staha, R. L. "Constrained Optimization via Moving Exterior
Truncations," Ph.D. Dissertation, University of Texas, 
Austin, Texas, May, 1973.

Svestka, Joseph A. and Vaughn E. Huckfeldt. "Computational 
Experience with an M-Salesman Traveling-Salesman 
Algorithm," Management Science, Volume 19, Number 7, 
1973, pp. 790-799, Note and response: Management
Science, Volume 22, Number 6, 1976, pp. 704-706.

Taha, Hamdy A. Operations Research, An Introduction, New 
York: The MacMillan Company, 1971.

Teitz, Michael B. and Polly Bert. "Heuristic Methods for
Estimating the Generalized Vertex Median of a Weighted 
Graph," Operations Research, Volume 16, Number 5,
1968, pp. 955-961.



76
Tillman, Frank A. and Harold Cochran. "A Heuristic Approach 

for Solving the Delivery Problem," The Journal of - 
Industrial Engineering, Volume 19, Number 7, 1968, 
pp. 354-358.

Tillman, Frank A. "The Multiple Terminal Delivery Problem with 
Probabilistic Demands," Transportation Science, Vol
ume 3, Number 3, 1969, pp. 192-204. Note and Response; 
Transportation Science, Volume 4, 1970, pp. 226-237.

Tillman, Frank A. and Robert W. Bering. "A Study of a Look- 
Ahead Procedure for Solving the Multiterminal 
Delivery Problem," Transportation Research, Volume 
5, Number 3, 1971, pp. 225-229.

Tillman, Frank A. and Thomas M. Cain. "An Upperbound 
Algorithm for the Single and Multiple Terminal 
Delivery Problem," Management Science, Volume 18,
Number 11, 1972, pp. 664-682.

Turner, Wayne C., Pravhakar M. Chare and Leslie R. Foulds. 
'Transportation Routing Problem— A Survey," AIIE 
Transactions, Volume 6, Number 4, 1974, pp. 288-301.

Webb, M. H. J. "Cost Functions in the Location of Depots for 
Multiple-Delivery Journeys," Operational Research 
Quarterly, Volume 19, Number 3, 1968, 311-320.

Webb, M. H. J. "Relative Performance of Some Sequential 
Methods of Planning Multiple Delivery Journeys," 
Operational Research Quarterly, Volume 23, Number 3, 
1972, pp. 361-372. Note and response: Operational
Research Quarterly, Volume 24, Number 2, 1973, pp. 
305-309.

Webb, Michael. Transporting Goods by Road, London: London
School of Economics and Political Science, Weidenfeld 
and Nicolson, 1972.

Wendell, Richard E. and Arthur P. Hurter. "Location Theory, 
Dominance, and Convexity," Operations Research,
Volume 21, Number 1, 1973, pp. 314-320.

Wren, Anthony and Alan Holiday. "Computer Scheduling of 
Vehicles from One or More Depots to a Number of 
Delivery Points," Operational Research Quarterly,
Volume 23, Number 3, 1972, pp. 333-344.

Yellow, P. C. "A Computational Modification of the Savings 
Method of Vehicle Scheduling," Operational Research 
Quarterly, Volume 21, Number 2, 1970, pp. 281-283.



APPENDIX I 

THE TRAVELING SALESMAN PROBLEM

An attempt will not be made here to give a complete 
survey of the characteristics of the traveling salesman 
problem or of the successful methods used to solve it since 
it was found that this was not important to the main thrust 
of this research. A good survey of the literature up until 
1968 is given in Bellmore and Nemhauser (1968), with the 
follow-up article of Akannad and Turban (1969), and a more 
detailed tutorial of the methods proposed up until 1971 appears 
in Eilon et al. (1971). This latter book also has a chapter 
on the estimation of traveling-salesman distances.

Mathematical formulations for the traveling-salesman 
problem can be found in Miller et al. (1960), Taha (1971) 
and Garfinkel and Nemhauser (1972). The most popular formu
lation is of the form

n n
minimize Z Z c..x.. 

i=l j=l
n

subject to Z x . . = l  j=l,...,n
i=l
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n
2 x . . = l  i=l,...,n
j=i

= 0 or 1
Plus constraints which insure that the solution is a Hamil
tonian circuit through all of the points. The terms are 

x^j = 1 if the link between nodes i and j are in the 
solution and

c^j = cost of link between nodes i and j (could be d^^). 
The constraints which insure a Hamiltonian circuit 

are quite numerous and render the problem unsolvable for 
very many nodes using standard integer programming techniques. 
Therefore different approaches have been proposed for the 
problem which do not consider these constraints explicitly.

Optimal Methods
The methods proposed so far that give optimal results 

are only good for problems no larger than about 40 or 50 
nodes. Beyond this, computation time becomes impractically 
long. The most popular methods are those discussed in Held 
and Karp (1962), Little et al. (1963) and Bellmore and Malone
(1971).

The Held and Karp method uses dynamic programming and 
suffers from the normal dynamic programming dimensionality 
problems.

Little et al. use a branch and bound strategy that 
builds tours by adding links according to a bounding strategy. 
The method is highly restricted in problem size but it has
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the advantages of being able to consider constraints other 
than those of the normal traveling-salesman problem and if 
the tree search must be stopped early a good solution will 
have probably already been found.

The other popular optimal method is the one surveyed 
and improved by Bellmore and Malone. This is also a branch 
and bound approach but in this case the bounding problem is 
the assignment problem that one can see is imbedded in the 
traveling-salesman formulation. If the assignment problem 
is solved and a complete Hamiltonian tour results, then the 
problem is solved. But usually the result is two or more 
subtours through subsets of the nodes. In this case a branch 
is formed for each link that can be deleted to block a sub
tour. This is done recursively until a complete tour is 
found whose length is less than any active lower bound.

This last approach is sometimes called the subtour- 
contraction or subtour-elimination technique. Bellmore and 
Malone reported the solution of an 80 node problem in just 
under three minutes using this method but they found that 
the run time increased at a polynomial rate making much 
larger problems impractical. This claim of polynomial run 
time came from impirical evidence but they also made the
oretical arguments for it. Lenstra and Rinnooy Kan (1978) 
argue that this claim is not true and that a worst-case 
analysis would show an exponential run time.
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Nonoptimal Methods
Since practical problems sometimes involve hundreds 

of nodes, and thus optimal methods are useless, much work 
has been directed toward efficient and effective heuristics 
which do not guarantee optimality. The most successful of 
these heuristics is one based on a work by Lin (1965) and 
improved by Lin and Kernighan (1973) and by Christofides and 
Eilon (1972). This algorithm essentially starts with a feasi
ble tour (possibly randomly generated), makes feasible link 
exchanges which decrease the distance and stops when no more 
improvement can be made. This procedure can be repeated with 
different starting solutions as often as desired.

This method (called the r-optimal method because r, 
2£r<̂ n, links are exchanged) has produced solutions to 500 
node problems in less than three minutes that were estimated 
to be 1.1 percent above the optimal. Other very good solu
tions were produced in just over three seconds for the same 
problems. To date this is the most successful approach 
especially since it many times gives optimal solutions to 
small problems. Papadimitriou and Steiglitz (1978) have 
shown a class of traveling-salesman problems which, using 
this r-optimal method, can only be solved to a local optimum 
with a very high cost. But they failed to state whether 
this type of problem was common in practice.

Recently Karp (1977) has shown that a certain class 
of nonoptimal traveling-salesman algorithms have a guaranteed
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upper limit on accuracy and run time. These algorithms 
divide the physical region of the problem into subregions 
and a traveling-salesman problem is solved in each subregion.
Each of these subtours are then joined to make the final tour.
He postulates that this method can be used to solve problems 
of many hundreds of nodes but no computational experience 
was given.

Another recent suggestion by Norback and Love (1977) 
which is not computationally superior does seem interesting.
It assumes that all distances are straight-line. Euclidean 
distances between points. A "partial tour" is first made 
of the points forming the convex hull of all of the nodes.
It is known that these points will be in the final tour in 
the order that they appear on the convex hull (Eilon et al., 1971). 
Interior points are then added to the tour according to rules 
that they give.

This method was used to solve a problem of 318 nodes 
but it took almost one-half hour of computer time. What is 
interesting about the approach is that small problems can be 
solved by hand giving very good solutions. Also, the approach 
does have an intuitive appeal.



APPENDIX II 

THE VEHICLE ROUTING PROBLEM

The vehicle routing problem involves finding the 
routes for a set of vehicles from one or more depots or 
terminals to service a set of customers such that the total 
distance is minimized. Each customer has a given demand and 
each vehicle has a given capacity so it can only service a 
limited number of customers. The problem is essentially the 
same whether deliveries or pickups are being made.

Surveys of this type of problem can be found in Eilon 
et al. (1971), Turner et al. (1974), Golden et al. (1977). 
Different mathematical formulations of the problem can also 
be found in these references. These formulations minimize 
distance subject to constraints on the routing, capacity 
restrictions and demand requirements. But like the traveling- 
salesman formulation, the number of variables and constraints 
make problems of much size almost impossible to solve opti
mally. In fact, Christofides (1974) reported that the 
largest routing problem of any complexity that has been 
solved to known optimality had only 23 customers. There
fore only suboptimal heuristics have received extensive
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treatment in the literature. The successful of these methods 
will be reviewed.

M-Tour Traveling-Salesman Problem
A routing problem similar to this, yet uncapacitated, 

is known variously as the m-tour, multisalesman or multiple 
traveling-salesman problem. In this problem one has m 
salesmen or vehicles and it is desired to find m or fewer 
tours, each starting and ending at the same depot such that 
all customers are visited with minimum distance. Eilon et al. 
show that this problem is easily solved by transforming it to 
the standard traveling-salesman problem. This is done by 
replacing the depot in the distance matrix by m artificial 
depots all with the same physical location. Travel between 
artificial depots is prohibited by setting the distances 
between them to infinity.

Svestka and Huckfeldt (1973) found that the solution 
of the m-tour problem using a subtour-elimination approach 
(see Appendix II for the traveling-salesman problem) was 
easier if m was greater than one. Bellmore and Hong (1974) 
and Hong and Padberg (1977) have also investigated this 
problem and both papers present modified networks similar 
to the one mentioned above except that they include in cer
tain cost elements the fixed charge associated with each 
additional salesman or vehicle. Their final solution not 
only gives the optimal tours but also the minimum number of 
tours less than or equal to m.
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The m-tour approach has been successfully applied 

in solving the capacitated problem. This procedure essen
tially solves the uncapacitated m-tour problem and then if 
any capacity restrictions are violated, the violating tours 
are blocked and the problem is resolved. This continues 
until the stopping rules of the particular traveling-salesman 
algorithm are met.

As was pointed out in the traveling-salesman section 
of this paper, the r-optimal method has proven the most 
effective for solving the traveling-salesman problem. Thus 
it is not surprising that the most effective work in dealing 
with the capacitated m-tour problem has used the r-optimal 
method. This work was done by Christofides and Eilon (1969) 
and Russell (1977). Christofides and Eilon based their work 
on Lin (1965) and Russell based his on Lin and Kernighan 
(1973). For this reason Russell had better results but other
wise their approaches were quite similar. Russell's code, 
although slower than other methods to be described below, 
gave the best solution quality of any method he compared it 
to. The largest problem he solved had 159 customers and 
required just under nine minutes of computation time. He 
stated that the run time grew approximately as the number of 
customers raised to the 2.3 power.



85
Sweep Algorithm

Gillett and Miller (1974) have developed a novel and 
useful approach to the capacitated vehicle dispatch problem 
called the sweep algorithm. This was further generalized to 
more than one depot in Gillett and Johnson (1976).

For a single depot as the origin, the method first 
ranks the customers according to their polar coordinate angle. 
Then starting with one of the customers, new stops are added 
to a route according to the ranking as long as no capacity 
restrictions are violated. A traveling-salesman problem is 
then solved on each route. Later iterations switch customers 
between routes in attempts to reduce distances.

As long as the average number of stops remains con
stant, the execution time of the sweep algorithm increases 
linearly with the number of customers. But the computation 
time increases guadratically with the average number of 
stops per route. This happens because a traveling-salesman 
problem is solved on each route.

For this reason it was found that the sweep approach 
is a fast method for few stops per route but is not competi
tive with, for instance, Russell's code and the savings 
method for many stops per route. Sweep has solved a 250 
customer problem with 25 routes in almost ten minutes. Also, 
the quality of sweep solutions are not quite that of the r- 
optimal, m-tour approach mentioned above.
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Savings Approach
In 1964 Clarke and Wright proposed a heuristic for 

the vehicle dispatch problem called the savings method. The 
method, in its simplest form, starts with m single customer 
tours, where m is the number of customers. These tours each 
start at the depot, service the customer and then return to 
the depot. A tour with customer i is then joined with a tour 
containing customer j if the "savings" measure 

s(i,j) = d(i,D) + d(D,j) - d(i,j) 
is the maximum over all unassigned pairs. Here, D is the 
depot. This joining is of course only made if constraints 
on the tours are not violated.

There are variations of this referenced below and 
these references also give a more detailed description of 
the algorithm. But the general approach has received more 
attention and use than any other vehicle routing approach 
yet proposed. It has been used to solve the largest prob
lems reported in the literature and the tour lengths are 
nearly always less than (many times much less than) 10 
percent greater than the best known solutions to test prob
lems.

Some variations and research on the approach will 
now be mentioned-

A criticism of the basic savings method is that once 
a customer is assigned to a route it is never considered for 
another route. One method to get around this is to check
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the effect of joining tours which do not have the maximum 
savings— to look ahead at tours with lower savings. This 
method has been investigated in Tillman and Cochran (1968), 
Tillman and Hering (1971), Tillman and Cain (1972) and 
Holmes and Parker (1976). These methods tend to get some 
improvement in solution quality but at the expense of much 
higher computation times.

Modifications of the savings function and of the 
solution approach were made in papers by Gaskell (1967), 
Yellow (1970), and Mole and Jameson (1976). These modifi
cations have been well received in use and subsequent litera
ture. Mole and Jameson solved a 225 customer problem in 160 
seconds.

Webb (1972) tested the different savings functions 
suggested by Gaskell and found that none of them performed 
consistently as well as the original Clarke and Wright 
function. But McDonald (1972) found that intelligent use 
of the Gaskell functions as well as human interaction can 
produce exceptional results. Golden (1977) has shown that 
the basic savings approach can give very poor solutions in 
some cases. But he also pointed out that a poor solution 
is apparently a rarity. It should be mentioned that Webb 
solved problems of 1000 customers in 5 minutes using the 
original savings method. He found that the run time varied 
as the number of customers raised to the 1.6 power.

Two routing algorithms based on the savings method
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that were actually implemented were reported by Beltrami and 
Bodin (1974) and Golden et al. (1977). Beltrami and Bodin 
improved the savings solution by solving a traveling-salesman 
problem on each route. Golden et al. extended Beltrami and 
Bodin's work by including modifications suggested by Gaskell. 
But the work of Golden et al. was distinguished by the fact 
that two tours were only joined if they were close together 
and by the data structures used to store the basic data and 
the sorted savings list. This enabled them to solve very 
large problems very quickly. An actual 600 customer problem 
was solved in 20 seconds.

Further discussion of the problem of handling the 
savings list and other computational problems associated with 
this approach can be found in Webb (1972).

The savings approach has also been applied to the 
multiple terminal problem in Tillman (1969), Lam (1970), 
Matthaus (1976), Tillman and Cain (1972) and Golden et al. 
(1977) .

Other Methods
There has been other published work on the 

vehicle dispatch problem that does not fit into the above 
categories. The three papers to be mentioned do have cer
tain aspects in common, though. Two have routines that 
cluster customers according to proximity to each other and 
then try to form routes that meet capacity constraints from 
the clusters. All try to improve initial solutions by
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switching customers between routes by very simple procedures. 
And all handle multiple depot problems. None of these 
approaches offer much in speed of solution, but all give 
very acceptable solutions.

Krolak et al. (1972) have presented a man-machine 
approach to the problem that has the advantage of involving 
an experienced human controlling the solution. But it has 
the disadvantage of requiring complicated computer interac
tion and display apparatus.

Cassidy and Bennett's (1972) work is distinguished 
by the data structures used to represent route linkages.
These linkages are easily modified to test new routes.
Their method was successfully implemented in an actual 
system with 390 customers.

Wren and Holliday (1972) had very good results by 
just exhaustively switching customers between routes of an 
initial solution which is either supplied by the user or 
created by the program.

Computational Experience
Webb (1972) discussed and Matthaus (1976) implemented 

a clever way of finding the maximum savings which avoided 
exhaustive list searching in the savings method. Gaskell
(1967) and later Golden et al. (1977) also improved the 
savings method by introducing a "route-shaper" parameter 
into the savings function. These modifications were incor
porated into a code which was tested on 10 problems from
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several sources that have been published in Eilon et al.
(1971). These have been very popular test problems so 
comparisons can be made among all of the popular codes, 
including the modified savings code. The results are in 
Table II.1.

The times are hard to compare because several dif
ferent computers were used but the modified savings code 
was very fast. And since the new code is a quick heuristic 
the solution distances are within a tolerable range of the 
others. In fact it is equal to or better than the basic 
savings method and in some cases meets or beats the distances 
of more exhaustive methods.

Multiple-Depot Methods
The following papers were discussed above but are 

listed here as methods for handling more than one depot; 
Tillman (1969), Lam (1970), Tillman and Cain (1972), Cassidy 
and Bennett (1972), Krolak et al. (1972), Wren and Holliday
(1972), Matthaus (1976), Gillett and Johnson (1976) and 
Golden et al. (1977).

Since the Matthaus savings algorithm proved efficient 
for the single-depot scheduling, it was coded for comparison 
with other published results of multiple-depot algorithms. 
Matthaus failed to make any such comparison. Krolak et al. 
and Gillett and Johnson published the data of some of their 
test problems and the results of the codes appear in Table 
II.2.



Problem

TABLE II.1
COMPUTATIONAL RESULTS OF FIVE SINGLE-TERMINAL VEHICLE SCHEDULING CODES

Number 
of Stops

ChrlstofIdes 
6 Ellon (1972) 

3-optlmal 
IBM 7090

GlIlett and 
Miller (1974). 

SWEEP 
IBM 360/67

Russell (1977) 
M-tour wlth 
r-optlmal 

IBM 370/168

Ellon, et a l .
(1971). 

Basic savings 
method 
IBM 7090

Modi fled 
Savings. 

IBM 370/158

1
2

3
4
5
6

7
8 

9 
10

6
13
21
22

29
30 
32 
50 
75

100

114*
290
585
949
875 
1414
810
556
876 
863

.3

.3
1.8

1.5
2.4
2.5 
2.4 
6.0

12.0

30.0

591
956
875

810

546
865
862

.21

.17

.51

.62
2.0
1.23
6.0

5 8 5

956
875
1214
810

524
854
833

.063

.159

.255

.310

.328

.264
4.098
1.690

1 1 9

290
598
955
963
1427
839
5 8 5

900

887

.1 

.1 

. 1 

. 1  

.2 

. 2  

. 2  

.6 

1.3 
2.5

119
290
5 9 8

9 5 6

9 4 5

1263
831
583
8 9 3

886

.00075

.00318

.01583

.02293

.03837

.02487

.04903

. 1 3 3 4 7

.38865 

.6836

VO

*The first column Is the best distance found for the route and the second column Is computation 
time In minutes.
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TABLE II.2

COMPUTATIONAL RESULTS OF THREE MULTIPLE- 
TERMINAL VEHICLE SCHEDULING CODES

Problem Number 
of stops

Krolak, ot a l . 
(XDS Sigma TT

26

28
91

91

Gillett and Johnson 
(IBM 370/168)

8

9

10

n

249

249

249

249

Number Reported Reported Savings Savings 
of depots time (sec.) distance time (sec.) distance

(IBM 370/158)

9 148.44 27,771 18.59 32,446

9 110.46 26,188 22.42 32,898

2 457.61 4,832 69.71 4,606

3 444.33 4,220 107.24 4,251

4 344.04 3,822 153.56 4,072

5 315.99 3,754 216.60 3,972

'The distances were improved in the man-machine phase of the Krolak, et al 
solution.
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With different computers the times are hard to com

pare but the saving method is very fast. Some apparent trends 
can be seen: The savings code increases in time with more
terminals while holding the number of customers constant.
The opposite is true with the SîŒEP algorithm. Also, it is 
very apparent that the quality of solution of the savings 
code degenerates as the number of terminals increases.
But with 2 or 3 terminals the solution was very good.

This algorithm appears at the end of this appendix.
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ALGORITHM FOR MULTIPLE-TERMINAL VEHICLE DISPATCHING

The data:
M = number of stops 

NTER = number of terminals 
D(I,J) = distance from stop I to step J.
DT(I,K) = distance from stop I to terminal K.
The algorithm variables;

A = list of quantities calculated in algorithm to speed 
comparisons of savings.

ASTER(I) = terminal assigned to stop I
lA = list of stops associated with the values in A 

IK1,IK2 = the indices of A associated with stops Kl and K2 
J1,J2 = temporary variables for stops being considered for 

linking
K1,K2 = the best stops found for linking in one iteration 

K3 = best terminal found for linking in one iteration 
KB = temporary variable for terminal being considered 

for linking
LINK = logical variable indicating whether any stops were 

linked on a route 
NRTER(I) = the nearest terminal to stop I 
OEND(I) = if I is the beginning or end stop of a route OEND 

is the stop on the opposite end of the route 
S = savings 
SO = best savings found in an iteration
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The algorithm:
1. Initialize data structures such that each stop is a 

single route.
2. Assign each stop to its closest terminal, thus initializing 

ASTER and NRTER.
3. A(I) = DT(I,ASTER(I)), IA(I) = I, for I = 1,...,M.

Sort A and lA in descending order of A.
4. SO = a very small number

LINK = FALSE
1 =  1

5. J1 = IA(I), Jl is the stop associated with index I.
6. If A(I) + A(I+1) £ SO then go to step 19, there cannot

be an improvement.
7. J = I + 1
8. J2 = IA(J), J2 is the stop associated with index J.
9. If A(I) + A(J) £ SO then go to step 18, there cannot be

an improvement.
10. Only endpoints can be linked. If J2 is not an endpoint 

go to step 17.
11. If Jl and J2 are on the same route go to step 17, they 

cannot be linked.
12. Find KB which is the value of K which minimizes B =

DT(0END(J1),K) - DT(0END(J1), NRTER(OEND(Jl))) +
DT(0END(J2),K) - DT(OEND(J2), NRTER(OEND(J2))) for
K = 1,...,NTER

13. If joining Jl and J2 to terminal KB will exceed distance 
constraint, go to step 17.
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14. Calculate savings: S = A(I) + A(J) - B - D(J1,J2)
15. If S £ SO then go to step 17.
16. Save values; SO = S, Kl = Jl, K2 = J2, K3 = KB, IKl = I, 

IK2 = J, LINK = TRUE
17. If J = M then go to step 18,

otherwise, J = J + 1 and go to step 8.
18. If I = M - 1 then go to step 19,

otherwise, 1 = 1 + 1  and go to step 5.
19. If LINK = FALSE, then STOP.
20. Update data structures such that the route containing 

Kl and K2 are linked at Kl and K2 and the new route is 
assigned to terminal K3.

21. If step Kl is not the first or last stop of the new 
route, then it is no longer considered for linking and 
A(IKl) is set to a very small number. Similarly, if K2 
is not at the end of the route, A(IK2) is set equal to a 
very small number.

22. Let ENDl and END2 be the endpoints of the new route and 
Jl and J2 be the index of lA associated with ENDl and 
END2. Then
A(J1) = DT(ENDl,ASTER(ENDl))

+ DT (OEND (ENDl) , ASTER (OEND (ENDl) ) )
+ DT (OEND (ENDl) , NRTER (OEND (ENDl) ) )

A(J2) = DT(END2,ASTER(END2))
+ DT(OEND(END2), ASTER(OEND(END2)))
+ DT(OEND(END2), NRTER(OEND(END2)))
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Sort A and Al in descending order of A and go to 
step 4.



APPENDIX III

THE p-MEDIAN PROBLEM

Given a network containing n nodes (facility sites),
it is desired to find p of those nodes which could service
the remaining nodes with a minimum total distance traveled.
This is the p-median problem which can be modeled as

n n
minimize Z Z a.d..x.. 

i=i j=i ^
n

subject to Z x..=l, i=l,...,n 
3=1

A  "

Xĵj - îj = 0 or 1' if] = If —  '
where; x^j = 1 if node i is assigned to node j,

â  ̂ = demand of node i,
d^j = distance from node i to node j.
Revelle and Swain (1970) found that in almost every 

instance, if the 0-1 constraint is dropped and the problem 
is solved as a standard linear programming problem, the 
solution is integer. This makes the problem easily solved 
if its size does not exceed computer time and storage avail
ability.
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Teitz and Bart (1968) and Khnmawala (1973) have 

both suggested heuristics for the p-median problem. The 
Teitz and Bart approach essentially interchanges nodes of a 
starting solution in an intelligent way until no improve- . 
ment can be made. The Khumawala method constructs a solution 
by examining savings made by adding nodes to the solution.
Both methods result in good solutions in reasonably low 
^computer time, but neither guarantee optimality.

Narula et al. (1977) solved the problem using Lagrangian 
relaxation and subgradients. The procedure is simple, con
verges in an acceptable computation time, and was found to be 
optimal in every case that was tried. This solution method 
was used in this research.

The Lagrangian relaxation of the problem with respect 
to the first constraint and for a given nonnegative n-vector 
A is

n n n
L,(X) = min Z Z (a.d.. - A.)x\. + Z X.
^ X i=l j=l  ̂ ^ P  i=l 1

n
subject to Z X.. = p 

j=l
x^j £ Xjj, x^j = 0 or 1, i,j = l,...,n.

The Lagrangian dual of this is
max L,(X)
X>0 °

and subgradient optimization (Held et al., 1974) is used to 
solve this dual problem.



APPENDIX IV 

EXPECTED DISTANCE OF A TOUR

If one is given a set of probabilities or probability 
density functions describing the probable route of a service 
vehicle, it seems that a term could be found for the expected 
distance of a tour, given the new facility location. This 
term could then be minimized, with respect to the new facility 
location, to solve the problem. The following development of 
the term will show this particular approach to be impractical.

Define
Pj(D,i^,...,i^) = probability that customer j will be

the first stop after the partial tour 
(D,i^/•••/i^)•

I = {1,2,— ,m} where m is the number of 
customers.

Also assume that

jel-{il,...,ip 3  ̂ '
for all admissible partial tours (D,i^,... ,ij.) .

To simplify matters let m=4 and consider the network 
in Figure IV.1 as a visualization of how all possible tours 
might be found. One starts at the depot, D, and there are

100
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several possible paths that might be followed. The numbered 
nodes represent the customers. Each open, solid arrow repre
sents a return to the depot. The dashed arrows represent 
parts of the network that were excluded to make room. 
(Capacity restrictions can be accounted for by shortening 
the network such that the maximum number of customers visited 
in a trip is not more than the maximum expected number of 
customers that could be serviced in one trip.)

II III IV

Figure IV.1. Network showing all possible tours through 
four customers.
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To develop the expected distance of a tour, first 
note that (referring to Figure IV.1) the index notation is i^ 
being the node visited at level I, ig the node visited at 
level II, etc.

Now start at level III of the network. At any node 
of this level there are two routes that can be taken: back
to the depot or to the next (and last) level. The probabil
ities of these are Pjj(D,i^,i2 ,i3 ) and p^'(D,i^,i2 ,i3 ) where

I' = {1,2,3,4} - {i^,1 2 ,1 3 }
= node visited at level IV.

Thus the expected remaining distance at any node in level III 
is

P j i  ( D , i j ^ , i 2 f i 3 )  +  P D ^ ° ' ^ l ' ^ 2 ' ^ 3 ^ * ^ i 3 D *

At any node l2  of level II the argument is similar:
The tour can either go to one of the nodes in level III or 
back to the depot. The expected remaining distance, using 
the term from level III, is

i el-U i } ^°'^1'^2'^3^ ̂ ‘̂i3 l’'̂‘̂I*D̂

+  P D ( D , i ^ , i 2 / i 3 ) d ^ ^ Q ]  +  P p  ^ 2 ^ ‘̂ 1 3 0

This analysis can be backed to the depot D in the network and 
the full expression is
ET = Z p. (D) [d_. + Z p.* (D/i-i ) [d. • +

i^El ""l °"-l i2Cl-{ii} ^2 ^ ^1^2

i e l - { i  i } *-'̂ i2 i 3 ‘‘‘P l ' ^̂ 1̂ 3 1 '■̂ ‘̂ I'D^

PD(d,ii,i2,i3)di^D^ + + ?d 1̂̂
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Since in minimization each term involving distances 

between customers is constant, then these terms can be left 
out. Rearranging the terms of ET, the expression ET’ is

ET’= Z p (D)d 
i^el 1 1

+ 1 1  I p. (D)p (D,î )p (D,i.,i„)p ,(D,i,,i„,i,)d ,
i^El h  ^2 ^ ^3 ^ ^ ^ 1 2 3 I I

+ Z Z Z p. (D)p. (D,i-)p. (D,X-,i-)p_(D,i-,X2»io) - q
i.el i3£l-{x^,Î2} "-1 ^2 1 I3 ^ ^ ^ 1 2 3 X3D

+ 2  Z p (D)p (D,i )p Q
î el X2El-{ii} h  2̂  ̂ °  ̂  ̂ 2̂̂

Note that each line ends with a distance between a 
customer and the depot. So it can be seen that for any given 
distance between the depot and a customer j the coefficient 
is the sum of:
1. The probability of going from the depot to customer j 

first.
2. The product of the probabilities of the links in each 

route serving 4 (m) customers, the last customer being j.
3. The product of the probabilities of the links in each

route serving 3 customers, the last customer being j,
and then returning to the depot.

4. The product of the probabilities of the links in each
route serving 2 customers, the last being j, and then
returning to the depot.
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5. The product of the probability of serving customer j
first and the probability of then returning to the depot.

Prom this it should be clear that the coefficient of 
any d^^ is the sum of the probability of visiting j first •
plus the sum of the products of the link probabilities of every
possible tour that ends with customer j. The expression for 
this in general is very long and will be omitted here.

If each of these coefficients is interpreted as a
weight, w(i), on the distance between a customer i and the 
depot, then this problem can be solved as a single-facility 
Weber problem (Francis and White, 1974).

The concept of this approach is very simple but the
computation associated with calculating the product of
probabilities of every possible route renders the method in 
its most general form impossible for a realistic problem.
Most likely a large number of the routes would have zero 
probability and could be overlooked but a large amount of 
computation would probably remain.

There is still the problem of finding the probabili
ties. Each would be based on two things: the probability
that a customer has a demand in a given cime period and the
probability of taking a certain route. This second probabil
ity might come from an idea mentioned by Knight and Hofer
(1968). They said that since it appears that each successive 
stop in a traveling-salesman tour is usually the closest one, 
then it would probably be possible to get a distribution on
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the probability of visiting the kth closest customer each 
time a trip is made between stops.

But this brings up another problem. If one uses this 
approach there is no way of getting the probabilities of 
visiting the first city after leaving the depot if it is 
not known where the depot is located. This might be remedied 
by iteratively solving the problem with several different 
starting solutions. A starting solution would dictate some 
probabilities, then the problem could be solved to find a 
new location which would result in new probabilities, etc., 
until there was no change in location.

Again, even if a convenient method could be found 
for calculating the probabilities, there is still the problem 
of calculating all of the combinations of probabilities. A 
Markovian transition matrix might be considered with the 
states being the depot and customers. Then by finding all 
r-step transition matrices, r = l,...,m, the desire products 
of probabilities would be found. This is assuming that at a 
given stop it did not matter which customers had been ser
viced previously on the tour— which is a flaw to the Markovian 
approach since, except under special assumptions, one would 
not want to visit the same customer more than once in a tour.

Use of the expression for ET in solving this problem 
does seem to have intuitive appeal, but its practical applica
tion does not seem obvious.


