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1.

INTRODUCTION

Since the publication of Ce. L. Fortescue's classic
paperl on Symmetrical Components in 1918, the electrical in-
dustry has gradually accorded the Method of Symmetrical Com=
ponents a more and more important place as an electical toolj
taking 1t from the laboratory and putting it to work.2 Power
companies have expreased their confidence in this new tool
by their large investments in calculating boards, based on
the theory of symmetrical components, which enable engineers
to calculate accurately, in a fraction of the time formerly
required, the currents that will flow under certain condi-
tions of fault.

In the analytical solution of systems contalning an
alternator supplying an unbalanced load, it has been conven=-
tional practice® to assume the alternmator to be carrying no
load at the time of fault, and then to set up a different
equivalent circult connecting each of the three symmetrical
components for each type of fault. W. E. Slemmer shows
several examples4 using this method in his thesis published
in 1934. During the same year however, E. M. Sabbagh

1c.L. Fortescue, Method of Symmetrical Co-ordinates
Applied to the Solution of Polyphase Networks, pp. 1027~
1140.

2 H.A. Travers and W. W. Parker, An Alternating-current
C&lculating Board, PPe 266=270, H.R. Searing and Re Ee

Powers, Soguence Principles Used for Network Relaying,
PDe 649=697 .

3 Ce F. Wagner and R. D. Evans, Symmetrical Components,
par 24.

4 We E. Slemmer, Symmetrical Components, p. 59
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cusliched his Phe D. disserbablion, "Unbalance in Albernat-

current Rotating Hachines." 1In this dissertatlon general

expressions were developed for the steady state currents in

%2

fel®

It is the purpose of thig thesis to present in as simple

& manner as possible the principles involved and the steops
covered in developing these general expressions, and to show
Dy means of examples thelr use and how the resulits obtained
by their use compare with the results obtained by other

methods. It Is also shown that the clascsical types of faults

veually considered are but special cases of a general

<3

© T. ¥, Subbagh, Unbalance in Alternating-current Robtating
Hachines, n. 21,



Se
FUNDAMENTAL PRINCIPLES

There are methods avallable for solving bslanced poly-
phase ¢ircults by replacing the mutual reactance between
phases by equivalent self-impedances and solving one of the
prnasess A method which would allow a similar simplification
in the solution of unbalanced loads on a symmetrical system,
which would simplify and in some cases permit the solution
of otherwlse unsolvable cases of unbalanced polyphase cire-
cults, would be a great improvement over the simmltaneous
solution otherwise employede The method of symmetrical
components allows any three unbalanced three phase voltages®
to be resolved into three systems of balanced or symmetrical
componentse’ If the system containing the three unbalanced
voltages 1s l1tself symmetrical, the voltages and currents of
different sequences do not react upon each other.® This
allows each of the balanced systems or components to be
treated separately Just as balanced polyphase problems and
greatly simplifies thelr solutione

€ For polyphase systems of more than threec phases, see Ce Le
Pormmﬂ' Ope Clte pe 1130.

7 In the usual sense of the word, the zero-sequence component
is not a symmetrical component but a uniphase componente
If the three zero-sequence phase components of current in
the three phases are thought of as a single current in
three parallel branches, the zero-sequence current might
be called a single-phase current.

8 symmetrical circuit conditions, l.e., systems whose constants
are the same viewed from any phase, except for fault and
load, will be assumed throughout this thesise Under these
conditions the three sequences are independent, l.e., the
current of one sequence produces impedance drops of that
sequence onlye (See Co F. Wagner and Re Ds Evans, Sym-
metrical Components, ope cite ppe 374=375.) '
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Tirege three components will bo discussed very briefiy.g
Since eaci: of the thres seguences are independent of each
other, thevy may each be shown as a symmetrical system of
vectors. The three systems of balanced vectors that give
the original voltage vectors when added together, as In
Fige 2, are called positive-, negative- and zero-sequence
components.

In Pig. 1(a) 1s shown the positive system of vectors

for & threec-phase system, of which E, , #, and are the

i
“~c|
positive-sequence line~to-neutral voltages of phases (a),

(b) and (c¢), respectively. BRach of the positive-secguence
components are of equal magnitude, and are separated by a
phase angle of 120 degrees. The developed instantaneous
values of the vectors, as projected on the X-axis, are shown
L . l (1‘) 11 5 ) s ) s

L AL 7). The positive-sequence component is the only
conponent found in balanced systems, and so it is the one
considersed in ordinary halanced system caleulabtionse It is
considered positive becanse its order of maxiama occurs ln
the sequencelg (abec) which is the same order as that used

- - '? . = —‘*V.
in the original vectors,ld B, » By, , and E.  (Fig. 2).

9 For a more elaborate and rigorous proof of the symactrical

component theory, see Ce« L. Fortescue, ope. cit. p. 1027,

C Prroughout this paper the subscripts o, 1, and 2 will be
used to denote the gero-, positlve-~, and nsgative-scquence
components, resgpectively.

onventional robation of vectors in the counter-clockwise
tion 1is assumed throughout this thesis.

Fyeds

=&

12 Note that the sequence has no relation to the direction of

rotation of the vectors themselves.

de G Co Dahl, Mlectric Clrculits - ‘Pheory and Application,
Yol 1, B S
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a b c
(a) l'ositive=sequence (b)
b a c
ECz
(e) lesative=sequence (a)

(e) Zero=-sequence (1]

Fize 1. The Three Sequence Compcnents
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The sunmation of the three sequence components

to form the orizinal unbalanced vector system,

6.



in the negatlive~ssquence syebem, Fig l{c), the vsctors
Yiagzs “pge 9nd I, revolve in the same direcction as in the

will be noted, the maxiua

components bulld up in the reverse order, that
1s {bac). One might obtain a better physical picture by con-

ering the rotating magnetic fields sebt up 1f the nhases

A

o

(a), (b), and (c) were connected to an induction mobors If
the positive-sequence syatem (abe) produces a field revol-
ving in one direction, by interchanging any two conncctions,

thhe field rotation will reversc. The relative phase posi-
tions of the voltages are then simllar to those of the ne a-
tive-sequence system (bac).

These two seguences, however, are nobt enocugh to completely
replece the original vectors in some cases. Since
positive~ and anegative-gsequence systems are synmetrical, their
sume mmet be egqual to zero. Thus when using a delta or un-
srounded wye syebom, these two sequences would be sufficient
Tor the line voltages; but with a grouwnded wye systen, the
sum of the three-line current vectors mar not he zero. For
the more general casc Tortescue introduced a tilrd component,
called the zero-sequence component because the phass angles
were zero, Flz. 1(e). These thres zero-sequence components
are in phase and of egunal magnitude.

There are then, three sets of symuetrical vectors which
can he combined in & graphlcal menner to form a sebt of un-
balanced voltages, as shown in Pig. 2, or the operation may
be reversed to resolve a system of wnbalanced voltages, for

exwmgle those in Plg. 2, into three sets of symmetrical
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camponents, as in Fig. 1(a), (b), and (¢). From then on,
since in symmetrical circuits currents and voltages of
different sequences do not react upon each other, the se-
quences may be treated separately as balanced polyphase

problems and solved on a single-phase basis.

Resolution of Three Unbalanced Three-Phase Vectors
into their Symmetrical Components

Since the three phase-components ot a séquence system
are balaﬁced, one phase-component differs from either of the
other two only by being displaced 120 degrees. Therefore,
it is possible to express either of the other two components
in terms of one phase component and an angle of rotation.
Thus,

E = oI1%%E,,  and B, - 30,

Since ¢J120° ig used often, it is convenient to let the
letter (a) be a vector operator such that

a = eJ120° o - 0,5 + jo.866

and

o = eJ®40° . _ 0,5 - j0.866 (1)
From Fig. 1(a)

Ep, = @°Eq), and E;, = aEq) (2)
From Fig. 1l(e)

Ep,= eFy, and E = °E,, (3)

and from Fig. l(e) since there is zero phase angle between
the three vectors

E = Epo= Eeo (4)
From the previous discussion and from Fig. 2, it is apparent



that each of the original voltage vectors is equal to the

vector sum of the three sequence components, That is

Eg = Egpt Eayt Byy (5)
Ep = Epyt By + Ey, (6)
E, = B+ B, + B¢,y (7)

Substituting the eguivalent values as found in eguations

2, 3, and 4 in equations 5, 6, and 7 gives

Be = Bgu* EBgqyt By, (8)
Eb = Eupt alEa,+ afg 4, : ' (9)
E, = Bg,+ 8Fq,+ 8 Eg, (10)

Thereby expressing each of the original three-phase vectors
in terms of phase (a).
Solving equatibns 8, 9, and 10 for E, , gives
Eg+ Bp v+ Be = (L+ a’ a)Eq,+ (1 +a+ a®)E,,+ 3E,,
But from ecuation 1 .
a = - 0,5+ j0.866 and a’ = - 0.5 - j0.866
Therefore

1+ a’+a=1-0,5+ jO.866 -~ 0,5 - jO.866 = O

then
Bi, = E, + By + E.
or
B,,= 1/3(E, + By + E.) (11)

Solving equations 8, 9, and 10 Tor Ea,
Ba = Bap* BEgqi* Bax (8)
Multiplying equation @ by (a) gives
7
afy = &al,,+ a By, + a'E,, (12)
and multiplying ecuation 10 by (a%*) gives

2 2 I R
a'EB. = &°E, + a'E, + ak,, (13)



10.

Adding equations 8, 12, and 13 and remembering that a’ = 1

and that a” = a, then

E, + ai, + azEC_= Bh,, + (L + & + a*)E,,+ (1 + 2+ a)Eq,
The last two terms being equal to zero

| B, = 1/3(E, + aBy + a'E,) (14)

Likewise, solving equations 8, 1%, and 13 for Eaz.gives

E,,= 1/3(E,+ a*By + aE,) (15)
These three equations, 11, 14, and 15, are the fundamental
equations expressing each of the phase (a) sequence voltages
in terms of the three line-to-neutral voltages. Expres-
sions for the other phase sequences of voltage can be
obtained by substituting equations 11, 14, and 13 in

equations 2 and 3, page 8.



FAULTS ON A LOADED ALTERNATOR

The method of symmetrical components is widely used in
determining the system performance of a network; for examplo;
the current values for investigating mechanical and thermal
limitations of equipment on a transmission line under condi-
tions of unsymmetrical faults. Perhaps its most valuable use
is for determining the various values of sequence currents and
voltages throughout the system so that protective and control
relays can be accurately set to maintain system stability.
Voltage regulators operating from a positive-sequence voltage
selector network will give a much closer raggula1;-1:::1?.:’-‘L under
certain conditions than when using the regular line voltage.
Likewise, protective relays excited by negative-sequence cur-
rent1® may be used to protect alternators from heavy single=-
phase fault or load currents. As interconnected transmission
networks become more and more complex, better methods of re-
lay protection are necessary, which require more accurate mech-
anisms and closer relay settings. In order to take full advan-
tage of automatic relay protection, it is necessary that the
protective relays be set accurately to obtain the necessary
selectivity to give the proper sequence of operations in case

of faults, Because of the instability effects the faults may
8

14 y, =, Slemmer, op. ¢it., p. 16.

15 yohn Henderson, Automatic Protective Gear, p. 142. Also
H. R, Searing and R. E. Powers, Sequence Principles used
for Network Relaying, pp. 694-697.
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have on the remainder of the system, it iz necessary, not only
to investig e the Tamlts thaet will produce the maximum fauld
current, but also to investigate other types of faulbs.

The values of the constants that are ordinarily used in

determining line rsgulation ené current distribution under

B

nornal operating ccandibticns are not uswlly the sare values

0
w
odd

those thet detersmine the amount of faull current and degree

inbalanee in line currents and voltages that oceur under

o
e
—

conditions of foult, The counstants inveolved are usuelly found
experimentallylﬁ or are determined from the physical character-
sstiesl? of the network. When a line in a syster: fed by an al-
ternator faultes, the currents thet flow into the fault depend
upon the characteristics of the generstors, both synchronous

-

and induction if any, and the load involved as well as the fault

B

cenditions,

In a network surplied by a single alternator, or one in
viich the voltages of the albernators may be assumed to be in
phase, the network can usually be reduced to an equivalent
zingle lins circuitl® consi sting of a generator supplying a
single load, To further simplify the solution the senerator is
usua lly considsred to be operating at no load or feedinz a bele

anced load.l? The seguence nebtworks fram which equivalent

18 w. v. Lyon, Applications of The Liethod of Symmetrical
Components, pp.452-469.

17 C. ¥, Wagner and R, D. Bvans, op. cit. pp. 1386-=22C.
18 Tbid. pp. 55-63.

19 1pia. p. 53.
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single line circuits can be set up for each of the three
sequences may be quite different in appearance, as only the
branches of the networks in which currents of that particular
sequence flow are included in each network. These equivalent
circuits may then be so interconnected that they meet the ter-
minal oonditionazo_ur the fault., For each type of fault there
will be a different plan of intercomnection of one or more of
the equivalent sequence circuits,

In assuming the alternator tc be supplying a balanced
load at the tirce of fault, an appreciable error is often ine
troduced, especially if the alternator has a high negative-
sequence impedance., This difference, which ranges from 2 to
24 per cent, in the ma jority of cases does not exceed 15 per
cent 2l The mathoda,za that were available before Sabbagh's
solution was published, were so complicated and tedious that
.this refinement was usually neglected. Assuming the constants
of a machine to be real constants, Sabbagh developed general
equationsz3 for the steady state currents and voltages in a
wye-connected alternator supplying power to three lumped (wye)
loads, This scolution not only offers a useful refinement and
simplification in the solution of faults involving a loaded
generator, but also shows that the various types of faults

20 1pid, p. 30-37.
2l B, M. Sabbagh, op. cit. p. 6.

= C. ¥, Wagner and S. H. Wright, Calculation of Short Circuits
on Power Systems.

23 g, M. Sabbagh, op. cit. pp. 21-24.
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solved by other methods (assuming no load on the alternator)

and published previous to E. M. Sabbagh's dissertation are

but special cases of a general prnhlem.a4

24 3, M. Sabbagh, op. cit., DP. 43.
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DEVELOPIMENT O GENERAL EQUATION
FOR AN ALTERNATOR CAREYING A THREE PHASE LOAD
Part I, Derivetion of e:press:lons for sequence componcnts
of losd voltages in terms of load sequence imped-
aneces and sequence currents,
Let the altermator in Fig, 3 feed three lumped loads,
Z4s ), and 7/, comnected in wye.®® 1If I_, I, end I, erve the
three line currents flowing in Z,s 2j and Z_ respectively,
then

Vo = Io%q (16)
Vp = 1,2, (17)
Vo = Ic2¢ (18)

where V,, V, and V. ere the three-phase load voltages.
From equations 8, 9 and 10 page 9, dropping the phase (a)
subseript,~° it is found that

Vo = Vo V¢ V, (19)

V, = Vo+ 2%V, + ay, (20)

V, = V,+ av,+ &'V, (21)
and 1ikewise |

Ia= I+ I,+ I, (22)

Ip)= I+ all,-i- al, (23)

I.=I,+al,+ a’l, (24)

25 This may be considered a fairly general case since any
network with its loads can be reduced to an valent
wye load supplied by a single generator, p ed the
generators may be replaced by a single generating unit.

26 The phase (a) will be used through out this section and
therefore the subseript (a) may be dropped.



(a) Schemetic dia rem for zenerator and load.

1

l

Va, -
Taz
-
Neutrel) v
(b! Positive Sequence - (¢) Negative Sequence

.

Lo

lao —
vV V V T

‘do

(d) .tero ~eguience

i e Yo Loaded  enerator witl 1its single line sequence circuits,
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Substituting these values in equations 16, 17, and 18 gives

Vo+ V,+ V= (I+ I+ I)Z, (25)
V,+ &'V, + aV,= (I,+ a’I,+ aI,)z, (26)
Vo+ &V, + @’V = (I,+ al, + a’L )z, (27)

Solvingav equations 25, 26 and 27 simultaneously for V,,
V,, and V, gives

V= I,2,+ 1,2+ Izz;zs (28)

V,= I,2,+ I,Z2,+ 1,2; (29)
and

V,= I2+ 1,2+ 1,2, (30)
where

V, is the zero-sequence load voltage

V, is the positive-sequence load voltage

V., 1s the negative-sequence load voltage

I, is the zero-sequence load current

I, is the positive-sequence load current

I, is the negative-sequence load current

Zl= 1/3(Z,+ Z,+ 2.) (31)

z'= 1/3(Z,+ aZ,+ & 2.) (32)
and

z!= 1/8(Z)+ a’z .y az,)%® (35)

27 The complete solution is shown in Appendix A, page 33,

28 Gurrents and impedances of different sequences react in
that part of the circult which is unsymmetrical. (See
footnote)e, also, C. F. Wagner and R. L. Evans, op. cit.,
Pp. 162,

- Equations 31, 32, and 33 may be considered as expressions
for the zero-, positive-, and negative-sequence imped-
ances of the ioaﬁ.



Part II. Derivation of expressions for sequence components
of terminal voltages in terms of alternator seq-
uence impedances and sequence line currents.

One of the fundamentals of symmetrical components is the
indepe ndence of seque-n_oes.so This means that the sequence
components of current in a symmetrical network do not react
on one another, When a voltage of a given sequence is applied
to a piece of apparatus a current of the same sequence flows
limited only by the impedance of that particular sequence.
Since the impedances offered to the different sequences may
vary with the sequence, it is often desirable, for analytical
purposes, to consider each of the sequences as forming an in-
dependent circuit only retaining the parts of the original
circuit in which the currents of that particular sequence flow.

By re-drawing the generator end of phase (a), Fig. 3(a),
as a single line diagram for each of the three sequences,
Figures 3(b), (e) and (d) are obtained. * In the positive-seq-
uence cirecuit (Pig. 3(b) ) 3,50 is the positive-sequence in-
ternal voltage generated by phase (a) of the alternator.
Since the alternator phases are built as symmetrical as poss-
ible and since only positive-sequence currents and voltages
are generated in a synchronous machine, E, is simply the open
¢ircuit phase voltage. 2Z f15 the posit ive-sequence impedance
of the alternator, Il is the positive-sequence current flow-

ing in phase (a) of the alternator and into the line. V.,

30 gee footnote 8, p. 3.
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- L2, T2+ I2+ 137 (37)

b . f ' X

- I,Zz,= L%+ I3+ 1,2, (38)
w2 1o P / 2,

Epm 1,22 12+ 12+ L7, (39)

These three evustions, 37, 38, and 39, express eguality

betveen the three gequence values of phase (2} voltage
derived {rom bthe alternator end =2nd from the load end of
he opiginsl cireuit, Jig. 3{e),
Combining and re-grranging bae above eguations
A ez ! + ! /+ "= ! ! 4
Io(”o ba) IZZ, I/ZZ 0 {40)
r - fer !, -/ 4]
IOZZ+ IZ(£04 Zz) + I]Zfa 0 (41)
! e ! - w1/ 7 Y o om
12+ T2, T2, + %) = By (42)
33 23 1. & A ra 3 G2
The solutlor of equenions 40, 41, and 4& fTor Io’ Iz’
and I/’ gives
1 =2l gz 7)) (45)
o] A ! 2 o 2
Eanlz / o/ | ; 4
I == -« 2'{Z2, + 27) (44)
z 2 ’ o o
A
I = E“(z Z/+ 7,7, + z’z+ VAR AR (45)
! o™z 0 Yo H2 T 2,

A= 2,22+ 1/B(2,%,+ Z,2,+ B2 )2+ T+ D) +

, 54
! e/ 7! / 7 oy Y ey o o X
1/5(z)+ 2yr B2 B¢ 2,2, 2,2,) + 35,5, (46)

33 one oo mnlete solution 250 35.

Ite
w0
t
w
"u

shown 1n Appendix B

-}

Attention is ezlled to the merked symebtry o
sion Tor A «

the expres-
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EXAMPLES OF FAULT CALCULATIONS USING GENERAL EQUATIONS

Example I. Assuning the load on the alternator in Fig. 3(a)
to be balanced, i.e., Z,= Z,= Z/= Z, determine
the line currents,

Substituting these values of load sequence impedances

in equations 31, 32, and 33, page 17

Z,= 1/3(2 + 2 + Z) = 2

Z!= 1/3(1L + a + a*)Z = 0

Zi= 1/3(1 + a*+ a)Z = O
and substituting in the general equations, 46, 47, 48, and
49, page 2l

I,= EBalZ®+ 2,2 + 2,25 7 Z,)
2+ 1/3(2% 2% 2*)(2,+ Z,+ Z,) + 22,2+ 2% 2+

* ZLp v 24,2,

factoring
I,= Eg(Z + 2)(Z + 22 . _Ea
(2 + 2,)(2 + 2,)(2 + Z,) Z+ Z,
Sinilarly
T
I,= 28a and T = —2E&
b R € Z+1z,

as expected, since E,= E,» E. That is, the line current
equals the generated voltege divided by the generator plus

the positive sequence load impedances, 35

35 2= Z,= Ly~ since only positive-sequence voltages are

generated by the alternator and balanced loads were
assumed.



b T

e o

Fige 4. Single Line=to-;round Fault. (Alternator not loaded)

Fige 5+ Single Line-toe=ground Fault, (Alternator loaded)
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Example 2.
Single Line-to-ground Fault (Alternator not loaded)

Let phase (a) of a wye-connected alternator with ground-
ed neutral be faulted to ground as shown in Fig. 4, page 23,
In the general equations, 47, 48, and 49, page 21
Za=0
2y=2,=2 = o0

o
Z/ = 1/3(0 + 22) and 2} = 42°/9 (53)
‘= 1/3(0 + aZ + a°Z) = - Z/3 (Since a“+ a 1 = 0)
z! = 2%/9 (54)
Z!= 1/3(0 + 2’2 + az) = - 2/3
z! = 2%/9 (55)
ZyZ/= - 22%/9 (586)
2/%\ = - 22%/9 (57)
Z/2!= 2°/9 ' (58)

Substituting the values as expressed by equations 53, 54,
55, 56, 57, and 58 into the general equation 47 and into

equation 46 for 4 gives

T 1/9(Z+Z+4z‘14z—z)+z,,zz+zlzf z’zo
a TAZY3L,+ Z,v Z,) + Z,(2,2,+ Z,Z,+ 2,2,) + ‘,z,

Z+ZZ0+ ZeZ._ 2oZ - %8
"/S(Z+Z+Z)+Z’(ZZ+ZZ+Z”Z,)+ZZZ

Dividing the numerstor and denominator by 22

1+ 1/2°(2,20+ 2+ - 7,2 ,)
“1/3(z + 2,+ 2,) + Z’/Z"(Z‘,Zz-l- z,z + 2,2,) +1/2%2,2,2,)

and getting Z = =

b

i} 3
L =5 = F 59
1/3(Z » Z,+ z,) 2+ Z+ 2 i




“5e

Making similer substitutions in equation 48 and remem=
bering that the denominator, 4 , will be the same for each
of the general equations

1/9(3 + 3"+ Ba)z"- 22+ &' 2,2/ a2 7 ¢
A

Ib- Ea

8 Z,% ~ 8% 7/
A

Dividing the numerator and denominator by Z 2 and setting
Z% o and noting that as before A = 1/3(Z+ Z + Z,)
1/3(1 + a°+ a)

W R /a(a,. 5 3,
But

1L+a+a=0
Therefore

I,=0
and similarly

I=0

These results are in agreement with results found by

other mothods.ss

%6 Ce Fo Vagner and R, Ds Evans, op. cit. p. 44.
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Exemple 3.
Single Line-to-ground Fault (Alternator loaded)

Let phase (a) of a wye-connected alternator, with
grounded neutral and feeding a grounded neutral wye load,
be faulted to ground as shown in Fig. 5, page &23.

Since phase (a) is shorted to ground,

Z, =0
The equations, 31, 32, and 33, now become
2y = 1/3(Z,+ 2.)
z = 1/3(aZ,+ a’z/)
Z = 1/8(a"Z,+ az])
The expression for A becomes
A= L/3Z,2)(Z,+ 2,+ 2,) + 2,(2,2,+ 2,2,+ 2,%,) +
Z,%,%,
The general expressions for the line currents and phase

voltages remain unchanged, as given on page <l.
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Example 4.
Double Line~to-ground Fault. (Alternator not loaded)

Let phases (b) and (e) of a grounded neutral wye con-
nected alternator be faulted to ground as shown in Fig. 6,
page 27,

Since phases (b) and (¢) are shorted to ground

2, =2 % 0
Z,= >
The equations, 31, 32, and 33, now become
z2! =2, = Z,=12,/3
and
A = 2,/3(2,2,+ 2,2+ 2,2 ) + 22,2,
Substituting in general equation, 47
I, = 2=(z)]9 + 200 + 3)[9 + 2,2./5 + 2,2 4+ 2.2)/5 -

f fL ! ;7 _f'L
2,2,/% - 2,/9 - 2,2,/3 - 2,]9 - 2//9)

2 E,5(2,%,)
2/(2,2,+ 2,2+ 2,2 ) + 82,2, %,

Dividing both numerstor and denominator by Z and setting
Z, = o0
I,=0

Similarly
E L b 2
I,==HZ/9 - Z,/9 - 2,2,/3 + 8°2,2,/3 + a 2 7.+
z f" 2 ¥ 2 fl Fs /
8 2,/9 + @°2,2,/3 - a'Z,/9 + a7, /9 - a2 2./3 -

3

a7,/9)
Z,(=Z,+ 8’z 2°% .~ az,) + 38" 7,2 ,
2,(2,2,+ 2,Z2,+ 2.2, ) + 32,2 7,




29,

Dividing both numerator and denominator by Z,, setting

Z!, = o0, @and collecting terms gives

%z (a%> 1) + 2 (a* a)

I, = E
bR RS,

By a similar process

Z,(a -1) + 2.(a - 2"
4,2,+ 2 2.* 2,2,

I.=E,

These results are in agreement with results found by other

methods.s'?

- Ibid., p. 46.



Example S5,
Double Line-to-ground Fault (Alternator loaded)

Let phases (b) and (e) of a grounded neutral wye connec-
ted alternator, feeding a grounded neutral wye load, be
faulted to ground as shown in Fig, 7, page 27. Since phases
(b) and (¢) are shorted to ground

Zy=Z.= 0
The equations 31, 32 and 33, now become
Zo = 1/3(2,)
z) = 1/3(2)
z! = 1/3(2.)
and the expression for A becomes
A = 1/3[2,(2,2,+ 2,2+ 2.2 )] + 2,22,

The general expression for I, , 46, becomes
E [N
I, = ZHZ ]9 + 2,09 + W9 + B,2L/5 + T2, 2,2[/5 -

2,23 - 279 - 2,2./5 = 2.]9 - 2.79)

3 2,7,
a
24Z 2.+ 2,2,% v Z)Z, 7+ BL,2, 7,

Similarly
1, = %ﬁ-{z,;?s - Z\79 - 2,2/3 + a“2,2,/3 + €'2,% +
e*Z,]9 + 8°%,2/5 - 2’2/ J9 + eZ,]9 - az,2,/3 -
2z;/9)

Z;Zi(al- 1) + 2.2,(e*~a) + 3 aLZ,,Zz
“%/2,2,+ 2)%,2,+ 2)%,%,+ B 2,22,

By a similar process, it is found that
Z.Z.08 = 1) + 2'Z . (a - 2*) + 3 & 2,2,
& TZ2,2,+ Z)2, %+ Z%,2 + B 2,2,2,




ADVANTAGES OF USING THE GENERAL EQUATIONS

When the feult is a very simple case, such as a three
phase fault, conditions are still symmetrical and convent-
ional methods of solution can be used. If the fault is
supplied by an altermator operating at no load, the well
known symmetrical component formulas can be used advan-
tegeously. However, in a case where the fault or simul-
taneous faults are supplied by a loaded alternator, the
above mentioned methods became inadequate and the general
equations developed in this thesis offer the only simple
and direet solution to the problem known to the author,

The generality of this solution is more apparent when
one considers that if the open eircuit voltage of the
alternator and the impedances of the load, generator, fault,
etc., are known, the genersl expressions for the currents
in the three phases of the alternator and line can be
evaluated.



SUMMARY

A general method of solution for faults on a loaded
alternator has been developed by use of the fundsmental
principles of symmetrical components. Several examples
were solved by means of the general equations showing that
they can be used when assuming either balanced or unbalanced
load conditions. The various types of faults on alternators
with balanced loads, usually treated in texts and references,
are but special cases of a2 general problem,

Had a more detailed treatment been advisable, problems
could have been solved quantitatively showing the variations
in the results secured when the load on the alternator was
considered, However, attention has been directed to the
advantages of using the general solutions outlined by E. M.
Sabbagh end developed in detail in this thesis.
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The solution for V,, V,, and y, from the equations

teken from pagé 17 follows:
Vor Vi# V= (T,¢ T Iz)ZA
V,+ aV,+ aVl,= (I,+ a®L+ al,)z,
V,t aV,+ a'V,= (I,+ al + a2l,)z.
Using determinants:
Let the coefficients of the unknowns, V
followss: |
a =1 b, =1 e, =1 4,

. =3 B e 9 =g A

d,(b,e,- bye,) - b (d,c,~-¢,d,) + ¢ (d,b,~ Db

o

(25)
(26)
(27)

s V,, and V, be as
= (I,+ I,+ I,)Z,

= (I,+ a’I,+ aI,)z;
= (I,+ aI,+ a'I,)3,

,4,)

a,(b,e,~- b,06,) - b, (a,c,~ a,

Substituting

v, = (a - a")(Io-:- I+ I;)zk (a -

c.) + c,(azbj- b,a )

a’)(I,+ a“I,+ al,)Z,+

3(a - a )

(a - a“ ) (I al + a‘1,)z.
3(a - a?)

V,= 1/3[2,(I+ I,+ I,) + Z,(I+ a’L,+ al,) +

/ 2
2T+ al;+ a’L,) ]

= Us[i,O(ZL+ sz- Z::) - II(Zafi- a"zz’q- azé) A

) Loy [
IZ(Z;-# azZ,+ a Z.:),]



Letting
2, = 1/3(Z,+ Z,+ Z.)
Z! = 1/3(Z,+ aZ+ a’Z/)
Z! = 1/3(2)+ &’z az!)

be the zero, positive, and negative sequence impedances,

respectively
Then
. ! ! I
V,=12Z+ 123+ L3Z, (28)
and similarly
! ! r
V, = 12+ 12+ 1,2 (29)
and
! /
V,»2%+ 3132+ 1%, (30)
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APPENDIX B
The solution for I,, I, and I, from these equations taken Then using determinants
from page 20 follows: d, b g,
d, b, ¢,
I (2,+25) +1,(2)) +1,(2,) =0 (40) a, b, c,
T N
I (2,)+1,(2,+2,)+1,(2,)=0 (41) 8 b ¢
!2 bz ca
T, (2/)+ L,(22) +1,(25+2,) =B, (42) 8y By s
Let the coefficients of the unknowns, I,, I, and I, be as Sxpanding
follows: 1, A(bebe,) b (8 e,-0,4,) o, (4,b,-b,a, ]
8,z Z2,+2) Y= 2, ¢ = Bh a,:=0 a,(bzc‘,-czb:}_b,{azc‘,-a_?ca)fe'(azbJﬁbzaz]
8, Z; b= 24+ 2, Oges %y d,-0
35: Z: b’: Zé 03:2.:)1‘3' d3: EQ
(econtimed on the right)
Suhatituting
A z
1, 2 (28,) +24(-2, - 2,05 . Eoft*2liz] +2,)

Lettine A\ = the denominator and exnanding

3 2 z
A=Zo00 B BLT, + 2,22, + 22,2y # 25 +2] B, + 2% B, +Z42,8, ~TRIL, ~SLIEL ~BIBIBY 8,22, + 7

B Sy THgeety

Re=arranging and semarating into members so thet A=A+ B+C where

7 7 2 2 ; £ P
: A:Z;’+ 2, +2; -38(2,2,2;)y, B=2,2,+2,2,+2,2,~2,2/2%; ~Z,2,4,~2,2/Z,

T (Zo + 2,)(2,+2,)(2)+7,) -.(z°+ 2002125~ 212,(2) +2,) +2/% 84,-2/2/(2, +2,) A

and  C=BJZ,Z, #2)2,2,+ LD J, 5ot by

Substituting 2. =1/3(24+¢2,+2.), 2)=1/3(25~8lj+0°2.) &nd &,=1/3(%,+8°2; +al])

3 3 ¥ 4 i ' ] (] " * L '1 E z
28 <1/20] Z5'r 2 42 ¢3(25 24+ 20720+ 2y 7, 224 2+ 2L 2 2L B,) 782,242, ]

3 7 2 3 2 = £ z 1
Z; =1/27[ 25 +2), +2. +3(e2) 2, +8°2Z, 2.+ a2} 2, +aZj 4.+ 8 2L Z;

< 0 W el
Zitaze 2g) + 624

3 s : z ‘L &y -—v‘- T
2, =1/27( 2.+ 2, +2. +3(a*2% 2z, raz, Z.+ 8z, Z,+a°Z} 2 +8Z, L+ a’-z;‘z'qu + 5zéz'bz:__]

: i _ % 3 '
=3(2,2,2,) = ~1/9(2'y +7', +20) + (Z,232,) (38 + 3a*) Since (8 +a%+1)=0

Adding
.l', ‘3 " ,3 ,3 " e LI 2 A .’- bt o 7 BT
A =1/9[(za+ 2y +2' ) = (25 + 2+ 20 )]+ 2/3(2524z.) —1/3(a +a° 1(ZaZy2.) =1/3(2-a - 8°)(2,220) ~2, 272,
Likewise
e T A W e B ¥t A LT o Trr i ek
B =1/0{2,[ 20, + 2, # 20 202,24 BuZ + 2,2.) ~ (25 + 2, + 2L ) ~ (a4 a" ) (2g2) +Z,20 +4520 )|+ 23(2,20 ¢ 2,20 #2420 ) —
= A r
(2, + 2,02, + 2+ 2 +(a+a”)(Z325+ 2,20 +7,7. ) +57, (22} +;—;;2;:cj+zéz;)}
B=1/9(Z,+ 2, + 2,)(2,2), +2;2)+ 2,2, )(2~ 8 ~&®) = 1/3(2,+%, +Z,) (z’qz'“z},z; +2Z.Z")
C=1/3(24+24 +2:)(2,2,+2,2,+2,2,) +2,2,2,
and finally
A= A+B+C = 2,202+ 1/3(2, + %, +2, 2,050 + 2,2, +Z,Z,) +1/3( 2 + &y ¢ 2 12,2, +2,2 ,t2,2,)+2,2 2,
Therefore
B =
1z —"-[(z; - 2.(2,+2, )] (The expressicn for 4 wiich is the comron demominator for the three unknowns
A now being known. )
Simtlerly
La—[(2, 2(2,* 2;)]
and

B
I=—-9(z LHTZ +z"3r7"’ =Bzl
i A olip* 2oty &5 SR gy
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