SYMMETRICAL COMPONENT EQUATIONS FOR SYSTEM FAULTS SUPPLTED BY A LOADED ALTEERNATOR

SYMMSTRICAL COMPONENT EQUATIONS FOR SYSTEM FAULTS SUPPLIED BY A LOADED ALTERINATOR

```
            By
            MBRIE C. BRADY
                Bachelor of Science
Oklahoma Agricultural and Mechanical College
                Stillwater, Oklahoma
                        1 9 3 1
```

Submitted to the Department of Electrical Engineering Okla homa Agricultural and Mechanical College
in Partial Pulfillment of the Requirements
For the Degree of
MASTER OF SCIINCE

OKLAHOMA
 *erICLITURAL \& MEBANTEAL COLRGBA
 LIBRARY
 AUG 61940

126847

ACKNOWIEDGEITENT

The writer wishes to express his appreciation to Professor A. Naeter, Head of the Department of Electrical Engineering, for his critical reading of this work and for many valuable suggestions.

Professor E . M. Sabbagh of the Electrical Engineering Department, Purdue University, is given full oredit for the original derivation of the general equations used in this thesis.

TABLE OR COMPEMS

Since the publication of C. L. Fortescue's classic paper ${ }^{1}$ on Symmetrical Components in 1918, the electrical industry has gradually accorded the Method of Symmetrical Components a more and more important place as an electical tool; taking it from the laboratory and putting it to work. 2 Power companies have expressed their confidence in this new tool by their large investments in calculating boards, based on the theory of symmetrical components, which enable engineers to calculate accurately, in a fraction of the time formerly required, the currents that will flow under certain conditions of fault.
In the analytical solution of systems containing an alternator supplying an unbalanced load, it has been conventional practice ${ }^{3}$ to assume the alternator to be carrying no load at the time of fault, and then to set up a different equivalent circuit connecting each of the three symmetrical components for each type of fault. W. E. Slemmer shows several examples ${ }^{4}$ using this method in his thesis published in 1934. During the same year however, E. M. Sabbagh
1 C.L. Fortescue, Method of Symmetrical Co-ordinates Applied to the Solution of Polyphase Networks, pp. 10271140.
2 H.A. Travers and W. W. Parker, An Alternating-current Calculating Board, pp. 266-270. H.R. Searing and R. E. Powers, Sequence Principles Used for Network Relaying, pp. 649-697.
3 C. F. Wagner and R. D. Evans, Symmetrical Components, par. 24.

[^0]palished his Pr. D. disacrtation, "Unbalance th Atternat-ing-curent Rotatine Dachines." In this dissertation general expressions wore devoloped for the steady state curwents in a wye connected alternctor cupplyine power to unbalanced loads. ${ }^{\text {B }}$

It is the purpose of this thesis to present in as simple a mamer as possible the principles involved and the stops coverod in developing these general expresaions, and to show oy meens of examples their use and how the results obtained by thein use compare with tho results obtained by other methods. It is also shown that the clascical typos of faults usually considered are mot special cases of a general sombton.

[^1]
FUNDAKENTAL PRINCIPLISS

There are methods available for solving balanced polyphase circuits by replacing the mutual reactance between phases by equivalent self-impedances and solving one of the phases. A method which would allow a similar simplification In the solution of unbalanced loads on a symmetrical system, which would simplify and in some cases permit the solution of otherwise unsolvable cases of unbalanced polyphase circuits, would be a great improvement over the simultaneous solution otherwise employed. The method of symmetrical components allows any three unbalanced three phase voltages 6 to be resolved into three systems of balanced or symmetrical components. 7 If the system containing the three unbalanced voltages is itself symmetrical, the voltages and currents of different sequences do not react upon each other. ${ }^{8}$ This allows each of the balanced systems or components to be treated separately just as balanced polyphase problems and greatly simplifies their solution.

[^2]mene three components will ho discuesed very brienly. 9 Since each of the three sequences are independent of each othox, thoy mat each be shown as a symetrical systen of vectors. The three systeas of balanced vectors that give the original voltage vectors when added together, as in Fig. 2, are called positive-, negative- and zero-sequence components.

In Fig. $1(a)$ is shown the positive system of vectors for a three-phase system, of wich $F_{a l}, D_{b}$ and ${ }_{c}{ }_{c}$ are the positive-sequence line-to-neutral voltages of phases (a), (b) and (c), respectively. Each on the positive-sequence components are of equal magnituac, and are separated by a phase angle of 120 degrees. The developed instantaneous values of the vectors, as projected on the X -axis, are shown 1n At . I (b). 1 l The positive-sequence component is the only oomponent found in balanced systems, and so it is the one consjered in ordinary balanced system calculations. It is considered positive because its order of maxima occurs in the sequence ${ }^{12}$ (abc) which is the same order as that used in the original vectors ${ }^{13} \mathrm{~F}_{\mathrm{a}}$, F_{b}, and E_{c} (Fig. 2).

9 For a more olaborate and rigorous prool of the symetrical component theory, see C. I. Portescue, op. cit. p. 1027.

10 Theoughout this paper the subseripts 0,1 , and 2 will be used to denote tre zerom, positive-, and negative-sequence components, rospectively.

11 The conventional rotation of vectors in the counter-clockwise direction is assumed throughout this thosis.
12 Note that the sequence has no relation to the direction of rotation of the vectors thenselves.
13. G. C. Nahl, Dlectric Cimouite - Mreory and Appication, Vol. 1, p. 7 B .

(f)

Fig. 1. The Three Sequence Components
6.

Fig. 2. The sumation of the three sequence components to form the original unbalanced vector system.

In the negativemsequence syetom, Pig $I(c)$, the waetors Faz, bz, and Ficz revolve in the sane dirbetion as in the postive-sequence system; but it will be noted, tho maxima of the phase compongnts build up in the reverse orden, thet is (bac). One might ontain a better physical picture by considering the rotating macnetic pields set up if the nhases (a), (b), and (c) were connected to an induction motox. If the positivemsequence system (abc) produces a fiela revolving in one direction, by interchanging any two conncctions, the fiela rotation will reverse. The relative phase posithons of the voltages are then similar to thooe of the nega-tive-sequence system (bac).
mose two sequences, however, are not enough to completely roplece the original vectore in some cases. Since both the positivem and negative-soquence systens are symetrical, their sums mast be equal to zero. thus when using a delta on unsoonded rye systom, these two sequences rould bo sufficient for tho line voltages; but with a srounded wye system, tho sum of the three-line current vectors nay not be zero. For the fore eeneral caso wortescue introduced a third component, called the zero-sequence component because the phase anglos wore zero, Ple. l(e). Phese three zoro-sequence components are in phase and of equal magnitude.

There are then, three sets of symetrical vectors which can be combined in a graphjeal mannex to form a sot of unbalanced voltages, as shom in fig. 2, or the operation may be reversed to resolve a system of mbalanced voltages, for exangle those in $W \mathrm{E}$. 2 , into three sets of symetrical
camponents, as in Fig. $1(\mathrm{a})$, (b), and (c). From then on, since in symmetrical circuits currents and voltages of different sequences do not react upon each other, the sequences may be treated separately as balanced polyphase problems and solved on a single-phase basis.

Resolution of Three Unbalanced Three-Phase Vectors into their Symetrical Components

Since the three phase-components of a sequence system are balanced, one phase-component differs from either of the other two only by being displaced 120 degrees. Therefore, it is possible to express either of the other two components in terms of one phase component and an angle of rotation. Thus,

$$
\mathbb{E}_{c l}=e^{j 120^{\circ}} \mathbb{E}_{a l} \quad \text { and } \mathbb{E}_{b 1}=e^{j 240^{\circ}} E_{a l}
$$

Since $e^{j 120^{\circ}}$ is used often, it is convenient to let the letter (a) be a vector operator such that

$$
a=e^{j 120^{\circ}}=-0.5+j 0.866
$$

and

$$
\begin{equation*}
a^{2}=e^{j 240^{\circ}}=-0.5-j 0.866 \tag{1}
\end{equation*}
$$

From Fig. 1(a)

$$
\begin{equation*}
\mathbb{E}_{b_{1}}=a^{2} E_{a 1} \text {, and } \mathbb{E}_{c_{1}}=a \mathbb{E}_{a 1} \tag{2}
\end{equation*}
$$

From Fig. $1(\mathrm{c})$

$$
\begin{equation*}
\mathbb{E}_{b 2}=\mathbb{F}_{a 2} \text { and } \mathbb{E}_{c 2}=a^{2} \mathbb{E}_{a 2} \tag{3}
\end{equation*}
$$

and from Fig. $1(e)$ since there is zero phase angle between the three vectors

$$
\begin{equation*}
\mathbb{E}_{a 0}=\mathbb{E}_{b 0}=\mathbb{E}_{c o} \tag{4}
\end{equation*}
$$

From the previous discussion and from Fig. 2, it is apparent
that each of the original voltage vectors is equel to the vector sum of the three sequence components. That is

$$
\begin{align*}
& E_{a}=E_{a_{0}}+E_{a_{1}}+E_{a_{2}} \tag{5}\\
& E_{b}=E_{b_{0}}+E_{b_{1}}+E_{b_{2}} \tag{6}\\
& E_{c}=E_{c_{0}}+E_{c_{1}}+E_{c_{2}} \tag{7}
\end{align*}
$$

Substituting the equivalent values as found in equations 2, 3, and 4 in equations 5, 6, and 7 gives

$$
\begin{align*}
& \mathbb{E}_{a}=\mathbb{E}_{a 0}+\Psi_{a_{1}}+E_{a_{2}} \tag{8}\\
& \mathbb{E}_{b}=\mathbb{E}_{a 0^{+}} a^{2} E_{a_{1}}+\mathrm{E}_{a_{2}} \tag{9}\\
& E_{c}=\mathbb{E}_{a_{0}}+\mathrm{E}_{a_{1}}+a^{2} \mathbb{E}_{a_{2}} \tag{10}
\end{align*}
$$

Thereby expressing each of the original three-phase vectors in terms of phase (a).

Solving equations 8, 9, and 10 for Eao gives $^{\text {a }}$

$$
\mathbb{E}_{a}+E_{b}+E_{c}=\left(1+a^{2}+a\right) E_{a_{1}}+\left(1+a+a^{2}\right) E_{a_{2}}+3 E_{a 0}
$$

But from equation 1

$$
a=-0.5+j 0.866 \text { and } a^{2}=-0.5-j 0.866
$$

Therefore

$$
1+a^{2}+a=1-0.5+j 0.866-0.5-j 0.866=0
$$

then

$$
3 E_{a_{0}}=E_{a}+E_{b}+E_{c}
$$

or

$$
\begin{equation*}
E_{a 0}=I / 3\left(E_{a}+E_{b}+E_{c}\right) \tag{11}
\end{equation*}
$$

Solving equations 8,9 , and 10 for $\mathrm{E}_{a_{1}}$

$$
\begin{equation*}
E_{a}=E_{a_{0}}+E_{a_{1}}+E_{a_{2}} \tag{8}
\end{equation*}
$$

Multiplying equation 9 by (a) gives

$$
\begin{equation*}
a_{b}=a_{a 0}+a^{3} E_{a_{1}}+a^{2} E_{a_{2}} \tag{12}
\end{equation*}
$$

and multiplying equation 10 by (a^{2}) gives

$$
\begin{equation*}
a^{2} E_{c}=a^{2} E_{a c}+a^{3} E_{a_{1}}+a^{4} E_{a 2} \tag{13}
\end{equation*}
$$

Adding equations 8,12 , and 13 and remembering that $a^{3}=1$ and that $a^{4}=a$, then

$$
\mathbb{E}_{a}+a_{b}+a^{2} \mathbb{E}_{c}=3 \mathbb{E}_{a_{1}}+\left(1+a+a^{2}\right) \mathbb{E}_{a_{0}}+\left(1+a^{2}+a\right) \mathbb{E}_{a_{2}}
$$

The last two terms being equal to zero

$$
\begin{equation*}
\mathbb{E}_{a_{1}}=1 / 3\left(\mathbb{E}_{a}+a \mathbb{E}_{b}+a^{2} \mathbb{E}_{c}\right) \tag{14}
\end{equation*}
$$

Likewise, solving equations 8,12 , and 13 for $E_{a 2}$ gives

$$
\begin{equation*}
E_{a_{2}}=1 / 3\left(E_{a}+a^{2} E_{b}+\mathrm{E}_{c}\right) \tag{15}
\end{equation*}
$$

These three equations, 11,14 , and 15 , are the fundamental equations expressing each of the phase (a) sequence voltages in terms of the three line-to-ncutral voltages. Expressions for the other phase sequences of voltage can be obtained by substituting equations 11,14 , and 15 in equations 2 and 3 , page 8.

FAULTS ON A LOADED ALTERNATOR

The method of symmetrical components is widely used in determining the system performance of a network; for example, the current values for investigating mechanical and thermal limitations of equipment on a transmission line under conditions of unsymetrical faults. Perhaps its most valuable use is for determining the various values of sequence currents and voltages throughout the system so that protective and control relays can be accurately set to maintain system stability. Voltage regulators operating from a positive-sequence voltage selector network will give a much closer regulation ${ }^{14}$ under certain conditions than when using the regular line voltage. Likewise, protective relays excited by negative-sequence current ${ }^{15}$ may be used to protect alternators from heavy singlephase fault or load currents. As interconnected transmission networks become more and more complex, better methods of relay protection are necessary, which require more accurate mechanisms and closer relay settings. In order to take full advantage of automatic relay protection, it is necessary that the protective relays be set accurately to obtain the necessary selectivity to give the proper sequence of operations in case of faults. Because of the instability effects the faults may 6

14 W. E. Slemmer, op. cit., p. 16.
15 John Henderson, Automatic Protective Gear, p. 142. Also H. R. Searing and R. E. Powers, Sequence Principles used for Network Relaying, pp. 694-697.
have on the renainder of the system, it is necessary, not only to investigate the faults that will produce the naxinum foult current, but also to investigate other types of faults.

The values of the constants that are ordinarily used in detervining line regulation and curreat distribution under normal operating conditions are not usually the safe values as those that determine the amount or fault current and degree of unvalance in line ourrents and voltages that occur under conditions of fault. The constants involved are usually found experinentally ${ }^{16}$ or are deterained fron the physical characteristies ${ }^{17}$ of the network. men a line in a systen fed by an alternator faulte, the currents the flow into the fault depend won the characteristics of the generators, both synchronous and induction if any, and the load involved as well as the fault conditions.

In a network supplied by a single alternator, or one in whioh the voltages of the alternators may be assumed to be in phase, the netnork can usually bo reduced to an equivalent single line circuitis consisting of a generator supplying a single load. To further sinplify the solution the enorator is usually considered to be operatine at no load or feedins a balenced losd. ${ }^{19}$ The sequence networks fron thich equivalont

16 W. V. Iyon, Applications of The liethod of Symetrical Components, pp. 45z-469.
17 C. F. Wagner and R. D. Evans, op. oit. pp. 133-220.
18 Ibid. pp. 53-63.
19 Ibia. p. 50.
single line circuits can be set up for each of the three sequences may be quite different in appearance, as only the branches of the networks in which currents of that particular sequence flow are included in each network. These equivalent circuits may then be so interconnected that they meet the terminal conditions ${ }^{20}$ of the fault. Por each type of fault there will be a different plan of interconnection of one or more of the equivalent sequence circuits.

In assuming the alternator to be supplying a balanced load at the tine of fault, an appreciable error is often introduced, especially if the alternator has a high negativesequence impedance. This difference, which ranges from 2 to 24 per cent, in the majority of cases does not exceed 15 per cent. 21 The methods, 22 that were available before Sabbagh's solution was published, were so complicated and tedious that this refinement was usually neglected. Assuming the constants of a rechine to be real constants, Sabbagh developed general equations 23 for the steady state currents and voltages in a wye-connected alternator supplying power to three lumped (wye) loads. This solution not only offers a useful refinement and simplification in the solution of faults involving a loaded generator, but also shows that the various types of faults

$$
20 \text { Ibid. p. } 30-57 .
$$

21 E. M. Sabbagh, op. ait. p. 6 .
22 C. F. Wagner and S. H. Wright, Calculation of Short Circuits on Power Systems.
23 E. M. Sabbagh, op. cit. pp. 21-24.
solved by other methods (assuming no load on the alternator) and published previous to E. M. Sabbagh's dissertation are but special cases of a general problem. 24

24 E. M. Sabbagh, op. cit., p. 43.

DEVELOPMAKIT OF GENERAL RQUATTON

TOR AN ALTTERNATOR CARRYING A THREE PHAST ISOAD

Part I. Derivation of expressions for sequence components of load voltages in tems of load sequence impedances and sequence currents.

Let the alternator in Fig. 3 feed three Iumped loads, $z_{c}^{\prime}, Z_{b}^{\prime}$ and z_{c}^{\prime}, connected in wye. ${ }^{25}$ If I_{a}, I_{b} and I_{c} are the three line currents flowing in $Z_{a}^{\prime}, Z_{b}^{\prime}$ and Z_{c}^{\prime} respectively, then

$$
\begin{align*}
& \nabla_{a}=I_{a} Z_{a}^{\prime} \tag{16}\\
& \nabla_{b}=I_{b} Z_{b}^{\prime} \tag{17}\\
& \nabla_{c}=I_{c} Z_{c}^{\prime} \tag{18}
\end{align*}
$$

where ∇_{a}, ∇_{b} and ∇_{c} are the three-phase load voltages.
From equations 8,9 and 10 page 9 , dropping the phase (a) subscript, ${ }^{26}$ it is found that

$$
\begin{align*}
& V_{a}=V_{0}+V_{1}+V_{2} \tag{19}\\
& V_{b}=V_{0}+a^{2} V_{1}+a V_{2} \tag{20}\\
& V_{c}=V_{0}+a V_{1}+a^{2} V_{2} \tag{21}
\end{align*}
$$

and likewise

$$
\begin{align*}
& I_{a}=I_{0}+I_{1}+I_{2} \tag{22}\\
& I_{b}=I_{0}+a^{2} I_{1}+a I_{2} \tag{23}\\
& I_{c}=I_{0}+a I_{1}+a^{2} I_{2} \tag{24}
\end{align*}
$$

25 This may be considered a fairly general case since any network with its loads can be reduced to an equivalent wye load supplied by a single generator, provided the generators may be replaced by a single generating unit. 26 The phase (a) will be used through out this section and therefore the subscript (a) may be dropped.

(a) Schematic diagran for generator and load.

(Neutral)
(b) Positive Sequence

(c) Ne gative Sequence

(d) Lero equence

P1. 3. Loaded enerator wit? its sincle line sequence circuits.

Substituting these values in equations 16,17 , and 18 gives

$$
\begin{align*}
& V_{0}+V_{1}+V_{2}=\left(I_{0}+I_{1}+I_{2}\right) Z_{a}^{\prime} \tag{25}\\
& V_{0}+a^{2} V_{1}+a V_{2}=\left(I_{0}+a^{2} I_{1}+a I_{2}\right) Z_{b}^{\prime} \tag{26}\\
& V_{0}+a V_{1}+a^{2} V_{2}=\left(I_{0}+a I_{1}+a^{2} I_{2}\right) Z_{c}^{\prime} \tag{27}
\end{align*}
$$

Solving ${ }^{27}$ equations 25,26 and 27 sirmultaneously for V_{0},
∇_{1}, and ∇_{2} gives

$$
\begin{align*}
& V_{0}=I_{0} Z_{0}^{\prime}+I_{1} Z_{2}^{\prime}+I_{2} Z_{\prime}^{\prime}{ }^{28} \tag{28}\\
& V_{1}=I_{0} Z_{1}^{\prime}+I_{1} Z_{0}^{\prime}+I_{2} Z_{2}^{\prime} \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
V_{2}=I_{0} Z_{2}^{\prime}+I_{1} Z_{1}^{\prime}+I_{2} Z_{0}^{\prime} \tag{30}
\end{equation*}
$$

where
∇_{o} is the zero-sequence load voltage
V_{1} is the positive-sequence load voltage
V_{2} is the negative-sequence load voltage
I_{0} is the zero-sequence load current
$I_{\text {, }}$ is the positive-sequence load current
I_{z} is the negative-sequence load current
$Z_{o}^{\prime}=1 / 3\left(Z_{a}^{\prime}+Z_{b}^{\prime}+Z_{c}^{\prime}\right)$
$Z_{1}^{\prime}=1 / 3\left(Z_{a}^{\prime}+a Z_{b}^{\prime}+a^{2} z_{c}^{\prime}\right)$
and

$$
\begin{equation*}
z_{z}^{\prime}=1 / 3\left(z_{a}^{\prime}+a^{2} z_{b}^{\prime}+a z_{c}^{\prime}\right)^{29} \tag{33}
\end{equation*}
$$

27 The complete solution is shown in Appendix A, page 33.
28 Currents and impedances of different sequences react in that part oi the circuit which is unsymmetrical. (See footnote 8, also, C. F. Wagner and R. L. Evans, op. cit., pp. 162.)
29 Equations 31,32 , and 33 may be considered as expressions for the zero-, positive-, and negative-sequence impedances of the ioad.

Part II. Derivation of expressions for sequence components of terminal voltages in terms of alternator sequence impedances and sequence line currents.

One of the fundamentals of symmetrical components is the independence of sequences. 30 This means that the sequence components of current in a symmetrical network do not react on one another. When a voltage of a given sequence is applied to a piece of apparatus a current of the same sequence flows limited only by the impedance of that particular sequence. Since the impedances offered to the different sequences may vary with the sequence, it is often desirable, for analytical purposes, to consider each of the sequences as forming an independent circuit only retaining the parts of the original circuit in which the currents of that particular sequence flow.

By re-drawing the generator end of phase (a), Fig. 3(a), as a single line diagram for each of the three sequences, Figures $3(b)$, (c) and (a) are obtained. . In the positive-sequence circuit (Fig. $3(\mathrm{~b})) \mathbb{E}, 30$ is the positive-sequence internal voltage generated by phase (a) of the alternator. Since the alternator phases are built as symmetrical as possible and since only positive-sequence currents and voltages are generated in a synchronous machine, \mathbb{E}, is simply the open circuit phase voltage. Z, is the positive-sequence impedance of the alternator. I, is the positive-sequence current flowing in phase (a) of the alternator and into the line. V,

[^3]the tommal vatuge, is ecuel to the gonometed voltage minum tho (I 2) Gop in tho altemetor hadnge or
\[

$$
\begin{equation*}
V_{1}=I_{1}-I_{1} V_{1} \tag{54}
\end{equation*}
$$

\]

Since a myohronous machino doce not genematt z negethve-

 $B(c)$ and (d) Po abunce or the negetivo and 2aro-sennonce rathace is comvonthoning ownaned de sebng wot up by the

 INo. 32 Trose scmonce cumpmts etro pise to watere drops

 ampochoch. Tho nogatwo-sochonce tomanel pheso voltage, in 2He. 3, is betammined from

$$
\begin{equation*}
V_{z}=0-I_{2} Z_{z} \tag{36}
\end{equation*}
$$

anh htrembe the abromeguonee tommal phase voitego

$$
\begin{equation*}
V_{0}=0-I_{0} Z_{0} \tag{36}
\end{equation*}
$$

 and 30, bures

 (Althounh the above ozplanation vorlas out booutitully, wathomaticaly, a cope clear out phypical oxatenation of the origin of the nogutive and ano sequance voltages
 thet in the opinion of tiw wittor, such an explenetion would bo of mach value for tho gtucont, especially.)

$$
\begin{align*}
& -I_{0} Z_{0}=I_{0} Z_{0}^{\prime}+I_{1} Z_{2}^{\prime}+I_{2} Z_{1}^{\prime} \tag{37}\\
& -I_{2} Z_{2}=I_{0}^{Z_{2}^{\prime}}+I_{1} Z_{1}^{\prime}+I_{2} Z_{0} \tag{38}\\
& E_{a}^{-} I_{1} Z_{1}=I_{0}^{Z_{1}^{\prime}}+I_{1}^{\prime} Z_{0}^{\prime}+I_{2} Z_{2}^{\prime} \tag{39}
\end{align*}
$$

These three equations, 37, 38, and 39, oxpreas coulity botven the three sequence values of phase (a) voltage derived from the alternator end end from the load end of the origmal circuit, wie. $3(2)$.

Combing and rewaranging the avove equations

$$
\begin{align*}
& I_{0}\left(Z_{0}+Z_{0}^{\prime}\right)+I_{2} Z_{1}^{\prime}+I_{1} Z_{2}^{\prime}=0 \tag{40}\\
& I_{0} Z_{2}^{\prime}+I_{2}\left(Z_{0}^{\prime}+Z_{2}\right)+I_{1} Z_{1}^{\prime}=0 \tag{41}\\
& I_{0} Z_{1}^{\prime}+I_{2} Z_{2}^{\prime}+I_{1}\left(Z_{0}^{\prime}+Z_{1}\right)=B_{a} \tag{42}
\end{align*}
$$

The solution ${ }^{33}$ o 2 equations 40,41 , and 42 for I_{0}, I_{2}, and I_{1}, gives

$$
\begin{align*}
& I_{0}=\frac{E_{a}}{\Delta}\left[Z_{1}^{\prime}-Z_{2}^{\prime}\left(Z_{0}^{\prime}+Z_{2}\right)\right] \tag{43}\\
& I_{z}=\frac{Z a}{\Delta}\left[Z_{2}^{\prime}{ }^{2}-Z_{1}^{\prime}\left(Z_{0}+Z_{0}^{\prime}\right)\right] \tag{44}\\
& I_{1}=\frac{E_{a}}{\Delta}\left(Z_{0} Z_{0}^{\prime}+Z_{0} Z_{2}+Z_{0}^{\prime}+Z_{0}^{\prime} Z_{2}-Z_{1}^{\prime} Z_{2}^{\prime}\right) \tag{45}
\end{align*}
$$

Where

$$
\begin{align*}
\Delta= & Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}+I / 3\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}\right)\left(Z_{0}+Z_{1}+Z_{2}\right)+ \\
& I / Z\left(Z_{a}^{\prime}+Z_{b}^{\prime}+Z_{c}^{\prime}\right)\left(Z_{0} Z_{2}+Z_{1} Z_{z}+Z_{o} Z_{1}\right)+Z_{0} Z_{1} Z_{2} \tag{46}
\end{align*}
$$

33 The complete solution is show in Appendir B, pase 35. 34 Attention is callea to the marked symetry of the expresm sion for Δ.

By contriwe the sequence values on ourant into In values,
 obtatred.

$$
\begin{align*}
& I_{a}=I_{0}+I_{1}+I_{2}=\frac{X_{M} a Z_{1}^{2}+Z_{2}^{\prime}}{\Delta}+Z_{0}^{\prime 2}+Z_{0} Z_{0}^{\prime}+Z_{0} Z_{2}+Z_{0}^{\prime} Z_{2} \cdots \\
& \left.Z_{2}^{\prime} Z_{2}-Z_{2}^{\prime} Z_{0}^{\prime}-Z_{1}^{\prime} Z_{0}-Z_{1}^{\prime} Z_{0}^{\prime}-Z_{2}^{\prime} Z_{1}^{\prime}\right) \tag{487}
\end{align*}
$$

$$
\begin{align*}
& a_{d}^{\prime 2}+a Z_{0}^{\prime} Z_{2}-a Z_{2}^{\prime} Z_{1}^{\prime}+e^{2} Z_{2}^{2} e^{2} Z_{1}^{\prime} Z_{0}-e_{\left.Z_{1}^{\prime} Z_{0}^{\prime}\right)}^{2} \tag{89}
\end{align*}
$$

The bemanel polteges mill, bhem, be

$$
\begin{align*}
& V_{a}=I^{2} a \tag{50}\\
& V_{b}=I_{b}^{2} b \tag{51}\\
& V_{c}=I_{c} E_{c} \tag{52}
\end{align*}
$$

Example 1 . Assuming the load on the alternator in Fig. 3(a) to be balanced, i. e., $Z_{a}^{\prime}=Z_{b}^{\prime}=Z_{c}^{\prime}=Z$, determine the line currents.

Substituting these values of load sequence impedances in equations 31,32 , and 33 , page 17

$$
\begin{aligned}
& z_{0}^{\prime}=1 / 3(z+z+z)=z \\
& z_{1}^{\prime}=1 / 3\left(1+a+a^{2}\right) z=0 \\
& z_{2}^{\prime}=1 / 3\left(1+a^{2}+a\right) z=0
\end{aligned}
$$

and substituting in the general equations, $46,47,48$, and 49, page 21

$$
I_{a}=\frac{E_{a}\left(Z^{2}+Z_{0} Z^{2}+Z_{0} Z_{z^{+}} Z Z_{2}\right)}{Z^{3}+1 / 3\left(Z^{2}+Z^{2}+Z^{2}\right)\left(Z_{2}+Z_{1}+Z_{0}\right)+Z_{0} Z_{2^{+}} Z Z_{1} Z_{2}^{+}}
$$

$$
+Z Z_{0} Z_{1}+Z_{0} Z_{1} Z_{2}
$$

factoring

$$
I_{a}=\frac{E_{a}\left(Z+Z_{0}\right)\left(Z+Z_{2}\right)}{\left(Z+Z_{0}\right)\left(Z+Z_{2}\right)\left(Z+Z_{1}\right)}=\frac{\mathbb{E}_{a}}{Z+Z_{1}}
$$

Similarly

$$
I_{b}=\frac{a^{2} \Phi a}{Z+Z_{1}} \quad \text { and } I_{c}=\frac{a E a}{Z+Z_{1}}
$$

as expected, since $\mathbb{E}_{a}=\mathbb{E}_{h}=\mathbb{E}_{C}$ That is, the line current equals the generated voltage divided by the generator plus the positive sequence load impedances. 35

Fig. 4. Single Line-to-ground Fault. (Alternator not loaded)

Fig. 5. Single Line-to-ground Fault. (Alternator loaded)

Example 2.
Single Line-to-ground Fault (Alternator not loaded)

Let phase (a) of a wye-connected alternator with grounded neutral be faulted to ground as shown in Fig. 4, page 23.

In the general equations, 47,48 , and 49 , page 21
$Z_{a}=0$
$Z_{b}=Z_{c}=Z=\infty$
$Z_{0}^{\prime}=1 / 3(0+2 Z)$ and $Z_{d}^{\prime}=4 Z^{2} / 9$
$Z_{1}{ }^{\prime}=I / 3\left(0+a Z+a^{2} Z\right)=-Z / 3 \quad\left(\right.$ Since $\left.a^{2}+a I=0\right)$
$Z_{\prime}^{\prime}{ }^{2}=z^{2} / 9$
$Z_{2}^{\prime}=1 / 3\left(0+a^{2} Z+a Z\right)=-z / 3$
$z_{2}^{\prime}=z^{2} / 9$
$Z_{2}^{\prime} Z_{0}^{\prime}=-2 Z^{2} / 9$
$Z_{1}^{\prime} Z_{0}^{\prime}=-2 Z^{2} / 9$
$Z_{2}^{\prime} Z_{1}^{\prime}=Z^{2} / 9$
Substituting the values as expressed by equations 53, 54, $55,56,57$, and 58 into the general equation 47 and into equation 46 for 4 gives

$$
\begin{aligned}
I_{a} & =\mathbb{E}_{a} \frac{\left.\left.I / 9\left(Z^{2}+Z^{2}+4 Z^{2}+4 Z^{2}-Z^{2}\right)+Z_{0} Z_{0}^{\prime}+Z_{0} Z_{2}+Z_{0}^{\prime} Z Z_{2}-Z_{0}^{\prime} Z_{0}+Z_{1}+Z_{2}\right)+Z_{0}^{\prime}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z\right)+Z Z_{1}\right)}{Z_{2}} \\
& =E_{a} \frac{Z_{0}^{2}+Z_{0} Z_{0}^{\prime}+Z_{0} Z_{2}+Z_{0}^{\prime} Z_{1}-Z_{2}^{\prime} Z_{0}}{Z^{2} / 3\left(Z_{0}+Z, Z_{2}\right)+Z_{0}^{\prime}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+Z_{0} Z_{1} Z_{2}}
\end{aligned}
$$

Dividing the numerator and denominator by z^{2}

$$
I_{a}=E_{a} \frac{I+I / Z^{2}\left(Z_{0} Z_{0}^{\prime} Z_{0} Z_{2}^{+} Z_{0}^{\prime} Z_{2}-Z_{1}^{\prime} Z_{0}\right)}{\left.1 / Z\left(Z_{0}+Z_{1}+Z_{2}\right)+Z_{0}^{\prime} / Z^{2}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+1 / Z_{2}^{2} Z_{0} Z_{1} Z_{2}\right)}
$$

and setting $\mathrm{Z}=\infty$

$$
\begin{equation*}
I=E \frac{1}{1 / 3\left(Z_{0}+Z_{1}+Z_{2}\right)}=B_{a_{0}} \frac{3}{Z_{0}+Z_{1}+Z_{2}} \tag{59}
\end{equation*}
$$

Making similar substitutions in equation 48 and renembering that the denominator, Δ, will be the same for each of the general equations

$$
\begin{aligned}
I_{b}=\mathbb{I}_{a} & \frac{1 / 9\left(3+3 a^{2}+3 a\right) z^{2}-z_{a^{\prime}}^{\prime} z^{+} a^{2} z_{0} z_{0}^{\prime}+a^{2} z_{0} z_{2}^{*}}{\Delta} \\
& \frac{a^{2} z_{0}^{\prime} z_{z^{-}} a z_{0} z^{\prime}}{\Delta}
\end{aligned}
$$

Dividing the numerator and denominator by Z^{2} and setting $z^{2}=\infty$ and noting that as before $\Delta=1 / 3\left(z_{0}+Z_{1}+z_{2}\right)$

$$
I_{b}=E_{a} \frac{1 / 3\left(1+a^{2}+a\right)}{1 / 3\left(Z_{0}+Z_{1}+z_{2}\right)}
$$

But

$$
1+a^{2}+a=0
$$

Therefore

$$
I_{b}=0
$$

and similarly

$$
I_{c}=0
$$

These results are in agreement with results found by other methods. 36

Example 3.
Single Line-to-ground Fault (Alternator loaded)

Let phase (a) of a wye-connected alternator, with grounded neutral and feeding a grounded neutral wye load, be faulted to ground as shown in Fig. 5, page 23.

Since phase (a) is shorted to ground,

$$
Z_{a}^{\prime}=0
$$

The equations, 31,32 , and 33 , now become

$$
\begin{aligned}
& z_{0}^{\prime}=1 / 3\left(z_{b}^{\prime}+z_{c}^{\prime}\right) \\
& z=1 / 3\left(a Z_{b}^{\prime}+a^{2} z_{c}^{\prime}\right) \\
& z=1 / 3\left(a_{b}^{2} z_{b}^{\prime}+a Z_{c}^{\prime}\right)
\end{aligned}
$$

The expression for Δ becomes

$$
\begin{aligned}
\Delta= & I / 3\left(Z_{b}^{\prime} Z_{c}^{\prime}\right)\left(Z_{0}+Z_{1}+Z_{2}\right)+Z_{0}^{\prime}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+ \\
& Z_{0} Z_{1} Z_{2}
\end{aligned}
$$

The general expressions for the line currents and phase voltages remain unchanged, as given on page 21.

Fig. 6. Double Line-to-ground Fault. (Alternator not loaded)

[^4]Example 4.
Double Line-to-ground Fault. (Alternator not loaded)

Let phases (b) and (c) of a grounded neutral wye connetted alternator be faulted to ground as shown in Fig. 6, page 27.

Since phases (b) and (c) are shorted to ground

$$
\begin{aligned}
& Z_{b}=Z_{c}=0 \\
& Z_{a}=\infty
\end{aligned}
$$

The equations, 31,32 , and 33 , now become

$$
Z_{0}^{\prime}=Z_{1}^{\prime}=Z_{2}^{\prime}=Z_{a}^{\prime} / 3
$$

and

$$
\Delta=Z_{a} / 3\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+Z_{1} Z_{2} Z_{0}
$$

Substituting in general equation, 47

$$
\begin{aligned}
I_{a}= & \frac{E}{\Delta}\left(Z_{a}^{\prime} / 9+Z_{a}^{\prime} / 9+Z_{a}^{\prime} / 9+Z_{0} Z_{a}^{\prime} / 3+Z_{0} Z_{2}+Z_{2} Z_{a}^{\prime} / 3-\right. \\
& \left.Z_{2} Z_{a}^{\prime} / 3-Z_{a}^{\prime} / 9-Z_{0} Z_{a}^{\prime} / 3-Z_{a}^{\prime} / 9-Z_{a}^{\prime} / 9\right) \\
= & \frac{E_{a}^{3}\left(Z_{0} Z_{2}\right)}{Z_{a}^{\prime}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+3 Z_{0} Z_{1} Z_{2}}
\end{aligned}
$$

Dividing both numerator and denominator by Z and setting $Z_{a}^{\prime}=\infty$

$$
I_{a}=0
$$

Similarly

$$
\begin{aligned}
I_{b}= & \frac{\mathbb{E}_{a}}{\Delta}\left(Z_{a}^{\prime 2} / 9-Z_{a}^{\prime} / 9-Z_{2} Z_{a}^{\prime} / 3+a^{2} Z_{0} Z_{a}^{\prime} / 3+a^{2} Z_{0} Z_{2}+\right. \\
& a^{2} Z_{a}^{\prime} / 9+a^{2} Z_{2} Z_{a}^{\prime} / 3-a_{0}^{2} Z_{a}^{\prime 2} / 9+a Z_{1}^{2} / 9-a Z_{0} Z_{a}^{\prime} / 3- \\
& \left.a Z_{a}^{2} / 9\right) \\
= & E_{a} \frac{\left.Z_{a}^{\prime}\left(-Z_{2}+a_{a}^{2} Z_{0}+a^{2} Z_{2}-a Z_{0}\right)+3 Z_{2}^{2} Z_{0}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)+3 Z_{0} Z_{1} Z_{2}}{}
\end{aligned}
$$

Dividing both numerator and denominator by Z_{a}^{\prime}, setting $Z_{a}^{\prime}=\infty$, and collecting terms gives

$$
I_{b}=E_{a} \frac{Z\left(a^{2}-1\right)+Z\left(a^{2}-a\right)}{Z_{0} Z_{2}+Z, Z_{2}+Z_{0} Z}
$$

By a similar process

$$
I_{C}=E_{a} \frac{Z_{2}(a-1)+Z_{0}\left(a-a^{2}\right)}{Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}}
$$

These results are in agreement with results found by other methods. ${ }^{37}$

Example 5.
Double Line-to-ground Fault (Alternator loaded)

Let phases (b) and (c) of a grounded neutral wye connected alternator, feeding a grounded neutral wye load, be faulted to ground as shown in Fig. 7, page 27. Since phases (b) and (c) are shorted to ground

$$
z_{b}^{\prime}=z_{c}^{\prime}=0
$$

The equations 31,32 and 33 , now become

$$
\begin{aligned}
& z_{0}^{\prime}=1 / 3\left(z_{a}^{\prime}\right) \\
& z_{1}^{\prime}=1 / 3\left(z_{a}^{\prime}\right) \\
& z_{z}^{\prime}=1 / 3\left(z_{a}^{\prime}\right)
\end{aligned}
$$

and the expression for Δ becomes

$$
\Delta=1 / 3\left[Z_{a}^{\prime}\left(Z_{0} Z_{2}+Z_{1} Z_{2}+Z_{0} Z_{1}\right)\right]+Z_{0} Z_{1} Z_{2}
$$

The general expression for $I_{a}, 46$, becomes

$$
\begin{aligned}
I_{a}= & \frac{\mathbb{E}_{a}}{\Delta}\left(Z_{a}^{\prime} / 9+Z_{a}^{\prime} / 9+Z_{a}^{\prime} / 9+Z_{0} Z_{a}^{\prime} / 3+Z_{2} Z_{0}+Z_{2} Z_{a}^{\prime} / 3-\right. \\
& \left.Z_{0} Z_{a}^{\prime} / 3-Z_{a}^{\prime} / 9-Z_{2} Z_{a}^{\prime} / 3-Z_{a}^{\prime} / 9-Z_{a}^{\prime 2} / 9\right) \\
= & \mathbb{E}_{a} \frac{3 Z_{0} Z_{z}}{Z_{a}^{\prime} Z_{0} Z_{2}+Z_{a}^{\prime} Z, Z_{2}+Z_{a}^{\prime} Z, Z_{0}+3 Z_{0} Z_{1} Z_{2}}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
I_{b}= & \frac{\mathbb{E}_{a}}{4}\left(Z_{a}^{\prime} / 9-Z_{a}^{\prime} / 9-Z_{2} Z_{a}^{\prime} / 3+a^{2} Z_{0} Z_{a}^{\prime} / 3+a^{2} Z_{0} Z_{2}+\right. \\
& a^{2} Z_{a}^{\prime} Z_{9}+a^{2} Z_{2} Z_{a}^{\prime} / 3-a^{2} Z_{a}^{\prime} / 9+a Z_{a}^{\prime} / 9-a Z_{a}^{\prime} Z_{0} / 3- \\
& \left.a Z_{a}^{\prime} / 9\right) \\
= & E_{a} \frac{Z_{a}^{\prime} Z_{2}\left(a^{2}-1\right)+Z_{a}^{\prime} Z_{0}\left(a^{2}-a\right)+3 a_{0}^{2} Z_{0} Z_{0} Z_{2}+Z_{a}^{\prime} Z_{1} Z_{2}+Z_{a}^{\prime} Z_{1} Z_{0}+3 Z_{0} Z_{1} Z_{2}}{}
\end{aligned}
$$

By a similar process, it is found that

$$
I_{c}=E_{a} \frac{Z_{a}^{\prime} Z_{2}(a-1)+Z_{a}^{\prime} Z_{0}\left(a-a^{2}\right)+3 a Z_{0} Z_{2}}{Z_{a}^{\prime} Z_{0} Z_{2}+Z_{a}^{\prime} Z_{1} Z_{2}+Z_{a}^{\prime} Z_{1} Z_{0}+3 Z_{0} Z_{1} Z_{2}}
$$

ADVANTAGES OT USING THE GENERRAL RQUATIONS

When the fault is a very simple case, such as a three phase fault, conditions are still symmetrical and conventional methods of solution can be used. If the fault is supplied by an alternator operating at no load, the well known symmetrical component formulas can be used advantageously. However, in a case where the fault or simultaneous faults are supplied by a loaded alternator, the above mentioned methods become inadequate and the general equations developed in this thesis offer the only simple and direct solution to the problem known to the author. The generality of this solution is more apparent when one considers that if the open circuit voltage of the alternator and the impedances of the load, generator, fault, etc., are known, the general expressions for the currents in the three phases of the altermator and line can be evaluated.

SUMMARY

A general method of solution for faults on a loaded alternator has been developed by use of the fundamental principles of symmetrical components. Several examples were solved by means of the general equations showing that they can be used when assuming either balanced or unbalanced load conditions. The various types of faults on alternators with balanced loads, usually treated in texts and references, are but special cases of a general problem.

Had a more detailed treatment been advisable, problems could have been solved quantitatively showing the variations in the results secured when the load on the alternator was considered. However, attention has been directed to the advantages of using the general solutions outlined by \mathbb{E}. $\mathrm{M}_{\text {. }}$ Sabbagh and developed in detail in this thesis.

The solution for ∇_{0}, ∇_{1}, and ∇_{2} from the equations taken from page 17 follows:

$$
\begin{align*}
& V_{0}+V_{1}+V_{2}=\left(I_{0}+I_{1}+I_{2}\right) z_{a}^{\prime} \tag{25}\\
& V_{0}+a^{2} V_{1}+a V_{2}=\left(I_{0}+a^{2} I_{1}+a I_{2}\right) Z_{b}^{\prime} \tag{26}\\
& V_{0}+a V_{1}+a^{2} V_{2}=\left(I_{0}+a I_{1}+a^{2} I_{2}\right) Z_{c}^{\prime} \tag{27}
\end{align*}
$$

Using determinants:

Let the coefficients of the unknowns, ∇_{0}, ∇_{1}, and V_{2} be as follows:

$$
\begin{aligned}
a_{1}=1 & b_{1}=1
\end{aligned} c_{1}=1 \quad d_{1}=\left(I_{0}+I_{1}+I_{2}\right) z_{a}^{\prime} .
$$

Substituting

$$
\begin{aligned}
V_{0}= & \frac{\left(a-a^{2}\right)\left(I_{0^{+}} I_{1}+I_{2}\right) z_{a^{+}}^{\prime}\left(a-a^{2}\right)\left(I_{0^{+}} a^{2} I_{1}+a I_{2}\right) z_{b^{+}}^{\prime}}{3(a-a)} \\
& \frac{\left(a-a^{2}\right)\left(I_{0^{+}} a I_{1}+a^{2} I_{2}\right) z_{c}^{\prime}}{3\left(a-a^{2}\right)} \\
V_{0}= & I / 3\left[Z_{a}^{\prime}\left(I_{0^{+}} I_{1}+I_{2}\right)+Z_{b}^{\prime}\left(I_{0^{+}}+a^{2} I_{1}+a I_{2}\right)+\right. \\
& \left.Z_{c}^{\prime}\left(I_{0}^{+} a I_{1}+a^{2} I_{2}\right)\right] \\
= & I / 3\left[I_{0}\left(Z_{a^{+}}^{\prime} Z_{b}^{\prime}+Z_{c}^{\prime}\right)+I_{1}\left(Z_{a^{+}}^{\prime} a^{2} Z_{b}^{\prime}+a Z_{c}^{\prime}\right)+\right. \\
& \left.I_{2}\left(Z_{a}^{\prime+} a Z_{b^{+}}^{\prime} a^{2} Z_{c}^{\prime}\right)\right]
\end{aligned}
$$

Letting

$$
\begin{aligned}
& z_{0}^{\prime}=1 / 3\left(z_{a}^{\prime}+z_{b}^{\prime}+z_{c}^{\prime}\right) \\
& z_{1}^{\prime}=1 / 3\left(z_{a}^{\prime}+a z_{b}^{\prime} a^{2} z_{c}^{\prime}\right) \\
& z_{2}^{\prime}=1 / 3\left(z_{a}^{\prime}+a^{2} z_{b}^{\prime}+a z_{c}^{\prime}\right)
\end{aligned}
$$

be the zero, positive, and negative sequence impedances, respectively

Then

$$
\begin{equation*}
V_{0}=I_{0} Z_{0}^{\prime}+I_{1} Z_{2}^{\prime}+I_{2} Z_{1}^{\prime} \tag{28}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
V_{1}=I_{0} Z_{1}^{\prime}+I_{2} Z_{2}^{\prime}+I_{1} Z_{0}^{\prime} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}=I_{0} Z_{2}^{\prime}+I_{2} Z_{0}^{\prime}+I_{1} Z_{1}^{\prime} \tag{30}
\end{equation*}
$$

The solution for I_{0}, I_{2} and $I_{\text {, fron the equations taken }}$ from mage 20 follows:

$$
\begin{align*}
& I_{0}\left(Z_{0}+Z_{0}^{\prime}\right)+I_{2}\left(Z_{\prime}^{\prime}\right)+I_{1}\left(Z_{2}^{\prime}\right)=0 \tag{40}\\
& I_{0}\left(Z_{2}^{\prime}\right)+I_{2}\left(Z_{0}^{\prime}+Z_{2}\right)+I_{1}\left(Z_{1}^{\prime}\right)=0 \tag{41}\\
& I_{0}\left(Z_{1}^{\prime}\right)+I_{2}\left(Z_{2}^{\prime}\right)+I_{1}\left(Z_{0}^{\prime}+Z_{1}\right)=E_{a} \tag{42}
\end{align*}
$$

Let the coefficients of the unknowns, I_{0}, I_{1} and I_{2} be as follows:

$$
\begin{array}{llll}
a_{1}=Z_{0}+Z_{0}^{\prime} & b_{1}=Z_{i}^{\prime} & c_{1}=Z_{z}^{\prime} & d_{1}=0 \\
a_{2}=Z_{2}^{\prime} & b_{2}=Z_{0}^{\prime}+Z_{2} & c_{2}=Z_{1}^{\prime} & d_{2}=0 \\
a_{3}=Z_{1}^{\prime} & b_{3}=Z_{2}^{\prime} & c_{3}=Z_{0}^{\prime}+Z_{1} & d_{3}=E_{a}
\end{array}
$$

(conti nued on the right)

Then usine determinants

$$
I_{0}=\frac{\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}}{\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}}
$$

ixpanding

$$
I_{0}=\frac{d_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(d_{2} c_{3}-c_{2} d_{3}\right)+c_{1}\left(d_{2} b_{3}-b_{2} d_{3}\right)}{a_{1}\left(b_{2} c_{3}-c_{2} b_{3}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-b_{2} a_{3}\right)}
$$

Substituting

$$
I_{0}=\frac{-Z_{1}^{\prime}\left(-Z_{1}^{\prime} E_{a}\right)+Z_{2}^{\prime}\left(-Z_{0}^{\prime}-Z_{2}\right) E_{a}}{\left(Z_{0}+Z_{0}^{\prime}\right)\left(Z_{0}^{\prime}+Z_{2}\right)\left(Z_{0}^{\prime}+Z_{1}\right)-\left(Z_{0}+Z_{0}^{\prime}\right) Z_{1}^{\prime} Z_{2}^{\prime}-Z_{1}^{\prime} Z_{2}^{\prime}\left(Z_{0}^{\prime}+Z_{1}\right)+Z_{1}^{\prime 3}+Z_{2}^{\prime 3}-Z_{2}^{\prime} Z_{1}^{\prime}\left(Z_{0}^{\prime}+Z_{2}\right)}=\frac{E_{a}\left[Z_{1}^{\prime}-Z_{2}^{\prime}\left(Z_{0}^{\prime}+Z_{2}\right)\right]}{\Delta}
$$

Lettine $\Delta=$ the denominator and expandine Re-arranging and separating into members so that $\Delta=A+B+C$ where

$$
A=Z_{0}^{3}+Z_{1}^{\prime 3}+Z_{2}^{\prime 3}-3\left(Z_{0}^{\prime} Z_{1}^{\prime} Z_{2}^{\prime}\right), \quad B=Z_{0} Z_{0}^{\prime 2}+Z_{2} Z_{0}^{\prime 2}+Z_{1} Z_{0}^{\prime 2}-Z_{0} Z_{1}^{\prime} Z_{2}^{\prime}-Z_{2} Z_{1}^{\prime} Z_{2}^{\prime}-Z_{1} Z_{\prime}^{\prime} Z_{2}^{\prime} \quad \text { and } \quad C=Z_{0}^{\prime} Z_{0} Z_{2}+Z_{0}^{\prime} Z_{0} Z_{1}+Z_{0}^{\prime} Z_{2} Z_{1}+Z_{0} Z_{1} Z_{2}
$$ Substituting $Z_{o}^{\prime}=1 / 3\left(Z_{a}^{\prime}+Z_{b}^{\prime}+Z_{c}^{\prime}\right), \quad Z_{\prime}^{\prime}=1 / 3\left(Z_{a}^{\prime}+a Z_{b}^{\prime}+a^{2} Z_{c}^{\prime}\right)$ and $Z_{z}^{\prime}=1 / 3\left(Z_{a}^{\prime}+a^{2} Z_{b}^{\prime}+a Z_{c}^{\prime}\right)$

Addine

$$
A=1 / 8\left[\left(Z_{a}^{3}+Z_{b}^{\prime 3}+Z_{c}^{\prime 3}\right)-\left(Z_{a}^{\prime 3}+Z_{b}^{\prime 3}+Z_{c}^{\prime 3}\right)\right]+2 / 3\left(Z_{a}^{\prime} z_{b}^{\prime} Z_{c}^{\prime}\right)-1 / 3\left(a+a^{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}\right)=1 / 3\left(2-a-a^{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}\right)=Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}
$$

Likewise

$$
\begin{aligned}
B= & 1 / 9\left\{Z_{o}\left[Z_{a}^{\prime}+Z_{b}^{\prime}+Z_{c}^{\prime 2}+2\left(Z_{a} Z_{b}+Z_{a} Z_{c}+Z_{b} Z_{c}\right)-\left(Z_{a}^{\prime 2}+Z_{b}^{\prime 2}+Z_{c}^{\prime 2}\right)-\left(a+z^{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}\right)\right]+Z_{2}^{3}\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}\right)-\right. \\
& \left(Z_{1}+Z_{z}\right)\left(Z_{c}^{\prime}+Z_{b}^{\prime 2}+Z_{c}^{\prime 2}+\left(a+a^{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}\right)+3 Z_{1}\left(Z_{a}^{\prime} z_{b}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}\right)\right\}
\end{aligned}
$$

$$
B=1 / 9\left(Z_{0}+Z_{1}+Z_{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}\right)\left(z-a-a^{2}\right)=1 / 3\left(Z_{0}+Z_{1}+Z_{2}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}\right)
$$

$$
c=1 / 3\left(z_{a}^{\prime}+z_{b}^{\prime}+z_{c}^{\prime}\right)\left(z_{0} z_{2}+z_{1} z_{0}+z_{1} z_{2}\right)+z_{0} z_{1} z_{2}
$$

and finally

$$
\Delta=A+B+C=Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}+1 / 3\left(Z_{0}+Z_{1}+Z_{z}\right)\left(Z_{a}^{\prime} Z_{b}^{\prime}+Z_{b}^{\prime} Z_{c}^{\prime}+Z_{a}^{\prime} Z_{c}^{\prime}\right)+1 / 3\left(Z_{a}^{\prime}+Z_{b}^{\prime}+Z_{c}^{\prime}\right)\left(Z_{o} Z_{2}+Z_{o} Z, Z, Z_{2}\right)+Z_{o} Z_{1} Z_{2}
$$

Therefore

$$
\begin{aligned}
& I_{0}=\frac{E_{a}}{\Delta}\left[\left(Z_{1}^{\prime}-Z_{z}^{\prime}\left(Z_{0}^{\prime}+Z_{z}\right)\right] \quad \begin{array}{l}
\text { (The expression for } \Delta \text { which is the coniton denominator for the three unknowns } \\
\text { now beine known.) }
\end{array}\right.
\end{aligned}
$$

S1milarly

$$
I_{2}=\frac{E_{a}}{\Delta}\left[\left(z_{2}^{\prime 2} \quad z_{j}^{\prime}\left(z_{0}+z_{0}^{\prime}\right)\right]\right.
$$

and

$$
I_{1}=\frac{E_{a}}{\Delta}\left(z_{0} Z_{0}^{\prime}+Z_{0} Z_{2}+Z_{0}^{2}+Z_{0}^{\prime} Z_{z}-z_{z}^{\prime} Z_{1}^{\prime}\right)
$$

$$
\begin{aligned}
& Z_{o}^{\prime 3}=1 / 27\left[Z_{a}^{3}+Z_{b}^{\prime 3}+Z_{c}^{\prime 3}+3\left(Z_{a}^{\prime 2} Z_{b}^{\prime}+Z_{a}^{\prime 2} Z_{c}^{\prime}+Z_{b}^{\prime 2} Z_{a}^{\prime}+Z_{b}^{\prime 2} Z_{c}^{\prime}+Z_{c}^{\prime 2} Z_{a}^{\prime}+Z_{c}^{\prime 2} Z_{z}\right)+6 Z_{a} Z_{b}^{\prime} Z_{c}\right] \\
& \left.Z_{1}^{\prime 3}=1 / 27\left[Z_{a}^{\prime 3}+Z_{b}^{\prime 3}+Z_{c}^{\prime 3}+3\left(a Z_{a}^{\prime 2} Z_{b}^{\prime}+a^{2} Z_{a}^{2} Z_{c}^{\prime}+a^{2} Z_{b}^{\prime 2} Z_{a}^{\prime}+a Z_{b}^{\prime 2} Z_{c}^{\prime}+a^{2} Z_{c}^{\prime 2} Z_{b}^{\prime}+a z_{c}^{2} Z_{a}^{\prime}\right)+6 Z_{a}^{\prime} Z_{b}^{\prime} Z_{c}^{\prime}\right]\right] \\
& z_{2}^{\prime 3}=1 / 27\left[z_{a}^{3}+z_{b}^{\prime 3}+Z_{c}^{\prime 3}+3\left(a^{2} z_{a}^{7} z_{b}^{\prime}+a Z_{a}^{\prime 2} z_{c}^{\prime}+a z_{b}^{\prime 2} z_{a}^{\prime}+a^{2} z_{b}^{\prime 2} z_{c}^{\prime}+a z_{c}^{\prime 2} z_{b}^{2}+a^{2} z_{c}^{\prime 2} z_{a}^{\prime}\right)+6 z_{a}^{\prime} z_{b}^{\prime} z_{c}^{\prime}\right] \\
& -3\left(z_{o}^{\prime} z_{1}^{\prime} z_{2}^{\prime}\right)=-1 / 9\left(z_{a}^{\prime}+z_{b}^{\prime}+z_{c}^{\prime}\right)+\left(z_{a}^{\prime} z_{b}^{\prime} z_{c}^{\prime}\right)\left(3 a+3 a^{2}\right) \quad \text { Since }\left(a+a^{2}+1\right)=0
\end{aligned}
$$

BIBLIOGRAPIY

[^0]: 4 W. E. Slemmer, Symmetrical Components, p. 59

[^1]: S. Sabbagn, Unbalance in Altemating-cument Rotating Mactines, 0.21.

[^2]: 6 For polyphase systems of more than three phases, see C. L. Fortescue, ope cit. p. 1130.

 7 In the usual sense of the word, the zero-sequence component
 is not a symmetrical component but a uniphase component. If the three zero-sequence phase components of current in the three phases are thought of as a single current in three parallel branches, the zero-sequence current might be called a single-phase current.

 8 Symetrical circuit conditions, i.e., systems whose constants are the same viewed from any phase, except for fault and load, will be assumed throughout this thesis. Under these conditions the three sequences are independent, i.e., the current of one sequence produces impedance drops of that sequence only. (See C. F. Wagner and Re D. Evans, Symmetrical Components, op. cit. pp. 374-375.)

[^3]: 30 See footnote 8, p. 3.

[^4]: Fig. 7. Double Line-to-ground Fault. (Alternator loaded)

