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PREFACE 

The performance of functional proof of correctness 

techniques is examined in this study by applying the 

techniques to a RISC simulator. The function~l correctness 

theory is discussed, and simple examples illustrating the 

proof techniques are given. Then functional correctness is 

used to prove the correctness of some of the procedures in a 

RISC simulator. Finally the proof techniques are applied to 

a newly designed procedure of the RISC simulator. 
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CHAPTER I 

INTRODUCTION 

Structured programming may be viewed as a relatively 

new approach to programming; however, the concept has been 

developing for at least fifteen years. As early as 1965 

there was the suggestion of the elimination of the GOTO 

statement by Dijkstra at the IFIP Congress [16]. Later in 

1968 Dijkstra [5] reiterated his opinion in a letter to the 

editor of the Communications of the ACM. Since Dijkstra 

made his suggestion in 1965, structured programming has 

developed well beyond just the elimination of GOTO 

statements, even though it is still commonly defined as 

gotoless 

philosophy 

programming. Structured programming is a 

of designing and writing a program in an 

organized pattern using a set of basic logic structures, 

function, sequence, ifthen, ifthenelse, whiledo, dountil, to 

form the program [7, 16]. A goal of structured programming 

is to improve readability and maintainability. Another goal 

is to have the program written in a manner such that 

systematic verification techniques which include proving the 

correctness of the program at various points can be applied. 

The objective of proving the correctness of the program in 

1 
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the design stage is to eliminate logic errors, 

inconsistencies, or even weaknesses prior to coding and 

testing the program [7, 16]. 

The goals of readability and maintainability are the 

two advantages most often stressed about structured 

programming; however, proof of correctness was one of the 

initial motivations behind developing structured 

programming. Dijkstra [4] states in his paper presented at 

the proceedings of the NATO conferences 

A number of people have shown that program 
correctness can be proved •••• As is to be 
expected ••• the circulating examples are 
concerned with rather small programs and, unless 
measures are taken, the amount of labour involved 
in proving might well (will) explode with program 
size. Therefore, I have not focused my attention 
on the question 'how do we prove the correctness 
of a given program?' but on the questions 'for 
what program structures can we give correctness 
proofs without undue labour, even if the programs 
get large?' and, as a sequel, 'how do we make, for 
a given task, such a well-structured program?' 
(p. 223). 

Thus, proof of correctness techniques preceded structured 

programming and have been developing along with it. At the 

present time a few different techniques exist such as an 

axiomatic approach which Hoare wrote about as early as 1969 

[6], inductive assertion, loop invariant, and functional 

correctness [l, 2, 3, 8, 9, 10, 11]. Some of the different 

techniques are compared in Basili [l] and Basili [2]. 

Even though proof of correctness techniques have been 

in existence for several years, they do not appear to be 

widely presented or practiced. Recently, though, IBM has 

begun to move toward a well-defined structured programming 
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approach including proof of correctness of programs where 

the correctness method that IBM has chosen is the functional 

correctness approach [8]. In this study the functional 

correctness techniques as described in the IBM lecture notes 

prepared for a 1983 software engineering workshop [8] and in 

Mills' [9] book are applied to a RISC, Reduced Instruction 

Set Computer, simulator program written by this author and 

three other colleagues during the 1983 Spring semester at 

Oklahoma State University. 

The functional correctness approach consists of proving 

that the intended program function, the specification of 

what the program is suppose to do, is either equivalent to 

or a subset of the derived program function, the actual 

result of the program implementation. In mathematical terms 

if f is the defined program function and if g is the derived 

program function, then one of the following must be shown 

for program correctness: 

1. f = g 

2. f Cg. 

The first is called complete correctness and the second, 

sufficient correctness [1, 2, 3, 8, 9, 10, 11]. 

In proving either complete or sufficient correctness of 

a program P, the program is decomposed into prime programs. 

Basically, a section of a program is a prim~ program if it· 

is a complete part and can not be broken down into smaller 

integral program parts. The prime programs are proved 

correct, and the proof of correctness of P becomes a 
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bottom-up verification starting with verifying the inner 

most prime program and working upward and outward [9, 10]. 

Six control structures that are basic to structured 

programmming are prime programs. These six structures are 

function, sequence, ifthen, ifthenelse, whiledo, and 

dountil. A specific proving form exists for each structure, 

and these techniques for program verification are derived 

from the Correctness Theorem described in Mills [9] and 

Manna [10]. An important aspect of the functional 

correctness approach is that the program must be a 

structured program because the proofs depend on the 

structured programming control structures. 

The RISC simulator mentioned previously is based on a 

description of RISC in Patterson [15] with some assumptions 

made by the authors where the RISC description is 

incomplete. The procedures used for proof of correctness 

are those procedures that simulate the RISC instuctions such 

as XOR (exclusive or), LDL (load long), STS (store short), 

and SLA (shift left arithmetic). Furthermore, a new 

arithmetic procedure was written from the beginning to 

include two new subtract statements described in a more 

recent article on RISC [13], and functional proof of 

correctness is applied to this new procedure which is then 

inserted into the RISC simulator and tested with a goal of 

zero logic errors. The purpose of applying the proof of 

correctness techniques to the procedures already programmed 

and tested is to pro~ide an example of the techniques 
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applied to a functional program and to determine whether 

the proofs point out any errors in the procedures that may 

not have been found during testing. The purpose of proving 

the new procedure correct is to see if the proof of 

correctness techniques eliminate logic errors of a procedure 

before coding and testing. Finally, the effectiveness of the 

functional correctness techniques as applied to the 

prewritten procedures of RISC and the newly written 

procedure of RISC is evaluated. 



CHAPTER II 

BRIEF RISC DESCRIPTION 

General Concept 

The incentive for developing the Reduced Instruction 

Set Computer, RISC, was to provide an alternative to the 

present day trend toward increasingly complex instruction 

sets which lead to complex architectural designs. The idea 

behind RISC is to provide an architecture that minimizes 

complexity and supports high level languages while reducing 

design time and design errors, making more effective use of 

the resources on a single chip, and forming a machine with 

high throughput [14, 15]. In order to achieve these goals, 

the designers restricted the instruction set and implemented 

special architectural features that support fast execution 

of the reduced instruction set. Some of these special 

features of RISC include single cycle execution, restricted 

memory access instructions, prefetched instructions, window 

registers, and uniform instruction size. 

6 
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Special Architectural Features 

Two of the architectural features are single cycle 

execution and restricted memory access. These two features 

improve performance of RISC, reduce chip size, and simplify 

the design. Single cycle execution implies that one 

instruction is executed per cpu cycle. The cycle time for 

RISC is determined by the time it takes to read a register, 

perform an ALU operation, and store the result back into a 

register [15]. All RISC instructions execute in one cycle 

except for load and store instructions. Load and store 

instructions are the only instructions to access memory, and 

because they access memory, they take 2 cpu cycles, adding 

the index register and the immediate offset in the first 

cycle and accessing memory in the second cycle [14]. 

Restricting memory access to load and store 

instructions in RISC differs from other computers which 

allow numerous instructions to access memory. This 

difference, though, simplifies the design of RISC. Single 

cycle execution improves performance and reduces the chip 

size because the speed of the single cycle instruction 

execution is equivalent to that of a micro instruction in 

other machines, and the RISC instructions are no more 

complicated than a micro instruction; consequently, RISC can 

eliminate one level of abstraction because microcode control 

is not necessary in RISC [15]. 

To increase performance, the designers implemented an 

instruction prefetch which fetches the next instruction in 
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sequence while the current instruction is being executed, 

so the execution cycle of the current instruction is 

overlapped with the prefetch and decoding of the next 

instruction [14]. Prefetching an instruction improves 

performance, but on the other hand, it introduces a problem 

with branch instructions such as jumps or subroutine calls. 

The problem is a successful branch can make the prefetching 

useless because after the execution of a successful branch, 

the prefetched instruction is not the next instruction to be 

executed. So to solve this problem without using elaborate 

techniques which would add a complexity counter to the 

objectives of RISC, the designers of RISC set up a delayed 

jump. With a delayed jump the branch does not take effect 

until after the execution of the instruction following the 

branch instruction; consequently, the instruction prefetch 

is no longe.r useless during a successful branch. The reason 

that the prefetching is no longer useless is that the 

instruction prefetched during the execution of the branch 

instruction is now the next instruction executed, and during 

this instruction's execution, the instruction prefetched is 

the instruction where control was transferred by the branch 

instruction. However, the delayed jump can detract from the 

advantages of the instruction prefetch because sometimes the 

delayed jump necessitates the inclusion of a no operation 

(NOP) instruction following the jump such as an add 

instruction that would add zero to a register; thus, because 

of the NOP, it is possible that a jump could be equivalent 
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to two instructions. Figure 1 gives an example of the use 

of a NOP instruction. Figure la shows a sequence of 

instructions that is executed in the order 1, 2, 3, 5, 6. 

Figure lb shows the sequence of RISC instructions that have 

an equivalent execution. Because of the delayed jump, if 

the NOP at line 4 were not included, the load following the 

jump would be executed since the jump would not occur until 

after the execution 

succeeding it. 

of the instruction 

----------------------------------~---
Normal Jump Delayed Jump. 

1 ADD 1 ADD 
2 SUB 2 SUB 
3 JUMP 5 3 JUMP 6 
4 LOAD 4 NOP 
5 STORE 5 LOAD 
6 XOR 6 STORE 

7 XOR 

----------------------------------~---
a.) Normal Jump b.) Delayed Jump 

Figure 1. Normal and Delayed Jumps 

immediately 

The motivation behind the register setup of RISC is to 

speed up the subroutine calls which are more prevalent in 

RISC than in more complex instruction set computers because 

instructions in a complex instruction set computer are often 

implemented as subroutines in RISC. The two processes that 

cause subroutine calls to be time consuming are saving or 
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restoring registers and passing parameters. RISC 

effectively eliminates the time consumed in saving and 

restoring registers by setting up a system of register banks 

so that registers do not need to be saved or restored for 

subroutine calls. Instead a pointer is changed, and a 

different set of registers is used for the called procedure; 

however, there is some overlapping of registers between 

called and calling procedures to support straightforward 

parameter passing. In RISC the registers currently being 

accessed are called window registers becaus• changing the 

pointer can be visualized as moving a window over the 

registers to be.used. 

The window registers are set up such that 32 registers 

are always available. These 32 registers are divided into 3 

sets: global, local, and parameter. Global registers are 

always registers 0-9 and are not included in the window. 

Registers 16-25 are local registers, registers 10-15 are the 

parameters to be passed to a called procedure, and registers 

26-31 are the parameters passed by a calling procedure. 

Conceptually, registers 10-15 are called low registers and 

26-31 are called high registers. The low registers of the 

calling procedure overlap with the high registers of the 

called procedure providing parameter passing between the two 

procedures. Figure 2 [13, 14, 15] gives a visual 

representation of the window registers. 
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High A 
26 High 31 

Local A 
16 Local 25 

Low A/High B 
10 Low 15 

Local B 

0 Global 9 
Low B 

------------------------- -----------~-------------
a.) Register Partitioning b.) Overlapped Registers 

Proc A Calls Proc B 

Figure 2. RISC Window Registers 

RISC has 138 registers, and, again conceptually, the 

window begins at the top of the registers and moves down for 

a subroutine call; thus, the window pointer i~ decremented 

for calls and incremented for returns. A register overflow 

stack exists in memory in the event that a ser1es of nested 

subroutine calls exhausts the register banks. 

Instruction Description 

The design of the RISC instruction is another special 

feature of RISC. The RISC instruction was designed to 

promote simplicity of implementation and addressing. The 

instructions are all 32 bits long. The format of the 32 bit 

instruction, however, does provide a little flexibility in 

the operand specification. Figure 3 [14] shows the 
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instruction format and the slight flexibility that it 

allows. There are basically six fields in the instruction, 

opcode, set condition code indicator (SCC), destination 

register, source one register, immediate value indicator 

(IMM), and source two register or immediate value. In the 

case of JMPR and CALLR instructions there are only four 

fields because the last three fields are combimed to define 

one operand. Two of the six fields, sec and IMM, are single 

bit fields. The sec bit indicates whether the condition 

codes are to be set, and the IMM bit indicat~s whether the 

source two field is a register reference specified by the 

last 5 bits of the instruction (IMM=O) or whether source two 

.is a 13 bit sign extended immediate value. 

----------------------------------------------~-------------
I opcode I sec I 

<7> <l> 
Dest 

<5> I Sourcel I IMM I (unused) Source2 I 
<5> <l> <B> <5> 

----------------------------------------------~-------------
I. opcode I sec I 

<7> <l> 
Dest 

<5> I Sourcel I IMM I Immediate srce2 
<5> <l> <13> I --------------------------------------·--------~-------------

I opcode I sec I 
<7> <l> 

Dest 
<5> 

Immediate operand 
<19> ! ----------------------------------------------~-------------

Figure 3. RISC Instruction Format 

The final instruction set consists of 31 instructions 

[13, 14]. These instructions are divided into four groups, 

arithmetic-logical, memory access, branching, and 
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miscellaneous. As previously mentioned, only load and 

store instructions access memory, and there are eight memory 

access variations allowing for . 8 bit, 16 bit, and 32 bit 

sign-extended or zero-extended data. Table I shows the four 

groups of the instruction set and the definition of each 

instruction (the instructions shown in the table are the 28 

instructions of the original RISC as given in Patterson [15] 

and two additional subtract instructions from later designs 

[13, 14]). Besides supporting data of 8 bits, 16 bits, and 

32 bits, RISC also supports addresses of 32 bits. 

Furthermore, even though it initially looks as if only one 

addressing mode is offered, by using register zero which 

always contains a zero, addressing modes of indexed, 

absolute, and register indirect are possible. 

Summary 

Thus, the various features of RISC, a restricted 

instruction set and architectural support for fast 

execution, combine to reduce design time and design errors 

and make effective use of the resources on one chip. 

Furthermore, this type of architecture can be used to obtain 

a machine of high throughput. 

The majority of this brief description of RISC was 

based on Patterson [15], one of the earlier RISC 

descriptions. More current, though similar, ~nformation on 
i RISC may be found in Patterson [13] and Patte~son [14]. 



MNl.'- I 
MONIC 

ADD 
ADDC 
SUB 
SUBC 
SUBR 
SUBRC 
AND 
OR 
XOR 
SLA 
SRA 
SLL 
SRL 

TABLE I 

ASSEMBLY LANGUAGE DEFINITION FOR RISC 

NAME. I OPERANDS 

ARITHMETIC-LOGICAL 

integer add 
add with carry 
integer subtract 
subtract with carry 
subtract register 
subtract reg with carry 
logical and 
log-ical·or 
logical exclusive or 
shift left arithmetic 
shift right arithmetic 
shift left logical 
shift right logical 

Sl,S2,Rd 
S1,S2,Rd 
S1,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 
S1,S2,Rd 
Sl,S2,Rd 
Sl,S2,Rd 

ACTION 

Rd<-Sl+S2 
Rd< ... Sl+S2+carry 
Rd<-Sl-S2 
Rd<-Sl-S2-carry 
Rd<~S2-S1 
Rd< ... S2-Sl-carry 
Rd<...,Sl&S2 
Rd<-+SlvS2 
Rd< .... Sl xor S2 
Rd<.;.Sl shift S2 
Rd<""Sl shift S2 
Rd<-t-Sl shift S2 
Rd<~Sl shift S2 

14 

----------------------------------------------------------
MEMORY ACCESS 

---------------------------------------------+------------
LDL 
LDSU 
LDSS 
LDBU 
LDBS 
STL 
STS 
STB 

load long 
load short unsigned 
load short signed 
load byte unsigned 
load byte signed 
stor~ long 
store short 
store byte 

(Rx) ,X,Rd 
(Rx) ,X,Rd 
(Rx) ,X,Rd 
(Rx) ,X,Rd 
(Rx) ,X,Rd 
Rm,(Rx)X 
Rm, (Rx)X 
Rm, (Rx)X 

Rd<tM[Rx+X] 
Rd< ... M[Rx+X] 
Rd<tM[Rx+X] 
Rd<tM[Rx+X] 
Rd<+-M[Rx+X] 
M[R*+X]<-Rm 
M[R,+X]<-Rm 
M[Rk+X]<-Rm 

---------------------------------------------~------------
BRANCHING 

--------~--------------------------------------------------
JMP conditional jump COND,X(Rm) 
JMPR conditional relative COND,Y 
CALL call Rm,X(Rn) 

CALLR call relative Rm,Y 

RET return Rm,X 

MISCELLANEOUS 

GTLPC I get last pc ·. 
GTIN get interrupt number 

pc<1;X+Rm 
pc<;..pc+Y 
Rm<~pc; 
pc<-X+Rn,CWP--
Rm<-pc; 
pc<'.'"pc+Y,CWP--
pc< ... Rm+X,CWP++ 

'

Rm<-last pc 
Rm<-INR 



CHAPTER III 

FUNCTIONAL PROOF OF CORRECTNESS THEORY 

Different methods for proving the correctness of a 

program exist [l, 2, 3, 8, 9, 10, 11]. At least one of these 

methods, the axiomatic approach, preceded the introduction 

of structured programming; however, another approach, the 

functional correctness method, developed as an extension of 

structured programming. The functional proof of correctness 

technique requires that a program be structured because the 

basis of the proofs is dependent on the control structures 

of a structured program and the self-containment of program 

parts implied by the structuring. The technique is also 

based on the mathematical concept of functions as the name 

implies. The objective of the method is the comparison of 

the intended program function and the derived program 

function. Program structure and program functions form the 

foundation of the functional proof of correctness method. 

Flowchart Symbols 

Flowcharts are used to illustrate program structures 

and functions graphically. A flowchart consists of nodes 

and directed lines. Each node represents 
I 

a program 

15 
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instruction, and the directed lines delineate the possible 

flow of control. The three node structures of a flowchart 

are shown in Figure 4. First is the function node 

characterized by having one in-line and one out-line. Next 

is the predicate node which has one in-line and two out­

lines. In the flow of control one out-line is taken 

according to whether the decision represented by the 

predicate evaluates to true or to false. Conventionally, 

the upper line represents the true path~ consequently, the 

out-lines of a predicate node are marked only in the case 

that there is an exception to this convention. The final 

structure is a collecting node characterized by 2 in-lines 

and one out-line [7, 8, 9, 11]. 

Prime Programs and Structured Programming 

A proper program can be defined as a program with the 

following four properties: 

1. one entry 

2. one exit 

3. no unreachable code 

4. no unleavable code [ 7]. 

Figures 5 and 6 [9] illustrate an example of a proper 

program and four programs that are not proper· programs, each 

violating one of the properties of a proper program. 

A proper program may contain parts that are themselves 

proper programs. These are called proper subprograms. A 

proper program that has no proper subprogram of more than 
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M f r 

a.) Function Node 

b.) Predicate Node 

. . 
c.) Collecting Node 

Figure 4. Flowchart Node Structures 
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a.) Proper 

b.) Two Entries 

c.) Two Exits 

Figure 5. Proper Program and Proper Program Violations 
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a.) Unreachable Code 

b.) Unleavable Code 

Figure 6. Proper Program Violations Continued 



20 

one node is a prime program [8, 9]. Figure 7 [9] shows 

three proper programs containing proper subprograms of more 

than one node. These proper subprograms are shown in Figure 

7. The proper subprograms of Figure 8 are also prime 

programs since these subprograms do not have any proper 

subprograms of more than one node. An analogy may be drawn 

between prime programs and prime numbers: the only factors 

of a prime number are itself and one, and the only proper 

subprograms of a prime program are itself and single-node 

proper subprograms. 

A control structure is a representation of the ordering 

between function nodes, predicate nodes, and collecting 

nodes with no regard to the program text [8, 9]. A basis 

set is a fixed set of control structures [8, 9]. There are 

6 control structures, function, sequence, ifthen, 

ifthenelse, dowhile, and dountil that form the basis set for 

a structured program. That is, a structured program can be 

constructed from these 6 control structures. If the.prime 

programs of 1, 2, 3, and 4 nodes are enumera:ted, and the 

control structures that do not contain at least one function 

node are eliminated since they are not useful,· the 6 control 
;• 

structures that make up the basis set fdr a structured 

program remain [8, 9]. Figure 9 illustrates these 6 

structures. One other control structure, a dowhiledo, also 

remains. Figure 10a gives the structure of a dowhiledo. 

Mills [8] includes this structure in the !basis set, but 

since the dowhiledo can be constr~ted from t~o su~rograms 
. 1: 

1: 



Figure 7. Proper Programs Containing Proper Subprograms 
of More Than One Node 

21 
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~ ' 
, 

Figure 8. Proper Subprograms of the Proper Programs in 
Figure 7 

22 
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0 > 

a.) Function f 

8 8 > 

b.) Sequence f;g 

c.) Ifthen if p then f fi 

d.) Ifthenelse if p then f else g fi 

e.) Whiledo while p do f od 

> 

f.) Dountil da f until pod 

Figure 9. Six Control Structures of Structured Programming 
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. f 

a.) dol f while p do2 god 

f 9 

+ 

b.) while p dog: £ od 

Figure 10. Conversion of Dowhiledo Structure to an 
Equivalent Structure 

24 
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as shown in Figure 10 [8], it is not included in the basis 

set in this report. This is consistent with some of the 

other sources such as Yourdan, IBM, and Hughes [7, 8, 16]. 

Program Functions 

As stated earller, the mathematical concept of 

functions is the basis of the functional correctness method. 

A function f is a. set of ordered pairs with all first 

members unique. The notation y = f(x) is used to indicate 

that the ordered pair (x,y) is an element of the function f. 

xis called the argument off and y the value off. The set 

of all arguments is the domain and the set of all values is 

the range [11]. A function may be expressed either by 

enumeration, listing the ordered pairs of the function, or 

by set notation, describing the function in words or 

mathematical notation within set brackets. An example of set 

notation is {(x,y) I x < y} which is read "the set of all 

pairs x and y such that xis less than y." 

A program determines a final data state given an 

initial data state. A program P contains variables 

~ ,~ , ••• ,~. Each variable ~may take on any value from a 

set of values dl. The set DS of all possible combinations 

of variable values is the data space, DS = d 1 x d~ x .•• x do. 

One element of DS, that is one combination of variable 

values, is a data state [l, 8]. Consequently, a program 

function is a mapping of a set of input data states into 

output data states. The function of a program· is often 
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represented 

notation: 

by [P], read "bracket P" [9]. In set 

[P] = {(X,Y) Xis an initial data state and Y is the 

final data state after the program P 

is executed} [l, 9]. 

The domain of [P] is the set of all possible initial data 

states. Each element of the domain of [P] must be able to 

map to an output data state. The domain of [P] is either 

equal to or a subset of the data space [l, 8]. For example 

the following program 

PROC addone(INOUT x: 1 •• 3) 

X := X + l; 

CORP 

has the data space DS = {1,2,3}, which are the possible 

values for x. The domain D = {1,2} is a subs,et of the data 

space. The value 3 is not an element of the domain because 

3 does not map into an output data state [8]. 

The functions of a program may be expressed in one of 

two ways, by use of set notation, or by use of conditional 

rules. Primarily conditional rules are used throughout this 

report, and set notation is used only briefly. 

The program function of 
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is [P] = {(X,Y)I Y = f(X)}. The program function of the 

sequence 

_x __ 1,. f 
y 

) 

is [P] = {(X,Y)I Y = g(f(X))} where this function is the 

composition of the functions f anq g. The program function 

of .the ifthenelse 

f 

g 

may be stated in set notation as 

[P] = {(X,Y)I p(X) & y = f(X)} u 
{(X,Y)I ~p(X) & y = g(X)}, 

and as a conditional rule as 

[P] = (p(X) -> Y := f(X) ~p(X) -> Y := g(X)). 

y 

In the latter method, a condition, in this case the 

predicate p, implies (->) a data state transition. If the 
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preceding three programs are combined to form the program 

g h 

X 

f 

k 

the program function developed for Pis 

[P] = (p(f(X)) -> y := h(g(f(X))) I 
~p(f(X)) -> Y := k(f(X))) [9]. 

In a flowchart 

> 

y 

represents a data state change. In a program an assignment 

statement represents a data state change. An assignment 

statement such as X ·-.- y+l implies that the value of X is 

changed and the value of all other variables r~mains the 

same. The concurrent assignment x,y := y+l, y-1 means that 

the value of x and y have changed simultaneously, and again 

all other variables remain unchanged. It is important to 

note that the concurrent assignment implies that the value 

of yon the right hand side of the assignment X ·-.- y+l is 

the value of y before the concurrent assignment y := y-1. A 

concurrent assignment may also be written x := y+l, y := y-1 

with the comma indicating concurrency._ 
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In illustration of a program function of a program that 

is less abstract than the previous program examples the 

program 

(the 

later 

[P] 

IF 
a = 2 

THEN 
X := b; 

ELSE 

FI 

IF 
a is even 

THEN 
X := Ci 

ELSE 
X := d; 

FI 

notational form of 

chapter) has t-he 

= (a = 2 -> X ·-.-
a is odd -> X 

this program 

function 

bl a is even 

:= d) [8]. 

An alternate notation is 

[P] = (x ·-.- (a= 2 -> bl a is even 

will be discussed in a 

-> X := cl 

-> cl a is odd-> d)). 

Another alternative is to use TRUE instead of the final 

condition a is odd. TRUE indicates a condition covering all 

other possibilities in the data space [l, 8, 9•]. It is not 

as precise as actually stating the condition and must be 

used carefully. For example the following program functions 

are not the same: 

1. [x > 0 -> X := X - 11 X < 0 -> X := l] 

2. [x > 0 -> X := X - lj TRUE-> X := l]. 

In 1 if x = 0, then there is no change in the. yalue of x; 

however, in 2, x = 0 is part of the TRUE con4ition, so when 

x = 0, the value of xis changed to 1. 
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As previously mentioned a program maps an input data 

state into an output data state, and this mapping is the 

defined program function. There are actually two functions 

related to a program, the intended function and the derived 

function. The intended function is the stated functional 

intent of the program; whereas, the derived function is the 

actual mapping that occurs. Notationally, f represents the 

intended function and [P] represents the derived function, 

or alternately, if f represents the intended function, f' 

represents the derived function. 

In the functional correctness technique the intended 

function and derived function are compared, and program 

correctness is proved if one of the following is true 

1. f = [P] 

2. f C [P]. 

The first is called complete correctness, the same mapping 

and the same domain. The second is called sufficient 

correctness, same mapping for a common domain, but the 

derived function maps additional arguments that are not in 

the domain of the intended function [l, 2, 3; 8, 9, 10, 11]. 

Figure 11 [8] graphically illustrates the cases of 

·incorrectness, complete correctness, and sufficient 

correctness. As an example of the levels of correctness the 

function f = {(l,M),(2,Tu),(3,W),(4,Th),(5,F)} is an 

intended function. The following are three possible derived 

functions for f: 



f [P] f [P] 

0 0 
a.) Incorrect 

f and [ P]. 

0 
b.) Completely Correct 

[P] 

@) 
c.) Sufficiently Correct 

Figure 11. Graphical Illustrations of Functional 
Correctness 
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f' = {(l,Su),(2,M),(3,Tu),(4,W),(5,Th),(6,F),(7,Sa)} 

f' = {(l,M),(2,Tu),(3,W),(4,Th),(5,F)} 

f' = {(0,Su),(l,M),(2,Tu),(3,W),(4,Th),(5,F),(6,Sa)}. 
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The first demonstrates incorrectness, the second, complete 

correctness, and the third, sufficient correctness. In the 

sufficient correctness case the common domain of 1, 2, 3, 4, 

5 are mapped to the same values, but two other arguments, 0 

and 6. are also mapped to values by f' [8]. 

An important trait of functional proof of correctness 

that one should realize is that when the intended function 

is not equal to or not a subset of the derived program 

function, the proof does not resolve whether the function 

specification is incorrect or whether the function 

implementation is incorrect. Thus, both the program logic 

and the program specification should be considered when the 

reason for the failure of the proof is being determined. 

Stepwise Abstraction 

A compound or composite program is a program which 

contains at least one proper subprogram of more than one 

node [8]. A structured program is a compound program 

constructed from a fixed basis set of prime programs (the 6 

prime programs previously mentioned) [9]. A structured 

program begins as a single function and is developed into a 

compound program by a method called stepwise refinement. 

:This is an iterative process consisting of replacing 
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function nodes of a program by the prime programs in the 

bas i s set [ 8 , 9 , 11 ] . Figure 12 [11] illustrates the 

principle of stepwise refinement. Two replacement sequences 

are shown in Figure 11. In the first sequence the function 

f is replaced with the sequence structure g;h, and then his 

replaced with the ifthen structure if p then k fi. This 

sequence shows stepwise refinement. The second sequence has 

the same final program; however, it does'not follow stepwise 

refinement because of the discontinuity between steps 2 and 

3. The function g is introduced in step 3 with no 

indication of its derivation. It did not come about by 

being replaced by a previous function [11]. 

When the functional c~rrectness method is applied to 

prove the correctness of a program, stepwise abstraction 

which is the reverse of stepwise refinement is applied. 

Stepwise abstraction is an iterative process of replacing a 

prime program by a new function node until no prime programs 

remain to be replaced [9]. The final result is a program 

expressed as a single function node. Figure 13 illustrates 

an example of stepwise abstraction. The basis of both 

stepwise refinement and stepwise abstraction is the Axiom of 

Replacement: 

Let P be a proper subprogram of Q and let the 
replacement of P bf P' within Q result in Q'. 
Then [P] = [P'] -> [Q] = [Q'] (IBM ·[a] p. FN 7-07, 
Mills [9] p. 148) 

Thus, the proof of correctness of a program P becomes a 

proof of correctness of each abstraction of ,p that results 

from the stepwise abstraction process. It consists of 
I 
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Step 1 Step 1 

Step 2 Step 2 

Step 3 Step 3 

a.) Sequence 1 b.) Sequence 2 

Figure 12. Illustration of Stepwise Refinement 



35 

a b 

C 

d 

a.) Greatest Detail 

d 

b.) Step 1 

h 

c.) Step 2 

> 

d.) Step 3 

Figure 13. Illustration of Stepwise Abstraction 
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proving the correctness of a proper subprogram of P which 

is usually a prime program, and replacing the subprogram 

with its intended function. Pis now at a higher level of 

abstraction, and the process is repeated. For example, if 

the following program is given: F = if p then G else H fi, 

where G and H represent proper subprograms, then the 

approach taken might be to prove g = [G] and h = [H] where g 

and h represent the intended functions of subprograms G and 

H respectively. Then F becomes if p then g else h fi, and 

f = [F] may be proved [9]. Complete correctness results 

only if all the subprograms satisfy complete correctness; 

otherwise, if any of the subprograms satisfies only 

sufficient correctness, the whole program satisfies only 

sufficient correctness [9]. 

Program Correctness vs Program Verification 

Proving the correctness of a program is not the same as 

program verification. There are many aspects to program 

verification that are not included in a correctness proof. 

The functional correctness method verifies a program's 

defined function, or in other words, this correctness method 

verifies that a program maps a specified set of input data 

states into the desired output data states. The emphasis is 

on the mapping and the domain. Two aspects not verified by 

proof of correctness are argument-parameter agreement and 

variable correctness. 
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Also, in some proof of correctness techniques· such as 

the axiomatic approach the differentiation between local and 

global variables is important; however, this is not true in 

the functional correctness method [2]. The process of 

verification by stepwise abstraction relies on the self­

containment of each proper subprogram verified, and the 

intended function is specified such that it encompasses only 

its designated subprogram. For example the intended function 

of 

x,i := 0,1 

WHILE 

i <= 2 

DO 

x,i := x+l, i+l 

OD 

is x,i := 2,3. But the intended function of the whiledo 

subprogram without the preceeding initializations 

WHILE 

i <= 2 

DO 

x,i := x+l, i+l 

OD 

is x,i := x+3-i, 3. The function definition for this 

subprogram does not rely on the initialization of x or i. 

The concept illustrated in this example can bei expanded to 

procedures and global variables. The specjified intended 
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function of a procedure does not rely on the possibility 

that a variable is a global variable and that its value may 

be effected by another procedure. This implies that 

functional correctness does not verify the interface among 

procedures with respect to global variables~ however, there 

is partial verification. The proof does not establish that 

the correct global variable is used in a procedure, but it 

does guarantee the variable's functional value at the 

completion of a procedure. 

Summary 

The functional correctness method evolved from the 

premise that a program has a function that maps an input 

data state to an output data state. The intended program 

function 

the result 

completely 

is compared to the derived program function, and 

is the program is proved to be incorrect, 

correct, or sufficiently correct. In comparing 

the intended and derived functions of a program, one uses a 

process called stepwise abstraction. The 6 control 

structures of a structured program are important in stepwise 

abstraction because they are prime programs and in stepwise 

abstraction the objective is to replace each prime program 

with a single function until a program is represented by one 

function. Finally, program correctness and program 

verification are not equivalent. Program correctness is just 

one part of program verification and does not involve 

verifying all aspects of a program. 



CHAPTER IV 

PROOF SYNTAX AND METHODS 

The main objective of proof of correctness is to 

eliminate program logic errors by applying a systematic 

mathematical approach of program validation. An important 

aspect of this objective is that the approach is methodical. 

For a program to be validated methodically and not to be 

confirmed randomly, guidelines for the proof process are 

established. Guidelines outlining the form in which the 

program and general proof are written provide the framework 

for the functional proof 6f correctness method. Also 

included in the framework is the form and objective of the 

proofs for each control structure. These guidelines promote 

thoroughness and correctness in the proof process and also 

document the program and proof. Once the framework is 

established, then various techniques can be employed to 

shape the body of the proof. These techniques include mental 

verification, table traci~g, array and anonymous data 

handling, and conditional rule manipulation. 

39 
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Program Design Form 

A program design language or PDL is often used for the 

design stage writing of a program. There is no standardized 

PDL format; however, most PDL's have similar conventions. In 

this report the PDL format used is based on the format in 

Mills [9] augmented by some conventions from IBM [8]. 

An assignment statement· is the basic statement in 

programming, and in PDL, a colon followed by an equal sign, 

:=, is the assignment symbol. Another general-convention is 

enclosing self-contained sections of a program such as 

subprograms and procedures between a beginning keyword and 

an ending keyword. The ending keyword is the beginning 

keyword written backwards. For example the beginning keyword 

for a procedure is PROC, and the ending keyword is CORP. 

Keywords are written in capitals, and all other words are in 

small letters. In addition to writing nonkeywords in small 

letters, the text delineated by keywords is further 

delineated by being indented. 

Since the intended function plays a major part in a 

functional correctness proof, the proper specification of 

the intended function for each part of the program is 

important. Brackets, [], are used to delineate the intended 

function, and its placement precedes the section of PDL 

which is to perform that function. The intended function of 

a whole procedure is placed after the variable section. 
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The control structures that make up a structured 

program are fundamental in the writing of a program. Each 

structure has a specified format and intended function 

placement. The structures whose formats are defined are the 

sequence, ifthen, ifthenelse, whiledo, and dountil which are 

the basic structures. Also two other structures, the fordo 

and the case which are special cases of the sequence and 

ifthenelse respectively, are described. These two 

structures are not necessary but are practical extensions to 

the basic six control structures because they enhance 

program design without detracting from program structure. 

The sequence structure is composed of component 

operations written one below the other. Sometimes a 

semicolon is used to delimit the parts of the sequence when 

it is needed for clarity; otherwise, the semicolon is 

omitted. Usually there is no·beginning or ending keyword 

delimiters for a sequence; however, DO-OD may be used if a 

sequence performs a specific function. The intended function 

is placed to the side of the DO in this case. 

Ex. DO [x,y,z := y,z,x] 

X := y 

y := z 

Z := X 

OD 

The formats of the other control structures are as 

follows: 



ifthen 

ifthenelse 

whiledo 

dountil 

fordo 

[ f] 
IF 

p 
THEN [intended function for thenpart] 

g 
FI 

[ f ] 
IF 

p 
THEN [intended function for thenpart] 

g 
ELSE [intended function for elsepart] 

h 
FI 

[ f] 
WHILE 

p 
DO [intended function for depart] 

g 
OD 

[ f] 
DO [intended function for depart] 

g 
UNTIL 

p 
OD 

[f] 
FOR 

i := Ll to Ln 
DO [intended function for depart] 

g 
OD 
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case 
[ f ] 
CASE 

p 
PART CLl [intended function for part l] 

gl 

PART CLn [intended function for part n] 
gn 

ELSE 
h 

ESAC 
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The functional correctness method relies on strongly 

typed variables. The type specification is not verified by 

the proof, but it is applied in the proof. For example a 

type specification of x: INTEGER>= 0 and a condition of 

x <= 0 implies x = 0, and this fact may affect the result 

of the proof. So it is important that the type of each 

variable be specified. The type specification for a 

parameter should occur after the parameter in the parameter 

list~ and the type specifications for the local variables 

should occur at the beginning of a procedure before the 

function specification. A practical means of including the 

local variable type specifications in a procedure in the PDL 

is to place them in a "data procedure" and then indicate 

their use in a procedure by the keyword USE followed by the 

data procedure name. An example of a procedure with variable 

type specificati~ns included is 



PROC dotdotdot(x,y: INTEGER>= 0, 
c: A •• z ) 

USE othervars 

[ f] 

CORP 

DATA othervars 

t,u: INTEGER 

b: ARRAY[l .. 3] OF 0 •• 9 

ATAD 

Proof Form and Function 
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The general proof form consists of four parts written 

in a tabular form [8, 9]. These four parts are 

FUNCTION 

statement of or reference to the intended 
function 

PROGRAM 

statement of or reference to the subprogram 

PROOF 

proof body 

RESULT 

PASS or FAIL 

Under result a pass or fail is used to specify the proof 

outcome. If the data type of a variable influences the 

outcome of a program, then the type of this variable should 
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be stated under the FUNCTION or PROGRAM section of the 

proof so that the type is readily perceivable when the proof 

refers to it. 

The proof body under the PROOF section has a 

specialized form according to the proof objective for each 

control structure. The proof of each control structure is 

derived from the Correctness Theorem: 

The Correctness of an Alternation Expression. To 
prove f = IF p THEN g ELSE h FI it is necessary 
and sufficient to show, for every (x,y) E f, that 
either p(x) = T and y = g(x) or p(x) = F and 
y = h(x). 
The Correctness of a Composition Expression. To 
prove f = g;h it is necessary and sufficient to 
show, for every (x,y) E f, that y = h(g(x)). 
The Correctness of Iteration Expression. To prove 
f = WHILE p DO g OD it is necessary and sufficient 
to show, for every (x,y) E f, that the iteration 
terminates and that either p(x) = T and 
y = f(g(x)) or p(x)= F and y = x (Mills [11] 
p. 47). 

This is a condensed version of the Correctness Theorem. A 

more extensive version which includes the fordo, case, and 

dountil structures can be found in Mills [9]. 

The derived function of a sequence structure, g;h, is 

·the composition of the functions in the sequence hog (o 

represents composition). It is derived through trace tables, 

a proving technique discussed later in this chapter. The 

proof body has no specific form beyond the derivation of the 

program function. 

have a proof form. 

The rest of the structures, however, do 

In the following descriptions, f represents the 

intended function. The ifthenelse structure, if p then g 



else h fi, has the form 

IFTEST TRUE (p -> g) 

show f = 9 
PASS or FAIL 

IFTEST FALSE ( .,p -> h) 

show f = h 
PASS or FAIL 
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An ifthen structure, if p then 9 fi, is similar to the 

ifthenelse. The difference is in the IFTEST FALSE section 

the program function is the identity or I, so f = I is 

shown. Examples of ifthenelse and ifthen proofs follow [9]. 



FUNCTION 

x := min(a,b) 

PROGRAM 

IF 
a < b 

THEN 
X := a 

ELSE 
X := b 

FI 

PROOF 

IFTEST TRUE (a< b) 

f: x := min(a,b) 
:= a 

g: X := a 

f = 9 
PASS 

IFTEST FALSE (a>= b) 

f: x := min(a,b) 
:= b 

h: X := b 

f = h 
PASS 

RESULT 

PASS 
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FUNCTION 

y := abs(y) 

PROGRAM 

IF 
y < 0 

THEN 
y := -y 

FI 

PROOF 

IFTEST TRUE (y < 0) 

f: y ·-.- abs(y) 
·-.- -y 

g: y := -y 

f = g 
PASS 

IFTEST FALSE (y >= 0) 

f: y : = abs ( y) 

f = I 
PASS 

RESULT 

PASS 

:= y 

48 
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The case structure, case p part (CLl) gl part (CLn) gn 

else h esac, has the form 

PART n (p E CLn -> gn) 

show f = gn 
PASS or FAIL 

ELSEPART (p $ (CLl, .•• ,CLn) -> h) 

show f = h 
PASS or FAIL. 

The proof of a whiledo structure, while p dog od, is 

dependent on the iteration recursion theorem [l, 8, 9] which 

states f = [while p do h od] if and only if the loop 

terminates and f = [if p then g;f fi]. 

while p do 

Figure 

god 

14 

and illustrates the equivalence of 

if p then g; while p dog od fi. The iteration recursion 

theorem is a recursive application of this equivalence. A 

proof of the theorem is in Mills[9] and a discussion of the 

theorem is in IBM [8]. Basically there are two steps, first 

the loop is shown to terminate, then the iterative whiledo 

loop is converted to an equivalent 

structure 

[ f] 
WHILE 

p 
DO 

9 
OD 

iterative 

converted to 
---------.--> 

recursive 

[ f] 
IF 

p 
THEN 

g;f 
FI 

recursive 

ifthen 

Thus, a whiledo proof is actually an ifthen proof. The 

proof ·in the IFTEST TRUE is a proof of a seq~ence structure 



g 

while p dog od 

g 

g 

if p then g fi ; while pod god 

Figure 14. Flowchart Equivalence of a Whiledo and 
Ifthen ; Whiledo Sequence 
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with the dopart of the whiledo the first function of the 

sequence and the specified function the second sequence 

function. The proof structure is 

TERM 

show the loop terminates 
PASS or FAIL 

WHILETEST TRUE (p -> g;f) 

· show f = f o g 
PASS or FAIL 

WHILETEST FALSE (~p -> I) 

show f = I 
PASS or FAIL 

where WHILETEST TRUE and WHILETEST FALSE are used instead of 

IFTEST TRUE and IFTEST FALSE, respectively. An example of a 

whiledo proof is given in the next section after trace 

tab+es are introduced. 

A dountil structure, dog until pod, can be verified 

in two ways [8, 9]. One way is based on, the iteration 

recursion theorem. A description and an example of this way 

can be found in Mills [9]. The other way is to convert the 

dountil structure to an equivalent ·initialized whiledo 

structure as shown in Figure 15. After the conversion, a 

combination of a whiledo proof followed by a sequence proof 

is used to prove the dountil. If one becomes accustomed to 

the whiledo proof, then this second method of proving a 

dountil is usually the easier of the two methods because the 

iterative recursive method of the dountil can be more 

difficult than th• whiledo proof since it deals with the 



g 

a.) dog until pod 

g 

g 

b.) g: while ~p dog od 

Figure 15. Flowchart Equivalence of Dountil and 
Initialized Whiledo 
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composition of the predicate p and the function g. 

The final structure to be considered is the fordo 

structure, for i := Ll to Ln dog od. There are three 

possible approaches to prove a fordo, expand the loop into 

an extended sequence, convert the fordo to an equivalent 

initialized whiledo, or apply mathematical induction [8, 9]. 

The first approach is used only if the structure is a simple 

fordo with a small index list. For example [8] 

FOR 
i ·-.- 1 to 3 

DO 
sum ·-.- sum + i 

OD 

can easily be expanded to 

sum := sum + 1 
sum ·-.- sum + 2 
sum ·-.- sum + 3. 

The second approach, converting to an initialized 

whiledo, is probably the most viable method of the three. 

This approach is similar to the second method described for 

proving a dountil. Figure 16 shows a fordo converted to an 

equivalent initialized whiledo structure. 

In the induction method, the induction variable dan be 

either a variable in the fordo list description or the size 

of the fordo list [9]. This method is the most difficult of 

the three approaches, and the rigor required for this 

approach is not usually needed. The mathematical induction 

method is not used in this report. 
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Mental Verification and Trace Tables 

The program syntax and proof syntax set up the 

documentation and program function derivation and 

verification. Mental verification and trace tables are the 

means of function derivation and verification. Mental 

verification is used when the program function can be 

derived and verified by inspection. Usually when mental 

verification is used, the program segment is very simple or 

the intended function and program implementation correspond 

straightforwardly so that deriving the program function is 

superfluous. The goal of the correctness proof is a 

conviction that the program is correct, and oftentimes, a 

mental check is enough to convict one of a segment's 

correctness. For example 

DO [x :=a* a] 

X := a 

X := X * X 

OD. 

This program is simple and can be easily verified by 

inspection rather than by the more lengthy method of trace 

tables. 
i 

Trace tables provide a general trace of the data state 

from the initial data state of a subprogram to the final 

data state. Then backward substitution is applied to specify 

the final data state in terms of the initial qata state. The 
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subscript of O is used to indicate the initial state, and 

sequentially increasing subscripts are used for subsequent 

states. For example, the program function of 

DO 

X := X + y 

y := X - y 

X := X - y 

OD 

is derived through a trace table 

state change 

1st 

2nd 

3rd 

X 

X 1 = X0 + Yo 

X1 = X 1 • 

y 

Ya = Yo 

y~ = x, - y, 

YJ = Ya 

Each assignment statement corresponds_ to a data state 

change, and if the data state change is the nth change, then 

the n-1 values affect this change because they are the most 

recent values of the variables. One other aspect of the 

trace table is that a data state encompasses all variables 

of a p~ogram, so at each step the value of each variable is 

indicated even though the values of some of the variables 

remain the same. For example, at the second data state 

change the value of x 

indicated by x. = x1 • 

was not altered, and this is 

After the table is set up, the program function is 
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derived by backward substitution: 

X3 = X2 - y4 

= x, - (x, - y,) 

= (Xo + Yo) - ( (Xo + Yo) - Ya ) 

= Yo 

Yi = y,. 

= x, - y, 

= (Xo + yo ) - Yo 

= Xo 

Now the final value of each variable is expressed in terms 

of the initial value of each variable which defines the 

function· of the program. In this example the derived 

function is x,y := y,x [8]. 

The trace table can be used for any size sequence with 

any number of variables as in the following example [9]. 

DO 

w,x := x+y, y+z 

y := z+w 

z,w := w+x, y-z 

OD 

w X y z 
------------~--------------------------------
W, = Xo + yo x, = Yo + Zo Y• = yo z, = Zo 

W,1. = W, Xa. = x, y,. = z, + w, zi = z, 

W3 = Ya - Z.a. X.3 = X,;i. y,, = Ya. Z3 = w. + X.a. 
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derivations: 

w., = Y~ - Z.z 

= ( z, + w, ) - z, 

= ( Zo + ( Xo + Yo)) - Zo 

= Xo + Yo 

XJ = X.2, 

= x, 

= Yo+ Zo 

YJ = y~ 

= z, + w, 

= Zo + (Xo + yo} 

Z3 = W,1. + X.;i 

= W, + x, 

= ( Xo + Yo) + (yo+ Zo) 

= Xo + 2yo + Zo 

derived function: w,x ·-.- x+y, y+z, 

y,z ·-.- z+x+y, x+2y+z. 

Five Examples 

The following five examples illustrate various aspects 

discussed about functional correctness proofs. An example of 

a whiledo and a fordo proof is given, and also illustrated 

are proof syntax, trace tables, proof failure, and 

sufficient correctness. 



The first·proof is an example of a whiledo proof [9]. 

FUNCTION 

x,y,a := 0, ax+ y, a 
VAR x :. INTEGER >= 0 

PROGRAM 

WHILE 
X > 0 

DO 
x,y := x--1, y+a 

OD 

PROOF 

TERM 

x is decremented regulat:rly. by 1, so it e.vehtually will 
be less than z~ro. 
PASS 

WHILETEST TRUE (x > 0) 

x· y a 

dopart x, = x0 - 1 Y, = Yo+· ao 

f X.,i = 0 a~= a, 

derivations: 

y:,. = a, x, + y, 

= a 0 ( Xo - 1) + ( Yo + ao) 

= ao Xo + yo 

derived function: x,y,a := O, ax+ y, a 
PASS 
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WHILETEST FALSE (x <= 0) 

x <~ 0 combined with data type x >= 0 implies x = 0 

y =ax+ y 

= 0 + y 

= y 

X = 0 

= X 

a = a 

f = I 
PASS 

RESULT 

PASS 
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In the trace table in the WHILETEST TRUE section the rows of 

the trace tab+e are labeled as dopart and f to reinforce the 

origin of the data.state changes represented in these rows. 
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The next example demonstrates sufficient correctness. 

FUNCTION 

n < 30 -> n := n + i 

PROGRAM 

IF 
n < 30 

THEN 
n ·-.- n + i 

FI 

PROOF 

IFTEST TRUE (n < 30) 

f: n . -.- n + i 

g: n ·-.- n + i 

f = g 
PASS 

IFTEST FALSE (n >= 30) 

f is undefined for n >= 30 and the.program function maps 
n and i into the identity, thus, it maps additional 
arguments. 

PASS (sufficient) 

RESULT 

PASS (sufficient) 
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The next two proofs are examples of a failure in the proof. 

FUNCTION 

x := min(a,b) 

PROGRAM 

IF 
a < b 

THEN 
X := b 

ELSE 
X := a 

FI 

PROOF 

IFTEST TRUE (a< b) 

f: X = min(a,b) 
= a 

g: X = b 

f ""= 9 
FAIL 

IFTEST FALSE (a>= b) 

f: x = min(a,b) 
= b 

g: X = a 

f ""= 9 
FAIL 

RESULT 

FAIL 



FUNCTION 

i <= 4 -> x,i := x+4, 5 I TRUE-> I 

PROGRAM 

WHILE 
i <= 4 

DO 
x,i := x+l, i+l 

OD 

PROOF 

TERM 

1 is incremented regularly , so it eventually will be 
greater than 4. 

WHILETEST TRUE (i <= 4) 

dopart 

f 

X i 

X 1 = X0 + 1 i, = i 0 + 1 

i,i = 5 

derivations: 

X,:i. = x, + 4 

= Xo+ 1 + 4 

= Xo + 5 

derived function: x,i . -.- x+S, 

f ""= f' 
FAIL 

WHILETEST FALSE ( i > 4) 

5 

f = I indicated in the specification off 
PASS 

RESULT 

FAIL 
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The latter example also illustrates two other notions 

about a whiledo proof. The first is that if a variable is 

assigned a constant in the intended function, then the 

mapping derived for that variable under WHILETEST TRUE 

always passes. The second notion is that if the intended 

function specifies the identity transformation for the 

WHILETEST FALSE condition (in this case i > 4), then 

WHILETEST FALSE always passes. 

The fifth example illustrates a fordo proof. 

[x := x+99] 
FOR 

i := 1 to 100 
DO 

X := X + 1 
OD 

[x := x+99] 
i := 1 
[x,i := x+lOO-i, 101] 

converted to WHILE 
------------> i <= 100 

DO 
x,i := x+l, i+l 

OD 

The proof has two parts: the uninitialized whiledo is 

proved, and then the sequence of the initialization 

assignment and the whiledo intended function is proved. 



First is the proof of the whiledo. 

FUNCTION 

x,i := x+lOl-i, 101 
VAR i: 1 <=INTEGER<= 101 

PROGRAM 

(this type specification 
evolved from the fordo 
loop) 

The uninitialized whiledo specified earlier 

PROOF 

TERM 

1 1s incremented regularly , soi eventually will be 
greater than 100. 

WHILETEST TRUE (i <= 100) 

dopart 

f 

X 

X1 = Xo + 1 

x.t = x, + 101 - i, 

derivations: 

X,a. = X1 + 101 - i, 

= ( X0 + 1 ) + 101 - ( i 0 + 1 ) 

= X 0 + 101 - i0 

i 

i 1 = i 0 + 1 

i.z. = 101 

derived function: x,i := x+lOl-i, 101 
PASS 
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WHILETEST FALSE (i > 100) 

i > 100 and type specification of i <= 101 implies 
i = 101 

X = X + 101 - i 

= X + 101 - 101 

= X 

f = I 
PASS 

RESULT 

PASS 
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Second is the proof of the sequence. 

FUNCTION 

X := X + 100 

PROGRAM 

DO 
i : = 1 
x,i := x+lOl-i, 101 (intended function of whiledo) 

OD 

PROOF 

X i 

X, = Xo i 1 = 1 

X;i, = X 1 +101-i, i.,i = 101 

derivations: 

X;i, = x, + 

= Xo + 

= Xo + 

derived 
PASS 

RESULT 

PASS 

101 - i, 

101 - 1 

100 

function x,i . -.- x+lOO, 101 
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Arrays and Anonymous Data 

Arrays, sequences, stacks, queues, and sets are 

abstract data types used during the designing of a program. 

Because of their use in the design stage of program writing, 

these data structures have to be handled in correctness 

proofs; consequently, techniques for manipulating these 

structures in a functional correctness proof have been 

developed. 

Array manipulation begins with the notation used to 

express the various aspects of an array. An array variable 

is indicated by a succeeding subscript enclosed in brackets 

like vector[3]. The range of an array is indicated in the 

type declaration by writing starting-index •• ending-index 

within the brackets, vector[l •• 10]. In assignment statements 

all or part of the array may be referenced. If the whole 

array is being referenced, no subscripting is necessary. 

Some examples of array assignments are 

1) word[l •• 3] := c,o,m 

2) word[l,3,5,7] := c,m,u,e 

3) word:= c,o,m,p,u,t,e,r 

4) word:= c 

1) illustrates an assignment where the consecutive elements 

of an array are referenced, thus ellipses, •• , are used to 

specify the range of elements being referenced. The range 

indicated in the brackets must match the number of elements 

on the right hand side of the assignment. Also if the 
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beginning number of the range is greater than the ending 

number, then the notational implication is that no 

assignment is made. In 2) since the elements being 

referenced are not consecutive, each subscript is written 

out: however, the variable name does not have to be repeated 

each time. Once again the number of elements implied on the 

left hand side must match the number on the right hand side. 

3) and 4) illustrate references to the whole array. In 3) 

the array size is assumed to be equivalent to the number of 

elements on the right hand side. When there is a scalar on 

the right hand side as in 4), each indicated element of the 

array assumes the value of the scalar. 

The notation for multidimensional ar~ays is similar to 

one dimensional arrays except a semicolon. separates the 

dimensions. For example mat[3:l •• 6] refers to elements in 

row 3, columns 1 through 6: mat[B,11:2] refers to elements 

in column 2, rows 8 and 11. The notation mat[2] refers to 

the whole second row of mat and mat[:3] refers to the whole 

third column of mat. This notation can be extended for 

arrays of dimensions greater than two. The array notation 

just described was devised by this author for use in this 

report. It is an aggregate of notation used in IBM [8] and 

Mills [9] and used by different programming languages, and 

it should not be considered standard notation. 

The difficulties that arise with array data are that 

only part of the array is altered in most assignments and 

not only the array but also the index of the array may be 
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affected in a program segment. An example of a proof with 

arrays is the best explanation of how to handle these two 

difficulties. (The following proof is extracted from the 

correctness proofs of the RISC simulator which is the 

substance of the next chapter. This proof is part of the 

correctness proof for the shift left procedure). 



FUNCTION 

i,dest[i •• (31-amt)] := 32-amt, source[(amt+i) •• 31) 
VAR i: INTEGER<= 32-amt (This type declaration evolves 

from a fordo loop) 
dest,source: ARRAY[0 •• 31) of 0 •• 1 

PROGRAM 

WHILE 
i <= 31-amt 

DO 
i,dest[i] := i+l, source[amt+i] 

OD 

PROOF 

(in the proof dis used for dest, s for source, 
and a for amt) 

TERM 

1 1s incremented regularly, so it eventually will be 
greater than 31 - a 

WHILETEST TRUE (i <= 31-a) 

i d 

dopa rt i 1 = io + 1 d 1 [ 0 •• i0 -1 ] = do [ 0 •• io -1 ] 

f i.a. = 32-a 

d I [ io + 1 •• 31 ] = do [ io + 1 •• 31 ] 

d 1 [ io ] = S [a+ io ] 

d;. [ Q • • ii -1] : d I [ Q • • ii -1] 

d,-[i, •• (31-a)] = s[(a+i 1 )..31) 
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derivations: 

d,1.[0 •• (i 1 -1)] = d, [O •• (i1 -1)] 

d, [ 0 •• ( i 0 + 1) -1] = d 1 [ 0 •• ( i 0 + 1) -1] 

dJ. [ 0 •• i 0 ] = d 1 [ 0 •• io ] 

d,;t. [ 0 •• i 0 -1] , d [ io ] = d 1 [ 0 •• io -1] , d 1 [ ic, ] 

= d0 [ 0 •• ia -1] , S [a+ io ] 

d.;z.[i 1 •• (31-a)] = s[(a+i, ) •• 31] 

d.i[ ( io + 1 ) •• ( 31-a ) ] = s [ (a+ ( i O + 1 ) ) •• 31 ] 
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derived function: i,d[i •• (31-a)] := 32-a, s[(a+i) •• 31] 
PASS 

WHILETEST FALSE (i > 31-a) 

i > 31-a combined with type i <= 32-a implies i = 32-a 

d[i..(31-a)] = s[(a+i) •• 31] 

d[(32-a) •• (31-a)] ==> nothing is changed since the low 
index< high index 

PASS 

RESULT 

PASS 
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In the assignments of the depart in the WHILETEST TRUE 

section, only one element of the array dis changed, and 

this is indicated by the first two assignments to d which 

show that the elements preceding and following element i 

remain the same. The fact that the element of d that is 

changed depends on the variable i is controlled in the trace 

table and in the derivation by careful subscripting of i to 

indicate the correct data state value at each assignment. 

Mills [9] refers to data structures such as sequences, 

stacks, queues, and sets as anonymous data because members 

can be accessed without individual item names. Anonymous 

data manipulation is introduced, but a detailed and 

comprehensive look at anonymous data handling is not covered 

in this report because of its magnitude. More thorough 

explanations and descriptions of the subsequent ~oncepts 

about anonymous data can be found in IBM [8] and Mills [9]. 

The structures that are classed as anonymous data are 

all list structures, and the basic idea behind their 

manipulation is that special list operations and functions 

are defined. Some list operations and functions are 

operation 

II 
H 

T 

word description 

concatenation 

head of list 

tail of list 



function 

PUSH 

DEQUE 

SUM 

MEMBER 

list structure 

stack 

queue 

any list 

set 

List structures q, r, s, and tare defined as follows: 

q = MONTIE (queue) 

r = FISH (sequence) 

s = ER (sequence) 

t = 1,2,3,4 (set), 

74 

·and are used to illustrate the use of some of the preceding 

functions and operations as follows: 

r I I s = FISHER 

H(r) = F 

T(s) = R 

DEQUE(q) = ONTIE (DEQUE removes the first element 

of a queue) 

SUM(t) = 10 (SUM adds up all the values in the 

list structure. The values in the 

list must be integers for SUM to 

be used) 

Many more operations and functions for list structures have 

been defined and are included in the descriptions in IBM·[a] 

and Mills [9]. 
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The following example demonstrates the use of list 

functions and operations in a proof of a program that 

contains anonymous data [8]. 

FUNCTION 

total, que := SUM(que) + total, EMPTY 
(EMPTY is a keyword related to list structures signifying 
that there are no elements left in the list) 

VAR que: QUEUE of INTEGER 

PROGRAM 

WHILE 
que -,= EMPTY 

DO 
total :=total+ DEQUE(que) 

OD 

PROOF 

(in the proof tis used for total, q for que) 

TERM 

An element of the queue is removed at each iteration, so 
eventually the queue will be empty. 

WHILETEST TRUE (q -,= EMPTY) 

t q 

dopart t, = to+ H(qo) q, = qo - H ( go ) 

f t~= SUM(q,) + t, q~= EMPTY 



derivations: 

ta= SUM(q, ) + t, 

= SUM(qo - H ( qo ) ) + (to+ H(qo).) 

= to+ (SUM(qo- H(qo)) + H (qo ) ) 

= to+ SUM(qo) 

derived function: t,q := t + SUM(q), EMPTY 
PASS 

WHILETEST FALSE (q = EMPTY) 

t = t + SUM(q) but SUM of an empty list is defined 
to be zero sot= t 

PASS 

RESULT 

PASS 
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Conditional Rules 

The simplest form of a conditional rule is a single 

condition followed by a single rule. However, conditional 

rules usually are not this simple. Complexity arises with 

conditional rule situations such as multiple path 

conditions, conditional rules nested within conditional 

rules, or sequences with 

among unconditional rules. 

complex conditional rules 

conditional rules interspersed 

Manipulation of these cases of 

is a methodical step by step 

process in a functional correctness proof. 

The steps taken to verify a derived program function 

with multiple path conditions or nested conditional rules 

are: 

1. reexpress the derived function so that the predicates are 

disjoint 

2. partition the domain of the specified function according 

to the derived function conditions 

3. compare the function rules of the derived function and 

intended function in each of the partitions. 

These steps are enough to insure sufficient correctness. For 

complete correctness the domains of the two functions must 

be shown to be equal also [8, 9]. 

Disjoint conditions or predicates are conditions whose 

specified partitions do not overlap [8, 9]. If pl and p2 are 

disjoint predicates then pl & p2 = false. To make 

consecutive conditional 

p3 -> g3 disjoint, one 

rules such as pl-> gl 

combines the negation 

p2-> g2 I 
of all 
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preceding predicates with each predicate pl-> gl 

~pl & p2 -> g2 I ~pl & ~p2 & p3 -> g3. The conditional rule 

X > 5 -> X := 1 x > 3 -> x := 4 I x > 2 -> x := 5 

can be converted so that each condition is disjoint to 

x > 5 -> x := 1 x <= 5 & x > 3 -> x:= 7 I 

X <= 5 & X <= 3 & X > 2 -> X := 5 

which is equivalent to 

X > 5 -> X := 1 3 < x <= 5 -> x:= 7 I 
2 < X <= 3 -> X := 5. 

When there are nested predicates in a conditional rule, 

the predicates are converted to disjoint predicates at each 

level, and then the higher level or outer predicates are 

distributed into the inner predicates. In illustration, the 

conditional rule 

x > 9 -> (x > 18 -> a := x I x = 18 -> b := x 

X > 12 -> C := x) X > 3 -> d := X 

has two levels. At one level, x > 18, x = 18, x > 12 are. 

converted to the disjoint predicates x > 18, 

x <= 18 & x = 18, x <= 18 & x ~= 18 & x > 12 which when 

simplified become x > 18, x = 18, 12 < x < 18. And, at the 

other level, x > 9 and x > 3 are converted to the disjoint 

predicates x > 9, x <= 9 & x > 3 or x > 9, 3 < x <= 9. 

Finally, the outer predicate x > 9 is distributed through 

the inner conditional rules 

x > 9 & x > 18 -> a := x I x > 9 & x = ·19 -> b := x I 
x > 9 & 12 < x < 18 -> c := x I 3 < x <= 9 -> d := x 



which simplifies to 

x > 18 -> a := x I x = 18 -> b := x I 
12 < X < 18 -> C := X 

3 < X <= 9 -> d : = X [ 8] • 
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Once the derived program function is reexpressed as 

consecutive disjoint rules 

pl-> rl I p2 -> r2 I p3 -> r3, 

then the domain of the specified function is partitioned 

according to the disjoint predicates, and the rules of the 

derived function and intended function are compared in each 

partition 

in pl(X) does rl(X) = f (X)? 

in p2(X) does r2(X) = f ( X)? 

in p3(X) does r3(X) = f ( X)? 

The following proof illustrates the steps for handling 

the proof of a multiple path program with nested conditions. 



FUNCTION 

z <= 10 -> y := 2 I x >= 5 -> y := 1 I TRUE-> y := 0 

PROGRAM 

z > 10 -> (x < 5 -> y := 0 I x > 1 -> y := 1) I 
z <= 15 -> y := 2 

PROOF 

1. make predicates disjoint 

x < 5, x > 1 become x < 5, x >= 5 & x > 1 or 

X < 5, X >= 5 

z > 10, z <= 15 become z > 10, z <= 10 & z <= 15 or 

z > 10, z <= 10 

2. distribute the outer condition 
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z > 10 & x < 5 -> y := 0 I z > 10 & x >= 5 -> y := 1 I 
z <= 10 -> y :=2 

3. partition domain off and compare rules 

when z > 10 & x < 5 does f = (y := 0)? yes 

when z > 10 & x >= 5 does f = (y := l)? yes 

when z <= 10 does f = (y := 2)? 

RESULT 

PASS 

yes 
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From multiple path programs the complexity increases to 

sequences of conditional and unconditional rules. A case 

structured approach is applied to handle this occurrence. 

The conditions are recorded in the trace table along with 

the data state changes, and backward substitution is used to 

derive the condition as well as the rule for each case. 

The cases are created by determining the possible paths 

of the program and labeling each case in termsl of T(rue) and 

F(alse) according to the value of each predicalte along the 

path. In the case of 

IF 
X < 0 

THEN 
y := 3 
IF 

X >= -4 
THEN 

X . -.- 2 
ELSE 

z ·-.- -2 
FI 

ELSE 
y,z . -.- 0,0 

FI 

the possible paths are TT, TF, and F. So there are three 

cases to handle for this program. 

Once the possible paths are determined, the function 

for each path is derived as a conditional rule in terms of 

the initial state of the variables. Both the rule and the 

condition are derived for each case. The following sequence 

program illustrates the case structured approach [8]. 



IF 
X < 0 

THEN 
X • -.-

ELSE 
y := 

FI 
x,y ·-. -
IF 

y < 
THEN 

J:{ := 
ELSE 

y := 
FI 

0 

X + y 

X + y 

y, X 

X - y 

X - y 
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+ y 

The possible paths are TT, TF, FT, FF. The detjivation of the 

TT path proceeds as follows: 

condition X y 

X 0 < 0 

y~ < 0 x., = X;1. - Y;. YJ = y~ 

derivations: 

condition Xo < 0 & Y;. < 0 

Xo < 0 & x. + Y• < 0 

Xo < 0 & Xo + Yo+ Yo< 0 

Xo < 0 & x~ + 2yo < 0 

rule X3 = X;i. - Y-. Y3 = y~ 

= y, - (x, + y, = x. + Y• 

= -(xo + Yo ) = (xo + Yo 

= Xo + 2yo 

derived function for TT case: 

+ Yo 

Pl= X < 0 & X + 2y < 0 -> x,y := -x - y, X + 2y. 

It should be noted that under the condition column, y is 
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used in the condition rather than Yo or~ because by the 

time the condition y < 0 has an influence on the program, 

there already have been two data state changes. The data 

state at the time a condition becomes active is the state 

used in the condition in the trace table, otherwise, the 

derived condition will be incorrect. 

The derived functions for the other three paths are 

TF: P2 = X < 0 & x+2y >= 0 -> x,y := y, -x-y 

FT: P3 = X >= 0 & 2x+y < 0 -> x,y =~ -x, 2x+y 

FF: P4 = X >= 0 & 2x+y >= 0 -> x,y :1= x+y, -x. 

The final derived program function is 

[ P] = Pl I P2 I P3 I P4. 

The verification step is now the same as the verification 

step for the multiple path case. The domain ~f the intended 

function f is partitioned according to the conditions of the 

derived function and the rules in each partition are 

compared. That i S, 

does f = (x,y . -.- -x-y, x+2y) for X < 0 & x+2y < O? 

does f = (x,y ·-.- y, -x-y) for X < 0 & x+2y >= 0? 

does f = (x,y ·-.- -x, 2x+y) for X >= 0 & 2x+y < 0? 

does f = (x,y := x+y, -x) for X >= 0 & 2x+y >= 0? 

The case structured approach is used not only for 

ifthen and ifthenelse structures but also for whiledo 

structures when the intended function is expressed as a 

conditional rule. The following whiledo is an example where 

the case structure would be applied [8]: 



[x>y -> x,y := x-y, 0 I TRUE-> x,y := o, y-x] 
WHILE 

X > 0 & y > 0 
DO 

x,y := x-1, y-1 
OD. 
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In the WHILETEST TRUE segment of the proof the sequence used 

for deriving the program function is 

x,y := x-1, y-1 (depart) 

( f ) x>y -> x,y := x-y, 0 I 
TRUE-> x,y := 0, y-x 

which is a sequence with both 

conditional rule. 

an uncqnditonal and 

When the case structure is used in a wh~ledo function 

derivation, it is again important to be careful about the 

data state used in the condition in the table trace. In the 

WHILETEST TRUE segment there is one data state change caused 

by the "depart" before the condition in the "f part" is 

considered. Mathematically stated, p -> f(g(X)) = f(X) is to 

be verified. The conditions inf are based on g(X) not X. 

Summary 

Program and proof syntax provide documentation and set 

up the framework within which a program may be proved to be 

correct. Specific proof forms and objectives exist for each 

of the control structures that are fundamental to structured 

programming. 
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With the framework and proof objectives established 

proofing techniques such as mental verification, table 

tracing, and methods of array and anonymous data handling 

and conditional rule manipulation can be applied to derive 

and verify the program function. 



CHAPTER V 

RISC SIMULATOR AND FUNCTIONAL CORRECTNESS 

The functional correctness method has demonstrated its 

practicability on simple programs devised to illustrate 

specific aspects of this proof approach. Now the functional 

correctness method is applied to a functioning program that 

already has been coded and tested. Applying the functional 

proof of correctness to a working program demonstrates the 

performance of the method on an example not specially 

designed to support the method, and provides the method a 

chance to locate errors in the program not discovered during 

the testing of the program. 

EXEC Module of RISC Simulator 

The program to which functional correctness proofs are 

applied is a program that simulates the Reduced Instruction 

Set Computer described in chapter two. The simulator was 

based on Patterson [15]~ however, since the article 

incompletely describes various details of RISC, many 

assumptions and additions had to be included in the 

simulator. The module most closely associated with RISC is 

the EXEC module which contains procedures that simulate the 
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execution of the RISC instruction set. These are the 

procedures which are used for the correctness proofs. 

In Patterson [15] twenty-six instructions are 

described. Eleven main procedures were written to simulate 

these twenty-six instructions. These procedures include 

arithmetic, and_vals, or_vals, xor_vals, shifts, loads, 

stores, jumps, calls, ret, and get_ops. Besides the eleven 

instruction procedures, six other procedures critical to the 

correct performance of the instruction procedures are 

included in the EXEC module. These procedures are the 

conversion procedures, bin_dec, dec_bin; the exception 

procedures, prot_excp, bndry_excp, addr_excp; and the memory 

access procedure, mac. Thus, the EXEC m9dule contains 

seventeen main procedures. The functi~nal proof of 

correctness method is applied to sixteen of them. Get_ops 

is not used in this report because the simulation of the 

GTIN and GTLPC instructions is based mainly on assumptions. 

Principle Assumptions 

Before the proofs of some of the EXEC procedures are 

presented the principal assumptions that affect the 

operation of the procedures in the EXEC module are 

described. Because of the ease of implementation and 

modification, the RISC simulator is table driven even though 

there is no indication that tables are used in the actual 

RISC. Figures 17 and 18 show the navigation matrix and the 

operation table which are used to direct the operations of 



88 

the instruction procedures. The operation codes in the 

operation table were arbitrarily assigned for the simulator 

because the RISC description does not give the op codes. 

Another aspect of RISC not described in Patterson [15] is 

the program status word (PSW). For the simulator the PSW is 

64 bits long. Figure 19 shows the break down of the PSW used 

1n the simulator. Finally, 144 registers are used in the 

simulator register bank rather than 138 which is the number 

of registers indicated in the RISC descripttons [13, 14, 

15]. The reason for this is that with 138 registers the 

window in the last procedure call before window overflow has 

only 16 registers instead of the usual 22; whereas with 144 

registers all the windows have 22 registers. 

I 

Illustrative Proofs of EXEC Procedmres 

Complete proofs of three of the EXEC procedures, 

and_vals, bin_dec, and stores, and a proof of a subprogram 

of the calls procedure are presented in this chapter. 

Highlights of the proofs of the other EXEC procedures are 

presented in the appendix. 

procedure is presented first. 

The proof of the and vals 



INDEX 

0 
l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

*33 
34 

OPERATION 

illop 
ADD 
ADDC 
SUB 
SUBC 
AND 
OR 
XOR 
SLA 
SRA 
SLL 
SRL 
LDL 
LDSU 
LDSS 
LDBU 
LDBS 
STL 
STS 
STB 
JMP 
JMPR 
CALL 
CALLR 
RET 
GTLPC 
GTIN 
SUBR 
SUBRC 

N [ 0] 

110 
10 
10 
10 
10 
20 
20 
20 
30 
30 
30 
30 
40 
40 
40 
40 
40 
40 
40 
40 
50 
50 
50 
50 
50 
60 
60 
10 
10 

N [l] 

0 
0 
l 
l 
0 
l 
2 
l 
l 
0 
0 
l 
l 
l 
l 
l 
0 
0 
0 
l 
l 
2 
2 
3 
0 
l 
2 
2 

N [ 2] 

0 
l 
0 
l 

0 
l 
0 
l 
4 
3 
2 
l 
0 
0 
l 
l 

0 
l 

0 
l 

*Indices 27 - 32 were used for special pseudo 
operations included in the simulator but not a 
part of RISC: consequently they are not included 
in the navigation matrix here. 

Figure 17. Navigation Matrix for RISC Simulator 
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First Four Bits of Op Code 

I DI 11 21 31 41 SI 61 71 Bl 9l1Dllll12l13l14l1SI 

Dl3ll 11 21 31 41 SI 61 71 Bl 9l1Dllll12l13l14l1SI 

Last ll16l17l1Bl19l2Dl2ll22l23l24l2Sl26I DI DI DI DI DI 

Three 21 Dl33l34I DI DI DI DI DI DI DI DI DI DI DI DI DI -----------------------------------------~---------
Bits 31 DI DI DI DI DI DI DI DI DI DI DI DI D1I DI DI DI -----------------------------------------~---------

of 4 I o I o I o I o I o I o I o I o I o I o I o I o I D:I o I o I o I 
-----------------------------------------~---------

op s I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I 
------------------------------------ .----~---------

Code 6 I o I o I o I o I o I o I o I o I o I o I o I o I Dd o I o I o I 
-----------------------------------------~---------

7 I o I o I o I o I o I o I o I o I o I o I o I o I 011 o I o I o I 
---------------------------------------------------

Figure 18. Operation Table for RISC S~mulator 

PSW Bits 

0-2 
3 
4 

5-7 
8-15 
16 

17-20 
21-31 
32-63 

Description 

current window pointer 
window overflow 
stack overflow 
unused 
exceptions 
unused 
condition code 
unused 
location counter 
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Exception Bits Condition Code Bits 
-------------- -------------------

8 Protection 12 illegal return 17 negative 
9 address 13 boundary 18 zero 

10 data 14 integer overflow 19 overflow 
11 Illegal op code 15 unused 20 carry 

' 
Figure 19. PSW for RISC Simulattr 
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PROC and_vals(opl, op2, result: ARRAY[0 •. 31] OF 0 .• 1) 

i: 0 <=INTEGER<= 32 

[result := opl & op2] 

1 FOR 

2 i := 0 to 31 

3 DO [result[i] := opl[i] & op2[i]] 

4 IF 

5 (opl[i] = op2[i]) and (opl[i] = 1) 

6 THEN [result[i] := 1] 

7 result[i] := 1 

8 ELSE [result[i] := O] 

9 result[i] := 0 

10 FI 

11 OD 

CORP 

The function specifications on the THEN and ELSE parts may 

be considered excessive and can be omitted. 

The proof of this procedure consists 

subprograms: The first subprogram is 

of proving two 

the ifthenelse 

structure in lines 4-10 and the second subprogram is the 

fordo structure in lines 1-11. Mental verification could be 

used on this procedure because of its simplicity: however, a 

formal proof is given for illustration purposes. 



FUNCTION 

result[i] := opl[i] & op2[i] 
VAR result[i],opl[i],op2[i]: 0 .. 1 

PROGRAM 

lines 4-10 of PROC and vals 

PROOF 

IFTEST TRUE (opl[i] = op2[i] & opl[i] = 1) 

f: result[i] := opl[i] & op2[i] 
:= 1 & 1 
:= 1 

g: result[i] := 1 

f = g 
PASS 

IFTEST FALSE (opl[i] ~= op2[i] v opl[i] ~= 1) 

f: result[i] := opl[i] & op2[i] 
opl[i] ~= op2[i] and data type 0 .. 1 implies O & 1 

which= 0 
opl[i] ~= 1 and data type 0 .. 1 implies opl[i] = 0, 

thus, giving O & 0 or O & 1, both= b 
so result[i] := 0 

h: result[i] := 0 

f = h 
PASS 

RESULT 
PASS 
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FUNCTION 

result := opl & op2 
VAR result, opl, op2: ARRAY[0 •• 31] OF 0 .• 1 

PROGRAM 

lines 1-10 of PROC and vals 

PROOF 
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The fordo loop can be expanded into a sequence of 32 
statements as follows: 

result[O] := opl[O] & op2[0] 
result[l] := opl[l] & op2[1] 

. . . 
result[31] := op1[31] & op2[31] 

derived function 
result[0 •• 31] := opl[0 •• 31] & op2[0 .• 31] 

RESULT 
PASS 
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The proofs for the or_vals and xor_vals procedures are 

very similar to the and_vals proof. The differences are the 

operations, or and xor operations instead of the and 

operation, and the condition on the if tests in the 

procedures. 

The next proof is the proof of one of tihe conversion 

procedures, ·bin dee. Special functions are employed in the 

specification and the proving of this proceduue. This use of 

special functions is similar to the use of sp~cial functions 
I 

and operations in anonymous data proofs. 1 The special 

functions used pertain specifically to the ~ata structures 

used in this procedure. Their definitions are' 

DEC(x,i,j) = decimal value of the binary :array x from 

left index i to right index j, if i > j, 

then DEC(x,i,j) = 0 

SUM(f (a) ,b,c) = ·sum from a = b to a = c of f(a) 



PROC bin_dec(length: INTEGER<= 32, 

binval: ARRAY[0 •. 31] OF 0 .• 1, 

decval: 0 <=INTEGER<= 2**31 - 1) 

USE bindeclocs 

[length>= 32 ->length:= 31; 

decval := DEC(binval, 32-length, 31)] 

[length>= 32 ->length:= 31] 

1 IF 

2 length>= 32 

3 THEN 

4 length:= 31 

5 FI 

[decval := DEC(binval,32-length,l)] 

6 FOR 

7 i := (32-le~gth) TO 31 

8 DO [i <= 31 -> exponent,decval := 
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O,decval + SUM(binval[j]*2**(31-j),i,31) 

I TRUE-> I] 

9 exponent := 31 - i 

10 decval := decval + (binval[i]*2**exponen~) 

11 OD 

CORP 

I;>ATA bindeclocs 

i: INTEGER >= 0 

exponent: 0 <=INTEGER<= 31 

ATAD 
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The proof of this procedure consists of proofs of three 

subprograms, the ifthen in lines 1-5, the fordo in lines 6-

11, and the sequence that results from the stepwise 

abstraction step of replacing the ifthen and fordo with 

their specified functions once they have been verified. The 

ifthen and the sequence can be verified by inspection 

because both of these structures correspond directly with 

their intended functions. Thus, the main part of the proof 

of this procedure lies in the proof of the fordo subprogram. 
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The abbreviations ex, de, bv are used for exponent, decval, 

and binval, respectively, in the following proofs. 

FUNCTION 

i <= 31 -> i,ex,dc := 32,0,SUM(bv[j]*2**(31-j),i,31) + de 
I TRUE-> I 
VAR ex: 0 <=INTEGER<= 31 

PROGRAM 

uninitialized whiledo loop that is partially equivalent to 
the fordo loop in lines 1-5 of PROC bin dee 

WHILE 
i <= 31 

DO 
ex := 31 - i; 
i, de := i+l, de+ (bv[i]*2**ex) 

OD 

PROOF 

TERM 

i is incremented regularly , so eventually 
greater than 31. 

WHILETEST TRUE (i <= 31) 

i ex de 

1 will be 

------------------------------------~--------------
dopart i, = io ex1 = 31-io de,= dco 

ii(= i, +1 exa. = ex, dC.;t = dcj + (bv[ i, ~*2**ex1 ) 

f i3 = 32 ex3 = 0 dc3 = dc-l + 

SUM(bv[j]*2ilr*(31-j) ,iil ,31) 



derivations: 

dc 3 = dc.;i,+ SUM(bv[j]*2**(31-j) ,i .. ,31) 

= (de,+ bv[i 1 ]*2**ex 1 ) + 

SUM(bv[j]*2**(31-j) ,i, +1,31) 

= de o + bv [ i o ] * 2 * * ( 31- io ) + 

SUM ( bv [ j ] * 2 * * ( 31- j ) , i 0 + 1 , 31 ) 

= dc0 + SUM ( bv [ j ] * 2 * * ( 31- j ) , i 0 , 31 ) 

derived function 

i,ex,dc := 32, 0, de+ SUM(bv[j]*2**{31-j),i,31) 

PASS 

WHILETEST FALSE (i > 31) 

f = I is specified in the intended function 
PASS 

RESULT 
PASS 
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FUNCTION 

ex,dc := 0, DEC(bv,32-length,31) 
VAR bv: ARRAY[0 .. 31] OF 0 .. 1 

length: INTEGER<= 31 

PROGRAM 
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initialized whiledo loop that is equivalent to the fordo 
loop in lines 6-11 of PROC bin dee with the program 
function inserted for the uninitialized whiledo loop part 

de , i : = 0 , 3 2-1 en gt h 
i,ex,dc := 32,0,SUM(bv[j]*2**(31-j),i,31) + de) 

PROOF 

i 

ia = 32-length 
i~ = 32 

derivation: 

de 

de,= 0 
dc.2,= SUM(bv[j]*2**(31-j) ,i, ,31) + de, 

de.,_= SUM(bv[j]*2**(31-j),i 1 ,31) + dc 1 

= SUM(bv[j]*2**(31-j),32-length,31) + 0 

= DEC(bv,32-length,31) 

The step from line 2 to line 3 in the abov~ derivation 
is a result of combining the defini:tion of the SUM 
function, DEC function, and the data type of bv. 

Note: if length<= 0, then 32-length > 31 and the SUM 
function does nothing since the 'indicated lower 
bound< indicated upper bound 

derived function: 
ex,dc := 0, DEC(bv,32-length,31) 

RESULT 
PASS 
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The next proof is the proof of the stores procedure. 

There are three store instructions, STL, STS, STB (see Table 

1) that are handled in the stores procedure. The 

differentiation of the three instructions is accomplished 

through use of the navigation matrix (n[2]). Also, 

throughout the proof when a row of the memory matrix is 

referenced, word addr is used instead of the parameter addr. 

The reason for this is that the parameter addr is a byte 

address which is necessary since STS and STB do not access 

full words of memory; however, in the simulator memory is 

word addressable only, thus the byte address, addr, is 

adjusted for fullword memory access, and the use of word 

addr indicates this adjustment. 



PROC stores(addr: 0 <=INTEGER<= memsize-1, 

dest: 0 <=INTEGER<= 143, 

n: ARRAY[0 •• 2] OF INTEGER>= -1, 

r: ARRAY[0 •. 143] OF ARRAY[0 .• 31] OF 0 •. 1, 

m: ARRAY[l44 •• memsize-l] OF 

ARRAY[0 .• 31] OF 0 .• 1, 

psw: ARRAY[0 •• 63] OF 0 •. 1) 

USE stores locs 

[ n[2] = 0 -> (addr MOD 4 ~= 0 -> psw[l3] := 1 I 
TRUE-> m[word addr] := r[dest]) 

ln[2] = 1 -> (addr MOD 2 ~= 0 -> psw[l3] := 1 I 
TRUE-> 

(addr MOD 4 = 0 -> 
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m[word addr;0 •• 15] := r[dest;l6 .• 31] I 
TRUE-> 

m[word addr;l6 •• 31] := r[dest;l6 .• 31])) 

ln[2] = 2 -> ( addr mod 4 = 0 -> 

m[word addr;0 •• 7] := r[dest;24 •• 31] 

laddr mod 4 = 1 -> 

m[word addr;B •• 15] := r[dest;24 •• 31] 

laddr mod 4 = 2 -> 

m[word addr;l6 .• 23] := r[dest;24 •• 31] 

!TRUE-> 

m[word addr;24 •. 31] := r[dest;24 •• 31]) 

!TRUE-> I] 
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[n[2] -, = 0 -> temp := m[word addr], 

start bit := (addr MOD 4 = 0 -> 0 

addr MOD 4 = 1 -> 8 

addr MOD 4 = 2 -> 16 

addr MOD 4 = 3 -> 24 ) ] 

1 IF 

2 n[2] ""= 0 

3 . THEN [temp := m[word addr], 

start bit := (addr MOD 4 = 0 -> 0 -
addr MOD 4 = 1 -> 8 I 

addr MOD 4 = 2 -> 16 I 

addr MOD 4 = 3 -> 24 ) ] 

4 mac(addr,1,temp) 

5 start bit := (addr MOD 4) * 8 -
6 FI 

[ n[2] = 0 -> (addr MOD 4 -, = 0 -> psw[l3] ·-.- 1 I 

TRUE -> temp := r[dest]) 

ln[2] = 1 -> (addr MOD 2 ""= 0 -> psw[l3] := 1 I 

TRUE -> temp[start~bit •• (start_bit+15)] 

. -.- r[dest;16 •• 31]) 

In_[ 2 l = 2 -> (temp[start bit •• (start bit+7)] - -
·-.- r[dest;24 •• 31]) 

ITRUE -> I ] 

7 CASE 

8 n[2] 

9 PART (n[2] = 0) [addr MOD 4 ""= 0 -> psw[13] := 1 I 



TRUE-> temp:= r[dest]] 

10 IF 

11 addr MOD 4 ~= 0 

12 THEN 

13 psw[l3] := 1 

14 ELSE 

15 temp:= r[dest] 

16 FI 
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17 PART (n[2] = 1) [addr MOD 2 ~= 0 -> psw[l3] := 1 I 
TRUE-> temp[start_bit •. (start_bit+lS] 

:= r[dest;l6 .• 31]] 

18 IF 

19 addr MOD 2 ~= 0 

20 THEN 

21 psw[l3] := 1 

22 ELSE 

23 temp[start_bit •. (start_bit+lS)] := r[dest;l6 .. 31] 

24 FI 

25 PART (n[2] = 2) [temp[start_bit •. (start_bit+7)] 

:= r[dest;l6 .• 31]] 

26 temp[start_bit •• (start_bit+7)] := r[dest;l6 .. 31] 

27 ESAC 

28 mac(addr,O,temp) 

CORP 



DATA stores locs 

start bit: INTEGER>= 0 

temp: ARRAY[0 .• 31] OF 0 •• 1 

ATAD 
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Memsize which is used in the parameter type specifications 

is a constant not a variable. Using memsize is equivalent to 

using an integer such as 512. 

Stepwise abstraction and program self-containment are 

two concepts of the functional correctness method that are 

well illustrated in the proof of the stores procedure. There 

are two major subprograms, an ifthen in lines 1-6 and a case 

in lines 7-27, that make up the procedure. Within the case 

subprogram, there are two ifthenelse subprograms. The proof 

of this procedure has three levels of abstraction. First the 

ifthenelse subprograms in the case structure are verified, 

then their intended functions are inserted in the case 

subprogram, and the case subprogram is verifi~d. The ifthen 

subprogram is verified also at this level of abstraction. 

The final level contains a sequence structur~ consisting of 

the intended function of the ifthen, the int.nded function 

of the case, and the mac subroutine call in line 28. At 

each level of abstraction the proof can be affected only by 

a change in the specified functions of the lower level 

subprograms because it is the specified function which is 

used in the proof at a higher level. 
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Two other instances of self-containment illustrated are 

the treatment of global variables and the treatment of 

procedure calls. The use of global variables in a program 

implies an interdependence 

detrimental to the functional 

among procedures which is 

correctness method because 

procedure independence is a significant factor of the 

technique. The way global variables are handled is they are 

treated like parameters. This promotes self-containment and 

diminishes the sense of external dependence. Dest, n, r, m, 

and psw actually are all global variables, but they are 

listed in the parameter list for the stores procedure. The 

verification of the accurate syntactic use of the global 

variables is not part of proof of correctness. 

Procedures called from within a procedure are treated 

like subprograms. The intended function of the called 

procedure is inserted in the main procedure so that the 

calling procedure can be verified. The verification of the 

called procedure's function occurs at a different level of 

abstraction. Once again the proof of the calling procedure 

is affected by the called procedure only if the specified 

function of the lower level procedure is changed; otherwise, 

the implementation of the called procedure is transparent 

and immaterial at this level. This is illustrated in the 

stores procedure by the mac p~ocedure call. 
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In the following proofs for the stores procedure the 

abbreviations a, d, t, sb are used for addr, dest, temp, and 

start_bit, respectively. 

FUNCTION 

a MOD 4 ~= 0 -> psw[l3] := 1 I TRUE-> t := r[d] 

PROGRAM 

lines 10-16 of PROC stores 

IF 
a MOD 4 ~= 0 

THEN 
psw[l3] := 1 

ELSE 
t := r[d] 

FI 

PROOF 

mental verification 

RESULT 
PASS 



FUNCTION 

a MOD 2 ~= 0 -> psw[13] := 1 I 
TRUE-> t[sb •. (sb+lS)] := r[d;16 •• 31] 

PROGRAM 

lines 18-24 of PROC stores 

IF 
a MOD 2 ~= 0 

THEN 
psw[l3] := 1 

ELSE 
t[sb •. (sb+lS)] := r[d;l6 •. 31] 

FI 

PROOF 

mental verification 

RESULT 
PASS 
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FUNCTION 

n[2] = 

n[2] = 

I n[2J = 
jTRUE -> 

PROGRAM 

0 -> 

1 -> 

2 -> 
I 

(a MOD 4 ,= 0 -> psw[l3] := 1 I 
TRUE-> t := r[d]) 

(a MOD 2 ,= 0 -> psw[l3] := 1 ! 
TRUE-> t[sb .• (sb+l5)] := r[d;l6 .• 31]) 

(t[sb .• (sb+7)] := r[d;24 •• 31]) 
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lines 7-27 of PROC stores with intended functions replacing 
subprograms 

CASE 
n[2] 

PART (n[2] = 0) 
a MOD 4 ,= 0 -> psw[l3] := 1 
TRUE-> t := r[d] 

PART (n[2] = 1) 
a MOD 2 ,= 0 -> psw[l3] := 1 ! 
TRUE-> t[sb .• (sb+l5)] := r[d;l6 •• 31] 

PART (n[2] = 2) 
t[sb •• (sb+7)] := r[d;24 •• 31] 

ESAC 

PROOF 

mental verification 

RESULT 
PASS 



FUNCTION 

n[2] ~= 0 -> t := m[word addr], 

PROGRAM 

sb := (a MOD 4 = 0 -> 
a MOD 4 = 1 -> 
a MOD 4 = 2 -> 
a MOD 4 = 3 -> 

~ I 
16 I 
24 ) 
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lines 1-6 of PROC stores with intended functions replacing 
subprograms 

IF 
n[2] ~= 0 

THEN 

FI 

2nd parameter of mac= 0 -> m[word addr] := 3rd parameter 
I TRUE-> 3rd parameter := m[word addr]; 
sb := (a MOD 4) * 8 

PROOF 

mental verification 

RESULT 
PASS 



FUNCTION 

n[2] = 0 -> (a MOD 4 ~= 0 -> psw[l3] := 1 
TRUE-> m[a] := r[d]) 

n[2] = 1 -> (a MOD 2 ~= 0 -> psw[l3] := 1 
TRUE-> 

(a MOD 4 = 0 -> 
m[word addr;0 .. 15] := r[d;l6 .. 31] I 

TRUE-> 
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m[word addr;l6 .. 31] := r[d;l6 .. 31])) 
I n[2] = 2 -> a mod 4 = 0 -> 

m[word addr;0 .. 7] := r[d;24 .. 31] 
a mod 4 = 1 -> 

m[word addr;8 .. 15] := r[d;24 .. 31] 
a mod 4 = 2 -> 

m[word addr;l6 .. 23] := r[d;24 .. 31] 
TRUE-> 

m[word addr;24 .. 31] := r[d;24 .. 31]) 
I TRUE-> I (sb and tare not part of the domain) 

VAR a: INTEGER 

PROGRAM 

lines 1-28 of PROC stores with intended functions 
replacing subprograms 

n[2] ~= 0 -> t := m[word addr], 
sb := (a MOD 4 = 0 -> 0 I 

a MOD 4 = 1 -> 8 
a MOD 4 = 2 -> 16 I 
a MOD 4 = 3 -> 24 ) 

n[2] = 0 -> (a MOD 4 ~= 0 -> psw[l3] := 1 I 
TRUE-> t := r[d]) 

n[2] = 1 -> (a MOD 2 ~= 0 -> psw[l3] := 1 I 
TRUE -> t[sb .. (sb+l5)] := r[d;l6 .• 31]) 

I n[2] = 2 -> (t[sb .• (sb+7)] := r[d;24 .. 31]) 
jTRUE -> I; 

2nd parameter= 0 -> m[word addr] := 3rd parameter 
TRUE-> 3rd parameter m[word addr]; 

The last condition is the program function for the mac 

procedure which is called at line 28. Since it is 

verified easily that the second parameter of the mac call 

is a 0, the last condition can be replaced with the single 

assignment statement m[word addr] := t. 

VAR t: ARRAY[0 •. 31] OF 0 •• 1 
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PROOF 

The following two pages contain the trace table for the 

proof of this procedure. Even though it appears as if 

there are twc tables, actually it is one table divided 

into two sections because of the size of the table. The 

rows are numbered to connect the two sections. [13] is 

used for psw[l3] in the table and derivations. Also data 

state changes are not shown for a, r, d, and word addr 

because their values do not change. 
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condition psw[l3J sb 
-------------------------------------------

1. n 0 [ 2 J = 0 & 
a MOD 4 "'= 0 [ 13 J, = 1 sb, = sbo 

2. no [ 2 J = 0 & 
a MOD 4 = 0 [ 13 J, = [ 13 J0 sb, = sb0 

3. no[2J = 1 & [ 13 J, = [ 13 Jo sb, = 0 
a MOD 4 = 0 [ 13 J,1. = [ 13 J, sb.1. = sb, 

4. no [ 2 J = 1 & [ 13 J, = [ 13 J0 sb, = 8 
a MOD 4 = 1 [ 13 J~ = 1 sb,1. = sb, 

5. no[2J = 1 & [ 13]. = [ 13 Jo sb, = 16 
a MOD 4 = 2 [ 13 JI( = [ 13 Ji Sb.t = sb1 

6. no[2J = 1 & [ 13 J, = [ 13 J0 sb, = 24 
a MOD 4 = 3 [ 13 J.;t = 1 sb,i = 1 

7. no[2J = 2 & [ 13]. = [ 13 Jo sb, = 0 
a MOD 4 = 0 [ 13 J.;i. = [ 13 J, sb;z. = sb1 

8. no [ 2 J = 2 & [ 13 JI = [ 13 Jo sb, = 8 
a MOD 4 = 1 [ 13 J~ = [ 13 J, sb,. = sb, 

9. no [ 2 J = 2 & [ 13 J, = [ 13 Jo sb, = 16 
a MOD 4 = 2 [ 13 J;i. = [ 13 Ji Sb.t = sb1 

10. no [ 2 J = 2 & [ 13 J, = [ 13 Jo sb, = 24 
a MOD 4 = 3 [ 13 J;. = [ 13 J, sb..i = sb, 

11. (no [2J "'= 
0 & 1 & 2) & 

(a MOD 4 = [ 13 J, = [13],;, sb, = o I s 
0 I 1 I 2 I 3) 16 I 24 

12. [ 13 JJ = [ 13 J.;1. sb3 = sb~ 



t m[word addr] 

1 • t I : to m I : mo 

3. t 1 = m0 [ word addr] m, = mo 
ta. [O •• (sb, -1)] = t 1 [O •• (sb, -1)] ma = m, 
t.1 [sb, •• (sb, +15)] = r, [d, ;16 •• 31] 
t;i. [ (sb, +16) •• 31] = t 1 [ (sb 1 +16) •• 31] 

4. t, = m [word addr] m, = mo 
t.2. = t m.:i, = m, 

.5. t 1 = mo [word addr] m, = mo 
t.i[O •• (sb,-1)] = t,[O •• (sb,-1)] m,1 = m, 
t,a. [ Sb I o o ( Sb I + 15 ) ] : rl [ d I ; 16 • • 31 ] 
t,1.[(sb 1 +16) •• 31] = t,[(sb,+16) •• 31] 

6. t, = m0 [word addr] m, = mo 
t~ = t, m:i. = m, 

7. t, = mo [word addr] m, = mo 
ta.[O •• (sb,-1)] = t,[O •• (sb,-1)] ma.= m1 

t.2. [sb, •• (sb1 +7)] = r, [d, ;24 •• 31] 
t 1 [(sb1 +7) •• 31] = t 1 [(sb 1 +24) •• 31] 

8. t, = mo[word addr] m, = mo 
t,1 [ 0 •• ( s b 1 -1 ) ] = t 1 [ 0 • • ( s b 1 -1 ) ] m :a. = m 1 

t.a. [sb, •• (sb,+7)] = ro [do;24 •• 31] 
t.i. [ (sb, +7) •• 31] = t 1 [ (sb1 +24) •• 31] 

9. t 1 = mo [word addr] m, = mo 
t.t [O •• (sb, -1)] =· t, [O •• (sb, -1)] m,1 :. m, 
t.i.[sb, •• (sb,+7)] = r, [d 1 ;24 •• 31] 
t.2, [ ( Sb I + 7 ) • • 31 ] = t I [ ( Sb I + 2 4 ) • • 31 ] 

10. t 1 = mo[word addr] m, = m0 

t.i [O •• (sb, -1)] = t 1 [O •• (sb, -1)] m;i. = m, 
t,i. [ Sb I • o ( S b I + 7 ) ] : r I [ d I ; 2 4 • • 31 ] 
t,i [ ( S b I + 7 ) • • 31 ] = t 1 [ ( Sb I + 2 4 ) • • 31 ] 

11. t, = m0 [word addr] m1 = m0 
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m3 [word addr] = t~ 

(the last data state change in row 12 actually follows each 
of the above conditional changes, and for 1, 2, and 11, it 
is the second data state change not the third as indicated) 
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derivations: 

Since the derivations for several of the cases are similar 

and lengthy, only two representative derivations are 

given. 

l.condition: 

n 0 [2] = 1 & a MOD 4 = 2 

rule: 

[13]3 = [13h 

= [13], 

= [ 13 ]0 

t 3 [ 0 •• { s b..1_ -1 ) ] 

t3 [O •• {sb, -1)] 

t 3 [O •• 15] 

= 
= 

= 

= 

sb3 = Sb.:z. 

= 16 

t~ [ 0 •• { sb.i. -1) ] 

t I [ Q •• { Sb1 -1) ] 

t 1 [O •• 15] 

m0 [word addr;0 •• 15] 

t 3 [ { s b :i. + 16 ) • • 31 ] = t .. [ { s b~ + 16 ) • • 31 ] 

t
3

[{sb,+16) •• 31] = t,[{sb,+16) •• 31] 

t3 [32 •• 31] = t1 [32 •• 31] 

lower bound> upper bound implies no change 

t 3 [ sb.a. •• { sb.1 + 15) ] = t.d sb.i, •• { sb,;z. + 15) ] 

t 3 [ sb, •• { sb, + 15) ] = t .. [ sb, •• { sb, + 15) ] 

t3 [16 •• 31] = r 1 [d, ;16 •• 31] 

= r O [ d 0 ; 16 •• 31 ] 



m3 [word addr] = t~ 

m3 [word addr;0 •• 15], m3 [word addr;l6 •• 31] = 

t~[0 •• 15], t.i.[16 •• 31] 

m3 [word addr;0 •• 15], m3 [word addr;l6 .• 31] = 

t 1 [O •. 15], r, [d 1 ;16 .. 31] 

m3 [word addr;0 .. 15], _m 3 [word addr;l6 .• 31] = 

m O [ 0 •• 15 ] , r O [ do ; 16 •. 31 ] 
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In the above derivations the size compatibility of the 

arrays on the left and right hand sides of an assignment 

should be mentally verified during the backward 

substitution. For instance, if during the substitution the 

following resulted, t 3 [8 ••. 24] = r 0 [d 0 ;24 .• 31], then this is 

an error in the array assignment, and the proof fails. 

derived function: 

n[2] = 1 & a MOD 4 = 2 -> 

m[word addr;l6 •• 31] := r[d;l6 •• 31] 

does the intended function= 

m[word addr;l6 •• 31] := r[d;l6 •• 31] 

in the partition n[2] = 1 & a MOD 4 = 2? 

It does, therefore this part of the derived function 

passes. 

(recognizing that if a MOD 4 = 2, the·n a MOD 2 = 0 is 

necessary in the verification of this partition) 

2.condition: 

n0 [2] = 1 & a MOD 4 = 1 



rule: 

[ 13 ]3 = [ 13 Ji. Sb3 = sb~ t.3 = t-4 

= 1 = sb1 = t, 

= 8 = m0 [word addr] 

= m0 [word addr] 

derived function: 

n[2] = 1 & a MOD 4 = 2 -> psw[l3] := 1 

does the intended function= (psw[l3] := 1) in the 

partition n[2] = 1 & a MOD 4 = l? 

It does, therefore this part of the derived function 

passes. 

(recognizing that if a MOD 4 = 1, then a MOD 2 ~= 0 is 

necessary in the verification of this partition) 
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The complete derived function is as follows: 

n[2] = 0 

n[2] = 0 

n[2] = 1 

n[2] = l 

n[2] = 1 

n[2] = 1 

n[2] = 2 

n[2] = 2 

n[2] = 2 

n[2] = 2 

(n[2] ""= 

When the 

·compared 

result 

RESULT 
PASS 

is 

& a MOD 4 ""= 0 -> psw[l3] := 1 I 
& a MOD 4 = 0 -> m[word addr] := r[d] I 
& a MOD 4 = 0 -> m[word addr;0 .. 15] := 

r[d;l6 •• 31] 

& a MOD 4 = 1 -> psw[l3] := 1 I 
& a MOD 4 = 2 -> m[word addr;l6 •. 31] := 

r[d;l6 •. 31] 

& a MOD 4 = 3 -> psw[l3] := 1 I 
& a MOD 4 = 0 -> m[word addr; 0 .• 7] := 

r[d;24 •• 31] 

& a MOD 4 = 1 -> m[word addr;B .• 15] := 

r[d;24 •• 31] 

& a MOD 4 = 2 -> m[word addr;l6 .• 23] := 

r[d;24 •• 31] 

& a MOD 4 = 3 -> m[word addr; 24 •• 31] ·-.-
r[d;24 •. 31] 

0 & 1 & 2 & 3) & (a MOD 4 = 0 1 I 2 I 3) -> I 

rule of the derived function of each partition 

with the intended function in that partition, 

that the functions agree in each partition. 

117 

is 

the 
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The last proof is a case where the proof process 

detected an error in a procedure, the calls procedure. Only 

the proof of the subprogram with the error is given. The 

type specifications of the the variables used in the 

subprogram are 

psw: ARRAY[0 .. 63] OF 0 .. 1, 

r: ARRAY[0 .• 143] OF ARRAY[0 •. 31] OF o •• l, 

sc, sl: INTEGER, 

calladdr: INTEGER, 

disp: INTEGER 

regval: INTEGER. 

One constant, base_addr, is also 

subprogram. A special function is 

referenced in the 

used in the program 

definition and in the function specification. This function 

is DEC(a) = the decimal value of the binar~ array a. 
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The abbreviations ca, d, rv, ba are used for the variables 

calladdr, disp, regval, and base_addr, respectively, in the 

following proof. 

FUNCTION 

r[sl;O] ~= 1 & addr excp(DEC(r[sl]) = 0 -> 
ca := sc + DEC(r[sl]) 

I TRUE-> psw[9], ca := 1, (ba-d)*4 

(regval is not in the function specification because it is 
not an element of the domain) 

PROGRAM 

subprogram of the calls procedure 

IF 
r[sl,O] ~= 0 

THEN 
bin dec(32,r[sl],regval) 
pswT9] := 0 
IF 

psw[9] = 0 
THEN 

ca := sc + rv 
FI 

ELSE 
psw[9] := 1 
ca : = ( ba -d ) * 4 

FI 

PROOF 

The table in this proof is arranged in two sections like 

the table in the stores proof. 



([9] is used for psw[9] in the table and derivations) 

condition r[ sl] ca 

1. r 0 [slo ;O] "'= 1 r,[slo] = r O [ Slo ] ca 1 = Cao 
r-<. [ sl 1 ] = r, [sl 1 ] ca;i. = ca, 

la. [ 9 ].1, = 0 r 3 [sl~] = r.a. [ sli] ca3 = SC,2 + rv;i. 

lb. [ 9 ].l. = 1 r.3 [ sl~ ] = r J. [ s l.1. ] ca3 = ca;i. 

2. ro [ Sl0 ; 0] = 1 r, [slo] = ro [slo] ca 1 = (ba-d 0 )*4 

psw[9] rv 
---------------------------------------

1. [ 9 ], = [ 9 Jo rv, = DEC(r 0 [slo]) 
[ 9 ];z. = addr_excp( rv1 rv,. = rv, 

la. [ 9 ], = [ 9 ],. rv3 = rv.z. 

lb. [ 9 ]3 = [ 9 ].t rv3 = rv;. 

2. [ 9 ], = 1 rv1 = rvo 

derivations: 
(sc, sl, and d do not appear in the table because 
their values remain the same in every data state) 

condition: 

r o [ slo ; 0] "'= 0 & [ 9 ]~ = 0 

ro [ slo ; 0] "'= 0 & addr _ excp ( rv1 ) = 0 

r 0 [sl0 ;O] "'= 0 & addr_excp(DEC(r0 [slo])) = 0 

rule: 

ca3 = sc.l + rv.1. 

= SCo + DEC ( r 0 [ Slo ] ) 

120 



condition: 

r 0 [slo;O] 

r 0 [slo;O] 

r 0 [sl 0 ;0] 

rule: 

ca~= ca:z. 

= ca, 

= Cao 

condition: 

..,= 

..,= 

..,= 

r O [ s 10 ; 0 ] = 1 

rule: 

0 

0 

0 

& [ 9 ], = 1 

& addr_excp( rva.} = 1 

& addr_excp(DEC(r [ sl, ] }} = 

ca,= (ba-do }*4 

[9], = 1 

derived function: 

r[sl;O] ..,= 1 & addr excp(DEC(r[si]}} = 0 -> 
ca,psw[9] := sc + DEC(r[sl]), 

r[sl;O] ..,= 1 & addr excp(DEC(r[sl]}} = 1 -> 
- ca,psw[9] := ca, 

r[sl;O] = 1 -> ca,psw[9] := (ba-d}*4, 1 
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1 

0 

1 

The derived function and the intended fuhction do not 
! 

agree in the partition 

r[sl;O] ..,= 1 & addr_excp(DEC(r[sl]} = 1. The derived 

function = (ca,psw[9] ·-.- ca, l} and the intended 

function = (ca,psw[9] ·-.- (ba-d}*4, 1}. 

RESULT 
FAIL 



122 

This last example demonstrates a failure in a case 

structured proof. In at least one of the partitions that 

result from the derivation of the program function, the 

intended function and the derived function do not have the 

same rule. In this example r[sl;O] "'= 1 & 

addr_excp(DEC(r[sl]) = 1 is the partition where the intended 

function and derived function do not agree. 

Summary 

Using the functional correctness method to prove the 

correctness of the procedures of the EXEC mod~le in the RISC 

simulator provides an example of the application of the 

method to an operating program. Since the procedures to 

which the method is applied are not designed $pecifically as 

illustrative models for the functional cortectness method 
i 

and since they are not small procedures as th~ examples are, 

applying the functional correctness method to these 

procedures provides a realistic and rigorous/ test of the 

method's capability and usefulness. In the case of the 

stores procedure, the proof is more exten~ive than the 

proofs presented as examples, and in the case of the calls 
I 

procedure, the proof points out an error 

that was not found when the procedure was 

I 

procedure 



CHAPTER VI 

FUNCTIONAL CORRECTNESS APPLIED 

TO NEW PROCEDURE 

In the last chapter functional proof of correctness was 

applied to the procedures of the EXEC module of the RISC 

simulator. These were procedures already coded and tested, 

and proving their correctness was a test of the 

effectiveness of functional proof of correctn~ss when it is 

applied to realistic procedures. In thi;s chapter the 

effectiveness of functional proof of correctniess is tested 

by applying the proving techniques to a new procedure of the 

RISC simulator. An arithmetic procedure was freshly 

designed and implemented for the simulator. It includes two 

subtract instructions, SUBR (subtract register) and SUBRC 

(subtract register with carry), which were not part of the 

original RISC instruction set or the original simulator. The 

functional correctness method was used to prove the 

correctness of the new procedure, and then the procedure was 

inserted into the RISC simulator. The objective was to 

determine whether proving the program's correctness 

eliminates logic errors. 
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PDL of the Arithmetic Procedure 

The PDL of the top level of the arithmetic procedure is 

presented first. 

PROC arithmetic(psw[l4],scc: 0 •• 1,n[l]:0 •• 2} 

opl,op2: INTEGER 

[define operands; 

(psw[l4] = 0 -> (n[l] = 0 -> add operands 

I TRUE-> subtract operands}}; 

(sec= 1 & psw[l4] = 0 -> set mask}] 

setops(opl,op2} 

[n[l] = 1 -> psw[l4] = 0 -> add operands 

TRUE-> psw[l4] = 0 -> sub operands] 

IF 

n[l] = 0 

THEN [psw[l4] = 0 -> add operands] 

IF 

psw[l4] = 0 

THEN 

adds(opl,op2} 

FI 

ELSE [psw[l4] .= 0 -> sub operands] 

IF 

psw[l4] = 0 

THEN 

subs(opl,op2) 

FI 



FI 

[sec= 1 & psw[l4] = O -> set mask] 

IF 

sec= 1 & psw[l4] = 0 

THEN 

FI 

CORP 

setmask 
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The intended function specification for the preceding 

procedure illustrates the concept of deferring details. 

Rather than having the details of the program's function 

specified at the top level of design, the abstract 

functions, define operands, add operands, subtract operands, 

and set mask, were used in the intendeo function. The 
I 

details are contained in the procedures imp~ied by these 

abstract functions. Delaying intended funct~on details for 

lower level procedures sharpens the bas~c functional 

objective of the program at the top level which is the level 

of greatest abstraction. 

This method of deferring details is consistent with the 

concepts of self-containment, stepwise refinement, and 

stepwise abstraction. In stepwise refinement a procedure is 

designed by beginning with abstract functions and 

recursively replacing an abstract function with a more 

specific function (refer to chapter 3). In the case of the 

arithmetic procedure, the four abstract functions of the 

high level procedure are expanded at lower Levels. Then in 
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the reverse process of stepwise abstraction used in 

proving the program's correctness, the detailed and rigorous 

proofs occur at the lower levels. Because of self­

containment of the lower level procedures, their details do 

not affect the high level procedure, and consequently, the 

general function references in the high level procedure are 

possible. Delaying details in this manner improves the 

clarity of the program, but does not diminish the accuracy 

of the proof. 

The PDL of the four abstract functions in the 

arithmetic procedure is given on the following pages. Two 

special functions are used in the intended functions and 

later in the proofs of these procedures. These two special 

functions are DEC(x) = the decimal value of the 32 bit array 

x and TWOSBIN(m) = the 32 bit twos complement binary value 

of the integer m. Also, UND stands for undef:ined. When UND 

is assigned to a variable, it means that tjhe value of the 

variable could be anything. 



PROC setops(opl,op2: INTEGER, 

r: ARRAY[0 .• 143] OF ARRAY[0 •• 31] OF 0 .• 1, 

sl,s2: 0 <=INTEGER<= 143, 

sc : INTEGER, 

psw[l4],imm: 0 .. 1, 

n[l]: 0 .. 2) 

temp: INTEGER 

[n[l] = 0 V 

n[l] = 1 -> ((DEC(r[sl])=O & r[sl;O]=l) v 

(DEC(r[s2])=0 & r[s2;0]=1 & imm=O)) -> 

psw[l4],opl,op2 := l,UND,UND 

!TRUE-> 

!TRUE 

opl := DEC(r[sl]) - 2**32*r[sl;O], 

op2 := (imm=O -> DEC(r[s2])-2**32*r[s2;0] 

!TRUE-> sc) 

-> ((DEC(r[sl])=O & r[sl;O]=l) V 

(DEC(r[s2])=0 & r[s2;0]=1 & imm=O)) -> 

psw[l4],opl,op2 := l,UND,UND 

!TRUE-> 

op2 := DEC(r[sl]) - 2**32*r[sl;O], 

opl := (imm=O -> DEC(r[s2])-2**32*r[s2;0] 

!TRUE-> sc] 

[DEC(r[sl]) = 0 & r[sl,0]=1 -> psw[l4] := 1 

!TRUE-> opl := DEC(r[sl]) - 2**32*r[sl;O]] 

twos comp(sl,opl) 
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[DEC(r[s2])=0 & r[s2,0]=1 & imm=O -> psw[l4] := 1 

!TRUE-> op2 := (imm=O -> DEC(r[s2]) - 2**32*r[s2;0] 

!TRUE-> sc)] 

IF 

imm = 0 

THEN 

twos comp(s2,op2) 

ELSE 

op2 := SC 

FI 

[n[l]=2 & psw[l4]=0 -> 

IF 

op2 := DEC(r[sl]) - 2**32*r[sl;O], 

opl := (imm=O -> DEC(r[s2]) - 2**32*r[s2;0] 

!TRUE-> sc)] 

n[l] = 2 & psw[l4] = 0 

THEN [opl,op2 := op2,opl] 

temp:= opl 

FI 

CORP 

opl := op2 

op2 := temp 
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PROC twos_comp(s: 0 <=INTEGER<= 143, 

op: INTEGER, 

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF o •• l, 

psw [ 14] : 0 ••. 1) 

regval: INTEGER 

[DEC(r[s])=O & r[s;O]=l -> psw[l4] := 1 

!TRUE-> op:= DEC(r[s]) - 2**32 * r[s;O]] 

bin_dec(32,r[s],regval) 

IF 

regval = 0 & r[s;O] = 1 

THEN 

psw [ 14] : = 1 

ELSE 

op:= regval - r[s;0]*2**3i - r[s;0]*2**31 

FI 

CORP 
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The constant maxint is used in both the adds and subs 

procedures. 

PROC adds(opl,op2: INTEGER, 

dest: 0 <=INTEGER<= 143, 

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF INTEGER, 

psw[l4,20],n[2]: 0 .• 1) 

result: INTEGER 

[n[2] = 0 -> (((opl>O & op2>0) v 

(opl<O & op2<0)) & 

(ABS(opl) > maxint - ABS(op2})) -> 

psw[l4],r[dest] := l,UND 

!TRUE-> r[dest] := TWOSBIN(opl + op2) 

ITRUE -> (((opl>O & op2>0) v 

(opl<O & op2<0}) & 

(ABS(opl) > maxint-ABS(op2)-psw[20])) -> 

psw[l4],r[dest] := l,UND 

ITRUE -> r[dest] := TWOSBIN(opl+op2+psw[20]) 

bin_dec(32,r[dest],result) 

IF 
. 

(((opl > 0 & op2 > 0) v 

(opl < 0 & op2 < 0)) & 

(ABS(opl) > maxint - ABS(op2})) 

THEN 

psw[l4] := 1 



ELSE [n[2]=1 & (opl & op2 different signs v 

ABS(opl+op2) <= maxint-psw[20]) -> 

result := opl + op2 + psw[20] 

FI 

ln[2]=1 & ABS(opl+op2) > maxint-psw[20] -> 

psw[l4],r[dest] := l,UND 

!TRUE-> result := opl + op2] 

result := opl + op2 

IF 

n[2] = 1 

THEN 

F! 

IF 

((opl>O & op2>0) v (opl<O & op2<0}) & 

ABS(result) > maxint - psw[20] 

THEN 

psw [ 14] : = 1 

ELSE 

result :=result+ psw[20] 

FI 

[r[d] := TWOSBIN(result)] 

place_in_reg(result) 

CORP 
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PROC subs(opl,op2: INTEGER, 

dest: 0 <=INTEGER<= 143, 

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF !NTEGER, 

psw[l4,20],n[2]: o •• l) 

result: INTEGER 

[n[2] = 0 -> (((opl<O & op2>0) v 

(opl>O & op2<0)) & 

!TRUE 

(ABS(opl) > maxint - ABS(op2)}) -> 

psw[l4],r[dest] := l,UND 

ITRUE -> r[dest] := TWOSBIN(opl - op2) 

-> ((opl<=O & op2>=0) & 

(ABS(opl) > maxint - op2 - psw[20]}} -> 

psw[l4],r[dest] := l,UND 
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!TRUE-> r[dest] := TW0SBIN(opl-op2-psw[20]) 

bin_dec(32,r[dest],result) 

IF 

(((opl<O & op2>0) v 

(opl>O & op2<0)) & 

(ABS(opl) > maxint - ABS(op2))) 

THEN 

psw[l4] := 1 



ELSE [n[2]=1 & (opl>O v op2<0 v 

FI 

ABS(opl)+op2 <= maxint-psw[20]) -> 

result := opl - op2 - psw[20] 

ln[2]=1 & opl<=O & op2>=0 & 

ABS(opl)+op2 > maxint-psw[20] -> 

psw[l4] := 1 

ITRUE -> result := opl - op2] 

result := opl - op2 

IF 

n[2] = 1 

THEN 

FI 

IF 

(opl <= 0 & op2 >= 0) & 

(ABS(result) > maxint - psw[20]) 

THEN 

psw[l4] := 1 

ELSE 

result := result - psw[20] 

FI 

place in reg(result) 

CORP 
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PROC place_in_reg(result: INTEGER, 

r: ARRAY[0 •. 143] OF ARRAY[0 •. 31] OF 0 •• 1, 

dest: 0 <=INTEGER<= 143) 

1: 0 <=INTEGER<= 32 

[r[dest] := TWOSBIN(result)] 

IF 

result>= 0 

THEN 

dec_bin(32,result,r[dest]) 

ELSE 

FI 

CORP 

result := ABS(result + 1) 

dec_bin(32,result,r[dest]) 

[r[dest] := -.r[dest]] 

FOR 

l ·-. - 0 to 31 

DO [r[dest;i] := -, r[dest; i]] 

IF 

r[dest;i] = 1 

THEN 

r[dest;i] = 0 

ELSE 

r[dest;i] = 1 

FI 

OD 
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i[l9] is the 19th bit of the instruction register and the 

sign bit of the second operand if the second operand is an 

immediate value. 

PROC setmask(sl,s2,dest: 0 <=INTEGER<= 143, 
psw[17],psw[l8], 
psw[l9],psw[20]: 0 •• 1, 
n[l]: O •• 2, 
imm,i[l9]: 0 •• 1) 

USE setmask locs 

[(r[dest;O] = 1 -> psw[17,18] := 1,0 I 
DEC(r[dest]) = 0 -> psw[l7,18] := 0,1 I 
TRUE -> psw [ 1 7, 18] : = 0, 0) , 
(n[l]=O -> ((r[sl;O]=l & 

ln[l]=l -> 

((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v 
(r[sl;O]=l & r[dest;O]=O) v 
(r[dest;O]=l & 
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) -> 

psw[ 19] := 1 
!TRUE-> psw[l9] := 0), 
((r[sl;O]=O & r[dest;O]=l & 

((imm=O & r[s2;0]=1) v (imm=l & i[19]=1))) v 
(r[dest;O]=O & r[sl;O]=O & 

((imm=O & r[s2;0]=1) v (imm=l & i[19]=1))) -> 
psw[20] := 1 

!TRUE-> psw[20] := 0) 

((r[sl;O]=l & r[dest;O]=O & 
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) v 
(r[sl;O]=O & r[dest;O]=l & 
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) -> 

psw[l9] := 1 
!TRUE-> psw[l9] := 0), 
((r[dest;O]=l & 

((imm=O & r[sl;O]=r[s2;0]) v 
(imm=l & r[sl;O]=i[l9]))) v 

(r[dest;O]=l & r[sl;O]=O & 
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v 
(r[dest;O]=O & r[sl;O]=O & 
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) -> 

psw [ 20] : = 1 
!TRUE-> psw[20] := 0) 
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-> ((r[sl;O]=O & r[dest;O]=O & !TRUE 
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v 
(r[sl;O]=l & r[dest;O]=l & 
((1mm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) -> 

psw [ 19] : = 1 
!TRUE-> psw[l9] := 0), 
{ (r[dest;O]=l & 

((imm=O & r[sl;O]=r[s2;0]) v 
(imm=l & r[sl;O]=i[l9]))) v 

(r[dest;O]=l & r[sl;O]=l & 
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) -> 

(r[dest;O]=O & r[sl;O]=l & 
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) -> 

psw [ 2 0] : = 1 
!TRUE-> psw[20] := 0)] 

psw[l7 .. 20] := 0 
[r[dest;O] = 0 -> psw[l7] := 1 I 
DEC(r[dest]) = 0 -> psw[l8] := l] 

IF 
r[dest;O] = 0 

THEN 
psw [ 1 7] : = 1 

ELSE 
bin_dec(32,r[dest],regval) 
IF 

regval = 0 
THEN 

psw[l8] := 1 
FI 

FI 
bitl,bit3 := r[sl;O],r[dest;O] 
IF 

imm = 0 
THEN 

bit2 := r[s2;0] 
ELSE 

bit2 := i[l9] 
FI 
IF 

n[l] = 0 
THEN [set overflow and carry for addition] 

IF 
(bitl=O & bit2=0 & bit3=0) v 
(bitl=l & bit2=1 & bit3=0) 

THEN 
psw [ 19] : = 1 

FI 



IF 
(bitl=O & bit2=1 & bit3=1) v 
(bitl=O & bit2=1 & bit3=0) 

THEN 
psw [ 2 0] : = 1 

FI 
ELSE 

FI 
CORP 

IF 
n[l] = 2 

THEN [bitl,bit2 := bit2,bitl] 
temp:= bitl 
bitl := bit2 
bit2 := temp 

FI 
[set overflow and carry bits for subtraction] 
IF 

(bitl=l & bit2=Q & bit3=0) V 

(bitl=O & bit2=1 & bit3=1) 
THEN 

psw[l9] := 1 
FI 
IF 

(bitl=bit2 & bit3=1) V 

(bitl=O & bit2=1 & bit3=1) v 
(bitl=O & bit2=1 & bit3=0) 

THEN 
psw [ 20] : = 1 

FI 

DATA setmask lees 
bitl,bit2,bit3: o •• 1, 
temp: 0 .. 1 
regval: INTEGER 

ATAD 

Proof Examples 
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Two of the functional correctness proofs resulting from 

proving the correctness of the new arithmetic procedure are 

presented in this section. Even though the two proofs are 

very similar in their function specifications and function 

derivations, they were chosen as examples because of their 

illustrative outcomes and because their derivations were not 
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extremely lengthy and complex. Both of the proofs had 

results of failure, and consequently instigated a review of 

both the intended function and program implementation. In 

the first failure the intended function was modified, and in 

the second, the program implementation was corrected. In 

both the proofs the abbreviations mi, d, rs, [14], [20] are 

used for maxint, dest, result, psw[l4], and psw[20] 

respectively. Also variables such as opl, op2, d, and n[2] 

whose values do not change within the procedure are treated 

like constants in the trace table and derivations, that is, 

their state changes are not included in the table, and they 

are not subscripted. 

The first proof presented is the proof of the last 

level of abstraction of the adds procedure. Because of the 

level of abstraction, intended functions of lower level 

subprograms are used in the program specification. 



FUNCTION 

[n[2] = 0 -> (((opl > 0 & op2 > 0) v 
(opl < 0 & op2 < 0)) & 

(ABS(opl) > maxint - ABS(op2))) -> 
psw[l4],r[dest] := l,UND 

ITRUE -> r[dest] := TWOSBIN(opl + op2) 
!TRUE -> (((opl > 0 & op2 > 0) v 

(opl < 0 & op2< 0)) & 
(ABS(opl) > maxint-ABS(op2)-psw[20])) -> 

psw[l4],r[dest] := l,UND 
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jTRUE -> r[dest] := TW0SBIN(opl+op2+psw[20]) 

PROGRAM 

rs : = DEC ( r[ d] ) ; 
((opl>O & op2>0) v (opl<O & op2<0)) & 
(ABS(opl) > mi-ABS(op2)) -> psw[l4] := 1 
!TRUE-> (n[2]=1 & ((ABS(opl+op2)<=mi-psw[20]) v 

(opl & op2 different signs)) -> 
rs := opl+op2+psw[2] 

jn[2]=1 & ABS(opl+op2)>mi-psw[20] & 
opl & op2 same signs-> 

psw[l4] := 1 
jTRUE -> rs := opl + op2)); 

r[d] := TWOSBIN(rs); 

PROOF 

cond rs r[d] [14] 

rs 1 = DEC ( r0 [ d]) r = I ro [14], = 

cl rs,1. = rs 1 r2. = r, [ 14 ]~ = 

c2 rs~= opl+opl+[20] r2. = r, [ 14 J.1. = 

c3 rs,2, = rs, r.:l. = r, [14]2. = 

c4 rs.1. = opl+op2 r.:i, = r, [14],_= 

rs3 = rs,_ r.3 = TWOSBIN(rs.2.) [ 14 ]3 = 

[ 14 ]0 

1 

[ 14 ], 

1 

[ 14]. 

[ 14 ].,_ 
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The conditions symbolically represented in the table are 

cl= ((opl>O & op2>0) v (opl<O & op2<0}) & 
ABS(opl) > mi-ABS(op2) 

c2 = ((opl<=O & op2>=0) v (opl>=O & op2<=0) v 
ABS(cpl) <= mi-ABS(op2)) & n[2l=l & 
(ABS(opl+op2) <= mi-[20l v opl & op2 diff signs) 

c3 = ((opl<=O & op2>=0) v (opl>=O & op2<=0) v 
~BS(opl) <= mi-ABS(op2)) & n[2l=l & 
ABS(opl)+op2 > mi-[20l & (opl & op2 same signs) 

The above condition simplifies ~o 
c3 = ((opl=O & op2=0) v 

ABS(opl) <= mi-ABS(op2)) & n[2l=l & 
ABS(opl+op2) > mi-[20l & (opl & op2 same signs) 

c4 = ( (opl<=O & op2>=0) v (opl>=O & op2<=0) V 
ABS(opl) <= mi-ABS(op2)) & n[2l~=l 

derivations: 

1. r, = TWOSBIN(rsa,) [ 14 l3 = [ 14 l. 
= TWOSBIN(rs,) = 1 
= TW0SBIN(DEC(r 0 [dl)) 

2. r3 = TWOSBIN(rs.,) [ 14 l3 = [14h. 
= TW0SBIN(op1+op2+[20l) = [ 14 l, 

= [ 14 lo 

3. r3 = TWOSBIN(rs.,_,) [14l3 = [ 14 ]:l 
= TWOSBIN(rs,) = 1 
= TWOSBIN(DEC(r0 [dl)) 

4. r3 = TWOSBIN(rs.,_) [ 14 l3 = [ 14 la. 
= TW0SBIN(op1+op2) = [ 14 l I 

= [ 14 lo 

derived function: 

cl -> r [ dl, psw[14l ·- TWOSBIN(DEC(r[dl)), 1 .-
c2 -> r[d], psw[14l ·- TW0SBIN(op1+op2+psw[20]), psw[l4l .-
c3 -> r[dl, psw[l4l := TWOSBIN(DEC(r[dl)), 1 
c4 -> r [ dl, psw[14l ·- TW0SBIN(opl-op2), psw[14l .-
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In the partitions cl and c2 the derived function is 
r[d], psw[14] := TWOSBIN(DEC(r[d])), 1; however the 
intended function for this partition is psw[l4] := 1 
which implies that r[d] does not change. Since TWOSBIN 
and DEC are not inverse functions TWOSBIN(DEC(r[d])) is 
not equivalent to r[d], so the functions do not agree. 

RESULT 
FAIL 

The nature of the failure in the above proof caused a 

reevaluation of the intended function. The question was 

asked if it were necessary for r[d] to retain its value in 

the partitions where the failures occurred. The value of 

r[d] is not important in those partitions, so the intended 

function was modified to indicate this fact. The 

modification was the addition of r[d] := UN~ in the two 

places of the intended function where fhe assignment 

psw[l4] := 1 is located. 

The next proof is the proof of th~ top level 
' 

abstraction of the subs procedure. Once aga~n the intended 

functions of the lower level subprograms are used in the 

program specification. 



FUNCTION 

n[2] = 0 -> (((opl < 0 & op2 > 0) v 
(opl > O & op2 < 0)) & 

(ABS(opl) > maxint - ABS(op2))) -> 
psw[l4],r[dest] := l,UND 

!TRUE-> r[dest] := TWOSBIN(opl - op2) 
!TRUE -> ({opl <= 0 & op2 >= 0) & 

(ABS(opl) > maxint - op2 - psw[20])) -> 
psw[l4],r[dest] := l,UND 
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!TRUE-> r[dest] := TWOSBIN(opl-op2-psw[20]) 

PROGRAM 

rs : = DEC ( r[ d ] ) : 
((opl>O & op2<0) v (opl<O & op2>0)) & 
(ABS(opl) > mi-ABS(op2)) -> psw[l4],r[d] := l,UND 
!TRUE-> (n[2]=1 & ABS(opl)+op2<=mi-psw[20] -> 

rs := opl-op2-psw[2] 
ln[2]=1 & ABS(opl)+op2>mi-psw[20] -> 

psw[l4] := 1 
!TRUE-> rs := opl - op2)): 

r[d] := TWOSBIN(rs): 

PROOF 

cond rs r[d] 

rs,= DEC ( r 0 [ d]) r. = ro 

cl rs,2. = rs. r.:t = r. 

c2 rs,2 = opl-opl-[20] r-. = r. 

c3 rs,1. = rs 1 r.z = r, 

c4 rs,2 = opl-op2 r~= r, 

rs,= rs.t r3 = TWOSBIN(rs;i.) 

[ 14i] 

[ 14 ], = [ 14 ]0 

[ 14 ],. = 1 

[ 14 ];1. = [ 14 J. 

[ 14 ].1. = 1 

[ 14 ].;i, = [ 14 J. 

[ 14 J, = [14]-. 
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The conditions symbolically represented in the table are 

cl= ((opl>O & op2<0) v (opl<O & op2>0)) & 
ABS(opl) > mi-ABS(op2) 

c2 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v 
ABS(opl) <= mi-ABS(op2)) & n[2J=l & 
ABS(opl)+op2 <= mi-[20J 

c3 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v 
ABS(opl) <= mi-ABS(op2)) & n[2J=l & 
ABS(opl)+op2 > mi-[20J 

c4 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v 
ABS(opl) <= mi-ABS(op2)) & n[2J~=l 

derivations: 

1. r3 = TWOSBIN ( rs.i.) 
TWOSBIN(rs,) 

= TWOSBIN(DEC(ro[dJ)) 

[14J 3 = [14JA 
= 1 

2. r3 = TWOSBIN(rs;i.) [14J3 = [14Jo1. 
TWOSBIN(opl-op2-[20J) = [14J1 

= [ 14 J0 

3. r3 = TWOSBIN(rs.i.) 
TWOSBIN ( rs. ) 

= TWOSBIN(DEC(r 0 [dJ)) 

4. r3 = TWOSBIN ( rs.i..) 
= TWOSBIN(opl-op2) 

derived function: 

[14J3 = [14J.i 
= 1 

[ 14 J3 = [ 14 Ja. 
= [14J, 
= [ 14 J0 

cl-> r[dJ, psw[l4J := TWOSBIN(DEC(r[dJ)), 1 
c2 -> r[dJ, psw[l4J := TWOSBIN(opl-op2-psw[20J), psw[l4J 
c3 -> r[d], psw[l4J := TWOSBIN(DEC(r[dJ)), 1 
c4 -> r[d], psw[l4J := TWOSBIN(opl-op2), psw[l4J 

The derived and intended function differ in partition 
c3. In partition c3 the derived function is 

r, psw[l4] := TWOSBIN(DEC(r [d])), 1 
whe~eas, the intended function is 

opl>O v op2<0 -> 
r, psw[l4J := TWOSBIN(opl-op2-psw[20]), psw[l4] 

jTRUE -> r, psw[l4J := UND, 1. 

RESULT 
FAIL 
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In this case the program rather than the intended 

function was modified to correct the error detected by the 

proof. The correction made was the if condition 

IF 

(ABS(result) > maxint - psw[20]) 

was expanded to 

IF 

(ABS(result) > maxint - psw[20]) & 

(opl <= 0 & op2 >= 0) 

within the subs procedure. 

Programming Results 

The purpose of writing and proving the new procedure 

was to test the effectiveness of the functional proof of 

correctness approach. After the new procedure was proved to 

be correct, it was inserted into the RISC simulator and 

tested with a gcal of zero logic errors. The result of 

inserting the procedure into the simulator was that after 

the minor programmer errors, such as miscopying lines and 

misusing a nested ifthenelse statement, were corrected, the 

procedure executed correctly according to the specified 

function. There was one significant mistake - an incorrect 

specification of the intended function. This mistake, 

however, is one which can not be detected by functional 

proof of correctness. 
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Summary 

A new arithmetic procedure was designed and its 

correctness was proved by the functional correctness method. 

Some of the proofs of the subprograms of the procedure 

resulted in failures, and thus, the intended function and 

program implementation were reviewed and a modification was 

made to correct the cause of the failure. After the proving 

of the program correctness,. the procedure was inserted into 

the RISC simulator for testing. The result of the testing 

was that the proof process satisfactorily eliminated the 

logic errors. 



CHAPTER VII 

SUMMARY, CONCLUSIONS, AND SUGGESTED 

FUTURE RESEARCH 

Functional proof of 

mathematically verifying 

Summary 

correctness is one 

the correctness 

approach of 

of a program 

function. In a functional correctness proof the intended 

program function is compared to the derived program 

function, and if the intended function is equal to or a 

subset of the derived function, then the program is correct. 

Structured programming is an important aspect of a 

functional correctness proof. To use the functional 

correctness approach on a program, the program must be a 

structured program because the fundamental control 

structures of structured programmming are also . the 

fundamental structures used in proving the program's 

correctness. The methods of verifying the six basic control 

structures of structured programs, function, sequence, 

ifthen, ifthenelse, whiledo, dountil, and the two 

structures, fordo and case, that are extensions to the basic 

six are derived from and supported by the Correctness 
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Theorem. The Correctness Theorem provides a proof form 

and proof objective for each of the control structures, and 

various techniques are applied in the proof body to 

accomplish the proof objective and obtain a result of pass 

or fail. These techniques include mental verification, 

table tracing, special data structure handling, and complex 

conditional handling. 

Inherent to structured programming are the concepts of 

hierarchical levels of program detail and program self­

containment which form the basis for stepwise abstraction. 

Stepwise abstraction is the process of verifying the 

correctness of a program in a bottom-up method by verifying 

the correctness of a low level subprogram and replacing the 

subprogram with its intended function, thus, advancing the 

program to a higher level of abstraction. The control 

structures of structured programming form the subprograms 

used in stepwise abstraction. Because of the self­

containment of the control structures, the proof of one 

subprogram does not affect the proof of another subprogram. 

·Applying the functional correctness method to the 

procedures of the EXEC module in the RISC simulator 

demonstrates the the proof method's performance on realistic 

procedures. The proofs of these procedures verified their 

correctness, and in some cases, errors that were not 

detected during the testing of the program were detected by 

the proofs. 
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Applying the functional correctness method to a new 

RISC procedure tested the effectiveness of functional 

correctness in detecting and eliminating logic errors before 

coding and testing of the procedure. The result of 

inserting the new procedure into the simulator after the 

procedure had been proved to be correct was that the 

procedure correctly executed its specified function. The 

logic errors· were detected during the proof process and 

removed prior to the procedure's insertion into the 

simulator. 

Conclusions 

The conclusion drawn from applying functional proof of 

correctness to the old procedures and a new procedure of the 

RISC simulator is that functional proof of correctness 

increases the potential of having a program with zero logic 

errors. Also, even though the specification of the intended 

program function is not verified by proof of correctness, 

the intended function can be refined during the proving of a 

program because oftentimes when an error is found, the 

intended function is reviewed to see if what it specifies is 

what is actually desired. Furthermore, the guidelines 

outlining program and proof form generate pratical program 

structuring and beneficial documentation, and the proof 

process enforces a methodical verification of a program that 
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is more rigorous and thorough than the prevailing freestyle 

desk checking. 

Functional proof of correctness does have two drawbacks 

that detract its validity. One drawback of functional proof 

of correctness occurs during the proving of a program with a 

complex conditional structure. The numerous .and lengthy 

paths become tedious and difficult to trace, and the 

conditions and rules become difficult to derive. The 

validity of the proof deteriorates in relation to the 

complexity of the conditions. Another drawback, which also 

is encountered in desk checking, testing, and debugging a 

program, is program familiarity. If one is familiar with a 

program, errors pointed out by the proofs tend to be missed 

because the foreknowledge of what the program is suppose to 

do influences one to believe that the program accomplishes 

what is specified. The solution to program familiarity is to 

have someone not familiar with the program design do the 

proving of the program. 

Overall, however, the functional correctness method is 

useful in proving the correctness of a program's function 

and is effective in eliminat1ng logic errors. 

Suggested Further Research 

Proof of correctness is only part of a larger design 

and verification process constructed to promote zero defect 

code. Another part of this process is module refinement and 
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verification [8]. Whereas, a procedure provides a rule for 

a function, a module provides a rule for a state machine 

[8, 9]. Thus in module refinement and verification the 

module specification state machine (similar to a procedure's 

intended function) is compared to the module design state 

machine (similar to a procedure's derived function). It is 

during module refinement and verification that variable 

correctness is verified. Possible further research into 

module verification and refinement techniques and their 

application in conjunction with functional proof of 

correctness is suggested. Module verification and refinement 

techniques and functional proof of correctness techniques 

can be applied in the design and implementation of a program 

to test the effectiveness of these techniques in providing 

zero defect code, or in other words, providing a program 

that runs flawlessly (discounting compilation errors) from 

the beginning. 
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Appendix Contents 

proofs presented in this appendix are 

the proofs of the RISC procedures that were 

completed for this report. The proof for every procedure is 

not given because the proofs of several of the procedures 

were very similar such as the logical operator procedures, 

loads and stores procedures, conversion procedures, shift 

left and shift right procedures, and calls and return 

procedures; therefore, only one sample from a group of 

comparable proofs is presented throughout the report. Also, 

the proofs of the mac procedure, the setmask procedure, and 

the exception procedures consisted of no more than mental 

verification, so only one of these procedures' proofs is 

outlined. 



Proof of Mac Procedure 

FUNCTION 

psw[B] = 0 -> check protection exception, 
psw[9] = 0 -> check address exception, 
psw[l3] = 0 -> check boundary exception; 
psw[B,9,13] = 0,0,0 -> 

addr := addr/4 + disp; 
in out flag= 0 -> m[addr] := memrow 
ITRUE => memrow := m[addr] 

PROGRAM 

IF 
psw [ 8] = 0 

THEN 
psw[B] := prot_excep(addr) 

FI 
IF 

psw[9] = 0 
THEN 

psw[9] := addr_excep(addr) 
FI 
IF 

psw[l3] = 0 
THEN 

psw[l3] := bndry excep(addr) 
FI 
IF 

psw[S,9,13] = 0,0,0 
THEN 

FI 

addr := addr/4 + disp 
IF 

in out flag= 0 
THEN- -

m[addr] := memrow 
ELSE 

memrow := m[addr] 
FI 

PROOF 

mental verification 

RESULT 
PASS 
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Proof Failure in Jumps Procedure 

FUNCTION 

psw[B,9,13] := n[l] = 0 -> 

!n[l] = 1 -> 

prot excp(sc+DEC(r[sl]}), 
addr-excp(sc+DEC(r[sl])), 
bndry excp(sc+DEC(r[sl])) 
prot excp(y+DEC(psw[32 .. 63])), 
addr-excp(y+DEC(psw[32 .. 63])), 
bndry excp(y+DEC(psw[32 .. 63])) 

VAR n [ 1 ] : 0 .• 1 

PROGRAM 

IF 
n[l] = 0 

THEN 
bin dec(32,r[sl],rg) 
pswT9] := addr excp(rg) 
IF -

psw [ 9] = 0 
THEN 

C : = SC + rg 
FI 

ELSE 

"FI 

bin dec(32,psw[32 •• 63],lc) 
C : ;- le + y 

psw[B,9,13] := prot_excp(c),addr_excp(c),bndry_excp(c) 

PROOF 

(the abbreviations [8], [9], [13], pe, ae, be are used for 
psw[B], psw[9], psw[l3], prot_excp, addr excp, and 
bndry excp, respectively, in the trace table and 
derivations) 
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condition [ 8] [ 9] [13] 

1. n[l] = 0 I I I 
2. I [ 9 ];i. = ae(rg 1 ) I 
3. [9J:i. = 0 I I I 
4 • [ 8 ]'I = pe(c 3 ) [ 9 ]~ = ae (c3 ) [ 13 ]'I = be ( c3 ) 

3 . [ 9 ].2. "'= 0 [ 8 J3 = pe ( C.i.. ) [ 9] = 
3 

ae ( C.t.) [ 13 ]3 = be ( C.t ) 

1. n[l] "'= 0 I I I 
2. I I I 
3. [ 8 ]3 = pe ( C.1. ) [9] = 

3 
ae ( c.;.,.) [ 13 ].) = be ( C;i. ) 

rg C le 
-----------------------------------------------------

1. rg, = DEC ( r[ sl]) I I 
2. I I I 
3. I C.3 = SC + rg;. I 
4. I I I 

3. I I I 

1. I I lc 1 = DEC(psw[32 •• 63]) 
2. I C,t = le,+ y I 
3. I I I 

derivations: 

condition 
n [ 1] = 0 & [ 9 ]~ = 0 
n [ 1 ] = 0 & ae ( r g 1 ) = 0 
n[l] = 0 & ae(DEC(r[sl])) = 0 

rule 
[ 8 ]'I = pe ( C3 ) 

= pe(sc + rg2,) 
= pe ( SC + rg I ) 

= pe(sc + DEC(r[sl])) 
derivations for [9] and [13] are identical to [8] 

condition 
n [ 1] = 0 & [ 9 ];i. "'= 0 
n[l] = 0 & ae(rg,) "'= 0 
n[l] = 0 & ae(DEC(r[sl])) "'= 0 



rule 
[ 8 ] 3 = pe ( C ,1 ) 

= pe (c, ) 
= pe(co) 

derivations for [9] and [13] are identical to [8] 

condition 
n[l] ~= 0 (with data type 0 .. 1 implies n[l] = 1) 

rule 
[ 8 ]3 = pe ( c~) 

= pe ( le, + y) 
= pe(DEC(psw[32 •. 63] + y)) 

derivations for [9] and [13] are identical to [8] 

Derived function: 

1. n[l] = 0 & ae(DEC(r[sl])) = 0 -> 
psw[8,9,13] := pe(DEC(r{sl])+sc), 

ae(DEC(r[sl])+sc), 
be(DEC(r[sl])+sc) 

2. n[l] = 0 & ae(DEC(r[sl])) ~= 0 -> 
psw[8,9,13] := pe(c) ,ae(c) ,be(c) 

3. n[l] = 1 -> psw[8,9,13] := pe(DEC(psw[32 •• 63)+y), 
ae(DEC(psw[32 •• 63)+y), 
be(DEC(psw[32 .. 63)+y) 
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derived function and intended function do not agree in 2. 

RESULT 
FAIL 



Proof of Ret Procedure 

FUNCTION 

r[dest;O] ~= 1 -> 
(psw[S] := prot excp(DEC(r[dest])+sc), 
psw[9] := addr-excp(DEC(r[dest])+sc), 
psw[l3] := bndry excp(DEC(r[dest])+sc); 
psw[S,9,13] = 0,0,0 -> 
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psw[4], psw[32 .. 63] := 0, BIN(DEC(r[dest)+sc), 
(psw[3] = 1 -> handle window ov on return 

jTRUE -> (DEC(psw[0 •• 2]) < 7 -> 
psw[0 •• 2] := BIN(DEC(psw[0 .• 2]) + 1) 

!TRUE-> psw[l2] := 1)) 
jTRUE -> psw[9] := 1 

PROGRAM 

bin dec(32,r[dest],retaddr) 
retaddr := retaddr + SC 
IF 

r[dest;O] = 1 
THEN 

psw[9] := 1 
ELSE 

psw[9] := addr_excp(retaddr) 
FI 
psw[8],psw[l3] := prot excp(retaddr), 

- bndry excp[retaddr] 
IF -

psw[S,9,13] = 0,0,0 
THEN 

FI 

psw [ 4] : = 0, 
dee bin(32,retaddr,loc cntr); 
pswT32 •• 63J := loc cntr, 
bin dec(3,psw[0 •• 2J,cwp); 
IF -

psw[3] = 1 
THEN 

handle window overflow on return 
ELSE 

FI 

IF 
cwp < 7 

THEN 
cwp := cwp + 1 
dee bin(3,cwp,psw[32 •• 63] 

ELSE -
psw [ 12] : = 1 

FI 
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PROOF 

In the table and derivations the abbieviations d, ra, le, 
pe, ae, and be are used for dest, retaddr, loc cntr, 
prot excp, addr excp, and bndry excp. Also the psw is 
omitted from all references of-psw values, i.e. psw[81 is 
[ 8]. 

condition [81 [ 91 [131 

I I I 
I I I 

r[d;01 "'= 1 [813 = pe(ra;a.) [ 913 = ae(ra.1.> [13)a = be(ra.,,) 
[ 8 , 9 , 13 13 = 0 , 0 , 0 I I I 

I I I 
psw[31 = 1 I I I 

psw[31 .. =l & cwp5 <7 I I I 
I I I 

psw[31"'=1 &cwp5 >=7 I I I 

[ 8, 9,131, "'= 0,0,0 I I I 

r[d;01 = i I [ 913 = l I 

[0 •• 21 [41 [121 [32 •• 631 
-----------------------------------------·----------------

I I I I 
I I I I 
I I I I 
I [411 = o I I 
I I I [32 •• 631s= le., 
I I I I 

I I I I 
co •• 217 = BIN(cwp") I I I 

I I [ 121. = 1 I 

I I I I 

I I I I 



ra cwp le 

1. ra, = DEC ( r[d]) I I 
2. ra~ = ra, + sc, I I 
3. I I I 
4. I I lc41 = BIN(ra3 ) 
s. I cwps= DEC ( psw [ 0 •• 2 ],, ) I 
6. I I I 

6. I cwp1,, = cwps + 1 I 
7. I I I 

6. I I I 

4. I I I 

3. I I I 

derivations: 

1 condition 
r[d;O] -i: 1 & [8,9,13]3= 0,0,0 & psw[3] 

r[a;O] -,= 1 & pe(ra,.) = 0 & ae(ra,1,) = 0 
be(ra~) = 0 & psw[3] = 1 

r[d;O] -i: 1 & pe(ra 1 + sc) = 0 & ae(ra 1 + 
be(ra 1 + SC) 0 & psw[3] = = 1 

r[d;O] -, = 1 & pe(DEC(r[d]) + SC) = 0 
ae(DEC(r[d]) + SC) - 0 & be ( DEC ( r[ d] ) 
psw[3] = 1 

rule 
visual cerivation -

[4] ,[12] ,[0 .• 2] = 0,[12] ,[0 .• 2] 
and window overflow is handled 

& 

[ 8 l1, = [ 8 ]s [ 3 2 •• 6 3 leo = [32 •• 63]5 
= [ 8]., = lc'I 
= [ 8 ]3 = BIN(ra 3 ) 

= pe(ra:i.) = BIN(ra;i,) 

+ 

= 1 

& 

SC) 

SC) 

= pe(ra, + sc) = BIN(ra 1 + sc) 
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window ov 

handled 

= 0 & 

= 0 

= pe(DEC(r[d]) + sc) = BIN(DEC(r[d] + sc)) 
[9],[13] derivations same as [8] 
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2 condition 
r[d;O] .,= 1 & [8,9,13h = 0,0,0 & psw[3] .,= 1 & cwp5 < 7 
derivation of [8,9,13]. same as in condition 1 

cwps< 7 
DEC ( psw [ 0 •. 2] 'I ) < 7 
DEC(psw[O •• 2] 0 ) < 7 

r[d;O] .,= 1 & pe(DEC(r[d]) + sc) = 0 & 
ae(DEC(r[d]) + sc) = 0 & be(DEC(r[d]) + sc) = 0 & 
psw[3] .,= 1 & DEC(psw[0 .• 2] ) < 7 

rule 
[8],[9],[13],[32 .• 63],[4],[12] derived as in rule 1 

[O •• 2]1 = BIN(cwp,.) 
= BIN(cwps+ 1) 

3 condition 

= BIN(DEC(psw[0 •• 2],,) 
= BIN(DEC(psw[0 •• 2] 0 ) 

+ 1) 
+ 1) 

r[d;O] .,= 1 & [8,9,13] 3 = 0,0,0 & psw[3] .,= 1 & cwp5 >= 7 
derivations as in conditions 1 and 2 

r[d;O] .,= 1 & pe(DEC(r[d]) + sc) = 0 & 
ae(DEC(r[d]) + sc) = 0 & be(DEC(r[d]) + sc) = 0 & 
psw[3] .,= 1 & DEC(psw[0 •• 2] ) >= 7 

rule 
[8],[9],[13],[32 •• 63],[4],[0 •• 2] derived as in rule 1 
[ 12] = 1 

4 condition 
r [ d; 0 ] ., = 1 & [ 8 , 9 , 13 ]3 ., = 0 , 0 , 0 

r[d;O] .,= 1 & pe(ra~) .,= 0 & ae(ra~) .,= 0 & 
be(ra.1,) .,= 0 

r[ d ; 0 ] ., = · 1 & pe ( r a 1 + s c ) ., = 0 & a e ( r a 1 + s c ) ., = 0 & 
be(ra 1 + sc) .,= 0 

r[d;O] .,= 1 & pe(r[d] + sc) .,= 0 & 
ae(DEC(r[d]) + sc) .,= 0 & be(DEC(r[d]) + sc) .,= 0 

rule 
[ 8 ]., = [ 8 h 

= pe(ra.a.) 
= pe(ra 1 + sc) 
= pe(DEC(r[d]) + sc) 

[9],[13] derivations same as [8] 



5 condition 
r[d;O] = 1 

rule 
[9] = 1 [8],[13],[4],[12],[0 .• 2],[32 •• 63] = I 
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In the comparison of the derived function and intended 
function in each of the 5 partitions, it is seen that the 
two functions agree. 

RESULT 
PASS 
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Proof Failure in Shifts Procedure 

FUNCTION 

(amt:= (imm=O -> DEC(r[s2]} jTRUE -> sc}}; 
(amt< 0 -> amt := 0 jamt > 32 & n[l] = 1 -> amt := 31 

jamt > 32 & n[l] ~= 1 -> amt := 32} 
(n[2] = 0 -> shift_left(amt} I TRUE -> shift_right(amt}}; 
(sec= 1 -> 

(setmask; 
n[l] = 1 & r[sl;O] ~= r[sl;l •• amt] -> psw[l9] := l}} 

PROGRAM 

This program is at the top level of abstraction. 

1 amt := (imm=O -> DEC(r[s2]} I TRUE-> sc} 
2 n[l] = 1 & sec= 1 -> 

(pswl9 := (r[sl;O] ~= r[sl;l .• amt] -> 1 
jTRUE -> O} 

3 amt> 32 -> amt := 32 
4 n[2] = 0 -> shift left(amt} !TRUE shift right(amt} 
5 sec= 1 -> (setmask (includes psw[l9] :; O}; 

n[l] = 1 -> psw[l9] := pswl9} 

PROOF . 
This proof is worked partially by mental verification and 
reasoning and partially by table tracing. 

By inspection: 
Line 1 of program corresponds directly with the first 
line of the FUNCTION. Also line· 4 of the program 
corresponds directly with the fifth line of the 
FUNCTION. If n[l] ~= 1, then the program simplifies to 
lines 1, 3, 4, and 5 where line 5 is simplified to 
sec= 1 -> setmask. This simplification corresponds 
directly with the FUNCTION for the case n[l] ~= 1. If 
sec~= 1, then the program simplifies to lines 1, 3, 4 
and again corresponds directly with the FUNCTION for 
this case. Finally, by inspection it can be seen that 
line 3 is not thorough enough to agree with the 
FUNCTION: in partition amt< 0, f = (amt := 0) while 
[P] = (amt := amt}, and in partition amt> 32, f = (amt 
:= (n[l] = 1 -> 3ljTRUE -> 32)} while [P] = (amt := 32} 
So there is one failure found by mental verification. 

FAIL 

In all the cases in the following table n[l] = 1 and 
sec= 1 because the cases where either n[l] ~= 1 or sec~ 
= 1 has been mentally verified above. 
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condition pswl9 psw[l9] amt 

1. r[sl;O] ..,= pswl9 1 = 1 I I 
r[sl;O •• amto] 

2. amt,<= 32 I I I 
3. I psw [ 19 ]3 = pswl9;L I 

2. amt,> 32 I I amt,;.= 32 
3. I psw [ 19 ]3 = pswl 9.t I 

1. r[sl;O] = 
r[sl;O •• amto] 

pswl9 1 = 0 I I 

2. amt,<= 32 I I I· 
3. I psw [ 19 ]3 = pswl 9.a.. I 

2. amt,> 32 I I amt.i = 32 
3. I psw[l9]3 = pswl9.., I 

derivations: 

1 condition 
r[sl;O] ..,= r[sl;O •• amto] & amt,<= 32 
r[ sl; 0] ..,= r[sl;O •• amto] & amto <= 32 

rule 
psw[l9]3 = pswl9~ 

= psw19, 
= 1 

2 condition 
r[ sl; 0] ..,= r[ sl; 0 •• amto ] & amto > 32 
r[ sl; 0] ..,= r[sl;O •• amto] & amt,> 32 

rule 
psw[l9]3 = pswl9a. 

= psw19, 
= 1 

3 condition 
r[ sl; O] = r [ sl; 0 •• amt 0 ] & amt,<= 32 
r[sl;O] = r[ sl; 0 •• amt 0 ] & amta<= 32 

rule 
psw[l9]3 = pswl9:i.· 

= psw19, 
= 0 



4 condition 
r[sl;O] = r[sl;O. ~amto] & amt,> 32 
r [ sl; 0] = r [ sl; 0 •. amt.,] & amt.,> 32 

rule 
psw[l9]3 = pswl~.;. 

- pswl91 
= 0 
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r[sl;O] = r[sl;O •. a~t] & amt<= 32 -> psw[ 9] := 0 PASS 

r[sl;O] = r[sl;O .. amt] & amt> j2 -> psw[l ] := 0 Pass 

r[sl;O] ..,= r[sl;O .. amt] & amt<~ 32 -> psw 19] := 1 PASS 

r[sl;O] ..,;,.. r[sl;O •. amt] & amt > .32 -> psw[ 9] := 1 
This breaks down into two c~ses 
1. r[sl;O] ..,= r[sl;0 •. 31] · 
2. r[sl;O] = r[sl;0 .. 31] & r[sl;O] ..,= r[ 1;32 •• amt] 

In case one the intended function and d rived function 
agree, but in case two, f = (psw[l9] 0) while [P] = 
(psw[l9] := 1), so this:case FAILs. 

RESULT 
FAIL 
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