
FUNCTIONAL PROOF OF CORRECTNESS TECHNIQUES
•

APPLIED TO RISC SIMULATOR - ... _

By

MARJORIE HYATT TURNER
II

Bachelor of Science

Indiana State University

Terre Haute, Indiana

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1983

J

Thesis
j ~S,3

T141{
Crrf •l.

FUNCTIONAL PROOF OF CORRECTNESS TECHNIQUES

APPLIED TO RISC SIMULATOR

Thesis Approved:

ii
1170369 l

PREFACE

The performance of functional proof of correctness

techniques is examined in this study by applying the

techniques to a RISC simulator. The function~l correctness

theory is discussed, and simple examples illustrating the

proof techniques are given. Then functional correctness is

used to prove the correctness of some of the procedures in a

RISC simulator. Finally the proof techniques are applied to

a newly designed procedure of the RISC simulator.

I wish to acknowledge Arthurine Breckenridge, Dean

Knight, and John Jagoe for their work on the RISC simulator.

Also I wish to thank my committee members Dr. G. E. Hedrick

and Dr. J. R. Van Doren for their coniributions and advice,

and Dr. Michael J. Folk for substituting during my oral

examination. Dr. Hedrick, I hope that your foot in mouth

problems begin to recede upon my departure from the

university.

Finally to express my sincerest appreciation to my

major advisor, Dr. D2 Fisher, for his help on this thesis

and for his continual assistance throughout my studies at

Oklahoma State University, I raise my glass of water in

thanks.

iii

Chapter

I •

II.

I I I.

IV.

TABLE OF CONTENTS

INTRODUCTION

BRIEF RISC DESCRIPTION .

Page

1

6

General Concept • • • • • • • • • • • • 6
Special Architectural Features • • • • • • 7
Instruction Description • • • • • • • • • • 11
Summary 13

FUNCTIONAL PROOF OF CORRECTNESS THEORY .

Flowchart Symbols ••••••
Prime Programs and Structured

Programming ••.•••••.••••
Program Functions •••••••
Stepwise Abstraction •••••••••••
Program Correctness vs Program

Verification ••••••••••••
Summary . •

PROOF SYNTAX AND METHODS •

15

15

16
25
32

36
38

39

Program Design Form. • • • • • • • • • • • 40
Proof Form and Function • • • • • • • • • • 44
Mental Verification and Trace Tables • • • 55
Five Examples • • • • • • • • • • • • . 58
Arrays and Anonymous Data • • • • • • • • • 68
Conditional Rules • • • • • . • • • • • • • 77
Summary • • • • • • • • • • • • • • • • 84

V. RISC SIMULATOR AND FUNCTIONAL CORRECTNESS 86

VI.

EXEC Module of RISC Simulator • • • • • • • 86
Principle Assumptions • • • • • • • • • . • 87
Illustrative Proofs of EXEC Procedure. 88
Summa r y • • • • • • • • • • • • • • • • 12 2

FUNCTIONAL CORRECTNESS APPLIED TO NEW
PROCEDURE • • • • • • • • • • • • • •

PDL of the Arithmetic Procedure •
Proof Examples •••••••••
Programming Results •••••••

iv

123

124
137
144

Chapter

Summary • • . • • • . • •
VII. SUMMARY, CONCLUSIONS,

AND SUGGESTED FUTURE RESEARCH

Summary • • • • • . • • •
Conclusions ••••••.••••
Suggested Further Research

SELECTED BIBLIOGRAPHY •

APPENDIX .

V

Page

145

146

146
148
149

151

153

Table

I.

TABLE

Assembly Language Definition for RISC

vi

Page

14

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

LIST OF FIGURES

Normal and Delayed Jumps

RISC Window Registers •

RISC Instruction Format •

.
.

.
Flowchart Node Structures •
Proper Program and Proper Program Violations

Proper Program Violations Continued •.•••

Proper Programs Containing Proper Subprograms
of More Than One Node •••••••••••

Proper Subprograms of the Proper Programs in
Figure 7

Six Control Structures of Structured

• •

. .

. .
Programming • . • • • • • • • • • • •

Conversion of Dowhiledo Structure to an
Equivalent Construction •••••••

Graphical Illustrations of Functional

.
Correctness •••••••••••••• • • • •

. . . • • Illustration of Stepwise Refinement ••

Illustration of Stepwise Abstraction
Flowchart Equivalence of a Whiledo and

Ifthen; Whiledo Sequence •••••
Flowchart Equivalence of Dountil and

Initialized Whiledo •••.••••

PDL Equivalence of Forde and Initialized
Whiledo

Navigation Matrix for RISC Simulator

Operation Table for RISC Simulator

vii

. . . .

Page

9

11

12

17

18

19

21

22

23

24

31

34

35

50

52

54

89

90

Figure

19. PSW for RISC Simulator

viii

Page

90

CHAPTER I

INTRODUCTION

Structured programming may be viewed as a relatively

new approach to programming; however, the concept has been

developing for at least fifteen years. As early as 1965

there was the suggestion of the elimination of the GOTO

statement by Dijkstra at the IFIP Congress [16]. Later in

1968 Dijkstra [5] reiterated his opinion in a letter to the

editor of the Communications of the ACM. Since Dijkstra

made his suggestion in 1965, structured programming has

developed well beyond just the elimination of GOTO

statements, even though it is still commonly defined as

gotoless

philosophy

programming. Structured programming is a

of designing and writing a program in an

organized pattern using a set of basic logic structures,

function, sequence, ifthen, ifthenelse, whiledo, dountil, to

form the program [7, 16]. A goal of structured programming

is to improve readability and maintainability. Another goal

is to have the program written in a manner such that

systematic verification techniques which include proving the

correctness of the program at various points can be applied.

The objective of proving the correctness of the program in

1

2

the design stage is to eliminate logic errors,

inconsistencies, or even weaknesses prior to coding and

testing the program [7, 16].

The goals of readability and maintainability are the

two advantages most often stressed about structured

programming; however, proof of correctness was one of the

initial motivations behind developing structured

programming. Dijkstra [4] states in his paper presented at

the proceedings of the NATO conferences

A number of people have shown that program
correctness can be proved •••• As is to be
expected ••• the circulating examples are
concerned with rather small programs and, unless
measures are taken, the amount of labour involved
in proving might well (will) explode with program
size. Therefore, I have not focused my attention
on the question 'how do we prove the correctness
of a given program?' but on the questions 'for
what program structures can we give correctness
proofs without undue labour, even if the programs
get large?' and, as a sequel, 'how do we make, for
a given task, such a well-structured program?'
(p. 223).

Thus, proof of correctness techniques preceded structured

programming and have been developing along with it. At the

present time a few different techniques exist such as an

axiomatic approach which Hoare wrote about as early as 1969

[6], inductive assertion, loop invariant, and functional

correctness [l, 2, 3, 8, 9, 10, 11]. Some of the different

techniques are compared in Basili [l] and Basili [2].

Even though proof of correctness techniques have been

in existence for several years, they do not appear to be

widely presented or practiced. Recently, though, IBM has

begun to move toward a well-defined structured programming

3

approach including proof of correctness of programs where

the correctness method that IBM has chosen is the functional

correctness approach [8]. In this study the functional

correctness techniques as described in the IBM lecture notes

prepared for a 1983 software engineering workshop [8] and in

Mills' [9] book are applied to a RISC, Reduced Instruction

Set Computer, simulator program written by this author and

three other colleagues during the 1983 Spring semester at

Oklahoma State University.

The functional correctness approach consists of proving

that the intended program function, the specification of

what the program is suppose to do, is either equivalent to

or a subset of the derived program function, the actual

result of the program implementation. In mathematical terms

if f is the defined program function and if g is the derived

program function, then one of the following must be shown

for program correctness:

1. f = g

2. f Cg.

The first is called complete correctness and the second,

sufficient correctness [1, 2, 3, 8, 9, 10, 11].

In proving either complete or sufficient correctness of

a program P, the program is decomposed into prime programs.

Basically, a section of a program is a prim~ program if it·

is a complete part and can not be broken down into smaller

integral program parts. The prime programs are proved

correct, and the proof of correctness of P becomes a

4

bottom-up verification starting with verifying the inner

most prime program and working upward and outward [9, 10].

Six control structures that are basic to structured

programmming are prime programs. These six structures are

function, sequence, ifthen, ifthenelse, whiledo, and

dountil. A specific proving form exists for each structure,

and these techniques for program verification are derived

from the Correctness Theorem described in Mills [9] and

Manna [10]. An important aspect of the functional

correctness approach is that the program must be a

structured program because the proofs depend on the

structured programming control structures.

The RISC simulator mentioned previously is based on a

description of RISC in Patterson [15] with some assumptions

made by the authors where the RISC description is

incomplete. The procedures used for proof of correctness

are those procedures that simulate the RISC instuctions such

as XOR (exclusive or), LDL (load long), STS (store short),

and SLA (shift left arithmetic). Furthermore, a new

arithmetic procedure was written from the beginning to

include two new subtract statements described in a more

recent article on RISC [13], and functional proof of

correctness is applied to this new procedure which is then

inserted into the RISC simulator and tested with a goal of

zero logic errors. The purpose of applying the proof of

correctness techniques to the procedures already programmed

and tested is to pro~ide an example of the techniques

5

applied to a functional program and to determine whether

the proofs point out any errors in the procedures that may

not have been found during testing. The purpose of proving

the new procedure correct is to see if the proof of

correctness techniques eliminate logic errors of a procedure

before coding and testing. Finally, the effectiveness of the

functional correctness techniques as applied to the

prewritten procedures of RISC and the newly written

procedure of RISC is evaluated.

CHAPTER II

BRIEF RISC DESCRIPTION

General Concept

The incentive for developing the Reduced Instruction

Set Computer, RISC, was to provide an alternative to the

present day trend toward increasingly complex instruction

sets which lead to complex architectural designs. The idea

behind RISC is to provide an architecture that minimizes

complexity and supports high level languages while reducing

design time and design errors, making more effective use of

the resources on a single chip, and forming a machine with

high throughput [14, 15]. In order to achieve these goals,

the designers restricted the instruction set and implemented

special architectural features that support fast execution

of the reduced instruction set. Some of these special

features of RISC include single cycle execution, restricted

memory access instructions, prefetched instructions, window

registers, and uniform instruction size.

6

7

Special Architectural Features

Two of the architectural features are single cycle

execution and restricted memory access. These two features

improve performance of RISC, reduce chip size, and simplify

the design. Single cycle execution implies that one

instruction is executed per cpu cycle. The cycle time for

RISC is determined by the time it takes to read a register,

perform an ALU operation, and store the result back into a

register [15]. All RISC instructions execute in one cycle

except for load and store instructions. Load and store

instructions are the only instructions to access memory, and

because they access memory, they take 2 cpu cycles, adding

the index register and the immediate offset in the first

cycle and accessing memory in the second cycle [14].

Restricting memory access to load and store

instructions in RISC differs from other computers which

allow numerous instructions to access memory. This

difference, though, simplifies the design of RISC. Single

cycle execution improves performance and reduces the chip

size because the speed of the single cycle instruction

execution is equivalent to that of a micro instruction in

other machines, and the RISC instructions are no more

complicated than a micro instruction; consequently, RISC can

eliminate one level of abstraction because microcode control

is not necessary in RISC [15].

To increase performance, the designers implemented an

instruction prefetch which fetches the next instruction in

8

sequence while the current instruction is being executed,

so the execution cycle of the current instruction is

overlapped with the prefetch and decoding of the next

instruction [14]. Prefetching an instruction improves

performance, but on the other hand, it introduces a problem

with branch instructions such as jumps or subroutine calls.

The problem is a successful branch can make the prefetching

useless because after the execution of a successful branch,

the prefetched instruction is not the next instruction to be

executed. So to solve this problem without using elaborate

techniques which would add a complexity counter to the

objectives of RISC, the designers of RISC set up a delayed

jump. With a delayed jump the branch does not take effect

until after the execution of the instruction following the

branch instruction; consequently, the instruction prefetch

is no longe.r useless during a successful branch. The reason

that the prefetching is no longer useless is that the

instruction prefetched during the execution of the branch

instruction is now the next instruction executed, and during

this instruction's execution, the instruction prefetched is

the instruction where control was transferred by the branch

instruction. However, the delayed jump can detract from the

advantages of the instruction prefetch because sometimes the

delayed jump necessitates the inclusion of a no operation

(NOP) instruction following the jump such as an add

instruction that would add zero to a register; thus, because

of the NOP, it is possible that a jump could be equivalent

9

to two instructions. Figure 1 gives an example of the use

of a NOP instruction. Figure la shows a sequence of

instructions that is executed in the order 1, 2, 3, 5, 6.

Figure lb shows the sequence of RISC instructions that have

an equivalent execution. Because of the delayed jump, if

the NOP at line 4 were not included, the load following the

jump would be executed since the jump would not occur until

after the execution

succeeding it.

of the instruction

----------------------------------~---
Normal Jump Delayed Jump.

1 ADD 1 ADD
2 SUB 2 SUB
3 JUMP 5 3 JUMP 6
4 LOAD 4 NOP
5 STORE 5 LOAD
6 XOR 6 STORE

7 XOR

----------------------------------~---
a.) Normal Jump b.) Delayed Jump

Figure 1. Normal and Delayed Jumps

immediately

The motivation behind the register setup of RISC is to

speed up the subroutine calls which are more prevalent in

RISC than in more complex instruction set computers because

instructions in a complex instruction set computer are often

implemented as subroutines in RISC. The two processes that

cause subroutine calls to be time consuming are saving or

10

restoring registers and passing parameters. RISC

effectively eliminates the time consumed in saving and

restoring registers by setting up a system of register banks

so that registers do not need to be saved or restored for

subroutine calls. Instead a pointer is changed, and a

different set of registers is used for the called procedure;

however, there is some overlapping of registers between

called and calling procedures to support straightforward

parameter passing. In RISC the registers currently being

accessed are called window registers becaus• changing the

pointer can be visualized as moving a window over the

registers to be.used.

The window registers are set up such that 32 registers

are always available. These 32 registers are divided into 3

sets: global, local, and parameter. Global registers are

always registers 0-9 and are not included in the window.

Registers 16-25 are local registers, registers 10-15 are the

parameters to be passed to a called procedure, and registers

26-31 are the parameters passed by a calling procedure.

Conceptually, registers 10-15 are called low registers and

26-31 are called high registers. The low registers of the

calling procedure overlap with the high registers of the

called procedure providing parameter passing between the two

procedures. Figure 2 [13, 14, 15] gives a visual

representation of the window registers.

11

High A
26 High 31

Local A
16 Local 25

Low A/High B
10 Low 15

Local B

0 Global 9
Low B

------------------------- -----------~-------------
a.) Register Partitioning b.) Overlapped Registers

Proc A Calls Proc B

Figure 2. RISC Window Registers

RISC has 138 registers, and, again conceptually, the

window begins at the top of the registers and moves down for

a subroutine call; thus, the window pointer i~ decremented

for calls and incremented for returns. A register overflow

stack exists in memory in the event that a ser1es of nested

subroutine calls exhausts the register banks.

Instruction Description

The design of the RISC instruction is another special

feature of RISC. The RISC instruction was designed to

promote simplicity of implementation and addressing. The

instructions are all 32 bits long. The format of the 32 bit

instruction, however, does provide a little flexibility in

the operand specification. Figure 3 [14] shows the

12

instruction format and the slight flexibility that it

allows. There are basically six fields in the instruction,

opcode, set condition code indicator (SCC), destination

register, source one register, immediate value indicator

(IMM), and source two register or immediate value. In the

case of JMPR and CALLR instructions there are only four

fields because the last three fields are combimed to define

one operand. Two of the six fields, sec and IMM, are single

bit fields. The sec bit indicates whether the condition

codes are to be set, and the IMM bit indicat~s whether the

source two field is a register reference specified by the

last 5 bits of the instruction (IMM=O) or whether source two

.is a 13 bit sign extended immediate value.

--~-------------
I opcode I sec I

<7> <l>
Dest

<5> I Sourcel I IMM I (unused) Source2 I
<5> <l> <5>

--~-------------
I. opcode I sec I

<7> <l>
Dest

<5> I Sourcel I IMM I Immediate srce2
<5> <l> <13> I --------------------------------------·--------~-------------

I opcode I sec I
<7> <l>

Dest
<5>

Immediate operand
<19> ! --~-------------

Figure 3. RISC Instruction Format

The final instruction set consists of 31 instructions

[13, 14]. These instructions are divided into four groups,

arithmetic-logical, memory access, branching, and

13

miscellaneous. As previously mentioned, only load and

store instructions access memory, and there are eight memory

access variations allowing for . 8 bit, 16 bit, and 32 bit

sign-extended or zero-extended data. Table I shows the four

groups of the instruction set and the definition of each

instruction (the instructions shown in the table are the 28

instructions of the original RISC as given in Patterson [15]

and two additional subtract instructions from later designs

[13, 14]). Besides supporting data of 8 bits, 16 bits, and

32 bits, RISC also supports addresses of 32 bits.

Furthermore, even though it initially looks as if only one

addressing mode is offered, by using register zero which

always contains a zero, addressing modes of indexed,

absolute, and register indirect are possible.

Summary

Thus, the various features of RISC, a restricted

instruction set and architectural support for fast

execution, combine to reduce design time and design errors

and make effective use of the resources on one chip.

Furthermore, this type of architecture can be used to obtain

a machine of high throughput.

The majority of this brief description of RISC was

based on Patterson [15], one of the earlier RISC

descriptions. More current, though similar, ~nformation on
i RISC may be found in Patterson [13] and Patte~son [14].

MNl.'- I
MONIC

ADD
ADDC
SUB
SUBC
SUBR
SUBRC
AND
OR
XOR
SLA
SRA
SLL
SRL

TABLE I

ASSEMBLY LANGUAGE DEFINITION FOR RISC

NAME. I OPERANDS

ARITHMETIC-LOGICAL

integer add
add with carry
integer subtract
subtract with carry
subtract register
subtract reg with carry
logical and
log-ical·or
logical exclusive or
shift left arithmetic
shift right arithmetic
shift left logical
shift right logical

Sl,S2,Rd
S1,S2,Rd
S1,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
Sl,S2,Rd
S1,S2,Rd
Sl,S2,Rd
Sl,S2,Rd

ACTION

Rd<-Sl+S2
Rd< ... Sl+S2+carry
Rd<-Sl-S2
Rd<-Sl-S2-carry
Rd<~S2-S1
Rd< ... S2-Sl-carry
Rd<...,Sl&S2
Rd<-+SlvS2
Rd< Sl xor S2
Rd<.;.Sl shift S2
Rd<""Sl shift S2
Rd<-t-Sl shift S2
Rd<~Sl shift S2

14

--
MEMORY ACCESS

---+------------
LDL
LDSU
LDSS
LDBU
LDBS
STL
STS
STB

load long
load short unsigned
load short signed
load byte unsigned
load byte signed
stor~ long
store short
store byte

(Rx) ,X,Rd
(Rx) ,X,Rd
(Rx) ,X,Rd
(Rx) ,X,Rd
(Rx) ,X,Rd
Rm,(Rx)X
Rm, (Rx)X
Rm, (Rx)X

Rd<tM[Rx+X]
Rd< ... M[Rx+X]
Rd<tM[Rx+X]
Rd<tM[Rx+X]
Rd<+-M[Rx+X]
M[R*+X]<-Rm
M[R,+X]<-Rm
M[Rk+X]<-Rm

---~------------
BRANCHING

--------~--
JMP conditional jump COND,X(Rm)
JMPR conditional relative COND,Y
CALL call Rm,X(Rn)

CALLR call relative Rm,Y

RET return Rm,X

MISCELLANEOUS

GTLPC I get last pc ·.
GTIN get interrupt number

pc<1;X+Rm
pc<;..pc+Y
Rm<~pc;
pc<-X+Rn,CWP--
Rm<-pc;
pc<'.'"pc+Y,CWP--
pc< ... Rm+X,CWP++

'

Rm<-last pc
Rm<-INR

CHAPTER III

FUNCTIONAL PROOF OF CORRECTNESS THEORY

Different methods for proving the correctness of a

program exist [l, 2, 3, 8, 9, 10, 11]. At least one of these

methods, the axiomatic approach, preceded the introduction

of structured programming; however, another approach, the

functional correctness method, developed as an extension of

structured programming. The functional proof of correctness

technique requires that a program be structured because the

basis of the proofs is dependent on the control structures

of a structured program and the self-containment of program

parts implied by the structuring. The technique is also

based on the mathematical concept of functions as the name

implies. The objective of the method is the comparison of

the intended program function and the derived program

function. Program structure and program functions form the

foundation of the functional proof of correctness method.

Flowchart Symbols

Flowcharts are used to illustrate program structures

and functions graphically. A flowchart consists of nodes

and directed lines. Each node represents
I

a program

15

16

instruction, and the directed lines delineate the possible

flow of control. The three node structures of a flowchart

are shown in Figure 4. First is the function node

characterized by having one in-line and one out-line. Next

is the predicate node which has one in-line and two out

lines. In the flow of control one out-line is taken

according to whether the decision represented by the

predicate evaluates to true or to false. Conventionally,

the upper line represents the true path~ consequently, the

out-lines of a predicate node are marked only in the case

that there is an exception to this convention. The final

structure is a collecting node characterized by 2 in-lines

and one out-line [7, 8, 9, 11].

Prime Programs and Structured Programming

A proper program can be defined as a program with the

following four properties:

1. one entry

2. one exit

3. no unreachable code

4. no unleavable code [7].

Figures 5 and 6 [9] illustrate an example of a proper

program and four programs that are not proper· programs, each

violating one of the properties of a proper program.

A proper program may contain parts that are themselves

proper programs. These are called proper subprograms. A

proper program that has no proper subprogram of more than

17

M f r

a.) Function Node

b.) Predicate Node

. .
c.) Collecting Node

Figure 4. Flowchart Node Structures

18

a.) Proper

b.) Two Entries

c.) Two Exits

Figure 5. Proper Program and Proper Program Violations

19

a.) Unreachable Code

b.) Unleavable Code

Figure 6. Proper Program Violations Continued

20

one node is a prime program [8, 9]. Figure 7 [9] shows

three proper programs containing proper subprograms of more

than one node. These proper subprograms are shown in Figure

7. The proper subprograms of Figure 8 are also prime

programs since these subprograms do not have any proper

subprograms of more than one node. An analogy may be drawn

between prime programs and prime numbers: the only factors

of a prime number are itself and one, and the only proper

subprograms of a prime program are itself and single-node

proper subprograms.

A control structure is a representation of the ordering

between function nodes, predicate nodes, and collecting

nodes with no regard to the program text [8, 9]. A basis

set is a fixed set of control structures [8, 9]. There are

6 control structures, function, sequence, ifthen,

ifthenelse, dowhile, and dountil that form the basis set for

a structured program. That is, a structured program can be

constructed from these 6 control structures. If the.prime

programs of 1, 2, 3, and 4 nodes are enumera:ted, and the

control structures that do not contain at least one function

node are eliminated since they are not useful,· the 6 control
;•

structures that make up the basis set fdr a structured

program remain [8, 9]. Figure 9 illustrates these 6

structures. One other control structure, a dowhiledo, also

remains. Figure 10a gives the structure of a dowhiledo.

Mills [8] includes this structure in the !basis set, but

since the dowhiledo can be constr~ted from t~o su~rograms
. 1:

1:

Figure 7. Proper Programs Containing Proper Subprograms
of More Than One Node

21

~ . ~

~ '
,

Figure 8. Proper Subprograms of the Proper Programs in
Figure 7

22

23

0 >

a.) Function f

8 8 >

b.) Sequence f;g

c.) Ifthen if p then f fi

d.) Ifthenelse if p then f else g fi

e.) Whiledo while p do f od

>

f.) Dountil da f until pod

Figure 9. Six Control Structures of Structured Programming

9

. f

a.) dol f while p do2 god

f 9

+

b.) while p dog: £ od

Figure 10. Conversion of Dowhiledo Structure to an
Equivalent Structure

24

25

as shown in Figure 10 [8], it is not included in the basis

set in this report. This is consistent with some of the

other sources such as Yourdan, IBM, and Hughes [7, 8, 16].

Program Functions

As stated earller, the mathematical concept of

functions is the basis of the functional correctness method.

A function f is a. set of ordered pairs with all first

members unique. The notation y = f(x) is used to indicate

that the ordered pair (x,y) is an element of the function f.

xis called the argument off and y the value off. The set

of all arguments is the domain and the set of all values is

the range [11]. A function may be expressed either by

enumeration, listing the ordered pairs of the function, or

by set notation, describing the function in words or

mathematical notation within set brackets. An example of set

notation is {(x,y) I x < y} which is read "the set of all

pairs x and y such that xis less than y."

A program determines a final data state given an

initial data state. A program P contains variables

~ ,~ , ••• ,~. Each variable ~may take on any value from a

set of values dl. The set DS of all possible combinations

of variable values is the data space, DS = d 1 x d~ x .•• x do.

One element of DS, that is one combination of variable

values, is a data state [l, 8]. Consequently, a program

function is a mapping of a set of input data states into

output data states. The function of a program· is often

26

represented

notation:

by [P], read "bracket P" [9]. In set

[P] = {(X,Y) Xis an initial data state and Y is the

final data state after the program P

is executed} [l, 9].

The domain of [P] is the set of all possible initial data

states. Each element of the domain of [P] must be able to

map to an output data state. The domain of [P] is either

equal to or a subset of the data space [l, 8]. For example

the following program

PROC addone(INOUT x: 1 •• 3)

X := X + l;

CORP

has the data space DS = {1,2,3}, which are the possible

values for x. The domain D = {1,2} is a subs,et of the data

space. The value 3 is not an element of the domain because

3 does not map into an output data state [8].

The functions of a program may be expressed in one of

two ways, by use of set notation, or by use of conditional

rules. Primarily conditional rules are used throughout this

report, and set notation is used only briefly.

The program function of

27

is [P] = {(X,Y)I Y = f(X)}. The program function of the

sequence

_x __ 1,. f
y

)

is [P] = {(X,Y)I Y = g(f(X))} where this function is the

composition of the functions f anq g. The program function

of .the ifthenelse

f

g

may be stated in set notation as

[P] = {(X,Y)I p(X) & y = f(X)} u
{(X,Y)I ~p(X) & y = g(X)},

and as a conditional rule as

[P] = (p(X) -> Y := f(X) ~p(X) -> Y := g(X)).

y

In the latter method, a condition, in this case the

predicate p, implies (->) a data state transition. If the

28

preceding three programs are combined to form the program

g h

X

f

k

the program function developed for Pis

[P] = (p(f(X)) -> y := h(g(f(X))) I
~p(f(X)) -> Y := k(f(X))) [9].

In a flowchart

>

y

represents a data state change. In a program an assignment

statement represents a data state change. An assignment

statement such as X ·-.- y+l implies that the value of X is

changed and the value of all other variables r~mains the

same. The concurrent assignment x,y := y+l, y-1 means that

the value of x and y have changed simultaneously, and again

all other variables remain unchanged. It is important to

note that the concurrent assignment implies that the value

of yon the right hand side of the assignment X ·-.- y+l is

the value of y before the concurrent assignment y := y-1. A

concurrent assignment may also be written x := y+l, y := y-1

with the comma indicating concurrency._

29

In illustration of a program function of a program that

is less abstract than the previous program examples the

program

(the

later

[P]

IF
a = 2

THEN
X := b;

ELSE

FI

IF
a is even

THEN
X := Ci

ELSE
X := d;

FI

notational form of

chapter) has t-he

= (a = 2 -> X ·-.-
a is odd -> X

this program

function

bl a is even

:= d) [8].

An alternate notation is

[P] = (x ·-.- (a= 2 -> bl a is even

will be discussed in a

-> X := cl

-> cl a is odd-> d)).

Another alternative is to use TRUE instead of the final

condition a is odd. TRUE indicates a condition covering all

other possibilities in the data space [l, 8, 9•]. It is not

as precise as actually stating the condition and must be

used carefully. For example the following program functions

are not the same:

1. [x > 0 -> X := X - 11 X < 0 -> X := l]

2. [x > 0 -> X := X - lj TRUE-> X := l].

In 1 if x = 0, then there is no change in the. yalue of x;

however, in 2, x = 0 is part of the TRUE con4ition, so when

x = 0, the value of xis changed to 1.

30

As previously mentioned a program maps an input data

state into an output data state, and this mapping is the

defined program function. There are actually two functions

related to a program, the intended function and the derived

function. The intended function is the stated functional

intent of the program; whereas, the derived function is the

actual mapping that occurs. Notationally, f represents the

intended function and [P] represents the derived function,

or alternately, if f represents the intended function, f'

represents the derived function.

In the functional correctness technique the intended

function and derived function are compared, and program

correctness is proved if one of the following is true

1. f = [P]

2. f C [P].

The first is called complete correctness, the same mapping

and the same domain. The second is called sufficient

correctness, same mapping for a common domain, but the

derived function maps additional arguments that are not in

the domain of the intended function [l, 2, 3; 8, 9, 10, 11].

Figure 11 [8] graphically illustrates the cases of

·incorrectness, complete correctness, and sufficient

correctness. As an example of the levels of correctness the

function f = {(l,M),(2,Tu),(3,W),(4,Th),(5,F)} is an

intended function. The following are three possible derived

functions for f:

f [P] f [P]

0 0
a.) Incorrect

f and [P].

0
b.) Completely Correct

[P]

@)
c.) Sufficiently Correct

Figure 11. Graphical Illustrations of Functional
Correctness

31

f' = {(l,Su),(2,M),(3,Tu),(4,W),(5,Th),(6,F),(7,Sa)}

f' = {(l,M),(2,Tu),(3,W),(4,Th),(5,F)}

f' = {(0,Su),(l,M),(2,Tu),(3,W),(4,Th),(5,F),(6,Sa)}.

32

The first demonstrates incorrectness, the second, complete

correctness, and the third, sufficient correctness. In the

sufficient correctness case the common domain of 1, 2, 3, 4,

5 are mapped to the same values, but two other arguments, 0

and 6. are also mapped to values by f' [8].

An important trait of functional proof of correctness

that one should realize is that when the intended function

is not equal to or not a subset of the derived program

function, the proof does not resolve whether the function

specification is incorrect or whether the function

implementation is incorrect. Thus, both the program logic

and the program specification should be considered when the

reason for the failure of the proof is being determined.

Stepwise Abstraction

A compound or composite program is a program which

contains at least one proper subprogram of more than one

node [8]. A structured program is a compound program

constructed from a fixed basis set of prime programs (the 6

prime programs previously mentioned) [9]. A structured

program begins as a single function and is developed into a

compound program by a method called stepwise refinement.

:This is an iterative process consisting of replacing

33

function nodes of a program by the prime programs in the

bas i s set [8 , 9 , 11] . Figure 12 [11] illustrates the

principle of stepwise refinement. Two replacement sequences

are shown in Figure 11. In the first sequence the function

f is replaced with the sequence structure g;h, and then his

replaced with the ifthen structure if p then k fi. This

sequence shows stepwise refinement. The second sequence has

the same final program; however, it does'not follow stepwise

refinement because of the discontinuity between steps 2 and

3. The function g is introduced in step 3 with no

indication of its derivation. It did not come about by

being replaced by a previous function [11].

When the functional c~rrectness method is applied to

prove the correctness of a program, stepwise abstraction

which is the reverse of stepwise refinement is applied.

Stepwise abstraction is an iterative process of replacing a

prime program by a new function node until no prime programs

remain to be replaced [9]. The final result is a program

expressed as a single function node. Figure 13 illustrates

an example of stepwise abstraction. The basis of both

stepwise refinement and stepwise abstraction is the Axiom of

Replacement:

Let P be a proper subprogram of Q and let the
replacement of P bf P' within Q result in Q'.
Then [P] = [P'] -> [Q] = [Q'] (IBM ·[a] p. FN 7-07,
Mills [9] p. 148)

Thus, the proof of correctness of a program P becomes a

proof of correctness of each abstraction of ,p that results

from the stepwise abstraction process. It consists of
I

34

Step 1 Step 1

Step 2 Step 2

Step 3 Step 3

a.) Sequence 1 b.) Sequence 2

Figure 12. Illustration of Stepwise Refinement

35

a b

C

d

a.) Greatest Detail

d

b.) Step 1

h

c.) Step 2

>

d.) Step 3

Figure 13. Illustration of Stepwise Abstraction

36

proving the correctness of a proper subprogram of P which

is usually a prime program, and replacing the subprogram

with its intended function. Pis now at a higher level of

abstraction, and the process is repeated. For example, if

the following program is given: F = if p then G else H fi,

where G and H represent proper subprograms, then the

approach taken might be to prove g = [G] and h = [H] where g

and h represent the intended functions of subprograms G and

H respectively. Then F becomes if p then g else h fi, and

f = [F] may be proved [9]. Complete correctness results

only if all the subprograms satisfy complete correctness;

otherwise, if any of the subprograms satisfies only

sufficient correctness, the whole program satisfies only

sufficient correctness [9].

Program Correctness vs Program Verification

Proving the correctness of a program is not the same as

program verification. There are many aspects to program

verification that are not included in a correctness proof.

The functional correctness method verifies a program's

defined function, or in other words, this correctness method

verifies that a program maps a specified set of input data

states into the desired output data states. The emphasis is

on the mapping and the domain. Two aspects not verified by

proof of correctness are argument-parameter agreement and

variable correctness.

37

Also, in some proof of correctness techniques· such as

the axiomatic approach the differentiation between local and

global variables is important; however, this is not true in

the functional correctness method [2]. The process of

verification by stepwise abstraction relies on the self

containment of each proper subprogram verified, and the

intended function is specified such that it encompasses only

its designated subprogram. For example the intended function

of

x,i := 0,1

WHILE

i <= 2

DO

x,i := x+l, i+l

OD

is x,i := 2,3. But the intended function of the whiledo

subprogram without the preceeding initializations

WHILE

i <= 2

DO

x,i := x+l, i+l

OD

is x,i := x+3-i, 3. The function definition for this

subprogram does not rely on the initialization of x or i.

The concept illustrated in this example can bei expanded to

procedures and global variables. The specjified intended

38

function of a procedure does not rely on the possibility

that a variable is a global variable and that its value may

be effected by another procedure. This implies that

functional correctness does not verify the interface among

procedures with respect to global variables~ however, there

is partial verification. The proof does not establish that

the correct global variable is used in a procedure, but it

does guarantee the variable's functional value at the

completion of a procedure.

Summary

The functional correctness method evolved from the

premise that a program has a function that maps an input

data state to an output data state. The intended program

function

the result

completely

is compared to the derived program function, and

is the program is proved to be incorrect,

correct, or sufficiently correct. In comparing

the intended and derived functions of a program, one uses a

process called stepwise abstraction. The 6 control

structures of a structured program are important in stepwise

abstraction because they are prime programs and in stepwise

abstraction the objective is to replace each prime program

with a single function until a program is represented by one

function. Finally, program correctness and program

verification are not equivalent. Program correctness is just

one part of program verification and does not involve

verifying all aspects of a program.

CHAPTER IV

PROOF SYNTAX AND METHODS

The main objective of proof of correctness is to

eliminate program logic errors by applying a systematic

mathematical approach of program validation. An important

aspect of this objective is that the approach is methodical.

For a program to be validated methodically and not to be

confirmed randomly, guidelines for the proof process are

established. Guidelines outlining the form in which the

program and general proof are written provide the framework

for the functional proof 6f correctness method. Also

included in the framework is the form and objective of the

proofs for each control structure. These guidelines promote

thoroughness and correctness in the proof process and also

document the program and proof. Once the framework is

established, then various techniques can be employed to

shape the body of the proof. These techniques include mental

verification, table traci~g, array and anonymous data

handling, and conditional rule manipulation.

39

40

Program Design Form

A program design language or PDL is often used for the

design stage writing of a program. There is no standardized

PDL format; however, most PDL's have similar conventions. In

this report the PDL format used is based on the format in

Mills [9] augmented by some conventions from IBM [8].

An assignment statement· is the basic statement in

programming, and in PDL, a colon followed by an equal sign,

:=, is the assignment symbol. Another general-convention is

enclosing self-contained sections of a program such as

subprograms and procedures between a beginning keyword and

an ending keyword. The ending keyword is the beginning

keyword written backwards. For example the beginning keyword

for a procedure is PROC, and the ending keyword is CORP.

Keywords are written in capitals, and all other words are in

small letters. In addition to writing nonkeywords in small

letters, the text delineated by keywords is further

delineated by being indented.

Since the intended function plays a major part in a

functional correctness proof, the proper specification of

the intended function for each part of the program is

important. Brackets, [], are used to delineate the intended

function, and its placement precedes the section of PDL

which is to perform that function. The intended function of

a whole procedure is placed after the variable section.

41

The control structures that make up a structured

program are fundamental in the writing of a program. Each

structure has a specified format and intended function

placement. The structures whose formats are defined are the

sequence, ifthen, ifthenelse, whiledo, and dountil which are

the basic structures. Also two other structures, the fordo

and the case which are special cases of the sequence and

ifthenelse respectively, are described. These two

structures are not necessary but are practical extensions to

the basic six control structures because they enhance

program design without detracting from program structure.

The sequence structure is composed of component

operations written one below the other. Sometimes a

semicolon is used to delimit the parts of the sequence when

it is needed for clarity; otherwise, the semicolon is

omitted. Usually there is no·beginning or ending keyword

delimiters for a sequence; however, DO-OD may be used if a

sequence performs a specific function. The intended function

is placed to the side of the DO in this case.

Ex. DO [x,y,z := y,z,x]

X := y

y := z

Z := X

OD

The formats of the other control structures are as

follows:

ifthen

ifthenelse

whiledo

dountil

fordo

[f]
IF

p
THEN [intended function for thenpart]

g
FI

[f]
IF

p
THEN [intended function for thenpart]

g
ELSE [intended function for elsepart]

h
FI

[f]
WHILE

p
DO [intended function for depart]

g
OD

[f]
DO [intended function for depart]

g
UNTIL

p
OD

[f]
FOR

i := Ll to Ln
DO [intended function for depart]

g
OD

42

case
[f]
CASE

p
PART CLl [intended function for part l]

gl

PART CLn [intended function for part n]
gn

ELSE
h

ESAC

43

The functional correctness method relies on strongly

typed variables. The type specification is not verified by

the proof, but it is applied in the proof. For example a

type specification of x: INTEGER>= 0 and a condition of

x <= 0 implies x = 0, and this fact may affect the result

of the proof. So it is important that the type of each

variable be specified. The type specification for a

parameter should occur after the parameter in the parameter

list~ and the type specifications for the local variables

should occur at the beginning of a procedure before the

function specification. A practical means of including the

local variable type specifications in a procedure in the PDL

is to place them in a "data procedure" and then indicate

their use in a procedure by the keyword USE followed by the

data procedure name. An example of a procedure with variable

type specificati~ns included is

PROC dotdotdot(x,y: INTEGER>= 0,
c: A •• z)

USE othervars

[f]

CORP

DATA othervars

t,u: INTEGER

b: ARRAY[l .. 3] OF 0 •• 9

ATAD

Proof Form and Function

44

The general proof form consists of four parts written

in a tabular form [8, 9]. These four parts are

FUNCTION

statement of or reference to the intended
function

PROGRAM

statement of or reference to the subprogram

PROOF

proof body

RESULT

PASS or FAIL

Under result a pass or fail is used to specify the proof

outcome. If the data type of a variable influences the

outcome of a program, then the type of this variable should

45

be stated under the FUNCTION or PROGRAM section of the

proof so that the type is readily perceivable when the proof

refers to it.

The proof body under the PROOF section has a

specialized form according to the proof objective for each

control structure. The proof of each control structure is

derived from the Correctness Theorem:

The Correctness of an Alternation Expression. To
prove f = IF p THEN g ELSE h FI it is necessary
and sufficient to show, for every (x,y) E f, that
either p(x) = T and y = g(x) or p(x) = F and
y = h(x).
The Correctness of a Composition Expression. To
prove f = g;h it is necessary and sufficient to
show, for every (x,y) E f, that y = h(g(x)).
The Correctness of Iteration Expression. To prove
f = WHILE p DO g OD it is necessary and sufficient
to show, for every (x,y) E f, that the iteration
terminates and that either p(x) = T and
y = f(g(x)) or p(x)= F and y = x (Mills [11]
p. 47).

This is a condensed version of the Correctness Theorem. A

more extensive version which includes the fordo, case, and

dountil structures can be found in Mills [9].

The derived function of a sequence structure, g;h, is

·the composition of the functions in the sequence hog (o

represents composition). It is derived through trace tables,

a proving technique discussed later in this chapter. The

proof body has no specific form beyond the derivation of the

program function.

have a proof form.

The rest of the structures, however, do

In the following descriptions, f represents the

intended function. The ifthenelse structure, if p then g

else h fi, has the form

IFTEST TRUE (p -> g)

show f = 9
PASS or FAIL

IFTEST FALSE (.,p -> h)

show f = h
PASS or FAIL

46

An ifthen structure, if p then 9 fi, is similar to the

ifthenelse. The difference is in the IFTEST FALSE section

the program function is the identity or I, so f = I is

shown. Examples of ifthenelse and ifthen proofs follow [9].

FUNCTION

x := min(a,b)

PROGRAM

IF
a < b

THEN
X := a

ELSE
X := b

FI

PROOF

IFTEST TRUE (a< b)

f: x := min(a,b)
:= a

g: X := a

f = 9
PASS

IFTEST FALSE (a>= b)

f: x := min(a,b)
:= b

h: X := b

f = h
PASS

RESULT

PASS

47

FUNCTION

y := abs(y)

PROGRAM

IF
y < 0

THEN
y := -y

FI

PROOF

IFTEST TRUE (y < 0)

f: y ·-.- abs(y)
·-.- -y

g: y := -y

f = g
PASS

IFTEST FALSE (y >= 0)

f: y : = abs (y)

f = I
PASS

RESULT

PASS

:= y

48

49

The case structure, case p part (CLl) gl part (CLn) gn

else h esac, has the form

PART n (p E CLn -> gn)

show f = gn
PASS or FAIL

ELSEPART (p $ (CLl, .•• ,CLn) -> h)

show f = h
PASS or FAIL.

The proof of a whiledo structure, while p dog od, is

dependent on the iteration recursion theorem [l, 8, 9] which

states f = [while p do h od] if and only if the loop

terminates and f = [if p then g;f fi].

while p do

Figure

god

14

and illustrates the equivalence of

if p then g; while p dog od fi. The iteration recursion

theorem is a recursive application of this equivalence. A

proof of the theorem is in Mills[9] and a discussion of the

theorem is in IBM [8]. Basically there are two steps, first

the loop is shown to terminate, then the iterative whiledo

loop is converted to an equivalent

structure

[f]
WHILE

p
DO

9
OD

iterative

converted to
---------.-->

recursive

[f]
IF

p
THEN

g;f
FI

recursive

ifthen

Thus, a whiledo proof is actually an ifthen proof. The

proof ·in the IFTEST TRUE is a proof of a seq~ence structure

g

while p dog od

g

g

if p then g fi ; while pod god

Figure 14. Flowchart Equivalence of a Whiledo and
Ifthen ; Whiledo Sequence

50

51

with the dopart of the whiledo the first function of the

sequence and the specified function the second sequence

function. The proof structure is

TERM

show the loop terminates
PASS or FAIL

WHILETEST TRUE (p -> g;f)

· show f = f o g
PASS or FAIL

WHILETEST FALSE (~p -> I)

show f = I
PASS or FAIL

where WHILETEST TRUE and WHILETEST FALSE are used instead of

IFTEST TRUE and IFTEST FALSE, respectively. An example of a

whiledo proof is given in the next section after trace

tab+es are introduced.

A dountil structure, dog until pod, can be verified

in two ways [8, 9]. One way is based on, the iteration

recursion theorem. A description and an example of this way

can be found in Mills [9]. The other way is to convert the

dountil structure to an equivalent ·initialized whiledo

structure as shown in Figure 15. After the conversion, a

combination of a whiledo proof followed by a sequence proof

is used to prove the dountil. If one becomes accustomed to

the whiledo proof, then this second method of proving a

dountil is usually the easier of the two methods because the

iterative recursive method of the dountil can be more

difficult than th• whiledo proof since it deals with the

g

a.) dog until pod

g

g

b.) g: while ~p dog od

Figure 15. Flowchart Equivalence of Dountil and
Initialized Whiledo

52

53

composition of the predicate p and the function g.

The final structure to be considered is the fordo

structure, for i := Ll to Ln dog od. There are three

possible approaches to prove a fordo, expand the loop into

an extended sequence, convert the fordo to an equivalent

initialized whiledo, or apply mathematical induction [8, 9].

The first approach is used only if the structure is a simple

fordo with a small index list. For example [8]

FOR
i ·-.- 1 to 3

DO
sum ·-.- sum + i

OD

can easily be expanded to

sum := sum + 1
sum ·-.- sum + 2
sum ·-.- sum + 3.

The second approach, converting to an initialized

whiledo, is probably the most viable method of the three.

This approach is similar to the second method described for

proving a dountil. Figure 16 shows a fordo converted to an

equivalent initialized whiledo structure.

In the induction method, the induction variable dan be

either a variable in the fordo list description or the size

of the fordo list [9]. This method is the most difficult of

the three approaches, and the rigor required for this

approach is not usually needed. The mathematical induction

method is not used in this report.

55

Mental Verification and Trace Tables

The program syntax and proof syntax set up the

documentation and program function derivation and

verification. Mental verification and trace tables are the

means of function derivation and verification. Mental

verification is used when the program function can be

derived and verified by inspection. Usually when mental

verification is used, the program segment is very simple or

the intended function and program implementation correspond

straightforwardly so that deriving the program function is

superfluous. The goal of the correctness proof is a

conviction that the program is correct, and oftentimes, a

mental check is enough to convict one of a segment's

correctness. For example

DO [x :=a* a]

X := a

X := X * X

OD.

This program is simple and can be easily verified by

inspection rather than by the more lengthy method of trace

tables.
i

Trace tables provide a general trace of the data state

from the initial data state of a subprogram to the final

data state. Then backward substitution is applied to specify

the final data state in terms of the initial qata state. The

56

subscript of O is used to indicate the initial state, and

sequentially increasing subscripts are used for subsequent

states. For example, the program function of

DO

X := X + y

y := X - y

X := X - y

OD

is derived through a trace table

state change

1st

2nd

3rd

X

X 1 = X0 + Yo

X1 = X 1 •

y

Ya = Yo

y~ = x, - y,

YJ = Ya

Each assignment statement corresponds_ to a data state

change, and if the data state change is the nth change, then

the n-1 values affect this change because they are the most

recent values of the variables. One other aspect of the

trace table is that a data state encompasses all variables

of a p~ogram, so at each step the value of each variable is

indicated even though the values of some of the variables

remain the same. For example, at the second data state

change the value of x

indicated by x. = x1 •

was not altered, and this is

After the table is set up, the program function is

57

derived by backward substitution:

X3 = X2 - y4

= x, - (x, - y,)

= (Xo + Yo) - ((Xo + Yo) - Ya)

= Yo

Yi = y,.

= x, - y,

= (Xo + yo) - Yo

= Xo

Now the final value of each variable is expressed in terms

of the initial value of each variable which defines the

function· of the program. In this example the derived

function is x,y := y,x [8].

The trace table can be used for any size sequence with

any number of variables as in the following example [9].

DO

w,x := x+y, y+z

y := z+w

z,w := w+x, y-z

OD

w X y z
------------~--------------------------------
W, = Xo + yo x, = Yo + Zo Y• = yo z, = Zo

W,1. = W, Xa. = x, y,. = z, + w, zi = z,

W3 = Ya - Z.a. X.3 = X,;i. y,, = Ya. Z3 = w. + X.a.

58

derivations:

w., = Y~ - Z.z

= (z, + w,) - z,

= (Zo + (Xo + Yo)) - Zo

= Xo + Yo

XJ = X.2,

= x,

= Yo+ Zo

YJ = y~

= z, + w,

= Zo + (Xo + yo}

Z3 = W,1. + X.;i

= W, + x,

= (Xo + Yo) + (yo+ Zo)

= Xo + 2yo + Zo

derived function: w,x ·-.- x+y, y+z,

y,z ·-.- z+x+y, x+2y+z.

Five Examples

The following five examples illustrate various aspects

discussed about functional correctness proofs. An example of

a whiledo and a fordo proof is given, and also illustrated

are proof syntax, trace tables, proof failure, and

sufficient correctness.

The first·proof is an example of a whiledo proof [9].

FUNCTION

x,y,a := 0, ax+ y, a
VAR x :. INTEGER >= 0

PROGRAM

WHILE
X > 0

DO
x,y := x--1, y+a

OD

PROOF

TERM

x is decremented regulat:rly. by 1, so it e.vehtually will
be less than z~ro.
PASS

WHILETEST TRUE (x > 0)

x· y a

dopart x, = x0 - 1 Y, = Yo+· ao

f X.,i = 0 a~= a,

derivations:

y:,. = a, x, + y,

= a 0 (Xo - 1) + (Yo + ao)

= ao Xo + yo

derived function: x,y,a := O, ax+ y, a
PASS

59

WHILETEST FALSE (x <= 0)

x <~ 0 combined with data type x >= 0 implies x = 0

y =ax+ y

= 0 + y

= y

X = 0

= X

a = a

f = I
PASS

RESULT

PASS

60

In the trace table in the WHILETEST TRUE section the rows of

the trace tab+e are labeled as dopart and f to reinforce the

origin of the data.state changes represented in these rows.

61

The next example demonstrates sufficient correctness.

FUNCTION

n < 30 -> n := n + i

PROGRAM

IF
n < 30

THEN
n ·-.- n + i

FI

PROOF

IFTEST TRUE (n < 30)

f: n . -.- n + i

g: n ·-.- n + i

f = g
PASS

IFTEST FALSE (n >= 30)

f is undefined for n >= 30 and the.program function maps
n and i into the identity, thus, it maps additional
arguments.

PASS (sufficient)

RESULT

PASS (sufficient)

62

The next two proofs are examples of a failure in the proof.

FUNCTION

x := min(a,b)

PROGRAM

IF
a < b

THEN
X := b

ELSE
X := a

FI

PROOF

IFTEST TRUE (a< b)

f: X = min(a,b)
= a

g: X = b

f ""= 9
FAIL

IFTEST FALSE (a>= b)

f: x = min(a,b)
= b

g: X = a

f ""= 9
FAIL

RESULT

FAIL

FUNCTION

i <= 4 -> x,i := x+4, 5 I TRUE-> I

PROGRAM

WHILE
i <= 4

DO
x,i := x+l, i+l

OD

PROOF

TERM

1 is incremented regularly , so it eventually will be
greater than 4.

WHILETEST TRUE (i <= 4)

dopart

f

X i

X 1 = X0 + 1 i, = i 0 + 1

i,i = 5

derivations:

X,:i. = x, + 4

= Xo+ 1 + 4

= Xo + 5

derived function: x,i . -.- x+S,

f ""= f'
FAIL

WHILETEST FALSE (i > 4)

5

f = I indicated in the specification off
PASS

RESULT

FAIL

63

64

The latter example also illustrates two other notions

about a whiledo proof. The first is that if a variable is

assigned a constant in the intended function, then the

mapping derived for that variable under WHILETEST TRUE

always passes. The second notion is that if the intended

function specifies the identity transformation for the

WHILETEST FALSE condition (in this case i > 4), then

WHILETEST FALSE always passes.

The fifth example illustrates a fordo proof.

[x := x+99]
FOR

i := 1 to 100
DO

X := X + 1
OD

[x := x+99]
i := 1
[x,i := x+lOO-i, 101]

converted to WHILE
------------> i <= 100

DO
x,i := x+l, i+l

OD

The proof has two parts: the uninitialized whiledo is

proved, and then the sequence of the initialization

assignment and the whiledo intended function is proved.

First is the proof of the whiledo.

FUNCTION

x,i := x+lOl-i, 101
VAR i: 1 <=INTEGER<= 101

PROGRAM

(this type specification
evolved from the fordo
loop)

The uninitialized whiledo specified earlier

PROOF

TERM

1 1s incremented regularly , soi eventually will be
greater than 100.

WHILETEST TRUE (i <= 100)

dopart

f

X

X1 = Xo + 1

x.t = x, + 101 - i,

derivations:

X,a. = X1 + 101 - i,

= (X0 + 1) + 101 - (i 0 + 1)

= X 0 + 101 - i0

i

i 1 = i 0 + 1

i.z. = 101

derived function: x,i := x+lOl-i, 101
PASS

65

WHILETEST FALSE (i > 100)

i > 100 and type specification of i <= 101 implies
i = 101

X = X + 101 - i

= X + 101 - 101

= X

f = I
PASS

RESULT

PASS

66

Second is the proof of the sequence.

FUNCTION

X := X + 100

PROGRAM

DO
i : = 1
x,i := x+lOl-i, 101 (intended function of whiledo)

OD

PROOF

X i

X, = Xo i 1 = 1

X;i, = X 1 +101-i, i.,i = 101

derivations:

X;i, = x, +

= Xo +

= Xo +

derived
PASS

RESULT

PASS

101 - i,

101 - 1

100

function x,i . -.- x+lOO, 101

67

68

Arrays and Anonymous Data

Arrays, sequences, stacks, queues, and sets are

abstract data types used during the designing of a program.

Because of their use in the design stage of program writing,

these data structures have to be handled in correctness

proofs; consequently, techniques for manipulating these

structures in a functional correctness proof have been

developed.

Array manipulation begins with the notation used to

express the various aspects of an array. An array variable

is indicated by a succeeding subscript enclosed in brackets

like vector[3]. The range of an array is indicated in the

type declaration by writing starting-index •• ending-index

within the brackets, vector[l •• 10]. In assignment statements

all or part of the array may be referenced. If the whole

array is being referenced, no subscripting is necessary.

Some examples of array assignments are

1) word[l •• 3] := c,o,m

2) word[l,3,5,7] := c,m,u,e

3) word:= c,o,m,p,u,t,e,r

4) word:= c

1) illustrates an assignment where the consecutive elements

of an array are referenced, thus ellipses, •• , are used to

specify the range of elements being referenced. The range

indicated in the brackets must match the number of elements

on the right hand side of the assignment. Also if the

69

beginning number of the range is greater than the ending

number, then the notational implication is that no

assignment is made. In 2) since the elements being

referenced are not consecutive, each subscript is written

out: however, the variable name does not have to be repeated

each time. Once again the number of elements implied on the

left hand side must match the number on the right hand side.

3) and 4) illustrate references to the whole array. In 3)

the array size is assumed to be equivalent to the number of

elements on the right hand side. When there is a scalar on

the right hand side as in 4), each indicated element of the

array assumes the value of the scalar.

The notation for multidimensional ar~ays is similar to

one dimensional arrays except a semicolon. separates the

dimensions. For example mat[3:l •• 6] refers to elements in

row 3, columns 1 through 6: mat[B,11:2] refers to elements

in column 2, rows 8 and 11. The notation mat[2] refers to

the whole second row of mat and mat[:3] refers to the whole

third column of mat. This notation can be extended for

arrays of dimensions greater than two. The array notation

just described was devised by this author for use in this

report. It is an aggregate of notation used in IBM [8] and

Mills [9] and used by different programming languages, and

it should not be considered standard notation.

The difficulties that arise with array data are that

only part of the array is altered in most assignments and

not only the array but also the index of the array may be

70

affected in a program segment. An example of a proof with

arrays is the best explanation of how to handle these two

difficulties. (The following proof is extracted from the

correctness proofs of the RISC simulator which is the

substance of the next chapter. This proof is part of the

correctness proof for the shift left procedure).

FUNCTION

i,dest[i •• (31-amt)] := 32-amt, source[(amt+i) •• 31)
VAR i: INTEGER<= 32-amt (This type declaration evolves

from a fordo loop)
dest,source: ARRAY[0 •• 31) of 0 •• 1

PROGRAM

WHILE
i <= 31-amt

DO
i,dest[i] := i+l, source[amt+i]

OD

PROOF

(in the proof dis used for dest, s for source,
and a for amt)

TERM

1 1s incremented regularly, so it eventually will be
greater than 31 - a

WHILETEST TRUE (i <= 31-a)

i d

dopa rt i 1 = io + 1 d 1 [0 •• i0 -1] = do [0 •• io -1]

f i.a. = 32-a

d I [io + 1 •• 31] = do [io + 1 •• 31]

d 1 [io] = S [a+ io]

d;. [Q • • ii -1] : d I [Q • • ii -1]

d,-[i, •• (31-a)] = s[(a+i 1)..31)

71

derivations:

d,1.[0 •• (i 1 -1)] = d, [O •• (i1 -1)]

d, [0 •• (i 0 + 1) -1] = d 1 [0 •• (i 0 + 1) -1]

dJ. [0 •• i 0] = d 1 [0 •• io]

d,;t. [0 •• i 0 -1] , d [io] = d 1 [0 •• io -1] , d 1 [ic,]

= d0 [0 •• ia -1] , S [a+ io]

d.;z.[i 1 •• (31-a)] = s[(a+i,) •• 31]

d.i[(io + 1) •• (31-a)] = s [(a+ (i O + 1)) •• 31]

72

derived function: i,d[i •• (31-a)] := 32-a, s[(a+i) •• 31]
PASS

WHILETEST FALSE (i > 31-a)

i > 31-a combined with type i <= 32-a implies i = 32-a

d[i..(31-a)] = s[(a+i) •• 31]

d[(32-a) •• (31-a)] ==> nothing is changed since the low
index< high index

PASS

RESULT

PASS

73

In the assignments of the depart in the WHILETEST TRUE

section, only one element of the array dis changed, and

this is indicated by the first two assignments to d which

show that the elements preceding and following element i

remain the same. The fact that the element of d that is

changed depends on the variable i is controlled in the trace

table and in the derivation by careful subscripting of i to

indicate the correct data state value at each assignment.

Mills [9] refers to data structures such as sequences,

stacks, queues, and sets as anonymous data because members

can be accessed without individual item names. Anonymous

data manipulation is introduced, but a detailed and

comprehensive look at anonymous data handling is not covered

in this report because of its magnitude. More thorough

explanations and descriptions of the subsequent ~oncepts

about anonymous data can be found in IBM [8] and Mills [9].

The structures that are classed as anonymous data are

all list structures, and the basic idea behind their

manipulation is that special list operations and functions

are defined. Some list operations and functions are

operation

II
H

T

word description

concatenation

head of list

tail of list

function

PUSH

DEQUE

SUM

MEMBER

list structure

stack

queue

any list

set

List structures q, r, s, and tare defined as follows:

q = MONTIE (queue)

r = FISH (sequence)

s = ER (sequence)

t = 1,2,3,4 (set),

74

·and are used to illustrate the use of some of the preceding

functions and operations as follows:

r I I s = FISHER

H(r) = F

T(s) = R

DEQUE(q) = ONTIE (DEQUE removes the first element

of a queue)

SUM(t) = 10 (SUM adds up all the values in the

list structure. The values in the

list must be integers for SUM to

be used)

Many more operations and functions for list structures have

been defined and are included in the descriptions in IBM·[a]

and Mills [9].

75

The following example demonstrates the use of list

functions and operations in a proof of a program that

contains anonymous data [8].

FUNCTION

total, que := SUM(que) + total, EMPTY
(EMPTY is a keyword related to list structures signifying
that there are no elements left in the list)

VAR que: QUEUE of INTEGER

PROGRAM

WHILE
que -,= EMPTY

DO
total :=total+ DEQUE(que)

OD

PROOF

(in the proof tis used for total, q for que)

TERM

An element of the queue is removed at each iteration, so
eventually the queue will be empty.

WHILETEST TRUE (q -,= EMPTY)

t q

dopart t, = to+ H(qo) q, = qo - H (go)

f t~= SUM(q,) + t, q~= EMPTY

derivations:

ta= SUM(q,) + t,

= SUM(qo - H (qo)) + (to+ H(qo).)

= to+ (SUM(qo- H(qo)) + H (qo))

= to+ SUM(qo)

derived function: t,q := t + SUM(q), EMPTY
PASS

WHILETEST FALSE (q = EMPTY)

t = t + SUM(q) but SUM of an empty list is defined
to be zero sot= t

PASS

RESULT

PASS

76

77

Conditional Rules

The simplest form of a conditional rule is a single

condition followed by a single rule. However, conditional

rules usually are not this simple. Complexity arises with

conditional rule situations such as multiple path

conditions, conditional rules nested within conditional

rules, or sequences with

among unconditional rules.

complex conditional rules

conditional rules interspersed

Manipulation of these cases of

is a methodical step by step

process in a functional correctness proof.

The steps taken to verify a derived program function

with multiple path conditions or nested conditional rules

are:

1. reexpress the derived function so that the predicates are

disjoint

2. partition the domain of the specified function according

to the derived function conditions

3. compare the function rules of the derived function and

intended function in each of the partitions.

These steps are enough to insure sufficient correctness. For

complete correctness the domains of the two functions must

be shown to be equal also [8, 9].

Disjoint conditions or predicates are conditions whose

specified partitions do not overlap [8, 9]. If pl and p2 are

disjoint predicates then pl & p2 = false. To make

consecutive conditional

p3 -> g3 disjoint, one

rules such as pl-> gl

combines the negation

p2-> g2 I
of all

78

preceding predicates with each predicate pl-> gl

~pl & p2 -> g2 I ~pl & ~p2 & p3 -> g3. The conditional rule

X > 5 -> X := 1 x > 3 -> x := 4 I x > 2 -> x := 5

can be converted so that each condition is disjoint to

x > 5 -> x := 1 x <= 5 & x > 3 -> x:= 7 I

X <= 5 & X <= 3 & X > 2 -> X := 5

which is equivalent to

X > 5 -> X := 1 3 < x <= 5 -> x:= 7 I
2 < X <= 3 -> X := 5.

When there are nested predicates in a conditional rule,

the predicates are converted to disjoint predicates at each

level, and then the higher level or outer predicates are

distributed into the inner predicates. In illustration, the

conditional rule

x > 9 -> (x > 18 -> a := x I x = 18 -> b := x

X > 12 -> C := x) X > 3 -> d := X

has two levels. At one level, x > 18, x = 18, x > 12 are.

converted to the disjoint predicates x > 18,

x <= 18 & x = 18, x <= 18 & x ~= 18 & x > 12 which when

simplified become x > 18, x = 18, 12 < x < 18. And, at the

other level, x > 9 and x > 3 are converted to the disjoint

predicates x > 9, x <= 9 & x > 3 or x > 9, 3 < x <= 9.

Finally, the outer predicate x > 9 is distributed through

the inner conditional rules

x > 9 & x > 18 -> a := x I x > 9 & x = ·19 -> b := x I
x > 9 & 12 < x < 18 -> c := x I 3 < x <= 9 -> d := x

which simplifies to

x > 18 -> a := x I x = 18 -> b := x I
12 < X < 18 -> C := X

3 < X <= 9 -> d : = X [8] •

79

Once the derived program function is reexpressed as

consecutive disjoint rules

pl-> rl I p2 -> r2 I p3 -> r3,

then the domain of the specified function is partitioned

according to the disjoint predicates, and the rules of the

derived function and intended function are compared in each

partition

in pl(X) does rl(X) = f (X)?

in p2(X) does r2(X) = f (X)?

in p3(X) does r3(X) = f (X)?

The following proof illustrates the steps for handling

the proof of a multiple path program with nested conditions.

FUNCTION

z <= 10 -> y := 2 I x >= 5 -> y := 1 I TRUE-> y := 0

PROGRAM

z > 10 -> (x < 5 -> y := 0 I x > 1 -> y := 1) I
z <= 15 -> y := 2

PROOF

1. make predicates disjoint

x < 5, x > 1 become x < 5, x >= 5 & x > 1 or

X < 5, X >= 5

z > 10, z <= 15 become z > 10, z <= 10 & z <= 15 or

z > 10, z <= 10

2. distribute the outer condition

80

z > 10 & x < 5 -> y := 0 I z > 10 & x >= 5 -> y := 1 I
z <= 10 -> y :=2

3. partition domain off and compare rules

when z > 10 & x < 5 does f = (y := 0)? yes

when z > 10 & x >= 5 does f = (y := l)? yes

when z <= 10 does f = (y := 2)?

RESULT

PASS

yes

81

From multiple path programs the complexity increases to

sequences of conditional and unconditional rules. A case

structured approach is applied to handle this occurrence.

The conditions are recorded in the trace table along with

the data state changes, and backward substitution is used to

derive the condition as well as the rule for each case.

The cases are created by determining the possible paths

of the program and labeling each case in termsl of T(rue) and

F(alse) according to the value of each predicalte along the

path. In the case of

IF
X < 0

THEN
y := 3
IF

X >= -4
THEN

X . -.- 2
ELSE

z ·-.- -2
FI

ELSE
y,z . -.- 0,0

FI

the possible paths are TT, TF, and F. So there are three

cases to handle for this program.

Once the possible paths are determined, the function

for each path is derived as a conditional rule in terms of

the initial state of the variables. Both the rule and the

condition are derived for each case. The following sequence

program illustrates the case structured approach [8].

IF
X < 0

THEN
X • -.-

ELSE
y :=

FI
x,y ·-. -
IF

y <
THEN

J:{ :=
ELSE

y :=
FI

0

X + y

X + y

y, X

X - y

X - y

82

+ y

The possible paths are TT, TF, FT, FF. The detjivation of the

TT path proceeds as follows:

condition X y

X 0 < 0

y~ < 0 x., = X;1. - Y;. YJ = y~

derivations:

condition Xo < 0 & Y;. < 0

Xo < 0 & x. + Y• < 0

Xo < 0 & Xo + Yo+ Yo< 0

Xo < 0 & x~ + 2yo < 0

rule X3 = X;i. - Y-. Y3 = y~

= y, - (x, + y, = x. + Y•

= -(xo + Yo) = (xo + Yo

= Xo + 2yo

derived function for TT case:

+ Yo

Pl= X < 0 & X + 2y < 0 -> x,y := -x - y, X + 2y.

It should be noted that under the condition column, y is

83

used in the condition rather than Yo or~ because by the

time the condition y < 0 has an influence on the program,

there already have been two data state changes. The data

state at the time a condition becomes active is the state

used in the condition in the trace table, otherwise, the

derived condition will be incorrect.

The derived functions for the other three paths are

TF: P2 = X < 0 & x+2y >= 0 -> x,y := y, -x-y

FT: P3 = X >= 0 & 2x+y < 0 -> x,y =~ -x, 2x+y

FF: P4 = X >= 0 & 2x+y >= 0 -> x,y :1= x+y, -x.

The final derived program function is

[P] = Pl I P2 I P3 I P4.

The verification step is now the same as the verification

step for the multiple path case. The domain ~f the intended

function f is partitioned according to the conditions of the

derived function and the rules in each partition are

compared. That i S,

does f = (x,y . -.- -x-y, x+2y) for X < 0 & x+2y < O?

does f = (x,y ·-.- y, -x-y) for X < 0 & x+2y >= 0?

does f = (x,y ·-.- -x, 2x+y) for X >= 0 & 2x+y < 0?

does f = (x,y := x+y, -x) for X >= 0 & 2x+y >= 0?

The case structured approach is used not only for

ifthen and ifthenelse structures but also for whiledo

structures when the intended function is expressed as a

conditional rule. The following whiledo is an example where

the case structure would be applied [8]:

[x>y -> x,y := x-y, 0 I TRUE-> x,y := o, y-x]
WHILE

X > 0 & y > 0
DO

x,y := x-1, y-1
OD.

84

In the WHILETEST TRUE segment of the proof the sequence used

for deriving the program function is

x,y := x-1, y-1 (depart)

(f) x>y -> x,y := x-y, 0 I
TRUE-> x,y := 0, y-x

which is a sequence with both

conditional rule.

an uncqnditonal and

When the case structure is used in a wh~ledo function

derivation, it is again important to be careful about the

data state used in the condition in the table trace. In the

WHILETEST TRUE segment there is one data state change caused

by the "depart" before the condition in the "f part" is

considered. Mathematically stated, p -> f(g(X)) = f(X) is to

be verified. The conditions inf are based on g(X) not X.

Summary

Program and proof syntax provide documentation and set

up the framework within which a program may be proved to be

correct. Specific proof forms and objectives exist for each

of the control structures that are fundamental to structured

programming.

85

With the framework and proof objectives established

proofing techniques such as mental verification, table

tracing, and methods of array and anonymous data handling

and conditional rule manipulation can be applied to derive

and verify the program function.

CHAPTER V

RISC SIMULATOR AND FUNCTIONAL CORRECTNESS

The functional correctness method has demonstrated its

practicability on simple programs devised to illustrate

specific aspects of this proof approach. Now the functional

correctness method is applied to a functioning program that

already has been coded and tested. Applying the functional

proof of correctness to a working program demonstrates the

performance of the method on an example not specially

designed to support the method, and provides the method a

chance to locate errors in the program not discovered during

the testing of the program.

EXEC Module of RISC Simulator

The program to which functional correctness proofs are

applied is a program that simulates the Reduced Instruction

Set Computer described in chapter two. The simulator was

based on Patterson [15]~ however, since the article

incompletely describes various details of RISC, many

assumptions and additions had to be included in the

simulator. The module most closely associated with RISC is

the EXEC module which contains procedures that simulate the

86

87

execution of the RISC instruction set. These are the

procedures which are used for the correctness proofs.

In Patterson [15] twenty-six instructions are

described. Eleven main procedures were written to simulate

these twenty-six instructions. These procedures include

arithmetic, and_vals, or_vals, xor_vals, shifts, loads,

stores, jumps, calls, ret, and get_ops. Besides the eleven

instruction procedures, six other procedures critical to the

correct performance of the instruction procedures are

included in the EXEC module. These procedures are the

conversion procedures, bin_dec, dec_bin; the exception

procedures, prot_excp, bndry_excp, addr_excp; and the memory

access procedure, mac. Thus, the EXEC m9dule contains

seventeen main procedures. The functi~nal proof of

correctness method is applied to sixteen of them. Get_ops

is not used in this report because the simulation of the

GTIN and GTLPC instructions is based mainly on assumptions.

Principle Assumptions

Before the proofs of some of the EXEC procedures are

presented the principal assumptions that affect the

operation of the procedures in the EXEC module are

described. Because of the ease of implementation and

modification, the RISC simulator is table driven even though

there is no indication that tables are used in the actual

RISC. Figures 17 and 18 show the navigation matrix and the

operation table which are used to direct the operations of

88

the instruction procedures. The operation codes in the

operation table were arbitrarily assigned for the simulator

because the RISC description does not give the op codes.

Another aspect of RISC not described in Patterson [15] is

the program status word (PSW). For the simulator the PSW is

64 bits long. Figure 19 shows the break down of the PSW used

1n the simulator. Finally, 144 registers are used in the

simulator register bank rather than 138 which is the number

of registers indicated in the RISC descripttons [13, 14,

15]. The reason for this is that with 138 registers the

window in the last procedure call before window overflow has

only 16 registers instead of the usual 22; whereas with 144

registers all the windows have 22 registers.

I

Illustrative Proofs of EXEC Procedmres

Complete proofs of three of the EXEC procedures,

and_vals, bin_dec, and stores, and a proof of a subprogram

of the calls procedure are presented in this chapter.

Highlights of the proofs of the other EXEC procedures are

presented in the appendix.

procedure is presented first.

The proof of the and vals

INDEX

0
l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

*33
34

OPERATION

illop
ADD
ADDC
SUB
SUBC
AND
OR
XOR
SLA
SRA
SLL
SRL
LDL
LDSU
LDSS
LDBU
LDBS
STL
STS
STB
JMP
JMPR
CALL
CALLR
RET
GTLPC
GTIN
SUBR
SUBRC

N [0]

110
10
10
10
10
20
20
20
30
30
30
30
40
40
40
40
40
40
40
40
50
50
50
50
50
60
60
10
10

N [l]

0
0
l
l
0
l
2
l
l
0
0
l
l
l
l
l
0
0
0
l
l
2
2
3
0
l
2
2

N [2]

0
l
0
l

0
l
0
l
4
3
2
l
0
0
l
l

0
l

0
l

*Indices 27 - 32 were used for special pseudo
operations included in the simulator but not a
part of RISC: consequently they are not included
in the navigation matrix here.

Figure 17. Navigation Matrix for RISC Simulator

89

First Four Bits of Op Code

I DI 11 21 31 41 SI 61 71 Bl 9l1Dllll12l13l14l1SI

Dl3ll 11 21 31 41 SI 61 71 Bl 9l1Dllll12l13l14l1SI

Last ll16l17l1Bl19l2Dl2ll22l23l24l2Sl26I DI DI DI DI DI

Three 21 Dl33l34I DI DI DI DI DI DI DI DI DI DI DI DI DI ---~---------
Bits 31 DI DI DI DI DI DI DI DI DI DI DI DI D1I DI DI DI ---~---------

of 4 I o I o I o I o I o I o I o I o I o I o I o I o I D:I o I o I o I
---~---------

op s I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I
------------------------------------ .----~---------

Code 6 I o I o I o I o I o I o I o I o I o I o I o I o I Dd o I o I o I
---~---------

7 I o I o I o I o I o I o I o I o I o I o I o I o I 011 o I o I o I

Figure 18. Operation Table for RISC S~mulator

PSW Bits

0-2
3
4

5-7
8-15
16

17-20
21-31
32-63

Description

current window pointer
window overflow
stack overflow
unused
exceptions
unused
condition code
unused
location counter

90

Exception Bits Condition Code Bits
-------------- -------------------

8 Protection 12 illegal return 17 negative
9 address 13 boundary 18 zero

10 data 14 integer overflow 19 overflow
11 Illegal op code 15 unused 20 carry

'
Figure 19. PSW for RISC Simulattr

91

PROC and_vals(opl, op2, result: ARRAY[0 •. 31] OF 0 .• 1)

i: 0 <=INTEGER<= 32

[result := opl & op2]

1 FOR

2 i := 0 to 31

3 DO [result[i] := opl[i] & op2[i]]

4 IF

5 (opl[i] = op2[i]) and (opl[i] = 1)

6 THEN [result[i] := 1]

7 result[i] := 1

8 ELSE [result[i] := O]

9 result[i] := 0

10 FI

11 OD

CORP

The function specifications on the THEN and ELSE parts may

be considered excessive and can be omitted.

The proof of this procedure consists

subprograms: The first subprogram is

of proving two

the ifthenelse

structure in lines 4-10 and the second subprogram is the

fordo structure in lines 1-11. Mental verification could be

used on this procedure because of its simplicity: however, a

formal proof is given for illustration purposes.

FUNCTION

result[i] := opl[i] & op2[i]
VAR result[i],opl[i],op2[i]: 0 .. 1

PROGRAM

lines 4-10 of PROC and vals

PROOF

IFTEST TRUE (opl[i] = op2[i] & opl[i] = 1)

f: result[i] := opl[i] & op2[i]
:= 1 & 1
:= 1

g: result[i] := 1

f = g
PASS

IFTEST FALSE (opl[i] ~= op2[i] v opl[i] ~= 1)

f: result[i] := opl[i] & op2[i]
opl[i] ~= op2[i] and data type 0 .. 1 implies O & 1

which= 0
opl[i] ~= 1 and data type 0 .. 1 implies opl[i] = 0,

thus, giving O & 0 or O & 1, both= b
so result[i] := 0

h: result[i] := 0

f = h
PASS

RESULT
PASS

92

FUNCTION

result := opl & op2
VAR result, opl, op2: ARRAY[0 •• 31] OF 0 .• 1

PROGRAM

lines 1-10 of PROC and vals

PROOF

93

The fordo loop can be expanded into a sequence of 32
statements as follows:

result[O] := opl[O] & op2[0]
result[l] := opl[l] & op2[1]

. . .
result[31] := op1[31] & op2[31]

derived function
result[0 •• 31] := opl[0 •• 31] & op2[0 .• 31]

RESULT
PASS

· 94

The proofs for the or_vals and xor_vals procedures are

very similar to the and_vals proof. The differences are the

operations, or and xor operations instead of the and

operation, and the condition on the if tests in the

procedures.

The next proof is the proof of one of tihe conversion

procedures, ·bin dee. Special functions are employed in the

specification and the proving of this proceduue. This use of

special functions is similar to the use of sp~cial functions
I

and operations in anonymous data proofs. 1 The special

functions used pertain specifically to the ~ata structures

used in this procedure. Their definitions are'

DEC(x,i,j) = decimal value of the binary :array x from

left index i to right index j, if i > j,

then DEC(x,i,j) = 0

SUM(f (a) ,b,c) = ·sum from a = b to a = c of f(a)

PROC bin_dec(length: INTEGER<= 32,

binval: ARRAY[0 •. 31] OF 0 .• 1,

decval: 0 <=INTEGER<= 2**31 - 1)

USE bindeclocs

[length>= 32 ->length:= 31;

decval := DEC(binval, 32-length, 31)]

[length>= 32 ->length:= 31]

1 IF

2 length>= 32

3 THEN

4 length:= 31

5 FI

[decval := DEC(binval,32-length,l)]

6 FOR

7 i := (32-le~gth) TO 31

8 DO [i <= 31 -> exponent,decval :=

95

O,decval + SUM(binval[j]*2**(31-j),i,31)

I TRUE-> I]

9 exponent := 31 - i

10 decval := decval + (binval[i]*2**exponen~)

11 OD

CORP

I;>ATA bindeclocs

i: INTEGER >= 0

exponent: 0 <=INTEGER<= 31

ATAD

96

The proof of this procedure consists of proofs of three

subprograms, the ifthen in lines 1-5, the fordo in lines 6-

11, and the sequence that results from the stepwise

abstraction step of replacing the ifthen and fordo with

their specified functions once they have been verified. The

ifthen and the sequence can be verified by inspection

because both of these structures correspond directly with

their intended functions. Thus, the main part of the proof

of this procedure lies in the proof of the fordo subprogram.

97

The abbreviations ex, de, bv are used for exponent, decval,

and binval, respectively, in the following proofs.

FUNCTION

i <= 31 -> i,ex,dc := 32,0,SUM(bv[j]*2**(31-j),i,31) + de
I TRUE-> I
VAR ex: 0 <=INTEGER<= 31

PROGRAM

uninitialized whiledo loop that is partially equivalent to
the fordo loop in lines 1-5 of PROC bin dee

WHILE
i <= 31

DO
ex := 31 - i;
i, de := i+l, de+ (bv[i]*2**ex)

OD

PROOF

TERM

i is incremented regularly , so eventually
greater than 31.

WHILETEST TRUE (i <= 31)

i ex de

1 will be

------------------------------------~--------------
dopart i, = io ex1 = 31-io de,= dco

ii(= i, +1 exa. = ex, dC.;t = dcj + (bv[i, ~*2**ex1)

f i3 = 32 ex3 = 0 dc3 = dc-l +

SUM(bv[j]*2ilr*(31-j) ,iil ,31)

derivations:

dc 3 = dc.;i,+ SUM(bv[j]*2**(31-j) ,i .. ,31)

= (de,+ bv[i 1]*2**ex 1) +

SUM(bv[j]*2**(31-j) ,i, +1,31)

= de o + bv [i o] * 2 * * (31- io) +

SUM (bv [j] * 2 * * (31- j) , i 0 + 1 , 31)

= dc0 + SUM (bv [j] * 2 * * (31- j) , i 0 , 31)

derived function

i,ex,dc := 32, 0, de+ SUM(bv[j]*2**{31-j),i,31)

PASS

WHILETEST FALSE (i > 31)

f = I is specified in the intended function
PASS

RESULT
PASS

98

FUNCTION

ex,dc := 0, DEC(bv,32-length,31)
VAR bv: ARRAY[0 .. 31] OF 0 .. 1

length: INTEGER<= 31

PROGRAM

99

initialized whiledo loop that is equivalent to the fordo
loop in lines 6-11 of PROC bin dee with the program
function inserted for the uninitialized whiledo loop part

de , i : = 0 , 3 2-1 en gt h
i,ex,dc := 32,0,SUM(bv[j]*2**(31-j),i,31) + de)

PROOF

i

ia = 32-length
i~ = 32

derivation:

de

de,= 0
dc.2,= SUM(bv[j]*2**(31-j) ,i, ,31) + de,

de.,_= SUM(bv[j]*2**(31-j),i 1 ,31) + dc 1

= SUM(bv[j]*2**(31-j),32-length,31) + 0

= DEC(bv,32-length,31)

The step from line 2 to line 3 in the abov~ derivation
is a result of combining the defini:tion of the SUM
function, DEC function, and the data type of bv.

Note: if length<= 0, then 32-length > 31 and the SUM
function does nothing since the 'indicated lower
bound< indicated upper bound

derived function:
ex,dc := 0, DEC(bv,32-length,31)

RESULT
PASS

100

The next proof is the proof of the stores procedure.

There are three store instructions, STL, STS, STB (see Table

1) that are handled in the stores procedure. The

differentiation of the three instructions is accomplished

through use of the navigation matrix (n[2]). Also,

throughout the proof when a row of the memory matrix is

referenced, word addr is used instead of the parameter addr.

The reason for this is that the parameter addr is a byte

address which is necessary since STS and STB do not access

full words of memory; however, in the simulator memory is

word addressable only, thus the byte address, addr, is

adjusted for fullword memory access, and the use of word

addr indicates this adjustment.

PROC stores(addr: 0 <=INTEGER<= memsize-1,

dest: 0 <=INTEGER<= 143,

n: ARRAY[0 •• 2] OF INTEGER>= -1,

r: ARRAY[0 •. 143] OF ARRAY[0 .• 31] OF 0 •. 1,

m: ARRAY[l44 •• memsize-l] OF

ARRAY[0 .• 31] OF 0 .• 1,

psw: ARRAY[0 •• 63] OF 0 •. 1)

USE stores locs

[n[2] = 0 -> (addr MOD 4 ~= 0 -> psw[l3] := 1 I
TRUE-> m[word addr] := r[dest])

ln[2] = 1 -> (addr MOD 2 ~= 0 -> psw[l3] := 1 I
TRUE->

(addr MOD 4 = 0 ->

101

m[word addr;0 •• 15] := r[dest;l6 .• 31] I
TRUE->

m[word addr;l6 •• 31] := r[dest;l6 .• 31]))

ln[2] = 2 -> (addr mod 4 = 0 ->

m[word addr;0 •• 7] := r[dest;24 •• 31]

laddr mod 4 = 1 ->

m[word addr;B •• 15] := r[dest;24 •• 31]

laddr mod 4 = 2 ->

m[word addr;l6 .• 23] := r[dest;24 •• 31]

!TRUE->

m[word addr;24 •. 31] := r[dest;24 •• 31])

!TRUE-> I]

102

[n[2] -, = 0 -> temp := m[word addr],

start bit := (addr MOD 4 = 0 -> 0

addr MOD 4 = 1 -> 8

addr MOD 4 = 2 -> 16

addr MOD 4 = 3 -> 24)]

1 IF

2 n[2] ""= 0

3 . THEN [temp := m[word addr],

start bit := (addr MOD 4 = 0 -> 0 -
addr MOD 4 = 1 -> 8 I

addr MOD 4 = 2 -> 16 I

addr MOD 4 = 3 -> 24)]

4 mac(addr,1,temp)

5 start bit := (addr MOD 4) * 8 -
6 FI

[n[2] = 0 -> (addr MOD 4 -, = 0 -> psw[l3] ·-.- 1 I

TRUE -> temp := r[dest])

ln[2] = 1 -> (addr MOD 2 ""= 0 -> psw[l3] := 1 I

TRUE -> temp[start~bit •• (start_bit+15)]

. -.- r[dest;16 •• 31])

In_[2 l = 2 -> (temp[start bit •• (start bit+7)] - -
·-.- r[dest;24 •• 31])

ITRUE -> I]

7 CASE

8 n[2]

9 PART (n[2] = 0) [addr MOD 4 ""= 0 -> psw[13] := 1 I

TRUE-> temp:= r[dest]]

10 IF

11 addr MOD 4 ~= 0

12 THEN

13 psw[l3] := 1

14 ELSE

15 temp:= r[dest]

16 FI

103

17 PART (n[2] = 1) [addr MOD 2 ~= 0 -> psw[l3] := 1 I
TRUE-> temp[start_bit •. (start_bit+lS]

:= r[dest;l6 .• 31]]

18 IF

19 addr MOD 2 ~= 0

20 THEN

21 psw[l3] := 1

22 ELSE

23 temp[start_bit •. (start_bit+lS)] := r[dest;l6 .. 31]

24 FI

25 PART (n[2] = 2) [temp[start_bit •. (start_bit+7)]

:= r[dest;l6 .• 31]]

26 temp[start_bit •• (start_bit+7)] := r[dest;l6 .. 31]

27 ESAC

28 mac(addr,O,temp)

CORP

DATA stores locs

start bit: INTEGER>= 0

temp: ARRAY[0 .• 31] OF 0 •• 1

ATAD

104

Memsize which is used in the parameter type specifications

is a constant not a variable. Using memsize is equivalent to

using an integer such as 512.

Stepwise abstraction and program self-containment are

two concepts of the functional correctness method that are

well illustrated in the proof of the stores procedure. There

are two major subprograms, an ifthen in lines 1-6 and a case

in lines 7-27, that make up the procedure. Within the case

subprogram, there are two ifthenelse subprograms. The proof

of this procedure has three levels of abstraction. First the

ifthenelse subprograms in the case structure are verified,

then their intended functions are inserted in the case

subprogram, and the case subprogram is verifi~d. The ifthen

subprogram is verified also at this level of abstraction.

The final level contains a sequence structur~ consisting of

the intended function of the ifthen, the int.nded function

of the case, and the mac subroutine call in line 28. At

each level of abstraction the proof can be affected only by

a change in the specified functions of the lower level

subprograms because it is the specified function which is

used in the proof at a higher level.

105

Two other instances of self-containment illustrated are

the treatment of global variables and the treatment of

procedure calls. The use of global variables in a program

implies an interdependence

detrimental to the functional

among procedures which is

correctness method because

procedure independence is a significant factor of the

technique. The way global variables are handled is they are

treated like parameters. This promotes self-containment and

diminishes the sense of external dependence. Dest, n, r, m,

and psw actually are all global variables, but they are

listed in the parameter list for the stores procedure. The

verification of the accurate syntactic use of the global

variables is not part of proof of correctness.

Procedures called from within a procedure are treated

like subprograms. The intended function of the called

procedure is inserted in the main procedure so that the

calling procedure can be verified. The verification of the

called procedure's function occurs at a different level of

abstraction. Once again the proof of the calling procedure

is affected by the called procedure only if the specified

function of the lower level procedure is changed; otherwise,

the implementation of the called procedure is transparent

and immaterial at this level. This is illustrated in the

stores procedure by the mac p~ocedure call.

106

In the following proofs for the stores procedure the

abbreviations a, d, t, sb are used for addr, dest, temp, and

start_bit, respectively.

FUNCTION

a MOD 4 ~= 0 -> psw[l3] := 1 I TRUE-> t := r[d]

PROGRAM

lines 10-16 of PROC stores

IF
a MOD 4 ~= 0

THEN
psw[l3] := 1

ELSE
t := r[d]

FI

PROOF

mental verification

RESULT
PASS

FUNCTION

a MOD 2 ~= 0 -> psw[13] := 1 I
TRUE-> t[sb •. (sb+lS)] := r[d;16 •• 31]

PROGRAM

lines 18-24 of PROC stores

IF
a MOD 2 ~= 0

THEN
psw[l3] := 1

ELSE
t[sb •. (sb+lS)] := r[d;l6 •. 31]

FI

PROOF

mental verification

RESULT
PASS

107

FUNCTION

n[2] =

n[2] =

I n[2J =
jTRUE ->

PROGRAM

0 ->

1 ->

2 ->
I

(a MOD 4 ,= 0 -> psw[l3] := 1 I
TRUE-> t := r[d])

(a MOD 2 ,= 0 -> psw[l3] := 1 !
TRUE-> t[sb .• (sb+l5)] := r[d;l6 .• 31])

(t[sb .• (sb+7)] := r[d;24 •• 31])

108

lines 7-27 of PROC stores with intended functions replacing
subprograms

CASE
n[2]

PART (n[2] = 0)
a MOD 4 ,= 0 -> psw[l3] := 1
TRUE-> t := r[d]

PART (n[2] = 1)
a MOD 2 ,= 0 -> psw[l3] := 1 !
TRUE-> t[sb .• (sb+l5)] := r[d;l6 •• 31]

PART (n[2] = 2)
t[sb •• (sb+7)] := r[d;24 •• 31]

ESAC

PROOF

mental verification

RESULT
PASS

FUNCTION

n[2] ~= 0 -> t := m[word addr],

PROGRAM

sb := (a MOD 4 = 0 ->
a MOD 4 = 1 ->
a MOD 4 = 2 ->
a MOD 4 = 3 ->

~ I
16 I
24)

109

lines 1-6 of PROC stores with intended functions replacing
subprograms

IF
n[2] ~= 0

THEN

FI

2nd parameter of mac= 0 -> m[word addr] := 3rd parameter
I TRUE-> 3rd parameter := m[word addr];
sb := (a MOD 4) * 8

PROOF

mental verification

RESULT
PASS

FUNCTION

n[2] = 0 -> (a MOD 4 ~= 0 -> psw[l3] := 1
TRUE-> m[a] := r[d])

n[2] = 1 -> (a MOD 2 ~= 0 -> psw[l3] := 1
TRUE->

(a MOD 4 = 0 ->
m[word addr;0 .. 15] := r[d;l6 .. 31] I

TRUE->

110

m[word addr;l6 .. 31] := r[d;l6 .. 31]))
I n[2] = 2 -> a mod 4 = 0 ->

m[word addr;0 .. 7] := r[d;24 .. 31]
a mod 4 = 1 ->

m[word addr;8 .. 15] := r[d;24 .. 31]
a mod 4 = 2 ->

m[word addr;l6 .. 23] := r[d;24 .. 31]
TRUE->

m[word addr;24 .. 31] := r[d;24 .. 31])
I TRUE-> I (sb and tare not part of the domain)

VAR a: INTEGER

PROGRAM

lines 1-28 of PROC stores with intended functions
replacing subprograms

n[2] ~= 0 -> t := m[word addr],
sb := (a MOD 4 = 0 -> 0 I

a MOD 4 = 1 -> 8
a MOD 4 = 2 -> 16 I
a MOD 4 = 3 -> 24)

n[2] = 0 -> (a MOD 4 ~= 0 -> psw[l3] := 1 I
TRUE-> t := r[d])

n[2] = 1 -> (a MOD 2 ~= 0 -> psw[l3] := 1 I
TRUE -> t[sb .. (sb+l5)] := r[d;l6 .• 31])

I n[2] = 2 -> (t[sb .• (sb+7)] := r[d;24 .. 31])
jTRUE -> I;

2nd parameter= 0 -> m[word addr] := 3rd parameter
TRUE-> 3rd parameter m[word addr];

The last condition is the program function for the mac

procedure which is called at line 28. Since it is

verified easily that the second parameter of the mac call

is a 0, the last condition can be replaced with the single

assignment statement m[word addr] := t.

VAR t: ARRAY[0 •. 31] OF 0 •• 1

111

PROOF

The following two pages contain the trace table for the

proof of this procedure. Even though it appears as if

there are twc tables, actually it is one table divided

into two sections because of the size of the table. The

rows are numbered to connect the two sections. [13] is

used for psw[l3] in the table and derivations. Also data

state changes are not shown for a, r, d, and word addr

because their values do not change.

112

condition psw[l3J sb

1. n 0 [2 J = 0 &
a MOD 4 "'= 0 [13 J, = 1 sb, = sbo

2. no [2 J = 0 &
a MOD 4 = 0 [13 J, = [13 J0 sb, = sb0

3. no[2J = 1 & [13 J, = [13 Jo sb, = 0
a MOD 4 = 0 [13 J,1. = [13 J, sb.1. = sb,

4. no [2 J = 1 & [13 J, = [13 J0 sb, = 8
a MOD 4 = 1 [13 J~ = 1 sb,1. = sb,

5. no[2J = 1 & [13]. = [13 Jo sb, = 16
a MOD 4 = 2 [13 JI(= [13 Ji Sb.t = sb1

6. no[2J = 1 & [13 J, = [13 J0 sb, = 24
a MOD 4 = 3 [13 J.;t = 1 sb,i = 1

7. no[2J = 2 & [13]. = [13 Jo sb, = 0
a MOD 4 = 0 [13 J.;i. = [13 J, sb;z. = sb1

8. no [2 J = 2 & [13 JI = [13 Jo sb, = 8
a MOD 4 = 1 [13 J~ = [13 J, sb,. = sb,

9. no [2 J = 2 & [13 J, = [13 Jo sb, = 16
a MOD 4 = 2 [13 J;i. = [13 Ji Sb.t = sb1

10. no [2 J = 2 & [13 J, = [13 Jo sb, = 24
a MOD 4 = 3 [13 J;. = [13 J, sb..i = sb,

11. (no [2J "'=
0 & 1 & 2) &

(a MOD 4 = [13 J, = [13],;, sb, = o I s
0 I 1 I 2 I 3) 16 I 24

12. [13 JJ = [13 J.;1. sb3 = sb~

t m[word addr]

1 • t I : to m I : mo

3. t 1 = m0 [word addr] m, = mo
ta. [O •• (sb, -1)] = t 1 [O •• (sb, -1)] ma = m,
t.1 [sb, •• (sb, +15)] = r, [d, ;16 •• 31]
t;i. [(sb, +16) •• 31] = t 1 [(sb 1 +16) •• 31]

4. t, = m [word addr] m, = mo
t.2. = t m.:i, = m,

.5. t 1 = mo [word addr] m, = mo
t.i[O •• (sb,-1)] = t,[O •• (sb,-1)] m,1 = m,
t,a. [Sb I o o (Sb I + 15)] : rl [d I ; 16 • • 31]
t,1.[(sb 1 +16) •• 31] = t,[(sb,+16) •• 31]

6. t, = m0 [word addr] m, = mo
t~ = t, m:i. = m,

7. t, = mo [word addr] m, = mo
ta.[O •• (sb,-1)] = t,[O •• (sb,-1)] ma.= m1

t.2. [sb, •• (sb1 +7)] = r, [d, ;24 •• 31]
t 1 [(sb1 +7) •• 31] = t 1 [(sb 1 +24) •• 31]

8. t, = mo[word addr] m, = mo
t,1 [0 •• (s b 1 -1)] = t 1 [0 • • (s b 1 -1)] m :a. = m 1

t.a. [sb, •• (sb,+7)] = ro [do;24 •• 31]
t.i. [(sb, +7) •• 31] = t 1 [(sb1 +24) •• 31]

9. t 1 = mo [word addr] m, = mo
t.t [O •• (sb, -1)] =· t, [O •• (sb, -1)] m,1 :. m,
t.i.[sb, •• (sb,+7)] = r, [d 1 ;24 •• 31]
t.2, [(Sb I + 7) • • 31] = t I [(Sb I + 2 4) • • 31]

10. t 1 = mo[word addr] m, = m0

t.i [O •• (sb, -1)] = t 1 [O •• (sb, -1)] m;i. = m,
t,i. [Sb I • o (S b I + 7)] : r I [d I ; 2 4 • • 31]
t,i [(S b I + 7) • • 31] = t 1 [(Sb I + 2 4) • • 31]

11. t, = m0 [word addr] m1 = m0

113

m3 [word addr] = t~

(the last data state change in row 12 actually follows each
of the above conditional changes, and for 1, 2, and 11, it
is the second data state change not the third as indicated)

114

derivations:

Since the derivations for several of the cases are similar

and lengthy, only two representative derivations are

given.

l.condition:

n 0 [2] = 1 & a MOD 4 = 2

rule:

[13]3 = [13h

= [13],

= [13]0

t 3 [0 •• { s b..1_ -1)]

t3 [O •• {sb, -1)]

t 3 [O •• 15]

=
=

=

=

sb3 = Sb.:z.

= 16

t~ [0 •• { sb.i. -1)]

t I [Q •• { Sb1 -1)]

t 1 [O •• 15]

m0 [word addr;0 •• 15]

t 3 [{ s b :i. + 16) • • 31] = t .. [{ s b~ + 16) • • 31]

t
3

[{sb,+16) •• 31] = t,[{sb,+16) •• 31]

t3 [32 •• 31] = t1 [32 •• 31]

lower bound> upper bound implies no change

t 3 [sb.a. •• { sb.1 + 15)] = t.d sb.i, •• { sb,;z. + 15)]

t 3 [sb, •• { sb, + 15)] = t .. [sb, •• { sb, + 15)]

t3 [16 •• 31] = r 1 [d, ;16 •• 31]

= r O [d 0 ; 16 •• 31]

m3 [word addr] = t~

m3 [word addr;0 •• 15], m3 [word addr;l6 •• 31] =

t~[0 •• 15], t.i.[16 •• 31]

m3 [word addr;0 •• 15], m3 [word addr;l6 .• 31] =

t 1 [O •. 15], r, [d 1 ;16 .. 31]

m3 [word addr;0 .. 15], _m 3 [word addr;l6 .• 31] =

m O [0 •• 15] , r O [do ; 16 •. 31]

115

In the above derivations the size compatibility of the

arrays on the left and right hand sides of an assignment

should be mentally verified during the backward

substitution. For instance, if during the substitution the

following resulted, t 3 [8 ••. 24] = r 0 [d 0 ;24 .• 31], then this is

an error in the array assignment, and the proof fails.

derived function:

n[2] = 1 & a MOD 4 = 2 ->

m[word addr;l6 •• 31] := r[d;l6 •• 31]

does the intended function=

m[word addr;l6 •• 31] := r[d;l6 •• 31]

in the partition n[2] = 1 & a MOD 4 = 2?

It does, therefore this part of the derived function

passes.

(recognizing that if a MOD 4 = 2, the·n a MOD 2 = 0 is

necessary in the verification of this partition)

2.condition:

n0 [2] = 1 & a MOD 4 = 1

rule:

[13]3 = [13 Ji. Sb3 = sb~ t.3 = t-4

= 1 = sb1 = t,

= 8 = m0 [word addr]

= m0 [word addr]

derived function:

n[2] = 1 & a MOD 4 = 2 -> psw[l3] := 1

does the intended function= (psw[l3] := 1) in the

partition n[2] = 1 & a MOD 4 = l?

It does, therefore this part of the derived function

passes.

(recognizing that if a MOD 4 = 1, then a MOD 2 ~= 0 is

necessary in the verification of this partition)

116

The complete derived function is as follows:

n[2] = 0

n[2] = 0

n[2] = 1

n[2] = l

n[2] = 1

n[2] = 1

n[2] = 2

n[2] = 2

n[2] = 2

n[2] = 2

(n[2] ""=

When the

·compared

result

RESULT
PASS

is

& a MOD 4 ""= 0 -> psw[l3] := 1 I
& a MOD 4 = 0 -> m[word addr] := r[d] I
& a MOD 4 = 0 -> m[word addr;0 .. 15] :=

r[d;l6 •• 31]

& a MOD 4 = 1 -> psw[l3] := 1 I
& a MOD 4 = 2 -> m[word addr;l6 •. 31] :=

r[d;l6 •. 31]

& a MOD 4 = 3 -> psw[l3] := 1 I
& a MOD 4 = 0 -> m[word addr; 0 .• 7] :=

r[d;24 •• 31]

& a MOD 4 = 1 -> m[word addr;B .• 15] :=

r[d;24 •• 31]

& a MOD 4 = 2 -> m[word addr;l6 .• 23] :=

r[d;24 •• 31]

& a MOD 4 = 3 -> m[word addr; 24 •• 31] ·-.-
r[d;24 •. 31]

0 & 1 & 2 & 3) & (a MOD 4 = 0 1 I 2 I 3) -> I

rule of the derived function of each partition

with the intended function in that partition,

that the functions agree in each partition.

117

is

the

118

The last proof is a case where the proof process

detected an error in a procedure, the calls procedure. Only

the proof of the subprogram with the error is given. The

type specifications of the the variables used in the

subprogram are

psw: ARRAY[0 .. 63] OF 0 .. 1,

r: ARRAY[0 .• 143] OF ARRAY[0 •. 31] OF o •• l,

sc, sl: INTEGER,

calladdr: INTEGER,

disp: INTEGER

regval: INTEGER.

One constant, base_addr, is also

subprogram. A special function is

referenced in the

used in the program

definition and in the function specification. This function

is DEC(a) = the decimal value of the binar~ array a.

119

The abbreviations ca, d, rv, ba are used for the variables

calladdr, disp, regval, and base_addr, respectively, in the

following proof.

FUNCTION

r[sl;O] ~= 1 & addr excp(DEC(r[sl]) = 0 ->
ca := sc + DEC(r[sl])

I TRUE-> psw[9], ca := 1, (ba-d)*4

(regval is not in the function specification because it is
not an element of the domain)

PROGRAM

subprogram of the calls procedure

IF
r[sl,O] ~= 0

THEN
bin dec(32,r[sl],regval)
pswT9] := 0
IF

psw[9] = 0
THEN

ca := sc + rv
FI

ELSE
psw[9] := 1
ca : = (ba -d) * 4

FI

PROOF

The table in this proof is arranged in two sections like

the table in the stores proof.

([9] is used for psw[9] in the table and derivations)

condition r[sl] ca

1. r 0 [slo ;O] "'= 1 r,[slo] = r O [Slo] ca 1 = Cao
r-<. [sl 1] = r, [sl 1] ca;i. = ca,

la. [9].1, = 0 r 3 [sl~] = r.a. [sli] ca3 = SC,2 + rv;i.

lb. [9].l. = 1 r.3 [sl~] = r J. [s l.1.] ca3 = ca;i.

2. ro [Sl0 ; 0] = 1 r, [slo] = ro [slo] ca 1 = (ba-d 0)*4

psw[9] rv

1. [9], = [9 Jo rv, = DEC(r 0 [slo])
[9];z. = addr_excp(rv1 rv,. = rv,

la. [9], = [9],. rv3 = rv.z.

lb. [9]3 = [9].t rv3 = rv;.

2. [9], = 1 rv1 = rvo

derivations:
(sc, sl, and d do not appear in the table because
their values remain the same in every data state)

condition:

r o [slo ; 0] "'= 0 & [9]~ = 0

ro [slo ; 0] "'= 0 & addr _ excp (rv1) = 0

r 0 [sl0 ;O] "'= 0 & addr_excp(DEC(r0 [slo])) = 0

rule:

ca3 = sc.l + rv.1.

= SCo + DEC (r 0 [Slo])

120

condition:

r 0 [slo;O]

r 0 [slo;O]

r 0 [sl 0 ;0]

rule:

ca~= ca:z.

= ca,

= Cao

condition:

..,=

..,=

..,=

r O [s 10 ; 0] = 1

rule:

0

0

0

& [9], = 1

& addr_excp(rva.} = 1

& addr_excp(DEC(r [sl,] }} =

ca,= (ba-do }*4

[9], = 1

derived function:

r[sl;O] ..,= 1 & addr excp(DEC(r[si]}} = 0 ->
ca,psw[9] := sc + DEC(r[sl]),

r[sl;O] ..,= 1 & addr excp(DEC(r[sl]}} = 1 ->
- ca,psw[9] := ca,

r[sl;O] = 1 -> ca,psw[9] := (ba-d}*4, 1

121

1

0

1

The derived function and the intended fuhction do not
!

agree in the partition

r[sl;O] ..,= 1 & addr_excp(DEC(r[sl]} = 1. The derived

function = (ca,psw[9] ·-.- ca, l} and the intended

function = (ca,psw[9] ·-.- (ba-d}*4, 1}.

RESULT
FAIL

122

This last example demonstrates a failure in a case

structured proof. In at least one of the partitions that

result from the derivation of the program function, the

intended function and the derived function do not have the

same rule. In this example r[sl;O] "'= 1 &

addr_excp(DEC(r[sl]) = 1 is the partition where the intended

function and derived function do not agree.

Summary

Using the functional correctness method to prove the

correctness of the procedures of the EXEC mod~le in the RISC

simulator provides an example of the application of the

method to an operating program. Since the procedures to

which the method is applied are not designed $pecifically as

illustrative models for the functional cortectness method
i

and since they are not small procedures as th~ examples are,

applying the functional correctness method to these

procedures provides a realistic and rigorous/ test of the

method's capability and usefulness. In the case of the

stores procedure, the proof is more exten~ive than the

proofs presented as examples, and in the case of the calls
I

procedure, the proof points out an error

that was not found when the procedure was

I

procedure

CHAPTER VI

FUNCTIONAL CORRECTNESS APPLIED

TO NEW PROCEDURE

In the last chapter functional proof of correctness was

applied to the procedures of the EXEC module of the RISC

simulator. These were procedures already coded and tested,

and proving their correctness was a test of the

effectiveness of functional proof of correctn~ss when it is

applied to realistic procedures. In thi;s chapter the

effectiveness of functional proof of correctniess is tested

by applying the proving techniques to a new procedure of the

RISC simulator. An arithmetic procedure was freshly

designed and implemented for the simulator. It includes two

subtract instructions, SUBR (subtract register) and SUBRC

(subtract register with carry), which were not part of the

original RISC instruction set or the original simulator. The

functional correctness method was used to prove the

correctness of the new procedure, and then the procedure was

inserted into the RISC simulator. The objective was to

determine whether proving the program's correctness

eliminates logic errors.

123

124

PDL of the Arithmetic Procedure

The PDL of the top level of the arithmetic procedure is

presented first.

PROC arithmetic(psw[l4],scc: 0 •• 1,n[l]:0 •• 2}

opl,op2: INTEGER

[define operands;

(psw[l4] = 0 -> (n[l] = 0 -> add operands

I TRUE-> subtract operands}};

(sec= 1 & psw[l4] = 0 -> set mask}]

setops(opl,op2}

[n[l] = 1 -> psw[l4] = 0 -> add operands

TRUE-> psw[l4] = 0 -> sub operands]

IF

n[l] = 0

THEN [psw[l4] = 0 -> add operands]

IF

psw[l4] = 0

THEN

adds(opl,op2}

FI

ELSE [psw[l4] .= 0 -> sub operands]

IF

psw[l4] = 0

THEN

subs(opl,op2)

FI

FI

[sec= 1 & psw[l4] = O -> set mask]

IF

sec= 1 & psw[l4] = 0

THEN

FI

CORP

setmask

125

The intended function specification for the preceding

procedure illustrates the concept of deferring details.

Rather than having the details of the program's function

specified at the top level of design, the abstract

functions, define operands, add operands, subtract operands,

and set mask, were used in the intendeo function. The
I

details are contained in the procedures imp~ied by these

abstract functions. Delaying intended funct~on details for

lower level procedures sharpens the bas~c functional

objective of the program at the top level which is the level

of greatest abstraction.

This method of deferring details is consistent with the

concepts of self-containment, stepwise refinement, and

stepwise abstraction. In stepwise refinement a procedure is

designed by beginning with abstract functions and

recursively replacing an abstract function with a more

specific function (refer to chapter 3). In the case of the

arithmetic procedure, the four abstract functions of the

high level procedure are expanded at lower Levels. Then in

126

the reverse process of stepwise abstraction used in

proving the program's correctness, the detailed and rigorous

proofs occur at the lower levels. Because of self

containment of the lower level procedures, their details do

not affect the high level procedure, and consequently, the

general function references in the high level procedure are

possible. Delaying details in this manner improves the

clarity of the program, but does not diminish the accuracy

of the proof.

The PDL of the four abstract functions in the

arithmetic procedure is given on the following pages. Two

special functions are used in the intended functions and

later in the proofs of these procedures. These two special

functions are DEC(x) = the decimal value of the 32 bit array

x and TWOSBIN(m) = the 32 bit twos complement binary value

of the integer m. Also, UND stands for undef:ined. When UND

is assigned to a variable, it means that tjhe value of the

variable could be anything.

PROC setops(opl,op2: INTEGER,

r: ARRAY[0 .• 143] OF ARRAY[0 •• 31] OF 0 .• 1,

sl,s2: 0 <=INTEGER<= 143,

sc : INTEGER,

psw[l4],imm: 0 .. 1,

n[l]: 0 .. 2)

temp: INTEGER

[n[l] = 0 V

n[l] = 1 -> ((DEC(r[sl])=O & r[sl;O]=l) v

(DEC(r[s2])=0 & r[s2;0]=1 & imm=O)) ->

psw[l4],opl,op2 := l,UND,UND

!TRUE->

!TRUE

opl := DEC(r[sl]) - 2**32*r[sl;O],

op2 := (imm=O -> DEC(r[s2])-2**32*r[s2;0]

!TRUE-> sc)

-> ((DEC(r[sl])=O & r[sl;O]=l) V

(DEC(r[s2])=0 & r[s2;0]=1 & imm=O)) ->

psw[l4],opl,op2 := l,UND,UND

!TRUE->

op2 := DEC(r[sl]) - 2**32*r[sl;O],

opl := (imm=O -> DEC(r[s2])-2**32*r[s2;0]

!TRUE-> sc]

[DEC(r[sl]) = 0 & r[sl,0]=1 -> psw[l4] := 1

!TRUE-> opl := DEC(r[sl]) - 2**32*r[sl;O]]

twos comp(sl,opl)

127

[DEC(r[s2])=0 & r[s2,0]=1 & imm=O -> psw[l4] := 1

!TRUE-> op2 := (imm=O -> DEC(r[s2]) - 2**32*r[s2;0]

!TRUE-> sc)]

IF

imm = 0

THEN

twos comp(s2,op2)

ELSE

op2 := SC

FI

[n[l]=2 & psw[l4]=0 ->

IF

op2 := DEC(r[sl]) - 2**32*r[sl;O],

opl := (imm=O -> DEC(r[s2]) - 2**32*r[s2;0]

!TRUE-> sc)]

n[l] = 2 & psw[l4] = 0

THEN [opl,op2 := op2,opl]

temp:= opl

FI

CORP

opl := op2

op2 := temp

128

PROC twos_comp(s: 0 <=INTEGER<= 143,

op: INTEGER,

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF o •• l,

psw [14] : 0 ••. 1)

regval: INTEGER

[DEC(r[s])=O & r[s;O]=l -> psw[l4] := 1

!TRUE-> op:= DEC(r[s]) - 2**32 * r[s;O]]

bin_dec(32,r[s],regval)

IF

regval = 0 & r[s;O] = 1

THEN

psw [14] : = 1

ELSE

op:= regval - r[s;0]*2**3i - r[s;0]*2**31

FI

CORP

129

130

The constant maxint is used in both the adds and subs

procedures.

PROC adds(opl,op2: INTEGER,

dest: 0 <=INTEGER<= 143,

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF INTEGER,

psw[l4,20],n[2]: 0 .• 1)

result: INTEGER

[n[2] = 0 -> (((opl>O & op2>0) v

(opl<O & op2<0)) &

(ABS(opl) > maxint - ABS(op2})) ->

psw[l4],r[dest] := l,UND

!TRUE-> r[dest] := TWOSBIN(opl + op2)

ITRUE -> (((opl>O & op2>0) v

(opl<O & op2<0}) &

(ABS(opl) > maxint-ABS(op2)-psw[20])) ->

psw[l4],r[dest] := l,UND

ITRUE -> r[dest] := TWOSBIN(opl+op2+psw[20])

bin_dec(32,r[dest],result)

IF
.

(((opl > 0 & op2 > 0) v

(opl < 0 & op2 < 0)) &

(ABS(opl) > maxint - ABS(op2}))

THEN

psw[l4] := 1

ELSE [n[2]=1 & (opl & op2 different signs v

ABS(opl+op2) <= maxint-psw[20]) ->

result := opl + op2 + psw[20]

FI

ln[2]=1 & ABS(opl+op2) > maxint-psw[20] ->

psw[l4],r[dest] := l,UND

!TRUE-> result := opl + op2]

result := opl + op2

IF

n[2] = 1

THEN

F!

IF

((opl>O & op2>0) v (opl<O & op2<0}) &

ABS(result) > maxint - psw[20]

THEN

psw [14] : = 1

ELSE

result :=result+ psw[20]

FI

[r[d] := TWOSBIN(result)]

place_in_reg(result)

CORP

131

PROC subs(opl,op2: INTEGER,

dest: 0 <=INTEGER<= 143,

r: ARRAY[0 •• 143] OF ARRAY[0 •• 31] OF !NTEGER,

psw[l4,20],n[2]: o •• l)

result: INTEGER

[n[2] = 0 -> (((opl<O & op2>0) v

(opl>O & op2<0)) &

!TRUE

(ABS(opl) > maxint - ABS(op2)}) ->

psw[l4],r[dest] := l,UND

ITRUE -> r[dest] := TWOSBIN(opl - op2)

-> ((opl<=O & op2>=0) &

(ABS(opl) > maxint - op2 - psw[20]}} ->

psw[l4],r[dest] := l,UND

132

!TRUE-> r[dest] := TW0SBIN(opl-op2-psw[20])

bin_dec(32,r[dest],result)

IF

(((opl<O & op2>0) v

(opl>O & op2<0)) &

(ABS(opl) > maxint - ABS(op2)))

THEN

psw[l4] := 1

ELSE [n[2]=1 & (opl>O v op2<0 v

FI

ABS(opl)+op2 <= maxint-psw[20]) ->

result := opl - op2 - psw[20]

ln[2]=1 & opl<=O & op2>=0 &

ABS(opl)+op2 > maxint-psw[20] ->

psw[l4] := 1

ITRUE -> result := opl - op2]

result := opl - op2

IF

n[2] = 1

THEN

FI

IF

(opl <= 0 & op2 >= 0) &

(ABS(result) > maxint - psw[20])

THEN

psw[l4] := 1

ELSE

result := result - psw[20]

FI

place in reg(result)

CORP

133

134

PROC place_in_reg(result: INTEGER,

r: ARRAY[0 •. 143] OF ARRAY[0 •. 31] OF 0 •• 1,

dest: 0 <=INTEGER<= 143)

1: 0 <=INTEGER<= 32

[r[dest] := TWOSBIN(result)]

IF

result>= 0

THEN

dec_bin(32,result,r[dest])

ELSE

FI

CORP

result := ABS(result + 1)

dec_bin(32,result,r[dest])

[r[dest] := -.r[dest]]

FOR

l ·-. - 0 to 31

DO [r[dest;i] := -, r[dest; i]]

IF

r[dest;i] = 1

THEN

r[dest;i] = 0

ELSE

r[dest;i] = 1

FI

OD

135

i[l9] is the 19th bit of the instruction register and the

sign bit of the second operand if the second operand is an

immediate value.

PROC setmask(sl,s2,dest: 0 <=INTEGER<= 143,
psw[17],psw[l8],
psw[l9],psw[20]: 0 •• 1,
n[l]: O •• 2,
imm,i[l9]: 0 •• 1)

USE setmask locs

[(r[dest;O] = 1 -> psw[17,18] := 1,0 I
DEC(r[dest]) = 0 -> psw[l7,18] := 0,1 I
TRUE -> psw [1 7, 18] : = 0, 0) ,
(n[l]=O -> ((r[sl;O]=l &

ln[l]=l ->

((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v
(r[sl;O]=l & r[dest;O]=O) v
(r[dest;O]=l &
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) ->

psw[19] := 1
!TRUE-> psw[l9] := 0),
((r[sl;O]=O & r[dest;O]=l &

((imm=O & r[s2;0]=1) v (imm=l & i[19]=1))) v
(r[dest;O]=O & r[sl;O]=O &

((imm=O & r[s2;0]=1) v (imm=l & i[19]=1))) ->
psw[20] := 1

!TRUE-> psw[20] := 0)

((r[sl;O]=l & r[dest;O]=O &
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) v
(r[sl;O]=O & r[dest;O]=l &
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) ->

psw[l9] := 1
!TRUE-> psw[l9] := 0),
((r[dest;O]=l &

((imm=O & r[sl;O]=r[s2;0]) v
(imm=l & r[sl;O]=i[l9]))) v

(r[dest;O]=l & r[sl;O]=O &
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v
(r[dest;O]=O & r[sl;O]=O &
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) ->

psw [20] : = 1
!TRUE-> psw[20] := 0)

136

-> ((r[sl;O]=O & r[dest;O]=O & !TRUE
((imm=O & r[s2;0]=1) v (imm=l & i[l9]=1))) v
(r[sl;O]=l & r[dest;O]=l &
((1mm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) ->

psw [19] : = 1
!TRUE-> psw[l9] := 0),
{ (r[dest;O]=l &

((imm=O & r[sl;O]=r[s2;0]) v
(imm=l & r[sl;O]=i[l9]))) v

(r[dest;O]=l & r[sl;O]=l &
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) ->

(r[dest;O]=O & r[sl;O]=l &
((imm=O & r[s2;0]=0) v (imm=l & i[l9]=0))) ->

psw [2 0] : = 1
!TRUE-> psw[20] := 0)]

psw[l7 .. 20] := 0
[r[dest;O] = 0 -> psw[l7] := 1 I
DEC(r[dest]) = 0 -> psw[l8] := l]

IF
r[dest;O] = 0

THEN
psw [1 7] : = 1

ELSE
bin_dec(32,r[dest],regval)
IF

regval = 0
THEN

psw[l8] := 1
FI

FI
bitl,bit3 := r[sl;O],r[dest;O]
IF

imm = 0
THEN

bit2 := r[s2;0]
ELSE

bit2 := i[l9]
FI
IF

n[l] = 0
THEN [set overflow and carry for addition]

IF
(bitl=O & bit2=0 & bit3=0) v
(bitl=l & bit2=1 & bit3=0)

THEN
psw [19] : = 1

FI

IF
(bitl=O & bit2=1 & bit3=1) v
(bitl=O & bit2=1 & bit3=0)

THEN
psw [2 0] : = 1

FI
ELSE

FI
CORP

IF
n[l] = 2

THEN [bitl,bit2 := bit2,bitl]
temp:= bitl
bitl := bit2
bit2 := temp

FI
[set overflow and carry bits for subtraction]
IF

(bitl=l & bit2=Q & bit3=0) V

(bitl=O & bit2=1 & bit3=1)
THEN

psw[l9] := 1
FI
IF

(bitl=bit2 & bit3=1) V

(bitl=O & bit2=1 & bit3=1) v
(bitl=O & bit2=1 & bit3=0)

THEN
psw [20] : = 1

FI

DATA setmask lees
bitl,bit2,bit3: o •• 1,
temp: 0 .. 1
regval: INTEGER

ATAD

Proof Examples

137

Two of the functional correctness proofs resulting from

proving the correctness of the new arithmetic procedure are

presented in this section. Even though the two proofs are

very similar in their function specifications and function

derivations, they were chosen as examples because of their

illustrative outcomes and because their derivations were not

138

extremely lengthy and complex. Both of the proofs had

results of failure, and consequently instigated a review of

both the intended function and program implementation. In

the first failure the intended function was modified, and in

the second, the program implementation was corrected. In

both the proofs the abbreviations mi, d, rs, [14], [20] are

used for maxint, dest, result, psw[l4], and psw[20]

respectively. Also variables such as opl, op2, d, and n[2]

whose values do not change within the procedure are treated

like constants in the trace table and derivations, that is,

their state changes are not included in the table, and they

are not subscripted.

The first proof presented is the proof of the last

level of abstraction of the adds procedure. Because of the

level of abstraction, intended functions of lower level

subprograms are used in the program specification.

FUNCTION

[n[2] = 0 -> (((opl > 0 & op2 > 0) v
(opl < 0 & op2 < 0)) &

(ABS(opl) > maxint - ABS(op2))) ->
psw[l4],r[dest] := l,UND

ITRUE -> r[dest] := TWOSBIN(opl + op2)
!TRUE -> (((opl > 0 & op2 > 0) v

(opl < 0 & op2< 0)) &
(ABS(opl) > maxint-ABS(op2)-psw[20])) ->

psw[l4],r[dest] := l,UND

139

jTRUE -> r[dest] := TW0SBIN(opl+op2+psw[20])

PROGRAM

rs : = DEC (r[d]) ;
((opl>O & op2>0) v (opl<O & op2<0)) &
(ABS(opl) > mi-ABS(op2)) -> psw[l4] := 1
!TRUE-> (n[2]=1 & ((ABS(opl+op2)<=mi-psw[20]) v

(opl & op2 different signs)) ->
rs := opl+op2+psw[2]

jn[2]=1 & ABS(opl+op2)>mi-psw[20] &
opl & op2 same signs->

psw[l4] := 1
jTRUE -> rs := opl + op2));

r[d] := TWOSBIN(rs);

PROOF

cond rs r[d] [14]

rs 1 = DEC (r0 [d]) r = I ro [14], =

cl rs,1. = rs 1 r2. = r, [14]~ =

c2 rs~= opl+opl+[20] r2. = r, [14 J.1. =

c3 rs,2, = rs, r.:l. = r, [14]2. =

c4 rs.1. = opl+op2 r.:i, = r, [14],_=

rs3 = rs,_ r.3 = TWOSBIN(rs.2.) [14]3 =

[14]0

1

[14],

1

[14].

[14].,_

140

The conditions symbolically represented in the table are

cl= ((opl>O & op2>0) v (opl<O & op2<0}) &
ABS(opl) > mi-ABS(op2)

c2 = ((opl<=O & op2>=0) v (opl>=O & op2<=0) v
ABS(cpl) <= mi-ABS(op2)) & n[2l=l &
(ABS(opl+op2) <= mi-[20l v opl & op2 diff signs)

c3 = ((opl<=O & op2>=0) v (opl>=O & op2<=0) v
~BS(opl) <= mi-ABS(op2)) & n[2l=l &
ABS(opl)+op2 > mi-[20l & (opl & op2 same signs)

The above condition simplifies ~o
c3 = ((opl=O & op2=0) v

ABS(opl) <= mi-ABS(op2)) & n[2l=l &
ABS(opl+op2) > mi-[20l & (opl & op2 same signs)

c4 = ((opl<=O & op2>=0) v (opl>=O & op2<=0) V
ABS(opl) <= mi-ABS(op2)) & n[2l~=l

derivations:

1. r, = TWOSBIN(rsa,) [14 l3 = [14 l.
= TWOSBIN(rs,) = 1
= TW0SBIN(DEC(r 0 [dl))

2. r3 = TWOSBIN(rs.,) [14 l3 = [14h.
= TW0SBIN(op1+op2+[20l) = [14 l,

= [14 lo

3. r3 = TWOSBIN(rs.,_,) [14l3 = [14]:l
= TWOSBIN(rs,) = 1
= TWOSBIN(DEC(r0 [dl))

4. r3 = TWOSBIN(rs.,_) [14 l3 = [14 la.
= TW0SBIN(op1+op2) = [14 l I

= [14 lo

derived function:

cl -> r [dl, psw[14l ·- TWOSBIN(DEC(r[dl)), 1 .-
c2 -> r[d], psw[14l ·- TW0SBIN(op1+op2+psw[20]), psw[l4l .-
c3 -> r[dl, psw[l4l := TWOSBIN(DEC(r[dl)), 1
c4 -> r [dl, psw[14l ·- TW0SBIN(opl-op2), psw[14l .-

141

In the partitions cl and c2 the derived function is
r[d], psw[14] := TWOSBIN(DEC(r[d])), 1; however the
intended function for this partition is psw[l4] := 1
which implies that r[d] does not change. Since TWOSBIN
and DEC are not inverse functions TWOSBIN(DEC(r[d])) is
not equivalent to r[d], so the functions do not agree.

RESULT
FAIL

The nature of the failure in the above proof caused a

reevaluation of the intended function. The question was

asked if it were necessary for r[d] to retain its value in

the partitions where the failures occurred. The value of

r[d] is not important in those partitions, so the intended

function was modified to indicate this fact. The

modification was the addition of r[d] := UN~ in the two

places of the intended function where fhe assignment

psw[l4] := 1 is located.

The next proof is the proof of th~ top level
'

abstraction of the subs procedure. Once aga~n the intended

functions of the lower level subprograms are used in the

program specification.

FUNCTION

n[2] = 0 -> (((opl < 0 & op2 > 0) v
(opl > O & op2 < 0)) &

(ABS(opl) > maxint - ABS(op2))) ->
psw[l4],r[dest] := l,UND

!TRUE-> r[dest] := TWOSBIN(opl - op2)
!TRUE -> ({opl <= 0 & op2 >= 0) &

(ABS(opl) > maxint - op2 - psw[20])) ->
psw[l4],r[dest] := l,UND

142

!TRUE-> r[dest] := TWOSBIN(opl-op2-psw[20])

PROGRAM

rs : = DEC (r[d]) :
((opl>O & op2<0) v (opl<O & op2>0)) &
(ABS(opl) > mi-ABS(op2)) -> psw[l4],r[d] := l,UND
!TRUE-> (n[2]=1 & ABS(opl)+op2<=mi-psw[20] ->

rs := opl-op2-psw[2]
ln[2]=1 & ABS(opl)+op2>mi-psw[20] ->

psw[l4] := 1
!TRUE-> rs := opl - op2)):

r[d] := TWOSBIN(rs):

PROOF

cond rs r[d]

rs,= DEC (r 0 [d]) r. = ro

cl rs,2. = rs. r.:t = r.

c2 rs,2 = opl-opl-[20] r-. = r.

c3 rs,1. = rs 1 r.z = r,

c4 rs,2 = opl-op2 r~= r,

rs,= rs.t r3 = TWOSBIN(rs;i.)

[14i]

[14], = [14]0

[14],. = 1

[14];1. = [14 J.

[14].1. = 1

[14].;i, = [14 J.

[14 J, = [14]-.

143

The conditions symbolically represented in the table are

cl= ((opl>O & op2<0) v (opl<O & op2>0)) &
ABS(opl) > mi-ABS(op2)

c2 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v
ABS(opl) <= mi-ABS(op2)) & n[2J=l &
ABS(opl)+op2 <= mi-[20J

c3 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v
ABS(opl) <= mi-ABS(op2)) & n[2J=l &
ABS(opl)+op2 > mi-[20J

c4 = ((opl<=O & op2<=0) v (opl>=O & op2>=0) v
ABS(opl) <= mi-ABS(op2)) & n[2J~=l

derivations:

1. r3 = TWOSBIN (rs.i.)
TWOSBIN(rs,)

= TWOSBIN(DEC(ro[dJ))

[14J 3 = [14JA
= 1

2. r3 = TWOSBIN(rs;i.) [14J3 = [14Jo1.
TWOSBIN(opl-op2-[20J) = [14J1

= [14 J0

3. r3 = TWOSBIN(rs.i.)
TWOSBIN (rs.)

= TWOSBIN(DEC(r 0 [dJ))

4. r3 = TWOSBIN (rs.i..)
= TWOSBIN(opl-op2)

derived function:

[14J3 = [14J.i
= 1

[14 J3 = [14 Ja.
= [14J,
= [14 J0

cl-> r[dJ, psw[l4J := TWOSBIN(DEC(r[dJ)), 1
c2 -> r[dJ, psw[l4J := TWOSBIN(opl-op2-psw[20J), psw[l4J
c3 -> r[d], psw[l4J := TWOSBIN(DEC(r[dJ)), 1
c4 -> r[d], psw[l4J := TWOSBIN(opl-op2), psw[l4J

The derived and intended function differ in partition
c3. In partition c3 the derived function is

r, psw[l4] := TWOSBIN(DEC(r [d])), 1
whe~eas, the intended function is

opl>O v op2<0 ->
r, psw[l4J := TWOSBIN(opl-op2-psw[20]), psw[l4]

jTRUE -> r, psw[l4J := UND, 1.

RESULT
FAIL

144

In this case the program rather than the intended

function was modified to correct the error detected by the

proof. The correction made was the if condition

IF

(ABS(result) > maxint - psw[20])

was expanded to

IF

(ABS(result) > maxint - psw[20]) &

(opl <= 0 & op2 >= 0)

within the subs procedure.

Programming Results

The purpose of writing and proving the new procedure

was to test the effectiveness of the functional proof of

correctness approach. After the new procedure was proved to

be correct, it was inserted into the RISC simulator and

tested with a gcal of zero logic errors. The result of

inserting the procedure into the simulator was that after

the minor programmer errors, such as miscopying lines and

misusing a nested ifthenelse statement, were corrected, the

procedure executed correctly according to the specified

function. There was one significant mistake - an incorrect

specification of the intended function. This mistake,

however, is one which can not be detected by functional

proof of correctness.

145

Summary

A new arithmetic procedure was designed and its

correctness was proved by the functional correctness method.

Some of the proofs of the subprograms of the procedure

resulted in failures, and thus, the intended function and

program implementation were reviewed and a modification was

made to correct the cause of the failure. After the proving

of the program correctness,. the procedure was inserted into

the RISC simulator for testing. The result of the testing

was that the proof process satisfactorily eliminated the

logic errors.

CHAPTER VII

SUMMARY, CONCLUSIONS, AND SUGGESTED

FUTURE RESEARCH

Functional proof of

mathematically verifying

Summary

correctness is one

the correctness

approach of

of a program

function. In a functional correctness proof the intended

program function is compared to the derived program

function, and if the intended function is equal to or a

subset of the derived function, then the program is correct.

Structured programming is an important aspect of a

functional correctness proof. To use the functional

correctness approach on a program, the program must be a

structured program because the fundamental control

structures of structured programmming are also . the

fundamental structures used in proving the program's

correctness. The methods of verifying the six basic control

structures of structured programs, function, sequence,

ifthen, ifthenelse, whiledo, dountil, and the two

structures, fordo and case, that are extensions to the basic

six are derived from and supported by the Correctness

146

147

Theorem. The Correctness Theorem provides a proof form

and proof objective for each of the control structures, and

various techniques are applied in the proof body to

accomplish the proof objective and obtain a result of pass

or fail. These techniques include mental verification,

table tracing, special data structure handling, and complex

conditional handling.

Inherent to structured programming are the concepts of

hierarchical levels of program detail and program self

containment which form the basis for stepwise abstraction.

Stepwise abstraction is the process of verifying the

correctness of a program in a bottom-up method by verifying

the correctness of a low level subprogram and replacing the

subprogram with its intended function, thus, advancing the

program to a higher level of abstraction. The control

structures of structured programming form the subprograms

used in stepwise abstraction. Because of the self

containment of the control structures, the proof of one

subprogram does not affect the proof of another subprogram.

·Applying the functional correctness method to the

procedures of the EXEC module in the RISC simulator

demonstrates the the proof method's performance on realistic

procedures. The proofs of these procedures verified their

correctness, and in some cases, errors that were not

detected during the testing of the program were detected by

the proofs.

148

Applying the functional correctness method to a new

RISC procedure tested the effectiveness of functional

correctness in detecting and eliminating logic errors before

coding and testing of the procedure. The result of

inserting the new procedure into the simulator after the

procedure had been proved to be correct was that the

procedure correctly executed its specified function. The

logic errors· were detected during the proof process and

removed prior to the procedure's insertion into the

simulator.

Conclusions

The conclusion drawn from applying functional proof of

correctness to the old procedures and a new procedure of the

RISC simulator is that functional proof of correctness

increases the potential of having a program with zero logic

errors. Also, even though the specification of the intended

program function is not verified by proof of correctness,

the intended function can be refined during the proving of a

program because oftentimes when an error is found, the

intended function is reviewed to see if what it specifies is

what is actually desired. Furthermore, the guidelines

outlining program and proof form generate pratical program

structuring and beneficial documentation, and the proof

process enforces a methodical verification of a program that

149

is more rigorous and thorough than the prevailing freestyle

desk checking.

Functional proof of correctness does have two drawbacks

that detract its validity. One drawback of functional proof

of correctness occurs during the proving of a program with a

complex conditional structure. The numerous .and lengthy

paths become tedious and difficult to trace, and the

conditions and rules become difficult to derive. The

validity of the proof deteriorates in relation to the

complexity of the conditions. Another drawback, which also

is encountered in desk checking, testing, and debugging a

program, is program familiarity. If one is familiar with a

program, errors pointed out by the proofs tend to be missed

because the foreknowledge of what the program is suppose to

do influences one to believe that the program accomplishes

what is specified. The solution to program familiarity is to

have someone not familiar with the program design do the

proving of the program.

Overall, however, the functional correctness method is

useful in proving the correctness of a program's function

and is effective in eliminat1ng logic errors.

Suggested Further Research

Proof of correctness is only part of a larger design

and verification process constructed to promote zero defect

code. Another part of this process is module refinement and

150

verification [8]. Whereas, a procedure provides a rule for

a function, a module provides a rule for a state machine

[8, 9]. Thus in module refinement and verification the

module specification state machine (similar to a procedure's

intended function) is compared to the module design state

machine (similar to a procedure's derived function). It is

during module refinement and verification that variable

correctness is verified. Possible further research into

module verification and refinement techniques and their

application in conjunction with functional proof of

correctness is suggested. Module verification and refinement

techniques and functional proof of correctness techniques

can be applied in the design and implementation of a program

to test the effectiveness of these techniques in providing

zero defect code, or in other words, providing a program

that runs flawlessly (discounting compilation errors) from

the beginning.

SELECTED BIBLIOGRAPHY

[l] Basili, V.R., and Dunlop, D.D., "A Comparative Analysis
of Function Correctness." Computing Surveys,
Vol. 14, No. 2 (June 1982), 229-244.

[2] Basili, V.R., and Noonan, R.E., "A Comparison of the
Axiomatic and Functional Models of Structured
Programming." IEEE Transactions on Software
Engineering, Vol. SE-6, No. 5 (September 1980),
454-464.

[3] Basu, S.K., and Misra, J., "Proving Loop Programs."
IEEE Transactions on Software Engineering, Vol.
SE-1, No. 1 (March-Y980), 76-86.

[4] Buxton, J.N., and Randell, B., eds., Software
Engineering Techniques. Petrocelli/Charter, New
York, N.Y., 1976, 222-226.

[5] Dijkstra, E.W., "Go-To Statement Considered Harmful."
Communications of the ACM, Vol. 11, No. 3 (March
1968), 447-448.~

[6] Hoare, C.A.R., "An Axiomatic Basis for Computer
Programming." Communications of the ACM, Vol.
12, No. 10 (October 1969), 576-583~. ~

[7] Hughes, J.K., and Michtom, J.I., A Structured Approach
to Programming. Prentice-Hall, Englewoood
Cliffs, N.J., 1977.

[8] IBM Software Engineering Institute for Software
Engineering Workshop Lecture Notes, January 10,
1983.

[9] Linger, R.C., Mills, H.D., and Witt, B.I., Structured
Programming Theory and Practice. Addison-Wesley,
Reading, Mass., 1979.

[10] Manna, z., "Mathematical Theory of Partial
Correctness." Journal of Computer Systems and
Science, Vol. 5, No. 6 (June 1971), 239-253.

151

152

[11] Mills, H.D., "The New Math of Computer Programming."
Communications of the ACM, Vol. 18, No. 1
(January 1975),4°3"=4S:-

[12] Misra, J., "Some Aspects of the Verification of Loop
Computations." IEEE Transactions on Software
Engineering, Vol.~-4, No. 6 (November 1978),
478-486.

[13] Patterson, D.A. and Sequin, C.H., "A VSLI RISC."
Computer, Vol. 15, No. 9 (September 1982), 8-20.

[14] Patterson, D.A. and
Implementation of
82-106, University
(October 1982).

Sequin, C.H., "Design and
RISC I, report no. UCB-CSD
of California, Berkeley, CA,

[15] Patterson, D.A. and Sequin, C.H., "RISC: A Reduced
Instruction Set VLSI Computer." Proceedings of
the Eighth International Symposium on Computer
Architecture, (May 1981), 444-457.

[16] Yourdan, E.,
Design.
1975.

Techniques of Program Structure and
Prentice-Hal~ Englewood Cliffs, N.;r:-:-

APPENDIX

153

The four

highlights of

154

Appendix Contents

proofs presented in this appendix are

the proofs of the RISC procedures that were

completed for this report. The proof for every procedure is

not given because the proofs of several of the procedures

were very similar such as the logical operator procedures,

loads and stores procedures, conversion procedures, shift

left and shift right procedures, and calls and return

procedures; therefore, only one sample from a group of

comparable proofs is presented throughout the report. Also,

the proofs of the mac procedure, the setmask procedure, and

the exception procedures consisted of no more than mental

verification, so only one of these procedures' proofs is

outlined.

Proof of Mac Procedure

FUNCTION

psw[B] = 0 -> check protection exception,
psw[9] = 0 -> check address exception,
psw[l3] = 0 -> check boundary exception;
psw[B,9,13] = 0,0,0 ->

addr := addr/4 + disp;
in out flag= 0 -> m[addr] := memrow
ITRUE => memrow := m[addr]

PROGRAM

IF
psw [8] = 0

THEN
psw[B] := prot_excep(addr)

FI
IF

psw[9] = 0
THEN

psw[9] := addr_excep(addr)
FI
IF

psw[l3] = 0
THEN

psw[l3] := bndry excep(addr)
FI
IF

psw[S,9,13] = 0,0,0
THEN

FI

addr := addr/4 + disp
IF

in out flag= 0
THEN- -

m[addr] := memrow
ELSE

memrow := m[addr]
FI

PROOF

mental verification

RESULT
PASS

155

156

Proof Failure in Jumps Procedure

FUNCTION

psw[B,9,13] := n[l] = 0 ->

!n[l] = 1 ->

prot excp(sc+DEC(r[sl]}),
addr-excp(sc+DEC(r[sl])),
bndry excp(sc+DEC(r[sl]))
prot excp(y+DEC(psw[32 .. 63])),
addr-excp(y+DEC(psw[32 .. 63])),
bndry excp(y+DEC(psw[32 .. 63]))

VAR n [1] : 0 .• 1

PROGRAM

IF
n[l] = 0

THEN
bin dec(32,r[sl],rg)
pswT9] := addr excp(rg)
IF -

psw [9] = 0
THEN

C : = SC + rg
FI

ELSE

"FI

bin dec(32,psw[32 •• 63],lc)
C : ;- le + y

psw[B,9,13] := prot_excp(c),addr_excp(c),bndry_excp(c)

PROOF

(the abbreviations [8], [9], [13], pe, ae, be are used for
psw[B], psw[9], psw[l3], prot_excp, addr excp, and
bndry excp, respectively, in the trace table and
derivations)

157

condition [8] [9] [13]

1. n[l] = 0 I I I
2. I [9];i. = ae(rg 1) I
3. [9J:i. = 0 I I I
4 • [8]'I = pe(c 3) [9]~ = ae (c3) [13]'I = be (c3)

3 . [9].2. "'= 0 [8 J3 = pe (C.i..) [9] =
3

ae (C.t.) [13]3 = be (C.t)

1. n[l] "'= 0 I I I
2. I I I
3. [8]3 = pe (C.1.) [9] =

3
ae (c.;.,.) [13].) = be (C;i.)

rg C le

1. rg, = DEC (r[sl]) I I
2. I I I
3. I C.3 = SC + rg;. I
4. I I I

3. I I I

1. I I lc 1 = DEC(psw[32 •• 63])
2. I C,t = le,+ y I
3. I I I

derivations:

condition
n [1] = 0 & [9]~ = 0
n [1] = 0 & ae (r g 1) = 0
n[l] = 0 & ae(DEC(r[sl])) = 0

rule
[8]'I = pe (C3)

= pe(sc + rg2,)
= pe (SC + rg I)

= pe(sc + DEC(r[sl]))
derivations for [9] and [13] are identical to [8]

condition
n [1] = 0 & [9];i. "'= 0
n[l] = 0 & ae(rg,) "'= 0
n[l] = 0 & ae(DEC(r[sl])) "'= 0

rule
[8] 3 = pe (C ,1)

= pe (c,)
= pe(co)

derivations for [9] and [13] are identical to [8]

condition
n[l] ~= 0 (with data type 0 .. 1 implies n[l] = 1)

rule
[8]3 = pe (c~)

= pe (le, + y)
= pe(DEC(psw[32 •. 63] + y))

derivations for [9] and [13] are identical to [8]

Derived function:

1. n[l] = 0 & ae(DEC(r[sl])) = 0 ->
psw[8,9,13] := pe(DEC(r{sl])+sc),

ae(DEC(r[sl])+sc),
be(DEC(r[sl])+sc)

2. n[l] = 0 & ae(DEC(r[sl])) ~= 0 ->
psw[8,9,13] := pe(c) ,ae(c) ,be(c)

3. n[l] = 1 -> psw[8,9,13] := pe(DEC(psw[32 •• 63)+y),
ae(DEC(psw[32 •• 63)+y),
be(DEC(psw[32 .. 63)+y)

158

derived function and intended function do not agree in 2.

RESULT
FAIL

Proof of Ret Procedure

FUNCTION

r[dest;O] ~= 1 ->
(psw[S] := prot excp(DEC(r[dest])+sc),
psw[9] := addr-excp(DEC(r[dest])+sc),
psw[l3] := bndry excp(DEC(r[dest])+sc);
psw[S,9,13] = 0,0,0 ->

159

psw[4], psw[32 .. 63] := 0, BIN(DEC(r[dest)+sc),
(psw[3] = 1 -> handle window ov on return

jTRUE -> (DEC(psw[0 •• 2]) < 7 ->
psw[0 •• 2] := BIN(DEC(psw[0 .• 2]) + 1)

!TRUE-> psw[l2] := 1))
jTRUE -> psw[9] := 1

PROGRAM

bin dec(32,r[dest],retaddr)
retaddr := retaddr + SC
IF

r[dest;O] = 1
THEN

psw[9] := 1
ELSE

psw[9] := addr_excp(retaddr)
FI
psw[8],psw[l3] := prot excp(retaddr),

- bndry excp[retaddr]
IF -

psw[S,9,13] = 0,0,0
THEN

FI

psw [4] : = 0,
dee bin(32,retaddr,loc cntr);
pswT32 •• 63J := loc cntr,
bin dec(3,psw[0 •• 2J,cwp);
IF -

psw[3] = 1
THEN

handle window overflow on return
ELSE

FI

IF
cwp < 7

THEN
cwp := cwp + 1
dee bin(3,cwp,psw[32 •• 63]

ELSE -
psw [12] : = 1

FI

1.
2.
3.
4.
5.
6.

6.
7.

6.

4.

3.

l.
2.
3.
4.
5.
6.

6.
7.

6.

4.

3.

160

PROOF

In the table and derivations the abbieviations d, ra, le,
pe, ae, and be are used for dest, retaddr, loc cntr,
prot excp, addr excp, and bndry excp. Also the psw is
omitted from all references of-psw values, i.e. psw[81 is
[8].

condition [81 [91 [131

I I I
I I I

r[d;01 "'= 1 [813 = pe(ra;a.) [913 = ae(ra.1.> [13)a = be(ra.,,)
[8 , 9 , 13 13 = 0 , 0 , 0 I I I

I I I
psw[31 = 1 I I I

psw[31 .. =l & cwp5 <7 I I I
I I I

psw[31"'=1 &cwp5 >=7 I I I

[8, 9,131, "'= 0,0,0 I I I

r[d;01 = i I [913 = l I

[0 •• 21 [41 [121 [32 •• 631
---·----------------

I I I I
I I I I
I I I I
I [411 = o I I
I I I [32 •• 631s= le.,
I I I I

I I I I
co •• 217 = BIN(cwp") I I I

I I [121. = 1 I

I I I I

I I I I

ra cwp le

1. ra, = DEC (r[d]) I I
2. ra~ = ra, + sc, I I
3. I I I
4. I I lc41 = BIN(ra3)
s. I cwps= DEC (psw [0 •• 2],,) I
6. I I I

6. I cwp1,, = cwps + 1 I
7. I I I

6. I I I

4. I I I

3. I I I

derivations:

1 condition
r[d;O] -i: 1 & [8,9,13]3= 0,0,0 & psw[3]

r[a;O] -,= 1 & pe(ra,.) = 0 & ae(ra,1,) = 0
be(ra~) = 0 & psw[3] = 1

r[d;O] -i: 1 & pe(ra 1 + sc) = 0 & ae(ra 1 +
be(ra 1 + SC) 0 & psw[3] = = 1

r[d;O] -, = 1 & pe(DEC(r[d]) + SC) = 0
ae(DEC(r[d]) + SC) - 0 & be (DEC (r[d])
psw[3] = 1

rule
visual cerivation -

[4] ,[12] ,[0 .• 2] = 0,[12] ,[0 .• 2]
and window overflow is handled

&

[8 l1, = [8]s [3 2 •• 6 3 leo = [32 •• 63]5
= [8]., = lc'I
= [8]3 = BIN(ra 3)

= pe(ra:i.) = BIN(ra;i,)

+

= 1

&

SC)

SC)

= pe(ra, + sc) = BIN(ra 1 + sc)

161

window ov

handled

= 0 &

= 0

= pe(DEC(r[d]) + sc) = BIN(DEC(r[d] + sc))
[9],[13] derivations same as [8]

162

2 condition
r[d;O] .,= 1 & [8,9,13h = 0,0,0 & psw[3] .,= 1 & cwp5 < 7
derivation of [8,9,13]. same as in condition 1

cwps< 7
DEC (psw [0 •. 2] 'I) < 7
DEC(psw[O •• 2] 0) < 7

r[d;O] .,= 1 & pe(DEC(r[d]) + sc) = 0 &
ae(DEC(r[d]) + sc) = 0 & be(DEC(r[d]) + sc) = 0 &
psw[3] .,= 1 & DEC(psw[0 .• 2]) < 7

rule
[8],[9],[13],[32 .• 63],[4],[12] derived as in rule 1

[O •• 2]1 = BIN(cwp,.)
= BIN(cwps+ 1)

3 condition

= BIN(DEC(psw[0 •• 2],,)
= BIN(DEC(psw[0 •• 2] 0)

+ 1)
+ 1)

r[d;O] .,= 1 & [8,9,13] 3 = 0,0,0 & psw[3] .,= 1 & cwp5 >= 7
derivations as in conditions 1 and 2

r[d;O] .,= 1 & pe(DEC(r[d]) + sc) = 0 &
ae(DEC(r[d]) + sc) = 0 & be(DEC(r[d]) + sc) = 0 &
psw[3] .,= 1 & DEC(psw[0 •• 2]) >= 7

rule
[8],[9],[13],[32 •• 63],[4],[0 •• 2] derived as in rule 1
[12] = 1

4 condition
r [d; 0] ., = 1 & [8 , 9 , 13]3 ., = 0 , 0 , 0

r[d;O] .,= 1 & pe(ra~) .,= 0 & ae(ra~) .,= 0 &
be(ra.1,) .,= 0

r[d ; 0] ., = · 1 & pe (r a 1 + s c) ., = 0 & a e (r a 1 + s c) ., = 0 &
be(ra 1 + sc) .,= 0

r[d;O] .,= 1 & pe(r[d] + sc) .,= 0 &
ae(DEC(r[d]) + sc) .,= 0 & be(DEC(r[d]) + sc) .,= 0

rule
[8]., = [8 h

= pe(ra.a.)
= pe(ra 1 + sc)
= pe(DEC(r[d]) + sc)

[9],[13] derivations same as [8]

5 condition
r[d;O] = 1

rule
[9] = 1 [8],[13],[4],[12],[0 .• 2],[32 •• 63] = I

163

In the comparison of the derived function and intended
function in each of the 5 partitions, it is seen that the
two functions agree.

RESULT
PASS

164

Proof Failure in Shifts Procedure

FUNCTION

(amt:= (imm=O -> DEC(r[s2]} jTRUE -> sc}};
(amt< 0 -> amt := 0 jamt > 32 & n[l] = 1 -> amt := 31

jamt > 32 & n[l] ~= 1 -> amt := 32}
(n[2] = 0 -> shift_left(amt} I TRUE -> shift_right(amt}};
(sec= 1 ->

(setmask;
n[l] = 1 & r[sl;O] ~= r[sl;l •• amt] -> psw[l9] := l}}

PROGRAM

This program is at the top level of abstraction.

1 amt := (imm=O -> DEC(r[s2]} I TRUE-> sc}
2 n[l] = 1 & sec= 1 ->

(pswl9 := (r[sl;O] ~= r[sl;l .• amt] -> 1
jTRUE -> O}

3 amt> 32 -> amt := 32
4 n[2] = 0 -> shift left(amt} !TRUE shift right(amt}
5 sec= 1 -> (setmask (includes psw[l9] :; O};

n[l] = 1 -> psw[l9] := pswl9}

PROOF .
This proof is worked partially by mental verification and
reasoning and partially by table tracing.

By inspection:
Line 1 of program corresponds directly with the first
line of the FUNCTION. Also line· 4 of the program
corresponds directly with the fifth line of the
FUNCTION. If n[l] ~= 1, then the program simplifies to
lines 1, 3, 4, and 5 where line 5 is simplified to
sec= 1 -> setmask. This simplification corresponds
directly with the FUNCTION for the case n[l] ~= 1. If
sec~= 1, then the program simplifies to lines 1, 3, 4
and again corresponds directly with the FUNCTION for
this case. Finally, by inspection it can be seen that
line 3 is not thorough enough to agree with the
FUNCTION: in partition amt< 0, f = (amt := 0) while
[P] = (amt := amt}, and in partition amt> 32, f = (amt
:= (n[l] = 1 -> 3ljTRUE -> 32)} while [P] = (amt := 32}
So there is one failure found by mental verification.

FAIL

In all the cases in the following table n[l] = 1 and
sec= 1 because the cases where either n[l] ~= 1 or sec~
= 1 has been mentally verified above.

165

condition pswl9 psw[l9] amt

1. r[sl;O] ..,= pswl9 1 = 1 I I
r[sl;O •• amto]

2. amt,<= 32 I I I
3. I psw [19]3 = pswl9;L I

2. amt,> 32 I I amt,;.= 32
3. I psw [19]3 = pswl 9.t I

1. r[sl;O] =
r[sl;O •• amto]

pswl9 1 = 0 I I

2. amt,<= 32 I I I·
3. I psw [19]3 = pswl 9.a.. I

2. amt,> 32 I I amt.i = 32
3. I psw[l9]3 = pswl9.., I

derivations:

1 condition
r[sl;O] ..,= r[sl;O •• amto] & amt,<= 32
r[sl; 0] ..,= r[sl;O •• amto] & amto <= 32

rule
psw[l9]3 = pswl9~

= psw19,
= 1

2 condition
r[sl; 0] ..,= r[sl; 0 •• amto] & amto > 32
r[sl; 0] ..,= r[sl;O •• amto] & amt,> 32

rule
psw[l9]3 = pswl9a.

= psw19,
= 1

3 condition
r[sl; O] = r [sl; 0 •• amt 0] & amt,<= 32
r[sl;O] = r[sl; 0 •• amt 0] & amta<= 32

rule
psw[l9]3 = pswl9:i.·

= psw19,
= 0

4 condition
r[sl;O] = r[sl;O. ~amto] & amt,> 32
r [sl; 0] = r [sl; 0 •. amt.,] & amt.,> 32

rule
psw[l9]3 = pswl~.;.

- pswl91
= 0

166

r[sl;O] = r[sl;O •. a~t] & amt<= 32 -> psw[9] := 0 PASS

r[sl;O] = r[sl;O .. amt] & amt> j2 -> psw[l] := 0 Pass

r[sl;O] ..,= r[sl;O .. amt] & amt<~ 32 -> psw 19] := 1 PASS

r[sl;O] ..,;,.. r[sl;O •. amt] & amt > .32 -> psw[9] := 1
This breaks down into two c~ses
1. r[sl;O] ..,= r[sl;0 •. 31] ·
2. r[sl;O] = r[sl;0 .. 31] & r[sl;O] ..,= r[1;32 •• amt]

In case one the intended function and d rived function
agree, but in case two, f = (psw[l9] 0) while [P] =
(psw[l9] := 1), so this:case FAILs.

RESULT
FAIL

VITA

Marjorie Hyatt Turner

Candidate for the Degree of

Master of Science

Thesis: FUNCTIONAL PROOF OF CORRECTNESS TECHNIQUES
APPLIED TO RISC SIMULATOR

Major Field: Computer Science

Biographical:

Personal Data:
1959, the
Turner.

Born in Cincinnati, Ohio, August 16,
daughter of Edward T. and Phyllis D.

Education: Graduated from South Vigo High School,
Terre Haute, Indiana, in May, 1977; received
Bachelor of Science degree in Mathematics from
Indiana State University in May, 1981; completed
requirements for the Master of Science degre~ at
Oklahoma State University in December, 1983.

Professional Experience: Actuarial Trainee at William
M. Mercer; Chicago, Illinois, May, 1980 to August,
1980. Programmer at Weston Paper and
Manufacturing Company; Terre Haute, Indiana, May,
1982 to August, 1982. Graduate Teaching
Assistant, Department of Mathematics, Oklahoma
State University, Stillwater, Oklahoma, August,
1981 to May, 1982, and August, 1982 to May, 1983.

