
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of th is reproduction is dependent upon th e quality of the

copy subm itted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand com er and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

UMI'

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE EFFECTS OF LEARNING “C” PROGRAMMING
ON COLLEGE STUDENTS’ MATHEMATICS SKILL

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment o f the requirements for the

Degree o f

Doctor o f Philosophy

By

William Franklin Stockwell
Norman, Oklahoma

2002

UMI Number: 3045840

UMI
UMI Microform 3045840

Copyright 2002 by P roQ uest Information and Learning Com pany.
All rights reserved . This microform edition is protected against

unauthorized copying under Title 17, United S ta te s Code.

P roQ uest Information and Learning C om pany
300 North Z eeb R oad

P.Q . Box 1346
Ann Arbor, Ml 48106-1346

ê Copyright by W illiam F. Stockwell 2002
Ail Rights Reserved.

THE EFFECTS OF LEARNING “C” PROGRAMMING
ON COLLEGE STUDENTS’ MATHEMATICS SKILL

A Dissertation APPROVED FOR THE
DEPARTMENT OF INSTRUCTIONAL

LEADERSHIP AND ACADEMIC CURRICULUM

BY

/.y'CcA L

/ { /

Table of Contents

CH A PTER 1 - IN TR O D U C TIO N ..1

CH A PTER 2 - REVIEW OF TH E LITER A TU RE.. 6

CH A PTER 3 - PR O C E D U R E... 20

CH A PTER 4 - ANALYSIS OF THE DATA AND RESU LTS.............................. 25

CH A PTER 5 - DISCUSSIO N. SU M M A RY AND C O N C LU SIO N S.................. 27

R EFER EN C ES..30

APPEND IX A - PR E -T E ST...34

APPENDIX B - PO ST-TEST.. 37

APPENDIX C - D A T A ..41

APPENDIX D - ELEM ENTS OF THE C PROGR.^M M ING L A N G U A G E ...43

APPENDIX E - ON THE CH OICE OF THE C PROGRAM M ING LA N G 72

IV

CHAPTER 1

INTRODUCTION

Do com puter program mers have it easier at learning m athem atics? Over the last

thirty years there have been a num ber o f research efforts that attem pted to show a

positive effect on m athem atics learning from com puter program ming. Johnson and

Harding (1979) stated:

One o f the major areas o f interest is how com puter program m ing by students in a

laboratory-like context contributes to the learning o f selected concepts and

problem solving. Hatfield reported on an extensive review o f the literature in this

area and indicated that although the evidence from empirical research is minimal

at best, there is considerable support for this approach (a com puting laboratory) as

an aid in the study o f many mathematical concepts and for m athem atical problem

solving. This view is also supported by the Conference Board o f the

M athem atical Sciences (CBM S) recom m endation that there is a need for "the

developm ent o f short modules (or units) using com puters in problem -oriented

situations that em phasize the application o f m athem atics to the range o f problems

relevant to today 's society, (p. 37)

Evidence that learning com puter program m ing is expected to enhance students'

problem solving skills as well as their developm ent o f other m athem atical skills is the

large num ber o f textbooks on program m ing that have the words "problem solving" in

their title. Further, it is reasonable to suggest that students in program m ing classes must

exercise their abstract thinking abilities. In addition, if the students' program s do not

work, debugging the logic o f the program ming code is often a m ajor problem -solving

task in itself. Chin and Zacker (1985. p. 9) state that "Perhaps the m ost tim e intensive

and frustrating part o f program ming is debugging, which requires a great deal o f

persistence and effort.”

The literature shows that there is a large body o f opinion that computer

program m ing should enhance cognitive skills. In spite o f this, however, there is scant

empirical evidence supporting that belief.

A pilot study was conducted in an attempt to gather em pirical evidence. An

introductory freshman course on computers w ith a com ponent o f program m ing was

offered at a state-supported university in the central portion o f the USA. An especially-

designed pre-test and post-test o f selected m athematics problem -solving skills was

adm inistered to several sections o f the introductory class. The pre- to post-test

com parative results showed no increase in problem -solving skills.

The am ount o f program ming actually taught in the introductory classes was

m inimal. The m otivation level o f the students was generally low. As a result not much

learning o f program m ing took place. The type o f cognitive activity involved in

program m ing that might have contributed to mathematical developm ent thus possibly

also did not take place.

It was hypthesized that a more motivated group o f students m ight demonstrate a

stronger relationship. The study was repeated with sections o f the com puter science

course Program m ing I in which the C program ming language is taught. Nearly all the

students who take this course are com puter science m ajors or m inors (or otherwise

m otivated persons who need some programming knowledge for their work). Such

students no doubt have m uch higher desire to learn program m ing than those in the

introductory course had. Further, rather than testing for problem solving skill

enhancem ent, it was decided to test for increased skills in selected m athem atical areas

presum ed to be enhanced by learning C programming. It was felt that while problem

solving skills would be enhanced, m ore than a sem ester course m ight be required to see

those kind o f results, even though other areas that C presum ably enhances might well

show up earlier.

W hat are these m athem atical areas that C program ming m ight enhance? One

such area is that o f functions. In C program ming, all subroutines (callable code units) are

actually what are called functions. These are subroutines that return a value to the caller

and are invoked in a way that looks and acts a great deal like functions do in

m athem atical usage. For exam ple, consider the mathematical function defined by f(x) =

x‘ . In C one m ight write this as

double f(double x) { return x * x; }

Here "double" is a data type in C that corresponds roughly to the idea o f "real number",

the braces enclose the body o f the function code, and the denotes m ultiplication. To

actually use the function, a statem ent such as

y = f (X) ;

would suffice, where y and x are variables o f type "double" and x has been assigned some

value. For more inform ation about the C language, see A ppendix D.

A second exam ple o f an area in which some transfer m ight be expected is in the

area o f sequences in m athem atics com pared to arrays in C. .A m athem atician m ight speak

o f a sequence o f values {an} with a, = 3. an - 7. a] = 11. In a sim ilar context, the C

program m er could use a statem ent like

inc a[] = {0,3,7,11};

Thus the C program m er would be declaring 'a ’ to be an integer array w ith a [l] = 3, a[2] =

7. and a[3] = 11. Indeed, the notation here differs from that for a sequence only in that

historically, program ming languages only dealt w ith text o f typed characters having no

subscripts or superscripts. This practice is essentially standard for program mers now and

unlikely to change. Some C program mers pronounce a [l] as "a bracket one" while others

would ju st say "a sub one", thus revealing arrays in C as com ing from mathematical

sequences.

A third potential area o f transfer from C program m ing to m athematics is in

algebraic expression evaluation. Program m ing students m ust code and understand

algebraic expressions and precedence o f operators if they are to write meaningftil.

working program s. This seems alm ost certain to help them as they deal with such

expressions and order o f operations in their m athem atics classes.

W hy was C chosen for this study am ong the possibilities in more dem anding

program m ing languages? Why not som e other language? It was determ ined that the

specific choice o f program ming language is not essential in this connection as long as the

program m ing involved is cognitively dem anding and involves analogies to mathematical

skills. H ow ever C is only language taught at the researcher's university to large enough

num bers o f students to allow for a reasonable study. Further it was felt that C requires

more dedicated students as C is generally harder to learn than many other languages. This

seem s likely to contribute to finding a positive result in concom itant growth in

m athem atical skills. Appendix E contains more on the reasons for choosing the C

language for this studv.

Problem Statement

This study was designed to determ ine if undergraduate college students show

im provem ent in selected mathematical skills from learning com puter programming in C.

It was desired to determ ine if any such im provem ent was likely due to learning and

practice in program ming independently o f whether m athem atics was being studied

sim ultaneously. A com parative observational study was designed (see Chapter 3) to

gather data that might help to answ er this question. Variables considered in the analysis

o f these data were:

1. perform ance on a pre-test o f m athem atics skills;

2. perform ance on a corresponding m athem atics skill post-test;

3. whether the student was taking a m athem atics course in the sam e semester in which

they studied program ming in C; and

4. perform ance on the final exam o f the program m ing course.

CHAPTER 2

REVIEW OF THE LITERATURE

The literature search concentrated primarily on what effect C program m ing has on

a student’s m athem atics skills, and secondarily on related areas such as the effect o f

com puter program m ing in general on m athem atics skills, and the effect o f com puter

program m ing on general problem solving. Only one article was found that was specific

to the effects o f C programming, and its concern was with students o f physics. Hence the

references found relate to the relationship between m athem atics skills and computer

program m ing in general.

The only research article found that had anything to do w ith the C programming

language was Saiz (1994, p. 28). He showed how the C language was an excellent tool

for physics students to explore physics ideas, and investigate phenom ena for themselves.

M ost likely, an easier language such as BASIC might be better for m ost students

interested in these things; however, any reports o f the use o f C in this way are welcome.

It is not hard to guess why: to be good at C requires a fairly high level o f programming

skill, or at least considerable perseverance.

Studies that found positive effects from program m ing

Nowaczyk (1983, p. 8) found " ...ev idence that problem -solving ability is an

important com ponent in (com puter) program ming." To those in the field o f teaching

software construction, this seems obvious, hence all the attem pts at providing empirical

evidence.

O thers looked at the effect o f com puter program m ing on students' algebraic skills:

Hart (1983. p. 2) stated, "There is now a background o f research and developm ent which

indicates that there are very strong psychological argum ents for approaching (algebraic)

concepts through the use o f com puter program m ing." Again, ideas such as this played a

strong part in the research selections m ade in this paper. The rationale is simple: the

w riting o f high-level com puter program m ing code involves coding o f lots o f algebraic

expressions. Many times the way these should be coded varies from m athem atical usage,

but that doesn't change the fact that com puter program m ing students absolutely must

learn about algebraic expressions — order o f evaluation, precedence o f operators like +

and * (tim es), use o f parentheses, and so on.

Powerful support for the idea that learning com puter program m ing m ight be a

route to m ore general reasoning skills cam e from Lee & Pennington (1993. p. 131). who

found that "extensive training in program m ing can develop individual com ponent skills,

such as general diagnostic skill, which can transfer across dom ains..." . Further, "with an

em phasis on descriptions o f knowledge and specific m ethods o f training for transfer, this

research has found what may be considered a general skill that can be acquired by

learning program m ing." This is only one o f several studies that found that learning

program m ing is good for one intellectually. Casey (1997. p. 47) argues that "designing

and w riting a com puter program engages students in the challenge o f presenting ideas to

and through a computer. M aking that program work as intended, however, often tests the

real m ettle o f the student as problem solver." Still another such source is Solo way (1993.

p. 21). who argues the case for teaching program m ing "to the m asses" essentially because

it is good for them in terms o f logical thinking, and benefits everyone.

A nother source dem onstrating some transfer effect due to program m ing was

Goldenson (1996, p. 154), who reports on three studies he did w hich "dem onstrated some

intriguing transfer effects attributable to (com puter) program m ing.” In this case he was

referring to transfer to the area o f writing essays. This is im portant to the things this

researcher is doing because o f som e important connections betw een hum an languages

such as English, and com puter languages, and also the large am ount o f sim ilarity in the

mental processes required for writing essays and writing com puter program s. A little

known fact to many is the relationship between linguistics and com puter science;

som etim es the English and com puter science faculty work together!

M cA llister (1985, p. 27) found a relationship between problem solving and

beginning program m ing (in LOGO) for children in middle school.

A nother positive result was found by Foreman (1988, p. 10), who did a study

relating to cognitive style as well as ability relating to com puter program m ing in B.-\SIC

at the college level. Foreman concludes: " ...fie ld independence, logical reasoning,

spatial ability, and direction following were found to be related to com puter

program ming."

Palumbo and Palumbo (1993) did one o f a num ber o f studies on how Logo

program m ing enhances elem entary students' problem solving skills; this particular study,

like most o f those, did find a positive result, and is also a later study than m ost in its

group. Palum bo and Palumbo (1993) stated;

Program m ing language instruction is another area that has been said to enhance

the developm ent o f problem -solving skills. The teaching o f com puter

program m ing may generate transferable problem -solving and thinking skills since

program ming deals w ith both structure and abstraction. Students are required to

place items in a logical and precise order. Students m ust also plan and use

organization and design skills when programming, (p. 310)

A nother Logo study, this tim e w ith college students, was done by Denenberg (1988), who

states:

The last five years o f experience teaching C SCl 11 "Com putation. Reasoning, and

Problem Solving" clearly shows m ixed results on the developm ent o f students'

reasoning skills. A few never get it at all (these students seem to need a remedial

course to learn even more basic skills such as reading, m ultiplying fractions, etc.).

a few swallow the course whole, stretching their minds and confidence in

them selves as effective problem -solvers. while most gain an excellent grasp on

the W himbey and Lochhead problem -solving techniques as well as a fairly good

understanding o f the two types o f reasoning and the power o f applying them

within the context o f a com puter programming language such as Logo. (p. 12)

M ayer (1975) in studying 176 non-program m ers who were taught a program ming

language, found

Apparently, the strongest overall pretest predictor in this study was the Algebra

Story Test - a test requiring subjects to translate story problem s into formulas.

This skill seems closely related to skills required in com puter program ming in

general and the high correlations with performance for all six posttest tasks

support this view. (p. 732)

Again, this result hardly seems surprising to this researcher, as the process o f determining

the steps to carry out in order to accom plish a desired goal (as in com puter programming)

would seem to demand some o f the sam e skills needed for solving "story problems".

Palum bo and Reed (1991, p. 369) showed that " ...so m e problem solving skills o f

high school students can be positively increased through system atic exposure to and

interaction w ith the BASIC program m ing language." A nother positive result is shown by

Solo way et al. (1982), using a mix o f languages with college students.

There is a fair amount o f evidence linking m athem atical and com puter skills; in

1994 a study o f over one hundred students o f a m icrocom puter class showed that the

m ost significant factors relating to success in that course were grade point average and

m athem atics ACT score (Seymour, et al.. 1994. p. 1338).

Bernardo and M orris (1994) looked at the effect o f a high school program ming

course in various areas o f m athematical achievem ent (including problem solving). They

m ention that George Polya's problem solving heuristics are extremely sim ilar to the

processes em ployed in the construction o f a com puter program. In their study they did

find a statistically significant impact o f learning to program on their problem solving

ability (at the .01 significance level).

Reed (1988. p. 56) speaks o f the "content-voidness" o f program m ing languages,

and speaks to the issue o f the power program m ing languages have to help develop

thinking processes in students. The term "content-voidness" refers to the notion that

program m ing languages are generic w ith respect to content; they can be used in a very

wide variety o f applications. Reed goes on to state that "program m ing languages are

based on operational logic, an area that m odem education has overlooked ': Reed

10

distinguishes operational logic from deductive logic in that operational logic "involves

the logic o f planning and the rational execution o f action". O f course, designing and

w riting com puter programs involves careful, logical planning and precise determination

o f w hat is needed in order for the program to carry out the appropriate actions at the

appropriate time. Thus the term "rational execution o f action" applies very well here.

Harding and Johnson (1979) tried to determ ine the effect program m ing has on

"selected concepts and problem solving” , for university students. They found that

program m ing had a favorable effect on problem solving abilities. They were also

interested (for future research) in determ ining

what is learned from solving problems with a com puter that m akes major

contributions. Is it:

• the tvpe o f thinking dem anded for successful program m ing?

• the analysis o f a problem that is necessary before a program to solve that

problem can be written?

• the trial-and-error behavior that is characteristic o f successful programming?

• the opportunity or provisions for partial solutions and feedback provided by-

running o f program s and studying output?” (p. 54-55)

M cCoy and Orey (1988) did a study with secondary school students learning the

BASIC language. In their study, program m ing achievem ent was significantly related to

both problem solving ability and verbal reasoning ability. They also noted improved

problem solving ability after one sem ester o f program m ing instruction.

I I

Negative (or questionable) results on the effects o f program m ing

M cCoy (1996, p. 443) sum m arized a num ber o f studies involving how

program m ing affects problem -solving, and states that the conflicting results found are

"possibly explained by two difficulties that have m ade program m ing less appealing to

m athem atics educators: inherently hard-to-m easure problem -solving skill and wide

variation in program m ing experiences." Factors such as these played a part in this

researcher’s choices for experim entation. For exam ple, this researcher believes that one

can cut down on the "variation in program ming experiences” by teaching a harder

language such as C.

M any studies have been done trying to find a link betw een program m ing ability

and m athem atical ability: the results do not always agree. For exam ple M azlack (1980)

found no significant relationship here, while in Fletcher (1984, p. 4) we have "Another

interesting aspect o f the analysis is that while m athem atical reasoning is highly correlated

with overall program m ing ability, it is relatively insignificant for the m ore fundamental

aspects o f programming. This tends to indicate that m athem atical reasoning is more

closely related to primary abilities than the other cognitive processes tested." In other

words, the higher the IQ, the more likely the student is capable o f mathematical

reasoning.

A lspaugh (1972, p. 89), although dated, nevertheless has some im portant things to

say about program m ing aptitude and especially its relationship to m athem atical aptitude.

W hat was noticed is som ething that has been seen several tim es, which is that

program m ing and m athem atics aptitude d o n 't always act as good predictors o f each

12

other. It was pointed out also, rather interestingly, that one prim ary assum ption in putting

com puter science as part o f the mathematics departm ent (which was done a lot in the past

and is still som etim es the case) is that there is a strong relationship between the two.

N evertheless, in the testing that Alspaugh did. results showed that achievem ent in

program m ing (in FORTR.A.N and assem bly language in this case) had as its major

influencing com ponent the mathematical background o f the student in question. This

conclusion seem s to be at odds with the observation that math aptitude is not a good

predictor o f program ming aptitude. Another possibility is that those with a strong

m athem atics background do have program ming aptitude — it ju st may not be developed.

The literature shows something o f a mix on results relating to the effects o f

program m ing on cognitive skills. Salomon and Perkins (1987) have stated that

differences in program ming instruction is one possible reason som e research has yielded

significant results in this area while other research has not.

Pea and Kurland (1984. p. 162) tried to see what if any cognitive transfer occurred

with children learning Logo. They were not encouraged: however the researcher has

com e to believe that generally only high school students and above are likely to show any

real benefits from programming. Such be lie f comes from studying Piaget, who discusses

a stage o f developm ent called "fom ial operational thinking" which some never attain, but

for those who do. it generally occurs on or after age twelve (see

http://ww w.psvch.ualberta.ca/~m ike/Pearl StreeL 'Pictionarv/contents/P/piauefs staues.ht

mi).

13

http://www.psvch.ualberta.ca/~mike/Pearl

M iscellaneous studies relating to program m ing

Important to the success o f a computer program m er is skill at "debugging" - the

process o f finding (the hard part) and removing "bugs", or program errors, from written

code. At least one study relates to this: Chin and Zacker (1985) state:

Perhaps the m ost tim e intensive and frustrating part o f program m ing is

debugging, w hich requires a great deal o f persistence and effort. This may

explain why intem ality is the strongest personality trait associated with high

program ming performance. The high positive correlation found between

intem ality and program m ing performance supports the notion that internals would

be more likely to succeed at program im plem entation than externals, (p. 8)

Many o f this researchers' sources are teachers o f program m ing and/or mathematics, who

in the process o f teaching program ming become convinced o f its power to enhance

mathematical learning. One such was Day (1973), who taught a 3-hour class in her

m athem atics departm ent called "Introduction to Com puting". She spent the first month

o f the course teaching the BASIC programming language, and then had the students

choose a program m ing project to work on for the rest o f the sem ester. M any o f the

projects explicitly involved a lot o f mathematics. After the course. Day wTote:

Evaluating, I am optim istic about the potential o f program m ing assignm ents as an

aid to learning m athematics. The students seem ed to grasp a concept more firmly

and be m uch m ore interested after writing a program using the principles

involved. One som ew hat unexpected benefit o f this course was that it stimulated

14

creativity, which was due mostly I think to each student being encouraged to

choose his own project, (p. 12)

There is quite a lot o f disagreem ent in the literature as to w hether teaching

com puter program m ing helps students develop their thinking skills. One source seeks to

explain this as follows: Jones (1988, p. 10) says that many studies target elementary

students, but this is the wrong group to study according to Piaget. Piaget says the great

m ajority o f children can achieve the level o f formal operations only at age twelve and

beyond. Jones goes on to say that "Effective program ming requires that the student (a)

understand the problem, (b) design and plan a solution (program), (c) code, and (d) debug

the program. Surely. Piaget would classify program ming as a formal operations

ac tiv ity ...It seem s clear that m ost research has targeted the wrong group." This is one

reason that this researcher chose to test college level students, although it is worth

pointing out that m otivated high school students would also have worked out for these

purposes.

Kurtz (1980, p. 114) defined an "ID " level (intellectual developm ent) in his study

o f students in an introductory program m ing course. He states

ID level explained over 80% o f the variance in the total test scores, yet only 39%

o f the variance in program m ing scores. This result was predicted by the

researcher and should not be surprising to anyone who has taught an introductory

program m ing course. Students have many sources o f help when writing

program s: the instructor, lab consultants, other students, and o f course, the

com puter itself. Program s are graded on a mastery basis, the num ber o f attempts

15

or the actual tim e spent on the program are not considered in assigning a grade.

In a batch environm ent there is no way to control these factors. It would be

interesting to see if ID level would be a better predictor o f program ming

perform ance if program s had to be com pleted individually, in a certain amount o f

tim e, and under the supervision o f the instructor. Although this is an interesting

research question, it is not a recom m ended teaching strategy.

On that, this researcher can only agree whole-heartedly.

Greeno (1978. p. 264). in discussing the nature o f problem -solving abilities, notes

that "The m ost dem anding intellectual problem s are problem s o f com position. In

com posing a piece o f music, a painting, a sculpture, a poem, a novel, or a theory (or.

som etim es, an experim ent) a person m ust create an arrangem ent o f ideas whose structure

incorporates some significant new understanding.” Indeed, this researcher would

describe com position o f a new and am bitious com puter program in m uch the same way.

Anderson (1982) uses the ACT theory o f learning to discuss how the acquisition

o f cognitive skill takes place. This system, described by Anderson in 1976.

consists o f a set o f productions that can operate on facts in a declarative database.

Each production has the form o f a prim itive rule that specifies a cognitive

contingency, that is. a production specifies when a cognitive act should take

place. The production has a condition that specifies the circum stances under

w hich the production can apply and an action that specifies what should be done

when the production applies. The sequence o f productions that apply in a task

correspond to the cognitive steps taken in perform ing the task. (p. 369)

Anderson goes on to say:

16

The claim is that the configuration o f learning m echanism s described is involved in the

full range o f skill acquisition from language acquisition to problem solving to schema

abstraction. A nother strong claim is that the basic control architecture across these

situations is hierarchical, goal structured, and basically organized for problem solving.

This echoes the claim made elsewhere (Newell, 1980) that problem solving is the basic

m ode o f cognition, (p. 369)

A num ber o f references concerned them selves about testing for programming

aptitude. In (Bauer, et al.. 1968) for example a num ber o f tests for program m er aptitude

were correlated with the final grade in a programming course for Army trainees, in an

effort to see which tests (if any) would turn out to be good predictors o f program mer

aptitude. The correlations with standard tests came out fairly high. In (Besetsny. et al..

1993). another such study (this time in the Air Force) showed that the Air Force test for

program m ing aptitude was not a good predictor o f such. Bloom (1978) discusses the

need for "testing the test" for programming applicants; he m entions that different tests

have different objectives, and that use o f a test without careful evaluation can lead to

serious problem s. Another study, this one by Correnti (1969). tended to show that tests

for program m ing aptitude do work, at least up to a point. Ledbetter (1975) did an

interesting study on program ming aptitude in which he states

The m ajor conclusion ... from this study is that a very large proportion o f college-

level students probably possess sufficient aptitude for successful com puter

program m er training. This aptitude does not appear to be a characteristic o f an

elite few. as som e had surmised, but rather, is probably very w idely held in the

college population (p. 166).

17

Lem os (1980) is concerned with the problem s inherent in attem pting to m easure a

studen t's proficiency in a program m ing language. He found

a direct relationship between the ability to read program s and ability to write

program s. This finding is im portant since the m easurem ent o f reading ability is

show n to require a significantly sm aller tim e investment in evaluating student

perform ance (p. 272).

M azlack (1980) did a long term study in which many students, over a num ber o f

years, took the sam e introductory program m ing course. Performance in this class was

found to correlate at a low level with the IBM Program m er's Aptitude Test.

Tw o o f the studies (Cavaiani. 1989. and Cheney. 1980) concentrated on cognitive

style - a personality variable. For exam ple. Cavaiani found

There is some evidence that certain personality variables are related to

perform ance in com puter program ming. Studies have shown that subjects

identified as having a global cognitive style have greater difficulty solving certain

types o f problem s than subjects having an analytic cognitive style, (p. 418)

A som ew hat different approach, also involving high school students, was done by

Ennis in 1994. Her intent was to improve students' problem solving ability by com bining

program m ing instruction and problem solving instruction. This is interesting as it is nght

down the alley o f that which I am trying to do. however by m ixing the two types o f

instruction it makes it quite difficult to know what to attribute any increase in problem

solving ability to. However, it m ust be noted that she was NOT m erely trying to increase

problem solving ability for its own sake, but also for the benefits it m ight bring to her

18

program m ing students, that they might become better program m ers. Once again, we see

the intertw ining threads o f problem solving vs. program m ing that appear so interrelated.

Interestingly however, in trying to find any significant increase in problem solving ability

due to the mix o f instruction, none was found (but she did have som e "interesting

qualitative observations".)

M cCoy (1989) discussed problems students have understanding variables and

translating English word problems to algebraic equations. For exam ple, if there are 6

tim es as m any enlisted men as officers in a room, is this represented as O = 6E or as E =

6 0 ? M cCoy noticed that many students had a hard time with this. This intrigued this

researcher to such an extent that it was decided to put such a question into the

researcher’s pre- and post-tests for mathematical achievem ent. See Appendices A and B

for m ore about the results o f those tests.

W hile the literature contains a lot o f references to the effect o f com puter

program m ing on problem -solving and m athematics perform ance, it contains virtually

nothing on the specific effects o f C programming in these areas. Considering what a

dom inant com puter language C has been over the last two or three decades, and the fact

that it has typically been used on many very high level projects (nearly all m odem

operating systems are written in C). this is rather surprising. The door appears open to

research o f this nature.

19

CHAPTER 3

PROCEDURE

As indicated by the literature, a wide variety o f attempts to show how com puter

program m ing affects problem -solving as well as other m athematics skills have been

made, w ith varied results. Noting the lack o f research studies o f this t>pe in which the

program m ing was done in the C language, this researcher devised a study in which

students receiving instruction in C program m ing would be tested on their ability to

perform selected m athem atics exercises at both the start and the end o f the C

program m ing course.

Pilot Study

A pilot study was conducted to develop and refine the instrum ents used in this

research project. This study was conducted during Fall 1997 and is referred to in the

following discussion o f the developm ent o f the instruments.

Developnient o f the Instruments

1) The Pre-test (Appendix A) contained 14 questions constructed by the

researcher and adm inistered at the beginning o f the sem ester o f the study to

determine the students' skill level on certain m athematics problem s at that

point. These questions began as sim ilar to questions asked in the pilot study,

but in their final form were quite different, since the type o f m athem atics and

problem -solving skills for which it was being used was different.

20

2) The Post-test (Appendix A) contained 14 content questions, which had been

constructed by the researcher and adm inistered close to the end o f the

sem ester o f the study to determ ine any change in the students' m athematics

skill levels from the Pre-test.

Definition o f Term s

M athem atics Achievem ent M easure. This is defined as the PostTest

score m inus the PreTest score for each student. Each test had 14 m ultiple choice

questions, such that a score o f -1 4 to 14 could be obtained. For purposes o f this

research, we take these difference scores to be m eaningful, even though the items

on the PreTest and PostTest were not the identical.

Took Math V ariable. For each student who took the Pre- and Post-Tests,

this was recorded as a one if the student was taking a m athem atics course that

sem ester and a zero if not. The students were asked on the PostTest to indicate if

they were taking a m athematics course that sem ester and. if so. to list their

m athem atics teachers' names on the back o f their answer sheet.

Purpose o f the Study

This study attem pted to determ ine if there is a positive relationship

between the learning o f com puter program m ing in C and perform ance on selected

types o f m athematics exercises. Variables considered in the analysis o f the data

were the PreTest score, the PostTest score, the TookM ath value, and the score on

the final exam o f the students' com puter class.

21

Independent Variables

The TookM ath value (whether or not each student was taking a

m athem atics course) is an independent variable. A lso the score on the PreTest

w as an independent variable.

Dependent Variables

The dependent variables were the final exam scores and the scores on the

PostTest o f m athem atical achievement.

General Research H ypothesis

The achievem ent in selected m athem atics areas o f students who are taught

C program m ing will see a net increase.

Design o f the Study

Instrum ents

The instrum ents used in the study were:

1) The PreTest o f mathematical skill

2) The PostTest o f mathematical skill

Each student's final exam ination score for their C program m ing class during

the sem ester o f the study was made available to the researcher by the teacher o f

the student's class.

Population

The one-sem ester study was conducted at a m edium sized state supported

university in South-Central U .S.A. Six sections o f Program m ing I took part as the

main study group with an original sample size o f 173.

M inimum prerequisites for Programming 1 include two years o f high

school algebra and also Beginning Programming (in which Pascal is taught).

Design

This study involved a Pre-Test and Post-Test o f some selected

m athematics skills o f students taking a course in C program m ing. See Appendix

A and Appendix B for the actual questions on these tests. The Cronbach alpha

coefficient was com puted to be 0.63 for the pre-test and 0.61 for the post-test.

Procedures for Data Collection

At the beginning o f the study semester (Spring 1998). a pre-test (Appendix

A) o f fourteen researcher-selected mathematical problem s was adm inistered to the

students in the six sections o f Programming I. A total o f 152 students took the

pre-test out o f 173 who were enrolled at that point.

Near the end o f the study semester, a posttest o f fourteen questions was

given to all the rem aining students in the tested sections. See Appendix B for the

post-test questions.

The posttest had a question that asked if the student took any mathematics

course that same sem ester, as an additional question 15 that is not included as part

o f the score. This was used to determ ine the "TookM ath" value for each student.

Final exam ination scores were obtained from the teachers o f each

Program m ing I section for all o f the students, so that this data could be used.

Data Analysis

To determine the effect o f C program ming on the selected mathematics

skills, a t-test on matched pairs was used to see if a difference was found between

the pre- and post-tests. The t-test was run against the set o f C programming

students who did not take a m athem atics course that sem ester, but who did take

both the pre-test and the post-test so those scores could be paired. Additionally, a

m ultiple regression analysis was done using the model

PostTest = b I Final Exam + b;TookM ath + bsPreTest + c

This was run against the full data set o f students that took both the pre- and post

tests. whether they took a m athem atics class that sem ester or not. The idea was to

try to glean more inform ation about the relationship betw een the variables in the

study.

24

CHAPTER 4

ANALYSIS OF THE DATA AND

RESULTS OF THE STUDY

This study was designed to determine if there is a positive relationship between

learning to program com puters in C and selected areas o f m athem atical achievement.

Overall results on the pre-test and post-test are show n in A ppendix C.

The group o f students used for the t-test was the C program m ing students who

took both the Pre-Test and the Post-Test o f m athem atical skills but who were not taking a

m athem atics course that sem ester (sam ple size o f 40). The scores these students obtained

were m atched into pairs. The mean difference score betw een Pre- and Post-Test was 0.6.

A lthough the Pre- and Post-Test were not the same test, for purposes o f this research the

difference score is taken to be a meaningful statistic. The standard deviation o f the

differences was 1.82. The t-value obtained was 2.06 (39 degrees o f freedom), which is

significant at the .05 level.

The data used here constitute a subset o f the full set o f data for the m ultiple

regression that is done below, and may be viewed in A ppendix C. That data set includes

all 76 students who took both the pre-test and the post-test, regardless o f whether they

took a m athem atics course during the study semester. In the listing is a colum n that

indicates w hether a math course was taken (1 for yes, 0 for no) and the students in the

m atched pair analysis above are precisely the 40 in the full listing who did not take a

m ath course.

A sim ultaneous m ultiple linear regression was perform ed using Post-Q uiz as the

dependent variable and final exam , Pre-Quiz, and the dichotom ous variable o f TookM ath

as predictor variables. The first iteration o f the analysis showed tw o variables

contributing significantly to the prediction o f the Post-Test score. The variable TookM ath

was not signitlcantly correlated w ith the criterion variable. Post-Quiz, when considered

by them selves, and its partial contribution diminished as the other two variables were

introduced. Therefore, in the interest o f presenting a parsim onious equation, the analysis

was re-run excluding TookM ath. Those results indicated a prediction equation o f

Post-Q uiz = 0 .369*Pre-Quiz -+- 0.083*FinalExam - 0.958.

The adjusted R‘ value was 0.665. significant beyond the 0.01 level. See Appendix C for a

table showing the data that were used in the multiple regression.

CHAPTER 5

DISCUSSION, SUMMARY, AND CONCLUSIONS

During the study sem ester at the researcher’s university, pre- and post-quizzes

were adm inistered to students in several sections o f the Program m ing I course in C

program m ing to assess any possible improvement in their m athem atics quiz scores over

the semester. Students who were taking any m athematics course at the same time were

not counted in the result. A t-test was performed against the scores from the pre- and

post-quizzes, and for the Programming 1 students, an increase (from pre to post) was

noted which was significant at the .05 level. Additionally, a m ultiple regression was

perform ed presum ing a linear relationship o f the form

PostQuiz = biFinalE.xam b^PreQuiz 4- c

and this came out with a good fit (R“ = .66). This was anticipated from the fairly high

correlation betw een the Post-Quiz and the FinalE.xam scores from the students'

Program m ing I course. Since the correlation between the Post-Q uiz scores and the

TookM ath variable was quite low, this variable was elim inated from the final analysis.

Since the quiz questions related to functions, m apping properties, sequences, and

expression evaluation, which have analogs in C program ming, the conclusion is that there

appears to be a strong relationship between the learning o f C program ming and the

learning o f certain m athematics concepts.

These results are encouraging, however replication and broadening o f the scope o f

the experim ent is called for. It should be possible to expand on the types o f mathematics

skills where im provem ent might be expected. A nother thing that could be done is to

experim ent w ith the effect o f high level program m ing in other languages besides C,

2 7

especially in a context where several com puter languages m ight be com pared and any

significant differences noted. A nother area o f interest is the relationship between

com puter program m ing and problem -solving. However, it isn 't always easy to show

good problem -solving enhancem ent in only one semester, and secondly one has to define

"problem -solving" in an appropriate way so as to objectify the process. Still, com puter

scientists are convinced on this relationship - indeed, it is not hard to come up with a

strong argum ent that com puter program ming is problem -solving. To wit: designing,

writing, and debugging non-trivial com puter program s requires considerable skill in

problem -solving, and a strong case can be made for the notion that such skills are rather

w idely applicable to m any problem -solving areas. Casey (1997. p. 47) makes this point,

and the quote is on page 7 o f this paper. Also. Reed (1988. p. 56) discusses the "content-

voidness" o f program m ing languages, and speaks to the issue o f the power programming

languages have to help develop thinking processes in students. W hat Reed is referring to

with respect to "content-voidness" is the fact that what a program deals with is abstract

and general, and not necessarily specific to any problem domain. This also helps to

answ er some critics who doubt that instructional courses actually improve students'

problem -solving skills. In the area o f experimental psychology, there is increasing

evidence that good problem -solving requires plenty o f dom ain-specific knowledge

(M ayer, '83). However, as was mentioned, the content void aspects o f program m ing are

precisely what allow program m ers to be problem solvers without a great deal o f specific

knowledge about the application area.

Many point out the problem -solving aspects o f debugging: Chin & Zacker (1985.

p. 8). for exam ple (their quote is on page 14 o f this paper). In addition, debugging

2 8

employs many aspects o f general problem solving. Logic, expedience, and skill in

determ ining the crux o f a problem all contribute. M ore generally, program m ing involves

integrating correctly implem ented algorithm s with well-chosen data structures for the

problem at hand; opportunities for problem -solving abound. Know ledge o f the right data

structures and algorithm s to use in a situation relates directly to the quality o f the

im plem entation, and to how well it solves a given problem. In many program m ing

situations, there is a space-tim e tradeoff that is affected by the program m er's

im plem entation; finding the right balance between memorv' use and execution tim e can

be critical. Hence, there are many problem s to be solved in a typical program m ing

situation. In order to be successful at program m ing non-trivial applications, a

program m er should have some problem -solving skills.

From the above, one can see the need for more em pirical research on the

influence o f com puter program ming on developing problem -solving skills.

2 9

REFERENCES

A lspaugh, Carol A. Identification o f Some Com ponents o f Com puter Program ming
Aptitude. Journal for Research in M athem atics Education. 1972, 3, 89-98.

Anderson. John R. Acquisition o f Cognitive Skill. Psychological Review . 1982. 89.
369-406.

Bauer. R.. M ehrens. W. A.. & Vinsonhaler, John F. Predicting Perform ance in a
C om puter Program ming Course. Educational and Psychological M easurement. 1968.28,
1159-1164.

Bernardo. M. & Morris. J. Transfer Effects o f a High School Com puter Program ming
Course on M athematical M odeling. Procedural Com prehension, and Verbal Problem
Solution. Journal o f Research on Com puting in Education. Sum m er 1994. 26(4). 523-
536.

Besetsny. L.. Ree. M.. & Earles. J. Special Test for Com puter Programmers'? Not
Needed: The Predictive Efficiency o f the Electronic Data Processing Test for a Sample
o f Air Force Recruits. Educational and Psychological M easurem ent. 1993. 53. 507-511.

Bloom . .Allan M. Test the Test for Program ming .Applicants Datam ation. O ctober 1978.
37-39.

Branca. N. Problem Solving as a Goal. Process, and Basic Skill. Problem Solving in
School M athem atics. 1980 NTSM yearbook, p. 3-8.

Casey. Patrick J. Com puter Programming: A M edium for Teaching Problem Solving.
Using Technology in the Classroom . 1997. by the Haworth Press, p. 41-51.

Cavaiani. T. Cognitive Style and Diagnostic Skills o f Student Program m ers. Journal o f
Research on Com puting in Education. Sum m er 1989. p. 411-420.

Cheney. P. Cognitive Style and Student Program ming Ability: An Investigation.
Assocation for Educational Data Systems Journal. 1980. 23. 285-291.

Chin. John P.. & Zacker. Steven G. Personality and Cognitive Factors Influencing
C om puter Program ming Performance. ERIC Report No. ED 261 666. M arch 1985.

Clem ents. Douglas & Sarama. J. Com puters Support Algebraic Thinking. Teaching
Children M athem atics. February 1997. p. 320-325.

Correnti. R. Predictors o f Success in the Study o f Com puter Program m ing at Tw o-Y ear
Institutions o f Higher Education (Doctoral dissertation, Ohio University. 1969).
Dissertation Abstracts International. 1969. 30. 3718A. (University M icrofilm s No. 70-
4732).

3 0

Day, Jane M. A Course W hich Used Programming to Aid Learning Various
M athem atical Concepts. ERJC Report No. ED 081 230, 1973.

Denenberg, Stewart A. Developing Reasoning Skills in College Freshm en Using
C om puter Program ming, Collaborative Problem -Solving, and W riting. ERIC Report No.
ED 302 231, M ay 1988.

Ennis, D. Com bining Problem -Solving Instruction and Program m ing Instruction to
Increase the Problem -Solving Ability o f High School Students. Journal o f Research on
Com puting in Education, Sum mer 1994, 26(4), 488-496.

Fletcher, Stephen H. Cognitive Abilities and Com puter Program m ing. ERIC Report No.
ED 259 700, 1984.

Foreman, Kim Hyun-Deok. Cognitive Style, Cognitive Ability, and the A cquisition o f
Initial Com puter Programming Competence. ERIC Report No. ED 295 638, January
1988.

G oldenson, Dennis. Why Teach Com puter Program ming? Some Evidence About
Generalization and Transfer. National Educational Com puting Conference 1996,
M inneapolis, MN.

Greeno, Jam es G. Natures o f Problem -Solving Abilities. In W .K. Estes (ed.) Handbook
o f Learning and Cognitive Processes Volume 5: Human Information Processing.
Hillsdale, NJ; Lawrence Erlbaum Associates, 1978, p. 239-270.

Hart, M aurice Com puter Programming and Algebra. The N ottingham Programming in
M athem atics Project. ERIC Report No. ED 227 002, 1983.

Johnson, D. & Harding, R. University Level Com puting and M athem atical Problem-
Solving Ability. Journal for Research in M athem atics Education, Jan 1979, p. 37-55.

Jones, Preston K. The Effect o f Com puter Program ming Instruction on the Development
o f G eneralized Problem Solving Skills in High School Students. ERIC Report No. ED
302 221, June 1988.

Ledbetter, W illiam N. Programming Aptitude: How Significant Is It? Personnel
Journal, M arch 1975, 165-175.

Lee, A drienne Y., Pennington, Nancy. Learning Com puter Program m ing: A Route to
General Reasoning Skills? Empirical Studies o f Program mers, D ecem ber 1993, p. 113-
136.

Lemos, R. M easuring Programming Language Proficiency AEDS Journal, Sum mer
1980,261-273.

31

Linn. M. The Cognitive Consequences o f Program ming Instruction in Classroom s.
Educational Researcher. M ay 1985, 14(5), 14-16, 25-29.

Mayer, R. E. Different Problem -Solving Com petencies Established in Learning
Com puter Program ming W ith and W ithout M eaningful M odels. Journal o f Educational
Psvchologv. 1975, 67(6), 725-734.

M azlack, L. Identifying Potential to A cquire Program ming Skill. Com m unications o f
the A C M . January 1980. 23(1). 14-17.

M cAllister. .Alan. Problem Solving and Beginning Programming. ERIC Report No. ED
259 032, M arch 1985.

M cCoy. Leah P. General Variable Skill, Com puter Program ming, and M athem atics.
ERIC Report No. ED 304 330, April 1988.

M cCoy. Leah P. Use o f Variables: A lgebra-Com puter-English Translation. ERIC
Report No. ED 308 071. March 1989.

McCoy. Leah P. & Dodl. Norman R. Com puter Program ming Experience and
M athem atical Problem Solving. Journal o f Research on Com puting in Education. Fall
1989. p. 14-25.

McCoy. Leah P. & Orey 111. Michael A. Com puter Program ming and General Problem
Solving by Secondary Students. 1988. Haworth Press.

Novvaczyk. Ronald H. Cognitive Skills Needed in Com puter Program m ing. ERIC
Report No. ED 236 466. 1983.

Palumbo. D. & Reed. M. Effect o f BASIC Programming Language Instruction on High
School Students' Problem Solving A bility and Com puter Anxiety. Journal o f Research
on Com puting in Education. Spring 1991. 23(3). 343-372.

Palumbo Debra & Palumbo. David. A Com parison o f the Effects o f Lego TC Logo and
Problem Solving Software on Elementary Students' Problem Solving Skills. Com puting
in Childhood Education. (1993) 4(4), 307-323.

Pea. R. & Kurland. D. On the Cognitive Effects o f Learning Com puter Program ming.
New Ideas in Psvchologv. 1984. 2(2). 137-168.

Pea, R. & Kurland. D. On the Cognitive Prerequisites o f Learning Com puter
Program m ing. ERIC Report No. ED 249 931. 1983.

Pea. R.. Kurland. D., Clement, C. & M awby, R. Study o f the Developm ent o f
Program m ing Ability and Thinking Skills in High School Students. Journal o f
Educational Com puting Research. 1986, 2(4). 429-459.

Reed, W. M. A Philosophical Case for Teaching Program m ing Languages. Educational
C om puting and Problem Solving. 1988, p. 55, The Haworth Press.

Saiz. David (1994) PC Possibilities. The Science Teacher, M arch 1994, 28-31.

Seym our. Judy. Goings, Douglas & Vincent, Annette Factors Contributing to Success in
a M icrocom puter Course. Perceptual and M otor Skills. 1994 ,79 , 1338.

Salom on. 0 . & Perkins. D. (1987) Transfer o f cognitive skills from programming: W hen
and How? Journal o f Educational Com puting Research. 3, 149-170.

Soloway. E.. Lochhead. J. & Clement. J. Does Com puter Program m ing
Enhance Problem Solving Ability ? Some Positive Evidence on Algebra Word Problems.
In R. Seidel. R. Anderson & B. Hunter (Eds.). Com puter Literacy: Issues and Directions
for 1985. N ew York: Academic Press. 1982.

Soloway. E. Should We Teach Students to Program ? C om m unications o f the .A.CM.
O ctober 1993. 36(10). 21-24.

Appendix A - Pre-Test

This section contains the actual pre-test administered to the subjects o f the observation
that was done in Spring 1998.

M athematics Assessment Quiz

Please answ er each o f the following questions on your Scantron form using a #2 pencil.
There are 14 questions in all. This quiz will in no way count AG AINST you in the class,
but each question you get right will add extra credit to be determ ined by your instructor.
Be sure to identify yourself on your Scantron form. You will have 25 minutes.
(Note: the "Diff. Index” to the right is the percentage o f students in the study who scored
correctly on the question).

Q uestion___ Diff. Index
1. Let a. X and y be real variables. Recall that in m athem atics, placing 2 variables
next to each other m eans they are to be multiplied. Suppose a = 4. x = 14 and y =
5; evaluate the expression a + x a - y (x + a)

(a) -90
(b) -68
(c) -30
(d) 74
(e) None o f the above

2. Again let a. x. and y be real variables with a = 17. x = 8. y = 9. Evaluate the
expression

V(a - x)
(a + X)

(a) 3
(b) -9
(c) 81 / 25
(d) 9
(e) 0

3. Suppose I Uni is a sequence o f integers such that a; = 1. a i= 1. a]= 2. a^ = 3. a< =
5. and a<, = 8. From this pattern, what is a? likely to be ?
(a) 10
(b) 13
(c) 11
(d) 17

4. Suppose f (x) is a real function o f a real variable such that f(x) = x* for any x. If
a and b are real variables, evaluate f(a + b) :
(a) a^ + b-
(b) a~ + 2ab + b~_____________________ _________________________

84

95

74

46

34

(c) (a + b)-
(d) Both (b) and (c)
(e) C an’t be done without knowing a and b

I

A function f mapping a set D into a set R (written f:D -^R) is a rule o f
correspondence that associates to each elem ent x o f the dom ain D a unique
elem ent o f the range R, w hich we denote by f(x). Such a function is said to be
one-to-one provided
(a) anytime f(xi) = f(x:). then x, = x:
(b) anytime X| = x:, then f(xi) = f(X])
(c) f maps each x in D to a unique value in R
(d) f maps 1 to 1. that is. f(1) = 1.

6 . W hich o f the following equations correctly represents the statement; "There are 54
six times as many students as pro lessors at this university". Use S to represent
the num ber o f students and P for the num ber o f pro lessors.
(a) P = 6S
(b) S = 6P
(c) S = 6 + P
(d) P / S = 6

7. W hich o f the following equations represents the statement: "A t a recent party. 14
for every 6 people who drank Coke, there were 11 who drank Pepsi". Use C for
the num ber who drank Coke. P for the num ber who drank Pepsi.
(a) 11C = 6P
(b) 6C = IIP
(c) P / C = 11 / 6
(d) P - C = 5

8. In a certain com puter program the relationship T = 2C is enforced, where C is 43
the num ber o f children in a situation, and T is the num ber o f telephones. \\'’hat is
the correct English description o f the relationship between C. the num ber o f
children, and T. the num ber o f telephones ?
(a) There are twice as m any children as telephones
(b) There are twice as m any telephones as children
(c) The num ber o f telephones equals one ha lf the num ber o f children
(d) None o f the above

9. Functions f that are one-to-one (as in #5) have an inverse llinction f ' (read f
inverse), defined as follows: if f:D ->R is one-to-one. then f ':R -^ D "undoes"
the action o f f in that, for any y in R, f '(y) is defined to be the (unique, by one-
to-oneness) value X in D such that f(x) = y. Example: 2 ' and logi(x) are inverse
functions o f each other. Use this fact to com pute log:(128) (no calculators!).
(a) 0.693147
(b) 0.303031 _______________

30

(c) 6
(d) 7
(e) none o f the above

10. A function f is defined on real num bers bv f(.x) = x~ - 9. W hat is f(f(4)) ? 55
(a) 7
(b) 21
(c) 40
(d) 16
(e) none o f the above

11. If A and B are sets, the Cartesian product AxB is defined as the set o f all 54
possible ordered pairs (a,b) with a in A, b in B. For any such product, there exist
projection mappings (functions) such as Tr,\:A.\B *^A so that for any (a,b) in
AxB. the action o f K\ on (a.b) gives ju st a. In a sim ilar way. 7tB(a.b) = b. Now
with Z = the set o f integers and R = the set o f real num bers, then tir iZ x R -> R is
the projection mapping onto R. W hat then is 7 I r (2 . 3.14) ?
(a) 2
(b) 3.14
(c) 6.28
(d) 1.57
(e) none o f the above

12. A root o f a function f o f one real variable is a value r such that f(r) = 0. W hat is
the root o f the function defined by f(x) - 5x - 20 ?
(a) 4
(b) 5
(c) - 4
(d) 0
(e) none o f the above

13. Suppose f i s a function o f real num bers with the property that f(ab) = f(a) + f(b)
for all real a and b. and suppose f(2) = 3 while f(3) = 5. Then f(12) =
(a) 8
(b) 10
(c) 11
(d) 12
(e) none o f the above

14. The ratio o f the circumference o f any circle to its area is alw ays identifiable as
(a) the diam eter o f the circle
(b) 71
(c) the radius o f the circle
(d) twice the reciprocal o f the c irc le 's radius
(e) N one o f the above

36

Appendix B - Post-Test

Here is the post-quiz that was adm inistered toward the end o f the Spring semester. 1998:
(Note that although the post-quiz says it has 15 questions, in reality there are only 14
m ath questions, ju s t like the pre-quiz. The last question was used to determ ine if the
student was taking any math courses. In order to help ensure truthfulness, the student
was asked to list all math courses currently being taken and also the instructors' name).

M athematics Assessment Post-Quiz

Please answer each o f the following questions on your Scantron form using
a #2 pencil. There are 15 questions in all. The quiz will in no way count
against you in the class, but each question you get right will add extra credit
to be determined by your instructor. Be sure to write down your name on
the Scantron form. You will have 25 minutes.

Question Diff. Index
1. Suppose .K is a real variable, with a value o f 4. Evaluate

+ 1
X - f - 1

(a) 17
(b) 16
(c) 14
(d) 13
(e) none o f the above

2. Let a, x, and y be real variables with a = 14, x = 20 and y = 5. Evaluate
a(x- - v~)

X + y
(a) 195
(b) 210
(c) 205
(d) 215
(e) none o f the above

3. Suppose [UnJ is a sequence o f integers with a; = 2, a^ = 5, as = 10, 34 = 17.
a , = 26.
and a^ = 37. From this pattern, what is a? likely to be ?
(a) 46
(b) 47
(c) 49
(d) 50
(e) 51

86

79

81

37

4. Suppose f(x) is a real function o f a real variable such that f(x) = x + 1/x for
ail non-zero values o f x. Also suppose a is a real variable with a value o f 5.
W hich o f the following is true?
(a) f(a) = f(l/a)
(b) f(x) = f(l/x) for all real, non-zero x
(c) Both a and b
(d) Neither a nor b

26

5. A function f with dom ain D and range R is said to be one-to-one provided
that anytim e f(xi) = f(x:) for some x ,. xi in D. then it follows that Xi = x:.
(In other words, f is 1-1 provided f m aps different points to different
points). In the following, some functions are given whose dom ain is all o f
R (the set o f real numbers). W hich is one-to-one?
(a) f(x) = 1 / (I + x‘)
(b) f(x) = 5x + 2
(c) Both a and b
(d) Neither a nor b

39

6 . W hich o f the following is the correct way to express the statement : There
are 100 civilians in this town tor ever}' police officer. (Here 'civilian' is
used to mean a citizen who is not a police officer). Use C for the num ber
o f civilians, and P for the num ber o f police officers.
(a) P = lOOC
(b) C = lOOP
(c) P/C = 100
(d) Both a and c
(e) None o f the above

40

7. W hich o f the following equations represents the statement: "At a recent
party, for every 3 people who preferred drinking whiskey there were 8 who
preferred beer". Use W for the num ber who like whiskey and B for the
num ber who like beer.
(a) 8W = 3B
(b) 3W = 8 B
(c) W/B = 3/8
(d) Both a and c
(e) None o f the above

26

8. In a com puter program the relationship G = 3P is enforced, where G is the j j
num ber o f guns in a certain situation, and P is the num ber o f personnel
involved. W hat is the correct English description o f the relationship that

38

exists betw een G and P?
(a) There are three tim es as many guns as personnel.
(b) There are three times as many personnel as guns.
(c) The num ber o f guns equals one-third the num ber o f personnel.
(d) Both b and c
(e) N one o f the above

9. Functions f that are one-to-one (as in U5) have an inverse function f ' (read:
f inverse), defined as follows: if f:D ->R is one-to-one. then f*:R ->D
"undoes" the action o f f in that, for any y in R, f *(y) is defined to be the
unique value x in D such that f(x) = y. (Such an x exists since y is in the
range o f f; and x is unique because f is 1-1). A function and its inverse act
as follows: f(f '(y)) = y for all y in R, and f '(f (x)) = x for all x in D. Now,
given f(x) = 7x + 1, which o f the following represents f '(x) ?
(a) g(x) = 1 / (7x + 1)
(b) g(x) = (X - I) / 7
(c) g(x) = x/7 -t- 1/7
(d) g(x) = 7x - 1
(e) None o f the above

10. .A function f is defined on real num bers by f(x) = x ‘ + 7. What is f(f(5)) ?
(a) 1024
(b) 1031
(c) 1017
(d) 632
(e) None o f the above

For sets A and B, the cartesian product AxB is defined to be the set o f all
ordered pairs (a,b) with a in A, b in B. Suppose A = {1,2,3,4,5} and B is
the set o f 26 letters {a,b,c z}. Then, how m any pairs are in AxB in this
case?
(a) 31
(b) 100
(c) 105
(d) 110
(e) N one o f the above

67

12. A root o f a function f o f one real variable is a value r such that f(r) = 0.
W hat is the root o f the function defined bv f(x) = 9x + 72?
(a) -8
(b)8
(c) -9__

60

39

(d) 9
(e) None o f the above

13. A function f is logarithmic provided f(ab) = f(a) + f(b) for all positive real
a.b. Now, the function f(x) = 2" is one-to-one over the w hole real line, and
so it has an inverse defined on the positive reals called log:, defined by
log:(y) = X w henever y = 2 '. The function log: is logarithm ic. Since
log :(8) = 3, and log:(32) = 5, use the above to find out log:(16384) (note,
1 ^ 8 4 = 8 x 8 x 8 x 3 2).
(a) 76
(b) 16
(c) 15
(d) 14
(e) None o f the above

46

14. A piece o f tin which is 8 inches square can be m ade into a box with no top
by cutting out 4 equal com ers and folding up the 4 sides. If x is the length
o f such a cut (in inches), what is the formula for the volum e o f the box (in
cubic inches)?
(a) x (8 - x)‘ ^
(b) x(8 - 2x)‘
(c) 8x(8 - X)-
(d) (8 - 2 . X) '

19

15. On the back o f the Scantron form, please list any m athem atics courses you
are taking this sem ester, and the name o f the course instructor as well. Just
write NO NE if you are not taking any math courses this semester.

40

Appendix C - Data

O b s ? Cuiz Score Predicted Error Eir.al Exam Took Math PreQuiz
1 3 6 . 3 5 - 1 . 6 5 4 6 . 9 0 IG
2 3 6 . 3 0 - 1 . 7 0 6 0 . 0 0 7
3 7 7 . 4 0 0 . 4 0 6 2 . 5 1 8
4 ' 7 . 4 3 0 . 4 3 8 2 . 5 0 5
5 9 8 . 3 2 0 . 3 2 6 8 . 8 1 9
6 1 0 8 . 6 1 - 1 . 3 9 9 0 . 6 1 5
' 9 6 . 7 9 - 2 . 2 1 6 4 . 4 1 6
a 10 9 . 0 2 - 0 . 9 8 8 6 . 3 1 7
9 4 4 . 9 2 0 . 9 2 6 1 . 9 0 3

10 9 8 . 5 6 - 0 . 4 4 9 1 . 3 0 6
11 14 1 0 . 3 7 - 3 . 6 3 9 3 . 1 1 9
12 " 5 . 8 5 - 1 . 1 5 6 3 . 8 0 5
13 11 9 . 0 2 - 1 . 9 8 8 6 . 3 1 7
14 9 9 . 2 8 0 . 2 8 7 5 . 6 1 1C
15 8 7 . 8 4 - 0 . 1 6 6 3 . 1 1 9
16 ' 6 . 7 4 - 0 . 2 6 6 3 . 8 1 6
1 " 11 9 . 7 6 - 1 . 2 4 9 1 . 9 0 9
13 4 7 . 2 4 3 . 2 4 6 0 . 5 1 8
1 9 9 7 . 4 6 - 1 . 5 4 7 6 . 9 1 5
2) 9 7 . 9 3 - 1 . 0 2 8 3 . 1 1 5
2 1 5 6 . 5 3 1 . 5 3 6 1 . 3 1 6
2 2 8 9 . 4 8 1 . 4 8 7 9 . 4 0 1 1
2 3 6 6 . 9 7 0 . 9 7 5 8 . 8 0 9
2 4 : 8 . 2 7 1 . 2 7 7 3 . 3 0 8
2 r 4 3 . 9 0 - 0 . 1 0 4 0 . 6 0 5
2 r " 5 . 8 2 - 1 . 18 5 - ' . 5 1 5
2 " 13 1 0 . 1 9 - 2 . 8 1 8 1 . 9 1 11
23 9 5 . 8 3 - 3 . 1 7 6 8 . 1 0 4

8 0 . J 1 62 9 7 8 . 1 1 1 . 1 1
30 9 8 . 7 5 - 0 . 2 5 9 3 . 1 1 7
- 1 "3 9 . 2 6 3 . 2 6 8 0 . 0 1 9
32 12 1 1 . 2 3 - 0 . 7 7 9 3 . 6 0 12
33 11 7 . 0 6 - 3 . 9 4 7 9 . 1 0 5
34 4 2 . 9 4 - 1 . 0 6 3 3 . 8 0 4
35 5 6 . 7 6 1 . ' 6 7 Q . 0 0 6
3 c 6 8 . 2 6 2 . 2 6 6 8 . 1 1 9
3 ' 5 4 . 1 7 - 0 . 3 3 4 3 . 8 0 5
38 4 3 . 5 9 - 0 . 4 1 3 5 . 6 1 4
39 " 6 . 4 6 - 0 . 5 4 7 5 . 6 0 4
4 0 9 9 . 3 6 0 . 3 6 9 1 . 7 0 8
4 1 ' 7 . 5 8 0 . 5 3 7 5 . 1 0
42 9 9 . 7 0 0 . 7 3 9 1 . 2 0 9
4 3 8 8 . 8 9 C . 8 9 3 0 . 1 1 8
44 8 6 . 7 - - 1 . 2 3 70 . 1 0 6
45 2 2 . 3 1 0 . 3 1 2 5 . 0 1 3
4 6 11 1 0 . 3 2 - 0 . 6 8 3 9 . 3 0 11
4 " 8 8 . 0 8 0 . 0 8 7 5 . 1 1 7
48 - 0 . 9 7 - 0 . 1 3 6 5 . 3 1 6
4 9 ^ 8 . 1 3 1 . 1 3 9 1 . 7 0
50 8 8 . 4 4 0 . 4 4 3 5 . 4 0
51 10 1 0 . 0 2 0 . 0 2 8 5 . 3 0 11
52 12 1 0 . 9 1 - 1 . 0 9 9 6 . 3 C 11
53 6 3 . 9 0 2 . 3 0 9 4 . 2 0 6
54 6 3 . 2 1 2 . 2 1 7 2 . 1 1 3
55 12 1 0 . 6 9 - 1 . 3 1 9 3 . 7 0 11
56 - 9 . 8 2 1 . 9 2 9 9 . 0 G 5
57 7 - . 5 6 0 . 5 6 7 3 . 5 1 6
58 10 9 . 4 0 - 0 . 6 0 9 0 . 3 1
5 9 10 9 . 3 5 - 0 . 6 5 8 5 . 6 1 8

41

6 0 3 9 . 2 4 1 . 2 4 9 4 . 9 0 -

6 1 4 6 . 87 2 . 3 7 6 5 . 3 1 6
6 2 10 9 . 7 2 - 0 . 2 8 9 1 . 4 0 9
63 14 1 2 . 54 - 1 . 4 6 9 6 . 0 1 14
64 3 4 . 10 1 . 1 0 4 7 . 6 0 4
6 5 1 1 1 0 . 50 - 0 . 5 0 9 6 . 1 0 10
6 6 3 8 . 6 6 0 . 6 6 8 9 . 0 0 7
6 1 6 6 . 65 0 . 6 5 7 3 . 2 0 5
63 9 1 0 . 8 3 1 . 3 3 9 5 . 4 0
6 9 10 1 0 . 5 9 0 . 5 9 9 5 . 9 % 9
7 0 9 1 0 . 4 4 1 . 4 4 9 4 . 0 9

12 1 0 . 67 - 1 . 3 3 9 2 . 1 1 10
7 2 1 0 . 37 0 . 3 7 9 0 . 0 c
7 3 9 9 . 93 0 . 9 3 9 9 . 0 0 3
74 1 0 . 15 0 . 15 9 6 . 5 0 9
7 5 8 . 0 9 1 . 0 9 7 9 . 3 6
7 6 11 1 0 . 54 - 0 . 4 6 90 . 6 10

42

Appendix D
Elements o f the C programming language

Introduction

The C com puter program ming language was developed at Bell Labs in the early

1970's by Kem ighan and Ritchie, who had been working on an operating system which

becam e known as UNIX and were wanting a higher level program m ing language to write

it in. Until that tim e (and for some time after), all com puter operating systems were

written in assem bly code, which is code done at the m ost basic level possible - direct

m anipulation o f registers and m emory locations. A higher level com puter language

allows the program m er to create abstractions and im plem ent these in a way that solves a

problem w ithout worrying about low level details o f machine operation.

Variables and Declaration

The m ost basic abstraction o f most com puter languages, including C. is the notion

0 Ï variable. A variable can be thought o f as a value stored in a nam ed memory location.

The nam e is given by the program mer, who also decides on what type it should have. A

declaration statem ent is used and the variable is said to be declared by the statement. For

exam ple

int account number:

declares a variable named 'a c c o u n tn u m b e r ' to be o f type "int". The com puter (actually

the C com piler, which is the program that translates the program m ers code into machine

language so it can run on the computer) decides where in m em ory the value for the

variable is to be stored (so far no value has been established.) The data type. int. refers to

the m ost basic type on a computer; within a certain word size (often 32 bits, or binary

digits) a signed integer value is stored. Other types in the C language are char (short for

43

character).yZoar and double. Char is really ju s t a short int type as far as C is concerned;

integers o f size 8 bits are stored in a char; since ASCII codes for characters all fit into 8

bits, this is where the type "char" gets its name, as characters can be directly placed into a

char type variable. For example:

char c = A";

w ould declare a 'ch a r' type variable called 'c ' and initialize its value to be 'A '.

The types float and double both refer to floating point values. These are what can

be used for representing values that approxim ate the m athem atician 's real numbers. The

difference between these types has to do with the am ount o f precision used to represent

the values; typically 'f lo a t' represents a 32 bit value while 'doub le ' represents a 64 bit

value. The C language allows for great portability across different com puter system s, so

the above 'typ ica l' sizes are just exam ples o f what may be found; for any given system,

all that is enforced by C is that the size o f type double be at least as large as the size o f

type float. So one m ight see declarations such as

float theta = 0.785;

or

double X = 0.6931472;

O f course in math the integers are a subset o f the reals, but that isn 't quite how it works in

a com puter; you can store an 'in teger' into a double or a float, but the format in which it

is stored varies dram atically from the corresponding 'in t ' value! In other words 5.0 is

stored as a float much differently than 5 as an int. For m ost purposes this fact doesn 't

m atter m uch but it is im portant for the m athem atician who wants to know more about

program m ing.

44

Functions

C program s consist o f sequences o f statem ents, each term inated by a semi-colon,

in a largely free format. Statements can be used to control looping and selection blocks,

pertbrm calculations, declare variables, etc. Every C program consists o f at least one

function. A function in C is a subroutine, consisting o f a type, then a name, then any

param eters, then the body o f the function enclosed by begin - end braces { j . For

exam ple:

double f(double x)
{

return x * x;

would be a function that would correspond to the m ath function f(x) = x‘ . and could be

used in like m anner in a C program. The name o f the function is ’f . the return type is

double, it takes one param eter o f type double called x . and what it returns is x‘ (or x * x

in C. where the asterisk m eans to multiply.)

There is one function whose execution comes before any other in a C program.

and that function has the name main. This function always returns type int (zero to

indicate success, other values to indicate relative degrees o f failure) and execution always

begins by executing main. Mere is a sim ple exam ple o f a C program that prints the

square root o f its input:

"include <stdio.h>
#include <math.h>
int main()

double x;
puts("Please t\p e in a positive num ber : "):
scanf("% lf". &x);
printf(“The square root = % f\n". sqrt(x));
return 0 ;

45

T hat’s it! If you have a C or C++ compiler, such as Borland C++ you could just say

bcc32 sample.c

(or whatever the name o f your com piler is in place o f bcc32) then that would compile the

above code (had it been saved as sample.c) and would then create an executable called

sample.exe. which you could run by Just saying 'sam ple ' from the com m and line.

Details in the above program: puts() is a standard C library call that prints a string

o f characters passed to it; scanf is used to read in characters from the keyboard and

format those according to various, user-specified criteria (in this case, read in a floating

point value) while prin tf is used to print a formatted result to the screen. The sqrt

function is used to calculate the square root o f a floating point value. C has a pre

processor that is used to handle statements like #include: #include <stdio.h> for example

is a directive to the pre-processor to include the contents o f this file as a part o f the

current program. Mostly such header files contain inform ation as to the structure and

calling sequences for standard C library functions such as those in m ath.h (like sin(),

cos(), tan(), sqrt(). etc.) which the com piler needs to properly handle calls to these.

Use o f printf and scanf

For formatted input and output, the scanf and prin tf functions use a form at string

to describe how the rem aining list o f arguments are to be handled. Suppose one needed

to input an integer followed by a floating point (double) variable; then the form at string

would likely appear as

"%d %ir

Each % field describes the format for the next value; %d describes the form at for a signed

integer while % lf is used for double precision floating point. Now , scanf() needs the

46

addresses o f the variables to be input, and so to call scan f so as to actually do the above

input, it m ight appear as

scanf("% d % lf , &n. &x);

w here n and x are the int and double variables in question. Prin tf is sim ilar, however it

only uses % f for both float and double, and often uses width specifiers. For exam ple,

suppose we wanted 3 colum ns with the first colum n being 2 digit integer and the last 2

being floating point, with a width o f 10 and 2 places after the decimal. Then the printf

statem ent inside a loop m ight appear as

printf("% 3d% 10.2f%10.2f\n", n, x, y);

Here you can readily see the described format; note the \n at the end, this m eans to print a

newline (carriage return/line feed) after the rest o f the line is printed. Here is a short,

incom plete but usable table o f formats:

int %d
char %c
string % s (array o f characters)
float % f
double % lf (needed only for scanf)
unsigned %u (for unsigned integers)

Expressions and Assignm ents

In order to write code in C one needs to understand expressions. Basically there

are int-expressions and floating-point-expressions; both involve the use o f variables,

constants, operators like and also parentheses, along with function calls.

Examples:

n + 2
y * sqrt(2 * x + I)
x * x + 2 * x + l

47

Expressions in C return a value to the point where the expression actually occurs in the

program . An exam ple o f this occurs with the assignm ent statem ent, which has the form

variable - expression

where variable is any variable o f a type com patible with the expression on the right.

W hat happens here is that the expression is evaluated, and the result m apped to the

variable on the left. However, keep in mind that in C an assignm ent statem ent is just

another expression, and can occur in the context o f a larger statem ent; a simple example

is

X = y = sqrt(2.0);

which assigns the square root o f 2 to both y and x. Here y gets the square root o f 2. and x

gets the result o f the assignm ent to y. which is the same value.

Logical expressions and If

In C. logical decisions are made based on the value o f certain int expressions.

The operators <. >, = , <=, >=. and != are used in com paring 2 integer or floating point

expressions as to greater than, less than. etc. and the result o f these com parisons is

calculated as 1 for true and 0 for false. For example, if you had

int a = 2. b = 3. c:

c = a < b;

then c would be set to I since a is less than b (2 < 3). Here is the com plete list o f

operators that are used in this way:

< less than
> greater than
<= less than or equal
>= greater than or equal
= equal to (do NOT use one equal sign for this!)
!= not equal (actually. ! can be used to negate any o f these)

48

I l O R
&& AND
! N O T

Program s that need to make com parisons and do different things based on the result can

use the if statem ent. It works like this:

if (condition)

Statement;

Here the condition is evaluated, and if it is true (non-zero) then the Statement is executed;

otherwise the statem ent is skipped. Here is an example:

if (n % 2 == 1)

puts("value is odd");

Here the % operator can be used with integer values to return the rem ainder; in general x

% y is the rem ainder one gets when dividing y into x. So if n is an integer then n % 2 is

zero if n is even and 1 if n is odd.

If one needs to execute m ultiple statements as a result o f an if test, just surround

the group o f statem ents with { } - these are C 's begin and end markers. Here is how to

print a m essage and stop the program if z = 0:

if (z == 0)

puts(”Cannot divide by zero, ending program .");
exit(O);

The if statem ent in C has an else clause, used in order to select one o f two possible

courses o f action. Extending the above example, suppose we wanted to input 2 integers

and print their quotient, but only if the denom inator is non-zero.

scanfC '% d % d". &a. &b);
if (b = 0)

49

puts("Cannot divide by zero.”);
else

printf("Integer quotient = % d\n", a / b);

O f course either the if part or the else part can be a com pound statem ent if need be, just

surround with [} to have more than one statem ent in either part.

Som e special operators

C is a language that is big on expressiveness, that is. allowing the program m er to

write com plex code quickly. One o f the ways it does this is by having special operators

that do com m on operations in a com pact notation. For exam ple, it is very com m on in

program m ing to add 1 to a value. Thus x = x + 1. or alpha beta = alpha beta + 1. A nice

shorthand for this is with the ++ operator;

X + + :
alpha_beta++;

There is also a - - operator that is used to subtract one from a variable. You can place

these either before or after the variable in question. So long as the operation o f adding or

subtracting one is all that is done in the statem ent, then using +-rx or x -h - makes no

difference. However in a more com plex statem ent, pre-increm entation (or

decrem entation) takes place before the rest o f the expression, while post-increm entation

takes place after the rest. Example: in

c = 5 + x-t-r;

the variable c get the value o f 5 + x. and then x is increased by one. On the other hand,

c = 2 * —x;

will cause x to be decrem ented, and then c gets the value o f 2 * x (w ith x already

decrem ented). W arning: do not use these operators with reckless abandon. It is very

50

easy to write tricky code with these, and you can easily tool yourself as to what is meant.

How ever, if you have a long variable nam e it is certainly nicer to say

super_long_name_yadda_yadda+-r;

than

super_long_nam e_yadda_yadda = super_long_nam e_yadda_yadda + 1 :

and it also makes for fewer spelling mistakes.

In this sam e vein. C has abbreviations for adding or subtracting or multiplying or

dividing a variable by an expression:

X += e x p re ss io n ;

The above would calculate the value o f expression and add the result to x. It is

equivalent to writing

X = X + e x p re ss io n ;

but lots shorter if x happens to be a really long name. Likewise one can do this with the

other arithm etic operators including % (the m od operator):

variable -= 5 + x;

variable *= x + y:

and so on. Note, the whole expression on the right is evaluated before the left hand

variable gets involved. So doing

X *= a + b;

is the same as

X = X * (a + b);

51

Iteration with while

Looping, or iteration in C can be accom plished using the w hile statem ent. Here is

the general form:

while (condition)

Statement;

It differs from if in that the loop is executed over and over again so long as the condition

is true. If the condition is false initially, the whole loop is skipped; but otherwise the

statem ent is executed and then the while structure is repeated, until the condition

becomes false. Here is an example that adds up the integers from 1 to n:

/* assume sum and k are ints. and n has been input already */
k = 1;

sum = 0;
while (k <= n)

sum += k; /* same as sum = sum + k */
k++;

Here k is initialized to 1. and sum to zero, and the while loop keeps adding k to sum and

1 to k until k becomes greater than n. If n were input as 10. then this loop would compute

the sum 1 + 2 + 3 + ... + 10 = 55. Note the use o f comm ents; C uses /* to start a

com m ent and */ to end it.

Example Program

Here is a com plete sample C program that inputs an integer n and prints a list o f

the prime num bers less than or equal to n. and also prints how m any prim es it found.

(See next page)

52

I *
* Prim e.c, by Bill Stockwell
*

*1
int main()
{

int n, divisor, k, prime, count = 0;
printf("Enter n : "):
scanf(“% d". &n);
if (n >= 2)
{

count = 1 ;
printf("% d\n", 2);

I
k = 3;

while (k <= n)
{

prime = 1;
divisor = 3;
while (prim e && divisor * divisor <= k)

if (k % divisor = 0)
prim e = 0;

else
divisor += 2;

if (prime)

count++:
printf("% d\n", k);

I
k += 2;

1
printf(”\nTotal primes = % d\n” . count);

return 0;

33

Arrays in C

As with m ost computer languages, C allow s for the use o f arrays. These

are indexed lists o f items o f the same type (that is. all the items in an array share

the sam e type, say int or double). They are patterned after the mathematical

notion o f a sequence, as with X\, X], Xn. which in the case o f a com puter is

necessarily finite. However in C the subscripts start at zero (0) rather than 1. and

also since it is som ewhat difficult on m ost system s to show subscripts easily. C

uses square brackets for this purpose. Thus a reference such as x[k] refers to the

kth elem ent o f array x. To declare an array variable, do it the same as for a sim ple

variable o f the same type, but include the size o f the array in square brackets.

Thus

int x[100];

declares x to be an int array with 100 elem ents, indexed from 0 to 99. There is no

100'*' array elem ent here; that is. a reference to x[100] is actually out o f range.

How ever C is a language that was developed by and for program ming experts,

and C does very little runtime checking for errors. In particular. C does not check

for array references to be in bounds. That is up to the program m er to get right.

For the m ost part, declaring an array sets up in mem ory a contiguous list

o f like items, which (in the case o f int x[100]) is like having declared 100

individual int variables, with space allocated and ready to be assigned to and used.

How ever, having all 100 items together under the sam e name (x) gives the

program m er great flexibility and cuts way back on the am ount o f code to be

54

wTitten. Before seeing an exam ple o f this, we need to look at another type o f loop

statem ent in C.

FOR loops; useful w ith arrays

The while statement in C allows for iteration, but for many situations

where the iteration to be done in order by equal steps, there is another form o f the

looping construct that is more useful. Here is the syntax:

fo r (init; condition; next)
Statement;

Here the init statem ent is done first (and only once for the w hole loop): after that.

the condition (a logical or Boolean condition) is checked for being true; if it is

true, then the Statement is executed and the loop continues (checking the

condition again and doing the Statement again so long as the condition remains

true). Sext is a statem ent that is carried out as the last step in each iteration, after

the Statement is done. Let's see an example where we wish to add the integers

from 1 to n:

int sum = 0:
int k. n;
/* get a value for n */
scanf("% d". &n);

for (k = 1 ; k <= n: k-M-)
sum + - k:

/* output result */
printf("Sum = % d\n". sum);

Here the init statem ent is to set k equal to 1. Then the program would check if k

<= n (true if the input was at least one), and then the statem ent sum += k would be

executed. Then one is added to k. and the whole process repeats so long as k <=

3)

n. For example, i f the above code was made into a program and the user input

100 for n. then the program would print Sum = 5050.

Earlier it was m entioned that fo r loops are useful with arrays. Let us see

how. Again let the array be int x[100]. and suppose an integer n has been input

that is to be the num ber o f scores on a test, and we wish to input the array o f

scores.

for (k = 0; k < n; k++)
scanf(”% d", & x[k]):

Note the use o f the address operator on x[k]; scanf always needs the address o f

the item to input. Consider now how the above could be done w ithout an array.

If there were 42 scores, we would have to input them with several statem ents such

as

Scanf("% d % d % d % d % d %d %d % d % d %d".

& x l. &x2. & x3. &x4, &x5. &x6. &x7. &x8, & x9. & xlO);

and that only gets the first 10! Plus we would have to declare all those 42

variables, plus now our program is highly inflexible as to the possible num ber o f

scores - it would have to be rewritten ju st to do 43!

Alm ost all array processing is done with for loops. For exam ple, suppose

we wanted to average the array o f scores m entioned earlier;

1) double sum = 0. average;
2) int k. n:
3) int score[100]:
4) /* suppose we have code here to input n (# o f scores)
5) and the array */

6) for (k = 0; k < n; k++)
7) sum += score[k];

56

8) average = sum / n;

Lines 6 and 7 above show the standard C idiom fo r processing an array. With n

= the actual num ber o f items, then to process items 0 through n-1 we use fo r (k =

0: k < n; k++). Inside the loop, references to x[k] then refer to the items we

want, namely x[0] through x [n -l]. After adding all these up, line 8 then divides

by n to get the average.

C also allows for higher dimensional arrays, pretty m uch whatever one

needs. Arrays o f one and two dim ensions are by far the m ost comm on in actual

code. A two dimensional array can be thought o f as a table or spreadsheet, and is

usefully thought o f as having rows and columns. For exam ple:

int table[10 |[20]:

sets up a 2 dimensional int array having 10 rows and 20 colum ns. These are

indexed from 0 to 9 and 0 to 19. respectively. FOR loops can be nested, and often

are when dealing with higher dimensional arrays. For exam ple, here is code to

input the above table from the keyboard:

int table[10][20];
int row. col:

for (row = 0; row < 10; row++)
for (CO 1-0; col < 20; col++)

scanf("% d '\ & table[row][colJ);

If one needs access to all o f the table values, a nested loop like the above is the

way to go.

M ore array exam ples are coming, but m ost o f them can wait until

functions have been discussed.

57

Functions (Subroutines)

Essentially all com puter languages allow for subroutines. These are

blocks o f code that can be invoked or called from any other point in a program. C

is no different in this way. but C calls all such things by the name function. In

m any languages a function is a subroutine that returns a single value while a

subroutine just does a com putation in response to a com m and and does not return

a value like a m ath function. In C, however, functions can play both roles. We

have already seen a function without realizing it; in any complete C program,

there is a main() function, which is what gets called initially when the program

runs. Here is a skeletal outline o f what a function looks like:

R eturn jypefunction namefparameters...)
S(

the functions ' code goes here...

The begin-end braces mark where the functions' code begins and ends. .A.ll

functions have a return jype: this can be void, m eaning there is no return value,

or it can be any type such as int or double. All functions are written with () after

the name, both in calling the function and writing it. If there are parameters to

the function, these are placed in the parentheses. If not. the parentheses still must

be present, but nothing is inside. Here is an exam ple o f a function that takes no

parameters;

void statusO
{

printfC 'Error count - % d\n", error count);

58

The above code assum es that 'error count' is a global variable. Here no

param eters are taken and nothing is returned. To call the function one merely

mentions its name (w ith the parentheses) as in a statement:

statusO;

The effect o f the code is that at the point where this instruction is encountered, the

message

Error count = 5

would be displayed (assum ing error count was then 5). The keyword 'void' is

used when one wants a non-specific or unknown type, or ju st no type at all. In the

context o f the return value for a function it is used to indicate that no value is

returned. Let's now take a look at a function that Joes return a value, and also

takes parameters. Long ago Euclid gave an algorithm for calculating greatest

comm on divisors (GCDs). G iven 2 positive integers, keep subtracting the sm aller

from the larger until they becom e equal; the result is the GCD o f the original

values. Here is a C function for that:

int gcd(int a. int b)

while (a != b)
if (a > b)

a -= b;
else

b - - a:
return a:

Here the return type is int, and the function takes two param eters, formally named

'a' and 'b'. Both o f the param eters are also o f type int. The while loop performs

the intent o f Euclid's algorithm and quits only when a and b becom e equal. .A.t

59

that point, the com m on value 'a' is returned to the caller (we could have returned b

as it has the same value). It is important to note that the param eters a and b are

passed "by value" to the function. This m eans that w hen the caller invokes

gcd(x.y). the values x and y (which could have been expressions and not merely

variable references) are copied to the values for a and b in the code for gcd.

W hen gcd returns to the caller, the values for a and b are not copied back. Thus,

gcd can feel free to alter the values for a and b all it wants with no effect on the

callers' parameters. As an example:

printfC'GCD o f 60 and 24 = % d\n". gcd(60.24)):

w ould print

GCD o f 60 and 2 4 = 12

Here the values that are used by the caller are constant expressions (60 and 24)

and could not possibly be updated from new values for a and b by gcd anyhow.

The point is that C passes all parameters by value. Arrays are sometimes thought

o f as being a different case. Arrays are effectively passed by reference in C. Here

is an exam ple o f a function that averages an int array:

double average(int x[]. int size)

int k;
double sum = 0;
for (k = 0; k < size: k-H-)

sum += x[k];
return sum / size;

C doesn't need to know the size o f an array that is passed to a function, ju st to get

the array. ^^Iten passed to a function, an array 'decays' to a pointer to the first

60

array elem ent. Hence all that is needed in the declaration o f the array param eter is

the name o f the array followed by empty brackets (as with int x[]). This by the

way is com pletely equivalent to int *x. which means that x is a 'po in ter to int’.

That is exactly how C treats an array param eter (at least for one dim ensional

arrays), as a pointer to the first array element. So. the size inform ation is not

made available. That is why one often sees the actual array size passed as a

second (or additional) parameter. As in the code to average an int array, we saw

that we had two parameters, int x[] and int size. The size needed to be passed so

the function could know how many array elem ents to average. Here is another

exam ple that computes the 'geom etric m ean' o f an array o f doubles;

double geom etric_m ean(double x[]. int n)
>
I

/* com putes (XoXi...Xn-i)‘ " . the n'^ root o f the product o f
the array values. Assumption: all the x, are > 0

*/

double prod = x[0];
int k;
for (k = 1; k < n; k++)

prod *= x[k];
return povv(prod. 1.0/n);

II

In C. there is no operator for raising to a power, but there is a built-in function

pow that can be used; pow(x.y) yields x' for double precision values x and y.

One should #include <math.h> in order to use pow. Here is another exam ple that

does the famous linear search:

int linear_search(int x[]. int n. int item)
II

!* Searches array x for the presence o f the integer item, returning the first
index k such that x[k] = item, or -1 if item is not found. */

int k:

61

for (k = 0; k. < n && x[k] != item; k++)

/* The above sem i-colon term inâtes the for loop and shows that this loop
has no body - all the code is in the for statem ent itself. But the sem i-colon is very
im portant because w ithout it, the next line o f code would be taken as the for loop
body.

Once the loop term inates, we are done - either the item is found or it is
ju st not present in the array at all. We only need to check whether k < n to see
w hich condition holds.

*1
if (k < n) /* then we found item at array position k */

return k;
else

return -1 ; /* else not found, return -1 */
:

Som e 2D array exam ples

W hen passing an array to a function, the array name decays to a pointer to the

tlrst element. In the one dim ensional case, no array size needs to be placed in the

brackets after the array name. However, for any higher dim ensions, the

inform ation is needed. Suppose we need a function to sum a row o f a 2D table

where the number o f colum ns is 20. Here is an exam ple o f the code needed:

62

int ro\vsum(int x[][20], int row)
{

int sum = 0. col;
for (col = 0; col < 20; col++)

sum += x[row][col];
return sum;

I

Here the caller must provide a table with any num ber o f rows but exactly 20

colum ns, and m ust specify which row is to be added up. M ore flexibility can be

had by passing another param eter for the actual num ber o f colum ns; for example,

the caller may have an array with 20 colum ns but is only using the first 5

colum ns. .Another change is that the actual num ber o f rows to be used could be

passed in and the row number to be added up could be tested for being in range,

so as not to cause a runtime error.

The astute reader may have noticed that C array handling in the 2D case

leaves som ething to be desired. This is true; the need to pass in all the size

inform ation for all dimensions but the first m akes two and higher dimensional

array handling a bit clunky. However, using pointer and dynamic memory

allocation, we can get around this. An exam ple follows in which a pointer to a

pointer is set up to act as a 2D array pointer:

63

int **ailocate_table(int rows, int cols)

int **m;
int k;
m = maIloc(rovvs * sizeof(int *));
for (k = 0; k < rows; k++)

m[k] = m alloc(cols * sizeof(int));
return m;

Here if one wants a 10 by 50 table, ju st do

int **p = allocate_table(10.50);

and you have it. Now you can pass p around just like a 2D array for all purposes.

Suppose one needed to find the trace o f a square integer m atrix o f order n; then

one m ight code

int **x - allocate table(n.n);

printfC 'Trace = % d W \ trace(x.n));

with the code for trace being

int trace(int **p. int n)

int sum = 0. k;
for (k = 0; k < n; k+-+)

sum += p[k][k];
return sum;

•\rrays however are only part o f the answer to the need for ways to hold and

access lot o f data. Records are another way.

Structures (Records) in C

To understand the need for records is to understand that lots o f

information doesn 't fit entirely or nicelv into an int or double, or a character

64

string. Suppose one is writing a database to handle student records in a university

setting. A sim ple exam ple o f such a record m ight need inform ation such as

—the name o f the student

- th e ir ID

—num ber o f com pleted credit hours

-g ra d e points

-G rad e point average thus far

Obviously other information would normally be needed, but you get the idea. In

C programming, the struct is a vehicle for representing such information:

struct Student {
char nam e[20]:
char id[14];
int hours, points;
tloat gpa;

\ .
I •

The above forms a tem plate (kind o f a cookie cutter) for creating variables o f this

structure type. No variable has yet been declared. To do that we might say

struct Student X;

and this now makes X a student record variable. Now. how do we use it? Mostly

through the membership operator which is (period, or 'd o t ') . Thus we might

say

strcpy(X.name.'Uohn Jackson");

strcpy(X .id."417891256”);

X.hours = 65;

X. points = 1 9 7 ;

X.gpa = (float) X .points / X.hours;

65

N ote the use o f a "cast" in the calculation o f X .points / X .hours; an int divided by

an int in C will yield an integer result w ithout it. The case causes the points field

in X to be treated as floating point; then when divided by an integer, a float

results.

In C, structures can be assigned one to another if they have the same exact

structure type. Thus if we have

struct Student X, Y ;

and som e info had been placed into X. and we w anted Y to be an exact copy o f X.

we would only have to do

Y = X;

to m ake that happen. Also structures can be passed by value to functions (as well

as by reference, by using a pointer) and also they can be returned from functions

as a return value. Here is a sample function that prints the GPA o f a student:

void print_gpa(struct Student X)
{

printf("GPA o f %s is % .2f\n” , X .nam e. X.gpa);

If we had

struct Student someone;

Then to print that student's name and gpa we w ould only have to

print_gpa(som eone);

O f course it is important to realize that tlie 'so m eo n e ' variable would need to have

som e data placed in it first.

66

Som etim es, pointers to structures are needed. If p is a pointer to a struct,

as in struct Student *p, then one can access the data in the record p points at like

this;

Printf("G PA = % .2t\n", (*p).gpa);

Anytime one has pointer p in C. *p is ALW AYS to be thought o f as "that which p

points at". Since here p points to a struct Student, then *p IS that Student

structure. Then we use the dot notation to access the fields therein. However,

note the use o f the parentheses around the *p. as in (*p).gpa. They are needed

because the dot operator binds more tightly than * (has lower precedence) and so

to leave out the parentheses is to refer to the wrong thing. But this type o f

reference is so com m on that there is another operator in C ju st for this purpose:

That operator is -> (written as a dash followed by greater-than) and is simply read

"pointer" or "pointer-to". W ith p a pointer to a struct Student, we could print the

gpa field with

printfC'GP.A = % .2t\n". p->gpa);

. \ t this point, we are ready to see how to pass a structure by reference in C.

Consider the writing o f a function that would calculate the gpa field in a student

record. Suppose the name, points and hours have been initialized but the gpa is

not yet calculated. Here is a C function to do that:

void calc_gpa(struct Student *p)

if (p->hours > 0)
p->gpa = (float) p->points / p->hours;

else
p->gpa = 0;

67

Here we first check before possibly dividing by zero, setting the gpa to zero if the

student as yet has no hours completed, but otherwise calculating the gpa as the

points divided by the hours. Either way the gpa field in the record that p points at

is updated and it is the callers' record that is affected. Thus if you have

Struct Student X; X.points = 1 5 ; X.hours = 5;

and you do

calc_gpa(& X);

then X .gpa would now be 3.00. Note the use o f the this is the address

operator in C. and when prefixed before a variable, yields the m em ory location o f

that variable. This is needed here since the function calc gpa wants a pointer to a

student record as its only parameter. The value o f a pointer is precisely that, a

m em ory address.

Linked Lists in C

Again, if p is a pointer, then p holds the address o f som ething in memor>’

(perhaps another pointer, or perhaps a data value o f some kind). To get at what p

points at we use the notation *p. Recall that *p is to be read “ that which p points

at". The inverse operator o f* is &. the "address" operator. If p is a pointer to a

student record, and X is a student record, we could set p = &X. Having done so.

we would then have the identity *p = X.

A "linked list" is a chain o f data values in m emory such that each one has

its ow n link to the next one. In this way. with only a pointer to the first one. we

have an essentially se lf contained (perhaps huge) collection o f values in memorv’

68

which are easily and quickly accessible. In C, w hat we need to set up something

like this is a structure like:

struct node
{

int data; /* the data can be o f any type - int is for sim plicity*/
struct node *next;

I .J '

So. the ‘next’ field in the record is a pointer to another such node. In order to be

able to setup and use linked lists, we at least need a function for insertion o f new

values, and one for traversing the list we m ake so we can see if the values got

there OK. Additionally 1 will show a function for averaging the values in such a

list.

Linked List Sam ple Program

/*

• Linked List Program by Bill Stockwell. 12/2001
• Sets up a list o f integers, with last in first out insertion
*/

#include <stdio.h>
^include <stdlib.h>

69

typedef struct node
{

int data;
struct node *next;

} Node;

/* T ypedef allows creation o f a named type, here Node, so we d o n 't have to
repeat 's truct node' all the tim e */

Node *head = 0;
/* head will be global, the pointer to the start o f our list */

void insert(int item)

Node *newnode = m alloc(sizeof(Node));
/* sets up a pointer and allocates memory for it */
new node->data = item;

newnode->next = head;
head = newnode;

void traverseO
fI

Node *p = head;
while (p)

printf("% d\n". p->data);
p = p->next;

70

double averageO
{

Node *p = head;
double sum = 0;

int count = 0;
while (p)

++count;
sum += p->data;

p = p->next;

return sum / count;

main()

double mean;
insert(5);
insert(7);

insert(3);
traverseO ;
mean = averageO;
printf("\nThe average o f the values in the list is % .2f\n". mean)
return 0;

71

Appendix E
On the choice o f the C programming language

As a vehicle for enhanced mathematics learning

First o f all, the researcher is a faculty m em ber in the com puter science departm ent

o f a m id-sized university in the south-central part o f the United States and has been for

over tw enty years, and is expert in the use o f quite a num ber o f com puter languages,

including C. C-h -. FORTRAN. PL/I. Pascal. BASIC and several flavors o f assem bly

language. He has taught most o f these languages to college undergraduate students at

some tim e or other over the last twenty years, including C for the last seventeen years and

its descendant C++ for the last ten years.

In C hapter 1 it was mentioned that there were three areas o f mathematical

learning that it was thought might be enhanced from learning program m ing in C. and that

these areas were 1) sequences. 2) functions, and 3) algebraic expression evaluation. The

way sequences come into the picture via program m ing is through the idea o f an array.

An array in a com puter program is a subscripted variable, capable o f holding thousands

o f distinct values all under the same name, in w hich each value is addressable via a

subscript. In C for example one might declare an array like

i n c s c o r e s [] = { 7 1 , 8 2 , 9 5 , 10 , 1 7) ;

This would set up an array o f integers (int = integer in C) called "scores', with scores[0]

being 71. sco res[l] = 82. scores[2] = 95, and so on. Each scores[k] value (for some

integer index k) is a full blown integer variable and can be altered or exam ined at any

time. M ost conventional computer languages have this array capability, so C has no

advantage in this case.

72

In the second area, that o f functions, a bit o f explanation is needed. A function in

m athem atics represents how values in a dom ain set are transform ed into uniquely defined

elem ents o f a range set. In som e com puter languages, one can define a type o f subroutine

called a function w hich is a body o f code that can be called upon to perform its set o f

instructions, com puting a value w hich is to be returned to the caller in the manner o f a

mathematical function. For exam ple, here in C code is a function for com puting the gcd

o f two integer values:

int gcd(int a, int b)
(

while (a != b) /*as long as a and b are unequal’'/
if (a > b) /* Keep subtracting */

a = a - b; the smaller from */
else /’*■ the larger */

b = b - a;
return a; /* When equal, that is the GCD '/

To call this function from another part o f the program, som ething like

m a i n ()
{

int valuel = 60, value2 = 24 ;
printf(''GCD = %d\n", gcd (valuel, value2));
return 0;

}

Putting the above two pieces o f code into one program and being sure to put

"include <stdio.h>

at the top, one could com pile and run the code (with say Visual C-h - for W indows), and it

would come back and say

G CD = 12

which indeed is the greatest com m on divisor o f 60 and 24. The point here is the

m athem atical function like behavior o f the way in which the ftmctions can be used in the

73

code that C program m ers write. Can other languages do this? In many cases the answer

is yes, how ever one must understand that in many com puter languages, the notion o f

function is rather downplayed, to the point where m any tim es program mers in those

languages d o n 't ever use functions. C is one o f the few languages in which the function

idea is the only subroutine that is available. Thus, if one writes any C code, one will be

writing and using functions - not som ething one sees in other languages, except mostly

C++.

The third and last area o f expected transfer is that o f algebraic expression

evaluation. It should come as no surprise that ju st about any com puter language has

provisions for evaluation o f algebraic expressions written by the programmer, so C would

not appear to be preferable to other languages - at first glance. However, the nature o f C

is such that a higher level o f care and overall knowledge is required to use it successfully.

For one thing, C assumes that its' users "know what they are doing"; C compilers, the

software that translates what the program mers write into machine code so it can actually

run, assum e that if there are questionable things in the C code, let it be. This is done for

the sake o f runtim e efficiency (don 't check on array subscripts being out o f range, such

checks are tim e-consum ing) and also because C was originally developed for its users to

write operating systems with - and people who vsTite operating systems d o n 't want the

translator questioning their code.

Thus C is often thought o f as better to learn as a second com puter language than

as a first one. Indeed, in the researcher's com puter science department, those thinking o f

taking Program m ing 1 in C are generally asked what other com puter languages they

know, and are strongly recom m ended to take Beginning Program m ing (Pascal) if they

74

have no other com puter language in their background. Hence, the researcher had the

notion that students in Programming I - at least the successful ones - probably had a

fairly high m otivation and knowledge level, one that m ight serve well in attem pting to

learn som e m athem atical concepts.

The last reason the researcher had for choosing C is not the least o f the reasons:

C is the only com puter language taught in large enough num bers at the researcher's

universitv to allow for a decent studv.

75

