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COLLECTIONS OF COVERS WHICH IMPLY COMPACTNESS

I. INTRODUCTION

The metrization problem is one of the most interesting 
and fruitful problems in general topology. It has been the 
motivation for the study of many classes of topological spaces 
which generalize the concept of a metric space. Some of the 
more important spaces of this type are Moore spaces, quasi- 
developable spaces, wA-spaces, and first countable spaces.

Many of these classes of generalized metric spaces can 
be characterized by the existence of a countable collection of 
open covers for the space which satisfy some condition. A 
natural question is whether there are conditions which could 
be placed on these defining collections of covers which would 
imply familiar topological properties. This paper will supply 
some conditions which characterize compactness and related pro­
perties.

The question of what happens if uncountable collections 
of covers are used instead of countable collections will be 
examined in a subsequent section. Conditions will be given for 
these uncountable collections of covers which imply certain sets 
have limit points. This case seems to be more complex than the



corresponding case for countable collections, and, as might 
be expected, the results depend on the type of set theory 
assumed.

II. DEFINITIONS

2.1 If M is a set, x is a point,and G is a collection 
of sets, then star (M,G) denoted st(M^G) is |j {VeGzMOVpf*}; 
st(x,G) = st({x},G). A sequence G = Gg,G^,G2 ,... of open

covers of a topological space S is called a development for S

if and only if for each xeS and open set Ü containing x

there is a non-negative integer n such that st(x,G^) g  U. A

space which admits a development is said to be a developable

space, while a regular T^ developable space is called a Moore

space.

2.2 A development G = Gq,G^,G2 ,... for a topological 

space S is said to be monotonie if and only if G^^^ ç  G^ for 

each non-negative integer n.

2.3 A monotonie development G = Gq , Ĝ ,̂ G 2 ,... for a 

Moore space S is said to have the 3-link property if and only 

if for each pair p and g of points of S there is a non-negative 

integer n such that if U and V are mutually exclusive members 

of G^ containing p and q respectively then no member of G^ has 

nonempty intersection with both U and V.



2.4 A nonempty subset M of a topological space S is 

said to be discrete if and only if for each point x of M 

there is an open set U such that üflM = {x}. Thus, a discrete 

subset of a space S need not be closed in S. A collection of 

sets is discrete if the closures of the sets are mutually ex­

clusive and the union of any subcollection of these closures 

is closed.

2.5 An ordinal number is the set of all ordinals which 

precede it. Throughout this paper w and will denote the 

set of all finite ordinals and k will denote an infinite car­

dinal number.

2.6 A topological space S is said to have property 
D(k ) if and only if for each closed discrete subset M of S 
with cardinality at most k there is a collection H of mutually

exclusive open sets such that (1) H covers M and each member 

of H contains only one point of M, and (2) if N is a set 

covered by H such that each member of H contains only one 

point of N then N has no limit point. A space which has pro­

perty D(w) is said to have property D (see [Mo; page 69]). A 

space S is said to have property wD (see J.E. Vaughan [Va]) 

if and only if for each countably infinite, closed, discrete 

subset M of S there exist an infinite subset M' of M and a



disjoint open cover H of M' satisfying the condition of 
property D with M replaced by M'.

2.7 If P is a property of topological spaces, then 

a topological space S is said to be P-closed if and only if

S is a closed subspace of every space having property P which

contains it. In this paper the class of Moore-closed spaces

will be of interest. Most of the results about Moore-closed

spaces used here can be found in the papers of J.W. Green 
[Gr 1] and [Gr 2] .

2.8 Borges [Bo] defines a topological space S to be 

a wA-space if and only if there is a sequence Gq ,Ĝ ,̂G2 ,... of 

open covers of S such that if FgyF^fFg,... is a decreasing 

sequence of nonempty, closed subsets of S and there is a point 

X of S such that F^ c  st(x,G^) for each non-negative integer 

n, then A {F^ : n=0,l,2,...}^$.

2.9 According to Hodel [Ho 1], a space S is said to 

have a G|-diagonal if and only if there is a sequence Gg,G^, 

G^,... of open covers of S such that if x and y are distinct 

points of S, there is a non-negative integer n such that

y st(x,G^)



III. MOORE SPACES

In [Gr 2; Theorem 1.6] J.W. Green obtained the follow­

ing result:

Theorem. A Moore space not having infinitely many

isolated points is compact if and only if there is a monotonie

development G = Gq,G^,G2 #... such that (*) if H =

is a monotonie development, there is an increasing sequence

nQ,n^,n2 /... of non-negative integers such that for each i,

G refines H-. Furthermore, a monotonie development G for a 
i

compact Moore space satisfies {*) if and only if G has the 

three-link property.

In this section several types of developments which 

imply results similar to (*) in Green's theorem will be in­

vestigated.

3.1 Definition. If < is an infinite cardinal, a

cardinality < collection G = {G^:aeic} of open covers of a

topological space S is said to satisfy condition A(k) if and 

only if for each closed, discrete subset M of S and open set 

U containing M there is an °-zk such that st(M,Gg^) c  D.

3.2 Definition. If k is an infinite cardinal, a

cardinality k collection G = {G^i^ek} of open covers of a



topological space S is said to satisfy condition B(<) if and 

only if for each closed, discrete subset M of S there is an 

aeic such that if x and y are distinct points of M, then 

st(x,G^)nst(y,Qi) =

3.3 Definition. A space S is said to satisfy condition 

A(k ) or B(k ) if it has a collection of covers satisfying that 

condition.

3.4 Remark. A collection of covers for a space 

which satisfies condition A(w) is a development. A developable 

space satisfying A(u) or B(w) has a development which satisfies
. Ithat condition. A development which satisfies condition A(w) 

is said to be of type A and a development which satisfies 

condition B(w) is said to be of type B . Spaces having develop­

ments of type A and type B as well as some modifications of 

those conditions will be examined in this section.

3.5 Definition. A development G = GgyG^/Gg,... for 

a space S is said to be of type wA if and only if for each 

countably infinite, closed, discrete subset D of S and open 

set Ü including D, there exist an infinite subset D' of D and 

a non-negative integer n such that st(D',G^) g  U.

3.6 Definition. A development G = ,G^^,G2 ,... for 

a space S is said to be of type C if and only if for each



disjoint pair of countable, closed, discrete subsets D and E 

of S, there exists a non-negative integer n such that 

st(D,G^)nst(E,G^) = (j>.

3.7 Definition. A development G = GgyG^/Gg,... for

a space S is said to be of type wC if and only if for each 

pair of countably infinite, closed, discrete subsets D and E 

of S there exist an infinite subset D* of D and a non-negative 

integer n such that st(D',G^)nst(E,G^) = (̂.

3.8 Definition. A development G = GgyG^/Sg,... for

a space S is said to be of type E if and only if for each 

countably infinite, closed, discrete subset D of S there is 

an infinite subset D' of D and a non-negative integer n such 

that if X and y are distinct points of D', then 

st(st(x,G^ ) ,G^)Dst(st(y,G^) ,Gĵ ) = *.

3.9 Remark. If S is a compact Moore space, the only

closed, discrete subsets of S are finite. Hence it follows

that every development for a compact Moore space is of each 

of the types defined in 3.4 through 3.8.

3.10 Theorem. If a Moore space S is the disjoint 

union of sets K and M where K is compact and each point of M 

is an isolated point of S, then S is a metrizable space having
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a development which is of each type defined in 3.4 through 
3.8.

Proof. S is paracompact and R.H. Bing [Hi] proved that 

paracompact Moore spaces are metrizable. There exist a 

metric d for S and for each non-negative integer n, a finite 

cover of K by d-open balls each of which is centered at 

some point of K and has radius at most 1/2^. If 

= H^U{{x}:xeM} for each non-negative integer n, then 

is a development for S. It is readily verified that this 

development is of each of the types defined in 3.4 through 3.8.

3.11 Lemma. A space which has a development of one

of the types defined in 3.4 through 3.8 has a monotonie develop­

ment of that type.

Proof. If GgfG^fGg,... is a development of one of the types 

defined in 3.4 through 3.8 and H = is a develop­

ment such that for each non-negative integer n, refines 

G^, then H is a development of the respective type. Moreover, 

for each development G = G^yG^yGg,... there is a monotonie 

development H = with a refinement of G^ for

each non-negative integer n.

3.12 Lemma. A Moore space S having a development of 

type A satisfies property D.



Proof. Suppose, on the contrary, that S has a development of 

type A but fails to have property D. Thus, there is a closed, 

discrete, countable set M = {Xq,x^,X2 ,.. •} such that if 

{üo/Ui,Ü2 ,.•.} is a disjoint collection of open sets covering 

M each member of which contains exactly one point of M, then 

there is a sequence Zg,z^,Z2 ,... such that for each n, z^ 

belongs to and the sequence Zq ,z^^,Z2 ,... has a limit point.

Let {Üq,ü^,Ü2 ,...} be a pairwise disjoint open cover 

of M such that x^sU^. Let G = Gq,G^,G2 ,... be a monotonie 

development for S of type A. There is a least positive inte­

ger n^ such that st(M,G ) c  (j U . Let z_^,z.^,z_^,... be a^ ^0 n>0 u X z
sequence of points having a limit point y^ such that belongs

to the set st(x^,G^) A There exist an open set Vq containing

yg whose closure misses M and a least positive integer n^ 

greater than n^ and such that st(M,G^ ) c  S-Vg. Let Zg,z^,z^,... 

be a sequence of points having a limit point y ̂ such that ẑ l̂ 

belongs to the set st(x^,G^^)Au^. Let be an open set

taining y^ whose closure misses M. This process may be con­

tinued.

If Y = {yQ,y2 fY2 »•••  ̂ is a closed subset of S, there 

is an open set W including Y whose closure misses M.

con-
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Consequently, there is a positive integer k such that
--- k Ic kst(M,Gj^) Ç  S - W. But, the sequence Zq ,z^ ,Zg ,... is

included in st (M,G^) and has a limit point y^ contained in W,

which is impossible.

If Y = {yQ,y2 ,y2 ''''} has a limit point y, then let

M' = M-{y}. Let W be an open set containing y whose closure

misses M'. There is a non-negative integer k such that

st(M',Gj^) c  S - W, and there is a positive integer i greater

than k such that y^ is contained in W. The sequence

, z ^ , z ^ ,... except for at most one point is contained

in st(M',G^) and has a limit point y^ belonging to W, which

is impossible.

3.13 Lemma. A Moore space S having a development of

type B satisfies property D.

Proof. Suppose the contrary and M is as in the proof of 
lemma 3.12. There is a monotonie development G = Gg ,Ĝ ,̂G2 ,...

for S of type B, and a least non-negative integer ng such that

if p and q are distinct points of M then st(p,G )flst(q,G )=$.

Moreover, there is a sequence Zg^,z^^,Z2 ^,... with

z^^est(x^,G^) for each i, and having a limit point yg. Let

Mg = M(J{yg}. There is a least positive integer n̂  ̂greater
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than Hq such that if p and q are distinct points of Mq then

st(p,G )flst(q,G ) = 4). Moreover, there is a sequence 
“l *1

with z^^ E st(Xj^,G^ ), and having a limit

point y^. Let M^ = This process may be continued.

Now Y = {yQfyj^,y2 /• • • Ï is a discrete sequence of points,

If Y is closed let N = M|jY. If Y is not closed, let y be a 

limit point of Y and N = M{J{y}. In either case, N is a 

countable, closed, discrete subset of S for which there does 

not exist a non-negative integer k such that if p and q are 

distinct points of N, then st(p,G^)nst(q,G^) = 4>. This is a 

contradiction.

3.14 Lemma. A Moore space S having a development of 

type C satisfies property D.

Proof. The proof of this lemma is very similar to the proofs 

of Lemmas 3.12 and 3.13.

3.15 Lemma. If S is a Moore space containing no 

infinite, discrete, closed and open subset and having a develop­

ment of type wA, then S is Moore-closed.

Proof. Suppose S is not Moore-closed. By Theorem 5 of [Re] 

there is an infinite discrete open collection U. There exist 

an infinite set X = {xq,x^,X2 /... } of points and a
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subcollection {Uq,ü^,Ü2 /...} of U such that is a limit

point of for each non-negative integer n. Let

be a monotonie development for S of type wA. There is a set

Y = {yQ,YiiY2 f' • such that for each non-negative integer n

V e st(x fC; )nu_-{x_}. It follows that Y is a closed subset n n n n n
of S/ and there exist a positive integer k and an infinite 

subset X* of X such that st(X'/G^) g  S - Y. This is a con­

tradiction.

3.16 Lemma. If S is a Moore space containing no 

infinite, discrete, closed, and open subset, and having a 

development of type wC, then S is Moore-closed.

Proof. This Lemma may be established by a modification of the 

proof of Lemma 3.15.

3.17 Theorem. If S is a Moore space containing no 

infinite, discrete, open and closed subset, the following 

statements are equivalent:

(1) S is a compact metric space.
(2) S has a development of type A.
(3) S has a development of type B.
(4) S has a development of type C.
(5) S has a development of type wA and satisfies

property wD.
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(6) S has a development of type wC and satisfies 
property wD.

(7) S is Moore-closed and has a development of 
type E.

Proof: As indicated in 3.7, (1) implies (2) - (7). Suppose

(2) holds but S is not compact. Suppose G = G^yG^yGg,... is

a monotonie development of type A for S. Now a non-compact

Moore space is not countably compact. It follows that there

is a countably infinite subset M = {Xq,Xj^,X2 /...} of limit

points of S such that M has no limit point. By lemma 3.12

S has property D and thus there is a disjoint collection

U = {Üq,Üj^,Ü2 , ...} such that x^EU^ and if T is any set such 
that each point of T belongs to some member of the collection 
Ü and no member of Ü contains more than one point of T, then

T has no limit point. For each non-negative integer n, let

y be a point of st(x ,G )nu„-{x . Then, Y = {y« ,y, ,y,,.. •} is
H  V JL 6

a closed subset of S. Moreover, there is a non-negative integer 

k such that st(M,G^) c  s - Y. This is impossible since y^ is 

a point of st(M,G^). Hence (2) implies (1).

The arguments that (3) implies (1) and (4) implies (1) 

are analogous.
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If S has a development of type wA or wC, then S is 

Moore-closed. A Moore-closed space with property wD is com­

pact by the proof of Theorem 2.10 of [Gr 1].

Suppose S is Moore-closed and G = GgfG^fGg,... is a 

monotonie development for S of type E. Moreover, suppose S 

fails to be compact. There is a countably infinite subset M 

of S which has no limit point. Also, there exist an infinite 

subset M' of M and a non-negative integer k such that if x and 

y are distinct points of H' then st (st (x,Gĵ ) ,Gĵ )rist(st(y,Gĵ ) ,Ĝ)=(j>. 

By Theorem 7 of [Re] there is a finite set {zQ,z^,Z2 ,...,z^}

such that for each point x of S, there are intersecting members 
V and W of Gĵ  such that x belongs to V and W contains at least

one of the points Zq,z^,Z2 ,.../Z^. But then, for jome non­

negative integer i, z^ belongs to the set st(st(x,G^),G^) for 

infinitely many points x of M'. This is a contradiction.

Thus, (7) implies (1).

3.18 Theorem. For a Moore space S, the following 

statements are equivalent:

(1) S is a Moore space which is the union of a compact 
set and a discrete set.

(2) S is a metric space and the set of all limit 
points of S is compact.
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(3) S has a development of type A.
(4) S has a development of type B.
(5) S has a development of type C.

Proof. That (1) iitçlies (2) is iheorem 3.10. The remaining 
implications can be shown by a slight modification of the 
proof of Theorem 3.17.

3.19 Remark. The previous results may be used to 
prove the following familiar theorem which gives metric space 
analogues of developments of types A, B, and C.

Theorem. A metric space X having at most finitely 
many isolated points is compact if and only if there is a 
metric d for X which satisfies at least one of the properties:

(1) If M is a countable, closed, discrete subset of

X and U is an open set containing M, there is 

a positive number e such that the d-open neighbor­

hood of M of radius e is a subset of U.

(2) If M is a countable, closed, discrete subset of X, 

there is a positive number e such that if x and y 

are distinct points of M, then d(x,y) ^ e.

(3) If M and N are disjoint, countable, closed, dis­

crete subsets of X, there is a positive number e 

such that d(M,N) > e.
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3.19 An interesting generalization of development, 

due to E.E. Grace [Be], is the concept of a quasi-development. 

A sequence G = G^,G2 ,G2 ,... of collections of open subsets of 

a topological space S is called a quasi-development for S 

provided for each point p of S and open set U containing p 

there is a positive integer n such that some member of G^ 

contains p and st(p,G^) ç  D.

3.20 Definition. A quasi-development G = G^yGg/Gg,... 

for a space S is said to be of type B if and only if for every 

countable, closed, discrete subset D of S, there exists a 

positive integer n such that G^ covers D, and if x and y are 

distinct points of D then st(x,G^)nst(y,G^) =

3.21 Definition. A quasi-development G = G^/Gg/Gg,... 

for a space S is said to be of type C if and only if for every 

disjoint pair of countable, closed, discrete subsets D and E 

of S, there exists a positive integer n such that G^ covers 

both D and E and st(D,G^)Ast(E,G^) = (&.

3.22 Theorem. If S is a regular T^, quasi-developable 

space containing no infinite, discrete, closed and open subset, 

the following statements are equivalent;
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(1) S is compact metric.

(2) S has a quasi-development of type B,

(3) S has a quasi-development of type C.

Proof. That (1) implies (2) and (3) follows from Theorem 3.17.

Modifying the arguments, only slightly, it can be 

shown first that (3) or (2) implies that S satisfies property 

D, and then that S is countably compact. H. H. Wicke and 

J. M. Worrell showed in [Wi and Wo; Theorem 2.10] that count­

ably compact quasi-developable spaces are compact metric.

IV. FIRST COUNTABLE SPACES

Heath in [He] and Hodel in [Ho 2] gave elegant char­

acterizations of various classes of generalized metric spaces. 

Suppose X is a topological space, and g is a function from 

w X X to the topology on X such that for each point x of X 

and each non-negative integer n, x belongs to g(n,x). They 

found that placing conditions on g yields characterizations of 

familiar classes of topological spaces. For example, consider 

these conditions:

(I) If X belongs to g(n,x^) and y^ belongs to

g(n,x^) for each n, then x is a cluster point of 

the sequence Yq,Y2̂ ,Y2 i • • • •
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(II) If X belongs to g(n,x^) and belongs to 

g(n,x^) for each n, then the sequence 

^0'^1'^2'*** ^ cluster point.

(Ill) If x^ belongs to g(n,x) for each n, then x is 

a cluster point of the sequence Xq,x^^,X2 /... .

Heath [He] showed that (I) characterizes developable 

spaces, while Hodel [Ho 2] showed that (II) characterizes 

wA-spaces and (III) characterizes first countable spaces.

This approach suggests the definitions which follow.

Throughout this section g will be a function from 
Ü) X X into the topology on X such that for each point x of X

and non-negative integer n, x belongs to g(n,x). For each

non-negative integer n, = {g(n,x):xeX} is an open cover of

X.

4.1 Definition. The function g is said to satisfy 

condition B if and only if the collection G = {Gq,G^,G2 f...} 

satisfies condition B(w).

4.2 Definition. The fun* ■'.•'.on g is said to satisfy 

condition A* if and only if for each countable, closed, discrete 

subset D of X and open set Ü containing D there is a non-negative 

integer k such that if x e D then g(k,x) c  U.
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4.3 Definition. Th'̂  function g is said to satisfy

condition B* if and only if for each countable, closed, 

discrete subset D of X there is a non-negative integer k such 

that if X and y are distinct points of D then g (k,x)ng(k,y) =4>.

4.4 Definition. The function g is said to satisfy

condition C if and only if for each disjoint pair D and E of 

countable, closed, discrete subsets of X there is a non­

negative integer k such that st(D,G^)nst(E,G^) = (j).

4.5 Definition. The function g is said to satisfy

condition C* if and only if for each disjoint pair D and E of 

countable, closed, discrete subsets of X there is a non-negative 

integer k such that if x belongs to D and y belongs to E, then 

g(k,x)ng(k,y) = (j>.

4.6 Remark. If there is a function which satisfies 

one of the conditions in definitions 4.1 through 4.5, then 

there is a function g satisfying that condition such that for 

each point x of S and each non-negative integer n,

g(n+l,x) cg(n,x). A function having this additional property 

will be called a monotonie function.

4.7 Theorem. A regular T^ space X having a function

g which satisfies condition B is a Moore space having a develop­

ment of type B.
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Proof. Suppose g is a function which satisfies condition B .

It will be shown that g satisfies (II) and, hence, X is a 

wA-space. Suppose Xq ,x̂ ,̂X2  /... and ry2_rY2 » • * * sequences 

and X is a point of X such that both x and belong to g(n,Xj^) 

for each non-negative integer n. If Y = {yg,y2 /̂y2 /• • • } has 

no cluster point, then Y* = YlJ{x} is a countable, closed 

discrete subset of X. There is a positive integer k such that 

if p and q are distinct points of Y ‘, then st(p,G^)nst(q,G^J=#. 

But this is impossible since x and y^ both belong to g(k,x^). 

Thus, Y has a cluster point, and X is a wA-space.

If X and y are distinct points of X, there is a non­

negative integer k such that st(x,G^)Ost(y,G^) = <p. Conse­

quently X has a Gg*-diagonal. Hodel in [Ho 1; Theorem 2.5] 

showed that every wA- space with a Gg*-diagonal is developable. 

Every development H = Hg,H^,H2 ,... for X such that for each 

non-negative integer n, is a refinement of G^ is a develop­

ment of type B.

4.8 Theorem. A regular T^ space X having a function g 

which satisfies condition C is a Moore space having a develop­

ment of type C.

Proof. An argument identical to the one given for theorem 4.7 

also proves this result.
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4.9 Lemma. A regular space having a function g 

which satisfies one of conditions A', B', or C , satisfies 

property D.

Proof. Suppose g is a monotonie function satisfying one of 

the conditions A', B', or C . An argument essentially the 

same as the corresponding argument in Lemma 3.12, Lemma 3.13, 

or 3.14 will prove the respective result.

4.10 Theorem. For a regular space X containing no 

infinite, discrete, open and closed subset, the following 

statements are equivalent.

(1) X is a first countable, countably compact space.

(2) There is a function g for X which satisfies 

condition A'.

(3) There is a function g for X which satisfies 

condition B*.

(4) There is a function g for X which satisfies 

condition C .

Proof. Suppose X is a first countable, countably compact space. 

There is a function g such that for each point x of X,

{g(n,x) : new} is a base for the neighborhoods of x and, more­

over, g(n+l,x) c  g(n,x). This function g will satisfy each
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of the conditions A', B ’, and C , since the only discrete 

subsets of X are finite.

To show that each of the statements (2), (3), or (4) 

irplies that X is countably compact all that is needed is to 

repeat the corresponding argument from 3.17. Each point of 

X is a Gg assuming one of the statements (2), (3), or (4).

A countably compact space in which each point a Gg is first 

countable [V7i; 17F.7].

4.11 Remark. As a result of Theorem 4.10 none of 

conditions A', B', and C* imply developability. The space of 

countable ordinals with the usual order topology is a first 

countable^ countably compact space and, hence, has a function 

g satisfying each of conditions A', B', and C  but is not 

developable and not compact.

4.12 Theorem. For a first countable, regular T^ 

space X the following statements are equivalent:

(1) The set of all limit points of X is countably 

compact.

(2) There is a function g for X which satisfies 

condition A '.

(3) There is a function g for X which satisfies 
condition B*.
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(4) There is a function g for X which satisfies 

condition C*.

Proof. There is a function g from w % % to the topology of 

X satisfying (1) g(n,x) = {x} for each isolated point x of X 

and non-negative integer n, (2) for each limit point y of X, 

{g(n,y);neu} is a local base at y and, moreover, for each non­

negative integer n, g(n+l,y) c  g(n,y). This function g sat­

isfies condition A', B*, and C .

The implications (2) implies (1), (3) implies (1), and

(4) implies (1) are established by applying the respective 

parts of the proof of 3.17 to a monotonie function of the 

respective type.

V. SET THEORY

This section will provide a summary of the results 

from set theory which will be referred to in the remainder of 

this paper. The notation used will be essentially that found 

in Jech [Je]. The usual axioms for set theory, the Zermelo- 

Fraenkel axioms including the axiom of choice, will be denoted

by ZFC.
5.1 The continuum hypothesis, denoted CIL is the

assertion that 2^° is The notation c is used for 2^°.
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The work of Godel [Go] and Cohen [Co] showed that QH is 

independent of ZFCt
5.2 A topological space X is said to satisfy the 

countable chain condition if and only if there does not exist 

an uncountable pairwise disjoint collection of open subsets 

of X. Martin * s Axiom [Ma & So], denoted MA» is the asser­

tion that no compact, countable chain condition, Hausdorff 

space X is the union of fewer than c nowhere dense sets.

Note that CH implies It has been shown [Ma & So] that
MA together with the negation of CH is consistent with ZFCt

5.3 If a is a limit ordinal, the cofinality of a, 

denoted cf(a), is the least ordinal g such that there is a 

function f from g into a such that sup{f(x);xeg}= a.

5.4 The set “oj of all functions from w to w has two 

natural partial orders. If f and g are functions from w to 

w then f<g if and only if for each non-negative integer n, 

f(n)<g(n), and f<*g if and only if there is a positive integer 

m such that for each positive integer n greater than m,

f (n) <g(n).

5.5 A subset S of is called a scale if and only 

if for each fe^w there is a ge5 such that f<*g. A scale S
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which is well ordered by <* and order isomorphic to the 

ordinal a is called an a-scale.

5.6 A subset 3 of is called a dominating family 

if and only if for each fe^w there is a ge5 such that f<g.

5.7 Remark. If there is a scale with cardinality k , 

there is a dominating family of cardinality k .

5.8 In [He 1], Stephen Hechler showed (1) for each 

cardinal k such that w^^cf (tc) <_ k^c, it is consistent with ZFC 
that there exist a scale whose cardinality is k, (2) the 

existence of a scale with cardinality implies the existence 

of an w^-scale, and (3) f'!A implies all scales have cardinality 

c.

Hausdorff [Ha] showed that CH implies the existence of 
an w^-scale. A consequence of one of Hechler*s theorems 

[He 1; Theorem 8,1] is that for each cardinal k of uncountable 

cofinality, it is consistent with ZFC that there is a scale 
with cardinality and c = k. In particular, c may be assumed 

to have cofinality greater than

VI. UNCOUNTABLE COLLECTIONS OF COVERS

The results of previous sections showed that for 

regular T, spaces, which contain no infinite, discrete, closed
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and open subset, the statement s is a compact metric space 

is equivalent to each of the following statements: (I) S

satisfies A(w), (II) S satisfies B(w),

In the arguments which showed that each of statements

(I) and (II) imply compactness, it is shown that every infinite 

subset of S has a limit point. For an infinite cardinal <, a 

topological space having the property that each of its sub­

sets of cardinality k has a limit point will be called 

K-compact. In spaces, w^-compactness is equivalent to 

countable compactness. In this section cardinality k collec­

tions of open covers will be used to explore K-compact spaces.

6.1 Theorem. If ic is an infinite cardinal, and S is 

a regular space having property D(k ), satisfying either 

A(k ) or B(k ) and containing no infinite, discrete, open and 

closed subset of cardinality k , then S is K-compact.

Proof. Suppose the theorem is false. Then there exists a 

closed, discrete subset M = {x^iasK} of limit points of S.

There is a disjoint collection of open sets U = {U^:ae<} which 

satisfies the definition of property D(k ) for M and, moreover.

There is a cardinality k collection {G^:aeK} which 

satisfies condition A(k ). For each asK, let
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y„eü f|st(x ,G )-{x }. Then, the set Y = {y„:aex} is aU  CX U  U  vC> Ck

closed, discrete subset of S. There does not exist an aex 

such that st(M,G^) c S  - Y. This is a contradiction- If 

condition A(k ) is replaced by condition B(ic) and M* = MljY, 

a similar contradiction is reached.

6.2 Remark. Whether the converse to Theorem 6.1 is 

true, even for metric spaces, depends on the type of set theory 

assumed. The case for w^-compactness is of particular interest, 

since in metric spaces w^-compact, Lindelof, separable, and 

second countable are equivalent and important.

6.3 Theorem. CH implies that if S is a metric space 
which has no uncountable, closed and open subset, the follow­

ing are equivalent;

(1) S is (i3^-compact.

(2) S has a cardinality collection of open covers

which satisfy condition A(w^).

(3) S has a cardinality collection of open covers

which satisfy condition B(oj^).

Proof. That each of statements (2) and (3) imply statement (1)

follows from Theorem 6.1.
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If S is an w^-compact metric space, then there is a 

countable base B for the topology on S. There is a collection 

G consisting of all subsets of:B which cover S. The cardin­

ality of G is 0 )̂  and the collection G will satisfy either (2) 

or (3).

6.4 Example. If K<cf(c), there is a subspace S of 

the real line such that if G = {G^:ae<} is a collection of 

open covers of S, there is a closed, discrete subset D of S, 

such that if B e k ,  there is a member of G g  containing more than 

one point of D.

There is a subset S of the set R of real numbers such 

that both S and R-S have cardinality c and, moreover, both S 

and R-S intersect every uncountable, closed subset of R [Br]. 

Suppose there is a collection G = {G^:ae<} of open covers of 

S contrary to the claim. For each point t in the complement 

of S, there is a sequence tg,t^,t2 ,... of points of S which 

converges to t. The set of terms of this sequence is discrete 

and closed in the subspace topology of S. For each olzk, let 

T^ be the set of all points t belonging to R-S such that no 

member of G contains more than one point of the sequence 

tg,t^,t2 ,... . Since cf(c)>< and ^ ^ for some

aeic, T^ has cardinality c. The closure in R of T^ contains
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a point p of S. This point p belongs to some member V of G^. 

There is a set U open in R such that V = UflS. Moreover,

UflT^^ 4>. If teUriT, U contains a tail of the sequence 

^U'^1'^2'"'' associated with t, but then so does V. This is 

a contradiction.

6.5 Remark. In particular, the Example 6.7 shows 

that if w^<cf(c), there is no w^-cardinality collection of 

open covers of S which satisfies either condition A(u^) or 

condition B(w^) even though the example is w^-compactl Since 

a metric space has property D(<) for all k , the converse of 

Theorem 6.1 fails if w^<cf(c).

6.6 In what follows the space Y will denote the set 

to which a point x belongs if and only if x is a non-negative 

integer or for non-negative integers n and k, x = n -

The topology on Y is the subspace topology that Y inherits as

a closed subset of the set of real numbers with the usual

topology.

6.7 Lemma. If S is a metric space and the set of all

limit points of S is not compact, then S includes a closed

subspace which is homeomorphic to the space Y.

Proof. The set M of all limit points of S is not compact and
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thus not countably compact. Hence, M has a countably infinite 

subset D = with no limit point. Every metric

space satisfies property D, and, consequently, there is a 

disjoint collection U = {Uq,Ü^,Ü2 ,•..} with x^sU^ for all n, 

and which satisfies the condition in property D. For each n, 

there is a sequence Zo^,2 ^^,Z2 ^,... of distinct points of 

which converges to x^. The set X, to which a point belongs 

if and only if it is a point of D or it is z^ for some non­

negative integers n and k, is a closed subset of S homeomorphic 

to Y.

6.8 Lemma. If < is an infinite cardinal, there is a 

cardinality tc collection of open covers of Y which satisfies 

condition A(k) or B(k) if and only if there is a dominating 

family of cardinality k.

Proof. If G = {G^ïasK} is a collection of open covers of Y, 

define a function f^ for each asK as follows. For each non-negative 

integer n, let f^/n) = inf{i:i is a positive integer and

n - e st(n,G^)}. The set {f^:ae<} forms a dominating

family provided the collection of covers {G^iu ek} satisfies 

condition A(k ) or condition B(k ). For if ge^w, then

M = {n - : i ^ g(n) + 1 ,  and n e w} is a closed subset of
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Y. If {G^;a£K} satisfies condition A(<), there is an ae< such

that for each non-negative integer n, st(n,G^) c  Y - M. It

then follows that f^(n)>g(n) for each n. On the other hand, 

if G = {G^:aei<} satisfies condition B(k ) then D = MUw is a

closed discrete set, and there is an cek such that if x and y

are distinct points of D, then st(x,G^)nst(y,G^) = <j>. It again 

follows that f^(n)>g(n) for each n.

For the converse, if n and k are non-negative integers

and f G let U(n,k) = {n} [|{n-j^ : i ^ k} and

G^ = {{n - : n,k e w} U{u(n,f(n)):n e w}. If 5 is a

dominating family of cardinality K, then {G^:fe5} is a

cardinality ic collection of open covers of Y which satisfies 

both condition A(k ) and condition B(k ).

6.9 Theorem. If k is an infinite cardinal and S is 

a o-compact metric space whose set of limit points is not com­

pact, the following statements are equivalent:

(1) There is a dominating family of cardinality kt.

(2) There is a cardinality k collection of open 

covers of S satisfying condition A(<).

(3) There is a cardinality k collection of open covers 

of S satisfying condition B(c).
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Proof. Suppose there is a dominating family S with cardinal­

ity K. There is an increasing sequence PgfF^fFg,... of 

compact sets whose union is S. For each pair of non-negative

integers n and k, let be a cover of F^ by open balls,
k+1centered at a point x of F^, with radius less than 1/2 

For each geS define = 0,1,2,...}. Corres­

ponding to each closed discrete subset D of S, there is a 

function fe^w such that if x and y are distinct points of D, 

at least one of which belongs to F^, then d(x,y) > 1/2^^^^.

There is a ge5 such that g>f. If x and y are distinct points 

of D, St(x,Gg)flst(y,Gg) = <j>. This shows (1) implies (3). A 

similar argument shows the same collection also satisfies 

condition A(k ) and hence yields (1) implies (2).

The remaining implications are obtained by noting that 

by 6.7 S includes a closed subspace M which is homeomorphic 

to the space Y. The existence of a cardinality < collection 

of open covers satisfying either condition A(k) or condition 

B(k) is hereditary on closed subsets. Lemma 6.8 gives the 

desired result.

6.10 Remark. The next two results give interesting 

applications of Theorem 6.9 to the set R of real numbers. The
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set of rational numbers is denoted by Q, and the set of all 

discrete subsets of Q which are closed in R is denoted by P. 

The collection F has cardinality c.

6.11 Theorem. If there is a dominating family of 

cardinality and Uj^<cf(c), then every subcollection H of 

F with cardinality c has a subcollection H' with cardinality 

c and such that tjH' has no irrational limit point.

Proof. It follows with the aid of Theorem 6.9 there is a

collection G = {G^zaew^} of open covers of R which has the

following properties;

(1) For each closed, discrete subset D of R there is 

a such that if x and y are distinct points 

of D, then st(x,Gg)fjst(y,Gg) = c().

(2) For each acw^ the cardinality of G^ is .

(3) For each the cover G^ is locally finite.

For aeo), let G^ = {V^:n = 0,1,2,...}. For each non­

negative integer n, Xq^,x^^,X2 ^/•.. are the points of the set 

OflV̂ . There is a dominating family S with cardinality

For feS define {x, t<f (n) }. The sett neco t —
C = {Dg^:OEw^ and fe5} has cardinality at most being the 

union of collections each with cardinality Each

is a closed discrete subset of R,
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Suppose D belongs to F. There is an acw^ such that 

whenever x and y are distinct points of D, st (x,G^)f|st(y,G^)=<j>.

Define a function r from w to w as follows: If V ^ D  = <j>

then r(n) = 1 .  If V^flD  ̂ then V^fjD = {x^} for some non­

negative integer k. In this case define r(n) = k. There is a 

member f of 5 such that r<f. Then D ç” Thus every member

of F is contained in some member of C. If H is a subcollec­

tion of F having cardinality o, there is an aew^ and an feS 

with the property that includes each member of some cardi­

nality c subcollection H' of H. Then (jn' c  which is a 

closed discrete set.

6.12 Theorem. Assuming CHf there Is a subcollection 

H of F having cardinality c and such that if H' is any sub­

collection of H with cardinality c, then (jH* has an irrational 

limit point.

Proof. For each non-negative integer n, let Xq^,x^^,X2 ^#.•. 

denote the rational numbers in (n,n+l). CH implies there is 
an w^-scale S. For each fe5 let = {w^^:t£f(n) and 

n = 0,1,2,...}. Let H = {D^:fe5>. For each subset H' of H 

having cardinality c, 5' = {fe5:D^eH'} is cofinal in 5. Suppose 

for some subset H' of H having cardinality c, |JH' has no
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irrational limit point. For each non-negative integer n, 
there is a non-negative integer such that if i 2 then

. There is a function r from w to w such that

r(n) = k^ for each non-negative integer n. Moreover, there 

exists a function feS* such that r<*f, and a non-negative 

integer n such that r(n)< f(n). Thus which is a

contradiction.

6.13 Remark. Whether Theorem 6.9 remains true if 
a-compactness is replaced by a weaker condition as part of

its hypothesis is unknown to the author. Some of the results

which follow seem relevant to this question.

In Theorem 6.14 P is the set of irrational real numbers

with its usual subspace topology.

6.14 Theorem. The existence of a dominating family 

of cardinality k implies the existence of a cardinality < 

collection G = of open covers of

E having the property that if D is an infinite, closed, discrete

subset of P, in the subspace topology of P, and U is an open

set containing D, then there exist an uek and an infinite

subset D' of D such that st(D',G^) ^  U.
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Proof. There is a collection H = {H^taeic} of open covers of 

the set R of real numbers which satisfy a (ic) for R. For 

each point q of the set Q of rational numbers there is a

collection = {H^^iaeü} of open covers of the set R - {q}

which satisfies condition A(k ) for the space R - {q}.

If H' = H(J ((J{H^;qeQ}), the cardinality of H' is K .

For F'eH', let F = {vHpzVeF'} , and G = {F:F'eH'}.

If D is an infinite, closed, discrete subset of P 

which is also closed in R and U is a set open in P which 

contains D, there exist a set U' open in R and an azK such 

that U'flP = U and st(D,H^) d  Ü*. There is an FeG correspond­

ing to and st(D,F) c  U.

If D is an infinite, closed, discrete subset of P 

having a limit point q in Q, there is an infinite sequence 

Xq,x^,X2 #... of points of D which converges to q* The set 

X of all terms of this sequence is a closed discrete subset 

of R- {q}. If Ü is an open set in P containing X, then there 

exist a set U' open in R and an asK such that U'flp = u and 
st(D,H^^) Ç  Ü*. There is an FeG corresponding to and 

st(D,F) c Ü.
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6.15 Definition. A monotonie development Gg,

... for a Moore space is said to be semicomplete or Rudin 

complete [Ru] if and only if whenever Uq,Uj^,Ü2 /.. .is a 

sequence of sets such that for each non-negative integer

n, U^sG^ and 5  then 5  ̂0. A Moore space having

a semicomplete monotonie development is said to be semicom­

plete .

6.16 Definition. A development G = GgyG^/Gg,...

for a space S is said to be of type wB if and only if for each 

countably infinite, closed,discrete subset D of S there exist 

an infinite subset D* of D and a non-negative integer n such 

that if X and y are distinct points of D* then

st(x,G^)Rst (y,G^) = 0.

6.17 Theorem. Every monotonie development for a 

Moore space of type wB is semicomplete.

Proof. Suppose that Gq,G^,G2 ,... is a monotonie development

for the Moore space of type wB which is not semicomplete. Then

there is a sequence Ug,U^,U2 ,—  of open sets with the property

that U_EG_ and Ü7 i <= U for all n, such that (lu = 0. n n xifi — n n
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Let There is a least integer such that %o Z 9% *

Let X,eU . This process may be continued. The set X n^

X = { x^/X^,...} is a closed, discrete subset of S for which

the condition in type wB is not satisfied.

6.18 Theorem. A metric space is complete if and 

only if it has a development of type wB.

Proof. Suppose there is a development of type wB for the 

metric space X. By Theorem 6.17 X is semicomplete. M.E.

Rudin [Ru; Theorem 7] proved that for metric spaces semi­

completeness is equivalent to complete metrizability.

Conversely, suppose X has a complete metric d .

Let B(x,e) ={yeX:d(x,y)<e}.

For each non-negative integer n let 

= {b (x, 1/2^^^) :neN}. Let M be a countably infinite,

closed,discrete subset of X. For each non-negative integer n, 

A^={xeM:st(st(x,G^) ,G^)flM is finite). Suppose is finite



39

for each n. There is a point Xq e M-Aq . Then there is a 

point e St (st (Xq ,Gq ) ,Gq )0 M-Aĵ -{Xq }. There is a point

X2  e st(st(x^/G^) ,G^)flM-A2 --{xQ,Xĵ }. This process may be 

continued. The sequence XgfX^fXg,... of distinct points of 

X is Cauchy and hence converges to a point y. Thus y is a 

limit point of M which is impossible. Let k be a non-negative 

integer such that A^ is infinite. Let {agfa^ya^,...} be the 

points of A^. There is a least positive integer n^ such that

a^ i. st(st(ag,G^),G^J. There is a least positive integer ng

such that t st(st({am,a_} ,G, ) ,G, ). This process may beÏI2 U ^ ^

continued. The set A = {ag,a^ ,a^ ,...} has the property 

that if a and b are distinct members of A, then st(a,Gĵ )f| 

st(b,G^) = 0.

6.19 Remark. The author does not at this time know 

any interesting characterizations of the class of Moore spaces 

having developments of type wB.

The proof of Theorem 6.18 may be used to prove the 

following familiar result about metric spaces.
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Theorem. If X is a metric space having a metric d

and M is an infinite snbset of X with the property that any

Cauchy sequence of points of M is eventually constant, then 

there is an infinite subset M* of M and a positive number e

such that if X and y are distinct points of M', then

d(x,y) ^  e.

6.20. Theorem. If there is a dominating family with 

cardinality and S is an w^-compact metric space which is

the union of compact sets, there is a collection G of each 

type below.

(1) G = {G^taeo)^} is a collection of sets of open subsets of

S having the property that if D is a closed,

discrete subset of S, there is an aew^ such that 

G^ covers D and if x and y are distinct points 

of D, then S t(x,G^)flst(y,G^) = 4».

(2) G = {G^:acw^} is a collection of sets of open subsets of
S having the property that if D is a closed, dis­
crete subset of S and ü is an open set including 
D, there is an such that G^ covers D and

st(D,G^)c:U.
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Proof. There is a collection {Fg^aew^} of compact subsets of 

S whose union is S. For each asw^ the collection {F^igea} is 

a countable collection of compact sets. Use the construction 

in the proof of Theorem 6.9 to show the existence of a 

cardinality collection of open covers of U{Fg:6Ea} satisfy­

ing the condition (1) and (2) for any closed, discrete sub­

set which is contained in U^F^tgea}.

If G is the union of all the collections for each aew^, 

then G is the union of collections each having members 

and hence G has cardinality The collection G has the

desired properties since if D is a closed discrete subset of 

S, then for some aew^, D ç  lj{Fg:g£a}.

6.21 Remark. If there is a dominating family of 

cardinality then the irrationals— indeed, every metric 

space which is the continuous image of the irrationals— is m^- 

compact and is the union of a cardinality collection of 

compact sets (see [He 2] ). If CH is false, then the space 
of Example 6.4 is not the union of a cardinality collection 

of compact sets.
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