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COLLECTIONS OF COVERS WHICH IMPLY COMPACTNESS
I. INTRODUCTION

The metrization problem is one of the most interesting
and fruitful problems in general topology. It has been the
motivation for the study of many classes of topological spaces
which generalize the concept of a metric space. Some of the
more important spaces of this type are Moore spaces, quasi-
developable spaces, wA-spaces, and first countable spaces.

Many of these classes of generalized metric spaces can
be characterized by the existence of a countable collection of
open covers for the space which satisfy some condition. A
natural question is whether there aie conditions which could
be placed on these defining collections of covers which would
imply familiar topological properties. This paper will supply
some conditions which characterize compactness and related pro-
perties.

The question of what happens if uncountable collections
of covers are used instead of countable collections will ke
examined in a subsequent section. Conditions will be given for
these uncountable collections of covers which imply certain sets

have limit points. This case seems to be more complex than the
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corresponding case for countable collections, and, as might
be expected, the results depend on the type of set theory

assumed.
II. DEFINITIONS

2.1 If M is a set, X is a point,and G is a collection
of sets, then star (M,G) denoted st(M;G) is |{VeG:MAV#b};

st (x,G) = st({x},G). A sequence G = GO'Gl’GZ"” of open

covers of a topological space S is called a development for S

if and only if for each xS and open set U containing x

P

there is a non~-negative integer n such that st(x,Gn)‘g;U. A

space which admits a development is said to be a developable

-space, while a regular T, developable space is called a Moore

space.

2.2 A development G = GO’Gl’GZ"" fcr a topological
space S is said to be monotonic if and only if G431 € G, for
each non-negative integer n.

2.3 A monotonic development G = GO’Gl'GZ"°‘ for a

Moore space S is said to have the 3-link property if and only

-

if for each pair p and g of points of S there is a non-negative
integer n such that if U and V are mutually exclusive members
of Gn containing p and g respectively then nc member of Gn has

nonempty intersection with both U and V.
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2.4 A nonempty subset M of a topological space S is
said to be discrete if and only if for each point x of M
there is an open set U such that UMM = {x}. Thus, a discrete
subset of a space S need not be closed in S. A collection of
sets is discrete if the closures of the sets are mutually ex-
clusive and the union of any subcollection of these closures
is closed.

2.5 An ordinal number is the set of all ordinals which
precede it. Throughout this paper w and Wy will denote the
set of all finite ordinals and k will denote an infinite car-
dinal number.

2.6 A topological space S is said to have property
D(k) if and only if for each closed discrete subset M of S

with cardinality at most k there is a collection H of mutually
exclusive open sets such that (1) H covers M and each member
of H contains only one point of M, and (2) if N is a set
covered by H such that each member of H contains only one
point of N then N has no limit point. A space which has pro-

perty D(w) is said to have property D (see [Mo; page 69]). 2A

space S is said to have property wD (see J.E. Vaughan [Va])
if and only if for each countably infinite, closed, discrete

subset M of S there exist an infinite subset M' of M and a



disjoint open cover H of M' satisfying the condition of

property D with M replaced by M'.

2.7 If P is a property of topological spaces, then
a topological space S is said to be P-closed if and only if
S is a closed subspace of every space having property P which
contains it. In this paper the class of Mooré-c1osed spaces
will be of interest. Most of the results about Moore-closed

spaces used here can be found in the papers of J.W. Green

[Gr 1] and [Gr 2] .

2.8 Borges [Bo] defines a topological space S to be
a wA-space if and only if there is a sequence GO'Gl'GZ"°' of
open covers of S such that if FO,Fl,Fz,... is a decreasing
sequence of nonempty, closed subsets of S and there is a point
x of S such that Fn c st(x,Gn) for each non-negative integer

n, then ﬂ{Fn : n=0,1,2,...} #¢.

2.9 According to Hodel [Ho 1], a space S is said to

have a G§-diagonal if and only if there is a sequence Go,Gl,

G,s... Of open covers of S such that if x and y are distinct

points of S, there is a non-negative integer n such that

y £ sth,Gni.



III. MOORE SPACES

In [Gr 2; Theorem 1.6] J.W. Green obtained the follow-
ing result:

Theorem. A Moore space not having infinitely many
isolated points is compact if and only if there is a monotonic
development G = GO’Gl'GZ"" such that (*) if H = HO'HI'HZ"°’
is a monotonic development, there is an increasing sequence
NgsNysNyrees of non-negative integers such that for each i,

Gn- refines Hi. Furthermore, a monotonic development G for a
i

compact Moore space satisfies (*) if and only if G has the
three-link property.

In this section several types of developments which
imply results similar to (*) in Green's theorem will be in-
vestigated.

3.1 Definition. If x is an infinite cardinal, a

cardinality k collection G = {Ga:aex} of open covers of a

topological space S is said to satisfy condition A(x) if and

only if for each closed, discrete subset M of S and open set
U containing M there is an %exk such that st(M,Gy) ¢ U.

3.2 Definition. If k is an infinite cardinal, a

cardinality x collection G = {G,:%ex} of open covers of a
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topological space S is said to satisfy condition B(x) if and

only if for eachi closed, discrete subset M of S there is an
ack such that if x and y are distinct points of M, then
st(xG ) Nst(y,G) = ¢.

3.3 Definition. A space S is said to satisfy condition

A(k) or B(k) if it has a collection of covers satisfying that
condition.

3.4 Remark. A collection of covers for a T1 space
which satisfies condition A(w) is a development. A developable
space satisfying A(w) or B(w) has a development which satisfies
that con&ition. A development which satisfies condition A(w)
is said to be of type A and a development which satisfies
condition B(w) is said to be of type B. Spaces having develop-
ments of type A and type B as well as some modifications of

+those conditions will be examined in this section.

3.5 Definition. A development G = GO'Gl'G2’°" for
a space S is said to be of type wA if and only if for each
countably infinite, closed, discrete subset D of S and open
set U including D, there exist an infinite subset D' of D and
a non-negative integer n such that st(D',Gn) c U.

3.6 Definition. A development G = G Gy rCpreee for

a space S is said to be of type C if and only if £for each
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disjoint pair of countable, closed, discrete subsets D and E
of S, there exists a non-negative integer n such that
st(D,Gn)nst(E,Gn) = ¢.

3.7 Definition. A development G = GO'Gl'Gz"” for

a space S is said to be of type wC if and only if for each
pair of countably infinite, closed, discrete éubsets D and E
of S there exist an infinite subset D' of D and a non-negative
integer n such that st(DﬂGn)ﬂst(E,Gn) = ¢.

3.8 Definition. A development G = GO'Gl'Gz"" for

a space S is said to be of type E if and only if for each
countably infinite, closed, discrete subset D of S there is
an infinite subset D' cf D and a non-negative integer n such
that if x and y are distinct points of D', then

st(st(x,Gn ),Gn)ﬂst(st(y,Gn),Gn) = ¢.

3.9 Remark. If S is a compact Moore space, the only
closed, discrete subsets of S are finite. Hence it follows
that every development for a compact Moore space is of each
of the types defined in 3.4 through 3.8.

3.10 Theorem. If a Moore space S is the disjoint
union of sets K and M where K is compact and each point of M

is an isolated point of S, then S is a metrizable space having



a development which is of each type defined in 3.4 through

3.8.

Proof. S is paracompact and R.H. Bing [Bi] proved that

paracompact Moore spaces are metrizable. There exist a

metric d for S and for each non-negative integer n, a finite

cover Hn of K by d-open balls each of which is centered at

some point of K and has radius at most l/2n. If

Gn'= an{{x}:xeM} for each non-negative integer n, then GO'Gl'GZ"’°

is a development for S. It is readily verified that this

development is of each of the types defined in 3.4 through 3.8.
3.11 Lemma. A space which has a development of one

of the types defined in 3.4 througl 3.8 has a monotonic develop-

ment of that type.

Proof. 1If GO'Gl’GZ"" is a development of one of the types

defined in 3.4 through 3.8 and H = Ho’Hl'HZ"" is a develop-

ment such that for each non-negative integer n, Hn refines

Gn' then H is a development of the respective type. Moreover,

for each development G = GO’Gl'GZ"" there is a monotonic

development H = HO’Hl'HZ"“ with Hn a refinement of Gn for

each non-negative integer n.

3.12 Lemma. A Moore space S having a development of

type A satisfies proverty D.
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Proof. Suppose, on the contrary, that S has a development of
type A but fails to have property D. Thus, there is a closed,
discrete, countable set M = {x,,X;,X,,...} such that if |
{Uo,Ul,U2,...} is a disjoint collection of open sets covering
M each member of which contains exactly one point of M, then
there is a sequence ZgrZyrZyr0-- such tﬁat for each n, z,
belongs to Un and the sequence ZGrZyrZorecs has a limit point.
Let {UO’Ul'UZ”"} be a pairwise disjoint open cover
of M such that x,€U0,. Let G = GO'Gl’GZ"" be a monotonic
development for S of type A. There is a least positive inte-

0 0
ger n, such that st(M,G_ ) cl U, - Let zoo,zl 125 r-.. be a

0 n>0
sequence of points having a limit point Yo such that zn0 belongs
to the set st(xn,Gno) nUn. There exist an open set V0 containing
Yo whose closure misses M and a least positive integer n,

greater than n, and such that st(M,G, ) c s-V,. Let zé,zi,z%,...

1 0
be a sequence of points having a limit point Yq such that znl
belongs to the set st(xn,Gnl)ﬂUn. Let Vl be an open set con-
taining ¥q whose closure misses M. This process may be con-
tinued.

If Y = {YO'yl'YZ""} is a closed subset of S, there

is an open set W including Y whose closure misses M.
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Consequently, there is a positive integer k such that

st(M,Gk) c S - w. But, the sequence z()k,zlk,zzk

geee 1S
included in st(M,Gk) and has a limit point Yy contained in W,
which is impossible.

If Y = {YO'yl'YZ""} has a limit point y, then let
M' = M-{y}. Let W be an open set containing y whose closure
misses M'. There is a non-negative integer k such that
st (M' ,Gk) cSs - W, and there is a positive integer i greater
than k such that Y is contained in W. The sequence

i i
29 121 12

i,... except for at most one point is contained
in st(M', k) and has a limit point Y; belonging to W, which
is impossible.

3.13 Lemma. A Moore space S having a development of

type B satisfies property D.

Proof. Suppose the contrary and M is as in the proof of

lemma 3.12. There is a monotonic development G = GO,Gl,Gz,.}.
for S of type B, and a least non-negative integer n, such that
if p and g are distinct points of M then st(p,Gn MIst(q,Gn )=6.
c 0
0 0

. 0 .
Moreover, there is a sequence Z4 ,z1 1Zo reee with

zioest(xi,GnO) for each i, and having a limit point Yo- Let

M0 = M[Hyo}. There is a least positive integer ny greater
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than n, such that if p and g are distinct points of Mo then

st(p,Gn )nst(q,Gn ) = ¢. Moreover, there is a sequence
1 1l

201,211,221,... with zi1 € st(xi,Gnl), and having 2 limit
point Yyie Let Ml = MOU{yl}. This process may be continued.

Now Y = {YO'Yl’yz""} is a discrete sequence of points.

If Y is closed let N = M|Jt. If Y is not closed, let y be a
limit point of Y and N = M{J{y}. In either case, N is a
countable, closed, discrete subset of S for which there does
not exist a non-negative integer k such that if p and g are
distinct points of N, then st(p,Gk)nst(q,Gk) = ¢. This is a
contradiction.

3.14 Lemma. A Moore space S having a development of
type C satisfies property D.

Proof. The proof of this jemma is very similar to the'proofs
of Lemmas 3.12 and 3.13.

3.15 Lemma. If S is a Moore space containing no
infinite, discrete, closed and open subset and having a develop-
ment of type wA, then S is Moore-closed.

Proof. Suppose S is not Moore-closed. By Theorem 5 of [Re]
there is an infinite discrete open collection U. There exist

an infinite set X = {xc,xl,xz,...} of points and a
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subcollection {Uo,Ul,U } of U such that X is a limit

2'.--
point of Un for each non~-negative integer n. Let GO’Gl’GZ""

be a monotonic development for S of type wA. There is a set

Y = {YG'Yl'Y2’°“} such that for each non-negative integer n

Y € st(xn,Gn)nUn-{xn}. It follows that Y is a closed subset
of S, and there exist a positive integer k and an infinite
subset X' of X such that st(X', k)’95s - Y. This is a con-
tradiction.

3.16 Lemma. If S is a Moore space containing no
infinite, discrete, closed, and open subset, and having a
development of type wC, then S is Moore-closed.

Proof. This Lemma mav be established by a modification of the
proof of Lemma 3.15.

3.17 Theorem. If S is a Moore space containing no
infinite, discrete, open and closed subset, the following
statements are equivalent:

(1) S is a compact metric space.

(2) S has a development of type A.

(3) S has a development of type B.

(4) S has a development of type C.

(5) S has a development of type wA and satisfies

property wD.
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(6) S has a development of type wC and satisfies
property wbD.
(7) S is Moore-closed and has a development of

type E.

Proof: As indicated in 3.7, (1) implies (2) - (7). Suppose
(2) holds but S is not compact. Suppose G = GO'Gl'G2'°" is
a monotonic development of type A for S. Now a non-compact
Moore space is not countably compact. It follows that there
is a countably infinite subset M = {XO’xl'XZ"”} of limit
points of S such that M has no limit point. By lemma 3.12

S has property D and thus there is a disjoint collection

U= {Uo’Ul'UZ""} such that x €U and if T is any set such
that each point of T belongs to some member of the collection

U and no member of U contains more than one point of T, then
T has no limit point. For each non-negative integer n, let
¥, be a point of st(an%QnUA—{xn}. Then, ¥ = {yo,yl,yz,...} is
a closed subset of S. Moreover, there is a non-negative integer
k such that st(M,Gk) © S - Y. This is impossible since Yy is
a point of st(M,Gk). Hence (2) implies (1).
The arguments that (3) implies (1) and (4) implies (1)

are analogous.
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If S has a development of type wA or wC, then S is
Moore-closed. A Moore-closed space with property wD is com-
pact by the proof of Theorem 2.10 of [Gr 1].

Suppose S 1is Moore-closéd and G = GO’Gl’GZ"" is a
monotonic development for S of type E. Moreover, suppose S
fails to be compact. There is a countably infinite subset M
of S which has no limit point. Also, there exist an infinite
subset M' of M and a non-negative integer k such that if x and
y are distinct points of M' then st (st(x,Gk) ,Gk)ﬂst(st(y,Gk) ,Gk)=¢.
By Theorem 7 of [Re] there is a finite set {zo,zl,zz,...,zn}

such that for each point x of S, there are intersecting members

Vv and W of G, such that x belongs to V and W contains at least

k
one of the points Zor2ZyrZyresesZye But then, for s;ome non-
negative integer i, z; belongs to the set st(st(x,Gk),Gk) for
infinitely many points x of M'. This is a contradiction.
Thus, (7) implies (1).

3.18 Theorem. For a Moore space S, the following

statements are equivalent:

(1) S is a Moore space which is the union of a compact

set and a discrete set.

(2) S is a metric space and the set of all limit

points of S is compact.
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(3) S has a development of type A.

(4) S has a development of type B.

(5) S has a development of type C.

Proof. That (1) implies (2) is Theorem 3.10. The remaining
implications can be shown by a slight modification of the
proof of Theorem 3.17.

3.19. Remark. The previous results may be used to
prové the following familiar theorem which gives metric space
analogues of developments of types A, B, and C.

Theorem. A metric space X having at most finitely
many isolated points is compact if and only if there is a
metric d for X which satisfies at least one of the properties:

(1) If M is a countable, closed, discrete subset of
X and U is an open set containing M, there is
a positive number € such that the d-open neighbor-
hood of M of radius € is a subset of U.

(2) If M is a countable, closed, discrete subset of X,
there is a positive number € such that if x and vy
are distinct points of M, then d(x,y) > €.

(3) If M and N are disjoint, countable, closed, dis-
crete subsets of X, there is a positive number ¢

such that 4(M,N) > €.
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3.19 An interesting generalization of development,
due to E.E. Grace [Be], is the concept of a quasi-development.
A sequence G = Gl'Gz'G3'“" of collections of open subsets of

a topological space S is called a guasi-development for S

provided for each point p of S and open set U containing p
there is a positive integer n such that some member of Gn

contains p and st(p,Gn) c U.

3.20 Definition. A quasi-development G = Gl'Gz'G3""
for a space § is said to be of type B if and only if for every
countable, closed, discrete subset D of S, there exists a
positive integer n such that Gn covers D, and if x and y are

distinct points of D then st(x,Gn)ﬂst(y,Gn) = ¢.

3.21 Definition. A gquasi-development G = G1+G2,G3/-.
for a space S is said to be of type C if and only if for every
disjoint pair of countable, closed, discrete subsets D and E
of S, there exists a positive integer n such that Gn covers
both D and E and st(D,Gn)nst(E,Gn) = ¢.

3.22 Theorem. If S is a regular Tl’ quasi-developable
space containingno infinite, discrete, closed and open subset,

the following statements are equivalent:
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(1) S is compact metric.
(2) S has a quasi-development of type B.
(3) S has a quasi-development of type C.

Proof. That (1) implies (2) and (3) follows from Theorem 3.17.

Modifying the arguments, only slightly, it can be
shown first that (3) or (2) implies that S satisfies property
D, and then that S is countably compact. H. H. Wicke and
J. M. Worrell showed in [Wi and Wo; Theorem 2.10] tcthat count-

ably compact quasi-developable spaces are compact metric.

IV. FIRST COUNTABLE SPACES

Heath in [He] and Hodel in [Ho 2] gave elegant char-
acterizations of various classes of generalized metric spaces.
Suppose X is a topological space, and g is a function from
w X X to the topologv on X such that for each point x of X
and each non-negative integer n, x belongs to g(n,x). They
found that placing conditions on g yields characterizations of
familiar classes of topological spiaces. For ezample, consider
these conditions:

(I) If x belongs to g(n,xn) and Yo belongs to

g(n,xn) for each n, then x is a cluster point of

the sequence Yor¥yr¥oreee -
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(II) If x belongs to g(n,xn) and Yn belongs to
g(n,xn) for each n, then the sequence
Yor¥yr¥oress has a cluster point.
(ITII) If X, belongs to g(n,x) for each n, then x is
a cluster point of the sequence XgrXysXgreee o
Heath [He] showed that (I) characteri%es developable
spaces, while Hodel [Ho 2] showed that (II) characterizes
wA-spaces and (III) characterizes first countable spaces.
This approach suggests the definitions which follow.

Throughout this section g will be a function from

w X X into the topology on X such that for each point x of X
and non-negative integer n, x belongs to g(n,x). For each

non-negative integer n, G_ = {g(n,x):xeX} is an open cover of

n

X.

4.1 Definition. The function g is said to satisfy

condition B if and only if the collection G = {Go,Gl,GZ,...}

satisfies condition B(w).

4.2 Definition. The fur-:’on g is said to satisfy

condition A' if and only if for each countable, closed, discrete

subset D of X and open set U containing D there is a non-negative

integer k such that if x € D then a(k,x) c U.
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4.3 Definition. Tb~ function g is said zo satisfy

condition B' if and only if for each countable, closed,

discrete subset D of X there is a non-negative integer k -such
that if x and y are distinct points of D then g(k,x)Ng(k,y)=¢.

4.4 Definition. The function g is said to satisfy

condition C if and only if for each disjoint pair D and E of

countable. closed, discrete subsets ¢f X there is a non-
negative integer k such that st(D,Gk)nst(E,Gk) = ¢.

4.5 Definition. The function g is said to satisfy

condition C' if and only if for each disjoint pair D and E of

countable, closed, discrete subsets of X there is a non-negative
integer k such that if x belongs to D and y belongs to E, then
g(k,x)Ng(k,y) = ¢.

4.6 Remark. If there is a function which satisfies
one of the conditions in definitions 4.1 through 4.5, then
there is a function g satisfying that condition such that for
each point x of S and each non-negative integer n,
g(n+l,x) < g(n,x). A function having this additional property

will be called a monotonic function.

4.7 Theorem. A regular Tl space X having a function
g which satisfies condition B is a Moore space having a develop-

ment of type B.
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Proof. Suppose g is a function which satisfies condition B .
It will be shown that g satisfies (II) and, hence, X is a
wA-space. Suppose XgrXyrXgreeo and Ygr¥ys¥pse-. are sequences
and x is a point of X such that both x and Yp belong to g(n,xn)
for each non-negative integer n. If Y = {YO’Yl’yzf"'} has
no cluster point, then ¥Y' = Y|/{x} is a countable, closed
discrete subset of X. There is a positive integer k such that
if p and g are distinct points of ¥', then st(p,Gk)nst(q,Gk)=¢.
But this is impossible since x and Y both belong to g(k,xk).
Thus, Y has a cluster point, and X is a wA-space.

If x and y are distinct points of X, there is a non-
negative integer k such that st(x,Gk)nst(y,Gk) = ¢. Conse-
quently X has a GG*-diagonal. Hodel in [Ho 1; Theorem 2.5]
showed that every wA- space with a GG*-diagonal is developable.
Every development H = HO’Hl’H2’°" for X such that for each
non-negative irteger n, Hn is a refinement of Gn is a develop-
ment of type B.

4.8 Theorem. A regular Tl space X having a function g
which satisfies condition C is a Moore space having a develop-
ment of type C.

Proof. An argument identical to the one given for theorem 4.7

also proves this result.
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4.9 Lemma. A regular Tl space having a function g
which satisfies one of conditions A', B', or C', satisfies
property D.

Préof. Suppose g is a monotonic function satisfying one of
the conditions A', B', or C'. An argument essentially the
same as the corresponding argument in Lemma 3.12, Lemma 3.13,
or 3.14 will prove the respective result.

4.10 Theorem. For a regular Tl space X containing no
infinite, discrete, open and closed subset, the following
statements are equivalent.

(1) X is a first countable, countably compact space.

(2) There is a function g for X which satisfies

condition A'.
(3) There is a function g for X which satisfies
condition B'.
(4) There is a function g for X which satisfies
condition C'.
Proof. Suppose Xis a first countable, countably compact space.
There is a function g such that for each point x of X,
{g(n,x) : new} is a base for the neighborhoods of x and, more-

over, g(n+l,x) < g(n,x). This function g will satisfy each
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of the conditions A', B', and C', since the only discrete
subsets of X are finite.

To show thatveach of the statements (2), (3), or (4)
implies that X is countably compact all that is needed is to
repeat the corresponding argument from 3.17. ZEZach point of
X is a GG assuming one ©of the statements (2), (3), or (4).
A ccuntably compact space in which each point is a G(S is first
countable [Wi;1l7F.7].

4.11 Remark. As a result of Theorem 4.10 none of
conditions A', B', and C' imply developability. The space of
countable ordinals with the usual order topology is a first
countable, countably compact space and, hence, has a function
g satisfying each of conditions A’, B', and C' but is not
developable and not compact.

4.12 Theorem. For a first countable, regular Tl
space X the following statements are equivalent:

(1) The set of all limit points of X is countably

compact.

(2) There is a function g for X which satisfies

condition A'.

(3) There is a function g for X which satisfies

condition B',
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(4) There is a function g for X which satisfies
condition C'.

Proof. There is a function g from w X X to the topology of
X éatisfying (1) g(n,x) = {x} for each isolated point x of X
and non-negative integer n, (2) for each limit point y of X,
{g(n,y):new} is a local base at y and, moreover, for each non-
negative integer n, g(n+l,y) < g(n,y). This function g sat-
isfies condition A', B', and C'.

The implications (2) implies (1), (3) implies (1), and
(4) implies (1) are established by applying the respective
parts of the proof of 3.17 to a monotonic function of the

respective type.

V. SET THEORY

This section will provide a summary of the results
from set theory which will be referred to in the remainder of
this paper. The notation used will be essentially that found
in Jech [Je]l. The usual axioms for set theory, the Zermelo-
Fraenkel axioms including the axiom of choice, will be denoted
by ZFC,

5.1 The continuum hypothesis, denoted (l{, is the

assertion that 2% jg w, . The notation c is used for 2“°.
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The work of G&del [Go] and Cohen [Co] showed that (H is

independent of 7F(,
5.2 A topological space X is said to satisfy the

countable chain condition if and only if there does not exist

an uncountacle pairwise disjoint collection of open subsets

of X. Martin's Axiom [Ma & So], denoted MA, is the asser-

tion that no compact, countable chain condition, Hausdorff
space X is the union of fewer than ¢ nowhere dense sets.

Note that (H implies MA. It has been shown [Ma & So] that

MA together with the negation of (H is consistent with 7F(,

5.3 If o is a limit ordinal, the cofinality of a,

denoted cf(a), is the least ordinal B such that there is a
function f from B into o such that sup{f(x):xeB}=a.

5.4 The set Yy of all functions from w to w has two
natural partial orders. If £ and g are functions from w to
w then f£<g if and only if for each non-negative integer n,
f(n)<g(n), and f<*g if and only if there is a positive integer
m such that for each positive integef n greater than m,
f(n)<g(n).

5.5 A subset S of “u is called a scale if and only

if for each fe“w there is a geS such that f<*g. A scale S
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which is well ordered by <* and order isomorphic to the
ordinal a is called an a-scale.

5.6 A subset 5 of “u is called a dominating family

if and only if for each fe%w there is a geS such that f<g.

5.7 Remark. If there is a scale with cardinality k,
there is a dominating family of cardinality «.

5.8 In [Hc 1], Stephen EHechler showed (1) for each
cardinal « such tiat w;<cf(x)< «<c, it is consistent with ZF(C
that there exist a scale whose cardinality is «k, (2) the
existence of a scale with cardinality Wy implies the existence
of an wl-scale, and (3) JMA implies all scales have cardinality
~ .

Hausdorff [Ha] showed that (H implies the existence of
an ml-scale. A consequence of one of Hechler's theorems
[He 1; Theorem 8.1] is that for each cardinal k of uncountable
cofinality, it is consistent with /F( that there is a scale
with cardinality Wy and ¢ = k. In particular, c may be assumed

to have cofinality greater than Wy -

VI. UNCOUNTABLE COLLECTIONS OF COVERS

The results of previous sections showed that for

regular T, spaces, which contain no infinite, discrete, closed
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and open subset, the statement s is a ccmpact metric space
is equivalent to each of the following statements: (I) S
satisfies A(w), (II) S satisfies B(w).

In the arguments which showed that each of stétements
(I) and (II) imply compactness, it is shown that every infinite
subset of S has a limit point. For an infinite cardinal k, a
topological space having the property that each of its sub-
sets of cardinality k has a limit point will be called
K—compact. In T1 spaces, wo-compactness is equivalent to
countable compactness. In this section cardinality k collec-
tions of open covers will be used to explore «-compact spaces.

6.1 Theorem. If ¥ is an infinite cardinal, and S is
a regular Tl space having property D(k), satisfying either
A(k) or B(x) and containing no infinite, discrete, open and
closed subset of cardinality «, then S is k-compact.
Proof. Suppose the theorem is false. Then there exists a
closed, discrete subset M = {xa:asz} of limit points of S.
There is a disjoint collection of open sets U = {Ua:QEK} which
satisfies the definition of property D(x) for M and, moreover,
Xana.

There is a cardinality Kk collection {Ga:aan} which

satisfies condition A(x). PFor each oexk, let
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yananst(xa,Ga)-{xa}. Then, the set ¥ = {y_ :aex} is a
closed, discrete subset of S. .There does not exist an asgk
such that st(M,G,) =S - Y. This is a contradiction. If
condition A(k) is replaced by condition B(k) and M' = MUY,
a similar contradiction is reached.

6.2 Remark. Whether the converse to Theorem 6.1 is
true, even for metric spaces, depends on the type of set theory
assumed. The case for wl-compactness is of particular interest,
since in metric spaces wl-compact, Lindeldf, separable, and
second countable are equivalent and important.

6.3 Theorem. (H implies that if S is a metric space
which has no uncountable, closed and open subset, the follow-
ing are equivalent:

(1) S is wl-compact.

(2) s hés a cardinality wy collection of open covers

which satisfy condition A(ml).
(3) S has a cardinality Wy collection of open covefs
wilich satisfy condition B(wl).
Proof. That each of statements (2) and (3) imply statement (1)

follows from Theorem 6.1.
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If S is an wl-compact metric space, then there is a
countable base B for the topology on S. There is a collection
G consisting of all subsets ofiB which cover S. The cardin-
ality of G is Wy and the collection G will satisfy either (2)
or (3).

6.4 Example. If «k<cf(c), there is a subspace S of
the real line such that if G = {Ga:asn} is a collection of
open covers of S, there is a closed, discrete subset D of S,
such that if Bex, there is a member of GB containing more than
one point of D.

There is a subset S of the set R of real numbers such
that both S and R-S have cardinality ¢ and, moreover, both S
and R-S intersect everv uncountable, closed subset of R [Br].
Suppose there is a collection G = {Ga:aem} of open covers of
S contrary to the claim. For each point t in the complement
of S, there is a sequence tO’tl'tZ"“ of points of S which
converges to t. The set of terms of this sequence is discrete
ané closed in the subspace topology of S. For each aek, let
Ta be the set of all points t belonging to R-S such that no
member of G contains more than one poinﬁ of the sequence

= R - S for some

tO’tl’tZ"" . Since cf(c)>k and UaeKTa

aceK, Ta has cardinality c. The closure in R of Ta contains
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a point p of S. This point p belongs to some member V of Ga'
There is a set U open in R such that V = UNS. Moreover,
UﬂTa# d. If teUﬂT, U contains a tail of the sequence
td’tl'tZ"" associated with t, but then so does V. This is
a contradiction.

6.5 Remark. In particular, the Example 6.7 shows
that if w1<cf(c), there is no wl-cardinality collection of
open covers of S which satisfies either condition A(ml) or
condition B(ml) even though the example is wl-compact! Since
a metric space has property D(k) for all k, the converse of
Theorem 6.1 fails if m1<cf(c).

6.6 In what follows the space Y will denote the set
to which a point x belongs if and only if x is a non-negative
integer or for non-negative integers n and k, x = n - E—%fiu
The topology on Y is the subspace topology that Y inherits as
a closed subset of the set of real numbers with the usual
topology.

6.7 Lemma. If S is a metric space and the set of all
limit points of S is not compact, then S includes a closed
subspace which is homeomorphic to the space Y.

Proof. The set M of all limit points of S is not compact and
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thus not countably compact. Hence, M has a countably infinite
subset D = {xo,xl,xz,...} with no limit point. Every metric
space satisfies property D, and, consequently, there is a
disjoint collection U = {Uo,Ul,Uz,...} with x eU  for all n,
and which satisfies the condition in property D. For each n,

. n
there is a sequence zj ,zln,zzn

re+.. Of distinct points of Un
which converges to X The set X, to which a point belongs

if and only if it is a point of D or it is znk for some non-
negative integers n and k, is a closed subset of S homeomorphic
to Y.

6.8 Lemma. If « is an infinite cardinal, there is a
cardinality « collection of open covers of Y which satisfies
condition A(k) or B(k) if and only if there is a dominating
family of cardinality «.

Proof. If G = {Ga:aek} is a collection of open covers of ¥,
define a function fa for each aek as follows. For each non-negative
integer n, let fa{n)== inf{i:i is a positive integer and

n - I%— € st(n,Ga)}. The set {fa:aex} forms a dominating

family provided the collection of covers {Ga:GEK} satisfies

condition A(k) or condition B(k). For if geww, then

M= {n -~ 5%7 :1i<g(n) +1, and n € w} is a closed subset of
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Y. If {Ga:aeK} satisfies condition A(k), there is an aek such
that for each non-negative integer n, st(n,Ga) cY - M It
then follows that fa(n)>g(n) for each n. On the other hand,
iva = {G :aex} satisfies condition B(x) then D = MUus is a
closed discrete set, and there is an aek such that if x and y
are distinct points of D, then st(x,Ga)nst(y,Ga) = ¢. It again
follows that fa(n)>g(n) for each n.

For the converse, if n and k are non-negative integers

w

and £ € "w, let U(n,k) = {n}[ﬂn—Iéi : 1 > k} and

Ge = {{n - Eéf} :n,k € w} Y{u@n,fMn)):n ¢ w}. If S is a
dominating family of cardinality «, then {Gf:feS} is a
cardinality k collection of open covers of Y which satisfies
both condition A(k) and condition B(k).

6.9 Theorem. If « is an infinite cardinal and S is
a o-compact metric space whose set of limit points is not com-~
pact, the following statements are equivalent:

(1) There is a dominating family of cardinality «.

(2) There is a cardinality k collection of open

covers of S satisfying condition A(k).

(3) There is a cardinality k collection of open covers

of S satisfying condition B(k).
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Proof. Suppose there is a dominating family S with cardinal-
ity kK. There is an increasing sequence FO'Fl’Fz"" of
compact sets whose union is S. For each pair of non-negative

k

integers n and k, let Gn be a cover of Fn by open balls,

centered at a point x of Fn’ with radius less than l/2k+1.
For each geS define Gg = U{Gng(n):n =0,1,2,...}. Corres-
ponding to each closed discrete subset D of S, there is a
function fe“w such that if x and y are distinct points of D,

at least one of which belongs to Fn’ then d(x,y) > 1/2f(n).

There is a geS such that g>f. If x and y are distinct points
of D, st(x,Gé)ﬂst(y,Gg) = ¢. This shows (1) implies (3). A
similar argument shows the same collection also satisfies
condition A(k) and hence yields (1) implies (2).

The remaining implicatioﬂs are obtained by noting that
by 6.7 S includes a closed subspace M which is homeomorphic
to the space Y. The existence of a cardinality k collection
of open covers satisfying either condition A(x) or condition
B(k) is hereditary on closed subsets. Lemma 6.8 gives the
desired result.

6.10 Remark. The next two results give interesting

applications of Theorem 6.2 to the set R of real numbers. The
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set of rational numbers is denoted by Q, and the set of all
discrete subsets of Q which are closed in R is denoted by F.
The collection F has cardinality c.

6.11 Theorem. If there is a dominating family of
cardinality Wy and wl<cf(c), then every subcollection H of
F with cardinality c has a subcollection H' with cardinality
c and such that [H' has no irrational limit point.

Proof. It follows with the aid of Theorem 6.9 there is a
collection G = {Ga:aswl} of open covers of R which has the
following properties:

(1) For each closed, discrete subset D of R there is

a Bew, such that if x and y are distinct points

1
of D, then st(x,GB)ﬂst(y,GB) = ¢.
(2) For each aewy the cardinality of Ga is wg
(3) For each cew,y the cover Ga is locally firnite.
For acw, let G, = {V_:n = 0,1,2,...}. For each non-
negative integer n, xon,xln,xzn,... are the points of the set

QﬂVn. There is a dominating family S with cardinality W -

For feS5 define D.% = U (x

n
£ new & .tﬁf(n)}. The set

C = {Dfa:aew1 and feS} has cardinality at most wy, being the
union of Wy collections each with cardinality W, - Each Dfa

is a closed discrete subset of R.
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Suppose D belongs to F. There is an 0Ewy such that

whenever x and y are distinct points of D, st(x,Ga)ﬂst(y,Ga)=¢.
Define a function r from w to w as follows: If thD = ¢

then r(n) = 1. 1If VnﬂD # ¢ then VhﬂD = {xéﬁ for some non-
negative integer k. In this case define r(n) = k. There is a
member £ of S such that r<f. Then D g;Dfa. Thus every member
of F is contained in some member of C. If H is a subcollec-
tion of F having cardinality c, there is an QEWy and an feS
with the property that Dgxincludes each member of some cardi-
nality c subcollection H' of H. Then [H' < Dfa which is a
closed discrete set.

6.12 Theorem. Assuming (H, there is a subcollection
H of F having cardinality c¢ and such that if H' is any sub-
collection of H with cardinality c, then |JH' has an irrational
limit point.
Proof. For each non-negative integer n, let xon,xln,xzn,...
denote the rational numbers in (n,n+l). CH implies there is
an w;-scale 5. For each fe§ let D, = {wkn:tgf(n) and
n=20,1,2,...}. Let H = {Df:feS}. For each subset H' of H
having cardinality c, S' = {feS:DfeH'} is cofinal in S. Suppose

for some subset H' of H having cardinality ¢, |H' has no
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irrational limit point. For each non-negative integer n,
there is a non-negative integer kn such that if i > kn then

xin ZUH'. There is a function r from w to w such that

r(n) = kn for each non-negative integer n. Moreover, there
exists a function £feS' such that r<*f, and a_non-negative
integer n such that r(n)< £(n). Thus xf(n)neUH' which is a
contradiction.

6.13 Remark. Whether Theorem 6.9 remains true if
o-compactness is replaced by a weaker condition as part of
its hypothesis is unknown to the author. Some of the results
which follow seem relevant to this question.

In Theorem 6.14 P is the set of irrational real numbers
with its usual subspace topology.

6.14 Theorem. The existence of a dominating family
of cardinality «x implies the existence of a cardinality «
collection G = {Ga:aeK} of open covers of
P having the property that if D is an infinite, closed, discrete
subset of P, in the subspace topology of P, and U is an open
set containing D, then there exist an aek and an infinite

subset D' of D such that st(D',G)) ¢ U.
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Proof. There is a collection H = {Ha:aeK} of open covers of
the set R of real numbers which satisfy Aa(x) for R. For
each point g of the set Q of rational numbers there is a
collection HY = {Haq:an} of open covers of the set R - {q}
which satisfies condition A(x) for the space R - {q}.

1f #' = HJ(U{E9:qeQ}), the cardinality of H' is k .
For F'eH', let F = {VIP:VeF'} , and G = {F:F'cH'}.

If D is an infinite, closed, discrete subset of P
which is also closed in R and U is a set open in P which
contains D, there exist a set U' open in R and an aek such
that UN1P = U and st(D,Ha) c U'. There is an FeG correspond-

ing to H, and st(D,F) ¢ U.

If D is an infinite, closed, discrete subset of P
having a limit point g in Q, there is an infinite sequence
Xqr1XyrXgreo of points of D which converges to g- The set
X of all terms of this sequence is a closed discrete subset
of R- {g}. If U is an open set in P containing X, then there

exist a set U' open in R and an aek such that UMP = U and

q
a

st(D,Haq) c U'. There is an FeG corresponding to H ~ and

st(D,F) c U.
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6.15 Definition. A monotonic development GO’Gl G2'
’

... for a Moore space is said to be semicomplete or Rudin

complete [Ru] if and only if whenever Uo'Ul'UZ""is a
sequence of sets such that for each non-negative integer

n, UneGrl and nel © Upr then ﬂUn # §. A Moore space having
a semicomplete monotonic development is said to be semicom-

plete.

6.16 Definition. A development G = GO'Gl'Gz"”
for a space S is said to be of type wB if and only if for each
countably infinite, closed,discrete subset D of S there exist
an infinite subset D' of D and a non-negative integer n such
that if x and y are distinct points of D' then
st(x,Gn)ﬂst(y,Gn) = g.

6.17 Theorem. Every monotonic development for a
Moore space of type wB is semicomplete.
Proof. Suppose that GO'Gl’GZ”" is a monotonic development
for the Moore space of type wB which is not semicomplete. Then

there is a sequence UO'Ul'UZ"" of open sets with the property

that UneGn and Un+ E.Un for all n, such that ﬂUn = g.

1
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Let ¥,eU,. There is a least integer n, such that x, ¢ ﬁ; .
1l

Let xleUn . This process may be continued. The set
1

X = {35,8i,x2,...} is a closed, discrete subset of S for which
the condition in type wB is not satisfied.

6.18 Theorem. A metric space is complete if and
only if it has a develcpment of type wB.
Proof. Suppose there is a development of type wB for the
metric space X. By Theorem 6.17 X is semicomplete. M.E.
Rudin [Ru; Theorem 7] proved that for metric spaces semi-
completeness is equivalent to complete metrizability.

Converselv, suppose X has a complete metric 4 .
Let B(x,c) ={yeX:d(x,y)<el.

For each non-negative integer n let

6. = {B(x,1/2%"1

n 777) zneN}. Let M be a countably infinite,

closedrdiscrete subset of X. For each non-negative integer n,

Ab={xeM:st(st(x,Gn),GnMIM is finitel. Suppose A is finite
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for each n. There is a point xos;M-Ao. Then there is a

point xl_est(st(xo,Go),GOXIMrAl—{XO}. There is a point

xzs:st(st(xl,Gl),Gl)ﬂMfAz-{xo,xl}. This process may be
continued. The sequence Xg1XgrXysene of distinct points of

X is Cauchy and hence converges to a point y. Thus y is a
limit point of M which is impossible. Let k be a non-negative
integer such that 2, is infinite. ILet {ao,al,az,...} be the

points of Ak' There is a least positive integer ny such that

a_ g st(st(a,,G,.),G,). There is a least positive integer n
n, 0’7k k 2

such that anz £ st(st({ao,ani ,Gk),Gk). This process may be

continued. The set A = {ao,a s8_ ,...} has the property
np

that if a and b are distinct members of A, then st(a,Gk)ﬂ
st(b,Gk) = g.

6.19 Remark. The author does not at this time know
any interesting characterizations of the class of Moore spaces
having developments of type wB.

The proof of Theorem 6.18 may be used to prove the

following familiar result about metric spaces.
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Theorem. If X is a metric space having a metricd
and M is an infinite subset of X with the property that any

Cauchy sequence of points of M is eventually constant, then

there is an infinite subset M' of M and a positive number ¢

such that if x and y are distinct points of M', then
d(x,y) > €.

6.20. Theorem. If there is a dominating family with
cardinality wy and S is an w, —compact metric space which is
the union of Wy, compact sets, there is a collection G of each
type below.

(1) G = {Ga:aewl} is a collection of sets of open subsets of
S having the property that if D is a closed,
discrete subset of S, there is an QEWy such that
Ga covers D and if x and y are distinct points
of D, then st(x,Ga)ﬂst(y,Ga) = ¢.

(2) G = {Gc:aewl} is a collection of sets of open subsets of
S having the property that if D is a closed, dis-

crete subset of S and U is an open set including

D, there is an aewy such that Ga covers D and

st(D,Ga)g U.
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Proof. There is a collection {Fu:aewl} of compact subsets of
S whose union is S. For each aEwy the collectica {FB:Bea} is
a countable collection of compact sets. Use the construction
in'the proof of Theorem 6.9 t§ show the existence of a
cardinality Wy collection of open covers of U{FB:Bea} satisfy-
ing the condition (1) and (2) for ary closed, discrete sub-
set which is contained in U{FB:Bea}.

If G is the union of all the collections for each QEw, ,
then G is the union of Wy collections each having ©q members
and hence G has cardinality Wg. ?he collzction G has the
desired properties since if D is a closed discrete subset of
S, then for some acw;, D g U{FB:Bsa}.

6.21 Remark. If there is a dominating family of
cardinality Wy - then the irrationals~-indeed, every metric
space which is the continuous image of the irrationals--is ©-
compact and is the union of a cardinality Wy collection of
compact sets (see [Hc 2] ). If CH is false, then the space
of Example 6.4 is not the union of a cardinality Wy collection

of compact sets.
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