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SODIUM METABOLISM DURING ACCLIMATION TO WATER RESTRICTION 

BY WILD MICE, MUS MUSCULUS

ABSTRACT

Changes in sodium and potassium balance and urinary aldosterone 

excretion (free plus 'acid labile') were surveyed in house mice 

acclimating to a progressive and step-wise water restriction. Sodium-22 

and distribution and exchange were also measured. Each water

restriction caused negative sodium and potassium balance, followed by 

conservation of both ions. At the first water restriction, negative 

balance was produced by natriuresis and kaliuresis, at successive 

water restriction, a negative balance was due to a decrease in food 

consumption. Aldosterone excretion doubles at the first water restriction, 

and then remains slightly elevated thereafter. Intestinal absorption of 

both ions shows a persistent increase after the third day of water 

restriction. The Na:K ratios in urine and feces decline as mice 

respond to each water restriction, and return to control levels in 

acclimated animals. Mice maintain their weight-relative hydration 

when acclimated to water restriction, since distribution volumes of 

^^Na and in acclimated mice approximate control values. The

biological half-life (t̂ s) of increases with each water restriction,

and remains elevated in acclimated animals. The t% of ^^Na increases
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at each water restriction, but decreases In acclimated animals. 

Discussion centers on possible Interplay between hormonal and 

hemodynamic Inputs to acclimation responses.

natriuresis; kaliuresis; aldosterone; acclimation; house mice



INTRODUCTION

During acclimation to water restriction, wild house mice 

exhibit an initial constriction and, later, a restoration and defense 

of extracellular fluid, particularly plasma (32). Other parameters 

which change during acclimation include the development of hypernatremia 

(vide infra), a decrease in food consumption, and a general weight 

loss (31). Upon complete acclimation, food consumption returns to 

normal and body weight stabilizes at a value less than that of a 

non-stressed animal. Alterations in body fluid compartments during 

the acclimation process should be reflected by changes in sodium and 

potassium balance, and perhaps in the activity of the renin-angiotensin­

aldosterone system. Plasma renin and aldosterone concentrations have 

been examined in sheep (5) and camels (27) undergoing dehydration by 

combined thermal and water deprivation stresses, with mixed results.

Both species exhibited a significant elevation of plasma renin activity 

after 5 to 10 days of dehydration, while plasma aldosterone concentrations 

increased significantly in the camels, and dropped in the sheep.

The present study was designed to survey sodium and potassium 

balance throughout the acclimation process. In addition, simultaneous 

measurements of urinary aldosterone were performed. The urinary 

aldosterone excretion rate has been demonstrated to be a reliable 

index of adrenal function in rats (36,40). The experimental protocol

3



minimized stress by being non-lnvaslve and eliminating all handling of 

the mice. Finally, sodium and water distribution and exchange were 

determined In a separate, but equivalent, group of mice.



MATERIALS AND METHODS 

Reagents

The following reagents were purchased and used with no further 

purification: lysozyme (3 times crystallized), and methylene chloride

(ketosteroid quality), from Sigma Chemical Co.; Fluoralloy liquid 

scintillation fluor from Beckman Instrument Co.; aldosterone standard 

for radioimmunoassay (500 ng/0.5 ml absolute ethanol), and Merit liquid 

scintillation fluid, from Isolab Inc.; ethylene glycol (chromatoquality), 

and isooctane (spectropho tome trie grade), from Matheson, Coleman, and 

Bell; ethylacetate (reagent grade), from Mallinckrodt; toluene 

(scintillation grade), from J. T. Baker Co.; and Aquasol liquid 

scintillation fluid from New England Nuclear Corp.

Sodium-22 chloride (99% radiochemical and radionuclidic purity) 

and tritiated water were purchased from New England Nuclear Corp.
3Tritiated aldosterone (1,2,6,7 - H)-aldosterone, sp. act. 82 Ci/mM, 

purchased from New England Nuclear Corp. was donated by Dr. John 

Higgins, University of Oklahoma Health Sciences Center, and stored in 

absolute ethanol at -20 °C. Aliquots of the solution were purified on 

Celite microcolumns (47) prior to use in the radioimmunoassay.

Antiserum to aldosterone 18,21-dihemisuccinate (lot #088) was 

donated by the National Institute of Arthritis, Metabolism and Digestive 

Diseases, Pituitary Hormone Distribution Program. This antiserum 

exhibits a high titer and less than 1% cross reactivity with other 

corticosteroids (35).
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Housing and Maintenance

Five young male and five young female adult mice were used in 
22 3each of two studies: 1) Na and H 2 O distribution and exchange, and

2) sodium and potassium balances and aldosterone excretion. Mice were 

F^ or F^ offspring of wild parents captured locally.

The mice were individually housed in matabolism cages. Cages 

were fabricated from 1 lb coffee cans, opened at the bottom and closed 

at the top with clear Lucite lids. The cages rested on grids of 

tightly stretched stainless steel wire (0.28 mm in diameter) strung at 

1 cm intervals from welded steel frames. These assemblies rested on 

29 X 14 X A cm enameled trays so that urine and feces fell into the 

trays. Cage and grid assemblies were tared to a common weight to allow 

weighing the mice without disturbance. Urine and feces were collected 

under paraffin oil (Saybolt viscosity 27 - 38 °C in 15 X 2 cm Petri 

dishes lined with thick polyethylene film. The Petri dishes were 

positioned in the tray 4 cm under the grid.

Mice were kept in an environmental chamber at 30 t 2 °C, which 

is within their thermal neutral zone (in prep.); 30% relative humidity; 

and a 12 h photoperiod. Weighed volumes of distilled water were 

provided from drinking tubes formed from a glass tube (9 mm O.D. X 14 

cm) which had one end closed and the other open (2 mm). The tube was 

fastened through a hole in the cage lid. Mice were fed a pelleted high 

carbohydrate test diet (Teklad Mills, modified TD-69363), containing 

essentially twice as much potassium (60.4 yEq/g) as sodium (30 yEq/g). 

Food was given within a feeder fashioned from a 4 cm long X 2.8 cm wide 

(O.D.) glass cylinder glued to a glass rod. The rod extended through 

the cage lid, and prevented the feeder from being tipped by the mouse.



One end of a food pellet was inserted into a rubber washer, which in 

turn was forced into the bottom of the feeder. One pellet contained at 

least twice the daily ad libitum food consumption, which was taken as 

the weight difference of the feeder over one day.

Acclimation Sequence and Sampling Protocol 

Mice were sequentially restricted to one-half and then 

one-fourth of their daily ad libitum (control) water intake (Fig. 1).

For details of the acclimation procedure see 32. In brief, for the 

sodium and potassium balance and aldosterone excretion study, measures 

of body weight, food and water consumption, and collection of the urine 

and fecal output of non-acclimated (control) mice were performed daily 

(mean interval between collections throughout the study was 24.0 - 2.1 

(SD) hours) for four consecutive days.- The daily water ration was then 

reduced to 1.2 g/day, which is one-half of the average ^  libitum 

consumption (32), and sampling continued for an additional four days. 

Imposition of water restriction to % ad libitum induced an immediate 

daily loss of body weight (termed a nonsteady state condition, H NSS) 

which became progressively less as the mice acclimated to that level of 

water restriction and attained the succeeding steady state (h SS) 

condition. Mice were deemed to be at steady state condition when body 

weight varied by no more than 3% over several days. After 13 days of 

% ̂  libitum water rations, the same sampling protocol was used to 

collect four days of H SS samples. Water intake was then restricted to 

0.6 g/day (^ ad libitum ration) and four days of hi NSS samples collected, 

Mice acclimated to the hi ad libitum water supply over 16 days, after 

which four days of hi SS samples were collected. Henceforth, the term
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treatment refers to the water ration that the mice were given (i.e. 

control, hy or h ̂  libitum) while condition refers to the physiological 

state of the mice (steady state or nonsteady state).

Sodium and potassium balances for each day within each 

condition were calculated from the sodium and potassium content of the 

food consumed and the urinary and fecal outputs. In addition, 

aldosterone content of the urine samples from three contiguous SS and

NSS days in each treatment was determined.
22 3The distribution and exchange of Na and H 2 O was measured in 

another group of mice as they underwent the same acclimation procedure. 

The sampling protocol is detailed in a subsequent section of this paper.

Sodium and Potassium Balance

Urine was aspirated from the oil with finely drawn transfer 

pipets. Since it was difficult to withdraw only urine by this technique, 

the aspirated sample was emptied into another disposable pipet in which

the tip had been pre-loaded with oil and then sealed. A distinct

oil-urine-oil banding pattern formed, and remained intact as the 

contents were slowly emptied after cutting off the tip of the pipet.

The urine portion was placed in a pre-weighed polyethylene snap-cap 

vial (1.5 ml capacity), the vial weighed again, and stored frozen 

until analysis. Specific gravity of the urine averaged 1.08 f 0.025 

(SD) g/ml during all conditions (N = 50). Urine weights were converted 

to volumes with this factor.

Feces were removed from the oil with forceps and placed in 

15 X 45 mm shell vials. Residual oil was removed by adding 3 ml of 

petroleum ether to the vials, stoppering them, and shaking gently for



one minute. After discarding excess petroleum ether, the feces were 

dried under vacuum at 100 °C for a minimum of three days. The feces 

were then weighed to 0.1 mg and stored in capped test tubes until 

analysis.

Sodium and potassium were measured by flame photometry 

(Radiometer, Model FLM 2). Feces were prepared for analysis by wet 

ashing with 100 yl of concentrated nitric acid. After 24 h, two ml of 

distilled water were added. After an additional 24 h, indigestible 

residues were removed by filtering the extract through Whatman No. 1 

filter paper. One-hundred microliter aliquots of the extract were 

analyzed with standard solutions and blanks containing the same final 

concentration of nitric acid. Pellets of food were processed in the 

same manner as fecal samples. Ten microliter samples of urine were 

analyzed.

Assay for Urinary Aldosterone

The radioimmunoassay (RIA) for free plus ’acid labile’ urinary 

aldosterone was an adaptation of published techniques. The RIA buffer 

was 0.05 M  Tris-HCl, pH 8.0 with 1 g/1 lysozyme added to prevent 

non-specific binding (23). A 0.2 M KCl-HCl buffer with a pH of 1.0 

was used to hydrolyze urine samples (10).

Purification of urine samples. Kley et al. (40) demonstrated 

urinary free aldosterone was not degraded either by exposure to room 

temperature for 24 h, nor by repeated freeze-thaw cycles. After 

thawing and mixing, 50 to 200 yl aliquots of mouse urine, depending on 

the sample volume available, human urine standards, and 200 yl of 

distilled water for blanks were pipetted into 13 X 100 mm screw cap
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culture tubes and hydrolyzed by the addition of three volumes of 

hydrolysis buffer followed by incubation 24 h at room temperature in 

the dark. Mouse urine has more buffer capacity than human urine, so 

it was usually necessary to add small amounts of 3 N HCl to the samples 

to attain a pH of 1.0 - 0.1. Malvano et al. (46) determined that free 

aldosterone is not appreciabely damaged by this treatment. After 

hydrolysis, the pH was adjusted to 7.0 - 0.1 by the addition of saturated 

Na2 CÜ3 , and 50 ]il of ethanol containing 500 cpm of chromatographically
3purified H-aldosterone were added to each urine sample for recovery 

estimations. After 30 min incubation, the steroids were extracted by 

adding five volumes of ice cold methylene chloride to the vials and 

vortexing the mixture for 30 sec. The aqueous and organic phases were 

separated by centrifugation, the aqueous phase aspirated and discarded, 

and the methylene chloride was evaporated with a stream of dried and 

filtered air. The dried extracts were stored, under vacuum, in the dark.

Aldosterone was separated from potentially cross-reacting 

steroids with discontinuous partition chromatography on Celite 

microcolumns. Increasing percentages of ethylacetate in isooctane was 

the mobile phase and a mixture of ethylene glycol and water (80:20) was 

the stationary phase. Details of the methodology are in references 1,

10, and 47. The microcolumns were repacked after three uses. Solvents 

were pre-equilibrated prior to each use and, after each run, the 

microcolumns were eluted with 5 ml ethylacetate followed by 5 ml 

isooctane (57).

The final microcolumn eluates (50% ethylacetate) were collected 

in 17 X 60 mm screw cap vials. The solvents were evaporated with dried 

and filtered air, and the residue was dissolved in 1 ml of RIA buffer.
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One-half ml of the samples were emulsified in 10 ml Aquasol and counted 

to 1% accuracy with a liquid scintillation spectrometer (Beckman Model 

LS-133). These counts provided recovery estimations. The remaining 

portion of the samples was stored at 4 °C.

Radioimmunoassay. Fifty microliter aliquots of the column 

eluates or unlabeled aldosterone standards (0, 5, 10, 20, 40, 80, 160 pg) 

in RIA buffer were pipetted in duplicate or triplicate into 12 X 75 mm 

disposable culture tubes. One hundred microliters of combined antiserum 

(1:75,000 dilution/50 lil) and ^H-aldosterone (2500 cpm/50 yl) (21), both 

diluted in RIA buffer, were added, the tubes vortexed for 3 sec, warmed 

to 37 °C for 5 min, and incubated overnight at 4 °C. Fifty microliters
3of H-aldosterone plus 100 yl of buffer were pipetted and processed in 

the same manner to provide "total counts" tubes.

After incubation, free hormone was separated from the 

antibody-bound hormone with ammonium sulfate, which stabilizes the 

antigen-antibody complex, followed by extraction of the free aldosterone 

into a toluene-based scintillation fluid (23,41). All reagents and 

tubes were kept on ice, and tubes were processed in groups of 10-20, 

with all of the first members of a pair being processed first, and then 

all of the second members. Saturated ammonium sulfate (150 yl) was 

pipetted into the tubes, the tubes were vortexed briefly, and then 2.8 

ml of scintillation fluid (8.5 g Fluoralloy/I toluene) was added. The 

tubes were capped and secured in pre-chilled screw cap vials which in 

turn were placed in a test tube rack. When a group of tubes accumulated, 

they were shaken vigorously by hand for 1 min. The tubes were then 

removed from the vials and placed in an ice bath 2 h to equilibrate.

After equilibration, 2.5 ml of scintillation fluid was pipetted from
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the tubes into mini-scintillation vials (New England Nuclear Corp.) 

and counted to 1% accuracy.

The data were transformed into logit B/T* (B = cpm bound, T* = 

cpm bound with no unlabeled hormone), and graphed versus the log pg 

unlabeled aldosterone (50). Inspection of the graphs indicated a 

slight but persistent deflection from linearity between 40 and 80 pg, 

hence the standard curves were truncated at 40 pg (less than 5% of the 

values were greater than 40 pg). The least squares slope and intercept 

were calculated, and the sample aldosterone content was determined from 

the regression. The daily output after correcting for the water blank 

was calculated by the method of Drewes et al. (21).

Sodium and Water Spaces and Biological Half-lives

Extracellular volume and total body water were measured with 
22isotope dilution of NaCl and tritiated water respectively. Mice in

the control state were injected I.P. with 50 lil of 0.9% (w/v) saline
22 3solution containing 1.15 yCi NaCl and 11.65 yCi H 2 O. At each series

of injections, two standards were made by pipetting 5 yl portions of

the saline solution into 15 X 125 mm test tubes pre-loaded with 1 ml of

water. After 45 min equilibration (the optimal time for maximal

distribution of the isotopes, as determined by a pilot study) 5 to 20

yl blood samples were drawn from tail veins of the mice according to

the technique of Lewis et al. (44). Additional blood samples were

taken at days 1, 3 and 5 post-injection. The mice were processed in a

similar manner after acclimation to % and k ad libitum water rations,

except that a blood sample was taken immediately before injection (to

correct the dilution volume for the contribution of residual activity
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from previous injections) and the sampling period extended to day 7.

Blood samples were centrifuged and a measured volume of plasma 

was transferred into test tubes prepared as above. The Na in the 

samples was counted to 1.5% accuracy with a Nuclear Chicago well-type 

single channel gamma scintillation spectrometer. After ^^Na counting, 

and ^^Na were separated with a water distillation technique. The 

test tubes were fitted with a stopper through which two 18 ga needles 

(with hubs removed) were inserted. The tubes were placed in a hot 

water bath, and flushed, via one needle, with dry nitrogen gas. The 

other needle was attached to 1 mm X 80 cm capillary tubing in which 

the water vapor condensed and was directed into small test tubes.

One-half ml of the collected (tritiated) water was pipetted into 

mini-vials, 4.5 ml of Merit scintillation fluid added, and the samples 

counted to 1% accuracy. Fifty microliter aliquots of distilled 

standards (plus 450 yl distilled water for equivalent quenching) 

provided standard counts.

The counts for each isotope were corrected for background counts 

and any daily variation in the counters, reduced to cpm/nl plasma, and 

a semilog regression of the counts vs. days post-injection was used to 

determine the distribution volume and biological half-life of each.

The sodium and tritiated water dilution volumes were multiplied by 

factors of 1.05 and 0.94 respectively, to correct for the Gibbs-Donnan 

distribution of Na"̂  between plasma and interstitium (25) and the 

contribution of plasma protein to plasma volume (32).
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Statistical Analysis 

Tests for significant responses to water restriction were by 

sequential Wilcoxon signed-ranks comparisons (13) between the mean 

control value of each variable and the daily response during each 

treatment. The tests were run on a computer, utilizing a nonparametric 

statistics program (Biomedical Computer Programs, P-series; W. J. Dixon, 

Series Editor; Univ. of California, Los Angeles). Ratios (i.e. output/ 

input) were converted to a fractional format (i.e. output/(output +  input)) 

to increase symmetry about the median values. An arcsine transformation 

was applied to all fractional data before analysis. Reference to 

statistical significance denotes a probability of 0.05 or less. Linear 

regression and correlation values were calculated with a bivariate 

scatter plot and statistics program in the same statistics package.



RESULTS

Sodium and Potassium Balance 

Food consumption (i.e. total ion input) decreased significantly 

during nonsteady state conditions, and approached or returned to control 

values during the succeeding steady state conditions (Fig. 1). The 

decrease in food consumption was both greater and more rapid in h NSS 

than h NSS. Body weights decreased significantly during each NSS and 

remained at a lower weight at h SS (Fig. 1). A previous study (in prep.) 

indicated that the body weight losses were composed entirely of water 

and fat, with the lean body mass remaining constant throughout the 

acclimation sequence. No differences between sexes were observed in 

any portion of the study.

Water restriction to h ̂  libitum rations elicited an immediate 

urinary natriuresis during the first day of restriction, followed by a 

significant conservation on days 3 and 4 (Fig. 2). Potassium was 

excreted in a similar pattern, with the exception that kaliuresis lasted 

two days, after which excretion declined to control levels during the 

next two days (Fig. 3). In contrast, sodium and potassium excretion 

did not exceed control levels when % SS animals were initially restricted 

to h ̂  libitum, and both ions were significantly conserved by the second 

day (Figs. 2,3).
15
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Urinairy sodium and potassium excretion during h and h: SS 

approximated control levels, with scattered differences probably 

reflecting the slightly smaller food consumption and/or continuing 

small adjustments to the preceeding nonsteady states.

Excretion of both ions in the feces declined significantly 

by the third day of h ad libitum rations, and remained depressed 

throughout the acclimation sequence (Figs. 2,3). This decline was due 

to a progressively decreasing concentration of both ions in the feces 

(Fig. 4A). As a result, the fecal contribution to total ion output 

significantly lessened during water deprivation (Fig. 4B).

The relationship between the input and output of each ion is 

shown in Fig. 5A. The combined outputs (urinary plus fecal) of sodium 

and potassium were highly correlated throughout the acclimation sequence 

(n = 200, r = 0.794, ?<0.01). Deviations from the overall correlation 

were apparent during the first day of % NSS, in which renal excretion 

of sodium was proportionally greater than potassium excretion, and 

during the latter portion of the nonsteady states, when renal sodium 

conservation exceeded that of potassium. Intestinal uptake of sodium 

was also greater than potassium uptake during % NSS (Fig. SB).

The natriuresis and kaliuresis observed during the first two 

days of % NSS were reflected in the urine volume and ion concentrations. 

Urine output remained at or above control levels while the ions were 

maximally excreted (Fig. 6). The concentration of urinary sodium 

increased significantly, while potassium concentration approached a 

significant increase (P = 0.07). When the mice were further deprived to 

libitum, urine volume dropped rapidly and concentration of both
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ions increased significantly. Urine volume and ion concentrations 

returned to control levels during SS, while at h SS the volume 

remained decreased and concentrations remained elevated.

Aldosterone Excretion

Reliability Criteria. Repeated determinations (n = 16) of the 

aldosterone content of the human urine standard (14.02 +  1.44 (SD) ng/ml) 

yielded an interassay coefficient of variation (CV) of 9.8%, and a mean 

intraassay CV of 6.0% (3 quadruplicate determinations). Blanks averaged 

3.3 +  0.8 (SD) pg/tube, while the sensitivity, calculated at the 95% 

confidence level by the method of Ekins et al. (24), was 3.0 +  1.2 (SD) 

pg/assay. Recoveries of 160 and 320 pg of unlabeled aldosterone added 

to 50 111 samples of the urine standard (n = 4 for each determination) 

were 94.7 +  29.9 and 87.5 +  18.8 (SD)% respectively. Recoveries of 

labeled aldosterone added to the samples averaged 59% (n = 144, SD = 7.6%). 

The human urine standard, from a normal individual, agrees well with 

values reported by Malvano et al. (46). Mean control excretion rates 

of aldosterone in mice approximated those of rats (mice excreted 86 versus 

about 22 and 60 pg per day per gram body weight in rats (36,40)). Only 

free urinary aldosterone was measured in the rats, but the additional 

increment released from conjugated aldosterone is less than 10% (36).

Responses to Water Restriction. Urinary aldosterone content 

was significantly increased throughout the h, NSS condition (Fig. 7,

P<0.007 during peak excretion on day 2). Aldosterone excretion remained 

slightly, and occasionally significantly, elevated during all subsequent 

conditions. The mice were quite variable in the magnitude and timing of 

their individual responses. This variation was particularly evident 

during nonsteady state conditions.
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Distribution Volume and Turnover Rates of ^Z^a and 

Water restriction produced a significant reduction in total 

body water (TBW) and extracellular volume (ECV), in % SS mice. Total

body water was significantly reduced at ^ SS, while ECV approximated

control amounts (Table 1). Extracellular volume expressed relative 

to body weight remained at control volumes throughout the study, while 

TBW per weight decreased at h SS and returned to control values at h SS.

The biological half-lives (t%) of both isotopes yielded linear 

plots at all conditions (worst-case r = 0.98, P<0.01). Half-lives for 

and showed distinctly different patterns of response which

were attributable to differences of input of food and water respectively

(8). Increased th  of ^ % a  during NSS conditions resulted from decreased 

food consumption and excretion of sodium after the second day of NSS 

conditions. When mice attained the succeeding steady state, food 

consumption, urinary excretion of sodium, and the t% approached or 

returned to control levels (Figs. 1,2, Table 1). In contrast, the 

sequential reduction in water rations induced a stepped and progressively 

greater th  for with no difference apparent between NSS and the

next SS conditions. One mouse died during h NSS, hence the tabular data 

is based on nine animals.



DISCUSSION

Responses of mice during the acclimation sequence are 

summarized in Table 2. The first two days of transition from normal 

water intake to % ̂  libitum was characterized by natriuresis and 

kaliuresis accompanied by a slight increase in urine volume, a doubling 

of aldosterone excretion, and a gradual reduction of food consumption. 

Urinary sodium concentration rose on day 1 but returned to normal on 

day 2. Antidiuresis and antinatriuresis occurred on days 3 and 4 of 

NSS, kaliuresis ceased, and aldosterone excretion decreased but was 

still greater than normal. At this time elevated intestinal absorption 

of both ions was established, a feature that persisted throughout the 

% SS and on into the ^  ̂  libitum transition.

The natriuresis and kaliuresis which occur on day 1, and to 

a lesser extent day 2, of %  NSS (Figs. 2,3) are probably due to release 

of vasopressin (ADH) in response to both increased plasma osmolality 

or sodium concentration (Table 3) and decreased blood volume (22,56). 

Acute administration of ADH induces a natriuresis in hydrated sheep, 

pigs, dogs, and rats (45,48,52,53), due to a direct intrarenal effect 

of ADH (26,38). The effect is not due to suppression of mineralocorticoid 

secretion, since administration of ADH to adrenalectomized sheep 

Increases electrolyte excretion (4), and a natriuresis occurs in 

mice despite an increasing aldosterone secretion (Figs. 2,7).

19
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Hydropénie rats also display a saluresis (45), and hydropénie dogs 

undergo a natriuresis and diuresis (7,26,42). The body eleetrolyte 

stores of the subjeets apparently determine whieh ion or eombination 

of ions is exereted (38). The eoneurrent aldosterone release (Fig. 7) 

is presumably caused by aetivation of the renin-angiotensin system and 

a direet effeet of plasma potassium on the adrenal gland. Dluhy et al. 

(19) suggest an additive relationship exists between the two inputs to 

aldosterone secretion. The control of renin release is complex 

(for review see 16), but hypovolemia is one factor which increases 

renin release and is in effect during the nonsteady states (30,49).

We demonstrated previously (32), that plasma volume decreases 25% by 

day 4 of the nonsteady states. Small increments in plasma potassium 

concentration, less than occur during the nonsteady states (Table 3), 

are known to cause a release of aldosterone in the rat (6,14). It is 

unlikely that the stress of a partial water restriction was great 

enough to induce the release of large quantities of adrenocorticotrophic 

hormone (ACTH) which in turn causes an elevated secretion of aldosterone. 

Surgery and sodium depletion are two stressors implicated in ACTH 

induced aldosterone release (28), but mice were not subjected to such 

stresses. Furthermore, complete water restriction for a period of 8-10 

days was not sufficient to elevate plasma cortisol or corticosterone 

levels in camels (27), and acute hypovolemia due to blood removal 

followed by three days of water deprivation significantly increased 

aldosterone production in the rat, while corticosterone synthesis 

remained unchanged (17). However, in the absence of simultaneous 

measurements of glucocorticoid excretion, an influence on aldosterone 

secretion by ACTH in house mice cannot be ruled out.
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Attenuation of the natriuresis and kaliuresis in the latter 

part of h NSS is presumably due to the action of a complex of factors, 

including increased secretion of aldosterone, a direct intrarenal 

effect of angiotensin II (34,39), and hemodynamic adjustments. There 

is evidence that decreased glomerular filtration rate (33), and 

increased oncotic pressure (Table 3) occur during acclimation. The 

effects of aldosterone cannot be separated from those of other factors 

in this experimental design, however, the dynamic changes in secretion 

of aldosterone during the nonsteady state condition suggest a functional 

relationship between the two.

The initial natriuresis is over-compensated by increased 

conservation of sodium from day 3 of ^ NSS to the succeeding steady 

state, as indicated by its significantly greater half-life (Table 1), 

and plasma concentration (Table 3). The percentage increase in 

concentration is greater than the corresponding decrease in distribution 

volume. The elevated sodium concentration may produce movement of 

water from cells to the extracellular space, as indicated, at SS, by 

a disproportionately greater reduction in intracellular volume 

(i.e. total body water - ECV) in comparison to ECV losses (ECV - 6.4% 

loss versus intracellular volume loss of 14.3%, P<0.05). Additionally, 

an increase in plasma sodium may be secondary to the regulation of 

plasma potassium concentration. The influence of the aldosterone- 

potassium feedback control system in controlling plasma potassium 

concentration has been demonstrated in the dog (59). A similar 

relationship may pertain in house mice, since plasma potassium 

concentrations are not significantly different from control values 

throughout the acclimation sequence (Table 3). During hydropenia.
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the ECV expansion which would normally result from sodium retention 

does not occur (Table 1), and this could blunt hemodynamic mechanisms 

(54) which aid in removing a sodium load, producing a persistent, 

elevated plasma sodium concentration.

A net loss of sodium and potassium, followed by a conservation 

or return to balance of both ions is a pattern common to both nonsteady 

states (Fig. 5), but the means by which the pattern is produced at 

hi NSS is different from that at % NSS and presumably reflects a 

pre-acclimation effect. The natriuresis, kaliuresis, spike of 

aldosterone excretion and slow initiation of an antidiuresis (Fig. 6 ) 

are absent at h NSS, and the net loss of the ions is caused by an 

immediate and large decrease in food consumption at h: NSS (Fig. 1). 

Suggestions forwarded to explain the starvation rats and mice undergo 

during dehydration include maintenance of a constant proportion of 

body fluids to solids (2 ), maintenance of a constant ratio of water 

to food in the gastric contents (43), and an inability to moisten 

food before swallowing (12). Yin et al. (58) described, in rats with 

access to ̂  libitum food and water, changes in food consumption in 

response to a daily intragastric administration of hyperosmotic NaCl 

solution which parallel the responses of our water restricted mice.

The solution, which transiently increased serum osmolality in the rats, 

and is equated to the effects of NSS water restriction on the mice 

in this comparison, produced a decrease in feeding followed by a 

return to control levels of food consumption over three days. A 

similar pattern pertains in mice adjusting to a reduced water ration 

from day 2 of % NSS and immediately at hi NSS. We postulate that 

increases in plasma osmolality depress feeding in a manner which
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depends on the level of plasma osmolality prior to its increase, and 

that if the increasing osmolality is not too great (i.e. 1 0 0 % water 

restriction) 'escape' from the inhibitory effect of hyperosmolality 

occurs over a period of days. We also suggest that the reduction 

of feeding during an initial period of ECV constriction may reduce the 

ion load, and as homeostatic mechanisms become more effective, increased 

food can be accommodated during the latter portion of the nonsteady 

state.

Urine volumes decrease rapidly at H, NSS (Fig. 6 ), suggesting 

that a decreased ion load allows a rapid, efficient antidiuresis, or 

that the release of ADH is faster and of a greater magnitude than at 

% NSS. The possibilities are not mutually exclusive.

Aldosterone excretion at H NSS shows no increase from that at 

% SS (Fig. 7). A possible explanation for the lack of an additional 

response may be that the smaller relative water restriction (0 . 6  g/day 

deficit vs. 1.2 g/day at ^ NSS) does not produce as large of an increase 

in plasma potassium concentration and/or decrease in blood volume. 

Additionally, infusion of ADH to elevated, but physiological blood 

concentrations, inhibits the release of renin in dogs (38,55). Male 

rats also have decreased plasma renin activity when given daily 

injections of ADH (3). If a similar response to elevated ADH occurs 

in house mice, then the secretion of aldosterone at the initiation 

of a more severe water restriction at H NSS may be partially suppressed.

Changes in sodium and potassium absorption by the intestine, 

in response to increasing water deprivation, involve a progressive 

augmentation of absorption of both ions (Fig. 4). Principles of small 

intestinal ion absorption have been reviewed (51) and the similarity



24

between the effects of oncotic and hydrostatic pressure on ion 

absorption across the intestinal and proximal renal tubule epithelia 

drawn. The ratio of sodium to potassium reflection coefficients in 

human jejunum and rabbit ileum is approximately 1.2 (51), which will, 

in the absence of elevated active transport of either ion, produce a 

net uptake of potassium greater than that of sodium. The data for 

house mice are suggestive that a reflection coefficient ratio pertains 

which similarly favors potassium uptake over sodium during control 

conditions, since the potassium:sodium ratio of 2  in the food is 

reduced to 1  in the feces, while it remains unchanged in the urine 

(Fig. 5). During nonsteady state conditions, an increase in plasma 

oncotic pressure (Table 3) and a possible decrease in hydrostatic 

pressure (secondary to hypovolemia), would favor the absorption of 

both ions, but in the absence of an increased active transport of sodium, 

potassium should be preferentially absorbed in comparison to sodium.

In the rat, sodium absorption by the colon is increased by mineralocorticoids 

(11,20) while angiotensin II, by a direct effect, increases sodium uptake 

in jejunal preparations (15), and the ascending colon (37). Vasopressin 

also increases sodium transfer from the ascending colon (37). The 

relative contribution of each to the significantly increased fractional 

absorption of sodium relative to potassium observed at h NSS (Fig. 5) 

cannot be determined from our data, but the operation of these factors 

is demonstrated by the fact that absorption proceeds counter to that 

predicted by the presumed reflection coefficients of the two ions. The 

significantly greater absorption of both ions at % and h steady states, 

with a maintained 1 : 1  ratio, suggests that the effects of dehydration 

on oncotic or hydrostatic pressures continues and that a small, but
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continuous, active augmentation of sodium absorption is maintained. 

Alternatively, a greater degree of active sodium uptake could also 

increase potassium uptake by solvent drag (51).

The pattern of increased intestinal absorption of sodium and 

potassium during dehydration appears to be maladaptive to the purpose 

of reducing an ion load, and may be a non-regulatory response to the 

hemodynamic and hormonal changes detailed above. The additional ion 

load imposed by this response is minor in comparison to the renal 

modulation of the two ions (Fig. 4) and may have little effect on the 

daily balance of either. Rats produce significantly drier feces during 

acute dehydration than in a water replete state (18). A similar 

response was not demonstrated in house mice during an acclimation 

sequence (31), but the increased intestinal absorption of electrolytes 

(and associated water) may produce drier feces and aid in water balance 

during a more severe, acute water restriction.

A speculative relationship between ADH and aldosterone release 

after acclimation to water restriction is that if the release of ADH 

does not accommodate during chronic water restriction (9,29), then a 

'tension' between ADH and aldosterone exists in the acclimated, steady 

state animals (% and \  SS) in which ADH and aldosterone secretion are 

greater than control levels. The elevation, at least in the case of 

aldosterone, need not be great. If an additional water restriction 

is imposed, then ADH secretion is induced more rapidly than in a naive 

animal, and the pre-existing increment of aldosterone secretion, in 

concert with a reduction in food intake, may prevent the natriuresis, 

kaliuresis, and large urine volume characteristic of the initial ADH 

secretion in a non-acclimated animal. In support of this is the
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observation that injection of deoxycorticosterone acetate (DOCA) 

abolishes the natriuresis of initially water-restricted rats (45).

This effect of mineralocorticoids may require a hydropénie condition, 

since injection of DOCA prior to and infusion of deoxycorticosterone 

glucoside during the infusion of ADH into water diuresing dogs did' 

not reduce the natriuretic effect of ADH (26).

In conclusion, the process of acclimation to water restriction 

by house mice involves dynamic changes in sodium and potassium balance. 

At initiation of each water restriction, both ions are excreted in 

excess of intake, although the means by which this occurs after 

acclimation to h, ad libitum is different from that in naive mice. The 

excretory pattern is generally reversed to conservation of both ions 

during the latter part of the nonsteady states. In contrast to changes 

in renal handling of the ions, the gut displays a persistent, elevated 

absorption of sodium and potassium throughout the period of water 

restriction. Aldosterone secretion is significantly increased during 

the initial water restriction, and remains slightly elevated throughout 

the acclimation sequence. Definitive statements regarding the 

interplay of aldosterone, other hormonal mediators, and hemodynamic 

factors cannot be made at this time.
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Table 1. Distribution volumes and biological half-lives of 2%Na and

Weight Distribution Volume Biologies]

Condition (g) (ml) (% b.w. ) (days)

2 2 wa ^H2 0 2 2 Na 2 2 ns % 2 0

Control 2 0 . 0 5.33 12.14 26.7 60.9 7.20 2.25

1 . 0 .26 .63 .7 1 . 8 .46 . 1 1

H NSS* 18. 9.43'*' 3.50*

.9 .50 . 1 1

h SS 18.5*^ 4.76'*' 10.63* 25.7 57.5* 8.77 3.36*

1 . 0 .33 .59 .9 1.5 . 6 6 .16

h NSS 17.1* 9.33* 4.38*

.9 .59 .17

k SS 17.7'*' 5.00 10.78'*' 28.5 61.2 8.78'*' 4.36*

1 . 0 .32 .75 1.4 2.4 .51 .18

Upper numbers are means, lower numbers are standard errors, N = 9. "*'P<0,05, ^P<0.01
it
H NSS denotes that mice which are receiving ^  libitum water rations are in a nonsteady 
state condition, H SS indicates that mice are acclimated to H ad libitum water rations. 
h NSS and h SS denote nonsteady state and steady state conditions, respectively, in 
response to h; ad libitum water rations.

wo>



ATable 2. Summary of trends during acclimation to water restriction

h NSS

Na-K Balance 

Aldosterone Excretion 

Urine Volume 

Food Consumption 

^^Na Distribution (ml) 

^^Na Half-life (days) 

Distribution (ml) 

Half-life (days)

day 1  remainder 

— 4"

+ +
+ 0
0

h SS h NSS

0
0
0

day 1 remainder 

— +
0 0

k SS

0
0

0
0
+ w

(+) indicates a generally greater or more positive response in comparison to control 
values, (0 ) denotes little change from control, (-) indicates a generally lesser or 
more negative response.



Table 3. Plasma characteristics of acclimating and acclimated house mice*

Control % NSS % SS k NSS k SS

N 6  5 12 7 6

Osmolality 332.2 350.4 359.0''" 341.4 359.5

13.5 4.4 5.6 3.7 8.3

Pzoteln 67.2 80.4'*" 77.5 83.6* 67.8

4.3 2.1 3.6 2.1 1.6 œ

Na'*" 148.8 178. 4 8  171.4* 161.0* 160.5*

1.9 5.2 5.2 4.7 2.4

5.8 6.4 5.8 6.9 6.4

. 6  .9 .4 1.1 .4

itUnpublished data, collected under the same conditions as those In this 
study. NSS samples were taken at day 4. Upper numbers are means, lower 
numbers are standard errors.

^P<0.05, *P<0.01, ^P<0.001, t-tests for Independent samples.



FIGURE LEGENDS

Fig. 1. Water ration, food consumption and body weights of mice 

throughout the acclimation sequence. Circles are means of 10 animals, 

vertical bars indicate one standard error of the mean. Closed circles 

indicate a significant difference from the mean of four days of control 

values at P<0.05. Heavy vertical lines denote a transition from a 

steady state to a successive nonsteady state condition. Responses of 

mice in nonsteady state and steady state conditions, while receiving 

^ ad libitum water rations, are indicated under % NSS and H SS 

respectively. Nonsteady state and steady state responses while 

receiving h ̂  libitum water rations are indicated under H NSS and 

h SS respectively.

Fig. 2. Sodium balance during acclimation to water restriction.

Symbols as in Fig. 1. Solid line ( 0 ---- 0 ) indicates daily input,

dotted line ( 0  0  ) indicates daily urinary output, and dashed

line ( 0  -----  0  ) denotes daily fecal output.

Fig. 3. Potassium balance during acclimation to water restriction. 

Symbols are as in Figs. 1 and 2.
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Fig. 4. Concentration of sodium and potassium in feces (A, top panel), 

and contribution of fecal output to the total ion output (B, bottom 

panel). Measures of sodium ( 0 ••• 0 ) are slightly to the left of the

potassium values ( 0 ---  0 ). The 95% confidence interval is indicated

by vertical lines in bottom panel, otherwise symbols are as in Fig. 1.

Fig. 5. Output (0) and input (I) relations of sodium and potassium 

(A, upper panel) and fractional output of sodium in comparison to 

potassium (B, lower panel). The output-input relationship is expressed 

as a percentage of total output and input for each ion (i.e. if 

output = input, the percentage plotted = 50%). Symbols are as in 

Fig 4B. The fractional outputs of sodium in the feces (A) and urine (0) 

are graphed in the lower panel. Vertical lines indicate 95% confidence 

intervals.

Fig. 6 . Daily urine volume and concentration of sodium ( 0  0 )

and potassium ( 0 ---  0 ). Symbols are as in Fig. 1.

Fig. 7. Daily urinary aldosterone excretion (free plus 'acid labile'). 

Symbols are as in Fig. 1. The sample size = 9 on days 2,3 of h NSS, 

due to inadequate urine sample size, otherwise n = 1 0 .
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