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ABSTRACT

An accurate interporosity flow equation incorporating a time-dependent shape factor is 

derived and verified for improved dual-porosity modeling o f  pressure depletion and 

waterflooding o f  naturally fractured reservoirs. The interporosity rate equation expresses 

the exchange rate in terms o f  the oil-phase pressure gradient in the matrix, effective flow 

area and fluid permeability at the matrix/fracture interface, fluid viscosity and a variable 

matrix-block shape factor, computed as a flow correction factor to Darcy’s law. This 

approach can accommodate the flow directed from matrix to fractures while representing 

the permeability anisotropy o f  interconnected fractures as a tensor. The model equations 

are expressed in dimensionless forms for convenient integration into conventional 

numerical simulators for accurate simulation o f  pressure depletion and waterflooding of 

naturally fractured reservoirs. Implementation o f flow correction factors is also 

demonstrated by modifying a dual-porosity, dual-permeability reservoir simulator.

Fine-grid numerical simulation o f a matrix block is performed to verify the flow 

equation using the time-dependent flow correction factor. Numerical experiments with 

various size matrix blocks indicate that the flow correction factor varies with time and 

converges to the steady-state value reported in the previous studies for single-phase flow. 

The flow correction factor for single-phase flow converges to a steady-state value at a 

speed proportional to the reciprocal o f  total compressibility, while the flow correction 

factor for two-phase flow converges at a speed proportional to the slope o f  the capillary

x v i i



pressure curve evaluated at the average water saturation present at the matrix/fracture 

interface. It is shown that the single-phase flow correction factor converges much more 

rapidly to its steady-state value than the two-phase flow correction factor.

The applicability o f  the time-dependent flow correction factor is also extended and 

demonstrated for gas-condensate systems by taking advantage o f  pseudofunctions that 

reduce the miscible two-phase problem to a single-phase problem.

This study demonstrates that considering the time-dependency o f  the shape factor 

alleviates the errors associated with using constant shape factors in fractured reservoir 

simulation with minor modifications in the interporosity flow model. Results from the 

numerical examples presented in this study indicate that the physical phenomena 

considered in the present model would predict shorter water breakthrough times and less 

oil recovery from the matrix, compared with predictions o f the current numerical 

simulators using constant shape factors. Specifically, water breakthrough time and oil 

recovery predicted by the present model are about half o f  those predicted by current 

numerical simulators using constant shape factors, based on a 10 years production period 

from a naturally fractured reservoir.
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CHAPTER 1 

INTRODUCTION

A naturally fractured reservoir is a porous rock formation in which stresses have created 

planar discontinuities that either positively or negatively affect fluid flow. From the 

viewpoint o f  petroleum reservoir engineering, these naturally occurring fractures 

represent both challenging modeling problems as well as opportunities for reservoir 

development. The combination and application o f knowledge from different branches o f 

science is required in order to take full advantage o f  their presence in a hydrocarbon- 

bearing formation. Classic books by Jaeger and Cook,' Aguilera," Reiss.^ van Golf- 

Racht,"* and Nelson^ provide details on fracture formation, characterization and 

mathematical simulation through simple models that capture some o f the typical 

characteristics o f  naturally fractured reservoirs.

Even though a substantial amount o f  research has been devoted to geomechanics, 

geology and reservoir engineering since the abovementioned publications, high-priority 

research needs were recently identified.^ Some o f these studies include further research 

on the origin and development o f  fracture systems; fracture detection methods; effects o f 

coupling between stress and flow; effects o f  coupling between chemical processes, flow, 

and temperature in rocks; development o f  improved conceptual models as bases for more



realistic and efficient numerical models o f  fluid flow and transport; and additional in-situ 

facilities to test these numerical models.

Much research on naturally fractured reservoir modeling has focused on conceptual 

models that accurately represent the matrix/fracture fluid transfer because o f  its 

importance in reservoir performance. Most naturally fractured reservoirs are 

characterized by high initial production rates that later drop to much lower stable flow 

rates. The later period o f production is controlled by the matrix/fracture interaction 

through the interporosity flow rate. During this period, the permeable matrix replenishes 

fractures with hydrocarbon fluids, which are produced from the high conductivity 

pathways to the wellbore.^ Hence, fluid expansion is the primary mechanism for 

hydrocarbon recovery. On the other hand, successful implementation o f  a secondary or 

tertiary recovery project in a naturally fractured reservoir requires an accurate 

matrix/fracture interaction model. Some o f the mechanisms investigated in order to 

estimate and predict the interporosity flow rate include gravity and capillary effects,’ * 

reinfiltration,’' a n d  capillary continuity throughout the matrix blocks," and cocurrent 

and/or countercurrent imbibition phenom ena." "  In waterflooding, capillary imbibition is 

generally the most important recovery mechanism ."

Some field and laboratory observations have been studied through numerical 

simulation, which typically assumes that there are two continua, matrix and fractures, 

within each simulation gridblock. Flow equations are written for each system with a 

matrix/fracture transfer function to relate the loss or gain o f  matrix fluids to or from the 

fracture. This fluid transfer rate is commonly calculated as a function o f the pressure 

difference between the matrix and fracture systems, matrix flow capacity and matrix



geometry considered through a constant shape factor. However, in spite o f  the great level 

o f  current model sophistication, the highly anisotropic and heterogeneous nature o f  a 

fractured formation makes fractured reservoir modeling a challenging task, frequently 

with uncertain results in forecasting.

This study presents a new conceptual model to determine the interporosity flow rate in 

naturally fractured reservoirs. The new model is used to investigate time-dependent 

effects on the matrix-block shape factors by defining a flow correction factor based on 

Darcy’s law. This approach is shown to be an improved way to model naturally fractiued 

formations because it correctly accounts for nonlinear pressure and saturation gradients 

within matrix blocks without using fine-grid numerical simulation.

A literature review is presented in Chapter 2. The proposed conceptual model is 

introduced in Chapter 3, and the types o f  fractured reservoirs are identified. A time- 

dependent flow correction factor is then introduced for single-phase systems, and a 

correlation to estimate the correction factor in terms o f  dimensionless variables is derived 

in Chapter 4. The application o f  the flow correction factor to gas-condensate systems by 

means o f  appropriate pseudofunctions that account for the reduction o f gas mobility 

because o f liquid condensation at the matrix/fracture interface is presented in Chapter 5. 

An extension o f  the flow correction factor to multiphase black-oil systems is presented in 

Chapter 6. Correlations for the flow correction factor and relative permeabilities at the 

matrix/fracture interface are presented that are based on numerical experiments with a 

conventional finite-difference simulator. These correlations are expressed in 

dimensionless form for convenient integration into current simulators. Finally,



implementation o f flow correction factors in a dual-permeability, dual-porosity reservoir 

simulator is presented in Chapter 7.



CHAPTER 2 

LITERATURE REVIEW

In recent years, numerical simulation o f naturally fractured reservoirs has received 

significant attention because o f  increased exploration and development o f  more 

challenging, deeper reservoirs that are characterized by compartmentalization, 

heterogeneity, and anisotropy. Highly efficient computers have helped engineers to 

model fractured reservoirs faster and with more detail. In this section, commonly used 

approaches for naturally fractured reservoir modeling and interporosity flow estimation 

are reviewed.

2.1 Reservoir Modeling

There arc three basic models that are used for numerical simulation o f  naturally fractured 

reservoirs: Discrete network models, equivalent continuum models, and hybrid 

techniques, which combine features o f  both discrete network and continuum models.^ In 

discrete network simulation, a population o f  individual fractures is modeled while in 

equivalent continuum models, effective rock and fluid parameters are assigned to large 

volumes o f  the rock mass. Although the selection o f  any particular model depends on the 

reservoir and the type o f  fluid flow behavior to be numerically simulated, in general, the 

equivalent continuum modeling approach may be used to simulate reservoir rocks that



have undergone multiple and extensive deformations (high fracture density) and/or any 

formations where matrix permeabilities are large enough that fluid flow is not influenced 

by any individual fracture or series o f  fractures that form a conducting channel.^ Because 

o f  the relevance to this study, the most important equivalent continuum models -  single

porosity, dual-porosity, and dual-permeability models -  are briefly reviewed in the 

following.

2.1.1 Single-Porosity Models

Even though single-porosity models are used to simulate reservoirs where all the storage 

capacity is assumed to reside in the fractures, they may also be applied in fractured 

reservoirs where interporosity flow between porous matrix and fractures is an important 

factor. An example o f a single-porosity model application was presented by Agarwal et 

who simulated a giant, fractured chalk reservoir in the North Sea. They pointed out 

that one o f  the most challenging tasks was to account for the fluid transfer between 

porous media and fractures. To circumvent this difficulty using a single-porosity 

reservoir model, they developed pseudorelative permeability functions. This development 

consisted o f a two-stage upscaling process. Initially, detailed modeling o f  stacks o f 

individual matrix blocks using a dual-porosity model was performed. Then, the relative 

permeability curves generated in the previous stage were applied to generate field scale 

dynamic pseudo functions by history matching o f  the fine-grid simulation. Even though 

the single-porosity approach has an advantage from the viewpoint o f  computational 

effort, it has the problem o f selecting an appropriate model for fluid exchange while 

preparing the pseudorelative permeability curves using a dual-porosity reservoir model.



An additional difficulty is encountered during simulation when the operating conditions 

are changed because a new set o f  dynamic pseudofunctions needs to be calculated; for 

instance, when waterflooding after gas flooding.

2.1.2 Dual-Porosity Models

Dual-porosity models simulate reservoir systems composed o f  two different types o f  

porosity that coexist in a rock volume. It is usually assumed that the matrix blocks consist 

o f a set o f  porous rock systems that are not connected, have high storage capacity and 

low transmissibility. On the other hand, the fracture system is assumed to be an 

interconnected porous medium o f low storage capacity and high transmissibility. Flow 

from the reservoir to the wellbore only occurs through the fracture s y s t e m . S e v e r a l  

idealizations to the matrix/fracture system geometry in a simulation gridblock have been 

developed such as the sugar cube,'’ parallel horizontal fracture'® and match-stick column 

models.^ A variation o f  dual-porosity models is the multi-porosity model, which assumes 

a fracture set that interact with two groups o f matrix blocks with distinct permeabilities 

and porosities.'^

2.1.3 Dual-Permeability Models

The first dual-permeability model was formulated by Barenblatt et al.~° and numerically 

solved by Hill and Thomas."' This approach models a continuous matrix media allowing 

matrix-matrix and fracture-fracture flow between simulation gridblocks. The flow 

equation for phase a  in the fracture system is given by:
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where qa is the interporosity flow rate per unit volume o f  rock. The subscript a  represents 

water, oil and gas phases. A similar set o f  equations may be defined for multiphase fluid 

flow in the interconnected matrix media. See Chapter 7 for additional details.

An important drawback o f  dual-permeability models is that they require greater 

computing time and data storage than dual-porosity m odels." Modifications to the initial 

formulation have extended this model to handle compositional fluids.'^ However, the 

most important modification to dual-porosity and dual-permeability models has been the 

incorporation o f  different fluid transfer functions for interporosity flow modeling.

2.2 Interporosity Flow Modeling

In traditional dual-porosity and dual-permeability simulation o f  fractured reservoirs, the 

interporosity flow rate is proportional to a shape factor, which is taken as a constant value 

obtained for an assumed matrix-block size and geometry. Other approaches that do not 

use shape factors are also available. In general, fluid transfer models can be grouped into 

two broad categories depending on the fluid system in the reservoir. Single-phase models 

have been applied in well test analysis while multiphase models have been predominant 

in modeling secondary and tertiary recovery in naturally fractured formations.'"*

2.2.1 Single-Phase Models for Interporosity Flow

For single-phase fluid systems, two main approaches can be found depending on whether 

shape factors are required to determine the interporosity rate. Models that do not require



shape factors use the superposition principle to compute the interporosity rate from the 

amount o f  fluids flowing from the matrix to the fractures per unit o f  fracture volume 

owing to the matrix pressure variation as the fracture pressure c h a n g e s ." ^ O th e r  

approaches that do not need shape factors will be reviewed under the section that 

compares models for multiphase fluid systems. On the other hand, two groups o f  models 

can be identified when shape factors are used. One group only considers the matrix 

geometry while the other uses only the fracture geometry in shape factor calculations. A 

discussion and comparison o f  models that use shape factors are presented in the 

following.

2.2.1.1 Matrix-Based Shape Factors

Barenblatt et al.~° proposed a model for naturally fractured reservoirs that is analogous to 

a model used for heat transfer in a heterogeneous medium. They assumed that the 

outflow o f fluids from matrix blocks into the fractures is steady-state and that the fluid 

transfer rate is a function o f  the viscosity o f the fluid, the pressure drop between the 

matrix and fracture systems, and matrix-rock properties related to geometry and porous 

interconnectivity in the matrix block. According to Barenblatt et al., the fluid transfer rate 

per unit volume o f  rock is calculated from the following expression:

 ̂= ̂ {pn. -Pf) ....................................................................2.2

where cris a shape factor related to the specific surface o f  the fractures, pm and pyare the 

average pressures in the matrix and fracture domains, respectively, and q is the fluid 

transfer rate between the matrix and fracture.



Several researchers have adopted Eq. 2.2 for modeling interporosity fluid transfer in 

both dual-porosity and dual-permeability models in single- and multiphase flow. 

However, there is little agreement among the reported studies on the value o f  the shape 

factor. Bourbiaux et al.~~ presented a comparison o f shape factors found in the literature. 

Table 2.1 is a modified version o f  the Bourbiaux et al. tab le," reporting the numerical 

value o f  the product cdJ as calculated by different researchers. The L parameter may 

represent the fracture spacing for one set o f parallel fractures, the side length o f  a square 

formed between two normal sets o f  fractures, or the side length o f  an isotropic cubic 

matrix block obtained from the intersection o f three normal sets o f  fractures.

TABLE 2.1 -  INCONSISTENT VALUES OF THE REPORTED GEOMETRIC FACTORS, aÛ
(AFTER PENUELA ET A L}’’)

Mathematical approximations
Matrix Geometry

Slab Square-
Column Cube

Warren and Root^^ (Analytic) 12 32 60

Kazemi et a/.̂ ® (Numeric) 4 8 12

Thomas ef a /.^  (Numeric) - - 25

Coats®® (Analytic) 8 16 24

Kazemi and Gilman®^ (Analytic) - - 29.6

Lim and Aziz®’ (Anaiytic) 9.9 19.7 29.6

Quintard and Whitaker®® (Numeric) 12 28.4 49.6

Noetinger et a/.®®®̂  (Stochastic) 11.5 27.1 -

Bourbiaux et aA®® (Numeric) — 20 —

Warren and Root‘d presented an application o f Eq. 2.2 in their dual-porosity model for 

well test analysis by assuming that the interporosity flow occurs under pseudo-steady 

state conditions. They proposed an analytical approximation to estimate the shape factor
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assuming uniformly distributed sets o f parallel fractures. A schematic o f  three normal 

sets o f  fractures is shown in Fig. 2.1.

Gridblock
boundary

Fracture

Matrix

Fig. 2.1 -  Gridblock in the dual porosity model with three normal se ts  o f parallel fractures 

following Warren and Root^^ (From Penuela e t al.^)

For this matrix/fracture system, Warren and Root'^ did not present a derivation o f  their 

equation but expressed the shape factor as:

.2.3
4n{n + 2)

where n is the number o f  normal sets o f parallel fractures.

Kazemi et Thomas et and Coats^° presented various expressions for the 

shape factor that were verified through numerical solutions o f  multiphase flow equations 

similar to those proposed by Warren and Root for a single-phase, dual-porosi.'y model. 

For instance, using a standard seven-point finite difference formulation o f  a single-phase.
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flow problem, Kazemi et al.'^ obtained the following shape factor for a three-dimensional 

homogeneous matrix block:

2.4.f  1 1 1 ^

where the Lr, Ly, and U  are the block lengths along .r, y ,  and z-direction, respectively.

Equation 2.4 inherently assumes a linear pressure gradient between the fracture and the 

center o f  the matrix block.^' As observed in Table 2.1, shape factors computed from Eq. 

2.4 have the lowest values. Hence, this approach is likely to underestimate the efficiency 

o f  the energy available to produce single-phase fluids from a matrix block.

Lim and Aziz"*' verified and extended the shape factors for dual-porosity simulation 

presented by Kazemi and Gilman"'’ by combining the analytical solutions o f  the pressure 

diffusion equation for various matrix blocks. By using matrix blocks o f  regular shapes, 

Lim and Aziz^' obtained improved shape factors that consider the geometry o f  the system 

and the physics o f fluid transfer without using the pseudo-steady state assumption. The 

significance o f  their approach is that the derived shape factors properly account for 

nonlinear pressure gradients in the matrix. For the general case o f  an anisotropic,

rectangular matrix block, they reported the following expression for the shape factor:

cr = — ,2.5

where km is the geometric average matrix permeability.
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2.2.1.2 F racture-B ased  Shape Factors

In the solution to the problem o f flow o f water in fractured media, Duguid and Lee 

considered a porous medium with several fractures, which were approximated as 

cylindrical tubules o f  elliptical cross-sectional area. These cracks have average 

dimensions, are randomly distributed throughout the matrix, and have porous walls that 

allow fluid transfer. A representation o f  their model is shown in Fig. 2.2.

Gridblock
boundary

Fracture

Matrix

Fig. 2.2 -  Gridblock in the dual-permeability model following Duguid and Lee^  ̂ (From

Penueia ef a/.” )

The formulation o f  the flow transfer term assumes a ID flow from the matrix to the 

fracture with fluid flow between the matrix and the fracture. The fracture fluid pressure is 

assiuned constant at the interface. Duguid and Lee^^ provided an approximation for the 

fluid transfer rate per unit volume o f rock that can be written in a more convenient form 

as:

13



j= i  j= i

2.6

where the dimensionless time is:

....................................................................................................................... 2.7.

and the shape factor:

a  =...................... .......................................................................................................................2.8.
K Wf Lf

Even though the fluid transfer rate as defined by Eq. 2.6 approaches the constant value 

predicted by steady-state solution, given by Eq. 2.2, a direct comparison cannot be made 

between Duguid and Lee model and the previous approaches using matrix-based shape 

factors for the following reasons. The shape factors presented in Eqs. 2.3 through 2.5 are 

expressed in terms o f  block geometric properties while Eq. 2.8 is in terms o f  fracture 

geometric properties (vty, L/). Moreover, the shape factors calculated from Eqs. 2.3 

through Eq. 2.5 are independent o f  fracture porosity. Finally, the shape factor according 

to Eq. 2.8 is independent o f  fracture spacing, which is an important characteristic in 

determining block size in most dual-porosity models.

The importance o f  models for single-phase fluid systems is that they provide a 

boundary limit for the flow problem where no effects from multiphase interactions are 

present. For an ideal fluid transfer function, a single-phase flow model should account for 

the appropriate effects o f  both the matrix and the fracture as a system. Currently, most

models only consider the effect o f  either the matrix or the fracture geometry on fluid
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transfer. There are no models available accounting for the combined effect o f  the coupled 

fracture and matrix media where each system has different geometrical characteristics.

2.2.2 Multiphase Models for Interporosity Flow

Hydrocarbon production by pressure depletion, secondary or tertiary recovery may 

require flow o f a multiphase fluid through the reservoir. The complexity o f  having more 

than one fluid flowing through the matrix/fracture interface has been represented with a 

series o f  models that consider gravity and capillary effects. Methods to obtain the fluid 

exchange functions are based on geometric factors, subdomains and empirical 

parameters, also called empirical transfer functions.

2.2.2.1 Geometric Factor Methods

Geometric factor methods extend single-phase models for fluid transfer to multiphase 

flow in fractured media by including terms that account for gravity and capillary effects 

and modifying the shape factor.

Although the pioneering works o f  Birks,^^ Aronofsky et al?^ and Mattax and Kyte^* 

on oil displacement by water laid the foundations for matrix/fracture interaction 

modeling, the implementation o f  the shape factor proposed by Barenblatt et al.~° was the 

most important step toward the mathematical description o f the interporosity flow rate. 

Warren and Root'’ associated the shape factor with the size and geometry o f  the rock 

matrix and detailed a procedure to estimate it via well test analysis. Several researchers 

have proposed modifications to extend the single-phase flow equations o f  Warren and 

Root to multiphase flow.
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The first modification consisted o f  the use o f  effective permeability instead o f  the 

absolute permeability. Kazemi at al.'^ evaluated fluid effective permeability at the 

average saturation in the matrix to account for additional resistance to flow owing to the 

presence o f  other phases. Thomas et al.'^ followed the same approach for flow from the 

matrix to the fracture, but they computed the fluid relative permeability as a product o f  

the fluid saturation in the fracture and fluid relative permeability evaluated at the matrix 

fluid saturation when flow is from the fracture to the matrix. This approach was intended 

to account for the fractional coverage o f  a gridblock by a fluid.

Kazemi’s original multiphase flow model** did not account for gravity effects. These 

effects were later added by Gilman and Kazemi^^ as follows:

q = c r k n CO [(Pom -  PumSD„)-(Paf -  p ^ g D f  ) ] ................. 2.9

where a; is a weighting factor that takes a value o f  one if flow is from matrix to fracture, 

and is zero when flow goes from fracture to matrix. D„, and D f are elevations o f  the 

matrix and fractures required to account for the gravity head in both media. A more 

complex version o f  Eq. 2.9 was introduced by Gilman and Kazemi,* who incorporated 

additional terms to account for gravity effects owing to fracture elevation differences 

between adjacent gridblocks.

Sonier et incorporated gravity effects in a dual-porosity formulation following a 

similar approach. However in their model, the weighting function was applied directly to 

the relative permeability instead o f  the mobility term. Moreover, elevations were 

calculated for each phase by assuming that the saturation in the matrix and the fracture
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was the same throughout the gridblock. The following expression was proposed to 

compute the elevation:

^ Ç _ c ''op apt
1 _  O  _  Ç

^ o r a p  opf J

A........................................................................................................2.10

where a  stands for fluid phase (water or gas) and p  represents the porous system (matrix 

or fracture).

Thomas et al.'^ included pseudorelative permeability and pseudocapillary pressure 

curves to account for gravity effects in the flow terms but did not give details on how 

they were obtained. However, application examples o f pseudofuntion curves are provided 

elsewhere.^

Finally, the most important modification to the single-phase model consisted o f 

defining new shape factors for fluid exchange. For the general case o f  an anisotropic, 

rectangular matrix blocks, Gilman and Kazemi*^ presented the following expression for 

the shape factor:

4
2 . 1 :

Because this type o f  shape factor does not accurately account for nonlinear pressure 

gradients within the matrix, additional approaches have been proposed to incorporate 

them (see Table 2.1). For instance. Thomas et a lP  performed a numerical simulation 

study to compute the shape factor for fluid exchange by matching single-block 

experiments with 3D dual-porosity model results. They found an excellent agreement 

between the numerical results for water/oil imbibition by setting oL ' equal to 25, and for 

gas/oil gravity drainage by setting a t '  equal to 2.
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To include nonlinear pressure gradients in the matrix, Coats^° proposed a model in 

which the effects on the exchange function owing to viscous gradients in the fracture are 

ignored. Without presenting the derivation, the following shape factor was recommended:

, 2.12
f  1 1 r

^ 7 = ^ .........................................................................................................

The fluid exchange model proposed by Duguid and Lee^^ was extended to multiphase 

flow conditions by Evans."^ The basic modification consisted o f using effective 

permeability instead o f  absolute reservoir permeability. In his model formulation, 

capillary effects were considered but gravity effects were not taken into account.

2.2.2.2 Subdom ain M ethods

Subdomain methods are based on a matrix-block subdivision scheme (see Fig 2.3) that 

allows the computation o f  pressure and saturation distributions within the matrix blocks. 

To calculate intra-matrix flow, these methods apply single-porosity flow equations that 

consider gravity, viscous, and capillary effects within the matrix subdomains. Finally, 

these equations are combined with single-porosity fracture equations to calculate the 

interporosity flow rate. Even though these methods theoretically should yield a more 

accurate fluid exchange estimation and are available in commercial simulators."*^ their 

application to full field simulation studies its limited because the large number o f  

computational nodes that are required prohibits their use.

The first attempt to apply this technique was the multiple interacting continua (MINC) 

introduced by Pruess and Narasimhan.'*'* In the MINC model, a matrix block is divided 

into several computational volume elements whose block interfaces are parallel to the 

nearest fracture. The division o f  the porous matrix block gave rise to a model o f  nested
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elements as shown in Fig. 2.3a. Gilman"*^ also proposed a nested-block model. In 

addition, he also proposed a stacked-block model, which represents a system where the 

primary flow path is offered by horizontal fractures (Fig. 2.3b). The nested model 

proposed by Gilman requires shape factors to account for flow between the matrix 

subdomain in contact with the fracture, while the MINC model does not. Beckner et al.*^ 

combined Gilman’s nested and stacked models. In the lateral direction, subdomains are 

the same as in the MINC method, which reduces a two-dimensional problem to one- 

dimension. In the vertical direction, the stacked model is adapted to account for fluid 

segregation owing to gravity. A representation o f  a typical gridblock and a half-matrix 

block used in this model is shown in Fig. 2.3c.

Gridblock
boundary

M atrix

^  t-

Fracture

Fig. 2.3 -  Dual porosity m odeling with subdom ain methods: (a) N ested-block model, (b)

stacked-block model, and (c) Beckner at at. model (From Penuela e f at.* )̂
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2.2.2.3 Empirical Parameter Methods

For the estimation o f  the interporosity flow rate, de Swaan"*® used an empirical 

matrix/fracture transfer function based on an exponential model first proposed by 

Aronofsky et al.^^ who approximated the cumulative oil recovery, /?, by an exponential 

form as:

R = R ^ { ^ - e - '^ ) ......................................................................................................................2.13

where R ^  is the ultimate cumulative oil recovery from the imbibition process and A is a 

fitting parameter. Based on the recovery curve described by Eq. 2.13, de Swaan^** 

expressed the interporosity water flow rate per fracture length using the principle o f 

superposition to account for the variation of water saturation in the fractures as follows:

q =  2.14
!

Using a similar approach, Kazemi et concluded that the exponent constant was 

just a fitting parameter o f  the oil recovery curve and could not adequately include the 

saturation dependence o f the capillary pressure and relative permeability as well as the 

interaction o f  viscous, capillary and gravity forces. Multi-parameter exponential 

functions for fitting cumulative oil recovery have been used based on a physical 

interpretation o f  the imbibition processes. Civan^°'^' worked with two-parameter 

exponential functions and Gupta and Civan^" and Ci van and Rasmussen^^ showed that 

three-parameter exponential functions were sufficient and described the behavior o f 

triple-porosity reservoirs accurately.

Reis and C il’̂ '̂ '* provided a comparison o f  analytical models for capillary imbibition 

and reported the strengths and weakness o f each. In spite o f  the significant attention paid
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to quantifying interporosity flow in fractured reservoirs during the past four decades, a 

rigorous interporosity flow rate expression is still unavailable for implementation in 

commercial simulators.

23  Modeling o f Pressure Transient and Saturation Gradient Effects

The aforementioned approaches based on shape factors for computing the interporosity 

flow rate are usually implemented in current numerical simulators based on a 

discretization scheme that assigns representative values o f  pressure and saturation to a 

fixed position, located at the matrix-block center. To illustrate this point, assume a 

simulation gridblock is selected where water fronts in fractures flow contacting new 

matrix/fracture interface area as shown in Fig. 2.4. Common discretization schemes using 

flnite-difference approximations would compute an average value o f  water saturation and 

would locate it at the center o f  the simulation gridblock.

Because this discretization scheme implies uniformly distributed water phase within 

the simulation gridblock. to assign the average saturation at the grid-block center is 

equivalent to locating the average water saturation at the center o f  each matrix block 

within the simulation gridblock. However, physical processes do not necessarily happen 

at the matrix-block center. In addition, the average value o f  the water saturation is not 

located at the center o f  the matrix block, but instead, shifts from near the interface to the 

matrix-block center over time as seen in Fig. 2.4. To compensate for the inconsistencies 

resulting from discretization, correction schemes are needed for proper representation o f 

the physical processes.
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Fractures

Assum ed in 
finite-difference 
approximations

Observed in 
fine-grid  

simulation

Symmetry planeMatrix

Water

Fig. 2.4 -  Flnite-difference approximation using average water saturation located at the 

matrix-block center. In reality, th is value m oves from the matrix/fracture interface to the 

matrix-block center.
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For single-phase interporosity flow, Najurieta"^ showed that de Swaan’s analytical 

model results"^ were equivalent to numerical solutions provided by Kazemi,'* which 

accounted for pressure transient effects by assuming nonsteady-state flow at the 

matrix/fracture interface. However, the approximate solutions presented by Najurieta 

oversimplify matrix geometries to strata and blocks. Similarly, Kazem i’s model assumes 

horizontal fractures,'* which is more applicable to multi-layered reservoirs than naturally 

fractured reservoirs.

For multiphase fluids, the pseudocapillary-pressure approach has been used to 

account for the nonuniform saturation within the matrix block."’ "’"'̂  ̂ However, this 

approach presents some difflculties because when the operating conditions are changed, a 

new set o f dynamic pseudofunctions needs to be calculated.

An alternative technique to consider both pressure transient and saturation gradient 

effects on the interporosity flow is the subdomain a p p r o a c h . H o w e v e r ,  the large 

number o f  computational nodes prevents this approach from being a viable alternative for 

full reservoir studies.

The procedure developed in this study is intended for implementation in existing 

simulators without significantly increasing computational work while representing 

pressure transient and saturation gradient effects on the interporosity flow as accurately 

as possible. In the following chapter, the conceptual model that is the basis for the 

proposed procedure is presented.
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CHAPTER 3 

CONCEPTUAL MODEL

The description o f  an appropriate conceptual model is the first step before the 

development o f numerical models. A conceptual model that provides an interpretation o f 

flow through a naturally fractured porous media is presented in this chapter before 

describing a new modeling approach for interporosity flow in naturally fractured 

reservoirs. However, it is not possible to represent all natural fracture network patterns 

and their fluid flow with a single model presented here. Therefore, examples o f  reservoirs 

where the proposed model is most likely applicable are also presented. Consequently, this 

is an essential chapter describing the considerations and applicability o f  the main 

contributions o f  this study, the details o f  which are given in subsequent chapters.

3.1 Mode! Abstraction

The necessity o f specifying a conceptual model arises from the fact that all petroleum 

reservoirs to some degree are naturally fractured'^ and the inability o f a single model to 

accurately simulate all possible types o f  fractureo formations. Therefore, the first step is 

to define the type o f  fractured rock to be represented through the conceptual model.

The natural fractures in hydrocarbon-bearing formations may be classified into three 

broad groups referred to A, B, and C, considering the storage capacities o f  the matrix and
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fracture systems." Group A reservoir rocks are characterized by matrix blocks with large 

storage capacity and highly conductive fractures with small storage capacities. Matrix 

porosity may be well interconnected, allowing flow into the wellbore. Reservoirs may be 

simulated with a dual-porosity/dual-permeability model because matrix permeability can 

be significant. When the matrix permeability is low, dual-porosity models may be used 

for reservoir simulation.

Group B reservoirs have about equal storage capacity in the matrix and the fractures. 

When the matrix is a good reservoir rock (group B-I), a dual-porosity model may be 

used. For practical purposes, reservoirs where the porous matrix is not a good reservoir 

rock (group B-II) are equivalent to reservoirs from group C because almost all the storage 

capacity is owing to the fractures. In group C reservoirs, the fractures are both the storage 

and the flow path for hydrocarbons.

The present study focuses on group A and B reservoirs, according to the classification 

proposed by Aguilera," where interporosity flow estimation is needed.

In the following, the conceptual model characteristics for single-phase and multiphase 

flow conditions are presented.

3.1.1 Single-Phase Flow

Consider a fractured rock sample in a single-phase fluid flow experiment where a 

pressure difference is applied in a certain direction as shown in Fig. 3.1. This rock sample 

is large enough to contain a representative number o f  distributed open fractures. As a 

consequence o f the anisotropic nature o f  the fractured rock, the fluid velocity vectors are 

not necessarily parallel to the pressure gradient direction. Instead, they tend to align with
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the main flow channels formed by the interconnected open fractures. Because the flow 

velocity vector is proportional to the pressure gradient and the proportionality factor 

involves the permeability tensor, the flow velocity may have a different direction than the 

pressure gradient in a fractured media.

Flow rate

Pressure
drop

Naturally 
fractured rock

Flow rate

Pressure
drop

Idealized 
fractured rock

Fig. 3.1 -  Representation o f (a) naturally fractured and (b) Idealized fractured rock sam ple  

In a flow experiment. Fluid flow s in preferential paths conform ed by Interconnected  

fractures can be mathematically described by permeability ten sors (After Penuela et al.* )̂

Consequently, if the network o f  randomly distributed fractures is represented by a set 

o f  parallel and continuous open fractures such that the same flow velocity direction, flow 

rate and pressure gradients are maintained, the same permeability tensor for the 

mathematical description o f  the system would be obtained from the flow experiment. 

This representation o f  the fractured rock considers the matrix blocks as slabs o f  finite 

lateral extent where ID interporosity flow occurs, as illustrated in Fig. 3.2. In this 

illustration, a set o f  interconnected fractures is substituted by an equivalent fracture with 

the same conducting capacity. Fluid flow in the surrounding matrix blocks is assumed to 

be primarily ID flow.

26



(a) Natural flow channels

\ \

m

(b) Idealized flow channels

Fig. 3.2 -  One-dimensional flow  towards flow channels in (a) natural and (b) idealized  

matrix/fracture system  (From Penueia ef alfl)
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This conceptualization o f  a fractured media implies that once the main flow paths 

have been established through the primary flow channels (interconnected macro- and 

micro-fractures) in a rock, fluids in the matrix portion principally flow towards these flow 

channels. All matrix “blocks” within a control volume do not have uniform pressure 

gradients in all directions. Instead they tend to develop fluid flow perpendicular to the 

main flow channels rather than parallel to them. The traditional idealization o f  fractured 

media as a sugar-cube model is based on the assumption that the pressure gradient is the 

same in all directions within each matrix block in a gridblock as illustrated in Fig. 3.3.

Gridblock
boundary

1 Pressure 
gradients

Main flow 
channel

Matnx

Main flow 
direction

Secondary 
flow channel

Fig. 3.3 -  Sugar-cube idealization a ssu m es equal pressure gradients perpendicular and 

parallel to main flow channels com posed  o f Interconnected open fractures.

This same assumption has been implicitly adopted in multiphase models that rely on 

the extension o f  the single-phase models when using geometric shape factors. The 

proposed model assumes that the pressure gradient is not the same in all directions
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because the flow is normal to the flow conduits. However, this is not a limitation because 

the model can also handle the dual-permeability multi-dimensional flow (see Chapter 4).

3.1.2 Multiphase Flow

Similarly, consider a two-phase flow experiment where the water-wet rock sample shown 

in Fig. 3.1 is initially saturated with oil. Water flows along the fractures, which limit the 

matrix blocks as illustrated in Fig. 3.4. The water front may rapidly propagate along the 

high conductivity channel displacing the small oil volume contained within the fractures. 

This allows water to completely contact the oil-bearing matrix surface. Countercurrent 

imbibition then occurs. Water and oil flow through the same matrix/fracture interface but 

in opposite directions.'■* In other situations, the flow o f  injected water down the fracture 

will not be sufficiently last enough and some cocurrent imbibition may occur. 

Another situation can appear if  water is injected at a very high pressure so that water will 

imbibe and oil will flow in the same direction (cocurrent imbibition) owing to the viscous 

pressure gradient. However, the proposed conceptual model for two-phase interporosiPy 

flow is based on the assumption o f  one-dimensional imbibition.

Water displaces oil from the matrix owing to capillary forces. This almost 

instantaneously increases the oil-phase pressure and reduces the water-phase pressure 

throughout the matrix block.’"* These two capillary-created pressure gradients have 

opposite signs, one driving water into the matrix and the other driving oil into the 

fracture. As more water is imbibed into the matrix, oil saturation is reduced. Although 

there is low oil saturation at the matrix/fracture interface, it is not necessarily equal to its 

residual value. These low saturations allow oil droplets to flow continuously to the

29



fracture generally through the wider regions o f the pore space adjacent to the fracture. It 

will be shown in Chapter 6 that the value o f  the relative permeability to oil at the 

matrix/fracture interface is an important parameter that can control the imbibition 

process.

Water

Matrix

Water I
I

Fracture-matrix 
interface

Symmetry
plane

Fracture

Fig. 3.4 -  Countercurrent imbibition: One-dimensional flow of water into a water-wet matrix 

block reduces oil saturation to a critical value at the matrix/fracture interface. However, 

this reduced oil saturation allow s oil droplets to  flow into the fracture (From Penuela ef

al")
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As in the single-phase flow conceptualization, matrix “blocks” within a control 

volume do not have uniform pressure and saturation gradients in all directions. Instead 

they are prone to develop fluid flow perpendicular to the main flow conduits rather than 

parallel to them. Once the main flow paths have been established through the fracture sets 

in a rock, oil in the matrix portion will mainly flow towards the fractures. Reis and Cil'^ 

have suggested the use o f  ID  flow models for thin fractured formations where gravity 

segregation is minimal.

3.2 Model Applicability

In the literature, several reservoir and outcrop studies provide field cases where the 

proposed model would adequately represent anisotropy effects owing to naturally 

occurring fractures. In these cases, the conceptual model may be used by numerical 

simulators to more accurately predict hydrocarbon recovery through pressure depletion 

and waterflooding.

There are numerous reservoirs that contain fractures with a preferred orientation, 

which causes the effective medium to be anisotropic."^^ A study o f  the past and present 

state o f stresses provides insight about the mechanisms that formed, modified and 

currently maintain these fractures as primary flow paths. It has been found that large 

differential stresses reduce the tendency o f fractures to intersect, causing fracture traces 

to extend linearly and overlap for long distances.* This fracture pattern will yield fluid 

flow that can be described by permeability tensors (see Fig. 3.1b and 3.2).

When the differential regional stress is small, fractures tend to interact and connect, 

developing a fracture network with a pattern difficult to describe with simple geometry
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(Fig. 3.1a) such as a set o f  cubes or slabs. However, geological information about the 

genesis o f fractures and the present state o f  stresses indicate which fractures or parts o f 

fracture systems are hydraulically important. When shorter and discontinuous fractures 

intersect longer and more continuous fractures, the shorter fracture set was created after 

the longer set. If a fracture crosses the other, the older set was closed at the time the 

younger set formed.^

Similarly, the state o f  stress may be used to infer fractures characteristics because the 

stresses can be a controlling factor during fracture formation. It is recognized that 

fractures that parallel the maximum compressive stress tend to be open while those 

perpendicular to this direction tend to be closed. Perez et applied this principle to 

identify which fracture sets were likely to be open. In their study, the maximum 

horizontal stress in the field was first estimated from borehole ellipticity measurements, 

and fracture strike was obtained from Formation MicroScanner (FMS) logs. With the 

preliminary estimate o f fracture orientation, they designed a seismic survey to perform an 

amplitude-variation-with-offset (AVO) analysis o f  2D and 3D / ’-wave data. They found 

that conclusions from the AVO analysis were consistent with the results obtained 

previously from borehole measurements and P-S converted wave studies.^" In Fig. 3.5 a 

map view o f  the fracture orientation obtained from P-S  data validated through AVO 

analysis is shown.

Assume that a map similar to Fig. 3.5 is available for a particular reservoir study. 

Once fractures that are hydraulically significant conductors have been identified, 

characterized and mapped, they need to be represented in a numerical simulator. If  an 

equivalent continuum simulation model is used, the volume-averaged behavior o f  many
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fractures needs to be determined. In the case o f fracture orientation, which is required for 

permeability tensor e s t i m a t i o n , a  parallel Cartesian grid may be overlaid on this map 

to encompass a set o f  parallel fractures as illustrated in Fig. 3.6. The resultant 

permeability tensor may be then computed by multiplying a normalized permeability 

tensor obtained from the fracture orientation and a permeability scalar, which is function 

o f fracture density and interconnectivity. These tensors then are numerically calibrated by 

history matching well tests in the region under investigation. The reader is referred to 

Avila et al!'^ for details o f this technique.

FAULTS

/  / t
N

Fig. 3.5 -  When open natural fractures are present In se ts  of local parallel rock 

discontinuities, a single permeability tensor n eed s to be com puted at each  point In the 

reservoir for the d iscrete network simulation model (From Perez et  a / .^
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Fig. 3.6 -  After Identifying representative rock volum es (gridblocks), volum e averaged  

rock properties may be com puted for the equivalent continuum simulation m odel. A single  

permeability tensor n eed s to be calculated in each  gridblock using the average fracture 

orientation and fracture conductivity. For instance, even though fractures in gridblocks (a) 

and {b) may have the sam e absolute permeability, each gridblock need s a different 

permeability tensor because fractures have different orientation.
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3 3  Interporosity Flow Modeling in Linear Matrix/Fracture Systems

The basic conclusion from the previous discussion is that bilinear flow modeling may be 

sufficient to represent the complexity presented by some naturally fractured reservoirs. 

One linear flow is along the highly conductive flow channels and the other perpendicular 

to them. Linear flow in the fracture system may be modeled with the diffusivity equation 

expressed by Eq. 2.1. In subsequent chapters, a new approach is presented and validated 

for single-phase, miscible and immiscible two-phase systems for 1D interporosity flow.

An important characteristic o f  the proposed conceptual model is that it can be 

incorporated in either a deterministic or stochastic framework. An example o f the 

implementation o f the present interporosity flow model in a dual-porosity, dual

permeability reservoir simulator is provided In Chapter 7, where a simulation run with the 

proposed model is compared with traditional model results.
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CHAPTER 4 

FLOW CORRECTION FACTOR IN SINGLE-PHASE SYSTEMS

An interporosity flow rate model using a variable shape factor for a single-phase system 

is derived in this chapter. The variable shape factor is introduced as a time-dependent 

flow correction factor that accounts for the pressure transient effects in the interporosity 

flow rate. Derivation details o f the analytic expression for the flow correction factor are 

presented in Appendix A.

Dual-porosity model simulation o f naturally fractured reservoirs typically assumes 

there are two continua, matrix and fractures, within each gridblock. The flow equations 

are written for each system with a matrix/fracture transfer function to relate the loss or 

gain o f matrix fluids to or from the fracture. For single-phase fluid flowing through an 

interconnected fracture system, the following governing equation applies:'^

V-
/ / / ^ /

■ ^P f - p f g ' ^ D )
d

d t
- q  .................................................................. 4.1

where the fluid transfer rate per unit volume o f  rock, q, is commonly calculated as a 

function o f the pressure difference between the matrix and fracture systems, matrix flow 

capacity, and matrix geometry considered tit rough a constant shape factor. For the matrix 

system, Eq. 4.1 is applied using matrix rock and fluid properties and a fluid transfer rate 

with opposite sign.
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4.1 Flow Correction Factor Derivation

In fractured reservoirs that may be represented by the conceptual model described in 

Chapter 3, the interporosity flow is one-dimensional. Assume that the flow rate at the 

matrix/fracture interface may be computed by means o f Darcy’s law as follows:

........................................................................................................................ 4.2
//  dx

where k„ is the absolute permeability at the matrix/fracture interface, ^  is the average 

fluid viscosity and O  is the flow potential. The total fracture surface area. A, is calculated 

depending on the geometry o f the fracture. For fractures with surfaces that can be 

approximately represented as parallel plates, the total fracture area available for 

interporosity flow is given by:

X = ..............................................................................................................................4.3

where ^ i s  the average fracture porosity computed in the control volume K, and uyis the 

average fracture width (aperture).

Neglecting gravity effects for simplification, Eq. 4.2 can be approximated in a finite 

difference form as:

q = - A — — .......................................................................................................................... 4.4.
/ /  Ax

Consider that the pressure drop, Ap, responsible for the interporosity flow rate, q, can be 

calculated as the difference between the matrix and fracture fluid average pressures. 

Further, assume that the two average pressure values are separated by a distance equal to
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half the fracture spacing. Therefore, it is necessary to introduce a flow correction factor, 

Ff, into Eq. 4.4 as follows in order to correct the errors caused by these assumptions:

q = F^A
k_

L
9

4.5.

This flow correction factor is similar to the shape factor used in interporosity flow 

calculations for current dual-porosity modeling. While Fc is dependent on the flow 

geometry as are the shape factors, it is independent o f  the matrix block size. In addition, 

Fc varies with time, and for single-phase fluids its value converges to the steady-state 

shape factor value reported in previous studies.

To illustrate this point, numerical experiments were performed on a cubic shape 

matrix block in contact with a fracture along one side. Because o f  symmetry, only half o f 

the matrix-fracture system was simulated as described in Fig. 4.1.

Sym m etry plane

Fracture flow

Sym m etry plane

Fig. 4.1 -  Representation o f the numerically-modeled idealized fracture-matrix system  

(From Penuela e t alF’)
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Reservoir rock and fluid data are similar to those described by Lim and A z iz / ' T able

4.1 presents data used to obtain both numerical and analytical solutions to this ID flow 

problem. F igure 4.2 shows the 20x1x1 grid and reports jc-direction gridblock sizes 

employed for the numerical simulation (Ay = Az = 10 ft).

TABLE 4.1 -  DATA USED IN NUMERICAL EXPERIMENTS OF A SINGLE-PHASE FLUID
(FROM PENUELA ETAL,” )

Matrix porosity, fraction 0.0005

Matrix permeability, L ,  md 0.001

Total compressibility, c„ psi'^ 3.5x10'®

Fluid viscosity, /j, cp 1.0

Initial pressure, p„ psia 1000

Fracture pressure, p,. psia 500

Fracture spacing, L, ft 10

Half fracture surface area, A„, ft̂ 100

Pressure profiles inside the matrix block for different times are plotted in Fig. 4 J  The 

average matrix fluid pressure has been indicated as a dotted horizontal line that intersects 

with the pressure curve from which the volume-weighted average pressure value was 

computed. F igure 4.4 shows the average matrix pressure and the location o f  this value as 

a function o f  time. It is observed from Figs. 4.3 and 4.4 that the distance between the 

location o f  the average pressure, Ar, increases from zero at the fracture surface up to a 

steady-state value that is less than the assumed half fracture spacing. Therefore, the 

purpose o f Fc in the interporosity flow rate (Eq. 4.5) is to correct for the actual location o f  

the average pressure in the matrix.
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Matrix-block center line

I
1

2

Fracture Distance along fracture,

Fig. 4.2 -  Schem atic grid system  discretization of one-half matrix block into gridblocks for 

numerical solution. The fracture is  the first gridblock. Gridblock Ar values are 0.002, 0.004, 

0.007, 0.012, 0.02, 0.04, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.25, 0.3, 0.36, 0.44, 0.53, 0.64, 0.77,

0.815 ft (From Penuela e f a l } \
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t  =  0.009  se c , p 998 psia
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t  -  4.9 sec , p „  = 950 psia

900
A verage pressure
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600 • / =  346  sec , p „ -  600 psia

500 t -  920 sec , p „ -  510 psia

400

300

0 2 3 51 4

Distance from the fracture surface, ft

Fig. 4.3 -  Pressure profiles and average pressure locations for 1D numerical simulation 

with properties given in Table 4.1 (From Penuela et aL^)
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Fig. 4.4 -  Average matrix pressure and its location on the pressure profile curve (R g. 4.3) 

a s  functions o f time. Note the d istance converges to a steady state value (From Penuela et

a l" )
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The analytical solution (see Appendix A) o f the average pressure difference and 

interporosity flow rate in this ID flow problem were used to compute Fc, shown in Fig. 

4.5.

2
w

- ® —  Present study 

 Lim and Aziz
s
o
•-C 20- 
u
tk.
ofj

«
^  1 0 -

2.47

1000100100.1 1

Time, sec

Fig. 4.5 -  Comparison of flow correction factors com puted from the analytic solution and 

from the constant shape factor reported by Lim and Aziz^  ̂ (From Penuela etal}^)

Convergence to the shape factor obtained by Lim and Aziz^' for one set o f  parallel 

fractures was observed. Thus, these numerical studies indicate:

hm 4F^(r)
.4.6
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where L is the fracture spacing for one set o f  parallel fractures and cris the corresponding 

shape factor for that matrix geometry.

The input data presented in Table 4.1 were used along with several values for matrix 

permeability and block size to determine their effect on Fc (F ig . 4 .6). Rapid convergence 

o f  Fc to the steady-state value is observed in small blocks with high matrix permeability. 

As block size increases (larger fracture spacing) and matrix permeability (or fluid 

mobility) decreases, time dependency o f  Fc becomes important.

L = I O f t f  k m - 0 . 0 0 1  m d  

L = IO f ty  k m = 0 . 0 1  m d  

L = 1 0  f t j  k m - 0 . 1  m d  

L = 1  f t ,  km = O .O O I m d  

L —2 0 f t ,  k m - 0 . 0 0 1  m d

0.01 0.1 1 10 
Time, sec

100 1000

Fig. 4.6 -  Variation of flow correction factor for different fracture spacing and average 

matrix permeability (From Penuela e t al.^)
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A generalized curve for Fc that reflects this time dependency is obtained by defining a 

convenient dimensionless time as follows:

.............................................................................................................................

The data obtained for Fig. 4.6 was replotted using the to definition given by Eq. 4.7 and a 

single curve was obtained (F ig . 4 .7). An equation o f  the form:

F = C 4.8

was used to fit this curve. The asymptotic behavior should be the analytical result o f  Lim 

and Aziz, thus, C/ was taken to be equal to 2.47. The remaining constant values C: =

0.0133 and C} = 0.5 were obtained by regression analysis (F ig . 4 .8) with a coefficient of 

regression /?“=0.9992. The solid line curve in Figs. 4.6 through 4.8 is the Eq. 4.8 

correlation.

4.2 P aram etric  S tu d y

A parametric study was carried out to investigate the applicability o f  the present approach 

in multi-dimensional flow in dual-permeability media.

The proposed interporosity flow equation, Eq. 4.5, indicates that the main driving 

force for fluid flow is the matrix pressure gradient. This pressure gradient may or may not 

be uniform depending on either the matrix geometry or the permeability ratio (or 

heterogeneity degree^'’):

(Ô  = — .................................................................................................................................... 4.9.
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100

L=10ft, km=0.001 md 
L=10ft, km-0.01 md 
L=10 ft, km=0.1 md 
L-1 ft, km=0.001 md 
L=20ft, km=0.001 md 
Correlation

1.0 1.0 E>4 1.0 E-2 1.0 E+0

to

Fig. 4.7 -  Flow correction factor curve a s  function o f d im ension less time. The steady state  

Fc approaches to a constant value com puted from Lim and Aziz (From Penuela ef al}^)
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Fc  =2.47(1 + 0 .0 1 3 3 / /o ) '"
8.0 E+3

6.0 E+3 •

4.0 E+3

Simulated data from Fig. 4.7 
Correlation

2.0 E+3 •

0.0 E+0
0.0E-+O 5.0 E+4 1.0 E+5

Fig. 4.8 -  Generalized correlation for the flow correction factor (After Penuela e t  al}^)
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Figure 4.9 depicts fluid velocity vectors in the matrix for different pressure gradients. 

F igure 4.9a represents the matrix flow in a dual-porosity model. The inherent assumption 

is that the fracture is highly conductive compared with the matrix (the system has a very 

low permeability ratio,^ «  1 ) and 1D flow perpendicular to the fracture surface is

observed.

( a )

M i l l  
I I I I I

Fracture r r r r r r .  r r r r r r Matrix

( c ) i \ \ \ \  I I I  
W W W I

Fig. 4.9 -  Different types o f matrix flow. C ase (a): Dual porosity model. C ase (b): Dual- 

permeability model. Case (c): Fluid velocity vectors observed at high permeability ratio

(From Penuela e t al.^)
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Figure 4.9b shows behavior observed in typical cases o f  dual-permeability media 

because either the matrix is also fluid conductive or the fracture has low fluid 

conductivity. This case shows 2D flow where the main velocity vector components are 

perpendicular to the fracture surface. F igure 4.9c is a special case o f the dual

permeability media flow pattern shown in Fig. 4.9b. Note that the velocity vectors display 

a 2D flow behavior with principal components parallel to the fracture. This regime was 

observed in a few of the parametric studies described below.

To investigate the effect o f  (Ok on the flow correction factor, a parametric study was 

performed using the fluid and rock data reported by Thomas et al.~^ and summarized in 

T able 4.2.

TABLE 4.2 -  DATA USED IN THE PARAMETRIC STUDY (AFTER PENUELA ET AL}^)

Matrix porosity, fraction 0.003

Matrix permeability, k„, md 1.0

Matrix compressibility, c„, psf’ 3 .5 x  lO'®

Fracture compressibility, cy, psf’ 3.5 X 10"®

Connate water saturation, 5hc, % 20

Oil density, p„, Ib/ft^ 51.14

Oil viscosity at ph, //«. cp 0.21

Slope of Mo above pi,, dMJdp. cp/psi 1.72x10®

Oil formation volume factor at />*, S„, RB/STB 1.8540

Slope of Bo above ph, dBjdp. RB/STB/psi -4.0x10®

Initial pressure, psia 5575

Fracture pressure, pf. psia 5565

Bubble point pressure, p*. psia 5560

Fracture spacing, L. ft 10

Half fracture surface area, A„, ft^ 100
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Values shown in Table 4.3 for fracture porosity and fracture permeability were 

calculated assuming the parallel plate model to achieve different permeability ratios. A 

2D numerical simulation was performed using a modified version o f  the BOAST-VHS 

program.^^ The grid chosen was 20x20x1 which was equally divided in the ^/-direction 

(z^=0.5 ft) and had dimensions in the x-direction as indicated in Fig. 4.2. Because of 

symmetry, only half o f the cubic fracture-matrix system was modeled. To simulate the 

fracture, gridblock properties from Table 4.3 were used in blocks, indexed (1,1) to (1,20). 

The single-phase flow across the fracture was simulated by placing a fictitious well at 

block (1,1) with a constant fluid injection rate and a well at block (1,20) producing fluid 

at constant bottomhole pressure (/?„/= Pf)- The interporosity rate was calculated as the rate 

difference between the injection and production ports.

TABLE 4.3 -  FRACTURE PROPERTIES USED IN THE PARAMETRIC STUDY
(AFTER PENUELA ET AL^)

Fracture
width Bulk properties Gridblock properties Permeability

ratio

Wf kf (fc k2 (ÙK
ft % Darcys % Darcys

0.000108 0.00108 0.01 2.71 2.5 0.1

0.000503 0.00503 1 12.58 250 0.001

0.002336 0.02336 100 58.40 25000 0.00001

Numerical solutions were compared with the analytic solution (Eq. A-8), which 

represents the ideal behavior o f a dual-porosity medium where the fracture is infinitely 

conductive (t%  = 0). The effects o f  having different values for cok are shown in Figs. 

4.10-4.12. Figure 4.10 shows pressure differences between the fracture and average
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matrix pressure as a function o f  dimensionless time (Eq. 4.7). The average matrix 

pressure was calculated as the arithmetic mean o f the block pressures for all blocks 

except for those indexed by (1,1) through ( 1,20).

a

I
. S

1.0 B4

10

A A A A
8

6

 Analytic soln. (Eq. A-5)
o û ) k =  0.00001 
A û ) k  — 0.001
O (Ok = 0 . 1

4

2 □ □

0
1.0 E-3 1.0 E-2

to

1.0 E-1 1.0 E+0

Fig. 4.10 -  Pressure differences at different permeability ratios. Analytic solution  

represents an ideal dual porosity sy stem  (From Penuela e t al}^)
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At low fracture permeability, the fracture is not able to function as a high conductivity 

channel and consequently 2D flow occurs in the matrix. This is the case represented by 

Fig. 4.9c and is also shown in Fig. 4.11. At high cdk, the initial pressure difference 

increases while fluids fill the fracture (fracture pressurization). Fluids are then produced 

simultaneously from the matrix and the fracture. Figure 4.12 shows that small values o f 

the permeability ratio lead to large values of the interporosity flow rate while large values 

for û)k lead to smaller interporosity flow rates. The limiting case is û\- = 1, where matrix 

and fracture have the same fluid conductive capacity. In this specific case, the average 

pressures in both media would be the same and thus the interporosity flow rate would 

drop to zero. Even though the assumption o f ID flow is violated and interporosity flow 

rate is reduced at high cok, the flow correction factor shows small changes (Fig. 4.13). 

Therefore, the interporosity flow equation is applicable to both dual-porosity and dual

permeability situations.

4 3  Discussion

The interporosity flow equation developed in this work offers several advantages. The 

first advantage is related to the physical meaning expressed in the proposed interporosity 

flow equation. Assume that fracture surfaces can be approximated by parallel plates. 

Hence, the fluid transfer rate per unit volume o f rock can be calculated by substituting 

Eq. 10 into Eq. 12 to obtain the following equation:

q  =  AF,  4.10.
W f  L
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= 0.14 to — 3.48

Ip — 32.8 Ip —133.5

Fig. 4.11 Two-dimensional flow experienced at high permeability ratio. This pressure  

distribution corresponds to 1 (From Penuela etal}^)
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 Analytic soin, (Eq. A-7)
o 0)K= 0.00001

A 0)k  —  0.001

°  (Ok  = 0 . 1

° ° a a a a o i ^

1.0 E>4 1.0 E-3 1.0 E-2

to
1.0 E-1 1.0 E40

Fig. 4.12 -  Effect of permeability ratio on interporosity flow rate. At high fluid flows 

alm ost equally into matrix and fracture; therefore the interporosity flow rate is reduced  

(From Penuela ef alT^)

54



Analytic soin. (Eq. A-9) 
û)K= 0.00001 

0.001 
O)K=0.1

W

C  12 «
0  
w 
S1

%  „

k ,

iS ?  o O o o o oo ooo o2.47

1.0 E-1 1.0 EH)1.0 E-3 1.0 E-21.0 E~4

to

Fig. 4.13 -  Effect of permeability ratio on flow correction factor (From Penuela e t al}^)
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The interporosity flow rate computed from Eq. 4.10 is not only a function o f matrix 

geometry and petrophysical properties expressed in Eqs. 2.2 through 2.5, but also 

considers fracture characteristics, such as fracture porosity and width. In previous works, 

the shape factor given by Eq. 2.8 considered only the fracture geometry for the estimation 

o f  the interporosity flow rate. To see the significance o f using the fracture surface area, 

consider Fig. 4.14, which shows two gridblocks containing two parallel fractures in the 

same rock volume.

(a) (b )

Fig. 4.14 -  Two simulation gridblocks containing a pair of parallel fractures in the sam e  

rock volume. In C ase (b), fluids would be produced faster from the matrix than in C ase (a) 

b ecau se of a larger fracture surface area assum ing negligible stress  effects on the 

interporosity flow  (From Penuela e( a l” )

In case a, the interporosity flow rate estimation is the same regardless whether Eq. 2.2 

or Eq. 4.10 is used. On the other hand for case b, the interporosity flow rate computed 

from Eq. 4.10 is higher than case a  because the fracture surface area is higher for the 

same gridblock volume. Equation 4.10 would predict twice the rate for a system that has 

twice the fracture porosity, while Eq. 2.2 would predict the same rate for both systems. 

The same conclusion is achieved regardless o f  the type o f  fluid present in the matrix 

block.
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Implementation o f  Eq. 4.5 to compute single-phase fluid transfer is straightforward 

because the same variables are available in a dual-permeability, dual-porosity simulator. 

However, during the derivation o f the flow correction factor expressed by Eq. 4.7 it was 

assumed that the pressure gradient observed in the matrix is the result o f a constant 

pressure kept at the matrix/fracture interface. Since in a real situation the pressure in the 

fracture does not change instantaneously to reach a constant value, fracture pressure 

variation effects on the flow correction factor are considered by means o f the 

superposition principle as shown in Chapter 7.

The correlation generated for the flow correction factor for single-phase systems may 

be extended to gas-condensate systems by defining an appropriate dimensionless time. 

The validity o f this approach will be shown in Chapter 5.
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CHAPTER 5 

FLOW CORRECTION FACTOR IN GAS-CONDENSATE SYSTEMS

In this chapter, the applicability o f the flow correction factor correlation given by Eq. 4.8 

for gas-condensate systems is shown by introducing an appropriate dimensionless time. 

Derivation details o f the analytic expression for the flow correction factor for computing 

the interporosity molar flow rate are presented in Appendix B.

Gas production from a naturally fractured gas-condensate reservoir is impaired by 

retrograde condensation. This phenomenon occurs when the local pressure is reduced 

below the dew point. Flow o f gas from the matrix to the fracture is affected by the 

presence o f the liquid phase, which reduces the relative permeability to the gas phase. 

Matrix pressure gradients are also affected by the presence o f saturation gradients 

resulting from the condensation o f  liquids from the fracture-matrix interface to the block 

center as pressures drop below the dew point pressure. However, the gas-condensate fluid 

problem becomes identical to the single-phase fluid problem when pseudofunctions to 

account for the multiphase effects observed below the dew point pressure o f  the gas. 

Appendix B shows the theoretical equivalence between the single-phase and gas- 

condensate fluid formulations and the corresponding solutions for interporosity flow. In 

the following, the flow correction factor will be derived using pseudofunctions that 

reduce the gas-condensate problem to a single-phase problem.
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5.1 Flow Correction Factor Derivation

Darcy’s law is applied to estimate the interporosity flow rate. The reduction o f  effective 

permeability to the gas phase in the presence o f the liquid phase is described by means of 

the relative permeability to the gas. Neglecting gravity and capillary pressure effects, the 

interporosity molar flow rate can be calculated from the following expression:

&
5.1.

The pseudopressure function defined by Jones and Ravaghan*’* may be used to write 

Eq. 5.1 as follows:

&
5.2,

where

Pm

5.3.

The pressure gradient expressed in terms o f the pseudo functions in Eq. 5.2 may be 

substituted by the difference in the matrix and fracture average pseudopressures, whose 

locations in the matrix block are separated by a distance U 2,  if  a flow correction factor is 

introduced into Eq. 5.2 as follows:

( P p - P p / )
A
2

5.4.

The flow correction factor, Fc, is defined by the Eq. 4.8 correlation with the following 

dimensionless time:
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where tp is an appropriate pseudotime function.

The use o f  pseudotime functions effectively simplifies the complex flow problems. 

Lee and Holditch^^ used a pseudotime function for well testing in gas wells using type 

curves developed for slightly compressible liquids in a homogenous reservoir. They 

theoretically analyzed the conditions under which their pseudofunction linearizes the 

flow equation for single-phase gas. For gas-condensate systems, Penuela and Civan^**’̂  ̂

applied the following pseudotime function, which accounts for multiphase flow effects:

- i
^ { p o S , . + p , s J

- \

d t .............................................................................................. 5.6

where the pseudopressure function was defined by Eq 5.3. As indicated in Appendix B, 

the pseudotime function given by Eq. 5.6 can be used along with Eqs. 4.8 and 5.5 to 

compute the total molar rate o f  interporosity fluid transfer in a matrix block that contains 

a gas-condensate fluid.

This approach was verified by using a compositional simulator whose formulation is 

described by P e n u e l a . T h e  simulator is a semi-implicit, non-Newton-Raphson, equation 

o f state (EOS)-based compositional, ID radial reservoir model, which was modified to 

handle ID  linear flow. Numerical experiments were performed on a cubic shape matrix 

block ( I  = 10 ft) in contact with a fracture along one side. Because o f symmetry, only 

half o f  the matrix-fracture system was simulated using the 20x1x1 grid shown in Fig. 4.2. 

Matrix permeability and porosity were respectively k = 0.001 md and (p -  0.05%. Initial 

matrix pressure was set at the dew point pressure o f the gas {pdê v -  6750 psia) and
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fracture pressure was kept constant at p f=  6250 psia. Mixture 2 for the fluid and set 2 for 

the relative permeability from Penuela^° are used. The fluid system is represented by 

means o f  a mixture o f five pseudo-components with parameters described in T able 5.1.

TABLE 5.1 -  PSEUDO-COMPONENT PROPERTIES FOR FLUID USED IN

COMPOSITIONAL SIMULATION (AFTER PENUELA*)

Mixture 2
Pseudo-com ponent

pCi pCz pC, PC4 pCs

Initial mole fraction, % 10.931 74.064 7.870 2.583 4.552

Moiecular weight. Ib/lb-mole 44.01 16.28 32.97 68.19 131.85

Critical pressure, psia 1071 663 687.7 503.6 375

Critical temperature, °R 547.91 341.03 573.97 811.14 1450

Critical volume, fl^/lb-mass 0.026 0.085 0.068 0.055 0.010

Acentric factor, dimensionless 0.2250 0.0110 0.1091 0.2289 0.4000

Shift factor, dimensionless -0.26 -0.1555 -0.0971 -0.0507 0.0710

Parachor, dimensionless 78 76.3 116.8 216.4 381.1

Binary interaction

coefficients,

dimensionless

pCi 0 — — — —

pC2 0.1 0 — — —

pCs 0.12 0.1 0 — —

PC4 0.1 0.1 0 0 —

pCs -0.02 0 0 0 0

The relative permeabilities were represented using Corey-type functions with 

coefficients interpolated between the immiscible and miscible limits depending on the 

capillary number evaluated at the matrix/fracture interface. The end-points and exponents 

o f  the relative permeability curves for the immiscible limit are given in Table 5.2, and for 

the miscible limit, linear relative permeabilities o f  saturation are assumed. For additional
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information regarding rock-fluid description and flow modeling, the reader is referred to

Penuela. 70

TABLE 5.2 -  PARAMETERS FOR RELATIVE PERMEABILITY (AFTER PENUELA^®)

Parameter Oil phase G as phase

End-point relative permeability, fraction 1 1

Residual saturation, fraction 0.048 0.15

Exponent of the Corey function, dimensionless 2 2.12

Simulator output data were used to compute the flow correction factor, Fc, as a 

function of dimensionless time. To further test this approach, several values o f  absolute 

permeability and block length were used. One single Fc curve was obtained as observed 

in Fig. 5.1 Some deviations were observed during initial simulation because o f fluid 

compressibility effects that are not properly captured by the implementation o f  Eq. 5.6 

and the assumptions under which this equation was derived as indicated in Appendix B.

5.2 Im plem entation

Implementation o f Eq. 4.5 to compute single-phase fluid transfer is straightforward 

because the same variables are available in a dual-permeability, dual-porosity simulator. 

However, the implementation o f  Eq. 5.4 in current compositional simulators to estimate 

the interporosity molar rate requires the computation o f the average pseudopressure 

function as defined by the following double integral:

1
Pp !  f

'•jr dp dx 5.7.
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L=10ft ,k = 0.001 md 
L= 10ftfk = 0.01 md 
L - 10 ft, k = 0.1 md 
L = lft, k = 0.001 md 
L= 20 ft, k = 0.001 md 
Correlation

1. E-5 1. E-4 1. E-3 1. E>2 1. E+01. Erl

t o

Fig. 5.1 -  Flow correction factor com puted from com positional simulation. D im ensionless 

time effectively reduces to one sing le curve data generated for different size matrix

block and absolute permeability (From Penuela e t  al.^)
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The pressure distribution inside each matrix block in a gridblock will not be available. 

Instead, the average pressure in a gridblock is computed at every timestep. To overcome 

this difficulty, the average pressure may be used to compute the pseudopressure function 

if Eq. 24 is approximated by the following expression:

V = \ f ^ ) d p ......................................................................................................................5.8
Pr̂

where f(p )  is approximated as follows:

/ ( ? ) = {  j
^  - L  2

= P„^=~ +  5.9.Po— + P ,—

The average values needed in Eq. 5.9 should be readily available from the compositional 

simulator at the end o f every timestep to explicitly compute the interporosity flow rate. 

Performance o f this approximation is shown in Fig. 5.2 where the average 

pseudopressure function computed from Eq. 5.7 is also plotted using fluid data for 

mixture 2 given by Penuela.’® Although the approximation introduces some errors, they 

are reasonably insignificant and Eq. 5.7 may be used to compute the average 

pseudopressure function from the average matrix pressure and fluid composition 

available at the end o f  each timestep in the compositional simulator.

Application to cocurrent two-phase flow may be simulated by Eq. 5.4 with an 

appropriate dimensionless time and if capillary forces can be neglected. This conclusion 

can be drawn from similarities between the governing equations o f gas-condensate 

systems (see Appendix B) and two-phase fluid systems. However, in cocurrent flow in 

water-wet systems capillary pressure plays an important role that may not be neglected.'^
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Fig. 5.2 -  The average pseudopressure may be com puted from an approximate integral 

that u se s  the average values o f fluid mobility, which are functions o f the average matrix 

pressure and fluid com position  already available in the com positional simulator (From 

Penuela e t al.̂ )̂
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The importance o f  capillary pressure effects can be better observed in counter-current 

flow, which may be the most important energy source for imbibition in a water wet 

system. The water front moving slowly towards the matrix block center would generate 

corresponding pressure gradients that also move slowly, and would therefore create high 

flow correction factors that are strongly time-dependent. Transient effects o f pressure and 

saturation gradients on the flow correction factor for countercurrent flow will be 

described in the following chapter.
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CHAPTER 6 

FLOW CORRECTION FACTOR IN IMMISCIBLE TWO-PHASE 

SYSTEMS

In this chapter, model formulation for the interporosity flow rate in an immiscible two- 

phase system is presented. The model considers a time-dependent flow correction factor 

to be used in the flow equations for phase or in the fracture system given by:

V
d

d t ' ' . f  6.1

where qa is the interporosity flow rate per unit volume o f rock. The subscript a  denotes 

an immiscible fluid phase, such as water or oil. A similar set o f  equations may be defined 

for multiphase fluid flow in the matrix media in the dual-porosity and dual-permeability 

model.

6.1 Flow Correction Factor Derivation

The single-phase approach presented in Chapter 4 is extended by assuming that the 

multiphase Darcy’s law can be used to compute the interporosity flow rate from the 

following expression:

67



q. =  -Ak„ .................................................................................................................................................6.2

where is the average absolute permeability in the matrix block, Ho is the average oil 

viscosity, po is the pressure o f the oil phase in the matrix, and A is the total fracture 

surface area, which is calculated from the fracture geometry. A fmite-difference 

approximation o f Eq. 6.2 may be written in the following form:

..................................................................................................................6.3.

It is further assumed that the pressure drop, A/?o, responsible for the interporosity flow 

rate, may be calculated as the difference between the average oil-phase pressures 

computed in the matrix and fracture, and where these two average values o f  pressure are 

separated by a distance equal to half fracture spacing. A flow correction factor, is 

introduced in order to correct for the deviations due to the previous assumptions. 

Consequently, Eq. 6.3 can be written as:

..................................................................................................6.4.
Mo L  

2

When a single-phase fluid flows from the matrix to the fracture due to fluid 

expansion, the flow correction factor depends on the shape o f  the matrix block and not on 

its dimensions. This is contrary to constant shape factors, which depend both on the shape 

and the block dimensions. Another important characteristic is that Fc varies also with 

time and converges to the steady-state shape factor value reported in previous studies as 

shown in Chapter 4. Bourbiaux et a l. '' indicated that numerical simulation would 

improve if transient imbibition is considered. They suggested to replace the constant
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shape factor by a shape factor that varies as a function o f  the average water saturation by 

assuming a simple piston-type movement o f the water front into the matrix. However, 

since this solution is oversimplified and is coarse for capillary im bibition," a more 

rigorous approach using fine-grid simulation is presented in the following.

To determine the flow correction factor based on Eq. 6.4, numerical experiments were 

performed on a cubic matrix block in contact with a fracture along one o f its sides. 

Because o f  symmetry, only half o f  the matrix/fracture system was simulated. Reservoir 

rock and fluid data are similar to those described by Pooladi-Darvish and Firoozabadi.''* 

Table 6.1 presents data used to obtain numerical solutions to this ID flow problem using 

a modified version o f BOAST-VHS program^^ with 100 gridblocks.

TABLE 6.1 -  DATA USED IN NUMERICAL EXPERIMENTS (FROM PENUELA ET A L ")

Matrix porosity, ^  fraction 0.3

Matrix permeability, k„, md 20

Matrix compressibility, c„ psi"’ 3.5x10-®

Water viscosity, //», cp 1.0

Oil viscosity, cp 1.0

Initial pressure,;?,, psi 0

Fracture pressure, ;?/, psi 0

Fracture spacing, L, ft 1.3123

Half fracture surface area, Ao, 0.4305

Oil rel. perm, exponent, n„ 4

Water rel. perm, exponent, 4

Oil rel. perm, end-point, /t„‘ 0.75

Water rel. perm, end-point, Av„.* 0.20

Capillary pressure constant, p / ,  psi 1.45
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The imbibition relative permeability and capillary pressure functions are expressed 

b y :"

...................................................................................................................6-5.

’  6 6,

P c= -P c H S „ o ) ...................................................................................................................... 6.7,

where normalized water saturation is defined as follows:

......................................................................................................................

in which S„., S’/,,, and Sor denote the water saturation, connate water saturation and 

residual oil saturation, respectively. The oil-phase pressure profiles in the matrix block 

for different times are shown in Fig. 6.1. The average pressure over the matrix has been 

indicated as a  dotted horizontal line intersecting with the oil-phase pressure curve from 

which the average pressure value was computed. The location o f this intersection 

measured from the matrix/fracture interface represents the distance Ax in Eq. 6.3. It is 

observed from Fig. 6.1 that the distance to the location o f the average matrix pressure. 

Ax, increases from zero at the fracture up to a steady-state value that is less than the 

assumed half fracture spacing. Therefore, Eq. 6.4 needs a shape factor Fc to correct for 

the actual location o f the average pressure inside the matrix block.

Solving Eq. 6.4 for Fc gives an expression that can be evaluated using appropriate 

average values for oil viscosity, oil relative permeability and matrix block pressures 

computed from the fine grid simulations.

70



Average pressure

r  0.6 •

Pooladi-Firoozabadi 
t = 2 hours 
t = 1 day 
t = 5 days 
t = 40 days 
t = 200 days

=  0.4

0.2 0.3 0.4 0.5

Distance from the inlet, ft

Fig. 6.1 -  Location of the average oil-phase pressure in the matrix m oves slow ly to a point 

that is not the assu m ed  U2 (From Penuela e f  ai*^)
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However, a difficulty arises because the kro value is not the relative permeability to oil 

calculated at the average water saturation in the matrix. Instead, it is a critical relative 

permeability, which is close to the end-point value {kro° = KoiSw « 1-S<,r)). This kro° 

is small but high enough to allow oil to flow into the fracture across the matrix/fracture 

interface as illustrated in Fig. 3.4. In general, it is difficult to measure relative 

permeability near the end-points required for determination o f interporosity flow rate at 

the interface. In addition, fine-grid simulation is not practical to estimate its value. This 

problem was also noted by McWhoter and Sunada^' in numerical simulations o f  drainage 

experiments.

This numerical difficulty can be circumvented by studying the physics o f  the 

imbibition process at the matrix/fracture interface. Once water is in contact with the 

matrix (Fig. 3.4), water imbibes into the matrix and displaces oil, reducing its saturation 

to a residual value. However, the same capillary forces responsiole o f  the water-phase 

pressure gradient may generate an oil-phase pressure gradient to move oil from matrix to 

fracture. Oil droplets in the matrix/fracture interface region coalesce forming a 

continuous mobile phase that carries oil to the fracture against the continuous water phase 

that is imbibing (see Fig. 1 by Civan and Rasmussen'^). This critical mobile oil saturation 

(So" == Sor) is rapidly achieved, remains almost constant and controls the exchange o f 

fluids between the matrix and the fracture. Physically, it makes sense that there is some 

relationship between the relative permeability to water and the relative permeability to 

oil. Higher water relative permeabilities mean that the amount o f connected oil, as 

expressed by the oil relative permeability, will be smaller (with the reverse also being 

true). A relationship between the relative permeability to oil at high water saturation in
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counter-current imbibition has not been extensively studied. For convenience, a general 

power law for saturation is assumed as follows:

...................................................................................................................... 6.9.

where and y  are constants. It is further assumed that the saturation at the interface 

remains constant and the relative permeability to oil is simply a linear function o f the 

end-point relative permeability to water. Therefore, Eq. 6.9 can be written as follows:

* := [s fe ) 'k .= < 'C ........................................................................ 610

where a  is a constant to be determinated from experiments. Substitution o f  Eq. 6.10 into 

Eq. 6.4 yields the following expression for the product a Fc.

a f ^ =  ..........   6.11.

Input data presented in Table 6.1 was used along with several values for matrix 

absolute permeability and block size assumed to investigate their effect on the product a 

Fc as shown in Fig. 6.2. A single curve (Fig. 6.3) was obtained when numerical data were 

plotted using the to definition given by:

k j
k.

dS..
 6 . 12.

s:

There are two flow periods clearly observed in Fig. 6.3. The initial flow period is 

characterized by a water front moving toward the matrix block center contacting an oil 

phase that moves in the opposite direction. As illustrated in Fig. 6.4, the second flow 

period starts after the water front reaches the block center and cannot continue moving 

toward the next fracture.
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■ L = L 3 1  f t, km = 20  m d
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Fig. 6.2 -  Plot of a.Fc vs. tp generated by the fine-grid simulation o f countercurrent 

imbibition in a water-wet rock using the Table 6.1 data.
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period
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♦ L = 0.66  f t. k m = 2 0  m d
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Fig. 6.3 -  Two flow periods are observed in the curve a.Fc v s. to. The d im en sion less time at 

which the secon d  flow period starts is approximately r^= 1.21, which corresponds to t  = 17 

days in a matrix rock o f average matrix permeability of k„ = 20 md and fracture spacing  of 

A = 1.31 ft (From Penuela etal.*^)
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Gridblock boundary fo r  
a dual-porosity model

Fracture

Water fron ts
Symmetry plane

Fig. 6.4 -  Flow periods observed in the a.Fc-curve shown in Fig. 6.3 have a physical 

interpretation. First flow period corresponds to a water front that m oves freely from the 

fracture through the matrix as if it were an infinite media. Second  period reflects the 

interference produced by the encounter of water fronts at the matrix block center (From 

Penuela ef at.* )̂
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The interference produced by the intersecting water fronts at the block center 

generates an additional average pressure drop and a different interporosity flow rate 

decline (Fig. 6.5). These two flow periods have been observed by other researchers both 

in numerical and laboratory experiments. For example, Reis and Cil' '̂^"* grouped existing 

analytical models for capillary imbibition into early-time and late-time models depending 

on the flow period that applies.

1.0 E-l

Transition
• 1.0 E-2

Second flow  
period ' 1.0 Er3

First flow  
period

• 1.0 E40.4 '

Pm<  0.2 • • 1.0 E-5

1.0 E>6
1.0 E40 1.0 E+21.0 E-2 1.0 E-l 1.0 E+1

1
i
R
X

1

*5
2 
o
£■
a
c

to

Fig. 6.5 -  The interference caused  at the matrix-biock center produces an additional 

average pressure drop in the matrix and a different flow rate decline during the secon d

flow period (From Penuela et a O
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Based on data shown in Fig. 6.3, using the relation o f  Eq. 4.6, and assuming a = 10"*, 

the following generalized correlation for Fc was obtained by regression analysis (see 

Figs. 6.6 and 6.7):

’ ^ ^ D t  ................................................................................6.13,

and

F,  = 2.47
\  4 .7 3 x 1 0 '^

> ^D — ^Dt..................................................................................6.14.

It will be seen later in the parametric study that the parameter / u  and the 

dimensionless transition time, tot, are functions o f  the end-point relative permeability to 

water, knJ, and the exponent o f relative permeability to oil, «o. For = 0.2 and = 4, 

fkn = 1000 and toi = 1.21 are required. The correlation given by Eqs. 6.13 and 6.14 is 

shown in Fig. 6.3. The 2.47 value in Eq. 6.14 is the analytical value obtained by Lim and 

Aziz^* for a set o f parallel fractures and is the value that was obtained for single-phase 

matrix-fracture simulations.

6.2 P aram etric  Study

In the following, a parametric study that investigates the effects o f  using different relative 

permeability and capillar}' pressure relationships on the flow correction factor is 

presented. This parametric study is based on numerical simulation using input data given 

in Table 6.1. Values o f  exponents and end-points for relative permeability and capillary 

pressure curves to be used in Eqs. 6.5-6.7 are given in Table 6.2.
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Fig. 6.6 -  R egression analysis for data points corresponding to  the first flow period. 

k„* = 0.2 and n„ = 4  were u sed  in numerical simulation (From Penuela e t a l" )
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Fig. 6.7 -  Regression analysis for data points corresponding to the second  flow period.

k„* = 0.2 and n„ = 4 were u sed  in numerical simulation (From Penuela ef al.* )̂

80



TABLE 6.2 -  DATA USED IN THE PARAMETRIC STUDY (FROM PENUELA ETAL*^)

Oil rel. perm, exponent, n„ 2, 3 .4

Water rel. perm, exponent, n,. 2. 3 .4

Oil rel. perm, end-point, 0.5, 0.75, 1

Water rel. perm, end-point, L / 0.20, 0.5, 1

Capillary pressure constant, 0.7, 1 .45 ,3

6.2.1 Relative Permeability

Variation o f  end-points and exponents in Eqs. 6.5 and 6.6 indicated that and rio yield 

a set o f curves that need to be correlated, while different kro* and «„■ values yield 

curves that collapse into one single curve described by Eqs. 6.13 and 6.14. As observed 

in Fig. 6.8, variation o f  knJ  yields a set o f  parallel F,. curves that merge into one during 

the second flow period. Variation o f  as shown in Fig. 6.9 yields a set o f  Fc curves that 

are almost parallel at all times. Data shown in Figs. 6.8 and 6.9 can be correlated with Eq. 

6.13, where the parameter fk„ is a function o f knJ  and according to the following 

expression:

/ _  = 125.1(10-n, i/c-J - i m C  +1.7o)........................................................... 6.15

The dimensionless transition time toi is also a function o f kr^* and n„. The following 

expression can be used to compute /d,:

to, = 9.67
 ̂ C + 0 .4 1 ^

8 .8 6 - «
.6.16.

For the second flow period, the correlation given by Eq. 6.14 applies. In the process o f 

deriving Eqs. 6.15 and 6.16, it was found that the flow parameter a  is a function rio 

according to the following expression:
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Fig. 6.8 -  The end-point relative permeability to water influences the flow correction factor 

during the first flow period. For the seco n d  flow period only a single curve is  needed  for 

a s function o f to (From Penuela e t a l" )
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Fig. 6.9 -  The exponent o f relative permeability to oil Influences the flow correction factor 

during both flow periods. A correlation Is developed by writing the flow parameter a a s  a 

function of (From Penuela etal.*^)

83



The physical interpretation o f  Eqs. 6.13-6.14 is based on the ability o f the water phase 

to go across the matrix/fracture interface and the effect o f  interference at the block center. 

For the same rio, low kn,* values generate low interporosity flow rates that have water 

fronts that move slower than those with high km ' values. The average pressure associated 

with this water front slowly moves to a steady-state distance from the fracture, keeping 

the correction factors high for a longer period o f time. Once the water fronts reach the 

matrix block center, a period o f transition occurs and interference due to merging o f 

responses from both sides o f  the block affect interporosity flow rate independent o f knJ- 

Therefore, the same correction factor is observed for different krS  at tp > tot (see Fig. 

6.8). The effect o f on Fc is not easily seen in Fig. 6.9 since w» is involved in the 

definitions o f both a and Fc. However, since high values generate low relative 

permeability to oil (Eq. 6.11), one can conclude that high values generate high Fc 

values.

The physical meaning o f Eq. 6.16 is better understood after substitution o f  the to 

definition into Eq. 6.16, where it can be seen that for a constant rio, the higher km ' the 

faster the second period is reached.

Variation o f k ^ '  does not influence Fc as much as km'- A single F^-curve was obtained 

for three different numerical values o f  k ^ '  (see Table 6.2). This result indicates that the 

definitions o f Fc and to are appropriate to scale the imbibition process. It also indicates 

that the intuitive equation for the relative permeability to oil at the matrix/fracture 

interface, k ^ ,  given by Eq. 6.9 seems to capture the physics o f  the process. Similarly, 

variation o f  does not influence Fc as much as rio and one single curve was obtained for 

three different exponent values indicated in Table 6.2. The main effect o f lower n„. is to
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produce longer transition periods. However, the average Fc curve can be still represented 

by Eqs. 6.13-6.17.

6.2.2 Capillary Pressure

Several values for p *  were assumed (Table 6.2) and used along with data shown in Table 

6.1. Numerical experiments showed that one single curve for Fc was obtained for 

different values o f pc’. This result indicates that the effect o f capillary pressure is properly 

considered in the dimensionless time, which uses the derivative o f  capillary pressure with 

respect to saturation evaluated at the matrix/fracture interface i,dpJdSw = p *  at 5,, = S„. ).

63  Discussion

In the following, characteristics and the numerical implementation o f the interporosity 

flow rate computed from Eq. 6.4 are discussed.

6J .1  Time Dependency

The flow correction factor for countercurrent flow has a stronger time-dependency than 

the flow correction factors for single-phase fluid flow because o f the slow motion o f  a 

water saturation front driven by capillary forces across the matrix. To illustrate this point, 

one can write Eq. 6.2 in terms o f saturation gradient by applying Darcy’s law to the water 

phase, using the capillary pressure relationship (pc -  Po -  /?u) and the condition o f 

imbibition rates {qo = -  ^») to obtain:

F-w 

kr.- A.

-1

 6.18
âc
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For countercurrent two-phase fluid flow, the water front moves from the fracture to 

the matrix-block center. A long time is required to reach a steady-state situation under 

this flow condition and its duration depends on the capillary forces involved during 

imbibition. For single-phase fluid flow, a pressure wave rapidly propagates into the 

matrix reaching a steady-state condition in a very short period o f time.

A comparison o f  dimensionless time equations used to scale the process during single- 

and two-phase fluid flows may be done to investigate the forces responsible for the 

interporosity flow rate in each case. It was shown in Chapter 3 that for the single-phase 

case, the dimensionless time given by Eq. 4.17 may be used as a scaling function. For 

two-phase flow, Eq. 6.12 can be used for scaling purposes. This expression is very 

similar to the equation proposed by Rapoport^' based on inspectional analysis o f the 

differential equations o f water/oil flow through porous media. Pooladi-Darvish and 

Firoozabadi''* used Rapoport’s equation as a scaling criteria and obtained one single 

recovery curve for ID co- and countercurrent imbibition using several values o f  absolute 

permeability, fracture spacing, water viscosity, and derivative o f  the capillary pressure 

with respect to water saturation at the matrix/fracture interface (5„.*= 1-S„r). In this study, 

Rapoport’s equation is modified by adding the relative permeability to the water 

evaluated at the same interface conditions.

Comparing Eqs. 4.7 and 6.12, one can conclude that the flow correction factor for 

single-phase flow converges rapidly to a steady-state value at a speed proportional to the 

inverse o f total compressibility while the flow correction factor for two-phase flow 

slowly converges at a speed proportional to the slope obtained from the capillary pressure 

curve evaluated at the average water saturation present at the matrix/fracture interface.
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6 J .2  Asymptotic Behavior o f  Fc-Curve

No convergence to a constant a Fc was observed in any simulation runs reported in this 

study. Even though Fc converges to 2.47 according to Eq. 4.6, the numerical value o f a is 

not always constant and goes to zero during the later stages o f  imbibition, when So" 

approaches Sor- However, for practical purposes knowledge o f  So" is not necessary 

because the energy provided by the capillary forces are so small at the end o f  the 

imbibition process that the interporosity rate computed by Eq. 6.4 is very low and the 

error introduced by Fc assuming constant So" is negligible.

6J.3  Implementation

The proposed interporosity flow rate equation can be implemented in a dual-porosity, 

dual-permeability reservoir simulator. Current numerical simulators determine the 

interporosity flow rate from the following expression:

q.,  6.19

where tris  the constant shape factor and V is the gridblock volume. Modifications o f  Eq. 

6.19 include the substitution o f  the shape factor by the flow correction factor given by 

Eqs. 6.13-16. Inclusion o f kn  is not estimated from the average saturation in the matrix, 

but instead, it is computed from Eq. 6.10 and Eq. 6.17, and finally, the substitution o f  V 

by the total fracture surface area (computed from the fracture geometry) and fracture 

spacing, L, according to Eq. 6.4. Most o f  these variables are readily available in current 

numerical simulators, such as average pressures, fluid viscosities, fracture spacing, 

exponents and end-points o f relative permeability and capillary pressure curves. Fracture
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surface area may be estimated from fracture porosity and its particular geometry. The 

actual permeability to be used in Eq. 6.4 is the absolute matrix permeability at the 

matrix/fracture interface, which includes the damage due to mineral crystallization along 

the surface area that may impair the flow. Laboratory experiments on naturally fractured 

cores are needed to have an indication o f fracture geometry and conditions at the 

matrix/fracture interface as they control the interporosity rate.

Under the conditions considered in this study, the use o f  average water saturation to 

compute the relative permeability needed in the interporosity rate calculation yields 

unrealistic oil recovery as observed in Fig. 6.10. Oil recovery computed from a fine grid 

simulation o f a matrix block is compared with the recovery estimated by using the 

difference between the fracture pressure and the average matrix pressure and relative 

permeability to oil from the average water saturation calculated from the same fine grid 

simulation. Consequently, using the average water saturation overpredicts the mass 

exchange at the matrix/fracture interface because this value is significantly above the 

actual interface saturation values. Hence, direct application o f the present approach 

would predict an early water breakthrough because more water is available to flow along 

the fracture.

The approach described in this chapter matches the fine-grid simulation but cannot be 

directly implemented in most finite-difference simulators for fractured reservoirs because 

o f  the limitations imposed by the assumptions established while deriving the flow 

correction factor. Initially, the fracture is not entirely filled with water, and therefore, the 

saturation change with water injection has an effect on the flow correction factor. 

Moreover, the relative permeability to oil at the matrix/fracture interface before water
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completely fills the fracture is higher than the one considered in this study, causing the 

present approach to underpredict the interporosity flow.

Recovery using average rel. perm. 

Fine grid simulation0.8

0.6 •

a> 0.4 •

02 •

0.080.02 0.04 0.06 0.10

t o

Fig. 6.10 -  Oil recovery is  overpredicted by using average water saturation in the matrix to  

estim ate the effective oil permeability for the interporosity rate in countercurrent flow. 

Fine-grid sim ulation considers a cubic oii-bearing matrix block with L=0.6G ft in contact

with a fracture com pletely saturated with water (From Penuela e ta l" )
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Another physical effect observed during waterflooding is the cocurrent flow 

encountered when high pressure in the fracture prevails, making the total flow velocity to 

be different than zero {qo #  -  q^). However, once oil phase pressure in the matrix is 

higher than the pressure in the fracture, oil will flow in the opposite direction to water 

until the conditions described above in this study apply (qo = -  q»)- This limitation o f  the 

present approach observed during implementation requires further research on 

developing flow correction factors involving situations where there is an interaction o f 

viscous, capillary and gravity forces. Thus, an approach to overcome these difficulties 

during the implementation o f flow correction factors in a finite-difference simulator for 

fractured reservoirs is presented in the following chapter.
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CHAPTER 7 

IMPLEMENTATION IN A FINITE-DIFFERENCE RESERVOIR 

SIMULATOR

This chapter provides general information about the definite-difference reservoir 

simulator that is used to test the time-dependency effects o f  flow corrections factors on 

the interporosity flow. In this reservoir simulator, single-phase and immiscible two-phase 

fluid formulae only are implemented because the simulator formulation assumes a black- 

oil fluid. However, the approach applied for single-phase fluid systems is readily 

applicable to gas-condensate systems if appropriate pseudofunctions are used as shown in 

Chapter 5. After describing the simulator formulation, procedures to implement single

phase and immiscible two-phase flow correction factors for the interporosity flow 

calculation are presented in this chapter.

7.1 Model Form ulation

Model formulation is based on the black-oil fluid model proposed by E v a n s . I t  is 

assumed that the fractured media may be represented by two overlapping continua with 

distinctive porosity and permeability. The matrix is composed o f interconnected porous 

rock intersected by a second porosity medium denoted as the fracture system. The flow 

equation for phase a  in the matrix system is given by:
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+ ̂ a 7.1

where qa  is the interporosity flow rate per unit volume o f  rock. The subscript a  represents 

water, oil and gas phases. In Eq. 7.1, gas solubility into the oil phase has not been 

indicated for the sake o f simplicity. However, in this study, the presence o f  a gas phase 

was not considered. Only the oil and water phases are considered in the implementation 

o f  the flow correction factors and these factors were derived for interporosity flow o f  oil 

and water phases.

The fracture system is assumed to be composed o f  interconnected fractures that 

provide the most important pathways to fluid production. This means that only 

interconnected fractures are considered part o f  the fracture system; and, therefore, 

disconnected fractures are considered as part o f  the matrix system. The flow equation for 

phase a  in the fracture system is given by:

V i^Pc^ -p a fg ^ D )
d

d t <Pl B..
7.2.

An important characteristic o f fractured media is the inherent anisotropic 

permeability. Thus, it is very important to use the full permeability tensor in Eq. 7.2 to 

account for anisotropy.'^'^^

If porous matrix, fracture and fluid properties are known, the system o f equations 

given by Eq. 7.1 and 7.2 can be solved along with the following algebraic auxiliary 

equations. The phase saturations in the porous matrix and fractures must add to unity:

7.3,
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and,

1 ......................................................................................................................................
a

Two independent capillary pressure relationships for the primary pores and two for the 

fractures are required as functions o f saturation:

= Pan, -  P.m = )..................................................................................................^

Pcgon, =Pg m-  Pan, = ) .........................................................................................................

Pea., = P a f - P . f  = / k / )  ........................................................................................................7.7,

.........................................................................................................

7.2 Reservoir Simulator Development

Finite-difference solutions o f Eq. 7.1 through 7.8 were obtained by modifying an existing 

single-porosity reservoir simulator. A version o f BOAST (Black Oil Applied Simulation 

Tool) was selected for this modification because it is a cost-effective and easy-to-use 

reservoir simulation tool whose code was available. The source code was modified to 

model the fracture system and the interporosity flow. BOAST is a three-dimensional, 

three-phase, finite-difference black-oil simulator developed for use on a personal 

computer. The BOAST program simulates isothermal, Darcy flow in three dimensions. 

The simulator assumes that the reservoir fluids can be described by three fluid phases 

(oil, water, and gas) o f constant composition whose properties are functions o f  pressure 

only. BOAST can simulate oil and/or gas recovery by fluid expansion, displacement, 

gravity drainage, and imbibition mechanisms. BOAST employs the implicit pressure -
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explicit saturation (IMPES) formulation for solving its system o f finite-difference 

equations. The IMPES method finds the pressure distribution for a given timestep first, 

then the saturation distribution for the same timestep. BOAST employs the line- 

successive, over-relaxation (LSOR) iterative solution technique to solve the system of 

pressure cquaüons/^

BOAST-VHS is the version o f BOAST that was modified to handle a fractured media 

using a dual-porosity, dual-permeability model. The original BOAST-VHS code was 

translated from FORTRAN to Visual Basic® and implemented in the Microsoft® Excel® 

environment. Several runs were performed until results from both simulators were almost 

identical. All equations were verified, and errors in the original BOAST-VHS code were 

found and corrected in the modified version. After writing the equations, modifications 

were made to handle the fracture system. To accomplish this, the BOAST formulation 

was compared to the Evan’s formulation*^ for a naturally fractured reservoir. It was found 

that the formulations were similar, and therefore equation discretization would follow a 

similar process. Terms that contain the non-diagonal part o f  the fracture permeability 

tensor and the interporosity flow rate were then added. The partial differential equations 

were solved using finite-difference approximations in the same way BOAST equations 

were discretized. The modified version also uses an IMPES solution o f the resulting set 

o f  linear equations. The simultaneous solution o f the pressure equations for the fracture 

and the matrix is handled using LSOR. Additional information about the source code and 

model capabilities may be obtained from the Mewboume School o f  Petroleum and 

Geological Engineering at The University o f Oklahoma or from the Unites States 

Department o f  Energy.’^
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7 3  Interporosity Flow Implementation

In addition to permeability tensors for the fracture system, expressions to compute the 

interporosity flow rate were implemented in BOAST by initially assuming constant shape 

factors. Numerical simulation o f fractured reservoirs with this model provided a first 

approach o f the interplay between viscous, capillary and gravity forces. In the following, 

gravity forces are not considered since they may be easily incorporated into the 

formulation by using flow potentials instead o f pressures.

73.1  Modeling Fluid Exchange for Waterflooding

Numerical simulation o f waterflooding in a naturally fractured formation indicates that 

several flow stages may appear along a fracture that connects an injector to a producer. A 

schematic o f these stages is presented in Fig. 7.1 using seven boxes to represent the 

matrix at any stage. The reader is referred to Appendix C for a description o f the input 

data and simulation output results. Input data for the simulation described in Appendix C 

is taken from the literature.*^’̂ '’

Arrows in Fig. 7.1a qualitatively represent the net flow in this dual-porosity, dual 

permeability idealization o f the fractured media. Forces involved during the recovery 

process cause fluids to move from high-energy regions to lower ones, such that net fluid 

flow in Fig. 7.1a is the result o f their interaction. Net fluid flow has been qualitatively 

divided into flow components in Fig. 7.1b depending on the forces prevailing during 

each stage. The appearance o f capillary forces is related to the presence o f water in the 

fracture and matrix systems. Typically, capillary pressure in a fracture at a given water 

saturation is lower than the capillary pressure in the matrix.
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Fig. 7.1 -  Seven flow sta g es may be observed along a fracture during waterflooding. They 

appear a s  a result o f tiie interplay o f v isco u s and capillary forces. Initially, oil is produced  

due to the pressure difference between the matrix and the fracture. Then, oil is produced  

basically becau se o f capillary fo rces  in the matrix system .
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This difference in capillary pressure at the same saturation is even greater when water 

flows fast enough in the fracture causing the water front in the matrix to stay behind the 

corresponding water front in the fracture as illustrated in Fig. 7.1c. In this case, water 

velocity in the fracture is not only a function of the injection rate, but also depends on 

how effective imbibition is. For instance, in a particular situation where strong capillary 

forces are present, high imbibition rates appear and the water front in the fracture slows 

down. Once water imbibes into the matrix, oil-phase pressure in the matrix rises, and the 

consequent positive pressure gradient causes oil to move to the matrix,fracture interface. 

Phase pressure differences between the matrix pressure and the fracture pressure 

observed during each stage are presented in Fig. 7 .Id .

Fluid production causes a pressure drop in the fracture system producing positive 

pressure gradients in the matrix that cause single-phase interporosity flow to occur during 

the first stage. At this stage viscous forces control oil recovery from the matrix. Once 

water is injected, pressure in the fracture system increases causing negative pressure 

differences between the fracture and the matrix and forcing oil to flow into the matrix 

(drainage) as represented in stage 2 in Fig. 7.1. As water injection continues, some water 

imbibes as a result o f  the combined effect of viscous forces (forced imbibition) and 

capillary forces (natural imbibition) during stage 3. At this time, viscous forces still 

dominate the interporosity flow and cocurrent imbibition is observed. Stage 4 represents 

the case when capillary forces begin to control the interporosity flow and oil phase 

pressure difference becomes positive. As water saturation increases in the fracture, oil 

relative permeability approaches a critical value, and capillary forces dominate the
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interporosity flow as illustrated in stage 5. Additional information about this flow stage is 

provided in section 3.1.2, and mathematical modeling is provided in Chapter 6.

Restrictive flow areas at the matrix/fracture interface and the reduction o f  mobile oil 

saturation in the matrix causes the interporosity oil rate to decrease in stage 6. At this 

time, viscous forces begin to dominate as capillary pressure in the matrix approaches the 

capillary pressure in the fracture. Finally, only water flows along the fracture and across 

the matrix/fracture interface because o f  viscous forces at stage 7.

7 J .1 .1  Model Form ulation

Model formulation is based on a single matrix block in contact with a fracture that is 

being waterflooded as shown in Fig. 7.2. This single matrix block may represent any o f 

the boxes in Fig. 7.1 under a particular flow stage. The interporosity oil rate is given by 

the sum o f oil flow produced across the area that has not been exposed to water and the 

area where imbibition is taking place. In general, the total oil flow rate is given by:

Ro 7.9

where subscript IP  stands for single-phase and 2P for two-phase flow regions, 

respectively. The oil produced from region IP  is primarily driven by viscous forces 

manifested through a pressure gradient, while oil outflow from region 2P  is the result o f 

capillary forces because o f  a saturation gradient. Substituting interporosity rate equations 

Eqs. 4.5 and 6.4 into Eq. 7.9, the following general expression is obtained:

Mo

(Pom -Po/)

IP Mo

(p,™ -  p„f )
.7.10
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Fig. 7.2 -  Water that flow s along a fracture con tacts matrix surface area causing imbibition 

to occur. The matrix/fracture interface area for imbibition is proportional to the water 

saturation in the fracture system . Ahead o f  water front, oil flows out o f the matrix a result 

o f v isco u s forces active across an area proportional to the oil saturation in the fracture 

system .
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where effective flow areas are computed as linear functions o f phase saturation in the 

fracture as follows;

..................................................................................................................................7 11,

and,

A  -   7.12.

Note thatAo+Aw would give the total matrix/fracture interface area, A, using the auxiliary 

expression given by Eq. 7.4. Equations 7.11 and 7.12 assume that fluid flows along 

fractures with uniform width.

Similarly, interporosity water rate is computed as a result o f  the interplay between 

capillary and viscous forces. However, it is assumed in this case that both forces act 

simultaneously, with capillary forces more predominant at initial stages o f imbibition. 

Once capillary pressures in the matrix and the fracture are equal, viscous forces would 

control the interporosity water rate. This may be expressed as follows:

( p . .  -  P.r )-----------^ ................................................................................. 7.13

where effective area for water, /I», to flow across the interface is given by Eq. 7.12.

7J .1 .2  Single-Phase Flow Correction Factors

A time-dependent flow correction factor when a single-phase fluid flows across the 

matrix/fracture interface was derived in Chapter 4. The derivation o f the correlation 

assumed a constant pressure at the interface during fluid production from the matrix. This 

constant pressure at the interface was assumed to be the result o f an initial instantaneous
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pressure drop in the fracture. However, gradual and slow pressure changes in the fracture 

may occur when the fractures are not very good fluid conductors and/or oil outflow from 

the matrix replenishes the fractures fast enough. To consider pressure changes at the 

interface using results from Chapter 4, the principle o f superposition is used. This 

principle is based on the addition o f  partial solutions o f  linear differential equations to 

provide the complete solution.^^ The application o f the superposition principle with 

Duhamel’s theorem was presented by de Swaan"^ in the solution o f  single-phase well-test 

problem in fractured media. He computed the interporosity flow rate by using the fluid 

outflow caused by a unitary pressure drop at the interface. Therefore, the application o f 

the superposition principle to estimate the interporosity flow rate may be written as a 

convolution as follows:

Ro[pf^t) = \qo{t  7.14

where ^o(/-r) is the interporosity oil rate calculated using a constant pressure at the 

interface. The dimensionless pressure considers the fractional pressure variation with 

respect to the maximum pressure change that the matrix block will experience and is 

given as follows:

...................................................................................................7.15
Pi Pfma

The expression given in Eq. 7.14 is equivalent to the interporosity flow equation used 

by de Swaan to obtain analytic solutions for determining naturally fractured reservoir 

properties by well testing in which the fractured formation is considered isotropic and
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homogenous. In this study, Eq. 7.14 is used to obtain numerical solutions where the 

fracture media may be highly anisotropic and heterogeneous.

A numerical simulation test was designed to check the importance o f  using a time- 

dependent flow correction factor. Input data for this test are given in T able 7.1 and 

output data is shown in Fig. 7 J .

TABLE 7.1 -  RESERVOIR DATA FOR THE NUMERICAL SIMULATION TEST

Matrix porosity, (p„, fraction 0.18

Matrix permeability, md 0.0167

Matrix compressibility, c„, psi’’ 1.32x1 O'®

Fracture porosity, fraction 0.02

Fracture permeability, kf, md 40

Fracture compressibility, Cf, psi’’ 1.32x10'®

Fluid viscosity, /i, cp 2

Formation volume factor. Bo, RB/STB 1.23

Initial pressure, p„ psia 4000

Production rate, Qo, STB/D 115

Reservoir thickness, h, ft 20

Fracture spacing, L, ft 9.07

Wellbore radius, r», ft 0.316

Input data represent the same reservoir used by Warren and Root'^ with total 

storativity = 2.64x10'^ p s i '\  interporosity parameter 5x10^, and

storativity ratio co= 0.1. Pressure drawdown in a well located at the center o f  a 

cylindrical reservoir was simulated with a 80x80x1 parallel Cartesian grid with the well 

located at the gridblock labeled (1,1,1). Gridblock sizes logarithmically increase in the x- 

and ̂ /-directions with Ar = Ay = 5 ft at block (1,1,1). A maximum block size o f Ax = Ay =
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46.7 ft was used at (80,80,1) to complete a square grid system o f  total side length o f  1500 

ft. Boundary and gridblock size effects were avoided with this grid configuration for the 

simulation results presented in Fig. 7.3.
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Fig. 7.3 -  Pressure drawdown in a naturally fractured reservoir. Time-dependent effects  

are seen  in a well te st during the transition betw een the typical two straight lines. This flow  

period may or may not be seen  during a pressure test depending on the wellbore storage  

effects. However, for long term numerical simulation, pressure transient effects in the 

matrix b ecau se o f a single phase interporosity flow may be ignored.
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Typically, transient effects are not considered important in field scale problems^'* 

because the impact in the long term reservoir behavior is negligible such as in the case 

shown in Fig. 7.3. After 10 hours o f production, time-dependent effects in the 

interporosity flow disappear and constant shape factors that consider the steady-state 

pressure gradient are sufficient. Results presented in Chapter 4 suggest that constant 

shape factors derived by Lim and Aziz^' are good approximations. In terms o f flow 

correction factors, Fc = 2.47 is in close agreement with fine grid simulation of ID 

interporosity flow.

7 J .1 .3  Tw o-Phase Flow C orrection Factors

The use o f Eqs. 7.11 and 7.12 accounts for the saturation variation at the matrix/fracture 

interface, making the results presented in Chapter 6 applicable to the present general 

model for interporosity flow. However, the flow correction factor for the water phase is 

not the same as for the oil phase. In the following, the approach used for the oil phase is 

applied for the water phase in order to compute the appropriate flow correction factor to 

be used in Eq. 7.13.

The necessity o f  deriving a flow correction factor for the water phase is concluded 

from the analysis o f  numerical simulation results observed in Figs. 7.4 and 7.5. Input data 

for this numerical simulation are given in Table 6.1 and details about the grid system are 

provided in Chapter 6. In Fig. 7.4, the average oil-phase pressure, for instance at / = 5 

days, is indicated by a horizontal line that intersects the pressure curve from which it was 

computed. The distance from the matrix/fracture interface to the intersection point is Ax.
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Fig. 7.4 -  The position o f the average oil pressure d o es not coincide with the position of 

the average water pressure, for instance at ( = 5 days. The difference in locations o f these  

two points is  caused  by the capillary pressure in the matrix block.
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If the distance Ax is plotted along with the average value o f water pressure at / = 5 

days in a figure o f  water pressure as a function o f position, x, the intersection point would 

not be on the water pressure curve. This observation implies that two different Ax are 

needed to describe the transient effects o f pressure gradients in the matrix block. Because 

Ax for oil phase in Eq. 6.3 would be different if a similar expression is written for the 

water phase, a different time-dependent flow correction factor is required to compute the 

interporosity flow rate for the water phase using an expression similar to Eq. 6.4. This 

conclusion is also obtained by observing the intersection point o f the average oil-phase 

pressure and the average water saturation in Fig. 7.5, for instance at / = 5 days.

An important difference in the transient behavior o f the pressure gradients is better 

seen in Fig. 7.5. In the case o f the oil phase. Ax increases from a value o f zero to a steady 

state value between the matrix/fracture interface and the matrix-block mid point. This 

variation is captured by a Fc that decreases from very large values to a steady-state value 

computed for single-phase flow, Fc = 2.47 (see Figs. 5.1 and 6.3). On the other hand for 

the water phase. Ax initially increases to reach a maximum and then decreases.

Therefore, the Fc for water should decrease until it reaches a minimum and then 

should increase to obtain the typical value for single-phase flow, Fc = 2.47.

This discussion is confirmed by computing the time-dependent flow correction factor 

for the water phase using output data from numerical simulations presented in Chapter 6. 

This correlation is based on the interporosity rate given by:

q = F A k   7.16
'  " P .  A  

2
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Thus, the flow correction factor for the water phase can be computed from fine-grid 

numerical simulations and Eq. 7.16 as follows:

F  = --------- ^ " 5 " ---------r ................................................................................................. 7.17
- P . f )

Data to compute Fc from Eq. 7.17 is the same as used in Chapter 6. In this case, there 

is no problem with the relative permeability at the matrix/fracture interface, since the 

value is very close to the end point o f the relative permeability curve for a water-wet 

system. A difficulty is found during the estimation o f Fc from Eq. 7.17 because the 

difference between the average water pressure in the matrix and the fracture tends to zero 

at the latest stages o f the imbibition process when capillary forces are weak as observed 

in Fig. 7.6. In this figure, dimensionless time given by Eq. 6.12 is used. A correlation that 

fits the data for the time-dependent flow correction factor shown in Fig. 7.7 is given by 

the following expressions:

F, = 1 .0x10"
1.20x10 -  ̂

1 + ------------ , to ^ 0 . 3 ...................................................................... 7.18,

F, = 1 .0 x l0 '‘(l + 2 .7 5 x l0 " ‘/^ ) ,  0 .3 < /„  < 4 ........................................................... 7.19,

and,

F, = 7 .3 7 x 1 0 " '( - 4  + 4 .0 3 x l0 V g  -7 .1 2 x 1 0 ') ,  4 < t ^  < 2 0  ............................... 7.20.

For to > 20, a flow correction factor value o f Fc = 2.47 should be used since, at that time, 

the only mobile phase would be water, and the flow correction factor for single-phase 

flow applies.
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pressure in the fracture reduces to alm ost zero at a d im en sion less time corresponding to 

the transition time com puted from Eq. 6.16 and show n in Fig. 6.3. At transition time, water 

fronts com ing from two parallel fractures interfere with each  other at the matrix-block 

center (see  Fig. 6.4).
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to
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Fig. 7.7 -  Time-dependent flow correction factor derived for the water phase. Before the 

dim ension less transition time, tot, the Fc curve resem bles the single-phase flow  

correlation. After tot, division by very small values of pressure differences (see  Fig. 7.6) 

ca u ses  som e numerical errors. Data points in this part of the figure are used to generate a 

correlation that b est fit the general trend toward the known value of Fc for single-phase  

flow.
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7 J .2  Num erical Solution

Formulae previously presented in this chapter were implemented in a dual-porosity, dual

permeability model. A simulation run using input data described in Appendix C was 

performed and output was compared with results using a constant shape factor.

Numerical simulation results plotted in Figs. 7.8 and 7.9 indicate that the proposed 

model predicts earlier water breakthrough with a more rapid oil production rate decline 

after breakthrough than models that use a constant shape factor. After 8 years o f 

production, oil production would be more stable according to the proposed model than 

the one predicted with a constant shape factor.

These results can be explained based on two important characteristics o f  the present 

model: the ability to capture the time-dependent effects of saturation gradients and the 

consideration o f fluid mobility restrictions at the matrix/fracture interface.

This study has shown that it is very important to take into account the water front 

shifting from the matrix/fracture interface to the matrix-block center. This physical 

phenomenon causes the presence o f initially high flow correction factors and, 

consequently, high interporosity rates.

However, as water imbibes into the matrix, the flow correction factor for water 

indicates a slowing water motion because o f  the oil phase pressure gradient. Water 

pressure and oil pressure gradients are in opposite direction, causing an additional 

restriction to water flow. After the water front reaches the matrix-block center, small 

quantities o f  oil flow in the matrix, producing a reestablishment o f the ability o f  water to 

move as if  it were a single phase in the matrix block. Thus, the increase o f water 

saturation at the interface limits the ability o f  oil to move into the fracture.
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Fig. 7.8 -  Proposed m odel predicting an eatiy  water breakthrough b ecau se  it considers the 

restriction to  oil outflow as a result of high water saturation at the interface, and the 

restriction to water imbibition a s  a result o f oil pressure gradients in the matrix. Water- 

pressure and oil pressure gradients are vector quantities with the sa m e orientation but 

opposite direction during countercurrent imbibition.
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Fig. 7.9 -  B ecau se the tim e-dependent flow correction factors derived in the present study  

predict lower interporosity oil rates, more water flow s along the fracture causing water 

breakthrough to occur earlier than the prediction assum ing a constant shape factor 

approach. Once high water saturations are present in the fracture, the proposed model 

predicts higher interporosity rates; and, therefore, higher oil production rates (see  Fig. 

7.8).
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This interference is better considered in the proposed model. Common approaches 

use oil relative permeability evaluated at the average water saturation in the matrix to 

compute the oil expelled from the matrix when water is imbibing. As seen in Fig. 6.10, 

interporosity flow rate is over-predicted by not taking into account the restriction to oil 

outflow at the interface. In this particular example o f waterflooding, the water 

breakthrough time and oil recovery predicted by the present model are about the half o f 

those predicted by current numerical simulators using constant shape factors, based on a 

10 year simulation.
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

•  An interporosity flow equation considering time-dependent effects due to the shifting 

of the average oil-pressure and water-saturation locations in the matrix block from the 

fracture face to the block center during matrix-fracture flow can be adequately 

incorporated in a standard finite-difference scheme.

•  Darcy’s law may be used to compute the interporosity flow rate for the oil phase if a 

correction factor that accounts for the shifting of the average pressure and saturation 

position within the matrix block is defined.

• Fine-grid numerical simulation allowed the development o f  dimensionless 

correlations for flow correction factors for single-phase, gas-condensate and 

immiscible two-phase systems.

• The interporosity rate is strongly dependent on the matrix pressure gradient. For 

single-phase systems, numerical experiments indicated that the flow correction factor 

curve remains nearly unchanged in spite o f  pressure gradient distortions. This fact
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validates the use o f the proposed flow correction factor to situations where low 

fracture permeability (dual-permeability situations) and intersecting fractures are 

present.

•  Time-dependent flow correction factor effects were shown to be more important in oil 

recovery by water injection than the single-phase fluid production during reservoir 

depletion o f  a naturally fractured reservoir. In the immiscible two-phase system, there 

is a slow moving saturation gradient that propagates across the matrix in addition to 

the rapidly moving pressure gradient.

•  The flow correction factor for single-phase flow converges to a steady-state value at a 

speed proportional to the reciprocal o f total compressibility, while the flow correction 

factor for two-phase flow converges at a speed proportional to the slope obtained 

from the capillary pressure curve evaluated at the average water saturation present at 

the matrix/fracture interface. Therefore, the single-phase flow correction factor 

converges much more rapidly to its steady-state value than the two-phase flow 

correction factor.

• Time-dependent flow correction factor effects on single-phase interporosity flow are 

important in short flow tests such as transient pressure tests. However, transient 

effects in single-phase systems may be neglected for long-term production forecasts. 

For immiscible two-phase systems, time-dependent effects cannot be neglected.
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• For two-phase interporosity flow, the water front shifting is primarily driven by 

capillary forces. Therefore, the previously proposed constant shape factors do not 

accurately represent the physical processes involved during water imbibition in a 

water-wet matrix block. The variable flow correction factors provide a better model 

for interporosity mass exchange because they are functions o f  the variables 

controlling the imbibition process as well as variables readily obtained from the 

simulator.

•  For gas-condensate systems, the use o f pseudofunctions is necessary to apply the 

correlation developed for single-phase systems in the estimation o f the interporosity 

flow rate. The pseudopressure function includes the effect o f relative permeability 

reduction due to the presence o f  the condensate while the pseudotime function 

accounts for the fluid compressibility effects. An approximation to compute the 

integral for the average pseudopressure was also discussed.

•  The proposed interporosity flow rate equation incorporates both fracture and matrix 

geometric characteristics while retaining effective fluid mobility at the matrix/fracture 

interface as the main restriction to flow.

• The new interporosity flow rate equation is convenient to implement in current dual

porosity, dual-permeability reservoir simulators, and properly accounts for the 

physics o f  the imbibition processes. An approach to handle the interplay between the 

viscous and capillary force effects on the interporosity flow was proposed.
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• Neglecting the time-dependency o f the shape factor can introduce significant errors in 

numerical simulation o f waterflooding in naturally fractured reservoirs. Compared 

with the constant shape factor approach, a numerical simulation example showed 

shorter water breakthrough times and more stable oil production rates after 

breakthrough.

8.2 Recom m endations

•  The Darcy’s law assumption presents the interporosity flow rate to be directly 

proportional to the matrix-Tracture interface area. An approach proposed in this study, 

assuming fractures as parallel plates, requires an average fracture aperture. 

Methodologies to obtain realistic interface areas or fracture apertures are required. 

Values obtained in cores, well logs, and outcrops may not be representative o f the 

actual values for these fracture properties in the reservoir because o f the space 

variability o f  fractures and the effect o f the in-situ stresses. However, values 

measured from cores, well logs and outcrops should be used as a starting point.

•  Motion of a water front down in a fracture could be represented by a single flow 

correction factor that accounts for three flow regimes. First, a flow period where the 

fracture is being depleted while some imbibition takes place. Second, a flow period 

where matrix is being depleted because o f the countercurrent imbibition before the 

water front reaches the matrix-block center. Finally, matrix depletion by imbibition 

after water fronts are interfering each other at the matrix-block center. This approach
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requires the average or representative fracture length besides the fracture spacing. 

Such an approach was not explored in this study and is recommended.

•  Effects on the flow correction factor because o f  fractures intersecting at different

angles should be considered. This study concluded that some pressure gradient

distortions caused by high permeability ratios result in some insignificant effects on 

interporosity flow. However, by definition, the flow correction factor is a function o f 

how a pressure gradient propagates in a matrix block with a specific shape (not size), 

and therefore, fractures intersecting at different angles within a simulation gridblock 

may cause significant deviations from the proposed flow correction factor correlation.

•  Effects due to matrix and fracture deformation should be incorporated in the

derivation o f flow correction factors. It Is well known that in some naturally fractured 

reservoirs the geomechanics aspects such as the in-situ stress and the poroelastic 

behavior o f fractured rocks play an important role in hydrocarbon recovery. The 

geomechanics effects are observed in variations o f the stress-dependent permeability 

and porosity, which are important parameters in computing flow correction factors.
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NOMENCLATURE

a = Matrix/fracture interface flow constant 

A = Total fracture area, f f  

Ao = Half fracture area, f f  

Ba = Formation volume factor o f phase a, rb/STB 

Cf= Fracture compressibility, psi ' 

c„ = Matrix compressibility, psi ' 

c, = Total compressibility, psi '

Cl, C2, Ci = Constants in the flow correction factor correlation 

D = Reservoir depth, ft 

fkn = Parameter in Eq. 6.13, dimensionless 

Fc = Flow correction factor, dimensionless 

g  = Acceleration o f gravity, ft/sec* 

k -  Absolute permeability, md 

kro = Relative permeability to oil, dimensionless 

kro' -  End-point o f  the relative permeability to oil, dimensionless 

km = Relative permeability to oil at the matrix/fracture interface, dimensionless 

km- = Relative permeability to water, dimensionless 

km* = End-point o f  the relative permeability to water, dimensionless
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rio = Exponent o f  the relative permeability to oil, dimensionless 

riw = Exponent o f  the relative permeability to water, dimensionless 

n = Number o f normal sets o f  fractures 

L  = Fracture spacing, ft 

L f  = Fracture length, ft 

q = Interporosity flow rate, rb/day 

qt = Interporosity molar rate, Ib-mole/day 

qa = Interporosity flow rate per unit volume o f rock, day '

Q = Flow rate, STB/D 

p  = Pressure, psia 

Pc = Capillary pressure, psia 

5/h = Connate water saturation, fraction 

Sor = Residual oil saturation, fraction

Sw = Water saturation at the matrix/fracture interface, fraction 

Sa = Saturation o f phase a , fraction 

/ = Time, days 

tot = Dimensionless transition time 

V = Bulk volume, ft  ̂

w/ = Fracture width, ft 

P  = Matrix/fracture interface flow constant 

y=  Matrix/fracture interface flow constant 

(j> -  Porosity, fraction 

p  = Viscosity, cp
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p  = Density, Ib /ff 

O  = Flow potential, psia 

<T= Shape factor,

(ûK = Permeability ratio, dimensionless

Subscripts

h = Bubble point 

D = Dimensionless 

/ =  Fracture 

i = Initial value 

m = Matrix

o = Oil or condensate phase 

p  = Pseudofunction 

M' = Water phase 

X = x-direction 

y  = y-direction 

z = z-direction 

a  = Water or oil phase
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APPENDIX A

ANALYTICAL SOLUTION OF THE ID SINGLE-PHASE FLOW 

PROBLEM

In this appendix, the time-dependent flow correction factor to estimate the single-phase 

interporosity flow is analytically derived.

The pressure difflisivity equation for a ID  linear system representing single-phase 

fluid flow from the matrix to the fracture surface is given by:

_ K  ^ 'P n
dt dx-

.A .l

and is subject to the following initial and boundary conditions^' (see Fig. 3.2b):

p „ =  p ,, - L / 2 < x < L i 2 ,  t = 0 .A.2,

p„ = Pf ,  X = - 1 / 2 ,  t > 0 .............................................................................................A.3,

P m  -  P f ^  \  = L I 2 ,  t > 0 .A.4.

The analytic solution to Eqs. A .l through A.4 is given by: 31

- e x p
{2j  + \ ) ' ï ï ' k j  

<PmM̂-,L-
.A.5.
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In the dual-porosity model, it is assumed that the interporosity flow rate per unit 

volume o f rock is related to the rate o f accumulation in the matrix according to the 

following relation:'^

a = - ‘p . c , ^ ...................................................................................................................

Taking the partial derivative o f Eq. A.5 with respect to time and then substituting the 

resulting expression into Eq. A.6, the total interporosity flow rate can be computed as:

q -  -  Pf
^  P  y -O

.A .l

where V is the bulk volume o f the matrix from which fluids are produced into the 

fracture.

The flow correction factor is computed by solving Eq. 4.5 for Fc, given by:

F. = --------^ ------- 1 .......................................................................................................... A.8.

Consider two parallel fractures that limit a matrix block with a fracture spacing L. Each 

fracture is in contact with the matrix along a surface Ao so that the total matrix volume is

LAo and A = 2Ao. Therefore, substitution o f the pressure difference, p „ -  P f , computed 

from Eq. A.5 and the interporosity flow rate, q, from Eq. A.7 into A .8 yields:

^ e x p [ - ( 2y + l> r-/o]

K  = % .  — .....    A.9
^ ( 2 y  + l) "ex p [-(2 y  + l)T-rg]
y=0

where the dimensionless time is defined by:
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1,
At large dimensionless time, Eq. A.9 converges to Fc = /T/4.

The asymptotic behavior o f Fc can be also theoretically calculated by using the 

constant shape factor proposed by Lim and Aziz^' for one set o f  parallel fractures. They 

eliminated the time parameter in Eq. A .l  by introducing a constant shape factor into Eq. 

2.2, resulting in a total interporosity flow rate equation given by:

...........................................................................................................
L  f i

The total interporosity flow rate can be calculated by introducing V -  LA„ into Eq. A .l 1 : 

= - 7 T ^ o ~ ~ ( P m -  P j  ) ...................................................................................................................
L  / /

This equation can be rearranged by approximating the total fracture surface area as A ~ 

2Ao in order to get the following expression:

...................................................................................................... A.13.
A M L 

2

Thus, comparing Eq. 4.5 with Eq. A .l 3, the steady-state value o f F,. is given by:

/ V = ^  = 2.47 ....................................................................................................................A.14.
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APPENDIX B

ANALYTICAL SOLUTION OF THE ID GAS-CONDENSATE FLOW 

PROBLEM

In this Appendix, the flow correction factor for computing the interporosity molar flow 

rate in a gas-condensate system is analytically derived.

The model assumes a matrix block that is homogenous, isotropic and o f unilbrm- 

thickness, bounded by two parallel fractures that are kept at constant pressure, p/, below 

the dew point pressure o f the gas, pdĉ .̂ The model neglects gravity, capillary, inertial and 

rock compressibility effects. Consequently, the diffusivity equation for this ID linear 

system describing the gas-condensate flow from the matrix to the fracture surface is 

expressed as follows:

d(P oS .,+ p^S^) d

dt (p^dx Po p . dx
.B .l.

The initial and boundary conditions are given by Eqs. A.2 through A.4. In order to 

linearize Eq. B .l, define a the pseudopressure function as:**̂

Pm
B.2.
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Penuela and C i v a n proposed the following pseudotime function to complete the 

linearization o f Eq. B .l:

= J dt .8 .3 .

Substitution o f  Eq. B.2 and B.3 into B.l yields:

.8 .4 .
à p  (p„ dx-

Using the pseudofunction definitions given by Eqs. 8.2 and 8 .3 , the initial and boundary 

conditions expressed in Eqs. A.2 through A.4 become (see Fig. 3.2b):

P p = P p i ’ -  L / l < x <  L / 2 ,  t p = 0 .8 .5 ,

P p = P p f '  x  =  - L / 2 , t p > 0 . . 8 .6,

P p = P p f ’ x  =  L / 2 , t p > 0 .8 .7 .

Hence, the analytic solution to Eqs. 8 .4  through 8 .7  is identical to the solution given for 

the single-phase fluid problem in Appendix A but in terms o f the prescribed 

pseudofunctions:

P p - P p f  _
= I 7 T 7

8
- e x p . 8 .8.

It is also assumed that the interporosity molar flow rate per unit volume o f rock is 

related to the rate o f  mass accumulation expressed in moles o f hydrocarbons in the matrix 

according to the following relation:
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...................................................................................................B.9

where density and saturation values are volume-weighted average quantities over the 

total rock volume, V. Then, substitution o f the pseudotime function (Eq. B.3) into Eq. 8.9 

yields:

^  P n
...................................................................................................................... B.10.

Thus, taking the partial derivative o f  Eq. 8.8 with respect to pseudotime and then 

substituting the resulting expression into Eq. 8.10, the total interporosity molar rate can 

be expressed as:

8k% / Y r
= - 7 r \ P p , - P p f ) L ^ ^ 'P

^  j=0
. 8 . 11.

Consequently, the flow correction factor is computed by solving Eq. 5.4 for F ,, given by: 

K =  7̂  J ......................................................................................................... 8 . 12.
2 ^ K ( P p - P p / )

If the pseudopressure difference (Eq. 8 .8) and the interporosity flow rate (Eq. 8.11) are 

substituted into Eq. 8.12, Eq. A.9 is obtained but with the following definition for 

dimensionless time:

 =

The use o f the pseudotime function introduces small errors into Eq. 8.4 , which may be 

neglected. The reason for the errors is that in some cases the pseudopressure value in the 

left hand side o f  Eq. 8 .4  obtained from Eqs. 8 .9  and 8.10 is not the same as the
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pseudopressure value in the right hand side o f  Eq. B.4, which may be the case at the 

beginning o f  the simulation run. Note that the left hand side o f  Eq. B.4 requires the 

pseudopressure averaged over the matrix block while it needs pseudopressure values as 

function o f  space on the right hand side. For a detailed analysis on linearization by means 

o f  a pseudotime function, the reader is referred to Lee and Holditch.*^
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APPENDIX C

NUMERICAL SIMULATION OF A NATURALLY FRACTURED 

RESERVOIR: INPUT AND OUTPUT DATA ANALYSIS

This appendix gives a description o f  input data required for a typical simulation o f  a 

naturally fractured reservoir using constant shape factors. Simulation output data are then 

presented in a graphical form to investigate the forces acting in different flow stages as 

the water front flows along the fracture system. Qualitative results from this exercise 

provide the basis for the implementation o f a generalized model for fluid exchange 

described in Chapter 7.

C .l Inpu t D ata D escription

Input data presented in the following section are taken from the sixth SPE comparative 

project for dual-porosity simulators.^'* Fluid PVT data and some o f  the fluid-rock 

properties for that project were originally presented by Thomas at al}'^

The naturally fractured reservoir is simulated as a single-layer formation using a 

40x1x1 parallel Cartesian grid whose dimensions are shown in Table C .l. The reservoir 

is composed o f a matrix system with ^  = 29% and = 1 md. It is assumed that the 

fracture network consists o f  a single set o f parallel fractures with 1%, k/= 90 md and 

a fracture spacing o f  A = 5 ft. Therefore, the matrix-block shape factor using Lim and
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Aziz’s approximation^' for one set o f parallel fractures from Table 2.1 is a =  0.396 .

This reservoir configuration represent an example o f a dual-porosity system with a 

permeability ratio û)k = 0.011.

TABLE C.1 -  GRIDBLOCK AND RESERVOIR ROCK BASIC DATA

Number of grid-blocks in the x-direction, n. 40

Number of grid-blocks in the y-direction, 1

Number of grid-blocks in the z-direction, n.. 1

Grid-block size in the x-direction, A t, ft 50

Grid-block size in the x-direction, Av, ft 1000

Grid-block size in the x-direction. A:, ft 50

Matrix porosity, (p  ̂ fraction 0.29

Matrix permeability, A-„, md 1.0

Matrix compressibility, c„, psi"’ 3.5 X 10-®

Fracture porosity, (pf. fraction 0.01

Fracture permeability. Ay, md 90

Fracture compressibility, cy, psf’ 3.5 X 10"®

Connate water saturation in the matrix, 5»̂ , % 20

Initial pressure, psig 6000

Fracture spacing, L. ft 5

Relative permeability and water-oil capillary pressure data shown in T ab le C.2 were 

taken from Thomas et alr'^ and Firoozabadi and Thomas/'* respectively. This set o f data 

represents a matrix system with intermediate wettability. Zero capillary pressure and 

relative permeability as linear functions o f  saturation were used for the fracture system. 

Relative permeabilities for the interporosity flow is computed using the Thomas et 

approach, which computes the relative permeability at the interface for fluids flowing 

from the fracture to the matrix as follows:'^
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^rw -^n^■{Pcv^o ..........................................................................................................

and,

.................................................................................................................... C.2.

For fluids flowing from the matrix to the fracture, water saturation in the matrix is used to 

estimate relative permeabilities at the interface. In Eqs. C. 1 and C.2, relative 

permeabilities are obtained from the input values for fluid-rock properties in the matrix 

given in Table C.2.

TABLE C.2 -  FLUID-ROCK PROPERTIES IN THE MATRIX SYSTEM

5a k f w k r o
P c o w

psi
0 0 0 1

0.1 0 0 1

0.2 0 0 1
0.25 0 0.005 0.5
0.3 0.042 0.01 0.3

0.35 0.1 0.02 0.15
0.4 0.154 0.03 0

0.45 0.22 0.045 - 0.2
0.5 0.304 0.06 - 1.2
0.6 0.492 0.11 -4
0.7 0.723 0.18 -10

0.75 0.86 0.23 -40
0.8 1 0.23 -40

1 1 0.23 -40

In Table C.2, Sa represents phase saturation. For instance, fluid-rock properties at 

5„.=0.3 are knv = 0.042, kro = 0.18, and pcm = 0.3 psi.

PVT data o f  oil is divided into two sets. One set corresponds to undersaturated 

properties relative to a bubble-point pressure pb = 5545 psig (Table C.3). Saturated
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values are shown in Table C.4 In this simulation, pressures remain above the bubble- 

point pressure; and, therefore mainly undersaturated values are used.

TABLE C.3 -  UNDERSATURATED OIL PROPERTIES

Oil density, Ib/ft^ 51.14

Oil viscosity at P i, //„ cp 0.21

Slope o f//„ above p*, dfijdp. cp/psi 1.72x10'®

Oil formation volume factor at p*, S„, RB/STB 1.8540

Slope of Bo above p*, dBJdp. RB/STB/psi -4.0x10'®

TABLE 0 .4  -  SATURATED OIL PROPERTIES

P
psig

/4
cp

Bo
RB/STB

R,o
SCF/STB

1674 0.529 1.3001 367

2031 0.487 1.3359 447

2530 0.436 1.3891 564

2991 0.397 1.4425 679

3553 0.351 1.5141 832

4110 0.31 1.5938 1000

4544 0.278 1.663 1143

4935 0.248 1.7315 1285

5255 0.229 1.7953 1413

5545 0.21 1.854 1530

7000 0.109 2.1978 2259

PVT data o f water are basically = 0.35 cp, B».= 1.07 RB/STB, c \ = 3.5x10"^ psi ' 

and p» = 65 lbm /ft\

A simulation run was performed by using a producer located at grid-block indexed 

(1,1,1) and an injector at (40,1,1). Fluid withdrawal was constrained by total liquid 

production o f 300 STB/D while water injection was initially controlled by a constant rate
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o f 300 STB/D but constrained by a maximum bottomhole pressure o f 6100 psig. Results 

from a simulation run time o f 10 years are reported in the following.

C.2 Output Data Analysis

Fluid production rates are shown in Fig. C .l along with the effective interporosity oil rate 

during 10 years o f  water injection.

Oil production rate, go, remained constant until water breakthrough, which occurred 

approximately after 2.5 years o f water injection. During this period o f constant oil 

production, the effective interporosity oil rate, q„ ^  increased until reaching an 

equilibrium flow rate that was also affected by the water breakthrough. The rate 

difference between the g„ and <7,, represents the rate o f oil production from the fracture 

system.

The interporosity rate in Fig. C .l represents the effective oil production from the 

matrix as a result o f the interplay between the viscous and capillary forces. Figure C.2 

shows the actual interporosity flow rate along the fracture that connects the producer 

located a tx  = 0 and the injector. It is observed that oil is initially injected into the matrix 

(forced drainage) as a consequence o f high pressure in the fractures. With water 

imbibition, the oil-phase pressure gradient is reversed and oil begins to flow into the 

fracture. As a consequence o f  fluid exchange, water in the fracture does not move as a 

piston-like front as shown in Fig. C 3 .  For comparison. Fig. C.4 shows water saturation 

profiles in the fracture system at three different times along with the interporosity oil rate. 

It is observed that ahead o f the saturation front, oil interporosity rate is very small except
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close the producer, where a large pressure drawdown at the well causes a large pressure 

difference between the matrix and the fractures, and therefore high interporosity flow.
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Fig. C.1 -  Fluid production in a naturally fractured reservoir under waterflooding. Oil 

recovery from the matrix is affected by the water breakthrough at the producer. After 

breakthrough, oil production rate drops to values similar to the interporosity oil rate.
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Fig. C.2 -  Interporosity oil rate a s a function o f position and time. Distance is m easured  

along the fracture that connects the producer (x = 0) and the injector (x = 2000 ft). Initially, 

oil is  injected into the matrix in the region c lo se  to the injector as a result o f high 

pressures in the fracture. As water flow s through the fracture, capillary forces are 

responsible for m ost of the fluid exchange.
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Fig. C.3 -  Water saturation profiles observed along the fracture that con n ects the producer 

with the water injector located at x  = 2000 f t  As water contacts new matrix surfaces, 

capillary forces act and countercurrent imbibition occurs. Ahead of the water front, 

v isco u s forces contribute to the interporosity flow rate through the pressure differences 

between the matrix and the fracture.

146



• 200.8 « a) t = 0.5years

0.6 • S w fs

I
£ C/3

400 2000800 1200 16000
Distance from the producer, ft

Distance from the producer, ft

b) t - 2 years
0.8  '

S w f

0.6

0.2

20000 400 800 1200 1600

0.8 •

c ) t  = 6 years
0.6 •

I I S w f

0 400 800 20001200 1600

ÎI

Distance from the producer, ft 

Fig. C.4 -  Fracture water saturation profiles and interporosity oil rate at different tim es.

147



Single-phase flow is not only observed before water breakthrough at the producer; 

water injection in the matrix is also observed after long time o f injection in the near 

wellbore region of the water injector (Fig. C.5). After 10 years o f injection, oil outflow 

from the matrix is negligible (see Fig. C.2) while there is virtually single-phase water 

injection into the matrix (Fig. C.5c).
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Fig. C.5 -  Fracture water saturation profiles and interporosity water rate at different tim es.
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