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INTRODUCTION

Recently, Howes [Ho2] has employed differential inequalities 

to establish the exist.nee, and to study the asymptotic behavior of cer
tain classes of second-order nonlinear boundary value problems having a 
small parameter multiplying the highest derivative. In this paper, we 

study third-order problems of the form 

(0.1) sy"' = f(t,y,y',y",s) , 0< t< 1

(0.2) y(0) = A , y'(0) = k' , y(l) = B or

(0.2') y(0) = A , y'(0) = A' , y'(l) = B' ,
where e is a small positive parameter and f is, in general, a non

linear continuously differentiable function. Our goal is to obtain suf

ficient conditions for which solutions to the above problems exist, and 

deduce the behavior, as e ^ O"*" , of such solutions. The existence of 
appropriate approximate solutions will be assumed, and growth conditions 

with respect to y" and y' will be necessary. To set the stage as 
to approximations and type of behavior which is studied, consider the 
example

ey'" = y" , 0 < t < 1

y(0,e) = 0 , y'(0,s) = 0 , y(l,s) = 1 ,
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having solution y(t,e) = (t + s - se%p(t/s))(l + s - eexp(l/s))~^ .
Note that y(t,s) -»■ 0 as e -»■ 0̂  , t / 1 . lim lim y(t,s) = 1 / 0

s-O t-̂ 1
= lim lim_̂  y(t,s) , a phenomenon often termed, there is a "boundary 
t->l e-»0

layer" at t = 1 . Formally setting s = 0 , in the above equation, to

obtain u" = 0 , and requesting u'(0) = 0 and u(0) = 0 , we have
u = 0 as an approximate solution (reduced solution). We will basical
ly follow this pattern, i.e., to obtain an approximate or reduced solu

tion and use such to complete the aim.
We will make use of the concept of lower and upper solutions to 

(O.l), the reduced or approximate solution being the basis of construct
ing such, and then apply various existence and comparison theorems.

The first chapter is a presentation of existence results used throughout 

our treatment of singular perturbations, with note of the various forms 

we allow f to display. Chapters Two and Three are, respectively, 

treatments of the problems (O.l), (0.2') and (O.l), (0.2), where compar

ison is made to reduced solutions ( e = 0 ). Chapter Four is comparison

with several types of approximate solutions, where questions of admis

sibility of the order of approximation, and verification that an approx

imation is valid are answered.
Throughout this paper, o and 0 will be the standard Landau 

symbols of order of magnitude, and terms such as o(l) and 0(e) are 
meant to hold uniformly in all other variables. Partial derivatives

will be denoted by subscripts, e.g., f = ôf/ôy . Ĉ  is the class of
J

i times continuously differentiable functions.
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THIRD-ORDER DIFFERENTIAL INEQUALITIES 

AND SINGULAR PERTURBATIONS

CHAPTER I

THIRD-ORDER DIFFERENTIAL INEQUALITIES

The teehniq-ue, used in this treatment of singular perturbation 

problems, requires existence and comparison theorems presented in this 

chapter. We consider the third-order boundary value problems

(1.1) x"" = f(t,x,x',x'') , a < t < b

(1.2) x(a) = A , x'(a) = A' , x(b) = B or

(1.2') x(a) = A , x'(a) = A' , x'(b) = B' ;

where the function f is assumed to be continuous on [a,b] % R ; A , 

A' , B and B' being real constants.
Definition: Let a,p € C^ta,b] , such that a(t) < Ç(t) , t € [a,b] .

a = a(t) is called a lower solution of equation (l.l), with respect to
P on [a,b] , if a'"(t) > f(t,x,a'(t),a"(t)) ; p = p(t) is an

upper solution of equation (l.l), with respect to a on [a,b] , if

P'"(t) 5 f(t,x,p'(t),p"(t)) ; where x is such that a(t) < x < p(t)



The following is Theorem 3.1, found in Kelley [Ke], stated in 
terms of the third-order problem (l.l), (1.2').

Theorem 1.1. Assume :
(1) a,p € C [a,b] are lower and upper solutions, respectively 

and with respect to one another, of (l.l); such that a'(t) S p'(t) ,

a < t < b , and a(a) < A < p(a) , a'(a) < A' 5 p'(a) , a'(b) < B' <

P'Cb) .
(2) Solutions z(t) of (l.l) have the property: If z'(t) is

bounded on [a,b] , then x"(t) is bounded on [a,b] .

Then (l.l), (1.2') has a solution x(t) such that
a(t) < x(t) < p(t) and a'(t) < x'(t) < p'(t) , a < t < b .

A theorem of similar nature, regarding the problem (l.l), (1.2) 
begins here, using devices of a nature similar to those used in second- 

order problems, [BL] and [Ja]. The following is a standard consequence 
from the Schauder fixed-point theorem.

Lemma 1.2. If f is bounded on [a,b] x B? , then (l.l), (1.2) has a 

solution.

Definition: Let a,p € C [a,b] with a(t)<p(t), a < t < b . Choose

positive constants N,c > 0 such that c > max{ |a'(t)|, |p'(t)| :

a 5 t < b} and N > max{ |a"(t)|, |B''(t)| : a < t < b} . We define

for f continuous on [a,b] x Br
/
f(t,x,x',N) if X" > N

f*(t,x,x',x") = { f(t,x,x',x" ) if lx"l < N

f(t,x,x',-N) if x" < -N



F * ( t , = <
if x' > c 
if |x'| < c 

if x' < -c

F(t,x,x',x" ) = <

F*(t,p(t),x',x'') if x>p(t)
F*(t,x,x",x" ) if a(t) < X < p(t)
F*(t,a(t),x',x'') if X < a(t)

The function F will he called the modification of f associated with 

(a(t),p(t),c,N) .
It follows, from the continuity of f , that F is continuous

3on [a,h] X R , and also that F is hounded thereon. Consider, now, 

the boundary value problem (l.l), (1.2).

Theorem 1.3. (l) Let a,6 € C [a,h] he, respectively, lower and upper 

solutions of (l.l) with respect to one another for a 5 t < h j such that 

a(a) < A < 6(a) , a'(a) < A' < 6'(a) , a(h) 5 B < 6(h) .
(2) f is increasing with respect to x' .

(3) F is the modification of f associated with (a(t),6(t),c,N) 

Then the boundary value problem

(1.3) X = F(t,x,x',x'') , a < t < h

(1.4) x(a) = A , x'(a) = A' , x(h) = B
has a solution x = x(t) € Ĉ [a,h] such that a(t) 5 x(t) 2 p(t) .

3Proof : F being continuous and bounded on [a,b] x R , Lemma 1.2 de

clares the boundary value problem (1.3), (1.4) has a solution x(t) .
Thus we need only establish the concluding assertion. We show the case 

x(t) 5 p(t) . a(t) 5 x(t) is proved in an analogous fashion.

Assume there exist a t € [a,b] and an t] > 0 such that 

x(t ) = 6Cr) with a(t) < x(t) 2 6(t) if a 2 t 2 t , and x(t) > 6(t)

3



if T < t < T + Ti . Since z(b) = B < P(b) , there exists a maximal 

interval c [â h] containing t , upon which x' - g' > 0 ,

with strict inequality at places therein. Thus we may conclude the 

existence of t̂  ( such that x' - P' achieves a positive
maximum thereat. And we have x''(tg) = p''(tg) and x'''(tg) <

. However,

i) if tg > T , x(tg) > Pftg) EUd SO
X'"(tQ)-p'"(tQ) > F(tQ,X(tQ),X'(tQ),X"(tQ))-f(tQ,P(tQ),r(tQ),P"(tQ))

= F*(tQ,p(to),x'(tQ),P''(tQ))-F*(tQ,p(tQ),P'(to),P''(to)) >  0

as F* inherits the monotonicity of f with respect to x' .

ii) if tQ < T , a(tg) < x(tg) < p(tg) , x'^'Ct^) -

>  F * ( t Q , X ( t Q ) , X ' ( t Q ) , p ' ' ( t Q ) )  - F * ( t Q , X ( t Q ) , P ' ( t Q ) , P ' ' ( t Q ) )  >  Û .

Therefore the assumption that x' - P' achieves a positive maximum at 

tg is invalid, and so the existence of t and q is denied. We con

clude then that x(t)<p(t) .

Lemma 1.4. Assume :
o

(1) f(t,x,x',x'') is continuous on [a,h] x R , and of class
1C with respect to x' and x" .

(2) f^,,(t,x,x',x" ) > 0 and f^,(t,x,x',0) > 0 .

(3) X = x(t) is a solution of (l.l), (1.2) such that a(t) 5
O

x(t)<p(t), a 5 t < h ;  where a,,p € C [a,h] are lower and upper solu

tions of (l.l) in the sense of assumption (l) in Theorem 1.3.

Then there exists a positive number M , dependent only on a , p 

and f , such that |x''(a)| S M .

Proof: f( t,x,x',x" )

= f(t,x,0,0) + f^,(t,x,e^x',0)x' + f^,,(t,x,x',8gX")x" ,



O < 0 ^ < 1 ,  i = 1,2 . We consider the initial value problem

(1.5) x"' = f(t,x,x',x")

(1.6) x(a) = A , x'(a) = A" , x"(a) = M »  0 .
The question to be resolved is then: under supposition (3), how large

is M in (1.6) allowed to become.
f being continuous, condition (3) implies f(t,x,0,0) is 

bounded for a < t < b , a(t) < x(t) < p(t) . Aid as long as 

x''(t) > 0 , then f^,(t,x,0^x‘',O)x' has a lower bound. Thus for 

a 5 t < b and a(t) 5 x(t) 5 p(t) , as long as x" > 0 , there is a 

number Q > 0 such that x'" > -6Q . Employing Taylor's formula, we 

have x(t) = A + A'(t - a) + M(t - a)^/2 + x " ‘'(ç)(t - a)^/6 , a < Ç < t .

Thus, as long as x" > 0 , x(t) > A + A'(t - a) + M(t - a)^/2 -

Q(t - a)̂  . If M is chosen such that M > (N/3 + 2Q)(b - a) + a"(a) , 

|a'-"(t)| < N , a < t 5 b , x(t) > a(t) . But if M were so large 

that A + A'(t - a) + M(t: - a)^/2 - Q(t - a)^ > p(v) we contradict

x(t) 5 p(t) . Therefore we must have x"(a) < M for some positive M .
Turning to the initial value problem (1.5) with

(1.7) x(a) = A , x'(a) = A' , x"(a) = -M «  0 ;
as long as x" < 0 , f^,(t,x,0^x',O)x' has an upper bound. Thus when

we have a < t < b and a(t) 5 x(t) S p(t) , as long as x" 5 0 ,

x'"(t) < 6Q , for some Q > 0 . And so, x(t)< A + A'(t - a) -

M(t - a)2/a + Q(t - a)^ < p(t) if -M < P''(a) - (N/3 + 2Q)(b - a) ,

where |p'‘"(t)| < N , a 5 t < b . But if -M is chosen so small that
2 3A + A'(t - a) - M(t - a) /2 + Q(v - a) < œ(t ) we contradict a(t) < 

x(t) . Therefore, x"(a) is bounded below also, thus the conclusion 

of this lemma.
5



The existence of an a priori 'bound for x"(a) , given a and 

P , leads to speculation that other such confinements may 'be deduced; 

hopefully with respect to x' and x" across the entire interval 

[a,h] . An affirmative response to this situation, coupled with previous 

results, explains the particular structure of the modified function we 

defined.

Lemma 1.5. If f satisfies the conditions of Lemma 1.4, and x = x(t) 

is a solution of (l.l), (1.2) such that a(t) < x(t) 5 p(t) as a'bove; 

then there exist positive values c and N such that |x'(t)| < c and 
|x‘"(t)| < N for a < t < "b .
Proof; Suppose there exists a sequence of solutions {x^(t)} of (l.l),

(1.2); where a(t) 5 x^(t) < p(t) , a 5 t < h , such that |x̂ '(t̂ ) | > n 

for some t^ € (a,h] . We thus obtain a sequence of initial values 
z (̂a) = (A,A',x^'(a)) for (l.l), z' = g(t,z) = (x',x'',f(t,x,x',x'')) . 

By Lemma 1.4 the sequence {z^(a)} is bounded, and so has a convergent 

subsequence ^ (A,A',x^'(a)) . Whence, by a standard conver

gence theorem ([Ha], p.14), there exists a solution Zq = zy(t) of (l.l) 

(and subsequently of (l.l), (1.2)) such that Zg(a) = (A,A',XQ'(a)) and

9n(k)(t) = (=n(k)(t),=n(k)(t),z^{k)(t)) ^ Zo(t) uniformly as k - ,
a 5 t 5 b . Thus the boundedness of Xg''(t) implies that of ,

contradicting the choice of {x̂ } . Therefore the existence of the bound 

N is established, c is a natural consequence of N .

Theorem 1.6. Suppose solutions of initial value problems for (l.l) ex

tend to [a,b] or become unbounded. Also assume :
3 1(l) f is continuous on [a,b] x r -̂ • and of class C with

respect to x' and x" , such that f̂ ,, > 0 and f̂ , > 0 .



o
(2) a,B e C [a/b] are, respectively, lower and upper solutions 

of (l.l) satisfying: a(t) < p(t) , a < t < b ; a(a) < A < 8(a) ,

a'(a) < A' < p'(a) , a(b) < B < 6(b) .

Then the boundary value problem (1.1), (1.2) has a solution 
X = x(t) € C^[a,b] , with a(t) < x(t) < p(t) .
Proof: Let c and N be positive constants, which satisfy the conclu

sion of Lemma 1.5; such that c > max{ |a'(t)|, |p'(t)| : a < t < b} and 
N > max{ |a"(t )|, |8"(t) I : a S t < b} . Thus, if F is the modifica

tion of f with respect to (a,p,c,N) ; there exists a solution 

X = x(t) to X = F(t,x,x',x") satisfying boundary conditions (1.2) 

such that a(t) < x(t) < p(t) (Theorem 1.3). But then, |x'|< c and 

Ix"! < N ; and we thus find F(t,x(t),x''(t),x"(t)) = 

f(t,x(t),x'(t),x"(t)) . Therefore, x is a solution of (l.l), (1.2).

Note that the above theorem also applies to the problem where 

x' ' = f(t,x,x') , as we may note f̂ ,, = 0 . In the particular case 

when x'" = f(t,x,x") , modification of proof to effect conclusion is 

that we choose a and 8 such that a(t)< 8(t) . Also we demand that 
the inequalities expressed in the definitions of lower and upper solu
tions be strict. We have:
Theorem 1.7. Suppose solutions of initial value problems for x'" =

f(t,x,x'') extend to [a,b] or become unbounded. Also assume:
2 1(1) f is continuous on [a,b] x R and of class C with

respect to x" , such that f̂ ,, > 0 .
(2) a,8 € C [a,b] are, respectively, strict lower and upper 

solutions of X = f(t,x,x") satisfying: a(t) < 8(t) , a< t < b , 

with a(a) S A 5 8(a) , a'(a) 5 A" < 8'(&) > and a(b) < B 5 8(%) .



Then the boundary value problem
(1.8) z' ' = f(t,%,%'') , a < t < b
(1.9) x(a) = A , x'(a) = A' , x(b) = B
has a solution x = x(t) such that a(t) < x(t) < p(t) .
Proof; We form a modification F of f as in the definition, using 
N as in the conclusion of Lemma 1.5, here ignoring F* . By Lemma 1.2, 
the boundary value problem x"' = F(t,x,x") , (1.9) has a solution 
X = x(t) . If we show then, that a(t) < x(t) 5 p(t) , Lemma 1.5 will 
establish that F(t,x,x") = f(t,x,x") and we are done. To this end, 
proceed as in the proof of Theorem 1.3, here we show a(t) S x(t) .

Assume that there exist t € [a,b] and t| > 0 such that 
x(t ) = c(t ) with a(t)<x(t)<p(t) if a < t < r , and x(t) < a(t) 
if T < t < T + p . Since x(b) = B > a(b) , there exists a maximal 
interval c [a,b] containing T , upon which x' - a' < 0 ,
with strict inequality at places therein. Thus we conclude the existence 
of tg € (t̂ ,tg) such that x' - a ' achieves a negative minimum there. 
Also we have x"(tg) = a"(tg) and x'''(tg) > a'''(tg) . But i) if
tg > T , x(tg) < a(tg) sud SO
X"'(tg) - a'''(tg) < F(tg,X(tg),X"(tg)) ~ f ( t g , C( t g ) , Œ "  ( t g ) )

= f(tg,a(tg),a"(tg)) ~ f ( t g , Œ ( t g , U" ( t g ) ) = Û ,
ii) if tg < T , a(tg) < x(tg) < p(tg) sud SO
X"'(tg) - a'''(tg)< F(tg,X(tg),X''(tg)) ~ f ( t g , X ( t g ) , U" ( t g ) )

= f(tg,X(tg),a''(tg)) ~ f(tg,X(tg),C''(tg)) = Û .
Thus the conclusion that x' - a ' has a negative minimum at tg is 
negated, along with the existence of t and r\ . We conclude then that 
a(t) < x(t) . x(t) 5 p(t) follows similarly.

8



Henceforth, we will restrict attention to third-order singular
ly perturbed problems

(1.10) &j"' = f(t,y,3r',y",s)

where e is a small positive parameter. Our method of attack will be 

to fix an e , construct appropriate bounding lower and upper solutions 
a(t,e) and 6(t,e) and make use of Theorems 1.1, 1.6, and 1.7 to estab

lish existence of solutions to (1.10) for given boundary values. We 
shall also be able to learn, then, how these solutions behave as a func

tion of both t and e .



CHAPTER II

SINGULAR PERTURBATIONS mTH BOUNDARY 

LAYERS AT THE DERIVATIVE lEVEL

We consider, herein, the existence and asymptotic "behavior, as 

e o'*" , of the solutions y = y(t,s) of the nonlinear boundary value 

problem

(2.1) sy'" = f(t,y,y',y",s) , 0 < t < 1

(2.2) y(0,e) = A , y"(0,s) = A' , r(l,s) = B' ,
to the solution of the corresponding "reduced" initial value problem

(2.3) 0 = f(t,u,u',u'',0)
(2.4) u(0) = A , u'(0) = A' .

We will assume that (2.3), (2.4) possesses a solution u = u(t) of
3class G on [0,1] , and that f^,, exists and is nonnegative. With

additional restrictions on f , we are able to conclude sufficient condi-

tions such that the "full" problem (2.1), (2.2) has a class C solution.

And we will be able to study the limiting behavior of y(t,e) and 

y'(t,s) for uniform approach, as s 0^ , to u(t) and u'(t) , 

respectively. Also of interest is the magnitude of the boundary layers

10



which appear. The following theorem is now presented, as a prototype of 
-existence theorems for this problem.

Theorem 2.1. Suppose solutions y(t,e) of (2.1) have the property: If
y'(t,s) is bounded on [0,1] , then y‘"(t,6) is bounded on [0,1] . 

Also assume :
(1) There exists a solution u = u(t) € Ĉ [0,1] satisfying

(2.3), (2.4).
(2) f is continuous in (t,y,y',y",s) and of class 0 with

respect to y , y' , y" for a region R ; 0 < t < 1 , |y - u(t)| < d̂  ,

|y' - u'(t) I < d̂  , |y''| < “ , 0 < s «  1 ; where |B' - u'(l)| < d̂  .

(3) f(t,u(t),u'(t),u"(t),e) = 0(e) , 0 < t S 1 .

(4) fy.,, > m > 0 in R .
(5) fy,(t,y,y',u"(t),e) = 0(1) and f^(t,y,u'(t),u"(t),e) = 

0(1) in R .
Then there exists an ê  > 0 , and for each e , 0 < e S Sg ,

there exists a solution y = y(t,e) of (2.1), (2.2) such that

y(t,e) - n(t) = 0(e) ,

|y'(t,e) - u'(t)| < |u'(l) - B'|exp[(t - l)ce~^] + 0(e) , 

where c is a positive constant independent of e .
Proof: In view of Theorem 1.1, we show the existence of a solution to

(2.1), (2.2) and deduce our estimates for y and y' by construction of

appropriate lower and upper solutions of (2.1).

Let k and t be such that lfy.,(t,y,y',u",e)| < k  and 

|fy(t,y,u'(t),u"(t),e)| 5 t . Condition (1) implies that there exists 

an M > 0 such that |u''"(t)I 0 5 t < 1 ; and condition (3) de

clares there is an N > 0 for vhich [f(t,u(t),u'(t),u"(t),s) 1 5 Ns
11



We define P = |u'(l) - B'| , \ = (m + (m^ - 8ke)^)(2er^ , for s

sufficiently small, so as to have )y. a real root of
+ mX - 2k = 0 .

M-= -(k + (k^ + 4m(-C+M+N+1 ) ( 2m)  ̂ is a root for 

mji,̂ + kp. - (Z+M+N+l) = 0 .

We construct lower and upper solutions of (2.1) as follows, for 

t ( [0,1] :

a(t) = a(t,s) = u(t) - \’'̂ Pexp[(t - l)X] - eexp(-|j,t} ,

B(t) = 3(t,s) = u(t) + \~^Pexp[(t - 1)X] + eexpC-ut) .

It is of interest to note, here, that the estimates regarding the level 

y - u will be determinable as k ^ = 0(e) , and p is fixed for all s •

We now demonstrate that a and p are indeed lower and upper solutions
of (2.1) with respect to each other, and with the desirable properties 

listed in Theorem 1.1.
a(t) = u(t) - k"^Pexp[(t - l)k] - sexp(-nt)

and so
a'(t) = u'(t) - Pexp[(t - l)k] + psexp(-pt) ,

a"(t) = u"(t) - XPexp[(t - l)\] - p,\exp(-p.t) , and

sa'"(t) = Gu'''(t) - sk^Pexp[(t - l)\] + e[j.\exp(-p,t) .

Similarly

p(t) = u(t) + k"^Pexp[(t - l)X] + sexp(-pt) ,

P'(t) = u'(t) + Pexp[(t - l)X] - iieexp(-lit) ,

P''(t) = u"(t) + XPexp[(t - 1)X] + |î eexp(-|it) ,

sP'''(t) = £u"‘"(t) + eX^exp[(t - l)X] - sp^Gexp(-pt) .

Note that p(t) - a(t) = 2X~^PexpC(t - l)X] + 2Gexp(-pt) > 0 . Also, we
have B'(t) - a'(t) = 2Pexp[(t - l)X] - 2|iGexpC-(it) > 0 . At the
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endpoints; a(0) = A - 'X.'̂ PexpC-X) - & < A < A + X ̂ Pezp(-Xj + s = p(0) , 
a'(0) = A' - PexpC-l) + < A' S A' + Pexp(-X) - [j,e = P'(0) , and

a'(l) = u'(l) - P + psexpC-M-) ^ B' < u'(l) + P - peexpC-iJ.) = P'(l) .
Thxis, if it is shown that the inequalities expressed in the 

definitions of lower and upper solutions are here valid, our conclusions 

will follow. Testing, hy inserting a' , a" , sa'" and some z , 

a(t) < z 5 p(t) into equation (2.1) and "turning comers" via the mean 

value theorem, we have

ea'"(t) - f(t,z,a'(t),a"(t),e)

= su'"(t) - G%?Pexp[(t-l)U + s|J.̂ sexp(-u,t) - fy_,,(t,z,a'(t),*,6)

X {-lPexp[(t-l)X] - M.̂ eexp(-|j.t)} - fy,(t,z,**,u"(t),s)

X {-PexpC(t-l)\] + iisexp(-|j.t)} - f^(t,***,u'(t),u"(t),s)
X {e\“̂ PexpC(t-l)\] + 8sezp(-!J.t)} - f(t,u(t),u'(t),u"(t),s) , 

where |0| < 1 and • , •• , denote, respectively, values some
where between a"(t) and u"(t) , a'(t) and u'(t) , and z and 

u(t) . Continuing and comparing, we have
ea'"(t) - f(t,z,a'(t),a"(t),s)

2 3 2> -sM. - &X Pexp[(t-l)\] + s(j. eexp(-jj.t) + mXPexp[( t-l)X] + mp, eexp(-p,t)

-kPexpCC t-l)\] + kneexpC-lit ) - ZX"̂ Pexp[( t-1 )X] - ̂ sexp(-iit) - sN 

(with M , N , m , k and t as defined above)
= (-sX^+m\-k-£\~^)Pexp[(t-l)\] + ( G}î +miî +k|i-Z)sexp(-|it) - e(M+N) = * .

“1 3 2 2Since X =0(e), s|i +m(i + - Z > m^ + k p . - Z - l > 0  , for suf

ficiently small values of s , and exp(-|it) being an increasing func
tion, we have

* > (-sX^ + mX - 2k)Pexp[(t-l)X] + (mp^ + ku - (£+M+N+l))e = 0 , i.e., 

sa'"(t) - f(t,z,a'(t),a"(t),e) > 0 .

13



Via a symmetric argument we ascertain

f(t,Z,P'(t),p''(t),s) - Sp"'(t)
= -eu^'Ct) - eX^Pexp[(t-l)\] + s[j.\exp(-M.t) + fy,,(t,z,p'(t),:,G)

X {XPexpC(t-l)X] + |j,̂6exp(-(j.t)} + fy,(t,z, : :,u"(t),s)
X {PexpC( t-l)X] - nGezpC-iit)} + f̂ (t, : : :,u'(t),u"(t),e)
X {8X"^Pexp[(t-l)X] + eGexp(-|j,t)} + f(t,u(t),u'(t),u"(t),s)

> (-GX^+mX-k-£\”  ̂)PexpC( t-1 )X] + ( s(J.̂ +mn̂ +k!j,-£)Gexp(-|xt) - g(M+N) > 0 . 

Therefore a(t,e) and p(t,G) are indeed lower and upper solutions of

(2.1), whence Theorem 1.1 asserts the existence of a solution y = y(t,G) 
of (2.1), (2.2) such that a(t,s) 5 y(t,s) 5 p(t,s) and a'(t,G) S 

y'(t,G) < P'(t,G) .
It is well to remark here that the boundedness requirement of 

f̂ , in assumption (5) may be replaced with the assumption

(y) there is a k > 0 , such that fy,(t,y,y',u''(t),G) > k

in R .

Then we would let X be as above, but change p so that ix =

(k - (k^ + 4m(£ + M + N + l))^(2m)~^ , a negative root of mp^ - kp -

(£ + M +  N + l) = 0 .

Corollaiy 2.2. Making the same assumptions as in Theorem 2.1 (condition

(5) may be replaced by ($')), there exists 5 = ô(g) = 0(g) such that
for 0 5 t 5 1 - Ô ,

|y"(t,G) - u"(t)[ = 0( 1/g)expC-mG"\ 1 - 6 - t)] + 0(g) .
Proof: Define z = z(t,e) = y(t,e) - u(t) , where y is the solution
obtained in Theorem 2.1. gz'"' + gu'" = f(t,z + u,z' + u',z'' + u", g) =
f(t,u,u',u‘",G) + fyZ + f̂ ,z' + , where the partial derivatives

are evaluated at [v] = (t,u + 0z,u' + 8z',u'' + 8z", g) , 0 < 8 < 1 .
14



Thus z satisfies the boundary value problem
(2.5) sz"' - fy,,z" = r , 0 < t < 1

z(0,e) = 0 , z'(0,s} = 0 ; z'(l,e) = B' - u'(l) ,
where r = f̂ ,z' + f̂ z + 0(s) , r = 0(z' + e) . Thus we know that

|r| < c{exp[(t - l)e“̂ ] + s} .
1-6

f ,, . We multiply (2.5) by s~ ezp[Q(t)] to 
t ^

Set Q(t) = e~̂  

obtain
(z"exp[Q(t)])' = s"^r(t)exp[Q(t)]

-1z"(t) = z"(l - ô)exp[-Q(t)] - s~ J r(s)exp[Q(s) - Q(t)]ds .

Integrating between t and 1 - 5 , observe;
rl-6 

't

Arguing in a manner analogous to one by Coddington and Levenson [CL], as 

z' = j' - u' = 0(e) outside of the boundary layer at t = 1 , the deriv

ative z" is increasing in magnitude as t approaches 1 , and so 

there is a 6 = 6(e) = 0(e) at which z"(l - 6) = 0(l/e) . This is 

the 6 above. And so

|z"(t)| < |z"(l-5)|exp[e ^
1-6

-mds] + e
1-6 T

|r(s)|exp[-e~ m(s-t)]

= 0(l/e)exp[-me ^(l - 6 - t)] + 0(e) .
An interesting phenomenon may occur when we consider the bound

ary value problem
(2.6) j'" = f(t,y,y',e) , 0< t< 1

(2.7) y(0,e) = A , y'(0,e) = A' , y'(l,e) = B' .
If we let e = 0 , a first-order equation results, and so hoping to at

tain two of the boundary conditions for the reduced problem will usually 

be impossible. Here we set our reduced problem to be
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(2.8) 0 = f(t,u,u',0) , 0 < t < 1

(2.9) u(0) = A .
In fact, we show an order convergence for solutions of (2.6), (2.7) 
with respect to (2.8), (2.9), and boundary layers of considerably larger 
magnitude than those exhibited in Theorem 2.1.

Theorem 2.3. Suppose solutions y(t,s) of (2.6) have the property:
if y'(t,e) is bounded on [0,1] , then y"(t,e) is bounded on [0,1] .

Also assume:

(1) There exists a solution u = u(t,e) ( C [0,1] satisfying

(2.8), (2.9).
(2) f is continuous in (t,y,y',s) and of class with 

respect to y and y' for a region R: 0 < t < 1 , |y-u(t)|<d^,

|y' - u'(t)| < dg , 0 < s «  1 ( d̂ ,dg > 0 ); where |A" - u'(0)|,

IB' - u'(t)| < dg .
(3) f(t,u(t),u'(t),e) = O(e^) , 0 < t < 1 .

(4) fy, > k > 0 in R .
(5) fy(t,y,u'(t),s) = 0(1) in R .
Then there exists an Sq > 0 , such that for each s , 0 < e <

Sq , there exists a solution y = y(t,s) of (2.6), (2.7) such that
y(t,e) - u(t) = O(s^) and 

|y'(t,s) - u'(t)| 5 |u'(0) - A'|exp[-c^s~^t]

+ |u'(l) - B'|exp[c2(t - l)e“ ]̂ + O(ê ) , 

where c^ and ĉ  are positive constants independent of e .

Proof: We form lower and upper solutions of (2.6). Let Z. be such that

|fy(t,y,u'(t),G)| • Conditions (l) and (3) provide positive con

stants M and N , where Iu'"(t)| < M  and |f(t,u(t),u'(t),e)| < Ns ,
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0 < t < 1 . Q = |ti'(0) - A'I , P = |u'(l) - B'l . Then 
a(t) = a(t,s) = u(t) - y"̂ Q[e]cp(Tt)-l] - X."̂ Pe%p[(t-l)X] - ŝ e]cp(-p.t) , 

B(t) = p(t,e) = u(t) + r” Q̂[exp(rfc)-l] + ^~^PexpC(t-l)X] + ŝ exp(-n,t) , 
where y is the negative root of

-ey^ + k = 0 ;

X is the positive root of
-eX^ + k/2 = 0 .

X“̂  = O(s^) , and in particular y”^ = O(e^) , whence there is an r > G 

such that |£y~̂ Ql < rs^ . Define p. to be the root of

-k|j, - (£ + M + N + r + l) = 0 .

P(t) - a(t) = 2y”̂ Q[exp(yt)-l] + 2X“ êxp[( t-l)X] + 2ê exp(-|i,t )
and B'(t) - a'(t) = 2Qesp(yt) + 2Pexp[(t - l)X] - 2[j,ê e2p(-|j,t) . Also

we have a(0) = A - X ̂ Pexp(-X) - s ^ < A < A  + X ̂ Pexp(-X) + = B(0) ,

a'(0) = u'(0) - Q - Pexp(-X) + |iê < A' < u'(0) + Q + Pexp(-X) - = B'(0) ,

and a'(l) = u'(l) - Qexp(y) - P + nê expC-ii) S B' < u'(l) + Qexp(y) + P

- pê exp(-|i) = B'(l) . Thus, if we show that sa'" > f(t,z,a',s) and

sB''' - f(t,z,B'js) } Theorem 1.1 will provide our conclusion. We show
the case a explicitly, p follows by symmetry.

sa'"(t) - f(t,z,a'(t),s)
= eu'"(t) - sy^Qexp(yt) - sX^Pexp[(t-l)X] - sp.̂ Ĝ exp(-|it) - f^,(t,z,*,e)

X {-Qexp(yt)-PexpC( t-l)X]+nÊ exp(-iit)} - f̂ C t,** ,u'(t),e)

X {ey"^Q[exp(yt)-l]+0X”̂ Pe2pC(t-l)X]+0ê exp(-|xt)} - f(t,u(t),u'(t),s) ,

where 101 5 1 , and • , denote values between a'(t) and u'(t) ,

and z and u(t) . Comparing, using assumptions (l), (3), (4) and (5);

ea'"(t) - f(t,z,a'(t),e)
> -sM - sy^Qexp(yt) - sX^Pexp[(t-l)X] - s|j,̂ ê exp(-|j,t) + kQexp(yt)
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+ kPezp[(t-l)X] - k|iÊ exp( -|it) - 

- £l~^expC(t-l)X] - £ê ex3)(-(it ) + - sN

> -(M+N+r)e^ + (-sy +̂1c-£y~^ )Qexp( yt ) + (-sX^+k-£X“̂  )
X Pexp[(t-l)X] + ( -G(î -k(i-&)ŝ ezp( -(it )

If e is siiffieiently small, we use the definitions of y # ^ and (i 
to conclude that a is indeed a lower solution of (2.6).

To illustrate the behavior exhibited by solutions to equations 

discussed in the above theorem, consider the linear example 

ey'̂ ' = y  ; y(0) = 0 , y'(0) = -1 and y'(l) = 1 .

The explicit solution is y(t,e) = e^Ccosh(te + cosh((t-l)s )̂ - 

ŝ coshCs~̂ )]/sinh( e~̂ ) , which indeed converges O(s^) to the solution 

u = 0 of the reduced problem. Note also that y'(t,e) = [sinh(te ) + 

sinh((t-l)e~^)]/sinh(s~^) converges to u' = 0 away from the two 

boundary layers, with the boundary layers being of the indicated magnitude. 

The assumption that the solution, u = u(t) , of the reduced
3problem for the above theorems be of class C [a,h] can be weakened to 

2that of being C [a,b] with u"(t) piecewise continuous. To illus
trate this on the interval [-1,1] with u'"(t) having a "jump" dis
continuity at t = 0 , we first tender the following lemma to provide 
3C estimates of u .
Lemma 2.4. Suppose x ( Ĉ [-l,l] fl C^{[-1,0) U (0,1]} is such that 

x"'(0~) and exist, are finite and not equal. Then for

given small values of e , there exist functions x̂ (t,s),x̂ ( t,s) € 

C t̂-1,1] such that

f^)(t,G) < x(^)(t) < x[̂ )(

) x̂ i) - xl̂ ) = 0(s) and x̂ ^̂  - x̂ ^̂  = 0(e) , i = 0,1,2 .
i) x^ (t,e) 5 X (t) 5 x^ (t,e) , -1 < t < 1 and

u
18



Proof: Let = x"'iQ^) - x"'(0 ) . We define and x^ as fol

lows:
 ̂ *2x(t) + e exp(rt/e) - syexpC t+1) t < 0

r > 0

x^ = x^Ct^e) = '

r < 0

r > 0

r < 0
t > 0

x(t)+s^+e^rt+sr^t^/2-eYexp(t+1)
 ̂ O
'x(t) - E exp(-rt/e ) - syexpCt+1) 

x(t)-e^+e^rt-er^t^/2-erexp( t+1)

Ix(t )+e^+e^rt+er^t^/2+eyexp(t+1) 

lx(t) + e\xp(-rt/e) + eyexpCt+l)
Jx(t )-ê -ê rt-er^t^/2+EYexp( t+1 )

^x(t) - e^exp(rt/s) + eyexp(t+l) 

where y is chosen to he a large eno-ugh positive constant to effect the 
conditions i) and ii) for sufficiently small e . Noting, and so defin

ing for t = 0 , that x^^^O”) = and x^^\o~) =
3for i = 0,1,2,3 . Therefore we have x^,x^ ( C [-1,1] .

We may now state the following theorems, which are versions of

Theorems 2.1 and 2.3 for piecewise thrice differentiable reduced solu

tions. The boundary value problem is

(2.10) sy"' = f(t,y,y',y",s) , -1 < t < 1

(2.11) y(-l,e) = A , y'(-l,e) = A' , y'(l,s) = B'
with corresponding reduced equation

(2.12) 0 = f(t,u,u',u",0) , -1 < t < 1

(2.13) u(-l) = A , u'(-l) = A' or

(2.13') u(-l) = A , when f does not depend on u" .
Theorem 2.5. Assume the hypotheses of Theorem 2.1 for the interval

-1 < t < 1 , but replace assumption (l) by

(l') There exists a solution u = u(t)€G^[-l,l]nC^{[-1,0)11(0,1]}
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satisfying (2.12), (2.13) such that u'"(0”) and u'''(0*) exist and 

are finite.
Then there exists an Sq > 0 , and for each e , 0 < e 5 Sq ,

there exists a solution y(t,e) of (2.10), (2.11) such that

y(t,s) - u(t) = 0(s) ,

|y'(t,s) - u'(t)| < |u'(l) - B'|expC(t-l)ce"^] + 0(e) ,

where c is a positive constant independent of e .
O

Proof: Letting u^(t,e) and u^(t,e) he C approximations of u(t) 

as in Lemma 2.4, we construct lower and upper solutions of (2.10). 

a(t) = a(t,s) = u^(t,s) - \~^PexpC(t-l)\] - eexp[-p{t+l)]

B(t) = B(t,e) = Uy(t,s) + X~^Pexp[(t-l)\] + eexp[-|j,('t+l)] 

where \ and P are as formulated in the proof of Theorem 2.1, and 
is here taken as the negative root of

mp,̂  - k|i - (Z+M+N+8+l) = 0 ,

S being a positive constant, with definition to follow. M is here 
taken to be an upper bound for { |u£"(t)|, |û "'(t)| : -1 < t < 1} . 

a < B and a' < B' before, and the boundary inequalities are also

proven directly. Thus, we need only verify that a and B are indeed

lower and upper solutions.
'O ^  ^

We test the case where r > O' ( r = u'''(0 ) - u'''(0 ) ), for 

a(t, e) with special note to the size and inequality directions of the 

derivatives of u^ and u^ . 

ea"'(t) - f(t,z,a'(t),a"(t),e)

= £u'"(t) + er^exp(rt/e) - G^yexp(t+l) - ek^Pexp[(t-l)k]

+ EM^sexp[-p(t+l)] - fy,,(t,z,a'(t),',6)

X {-XPexp[(t-l)\] - (j.̂ eexp[-M,(t+l)] + 0(e)} - f̂ ,(t,z, • • ,u"(t ),s )
20



X {-Pe%p[(t-l)X] + M,eexp[-M.(t+1)] + 0(s)}

- fy(t,**‘,u'(t),u"(t),e)

X {0\“^PexpC(t-l)X] + Gsezp[-^(t+l)] + 0(e)}

- f(t,u(t),u'(t),u"(t),e) = *
for t 5 0 ; |e| < 1 ; , * , ' ' being appropriate intermediate

values.
* > (-el^ + ml - k - £\“̂ )Pexp[(t-l)\] - e(M+N)

+ (g[P + mn^ + kp - £)eexpC-|i,(t+l)] + 0(e) , 

the last 0( e ) obtained from the modifications and of u .

Whence we have S > 0 , and eo/''(t) - f(t,z,a'(t),a''(t),e) >
2 *1 P(-sX + ml - k - Z\~ )Pexp[( t-l)l] + (e^ + m|i + k [ i - i . - M - N - S ) e >

0 . When t > 0 , the difference in the above expansion is that the 
*2

term er exp(rt/e) would be absent. Similar calculations for r< 0 , 

and the B’s follow directly, as in the proof of Theorem 2.1.

Theorem 2.6. Assume the hypotheses of Theorem 2.3 for the interval 

-1 < t 5 1 , but replacing assumption (l) by

(1') There exists a solution u = u(t) € C^[-l,l] fl 

C^{[-1;0) U (0,1]} satisfying (2.12), (2.13'); such that u'"(0~) and 

u'''(0*) exist and are finite.

Then there exists an Sq > 0 , and for each s , 0 < e 5 Sq ,
there exists a solution y(t,e) of (2.10), (2.11) such that

y(t,s) - u(t) = O(e^) and 
|y'(t,e) - u'(t)| < |u'(-l) - A'lexp[-c^(t+l)e“ ]̂

+ |u'(l) - B'|expCc2(t-l)e'^] + O(e^) , 
ĉ  and Cg being positive constants independent of s .

Proof: Lower and upper solutions are formed as in the proof of Theorem
21



2.3, where we now take \l to satisfy
-kti - (£+M+N+f+S+l) = 0 . 

f and S arising in the expansions of f(t,z,a',e) and f(t,z,p'',s) .

P = |n'(-l) - A'I , Q = |n'(l) - B'| and u^(t,e^) and u^(t,e^)
q

being C approximations of u.(t) as in Lemma 2.4, we have 

a(t) = a(t,e) = n^(t,s^) - r ^Q{exp[y(t+l)] - 1}
- X~^PexpC(t-l)\] - ê expC-(i(t+l)3 ,

6(t) = 6(t,e) = u^(t,e^) + r~^Q{exp[r(t+l)3 - 1}

+ X~^Pexp[(t-l)\] + ê exp[-ij.( t+1 )]

Verification follows by direct calculation.
The choice of boundary conditions for which the above reduced 

solutions are asked to satisfy is not arbitrary, but follows from The 

Cancellation Law as stated by O'Malley (COM], p.49) for linear boundary 
value problems as to number and position. As a guide to phenomena, i.e., 

order of convergence and width of boundary layers, second-order equa

tions of the form ex" = f(t,x,x',e) as treated by Howes in [Hoi] and 

[Ho2] display equivalent action at the x(t,e) level as y'(t,e) here 

show.
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CHAPTER III

SINGULAR PERTURBATIONS WITH BOUNDARY 

LAYERS AT THE FUNCTION LEVEL

Again, we study the nonlinear differential equation

(3.1) ey'" = f(t,y,y',y",s) , 0 < t < 1 ;
hut with the boundary values now being

(3.2) y(0,e) = A , y'(0,s) = A' , y(l,e) = B .
We study the existence and asymptotic behavior, as e + 0* , of solu

tions y = y(t,e) of (3.1), (3.2) to the solution of the "reduced" 

initial value problem
(3.3) 0 = f(t,u,u',u",0)

(3.4) u(0) = A , u'(0) = k' .

As in Chapter II, we will assume (3.3), (3.4) has a solution u = u(t) €
3 2C [0,1] (or perhaps merely C ), f̂ ,, is nonnegative, and here

especially that f̂ , is positively bounded away from 0 .

Theorem 3.1. Suppose initial value problems (3.1) extend to [0,1] or

become unbounded. Also assume:

(l) There exists a solution u = u(t) € Ĉ [0,1] satisfying

(3.3), (3.4).
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(2) f is continuous in (t,y,y‘',y",s) and of class with

respect to j' and j" with > 0 and f̂ , > 0 . Aud for a re

gion R : 0 < t < 1 . |y - u(t)| 5 d , |y'| < * , \7"\ < “ # 0 <

s «  1 , ( d > 0  ), with |B - u(l)| < d .

(3) f(t,u(t),u'(t),u'"(t),s) = 0(s) , 0 < t < 1 .

(4) There exists a k > 0 such that fy.,(t,y,y',u'‘',s) > k .

(5) fy(t,7,u'(t),u"(t),s) = 0(1) .
Then there exists an Sq > 0 , such that for all s , 0 < s < Eq ;

there exists a solution y = y(t,s) of (3.1), (3.2) such that

i) |y(t,s) - u(t)| < [B - u(l)|exp[(t-l)c^s"^] + 0(e) provided

f̂ ,, > m > 0 in R ;

ii) |y(t,s) - u(t)| < |B - u(l)|expC(t-l)c,e''̂ ] + 0(e) other

wise.

Proof; Case i). f̂ ,, > m > 0 . Let X , -2m/s < X < -m/s he the

root of

sX^ + mX^ - kX - £ = 0 ;

and \L he the largest negative root of

ŝ î  + m(jL̂ - kp. - (£+M+N+l) = 0 , 

where |fy(t,y,u'(t),u"(t),s)| < £ , |u'''(t)| < M  and

|f(t,u(t),u‘'(t),u"(t),e)| 5 Ne . P = |u(l) - B| , we fom lower and 

upper solutions of (3.1).

a(t) = a(t,e) = u(t) - Pexp[X(l-t)] - eexp(-pt)

6(t) = p(t,e) = u(t) + Pexp[X( 1-t )] + eexp(-pt) .

Observe that p(t) - a(t) = 2Pexp[X(l-t)] + 2eexp(-pt) and that 

a(0) = A - Pexp(X) - e < A < A + Pexp(X) + e = p(0) ,

a(l) - u(l) - |u(1)-B| - exp(-|i) < B < u(l) + |u(1)-B| + exp(-p) = p(l) ,
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and a'(0) = A' + XPe]cp(X) + [is 5 A' 5 A' - XPe]cp(X) - (j,e = P'(0) .
Using the mean value theorem, and turning comers, as in the 

previous chapter, a and p are shown to he lower and upper solutions 

of (3.1).
sa""(t) - f(t,z,a'(t),a-"(t),s)

= eu'"(t) + eX^Pexp[\(l-t}] + 6ix\exp(-(j,t) - fy,,(t,z,a'(t),',G)

X {-\^exp[X(l-t)3 - [î sexpC-ixt)} - fy,(t,z,* •,u"(t),e)

X {XPexp[\(l-t}] + |ise]cp(-|it)} - fy(t,***,u‘'(t),u"(t),e)

X {ePexpCX(l-t)] + esexp(-|j,t)} - f(t,u(t),u‘'(t),u"(t),s) ,

where z = z(t) is such that a(t) < z < p(t) , and so |e| < 1 ; • ,
•• , denoting, respectively, values between a"(t) and u"(t) ,

a'(t) and u'(t) and z and u(t) . Using our assumptions for com

parative purposes, we find then

- f(t,z,a'(t),a"(t),e)
> -eM + eX̂ exp[X( 1-t )] + sM.\exp(-(j.t ) + mX^Pexp[X( 1-t )]

2+ mil se2cp(-(it) - kXPe2p[X(l-t )] - k|isexp(-jit )
- £0Pexp[X(l-t)] - £0eexp(-iit) - eN

> (eX^ + mX^ - kX - £)Pexp[X(l-t)] - (M+N)e
3 2+ (s[i + my, - ky. - £)exp(-y,t)

As y, < 0 , exp(-jit) is nondecreasing and so we have, noting the defini

tions of X and y ,

ea""(t) - f(t,z,a'(t),a"(t),s)
> (ey.̂ +my,̂ -ky-£'4Æ-N) > (sy,̂ +my,̂ -ky-£-M-N-l) = 0 , 

that is to say a is a lower solution with respect to 0 . For p we 

deduce
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f(t,z,P'(t),p''(t),G) - 6P'"(t) > -s(M+N) + (eX^ + mX^ - kX - l9)
3 2X Pezp[X(l-t)] + (six + mix - kix - £0)sexp(-(xt) > 0 ,

P is an upper solution. Thus Theorem 1.6 allows us to declare a solu

tion y(t,s) , a(t) Sy(t,s) < p(t) exists.

Things of interest in the above are that as e o"*” , |x ->

[k - (k^ + m(£ + M + N + l))^](2m)  ̂; and that sa'" > f(t,z,a',a'',s) 

and sp'" < f(t,z,P',p",s) . The latter observation is useful in deal

ing with the situation where f is independent of y' , as in Theorem 

1.7. We return for the

Case ii). f^,, > 0 . Let X , -(k/s)^ < X < -(k / 4 s b e  a

negative root of
sX̂  _ kX - £ = 0

and [X the largest negative root of
sp^ - kp - (£+M+N+l) = 0 ;

(p-»-(£ + M + N + 1)A as 6 0*), £ , k , M , and N as above.

Letting P =  |u(1)-B| , we form a and p

a(t) = a(t,s) = u(t) - PerpCX(l-t)] - sexp(-pt)

p(t) = p(t,e) = u(t) + PexpCX(l-t)] + sexp(-pt) .

Again, p(t) - a(t) > 0 ; and a(0) < A <  p(0) , a'(0) < A' 5 P'(0) ,

and a(l) < B < p(l) . We test p :

f(t,z,p'(t),p"(t),s) - sp'"(t)

= fy,,(t,z,P'(t),:,s)
X {X^PexpCX(l-t)] + p^sexp(-pt)} + f̂ ,(t,z, ; :,u"(t ),s )

X {-XPexpCX(l-t)] - psexp(-pt)} + f̂ (t, : : :,u'(t),u"(t ),s )

X {0Pexp[X(l-t)] + 0sexp(-pt)} + f(t,u(t),u'(t),u''(t),s)
- su'"(t) + sX^Pexp[X(l-t)] + sp^sexp(-pt)
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> -kXPezp[X(l-t)] - k[iee2p(-(j.t) - £Pexp[X(l-t)]
- £sexp(-nt) - sN - eM + e\^exp[X(l-x)] + e{i\exp(-pt )

= (eX^ - kX - £)Pexp[X(l-t)] + ( ep.̂  - kp. - £)sexp(-tit) - e(M+N)

^ ( s — k[j. — — M — N)s>0 )

due to the definitions of X and p. . Therefore, p is an upper solu

tion. A symmetric argument for a produces ea'"(t) > 

f(t,z,a'(t),a'"(t),e) for z , a(t) 5 z 5 p(t) . Theorem 1.6 may now 

he employed to give the indicated conclusion.

Theorem 3.2. Consider the differential equation

(3.5) zj'" = f(t,y,y",e) , 0< t< 1 .
Assume that initial value problems (3.5) extend to [0,1] or become 

unbounded. Also assume :
(1) There exists a solution u = u(t) € Ĉ [0,1] satisfying 

0 = f(t,u,u",0) , u(G) = A , u'(0) = A' .
(2) f is continuous in (t,y,y",e) and of class 0^ re

garding y and j" in region R : 0 < t < 1 , |y-u(t)|sd, 

ly" I < “ , 0 2 e «  1 .
(3) f(t,u(t),u"(t),e) = 0(s), 0 5 t 5 l .
(4) f^,,(t,y,y",s) > m > 0 in R , for some m .

(5) fy(t,y,u"(t),s) = 0(1) in R .

Then there is an Sq > 0 , such that for all e , 0 < e 5 Sg ,

there exists a solution y = y(t,e) of (3.5), (3.2) such that

|y(t,e) - u(t)| < |B - u(t)!exp[(t-l)ce~^] + 0(e) .

Proof; We make use here of Theorem 1.7, and construct lower and upper 

solutions accordingly.
a(t) = a(t,e) = u(t) - Pexp[(l-t)X] - eexp(-|j.t)
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P(t) = p(t,e) = -u(t) + PexpC(l-t)X] + sexp(-p.t) ,
where we define X and as roots of

3 2sX + mp. - Z = 0 , -m/s 5 X < -m/2s

for small e ,

s|î  + m|î  - (£+M+N+l) = 0 , 

with |j,-»-(£ + M + N + l)^m ̂  as s-»-0 ; £ , M , N  being positive

constants such that If^(t,z,u",s)| < Z , |u/''(t)| < M  , and
|f(t,n,u'',s)| < Ns . 

sa"'(t) - f(t,z,a''(t),s)

= eu^'Ct) + eX^PexpC(l-t)X] + s|j,\exp(-jit) - fy,,(t,z,*,s)
X {-X^expC(l-t)X] - [i,̂se2q)(-iJ.t )} - fy(t,**,u"(t ),e )
X {0PexpC(l-t)X] + 0eexp(-|xt)} - f(t,u(t),u''(t),s) ,

with a(t)5z<p(t), |0| < 1 , * and ** being some values between

a"(t) and u"'(t) , and z and u(t) , respectively. Comparing we 

find:

ea"'(t) - f(t,z,a"(t),e)
> -sM + sX^Pexp[(l-t)X] + sM.̂ eexp(-|it) + mX^Pexp[(l-t)X]

O
+ mp sezp(-pt) - £PexpC(l-t)X] - £sexp(-pt) - sN 

= (sX^ + mX^ - £)Pexp[(l-t )X] - e(M+N) + (sjî  + miî  - £)sexp(-|j,t)

> ( E [iP m[j, — £ — M — N — l)s~0 ,

i.e., a is a strict lower solution of (3.5) with respect to 6 . Also, 

one has eP'̂ 'Ct) < f(t,z,P''(t),s) , whence Theorem 1.7 provides our 

conclusion.
Heretofore, u was requested to satisfy both of the boundary 

conditions at t = 0 . But, as in the previous chapter, if f is inde

pendent of y" , solutions behave quite differently. Convergence was
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nnieh slower, away from the ■boundary layers, and the boundaiy layers, 

themselves, were magnified. These same phenomena may also he observed 

for the type of boundary conditions we deal herewith. The problem is

(3.6) sy'" = f(t,y,y',s) , 0< t< 1

(3.7) y(0,s) = A , y'(0,e) = A' , y(l,s) = B ; 

where the reduced problem will be
(3.8) 0 = f(t,u,u',0) , 0 < t < 1

(3.9) u(0) = A .
Theorem 3.3. Suppose initial value problems (3.6) extend to [0,1] or 

become unbounded. Also assume:
(1) There exists a solution u = u(t) € Ĉ [0,1] satisfying 

(3.8) and (3.9).
(2) f is continuous in (t,y,y',s) and of class with 

respect to y and y' in a region R: 0 < t < 1 , |y-u(t)|sd,

ly' I < “ , 0 5 e «  1 .

(3) f(t,u(t),u'(t),e) = 0(e), 0 < t < l .

(4) There exists a k > 0 , such that f̂ , > k in R .

(5) fy.(t,y,u'(t),s) = 0(1) in R .
Then there exists an Sg > 0 , such that for each e , 0 < s S Sg ,

there exists a solution y = y(t,s) of the boundary value problem (3.6),
(3.7). Also,

|y(t,e) - u(t)| < |B - u(l)lexp[(t-l)cs“ ]̂ + O(e^) , 0 S t < 1 ,

for c , a positive constant independent of e .
Proof: In order to employ Theorem 1.6, we construct functions a < p 

where a(0,s) 5 A < p(0,e) , a'(0,s) < A' < p'(0,a) and a(l,s) < B < 
p(l,s) , such that a and p are lower and upper solutions of (3.6).
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We designate P = |n(l) - B| and Q = |u'(0) - A'I , and define for 

t € [0,1] ,

a(t) = a(t,s) = u(t) - Pexp[(l-t)>.] + Y~^Q{&xp(-Yt)-1} - â ezpC-|it) ,

P(t) = P(t,e) = n(t) + Pexp[(l-t}X] - Y"^Q{ezp(-Yt)-l} + ŝ exp(-ij,t) ;

where y is the positive root, Y = 0(s *) , for
-GY^ + k/2 = 0 ,

-(k/e)^< X. < -(h/4s)^ satisfies
e\^ - kX - £ = 0 .

If Z is the bound for f in R , for -1 < 0 < 1 we have theny
|£0y”̂ Q| 5 Sê  , and so we define [l as the largest negative root of

G — M “ N — S — 0 ,
M and N obtained from conditions (l) and (3) in the usual way.

By construction, a < p , a(0) 5 A 5 p(0) , a'(0) < A' 5 P'(0)

and a(l) < B < p(l) . We verify explicitly that GP'"(t) <

f(t,z,p'(t),G) and Ga'"(t) > f(t,z,a'(t),G) , where a(t) < z 5 S(t) .

For B , substituting and expanding 
f(t,z,p'(t),G) - GB'"(t)

= fy,(t,z,*,G) X {-XPexp[(l-t)X]-tiĜ exp(-!xt)+Qexp(-Yt)}+fy(t,**,u'(t),G)
X {0PexpC(l-t)X] + 0Ĝ exp(-M-t) - 0Y~̂ Q[exp(-yt)-l]} + f(t,u(t),u'(t),g) 
- Gu'"(t) + GX̂ Pexp[(l-t)X] + G[x\̂ exp(-ij,t) - GŶ QexpC-yt) , 

for some 0 , 10 ] £ 1 , and * and ** standing in for appropriate
intermediate values. Making use of the fact that f^ > k > 0 and 
|fyl - ̂  ,
f(t,z,B'(t),G) - GB"'(t)

> (gX^ - hX - f)Pexp[(l-t)X] + (-gy^ + k + £0y "̂ )

X Qexp(-Yt) + (gm-̂ - kn - f)Ĝ exp(-p.t) - eM - gN - £0y“ Q̂ .
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For 6 sufficiently small, we note that < k/2 , and since

ezp( -lit ) is increasing, we then have 

f(t,z,P'(t),e) - sp"'(t)
> (ek^ - kX - Z)Pexp[(l-t)X]

+ (-G-ŷ  + k/2)Qexp(-yt) + (t[3? -k[j.-£-M-N - S)e^ = 0 .
For a , we obtain in the same manner, 

sa"'(t) - f(t,z,a'(t),s)
> su'''(t) + GX^Pezp[(l-t)X] + e(j,̂ ŝ exp(-n.t)

2
- ey Qexp(-yt) - f̂ ,(t,z, :,e)

X {XPexp[( l-t)X] + |j.ê exp(-nt) - Qexp(-yt)} r f̂ (t, : :,u'( t),e )

X {ePexp[(l-t)X] + eŝ ezp(-(j,t) - 9y”^Q[exp(-yt)-l]} - f(t,u(t),u'(t),e)

> (eX^ - kX - £)Pexp[(l-t)X] + (-ey^+k/2)Qexp(-yt) + (sM.̂ -k|i,-£-M-N-S)ŝ

=  0
We conclude, by Theorem 1.6, that the boundary value problem (3.6), (3.7) 

has a solution, of the desired size.

Due to particular nature which f might possess, the assumption 

that the solution to the reduced equation be thrice continuously differ

entiable may not be attainable. If we but consider, as example, the 

piecewise defined linear equation

y'' -1 < t < 0
y'' + t 0 < t < 1

e j ' "  =

3whose C [-1,1] solution is obtained by elementary means, for arbitrary

boundary values, does indeed act like solutions already mentioned, in
regard to the reduced solution. But the reduced solution must satisfy:
u'"''(t) = 0, -1 < t 5 0 and u'"'(t) = -l, 0 < t < 1 . Boundary

value problems of this type may be handled using, as before, approximations
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which do not deviate excessively from the reduced solution at any of the

derivative levels expressed in f . Recall, then, the C approxima-
2tions u^ and u^ obtained in Lemma 2.4, for functions u € C [-1,1] fl 

C^{[-1,0) U (0,1]} . We state the following theorems for the boundary 

value problem

(3.10) sy'" = f(t,y,y',y",s) , -1 < t < 1

(3.11) y(-l,s) = A , y'(-l,s) = A' , y(l,e) = B .

The reduced problem is

(3.12) 0 = f(t,u,u',u'',s) , -1 < t < 1

(3.13) u(-l) = A (and u'(-l) = A' ),
2 3of which solutions are required to be C and piecewise C .

Theorem 3.4. Make the same assumptions as in Theorem 3.1 for the inter

val -1 < t < 1 ; replacing assumption (l) by

(l') There exists a solution u = u(t) ( Ĉ [-l,l] fl
C^{C-1,0) U (0,1]} , such that u'"(0~) and u'''(0*) exist and are 
finite.

Then there exists an Sq > 0 , such that for all s , 0 < e 5 Sq , 

there is a solution y = y(t,s) of (3.10), (3.11) such that

i) |y(t,s) - u(t)| < |B - u(l)|exp[(t-l)c^s~^] + 0(e) provided 

fy,, > m > 0 , or elsewise

ii) |y(t,s) - u(t)| < |B - u(l)|exp[(t-l)c2s'̂ ] + 0(e) , where 

ĉ  and Cg are positive constants independent of e .

Proof ; We but note that this is the analogue of Theorem 3.1 for the 

situation described in condition (l') . We form lower and upper solu-
Otions via the same device as in Theorems 2.5 and 2.6, i.e., where r = 

u"'(0 ) - u'"(0 ) we replace u(t) in the definitions of a(t,s)
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p(t,s) by u^(t,e) and u^(t,s) , respectively. Adjustment of p fol

lows accordingly.
Indeed, this usage of and instead of u for situations 

where the assunption (l') is more practicable, also yields the same con

clusions as would apply where f is of the nature found in Theorems 3.2 

and 3.3, for the interval [-1,1] . The construction procedure even

allows one to extend such conclusions where the reduced solutions are
2 3C and piecewise C , without loss, other than the aesthetics in

writing out the lower and upper solutions in explicit form.
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CHAPTER IV

APPROXIMATING SOLUTIONS

PertTirbation theory presents many practical means of "solving" 

problems of the sort we deal with; asymptotic sequences, matched and 

composite expansions, averaging techniques, to name a few. A question 
raised in applying these to a given problem is often that which alludes
to the validity of a returned form being a good approximation. We are

presented

(4.1) sy'" = f(t,y,y',y",e) , 0< t< 1

(4.2) y(0,e) = A , y'(0,s) = A' , y(l,e) = B or

(4.2') y(0,e) = A , y'(0,e) = A' , y'(l,s) = B' .

The determination of the existence and asymptotic behavior of solutions 

to (4.1), (4.2) (or (4.2')) when an approximate solution exists, is the 

goal. To lessen any deviation from what has gone before, we first con

sider approximations in the sense that the initial value problem

(4.3) su'" = f(t,u,u',u",e) + 0(t]) , 0 < t < 1

(4.4) u(0,e) = A + 0(t]) , u'(0,s) = A' + 0(t])
is satisfied, where p = p(s) > 0 , t] = o(1). u(t,e) is called an 
approximate solution of (4.1), "nearly" satisfying the boundary conditions
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at the left-hand endpoint. Indeed, as in Theorems 2.1-2.3 and 3.1-3.3,
3C solutions of reduced problems are examples of such approximate solu

tions, when viewed in light of the standard assumption that 

f(t,u,u',u",e) = 0(e) .
Theorem 4.1. Suppose solutions y(t,s) of (4.1) have the property: if

y'(t,e) is bounded on [0,1] , then y"(t,e) is bounded on [0,1] . 

Also,
(1) There exists an approximate solution u = u(t,s) C C [0,1] 

satisfying (4.3), (4.4) with t] > 0 , t) = o(l) .
(2) f is continuous in (t,y,y',y‘",e) and of class with 

respect to y , y' , and y" for a region R: 0 < t < 1 , |y-u(t)|

S d̂  , |y' - u'(t)| < dg , \j" - u"(t)| < d^(l + e"^ezp[me ^(t-l)]) ,

0 < 6 S ê  ( d^,e^ > 0 ).
( 3 ) There is a constant m > 0 such that > m in E .

(4) f_,(t,y,y',u''(t),e) = 0(l) and fy(t,y,u'(t),u"(t),e) = 
0(1) in R .

Then there exists an Bq > 0 , such that for each s , 0 < s < 

6q , there exists a solution y = y(t,s) of the exact problem (4.1), 

(4.2'). Also,
Î) y(t,s) - u(t) = o(t)) ,

ii) |y'(t,e) - u'(t)| < |B' - u'(l)|exp[(t-l)ce” ]̂ + 0(t]) , 

where c is a positive constant independent of e .
Proof: In view of our initial assumption, the proof consists of con

struction of appropriate lower and upper solutions for (4.1). Let 

a(t) = u(t,e) - X“ P̂exp[(t-l)7\.] - T)Yexp(-p,t) 

p(t) = u(t,e) + \“ P̂exp[( t-l)\] + -nYezp( ) ;
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2where X , m/2s < X < m/s , is a real root of -sX + mX - 2k = 0 ; n

is the negative root for m̂ i +k|i,-(£ + cr̂ + l) = 0 and y =
being a positive constant; k and £ being the bounds

described in assumption (4), |u(0) - A| 5 â t) , |u'(0) - A'] 5 ct̂ ti

and In''' - f(t,u,u',u",e)| S ct̂t) , P = |u'(l) - B'| . Clearly 

a 5 p and a' < p' ; also,

a(0) < A+cr̂ 'n-X“ P̂exp(-X)-T)Y S A S A-â r)+X ^Pexp(-X)+t]y - P(0) , 

a'(0) 5 A'+o-gn-Pexp(-X)+pr|y 5 A' < A'-a2T)+Pexp(-X)-|xnY 5 P'(0) , 

and

a'(l) = n'(l)-P+^nyexp(-pt) < B' S n'(l)+P-|jriYexp(-|j.) = B'(l) .

All that remains to be shown is that a is a lower solution of (4.1)

and p an upper. We let z be such that a(t) 5 z S p(t) , substitute

and expand to receive

ea'" - f(t,z,a',a",s )
= eu'" - sX^Texp[(t-l)X] + s[j.̂ T)Yexp(-[j,t)

- f ,,(t,z,a',02(a" - u") + u",e) y ^
X {-XPexp[(t-l)X] - y,%Ye2cp(-(xt}} - f^,(t,z,0^(a' - u') + u',u",s) 
X {-Pexp[(t-l)X] + pTYexp(-M.t)> - fy(t,0Q(z - u) + z,u',u",e)

X {0X“^Pexp[(t-l)X] + 0T]Yexp(-p,t)} - f(t,u,u',u",e) ,

O < 0 ^ < O ,  i = 0,1,2 , |0| < 1 . Continuing, using cançarison,

ea'" - f(t,z,a',a",e)

> (-eX^ + mX - k - £0X"^)Pexp[(t-l)X]
3 2+ (sM. + mp + kp - £0 )nYexp(-p.t ) - cry] = * .

Since X ^  = 0(e), Y - 1  and exp( -at ) > 1 we conclude

* > (-eX^+mX-2k)Pexp[(t-l)X] + (mp,̂ +k|j,-£-â -l) = 0 , i.e.,

a is a lower solution. In the situation p , we find
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- Gp'''

= fy,,(t,Z,p',',s)
X {\Pexp[(t-l)X] + M-%Yexp(-nt)} +

X {PezpC(t-l)X] - MnrexpC-tit)} + fy(t,***,u',u",s)

X {eX“̂ Pexp[(t-l)X] + 0TiYexp(-iJ,t)} + f(t,u,u',u'',G)
- eu'" - sX^Pexp[(t-l)X] + ep.^'nyezp()

> (-eX^ + mX - k - £X“^)PexpC(t-l)X]
3 2+ (efi. + mu + kp. - Z)nYe]cp(-|it) - cry] > 0 

Thus, B is an upper solution. Therefore, we use Theorem 1.1 to estab

lish the existence of a solution to (4.1), (4.2') such that a(t) < 
y(t,e) < B(t) and a'(t) < y'(t,e) < B'(t) .

A nonlinear example. We illustrate the power of the above theo

rem with a description of the velocity of a fluid at high Reynolds num
ber flowing in a two-dimensional channel with porous walls. Proudman 

[Pr] developes the differential equation
sv'" = w "  - v'^ - k , 0 < s < 1

v(0) = A , v'(0) = 0 , v(l) = B , v'(l) = 0 ;

where the walls are located at s = 0 and s = 1 . In the situation

that B > A > 0 and k = A^[ co8h"̂ ( B/A ) , we find that

u(s) = Acosh[(s)cosh"^(B/A)] 

is an approximate solution for the differential equation, which satis

fies the first three boundary conditions. For e sufficiently small, 

we construct functions a and B and use them to deduce that u(s) is 

an order e approximation to the boundary value problem which replaces

v(l) by v'(l) . We note here that f^,, = v , f̂ , = -2v' , and
f^ = v" , which for the regions described satisfy all hypotheses. Also
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we conclude that u'(s) is an order s approximation to v' away 

from the houndary layer.
The situation for the problem (4.1), (4.2), where the approxi

mation (4.3), (4.4) exists, is taken care of in a similar vein; i.e., 

adjusting a previous theorem for our purposes.

Theorem 4.2. Suppose solutions to initial value problems (4-1) extend 

[0,1] or become unbounded. Also assume :

(1) There exists an approximate solution u = u(t) satisfy

ing (4.3), (4.4) with t) > 0 , r\ = o(l) ;
(2) f is continuous in (t,y,y',y'',s) and of class 0^ with

respect to y , y' , and y" , with > 0 and f^ > 0 ; and for

a region R ; 0 < t < 1 , |y - u| < d̂  , |y' - u' | < d̂  ( 1 +

s~^exp[-ms~^(l-t)] ), and [y" - u" | < d̂  ( 1 + £"^exp[-me~^(l-t )] ),

0 < G < ( d_,G] > 0 );
(3) there exists constants m,k > 0 such that > m ,

fy(t,y,y',u",G) > k in R ;
(4) f^(t,y,u',u",s) = 0(1) in R .
Then there exists an > 0 , such that for each e , 0 < s 5

Gq , there exists a solution y = y(t,s) of the exact problem (4-1),

(4.2) with

|y(t,G) - u(t,G)| < |B - u(l)Iexp[(t-l)cG~^] + 0(t)) , 

c being a positif? constant independent of g

Proof: We proceed in a manner as seen in the proof of Theorem 3.1, where
—1 3 2k = 0( G ) is the smallest root of eX + m\ - kk - £ = 0 , the

3 2largest negative root of Gp + mp. - kjj. - £ - - 1 = 0 : with

Igu'" - f(t,u,u',u'',G)| 5 . Letting P = |u(l) - B| we define
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lower and upper solutions of (4.1):
a(t) = u(t,e) - Pexp[\(l-t)j - riYexp(-p.t) ,
B(t) = u(t,e) + Pezp[X( 1-t)] + -nyexpC-pt) , 

where y - m a z { l f -Og/ii} is a positive constant, |u(0) - A| S , 

|u'(0) - A".I 5 . a < p and the definition of y provides a(0) <

A < p(0) , a'(0) < A' 5 p'CO) , also a(l) 5 B < p(l) . Letting z he 

such that a(t) 5 z < p(t) , we show that a is a lower solution ( p 

being an upper solution will follow by symmetry). Substituting z , 

a' , a" , and ea'"" into (4.1) and expanding in our usual manner: 

ea"-' - f(t,z,a',a‘",e)
o 3= su''"’ + sX. Pexp[X(l-t)] + sfj. T)yexp(-(xt) - f^,,(t ,z,a', : ,e)

X {-X̂ Pexp[X( 1-t)] - |j,̂ TTyexp(-jj.t)}-fy,(t,z, ::,u",s)

X {XPexpCX(l-t)] + (XT]yexp(-p.t)}-f(t,:::,u',u‘",e)
X {9Pexp[X(l-t)] + 0r)ye2p(-p.t)} - f(t,u,u',u",e) ,

|G| <1  . Making use now of assumptions (l), (3) and (4)

ea'" - f(t,z,a',a",s)
3 3 2 2> sX PexpCk(l-t)] + ep -nyexp(-pt) + mX Pexp[X(l-t)] + mp. T]yexp(-p.t)

- kXPexpCX(l-t)] - kpnyexp(-pt) - fPexp[X( 1-t)] - £riyexp(-pt) - oj\

= (sX^ + mX^ - kX - Z)Pexp[X( 1-t)] + (ep^ + mp^ - kp - £)

X T)yexp(-pt) - CTjT]

y > 1 , and exp(-pt) having minimum value 1 , the definitions of X 

and p provide that ea'" - f(t,z,a',a",e) > 0 . Theorem 1.6 now 

establishes our conclusions.

The above theorems, as noted earlier, are in one sense restate

ments of Theorems 2.1 and 3.1. Note, also, that 2.3, 3.2 and 3.3 have 
similar analogues, proved by the same devices, mainly replacing M + N
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in the definition of p. by and choosing a large enough y to 
multiply the (x term so to effect the houndary inequalities.

If the houndary conditions desired are given in the forms 

y(0,s) = A(e) , y'(0,e) = A'(e) , y(l,s) = B(e) or 

y(0,e) = A(e) , y'(0,s) = A'(e) , y'(l,s) = B'(s) , 

where A, A' , B , B' are independent functions of e , continuous for 

a region 0 5 e 5 . We would have the reduced problem asked to

satisfy u(0) = A(0) and u'(0) = A'(0) . Continuity arguments estab

lish the T) in (4.4) and all results follow.

Another type of approximation which may be considered is 
u = u(t,e) which satisfies

(4.5) £u'" = f(t,u,u',u'',s) + 0(t])

+ 0{T]e~̂ expCrm(t-l)e”^]} , 0 < t < 1
(4.6) u(0,s) = A + 0(t]) , u'(0,s) = A' + 0(r)) ,

u(l,e) = B + 0(t]) or 

(4.6') u(0,s) = A + 0(ti) , u''(0,e) = A' + OOn) ,

u'(l,e) = B' + 0(n) ,

where r is a positive constant independent of e . Indeed, such is 

the type of approximation quite often sought using various asymptotic 

methods. We are of good fortune to almost attain the boundary condi

tions and have the equ; tion fair approximate away from the normal posi
tion of the boundary layers.

Theorem 4.3. Suppose solutions y(t,s) of (4.1) have the property: 

if y'(t,e) is bounded on [0,1] , then y"(t,s) is bounded on [0,1] 
Also assume :

(l) For each s>0 , small, there exists a function u = u(t,s)
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satisfying (4.5), (4.6'), with t] > 0 , t] = o(l) and r > 1 ;
(2) f is continuous in (t,y,y',y",s) and of class with

respect to y , y' , y" in a region R ;  0 < t < 1 , |y - u| < d^ , 
|y' - u" I s dg , and |y" - u" | < d^{l + s~̂ 'ne2p[m(t-l)s ^]} , 0 < 
e 5 ; d^,e^ > 0 ;

( 3) there exists m > 0 such that f̂ ,, > m in R ;
(4) f ,(t,y,y',u",s) = 0(1) and f (t,y,u',u",e) = 0(l) in

R .

Then there exists Sg > 0 , such that for s , 0 < e < Sg ,

there exists a solution y(t,s) of (4.1), (4.2') with

y(t,e) - u(t,s) = 0(rj) and 

y'(t,e) - u'(t,e) = 0(n) .
Proof: We establish the existence and estimates of y(t,e) by con

structing lower and upper solutions of (4.1) as follows,

a(t) = u(t,e) - ( sT|/m)rexp[m( t-l)( 2s )"̂ ] - Tyyexp(-(j,t )

p(t) = u(t,s) + (s-n/m)rexpEm(t-l)(2e)” ]̂ + T)yexp(-|it) ,

where f and y are positive constants, whose values will be specified
2during the proof j and u is the negative root of mix + k i x - f - a - l  = 0 

( I fy, I 2 k , I f^ I 5 £ , and a arising from the magnitude relation in

(4.5)). We have a 5 p and a' 5 P' ; and we must choose y so that 

a(0) S A < 9(0) , a'(0) < A' < B'(0) , and a'(l) < B' < B'(l) . 

a(0) = u(0,e) = ( GT]/m)rexp[-m( 2s )"̂ ] - -qy

S A + CT̂T] - ( GT|/m)rexp[-m( 2s )"̂ ] - -qy < A if y > ,

a'(0) = u'(0,s) - (•q/2)rexp[-m(2e )~̂ ] + iqixy

5 A' + Og - (-q/2 )rexp[-m( 2a )""̂] + -quy < A' if y > ,
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œ'(1) = u'(l,s) - (T)/2)r+T]|J.Yexp(-!i)
< B' + - Cn/2)r + T)p.Yexp(-u.) < B' if Y S oy/(-#ezp(-^)) .

Similarly, the inequalities for p are determined, and we then choose
Y = max{o^,-0 2 /11,-<Ty(|j,e2p(-iJ,))} .

We now show that a is a lower solution of (4.1). Expanding f
by cornering and substituting, we find
sa'" - f(t,z,a',a",e)

= su'" - (m%/8s)rexp[m(t-l)(2s)~^D
+ sM. '̂nYexp(-tJ.t) -  f y , , ( t , z , a ' , ' , s )

—1 2X {-(mn/4s)rexp[m(t-1 )(2s) ] - p. T)Yexp(-|it)} -f^,(t,z,",u",s)
X {-(ri/2)rexp[m(t-l)(2s)~^] + p.T)Yexp(-|j,t)} - f(t,• • • ,u',u",s)
X {e(s’n/m)rexp[m(t-l)(2s)~“] + ©nYexp(-(j,t)} - f(t,u,u',u",s) ,

where |8| S i  . Making use of our size restrictions for the partial 
derivatives of f and recalling o we find 
sc'" - f(t,z,a',a",s)

> -oq -  oT]s~^sxp[rm(t-l)s~^] -  (m ^/8)ns~V exp[m (t-l)(2s

+ s|î -nYexp(-!J.t) + (m^/4)ns"^rexpCm( t-l)(2s )~̂ ] + mM.̂ T]Yexp(-p.t )
- (k/2 }nrexp[m( t-1 )( 2s )"^] + k(inYe2£p(-p.t )

- (Z/m)sT|rexp[m( t-1 )( 2s )"^] - &iYe%p( -pt )

= [(m^/8)s~^ - (k/2) - (£/m)s]T]rexp[m(t-l)(2s)~^]

- or]s"^ezp[rm( t-1 )s + (s|î  + mp.̂  + kp, - Z)nYexp(-p,t) - oq .
If we have y - 1 also, and exp( -p.t) being monotone increasing, this 
reduces to having
sa'" - f(t,z,a',a",s)

> C(m^/8) - (ks/2) - (£s^/m)]qs~^exp[m(t-l)(2s)"^]
- oT)s~^expCrm( t-l)s~^]
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As r > 1 , explliii( t-1 )( 2e > exp[rm(t-l)e~^] , 0 S t 5 1 , hence,

if r is chosen such that T > 9om~^ we have sa''' - f(t,z,a",a'",e) > 
0 , therefore a is a lower solution. By symmetry, p is an upper 
solution of (4.1). Theorem 1.1 is now applied, and we conclude that for 
each small e , there is a solution y(t,e) of (4.1), (4.2") with

a(t) < y(t,e) S p(t) and a'(t) 5 y"(t,s) S P"(t) , 0 < t 5 1 .

The above problem, when > k > 0 , a solution also exists; 

the only adjustment of proof is to define to satisfy mu - k|i - Z - 

0 - 1  = 0 .

The problem (4.1), (4.2), viewed in the light of an approximate 

solution satisfying (4.5), (4.6) offers a bit of a surprise in that the 

construction of bounding functions is parallel to those we used to 

determine the existence of a solution for (4.1), (4.2").

Theo2?em 4.4. Suppose solutions to initial value problems for (4.1) 
extend to [0,1] or become imbounded. Also assume:

(1) For each e > 0 , small, there exists a function u = u(t,e)

satisfying (4.5), (4.6) with t) > 0 , t] = o(l) and r > 1 ;

(2) f is continuous in (t,y,y",y"",s) and of class with

respect to y , y" and y"" such that f > 0 and f , > 0 . And

for a region R : 0 5 t 5 1 , |u - y| < d̂  , |u" - y" | 2 d̂  ,

|u"" - y""| < d̂ {l + X exp[m(t-l)s"^]} , 0 5 s < > 0 );

( 3 ) there exists an m > 0 such that f^,, > m > 0 , in R ;

(4) there exists an k > 0 such that fy,(t,y,y",u"",s) > k in

R ;
(5) fy(t,y,u",u"",s) = 0(1) in R .
Then there exists an Sq > 0 , such that for all s , 0 < e S Sg
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there exists a solution y(t,s) of (4.1), (4.2) with
y(t,s) - u(t,g) = 0(t]) .

Proof; In order to make use of our basic existence theorems (here

Theorem 1.6), we construct lower and upper solutions to (4.1).

a(t) = u(t,e) - (G-n/m)rexp[m(t-l)(2g)"̂ ] - T|yexp( |it) ,

B(t) = u(t,e) + (G-n/m)Pexp[m(t-1 )(2g) + Tiyexp( pt) ,

where F and y are positive constants, to be declared later, and
2is the positive root of mp + k u - f - u - l  = 0, t the boimd in 

assumption (5) and ct arising from the order relation in (4.5). We 
have a < p ; and so our first task is to set y so that a(0) 5 A <

P(0) , a'(0) < A' < p'(0) and o(l) < B < p(l) .

p(0) = u(0,e) + ( G"n/m)rexp[-m( 2s )"̂ ] + riy
> A - + (Gri/m)rexp[-m(2s)~̂ ] + T]y > A if y > ,

p(l) = u(l,e) + (sT]/m)r + T|yexp(u)
> B - OgT) + ( GT]/m)r + T)yexp(M.) > B if y > a2/exp( n) , and 

p'(0) = u'(0,e) + ('n/2)rexpC-m(2s)~̂ ] + Ti|jy

> A' - â T) + (T]/2)Fexp[-m( 2s )"̂ ] + ripy > A" if y >

The same relations on y apply in the case of a , and so if we let 

y = max{ô ,cT2/exp(u),ô /p.} our boundary conditions are met for a and 

P . With z such that a(t) S z < p(t) , we show that p is an upper 

solution. Substituting z , P' , P" and sP'" into (4.1) and ex

panding we obtain: 

f(t,x,p',p",e) - GP'''

= fy,,(t,Z,p',',G)
X {(m/4)G"\rexp[m(t-1 )(2g)"̂ ] + pp^yexp(ut)} + fy,(t,z,**,u",s)

X {(p/2)Fexp[m(t-l)(2G)"^] + pwyexp(pt)} + fy(t,***,u',u",G)
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X {8(GT)/m)re][p[m(t-l)(2 + GrirexpC(xt)} + f(t,u,u',u",s)
- eu'" - (m%/8)e“^re2cpCm(t-l)(2e)“ ]̂ - eTi|i\exp([xt) , 

where 18| < 1  . Noting conditions (l), ( 3 ) , (4) and (5) we ascertain 
f(t,z,B',p'',e) - sB'"

> (m^/4 )e"\]rexp[m( t-1 )( 2e )""̂] + mtx̂ T)Yexp( txt )
+ ( k/2 )nrezpCm( t-1 )( 2s )~̂ ] + k|xnYe3q)( |xt )
- (£/m)eTire2pCm( t-l)(2e r^] - £-nYexp(n.t)
- (m^/8)e“\]re2p[m( t-1 )( 2s )"̂ ]-s|x̂ T)Ye2q)( jxt )-crn-cnQ6~̂ exp[rm( t-1 )s“̂ II

= [(m^/8) +(k/2)s - (£/m)£^]s~\)rexp[m(t-l)(2s)” ]̂
3 2 “1 “1+ (-Stx + mix + kix - ̂)riYe2p( ixt) - crq - or]e” ezp[rm(t-l)s ] .

As [X > 0 is fixed, and if also Y - i , we find that f(t,z,B',B'',s) -

eP'" > (m^/9)e“\ir exp[m(t-l)(2s)"̂ ] - o-s"\exp[rm(t-1 )s ]̂ > 0 , since

r > 1 and if r > (9o-/m̂ ) .

Symmetry establishes that a is a lower solution, and so Theorem

1.6 applies and we conclude that there exists a solution y(t,s) with

a(t) < y(t,s) 5 p(t) .

In the above proof, we note that the definition of ix actually 

would force our inequalities to be sharp. Whence, if f were independ

ent of y' , Theorem 1.7 could be used with note that k = 0 .
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