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Abstract

On 31 May 2013, the mobile, Rapid-scan, X-band, Polarimetric (RaXPol)

radar collected a high spatial and temporal resolution dataset documenting the

genesis, intensification, and dissipation of a tornado that caused EF-3 damage

(indicating wind speeds of at least 61 − 73ms−1) near El Reno, OK, although

Doppler velocities measured by RaXPol exceeded 135ms−1 near the surface. The

RaXPol mobile radar was deployed three times during the tornadic phase of this

storm between 4.5− 11 km from the center of the tornado, and collected 360◦ PPI

scans every 2 s with range gate spacing between 45− 15m.

The evolution of the Doppler-velocity field before and after tornadogene-

sis was analyzed to investigate the genesis process. Reconstructed vertical cross-

sections taken through the center of the tornado reveal fine-scale details about the

vortex structure and how it evolves throughout the tornado’s lifecycle. The tornado

then grew rapidly to an unprecedented width and underwent at least one transition

from a single-vortex structure to a multiple-vortex structure. Within the Doppler

velocity data, multiple subvortices were resolved during the large, multiple-vortex

phase of the El Reno tornado’s life cycle, over a time period of 132 s. Details about

the origins, paths, and dissipations of at least two-dozen resolvable subvortices,

some of which had translational speeds in excess of 75ms−1, were documented.

The subvortices mostly developed inside the radius of maximum winds and those

that persisted for longer periods of time (>15 s) tended to traverse towards the

center of the tornadic vortex over their life cycles. Details regarding the evolution

and kinematics of the subvortices were compared to composite background fields
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of radial velocity and spectrum width to draw conclusions regarding the areas of

common subvortex genesis and dissipation. Azimuthal velocities of the subvortices

will also be compared to the background radial velocity field to determine if they

were retrograding with respect to the mean flow, as tornado vortex theory would

suggest. Finally, a rapid transition from a large, broad vortex to a small, tight

vortex observed in the Doppler velocity and cross-correlation coefficient fields will

be discussed along with the simultaneous existence of an anticyclonic tornado and

its connection to the rear-flank gust front.
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Chapter 1

Introduction

Tornadoes are considered the most violent and destructive phenomena that a

localized severe convective storm can produce and perhaps also the least under-

stood (Bluestein, 2013); consequently, it is no surprise that they have been the

focus of a vast number of diverse studies throughout the last half-century. Lab-

oratory, numerical, and observational studies have been performed extensively to

aid in our understanding of the genesis, structure, evolution, and dynamics of the

tornadic vortex. While many breakthroughs have been made regarding observa-

tional characteristics of tornadoes and theoretical tornado vortices, many aspects

of tornadoes do not fit into a single conceptual model and real-world studies can

often provide as many new questions as answers. Therefore, efforts continue to un-

derstand tornadoes further to explain unresolved questions about these dangerous

and violent phenomena.

As time goes on, our ability to observe and replicate tornadic storms has im-

proved, but before complex numerical simulations, advanced remote sensing obser-

vations, and insightful in situ measurements, many studies of tornadoes were based

on finding analytic solutions to highly idealized conditions using serendipitous ob-

servations (Bluestein, 2013). After World War II, pulsed military radars were

adapted for meteorological use for the detection of precipitation, and began to be

heavily utilized for meteorological research studies such as the discovery of hook
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echoes within tornadic storms (Stout and Huff, 1953). Despite weak sensitivity

and poor spatial and temporal resolution by today’s standards, these early radars

proved useful enough for the detection of severe storms to prompt the development

of the WSR-57 national radar network. Other studies involved visual observations

of tornadoes in the form of photographs and video that were later studied by me-

teorological researchers through analysis of tornadic storm structure (Fujita, 1960)

and photogrammetric studies of video of debris motion in tornadoes to provide esti-

mates of the near-ground wind speeds and flow structure (Hoecker Jr, 1960). Many

of these types of observations and investigations lead Browning (1962) to define a

long-lived convective storm having a quasi-steady rotating updraft that commonly

produces tornadoes and significant hail as a “supercell” (Bluestein, 2013).

Early laboratory and numerical simulations in the 1970s also contributed sig-

nificantly to the theoretical understanding of tornadic storms and vortices due

primarily to the development of the Ward labratory model (Ward, 1972). These

simulations produced the first quantitative measurements of the characteristics

of an idealized, tornadic vortex independent of radar and computational studies.

Three-dimensional numerical simulations of convective storms were also beginning

to be carried out in the 1980’s with the ability to generate substorm-scale vor-

tices, but the computational power required to begin to resolve tornadoes was not

available at the time.

The capability to collect Doppler velocity measurements from radar was also

achieved in the early-1970s which became crucial in understanding tornado devel-

opment and dissipation along with supercell flow structure. Many studies were

performed combining Doppler radar measurements and visual observations. One

such study of the Union City tornado of 1973 documented the entire life cycle of the

tornado (Moller et al., 1974; Golden and Purcell, 1978a,b), identified the Tornadic

Vortex Signature (TVS) (Burgess et al., 1975; Brown et al., 1978), and helped
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to launch storm intercept programs from the University of Oklahoma (Bluestein,

1980, 1999) and the National Severe Storms Laboratory (Golden and Morgan, 1972;

Burgess et al., 1979; Lee et al., 1981; Davies-Jones, 1982). These storm intercept

programs initially aimed at collecting high-quality, near-storm, video of tornadic

debris clouds that could be used in photogrammetric analysis. With time, the goals

of these projects expanded to include documentation of overall supercell structure,

lightning occurrence in storms, hailstone collection, and improving mesoscale fore-

casting techniques among others. Rotunno (1984) suggested the development of

these programs coinciding with the implementation of Doppler radar have been

largely responsible for the advancements in the understanding of tornadogenesis

through the 1980s.

Beginning in the early 1980’s, many field crews began attempts to release de-

ployable instruments to capture in situ measurements within severe convective

storms in addition to visual documentation. Instrument packages measuring tem-

perature and pressure were designed to be placed in the path of the tornado

such as TOTO (Totable Tornado Observatory; Bedard and Ramzy 1983; Bluestein

1983a,b) and the ‘turtle’ pods (Brock et al., 1987) were deployed with mixed re-

sults. Other efforts to take in situ measurements were performed by Bluestein et al.

(1987, 1988, 1989, 1990a,b) with portable radiosondes that were released both into

and around tornadic supercells, starting in 1984. In 1981, pulsed Doppler lidars

and radars began to be portable allowing higher resolution data of severe storms

to be collected by reducing the distance from the instrumentation to the target.

The first of these instruments were installed on aircraft, such as the NOAA P-3

(Marks Jr and Houze Jr, 1984), which was equipt with a 3-cm wavelength, pulsed

Doppler radar system, used to collect 3D velocity estimates using a pseudo-duel

Doppler technique (Jorgensen et al., 1983). Collecting data with an aircraft made

it easier to place instrumentation closer to the storm, but there were limitations
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with the radar’s ability to resolve the low-level wind field of supercells and torna-

does caused by ground clutter containimation and extended update times. This

lead to the development of portable ground-based radars such as the portable, 3-

cm wavelength, FM-CW, Los Alamos National Laboratory (LANL) Doppler radar

(Bluestein and Unruh, 1989); however, spatial resolution was still an issue with

a 5◦ beamwidth antenna. Another portable radar designed by the University of

Massachusetts with a 3-mm wavelength was designed to improve resolution with-

out sacrificing portability. It was built with ten times the spatial resolution of its

predecessor, but major problems existed with attenuation (Bluestein et al., 1995).

During the springs of 1994 and 1995 a highly-organized, multiplatform, field

experiment named VORTEX (Verification of the Origins of Rotation in Tornadoes

Experiment) was conducted with the goal of collecting as many datasets across

different platforms on tornadoes and tornadic supercells as possible (Rasmussen

et al., 1994). Many of the instruments mentioned previously were deployed as well

as a few new advancements in instrumentation. The first of which were mobile

mesonets mounted on an armada of sixteen vehicles called “probes”. These mobile

mesonets could record wind speed, wind direction, pressure, temperature, and

humidity, and could also relay their locations through a global positioning system

allowing the probes to be deployed in strategic locations and formations for in

situ measurements of severe storms (Straka et al., 1996). The NOAA P-3 was

paired with a new airborne Doppler radar called ELDORA (Wakimoto et al.,

1996) which offered improved sensitivity, range, unambiguous velocity, and antenna

rotation rate. Another addition to the VORTEX multiplatform armada was the

first mobile, 3-cm wavelength, truck-mounted, pulsed Doppler radar known as the

“Doppler on Wheels” or “DOW” (Wurman et al., 1997). Being mounted on a flat

bed truck allowed the antenna dish to be much larger than the original LANL

portable radar, resulting in much better resolution while also remaining portable.
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The success of the DOW in the second year of VORTEX helped launch a new wave

of mobile, truck-mounted, Doppler radar instrumentation that would change the

way researchers collected radar data on severe local storms for decades to come.

Also in the mid-1990s, large eddy simulations (LES) were first used in attempts

to understand the flow within tornado-like vortices through numerical simulations

with grid spacings as small as 1 − 3m (Lewellen et al., 1997; Nolan and Farrell,

1999; Lewellen et al., 2000). LES allowed simulated tornado-like vortices to interact

with boundary layer processes and turbulent motions but does not involve the

influences of the parent storm (e.g., updrafts, downdrafts, baroclinic zones). Thus,

the results were highly idealized but aided significantly in the understanding of

theoretical tornado structure (Lewellen, 1993; Davies-Jones et al., 2001; Markowski

and Richardson, 2011; Bluestein, 2013; Rotunno, 2013; Davies-Jones, 2015).

Evidence of processes and observations made through numerical simulations

needed to be observed in actual tornadoes to support or invalidate them. Thanks

to the early success of the DOW during VORTEX, mobile Doppler radars prolifer-

ated and became a core instrument for observing severe storms and tornadoes.

After VORTEX, smaller field campaigns with the goal of conducting observa-

tional studies of tornadoes were carried out on a nearly annual basis. ROTATE

(Radar Observations of Tornadoes and Thunderstorms Experiment) was perhaps

the largest of such field campaigns, operating in 12 of the 13 post-VORTEX years,

and collecting single- and duel-Doppler data on approximately 140 tornadoes and

numerous non-tornadic supercells (Wurman, 1999; Wurman et al., 2012). Other

smaller and unnamed field programs were also carried out by the University of

Oklahoma, NSSL, and other institutions (Bluestein and Pazmany, 2000; Bluestein,

2005; Bluestein et al., 2007a). These campaigns gave cause for the development

of a wide range of different observational meteorological instrumentation, in par-

ticular, a multitude of mobile Doppler radars that were developed and deployed
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throughout this period (Bluestein and Pazmany, 2000; Wurman, 2001; Wurman

et al., 2001; Pazmany et al., 2003; Anagnostou et al., 2004; Biggerstaff et al., 2005;

Knorr, 2005; Palmer et al., 2009; Weiss et al., 2011).

In 2009, the Second Verification of the Origins of Rotation in Tornadoes Exper-

iment (VORTEX2) field campaign began. VORTEX2 was the largest field study

ever conducted to further our understanding of tornadoes and tornadic storms and

included collaborating teams from fifteen different universities and laboratories.

The instrumentation throughout the campaign included fourteen mobile mesonets,

five mobile ballooning sounding systems, thirty-eight deployable in situ obser-

vational weather systems including Stick-Nets and Tornado Pods, an unmanned

aerial system, video and photogrammetric teams, and eleven mobile Doppler radars

with a broad range of wavelengths, polarization, and volume update times. Over

two years, in the months of May and June, the VORTEX2 armada collected data on

over forty supercells, fourteen of which produced tornadoes during data collection.

Some of the datasets collected were unprecedented in their diversity, combining

multiple-Doppler, mobile mesonet, and upper air data to reveal the kinematic and

thermodynamic structures of both tornadic and non-tornadic supercells, and in a

few cases the fine-scale resolution of the structure throughout a tornado’s lifetime

(Wurman et al., 2012). After VORTEX2, advancements continued in mobile radar

technologies to aid in the collection of tornado data, including the development of

the mobile, rapid-scan, X-band, polarimetric (RaXPol) Doppler radar (Pazmany

et al., 2013), which was designed to sample the lowest portion of the wind field of

tornadoes and tornadic storms.

On 31 May 2013, an exceptionally large, complex, and violent tornado occurred

near El Reno, OK (hereafter referred to as the El Reno tornado). The damage

survey by the National Weather Service Forecast Office in Norman, Oklahoma, de-

termined the El Reno tornado took a U-shaped, 26.1 km track, with a damage path
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Figure 1.1: Locations of the RaXPol deployments (D1-D7), tornado tracks (T1-T9;

tracks color coded by the NWS EF-scale ratings), and the track of RaXPol (blue)

with (a) broad and (b) zoomed-in views from 31 May 2013. The El Reno

tornado, T2, is the primary focus of this study, but T1 and T3, are also discussed.

Figure courtesy of Jeffrey Snyder, and adapted from Bluestein et al. (2015).

that measured at least 4.2 km at its broadest point (http://www.weather.gov/oun/events-

20130531). This is the widest tornado damage path ever documented. Fine spa-

tiotemporal resolution data was collected on the tornado by the mobile RaXPol

Doppler radar (Pazmany et al., 2013; Bluestein et al., 2015; Snyder and Bluestein,

2014), on the second, third, and fourth deployments (hereafter referred to as D2,

D3, and D4, respectively) out of seven total deployments throughout the day (Fig-

ure 1.1 and Table 1.1). During D2, data were collected continuously during the
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Deployment Time Location

D1 2210-2230 UTC 4.8 km N of El Reno, OK

D2* 2247-2317 UTC, 3.2 km SSW of El Reno, OK

motion after 2316 UTC

D3* 2324-2329 UTC, 8.1 km. W of Yukon, OK

motion after 2326 UTC

D4* 2332-2342 UTC, 1.6 km SW of Yukon, OK

motion after 2339 UTC

D5 2349-2352 UTC Western Oklahoma City, OK

D6 0006-0013 UTC Central Oklahoma City, OK

D7 0032-0040 UTC Southeast Oklahoma City, OK

Table 1.1: Complete list of RaXPol deployments with the associated times of

data collection and approximate radar locations from 31 May 2013. Deployments

considered in this study are denoted by (*).

genesis and intensification periods of the tornado. Data were collected during the

mature phase of the tornado’s life cycle in D3, during which many suction vor-

tices were clearly resolved within the radar data. Lastly, data collection during

D4 revealed a failed dissipation attempt along with a rare and abnormally strong

anticyclonic tornado. The goal of this study is to use single-Doppler analysis to

document the evolution of the tornado using subjectively dealiased velocities and

polarimetric variables, as well as to identify specific processes that may have lead

to such intensification or that may have influenced the vortex behavior.
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Chapter 2

Review of Tornado Vortex Structure and

Dynamics

Bluestein (2013) identified the two biggest scientific questions regarding torna-

does yet to be fully explained: The first being an explanation of their 3-dimensional

flow structure and the second being how/why they form. These questions have been

heavily investigated over the last 65 years, and major advances through laboratory,

numerical, and observational studies have been made. However, major challenges

remain with verifying tornado vortex theory hypothesized through laboratory and

numerical simulations through remote sensing and in situ observations near the

surface.

There have been four major regions defined in a tornadic vortex flow: The outer

flow, the core, the surface boundary layer, and the corner flow (Fig. 2.1). The

corner flow region and near-surface boundary layer region of tornadoes are perhaps

the two most important regions in tornado structure to understand due to the

direct contact with human lives and property, as well as the complex interactions

with the viscous surface of the Earth. Recent advances with mobile Doppler radars

have been instrumental in our understanding of the core and outer flow regions

(Bluestein et al., 1993, 1997, 2004, 2007a,b; Wurman et al., 1996, 2007b,c, 2012;

Wurman and Gill, 2000; Alexander and Wurman, 2005; Wurman and Kosiba, 2013;
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Figure 2.1: A conceptual model showing the four major regions of tornadic flow:

the outer flow, the core region, the corner region, and the boundary layer.

Adapted from Rotunno (2013).

Kosiba and Wurman, 2010, 2013; Kosiba et al., 2008); however, it is a major

challenge to obtain Doppler radar measurements close to the ground. Mobile

radars are often too far away from the tornado, and the height of the beam is

often too far above the surface to observe the near surface flow. Complications with

beam spreading and ground clutter contamination also exist and can distort the

collected data. As a result, much of our current knowledge about the near-surface

tornado vortex structure depends heavily on numerical simulations and laboratory

models. Thus, high spatial and temporal resolution radar observations of the

near-surface boundary layer and corner flow regions of tornadoes are still needed

to verify current theories about the low-level structure and flow characteristics of

tornadoes.
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2.1 Vortex Labratory Models and Simulations

Vortex labratory models have been useful tools in examining the dynamics of

the structure of tornadoes and how they might form by simplifying the environ-

mental aspects of a supercell thunderstorm in idealized and controlled conditions.

One of the earliest and possibly the most influential of these laboratory models

was conceived by Ward (1972), in which vorticity is created at the surface by az-

imuthally oriented inflow which is then intensified through stretching by an exhaust

fan the top of the vortex chamber simulating an updraft. Many further simula-

tions based on the Ward labratory model (Church et al., 1977, 1979; Davies-Jones,

1973; Rotunno, 1977, 1979, 1984) show that the flow and structure of the tornadic

vortex is mainly dependent on the swirl ratio (a measure of the azimuthal flow

to the radial flow of a vortex), S, and the Reynolds number, Re (which charac-

terizes the damping of turbulence by viscous forces.) Experiments with the Ward

labratory model show that the structure of the vortex changes as the swirl ratio

is increased, from a one-cell vortex, to a two-cell vortex above a one-cell vortex

separated by a vortex breakdown, to a two-cell vortex where the axial downdraft

characteristic of the two-cell vortex reaches the ground, to a multiple vortex struc-

ture capable of producing many sub-tornado scale circulations (Fig. 2.2). Steven

and David Lewellen (Lewellen et al., 1997, 2000; Lewellen and Lewellen, 2007) have

also used LES, similar to the Ward labratory model, to show that while a tornadic

vortex structure is highly dependent on S and Re, other factors including surface

roughness and inflow velocity profiles can influence the vortex as well.

The Ward labratory model is a simulation that isolates the tornadic-vortex

from a parent circulation and has open boundaries where the flow enters from

outside the system, flows upward and then exits out of the system. Fiedler (1994,

1995, 2009) proposed an alternative: a closed domain that extends to the top of
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Figure 2.2: Ward (1972) showed that for increasing swirl ratio, S, the form of a

vortex changes from (a) a single-cell vortex, to (b) a single-cell vortex below a

two-cell vortex, then to (c) a two-cell vortex at the surface, and finally to (d)

multiple vortices. Figure adapted from Rotunno (2013).

the parent storm in which an updraft induced by buoyancy, rather than an ex-

haust fan, embedded within ambient rotational flow causes air parcels to be driven

radially inward below, upward, radially outward aloft, and is then recycled. The

solutions to this flow depend on a type of swirl ratio, Ω = ωh/W , and Reynolds

number, ReF = Wh/ν (where W is the vertical velocity scale, ω is the angular

velocity, h is the depth of the fluid in the vortex model [which can be interpreted as

the top of the troposphere in the real atmosphere], and ν is the kinematic viscos-

ity). It was also found that turbulent flow with multiple vortices exists for larger

values of swirl ratio. While the simulation results provide valuable information

about vortex structure, it is important to remember they are idealized tornadic

vortices compared to actual tornadoes observed in the atmosphere. In the Fiedler

simulations the Reynolds number used was ReF = 40, 000, whereas a tornadic flow

can have a Reynolds number of ReF = 2.5 ∗ 1010 in the real atmosphere (Fiedler,

2009). Therefore, turbulent diffusion may be represented differently for simulated

vortices than those found in nature (Rotunno, 2013).

12



2.2 Idealized Inviscid Vortex Dynamics

Idealized tornadic flow can be thought of as an intense vortex, in cyclostrophic

balance, that is enhanced by stretching of pre-existing vorticity by a buoyant up-

draft. The equations of motion and the continuity equation considered to describe

flow are the axisymmetric, incompressible, constant-density, Navier-Stokes equa-

tions in a non-rotating atmosphere, in cylindrical coordinates, and are as follows:
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where u, v, and w are the radial, azimuthal, and vertical components of velocity.

(The azimuthal component can also be expressed in terms of angular momentum:

Γ = (rv); r and z are the radial and vertical coordinates; α0 is the specific density

at the surface; ν is the kinematic coefficient of viscosity for turbulent eddies; and

B = gT
′
/T̄ is the buoyancy term.) The −v2

r
term in Eq. (2.1) is the centripetal

acceleration (if moved to the RHS so that the flow is in a rotating reference frame

it would be the centrifugal acceleration), the −α0
∂p

′

∂r
term is the acceleration due

to the radial pressure gradient force (PGF), and the last term of Eq. (2.1) is the

turbulent friction term with the most significant contribution coming from the

vertical term ν ∂
2u
∂z2

. Finally, since Coriolis force is much less than the centrifugal

force within a tornado, it is neglected (Bluestein, 2013).

Fiedler (1994), using similar equations as Eqs. (2.1)-(2.4), performed numeri-

cally modeled simulations of a tornadic vortex with inviscid free-slip conditions for

a sequence of simulations with increasing swirl ratio, Ω. The results of these simu-

lations are shown in Figure 2.3a. The simplest model of a tornado in this solution
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was found to be a Rankine combined vortex characterized by cyclostrophic balance

(−α0
∂p

′

∂r
+ v2

r
= 0), with a core of solid body rotation surrounded by potential flow.

The solid body rotation inside the core radius, rc, which is also co-located with

the radius of maximum wind (RMW), is characterized by angular momentum and

velocity that increase with radius away from the vortex axis (where v = C ∗ r and

Γ = C ∗ r2 for C = constant), which is also known as a ‘solid body vortex’. The

potential flow in the outer region is characterized by constant angular momentum

(where v = C/r and Γ = C) making it a ‘v-r vortex’, where the flow field can be

characterized by, vr→∞ = Γr→∞/r.

We can also estimate the pressure drop in the core of a tornado by integrating

the equation for cyclostrophic balance. The resulting total pressure drop from the

ambient environment is expressed as,

∆pr=∞→0 = v2max/α0. (2.5)

For vmax ∼ 100ms−1, and α0 ∼ 1m3kg−1, it follows that ∆p ∼ 100hPa. Measure-

ments by Tim Samaras (Lee et al., 2004) and the TWISTEX team have measured

pressure drops of up to 100 hPa making Eq. (2.5) a good estimation between the

pressure perturbation and the maximum azimuthal wind speed. However, if an

easier proxy can be measured instead of the pressure drop, one can estimate the

maximum wind speed of a tornado more conveniently. By defining, ∆p = p
′
, and

integrating the hydrostatic approximation to the vertical equation of motion with

height (0 = −α0
∂p

′

∂z
+ B) we can make the estimate, α0p

′
(r = 0, z = 0) ≈ B dz ≈

CAPE, so that

vmax =
√
CAPE. (2.6)

This equation is known as the thermodynamic speed limit (Fiedler and Rotunno,

1986). However, Eq. (2.6) doesn’t take into account many influential processes

such as the effects of surface friction and turbulent mixing. As a result, maximum

velocities can be underestimated by a factor of two (Fiedler and Rotunno, 1986).
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Figure 2.3: Results from Fiedler (1994) of (a) free-slip model conditions and (b)

no-slip model conditions of a tornadic vortex within the Fiedler simulations.

Numerical solutions displaying radial (u), azimuthal (v), vertical (w), and

perturbation pressure (φ) for increasing swirl ratio (Ω) and ReF = 104 are shown.

The contours are given in increments of 0.1 starting at ±0.05; red contours

indicate positive values, and blue contours indicate negative values. The

minimum and maximum values are displayed on the upper left and right,

respectively, of each contour plot. The display window is

[(r, z) | 0 ≤ r ≤ 0.5, 0 ≤ z ≤ 1]. Figure adapted from Rotunno (2013).
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2.3 The Role of Surface Friction

Fiedler (1994) also performed modeled simulations of a tornadic vortex using

no-slip conditions, and the results of the velocity and pressure fields were much

different than under free-slip conditions and are shown in Figure 2.3b. Compar-

isons between 2.3a and 2.3b suggest that surface friction plays a significant role in

low-level tornadic vortex structure and intensity. For instance, during cases with

high swirl ratios, an overshoot in the inflow jet was observed (Figure 2.3b), which

was not apparent in the free-slip simulations (Figure 2.3a). Another simulation

performed by Lewellen et al. (2000) produced a similar vortex to the no-slip/high

swirl case from Fiedler (1994) and showed that there is an inertial overshoot in

angular momentum due to the low-level convergence in the corner and friction

layers (Figure 2.4).

In considering friction in the real atmosphere, a good estimation of Reynolds

number for a tornado is Re ∼ UL/νm ∼ 108, where the characteristic velocity

scale, U ∼ 75ms−1, the characteristic length scale, L ∼ 100m, and the kinematic

coefficient of molecular viscosity, νm ∼ 2 ∗ 10−5m2 s−1, shows that the flow is

indicative of turbulent motion in the vortex. Therefore turbulent frictional motions

must be accounted for when considering tornadoes, especially in the boundary

layer flow. From the idealized vortex discussed previously, we can assume that the

radial PGF is relatively constant throughout the boundary layer, and the flow is

initially in cyclostrophic balance. In the friction layer, surface drag acts to slow

the azimuthal wind and thus reduces the centrifugal force. As a result, the flow

is no longer in cyclostrophic balance, parcels are depleted of angular momentum,

and the flow turns radially inward as the PGF term dominates and drives the flow

in the boundary layer. In the friction layer, the radial equation of motion from

Eq. (2.1) can be approximated by

0 = −α0
∂p

′

∂r
+ ν

∂2u

∂z2
= −V

2

r
+ ν

∂2u

∂z2
, (2.7)
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Figure 2.4: (a) Idealized vertical cross-sections showing the (1) outer flow region,

(2a) inertial layer, (2b) friction layer, (3) corner region, and (4) core region with

the orange line representing lines of constant angular momentum. (b) Large

Eddy Simulation (LES) from Lewellen et al. (2000). Solid black lines depict lines

of constant angular momentum normalized by the angular momentum of the

outer flow in increments of 0.1. Adapted from Bluestein (2013)

where V is the azimuthal wind speed if the vortex were still in cyclostrophic bal-

ance. Using Eq. (2.7) we can estimate the kinematic coefficient of turbulent

viscosity using order of magnitude approximations to be roughly

ν ∼ V 2

r

/
∂2u

∂z2
∼
[

(75ms−1)2

100
m

]/[
10ms−1

(10m)2

]
∼ 103m2s−1. (2.8)

From the calculated estimate in Eq. (2.8) combined with Eq. (2.7), we can see

that the PGF force drives radial inflow at the surface because of the effects of

friction. This inflow brings in air parcels with higher angular momentum closer

to the center of the vortex. Due to the conservation of angular momentum, as
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the radius of the air parcels decreases from the center of the vortex, the azimuthal

velocity increases as well.

Meanwhile, just above the friction layer in the inertial layer, it follows from Eq.

(2.1) that

u
∂u

∂r
+ w

∂u

∂z
= −α0

∂p
′

∂r
+
v2

r
≈ v2 − V 2

r
, (2.9)

which shows that inertial oscillations are significant in the layer. Direct influence

from friction is negligible; however, friction from the surface layer is communicated

into this layer by the deviation of azimuthal velocity, v, from its cyclostrophic bal-

ance value of V . This states that the flow is sub-cyclostrophic and parcels acceler-

ate radially inward from the cyclostrophic flow. Parcels become more cyclostrophic

with height as the distance from the surface layer increases until parcels are once

again in cyclostrophic balance at the top of the inertial layer, and the flow is no

longer radially inward. Analytic solutions of the friction and inertial layers were

performed by Burggraf et al. (1971), with the height of the friction layer estimated

to be ∼ (ν/Γ)1/2r, which suggests the friction layer depth increases with radius

if angular momentum is constant. At the core radius, rc ∼ 100m, results show

the depth of the friction layer to be around 30 − 40m above the surface. Using

vortex labratory models and simulation studies, we can also estimate the thickness

of the entire boundary layer (i.e. the friction layer plus the inertial layer) to be

approximately equal to the core radius (∼ 100m).

In the corner region located inside the core radius, the radial inflow from the

boundary layer enters the corner region where radial velocity, u, goes to 0 at the

center of the vortex. For continuity, the convergence of air flowing into all sides of

the corner region must turn upward, which then produces a strong vertical jet out

of the corner region into the core region. This type of flow is called an ‘end-wall

vortex’ (Wilson and Rotunno, 1986), owing to the axis of rotation acting like a
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wall to the flow in an r-z plane. The radial equation of motion, modified from Eq.

(2.1), used to describe this flow in the corner flow region is given by,

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −α0

∂p
′

∂r
. (2.10)

Based on numerical experiments, Wilson and Rotunno (1986) showed that the tur-

bulent friction term is not significant in this equation; thus, supporting Burggraf’s

findings that the depth of the friction layer goes to zero inside the core radius

which can be explained by the upward turning wind having less contact with the

Earth’s surface.

In the r-z plane, the act of this inward to upward flow in the low levels of

the vortex is known as a secondary circulation. The behavior of this secondary

circulation is dependent on the radial profile of the azimuthal wind, which in a

tornado, is represented as solid body flow with constant vertical vorticity within

the core, followed by potential flow outside of the core where the vertical vorticity

is zero. In analytic solutions for the secondary circulation for a solid body vortex,

based off of Eqs. (2.1) - (2.2) where v = ωr (where ω is the angular velocity),

Bödewadt (1940) found

u
∂u

∂r
+ w

∂u

∂z
= −α0

∂p
′

∂r
+ ωv + ν

∂2u

∂z2
, (2.11)

u
∂v

∂r
+ w

∂v

∂z
= −ωu+ ν

∂2v

∂z2
, (2.12)

(Bluestein, 2013). If the advection terms are neglected, (2.11) and (2.12) resem-

ble the Ekman model solutions for synoptic scale flow where the Coriolis term

is replaced by angular velocity, ω. We know there is radial convergence at low

levels and therefore divergence above, with a vertical jet of air in between due to

continuity Eq. (2.4). A more approximate estimate of the height of the friction

layer at the radius of maximum wind is approximately 30 − 40m, and this acts

very similarly as the depth of the Ekman layer. Therefore, just as the wind speed

overshoots the geostrophic value at the top of the Ekman layer, the azimuthal
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wind speed overshoots the cyclostrophic value at the top of the friction layer by

as much as 20% of the cyclostrophic value. The reason for this overshoot is that

as air parcels accelerate inward their azimuthal velocity increases due to the con-

servation of angular momentum; however, friction at the surface acts to slow the

azimuthal wind. When parcels depleted of angular momentum are advected up-

ward out of the frictional layer and direct effects of friction are no longer felt, the

azimuthal flow attempts to return to cyclostrophic balance. This process is similar

to the intensification of the low-level jet at the top of the boundary layer caused

by the termination of vertical convective mixing at dusk. The air parcels then get

higher and encounter divergence, caused by mass conservation or the domination

of the centrifugal force term, and thus the azimuthal wind slows to conserve an-

gular momentum. Consequently, we would expect to find the highest wind speeds

in tornadoes just above the friction layer. Examples of the increase in azimuthal

flow can be seen in Figure 2.3b as well as in large eddy simulations conducted by

Lewellen et al. (2000) illustrated in Figure 2.5.

2.4 Tornado Vortex Structure

A moderate swirl ratio case, Ω = 0.025, from Figure 2.3b adapted from Fiedler

(1994), shows that radial inflow in the boundary layer turns upwards at the surface

in the corner flow region and continues into the core (Fig. 2.3b). Much like the

Bernoulli effect of a constricting pipe, inflow is squeezed into a narrow area thus

creating a powerful upward jet of air at the center of the end-wall vortex with

extremely low perturbation pressure. The perturbation pressure in the jet creates

a radial pressure gradient that is balanced by the centrifugal force of the vortex.

Above the jet, the vertical pressure gradient reverses and drives a central downdraft

in the center of the vortex.
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Figure 2.5: A large eddy simulation from Lewellen et al. (2000) of a tornadic

vortex with length scales normalized by a core size estimate rc(≈ 200m) and an

upper-vortex maximum-velocity estimate Vc(≈ 50ms−1). Figure adapted from

Rotunno (2013).

Due to the centrifugal stability of the core’s solid body rotation, the flow can

support centrifugal wave motions produced by axisymmetric disturbances. If the

fluid motion in the upward jet of air travels faster than the centrifugal waves

in the vortex, the flow is called supercritical, while the surrounding flow is sub-

critical. The transition from the supercritical flow from the upward jet to the

subcritical flow of the fluid ahead of it is called a ‘vortex breakdown’ (Benjamin,
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1962; Leibovich, 1978; Trapp, 2000), which resembles a hydraulic jump (Fig. 2.5).

Air parcels in the vertical jet rapidly encounter much weaker flow and as a re-

sult, there is an abrupt change to a much wider, weaker, turbulent vertical flow.

Fiedler (1994) found that this phenomenon occurs only with the no-slip condition

in simulations (Fig. 2.3b), showing that friction is a significant contributor for the

end-wall vortex structure to exist.

Underneath the vortex breakdown exists a one-cell vortex (Fig. 2.2a), which

consists of a narrow rotating updraft at the center of the axis of rotation. Once vor-

tex breakdown occurs, there is a central downdraft at the axis of rotation, causing

the upward flow to expand and become separated from the axis of rotation (Fig.

2.2b); this flow is defined as a two-cell vortex. Often in the case of tornadoes, this

central downdraft makes contact with the surface, further changing the tornadoes

structure (Fig. 2.2c).

2.5 Influence of Swirl Ratio

As mentioned before, the greatest influence on the structure of the tornadic

vortex is the Swirl Ratio, S, given by

S =
RΓ

2M
=
R(v02πR)

2(wπR2)
=
v0
w
, (2.13)

where R is the radius of the updraft, Γ is circulation at the edge of the updraft

(v02πR), and M is the volume flow rate of the updraft (wπR2). The swirl ratio

can be thought of as the amount of azimuthal flow compared to the radial flow

into the bottom of the vortex, or equivalently, the relative amount of vertical

vorticity to horizontal convergence. For a steady-state, inviscid, constant density,

incompressible fluid, where w=0 at the surface, Eq. (2.1) becomes

u
∂u

∂r
− v2

r
= −α0

∂p
′

∂r
. (2.14)
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The advection term (u∂u
∂r

) contains the effect of the radial inflow, and the cen-

tripetal term (v
2

r
) includes the effect of the azimuthal flow. When the swirl ratio is

small, the advection term dominates. When the swirl ratio is large, the centripetal

term dominates, which then leads to a great perturbation pressure drop at the cen-

ter of the vortex. If this pressure drop is significant enough, the downward directed

pressure gradient force can drive a downdraft in the center of the vortex, resulting

in a two-cell vortex. Laboratory studies show this process tends to occur when

S ∼ 0.5 − 0.7 (depending on the Reynolds number). Laboratory simulated vor-

tices tend to have swirl ratios between ∼ 0.5− 1.5; however, swirl ratios have been

estimated around ∼ 2 − 6 in large, violent, multiple vortex tornadoes (Bluestein,

2013).

Despite the significance of the swirl ratio, Lewellen et al. (2000) argued that

this single parameter is insufficient to characterize the low-level vortex structure

stating “...other physical parameters also affect the structure of the central vortex

corner flow, so that flows that share the same large-scale swirl ratio can produce

different corner flow structures.” Lewellen, introduced another parameter called

the corner flow swirl ratio to help predict the inner core structure. It is defined as

Sc = rcΓ
2
∞/Υ = vcU, (2.15)

where

Υ = −2πr1

∫ z1

0

uΓddz, (2.16)

is the depleted angular momentum flux; Γd = Γ∞ − Γ is the depleted angular

momentum due to viscosity in the boundary layer, r1 is a radius just outside of the

corner flow region, z1 is a height safely above the surface layer, and U is a measure

of the component of the wind flowing into the corner region. The corner flow swirl

ratio can be thought of as a measure of the ability of the converging boundary-layer

flow to supply the core of the vortex with upward-moving fluid depleted of angular
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momentum, or more simply, as a quantitative value of the inertial overshoot just

above the friction layer.

2.6 Radar Observations

As discussed previously, laboratory and numerical simulations have been in-

strumental in the development of tornado vortex theory; however, the processes

that occur in simulated vortices need validation by observations of the real flow

fields of tornadoes. These observations of tornadoes and supercells are most com-

monly documented by the National Weather Service (NWS) Doppler radar net-

work, but many challenges exist in examining the flow, including poor spatial

and temporal resolution and the absence of scans near the surface. Over the last

25 years, the advancement of mobile Doppler radar technology has attempted to

solve these problems. Over time there has been an abundance of mobile radar

systems each with new technological advancements coming with each successive

generation. Non-stationary radars have been airborne (e.g., NOAA-P3, ELDORA

[Wakimoto et al. 1996]), portable (e.g., LANL FM-CW [Bluestein and Unruh

1989]), and mobile (e.g., UMass W-band radar [Bluestein et al. 1995; Bluestein

and Pazmany 2000], DOW/DOW2/DOW3 [Wurman et al. 1997; Wurman 2001],

SMART-R1 [Biggerstaff et al. 2005], and the TTU Ka-band radars [Weiss et al.

2011]). Other mobile radars have further capabilities including rapid-scanning (RS-

DOW/DOW8 [Wurman et al. 2001]), polarimetric (UMass X-Pol [Pazmany et al.

2003], X-Pol [Anagnostou et al. 2004], SMART-R2, NO-XP [Palmer et al. (2009)],

DOW4/DOW6/DOW7, MAX[Asefi-Najafabady et al. 2010], and PX-1000 [Cheong

et al. 2013]), phased-array (MWR-05XP [Knorr 2005; Bluestein et al. 2010; French

et al. 2014], and AIR [Isom et al. 2013]), and a combination of rapid-scanning and

polarimetric abilities (RaXPol [Pazmany et al. 2013]).
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All of these advances are intended to collect data with the highest possible

spatial and temporal resolution while also sampling as close to the ground as

possible. However, problems still exist with getting mobile radars close enough to

tornadoes to avoid ground clutter and beam spreading effects in order to observe

the lowest portions of the tornado. Despite these difficulties, data collected on

tornadoes have shown similarities in the overall idealized structure proposed by

earlier theoretical and numerical models and have highlighted certain structures

and processes associated with tornadoes and their parent storms.

Many structural observations of tornadoes and their parent supercells have

been documented using mobile radar. One of the first was the ‘weak-echo hole’

(WEH; Fujita 1981), or more appropriately labeled, the ‘weak-echo column’ (WEC;

Wurman and Gill 2000; Tanamachi et al. 2012a). While initially observed by

fixed-site radars, mobile radars have significantly contributed in documenting the

structure and relationship of the WEC to the tornadic circulation. The WEC

is most likely a culmination of centrifuging of hydrometers and debris out of the

center of the tornadic circulation (Dowell et al., 2005; Tanamachi et al., 2012a).

However, it cannot be ruled out that an axial downdraft, evident from a two-cell

vortex structure, could also have significant contributions. In many cases, the WEC

does not extend all the way to the ground, most likely due to radially convergent

flow near the surface (suggested by previous numerical models) bringing debris into

the center of the tornadic vortex. This debris can then be lofted upwards through

the secondary circulation around the WEC and the center of rotation. Cross-

sections through tornadoes show evidence of this in the form a signature which is

known as the ‘debris shield’ (Wurman, 1999), giving the WEC a ‘U’-shaped pattern

in vertical cross-sections through the tornado (Bluestein et al., 2004; Tanamachi

et al., 2012a; Houser et al., 2016).
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Other patterns in reflectivity that have been observed include spiral bands of

radar reflectivity around the WEH within the hook echo of a tornadic supercell

(Wurman, 1999; Wurman and Gill, 2000; Bluestein and Pazmany, 2000; Bluestein

et al., 2003a, 2007b). When first observed they were compared to the spiral bands

of hurricanes (Bluestein and Pazmany, 2000). Explanations for these bands include

rain bands being advected around the tornadic circulation or the centrifuging of de-

bris. Observations of the radial profile of the azimuthal winds also seem to suggest

that the Burgers-Rott vortex is the most accurate depiction of observational pro-

files of tornadoes, rather than the standard Rankine vortex model (Wurman and

Gill, 2000; Bluestein et al., 2003a; Lee and Wurman, 2005; Wurman and Alexan-

der, 2005; Tanamachi et al., 2007; Bluestein et al., 2007a; Kosiba and Wurman,

2010).

A simple, idealized model of how a tornado’s structure changes with increasing

swirl ratio was given by Ward (1972), and by using high-resolution mobile radar

observations of tornadoes, we’ve been able to identify all of these structures in

nature. The model shows the tornado changing from a one-cell vortex1, to a one-

cell vortex beneath a two-cell vortex aloft (Wakimoto and Martner, 1992; Wurman,

1999; Wurman and Gill, 2000; Bluestein et al., 2004), to a two-cell vortex extending

all the way to the ground (Bluestein et al., 2003a; Kosiba et al., 2008; Kosiba and

Wurman, 2010; Kosiba et al., 2013; Wurman et al., 2013), and finally a multiple

vortex structure (Bluestein and Pazmany, 2000; Wurman, 2002; Alexander and

Wurman, 2005; Wurman et al., 2014; Bluestein et al., 2015; Wakimoto et al.,

2016) as the swirl ratio continually increases. An important distinction of the two-

cell vortex structure is an axial downdraft driven from vertical pressure gradient

forces. Many studies have identified this axial downdraft in a variety of different

ways including single-Doppler measurements (taken at a significant angle above

the ground), duel-Doppler measurements, and ground-based velocity track display
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(GBVTD; Lee et al. 1999) methods. The latter method has been by far the most

popular; however, contamination of the calculated divergence by centrifuging of

radar scatterers must be accounted for (Dowell et al., 2005; Wakimoto et al., 2012;

Kosiba and Wurman, 2013). In a handful of cases, well-resolved multiple vortex

structures have been observed through mobile Doppler radar observations, often

exhibiting chaotic flow patterns with vortices of multiple scales. In many of the

high spatial resolution datasets of tornadic storms multiple scales of rotation can

be observed, showing that the circulations behind large tornadic storms are often

much more complex than a simple singular rotating column of air (Fujita, 1981).

Contributions from mobile radars have also helped our understanding of the

evolution of these storms. With advancements throughout the last 25 years im-

proving temporal resolution behind mobile radar capabilities, it’s very apparent

that tornadoes evolve on timescales of < 10 s (Bluestein et al., 2003b,a, 2010),

highlighting the importance of rapid scanning radars in tornado studies. Many

questions also remain regarding the genesis of tornadoes, and many efforts have

been made to further our understanding of this phenomenon. Previously, theories

have suggested that vorticity from aloft is ‘spinning-down’ via the Dynamic Pipe

Effect (DPE) during tornadogenesis (Trapp and Davies-Jones, 1997). However, re-

cent observations using rapid-update mobile radar scanning strategies from French

et al. (2014) and Houser et al. (2015) suggest that the highest vorticity during tor-

nadogenesis initially occurs near the ground and then rapidly ascends throughout

the observed depth of the storm.

1There are hundreds of examples of one-cell vortex structures in collected mobile radar ob-

servations, but since they are typically viewed as the most simplistic form of a tornadic vortex

(or a tornado-like vortex), their existence as a one-cell vortex is rarely mentioned. Rather, it’s a

significant observation to find a tornado that does not exhibit the properties of a one-cell vortex

structure.
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Recent interest has also been placed on the involvement of the RFD and sec-

ondary rear-flank gust front (SRFGF) surges and their relationship with the gene-

sis, evolution, and dissipation of tornadoes (Lee et al., 2012). Kosiba et al. (2013)

noted that the genesis of the Goshen County tornado observed during VORTEX2

may have been aided by a RFGF and that the dissipation of the same tornado may

have occurred due to a SRFGF wrapping around the tornado. Skinner et al. (2014)

found that these RFD surges can occur in rapid succession and large quantities.

Perhaps one of the most important phenomena explained by numerical models

is the inertial oscillation of parcels overshooting past their cyclostrophic values at

the top of the surface layer. Many studies with data collected by mobile Doppler

radars have supported this theory by observing the highest radial velocities within

the tornado very near the surface. However, it has been difficult to document the

wind field below the top of the surface layer where the azimuthal wind is theorized

to be less than at the top. Bluestein et al. (2007a) collected high-resolution vertical

scans through a tornado near Attica, KS that indicated wind speeds could increase

by 25% in the surface friction layer. Kosiba and Wurman (2013) managed to collect

a rare dataset of Doppler radar estimates as low as 4m above ground level (AGL).

Results show that the peak wind intensity occurred below 5m AGL, with a 25%

increase from the wind field at approximately 20− 40m AGL, suggesting that the

height of the friction layer and peak winds resulting from the inertial oscillation

may occur much closer to the surface than previously believed.

With the development, implementation, and collection of duel-polarimetric

radar observations, Ryzhkov et al. (2002, 2005) discovered a polarimetric tornadic

debris signature (TDS) during the 3 May 1999 tornado that went through Moore,

OK. This signature was observed in radar imagery as high radar reflectivity, low

differential reflectivity, and abnormally low cross-correlation coefficient, owing to

random orientation, irregular shape, large size, and a high dielectric constant of the
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lofted debris. This signature has been consistently observed at S-band (Ryzhkov

et al., 2005), C-band (Ryzhkov et al., 2007), and X-band (Bluestein et al., 2007a),

and is generally collocated with a tornadic vortex signature. Since the implementa-

tion of the dual-polarimetric upgrade to the NWS 88-D radar network, TDSs have

been used for the identification of tornadoes when a lack of visual observations

exists (Zrnic et al., 2014; Snyder and Ryzhkov, 2015).

2.7 Suction Vortices Within Tornadoes

Observations of suction vortices, both visually and through damage assess-

ments, have been made for nearly a half-century (Fujita, 1970; Agee et al., 1975,

1977; Pauley and Snow, 1988; Wurman, 2002; Alexander and Wurman, 2005).

Analysis regarding the multiple vortex structure of tornadoes has also been ex-

amined through laboratory simulations (Ward, 1972; Church et al., 1977, 1979;

Church and Snow, 1993), computer simulations (Walko and Gall, 1984; Rotunno,

1977, 1979, 1984; Lewellen, 1993; Lewellen et al., 1997; Fiedler, 1998, 2009) and

conceptual models (Fujita, 1970, 1981; Davies-Jones et al., 1976; Rotunno, 1978;

Snow, 1978). Throughout these simulations and models is a relatively consistent

understanding of the fundamental properties of suction vortices. When swirl ratios

are high in a tornadic vortex, there is a ring of higher shear vorticity that can form

due to angular momentum conservation, causing a limit to how far parcels can

radially penetrate the vortex before turning upwards into the tornado’s updraft.

This ring of enhanced radial shear in an area of vertical velocity can be thought

of as a barotropically unstable, circular vortex sheet that breaks down into mul-

tiple sub-tornado-scale vortices, or ‘subvortices’ (Rotunno, 1978; Bluestein, 2013).

Lewellen et al. (1997) identified the positioning of subvortices to be inside the

core of maximum swirl velocity, centered between the annular updraft and cen-

tral downdraft regions. Simulations uniformly describe these subvortices spiraling
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clockwise and outward with height due to the vortex line of the suction vortex

being advected by the flow, and describe the propagation of the subvortices as

retrograding with respect to the mean flow, acting like vortex Rossby waves. The

wind speeds within the outer side of these subvortices can be extremely high but

only occur in small spatial areas for very short amounts of time.

There have been a handful of observational cases where subvortices within a

tornado were resolvable within mobile radar data. Bluestein and Pazmany (2000)

documented wave-like asymmetries in radar reflectivity along the weak echo eye-

wall of a tornado, accompanied with smaller-scale couplets in Doppler velocity.

These structures were attributed to subvortices within the primary tornadic vor-

tex. Unfortunately, the temporal resolution was too coarse in this case to determine

if and how these disturbances were propagating around the circulation. Wurman

(2002) was able to resolve several subvortices within a broader tornadic circula-

tion. Within the collected data it was determined that these subvortices could be

identified through weak reflectivity eyes or notches, well-defined sub-tornado-scale

couplets in Doppler velocity, and locally enhanced areas of spectrum width. These

vortices tended to have roughly half the total shear of the total tornadic circu-

lation and appeared to revolve around the tornado at velocities below the peak

azimuthally averaged azimutal velocities. Further examination of subvortices by

Wurman and Kosiba (2013) showed that relative to the direction of the motion of

the larger tornadic circulation, the subvortices appeared to form/intensify on the

right sides of the circulation relative to its storm motion and weaken/dissipate on

the left; the reason for this phenomenon was left unexplained.

2.8 Descending Reflectivity Cores

A high level of interest in the last decade has been given to a phenomenon dis-

covered by Rasmussen et al. (2006) known as descending reflectivity cores (DRCs).
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DRCs can be identified as an area of enhanced reflectivity that can often develop

on the rear side of an echo overhang above a supercell weak-echo region. Numer-

ical simulations conducted by Byko et al. (2009) determined that there are three

possible causes for the development of DRCs: 1) Mid-level flow stagnation due

to the storms updraft protruding the background flow, 2) Precipitation from new

updrafts that eventually merge with the main updraft (commonly found in ‘cyclic’

mesocyclones; Darkow and Roos 1970; Burgess et al. 1982; Adlerman et al. 1999),

and 3) an area of low-level vorticity maximum that drives a downdraft aloft (simi-

lar to the mechanisms of an occlusion downdraft). Understanding the mechanisms

and effects of DRCs is important because they have been hypothesized to play a

role in the tornadogenesis process, as they often descend in the RFD just prior to,

or coinciding with, tornadogenesis.

This phenomenon has often been associated with locally enhanced rear-to-front

flow in the form of a SRFGF. This surge in momentum has been known to be ac-

companied by counter-rotating vortices, of which the cyclonic member has been

hypothesized to assist in the rapid enhancement of low-level cyclonic vertical vor-

ticity (Markowski et al., 2012a,b), and possibly aid in the tornadogenesis process.

Kennedy et al. (2007) found that some DRCs do not appear to influence the low

level flow, but the majority of those studied appreared to potentially alter the

flow (≈ 65%). Markowski et al. (2012a,b), found that during the Goshen County

storm observed during VORTEX2, a DRC appeared to cause the occlusion of the

mesocyclone due to the increased momentum behind the RFGF surge associated

with it.
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Chapter 3

Mobile Radar Data Collection on 31 May 2013

3.1 Event Summary

On the afternoon of 31 May 2013, a stationary front was positioned from south-

west to northeast across western and central Oklahoma, with a dryline mixing

eastward across portions of west-central and southwestern OK. At approximately

2130 UTC, a series of thunderstorms was initiated just to the east of the front-

dryline intersection roughly 65 km west of El Reno, OK. These thunderstorms very

quickly became severe as they moved into an environment with 4000−5000 J kg−1

of convective available potential energy (CAPE), 25 − 30ms−1 0 − 6 km shear,

72 − 75◦F (22 − 24◦C) dewpoints, and a sharply curved hodograph at low levels

with over 400m2 s−2 0−3 km storm-relative helicity (Bluestein et al. 2015, Figure

3.1). Within an hour, these cells had formed into a broken line of convection ahead

of the frontal boundary.

At the southern end of the line of thunderstorms, a large supercell with very

strong inflow formed and initially spawned a brief tornado at 2255 UTC. The sec-

ond tornado this storm produced has now become known as the El Reno tornado.

Officially starting at 2303 UTC, the El Reno tornado took a 26.1 km, ‘U’-shaped

track, around the town of El Reno, OK. At it’s widest point, the damage path

measured up to 4.2 km wide before the tornado’s dissipation at 2344 UTC, the
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Figure 3.1: The environmental setup displaying severe thunderstorm parameters

preceding supercell development on the afternoon of 31 May 2016. Image

courtesy of NWS Norman (2013).

widest ever recorded. The El Reno tornado was associated with multiple, large

subvortices, satellite tornadoes, and an accompanied anticyclonic tornado. The El

Reno tornado was responsible for the deaths of eight motorists and would go on to

produce several additional weak tornadoes and caused major flooding across the

southern Oklahoma City metro area, killing an additional thirteen people. Further

description of the synoptic setup and environmental condition on this day can be

found in Bluestein et al. (2015).
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Figure 3.2: The Mobile Rapid-Scan, X-band, Polarimetric (RaXPol) Doppler

radar system. Photo taken by Kyle J. Thiem.

3.2 Instrumentation: The RaXPol mobile Doppler

radar

Throughout the day’s events, a team of researchers collected data using a mo-

bile Rapid-scan, X-band, Polarimetric (RaXPol) Doppler radar. RaXPol’s rapid-

scanning mode offers an advantage of collecting data revealing storm-scale pro-

cesses with high temporal resolution, with an azimuthal scanning rate of 180◦ s−1.

RaXPol is also steered mechanically, rather than electronically, meaning that RaX-

Pol can maintain a smaller beamwidth to maintain high spatial resolution while

also enabling the collection of dual-polarization radar products, both offering ad-

vantages over current phased-array technology which often have wider beamwidths

and are currently only horizontally polarized. However, mechanical-steering rapid-

scanning configurations can be accompanied with a few challenges; in particular,
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Specifications RaXPol

Operating Frequency 9.73GHz ± 20MHz

Antenna Diameter 2.4m

Antenna Gain 44.5 dB

Half-Power (3 dB) Beamwidth 1.0◦

Dwell Time Chosen to be equivalent

1◦ per radial

Maximum Antenna Rotation Rate 180◦ s−1

Peak Transmit Power 20 kW

PRT 0.250ms

Pulse Width 0.1 - 40 µs

Range Resolution 15− 150m

Gate Spacing 7.5− 75m

Table 3.1: Selected characteristics of the Rapid-Scan, X-band, Polarized

(RaXPol) mobile Doppler-radar. For further details the reader is referred to

Pazmany et al. (2013)

Pazmany et al. (2013) discussed the issues of collecting enough independent sam-

ples when collecting data during rapid-scanning modes. To mitigate these chal-

lenges, RaXPol makes use of a frequency hopping technique to obtain a larger

number of quasi-independent samples more quickly. Frequency hopping involves

shifting the frequency of the radar pulses by one bandwidth or more to speed the

convergence of radar samples to a mean more quickly. This technique also helps

to mitigate second trip echoes. A list of useful instrument specifications for RaX-

Pol are given in Table 3.1. For a complete description of RaXPol’s attributes,

specifications, and hardware, the reader is referred to Pazmany et al. (2013).
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Early 2nd Deployment Late 2nd Deployment 3rd Deployment 4th Deployment

22:47:29-23:05:39 UTC 23:06:55-23:14:00 UTC 23:24:40-23:25:11 UTC 23:31:57-23:38:27 UTC

0◦ − 20◦ in elevation 0◦ − 5◦ in elevation 0◦ − 5◦ in elevation 0◦ − 5◦inelevation

2◦ increments in 1◦ increments in 1◦ increments in 1◦ increments in

elevation angle elevation angle elevation angle elevation angle

28− 29 s updates 15− 16 s updates 15− 16 s updates 15− 16 s updates

75m range resolution 30m range resolution 30m range resolution 30m range resolution

45m gate spacing 30m gate spacing 15m gate spacing 15m gate spacing

9.4− 9.0 km from 8.5− 4.9 km from 5.0− 4.9 km from 11.5− 8.5 km from

tornado center tornado center tornado center tornado center

Up to 3.4− 3.2 km ARL Up to 750− 300m ARL Up to 440− 400m ARL Up to 1000− 750m ARL

Interpolation to a 3D Cartesian grid using two-pass Barnes scheme

∆h = 25m, ∆h = 50m ∆h = 25m, ∆h = 50m ∆h = 25m, ∆h = 50m ∆h = 25m, ∆h = 50m

κh = 0.025, κv = 0.050 κh,v = 0.010 κh,v = 0.005 κh,v = 0.050

Table 3.2: A list of the scanning strategies implemented by RaXPol at each

deployment during the tornadic phase of the El Reno tornado on 31 May 2013.

Also included are the grid spacing, ∆, and smoothing parameter, κ, used for the

interpolation to a 3D Cartesian grid using the two-pass Barnes (1964) scheme.

Radar data were collected using RaXPol over the course of seven separate de-

ployments outlined in Table 1.1. During the second, third, and fourth deployments

(termed D2, D3, and D4, earlier), RaXPol collected data of the El Reno tornado

throughout different phases of its life cycle. During each of these deployments

different data collection strategies were used and are shown in Table 3.2.
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Chapter 4

Methodology

4.1 RaXPol Data Quality Control

The quality of radar data is determined by multiple variables, both dependent

on the environment being sampled and the specifications of the radar performing

the sampling. In general, the data quality is highly dependent on the number of

samples of air motion within the volume being observed. When compared to the

WSR-88D network, the rapid scanning capabilities of RaXPol limits the number of

samples collected for a specific volume, and causes issues related to beam smearing

that must be mitigated (Doviak et al., 1994; Pazmany et al., 2013). Also, radar

observations within the tornado are subject to a significant amount of turbulence

and the centrifuging of debris, which reduces the quality of data collected in this

region. Radars are also subject to limitations due to the Doppler dilemma that can

take the form of second trip echoes and a folded velocity spectrum. For all these

reasons and many others, the data collected from RaXPol on this day was subject

to an extensive quality control process to ensure the data used in this study were

of the highest quality possible.

The radar data collected from RaXPol were manually edited to remove sys-

tem noise and ground clutter using NCAR’s Solo3 software program. Radar data

were also removed if they failed to reach a minimum threshold value of 0.2 in
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Normalized Coherent Power (NCP1; Uttal and Intrieri 1993; Wurman 1994; Wur-

man et al. 1997; Friedrich 2002; Friedrich et al. 2006) to ensure a high standard

of quality within the collected data. To remove noise from the radial velocity

field effectively and efficiently an algorithm was created and utilized. First, data

within the radial velocity field were deleted if the radial shear of φDP was be-

tween 100 − 250◦ per range gate, and if received power from both the horizontal

and vertical channels was below −70 dBm. The radial shear of φDP was chosen as

a threshold parameter for noise because a small, smooth gradient in φDP existed

where coherent radar signals were found, and a noisy field of φDP were found in

areas where system noise was the dominant signal. Therefore, if the radial shear

of φDP from one range gate to the next was large, there was a very high confidence

the data represented system noise. Second, a five-step, iterative process of apply-

ing a threshold to the radial velocity data of increasing values of NCP followed by

the application of a despeckling filter with decreasing values of the size of a defined

‘speckle.’ NCP of 0.1, 0.15, 0.2, 0.25, and 0.3, accompanied with speckle sizes of

10, 5, 3, 2, and 1 range gates, were used in their respective order. This algorithm

allowed extensive areas of pure noise to be removed initially, and then gradually

removed noise that was blended with higher-quality data, to preserve as much

reliable data as possible. The data collected had a Nyquist velocity of 31ms−1,

with environmental winds that occasionally exceeded this value by a factor of four;

therefore, the radial velocity data were very thoroughly dealiased as well. Auto-

matic dealiasing algorithms were used in areas with weak radial velocity gradients;

however, in areas with very strong velocity gradients (i.e., the tornadic circula-

tion) these automatic dealiasing techniques performed poorly at times. Therefore,

most of the velocity data within the tornado were manually dealiased to ensure

the highest reliability in the data as possible.

1NCP, also referred to as Signal Quality Index (SQI; Schroth et al. 1988; Friedrich et al.

2006), is directly proportional to the received power and inversely proportional to the spectrum
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4.2 Tornado Vortex Identification

During the second deployment, time versus height plots were made similar to

those created in French et al. (2014) and Houser et al. (2015) to show how the

tornadic vortex evolved in space and time. To identify the origin of the tornadic

vortex, the TVS associated with the tornado was tracked backward in time until

there was no longer a well-defined couplet of a local minimum and local maxi-

mum in the radial velocity field. The locations and local minima and maxima in

Doppler velocity were recorded for each plan-position-indicator (PPI) scan. Using

the minima and maxima, ∆Vmax was then calculated for each PPI scan, which is the

difference between the maximum outbound radial velocity associated with the TVS

and the minimum inbound radial velocity. The ∆Vmax represents a good first es-

timate of tornado vortex intensity. The distance between the maximum outbound

radial velocity and minimum inbound radial velocity was also calculated, repre-

senting the approximate diameter of the tornadic vortex. Finally, an estimated

pseudo-vertical vorticity was calculated where ζpseudo = 2 ∗ (∆Vmax/diameter),

which represents the one-dimensional estimate of the vorticity associated with the

tornado. All three calculations discussed were then plotted as a function of height

vs. the recorded time of the PPI in which they were collected. The data points

were then interpolated using a cubic spline interpolation scheme which retains the

original values but fits them to a smoothed, continuous, third-degree polynomial

function. Because the volumes were not collected instantaneously, an assump-

tion that the tornadic-vortex is steady-state throughout the volume is made. The

results from the time versus height plots will be discussed further in Sec. 5.1.1.

width (σv) and has been used to remove radar data of questionable coherency in previous studies

(Friedrich et al., 2006; Snyder and Bluestein, 2014; Wurman et al., 2007a). For RaXPol data, σv

was calculated from Eq. (6.27) from Doviak et al. (1994).
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4.3 Objective Analysis

Vertical cross-sections orthogonal to the radar beam of the tornado were also

desired to examine the vertical structure of the tornadic vortex. For cross-sections

of the tornado to be valid, an assumption also had to be made that the tornado

was in a quasi-steady state throughout the time it took to collect an entire radar

volume, which in this case was 16 s or 32 s depending on which data collection

strategy was being used (3.2). For easier plotting, the data volumes were first ro-

tated so that the center of rotation in the lowest volume scan was directly along the

x-axis, and cross-sections were parallel to the y-axis. Then, the quality-controlled

radar data were interpolated to a 3D Cartesian grid with a two-pass Barnes anal-

ysis (Barnes, 1964) using Observation Processing And Wind Synthesis (OPAWS;

https://code.google.com/archive/p/opaws/). The purpose of this process was to

refine the radar data to a Cartesian grid and not synthesize the wind field. There-

fore, objective analysis parameters were chosen to preserve the high resolution

and original numerical values of the data as much as possible, while simultane-

ously filling in gaps of missing or removed data. The grid spacing and smoothing

parameters chosen were based on the resolution collected at the time and are pre-

sented in Table 3.2. The output from the interpolation was in both NetCDF

format, which was used to create cross-sections using a Python plotting code

(https://www.python.org/), and in Vis5D format (http://vis5d.sourceforge.net/),

which was used in 3D visualizations of the radar parameters. From the 3D vol-

umes created by the interpolation, cross-sections were computed at each grid point

along the x-axis near the estimated center of rotation and the most representative

cross-section was chosen for further investigation within the dataset. A sample of

the locations chosen to represent the tornado cross-sections are shown in Figure

4.1.
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4.4 Tracking Subvortices

During the 3rd deployment, multiple subvortices were resolved in the radial

velocity field during the large, multiple-vortex phase of the El Reno tornado’s life

cycle. These subvortices were manually identified by a velocity couplet consisting of

a local minimum and maximum in Doppler velocity located adjacent to one another

with a difference of at least 40ms−1 (Alexander and Wurman, 2008; Alexander,

2010; Marquis et al., 2012; Kosiba et al., 2013), that was able to be tracked forward

and backward through time over a period of at least 5 seconds (or 3 PPI scans).

While the threshold to define a subvortex of ∆Vmax ≥ 40ms−1 was arbitrary,

support for this threshold is based within the literature of past studies and our

current knowledge of tornado structure. A ∆Vmax = 40ms−1 would imply a

ground relative wind speed of 20ms−1 for a stationary tornado, just above the

low-end wind speed threshold of 18ms−1 for a tornado using the Fujita (F) scale

(Fujita, 1971), but just below the minimum wind speed threshold of 29ms−1 for

a tornado using the Enhanced Fujita (EF) scale (McDonald and Mehta, 2006).

However, if storm motion on the order of magnitude of 10ms−1 is also considered

then a ∆Vmax = 40ms−1 would also meet the Enhanced Fujita (EF) scale low-end

threshold for ground relative tornadic wind speeds as well.

The locations of the qualifying subvortices were identified for every PPI scan

collected during this period. Once all locations of a specific subvortex were con-

fidently identified, a subjectively smoothed path was fitted for the subvortices’

locations through time to represent an estimated path, void of sharp angles and

jump discontinuities, of each individual subvortex. For this analysis to be valid, it

is assumed that the subvortices were approximately aligned along a vertical axis

and not significantly tilted with height (at least throughout the lowest 450m ARL,

which was the depth being sampled by RaXPol during the deployment). This as-

sumption appeared to be valid as there was not an abnormal jump in the position of
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the subvortices from the highest-elevation scan to the subsequent lowest-elevation

scan (which would be expected if there were a significant tilt).

The previous procedure was performed in real 2D Cartesian space; however,

by observing the multi-vortex structure in a tornado-centric framework we can

better understand how the subvortices are behaving and evolving with respect to

the center of the tornadic circulation. To shift the PPI scans to a tornado-centric

framework, the center of the tornado had to be identified for each PPI scan, which

was difficult to do because of the asymmetry of the tornado in real space and

no definitive central couplet in the later two-thirds of the deployment. Due to

these complications, the most consistent way to approximate the center of rotation

throughout the dataset was to fit an ellipse to the estimated solid body rotational

flow just to the inside of the radius of maximum winds (RMW). The center of this

ellipse was defined to be the initial center of the tornado at that specific point in

time. A tornado track was then traced by connecting the estimated center points

at each time step together. This tornado track was then objectively smoothed

using a three-point running average of the tornado’s location at the current time

step with the tornado’s location at each surrounding time step. The three-point

moving average was applied three times resulting in a weighted average based on

an approximate Gaussian weighting function centered around each time step of

f(x) = a ∗ exp

(
− x2

2c2

)
, (4.1)

where a = 1
σ
√
2π

, c = σ = 27
7
√
2π

, and x is the number of time steps away from

the time step being adjusted. The PPI scans were then centered around their

respective averaged tornado locations, and the subvortices and their respective

paths were traced out again for the tornado-centric framework. Quadrants around

the tornado were then defined based on the storm motion as the ‘Left-Front,’

‘Right-Front,’ ‘Left-Rear,’ and ‘Right-Rear’ quadrants. The storm motion was

determined by the speed and direction from the averaged initial location and the

43



averaged final location of the tornado during D3. In addition to traces of estimated

subvortices’ paths, origin and dissipation points were documented in order to study

where these events occurred relative to the tornado’s structure.

When the documentation of the subvortices’ formations, estimated paths, and

dissipations were complete, it became possible to calculate simple statistics of

the subvortices, but first, some conversions had to be identified. The distance

between the center of rotation to the position of the subvortices, as well as the

distance traversed by the subvortices along their subjectively smoothed paths,

were documented in Adobe Illustrator in units of pixels. By measuring the pixel

length of known distances, it was determined that the conversion from pixels to

meters was 3.99 pixels/meter, which was determined to be accurate to within

0.01 pixels/meter using multiple samples to determine the estimated conversion.

Another calculation to mitigate estimation bias was in the form of calculating

a time-step average. While most time steps (or the recorded time between two

consecutive PPI scans) were 2 s long, every 3rd to 5th time step was 3 s long.

Therefore, using the recorded time difference between when measurements were

recorded as a variable for certain calculations such as the speed of the subvortices

could lead to significant errors because the recorded times for the PPI were only

measured to the nearest second. Therefore, a time step average was found and

used for the calculations of the subvorticies’ statistics. By finding the difference in

time from the initial PPI scan to the last PPI scan used (132 s), and dividing this

by the number of time steps collected (58 time steps) it was determined that the

average time step was 2.28 s.

Using the distance conversion and the average calculated time step, a variety of

statistics were able to be calculated for the subvortices. The first were the duration

of the subvortices, after which two divisions of subvortices were identified, long-

lived subvortices (persisting for at least 15 s) and short-lived subvortices (persisting
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for less than 15 s). Each further calculation was performed for all the subvortices

as well as long-lived subvortices only and short-lived subvortices only. The dis-

tance traveled, average speed, the starting and ending radius from the center of

circulation, and the change in radius were all calculations that were preformed on

each group of subvortices to be discussed in Section 5.2.2.2.

4.5 Background Composite Flow and Fitted Tornado

Models

Composites were also created of the radial velocity and spectrum width fields

for the duration of D3 in an attempt to construct a blended, background flow field.

Before constructing the composites, any scan that had significant corrupt, aliased,

or missing data that would inappropriately influence the composites were removed.

The composites were created using Adobe Photoshop to ‘blend’ multiple images

of the tornado in the tornado-centric framework together. The blending process

was done by identifying the RGB colors for each pixel of the images provided and

then the median values of each color at each point were calculated. The median

value at each point is then constructed into the composite field. The median was

chosen over the mean for two reasons: First, using the median helped to reduce

the influence of outlying data points. Second, the mean was heavily influenced

by areas where data were removed due to low reliability, resulting in pixels with

a value of 0 for all RGB components (as black is the color for deleted data) for

a particular time. This bias was not as prevalent in the median values as it was

in the mean values. The result was an estimate of the background radial velocity

flow and spectrum width fields of the tornado throughout D3.

Using the blended radial velocity field as a representative background flow field,

the RMW and the minimum and maximum radial velocities were calculated. By
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assuming the background flow was quasi-symmetrical, storm motion was calcu-

lated using the maximum and minimum radial velocities as −19ms−1 and was

subtracted from the maximum and minimum estimates. The result was a tor-

nado with an estimated RMW of 800m with maximum azimuthal wind speeds

of 81.5ms−1. Using these two parameters, an idealized profile of the combined-

Rankine vortex and Burgers-Rott vortex could be built by using the following

respective equations from Wood and Brown (2011)

Vt = Vx(R/Rx)
α (4.2)

Vt = 1.4Vx(R/Rx)
−11− exp[−1.2564(R/Rx)

2] (4.3)

where Vt is the azimutal velocity expressed as a function of radius R, Vx is the

peak azimutal velocity, Rx is the radius of maximum winds, and α is a power-law

exponent that is equal to 1 within the core region (R < Rx) and equal to 1 outside

the core region (R > Rx). Using these equations and the given calculations of Vx

and Rx we can formulate an estimated azimutal field as a function of distance from

the center of rotation to compare against the subvortices’ behavior.

The option to perform a Ground-Based Velocity Track Display (GBVTD; Lee

et al. 1999) Analysis for the tornado during this time was initially presented, but

ultimately not pursued for a variety of reasons. First, as will be discussed later

in Section 5.2.3, the assumption that the Doppler-velocity wind field within the

tornado was steady-state throughout the 16 s required to complete a full volume

scan of the tornado was invalid due to azimuthal velocities of the subvortices

with respect to the primary tornadic vortex. Second, high values of spectrum

width throughout the tornado at this time introduced additional noise into the

Doppler-velocity measurements, which would have caused increased smoothing in

the objective analysis to mitigate. Increased smoothing would have dampened the

recorded Doppler-velocities significantly. Rather, the goal of the constructed com-

posites was to preserve as much of the original Doppler-velocity values as possible.
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Third, in documented cases by Tanamachi et al. (2007, 2012b), GBVTD produces

asymmetries within its analysis owing to an artificial wavenumber-2 component,

that has been hypothesized to be a result of the storm motion.
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Chapter 5

Results

5.1 Deployment 2

Thunderstorms began around 2145 UTC as a result of enhanced forcing near

the intersection of a dryline and a stationary front in west central Oklahoma.

These storms then moved eastward into areas of higher moisture and instability

and quickly became supercellular. After an initial deployment north of the town of

El Reno, OK, the RaXPol mobile radar was repositioned for a second deployment

2 km south of El Reno in an attempt to remain south of the projected storm track.

The second deployment began at 2247 UTC as the mesocyclonic circulation was

intensifying. The inflow into the target supercell was also strengthening, evident

by multiple echoes being ingested into the storm as observed in the radar reflec-

tivity collected by RaXPol (not shown). A brief EF0 tornado reportedly touched

down at 2255 UTC, roughly 10− 11mi WSW of El Reno, and quickly dissipated.

During this time, a weak asymmetrical velocity couplet was observed by RaXPol;

however, no evidence of a tornadic debris signature was present (Figure 5.1). This

tornado occluded and dissipated very quickly with a surge in the RFGF, and the

mesocyclonic circulation began to redevelop farther east.

A summary of the radar data collected by RaXPol from 2300-2314 UTC is pre-

sented in Figure 5.2. Starting at 2300 UTC, the mesocyclonic circulation began
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Figure 5.1: Radar imagery from RaXPol of radar reflectivity (REF; in dBZ),

Doppler velocity (VEL; in ms−1), copolar cross-correlation coefficient (ρhv;

dimensionless), and spectrum width (SW; in ms−1) collected at the 0◦-elevation

angle, at 23:53:37 UTC on 31 May 2013, depicting the EF0 tornado preceding

the El Reno tornado.

to organize itself from a broad area of horizontal shear into a classic rotational

couplet in radial velocity with a well-defined local minimum and maximum in

wind speeds. This was the first time that the vortex signature that would evolve

into the tornadic circulation could be identified. At approximately the same time,

ensemble Kalman filter 1 (EnKF; Evensen 1994; Houtekamer and Mitchell 1998)

analysis identified an intense downdraft that formed to the northwest of the de-

veloping circulation (Patrick Skinner, personal communication). Near the surface,

1Ensemble Kalman filters use an ensemble of numerical simulations to estimate the

background-error covariances needed to combine observations with a model state estimate in

situations where these covariances are expected to vary in time and space. This technique and

have been shown to produce accurate analyses of supercells in previous case studies using radar

data, including Snyder and Zhang (2003); Dowell et al. (2004, 2011); Tanamachi et al. (2013,

2015).
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Figure 5.2: A time series of the radar reflectivity (dBZ), Doppler velocity

(ms−1), and correlation coefficient (dimensionless) collected by RaXPol during

the 2nd deployment. This data is presented in ≈ 3.5min increments, with range

rings every 2.5 km. The red dots, and associated black line connecting them,

indicate the tornado’s locations during each 4◦-elevation, Doppler velocity PPI.

Solid red lines represent the estimated locations of the FFGF and the RFGF

determined through examination of the Doppler velocity, correlation coefficient,

and spectrum width data. Solid black lines indicate the locations of SRFGFs as

determined through examination of the Doppler velocity field. Dashed black lines

indicate significantly weaken SRFGF boundaries.
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this downdraft manifested into a prominent surge in the RFD to the rear of the

storm, moving in a southerly direction. Consequently, the developing tornadic

circulation also began to move with the RFD surge near the surface in an SSE

directed track (Fig. 5.10). Just a few minutes later, the El Reno tornado officially

touched down at 2303 UTC, although visual reports place the time of tornadoge-

nesis to be one minute earlier (Seimon et al., 2016, in press). A timeline of the 0◦

radial velocity field collected by RaXPol of tornadogenesis can be found in Figure

5.3. A weak echo hole (WEH) developed in radar reflectivity, most likely due to

the centrifuging of hydrometers outwards from the center of rotation (Fig. 5.2),

roughly one minute after tornadogenesis.

Shortly after tornadogenesis, at 2306 UTC, RaXPol paused the sampling of the

storm to implement a new scanning strategy to observe better the lower portions of

the tornado in both spatial and temporal resolution. At this point, the tornado’s

track began to turn counterclockwise towards the SE and would eventually turn

towards the E nearing Hwy 81 by the end of the deployment (Fig. 5.2). The

closer look at the track of the tornado throughout D2 is shown in Figure 5.4. The

TVS signature would continue to intensify throughout the deployment as radial

winds exceeded 70ms−1 and EF3 scale damage was produced by the end of D2.

Multiple surges in the RFD were also documented during the second part of this

deployment and seemed to have had an influence on the position of the RFGF

relative to the tornado’s location (Fig. 5.2). These surges within the RFD may

have influenced the changing of direction of the tornado track throughout D2. A

very evident TDS also developed at this time (evident in ρhv and Zdr [not shown])

and grew in radius and with height throughout the duration of D2 (Fig. 5.2). In

the reflectivity field, multiple spiral bands were observed around the WEH of the

tornado, and pockets of enhanced reflectivity within the bands were seen rotating

around the circulation.
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Figure 5.3: Time series of the 0◦-elevation angle, Doppler velocity (ms−1), ≈ 29 s

apart, from 23:00:21 - 23:05:39 UTC during the time of low-level organization

and tornadogenesis of the El Reno tornado. Range rings are shown every 2.5 km.

At 2314 UTC, RaXPol undeployed from the second deployment location, but

continued collecting data as the radar was moving towards the next deployment

location. Doing so allowed for observations of the storm, but artifacts to the

data caused by truck motion and beam blockage rendered the data difficult to

use in an analytic framework. However, observations in the reflectivity and radial

velocity fields show a satellite tornado2 originating along the forward-flank gust

2The satellite tornado is differentiated from a subvortex within a multiple-vortex tornado be-

cause the satellite tornado formed outside of the primary cyclonic circulation, unlike a subvortex

which forms stays within the broader circulation of the primary tornado.
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Figure 5.4: Radar reflectivity (dBZ) collected by RaXPol during the second

deployment at 23:03:50, 23:09:26, and 23:14:19 UTC. Images at the top are PPI

scans at each of the specific times, while the larger image is a composite of the

same three scans showing the locations and structure of the hook echo and weak

echo hole through time and in real space. The red dots show the locations of the

tornado at each 4◦-degree scan throughout the deployment in roughly 15 s

increments, with the line connecting representing the tornado track.
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Figure 5.5: A satellite tornado next to the El Reno tornado shown in radar

reflectivity (REF; in dBZ) and Doppler velocity (VEL; in ms−1) at 23:14:41

UTC. The circles indicate the two tornadoes, and range rings are are shown every

2.5 km.

front (FFGF), spiraling counterclockwise towards the tornado from the northwest-

ern side. The satellite tornado, shown in Figure 5.5, began rotating around the

primary tornado before merging with it shortly after the stationary deployment

ended. At the same time, a double reflectivity band was also observed in Figure

5.5 on the SW side of the hook echo. Around the time of this interaction of these

two vortices, a trochoidal tornado path was observed in the damage survey indi-

cating a possible Fujiwhara effect (Fujiwhara, 1921) between the two vortices as

the satellite tornado rotated around the El Reno tornado; however, since the radar

platform was in motion, it’s difficult to be conclusive of this interaction. Data
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continued to be collected for roughly four minutes while in motion before RaXPol

concluded sampling for the second deployment.

5.1.1 Plots of Time vs. Height

To analyze the characteristics and behavior of the tornadic vortex throughout

the observable depth of the storm that was sampled by the RaXPol radar, time

vs. height plots were made of the ∆Vmax, the distance between the maximum

inbound and outbound winds, and ζpseudo within the tornadic vortex throughout

D2. These plots were made from the initial time the tornadic vortex was observed

through the end of the deployment. During this period there were two different

scanning strategies enacted with various heights above radar level being sampled.

To illustrate the changes in the sampling of the tornado throughout D2, the reader

is referred to Figure 5.6. Surprisingly, the vortex that would eventually become

the tornado originated only 3min before tornadogenesis, at 2300 UTC. Before this

time, the eventual mesocyclone consisted only of a strong area of shear with no

local minimum or local maximum in radial velocity.

In Figure 5.7a, it can be seen that roughly 90 s before tornadogenesis, at approx-

imately 23:01:30 UTC, an initial increase in ∆Vmax was observed from 0.5−1.5 km

above radar level (ARL) indicating an increase in circulation above the surface.

A similar result was found by Houser et al. (2015), using rapid-scan volumetric

radar data of the El Reno tornado that occurred on 24 May 2011. At the time of

tornadogenesis, a rapid increase in ∆Vmax occurred near the surface in the lowest

level scans, followed by an intensifying ∆Vmax simultaneously over the depth of

the sampled domain. Theoretically, these intensifications of rotation aloft, both

before and after tornadogenesis could be forming a dynamically-induced localized

low pressure. This process would act to enhance updrafts which would then stretch

and increase the vorticity associated with the tornadic vortex.
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Figure 5.6: Plot of ∆Vmax (in ms−1) as a function of time vs. height for the

entire duration of the tornadic vortex (including pre-tornadic phase) throughout

D2 from 23:00-23:15 UTC. Points represent the calculated values of ∆Vmax, and

the fill color is a mesh grid of interpolated data points using the MATLAB cubic

function. Dashed line marks the time of tornadogenesis. This figure is used to

show how the two scanning strategies of D2 compare with each other in sampling

density, time, and space.

Perhaps just as important as ∆Vmax was the estimated diameter of the tornadic

vortex, measured as the distance between the maximum inbound radial velocity

and the maximum outbound radial velocity. Figure 5.7b shows the distance be-

tween these two points during the first part of D2. From Figure 5.7b we can see

that before tornadogenesis, the tornadic vortex was very unorganized above the

surface. Then, tightening of the tornadic vortex began near the surface around

2302 UTC possibly due to converging surface winds and stretching of environmen-

tal vorticity induced by the supercell updraft. At the time of tornadogenesis (2303

UTC), a tight rotation only exists very near the surface in the lowest level 0◦ scans;

even the 2◦ scans were sampling at ≈ 300m ARL show a much broader rotation.

At 2304 UTC, the tightening of the tornadic vortex began building upwards to
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Figure 5.7: Plot of ∆Vmax (ms−1), estimated vortex diameter (km), and ζpseudo

(s−1) as a function of time vs. height for the first part of D2 (2300-2306 UTC).

Points represent the calculated values and the fill color is a mesh grid of

interpolated data points using the MATLAB cubic function. The dashed line

marks the time of tornadogenesis.
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1 km ARL, and then after 2305 UTC the tornadic vortex simultaneously contracts

to less than 1km wide at all observable levels (up to 3 km ARL).

A pseudo-vertical vorticity (ζpseudo) was also estimated using the calculated

values of ∆Vmax and the diameter of the tornadic vortex, and is shown for the

first part of D2 in Figure 5.7c. In general, we initially observe increases in pseudo-

vertical vorticity near the surface, followed by an increase aloft at all observable

levels nearly simultaneously. The calculation of pseudo-vertical vorticity was very

sensitive to previous estimates of ∆Vmax and the diameter of the tornadic vortex.

Increases in vorticity during this time frame seemed to be heavily influenced by

the tightening of the tornadic vortex from near the surface, upwards.

Throughout the second part of D2, time vs. height plots were also made for

∆Vmax, estimated vortex diameter, and pseudo-vertical vorticity (ζpseudo), and are

shown in Figure 5.8. Using a new scanning strategy for this part of the deployment

allowed for better spatial and temporal sampling of the tornado near the surface,

but only sampled a quarter of the depth of the storm as the previous scanning

strategy, up to 0.8 km at the time of implementation of the new strategy to only

0.4 km at the end.

It was observed in Figure 5.8a that the highest ∆Vmax occurred near the surface

in nearly every volume, which was consistent with the post-tornadogenesis volumes

from the first part of D2. The ∆Vmax was also observed to be increasing at all

respective levels as time progressed throughout the second part of the deployment

as well. This behavior was particularly true towards the end of D2 where the

average ∆Vmax just above the surface increased by over 15ms−1 during the last

30 s of the deployment. The distance between the inbound and outbound Vmax

in Figure 5.8b generally decreases with time. However, it is possible that this

reduction may be a by-product of the tornado moving closer towards the radar

throughout the deployment which would act to increase the spatial resolution in the
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Figure 5.8: Plot of ∆Vmax (ms−1), estimated vortex diameter (km), and ζpseudo

(s−1) as a function of time vs. height for the second part of D2 (2306-2314

UTC).. Points represent the calculated values and the fill color is a mesh grid of

interpolated data points using the MATLAB cubic function. The dashed line

marks the time of tornadogenesis.
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TVS by reducing the size of the beamwidth at the location of the tornado. Figure

5.8c, shows that the pseudo-vertical vorticity also increased at all levels throughout

the deployment. A minor period of intensification occurred just after 2310 UTC,

while a significant intensification of vorticity within the tornado occurred after 2313

UTC. The latter seemed to be heavily correlated with the simultaneous increases

of ∆Vmax and a reduction in the distance between the locations of the inbound

and outbound ∆Vmax. While the decrease of the beamwidth could have played a

role in the intensification of all three variables calculated, the tornado itself was

undeniably intensifying during this period.

An interesting finding in the time vs. height plots in the second part of D2

occurred just after 2308 UTC. For roughly 45 s (or three volume scans), ∆Vmax

decreases and the tornadic vortex widens above the near-surface scans simulta-

neously. This type of vortex structure resembles an elevated 2-cell vortex with

a possible vortex breakdown above the surface, similar to the tornado structure

shown in Figure 2.5. However, this conclusion would be difficult to confirm based

solely on the results of a single-Doppler study.

5.1.2 Vertical Cross-Sections Through the Tornado

To study further the structure of the tornado, an objective analysis was per-

formed using the radar products collected by RaXPol, and vertical cross-sections

through the volume were created and inspected. These cross-sections were taken

perpendicular to the radar beam at the point where in intersected the center of the

tornadic vortex in the 0◦ PPI scan. These cross-sections were analyzed for both

the first part of D2 during tornadogenesis, as well as the second part of D2 during

the intensification phase of the tornado.

Figure 5.9 shows some of the cross-sections collected during the tornadogenesis

phase, in which several noteworthy things were observed. Several minutes before
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Figure 5.9: Reconstructed vertical cross-sections of interpolated reflectivity

(REF; in dBZ) and Doppler velocity (VEL; in ms−1) fields every ≈ 58 s

through the tornadic vortex during the time of tornadogenesis. Black arrows over

the Doppler velocity indicate the distance between the −20ms−1 and the

20ms−1 contours; white arrows point to a possible DRC. Cross-sections are

approximately S to N along the y-axis.
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Figure 5.10: PPIs of Doppler velocity (ms−1) at 23:00:50 (0◦), 23:01:15 (20◦),

23:02:17 (0◦), and 23:02:42 (20◦) UTC. The blue dots are the center locations of

the TVSs at all four times, and the black rings with cross-hairs show the TVS in

each PPI where it is shown; arrows connecting the locations of the TVSs show

how the TVS moves over time in each respective elevation angle. Range rings are

shown every 2.5 km and tick marks are shown every 1.0 km from the radar site.

tornadogenesis, the tornadic vortex became more tilted with height towards the

north, as the location of the low-level rotation near the surface (0 − 1 km ARL)

moved towards the south as the location of the mid-level rotation (3− 4 km ARL)

moved in the westerly direction, opposite of the storm motion (Fig. 5.10). Initially,

the circulations at these two respected levels were roughly 1 km apart along the
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x-axis at 23:00:50 UTC. Three volume scans later, at 23:02:17 UTC, these circula-

tions were separated by 2 km, indicating the rate of separation of the locations of

the mid- and low-level rotations was nearly 11.5ms−1 over 87 s. (While these two

specific volume scans are not shown in Figure 5.9, the vortex structure at these

times is similar to that shown in Figures 5.9a and 5.9c, respectively.) Prior to

tornadogenesis, a possible DRC was also identified to the north of the low-level

circulation highlighted by the white arrows on Figure 5.9a-c. This DRC would

most likely be associated with divergence at the surface towards the north of the

low-level rotation, which may have explained the southerly motion of the low-level

rotation see in Figure 5.10.

The tornadic vortex then underwent a rapid intensification during tornadogene-

sis from a broad rotation to a tight tornadic rotation within a period of ≈ 2−3min,

shown in Figures 5.9c-f. Initially, we find very broad rotation at low- and mid-levels

(Fig. 5.9c). One minute later, the vorticity increases near the surface (Fig. 5.9d).

Then over the next one to two minutes, an increase in the rotation is observed at all

observable levels up to 3− 4 km ARL (Fig. 5.9f). This intensification started near

the surface and progressed upwards over time as evident by the arrows overlaid

on the radial velocity cross-sections showing the distance between the −20ms−1

and the 20ms−1 radial velocity contours. This intensification from the ground up

corresponds with the results from Figure 5.7.

Along with the vortex strengthening with height over time, so too does the

signal for the Weak Echo Column (WEC), evident in Figures 5.9d-f. In Figure

5.9d, the 40 dBZ contour begins to extend upwards to 1 km ARL at 23:03:43

UTC and is collocated with the intensifying circulation near the surface. Two

volume scans later, the WEC was beginning to become more evident in the mid-

levels (Fig. 5.9e), then another two volume scans later the WEC is clearly visible

within the 35 dBZ contour at 23:05:39 UTC (Fig. 5.9f). A closer look at the
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Figure 5.11: Reconstructed vertical cross-sections of the El Reno tornado at

23:05:39 UTC of the interpolated radar reflectivity (dBZ) field overlaid with

Doppler velocity contours every 20ms−1 (top), and Doppler velocity fill

(bottom). Labels of WEC indicate the location of the weak echo column, and the

arrows refer to the change in position of the center of the tornado vortex in the

vertical direction from 0.85 km to 2.50 km ARL. Cross-sections are approximately

S to N along the y-axis.

tornado at this time in Figure 5.11a reveals that the TVS signature of the radial

velocity field is collocated with the WEC and the WEC has an pronounced tilt

towards the right (or towards the approximate north). While the tornadic vortex

appears to be nearly vertical up to 0.85 km it leans towards the north with height

between 0.85 km and 2.50 km ARL by ≈ 46◦ off of the vertical axis (Fig. 5.11).

Between these two levels, the tornado is as much of a horizontal vortex as it is
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a vertical one. A tilted tornadic vortex structure has been observed in previous

studies, both visually (Golden and Purcell, 1977, 1978b; Moller, 1978; Wakimoto

and Martner, 1992) and in radar imagery (Brown et al., 1978; Wakimoto and

Martner, 1992; Wurman and Gill, 2000; Lee and Wurman, 2005; Alexander and

Wurman, 2005; Tanamachi et al., 2012a; French et al., 2014). Throughout these

studies a tilted tornadic vortex structure was more commonly observed during the

dissipating stage of a tornado (i.e., the rope stage). For example the 19 May 2010

Kingfisher, Oklahoma tornado and the 5 June 2009 Goshen County tornado both

exhibited significant tilting towards the north with height during the dissipation

stage. However, tilted vortex structure has also been observed previously during

tornadogenesis as well, as was the case for both the Kingfisher and Goshen CO.

tornadoes (French et al., 2014).

The data collected in the latter part of Deployment 2 showed a complex and

chaotic evolution in the cross-sections through the center of the tornado in the

reflectivity (Fig. 5.12) and radial velocity (Fig. 5.13) fields while the tornado was

intensifying. In reflectivity (Fig. 5.12), a clear and distinct WEC can be observed

which often reaches the surface, but then retreats upwards off the ground. In the

last few minutes of the deployment, from 2312-2314 UTC, one such instance of

the WEC receding from the surface is observed with the 30 dBZ contour lifting

to approximately 300m ARL. At this time, enhanced reflectivity surrounded the

lifted WEC, similar to the reflectivity structure observed in Wurman et al. (1996);

Wurman and Gill (2000) in which a debris shield was speculated to be surrounding

the tornado. A similar structure was also noted around 2310 UTC but was much

less prevalent. The times when the WEC rose above the surface also correlated

with the times when higher EF-scale damage was observed. Initially it may seem

that an elevated WEC could indicate a more intense tornado, but the lack of

damage indicators over the tornado track combined with an underestimate of the
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Figure 5.12: A time series of reconstructed vertical cross-sections up to 800m

ARL of interpolated radar reflectivity (dBZ) through the center of the tornado

during the second part of D2. Cross-sections are ≈ 31.5 s apart and begin

approximately S to N along the y-axis and transition to approximately SE to

NW by the end of the time series.

strength of the observed wind speeds by the damage indicators for the El Reno

tornado damage survey leads to the conclusion that the lifted WEC was caused

when significant amount of debris was picked up by the tornado. It was only when

this debris was available that there was evidence of higher wind speeds near the

surface through higher EF-scale damage indicators.

From the time series of the cross-sections of the radial velocity field shown in

Figure 5.13 it can be seen that the structure of the tornadic vortex was rapidly

and continuously changing but the ∆Vmax was consistently increasing with time,

especially near the surface. At certain times (e.g. 2307-2308 UTC), the tornado
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Figure 5.13: Same as Figure 5.12, but with Doppler Velocity (ms−1).

somewhat resembled an elevated two-cell vortex structure with the most intense

∆Vmax located at the surface along with the distance between the inbound and

outbound radial wind speeds increasing with height. Most other times, the tor-

nado structure resembled a one-cell structure with the ∆Vmax and the distance

between the outbound and inbound wind speed maxima approximately constant

with height.

Also in the cross-sections of reflectivity, evidence of descending reflectivity cores

(DRCs) was found in the RFD region of the supercell. At least five occurrences of

DRCs were recorded from 2307-2312 UTC. One such instance began at 23:07:10

UTC and is shown in Figure 5.14. This particular DRC, outlined by the 50 dBZ

contour, can be traced from roughly 500m ARL to the surface at 23:07:58 UTC

(Figs. 5.14, 23:07:10-23:07:58 UTC), a descent rate of 10.4ms−1 which corresponds

to the terminal velocity of heavy raindrops (Rogers and Yau, 1996). Shortly after
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Figure 5.14: A time series from 23:07:10-23:08:29 UTC of reconstructed vertical

cross-sections up to 800m ARL of interpolated radar reflectivity (dBZ) with

Doppler velocity contours every 10ms−1 through the center of the tornado.

Images are ≈ 16 s apart. The black arrow points to the 50 dBZ contour of an

identified DRC; the white arrow points to the associated increase in Doppler

velocity along the southern side of the tornado. Cross-sections are approximately

S to N along the y-axis.

the DRC descended (Figs 5.14, 23:08:14-23:08:49 UTC) a shift in the location

of the maximum inbound velocities towards the center of the vortex occurred

accompanied by an intensification of the magnitude of the Doppler velocities was

observed.

Figure 5.15 shows the specific angular momentum of the tornadic vortex at

23:08:29 UTC. Near the surface, contours of constant specific angular momentum

curve into the center of the vortex on the side of the tornado adjacent to the

RFD which is similar to the idealized simulations performed by Lewellen et al.

(2000). The same signature is not observed on the side of the tornado opposite
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Figure 5.15: A reconstructed vertical cross-section of Doppler velocity (ms−1)

with specific angular momentum (VT (ms−1)× r(m)) contours every

5m2 s−1 × 103 at 23:08:29 UTC.

the RFD, most likely due to asymmetries in the wind field. This result shows that

often observations do not follow theory exactly as many tornadic processes are yet

to be fully understood, but similarities between observations and theory can be

recognized.

Ideally, a solid body vortex would have vertical contours of specific angular

momentum, but the bending of the contours into the vortex center indicates en-

hanced convergence into the vortex near the surface. It is hypothesized that the

DRCs within the RFD were associated with divergence at the surface, which then

forced air parcels in cyclostrophic balance, asymmetrically, towards the center of

the tornadic vortex. Due to the conservation of specific angular momentum of the

air parcels, a reduction in the radius of the air parcels from the center of rotation

means the azimuthal velocity of the air parcels must increase. The DRCs in the

RFD are also thought to be related to multiple SRFGF within the RFD, of which

several were documented throughout the deployment.

A pronounced TDS was also observed throughout the deployment, as seen in

Figure 5.16. For this deployment, the TDS can be identified in the correlation
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Figure 5.16: Same as Figure 5.12, but overlaid with contours of ρhv in intervals of

0.1, where values of ρhv < 0.9 in the center of the cross-sections represent the

tornadic debris signature (TDS).

coefficient (ρhv) radar field and was also accompanied by decreased values of dif-

ferential reflectivity (Zdr; not shown). The center of the TDS was collocated with

the center of the WEC and the center of rotation throughout D2 and exhibited

the lowest values of (ρhv) near the surface. The size of the TDS grew over time

as the tornado increased in size and intensity, and decreases in ρhv were observed

in areas of enhanced reflectivity around the WEC, providing further evidence of

a debris shield around the tornado. One such example can be seen at 23:12:26

UTC in Figure 5.16. It was also observed that the lower values of (ρhv) advected

upwards over time as more debris was lofted into the tornado over time.
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Figure 5.17: A time series of the radar reflectivity (dBZ), Doppler velocity

(ms−1), and correlation coefficient (dimensionless) at 4◦-elevation, collected by

RaXPol during the 3rd deployment on May 31 2013. This data is presented in

≈ 32 s increments, with range rings every 2.5 km.
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5.2 Deployment 3

The third deployment of RaXPol began at 23:23:51 UTC, while the tornado

was in its mature phase and was at its most intense. D3 was a relatively short

deployment consisting of twenty-one volumes, only nine of which were collected

while the radar was stationary, and only three of which while the radar was both

stationary and leveled. The radar began moving from its deployment location after

23:26:11 UTC after 140 s of stationary data collection but continued to collect data

during transit. At the time of the deployment, the tornado had already crossed

Hwy 81, south of El Reno, OK and turned northeastward, and was located near

the intersection of Reuter Rd and Radio Rd. A summary of the data collected dur-

ing this deployment, including the the reflectivity, radial velocity and correlation

coefficient fields, can be seen in Figure 5.17. Further examination and analysis of

the El Reno tornado during the mature phase of it’s lifecycle using mobile radar

data collected from both RaXPol and the DOWs can also be found in Wurman

et al. (2014); Bluestein et al. (2015); Snyder and Bluestein (2014), and Wakimoto

et al. (2015, 2016).

5.2.1 Structural Transition into a Multiple Vortex Structure

Data collected during D3 revealed a clear transition in the kinematic structure

of the tornado from a large, singular, quasi-symmetrical vortex into a multiple-

vortex structure. This transition is shown in Figure 5.18. At 23:25:03 UTC (Fig.

5.18a), an axisymmetric vortex exists with a well-defined low reflectivity eye. Then

at 23:25:18 UTC (Fig. 5.18b), the tornado begins to split into two separate vortices.

Next at 23:25:34 UTC (Fig. 5.18c), no evidence exists of a low-reflectivity eye, and

a multi-vortex structure becomes more evident on the tornado scale. Finally, at

23:25:50 UTC, 47 s after initial axisymmetric structure, multiple subvortices were

able to be resolved within the radial velocity field.
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Figure 5.18: Same as 5.17, but focused on the time of the transition of the

tornado vortex structure from 23:25:03 - 23:25:34 UTC.

Contained within these subvortices were the fastest recorded radial velocities

collected within the tornado. These extremely high radial velocities were the result

of the rotational velocities of the subvortices (some of which had ∆Vmax of over

100ms−1) combined with the translational motion of the subvortices around the

primary tornadic vortex. The translational motion was attributed to the combi-

nation of the azimuthal velocity of the subvortices around the central vortex and

the storm motion of the central vortex itself. At the beginning of D3, the storm

was nearly stationary as damage surveys showed the tornado making a trochoidal

loop at this time (Wakimoto et al., 2016). However, by the end of the stationary

phase of D3, the tornado accelerated rapidly with an estimated storm motion of

18ms−1 toward the location of the radar, further adding to the radial inbound

velocities sampled by RaXPol. Owing to the rapid scanning techniques utilized by
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Figure 5.19: A time series from 23:25:32 - 23:26:06 UTC of Doppler Velocity

(ms−1) roughly every 7 s illustrating the motion of a subvortex through real

space and time. Range rings are shown every 1 km and the white arrow points to

the subvortex being tracked over time.

the RaXPol mobile radar, the path of many subvortices were able to be traced,

and their translational motions were able to be estimated. In one such case shown

in Figure 5.19, an observed subvortex traversed ≈ 700m in 9 s, resulting in an

estimated translational speed of 78ms−1 in real space.

With the added rotational velocities of the subvortices, the highest wind speeds

observed in the tornado occurred within subvortices that were moving directly

towards the radar at the end of D3 when the tornado itself was also moving directly

towards the radar. Wurman et al. (2014) hypothesized wind speeds of 130ms−1

could be recorded within the subvortices if a radar were located to the NE of the

tornado. After dealiasing, RaXPol recorded radial wind speeds exceeding 134ms−1

three separate times in three separate subvortices, when each respective subvortex
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Figure 5.20: Radar imagery of the Doppler velocity (ms−1) field during the three

times when 130 + ms−1 wind speeds were recorded (23:25:11, 23:25:32, and

23:25:50 UTC). Information regarding the time and degree angle of the radar

imagery are provided as well as the measurements of the Doppler velocity,

reflectivity, spectrum width, and normalized coherent power associated with the

range gate providing the wind speed estimate are also provided.

was moving directly towards the radar (Fig. 5.20). The highest measurements

were recorded at 23:25:32 UTC (Fig. 5.20b), with radial velocities at two range

gates of −136.46ms−1 and −140.04ms−1. However, because of discontinuities

along the radial containing these velocities more than one solution is possible for

the dealiasing of the radar data. Due to this uncertainty, confidence is not high

enough in this value to regard it as fully trusted. The second highest radial velocity

recorded was −135.01ms−1 at 23:25:11 UTC (Fig. 5.20a). This measurement

was taken very near the surface (Snyder and Bluestein, 2014) and has a higher

reliability than the previous measurement because there was only one reasonable

solution in the subjective dealiasing process. However, owing to the uncertainty of
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sampling within the radar volume, it is important to also consider the variability of

this measurement of ±16.72ms−1 (the recorded value of the spectrum width at the

same location). The third highest value of −134.38ms−1 found in the tornado was

at 23:25:50 UTC (Fig. 5.20c). This measurement is of even higher confidence than

the previous values preceding it with a lower value of spectrum width (±9.97ms−1)

and a higher value of Normalized Coherent Power (NCP = 0.6 compared to 0.23

for the Doppler velocity measurement of −135.01ms−1). All of these velocities

are comparable with the maximum wind speeds ever observed by a mobile Doppler

radar prior to this event, which was 135ms−1 collected by Wurman et al. (2007a)

during the Bridge-Creek/Moore tornado of 3 May 1999.

5.2.2 Subjective Analysis of Subvortices

5.2.2.1 Tracking the Subvortices

Never before has such a large-scale, multiple-vortex tornado been sampled at

this fine of a spatiotemporal resolution. This unique dataset allows the ability to

track the subvortices through space and time around the tornado, a feat which

had not been accomplished before in the same detail as that of this study. The

subvortices were identified by a velocity couplet consisting of a local minimum and

maximum in Doppler velocity located adjacent to one another with a difference

of at least 40ms−1, that was able to be tracked forward and backward through

time over a period of at least 5 s. In total, twenty-four subvortices were identified

during the time when RaXPol was stationary from 23:23:59 UTC to 23:26:11 UTC.

A timeline of these subvortices throughout the deployment can be found in Figure

5.21. Initially, the subvortices were tracked in real space, and then again in a

tornado-centric framework after the center of the tornado was defined for all time

steps. Then the positions of the subvortices were adjusted accordingly. The results

for each respective framework are shown in 5.22.
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Figure 5.22: Illustrations of the subjectively analyzed subvortice tracks given in

(a) real space, and in (b) a tornado-centric framework. Isolated paths of (c)

short-lived subvortices and (d) long-lived subvortices in the tornado-centric

framework are also shown. Green dots indicate observed formation events, red

dots indicate observed dissipation events, and the lines between them indicate

the subjectively-smoothed path of the subvortices.
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Looking at the tornado-centric framework in Figure 5.22b reveals the erratic

and asymmetrical paths of the subvortices around the center of rotation. The paths

of these subvortices are located at various ranges from the center of rotation, with

many subvortices advancing towards the center and other subvortices advancing

away. There is also a noticeable shift in the location of these paths depending on

which quadrant the subvortices were located. For example, subvortices in the left-

forward flank of the tornado are mostly located beyond 500m from the center of

rotation, while those located in the right-center to right-forward flanks are mostly

found at or within 500m from the center of rotation.

The subvortices that were documented were then divided into two categories:

long-lived and short-lived subvortices (defined in Section 4.4). Of the twenty-

four subvortices documented, nine were identified as long-lived meaning they were

able to be tracked for longer than 15 s, which was the approximate time for a

complete volume scan during D3 (Fig. 5.22c). The rest (fifteen subvortices) were

categorized as short-lived and persisted for less than 15 s; however, most were

tracked for less than 10 s (Fig. 5.22d). The differences between the paths and

conformity between each group of subvortices were quite noticeable. Of the fifteen

short-lived subvortices, over half were primarily located in the left-forward flank

of the tornado and none were found to be primarily in the right-rear flank. Also,

not much consistency existed among the locations of the paths of the short-lived

subvortices; rather the locations of their tracks seemed erratic (other than the

preferred quadrant grouping). By contrast, the long-lived subvortices showed great

consistency within their path locations, many of which were located on top of

one another and exhibited similar asymmetrical characteristics. Nearly all long-

lived subvortices favored the right-rear and right-forward quadrants of the tornado

where the highest radial wind speeds were found. The separation between the

locations of long- and short-lived subvortices’ paths seemed to suggest that there
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were particular locations around the tornado that were supportive of subvortices

while other areas were not. In addition, many of the long-lived subvortices tended

to dissipate once separated from the primary grouping of the long-lived subvortices’

paths.

Within this dataset, valuable information regarding the origins and dissipation

of these subvortices within the tornado were also documented. Of the twenty-four

subvortices documented, twenty-three originated during the time when RaXPol

was sampling the tornado, of which, nine were long-lived subvortices, and fourteen

were short-lived subvortices. The locations of the subvortices’ origins are shown

in Figure 5.23, and it can be seen that the majority of the origins tended to occur

between 500m and 750m from the center of rotation, especially those which were

long-lived subvortices. While nearly half of the short-lived subvortices originated

in this range as well, it can be seen that the spacing of the origin points was more

sporadic and spread out while the long-lived subvortices’ origins were definitively

located in an asymmetric ring around the center of rotation. There was also a

dependency of the longevity of the subvortices on where they originated around the

tornado. For example, development of long-lived subvortices tended to be favored

if they originated in (or near) the left-rear quadrant of the tornado. However,

over half of the short-lived subvortices documented originated in the left-forward

quadrant.

There were also twenty dissipation events throughout the same period, fourteen

of which were short-lived subvortices and six which were long-lived are also shown

in Figure 5.23. Three of the nine long-lived subvortices persisted after the end of

the stationary D3 deployment and therefore could not be considered, along with

one short-lived subvortex which may have been classified as long-lived had reliable

data been collected past 23:26:11 UTC. It was found that the majority of the

subvortices that were documented, with nine of fourteen short-lived subvortices
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and three of six long-lived subvortices, dissipated in the left-forward flank of the

tornado. Many of the subvortices also dissipated much closer to the center of

rotation than where they originated. This was especially evident for the long-lived

subvortices where three of the six dissipation events occurred within 400m of the

center of rotation whereas the closest genesis event for long-lived subvortices was

just farther than 500m from the center of rotation.

5.2.2.2 Statistical Analysis of the Subvortices

To learn more about the behaviors of the subvortices within the multiple-vortex

tornado, some basic statistics were calculated from their paths which are shown

in Table 5.1. All statistics derived were divided into three groups: all subvortices,

short-lived subvortices, and long-lived subvortices. When considering the behavior

of subvortices, the focus should be given to the long-lived subvortices because

their signals are more consistent and less erratic when compared to the short-lived

vortices.

First, the distance and duration of the average subvortex was considered. In

this case, it would be extremely biased to focus just on the long-lived subvortices;

therefore both long-lived and short-lived subvortices were taken into account for

these calculations. The results for this case was an average subvortex duration

of 16 s and a path length of 860m. These calculations were originally performed

using only the subvortices in which the complete life cycle was documented in

order to not bias the data with life cycles of incompletely-documented subvortices.

Therefore, these estimates should be an underestimate of duration and path lengths

of the subvortices. However, this methodology introduced a separate bias within

our dataset owing to our limited time window of observations disproportionately

excluding records of long-lived subvortices compared to short-lived subvortices;

long-lived subvortices were more likely to persist past the end of the deployment,
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Duration Distance Speed Origin Radius Dissipation Radius Change in Radius

All Subvortices 18 s 969m 55ms−1 641m 564m −84m

(Std. Dev., σ) (18 s) (950m) (23ms−1) (219m) (286m) (262m)

Long-lived 34 s 1818m 52ms−1 655m 396m −259m

(Std. Dev., σ) (19 s) (1112m) (10ms−1) (110m) (252m) (282m)

Short-lived 8 s 470m 56ms−1 632m 554m 29m

(Std. Dev., σ) (2 s) (196m) (26ms−1) (267m) (264m) (175m)

Table 5.1: Selected statistical calculations for the subjectively-analyzed locations

and tracks of the documented subvortices, divided into categories of all

subvortices, long-lived subvortices, and short-lived subvortices. The standard

deviation, σ, is also given in parenthesis below each respective measurement.

and therefore, were more likely to be excluded from the sample set. As a result,

if you were to include the incompletely-documented subvortices in the sample

set, the average subvortex duration and path length increases to 18 s and 969m,

respectively. Owing to the addition of incompletely-documented subvortices, these

updated results continue to be underestimates from what would have been observed

with a longer deployment time.

Next, the speeds of the subvortices were calculated. Because speed is the

rate of change of distance over time, it’s irrelevant if the subvortices tracks were

incomplete; therefore, all subvortices were considered for the calculations. The

mean speed of the subvortices in the tornado-centric framework was 59ms−1.

Since the mean values can be disproportionately biased by outliers, the median

value of subvortex speed was also calculated to be 55ms−1. The differences in

the mean values of subvortices’ speeds between short- and long-lived subvortices

was over 11ms−1 while the difference in their respected median values was only

4ms−1. This would suggest the median values may be a better estimate of the

typical speeds of the subvortices within this storm when neglecting the storm

motion component.
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Finally, the average radius of the origin and dissipation events from the esti-

mated center of rotation were calculated from the observations. It was found that

the average subvortex origin event occurred 641m from the center of the vortex

and the average dissipation event occurred at 564m from the center of the vortex,

a difference of 84m. This suggests that the subvortices traverse towards the center

of the vortex over time; however, there was a clear distinction in this process be-

tween short- and long-lived subvortices. The difference between the average origin

and dissipation event for short-lived subvortices was 29m away from the center of

rotation, while long-lived subvortices had a difference of 259m towards the center

of rotation. In fact, all but one long-lived subvortex advanced towards the center

of rotation throughout their respected life cycles.

5.2.2.3 Subvortices Within Background Median Composite Flow Fields

To understand better the behavior of subvortices relative to the background

flow field, composite images of the radial velocity and the spectrum width fields

were created to represent the typical radar image throughout this deployment (Fig.

5.24). Figure 5.25a shows the radial velocity median composite field overlaid with

the subvortices’ origin locations, tracks, and dissipation locations. From it, we

can see that the subvortices are primarily contained within the (RMW) which was

located at approximately 800m from the center of rotation. It can also be seen

that subvortices beyond the RMW do not persist for long, most likely due to the

potential flow (where the vertical vorticity, ζpotentialflow = 0). A large percentage

of the origin locations of the subvortices are also located just inside the RMW,

especially for those which persisted for longer periods of time.
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Figure 5.24: Composites of the median, tornado-centric, background-flow fields of

(a) Doppler velocity (ms−1) and (b) spectrum width (ms−1) created from radar

data collected by RaXPol throughout D3.

Figure 5.25: Same as Figure 5.24, but overlaid with subjectively-smoothed

subvortices’ paths including observed formation events (green dots) and observed

dissipation events (red dots).
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Figure 5.26: Same as Figure 5.25, but exclusively looking at spectrum width

(ms−1), divided into the first four volumes of D3 (23:23:59 UTC - 23:25:05

UTC), and the last four volumes of D3 (23:25:07 UTC - 23:26:11 UTC).

Composites were also made of the median spectrum width field, shown in Figure

5.24b. Figure 5.25b is the same figure overlaid with the subvortices’ origin loca-

tions, tracks, and dissipation locations. These figures show an oblate, asymmetri-

cal ring of enhanced spectrum width located inside the RMW. A high percentage

of subvortices, especially those which were long-lived, tended to favor initiation

along this enhanced ring of spectrum width. However, the time series of spectrum

width (not shown) shows an evolving state of the spectrum width field throughout

D3. It was shown in Section 5.2.1 that the tornado transitioned from a primarily

single-vortex structure to a multiple-vortex structure during D3, and the structure

of the spectrum width field also changed during this transition. To compensate

for this change, two median composite spectrum width images were made. The

first composite, shown in Figure 5.26a, was created from the data collected from

23:23:59 UTC - 23:25:05 UTC (roughly consisting of the first four volumes of D3)

that represent the tornado’s single-vortex structure. The second composite, shown
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in Figure 5.26b, was created from the data collected from 23:25:07 UTC - 23:26:11

UTC (roughly consisting of the last four volumes of D3) that represent the tor-

nado’s multiple-vortex structure. Superimposed on these composites are the origin

events, subvortices tracks, and dissipation events that occurred in each respective

time frame. During the time when a single-vortex structure was prominent, an

elliptical ring of higher spectrum width was evident, similar to what is seen in Fig-

ure 5.24b. Tracks of the subvortices that occurred during this time frame seemed

to be mostly confined to this ring of higher spectrum width. However, after the

single-vortex structure transitioned to a multiple-vortex structure, the spectrum

width composite field changed into a large, concentrated ball of greater spectrum

width mostly contained within the left-forward flank of the tornado and a ‘tail’ of

enhanced spectrum width that spirals clockwise outwards, into the left-rear flank.

As with the first half composite tracks of the subvortices tended to stay confined

to the areas of enhanced spectrum width.

5.2.2.4 Subvortices within Fitted Tornado Models

Theory tells us that subvortices should retrograde compared to the background

flow field of the tornado, but to date this behavior has only been observed through

idealized simulations of tornadic vortices. Until now, an observational dataset

hasn’t existed that has been able to track subvortices through space and time to

support or disprove this theory. In a simplified approach to address this question,

idealized tornadic vortices were plotted based on the maximum winds speeds at

the radius of maximum winds, which were determined to be a maximum azimuthal

velocity of 81.5ms−1 at 800m. The speeds of the subvortices were then plotted

against their average radius around the tornado, and compared with the idealized

winds speeds the tornado should have based on idealized vortices, the results of

which are shown in Figure 5.27. In this figure, only long-lived subvortices were
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Figure 5.27: (left) Same as Figure 5.24a with estimated maximum wind speeds

(ms−1) and RMW (m) noted. Fitted vortex model solutions (right) of

Rankine-combined vortex and Burgers-Rott vortex using the estimated, azimutal

wind speeds within a tornado-relative framework at the RMW overlaid with the

mean azimuthal speeds of each individual long-lived subvortex (black points)

around the main tornado.

considered because the sample set of speeds of short-lived subvortices were too

volatile and inconsistent, whereas long-lived subvortices were much more consistent

and stable through time. In Figure 5.27 it is seen that when the speeds of the

long-lived subvortices are compared to the idealized flow field of a fitted Rankine

vortex, results were inconclusive, as four subvortices had speeds faster than the

background flow, and five subvortices had speeds slower than the flow. However,

when the speeds of the long-lived subvortices are compared to the fitted Burgers-

Rott vortex, all nine of the subvortices had azimuthal velocities slower than the

respective background flow. While this result is far from definitive given the low

sample size of subvortices and the use of idealized fitted vortices, it is believed that

this is supportive of the current theories regarding subvortices retrograding with

respect to the background flow.
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5.2.3 Vertical Cross-Sections Through the Tornado

Like the cross-sections constructed in D2 (presented in Section 5.1.2), similar

cross-sections were also constructed for D3 for the three volumes scans during the

deployment that RaXPol was stationary and leveled; the reflectivity and radial

velocity fields are shown in Figure 5.28. The reflectivity field shows a WEC that

extended to 100 − 150m above the surface but began to retreat as the primar-

ily single-cell vortex started to split into multiple vortices at 23:25:11 UTC. The

Doppler velocity cross-sections showed multiple local maxima in wind speeds, il-

lustrating many different scales of rotation. At 23:25:11 UTC, chaotic gradients

in velocity were present, possibly due to subvortices moving through the cross-

section at various times, meaning the assumption that the vortex was steady-state

throughout the volume is invalid for a multiple-vortex tornado. Cross-sections of

the correlation coefficient field were also plotted over the reflectivity field and the

results are also shown in Figure 5.28. Contours of low ρhv representing the TDS

are shown to encompass the solid body rotation of the tornadic vortex as well as

the area to the north of the tornadic circulation. Wakimoto et al. (2015) attributed

this to the strong updraft of the tornado lofting debris into the updraft. Figure

5.28 demonstrates that the TDS is not always co-located exactly with the tornado,

but rather can be offset due to other factors within the storm.

5.3 Deployment 4

While the majority of this case study was focused on D2 and D3, data collected

in D4 also documented several interesting phenomena that occurred, including an

extremely large TDS, a failed dissipation attempt, and a very strong anticyclonic

tornado (Fig. 5.29). The deployment began at 23:31:57 UTC when RaXPol was

located 0.5mi WNW of I-40 and Garth Brooks Blvd, just to the W of Yukon,
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Figure 5.29: A time series of the radar reflectivity (dBZ), Doppler velocity

(ms−1), and correlation coefficient (dimensionless) collected by RaXPol during

the 4th deployment (23:32:05-23:38:25 UTC). Data is presented in ≈ 95 s

increments, with range rings every 2.5 km. The white circle indicates the location

of the El Reno tornado; black circles indicate the locations of the anticyclonic

tornadoes (one official, one unofficial).
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OK, and the tornado was position over I-40 just to the SE of El Reno. RaXPol

collected data at this location until 23:38:41 UTC, obtaining twenty-five volumes

(nine of which were collected while the radar was leveled), before continuing to

collect data during a mobile deployment, until 23:42:56 UTC.

Before the 4th deployment, the tornado track turned northward, and the El

Reno tornado became embedded in the heavy precipitation region of the forward

flank resulting in substantial attenuation of the reflectivity and differential re-

flectivity fields throughout D4. At the start of the deployment, two anticyclonic

tornadoes (one official and one unofficial) were evident by strong TVSs along the

RFGF, along with multiple smaller anticyclonic vortices (Fig. 5.30). Also at this

time, the TDS (highlighted by low values of ρhv) was extremely large, being mea-

sured as over 5 km wide, the largest known recorded TDS to date and is shown in

Figure 5.30. Throughout the deployment, the El Reno tornado underwent a trans-

formation from an extremely broad but relatively weak circulation to a tighter,

stronger circulation while one of the anticyclonic tornadoes continued to thrive on

the edge of the RFGF.

5.3.1 Failed Dissipation Attempt

As mentioned earlier, the tornado at the beginning of this deployment was very

wide, but also relatively weak. The ∆Vmax was around 90ms−1 and inbound and

outbound maxima were separated by over 3 km, the TDS was over 5 km wide.

In the next volume scan, an intrusion of higher ρhv, most likely made up of hy-

drometeors, is noted within the TDS. Vertical cross-sections and a reconstructed

3D volume of the TDS shows this intrusion of higher ρhv air was descending from

aloft (Figure 5.31). This volume of higher ρhv descends to the surface through

the next several volumes with accompanied divergence in the radial velocities at

the center of circulation and within the debris signature as lower ρhv was ‘shed’
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Figure 5.30: Radar imagery collected by RaXPol at 23:32:05 UTC of the Doppler

velocity (VEL; in ms−1) and correlation coefficient (ρhv) highlighting certain

features observed in and around the El Reno tornado. Black circles next to a ‘C’

indicate a cyclonic, tornadic circulation, while smaller black circles next to an ‘A’

indicate anticyclonic, tornadic circulations.

from the larger TDS signature towards the east and north, shown in Figure 5.31

(Kurdzo et al., 2015). During this time, the TVS became even larger with a dis-

tance between the maximum outbound and inbound winds increasing to 3.9 km.

The tornado initially looked as if it would dissipate; however, the vortex was large

enough that instead, it transitioned into a tighter and stronger rotation at the rear

of the original tornadic vortex.

Currently, there are two hypotheses exist to explain this phenomenon. The

first is that the tornadic updraft significantly weakened, and lofted debris was

falling out of the upper levels of the tornado. Thus, the area of higher ρhv are

hydrometeors filling in the TDS, and the azimuthal momentum is carrying debris

outwards. The second is that a dynamically forced downdraft develops within

the tornadic circulation causing an occlusion downdraft filled with hydrometeors

to descend from aloft. From the data, it’s difficult to tell for certain the exact

mechanism of the disruption.

93



Figure 5.31: PPI Radar imagery collected by RaXPol approximately every 31.5 s

of the Doppler velocity (VEL; in ms−1), correlation coefficient (3Dρhv), and a

3-dimensional reconstruction of the correlation coefficient volume (ρhv)

representing the TDS. A volume of ρhv is plotted with decreasing opacity

associated with decreasing ρhv. An isosurface of the 3D 0.7 ρhv contour is also

plotted along with a CAPPI of interpolated ρhv at radar level. The white arrow

points towards the region of descending area of enhanced ρhv.
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Figure 5.32: Time series of the 4◦-elevation angle, Doppler velocity (ms−1),

≈ 31 s apart, from 23:32:05 - 23:37:53 UTC, of the main El Reno tornado and the

accompanying anticyclonic tornado during D4. Range rings are shown every

2.5 km.

5.3.2 Anticyclonic Tornado

At the beginning of D4, two strong, anticyclonic TVSs of one official tornado

and one unofficial tornado were observed along the RFGF along with multiple

other smaller-scale anticyclonic vortices, which are presented in Figure 5.30. One

TVS dissipated quickly after the beginning of D4, but the southernmost tornado

persisted throughout the entire stationary deployment, shown in Figure 5.32. This

anticyclonic tornado was rated EF-2, with radial wind speeds over 50ms−1, a
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very prominent TDS measuring nearly 1 km in width (Fig. 5.30). This particular

tornado seemed to have originated from anticyclonic vorticity organized on the

southern end of the rear-flank gust front (RFGF). Nonetheless, throughout the

deployment the anticyclonic tornado propagated away from the RFGF, eventually

separating itself from any known boundaries or sources of anticyclonic vorticity.

The tornado took a clockwise curved, 8 km clockwise path over the course of 12min

encompassing the entire stationary deployment of D4 (Fig. 1.1b). Further exami-

nation of this particular anticyclonic tornado and others can be found in Bluestein

et al. (2016).
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Chapter 6

Summary and Conclusions

The 31 May 2013 El Reno tornado was historic in its size and intensity and

exhibited many unique characteristics and behaviors not commonly observed in

typical tornadoes. Furthermore, the dataset collected by the RaXPol mobile radar

of this extraordinary storm documented a wide variety of phenomena never before

observed at this fine a spatiotemporal resolution; the majority of the data examined

had 2 s updates, 15m range gate spacing, and volume update times near 15 s. The

abnormality of this particular tornadic vortex makes it extremely difficult to fit

into idealized models of a typical tornado. However, many similar aspects were still

recognized in some capacity offering evidence supporting some theories regarding

tornado structure and evolution, while also contradicting others.

The genesis of the El Reno tornado occurred within an extremely short amount

of time. Witnesses place tornadogenesis as early as 2302 UTC; however, radar

data collected by RaXPol before tornadogenesis show no evidence of a true veloc-

ity couplet, consisting of adjacent minimums and maximums in Doppler velocities,

before 2300 UTC. This means that the tornadic vortex spun-up in less time than

it would take to complete a full volume scan of a WSR-88D radar system, which

takes 4.5− 6min depending on the scanning strategy. Before the development of

the tornado velocity couplet, there was only a strong area of shear upstream of a

weaker mesocyclone which produced a weak EF0 tornado and promptly appeared
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to occlude. Data assimilation of the datasets collected by RaXPol and the National

Weather Radar Testbed Phased Array Radar (PAR; Zrnic et al. 2007) revealed a

downdraft which rapidly intensified to the NW of the low-level (0 − 1 km) meso-

cyclone, which was accompanied by an internal RFD momentum surge (Lee et al.,

2012) on the backside of the developing tornadic circulation, directing the surge

in the southerly direction (Patrick Skinner; personal communication). After this

surge, the low-level (0 − 1 km) mesocyclonic circulation began to separate itself

from the mid-level (2.5 + km) circulation by also moving in a southerly direction

and a slight increase in ∆Vmax, quickly followed by a reduction in the diameter

of the vortex couplet in the low-level mesocyclone. It is possible that the internal

momentum surges in the RFD near the surface may have had an effect on the sep-

aration of the two circulations. One possibility is that southerly momentum mixed

downwards within the internal momentum surges, similar to the mechanisms de-

scribed in Skinner et al. (2014). Another possibility is that localized changes in

the pressure fields near the surface created a relative high pressure to the NW of

the tornado due to the converging RFD surge and a relative low pressure to the S

of the tornado due to the diverging RFD surge as it wrapped around the tornadic

circulation.

This separation of the low- and mid- level circulations may also be the cause

of the localized enhancement of the low-level circulation through stretching of the

vortex tube connecting the two areas of rotation which became tilted by an angle

of ≈ 46◦ from the vertical between 0.85−2.50 km. The vortex tube may then have

been stretched not just through vertical transport of air parcels within an updraft

but additionally through horizontal advection causing the distance between the

two circulations to increase. This type of intensification of an elevated rotation has

been hypothesized by Houser et al. (2015) to be favorable for tornado development

by causing a dynamically-induced localized low pressure above the surface at the
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center of rotation due to cyclostrophic balance. This elevated low pressure would

then act to drive an enhanced updraft and cause convergence within the surface-

level rotational flow. Convergence near the surface would then increase surface-

level vertical vorticity and aid in the tornadogenesis process. While the enhanced

upper-level rotation observed in the case study by Houser et al. (2015) was much

more elevated than in this particular case, it is believed that the mechanisms

operating in both cases could be similar.

Tornadogenesis occurred just after the localized increase in ∆Vmax and decrease

in vortex couplet diameter aloft, but time vs height plots and vertical cross-sections

through the tornado indicate the increase in vorticity associated with the tornado

originated in the lowest level scans. Also significant with this finding is that no

evidence was found of a descending TVS from upper levels to the surface. This

would imply that tornadogenesis was not associated with the dynamic pipe ef-

fect, a result that has become common in recent rapid-scan mobile radar datasets

documenting tornadogenesis, which highlights the importance of high temporal

resolution in data collection of tornado-scale processes (French et al., 2014; Houser

et al., 2015). Also similar to the results of Houser et al. (2015) was the very rapid

intensification of the vorticity at all observed levels above the surface shortly after

tornadogenesis. This result was most likely due to the simultaneous contraction

of the TVS throughout the mid-levels of the vortex, after a rapid reduction of the

velocity couplet diameter very near the surface.

Time vs. height plots for the latter part of the second deployment (23:06:55-

23:14:00 UTC) showed two important findings. First, ∆Vmax, velocity couplet

diameter, and ζpseudo all generally intensified throughout the seven minute period

of data collection. Second, the highest values of ∆Vmax were consistently observed

in the lowest level scans. This result is consistent with current tornado vortex

theory suggesting that the friction within the surface layer causes a breakdown in
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the cyclostrophic balance within the solid body vortex of the tornado. Air parcels

then penetrate further into the tornado vortex, known as an inertial overshoot,

causing an increase in azimuthal velocities due to the conservation of specific an-

gular momentum. The velocity differences, ∆Vmax, in the near surface scans were

commonly found to be 20− 30% higher than aloft.

Reconstructed cross-sections through the tornado reveal a rapid, complex and

often chaotic evolution in the tornado’s structure. The WEC within these cross-

sections often reaches the surface but retreats when debris is lofted into the tornado

updraft, often resulting in a notable debris shield (Wurman, 1999). At the times

when the WEC retreated from the surface, the highest estimates of tornado wind

speeds within the damage survey were also recorded. This correlation was not

nessesarily because the tornado was at its most intense at these times, but more

likely because damage indicators, which then became ingested into the tornado’s

updraft resulting in the debris shield, were avaible to be impacted in an area

otherwise voided by potential tornadic debris. The dependency of damage survey

estimates of wind speeds on the availability of damage indicators suggest that

estimated wind speeds recorded in the damage survey of this storm (a rating of an

EF3 tornado) could have been much higher given more damage indicators within

the tornado’s path. Some considerations for using the damage scale in rating the

intensity of tornadic storms is discussed further in Snyder and Bluestein (2014)

and Wakimoto et al. (2016)

The flow field was also shown to be quickly evolving during this period as well.

There were brief instances of possible one- and two-cell vortex structures in Figure

5.13 and evidence of inertial overshoots where contours of specific angular momen-

tum bent in towards the center of circulation near the surface (where Fig. 5.15

resembled Fig. 2.4). Within these cross-sections were several identified descending
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reflectivity cores within the region of the RFD, some of which were also accompa-

nied by significant internal RFD surges. While it has been seen in previous studies

that a link between tornadogenesis and DRCs may exist, possible evidence of in-

tensifying low-level vorticity could be related to the RFD surges which tended to

follow the descent of the DRCs. A possible connection between these two processes

reveals the complex relationship between multiple storm-scale processes that occur

on the time scales of 10s of seconds.

Data collection during the mature phase of this tornado revealed significant

changes in the tornado-scale vortex structure from a single quasi-axisymmetric

vortex with a WEC into a multiple vortex structure with multiple, resolvable

subvortices within the radial velocity data over a period of 30 s, further highlighting

the need for rapid-scan data when investigating tornadic processes. To the author’s

knowledge, this is the first time such a structural transition of this magnitude

has been sampled with such high spatiotemporal resolution. This transition was

also documented by DOW6 and the RSDOW in Wurman et al. (2014); however,

RaXPol had slightly better spatiotemporal resolution owing to its shorter distance

to the El Reno tornado. This unique combination of very high spatial and temporal

resolution also makes it possible to resolve subvortices within the tornado and track

them over time, an analysis which has not been performed previously, which allows

the opportunity to compare theory regarding subvortices with observations.

During the third deployment, 140 s of data were collected while the radar

was stationary. Within this time frame, twenty-four individual subvortices were

recorded, nine of which persisted for over 15 s. Within the subvortices were the

highest winds speeds recorded throughout the deployment due to the translational

velocity of the subvortices rotating around the primary tornadic vortex added to

the storm motion (which was also directed towards the radar) and the rotational

velocity within the subvortices themselves. Individual estimates of storm motion,
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azimuthal velocity, and the rotational velocities were found to be within the range

of 19ms−1, 55ms−1, and > 50ms−1, respectively. Within the flow of these three

scales of motions, Doppler velocity estimates over 134ms−1 were recorded within

three separate subvortices when their respective translational velocities were mov-

ing directly towards the radar. These estimated wind speeds are comparable to

the highest wind speeds ever sampled by a Doppler radar previously of 135ms−1

collected by the DOW during the Bridge-Creek/Moore tornado of 3 May 1999;

however, the latter estimates were not within suction vortices (Wurman et al.,

2007a).

The identified subvortices were also subjectively tracked through space over

time within the framework of the larger scale rotation and details regarding their

origins, tracks, and dissipations were obtained. A subjective analysis was chosen

for this study because there was concern that an objective analysis may not resolve

the subvortices very well, and if an objective analysis were eventually used to track

the individual subvortices through time, then a subjective analysis would be a use-

ful comparison. Results from this analysis show some notable differences between

subvortices that had longer longevity compared with those that did not, which

provides information on what areas of the vortex are favorable for subvortices to

exist and which areas are detrimental. It was found that longer-lived subvortices

tended to be advected towards the center of rotation over time; most are likely

under the influence of radial inflow near the surface within the larger-scale flow

field. In fact, all but one long-lived subvortex moved towards the center of rotation

over time with the average change in radius being over 250m. Short-lived subvor-

tices tended to be more erratic and inconsistent regarding their advection towards

or away from the center of the circulation. It was revealed that subvortices that

originated near the left-rear flank and primarily resided near the right-rear flank
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tended to be long-lived subvortices. In contrast, those that originated and existed

near the left-forward flank tended to be short-lived subvortices.

First, nearly all subvortices were found within the RMW. Those that traversed

outside the RMW were embedded in areas of potential flow and did not persist

for extended periods of time. Paths of the subvortices were also collocated with

areas of enhanced spectrum width. Within the first half of the dataset, an asym-

metrical ring of enhanced spectrum width was identified within the RMW of the

tornado, similar to the same ring found by Wurman (2002). This ring could be

the manifestation of the circular vortex sheet described by Rotunno (1978) sep-

arating the solid body rotation from the potential flow outside of it and appears

to be very supportive of the development and maintenance of the subvortices doc-

umented. An argument could also be made that the area of enhanced spectrum

with may be the manifestation of the subvortices rotating around the tornado.

However, because the larger area of enhanced spectrum width is consistently ob-

served throughout the observations collected during D3 but only 2− 4 subvortices

were observed within a given PPI throughout most of the deployment (especially

within the first six volumes scans; see Figure 5.21), it does not seem plausible that

the areas of enhanced spectrum width were caused solely by the existence of the

subvortices. Subvortices that formed and resided within this asymmetrical ring of

enhanced spectrum width tended to persist for much longer periods of time than

those that did not. Indeed, the dissipations of the long-lived subvortices seem to

be correlated with the time the subvortices began to separate from the areas of

enhanced spectrum width.

However, this asymmetrical ring of enhanced spectrum width was not constant

during the entire deployment. At the beginning of D3 this ring existed alongside

the single vortex structure of the tornado, but when the mesoscale rotation broke

down into multiple vortices, so too did the ring of enhanced spectrum width.
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After this transition, the area of enhanced spectrum width manifested itself into

a concentrated ball structure primarily existing within the left-forward flank. It is

possible that the tornado structure responsible for this pattern of spectrum width

was less favorable to subvortex development compared to the more stable ring

structure, accounting for the increase of subvortex dissipation events within this

quadrant.

Preliminary comparisons of the subvortices’ (in particular the long-lived sub-

vortices due to their conformity) azimuthal velocities around the broader tornadic

circulation were compared to the estimated background flow field found from ide-

alized, fitted, tornado vortex models at the subvortices’ respective mean radii.

While the sample size of the long-lived subvortices was small, evidence does exist

that the subvortices were retrograding with respect to the mean flow fields when

considering that the representative tornadic flow most resembled a Burgers-Rott

tornado vortex model, which would be consistent with current tornado vortex the-

ories. Results for the combined-Rankine vortex model were inconclusive as the

speeds of some subvortices were faster than the idealized background flow and

some subvortices were slower than the idealized background flow.

Also during the third deployment, the TDS was noted as being off-center from

the tornadic vortex, but during the second deployment, it was directly collocated

with the axial rotation. Wakimoto et al. (2015) attributed this development to

the updraft lofted debris away from the tornadic circulation. It was seen during

the second deployment that lower areas of ρhv were advected upwards with time

so it does seem reasonable that if the updraft became separated from the primary

tornado that this process would continue adjacent to the tornado.
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During the fourth deployment the TDS grew to an unprecedented size of over

5 km wide, but just after the deployment began, a large area of higher ρhv de-

scended from aloft, into the lower-level TDS. The low-level circulation was dis-

rupted, and radial divergence was noted in the center of the circulation at the

same time the area of higher ρhv made contact with the surface (Figure 5.31), a

possible manifestation of an occlusion downdraft within in the center of the circu-

lation caused by vertical pressure perturbations related to differences of vorticity

between the upper and lower levels. Typically the low-level wind field is disrupted

enough after occlusion downdrafts that the tornado dissipates, but in this case,

the tornado was so large that the circulation appears to reform on the backside

of the tornado. This entire reformation process caused the initially broad, rela-

tively weaker rotation to transition into a tighter, stronger rotation. Afterward,

the tornado became mostly stationary (Fig. 5.29), possibly because the downdraft

caused an occlusion of mesocyclonic circulation which would result in the tornado

being advected towards the rear of the storm as the supercell continued to move

towards the east.

Also during the fourth deployment, multiple anticyclonic vortices were observed

along the RFGF. One such vortex became an abnormally strong anticyclonic tor-

nado, most likely originating from vorticity generation along the RFGF. Damage

surveys from this tornado indicated EF2 damage associated with this tornado,

making it one of the strongest anticyclonic tornadoes ever documented with an

associated TDS signature that was approximately 1 km wide.

In summary, some of the conclusions of this study include:

• The El Reno tornado was historic, with a tornadic debris signature measuring

over 5 km wide and recorded wind speeds in excess of 135ms−1 at certain

times.
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• Many phenomena were documented that needed high spatial and temporal

resolution to resolve.

• The El Reno tornado was originally formed from strong vorticity at the

surface that very rapidly propagated to all observed levels of the vortex (up

to 3.5 km), and at the time of tornadogenesis the vortex was extremely tilted

with height towards the north.

• Internal momentum surges connected to descending reflectivity cores may

have played a role in rapidly increasing wind speeds near the surface.

• The tornado underwent at least one transition from an axisymmetric vor-

tex into a multiple-vortex structure with resolvable subvortices in the radial

velocity data.

• We documented nine long-lived subvortices that tended to 1) originate near

the radius of maximum winds, 2) traverse through the right half of the tor-

nado, and 3) dissipate closer to the center of the tornado than where they

originated (however, there was a small sample size). Evidence also exist that

these subvortices may be retrograding with respect to a fitted Burgers-Rott

tornado vortex model.

• We also observed that the most likely area of dissipation of subvortices was

in the left-forward quadrant, similar to results found by Wurman and Kosiba

(2013).

• Later in the tornado’s lifecycle, broad and weak rotation transitioned into

tighter and stronger rotation which may be associated with a descending air

mass within the tornadic circulation, which could be the result of a failed

dissipation attempt.
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