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ABSTRACT
Equations for the coincidence rate of electron-photon
detection in electron-molecule scattering are derived in
terms of the excitation amplitudes for the magnetic sublevels
of rotational states of diatomic molecules. Applications
to some electronic states of H2 are discussed. Experimental
feasibility is considered, and effects of relaxing assump-

tions are discussed.

viii



CHAPTER 1
INTRODUCTION

Scattering processes have been used to study atoms and
molecules since the advent of modern physics. In this study,
theory and experiment have played their usual complementary
roles: as experimental techniques improved, more detailed
theories were developed to explain the observations; and,
conversely, more sophisticated theories required new and
more accurate measurements for their verification.

The focus of the present work is on inelastic electron
scattering from atoms or molecules, followed by photon emis-
sion from the atom or molecule. Recently, delayed coincidence
techniques, long used to study nuclear col]isions,] have been
applied to this type of scattering. Delayed coincidence, as
used in this context, refers to detection of the photon a
certain (measured) time interval after the occurrence of the
scattering event. A variety of different kinds of delayed
coincidence experiments are possible. The ideal one would be
a spin-polarized, mono-energetic beam incident on targets with
all quantum numbers known. The momentum vector and spin of
the scattered electron, as well as the time delay, energy,
polarization, and direction of the emitted photon would be

measured. The complete analysis of such an experiment (also



borrowed from nuclear physic52’3)

would provide information
about the scattering proceis and the excited states: in addi-
tion to mean lifetimes and differential cross sections, one
could determine orientation and alignment parameters and the
relative phases of excitation amplitudes to different magnetic
sublevels.

Several reviews of experimental and theoretical develop-
ments of coincidence measurements in electron scattering from
atoms and molecules have been pubh‘shed.a"6 Following is a

brief summary of these developments, beginning with atomic

scattering.

A. Types of Electron-Atom Coincidence

Measurements and Theory

1. Lifetimes.

The simplest coincidence experiment is one used to deter-
mine the lifetimes of excited atomic states. The first mea-
- surements of this type were reported by Heron et,al. in 1954.7’8
Their method was to detect photons resulting from the decay of
excited states of helium in coincidence with the pulsed elec-
tron beam used to produce the excited states.

The accuracy of atomic lifetime measurements was signifi-

cantly increased by Imhoff and Read in 1969.°

Their technique
was to detect a photon and the single electron that had excited
the state in coincidence.

By measuring the energy-loss of the electron, they were

able to eliminate the effect of cascades into the state.



2. Differential Cross Sections.

If the direction of the scattered electron is observed,
the differential cross section can be determined. Ehrhardt et.
al}o found differential ionization cross sections of helium by
measuring angular correlations’®between the scattered and emit-
ted electrons. The absolute differential cross sections for
electron excitation of the 4'S, 4'D, 5'S, and 5'D states of
helium were measured by Pochat et.a1}1 utilizing a coincidence
technique. This experiment demonstrated an advantage of the
coincidence technique for finding cross sections: because the
states listed above were not resolvable using an electron spec-

trometer, the higher resolution possible in the photon detec-

tor was used to select a particular state.

3. Polarization.
A theoretical analysis of the polarization of the radia-
tion from electron impact excitation was given by Percival and

Seaton,]2

who related the polarization to the cross sections
“"for exciting magnetic substates of the atom. Measurements of
the polarization using electron-photon coincidence were made
by King et.a1]3 who detected only electrons scattered in the

forward direction.

4, Angular Correlation.
The measurement of angular correlations in addition to the
polarization and time delay may provide information on life-

times, differential cross sections, fine and hyperfine split-



tings, orientation and alignment parameters, and complex ex-

citation amplitudes. The theoretical analysis was made by

14,15 16

Macek and Macek and Jaecks in 1971. This work will be

discussed further in Chapter II. Several other theoretical

17 18

papers followed, among them Wykes, Jacobs, and Fano and

Macek.]9 The latter work is a more abstract reformulation of
Ref. (16), emphasizing orientation and alignment parameters.

A density matrix20 approach to this problem was used by Blum

21,22 23

and Kleinpoppen and by Eichler and Fritsch.

The first measurements of angular correlations were re-

ported by Eminyan, MacAdam, Slevin, and K]einpoppen,24’25

using helium as the target gas. Other important measurements

of angular correlations were made by Arriola et.a1.26

27

(but see

for a criticism of this work), Ugbabe et.
1 29

Slevin and Farago

a1?8 and Sutcliffe et. a

The angular correlation measurements stimulated theo-
retical calculations of cross sections for exciting the magne-
tic substates of the atoms as well as calculations of the
relative phases between excitation amplitudes. These cal-

culations were carried out using several different methods:

i.) distorted wave,30

ii.) first order many-body (random phase),a]

iii.) eikona1,32

33

iv.) close coupling, and

v.) distorted wave, polarized orbita1.34



B. Types of Molecule-Electron Coincidence

Measurements and Theory

1. Lifetimes.

Coincidence techniques have been used quite effectively
in determining accurate lifetimes for molecular states.
The first electron-photon coincidence measurements of mole-
cular lifetimes were made by Imhoff and Read in 1971.3% As
in the atomic case, the detection of the electron is used
to fix the time of formation of the excited state and the time
delayed detection of the photon is used to find the lifetime.

36

This was extended to 1lifetimes of ionic states for the

process

e + M > MxF4 e t e,

M MTe oy

It can be shown that either e, or e, usually has almost all
the excitation energy, thus the detection of one of these
electrons serves the same purpose as the electron in the pre-
vious example.

Backx, Kleiver, and VanderWei137 measured the lifetime

22 state of CO+ with a triple coincidence: the scat-

of the B
tered electron, the decay photon, and the CO+ ion.

Radiative lifetime measurements of simple free radicals
(NH and CH) formed inthe electron impact dissociation of
parent molecules (NH3 and CH4) utilizing an

electron-photon coincidence 38 were reported in 1978.



2. Polarization.

The work of Percival and Seaton12

139

was extended to diatomic

and in the united-atom and
40

molecules by Jette and Cahil
Born approximations by Baltayan and Nedelec. These works
are not satisfactory for analysis of coincidence measurements
because they are time-independent; Ref. (39) is

Timited to threshold excitation.

3. Differential Cross Sections.
Few measurements have been made of molecular differential

cross sections with coincidence methods. Bﬁse4]

has reported
electron impact ionization cross sections for D2 using a
photon-photon coincidence method for the process

e * Dy »2e" + IZT ~ Digp) * Dizp)

¥ ¥

Di1s)*r Dryg)*y

42

and Bose and Linder have performed an electron-photon coin-

cidence measurement for ionization cross sections of D2'

4. Angular Correlations.

Angular correlation measurements of electron-molecule
scattering should provide the same type of information as
that discussed in the atomic case. As yet, no such measure-
ments have been reported. Only one theoretical paper has
been published for the analysis of such an experiment: that

43

by Blum and Jakubowicz. Their paper uses the density matrix



approach, and results are formulated in terms of the Stokes
parameters.

The purpose of the present work is to develop a theory of
angular correlations between electrons and photons in elec-
tron-diatomic molecule scattering. It is an extension of

16 from atoms to diatomic mole~

the work by Macek and Jaecks
cules. The results are expressed in a form such that the
coincidence rate is a linear combination of the complex exci-
tation amplitudes. These complex excitation amplitudes may
be uniquely determined when sufficient measurements are per-
formed. Results are presented in a form suitable for analy-

sis of experiments with or without measurements of the photon's

polarization.

C. A Plan of This Work

The theoretical background of this research is reviewed
in Chapter II. An examination of appropriate details of the
formal theory of scattering as needed for this problem is
followed by a detailed discussion of the theory of Macek

and Jaecks16

on which this work is closely modeled. The

formal theory for analysis of angular correlation measurements of
electron-diatomic molecule scattering is presented in Chapter
ITI. Applications of this theory to some states of H2 are

made in Chapter IV, and the feasibility of such an experiment

is discussed as well. In Chapter V, the theory is extended

to the case where hyperfine structure may be important, and



effects of relaxing some of the aésumptions of Chapter III
are considered. Chapter VI contains a summary and conclusions.
Appendix I is a summary of angular momentum theory and a
brief review of the diagrammatic technique of Yutsis.44
Two reductions of complicated expressions using this tech-

nique are presented in Appendix II. A Basic program for eva-

luating 3j and 6j coefficients is presented in Appendix III.



CHAPTER I1I
PRELIMINARIES

The scattering process under consideration in this work

is molecular excitation via inelastic electron scattering,

e + M~»>e' + M¥* | (2.1)
followed by photon emission,

M*¥* o M* + hy | (2.2)

Here e and e' are the incident and scattered electron states,
and M, M**, and M* are the initial, intermediate, and final
states of the target diatomic molecule. We only consider the
case where the scattered electron and the photon hv are detec-
ted in coincidence.

The analysis of this process, presented in the follow-
ing chapter, utilizes concepts from several areas of theoreti-
cal physics. Some necessary concepts are outlined in section
A of this chapter: First, the complex excitation amplitude
is defined. Its significance in this work is discussed,
as well as its relation to the T matrix. Second, some ele-
ments of the theory of angular momentum are outlined. Third,
the concept of coherent excitation is defined and discussed
in the context of molecular states.

The theory of electron-atom coincidence measurements

9



10

14

as presented by Macek and Jaecks is discussed in section B

of this chapter.

A. Theoretical Foundations

1. Complex Excitation Amplitudes.

The usual situation in a scattering experiment is that
the source of incident particles and the detectors are far
from the interaction region. This means that observed quan-
tities are related to the asymtotic wavefunction of the sys-
tem, which therefore contains all the information that
can be obtained from the scattering measurement.

The asymtotic form for an electron scattering inelastic-

ly from an atom or molecule is45

ipfr

vy P(F,n) = ®i(?gn) + ; Ff1¢f(n)§*;—- (2.3)

where ¥ is the scattered electron coordinate, @i(?,n) is
the initial state of the system given by

(P .F)
o; = oplnle ! : (2.4)
The initial target state is 40 with internal quantum numbers
n, while Hi is the momentum of the incident electron (usually
taken along the z-axis). The sum over f is to be taken over
all energetically allowed final states of the target, denoted
by ¢f. The quantity Ffi is the complex excitation amplitude;
that is, the probability amplitude for scattering from the

state Qi to the state

i(peer)

éf = ¢f(n)e , (2.5)
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where ¢f is the final state of the target and Ef is the scat-
tered electron momentum vector. Finally, the excitation
amplitude is given by

m

Foo = - —S5 <o_|0]yr> (2.6)
fi 21rﬁ2 f i

with v the scattering potential operator. In general the
complex excitation amplitude depends on the electron energy
as well as the coordinate directions (6,¢) of Ef.
A primary objective of this work is to relate the ob-
served coincidence rate to the excitation amplitudes.
The differential cross section, (dcfi/dﬂ)(e,¢), is related to
the excitation amplitude by

do. p
fi . °f 2
- py [Pl (2.7)

Clearly more information is contained in the scattering am-
plitude than in the cross section, since the latter is propor-
tional to the modulus squared of the former.

The T matrix, or transitijon matrix, has convenient sym-
metry properties, which make it useful for studying general
properties of scattering processes. For example, the T matrix
is Lorentz invariant; and because pure rotations are contained
in Lorentz transformations, the T matrix is invariant to pure
rotations up to a phase factor. The complex scattering am-
plitude is given in terms of the T matrix by

m

F.. = = & _ <d l:i-l@.> (2-8)
fi 2w(ﬁ)2 f i
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-me
Fei = —=— T (2.9)

where the elements of the T matrix are defined by

Teo = <oclflo> . (2.10)

2. Coupling of Angular Momenta.46

Consider a system which has two angular moments, 31 and
32. If the sum of these angular moments is 3, a complete set
of commuting operators needed to represent this system might

include H, jf, jf, jz, and jz with eigenvalue equations

jzljm> = J(3+1){im> (2.11)

and

1]

jzljm> m{jms> . (2.12)

However, if the interaction between these angular momenta is

such that the z components of 31 and 32 are conserved sepa-

rately, it may be convenient to use a different set of commu-
. . L. +2 *2 . .

ting operators consisting of H, 1395 3y, and Jo,- The

eigenvalue equations for this basis are

PRI P M PAbIE RN PR (2.13)

J1zl3qmydgme> = myldgmydomy> (2.14)
and similarly,

PRI PP MC I LI LI (2.15)

Jpzl3ymdgmy> = mpldqmydamy> (2.16)
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where the product representation Ij]m]>‘j2m2> is denoted by
Ij]m]j2m2>.

The desirability of using one or the other of these re-
presentations depends partially on the interactions present.
This is discussed further in section B of this chapter.

Changing from one representation to the other is accom-

plished by a unitary transformation:

[jm> = 7§ <j]m]j2m2lj]jzjm>]j]m}j2m2> (2.17)
m,m
172
and
]j]m]j2m2> = §m<j]m]j2m2|j]j2jm>|jm> . (2.18)

The coefficients in the above equations are called vector
coupling or Clebsch-Gordan (CG) coefficients. These CG co-
efficients are employed in this work as well as the related,
but more symmetric Wigner 3-j coefficient:
Jy Jp s
1 92 Y3 Ji=J,tm
- 1 Y2 73,,; -1/2 . . < . .
= (-1) (233'*']) <J]m132m21313233m3>-
m, m, -m
1 72 3
(2.19)
Symmetry properties of the 3-j coefficients are given in
Appendix I.
The coupling of three angular momenta may be expressed
in the uncoupled representation ]j]m]>|j2m2>[j3m3>, as well
as in a coupled representation |jm> where J;+J,+35 = J ana-
logous to the coupling of two angular momenta. There are

several different ways in which the three angular momenta
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can be added two at a time, which lead to mathematically dis-
tinct representations: If, for example, Ij]jz(jlz)j3jm> and
|313033(ip4)im> are obtained by 31+32 = 3]2, 312+33 =3
and 32+33 = 323, 3]+323 = 3, respectively, the two sets of
basis sets are related by the linear transformation
[3735(370)35dm> = [ [373,d3(3p5)3m> x
323
. . /20 0+ + 55 s
x [(239,11)(23,541) 1 "W(31353343d7,355) (2.20)

where W(j]jzjjB;j]2j23) is a Racah coefficient. Again,
Racah coefficients are related to the more symmetric 6-j
coefficients by

AIRFILY. RINFAEI

The symmetry properties of 6j coefficients are given in Ap-

pendix I.

3. Coherent Excitation.

One of the assumptions used in the present work involves
the concept of coherent excitation of molecular levels. The
purpose of this section is to clarify what is meant by co-
herent excitation in the context of molecular or atomic
states.

The system of interest consists of an ensemble of dia-
tomic molecules and a beam of monoenergetic incident elec-

trons. The state of the incident electrons may be specified



15

by the momentum vector and spin orientation: [Hi,m>. Simi-
larly, the scattered electron state is given by |Efm>. The
spin orientation is the same in both states if it is assumed
that the scattering interaction has no spin dependent terms.

In an ensemble of diatomic molecules it may reasonably
be expected that the quantum numbers A and S are known, but
not the rotational quantum number K. (Here, A is the projec-
tion of the orbital electronic angular momentum onto the
internuclear axis, and S is the total electron spin.) The
state must then be described by a statistical mixture of the
pure eigenstates. (The statistical weight of the various K
states is determined by the Boltzmann distribution for the
gas.)

One may think of the above ensemble of molecules as an
ensemble of systems, each in some pure state. How con-
sider the excitation of oné of these pure states.

The linearity of the Schrodinger equation assures that imme-
diately after the excitation the system is still in a pure

state. This excited state, denoted by |y>, is a superposi-

tion of all possible excited states of the system. Each

axcited state is the direct product of the molecular and electron
kets. The quantum number K may be determined from detection

of hv, so that |¥> can be written as

Ty> = ) [fy (Bsahe) [KMy> [Pesmotese  (2.22)
M=K, K=T, ... ,-K PR B A S

where M, is the z-projection of K, and f (3.,3 ) is the
K MK i*Ff
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complex excitation amplitude for exciting the MKth magnetic
sublevel. A1l other known quantum numbers have been sup-
pressed. Thé three dots indicate similar terms for all other
accessible states ofthe system, including other values of K.
In the absence of an external field, the magnetic sub-
states of K are energetically degenerate. This implies
that the electrons scattered in a particular direction from
all the MK levels of a given K have the same momentum as

well, so that [pfm> can be factored from the sum in Eq. (2.22):

ly>=[] x  es
e fMKlKMK>]!pfm>+ . (2.23)

Because the state |y> can now be expressed as a linear su-
perposition of states IKMK>, the magnetic substates are said
to be coherently excited, i.e, the kets have a fixed phase retationship.
In practice, the electron beam will not usually be
monoenergetic, but will have some spread of energies, AE,
2
around a central value, Pi . When this situation holds,
2m
e
the scattered electron state may be factored from other
levels that lie within 4E/2 of the KM Tevel of Eq. (2.23).

Thus Tevels that are not exactly energetically degenerate may

be coherently excited in the sense that

lw> = L[] I F(KM,) [KM, >] [Fomp+ o« (2.24)
KM K K f
K
where the sum includes all K such that
2 2 2 2
p; -p P; ~-p
UL TS S -1 S B B S 13 (2.25)

2me 2



17

and EK is the excitation energy of the Kth level. Since lﬁfl
is not known precisely in this case, this expression implies
that Iﬁfm> includes all scattered electron states with the
range p. t /?Zfﬁ; , i.e., Eq. (2.24) must be integrated be-

tween these Timits.

B. Discussion of Atomic Electron-Photon

Coincidence Measurements

1. Introduction.

The work by Macek and Jaecks,]4 hereafter referred to
as MJ, has been very useful in the analysis of coincidence
experiments involving electron-atom scattering. Briefly,
they present formulas which express coincidence rates in
terms of complex excitation amplitudes, detector coordinates,
photon polarization, and time resolution of the apparatus.
These formulas may be readily used to determine cross sec-
tions or excitation amplitudes from measured rates. Since
this theory is so useful, we decided to construct our elec-
tron-molecule scattering theory in close analogy with MJ.
Because of the importance of the work of MJ and its close
relationship to the present work, a summary of the theory
is presented in the remainder of this
chapter.

A few typographical errors occur in the original paper;
we attempt to correct these in this discussion. Algebraic

details common to both atomic and molecular cases, which are
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not essential for understanding of the atomic case, are pre-
sented in the context of molecular scattering in the next
chapter. |

The scattering process treated by MJ is general in the
sense that it can involve electrons, ions, atoms, molecules,
or other breakup products. The only restriction is that the
emitted radiation must come from an atom. The emphasis in
this discussion is on electron-atom scattering. In particu-

lar, the process is represented schematically by

e + A+ e' + A** | (2.26)

followed by the photon decay,

A¥* > A% + hv (2.27)

where initial, intermediate, and final atomic states are de-

noted by A, A**, and A*, respectively.

2. Assumptions of MJ.
The initial assumptions used in MJ are Tisted below:
i. The atom obeys LS coupling*.
ii. The duration of the collision is short compared to
the mean lifetime of the excited state, permitting
the excitation and decay processes to be treated

separately.

*In LS coupling, the total orbital angular momentum, C,
is coupled to the total electronic spin, g, to form the total

electronic angular momentum, J.
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iii. Cascades from higher excited states have a negligi-
ble effect.

iv. The 1light detection system detects all radiation
near the central frequency of a line, and the un-
detected wings do not contain significant radia-
tion. .

v. The decay of the excited state is an electric di-
pole transition.

vi. The scattering Hamiltonian has no spin-dependent
terms. |

vii. The spin-orbit coupling in the atom is neglected.

3. The Coincidence Rate Expression.

The coordinate system used in MJ (as well as the present
work) is shown in Fig. 1. The primed and unprimed coordinates
refer to the photon and electron detectors, respectively.

The incident beam is along the z axis, which is also the
quantization axis for projections of angular momenta.
Because the directions of the photon and scattered electron
are required in the coincidence formulas, the scattering re-
gion must be well-localized: either crossed beams for inci-
dent and target particles, or an incident beam and a thin
target foil. Consistent with the discussion of coherent ex-
citation in section B, the magnetic sublevels for given L
are coherently excited. In this situation, the excited

state wavefunction is written as
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Fig.

Coordinate system used in MJ
The primed coordinates refer
and the unprimed coordinates
detector. The electron beam

-Z direction.

and in the present work.
to the photon detector
refer to the electron

is incident from the
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EgF

(z+ 15t

ly> = ng a(JFMF)lJFMF>e- (2.28)

F
The quantities a(JFMF) are the complex excitatioh amplitudes
for exciting the state |JFMF>, % is the mean lifetime of the
state, and t is the elapsed time after the excitation.
The total angular momentum of the state is F, where F=J+T and
T is the nuclear spin of the atom. The imaginary term in
the exponential is indicative of coherent excitation. It
is responsible for the oscillation in total intensity of ra-
diation as a function of time.
The coincidence rate is given by
dN 2 3 At

e w A > 2
= = vnan Y [ dt]<0]e.X|u>|" . (2.29)
dede 0"A 21Thc3 i 0

In this equation v is the electron speed, g is the incident
particle density, na is the target density, w is the fre-
quency of emitted radiation, O represents the final states
for the decay, € is the polarization vector of the radiation,
X is the dipole length operator, and At is the resolution
time of the apparatus, and do and do' are differential solid
angles for the electron and photon directions, respectively.
This equation shows that the coincidence rate per unit solid
angle is proportional to the probability for decay integrated
over the "on time" for the apparatus and summed over the
unresolved final states of the atom. Any unknown quantum
numbers of the initial state must be averaged over. For

this case that means the electron and nuclear spin projec-
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tions of the initial "state must be averaged over.

The next objective is to reduce the number of parameters
needed in the coincidence formula. This is accomplished in
six steps:

i.) Substituting Eq. (2.28) into Eq. (2.29) with the
vector operators written in spherical tensor components

(q and q') gives

2 3
dN e”w
- = vnan, (=) ) a*{(J'F'ML)a(JIFM.)
daeda 0"AY, 13 F F
_1yat+q’ * 1 ¥
x (-1) =g e_q<L0MLOSOMSOIOMIOqu.ILS(J')IFMF>
At -(Y‘l".im 1 |)t
1 JF,J'F
<LgM| SoMg TgMy ]XqILS(J)IFMF>f dt e
0 0 0 0
(2.30)
where
E.o - E
_ Jl )
O3, T (2.31)

and the sum is over q, q', J, F, MF’ J', F', Mﬁ, MLO’ Mg

and M In this equation the ket IJFMF> has been written

I
0
with the coupling indicated explicitly as

IJFMF> -+ ILS(J)IFMF> , (2.32)
and likewise

lJ'F'M%> - ILS(J')IF'M%> . (2.33)

ii.) The coupled basis is replaced by the uncoupled ba-
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sis using the CG coefficients introduced earlier:

|LS(J)IFMF> =M . % M|LMLSMSIMI><LMLSMS|LSJMJ> x
L"'S I
<JMJIMI]JIFMF> (2.34)
and
a(JFMF) = " MZM " a(LMLSMSIMI) X
LYS7ITd
<LMLSMS]LSJMJ><JMJIMIIJIFMF> . (2.35)

iii.) When the excitation amplitudes in Eq. (2.30)
are replaced by those of Eq. (2.35), products like a*(LMiSHéIMI)
a(LMLSMSIMI) occgr. These excitation amplitudes de-
pend on both 6 and ¢. This ¢ dependence may be removed by
taking advantage of the rotational invariance of T, as dis-
cussed previously. The excitation amplitudes are proportion-

al to elements of the T matrix so that
a*(LMiSMéIMi)a(LMLSMSIMI) «
<3fLMiSM§IMi |f|31.1>* x
<B LM SMSIM [T [pai> (2.36)
where |[i> denotes the initial state of the atom. Because of
this proportionality, the excitation amplitudes have the same

transformation properties as the T matrix elements. -Now con-

sider rotations about the z-axis of this product of matrix
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elements. Eigenkets and eigenbras of angular momentum trans-

form like

§2(¢)|jm> = e1m¢Ijm> (2.37)
and
-im¢

<im|Rs(e) = e”"M<ym| . (2.38)

Thus the phase factors from corresponding bras and kets in
Eq. (2.36) cancel.

Assumption vi., that there are no spin-dependent terms
in the scattering Hamiltonian, along with assumption vii.,

that the spin-orbit coupling is weak, together imply that

MS = Mé (2.39)
and similarly,
MI = Mi. (2.40)

Therefore the effect of this rotation on the product of ampli-

tudes 1is
R2(¢)a*(LMiSMéIMi)a(LMLSMSIMI)

i(ML'ML)¢ . . .

S I) (2.41)

For an unpolarized beam and target, we must average
over initial spin projections: this is accomplished by sum-
ming over projections and then dividing by the spin multipli-
cities. Including the ¢-dependence explicitly, along with
Eqs. (2.39) and (2.40), we can show the result of such averag-

ing in the form
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fa*(LMiSMéIMi)a(LMLSMSIMI) =

s 5 e1(ML‘ML)¢
M MI MM
I'I "S'S <a
(2S+1)(2I+1) M

ay > (2.42)

L M

where the amplitudes ay > which depend only on 6, are normal-
L

jzed so that their modulus squared is the partial differen-

tial cross section for exciting the MLth magnetic sublevel:
jay 1% = o (2.43)
ML T oda .

iv.) The fourth step involves use of the reflection

symmetry in the sdattering plane of <ay. ay > to obtain the relation
Lo

L
M, -M/
w > = (=1) : L<a_M.a_M > (2.43)

<@,,,d
ML ML LM

L
which is used to reduce the number and complexity of terms in
the final expression for the coincidence rate.

v.) Next the polarization vector is expressed in terms

of spherical-tensor components, sq’ which are functions of 8',

¢', and the measured polarization angle 8. With the dipole

length operator expressed in spherical tensor components X;,

49

as well; the Wigner-Eckert theorem is applied to the result-

ing matrix elements:

IMI>* X

1 .
<LaM, S M. I M IXq.ILMLSMS

0 LO 0 S0 0 I0

IM.> =

1
<LgM| SoM¢ 1 MIOIXq|LMLSMS .

Ly 07§40

<Ll 1% [ ]Lg>12 | |
AR <L0ML01q |L01LML> X

<L0ML01q]L01LML> . (2.44)
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Here, the Clebsch-Gordon coefficients contain the geometrical
dependence and the reduced matrix element <Ll|X1lILO> depends
only on the dynamics of the electromagnetic transition.

vi.) Finally, these results are all used in Eq. (2.30)

to obtain an expression for the coincidence rate:

3y! 2 . 2
dN  _ vnan (———){A cos B + A.,sin"R
Jodar 0"'A'8n 00 11
2 2 ] ]
+ (A1] AOO)COS Bcos“e' + V2 R,A ][51n29 x
cosZBcos(¢-¢') + sin28sine'sin(¢-4")]
- ReA1_][c0528cosze' - sinzs)c052(¢-¢')
+ sinZBcose'sin2(¢-¢')]} (2.45)
where
A, = ) U(gg'M, M'JFJ'F'LL,)<a,,a, > X
@' gegrErmome L'L 0/ % 3w,
L'L
At ’('Y+1‘-° 1 l)t
[ dte JFJTF (2.46)
0
and
U(qq'MLMLJFJ‘F'LLO) =
T <LR) SMg [LSIM ><dM I, |JIFM>
e J A | I
{MFMFMJMJ JMJMSMI 0 0
M M M }
Lo 1g"sg L

<L M 1q|L01Lﬁ
0

oML ><LML.SMSOILSJ'MJ,><J'M

IM; [J'IF'ML> x
0

L F

J ]

<L M

0 LO'lq'[LolLML.><LMLSMSILSJMJ><JMJIMIIJIFM > x

F

.<LM£SMS|LSJ'ﬂ3><J'MjIMI|J'IF'M#>[(2$f])(21+])]-](2.47)
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and

1 2
- 8_1rezm2 |<LHX ||L0>| (2.48)
¥ 3 <3 (2L+1) » .

where the quantity v'.is equal to the decay width y times the
branching ratio for the decay.
Equation (2.47) can be simplified considerably. MJ

gives the simplified form as

U(qq'M M JFJ'F'LL,) = (20+1)(23'+1)(2F+1)(2F'+1)(2L+1) x
| L +q-M
[(25+1)(21+1)]7) (-1) © "R
2 2
L L x J Jd' ¥ L L x L L xyv¢1 1 x
2x+1)(-1)7%
Ev( ) (=) {J‘ J s} {F‘ F 1} {1 1L }[-M‘ M v}[-q q° -v]

0 L "L
(2.49)

The coincidence expression (Eq. (2.45)) can be understood
by considering the defining equation for Aqq" Eq. (2.46).
This equation consists of three distinct kinds of terms: the
U coefficients, the excitation amplitudes, and the time inte-
gral., The effect of the integral is rather clear, i.e., it
relates the number of expected decays to the "time window"
for detecting a coincidence of the apparatus as well as ex-
pressing the interference effects of the decaying coherent

states. The excitation amp1itudes, <ayrdy >, are equivalent
L L

to the density matrix elements for the excitation.
The U coefficients depend on the intermediate and final
states of the atom, as well as on the polarization of the

emitted photon (via the gq,q' dependence). Thus the quantities
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A depend on both the excitation and decay of the states,

qq "'
and may be used to express all the information that can be

obtained from a coincidence measurement. These quantities
are discussed further in Chapter III.

For the analysis of an experiment in which no polariza-
tion measurement is made, Eq. (2.45) is summed over the two

perpendicular polarization angles 8 and g + % to obtain

dN 2

3 . 3 .
Tada™ = VnoMaY' grlAgotAiyt(Aqq-AgglcosTe

+ ¥2 R A ,sin208'cos(o-0') + A sinze'c052(¢-¢')] .

4, LS Coupling Violated
MJd also presents formulas for Aqq. and U when the radia-
ting atom does not obey LS coupling. In this case, the scat-

tering amplitudes are referred to the J,MJ levels so that

Aqq| = FF'% MlU(qq MJMJFF JJ0)<anaMJ> X
JJ
At
J‘ thXp[-(y+in Fl)t] (2'5])
0 s

with U defined by

U(qq'MJMéFF'JJO) = [(2F+1)(2F'+1)(20+1)/(21+1)] x

2

Jda+q-M _od d oy J J x 3y (d J xyc¢l 1 «x

DL e X{ } { }[ ][ }
XV F'* F I 11 JO -Mj v -v/,

(-1)
(2.52)

In this last equation we have corrected a typographical error

in the original paper. Also, the angular momentum LO’ found



29

in MJ Eq. (17), should be identified with Lo rather than k6
in their general expression for U.

In following the method given in the appendix of MJ for
the reduction of Eq. (2.47) to the form in Eq. (2.49), we
disagree with some of the phases given in intermediate steps.
We note that these differences do not affect the final an-
swer. We have found a simpler way to accomplish the reduc-
tion from Eq. (2.47) to (2.49) which avoids the use of the
18-j coefficient. This reduction is given in detail in
Appendix III with the proper associations for the atomic

case.

X

Y

Fig. 2. Polarization unit vectors.



CHAPTER III
ELECTRON-PHOTON COINCIDENCES
IN MOLECULAR SCATTERING

In the scattering process
e + M > M** + e (2.1)
and

M** > M* + hv , (2.2)

much information may be obtained from a measurement of the
angular correlation between the scattered electron, e', and
the photon, hv, and/or the measurement of photon polarization.
The purpose of this chapter is to construct a theory for
such measurements when the target M (see Eq. (2.1)) is a
diatomic molecule: that is, expressing the coincidence

rate in terms of detector positions, photon polarizations,
and excitation amplitudes for intermediate states.

The quantitative results obtained later in this chapter
involves the excitation amplitudes for the various magnetic
sublevels of the rotational states. In general, the ampli-
tudes for exciting different sublevels will not be equal, so

there will be an unequal population of the magnetic sublevels

30
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for the molecular ensemble.*

Radiation emitted from such an ensemble of molecules
is polarized as well as having an anisotropic angular dis-
tribution. This is demonstrated by the following simple
example: Suppose a molecule in a 'L state with rotations angular
momentum K=1, with MK=1 emits a photon in the positive z
direction as shown in Fig. 3.

In Fig. 3a the diatomic molecule has one unit of angular
momentum (+1h) directed along the positive z axis. A dipole
transition must have |11> - |00>. Since the final state has
K=0 and MK=0, the photon must be right-circularly polarized,
(RCP), in order to conserve the z-component of angular momen-
tum. If emitted in the -z direction, it would have to be
left-circularly polarized, (LCP). If the initial value of
MK=-1, the above polarization would be reversed. The angular
distribution of radiation dintensity will be that characteris-

tic of the electric dipole radiation.

A. Initial Assumptions

We begin with the statement of a set of initial assump-
tions. These assumptions are reexamined after the theory is

developed.

*If the populations are the same for MK and -MK, but
are unequal to that of MO’ the molecules are said to be
"aligned". If all the sublevels are unequally populated,

the molecules are said to be "oriented".
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-Z
+£ a. +Z
RHC
S 100> |0
O- 0 O——p—°
(
%b LHC
W -Z
b. C.
Fig. (a.) Molecule in initial state K=1, MK=+1. (b.) Di-

pole radiation allows emission of RHC photon along
+Z axis, or {(c.) emission of LHC photon along -Z
axis.
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i. The duration of the collisien is short compared to the
mean lifetime of the excited molecular state.

This is analogous to the assumption made in the case of
electron-ztom scattering. If there is no resonant behavior,
tne duration ¢f the collision has the same order of magnitude
gs the time reguired for the electron to travel & distance
comparabie to a Tew moliecular diameters. The lifetimes of the
excited states of interest for this type of experiment are
on the order of a fTew nanoseconds, whiie the durationrn of the
Ny
collision is on the order of i07!° - 107 '% seconds. There-
fore the scattered electron should nhave no appreciable effect
on the photon emission, soc that we may treat the excitation

and decay processes separately.

P
~

2. Hund's case {b) coupﬁng30 is adegquate to describe the

angular momentum coupling of the molecule.

-

hi

n

anguliar momentum coupling scheme is illusirated

in F

w—to

g. &, using the vector model. Here, the electronic or-
bital anguiar momentum is stroncly coupled to the internuy-
clear exis with projection EMLE = A. The molecular rota-
tional angular momentum, N, which is orthogonal to the inter-
nuciear axis, is couplzad to & to form the resultant K. States
defined by the quantum number X are referred toc as rotational
states in the remainder of this work. K is couplad to the

total electron spin S, to form the total electronic plus re-

-

tational ancular momentum J. The total nuclear spin, I, is

then coupied to J to form the total molecular angular momen-
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1
S
Y N
-
© A

Fig. 4. Schematic diagram of Hund's Case (b) Coupling.
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tum F. The main reason for choosing case (b) coupling is
that most of the lighter diatomic molecules obey this coup-
1ing scheme; these are the molecules for which rotational

levels may be resolved in a measurement.

3. The photon detector has sufficient resolution to dis-
tinguish between different values of K, but cannot resolve

different values of the magnetic substate, MK.

4., Hyperfine interactions may be neglected.
This is obviously valid if I=0, and is reasonable if the
hyperfine splitting is small. This assumption permits us to

treat J as a conserved quantity.

5. The observation time of the measurement is long enough

so that "quantum beats" are averaged out over many cycles.

6. The scattering Hamiltonian contains no explicit spin-
dependent terms, and the spin-orbit interaction of the exci-
ted molecular state is negligible.

This is similar to assumption made for the atomic case.
It permits the elimination of spin-dependence from excitation

amplitudes.

These assumptions are consistent with an analysis of the
scattering process that is physically meaningful and both
theoretically and experimentally tractable. The effects of
relaxing all of these assumptions except 1 and 6 are dis-

cussed later.
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B. The General Coincidence Rate Expression

The excited state of the molecule immediately after the

excitation (time t=0) may be written

l#(t=0)> = T F(KIMy) KM > (3.1)
JH

where f(KJMJ) is the complex excitation amplitude for exci-
ting the state [KJMJ>. We suppress other quantum numbers
which do not explicitly enter the analysis; these include
inversion symmetry (g or u), reflection symmetry (+ or -),
vibrational quantum number (v), and any others needed to
define the states. From assumption 3, K is known; for S#0,
we have a coherent superposition of states with different
values of J and MJ. Sinée the wavefunction is

not a stationary state of the system, the state

decays exponentially:

Xt

le(t)> = ] F(KaM,) KM e 2 (3.2)
9

where % is the mean lifetime of the excited state and the
time t is measured from the instant of excitation. There

is no oscillatory term in the exponential because assumption
5 makes its effect negligible in this case.

We 1imit our consideration to allowed electric dipole
transitions because the intensity of higher multipole transi-
tions is too Tow to be observed in this experiment. The pro-
bability of the molecule undergoing a transition from the

excited state |¥> to the final state [F> is proportional to
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the square of the matrix element for the dipole transition

TR
Pyog = |<AeT] o] (3.3)

where & is the polarization vector for the photon and f is
the dipole length (or displacement) operator. We must inte-
grate this transition probability from the time of excitation
until the detectors shut off (the resolution time of the
apparatus). The number of coincidences, dN, occuring in this

interval is given by

t .2
dN = ALY [ "|<Fle-X]¥>|"dt]dada’ (3.4)
%0
where
A= — > (3.5)
2mhc

t] is the resolution time of the apparatus, v is the inci-
dent electron ve]ocity,'n0 is the density of electrons in

the beam, n is the density of target molecules, e is the
electronic charge, w is the frequency of the decay photon,

h is Planck's constant, and ¢ is the velocity of light. The
sum over ¥Fincludes all possible unresolved final states of
the molecule. The sum is to be taken after squaring the
matrix element. The solid angles for the electron and photon

detectors are denoted by do and dQ', respectively.

1. The Uncoupled Representation and Spherical Tensor
Components.

The first step is to write the eigenfunctions in the
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uncoupled representation. The excited-state eigenfunctions

in the uncoupled representation are written

|KaMy> = ﬂiﬁ IKMKSMS><KMKSMS|KSJMJ> . (3.6)
K™S

We also define excitation amplitudes in the new basis by

f(KJMJ) = ME& f(KMKSMS)<KMKSMSiKSJMJ> . (3.7)
K™'S

Substituting Eqs. (3.6) and (3.7) into Eq. (3.2), we have
ly> = I <KR SR |KSIM

MKMSMKMS

><KMKSMS|KSJM

>

J J

Xt

x £(KM SMc) |Kft, ST >e ° (3.8)

in terms of the uncoupled representation.
Now we write the polarization vector e in the spherical

basis, with complex unit vectors

\ = +_1_. N . 2
e,y = -/7 (ext1ey) (3.9a)
ey = &, ' (3.9b)

which satisfy

% = (-1319 A4

eq (-1) e_q , (3.10a)
and

A*.A - - q - n“ -

eq eq. (-1) eq e_q, 6qq' . (3.10b)

V=37 (-N%v_ e , (3.11a)
q
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where
V o= ¢ -V
g - Sq

Next we substitute the uncoupled representation of |v>

(3.11b)

given by Eq. (3.8), and the spherical tensor expansions of
? and X defined by Eq. (3.11) into Eq. (3.4). After squaring

the matrix element, and explicitly writing the sum over " we

obtain
dN _ q+q' 1 —
= A ! (-1)3% 9 ex e <K M, S Mo [X', [KMLSMe>*x
dQ'’ ' ' By -gq' =g "% KgTy S g K='S
{MKMKMSMJMJJJ MS % %
MM
MsﬁMJ?qq'MKgMKMK}

1 Yy Y * ! ¢
X <K'§'MK,;SMS,;'XqIKMKSMS>f (KMKSMS)f(KMKSMS)

x <KMpSMg [KSJ'Hy><KM, SHc [KSIM ;>

t
] 1 1 ] - t
x <KMySM [KSJ MJ><KMKSMS|KSJMJ>£ e” 't dt (3.12)
where A is defined as in Eq. (3.5)
VnonAezw2
A = 3 (3.5)
2nhc

Primed and unprimed excited-state quantum numbers appear
since we have a coherent mixture of a number of states. For
example, K is known and S is known, but the orientations of

these angular momenta are not known. Since

J = K+S, K+S-1, ..., |K-S] (3.13)

and
MJ = MK+MS’ MK = K’K-]’--o,-K, (3.]4)
Mec = S,S8-1,...,-S , (3.15)

S
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it is necessary to sum over these different possible angular
momenta, thus giving rise to the different possible J states.
Likewise, q and q' imply that different polarizations of

the decay photon are possible from the excited states.

2. Applying the Wigner-Eckert Theorem.

Next, we apply the Wigner-Eckart Theorem to the matrix
elements of Eq. (3.12), as well as using the Hermitian pro-
perties of these matrix elements, to obtain

KMy, S Mo |X . |KMISM>* x

<K M, S M X KM, SMc.>

P Koy Sq! ql K™"S

kX kg 12 -

x < K§MK¢1q|K41KMK> . (3.16)

The double-barred matrix element, called the reduced matrix
element, is characteristic of the transition K+K;, and does
not depend on compouisients q, or projections MK' The spin-
dependence of the matrix elements is suppressed because elec-
tric dipole transitions are independent of the spin. The
dependence on the geometry of the scattering event is con-

tained in the two Clebsch-Gordan coefficients.

3. ¢ Dependence of the Excitation Amplitudes.
The excitation amplitudes depend on the coordinates o

and ¢. In this section the ¢ dependence is factored out.
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The excitation amplitudes appear as a product, f*f, which is

proportional to a product of T matrix elements:

f*(KMESMS) F(KM SMS) =

<P 0T [BeKMSME>* < 0 |T [B KM, SMe> . (3.17)

Here, 0 denotes the initial molecular state, which is the same
state in both matrix elements. Since we assume (assumption 6)
that the spin is unaffected by the,collision, and that spin-

orbit effects are negligible, we require that
Mg = Mé . (3.18)

Now consider the effect of rotating the product of ma-
trix elements in Eq. (3.17) about the z axis: A rotation
about z by an angle ¢ applied to an eigenket or eigenbra of

angular momentum results in

Rs(0) [gm> = "™ |gm> (3.19)

and

<m[R (s) = "' M<ym| , (3.20)

respectively. Thus, when the matrix elements of Eq. (3.17)
are rotated together, the effects on bras and kets of 0 and
S cancel. The scattered electron momentum, Bf, always ap-
pears in a dot product with ¥, the spatial coordinate varia-
ble, and is therefore unaffected by the rotation. The net

effect of the rotation is

R2(¢)f*(KMkSMé)f(KMKSMS)



42

To(M -My)
e f* (KMySME) £ (KM, SMG) . (3.21)

This product of amplitudes must be averaged over unde-
termined initial-state quantum numbers. With the assumptions
made, this means averaging over MS and MK. Denoting this

average by j, we write
ff*(KMkSMé)f(KMKSMS) =

i¢(MK-M]'()<f .

K

s (3.22)

>

$
M M K

-1
Mé(25+1) e M

S
where the average is now over the quantities enclosed in

brackets. The quantity fM differs from f(KMKSMS) in two

K
important ways: (i.) fM is a function of o only, and, (ii.)
K do
M
fy 1s normalized so that |f) |2 = dQK . For the remainder
K K

of this work, we denote this partial differential cross sec-

tion for exciting the MKth magnetic sublevel as oy -
K

4. Reflection symmetry of <fM.fM >,
K"K

The reflection properties of <fM.fM > are useful in sim-
K"K
plifying some expressions derived later in this chapter.

B

We choose the x-z plane to be the scattering plane de-
fined by 31 and Ef, so that the coordinate ¢ measures the
angle out of the scattering p]anel Since <kafMK> does not
depend on ¢, this excitation amplitude must be invariant to
a reflection through the xz plane.

Letting sz be this reflection operator, we express

this invariance by
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~

M _<fyu,fy > = <Ffy, fy > . (3.23)
X2 Mk MK Mk MK

The transformation properties of the excitation amplitudes

are the same as those of the T matrix elements; therefore

we consider the transformation
IKMK> -+ MXZIKMK> . (3.24)

The reflection operator sz is equivalent to an inversion

followed by a rotation of = radians about the § axis:

- A

sz = R&(W)l . (3.25)

The kets [KMK> are proportional to spherical harmonics; since

we have47
° _ %
1Y£m = (-1) Yzm s (3.26)
then
: K
1|KMK> = (-1) IKMK> . (3.27)
The rotation by = about the § axis may be written as45
- ) LK
Ry(“)‘KMR = %']Km >dMKm.(n) (3.28)

and with the symmetry

J _ J-k

de (1) = (-1 s, o (3.29)
gives us

“ K+MK

R§(ﬂ)|KMK> = (-1) |K-MK> (3.30)
and

- K-MK
<KMK|R§(W) = (-1) <K-MK| . (3.31)

Combining these results, we obtain
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M, -M, .
- 4K K 'K
Mo <fyify > = (=1)77(=1) <f ,, f > (3.32)
Since 4K is an even integer, we can write
(-1) KK (3.33)
<Four Fu> = (-1 <f 4. f > . 3.33
M K'MK -MK -MK
5. Polarization.
We write the polarization vector ;, as
e = cMiosg + c(@ging (3.34)
where ;(]) and ;(2) are orthogonal unit polarization vectors
as shown in Fig. (2). 1In this basis, ') and %) Tie in

the directions of increasing 6' and ¢', respectively. The

polarization angle, B8, is measured with respect to ;(]).
An examination of Fig. (2) shows us that
;(]) = cos6'cos¢'X + cose'sin¢'§ - sine'z (3.35)
and
;(2) = -sin¢'§ + cos¢'§ . (3.36)
X ~(1) ~(2) .
Using Eqs. (3.9) and (3.11) we can express ¢ and ¢ in
spherical components:
- ! 14)' ' 'i¢'
E](1) _ -cose'e : E(()1) = -sing' : EE}) - Cosoe (3.37)
/2 /2
_iai9! _io=ie!
E%Z) = 18_ : eéz) = 0 ; e5$)= zle (3.38)
V2 V2

C. Simplifijcation of the Coincidence Formula

The objective in this section is to simplify Eq. (3.12),

both to clarify physical content of the equation and to make
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the equation computationally manageable.

1. The U Coefficients.

We begin by defining the quantity

U(q,q" My My, 0,3") =

(25+1)-] _z - _I<Kﬁ;(SMSIKSJIM5><KP-4KSM5’KSJMJ> X
MSMJMJMSMK;MKMK

KMy SMg [KSI ' M) ><KM, SMo |KSIM > x
<K5MK$1q'[KglKMk><KgMK?1q|Kq1KMK> . (3.39)

This quantity is the product of the Clebsch-Gordan coeffici-
ents appearing in Eqs. (3.12) and (3.14). The sum

includes all magnetic quantum numbers not appearing in the
excitation amplitudes. We performed this sum using the gra-

44

phical technique; the details are presented in Appendix II.

The result of this reduction is that

U(qqlMKM'JJ'KK%) = (2J'+])(2J+])(2K+]) x

K (2S+T1)
2
K. +M, +q T1 K K «x
(-1) F KT (2x+1) (-1)X {KKK}{JJ' s} N
XV %
1 1 K K
LG

-q q' v M M-y

where the brackets denote Wigner 6j-coefficients and the
parentheses denote Wigner 3j-coefficients. The simplifica-
tion here is considerable, since the sum is only over two

indices now rather than over seven. The summation index ¥
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can have only the values 0,1,2 by the triangle rule of the 3j
coefficients, with similar restriction on the possible values
of its projection v=0,*1,t2, which are determined by the sum
rules:

-g+ g +v=20 (3.41)

-Mk * M -v=20. (3.42)

Adding these two equations, we get
-q +q' = M- M. (3.43)

Clearly this expression is invariant to the change-of-sign

of all four quantities; also it is invariant to the simulta-
neous interchange of q for q' and MK for Mk. This establish-
es the symmetries for U, which are useful in calculations

of U for specific transitions. Wigner coefficients may be
evaluated by using the computer program listed in Appendix

ITI.

2. The Aqq. Coefficients.

Next we define the quantities Aqq, in terms of the U's.
The Aqq. include the dependence on the scattering amplitudes
in addition to the time dependence of the radiation. We

define

--Yt]

)

i U (q:ql9M sM |:J:Jl)<f f >(] - €
qq J3M KK M

Mg My

) (3.44)
Mk
where we have performed the time integration and evaluated

it between the 1imits of t=0,t].



To determine how many'of these Aq
consider the symmetry properties of the coefficients U, the

reflection symmetry of the excitation amplitudes,

<fy, f
My

and the Hermitian character of <fM.f >
K

>

My

<fM
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q t

M, -M,
= ("]) K K<f_le_M >
K 7K

MK )

Fy > = <Fy 0%
k Mg Me Mg

for each of the Aqq" We find the relations

and

or

which impl

and

Substituti

and that A

A1_

1-

A

ies

A

Ao

Ao

Ao

ons

A1

AO-

00

1A
= *

15 AT

17 AT

that A]_] is real; in addition,

= A_]_1 (both are real),

= AT

= At o

= *
Ao_1 .

among these equations gives
= o *

0 = Ao

1= “Agp o

is real.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

are independent, we

33)

45)

.46)

L47)

48)

.49)

50)

51)

52)

53)

54)
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Because of these relations, there are only four indepen-
dent quantities here; we choose the independent quantities

Agg> Ayq1» Ay_ys and Re Ay, to describe the scattering.

3. Simplified expression for the coincidence rate.

When we substitute into Eq. (3.12) the results obtained
in the preceding sections given by Eqs. (3.16), (3.21),
(3.32), (3.37), (3.38), (3.39), and (3.45-3.54), we can write

the coincidence rate as

_ 2 . 2
dN = B{Aoocos B + A]1s1n g + (All'AOO) X
2 2 1 : ] 2 ]
cos“gcos“e8' + V2 ReAO][s1n26 cos“gcos(o=-9")
. . ‘s . 2 2.
+ sin28sine'sin(¢=-¢')] - Al_][(cos BCos 6
- sinzs)cosz(¢-¢') + sin23cose’sin2(¢-¢')]} . (3.55)
Here, we have defined
B = 3y vn,n (3.55a)
8 0"A° :
and
2 2
ARE shve RN L (3.55b)
c

The quantity y' is equal to the decay width, y, times the
branching ratio for the decay. This equation, with the de-

fining equation for A__, and U, relates the coincidence rate

qq
to the polarization of the emitted radiation, the excitation
amplitudes, and the angular distribution of the scattered

particles.
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If no polarization measurements are made of the emitted
radiation, Eq. (3.55) should be summed over two independent
(orthogonal) polarization states. Summing over polarizations

c(1) ang <(2) (8=0 and %), we obtain

- 241

V2 Rer1sin29'cos(¢-¢') + A]_]sinze' x

cos2(¢=-¢"')]dada’ . (3.56)

Eqs. (3.55) and (3.56) may be used'in a variety of ways.
The density matrix elements for the excitation might be calcu-
lated in some approximation and used in Egq. (3.56) to predict
a coincidence rate as a function of scattered electron angle.
Or, the coincidence rate might be measured experimentally,
then fitted to Eq. (3.56) [or to Eq. (3.55) if polarization
measurements are made] in order to obtain the excitation am-
plitudes for various magnetic sublevels of the rotational
states. The cross sections for excitation of particular ro-
tational states, which are important for many applications

today, are readily obtained once the Iy 's are known since
K

Tk ’P} o (3.57)

It is also possible to obtain the polarization of the emitted
radiation without making a calculation (or measurement) of
the polarization by calculating the density matrix elements

and using Eq. (3.56) to predict the coincidence rate. This
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calculated rate and the density matrix elements may then be
used in Eg. (3.55) to determine the polarization angle.
Similarly the experimentalist could measure the coincidence
rate and use Eq. (3.56) to determine the cross sections, then

use these values in Eq. (3.55) to determine the polarization.

D. Further Comments on the Coincijdence Formula

An important aspect of the use of Eqs. (3.55) or (3.56)
“for determining the magnetic sublevel differential cross
sections for excitation is the number of parameters (or,
equivalently, the number of distinct measurements) necessary
for their determination. For some specific detector posi-
tions the number of parameters is a minimum.

To demonstrate this, we consider some particular values

of ¢, &', and ¢'. If o' = 90°:
dN = B[Ajq *+ Ayq * Ay_jcos2(¢-¢')]dada’ , (3.58)
if 8' = 90°, ¢-¢' = 90° or 270°:

dN = B[AOO + A - A]_]]dﬂdﬂ' s (3.59)

11
if 6'=90°, ¢-¢'=45°, 135°, 225°, or 315°:

dN = B[A00 + A11]d9d9' R (3.60)
if 6'=90°, ¢-¢'=0° or 180°:

dN = B[Ajy *+ Ayq + A;_jldade’ (3.61)

11
if ¢-¢'=90°:

- 2 ! 3 2 ] ]
(3.62)
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We note that because of the symmetry properties of the
U's, the quantities A00 and A]] will not contain any terms
of the form <f,,f,, > where M, # M,. This means that A
MK MK K K
and AH may always be written as

00

e~ R

. bici . (3.63)

i
Under some conditions, we can write A, _; in this form,
but we can never write Ay, in this form. The reason is

that A always contains terms of the type <f,,f, > where
01 MK My

M, = MK £+ 1, (3.64)

K
Therefore if we choose ¢-¢' and ¢' so as to eliminate AO1
and A, _;, the Towest number of parameters necessary to de-
scribe the scattering is obtained, although this loses the in-
formation on the relative phases of the excitation ampli-
tudes. As an example, the level K has 2K+1 magnetic sub-
levels. This implies that we need only to determine 2K+1

parameters: oy, oy _qys ... Ogs ... O_ys Where

<f, fy, > = ¢ . (3.65)
MK MK MK
but, noting that
(1) K (3.33)
<Fy,fy > = (-1 <f ,f > 3.33
Mg My -mg =My
implies oy, = o_ , (3.66)
My My

we reduce the necessary parameters to Ty s Iy s cees Ogs
K K-1
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or K+1 parameters. Therefore we require K+1 measurements
to determine the magnetic sublevel cross sections for the
rotational state K.

We point out that there is an upper 1imit to the
number of parameters that can be determined here. Recall
that we are describing the process with the four quantities
AOO"A]]’ A1_1, and ReA01, and are therefore limited to
determining four quantities from the coincidence measurement.
However, if a different final state is taken (such as the
P and R branches of an electronic transition), additional

parameters may then be determined since the A will be

different functions of the excitation amp]itu::s.
The physical significance of the terms <fMKfMK> is
clear: the complex conjugation removes the phase factor
so that this quantity is a real number and is equal to the
cross section for exciting the ]K,MK> state. The physical
significance of <kafMK> where Mk # MK is not quite so ob-
vious, however. Consider the mirror symmetry discussed

earlier: we found that

R ( )2K+MK ( )MK ( )
fy, =M _f = (-1 f = (-1 f 3.67
MK Xz MK -MK -MK
since K is an integer. Thus we have
f] = -f"] [ fz = f_z . etC. (3-68)

This Teads to

<f]f_]> = -<f.|f.l> = -0q (3.69)
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and
<Fof o> = <fofy> =0, (3.70)
and so forth. Now consider <f,, f,, > where M}, # M. Since
Mg MK K K
the overall phase of the molecular wavefunction |y> is arbi-
trary we can assign a phase of 0° to fO’ i.e., fO is real,
and measure the phase of the other excitation ampiitudes rela-

tive to fO' That is,

fy | oy (3.71)
f = |f e 3.71
where x is the relative phase between f, and f,, . In
OMK 0 MK
this case
[y | = +/oy (3.72)
K K
implies that iy
oM
f, = Vo e K, (3.73)
M M
K K
giving the result
1(XOM -XOM')
Fify > = Jogion e KK (3.74)
K 7K K 'K

We see from this that the incluéion of A01 in the ana-
lysis will add additional parameters (the XOMK'S) to the fit-
ting procedure; or, if desired, these relative phases may
be determined. This would not be possible without the co-
herent excitation of the substates. Thus we are able to
obtain this information about the scattering process that is

not possible to obtain even in a high resolution "direct”
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measurement without coincidence detection.



CHAPTER IV
APPLICATION TO THE H2 MOLECULE

One of the complicating features of molecular physics is
the formidable number of closely spaced energy levels.
Rosen,52 for example, lists data of forty-five electronic states
of the H2 molecule, each of which, of course, has ten to
twenty vibrational levels (spaced on the order of a few
tenths of an electron volt apart). Each of these vibrational
levels then has many rotational Tevels (spaced on the or-
der of a few hundredths of an eV apart).

We have chosen the H2 molecule to illustrate the theory
of Chapter III. Since this molecule has the smallest re-
duced mass of any molecule, the vibrational and rotational
level spacings tend to be Targer than for other molecules,
so the possibility of experimentally selecting definite
values of K is better. Necessary parameters are known for
many electronic states, and Hund's case (b) coupling is

satisfied by most states.
+

The target H2 molecules are assumed to be in the Xlzg

electronic ground state and the v=0 vibrational level.

The initial K level may be selected by some experimental

55
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technique such as selective excitation by a laser, or an
average might be made over the occupied levels, the distri-
bution of which is usually Boltzmann.

Electron impact can excite practically all of the ex-
cited electronic states, although some restrictions have
been noted.53’54

The photon emission, which we assume to be an electric
dipole transition, has very definite angular-momentum selec-
tion rules: K?4= K#1. In general, Agns Aqqs Ay_qs and Ag,
will have different values for these two transitions, so
that we may obtain eight independent parameters by varying
o' and ¢-¢'.

0f course, if the resolution of the photon detector is
sufficient to distinguish between the rotational transitions,
it will also be able to distinguish between vibrational
levels of the intermediate and final states. To first or-
der, we would expect no change in the form of the equations for
the anqular distribution due to different vibrational Tlevels,

other than changes in intensity.

A. The B}ZZ State (Lyman Band)
We take as our first example excitation of the B'Z:
(v=0) state of Hy, which is the lowest-energy excited state,
and is relatively isolated from the other electronic states.

This state has a mean l1ifetime of 0.8 nsec55

for decays
back to the ground state. We assume an observation time of

about 5-10 ns so that yt.l 4 0, then e'Yt] & 1,
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Since this is a singlet state, S=0 and J=J'=K; thus
AK=+1 (R branch) or aK=-1 (P branch). For the case K=0, qu1

we find
A= Log (4.1a)
00 3 0y’ 2 :
1 1
Alr = 3 93 (4.1b)
AO] =0, (4.1¢)
and
Ajy =0, (4.1d)

so there is only one independent parameter, co(e). For the
convenient setting, 8' = 90° we obtain the following simple

expression for the coincidence rate:

dN(e) = 3% oo(8)dada’ . (4.2)

The first excited rotational level, K=1, can decay to

either Ky=0 or K.=2. The transition to Ky=0 gives
% d %

AOO = UO/Y > (4.3a)

A1] = o]/Y s (4.3b)

AO] = <f0f]>/y , (4.3¢c)
and

A]—l = -c]/y : (4.3d)

while that to K?=2 gives

2 3



and

Thus, one can obtain the three independent quantities

>
]
™M

=
o
—
|
™/
—
o
A
-—h
o
-—*‘
w—
v
| -
<=
-

o
Avor = D oy d5

o](e), and X01(e) with only two settings:

(4.

(4.

(4.

4b)

4c)

4d)

agle),

say 6'=90° for

both transitions, then a setting of ¢' for which AO] is

present in the coincidence equation.

The next rotational state, K=2, decays to Kgfl or

Kg=3. For qu1 we obtain:

and

while the

and

Agy =

2 1
Agg = [3 099 + 115 »

- rl 1 1
Ayp = lgog * 707 % 900

. 1 Ve 1
Arp = [z op + 3 Re<fpfp> Iy,

_ /3 V3 1
Aoy = L37 <fofy> + 5 <f1fp> 13

other case, Ky=3, yields
S, 418 10 1
oo = [7 90 * 27 o1 * 27 917 >

2
A= 309+ a7 97 * 27 917 >

1
Mg = [ op + 22 Re<fofply
/TH7
1
[-0.24714<f(f > - T<f_fo>

2

.5a)

.5b)

.5¢)

.5d)

.6a)

.6b)

.6c)
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2V2
v s

There are now five independent parameters: Ogs T1s Ipo
Xg12 and Xg,-
If the K=3 state is excited, the decay can go either

K?sz or K?f4. For quz we obtain

S, L1621
Ao =I5 99 * 75 97 + 3 917 > (4.
R B 1
Ay = lgog v g5 09 * 30, %03l (4.
2 2/7 2 1
A = [-F 0, + — Re<f,f.> + — Re<f,f,>]— , (4.
1-1 S]fl—g 20/1—5- 3177y
and
Agy = [0.4899<F fi> + 0.3266<F_ f > + 0.5963<F, F)>
/3
+0.1491<F of 1>+ 5 of 5500 (4.
While for K?=4 we obtain
_ré + 2 2 Z__ 11
Agg = lgog t g0y + 30, +y503]7 (4.
5 7 2 29 .1
Ay = lqgog * 1797 Y39 * 35 93d7 > (4.
Ayq = [-% oy + 2 /5 Re<f,fy> + szgg Re<f3f]>]l ,
V216 Y

(4.

and

Rgy = [+0.3402<f f> - 0.2722<F f > - %%/§<f1f

1°0 01

>

2

5 1
tE /§<f2f]> - 0.0962<f2f3> + 0.3368<f3f2>]; .

(4.

1
<f f > + .3367<f2f]>]; . (4.

6d)

to

7a)
7b)

7¢c)

7d)

8a)

8b)

8¢c)

8d)
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The number of independent parameters is now seven: 9gs 01
%2+ 932 Xp1° Xg2* X03°

Obviously the quantities Aqq. can be calculated with
little difficulty for much higher values. However, the num-
ber of independent parameters will exceed the number which

can be experimentally determined.

B. The C'nu State (Werner bands)

A more complicated example results from exciting the

C'nu electronic state of HZ‘ Except for E,F]Z which lies

+
g’
close to C'Hu, this state is relatively isolated, and has
even larger vibrational-rotational spacings than B'zz.

Of course, I states have electronic as well as nuclear
rotational angular momentum. The C'IIu state decays to the
ground electronic state with a mean lifetime of approximately
0.88 ns. Since this is a I»Z transition, the dipole selec-
tion rules allow the P, Q, and R branches, thus providing a
maximum of twelve parameters to describe the process.

Another feature of I states should also be mentioned:
A-doubling. For a state with A # 0, there is a slight
splitting of the electronic levels into two states denoted
by A" and A”. This splitting, called A-type doubling, in-
creases as N increases. (This effect is negligible for the
state we are considering, but should be considered when
applying this theory to other states, particularly of heavier

molecules.)
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The values of the U's for the P and R branches are the

same as in the preceding example, thus the Aqq,'s for these

branches are the same function of the excitation amplitudes
as in the previous example, The Aqq.'s for the Q branch may
be readily calculated in the same way.

C. Experimental Feasibility

Since this work is intended to be useful for analyzing
experimental data, it is quite legitimate to ask "Is this pro-
posed measurement possible with presently or prospectively
available apparatus?" 1In this section we consider this ques-
tion and make some estimates of necessary pgrameters for the
experiment.

We divide this question into two parts. First, can suf-
ficiently high counting rates be expected so that the measure-
ment may be made in a reasonable length of time? Second, can
sufficient resolution be obtained to select a particular tran-

sition for study?

1. Estimated Counting Rate.

We will use the B‘Z: state discussed in section A of this
chapter as an example. Some of the magnitudes for the experi-
mental parameters used in what follows are taken from the de-
scription of experimental apparatus in the literature, others
are estimated with the help of experimentalists working with
coincidence experiments.

Because we require that the apparatus resolve rotational

levels, the photon intensity will be low. Since the
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lifetime of this state is less than a nanosecond, all the
molecules excited will decay while the detectors are "on".

For the purpose of making this estimate, we assume that
the radiation is spatially isotropic, so that the coincidence
rate is given by

JenO
e

dN % V o, da'da (4.9)

where Je is the electron current density, Ny is the target
density, e is the electronic charge, V is the interaction
volume, and oy is the cross section for exciting the Kth
rotational level, followed by a decay to the final state K .
We chose the following parameters:

pressure in gas beam 10'4 Torr,

electron beam current 10°° Amp.,

diameter of electron beam 0.1 mm,

diameter of gas beam 0.1 cm,

solid angle of photon detector 2.7x10'2 sr.,

solid angle of electron detector 2.7x1073 sr.
The interaction volume is approximated as a cylinder 0.1 mm
in diameter and 0.1 cm in length.

Substituting into Eq. (4.9) we obtain

20

dn % 1.6x10°% o) (o in eml) . (4.10)

Since values for oy have not been published, we estimate

this as follows: The total cross section for 25 eV elec-

trons to excite the B'z: state is 4x10']7cm2.55 We take the
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target molecules to be in the v=0 vibrational level. Using

the Franck-Condon factors between the optimum vibrational

57 we estimate the cross sec-

tion for the optimum vibrational level to be m8x10']9cm2. It

states ofthe X8 transitions,

is a reasonable estimate that the cross section for the rota-

tional excitation 1is an order of magnitude smaller, i.e.,

oy 8x10"2%m? | (4.11)

If we take the efficiency of the combined detection apparatus
to be 1%, this gives a count rate of approximately 0.1

counts/second. Although this is a low counting rate, it is

not so low as to make the measurement unfeasible.

2. Photon resolution.

We have assumed that the photon detector can resolve
the photon wavelengths well enough to select a particular
transition (K+K%). To check the validity of this assumption,
we calculated the energy differences52 between each of the
first five rotational states of B'z:(v=0) and the correspond-
of o
are UV, with a wavelength of approximately 1130A. As a

ing allowed final states of X'z _(v=0). These transitions

typical example, the transition nearest in energy to the

transition

-~
1]

1> Kg= 0, (4.12)

is

~
1]

2 > Keg= 1. (4.13)
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The energy difference between these two transitions is about
5 meV; the corresponding wavelength difference is 0.5A. This
resolution (or higher) has been obtained by several work-

ers.58'60



CHAPTER V
MODIFICATIONS OF THE INITIAL ASSUMPTIONS

In this chapter we consider the effects of relaxing

some of the initial assumptions made in Chapter III.

A. Hyperfine Structure and Quantum Beats

We simu]tanéous]y relax the assumption that no hyper-
fine structure is present, and the assumption that no quan-
tun beats are observed, since the two assumptions are rela-
ted. When a molecule has a non-zero total nuclear spin,
the resulting hyperfine levels may be coherently excited,
giving rise to quantum beats with a frequency such that
they may be detected. For example, consider the H2 mole-
cule: it has two protons (spin 1/2), so that the total
nuclear spin is I = 1 or I = 0. The latter may be readily
treated by the theory of Chapter III, but the former may
have hyperfine structure.

To take this possibility into account we use the addi-
tional angular momentum quantum numbers F and I defined in
Chapter III (see Fig. 3). The coupled representation for

the excited state of the molecule for this case is given by

(% + TEgFyy
le(t)> = ] F(KIFM;)|KIFM_>e 2 TF (5.1)
IFM

65
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where the excitation is assumed to have occurred at t = 0.
This equation may be compared to Eq. (3.2). There are two
distinct differences: First, the total angular momentum
is now the quantity F, with projection MF' The nuclear spin
is not strongly coupled to J, so that the component of I is
conserved. The effect of this weak coupling is to
cause a slight shift in the energy levels. These nearly
degenerate levels will be coherently excited. Second, we
have introduced an imaginary term in the exponential.
This term causes an oscillation in the intensity of the
photons emitted from the coherently excited states. If
the energy levels are so close that the frequency of the
oscillations is low, then the oscillations are not "averaged
out" during the observation time. In this case the oscilla-
tions, called quantum beats, can be observed experimentally
and can be used to determine the fine and hyperfine struc-
ture of various atoms and molecules.®1-83
Since the development is similar to that in Chapter III,
we will not repeat the arguments here, but summarize the
procedure. First we write the excitation amplitude f(KJFMF)
and the eigenket IKJFMJ> in an uncoupled representation to
allow the separation of the electronic spin, as in Chapter
IIT, and the nuclear spin from the excitation amplitudes.
The uncoupled representation for the eigenket is

|KIFMC> = ) | KM, SMIM > <KM\ SMc [KSIM >

J
MMM My

>

x <JMJIMI|JIFM s (5.2)

F
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and for fhe excitation amplitude by

f(KJFMF) = ) f(KMKSMSIMI)<KMKSMSIKSJMJ>
MMM M,

X <JMJIMI[JIFM > ., (5.3)

F

Substituting Eqs. (5.2) and (5.3) into the general coinci-
dence rate equation and expanding in spherical-tensor com-

ponents, we obtain

) <KMLSME [KSI'RY>

dN = A} f*(KMkSMéIMi
o

<J'RYIME[F'MESF (KM SMTM ) <M, SMc [KSJF)>

v _1ya+q’
<JM IML[OTFML>(-1) eXqi€aq

-! M1 1 1Ok
<K§MK9§9MSngML§|Xq,]KMKSMSIMI> x

<KM'KSMé|KSJ'Mj><J'MjIMi|J‘IF'M%> x

> X

<KMy S, M

1
koSS 1, g | KM TH

I

<Kl SMc | KSIM 3> <IM TM |JTFM

> X

F
t

/
0

exp[‘(Y + 1mdF,J'F')t]dt ’ (5.4)
where the sum is over the set
o = {q,q',J,J',F,F',MF,ME,MS,MI,Mé,Mi,MK@

s, My PRy B Ry} (5.5)

The frequency of the oscillations in the hyperfine structure,
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WIF,J'F!? is defined by

E - E
_SIF T RgF
mJF,J'F' = A (5.6)

Because the nuclear spin projection is conserved, we can

write
M = M} . (5.7)

We redefine the quantity U so as to include the effect

of nuclear spin as

U(Q:Q' ,MKaM;‘(aJ’J' anF’ :K!K?)

M_M'_M, M. M, M.M
F" F'Kg Sp 100
M;(MKMJMJMSMI

l<KM|'(SMS[KSJ'M&><J'M3IMIIJ’IF'M;:> X
J

<KMKSMS|KSJMJ><JMJIMI|JIFMF> x
<KMkSMS¥lKSJ'M3><J'M51MITIJ'IF'M§> x

<KMKSM37IKSJM ><JM IMI¢|JIFMF> X

J J
<K%Mngq'IquKMk><K§MK?1qIK41KMK> . (5.8)

This expression may be reduced as in the case without hyper-
fine structure by the diagrammatic technique. The details

are given in Appendix II. We can then write U as
U(q’q'QMK’M'K’J’J"F’FISKSK'}) =

[(2J+1)(2J'+1)(2F+])(2F'+1)(2K+1)][(ZS+1)(21+1)]']



v 11 K?
K K x} (1 1 ¥
-M! MK vit-q @' -vj » (5.9)
with Aqq' also redefined to be
A |, = Z U(qq'M MLIJPFF' KK, ) <F(KML)F(KM, )>
t

x L exp[-(y+imJF J.F,)t]dt . (5.10)

3

We illustrate this theory with an application to the d I,

(1s,3p) (Fulcher band) state of H We chose this state

5
because a considerable amount of work has been done on it,
inciuding the hyperfine structure of the ortho states.

For this state, the hyperfine splitting is larger than the
natural linewidth, so the possibility of detecting quantum
oscillations is present., The Tifetime of this state is
given by cahi11%4 as 68t5 ns (for v=0), and by Freund and

Mi]]erss

as 29.4:3.2 ns.

We consider the K=1 level for the v=0 vibrational
level. Miller and Freund66 have calculated the zero field
energy levels for K=1 and v=0,1,2,3. We have used these
energy levels to calculate the approximate frequencies ex-
pected for the quantum beats of the hyperfine structure.

These are given in Table I.

Now consider the time integral in Eq. (5.10):
t

1
Int. = L exp[-(y+imJF J.F.)t]dt . (5.11)
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Let

z =y + inFJ'F' R (5.12)

so that Eq. (5.11) becomes

¢ -zt
Int. = | 1 e-2tgy = =8 P 1 (5.13)
0 Y4 4
or, .
_ 'EXP['(Y*‘ 1wJF,J'F')t]] 1
T TRIFIF YT YRR

In an experiment, it is convenient to let t] be much
longer than the lifetime of the state to increase the number
of coincidences observed. Therefore if t1 is much longer
than either 1/y or 1/“JFJ'F" the first term on the right
in Eq. (5.14) vanishes and we have

1

Int. ® .
Y TegEgE

(5.15)

From Table I, we can see that WIEJ'E" is typically on the

9

order of 10° whenever J#J' and F#F', and vanishes otherwise.

We can then approximate the integral by

1

0 if J#F' and F#F'
Int ® {
- if J=d' or F=F' (5.16)

What happens physically in an experiment is that if ]/“JFJ'F'
is small compared to the lifetime and to the observation
time, the photon intensity is "averaged out "over the
quantum beats; and, if the lifetime of the state is short
compared to the period of the quantum beats, only part of

a cycle is completed before the molecule decays, and no
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Table I. Expected Quantum Beat Frequencies for the
3 -
d T, (K=1) State of P

¥ F

-n

“3F a0 F (MH2)

0
1060
1514
1764
702
274
473
0
453
704

0
250

0
1764
1334

587
1816
1389
1041
2466
2038
1290

0

427
1175

0

748

0

J
0
0
0
¢
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

W N N W N — W N~ W N — W N = N NN — N — O WMN = NN — O —

1
1
1
1
1
1
1
0
0
0
1
1
2
0
0
0
1
1
1
2
2
2
1
1
1
2
3
3

PN RN N NN R D MDD N NN DD N NN~ e NN N~ = O
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effect is observed. Now using Eq. (5.16) for the time in-

tegral and Eq. (5.9) for the U's, we find for the process

3

e+X'z;+d noo(K=1) + e, (5.
d3H; + a3z;(|<=o) + hv
that the Aqq.'s are given by
Ay = [0.7126 o, + 0.295 00]1; (5.
Agg = [0.5898 o) + 0.410 00]3; (5.
Rgp = [0.2882<F F > + 0.129<f_]f0>]1— (5.
Ay = [-0.1152 018 (5.
The 3H; rather than the 3H: state was used because

the dipole transition selection rules require +<«+-, with

+«f>+ and -<«}>-. The singlet-to-triplet excitation by

17)

18)

19)

20)

21)

the electron does not violate our assumption that the scat-

tering Hamiltonian has no spin dependent terms because the

excitation above occurs via an electron exchange, rather
than a spin flip. In the process described above, the
measurement gives the excitation amplitude for the ex-

change process, and not a direct excitation.

B. Rotational Levels Not Resolved

Even when the rotational lines are not resolved, a
measurement can yield some useful information about the

scattering event. Two experimental aspects are involved:
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the resolution of the incident electron beam; and the re-
solution of the detectors, particularly the resolution of
the photon detector. First we consider the resolution of
the electron beam. As discussed in Chapter II, the co-
herently excited states are those which can be expressed as
a linear superposition, or, equivalently, those states which
have the same dependence on the momentum vectors of the
incident and scattered electrons. Where AE is the resolu-
tion of the beam, all states which have excitation energies
within AE/2 of the mean energy of the incident beam will be
coherently excited. This implies that if AE is small

enough that only a single K level of the molecule is excited
(only the exactly degenerate magnetic substates are excited),
the resotution of the detection apparatus doesn't matter.

In practice this is not realizable, especially in the case
of molecular targets, because several K levels of the ground
state will be occupied, Teading to differences in excitation
energies for various K states that are much Tess than the
rotational spacing. Resolutions on this order for elec-
tron guns are not now feasible.

We must assume then, that from a practical point of
view, the electron beam will have a sufficiently large energy
spread, AE, that several K levels will be excited. This
means that the sum indicated in Eq. (5.1) should also in-

clude a sum over K:

E
lv> = KJZM FOKIM) [KaMy expl-(F + 1 —S9F)¢] (5.22)
J
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and a similar sum over K and K' in the equation for the Aqq.'s
in Eq. (5.4). However, the natural widths of the K levels

are small compared to the separation between the levels.

The fact that the energy spacing between K and K' is large
implies that Wk s is large, and we conclude by the same
reasoning as in the preceding section that the time integral
causes the terms in Eq. (5.4) to vanish if K#K'. This

leaves only the sum over the unresolved K levels to be per-

formed, and A is now defined as

qq’

= ) {U(qq'MKM'JJ'FF'KK?)<f(KM')f(KMK)> x

A
qq' K K
KIJ'FF'M My
] -
[0 exp[-(y + 1mJFJ.F.)t]dt} . (5.23)

The quantities U are defined in the same way as before. The
sum over K has the same value as would be obtained if the
K Tevels were incoherently excited.

The transitions most difficult to resolve are likely

to be of the type*
K - K,;\(=K-1) and (K+1) =+ K§(=K) . (5.24)

The energy difference between these transitions is much less
than the separation between the levels K and K+1. Suppose,
for example, that the apparatus could not resolve the transi-
tions discussed in the case of B'z: - X'z: where K=1 = K?=0

and K=2 ~» K?=1.

*See section C.2. of Chapter IV.
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Using the notation OkM to label the differential cross
K

sections for exciting the MKth sublevel of the K rotational

state, the Aqq. would now be given by

- 2 1

Agg = Logg + 3 950 * o117 » (5.25)
A, = [o +lo +lc +c7]l (5.26)
1 1M *t5 %0 %7 o9t 9l -
Ay, = [<F(1,0)£(1,1)> + ‘;—§<f(2,0)f(2,1)>

¢ Bef(2,-1)7(2,051L (5.27)

and
e

Apy = [-3 opp + 5 Re<f(2,0)F(2,1)>

-;_0'2]]'1_}‘ . (5.28)

C. Hund's Case (a) Coupling

In this section we consider the theory developed in the
preceding chapters as applied to molecules obeying Hund's
case (a) coupling. This coupling scheme is illustrated
in Fig. 5.

In this coupling scheme, the orbital angular momentum
is strongly coupled to the internuclear axis as in case (b)
coub]ing with projection onto the internuclear axis A.

The electronic spin is aiso strongly coupled to the inter-
nuclear axis with projection quantum number £. The total
electronic angular momentum projection on the internuclear

axis is 2. The rotational angular momentum N is coupled
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) A

Fig. 5. Schematic diagram of Hund's Case (a) Coupling.
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to @ to form the total molecular angular momentum excluding
nuclear spin, J; and the total nuclear spin T is coupled to
J to form the total molecular angular momentum F.

Clearly there is no distinction between Hund's cases
(a) and (b) for S=1; for : states, case (a) does not occur,
since it is the magnetic field of the orbiting electrons
which tend to couple S to the axis. This coupling requires
that the spin-orbit portion of the Hamiltonian is larger
than in case (b) coupling, so that our assumption of no
significant spin-orbit interaction for the decay may need
to be examined. However, for the lighter molecules this
interaction should cause a splitting of no more than 1 or

2 cm']

s which is not important.

We are considering Hund's case (a) coupling because it
describes the coupling scheme in some light molecules.
There are also cases which are intermediate between case
(a) and case (b). For example, consider a molecule which
obeys a case (a) coupling scheme. As the rotational level
is increased, the rotational velocity may become comparable
to the precessional velocity of S about the internuclear
axis. This has the effect of uncoupling S from the inter-
nuclear axis. When this occurs, the angular momentum coupling
might better be described by case (b) coupling. In addi-
tion to the selection rules for case (b) coupling we have,
Az=0, (corresponding to AS=0 in case (b) coupling) for

dipole transitions.
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In what follows, we assume that the molecular state is
adequately described by case (a) coupling, and that the J
levels are resolved by the apparatus. Hyperfine interac-
tions are included, and all other assumptions of Chapter III,
section A are taken as valid. We now refer to J as the ro-
tational quantum number. The excited state of the molecule

is described by

£
[ ¥(t)> = T F(IFME) [IFM >exp[-(F + 1 —E)t] (5.29)

h
FMF
where the excitation occurs at t=0. Since I does not enter

the decay process, we write this wavefunction and the exci-

tation amplitude in an uncoupled representation:

IJFMF> ) <JMJIMI1JIFMF>|JMJIJI> R (5.30)
MM
J1
and
f(JFMF) = M}ﬁ <JMJIMI|JIFMF>f(JMJIMI) (5.31)
J1

At this point we recognize that the form of these equations
is the same as the corresponding equations in Chapter III.

If we make the associations in Table II, we find

U(qq' M MIFF'Jdy)

_(2F'+1)(2F+1) (2d+1) ])J%+”J+q
= (ZT+T) (-

e MR B %)

bd
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Table II. Association of Quantum Numbers

in Hund's case (a) and Hund's case (b).

case (a) case (b)

J,MJ - K,M

I,MI -+ S,M

K

S
J?,MJ + K%’MK

t
1
Agqr = T U(qq'MjMYFF!)<Fy, f, >[ dtexp[-(v + fup [i)t]
M3 J J ‘0
(5.33)
The coincidence rate is given by Eqs. (3.55) where Aqq' is
defined by Eq. (5.33) with

= 3x'
B g— Vnghy (5.34)

and 1 9
gr 02,2 1<II1X 13>

W
' o= & : (5.35)
3 hc3 (2d+1)




CHAPTER VI
BRIEF SUMMARY AND CONCLUSIONS

In this work we present formulas for the analysis of
inelastic electron-diatomic molecule collisions in which the
scattered electron and subsequent decay photon are detected
in coincidence. We hope this work will prove useful in
analyses of prospective and/or current experiments of this
type.

Our results express the coincidence rate in terms of
the complex excitation amplitudes for magnetic sublevels
of rotational states of diatomic molecules, the angular
correlation of scattered electrons and photons, and other
measured parameters, such as the time-dependence of the
radiation.

An important aspect of this work is in relating empi-
rical results to the calculations of cross sections or
density matrices. Experimental data may be analyzed with
this theory to determine the partial differential cross
sections for the magnetic sublevels, and, consequently
the rotational state cross sections needed for many engi--
neering and scientific applications. In addition, one can

determine the phase relations between excitation amplitudes;

80
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this provides additionat information about the excited
state wavefunctions. The fine and hyperfine structure of
diatomic molecules can also be studied in some cases.

Although our discussion has assumed that the incident
particle is an electron, the theory is easily generalized
to include scattering by positrons, protons, or ions.

From our estimates of counting rate and photon resolu-
tion, we conclude that the angular correlation experiment
involving H2 is experimentally feasible, and we anticipate
that calculations of the excitation amplitudes or density
matrices as well as measurements of the coincidence rates

will be forthcoming.
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APPENDIX I
DIAGRAMMATIC RECOUPLING

A, Symmetry Properties of 3j Coefficients,

In this appendix we define the symmetry properties of
3-j and 6-j Wigner coefficients and outline the basic opera-
tions of the diagrammatic technique44 for reducing sums
over products of CG coefficients.

The CG coefficient is related to the 3-j coefficient by

<Gqmpdgny [31ddgme> = (-1)
i 4, j3]
X

(33) = 233 + 1 . (I-Z)

where

The 3-3] coefficient is cyclically symmetric, i.e.,

i 3, I3 i, J3 iy iz d7 3o
My My Ma) M, Moy Ma) My My m,) ° (1-3)
1T 72 73 2 "3 1 371 "2
. REPANE
and is multiplied by the phase factor (-1) “ upon

interchange of any two columns. Changing the sign of all
quantities in the second row multiplies the 3-j coefficient

by the same phase factor.
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In addition, there is a triangle relation between the
angular momenta which we denote by A(j]j2j3), which gives

the useful inequality
The projections obey the sum rule

my *om, +omgy o= 0. (I-5)
These two relations imply

Jj; + J, + ;= integer . (1-6)

A violation of (I-4), (I-5), or (I-6) results in a zero

value for the 3-j coefficient.

B. Symmetry Properties of 6-j Coefficients.

The 6-j coefficient is expressed in terms of the 3-j

coefficients as
3

Cs Y (Jo-m +2 -n ). s .
Jq ds J = v v v o viile Jp J
{ ] 2 3} - Z (_-l)\)—] { ] 2 3 ] x

29 2, %
1 "2 73 all mi,ni

) [j1 Y2 23”“1 ‘2 ja]{z1 J2 %3 ] C(1-7)
2 2

=Ny =My =Nj

My Mg -M3

It is invariant to interchange of any two columns, or
the interchange of any two angular moments in a row with the

corresponding angular momenta in the other row.
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C. Graphical Representation of 3j Coefficients

We represent the 3-j coefficient graphically by a node
with three 1ines radiating from it. Each line represents
one of the angular momenta, and has an arrow on it to indi-
cate the sign of the z-component. An arrow directed away
from the node denotes a positive sign and an arrow directed
toward the node denotes a negative sign. A plus (+) sign
near the node indicates a counterclockwise order in which
the angular momenta are to be coupled and a minus (-) sign
indicates a clockwise direction. For example, the four 3-j
coefficients in Eq. (I-7) are represented graphically in

Fig. 6.

M

J3

Fig. 6. Graphical Representation of 3j Coefficients.

The symmetry properties of these diagrams are quite simple:
the 1lines may be deformed or rotated in any way we wish as

long as the order of the coupling is not changed. If the



90

. NPREPARE
order of coupling is changed, a phase factor of (-1)
is introduced. Similarly, if the directions of q]] three
RRPARE

arrows are changed, a phase factor of (-1) results.

D. Contraction.

An angular momentum is said to be contracted when its
projection is summed over. This operation can readily be
performed graphically. First, the product of Wigner coeffi-
cients is put in a standard form. This form has two require-
ments:
i. The z-component to be summed over must appear
twice in the product: once with a positive
sign and once with a negative sign.

ii. Whenever a projection, mj, is to be summed gver, the
terms in the sum must be multiplied by a factor (-1)j'mj.

The identity
(-1)3*m = (11)23 « (oq)d-m (1-8)

is useful in reducing a sum to this form. As an illustra-
tion of the standard form, consider the right side of Eq.
(1-7).

Graphically, contraction is carried out by joining the
corresponding free lines of a particular angular momentum.
(Free angular momenta are those not contracted.) Figure 7
shows a graphical contraction on j1. Both arrows must have

the same sense.
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Fig. 7. Contraction on j].

.E. Graphical Representation for a 6-j Coefficient.

The 6-j coefficient is defined by Eq. (I-7), which is
in the standard form. When the graphical representations
of the 3-j coefficients in this expression (Fig. 6) are
contracted we obtain the diagram for the 6-j coefficient

shown in Fig. 8.

Fig. 8. Graphical Representation of 6-j Coefficient.
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F. Expansion in Generalized Wigner Coefficients.

A generalized Wigner coefficient is a product of Wigner
3-j coefficients that have been minimally contracted. The
result in Fig. 7 is an example of minimal contraction. Any
general product of 3-j coefficients can be expanded as a
product of "closed" figures (j-coefficients) multiplied by
a generalized Wigner coefficient. This usually results in
simplification of the original product. This procedure is

detailed in Appendix II.A.

G. Separatijon of a Diagram.

It is sometimes desirable to break up a diagram. This
can readily be accomplished if: (i) a line can be drawn
through the diagram that crosses only three lines, and the
separation is made on these lines; (ii) the three lines
must have the same orientation. (The orientation of a
closed (contracted) line, j, may be changed if a factor of
(-1.)2j is introduced.)

This separation is illustrated in Fig. 9.

We apply the results of this appendix to the simplifica-

tion of complicated sums in Appendix II.
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+
- 2
4
v/ \
A \—,\A
I
\

/4 // I\ /
- d -
A TA A
AN

/ \

y: Sy N

Separation on three lines.

9.

Fig.



APPENDIX II
REDUCTION OF PRODUCTS OF SUMS OVER
CLEBSCH-GORDAN COEFFICIENTS

In this appendix we apply the technique outlined in
Appendix I to a product of six CG coefficients and to a

product of ten CG coefficients.

A. Product of Six CG Coefficients.

We consider the sum

I = g <dymydpmy [3gmy><dgmydomy [igmg>
* <Jyymyqdgmg ligmg><dymydgme|dgmg> x
x <jgMglgMg|iqmy><igmgdqgmygligmg> (11-1)
where
B = {m],mz,ms,m4,m5,m6,m8} . (I11-2)

Using Eq. (I-1) to change this sum over CG coefficients to

a sum over 3-j coefficients gives

; 39 35 33 y(dg 3y ds (i I 33
I = A
g |M My ~M3j -

2 Mg =My Mg =My ~Mg M3
h| J J Jj J j J J h|
-; -g m5 m8 m9 -m.I -g -;O m4 ('1)P+R » (11-3)
7 "M Mg)|Mg Mg =My g8 Mo Mg

94
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where

A= ()22 (112, (11-4)
with

(3;) = (235 + 1), (1-2)
and

Ro= Jy=my¥ip-mytig-mati,-my+jg-me+jo-metjg-mg ,  (II-5)
P = -my-mg+i +2ig-dg - (11-6)

The graphical representation for these 3-j coefficients are

given in Fig. 10.

Fig. 10. Graphical Representation for Eq. (II-3).
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Noting that R puts this expression into standard form, we

contract on the indices B. This produces the diagram in

Fi g . ] ]' .
AR .
N ~ ) )
VJQ \ 2 AS‘
—— >— - >
Jdio + Jdy - s -+ Jy

Fig. 11. Contraction of Eq. (II-3).

Contraction of this diagram with the generalized Wigner co-

efficient

J Jg x| (3 iy x
yx-vidte Jg 1y )
g (2x+1)(-1) [_m]O ng v}[-m]] n, _v} s (11-7)

having a graphical representation shown in Fig. 12, results
in the closed diagram of Fig. 13.

The diagram of Fig. (13b) is in the required form for
separation along the dashed lines. We separate Fig. 13b
as shown in Fig. 14,

Comparing these diagrams with the diagram for the 6-j

coefficient in Fig. 8, we find that they represent the 6-j
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Graphical representation of Eq. (II-7).

J !
l |
+ 33 . - 't g -
¢ A 0 T 1
In | 3
< - - Y | \ 28 | 1A " 2,
> - + > - 2
I | % x€)
¢ 39 o | | 3y
> L,
- ¥ 4+ + :J.,-- (R TS +
‘ i
' I
a. b

Closed diagram for contraction of diagrams in

Figs. (11) and (12).
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- + -
/J“/3 y 3 )
SR Sy - -
Jo h 3y o
+
a b, C

Fig. 14. Separation of diagram in Fig. 13.

coefficients:

Jg Jia X ~Jatiq=dq*2iqa-x
Fig. (14a): { 9 10 } « (-1) "4 T8 TNI0T 11 g

Jg 37 g
Jq da x ~Jistia-i

Fig. (14b): {.1 4 } « (-1) T2 TATS (11-9)
Jg 33y

and

Ja d X KPCNPERNPEN |

Fig. (14c): {_3 5 } « (-1) 0 TR eI (11-10)
J7 311 Js

Combining these results we find

, ~vfdg d1g X 1(dq dg x
I=ADY T ()(-1)X “{,9 ,]0 , {.] .4 . } *
XsV Jg 1 Jg” g I3 I

L. . . (11-11)
J7 J11 Jg" "Myg Jg V7 t=Myy Jp -V
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where
PP = -my=Mgtiy=Jg*iy-Jg=2ig*2iyg-dyy - (11-12)

We associate the molecular angular momenta with these

general quantities as

Ki=Jdy =304 %37 =14 e = m
S =y = Jg Mg = m,
J' = j3 Mj = my
J = j5 MJ = Mg
K,;'-j8 MK = my,
V=g =d1o Mg = mg
My, = m
K = My
M =m
K~ "8
q' =m9
4= Mo
Mk = My (I1-13)

The result is the reduction to Eqg. (3.40).

B. Product of Ten Clebsch-Gordan Coefficients.

Consider the sum over products of CG coefficients:

I= [ <3ymydpmgldgmg><iamadamy [igmg>
g

X

<JgMgdpMp 13 ymy><dmadymy | JgMmg><dqemyedgmgliqgmyg> x

X

<J10Mod11My1l3gmg><dqomypdgmgldygmyg><iqgmygdqqmyqligng> x

X

<314MygdysMygliqeMig><dqamigdysmyzldqamg> o (11-14)
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where
B = {mz,m3,m4,m5,m7,m8,m9,m]O,m]1,m12,m]3,m]4,m16} . (I1-15)

Using Eq. (I-1) we write this equation in the standard

form as
L=a7( 1)Q1+Qz (37 32 33 Y[33 34 35 J[36 3o 3y
8 kl'l'l-l mz 'm3 m3 m4 -m5 "m6 -m2 m7

- X . . . . . . . i . .

37 34 3g)[316 Jg Jqo)[d10 In Is|[Frz do i3

"M7 "M Mg ("Me "M9 Mo (™Mo “™1 "s5) (M2 Mg "M3
(s . s ) . - . . . .

L (713911 s [314 315 316][314 17 312]

i i (I1-16)
M3 M1 Mg ™™g "M5 M) (Mg ™7 "M2

where A = [(33)(35)203;) (3g)2a,0)(dq5)(aq¢) (ag) 112 L (11-17)

with
1

i O~ oy

Q, = (J5-my) = Jg + Mg = Jq5 *+ Mg o (11-18)

i=2

and

Qp = =my = My = dp + 2 * 20 F 2yt 26 - Iyye
(I1-19)
The graphical representation of these coefficients are given
in Fig. 15.

These diagrams are contracted on the indicated indices,
producing the diagram in Fig. 16. The contraction of this
diagram with the generalized Wigner coefficient

NECHEILAR IR R AN (11-20)
(diagram in Fig. 16) is shown in Fig. 17.
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Fig. 15. Diagrams of ten 3-j coefficients.
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j )+ /J, + }); - de - jJ\L + ds
< TN ) N A
AT Vda In /Uq A
S h (N N
> 7 4

N ~
o —~ h = g+ b+ N - W

y ds
- zx
x
b

Fig. 16. (a.) Contraction of ten 3-j coefficients.
(b.) Generalized Wigner coefficient that closes

the jm-coefficient in (a.).
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+ Jy  + g - Jdo — o T
.)‘ Y N < N\
v . s
\,31 \z ] A\)" /\Jq J"f\
P
% Ii7
> >~ >— >
- by - TR o T
a.
}
| , ' [
] -
L % S B by, t+
B ] ‘ - | ’ T ” vl
3] vy g
£ 3 ] 2 ! /\J“ /\Jq l J,'\
! Y | |
rd
] | | |
Jb l « | - l | Jl7
- o > >
L), Nt { 3y + : S —
|
| | |

23 +2L ¢ +2

b.

Fig. 17. (a.) Contraction of Figs. (16a) and (16b).
(b.) Rearrangement to permit separation along

the dashed lines.
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‘This diagram is separated on the dashed lines in Fig.
17b. The result is shown in Fig. 18,
Comparing the diagrams of Fig. 18a-e, to the diagram

of a 6~j coefficient, we find that they correspond, respec-

tively, to
ic x (PR ANPENPRN
{ 1 96 }( 1y TTTETYeTY s (I1-21)
J7 33 3,
{Js 17 x }<-1)'j8+2j3+j7+j4+2j5 (11-22)
Jg 5 Jg ’
ja X Sy 3%2x-3q7%]
{ 8 }(_]) 13 1178 i (11-23)
13 310 J11
{J1o RER } RERRAEAL LML E MRl (11-24)
12 16
and
I16 312 X } (1773140240 (11-25)
{317 J15 14

Combining these results we obtain
_ufdy dg x y(dq d J J X
AR g eIl 37 s o
J7 d3 Jg7 g dg dg” 33 d1p9 I
{j1o 313 x }{j16 J12 X }(je X][jls Jy7 X )
X . . . . . . ) ,

312 J16 Jg/ U7 Jyg Jqg) InMg My Vj{=Myg Myq =V

(11-26)
where R = -my=my7-Jq=d4-3g-23171d111314% 05310737

+jz+j]3‘j9 . (11-27)
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a.. b
Js
M, Mo |
x
+ > + -
J
J’ & J'3 J|7-
+ +
C. d.
e
J
i 1

Fig. 18. Separation into 6-j coefficients.
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We make the associations

5= 3, = 4 Mg = m,

It =03 = Jy Mg = m,

I =3, =34, ﬁ& = m,

F' = g My = m,

J =3y = Jq3 Mg = mg

F =g My = mg

Ky = Jyg Wy = my

1= 15 = 31y Mg = mg

K=dy=dg=d12= 016 Mg, =mg
M3 = Mg
M1 = ™y
My = mpp
Mg = M3
Mo ™4
q' = Mg
Mg = mg
Q= m, (11-28)

to obtain Eq. (5.9).



APPENDIX III

The theory presented in this work involves many 3-j
and 6-j coefficients. To facilitate their evaluation, we
Tist in this appendix a computer program for this purpose.
CG coefficients may be evaluated as well. The program

is written in Basic computer language.
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4 GO TG 100
8 GO TO 1000
12 GO TG 1300

100
110
120
- 130
140
150
140
170
180
190
200
216
22

230
250
250
260
270
280
250
33

3ic
520
330
340
330
350
370
350
350
490
463
410
420
430
440
450
440
470
430
490
500
516
S20
S30
540
550

FRINT °"THIS FROGRAM EVALUATES 6.J-SYMROLS®
DIM DC1639D1(18)2Z1(7)Z2(7)
FRINT “INFUT THE &J-SYMBOL, TOF ROW FIRST FLEASE®
INPUT J19J2rd390L190L2,L3 : .
UC1)=Ji+d2-J3

H2)=d1-J2+43
L{3i==Jdi+JI+J3
D(4)=J1+L2-L3 ¢
B(3i=J1-L2+L3
D(&)==J1+il2+L3
D(7)=L1+J2~-L3

0{8)=Li-JZ+L3
O(F)==-L1+J2+L.3
TCICI=Li+l2-43
DCLL)=L1-L2+J3
D(12)=~L1+i.2+J3
D(i3)=J1+J2+J3+1
DCi9)=JdiTllrL3+1
D(1T)=L1+d2+L3+1
ISR ISR 4 Rel N L]

FGR I=1 70 1¢é

IF (1< THEN 720

NEXT I

FOR I=1 70 16

X=0¢I)

GOSUR 460

D1(2)=X2

NEXAT I

I2=J14+J2+43 +L1HL2FL3+L .

k=0

FOR J8=1 TO 12

J=Jg-1

21(1)=4-Jd1=J2~J3
21(2)=4-J1~L2~L3
Zi(3>=J=-L1-J2~L3
Zi(4)=J-L1-L2~J3
Z1(H)=J1+J2+L14L2-J
21(6)=J2+J3+L2+L3~J
Z1(7)=03+J1+L3+Li~d

FOR I3=1 7O 7

IF Z1(I3)<0 THEN 400

NEAT I3

FOR I4=1 TQ 7

X=Z1(I4)

GGSUR 460

Z2(I4)=KX2

NEXT 14



S60
370
389
590
400
610
620
630
640
850
660
670
680
&90
700
710
720
730
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A=dJ3

GoTul 440
C=E2(L)KZZ(2IAZ2(T ) k204 A LI(GIRNEZLEAIRIZKT )
W=lt=1"JX(X2/2)

NEXT J8
N=D1¢1)ADL(2)*DRI(3IRDL(A)XDL(TIKDLICHIRDLI(7IKRDL(BIXDLI(?)I*D1(10)
N=N4D1(11)%D1(12)/(DI(13)XD1C14IXDLC(1ITIXDL(18))
S=WAIER(N)

FRINT *THE VALUE GF THE &J-SYMRGL IS *»S

=ND .

A2=1

iF X=0 THEN 710

FOR Ii=1 TO X

AZ=I11%X2

NEAT Il

RETURN

PRINT °'THE VALUE QOF THE 6J-SVMROL IS ZERO!®

END .
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1600
1810
1820
1830
1340
1330
1840
1870
i830
1881
1890
1900
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FRINT "To evaluate Clebsch~Gordan coeflficientsr input the®
FRINT *srng. suome Firsts, therm the srodections inm order”
INFUT J1,J29Jd39MisN29M3

M3=-M3

QsS=0

IF M1+M2+M3=0 THEN 1063

PRIMNT *THE CLEXSCH-GORDAM COEFFICIENT IS ZERO®

ENL

2=2%J3+1

V=SXWASGR(G2)

FRINT *THE VALUE GF THE CLEZESCH-GORDAN CGOEF. IS'sV

END



