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Abstract
Evidence for the microbial metabolism of hydrocarbons is routinely identified in
diverse habitats, but particularly those associated with the production, processing,
storage and use of petroleum. In these environments, microbial activity can have
enormous environmental and financial consequences including oil reservoir souring,
biocorrosion of the steel infrastructure, and the accidental release of hydrocarbons to
undesired locations. My studies were designed to specifically examine the ecological
role of microorganisms in a major oil processing facility experiencing aggressive
corrosion, in seawater compensated fuel ballast tanks aboard naval surface warfare
vessels and to contribute to fundamental knowledge on how anaerobic microbes are
able to metabolize large molecular weight paraffin molecules. An interdisciplinary
approach that combined geochemical analyses, molecular microbial ecology methods,
and mass spectral-based metabolomics was employed in each of these investigations.
Molecular surveys of the oil processing facility revealed a systemic colonization of
both dead-leg and bulk fluids by anaerobic taxa primarily affiliated with
Halanaerobiales. A desalter bulk fluid was a notable exception with members of the
Epsilonproteobacteria, putative microaerophiles, representing the predominant
community members. Geochemical and mass spectral analyses showed steep
gradients in salinity, pH, acetate and sulfate concentrations, as well as distinct low
molecular weight organic constituent profiles within stratified dead-leg fluids. These
gradients contrasted with the highly similar chemical properties observed in the bulk
fluids that are often recirculated between the three processing modules. The presence

of alkylated monoaromatic-dihydrodiols and Epsilonproetobacteria in the desalter



bulk fluid, and the lack of signature anaerobic hydrocarbon biodegradation metabolites
confirms that oxygen must be introduced to the resident microflora, most likely at or
near the desalter unit. The findings further suggest that anaerobic microbial
communities exacerbate localized corrosion by linking the metabolism of partially
oxidized aerobic crude oil intermediates from the desalter module to the reduction of
oxidized sulfur species. Only by examining both the dead-legs and the bulk fluids was
it possible to identify the distinct microbial assemblages across small spatial distances
within each module and understand their interactions that ultimately form the basis of

the proposed mechanism for microbially-influenced corrosion within this facility.

The selection of hydrocarbonoclastic marine microorganisms under defined
ecological conditions was also pertinent to the investigation of seawater-compensated
fuel ballast tanks relative to the harbor water used to augment the tanks. The
examination of ships containing ballast water of different ages, revealed a pattern of
succession that ranged from predominantly aerobic to largely anaerobic microbial taxa
with a concomitant decrease in available dissolved oxygen and sulfate reserves. Mass
spectral analysis showed the presence of signature metabolites associated with the
aerobic or anaerobic activation of mono- and polynuclear aromatic hydrocarbons
within the ballast tanks of ships that retained their ballast for 1 week and 32 weeks,
respectively. The presence of supersaturating concentrations of dissolved alloying
metals in all of the samples, along with paired metagenomic and metabolomic data,
revealed that marine microorganisms typically catalyzed the biodegradation of diesel
fuel components and exacerbated the biocorrosion of the carbon steel infrastructure

within seawater-compensated fuel ballast tanks aboard naval vessels.



While there are thousands of chemicals in petroleum mixtures, the way individual
components are metabolized in the absence of oxygen is often enigmatic. Such is the
case for large molecular weight alkane molecules that are solid at room temperatures.
An anaerobic microbial consortium capable of the methanogenic mineralization of
long-chain n-paraffins (C2s-Cso) was investigated using a combined metagenomic and
targeted transcriptomic analyses. Experiments were desgined to determine the
mechanism(s) of paraffin activation under anaerobic conditions and to elucidate the
type of interactions occurring between consortial members. Several draft genomes
were binned and assembled from members of the predominant orders
Syntrophobacterales and Methanomicrobiales. Five genotypes of alkylsuccinate
synthase A were identified within the metagenome and transcription of each was
observed during cultivation of the consortium in the presence of n-octacosane as a
model substrate. Based on the metabolic reconstruction of the numerically dominant
draft genomes, it was proposed that high molecular weight paraffins are activated by
addition to fumarate by “Smithella sp. SDB” and fermented to acetate through a
syntrophic interaction with hydrogenotrophic methanogens. The subsequent
mineralization of acetate was proposed to occur via syntrophic acetate oxidation and/or
acetoclastic methanogenesis based on additional recovered draft genomes. This is the
first report to elucidate the metabolic pathway for such a high molecular weight
hydrocarbon and it biochemically implicates a Smithella as the responsible organism

initiating the anaerobic attack.

The surveillance of the chemical and biological components of artificial habitats

associated with petroleum production and consumption revealed that the dynamics of

Xi



the resident microbial assemblages were governed by the same principles documented
in other natural habitats. More specifically, hydrocarbons are susceptible to biological
deterioration by the resident microorganisms when in contact with marine waters
under both oxic and anoxic conditions. Distinct micro-environments arise across
sometimes small spatial scales within artificial habitats and ultimately select for
communities of microorganisms that vary widely in membership and/or metabolic
capability. These communities can interact with others through connections based on
fluid movement associated with industrial processes and the resulting effects of their
activities can be manifested locally or distributed throughout the system. The nature
of these effects can largely be assessed a priori by examining the dominant electron-
accepting processes occurring within each distinct micro-habitat. Ultimately, paired-
“omics” investigations can help elucidate contributions of specific taxa to

environmental processes and services occurring within such engineered systems.
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Preface
Evidence for oxygen-independent microbial metabolism of hydrocarbons is routinely
identified in diverse habitats associated with the production, processing, storage and
use of petroleum products. These microbial activities drive reservoir souring,
biocorrosion of steel infrastructure, and other deleterious phenomena, resulting in
environmental deterioration and, often, substantial financial losses for oil industry
concerns. The work presented in this dissertation is the culmination of several
collaborations, and the interdisciplinary approach taken would not have been possible

the contributions of several colleagues.

The study presented in Chapter 1 was conducted by members of the University of
Oklahoma Biocorrosion Center with samples supplied by the industrial sponsors of the
research consortium. Potential differences in chemistry and microbial populations
were investigated between stagnant areas and bulk process fluids from three modules
within the oil processing facility through the pairing of microbial community surveys,
fluid chemical composition analyses, and mass spectrum-based metabolite profiling.
Marked differences in chemical composition (decreased [sulfate] and pH, increased
[acetate], and salinity gradients) were observed between bulk and stagnant fluids at

each sampling point.

Molecular surveys revealed the microbial communities were predominantly comprised
of anaerobic taxa typically associated with petroleum reservoirs, and that species
diversity was greater in the stagnant fluids within dead-leg samples than the bulk fluid

for each respective processing module. Mass spectral analysis of the production fluids



revealed the presence of metabolites indicative of aerobic hydrocarbon biodegradation,
though compounds associated with anaerobic hydrocarbon metabolism were not
detected. Evidence from community surveys and metabolite profiling indicated a
systemic colonization of the facility by anaerobic halophiles that are metabolizing
aerobic hydrocarbon transformation products produced in the desalter module and
transported throughout the asset. My specific contributions to this research were the
handling of all samples upon arrival, chromatographic analysis of brines, design and
supervision of all cultivation efforts, statistical analyses of all relevant data, and
crafting of the manuscript and figures presented here. This work has also been
accepted for publication in the forthcoming book “Microbiologically Influenced
Corrosion in the Upstream Oil and Gas Industry” and is written in the style required

for publication by CRC Press.

Chapter 2 was conducted and supported by the Multi-disciplinary University Research
Initiative sponsored by the United States Office of Naval Research. Corrosion of
metallic infrastructure and biodeterioration of diesel fuels are chronic problem
encountered within seawater-compensated fuel ballast tanks aboard naval surface
warfare vessels. In order to assess the extent of microbial contribution to diesel fuel
biodegradation and infrastructure corrosion, samples were obtained from the ballast
expansion tanks of several vessels corresponding to a series of increasing water
residence times aboard ship and subjected to metagenomic, metabolomic, and
chemical analyses. These samples were then compared to coastal seawater originally
used in the tanks. Analyses revealed aerobic hydrocarbonoclastic microorganisms

minimally initiate aromatic fuel component biodegradation, consume the available



dissolved oxygen, and are succeeded by anaerobes that utilize fuel or metabolites of
aerobic fuel decomposition as electron donors for sulfidogenesis. These metabolic
processes result in the biological deterioration of refined diesel quality and the sulfide-
mediated biocorrosion of shipboard infrastructure. | was personally involved in
collecting all samples for this project, as well as the analysis of all metagenomic data,

figure creation, and writing of the chapter presented herein.

In contrast to the negative impacts associated with microbiologically-influenced
corrosion, metabolic activities of anaerobic hydrocarbon-degrading microorganisms
may be leveraged for industrial benefit. Paraffins, which occur naturally in petroleum
reservoirs, are frequently deposited on the interior walls of wellbores, clogging

systems and resulting in costly interruptions in production.

Chapter 3 details the study of an anaerobic consortium capable of the methanogenic
mineralization of long-chain n-paraffins (Czs-Cso) enriched originally to evaluate the
potential for a bioaugmentation-based approach to oilfield paraffin deposition.
Metagenomic sequencing and targeted transcriptomic analyses revealed the
consortium to be primarily comprised of members of the Syntrophobacterales and
Methanomicrobiales. Putative genes encoding the catalytic subunit of alkylsuccinate
synthase (assA) along with several draft genomes were assembled from the
metagenome. Expression of the detected assA genotypes in the consortium, including
that of the “Smithella sp. SDB” draft genome, was demonstrated through reverse
transcription-polymerase chain reaction (RT-PCR) analysis during growth on n-
octacosane. Based on metabolic reconstruction of draft genome assemblies and the

expression of assA, long-chain n-paraffins are proposed to be activated via ‘fumarate



addition’ and mineralized through the obligate syntrophic cooperation between
Smithella spp. and hydrogenotrophic methanogens. Chapter 3 and Appendix Il were
written in the style of the journal Environmental Microbiology. These materials are
published in their entirety under the same title in Environmental Microbiology journal
volume 18, pages 2604-2619. The copyright release agreement for the reproduction of
this material as a component of this dissertation is located at the end of Appendix II.
My contributions to this work were the extraction and sequencing of the Illumina
metagenome dataset, and working closely with Drs. Callaghan and Wawrik to
analyze/annotate all of the metagenomic data and draft genomes, crafting of all figures

and most of the text.



Chapter 1: Integrated Methodology to Characterize
Microbial Populations and Functions Across Small Spatial
Scales in an Oil Production Facility

Abstract

Petroleum reservoir microorganisms directly influence the economics of energy
recovery operations through deleterious activities such as souring and biocorrosion.
We investigated potential differences in chemistry and microbial populations between
stagnant areas and bulk process fluids from 3 processing modules (Low Pressure
Separator, Desalter and Water Separator) within an oil processing facility. Samples
were collected before and after the flushing of a sample valve at each site. Microbial
community surveys were conducted through 16S rRNA gene sequencing and paired
with analyses of fluid chemical composition through chromatographic methods and
mass spectrum-based metabolite profiling. The production fluids were high saline
brines (1.5 — 4.0 M [CI']) with a pH range of 4.5 — 6.2, varying both within and
between sampling sites. Sulfate (0.1 — 8.0 mM) and acetate (0.5 — 9.3 mM) were
present in all samples, but nitrate was below detection levels. Marked chemical
differences were observed between bulk fluids and stagnant dead-leg fluids at each
sampling point. Stagnant dead-leg samples exhibited chemical stratification with a
chloride gradient of ~3 M in the Desalter Module as well as sulfate and acetate
gradients in the Water Separator Module. Molecular surveys revealed that the
microbial communities were predominantly comprised of three taxonomic groups:
Halanaerobiales, Campylobacterales, and Desulfovibrionales. An increase in species
diversity was found in the stagnant fluids from each dead-leg relative to the respective

bulk fluid. MPN determinations of heterotrophic fermenting, sulfate-reducing, and



thiosulfate-reducing organisms were all greater than 1x10* cells mL™?. Targeted mass
spectral analysis of the production fluids revealed the presence of catechols, phenols,
and dihydrodiols, indicative of aerobic hydrocarbon biodegradation. Metabolites
associated with anaerobic hydrocarbon biodegradation were not detected. Untargeted
metabolomic screening revealed over 1000 identified compounds that mapped
primarily to known lipid, carbohydrate and amino acid metabolic pathways. Through
the pairing of molecular microbial surveys and advanced metabolite profile analyses,
these results suggest a systemic colonization of the facility by anaerobic halophiles,
commonly associated with petroleum reservoirs. These organisms were likely cross-
fed by organic electron donors produced during the transformation of hydrocarbons by
aerobic microorganisms. Furthermore, these results highlight the importance of
interrogating the small volumes of stagnated fluids within dead-legs for an accurate
assessment of the chemical and biological processes occurring within these

problematic sites.

Introduction

Microorganisms colonize diverse habitats throughout the natural and engineered
environments associated with the oil and gas industry. The metabolic processes of
these organisms can have substantive economic and environmental impacts on the
production and processing of petroleum through reservoir souring, product biofouling
and infrastructure corrosion. The latter process, also termed microbial influenced
corrosion (MIC), can result in the hazardous release of hydrocarbons and brines to the
surrounding environment. The association of corrosive sulfide formation and viable

sulfate-reducing bacteria (SRB) in oil production fluids was established almost a



century ago through the pioneering work of Bastin et al. 1926. Increased appreciation
for the metabolic activities of the oilfield microflora led to the promulgation of formal
standards for monitoring populations through cultivation-based serial dilution
technique (API 1965). Methods for the selective enumeration of microorganisms
exhibiting specific metabolic traits (e.g. sulfate-reduction, acid production, etc.) have
been expanded upon and remain an industry monitoring standard (NACE International
2014). Despite their widespread use, microbial population monitoring through growth
in serial dilutions of selective cultivation media tends to under-represent the size of a
physiological group within a sample for two critical reasons: (i) only organisms
capable of growth with the nutrients provided are assayed and (ii) commercially
available test formulations often do not adequately represent the sample under
investigation. Enumeration media for acid-producing bacteria (APBs), thiosulfate-
reducing bacteria (TRBs) and sulfate-reducing bacteria (SRBs) are typically selected
on the basis of sample salinity and potentially other factors routinely determined by
bulk fluid analyses. However, our study demonstrates that the chemical and biological
characteristics of process fluids can vary dramatically over small spatial scales both
within and between process modules. Thus, results obtained from cultivation-based
monitoring of microbial populations in bulk fluids may not be representative of the
communities in chronic problem areas such as pipeline dead-legs. These are piping
segments that may be continuously or intermittently exposed to bulk process fluids,
but generally receive limited or only intermittent flow. These areas are known to be
sites of numerous incidents each year with localized corrosion as one of the primary

causes of dead-leg integrity failures (Sloley 2011; Murata, Benaquisto, and Storey



2015).

In an effort to overcome such inherent limitations, cultivation-independent approaches
for microbial monitoring including quantitative polymerase chain reaction (QPCR)
assays targeting diagnostic genes, microarray analyses, and 16S rRNA gene library
sequencing have become more widely accepted as part of an overall asset integrity
assurance program (Eckert and Skovhus 2011; Maxwell, Hoffman, and Divine 2007).
These methods utilize genomic DNA from field samples for a snapshot of the genetic
potential and membership of microbial communities within the asset. Among the
major advantages of these techniques are their universal applicability across different
sample matrices, eliminating the need for multiple media formulations and a generally
shorter analysis time relative to growth-based assays (Maxwell, Hoffman, and Divine
2007). As with any assay, molecular methods also have their particular
interpretational limits. The sample collection is from the total community - including
both viable and actively metabolizing cells as well as inactive members. In addition,
interrogation for specific genes is also limited by the specificity of the probe or primer
utilized. Such probes are continuously improved as the discipline evolves, they are
often initially designed based on reference molecular sequence data available in
curated databases and may not possess the coverage or specificity required to make

accurate determinations of the desired in situ microbial populations.

In addition to genomic data, fundamental information on the predominant pathways
associated with aerobic and anaerobic hydrocarbon metabolism is consistently
emerging. Methods for the survey and detection of metabolites are being developed

and tested in many petroliferous environments. Metabolites can often be conclusively



identified using mass spectral methods (e.g. GC-MS, HPLC-MS/MS, HPLC-qTOF)
that can target “signature metabolites” indicative of specific bioconversions or global
surveys of all small organic molecules within a sample matrix (Beller 2000; Lisa M.
Gieg and Suflita 2005; Bonifay et al. 2013; Bian et al. 2015). As with the molecular
methods, results are interpreted relative to curated databases (e.g. Kyoto Encyclopedia
of Genes and Genomes; for additional listing see the Metabolomic Society) that link
information on genes and transformation products within metabolic pathways. Such
information is rapidly growing as the techniques are applied in an increasing number
of studies and environments (Kanehisa et al. 2012). Recently, mass spectral-based
metabolite profiling was used in conjunction with other techniques to investigate
microbial functioning and corrosion processes in a North Slope pipeline system by
interrogating resident communities that were planktonic (Duncan et al. 2009),
differentially dislodged during pigging operations (Stevenson et al. 2011) and pipeline
section cut outs (e.g. “cookie” samples) (Lenhart et al. 2014). Collectively, the
resulting information implicated anaerobic hydrocarbon biodegradation in supporting
corrosive biofilms driving MIC within a high-temperature oil production pipeline. In
consistent fashion, oilfield-associated microbial assemblages were found to metabolize
crude oil under the conditions prevalent in the same reservoirs (Gieg et al. 2010). The
integration of field and laboratory samples through the strategic combination of
traditional, molecular, and metabolite analyses can, in our opinion, lead to substantive
insights into the predominant mechanisms influencing important ecological processes

in the oil and gas sector.

Our investigation sought to evaluate the potential for the involvement of



microorganisms in the corrosion of carbon steel infrastructure within an oil processing
facility through the integration of geochemical analyses, molecular surveys and
metabolite profiling of production brines. The study site is a facility handling
production from a sour oil field experiencing aggressive corrosion and pipe failures at
dead-legs in separator oily water waste lines (Gunaltun and Kumar 2014). The asset
receives high salinity fluids (2.8 —4.2 M CI; 100 — 150 g L™ CI") as well as H2S and
CO2. Asset managers estimated corrosion rates to be ~2 — 40 mpy (0.05 — 1 mmpy)
based on fluid composition and operational parameters, though rates as high as 315
mpy (8 mmpy) were documented in this system (personal communication). Despite
the relatively high salinity of the produced fluids, sulfate-reducing and thiosulfate-
reducing microorganisms were historically and repeatedly detected in the bulk
separator fluid waste lines through cultivation-based enumerations. Through the
combination of chemical and microbiological analyses, the role of partial or complete
stagnation in microbial community composition and function were assessed and a
potential model for the involvement of microorganisms in the failures of infrastructure
integrity is proposed. The information emanating from the data collection and
analyses exemplified here may ultimately lead to the generation of models for the a

priori evaluation of mitigation strategies to control deleterious microorganisms.

Experimental Procedures

Site Description and Sampling

Fluid samples were obtained from near stagnant areas of dead-legs sampling
points at the 6 o’clock position of 16” (40.64 cm) oily water disposal lines from three

processing modules within the facility (Figure 1). These included an oil-water

10



separator, a low pressure separator and a desalter (Fig. 1). Average brine composition
throughout the facility was reported by the asset manager as (mg L™?): 144718 CI", 493
S04%, 159 HCO3, 0 COs%, 86428 Na*, 5577 K*, 2270 Ca?*, 2087 Mg**, 2 Fe?*, 563
Sr?* and 15 Ba?*. The bulk fluid and dead-leg temperatures were reported as 50°C and
30°C, respectively. System pressure ranges between 1 and 3 barg with H2S and CO»
concentrations of 4% and 3% mole-basis, respectively. Near stagnant fluids were
obtained by collecting three successive aliquots of 30 mL samples into separate screw
cap vials from each oily water line. The bulk fluid sample (1 L) was obtained from the
same sampling points after flushing several liters of production water through the
sampling valve. All samples were stored at 4°C during shipping and until use.

Chemical Analyses

Sample fluids were analyzed for various chemical characteristics including pH,
alkalinity and common anion (chloride, nitrate, sulfate and acetate) concentration. The
pH of bulk fluid samples was determined with a pH meter (Accumet® Basic AB15;
Fisher Scientific, Pittsburgh, PA) at 18°C. The limited volume of the dead-leg sample
necessitated the addition of a small aliquot (~20 pL) to a pH test strip at 18°C.
Alkalinity was determined by titration for the bulk fluid samples using a Hach
Alkalinity Test Kit (Hach Company; Loveland, CO) as described by the manufacturer.
Inorganic anions (chloride, nitrate and sulfate) were quantified by suppressed ion-
chromatography on a Dionex ICS-3000 system (Dionex; Sunnyvale, CA) equipped
with Dionex AS4A-SC guard (4 mm x 50 mm) and analytical (4 mm x 250 mm)
columns. Separations were performed isocratically at mobile phase of carbonate
buffer (1.7 mM HCOs; 1.8 mM COs%; 2.0 ml min™t) and a suppression current of 35

mA. Chloride was determined on 1:10,000 dilution of sample fluids. Samples for

11



nitrate and sulfate analysis were pretreated with Dionex OnGuardll Ag and Na
cartridges to remove interfering halides as instructed by the manufacturer. Acetate
was quantified on a high pressure liquid chromatograph system (Beckman System
Gold; Solvent Delivery Module 126, Detector Module 166, and NEC PC-8300
controller) equipped with an organic acid column (Prevail; 54; 4.6 mm x 250 mm;
Grace Davidson Discovery Science; Deerfield, IL) and operated isocratically with a
potassium phosphate buffer mobile phase (25 mM; pH 2.5; 1.0 mL min) and
detection by UV absorbance at 214 nm.

DNA Extraction, Amplification, and Analyses

Bulk fluid samples were filtered (250 mL; 0.45 micron pore size polyethersulfone
filter) in the field. The filters were immediately treated with 1 mL DNAzol (Molecular
Research Center, Inc., Cincinnati, OH, USA) to aid cell lysis and prevent nucleic acid
degradation, shipped to the laboratory and frozen at -80°C until required. Prior to
DNA extraction, the filters were briefly thawed, incubated with proteinase K (Qiagen,
Venlo, Limburg) for 15 minutes, rinsed by vortexing successively with nuclease-free
water, RNA lysis buffer and RNA dilution buffer from the Maxwell®16 (Promega,
Madison, W1) Tissue LEV Total RNA Purification Kit (AS1220). The rinses were
pooled and transferred to AS1220 cartridge for DNA extraction. Modifications to the
manufacturers standard protocol were used to extract DNA as previously described
(Oldham et al. 2012). Amicon 30K Ultra-15 centrifugal filter units (EMD Millipore,
Billerica, MA, USA) were used to concentrate 10 mL of each dead-leg sample and to
decrease the sample salinity. The eluted DNA was cleaned to remove potential PCR
inhibitors using the MO BIO PowerDNA Cleanup Kit (MO BIO Laboratories, Inc.,

Carlsbad, CA, USA).
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The population densities of total bacteria/archaea and selected physiological groups in
the bulk fluid samples were estimated using gPCR analysis. Bacterial and archaeal
16S rRNA genes were targeted using the primer pairs Bac27F/338R (Stevenson et al.
2011) and Arc333F/958R (Reysenbach and Pace 1995), respectively. The genetic
potential for sulfate reduction and dissimilatory sulfide production were assessed by
the quantification of the adenoside-5’-phosphosulfate reductase gene (apsA) by
RH1apsF/RH2apsR and the dissimilatory sulfite reductase gene (dsrA) by RH1-dsr-
F/RH3-dsr-R, respectively (Ben-Dov, Brenner, and Kushmaro 2007). The
StepOnePlus™ Real-Time PCR System was used for thermal cycling and StepOne
Software v2.1 (Life Technologies Carlsbad, CA) for data acquisition and analysis.
Thermal cycling conditions were as described in the references for the primers. A 1:10
dilution series of a control DNA plasmid containing a reference gene insert for each
assay was used to generate a 5—7 point standard curve. Standards were assayed in
duplicate and the samples in triplicate.

Bioinformatic & Statistical Methods

Samples were sequenced on the Illumina MiSeq using V2 PE250 chemistry (Illumina,
Inc., San Diego, CA). Sequences were joined using the computer program PEAR
0.9.51 (Zhang et al. 2014), prior to being processed using QIIME 1.9.1 (Caporaso et al.
2010) and UPARSE v7.0.1090 (Edgar 2013). Taxonomy was assigned using mothur
1.36.0 (Schloss et al. 2009) and the SILVA r119 SSU RNA gene database (E Pruesse
et al. 2007) formatted for use in QIIME. Operational Taxonomic Units (OTUs),
defined at 97% similarity, that represented greater than 5 percent of any library were
further aligned and classified within SINA (Elmar Pruesse, Peplies, and Gléckner

2012) using the SILVA r123 database and ARB 6.0-rc3 (Ludwig et al. 2004). Alpha
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diversity measures included Shannon’s diversity index, Shannon’s evenness, and the
number of observed OTUs. Beta diversity was calculated as a weighted Unifrac

distance matrix (Lozupone and Knight 2005).

Correlation analyses were calculated as Spearman’s Ranked Correlation Coefficients
using the vegan package in R (Oksanen et al. 2016). Redundancy Analysis ordinations
(RDA) were computed for both community compositional and untargeted metabolite
profile data through the vegan R package within the GUSTA ME web-based
application (Oksanen et al. 2016; Buttigieg and Ramette 2014). Analyses of
community compositions were performed on relative OTU abundance for bulk fluid
and dead-leg #2 samples from each module. Comparisons of untargeted metabolite
profiles were conducted on calculated relative peak areas for each resolved feature in
the bulk fluid and all dead-leg samples from each module. RDA ordinations were
based on the Bray-Curtis distance metric and were constrained by Z-score transformed
values of explanatory variables measured for each respective sample (pH, salinity,
[sulfate] and [acetate]) with Type I scaling.

Metabolite Extraction and Analyses

The organic constituents in sample fluids were investigated by mass spectrometry
using both targeted and untargeted metabolite profiling. The targeted assessment of
“signature metabolites” diagnostic of selected microbial metabolic processes was
conducted on the bulk fluid samples. A subsample of each brine (1 L) was acidified in
the field (pH < 2; 6N HCIl), extracted with three aliquots of ethyl acetate (200 mL) and
the organic fractions were separated and retained. The pooled organic fractions were

dried over anhydrous sodium sulfate and concentrated to a volume of 100 pL under
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flowing N2. Concentrated organic extracts were reacted with N,O-
bis(trimethylsilyl)trifluoracetamide to yield trimethylsilyl-derivatized compounds.
Metabolites were separated and analyzed by GC-MS and putative identifications were
made by comparisons to authentic derivatized standards and the NIST library (Gieg

and Suflita 2005; Gieg and Suflita 2002; Elshahed et al. 2001; Duncan et al. 2009).

A more global survey of organic components of both bulk fluid and dead-leg brines
was conducted through an untargeted mass spectral analysis. An aliquot from each
sample (5 mL) was acidified (pH <2), extracted with an equal volume of ethyl acetate,
the solvent was evaporated to dryness under N2, reconstituted with isopropanol (100
pL) and analyzed by HPLC (Agilent 1290) interfaced to a high-resolution MS (Agilent
G6538A quadrupole time-of-flight (QToF) MS). A 5 pL injection was made onto a
zic-HILIC analytical column for the separation when in positive ion detection mode
and onto a reverse phase Cis-column when analyzing in negative ion mode. Analysis
using this combination of columns has, in our hands, proven effective at increasing the

array of compounds detected at usable and reliable abundances.

Mass spectrometry data were turned into feature information by processing through the
IDEOM v.19 workflow (Creek et al. 2012), using XCMS centWave (Tautenhahn,
Battcher, and Neumann 2008) for peak detection and mzMatch.R (Scheltema et al.
2011) for alignment of samples. Detected features were matched against the Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolite database (Kanehisa et al.
2012). Statistical analyses applied to global putative metabolite profiles were
performed by a metabolomics package in R (De Livera and Bowne 2015). Putatively

identified metabolites were mapped to known metabolic pathways using Pathos
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(Leader et al. 2011).

Results

Chemical Characteristics of Sample Fluids

The physicochemical properties of bulk and dead-leg fluids from production waters of
three oil processing modules (Fig. 1) were interrogated by chromatographic and
titration methods. All samples were found to be high salinity brines with varying pH
and total chloride concentrations between bulk and dead-leg samples within and
between modules (Table 1). Bulk fluid pH and acetate concentrations were very
similar between processing modules with an average of 6.03 + 0.20 and 1.04 + 0.03
mM, respectively. The pH values agree with those predicted by asset managers of
5.91 — 6.36 based on bulk fluid chemical modeling estimations (personal
communication). The salinity and sulfate concentrations of the low pressure separator
(4.1 M CI'; 4.81 mM SO4%) and water separator (4.5 M CI'; 4.50 mM SO4%) bulk
fluids were also very similar, though were dramatically higher than that observed in
the desalter fluids (1.5 M CI; 1.03 mM SO.%). Nitrate was below detection in all

samples retrieved from the oil production platform.

In contrast with the general similarities in the circulating bulk fluids, the relatively
stagnant samples in the dead-legs exhibited apparent gradients in their characteristics.
The desalter dead-leg sample was highly stratified with respect to salinity with a
gradient ranging from 4.0 M (closest to the bulk fluids) to 1.7 M CI" near the sampling
port. Corresponding gradients in sulfate (3.17 to 1.18 mM), acetate (3.29 to 6.87 mM)
and pH (~5.0 to 6.0) were also evident in the desalter dead-leg fluids (Table 1). The

stagnant fluids in the low pressure separator dead-legs are starkly different in
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physicochemical properties than the bulk fluids, though no gradation is apparent. The
pH of the dead-leg fluid is lower than the bulk brine (pH = 4.5 vs 5.7) coincident with
the increase in acetate concentration (~ 7-9 fold) greater than that measured in the bulk
production fluid from that module. Finally, the water separator samples did not show
a gradation in pH or salinity within the dead-leg and are representative of the bulk
fluids. No chemical data could be determined for water separator dead-leg sample #3
due to the high oil content. Within this dead-leg, there was also an inverse correlation
between sulfate loss and acetate production in samples #1 and #2. Interestingly,
sample #2 was very similar in chemical properties to the bulk fluid and may represent

mixing of the bulk process fluids during the sampling event.

Relationships between brine properties were investigated by calculating Spearman
correlation coefficients for each parameter across all samples (Fig. 2). Several
parameters exhibited strong positive or negative correlations including: salinity and
sulfate (0.78), pH and acetate (-0.79) and between acetate and sulfate (-0.81). A
weaker negative correlation was observed between flow and acetate (-0.58). The
relationships between flow, acetate and sulfate suggests that the partial stagnation in
the dead-legs may be coincident with acetogenesis potentially linked to sulfate
utilization.

Microbial Community Characterization

The microbial community composition was investigated by quantifying genetic
markers by gPCR. The trends in population structure and membership were assessed
via high-throughput sequencing of 16S rRNA genes. Amplicons were successfully

produced from all bulk fluid samples and several of the dead-leg samples, despite the
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relatively small sample volume (10 ml) available for analysis. The total microbial
population in each of the bulk fluid samples was quantified based on gPCR assays
targeting the bacterial and archaeal 16S rRNA genes. Microbial population density
ranged from 10° — 108 copies 16S rRNA gene mL™ process brine, with the largest
populations found in the desalter bulk fluid (Table 2). No archaeal 16S rRNA gene or
mcrA gene amplicons and no mitochondrial 16S rRNA genes (fungal or other) were
obtained from any of the samples assayed, suggesting that microbial populations were
composed exclusively of Bacteria. The genetic potential for sulfate reduction was
quantified by aprA abundance and found to be present in all bulk fluid samples
ranging from 10 — 10* copies aprA gene mL™ brine with the greatest abundance in the
low pressure separator. The potential for dissimilatory sulfide production was
quantified by dsrA genes that were found to be present in all bulk fluid samples
ranging from 10* — 10° copies dsrA gene mL™ brine with the greatest abundance also
in the low pressure separator. The gene abundance for dsrA was several orders of
magnitude greater than aprA within each of the bulk fluids suggesting that sulfoxy-
anions utilization other than sulfate may potentially support more biological sulfide

production.

The diversity and composition of each of the microbial communities in the facility
were interrogated through the analysis of 16S rRNA gene amplicon libraries for the
bulk fluid and dead-leg sample #2 for each processing module. Metrics of community
diversity for each library are shown in Table 2. In each module, the dead-leg
community had greater species richness (number of OTUs observed at the rarified

sequencing depth), evenness and total diversity relative to the corresponding bulk fluid
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microbial assemblages. The low pressure separator dead-leg harbored the most
diverse microbial population with respect to both number of taxa detected and the
evenness of their abundance distribution despite having the lowest measured pH value

of 4.5.

Analysis of entire microbial communities based on the taxa observed in each sample
as well as their relative abundance in each library allowed for the comparison of
compositional differences. Pairwise dissimilarities calculated between each of the
bulk fluid and dead-leg #2 sample are shown in Figure 3. The order-level taxonomic
composition of each microbial population revealed that members of the
Halanaerobiales accounted for ~50% of all reads obtained in this study and, along
with the Campylobacterales and Desulfovibrionales, were present at substantive levels
(>1.5% relative abundance) in all samples (Fig 3). The low pressure separator bulk
fluid community was predominantly composed of Halanaerobiales (73.4%),
Desulfovibrionales (9.4%), and Campylobacterales (3.6%) while the more evenly
distributed and species rich dead-leg was populated by the Coriobacteriales (10.8%),
Halanaerobiales (9.7%), Flavobacteriales (7.6%), Campylobacterales (5.2%) and
Desulfovibrionales (1.8%). Similarly, Halanaerobiales (66.6%), Campylobacterales
(6.6%), and Desulfovibrionales (4.0%) were the most abundant taxa in the water
separator bulk fluid assemblage. As in the low pressure separator, but unlike the
respective bulk fluids, the water separator dead-leg community is highly enriched in
members of the Gammaproteobacteria with unclassified Gammaproteobacteria
(28.0%), Bacillales (12.0%), Halanaerobiales (9.1%), and Pasteurellales (7.9%)

among the most abundant orders. Despite the strong similarities in bulk fluid
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community structure and membership between the low pressure and water separator
communities (95.1% pairwise similarity), partial stagnation did not enrich for similar
microbial populations within the dead-legs of these modules. In contrast, the desalter
bulk fluid community harbored relatively few taxa, with the Campylobacterales
(71.5%) as the dominant taxonomic group along with the Halanaerobiales (16.1%)
and the Desulfovibrionales (1.6%). This was distinctly different than all other
analyzed assemblages with pairwise dissimilarities exceeding 19.7% in all cases. For
comparision, the dead-leg community at the desalter is highly similar to the bulk fluids
of the low pressure and water separators (pairwise dissimilarities of 2.9% and 4.6%,
respectively) and was again primarily populated by Halanaerobiales (67.6%),

Desulfovibrionales (11.1%) and Campylobacterales (5.6%).

Further phylogenetic analysis was performed on select ubiquitous OTUs present in
each sample to provide increased taxonomic resolution. Two closely related OTUs
(0.03% pair-wise distance) classified within the Halanaerobiales (OTU 2 and OTU
296) accounted for the majority of sequences affiliated with this order observed in this
study. Halanaerobium congolense is the closest described type strain to OTU 2 (Fig.
4A) and relative abundances ranged from 5.1% in the water separator dead-leg to
53.8% in water separator bulk fluid. In contrast, OTU 296 was most abundant in the
desalter dead-leg (33.2%) and low pressure separator bulk fluid (32.7%) with the
lowest abundance found in the low pressure separator dead-leg (0.28%) and water
separator dead-leg (0.31%). This OTU is equivalently related to H. saccharolyticum
and H. lacusrosei (Fig. 4A). The Campylobacterales are represented by OTU 1,

affiliated with Sulfurospirillum arcachonense (Fig. 4B), that accounts for 3.4% to
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71.4% relative abundance in the low pressure separator bulk fluid and desalter bulk
fluid, respectively. Finally, OTUs 3 and 6 are the most abundant representatives of the
Desulfovibrionales and are most closely related to members of the
Desulfohalobiaceae, Desulfonatronovibrio thiodismutans and Desulfohalobium
utahense, respectively (Fig. 4C). Both OTU 3 and 6 follow similar enrichment
patterns between samples having the highest abundance in the desalter dead-leg and
low pressure separator bulk fluids and the lowest in the water separator dead-leg

brines.

Redundancy analysis was performed to examine the relationship between the
geochemical parameters measured for each sample and the community composition,
based on OTU relative abundance (Fig. 5A). The explanatory variables pH, salinity,
acetate and sulfate concentrations accounted for 61.66% of the total community
dataset variance, and components RDA 1 and RDA 2 together explained 59.3%.
Salinity is strongly correlated to RDA 1 and pH to RDA 2, with biplot scores of 0.91
and -0.82, respectively. The ordination shows that highly similar brine chemistries
have enriched very similar microbial populations within the desalter dead-leg #2 and
the low pressure and water separator bulk fluids, despite the difference in fluid flow.

Metabolite Analyses
Metabolite profiling was performed on each of the brine samples by HPLC-QToF

mass spectrometry to survey the low molecular weight organic compounds
(presumably putative metabolites) present in each sample, while targeted analyses for
compounds indicative of selected microbial catabolic processes was by GC-MS. The

untargeted survey resolved 10,115 chemical features and tentatively identified 1,112
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compounds based on the comparison of exact masses to a reference database. The
brines contain a suite of primary aliphatic acids, ranging from Cyo to greater than Co,
and numerous organo-nitrogen compounds (e.g. amino acids, amines and amides).
Features annotated as C12H17N and C14H21N were detected in most of the sample
fluids, but were prominent components of the water separator bulk and dead-leg fluids.
These features were not able to be identified as specific compounds, but may be
secondary or tertiary amines. Two compounds associated with carbohydrate
metabolism (tartaric acid and L-arabinonate) were found in high abundance in the
dead-leg samples, but were not detected in any of the bulk fluid samples nor water

separator dead-leg #2.

Redundancy analysis was conducted on metabolite profile feature relative peak areas
for each sample and constrained by the corresponding geochemical parameters: pH,
salinity, acetate and sulfate concentrations (Fig. 5B). The explanatory variables
represented for 61.74% of the total community dataset variance, and components RDA
1 and RDA 2 accounted for 42.1%. Acetate concentration showed the strongest
correlation with RDA 1 and pH with RDA 2, with biplot scores of 0.79 and 0.95,
respectively. RDA indicated essentially identical metabolite profiles were observed
for the low pressure separator and water separator bulk fluids, and the water separator
dead-leg #2 was similar to these bulk brines. Low pressure separator dead-leg samples
contain similar metabolite composition and have similar geochemical characteristics,
despite a gradient in acetate concentrations. The metabolite profiles for the desalter
dead-leg brines are highly variable and are strongly dissimilar between each other (in

agreement with strong chemical gradation), and most other samples interrogated.
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Overall, ordination analysis revealed that despite some geochemical differences, the
bulk fluids within these processing modules had a largely similar metabolite profile in
contrast to their microbial assemblages. Conversely, dead-leg fluid metabolite

compositions are highly variable within and between processing units.

Targeted metabolite profiling was used to screen for hydrocarbon biotransformation
products in the bulk fluid samples. All bulk fluid samples contained alkylated
monoaromatic hydrocarbons, aromatic alcohols (e.g. cresols, phenols) and a suite of
alkanoic acids. Alkyl-, benzyl-, and naphthylmethyl-succinic acids indicative of
anaerobic hydrocarbon activation by fumarate addition were not detected in any
sample. Alkylated catechols and other benzenedihydrodiols were identified in the
desalter bulk fluid indicating aerobic biodegradation of monoaromatic hydrocarbons at

or near this site.

Discussion

This case study represents an integration of traditional and modern investigative tools
to assess the contribution of microbial activity to carbon steel corrosion in dead-leg
areas within several processing modules in a sour oilfield facility. Analysis of brine
chemistry, molecular surveys of microbial community composition and functional
potential, in conjunction with metabolite profiling efforts revealed compositional
differences, both chemical and biological, within and between the flowing bulk fluids
and partially stagnated dead-leg areas in each of the oil processing modules. The
interconnectedness of the various processing modules (Fig. 1) was verified by the
chemical properties of the bulk fluids from each module (Table 1). That is, the bulk

oily processing waters were generally very similar in their chemical characteristics,
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with the expected exception of decreased salinity and sulfate content in the desalter.
Despite the similarity in bulk fluid properties, the partially stagnated brines in the
dead-legs had significantly different and distinct chemical characteristics (Table 1;
Figure 3). The inverse correlation between sulfate loss, acetate formation and pH
decrease in the low pressure separator and desalter dead-legs suggested that biological

sulfate reduction may have occurred over small spatial scales.

Molecular surveys identified microbial assemblages inhabiting the brine in both the
bulk and dead-leg fluids in all modules. Despite the similar chemical characteristics in
the low pressure separator and the water separator, partial stagnation did not promote
the enrichment of a common microbial community in the respective dead-legs on those
modules. The dead-leg communities were found to be more diverse than the
respective bulk fluid in each module (Table 2). This increase in species richness and
evenness may be promoted by stagnation, removing shear forces at the pipe wall as a
selective pressure, and/or the decrease in temperature of 20°C in the dead-legs relative
to the bulk process fluids. Throughout the oilfield processing facility, dead-legs
primarily served as monthly sampling points for system monitoring, but sampling
efforts on individual modules need not be coordinated (personal communication).
Given the potential differences in fluid residence time between these dead-legs, it is
possible that these samples represent different points along a shared successional trend
toward a common microbial community. Though this trend is speculative at this time,
it constitutes an area deserving of further research and may yield valuable information

regarding the rise of deleterious communities within dead-legs.

Regardless of structure and diversity differences between oilfield module
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communities, members of a few select taxonomic orders, Halanaerobiales,
Campylobacterales and Desulfovibrionales, were ubiquitous in all samples. Members
of the Halanaerobiales accounted for a substantive fraction, and often the largest
portion of each community interrogated, except the desalter bulk fluids. These
anaerobic halophiles are commonly detected and isolated from petroleum-impacted
environments including oil reservoirs and production infrastructure (Neria-Gonzalez et
al. 2006; Sette et al. 2007; Gales et al. 2011; Bhupathiraju et al. 1999; Bhupathiraju et
al. 1994; Ravot et al. 1997; Liang et al., 2016). Members of the Halanaerobiales are
well known halophiles that thrive in highly saline habitats and typically produce
acetate as a major fermentation end-product of complex organic substrates including
carbohydrates and yeast extract. To date, no species has been shown to utilize sulfate
as an electron acceptor though many have the capacity to reduce thiosulfate to sulfide
during heterotrophic growth (Whitman et al. 2015). Despite their common association
with petroleum-laden environments, they are not known to metabolize hydrocarbons
and the ecological role of these organisms in these habitats remains unknown. A
previous study of corrosive biofilms on steel coupons in a Mexican oilfield pipeline
revealed the presence of taxa related to the genus Halanaerobium in conjunction with
the more predominant Enterobacteriaceae at a brine salinity of 60 — 80 g L™* NaCl
(Neria-Gonzalez et al. 2006). More recently, Liang et al. found highly saline (77 — 200
g L™t NaCl) production fluids from hydraulically fractured natural gas wells harbored a
microbial community dominated by Halanaerobiales (Liang et al., 2016). Subsequent
corrosion studies conducted on the isolate Halanaerobium sp. DL-01 implicated these

taxa in the corrosion of carbon steel infrastructure through the production of acetate
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and sulfide from the metabolic degradation of guar gum coupled to the reduction of
thiosulfate within the formation. Murali Mohan et al., (2013) examined the changes in
chemistry and microbial populations in production fluids with time after well
completion in the Marcellus Shale formation. The salinity of produced brines
increased from ~0.2 — 2.6 M NaCl (10 — 150 g L™ NaCl) and microbial community
composition changes mirrored the salinity dynamics with the Halanaerobium spp.
initially being relatively minor populations but increased in relative abundance to

represent >99% of observed taxa at ~150 g L' NaCl (Murali Mohan et al. 2013).

In contrast, the bulk fluids from the desalter module harbored the only community
predominantly populated by Epsilonproteobacteria rather than Halanaerobiales. This
broad taxonomic group is frequently observed in production fluids from petroleum
reservoirs (Grabowski et al. 2005; VVoordouw et al. 1996; Hubert et al. 2012) and
members of the genera Sulfurospirillum (Kodama, Ha, and Watanabe 2007),
Sulfurimonas (Gevertz et al. 2000), Acrobacter (Gevertz et al. 2000), and
Sulfuricurvum (Kodama 2004) have been cultivated from these habitats. Many of
these organisms are capable of the oxidation of reduced sulfur species coupled with the
reduction of nitrate. Such metabolic capabilities spur interest in the use of nitrate for
reservoir souring control purposes. Sulfate-reducing prokaryotes are known to be
inhibited by the metabolic activities of nitrate-reducing sulfur-oxidizing bacteria of the
Epsilonproteobacteria (Hubert and Voordouw 2007; Telang, Jenneman, and
Voordouw 2011; Voordouw et al. 2013). Sulfurimonas denitrificans CVO, formerly
Thiomicrospira denitrificans (Takai 2006), is known to oxidize sulfide via the sulfur-

oxidation (Sox) pathway to elemental sulfur or sulfate under both denitrifying and
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microaerophilic conditions (Sievert et al. 2008; Gevertz et al. 2000). Though S.
denitrificans CVO, Arcobacter sp. FWKO B, Sulfurospirillum cavolei, and
Sulfuricurvum kujiense were all isolated from fluids associated with subsurface
petroleum habitats, growth of each organism is inhibited at >1% salt. Clearly, our
results attest that other members of the Epsilonproteobacteria are able to tolerate more
highly saline conditions (~1.5 M CI') in the desalter production fluids. In this regard,
Epsilonproteobacteria increased in relative abundance from <2% - 17% when
produced brine salinity reached ~10% NaCl (~1.8 M CI") (Murali Mohan et al. 2013).
Since nitrate was below detection in all production samples, this likely suggests a local
oxygen ingress point, the presence of a microaerophilic population of halotolerant
sulfide-oxidizing bacteria and potentially an area of active sulfur cycling within the
facility. There is a pump immediately upstream of the desalter to increase the low
pressure separator outflow. A weak or faulty seal in this unit could conceivably
account for localized available oxygen in the desalter bulk fluids.

Metabolites and putative metabolic activities

Untargeted metabolite profiling showed the brines to contain a plethora of small
organic compounds of numerous chemical classes. The observation of acidic
fermentation intermediates such as tartaric acid and L-arabinonate exclusively in the
dead-leg samples and at high concentrations is of particular note. Some species of
Gram negative soil taxa have been shown to produce these carboxylic acids to
solubilize phosphate minerals (Yi, Huang, and Ge 2007). These organic acids were
also shown to be highly effective agents for bioleaching iron, nickel and cobalt from

mineral ores under acidic conditions (McKenzie, Denys, and Buchanan 1987).
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Targeted metabolite analysis revealed the presence of alkanoic and aromatic acids,
BTEX hydrocarbons, ethylene glycols, and hydroxylated aromatic compounds (e.g.
cresols and phenol) within the bulk fluids from each of the modules. Interestingly,
catechols and alkylated aromatic dihydrodiols were identified solely in the desalter
bulk fluid. These molecules are produced by the incorporation of molecular oxygen
into the aromatic ring of BTEX hydrocarbons by mono- and dioxygenase enzymes,
and represent signature metabolites indicative of the aerobic oxidation of aromatic

hydrocarbons.

Taken together with the identification of taxa phylogenetically associated with known
sulfur-oxidizing microaerophiles at this site in contrast to the strictly anaerobic taxa
found within all other brines from each module, this suggests that oxygen ingress is
occurring within the desalter module. These metabolites and potentially other oxygen-
bearing organic molecules (e.g. aromatic acids, cresols, phenols, and di/tri-ethylene
glycols) that were detected in each of the processing modules may serve as electron
donors to the resident microflora driving localized production of acetate and sulfide
throughout the facility. Similarly, Liang et al., proposed a scenario where
Halanaerobium spp. produced acetate and sulfide during metabolism of guar gum in a
hydraulically fractured natural gas reservoir, and ultimately resulting in the pitting
corrosion of transport pipelines downstream of the wellhead and far removed from the

catalytic organism(s) (Liang et al., 2016).

Comparison of the community and metabolite profile ordinations revealed interesting
trends between microbial population membership and metabolic activity (Fig. 5). The

water separator surge drum receives oily water from both the desalter and the low
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pressure separator, and some fluids are specifically recirculated between the water and
low pressure separators (Fig. 1). Thus, it is not surprising that the bulk fluids of the
low pressure and water separators share very similar chemical characteristics (Table
1), and have enriched for essentially identical populations of microorganisms (Fig.
3A). Further, the metabolite profiles of these biologically equivalent bulk brines
indicate identical metabolic processes occurring within these spatially segregated
communities and a shared ecology exists between certain processing modules (Fig. 5).
The decreased salinity and potential oxygen ingress at the desalter would account for
the dramatically different taxa and metabolite profiles observed in the bulk fluid of this
module compared to the low pressure and water separators despite the brine circulation
pattern. Interestingly, significantly different metabolite profiles were recovered from
the desalter dead-leg samples, despite possessing an identical microflora to the low
pressure and water separator bulk fluids (Fig. 5). Thus, community membership alone
should not be regarded as a surrogate for metabolic activity in MIC monitoring
regimes.

Proposed mitigation strategies and hypothesized impact on communities

Through the combination of geochemical, molecular and metabolomic investigations,
a model for microbial involvement in corrosion activities within this asset can be
proposed. Asset managers had previously predicted corrosion rates if no mitigation
actions were taken to be 0.5 to 1 mmpy, but these models cannot account for microbial
activity or the biological formation of iron sulfides within the system and frequently
under-represent observed pitting rates in the field (Bonis and MacDonald 2015). As
fluids stagnate within the dead-legs, Halanaerobiaceae spp. and Desulfohalobiaceae

spp. may oxidize organic substrates circulating in the bulk fluids to acetate coupled to
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sulfidogenesis from thiosulfate and sulfate. Bonis and MacDonald (2015) examined
cases of recurrent corrosion within fields producing H.S and CO- to elucidate factors
determining the risk to infrastructure degradation. Their analysis indicated that
impedances in the kinetics of FeS precipitation, iron sulfide deposition, and galvanic
effects induced by local chemical differences promoted aggressive localized corrosion
within dead-legs with little to no impact to the surrounding infrastructure (Bonis and
MacDonald 2015). Based on the proposed activities of the indigenous microflora,
metabolic production of sulfide would drive the formation of inorganic sulfide
particles and a decrease in local fluid pH associated with the excretion of acidic
metabolic end products. The incomplete oxidation of organic electron donors results
in the production of organic acids (e.g. acetic acid, L-arabinonic acid, tartaric acid,
etc.), or their corresponding conjugate bases depending upon environmental pH, within
the stagnated zones. The consequences of these metabolic activities could, in concert
with local chemical changes within the dead-legs, act to impede the precipitation
kinetics of FeS at the metal-fluid interface. As mentioned previously, dead-legs
experience a cooling of approximately 20°C relative to the bulk fluids. In addition, the
process brines contain high concentrations of divalent cations (e.g. Ca®* and Mg?").
Cooling and precipitation with alternative cations tend to impede the formation of
protective FeS layers (Crolet and Bonis 2010; Bonis and MacDonald 2015). These
factors and locally decreased pH values, arising from both biotic and abiotic reactions,
would favor the formation of less protective scales (i.e. mackinawite) rather than
pyrite. Furthermore, the composite nature of mixed inorganic anions, variable cation

mineral molecular volumes, limited diffusion of inhibitors from bulk fluids and the
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physical presence of microbial cells may likely result in the formation of a highly
porous scale layer, thus allowing for continued under-deposit dissolution of the pipe
surface. This suggests that microorganisms indirectly exacerbate corrosion within the
dead-legs of this asset by creating differential chemical environments, preventing the
formation of a protective FeS layer and probably promoting galvanic coupling with the
surrounding FeS. Ultimately, the combination of biotic and abiotic factors promotes

aggressive localized anodic corrosion beyond predicted rates.

Surveys of microbial communities and/or metabolites can be correlated with field
metadata (e.g. brine chemistry, operational parameters, documented corrosion rates,
etc.) through recursive portioning and/or constrained ordination analyses such as
canonical correspondence analysis (CCA), principal components analysis (PCA) and
redundancy analysis (RDA). These statistical analyses can offer initial insights into
relationships between community composition and environmental variables and are
reviewed elsewhere (Legendre and Legendre 2012). The observed correlations can
then serve as the basis for hypothesis generation and in conjunction with multiple
linear regressions and generalized linear models targeting response variables (specific
taxa, community structures, etc.) of interest. These methods provide models for the
extrapolation of the selected variable in response to environmental parameter changes
a priori. In the future, this approach could allow asset managers to evaluate the
potential impacts of operational changes upon resident microflora and potentially be
used to further refine corrosion risk models to incorporate activities driven by

microbial processes.

The combined application of molecular methods for microbial community surveys,
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geochemical analyses, and mass spectral-metabolite profiling provides deep insights
into the microbial processes occurring within an environment. This case study utilized
these paired datatypes to investigate biological processes occurring within an
engineered environment that ultimately led to the proposal of a mechanism for
microbiologically-influenced corrosion within an oil-processing facility experiencing
aggressive localized corrosion of carbon steel. Continued research involving
expansive surveys of brines throughout field assets is necessary to further develop and
test hypotheses linking microbial populations to deleterious activities. This study was
conducted exclusively on planktonic fluid communities. Biofilms are also widely
recognized as catalysts for biocorrosion and this same investigative approach can be
used to explore the ecology and physiology of such assemblages and their impact on
infrastructure integrity. Several specific questions remain, such as whether dead-legs
select for common microbial communities through a predictable succession pattern
and can specific taxa or chemicals serve as indicators of corrosive conditions in situ.
Ultimately, an increased understanding of the microbial ecology of these engineered
habitats will offer valuable data for asset protection planning and production

assurance.
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Table 1. Characterization of the physicochemical properties of bulk and dead-leg
production fluid samples. #Values not determined (ND) for Water Separator Dead-leg
#3 due to high oil fraction.

pH Salinity [CIT  [SO+*] (mM) [Acetate] (mM)

(M)
Desalter
Bulk 6.2 1.5 1.03 1.01
Dead-leg #1 52 4.0 3.17 3.29
Dead-leg #2 6.0 34 2.10 6.63
Dead-leg #3 6.0 1.7 1.18 6.87
Low Pressure
Separator
Bulk 5.8 4.1 4.81 1.02
Dead-leg #1 4.5 3.1 0.20 7.58
Dead-leg #2 4.5 3.1 0.11 9.27
Dead-leg #3 4.5 2.9 0.16 9.03
Water Separator
Bulk 6.2 4.5 4.50 1.08
Dead-leg #1 6.1 4.0 7.98 0.59
Dead-leg #2 6.1 4.0 4.15 1.23
Dead-leg #32 ND ND ND ND
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Table 2. Summary of community diversity metrics and population sizes for bulk fluid

and dead-leg #2 brines from each module.

Diversity Metrics
OTUo.0s?
Shannon

Evenness
Shannon

Diversity

gPCR Analyses®

Bacterial 16S
Archaeal 16S
aprA
dsrA
mcrA

Desalter Low Pressure Water Separator
Separator
Bulk Dead-leg #2 Bulk Dead-leg Bulk Dead-leg #2
#2
73 91 83 134 87 98
0.34 0.54 0.52 0.80 0.52 0.68
2.11 3.53 3.33 5.62 3.33 451

Desalter Bulk

Low Pressure Sep.

Water Sep. Bulk

Bulk
3.70x108 (2.31x108) 5.98x10% (5.22x10%)  1.17x10° (7.78x10%
ND ND ND
1.27x10* (1.15x10°%) 1.79x10°% (3.26x10%)  8.86x10" (4.07x10%)
1.20x106 (1.41x10°) 4.43x10% (5.61x10%)  1.65x10% (7.14x10%)
ND ND ND

aNumber of OTUs observed within each sample. Libraries were subsampled without
replacement to 1400 sequences. "Quantitative PCR values reported as copies of target
gene mL brine. Target genes are: Bacterial 16S rRNA gene (Bacterial 16S); Archaeal
16S rRNA gene (Archaeal 16S); Adenosine-5’-phosphosulfate reductase subunit A
(aprA); Dissimilatory sulfite reductase subunit A (dsrA); Methylcoenzyme-M reductase
(mcrA). Values reported are averages of 3 technical replicate measures with standard
deviation in parentheses. ND, not detected.
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Figure 1. Schematic diagram depicting simplified connectivity of selected processing
modules in an oilfield production facility. Sampling points are designated by black

triangles.
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Figure 2. Brine chemical characteristic correlation analysis showing Spearman ranked
correlation coefficients between measured fluid properties. Increasingly positive
correlations are shown in green, negative shown in red and no observed correlation is
indicated in yellow.
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Figure 3. Pairwise dissimilarity matrix heatmap depicting weighted-Unifrac pairwise
distances between microbial communities in each sample. Greater pair-wise
dissimilarity is shown by increasing red shading.
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Figure 4. Relative abundance of order-level phylogenetic composition of brine
communities.
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Figure 5. Phylogenetic analyses of selected abundant OTUs from the (A)
Halanaerobium spp., (B) Sulfurospirillum spp., and (C) Desulfohalobiaceae spp.
Neighbor-joining dendrograms were constructed from alignments of the OTU
representative sequences with full length type strains using the Tajima-Nei model with
pairwise deletion in MEGAG6 (Tamura et al. 2013). Genbank accession numbers are
designated in parentheses and sequences obtained in this study are designated in bold.
Bootstrap values (n = 500 replicates) greater than 65 are shown.
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Figure 6. Redundancy Analyses (RDA) of (A) Community composition and (B)
Untargeted metabolite profiles. Ordinations are constrained by environmental
parameters (Table 1) for each sample, shown in blue vectors. Bulk fluid and dead-leg
samples are indicated by closed and open markers, respectively. Desalter, low pressure
separator, and water separator samples are shown in red squares, black circles and green
triangles, respectively.
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Chapter 2: Successional Ecology of Hydrocarbonoclastic
Microbial Communities within Naval Fuel-Compensated
Ballast Tanks

Abstract

The microbial metabolism of hydrocarbons can be associated with the
biocorrosion of the mostly carbon steel energy infrastructure and result in major
economic losses and potentially devastating environmental impacts. These deleterious
activities are frequently observed when steel alloys interact with mixtures of
hydrocarbons and seawater. We sought to determine if marine microorganisms in
ballast tank compensation water were responsible for metal and fuel deterioration.
Water samples were obtained from the ballast expansion tanks aboard 3 vessels with
residence times of 1 week, ~20 weeks and 32 weeks, respectively. These samples were
subjected to metagenomic, metabolomic, and chemical analyses and compared to
coastal seawater originally used in the tanks. Universal 16S rRNA gene amplicon
library analyses revealed an enrichment in Gammaproteobacteria from 18% (seawater),
64% (1 week), 32% (~20 weeks) and 22% (32 weeks), respectively. The
Deltaproteobacteria portion of the community increased with residence time from 3-4%
(seawater and 1 week), 19% (~20 weeks) and 42% (32 weeks) to become the most
abundant Class observed in the eight-month sample. Shotgun metagenome analyses
revealed little change in the abundance of oxidative phosphorylation genes (ccoN/coxA)
in the 1 week and 20 week samples, but a 2-fold decrease in the 32-week sample
relative to the harbor water. Conversely, sulfate and thiosulfate reduction genes
remained relatively unchanged in the 1 week and 20 week samples but exhibited a

strong enrichment after 32-weeks, with a 2.5-fold and 29-fold increase in abundance for
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aprA and phsA, respectively. Aerobic BTEX activation genes were strongly enriched
after 1 week (etbAa, 365-fold; xylM, 93-fold), but declined in the other samples. In
contrast, anaerobic community was highly enriched in fumarate-addition genes at 32-
weeks (assA, 5.7%; bssA/hbsA/ibsA, 4.7%; nmsA, 20.5%), specifically related to
aromatic substrates, despite being undetected in the harbor water sample.
Environmental metabolomic investigations revealed the presence of substituted
catechols in the 1-week old ballast fluids while phenylethanol and benzylsuccinates
were detected in the 20 and 32 week samples. All fluid samples contained elevated
concentrations of Fe, Mn, Cu, and Ni, with the 8 month-old fluid being over-saturated
with CuS. The high metal concentrations relative to the harbor water are indicative of
steel alloy corrosion, specifically of the Cu-Ni sluice pipes connecting the ballast tanks.
These findings define the ecological succession patterns within fuel ballast tanks,
wherein aerobic hydrocarbonoclastic microorganisms initiate fuel biodegradation,
followed by the proliferation of an anaerobic microbial community that can use fuel or
aerobic fuel metabolites as electron donors coupled to sulfate reduction. The
deterioration of hydrocarbon quality and production of corrosive sulfides are major
consequences associated with the interaction between petroleum products and water

within steel fuel infrastructure.

Introduction

The corrosion of metal ballast tanks containing seawater has been a commonly
observed phenomenon since the late 19" century with the widespread growth of
metallic vessels. Beginning in the 1960s, the United States Navy became aware of the

role of microorganisms in the biocorrosion of shipboard seawater-displaced fuel ballast
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tanks (Hazlett, 1966, 1967). Aircraft carriers storing aviation fuel (JP-5), diesel, and
gasolines experienced aggressive fuel souring and corrosion of their fuel ballast tanks
linked to sulfate-reducing marine microorganisms (Klemme and Neihof, 1969).
Research led to the use of sodium chromate or thiopyridine derivatives as biological
control treatments (Klemme and Neihof, 1969; Klemme and Leonard, 1971). Gasoline
was found to be particularly susceptible to biodeterioration, and reports of ballast tank
corrosion decreased substantially after the Navy moved away from its use in fleet

operations (Neihof, 1988).

Since then, similar corrosion-based ship wasting in maritime shipping vessels
has prompted renewed research in the extent and mechanisms of this activity. A
previous study examined winged ballast tanks within a cargo vessel and found the
system experienced two distinct modes of corrosion resulting in dramatically different
corrosion rates (Cleland, 1995). Vertical metal surfaces near the air-water interface lost
0.15 mmpy, while a much more severe corrosion rate of 6 mmpy was observed on
submerged horizontal surfaces and tank bottoms. Further examination of corroded
areas in the submerged zone revealed the corrosion layer to contain sulfides and
cultures of the surrounding biofilm yielded a mixed community of aerobic and sulfate-
reducing bacteria (SRB) (Cleland, 1995). Huang and colleagues, also reported
aggressive corrosion (2 mmpy) of horizontal surfaces and uncoated tank bottoms in oil
cargo holds of oil tanker ships, and enumerated populations of SRBs at 10° — 107 cells

mL* through cultivation methods (Huang et al., 1997).

More recently, studies have been undertaken to further examine the link between

microbial fuel biodeterioration and sulfidogenic biocorrosion of mild steels commonly
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employed in compensated fuel ballast tanks. Alternative fuel blends containing fatty-
acid methylesters (FAMES) from biologically derived feedstocks supported high rates
of sulfate reduction and severe pitting corrosion when mixed with seawater inoculum
from Key West, FL and the ballast tank of the USS Gettysburg (Aktas et al., 2010;
Jason S Lee et al., 2012). Petroleum-derived F-76 diesel used by the USS Gettysburg
was also susceptible to microbial degradation by the ballast tank community and
stimulated sulfidogenesis in batch incubations (Lyles et al., 2013). This investigation
also revealed that refined petroleum-derived diesel fuels supported heterotrophic sulfate
reduction rates independent of fuel sulfur content, but less than that of the F-76
formulation utilized by the vessel (Lyles et al., 2013). These studies highlight the
general susceptibility of hydrocarbons to microbial attack and degradation under anoxic
conditions and demonstrate the direct link between fuel oxidation and biological

production of corrosive sulfides.

In spite of these lessons, some warship classes currently operated by the United
States Navy were designed and produced with seawater-compensated fuel ballast tanks
for the storage of F-76 diesel fuel. During operations, these ships use seawater to
displace diesel from these storage tanks into the service tanks immediately upstream of
the engines, as well as to maintain ballast as fuel is consumed. Ships of these classes
have reported a high rate of fuel filter fouling and degradation of ballast tank
components at a rate exceeding those expected for abiotic marine corrosion (Personal
communication). In response to these observations, this study was undertaken to
examine the ecology of marine microflora within ballast tanks and identify mechanisms

of diesel fuel biodeterioration of and the associated biocorrosion of shipboard
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infrastructure. As the United States Navy continues to implement the use of green
fuels, the findings of this research on petroleum-derived diesel may support apriori

estimates on fouling and corrosion risks.

Materials & Methods

Sample Collection

Ballast tank water samples were obtained by collecting fluid from ballast bank
expansion tank sampling ports (Fig. 1) into sterile polypropylene bottles. Three
separate samples were collected from each sampling point and immediately treated as
described below for downstream analyses. Ballast tank water (250 mL) was preserved
for DNA extraction by addition of 5 mL of DNAzol® (Molecular Research Center Inc.;
Cincinnati, OH) immediately upon collection. A 1 L sample was acidified (pH<2) by
the addition of 6 N HCI for metabolite analyses. Finally, a 250 mL polypropylene
bottle was top-filled without preservative for chemical and metals analyses. A fuel
sample (25 mL) was also obtained from each vessel directly from the service tank,
immediately upstream of the engine, in a glass vial with PTFE lined cap for mass
spectral characterization of fuel components. In addition to ballast tank samples,
several liters of surface water were collected from San Diego Harbor where each
shipped was docked to serve as a control. All samples were shipped overnight on ice to

the lab and stored at 4°C until further use.

Chemical Analyses

Nitrate and sulfate were quantified by suppressed ion-chromatography on a

Dionex 1CS-3000 system (Dionex; Sunnyvale, CA) equipped with Dionex AS4A-SC
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guard (4 mm x 50 mm) and analytical (4 mm x 250 mm) columns. Isocratic separations
were performed with a mobile phase of carbonate buffer (1.7 mM HCO3"; 1.8 mM
CO3%; 2.0 ml min) and a suppression current of 27 mA. Dissolved oxygen was
measured in the field using a FirestingO- optical oxygen meter (Pyro Science GmbH;

Aachen, Germany) as described by the manufacturer.

Upon receipt, 25 mL of sample was filtered with 0.45 um polyether sulfone
filter (Whatman Puradisc), and diluted to a metal concentration range between 0 to 40
ppm using 0.1% (v/v) nitric acid (Fluka, Ultrapure). Dissolved metal concentrations
were measured using a Varian AA 240FS Atomic Absorption Spectrometer with a
graphite tube furnace (Varian GTA120). Sample volume injected into the graphite
furnace was 10 uL with argon as purging gas. Temperature gradient started at 85 °C
and was held for 5 s, then ramped to 95 °C and held for 40 s, then ramped to 700 °C for
7 s before going to 2400 °C for 4.8 s. At this final temperature, absorption was
measured using a background correction and a spectral bandwidth/slit width of 0.2. A
six point calibration curve ranging over 0 to 40 ppm was used for each metal examined.
All samples were measured in triplicate, and each time after measuring five samples,
two known calibration standards and the blank were rerun with recalibration of the

calibration slope if necessary.

Cell Counts

Cell counts were determined using unpreserved sample fluids by
epifluorescence microscopy under blue excitation using a micrometer grid on an

Olympus BX-61 microscope. Cells were fixed using a 1/10 volume of 37%
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formaldehyde and a dilution of the fixed samples was stained with 5 mL of 5 ng mL™*
4,6-diamidino-2-phenylindole (DAPI) in the dark for 45 min at room temperature.
Fixed cells were then filtered onto 0.22 mm, 25mm diameter black stained
polycarbonate membrane filters (Sterlitech, Kent WA). At least 30 fields were counted

and averaged for each slide.

DNA Extraction and Amplicon Analyses

Water samples that were preserved in the field for DNA analysis were filtered
(250 mL; 0.45 um pore size PES filter) upon sample receipt in the lab and stored at -
80°C until use. Bulk genomic DNA was extracted from each filter as previously
described (Oldham et al., 2012). Quantitative PCR was employed to enumerate the
population densities of bacteria, archaea and picoeukaryotes within each sample.
Bacterial and archaeal 16S rRNA genes were targeted and amplified with
Eubac8F/338R and A8F/344R primer pairs (Stevenson et al., 2011). Marine
picoeucaryote 18S rRNA genes were amplified using the 345F/499R primer pair and
methods previously described (Zhu et al., 2005). Dissimilatory sulfate reduction
pathway genes, adenosine-5’-phosphosulfate reductase A gene (aprA) and dissimilatory
sulfite reductase A (dsrA), were assessed with the RH1apsF/RH2apsR and RH1-dsr-

F/RH3-dsr-R primer pairs, respectively (Ben-Dov et al., 2007).
Metagenome Analysis

Shotgun metagenome libraries were sequenced on an lllumina MiSeq using PE
300 chemistry by Oklahoma Medical Research Foundation (Oklahoma City, OK). Raw

sequences were processed for quality by removing sequencing adapters using Cutadapt
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(Martin, 2011), trimming each read for a minimum average PHRED quality score of 30
and mate pairing with Trimmomatic (Bolger et al., 2014). Unpaired reads were not

retained for downstream analyses.

Community composition was assessed from unassembled mate-paired reads
with significant homology to known small subunit (SSU) rRNA genes. Reads were
searched against the Silva SSU Reference database release 108 (Pruesse et al., 2007)
pre-clustered at 97% sequence similarity using USEARCH (Edgar, 2010). Hits with a
minimum of 70% homology to reference SSU gene sequences were extracted for further
analysis. Putative SSU reads were analyzed using QIIME 1.9.1 (Caporaso et al., 2010)
through closed-reference OTU clustering (97% similarity) and taxonomic assignment
against the Silva 111 SSU reference sequence and taxonomy databases. Alpha diversity
metrics were computed for each sample based upon metagenome reads containing SSU

fragments rarefied to 1800 sequences for each library.

Functional gene annotation was performed by translated homology searching of
unassembled mate-paired reads against the KEGG database (Kanehisa et al., 2012)
using DIAMOND (Buchfink et al., 2015) in the sensitive mode retaining only the top
hit (E < 107°) for each query. Putative anaerobic hydrocarbon activation genes were
identified by a translated homology search in USEARCH against the AnHyDeg
database (Callaghan and Wawrik, 2016). Acceptance criteria were 60% identity over
alignments with at least 35 amino acids. Functional gene abundances were calculated
by dividing the number of hits to specific reference gene by the number of hits to the
single copy marker gene rpoB to normalize for differential library population size

(Howard et al., 2008). A modified approach was used to estimate the total
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hydrocarbon-activating proportion of each community from that previously used (Biers
et al., 2009) by a summation for selected aerobic and anaerobic specific activation
genes of the following: (hits to functional gene;i /length of functional gene;i)/hits to rpoB.
Aerobic activation genes included: alkB, EtbAa, tmoA, todC1, dmpB, nahAc, and 1-
methylnaphthalene hydroxylase-like genes. Anaerobic activation genes were ebdA,

assA, bssA, nmsA.

Metabolite Analyses

Mass spectral analysis of signature metabolites associated with oxygen-
dependent and independent activation and catabolism of diesel fuel components was
performed on ballast tank samples acidified (pH <2) immediately upon sampling.
Methods used for the targeted (GC-MS) and global survey of organic intermediates

were as reported in Chapter 1.

Results

Water Sample Properties

Harbor and ballast tank water samples were analyzed for chemical composition
and dissolved metal concentrations. Table 1 summarizes the residence times of ballast
tank waters aboard each ship and concentrations of selected chemical constituents. Ship
1 ballast water contained ~50% less dissolved oxygen than that estimated for the harbor
water where the ship was docked. Sulfate concentrations were unchanged between the
harbor water and Ships 1 & 2, but fluids from Ship 3 exhibited a 5 mM (17%) loss after
8 months within the ballast tank. Dissolved metal concentrations for manganese,

copper and nickel were quantified for the ballast waters of each ship and compared to
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the harbor water as a baseline of metal intake into each system. All of the ballast tanks
had significantly higher concentrations of each metal as compared to the surrounding
harbor water. After just one-week residence within the ballast tank of Ship #1 there was
a minimum increase of 65-fold or more for each element quantified. Copper and nickel
levels were considerably higher than manganese in both Ships #1 and #2. This trend
was not observed in Ship #3 with manganese being 10-fold higher than either copper or
nickel. Overall there is a positive correlation between ballast tank water residence time
and total dissolved metal concentrations, as well as the sulfide-containing particulates
for each species. Comparison of the dissolved metals present within each ballast tank
relative to the harbor water indicates that the intake fluids accounted for a negligible
proportion of the observed metals and implicates infrastructure dissolution as a potential

cause.
Marine Populations & Community Composition

The magnitude of microbial populations within each water sample was
quantified by several means including: direct cell counting via epifluorescence
microscopy, domain-specific gPCR, and single copy marker gene quantification from
shotgun metagenomics sequencing (Table 2). Direct cell counting showed the
microbial population sizes to be very similar between all ships sampled at
approximately 10° cells mL?, regardless of residence time, and all were between 2
and10-fold less than the harbor surface water community. Quantitative PCR
enumeration of bacterial and archaeal 16S rRNA genes ranged from 10° to 10 and 10?
to 10° gene copies mL™, respectively. The Bacteria bloomed after one week aboard

Ship #1 relative to the harbor community, and then declined with increased residence
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time as seen for Ships #2 & #3. The Archaea were several orders of magnitude less
abundant than Bacteria in all samples. The largest population of picoeukaryotic
organisms was found in the harbor surface water, with sharply decreased in numbers in

all ballast tank samples.

Microbial community diversity was assessed by the Shannon diversity index,
observed species, and Simpson’s evenness metric and are summarized in Table 3. All
of the communities showed a bias towards some taxa (e.g. more uneven distribution of
species) and show a trend of increasing dominance with increasing residence time.
There is also a limited change in the species richness (e.g. observed species) of only 8%

between the richest community in Ship #1 and the least rich in Ship #2.

The composition of microbial populations within each sample were determined
by comparison of each 16S rRNA gene amplicon library against the Silva SSU
reference database (Fig. 2). Taxa belonging to the Gammaproteobacteria (19.7%,
64.6%, 32.3%, 23.1%), Alphaproteobacteria (24.2%, 10.8%, 11.4%, 7.6%),
Flavobacteria (20.5%, 7.1%, 12.1%, 1.8%), and the Deltaproteobacteria (3.1%, 4.5%,
21.1%, 43.3%) accounted for substantive proportions of the communities within the
Harbor water and Ships #1, #2 and #3, respectively. The Rhodobacterales (8.9%) and
members of the SAR 11 clade (7.7%) were the Alphaproteobacteria accounting for
greatest proportion of the total Harbor community. Within the Harbor water
gammaproteobacterial population, sequences were predominantly affiliated with the
Oceanospirillales and Alteromonadales at 8.9% and 4.6% total relative abundance,
respectively. The San Diego Harbor water sample contained several groups of marine

Eukaryota, and were dominated by the Alveolata (11.0%) and Stramenopiles (4.0%).
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Despite accounting for 18.8% of the total marine community in the Harbor water
sample, members of the Eukaryota did not comprise more than 0.5% of the ballast tank
assemblages. The sharp decline from 1 week aboard ship (Harbor vs. Ship #1)
continued and no eukaryotic rRNA gene sequences were detected in Ship #3.

Sequences classified as Archaea never exceeded 0.3% of any community sampled.

The assemblage within the ballast tank of Ship #1 showed a stark shift with the
Gammaproteobacteria enriched to become the dominant taxonomic Class, with the
concomitant decline of the Alphaproteobacteria and the Flavobacteria. The
Alteromonadales, Oceanospirillales, and Thiotrichales increased to account for 42%,
35%, and 19% of all observed Gammaproteobacteria, respectively. The
Epsilonproteobacteria were also enriched by 10-fold (2.8%) after 1 week within the
ballast tank of Ship #1 represented almost exclusively by members of the

Campylobacterales (97% of Epsilonproteobacteria).

The Deltaproteobacteria were the dominant Class observed in the Ship #2
community at 21.0%, a ~3.5-fold increase relative to the Ship #1 sample. Members of
the Desulfuromonadales and Desulfobacterales accounted for the majority of the
observed Deltaproteobacteria at 80% and 10%, respectively. Though the total
proportion of Gammaproteobacteria was smaller in the Ship #2 community as
compared to Ship #1, the Alteromonodales were enriched to represent 71% of these
taxa. Taxa affiliated with the Clostridia (7.2%) and Mollicutes (4.6%) accounted for
substantive portions of the total ballast tank community in Ship #2, with increases of

~3-fold and ~5-fold relative to Ship #1, and their highest abundances observed in this
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study. The Alphaproteobacteria, Flavobacteria, and Epsilonproteobacteria were all

slightly higher in relative abundance in the Ship #2 community as compared to Ship #1.

Finally, the ballast tank community of Ship #3, with a residence time of 32-
weeks, was the most different from the Harbor water assemblage (Fig. 2). The
Deltaproteobacteria (43.3%) were the most abundant taxa, with members belonging to
the Desulfobacterales, Desulfarculales, and Desulfovibrionales at 66%, 27%, and 6% of
this group, respectively. This community also contained the largest population of
Bacteroidetes (8.2%), represented predominantly by unclassified members of the
Bacteroidales (57% of the Bacteroidetes), and the smallest segment of Flavobacteriia
observed in any sample. Gammaproteobacteria, Alphaproteobacteria, and
Epsilonproteobacteria accounted for smaller community abudance in Ship #3 relative to
Ship #2. Ship #3 had the smallest proportion of Alphaproteobacteria found in this

study.

In addition, the functional genes within the metagenomes associated with the
utilization of common inorganic electron donors and acceptors were characterized by
translated Blast analysis. Figure 3 shows the normalized gene abundances within each
sample. Nitrification genes ammonia monooxygenase (amoA) and hydroxylamine
dehydrogenase (hao) did not exceed 0.3% normalized abundance within any sample
library. Genes associated with the oxidation of reduced inorganic sulfur species were
present within all of the samples analyzed. Sulfur-oxidizing system (SOX) protein B
(soxB) declined from 5.9% in the Harbor water metagenome to ~4.2% of the functional
capacity of Ships #1 and #2. This gene further declined to barely detectable levels of
0.5% in the Ship #3 ballast water sample. Nitrogen fixation, represented by nitrogenase
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gene nifH, increased with residence time from a low level in the Harbor water (0.9%) to

5.5%, 7.1%, and 8.8% in the libraries of Ships #1, #2, and #3, respectively.

Genes affiliated with the reduction of oxygen and nitrate exhibited a marked
increase between the Harbor water and Ships #1 and #2. Cytochrome c oxidase subunit
| genes (ccoN and coxA) represented aerobic respiration and had the highest levels of
any inorganic redox genes assayed in the Harbor and ballast tank waters of Ships #1 and
#2. There was a 50% decrease in cytochrome c oxidase subunit | gene abundance after
8 months aboard Ship #3. Nitrate reductase genes (cytoplasmic narG and periplasmic
napA) had a combined abundance that markedly increased in ballast tank waters of
Ships #1 (22.1%) and #2 (38.0%) relative to the Harbor water (9.0%) and then declined
sharply to 11.3% in the Ship #3 library. The potential for sulfate and thiosulfate
reduction were investigated through adenylylsulfate reductase (aprA) and thiosulfate
reductase (phsA/prsA) genes, respectively. Total sulfidogenesis potential was marked
by the abundance of the dissimilatory sulfite reductase gene, dsrA. All genes associated
with the reduction of sulfoxyanions remained at relatively low levels in all samples
excluding Ship #3. Between Ship #2 and Ship #3, there were increases of 4-fold in
aprA, 5-fold in phsA, and 5-fold in dsrA genes. These were the highest levels observed
for each of these genes within this study and represented increases relative to the Harbor
water library ranging between 3.6-fold for adenylylsulfate reductase to 30-fold for

thiosulfate reductase.

Fuel Biodegradation Genes & Metabolites
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Normalized gene abundances and observed selected metabolic intermediates
associated with the activation and biodegradation of diesel fuel components are shown
in Figures 4 & 5. Oxygen-dependent mechanisms for the activation of diesel
components were assayed by quantifying the proportion of genes annotated as alkane 1-
monooxygenase (alkB) for aliphatic substrates, ethylbenzene dioxygenase (etbAa),
toluene monooxygenase (tmoA), benzene/toluene dioxygenase (todC1), and xylene
monooxygenase (xylM) for BTEX hydrocarbons, phenol hydroxylase (dmpL) and
phenol 2-monooxygenase for phenolic compounds, and naphthalene 1,2-dioxygenase
(nahAc) and 1-methylnaphthalene hydroxylase for polyaromatic hydrocarbons.
Catechol 1,2-dioxygenase (catA) and catechol 2,3-dioxygenase (catE), along with
salicaldehyde dehydrogenase and salicylate hydroxylase were used as metrics for
genetic potential for downstream aerobic metabolism of mono- and polyaromatic
hydrocarbons. The alkyl-, benzyl-, and naphthylmethyl-succinate synthases (assA,
bssA, nmsA) served as indicator genes for activation of aliphatic, mono-, and
polyaromatic hydrocarbons by addition to fumarate. The ethylbenzene dehydrogenase
gene ebdA served as a marker for the potential for the anaerobic activation of
ethylbenzene by dehydrogenation and subsequent hydroxylation of the ethyl-

substituent.

Alkane monooxygenase (12.4%) was the only hydrocarbon activation gene
(aerobic or anaerobic) that constituted >2.0% of the total Harbor water community
potential. No genes associated with the anoxic activation of hydrocarbon substrates
were identified. None of the signature aerobic or anaerobic hydrocarbon biodegradation

metabolites (Fig. 5) were detected in the San Diego seawater sample.
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The aerobic BTEX activating portion of the Ship #1 community bloomed
significantly relative to the Harbor community with ethylbenzene dioxygenase, xylene
monooxygenase, and phenol hydroxylase increasing by 366-fold, 92.6-fold, and 8.0-
fold respectively. The ring-cleaving enzyme catechol 2,3-dioxygenase also increased
significantly in Ship #1 by 11.4-fold to 25.3% of the total community, while catechol
1,2-dioxygenase increased by 3-fold to a proportion of only 2.5% of the assemblage.
Metabolite analysis identified the presence of phenylethanol, 3-methylcatechol, 4-
methyl catechol, and methylnaphthalene-diol, indicative of the oxygen-dependent
biological activation of mono- and polyaromatic hydrocarbons. There was a slight
increase of 12% in the proportion flora possessing alkB, and genes related to the aerobic
activation of naphthalenes remained at less than 1% of the community potential. Genes
for the alkyl- (2.1%), “mono-aromatic”- (0.3%), and naphthylmethyl (1.2%)-succinate
synthases all showed slight increases relative to the harbor water metagenome, but these
values are likely inflated by the presence of other common glycyl-radical enzymes (e.g.
pyruvate-formate lyase) that share significant protein sequence homology. Despite
these gene enrichments, no succinate-derivative metabolites were observed in the Ship

#1 sample.

The community within Ship #2 saw a further 11.6% enrichment of alkB
possessing taxa over that of Ship #1. In contrast, the genes for ethylbenzene
dioxygenase, xylene monooxygenase, and phenol hydroxylase declined sharply to
account for less than 2.0% of the total community each. The anaerobic gene nmsA
increased by 440.1% relative to Ship #1 to represent 7.7% of the Ship #2 population.

Overall, the total proportion of hydrocarbonoclastic taxa in Ship #2 decreased as
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compared to Ship #1, though there was an enrichment in oxygen-independent activation

genes (Fig. 6).

The ballast tank water of Ship #3 contained the largest hydrocarbon-activating
community of any sample investigated in this study. Alkane 1-monooxygenase (6.1%)
and catechol dioxygenase (catA/catE) genes (0.4%, 2.0%) decreased to their smallest
proportion observed in any sample. In contrast, the community possessing assA (5.7%),
bssA/hbsA/ibsA (4.7%) and nmsA (20.5%) were found in the highest respective
abundances. Mono- and poly-aromatic succinate metabolites were present
corresponding to alkylated aromatic hydrocarbon substrates. No catechols or aromatic
dihydrodiol intermediates were observed in the Ship #3 water sample. Naphthoic and
alkanoic acids, aliphatic alcohols, and phenylethanol were also putatively identified in

the Ship #3 water sample, as well as in Ship #1.

Discussion

This study investigated the role of marine microorganisms in diesel fuel
biodegradation and infrastructure biofouling/biocorrosion aboard naval surface warfare
vessels. The temporal dynamics of community membership and metabolic activities
within seawater-compensated fuel ballast tanks were characterized through
metagenomics and metabolomics paired with geochemical analyses of ballast tank
water samples. All ships sampled in this study were stationed in San Diego Bay, CA
USA and routinely take seawater into their ballast tanks. The Harbor water sample
obtained from San Diego Bay, CA USA served as the baseline control for comparison
of microbiome successional patterns as a function of increasing residence time aboard
ship.
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Ribosomal RNA gene analysis revealed the surface waters of San Diego Harbor
to be primarily colonized by Bacteria belonging to the Alphaproteobacteria,
Flavobacteria, and Gammaproteobacteria and marine eukaryotes of the Alveolata and
Stramenopiles (Fig2.). This community differs from the surface water community of
the North Pacific Tara Station 133, ~635 miles NW, that was dominated by the
Actinobacteria (35%), with much smaller proportions of the Gammaproteobacteria
(11%), Alphaproteobacteria (7%), and Flavobacteria (2%) (Sunagawa et al., 2015).
San Diego Bay receives terrestrial discharges from the major urban, industrial, and
military instillations within the San Diego, CA metropolitan area. These inputs and
repeated chemical releases have resulted in the chronic introduction of pesticides,
polyhalogenated aromatic compounds, and fuel hydrocarbons into the bay. The
presence these organic pollutants may play a role in enriching for different resident

marine heterotrophic taxa within this littoral habitat.

The marine microbial community was significantly altered after a one-week
residence time within a ballast tank (Ship #1) as compared to the initial harbor
community. Despite the total cell population decrease of ~100-fold (Table 2), there was
only a slight decrease in community diversity and an increase in observed taxa (Table
3). Gammaproteobacteria were enriched to be the dominant community members,
predominantly driven by increases in the Altermonodales, Oceanospiralles, and
Thiotrichales (Fig. 2). These bacterial Orders contain numerous well documented
hydrocarbonoclastic aerobic taxa of the belonging to the genera Marinobacter,
Alcanivorax, and Cycloclasticus, respectively. Several previous studies have noted the

enrichment of each of these groups in marine waters impacted by oil spills across the
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globe (Geiselbrecht et al., 1998; Kasai et al., 2002; Maruyama et al., 2003; Dubinsky et
al., 2013; King et al., 2015). Marinobacter hydrocarbonoclasticus has previously been
shown to preferentially degrade short to moderate length n-alkanes (Cgs-C14) and
selected mono-aromatic hydrocarbons, specifically ethylbenzene when incubated with
F-76 diesel fuel. This organism also showed limited transformation capacity for
alkylbenzenes, but no activity towards naphthalene (Striebich et al., 2014). Pure culture
studies of M. vinifirmus and M. hydrocarbonoclasticus further demonstrated the
complete oxidation of BTEX hydrocarbons under aerobic conditions (Berlendis et al.,
2010). Alcanivorax spp. have repeatedly been documented to degrade a wide range of
aliphatic hydrocarbons under aerobic conditions in marine environments (Yakimov et
al., 1998; Harayama et al., 2004; Liu and Shao, 2005). To date, no studies have linked
Alcanivorax spp. to the biodegradation of aromatic hydrocarbons and the genomes of A.
dieselolei B-5 and A. borkumensis SK2 lack the genes for the catechol dioxygenases
(catA/xyIM) that are essential for the downstream metabolism of BTEX and PAHs
(Schneiker et al., 2006; Lai et al., 2012). Cycloclasticus pugetti is an obligate aerobe
with the capacity to degrade mono- and polyaromatic hydrocarbons (Dykesterhouse et
al., 1995). Cycloclasticus strains isolated from coastal waters in the Gulf of Mexico
(Geiselbrecht et al., 1998) and Kamaishi Bay, Japan (Kasai et al., 2002), were also
associated with the aerobic degradation of a variety of alkylated PAHs and
dibenzothiophenes. Genetic studies revealed the presence of distinct naphthalene and
biphenyl cluster dioxygenases in several Cycloclasticus isolates (Geiselbrecht et al.,
1998). Inspection of the publically available genome sequence for C. pugetti PS-1

(IMG database) also revealed the presence of multiple copies of ethylbenzene
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dioxygenase and toluate dioxygenase genes. Thus, the increased proportions of
Alteromonodales and Thiotrichales likely account for the enrichment of aromatic
hydrocarbon degradation genes and presence of signature aerobic metabolites (e.g.
alkylcatechols & dihydromethylnaphthalene) observed in Ship #1 (Figs. 4 & 5). Based
on phylogenetic, genomic, and metabolic evidence suggests that the ballast tank
community of Ship #1 is composed of taxa responsible for the aerobic oxidation of the

more water-soluble aromatic hydrocarbon components of F-76 diesel fuel.

The microbiome of Ship #2 was also predominantly colonized by members of
the Alteromonadales, but also had a sharp increase in the Deltaproteobacteria,
specifically the Desulfuromonadales (Fig. 2). In concert with the decreased relative
abundance of the Gammaproteobacteria, there was also a decrease in the aerobic
hydrocarbon-activation genes relative to Ship #1 (Fig. 4). Despite the bloom in
Desulfuromonadales, there was surprisingly little enrichment in genes identified in
sulfidogenesis (Fig. 3). Anaerobic hydrocarbon-activation genes were also observed in
a limited capacity, exhibiting only a slight increase in nmsA abundance relative to Ship
#1 (Fig. 4). The Desulfuromonadaceae are strictly anaerobic heterotrophs, with some
aerotolerance capacity, that typically respire sulfur compounds to sulfide, with the
exception of some Pelobacter spp. that exhibit strictly fermentative metabolism.
Members of this Family typically utilize fatty acids and alcohols as substrates, but to
date none have been demonstrated to activate or oxidize hydrocarbons (Kuever et al.,
2005). D. acetoxidans and D. palmitatis were shown to reduce ferric iron and several
other species have been documented to reduce Mn(IV) as an electron acceptor (Roden

and Lovley, 1993; Finster et al., 1994; Coates et al., 1995; Vandieken et al., 2006). The
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oxygen tolerance and ability to utilize metals as electron acceptors, suggests these taxa
bloomed in response to environmental conditions with oxygen becoming increasingly
scarce in the ballast tank, and potentially establishing localized anoxic zones in Ship #2.
As no metabolic or genomic evidence suggested a role for these organisms in fuel
biodegradation, it is possible that aerobic catabolites produced by the cohabitating

Alteromonadales serve as electron donors and carbon sources.

After 32-weeks, the ballast tank community of Ship #3 was predominantly
colonized by anaerobic taxa affiliated with the Deltaproteobacteria (42%), specifically
the Desulfobacteraceae (27%) and Desulfarculaceae (11%) (Fig. 2), with a concomitant
increase in sulfoxyanion reductive respiration genes to the highest levels observed in
this study (Fig. 3). Conversely, the Ship #3 community possessed the smallest
population of c-type cytochrome oxidase containing taxa found in any sample (Fig. 3).
Metagenome analysis estimated that of all observed genomes, 27.0% encoded an
adenylylsulfate reductase and 24.8% a thiosulfate reductase (Fig. 3). This community
also possessed the highest levels of anaerobic hydrocarbon activation genes:
alkylsuccinate synthase (5.7%), mono-aromatic succinate synthases (4.7%), and
naphthylmethylsuccinate synthases (20.5%). Several species within the
Desulfobacterales are documented hydrocarbon-degrading anaerobes targeting a variety
of aliphatic and aromatic substrates. Desulfobacula toluolica Tol2 (Rabus et al., 1993,;
Rabus and Widdel, 1995; Wohlbrand et al., 2013), Desulfosarcina cetonica, formerly
Desulfobacterium cetonicum (Galushko and Rozanova, 1991), Desulfobacteraceae
strain mXS1 (Harms et al., 1999) and Desulfosarcina ovata 0XyS1 (Harms et al., 1999;

Keuver et al., 2005) utilize toluene as well as various other alkylbenzenes and cresol
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isomers as electron donors coupled to the reduction of sulfate or thiosulfate to sulfide.
D. tolulica and D. cetonica activate toluene and cresols to the corresponding
monoarylsuccinates via benzylsuccinate synthase (Bss) and hydroxybenzylsuccinate
synthase (Hbs), (Mdller et al., 1999; Muller et al., 2001; Woéhlbrand et al., 2013).
Recently, a more nutritionally restricted member of the Desulfosarcina, D. sp. PP31
was described to completely oxidize p-xylene, but was unable to utilize any other
BTEX substrate or xylene isomers (Higashioka et al., 2012). Currently, the activation
mechanism utilized by this organism remains unknown. Metabolite analysis of culture
fluids of the currently unclassified marine Desulfobacteraceae strain EbS7 revealed
ethylbenzene is initially activated by addition of the substituent to fumarate by a Bss
reaction, as mentioned for related Deltaproteobacteria. A small group of unclassified
Desulfobacteraceae isolates, NaphS2 (Galushko et al., 1999) and NaphS3 and NaphS6
(Musat et al., 2009), are the best described PAH utilizing sulfate-reducing taxa. These
three isolates have been shown to activate naphthalene and 2-methylnaphthalene by
parallel pathways of direct carboxylation and addition to fumarate resulting in the
corresponding napthoate and 2-(naphthylmethyl)succinate, respectively (Musat et al.,
2009; DiDonato et al., 2010; Mouttaki et al., 2012). Beyond the aromatic
hydrocarbons, several species have been characterized utilizing aliphatic compounds.
Desulfatibacillum alkenivorans AK-01 (Callaghan et al., 2006), the well-established
model organism for fumarate addition activation of aliphatic hydrocarbons, as well as
D. aliphaticivorans CV2803 (Cravo-Laureau et al., 2004) have been shown to
catabolize a wide range of n-alkanes and n-alkenes under anoxic conditions (So and

Young, 1999; Callaghan et al., 2012). In contrast, Desulfococcus oleovorans Hxd3 has
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a similar substrate utilization profile, but has been shown to activate these hydrocarbons
via a sub-terminal oxidation mechanism catalyzed by the putative oxygen-independent
Alkane C2-Methylene Hydroxylase Complex, followed by carboxylation and
mineralization via B-oxidation (Heider et al., 2016). Thus, given the diversity of
hydrocarbonoclastic taxa within this group with the capacity for the catabolism of both
aromatic and aliphatic substrates, it is likely that the organisms within the Ship #3
assemblage affiliated with Desulfobacterales harbor the succinate synthase A genes
identified in the metagenome and are primarily for the fuel biodeterioration within this
ballast tank. This is further supported by the concomitant identification of mono- and
polyaromatic succinate metabolites in the fluids of Ship #3 (and only in this sample)
along with the sharp increase in genomes encoding bssA/hbsA/ibsA and nmsA alleles

(Figs. 4 and 5).

From an ecological perspective, the fuel compensated ballast tank habitat is a
very interesting ecosystem. After a very short exposure (7 days) to a habitat with large
quantities of toxic refined petroleum and an absence of light, a typical coastal marine
community based upon phototrophic primary production shifted to one driven by
heterotrophic consumption of diesel hydrocarbons and essentially a complete loss of the
eukaryotic component of the ecosystem. The resulting hydrocarbonoclastic community
of Ship #1 is very similar to the response of open-ocean surface water ecosystem to the
sudden enormous influx of petroleum compounds from the Deep Water Horizon Qil
spill. Here too, surface water assemblages in the Gulf of Mexico underwent dynamic
shifts within the first week and experienced strong enrichments of hydrocarbonoclastic

aerobes of the Oceanospiralles, Alteromonadales, and Thiotrichales (Dubinsky et al.,
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2013). Over time, as the efforts to stem the unmitigated flow of crude oil and gas led to
partial capture and ultimately the successful shut in, the rapidly growing
Oceanospiralles declined with staggered enrichment of Altermononadaceae and
Flavobacteriaceae with increasing time (Dubinsky et al., 2013).  The change in pre-
spill surface ratio of Alpha-/Gammaproteobacteria from >1.7 to >1.0 is also observed in
this study with a shift from 1.4 to ~0.2 between the San Diego Harbor and Ship #1
samples (Hazen et al., 2010; King et al., 2015). Thus, the community response
dynamics within an artificial habitat devoid of light and surrounded by metallic
infrastructure closely mimicked the successional pattern observed in the natural surface
marine habitat. Figure 6 shows the shifts in community proportions encoding
hydrocarbon activation genes, as well as the relative abundance of genes from oxygen-
dependent and independent pathways. After 7 days, the hydrocarbonoclastic
community is enriched to 2.4 times that observed in San Diego Harbor. At 20-weeks
and beyond, the abundance decreased to approximately only 1.5 times that of the
Harbor assemblage. Within Ship #1, 95% of the activation genes were associated with
aerobic mechanisms associated with well documented aerobic hydrocarbonoclastic taxa,
aerobic respiration genes, signature aerobic catabolic intermediates, and a decreased
dissolved oxygen content (Figs. 2,3,5, and 6; Table 1). As residence time increased, the
fuel-degrading activation gene subset was increasingly affiliated with anoxic
mechanisms after the initial bloom. At 32-weeks, the hydrocarbon-degrading
community predominantly employed oxygen-independent mechanisms (68%) with key
metabolites associated with the fumarate addition-mediated degradation of BTEX and

PAH fuel components (Figs. 5 and 6). Thus, the Ship #2 sample appeared to
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approximate a transition between two distinct hydrocarbonoclastic marine microbiomes
within the fuel compensated ballast tanks. Based upon phylogenetic, functional
genomic and metabolic evidence, these biomes are supported primarily by the oxidation
of more water-soluble aromatic fuel components with succession driven by electron

acceptor availability.

As demonstrated in this study and others involving marine waters and fuel
mixtures, microorganisms endemic to seawater habitats in both littoral and oceanic
zones are capable of degrading hydrocarbons under oxic and hypoxic conditions.
Previous work also clearly established the link between microbial biodeterioration of
hydrocarbons and the biocorrosion of carbon steel. Analysis of dissolved metal
concentrations present within each sample served as potential indicators of ballast tank
corrosion (Table 1). The levels of dissolved metals in all of the ballast tank fluids are
considerably greater than the surrounding harbor waters, and thus likely are the result of
release from the ballast tank infrastructure. Total dissolved manganese, copper, and
nickel appeared to positively correlate with the increase in sulfidogenic taxa between
Ships #1 and #2 (Fig. 6). There was also a strong increase in the abundance of sulfide-
bearing particulates of each metal species associated with the strongly sulfidogenic
community of Ship #3. A thermodynamic model based upon the premise of microbial
sulfidogenesis in the presence of various metals/alloys predicts that sulfides will react
with metal oxides to produce metallosulfide particles, thus potentially exacerbating the
depletion of the protective oxide layers (McNeil and Odom, 1994). Copper-nickel
alloys are commonly utilized in marine infrastructure, but are highly susceptible to

corrosion and leaching by sulfides and organic acids and other products of microbial
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metabolism (Pope, 1987; Wagner and Little, 1993). Previous research on localized
corrosion of low carbon steels in marine systems showed that pit initiation begins at
MnS inclusions acting as cathodic sites to the surrounding iron matrix and that pit
development releases soluble manganese into the surrounding fluid matrix (Melchers et
al., 2016). Analysis of metal concentrations and particulates suggests that the CuNi-
alloy sluice pipes transporting water and fuel between ballast tanks were the primary
sites of active biocorrosion in Ships #1 and #2 and that aggressive pitting corrosion of

the ballast tank carbon steel was occurring in Ship #3.

This study demonstrated key findings in regards to the operation and
maintenance of fuel compensated ballast tanks of the United States Navy: petroleum-
derived diesel fuels are susceptible to biological deterioration when in contact with
seawater, regardless of oxygenation status or residence time; and that shipboard
infrastructure is negatively impacted by microbiologically influenced corrosion and
fouling driven by the degradation of fuels and production of sulfides. Studies
conducted on simulated ballast tank systems highlighted the inherent stratified nature of
these habitats with zones of variable oxygenation (Lee et al., 2004; Heyer et al., 2013).
Furthermore, the deleterious impacts of microbial activity were not homogenously
distributed within the ballast tank systems, rather horizontal surfaces (e.g. tank bottoms)
were sites of aggressive general and localized corrosion (Cleland, 1995; Lee et al.,
2004; J. S. Lee et al., 2012; Heyer et al., 2013). Guidelines issued for practices aimed at
reducing the wastage of ballast tanks aboard naval vessels have suggested the strict
deoxygenation of displacement water and coating of internal surfaces (Askheim Erik,

1997; Goldie, 2012). Ship operators have estimated that a vessel on standard operations
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consumes ~1000 gallons of fuel per day, necessitating the introduction of new seawater
into ballast tanks on a regular basis (personal communication). This scenario of cyclic
oxygenation/deoxygenation has repeatedly been observed to promote the highest rates
of generalized and pitting corrosion (J. S. Lee et al., 2012). Furthermore, this condition
promotes the persistence of biofilms harboring both aerobic and anaerobic taxa with the
capacity for sulfur cycling and the formation of corrosive sulfur granules (Cleland,
1995). As treatment of incoming seawater for the removal of oxygen and sulfate is not
readily feasible, a critical consideration for ship operators is to eliminate the
introduction of sediments into ballast tanks and to ensure all internal surfaces are
coated. Sediments settle onto horizontal surfaces and promote further stratification
within the ballast tank and likely serve as a source of sulfide-producing prokaryotes
(e.g. Desulfobacterales). Given the stratified nature of these systems, further research is
warranted to determine how well the sampling of expansion tanks represents the various
ballast tank zones. Ultimately, this study identified successional trends in the ecology
of ballast tank ecosystems that are critical for understanding the deleterious impact of
microorganisms on infrastructure and will hopefully serve to inform future studies to

lessen the biological wastage of naval resources.
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Table 1. Summary of water sample residence times and selected chemical properties.
Ship #2 ballast water residence time was reported from naval personnel between 16 and
24 weeks. *, Estimated from NOAA data for San Diego Harbor, San Diego, CA USA.
Relative frequency of each metal observed in metal-sulfide particles analyzed by EDX
is shown in parentheses. Not detected, ND; Not reported, NR.

Harbor Ship #1 Ship #2 Ship #3
Residence Time (weeks) 0 1 ~20 32
Dissolved O, (ppm) 8* 3.7 ND ND
Sulfate (mM) 29 29 29 25
Manganese (ppb) 0.16 (ND) | 10.67 (NR) 125.07 (NR) | 1119.28 (NR)
Copper (ppb) 0.40 (ND) | 206.28 (47%) | 864.51 (42%) | 101.19 (85%)
Nickel (ppb) 0.60 (ND) | 95.75 (26%) | 1564.29 (11%) | 23.90 (39%)
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Table 2. Marine microbial population estimates and functional gene gPCR
enumeration. 2Cell counts reported as cells mL™. PReported as gene copies mL™.
Bacteria, Archaea and Picoeukaryote represent respective 16S and 18S rRNA genes.
Adenosine-5’-phosphosulfate reductase A gene (apsA). Dissimilatory sulfite reductase
A gene (dsrA). Below detection limit (BDL). Standard deviations are shown in
parantheses for qPCR analyses.

Harbor Ship #1 Ship #2 Ship #3
Cell Counts? 2.13x10° | 1.11x10° | 7.54x10° | 9.42x10°
2.14x10° | 6.44x107 | 1.05x10° | 7.35x10°
(3.52x10%) | (4.64x10°) | (1.95x10%) | (2.25x10%)
1.81x10% | 1.93x10° | 2.28x10%* | 1.05x10°
(3.76x10Y) | (7.79x10%) | (1.56x10%) | (1.58x10%)
1.87x10* | 9.78x10% | 3.67x10 | 2.34x10'
(5.78x10%) | (3.02x10% (5.45) (9.69)
apsA® BDL 9.69x10% | 5.84x10% | 2.07x10*
(3.10x10%) | (3.72x10%) | (1.58x10°)
6.90x10! | 1.39x10* | 3.38x10% | 2.20x10*
(7.03) (1.43x10%) | (5.88x10%) | (1.83x10°%)

Bacteria®

Archaea®

Picoeukaryotes®

dsrAP
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Table 3. Summary of metagenome library statistics and extracted community diversity
metrics. Hits to 2small subunit rRNA genes (SSU) and "RNA polymerase B (rpoB)
fragments defined as any read with minimum homology scores defined in methods.
Diversity metrics were calculated based on extracted SSU reads extracted from each
library rarified to a uniform sequencing depth of 1,800.

Harbor Ship #1 Ship #2 Ship #3

Metagenome Statistics
Library size (reads) 5,598,474 8,603,258 5,344,908 6,479,122

Hits to SSU fragments? 1993 8320 2827 2368

Hits to rpoB fragments® 4602 9588 5221 5511
Diversity Metrics®

Shannon Diversity 7.855 7.513 6.561 6.734

Observed OTUs 1091 1138 1052 1133

Simpson Evenness 0.055 0.041 0.019 0.023
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Figure 1. Cartoon schematic of ballast tank system.
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Figure 2. Metagenome analysis of community composition. Order-level taxa based on

extracted 16S and 18S rRNA genes.
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Figure 3. Metagenome analysis of selected energy conservation genes. All gene
abundances are normalized to single copy marker gene (rpoB) abundance for each
sample. Colors are scaled based on values in discrete rows. Gene abbreviations: amoA,
ammonia monooxygenase; hao, hydroxylamine oxidoreductase; mtoA/pioA, decaheme
c-type cytochrome involved in neutrophilic iron oxidation; soxB, sulfur oxidation gene;
sgr, sulfide:quinone oxidoreductase; ccoN cbb3-type cytochrome C oxidase; coxA, aa3-
type cytochrome C oxidase; aprA, adenylylsulfate reductase; phsA, thiosulfate
reductase; dsrA, dissimilatory sulfite reductase.
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Figure 4. Metagenome analysis of selected hydrocarbon catabolic genes. All gene
abundances are normalized to single copy marker gene (rpoB) abundance for each
sample. Numbers correspond to genes associated with metabolic reactions indicated in
figure 5.

Harbor Ship #1 Ship #2 Ship #3
Benzene/toluene dioxygenase (todC1)

2 Toluene monooxygenase (tmoA)
Xylene monooxygenase (xy/M)
Phenol hydroxylase (dmpL/poxC)

3 Benzylsuccinate synthase (bssA)
4 Hydroxybenzylsuccinate synthase (hbsA)

Isopropylbenzylsuccinate synthase (ibsA)

- Catechol 2,3-dioxygenase (catE)
Catechol 1,2-dioxygenase (catA)

Phenol 2-monooxygenase

5 Ethylbenzene dehydrogenase (ebdA)
6 - Ethylbenezene dioxygenase (etbAa)
Acetophenone carboxylase
7 Naphthalene 1,2-dioxygenase (nahAc)
8 1-methylnaphthalene hydroxylase
Salicaldehyde dehydrogenase
9 Salicylate hydroxylase
10 - Naphthylmethylsuccinate synthase (nmsA)
11 - Alkane 1-monooxygenase (alkB)
12 Alkylsuccinate synthase (assA)

Normalized Gene Abundance

c o
0 =
o)

87



Figure 5. Analysis of fuel metabolites within Ship #1 and Ship #3 ballast tank fluids.
Blue boxes indicate compounds identified in Ship #1 only, red in Ship #3 only, and
black were observed in both samples. Numbers above arrows correspond to
transformations catalyzed by metabolic genes listed in figure 4.
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Figure 6. Graphical comparisons of hydrocarbonoclastic community proportions and
ballast tank dissolved metal concentrations. Pie chart area is proportional to the total
abundance of aerobic and anaerobic hydrocarbon activation genes normalized to rpoB
for each library. Blue represents the aerobic, and orange represents anaerobic
hydrocarbon activation gene subpopulations.
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Chapter 3: Methanogenic Paraffin Degradation Proceeds via
Alkane Addition to Fumarate by “Smithella” spp. Mediated
by a Syntrophic Coupling with Hydrogenotrophic
Methanogens

Abstract

Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as
paraffins, presents unique metabolic challenges. To elucidate this process, a
methanogenic consortium capable of mineralizing long-chain n-paraffins (Czs-Cso) was
enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the
dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%).
Metagenomic sequencing allowed draft genome assembly of dominant uncultivated
community members belonging to the bacterial genus Smithella and the archaeal genera
Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic
subunit of alkylsuccinate synthase (assA) were detected. Additionally, mMRNA
transcripts for these genes, including a homolog binned within the “Smithella” sp. SDB
genome scaffold, were detected via RT-PCR, implying that paraffins are activated via
‘fumarate addition’. Metabolic reconstruction and comparison with genome scaffolds
of uncultivated n-alkane degrading “Smithella” spp. are consistent with the hypothesis
that syntrophically growing “Smithella” spp. may achieve reverse electron transfer by
coupling the reoxidation of ETFreq to @ membrane-bound FeS oxidoreductase
functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer
could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing
energetic coupling to hydrogenotrophic methanogens such as Methanoculleus.

Ultimately, these data provide fundamental insight into the energy conservation
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mechanisms that dictate interspecies interactions salient to methanogenic alkane

mineralization.

Introduction

Methanogenic conversion of n-alkanes by microbial consortia was first
investigated in 1950 (Kuznetsov, 1950), but not definitively demonstrated until Zengler
et al. (1999) described an enrichment culture that produced methane when amended
with n-hexadecane as the sole carbon and energy source. The authors proposed that
“microbial alkane cracking” under methanogenic conditions involves thermodynamic
coupling of at least three microbial taxa, including syntrophic bacterial species that
convert the alkane to hydrogen and acetate, acetoclastic methanogens that cleave the
acetate to methane and carbon dioxide, and hydrogenotrophic methanogens that convert
the carbon dioxide and hydrogen to methane. Phylogenetic analysis of the requisite
culture via 16S rRNA gene clone libraries revealed members of the genera Syntrophus,
Desulfovibrio, Methanosaeta, and Methanospirillum (Zengler et al., 1999), and
subsequent analysis via lllumina sequencing verified the dominance of Smithella and
Methanosaeta under hexadecane-grown conditions (Embree et al., 2014). More
recently, metagenomic and metatranscriptomic sequencing of these hexadecane-grown
cultures further revealed metabolically active consortium members including
Methanocalculus, Methanoculleus, Methanosaeta, Smithella and Desulfovibrio (Embree
et al., 2014; Embree et al., 2015). Since the seminal work in 1999, several subsequent
studies have provided evidence that these taxa are important in methanogenic alkane
biodegradation (Gieg et al., 2008; Siddique et al., 2011; Wang et al., 2011; Wang et al.,

2012; Cheng et al., 2013; Tan et al., 2013; Liang et al., 2015).
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The salient feature among these studies focusing on methanogenic alkane
biodegradation (Zengler et al., 1999; Gray et al., 2011; Siddique et al., 2011; Tan et al.,
2013) and other hydrocarbon-impacted systems (as reported in Gray et al. 2011) is the
dominance of bacteria belonging to the Syntrophaceae. Despite this unifying
observation, it has been a challenge to directly attribute n-alkane activation to
Syntrophus/Smithella spp. Toward this end, some efforts have been directed toward
elucidating the biodegradation pathway as a step toward identifying the key syntrophic
players. Anaerobic n-alkane activation is thought to proceed via several mechanisms
including alkane addition to fumarate (i.e. ‘fumarate addition’), intra-aerobic
hydroxylation, and possibly anaerobic hydroxylation followed by carboxylation of the
alkane chain (for review see Callaghan 2013). Among these, ‘fumarate addition’ is the
best characterized mechanism and is presumably catalyzed by the glycyl radical
enzyme alkylsuccinate synthase (also known as methylalkylsuccinate synthase)
(ASS/MAS) (Callaghan et al., 2008; Grundmann et al., 2008; Webner, 2012). The
large catalytic subunit, encoded by assA/masD, has been recognized as a useful
biomarker for anaerobic alkane metabolism (Callaghan et al., 2010), and has been
targeted in several investigations of alkane-degrading, methanogenic enrichment
cultures ( Li et al., 2012; Mbadinga et al., 2012; Wang et al., 2012; Aitken et al., 2013;
Cheng et al., 2013). Metagenomic and/or metatranscriptomic approaches have also
been exploited (Tan et al., 2013; Tan et al., 2015), and more directly, single-cell
genome sequencing and metatranscriptome analysis have been used to test the
hypothesis that “Smithella” spp. are actively involved in alkane metabolism in the

methanogenic alkane-degrading consortium originally reported by Zengler (Zengler et
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al., 1999; Embree et al., 2014). Although Embree et al. reported that Smithella ME-1
cannot activate alkanes via ‘fumarate addition” (Embree et al., 2014) and that the mode
of activation in “Smithella” is unknown (Embree et al., 2015), re-analysis of their data
by Tan et al. (Tan et al., 2014a) indicated that the requisite “Smithella” sp. ME-1 draft
genome does indeed contain assA to which transcriptomic reads can be mapped when
the culture is grown on hexadecane. Interestingly, ‘fumarate addition’ activity has also
been proposed for a novel member of the Peptococcaceae (Phylum: Firmicutes) under
methanogenic conditions (Tan et al., 2014c; Abu Laban et al., 2015). Overall, these
data point to a greater diversity of bacteria capable of ‘fumarate addition’ reactions

than has previously been appreciated.

The above studies have made significant contributions toward elucidating the
microbial community structure of methanogenic alkane-degrading consortia, providing
evidence of ‘fumarate addition’ and identifying Smithella-like organisms as critical
members, but few studies in the literature have addressed long-chain paraffin
degradation under methanogenic conditions (Townsend et al., 2003; Jones et al.,
2008). The study herein is a metagenomic characterization of a methanogenic
enrichment culture involved in the degradation of the long-chain paraffin, n-
octacosane (Cozg). Previous work demonstrated the presence of assA genes in this
culture, but the abundance of the requisite organisms containing these genes and assA
gene expression were not investigated (Callaghan et al., 2010). In the study herein, the
detection of several assA genes and the corresponding mRNA transcripts are
demonstrated, including an assA genotype associated with the binned and assembled

genomic sequence for a “Smithella” sp., the dominant organism in the consortium.
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Our data support the hypothesis that “Smithella” spp. are the dominant phylotypes that
catalyze alkane degradation in the consortium described here. The data further suggest
that prior observations for short and medium chain-length alkanes, with respect to the
alkane activation mechanisms and the syntrophic relationships with hydrogenotrophic
and acetoclastic methanogens, can be extended to the methanogenic conversion of

water-insoluble long-chain paraffins.

Results

Culture Enrichment

A sediment-free consortium (hereafter referred to as SDB) was enriched from
contaminated San Diego Bay sediment. The culture produces methane in the presence
of long-chain alkanes including pentacosane (C2sHs2), octacosane (C2sHsg),
dotriacontane (Csz2Hgs), tetracontane (CoHsz), and pentacontane (CsoHio2). The highest
rates of methane production (6.9 = 0.2 mmol L of methane after 31 weeks of
incubation) were measured in cultures that were amended with octacosane (C2sHsg)
(Appendix Il Figure S1A). Lower, but significant, amounts of methane were also
produced in cultures that were amended with shorter (C1o-18) or longer (Cao and Cso)
chain-length n-alkanes (Appendix Il Figure S1B). Given that the highest activities were
observed with octacosane (C2sHss), this substrate was used for the routine propagation
and characterization of the SDB culture. Quantitative growth experiments were
conducted with limiting amounts of octacosane to determine stoichiometry (Appendix Il
Table S1). Octacosane loss and methane production correlated with the theoretical
stoichiometry based on the equation: CzsHss +13.5H20 — 6.75CO; + 21.25CHa.

Methane production was approximately 93 + 19.7% of the predicted methane yield.
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Community Composition

The phylogenetic structure of the SDB consortium was investigated by 16S
PCR-based techniques and via metagenomic analysis of both 16S rRNA and functional
genes. The 16S PCR-based analysis (Appendix Il Figure S2) revealed a clear
dominance of Deltaproteobacteria, accounting for 74% of bacterial reads. Four
additional bacterial phyla accounted for more than 1% of the observed reads, including
OP9 (8.2%), Deferribacteres (6.0%), Spirochaetes (4.1%), and Thermotogae (3.3%).
Analysis of the archaeal 16S rRNA PCR products revealed dominant contributions of
the Methanosarcinales (47%), Methanomicrobiales (36%), and Thermoplasmatales
(17%). A similar picture emerged from the analysis of metagenomic sequence data
with respect to both 16S rRNA genes (Figure 1A) and the phylogenetic affiliations of
the closest database matches of functional gene-containing reads (Figure 1B). The
deltaproteobacterial 16S rRNA genes were most closely related to species within the
Syntrophobacterales and accounted for >43% of the detected 16S-containing reads.
Specifically, 34% of the reads were affiliated with “Smithella” spp. Matches to OP9
accounted for 8.9% of reads, and several additional minor components of the
metagenome were classified as gamma-proteobacterial lineages (2%), Spirochaetes
(1.8%), Thermotogae (1.9%), Chloroflexi (3.8%), and Planctomyces (2.4%).
Deferribacteres-like sequences accounted for only 0.2% of the 16S metagenomic reads.
Among the archaeal sequences, Methanomicrobiales were dominant and accounted for
26% of the metagenomic 16S-containing reads. Methanosarcinales and

Thermoplasmatales represented only 4.0% and 4.1%, respectively.
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At the functional gene level (Figure 1B), sequence database search results were
similarly dominated by deltaproteobacterial matches (35%), but also included a
significant proportion of matches to other proteobacterial genes (alpha- 2%, beta- 2%,
and gamma-proteobacteria 4%), genes from Firmicute lineages (10%), and genes from a
wide range of other phyla. Functional genes most similar to archaeal genes belonged
primarily to organisms classified within the Methanomicrobia, accounting for 15% of
metagenomic reads. A significant portion of metagenomic reads (>11%) could not be

assigned a phylogenetic affiliation.

Genomic binning

Tetranucleotide frequency based scaffolding yielded nineteen genome bins, four
of which were associated with 16S rRNA genes (Appendix Il Table S2). Ten of these
scaffolds contained more than 1% of metagenomic reads, while the top five genome
scaffolds accounted for more than 63% of all reads. Genome-to-genome comparisons
via recruitment analysis in RAST (nmpdr.org) initially indicated that the most abundant
organism in the SDB consortium has a genome most similar to the draft genome of
Syntrophus aciditrophicus SB (data not shown). However, phylogenetic analysis of the
full length 16S rRNA gene associated with this scaffold (hereafter referred to as
“Smithella” sp. SDB) indicates a closer relationship to uncultivated “Smithella” spp.
This is supported by a blastp comparison of “Smithella” sp. SDB’s predicted proteins
with those from Syntrophus aciditrophicus SB as well as requisite “Smithella” draft
genomes (Mclnerney et al., 2007; Embree et al., 2014; Tan et al., 2014b) (Appendix Il
Table S3). “Smithella” sp. SDB shares 1,384 predicted proteins with S. aciditrophicus

SB, but it shares 1,843 and 1,993 proteins with “Smithella” spp. ME-1 and SCADC,
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respectively, which were also recovered from methanogenic, alkane-degrading
consortia (Tan et al., 2013; Embree et al., 2014). Together, the “Smithella” spp. that
contain assA form a monophyletic group that is distinct from Smithella propionica
LYP, “Smithella” sp. F21, and other strains within the order Syntrophobacterales
(Figure 2). The 16S rRNA gene associated with the “Smithella” sp. SDB scaffold is
only 93.5% identical to Smithella propionica. Similarly, the 16S rRNA genes of
“Smithella-like strains implicated in methanogenic degradation of alkanes are only
94.2%, 94.4%, and 96.2% (for SCADC, D17, and F21 respectively; ME-1 does not
contain a 16S gene) identical to S. propionica. MaxBin analysis also revealed that the
second most abundant bacterial taxon is putatively associated with the Desulfuromonas
reference genome of D. acetoxidans (hereafter referred to as “Desulfuromonas” sp.
SDB) and accounts for 12% of metagenomic reads. Desulfuromonas acetoxidans is a
freshwater deltaproteobacterial sulfate reducer that is known to utilize acetate, ethanol,

and propanol as carbon and energy sources (Pfennig and Biebl, 1976).

Genome scaffolding further supported the interpretation that hydrogenotrophs
within the Methanomicrobiales are the dominant methanogenic lineages in the SDB
consortium (Appendix Il Table S2). Two of the top six scaffolds exhibited greatest
recruitment to the genome of Methanosphaerula palustris E1-9¢ and accounted for
13.3% of metagenomic reads. Phylogenetic analysis of the 16S rRNA genes associated
with these scaffolds suggests that these organisms are mostly closely related to
Methanoculleus bourgensis and Methanolinea tarda (94.6% and 94.3% identity,
respectively; see Appendix Il Figure S3). Two additional archaeal scaffolds were

obtained, one of which affiliated with a 16S rRNA gene most closely related to the
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acetoclastic methanogen Methanosaeta concilii (91.3% identity; hereafter referred to as

“Methanosaeta” sp. SDB).

Hydrocarbon Biodegradation Genes

The SDB consortium was previously investigated for the presence of genes
involved in anaerobic hydrocarbon degradation via PCR amplification of assA (i.e. the
catalytic subunit of alkylsuccinate synthase) (Callaghan et al., 2010). In that study, five
distinct assA genotypes were observed in the consortium, and both the 454- and
[llumina-based metagenomic sequencing herein confirmed the presence of two of these
assA genotypes (GenBank Numbers GU485661 and GU453662 for OTUs 1 and 4
reported in Callaghan et al. 2010) as well as three additional dominant assA OTUs that
were not detected via PCR-based approaches (Figure 3A; Appendix Il Table S4).
Analysis of the 5 contigs containing assA-like genes indicated that at least two of them
are associated with gene clusters encoding the four presumed subunits of alkylsuccinate
synthase (i.e. alpha, beta, gamma, and masE-like subunits) as detected in previous
studies (Grundmann et al., 2008; Callaghan et el., 2012) and implicated for
‘Aromatoleum’ sp. HxN1 (Webner, 2012) (Figure 3B). Although, the gene encoding the
putative alkylsuccinate synthase activase, assD, was not identified on the same contigs
as assA, a homolog to assD was identified on another scaffold (scaffold 13542). Blastp
analysis shows that the closest match is to assD2 in Desulfatibacillum alkenivorans
AK-01 (WP_015946970) (61% identity). Metagenomic analysis also included searches
for other known genes involved in anaerobic hydrocarbon degradation including the
subunits of benzylsuccinate synthase, naphthyl-2-methylsuccinate synthase,

ethylbenzene dehydrogenase, phenylphosphate carboxylase, benzene carboxylase,
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acetophenone carboxylase, and phenylphosphate synthase. However, the requisite

signatures were not detected in either the 454- or Illumina-based data sets.

Given the high frequency of assA-like gene sequences in the SDB metagenome
(~1:842 reads), the five genotypes detected in the metagenome were targeted for gene
expression studies by designing specific PCR primers based on the 454-metagenomic
data (Illumina-based data became available only later in the study). RT-PCR
amplification of assA-mRNA was readily observed using multiple primer sets
(Appendix Il Table S5). Transcripts were detected for four out of the five assA
genotypes in cultures amended with octacosane, in the presence and/or absence of the
heptamethylnonane used as an inert carrier (Figure 3A). More importantly, assA
transcripts from the SDB consortium were most similar to the assA genes previously
ascribed to “Smithella” sp. SCADC (contigs 5, 17, 149, and 508) and “Smithella” sp.
D17 (contig 15), which originated from methanogenic, alkane-degrading consortia (Tan
et al., 2014b) (Figure 3A). Specifically, SDB contig 15 was associated with the
“Smithella” sp. SDB scaffold, which contained a 16S rRNA gene most closely

affiliated with “Smithella” sp. SCADC and D17 (Figure 2).

Comparative Genome Analysis

To gain insight into the salient functional potential of uncultured “Smithella”
spp., a comparative genome analysis was conducted for the “Smithella” sp. SDB
scaffold (Appendix Il Table S3) and genome scaffolds previously reported in the
literature (Appendix Il Table S6). Single copy marker gene analysis indicates that the
“Smithella” sp. SDB scaffold is near complete (>95%). In addition to the genes

involved in alkane activation (i.e. the ass gene cluster) observed in “Smithella” spp.
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SDB, ME-1, SCADC, and D17 (Figure 3B), these genomes contain the genetic
machinery for beta-oxidation of the resulting fatty acids, but appear to lack the genes
encoding the Wood-Ljungdahl pathway for the complete oxidation of acetyl-CoA. This
is consistent with their inferred syntrophic lifestyle and an inability to mineralize
alkanes via a respiratory pathway. Likewise, genes related to sulfur, sulfate and
nitrate/nitrite respiratory activities are absent in all of the “Smithella” spp. genomes
analyzed herein. Genome analysis further indicated that the genomes lack complete
oxidative and reductive TCA cycles, but they all contain re-citrate synthase for 2-
oxoglutarate synthesis. The latter is consistent with the genome of Syntrophus
aciditrophicus SB (Kim et al., 2013). All of the draft genomes contain homologs for
acetate-CoA synthetase (ADP-forming), which is used by many acetate-forming
archaea to make ATP from acetyl-CoA and ADP (Bréasen et al., 2014). Several of the
“Smithella” genomes contain acetate kinase (all but “Smithella” sp. F21), but only

“Smithella” sp. SCADC has a gene encoding phosphotransacetylase.

A comparison with the genomes of Desulfatibacillum alkenivorans AK-01
(Callaghan et al., 2012) and Syntrophorhabdus aromaticivorans (Nobu et al., 2015) was
also conducted to explore the presence of putative membrane complexes that are present
in these hydrocarbon-degrading syntrophs. Pairwise comparisons indicate that
“Smithella” spp. bins lack genes for the formation of DsrMKJOP,
QrcABCD/MopABCD, Ohc, HmC/9Hc, Rnf, and FixC. However, comparisons
suggested the presence of homologs to the electron transfer flavoprotein (Etf)
complexes (Appendix Il Table S6) observed in Desulfatibacillum alkenivorans AK-01

(Callaghan et al., 2012), Syntrophus aciditrophicus SB (Mclnerney et al., 2007),
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Syntrophomonas wolfei (Sieber et al., 2010), and Syntrophorhabdus aromaticivorans Ul
(Nobu et al., 2015), in which a membrane FeS oxidoreductase is colocalised with the
genes for Etf. In “Smithella” sp. SDB, the EtfB is encoded on a different contig than
the EtfA subunit and the membrane FeS oxidoreductase, which may be an artifact of the
assembly process. Additionally, a closer inspection of “Smithella” sp. SDB revealed
genes encoding a periplasmic formate dehydrogenase, components for an F-type
ATPase, and genes that contain hydrogenase-like motifs (Appendix Il Table S6).
Finally, RAST annotation did not indicate the presence of genes related to flagellum
formation, chemotaxis, or quorum sensing (data not shown). However, “Smithella”
spp. SDB, ME-1, and SCADC have genes related to the construction of a type IV pilus,

which suggests that motility may be possible in these strains.

Discussion

The methanogenic mineralization of linear paraffins by microbial consortia
derived from anoxic environments has been well documented. However, significant
questions remain regarding the fate of high molecular weight alkanes in these systems.
This study sought to characterize the roles of dominant community members in an
enrichment culture capable of mineralizing long chain paraffins to methane and carbon
dioxide. Several possible routes for the methanogenic biodegradation of alkanes have
been evaluated by others, and it has been proposed that oxidation of hydrocarbons to
acetate and hydrogen, coupled to syntrophic acetate oxidation and hydrogenotrophic
methanogenesis, is the most likely process to occur in petroleum-laden methanogenic
environments (Dolfing et al., 2008). With respect to alkanes, known mechanisms of

anaerobic alkane degradation lead to the production of fatty acids, which are further
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metabolized via f-oxidation (Callaghan, 2013). Thus, the energetic constraints of
syntrophic fatty acid oxidation may also govern the syntrophic oxidation of n-alkanes.
Non-equilibrium thermodynamic considerations indicate that the methanogenic
oxidation of linear fatty acids is constrained by the entropic change between reactants
and products and is energetically driven by an overall mass flux from the system (e.g. a
microbial cell). This implies that anaerobic consortia will have a tendency to select for
primary fermenting organisms that incompletely oxidize substrates to acetate rather than
CO:z in order to maximize the chemical efflux, and thus the free energy released per
molecule of substrate metabolized (Mclnerney and Beaty, 1988). In order to drive the
necessary chemical flux, partnered organisms are required to consume the acetate and
hydrogen or formate to maintain a state of disequilibrium, constituting syntrophic

cooperation.

Phylogenetic Analysis

Phylogenetic analysis of the SDB consortium (Figure 1) revealed a highly
enriched community, predominantly populated by Syntrophobacterales (43%) in
conjunction with both hydrogenotrophic (26%) and acetoclastic archaeal taxa (4%).
These observations are consistent with the interpretation that a syntrophic couple is
responsible for the mineralization of octacosane. Thus far, only two bacterial isolates
(Desulfatibacillum alkenivorans AK-01 and Desulfoglaeba alkanexedens ALDC) have
demonstrated syntrophic n-alkane degradation in co-culture with a methanogen
(Callaghan et al., 2012; Lyles et al., 2014). The dominant phylotypes observed herein,
as well as in previously described methanogenic alkane-degrading consortia, however,

are most closely affiliated with yet-to-be cultivated lineages in the genus Smithella
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(Zengler et al., 1999; Jones et al., 2008; Siddique et al., 2011; Tan et al., 2013).
Smithella is represented by the sole isolate, S. propionica, a fatty acid-oxidizing
bacterium shown to convert propionate to acetate, CO>, and methane in syntrophic co-
culture with Methanospirillum hungateii. S. propionica is also capable of axenic
growth on crotonate (Liu et al., 1999). Physiologically, S. propionica is similar to the
fatty acid-oxidizing Syntrophobacter wolinii and Syntrophobacter pfennigii (Liu et al.,
1999), but it is phylogenetically most similar to Syntrophus aciditrophicus (Jackson et
al., 1999). While each of these species has been shown to be capable of syntrophic
metabolism, coupled with a hydrogenotrophic methanogen, neither S. propionica nor S.

aciditrophicus utilize sulfate as a terminal electron acceptor.

The archaeal component of the SDB consortium is numerically dominated by
hydrogenotrophic members of the Methanomicrobiales relative to the acetoclastic
Methanosarcinales. The dominance of the hydrogenotrophs is further supported by the
identification of two abundant draft genomes related to the genera Methanoculleus and
Methanolinea (Appendix Il Table S2), together accounting for 13.3% of the community
coding potential. The genome bin affiliated with the acetoclastic genus Methanosaeta
represents only 0.5% of the total metagenome. Similar ratios between
hydrogenotrophic and acetoclastic methanogenic taxa have been described in several
cultures degrading n-alkanes (Gieg et al., 2008; Jones et al., 2008; Gray et al., 2011).
Methanoculleus spp. and Methanolinea spp. exclusively produce methane from the
reduction of COz and/or utilization of formate (Romesser et al., 1979; Maestrojuan et
al., 1990; Imachi et al., 2008). In contrast, members of the genus Methanosaeta utilize

acetate as the sole methanogenic substrate and have not been shown to oxidize
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hydrogen or formate as a reductant (Patel and Sprott, 1990). Additionally,
Methanosaeta spp. activate acetate to acetyl-CoA via an AMP-forming acetyl-CoA
synthetase resulting in an acetate threshold concentration approximately ten-fold lower
than Methanosarcina spp. that utilize the acetate kinase and phosphotransacetylase
system (Jetten et al., 1992; Smith and Ingram-Smith, 2007). This creates a kinetic niche
separation based on acetate affinities that explains the commonly observed
predominance of Methanosaeta over the more metabolically diverse Methanosarcina
spp. in hydrocarbon-degrading, methanogenic environments (Penner and Foght, 2010;

Siddique et al., 2011; Siddique et al., 2012).

Transcription Experiments and Comparative Genome Analysis

Given the repeated enrichment of “Smithella” spp. from varying environments
under methanogenic conditions and the lack of genetic evidence for respiratory
capacity, it is likely that these organisms are obligately fermentative with respect to the
oxidation of n-alkanes. Transcriptional evidence of assA genotypes obtained in this
study, along with the findings of the re-analysis of the “Smithella” sp. ME-1
metatranscriptome (Tan et al., 2014a), suggest that “Smithella” spp. activate paraffins
by alkane addition to fumarate using alkylsuccinate synthase (ASS) and further
metabolize the intermediates to acetyl-CoA by B-oxidation. Thus, “Smithella” spp.
likely employ similar physiological strategies for the fermentation of n-alkanes to those
proposed for the saturated fatty acid-oxidizing members of the family
Syntrophomonadaceae represented by Syntrophomonas wolfei (Mclnerney et al., 1981,
Sousa et al., 2007), Syntrophus aciditrophicus (Jackson et al., 1999), and the alkane-

oxidizing syntroph Desulfatibacillum alkenivorans AK-01 (Callaghan et al., 2012).
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Reverse Electron Transfer

Each of the above model organisms requires a mechanism for reverse electron
transfer to overcome the thermodynamic barrier of coupling the oxidation of acyl-CoA
intermediates to their corresponding enoyl-CoAs (E’ of approximately -10 mV) (Sato et
al., 1999) to the production of hydrogen (E’ of -261 mV) or formate (E’ of -258 mV)
(Mclnerney et al., 2009). Comparative analysis of binned “Smithella” spp. genomes
(Appendix Il Table S6) suggests that these organisms link electrons derived from the
acyl-CoA dehydrogenase to the production of hydrogen/formate. This might be
achieved by coupling the reoxidation of ETFrq by a membrane-bound FeS
oxidoreductase functioning as an ETF:menaquinone oxidoreductase and transferring the
electrons to a periplasmic formate dehydrogenase and/or hydrogenase through a
reverse menaquinone loop (Figure 4). This has previously been proposed for Syntrophus
aciditrophicus (Mclnerney et al, 2007) and Syntrophomonas wolfei (Sieber et al., 2010)
and is supported by preliminary proteomic studies that revealed FeS oxidoreductase and
EtfAB proteins to be highly abundant in syntrophically grown cultures of
Syntrophomonas wolfei (Schmidt et al., 2013; Sieber et al., 2015). The draft genome of
“Smithella” sp. SDB encodes an FeS oxidoreductase and EtfAB proteins (Appendix Il
Table S6) with high amino acid sequence similarity to homologs in Syntrophus
aciditrophicus (SYN_02636-02638) and Syntrophomonas wolfei (Swol_0696-0698)
(Mclnerney et al., 2007; Sieber et al., 2015). A closer inspection of the EtfAB complex
in “Smithella” sp. SDB did not reveal the proposed signature motif for electron
bifurcation that has been identified in other bacterial species (Chowdhury et al., 2015).
With regard to Syntrophomonas wolfei, proteins of the homologous Fix System were

also detected, but at significantly lower levels, leading to the hypothesis that the FeS

105



oxidoreductase system serves as the primary conduit for electrons derived from the
acyl-CoA dehydrogenase (Sieber et al., 2015). The Fix System ETF:quinone
oxidoreductase (FixC) was not detected in the “Smithella” sp. SDB genome, further
supporting the notion that “Smithella” spp. may similarly utilize the FeS

oxidoreductase system as the primary Etf-linked reverse electron transfer mechanism.

Several potential mechanisms for the reoxidation of NADH are suggested by the
draft genome of “Smithella” sp. SDB. Although essential components of the Rnf
complex were not observed, genes with homology to the subunits of the membrane-
bound lon-translocating Ferredoxin:NADH oxidoreductase (IFO) complex were
detected. This complex was initially described for the genome of Syntrophorhabdus
aromaticivorans, and it has been proposed that IFO acts analogously to the Rnf
complex (also absent in S. aromaticivorans) by coupling the oxidation of NADH to the
reduction of ferredoxin via proton motive force (Nobu et al., 2015). A potential soluble
NADH-dependent formate dehydrogenase and putative hydrogenase subunits were also
detected in “Smithella” sp. SDB (Appendix Il Table S6), which could allow
cytoplasmic electron confurcation from reduced ferredoxin and NADH to formate or
hydrogen. These putative confurcating systems have been annotated in the genomes of
several, known syntrophic bacteria across multiple phyla, though it should be noted that
there is currently debate as to whether a confurcating mechanism involving ferredoxin
would be required, or whether these cytoplasmic hydrogenases and formate
dehydrogenases form a soluble NADH-dependent complex in Syntrophomonas wolfei

(Schmidt et al., 2013).

ATP Biosynthesis
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The predominant route for ATP synthesis in fermentative bacteria is typically
through substrate-level phosphorylation. During the fermentation of paraffins,
“Smithella” spp. could generate ATP in the conversion of acetyl-CoA intermediates to
acetate. “Smithella” sp. SCADC could potentially use the traditional route through
acetyl-P to acetate for substrate-level phosphorylation. However, the other “Smithella”
draft genomes either lack acetate kinase or phosphotransacetylase, suggesting that the
two-step process involving acetyl-P may not be employed in those organisms. In all
draft genomes, genes for ADP-forming acetyl-CoA synthases were identified. These
enzymes catalyze the single-step, concerted activation of acetate to acetyl-CoA and are
almost ubiquitously distributed across all domains of life (Lindahl and Chang, 2001;

Starai and Escalante-Semerena, 2004).

Generation of Proton Motive Force

Although ATP is likely generated via substrate level phosphorylation, a proton
gradient is still essential for the production of hydrogen and/or formate by syntrophic
fermenters. Proton motive force might be generated by “Smithella” sp. SDB through
the reversal of an ATP synthase, consuming ATP generated during substrate-level
phosphorylation and thereby pumping protons into the periplasmic space. Additionally,
the symport of protons with acetate across the cytoplasmic membrane could produce
energy through a chemical gradient that is independent of ATP hydrolysis (Michels et
al., 1979). The production of a chemical gradient based on proton motive force has
been demonstrated through the simultaneous efflux of protons and lactate in studies of
Streptococcus cremoris (Otto et al., 1980) and E. coli membrane vesicles (Ten Brink

and Konings, 1980). It has been proposed that Syntrophomonas wolfei may conserve
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energy through both substrate level phosphorylation and acetate excretion during
syntrophic butyrate oxidation, thereby increasing the overall energy conservation

efficiency in such an energetically limited lifestyle (Mclnerney and Beaty, 1988).

Altogether, the comparative genome analysis indicates that hydrocarbon-
utilizing “Smithella” spp. likely have several physiological properties common to well-
characterized, linear fatty acid-oxidizing syntrophs that enable these organisms to
overcome the thermodynamic barriers associated with the fermentation of n-paraffins.
Specifically, the proposed mechanisms for coupling the acyl-CoA dehydrogenase and
NADH reoxidation to the production of hydrogen and/or formate, as well as energy
conservation strategies, suggest that these organisms are physiologically very similar to
Syntrophus aciditrophicus. These similarities likely reflect an evolutionary trajectory
based on substrate utilization profiles that ultimately select for a shared metabolic

framework.

Proposed Syntrophy Model

The strong co-enrichment of hydrogenotrophic methanogens with the proposed
alkane-oxidizing “Smithella” sp. SDB implies a syntrophic pairing with
“Methanoculleus” sp. SDB and/or “Methanolinea” sp. SDB through interspecies
electron transfer via hydrogen or formate. “Methanosaeta” sp. SDB potentially
consumes acetate as the primary fermentation product of “Smithella” sp. SDB. This
could form the basis of syntrophic interactions, but its inability to utilize hydrogen or
formate as an electron donor and its relatively lower abundance suggest that
“Methanosaeta” sp. SDB is likely relegated to a minor role in this process.

Additionally, given the methanogenic conditions and the relatively high abundance of
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Desulfuromonas sp. SDB (12% of metagenome reads), it is unlikely that
Desulfuromonas persists in the SDB consortium by reducing small amounts of sulfate
present in the medium (<1 mM), but rather by converting the acetate produced by
“Smithella” sp. SDB to Hz and CO2, which are subsequently utilized by
hydrogenotrophic methanogens. It is possible that the high abundance of
Desulfuromonas relative to “Methanosaeta” sp. SDB might be governed by acetate
uptake Kinetic parameters. Although Desulfuromonas has not previously been shown to
be capable of syntrophic acetate oxidation (AG’o = +94.9 kJ-mol™; Table 1), the

proposed scenario provides another route for acetate utilization.

Collectively, these observations regarding the anaerobic biodegradation of high
molecular weight paraffins are consistent with the multi-organism hypothesis, initially
proposed by Zengler et al. (Zengler et al., 1999) for methanogenic hexadecane
mineralization. Per Zengler’s model, a primary, activating organism ferments the alkane
to acetate and H> in syntrophic association with a hydrogenotrophic methanogen. The
acetate produced is ultimately consumed by an acetotrophic organism(s) through

syntrophic acetate oxidation and/or acetoclastic methanogenesis (Zengler et al., 1999).

Conclusion

Phylogenetic, metagenomic, and transcriptional data provide compelling
evidence for the interpretation that the dominant contributor to anaerobic paraffin
activation in the SDB consortium is a bacterial strain most closely related to Smithella
propionica and that this organism catalyzes this reaction via alkylsuccinate synthase.
Based on comparative genome analysis, “Smithella” sp. SDB is similar to Syntrophus

aciditrophicus with respect to its central metabolic machinery and energy conservation
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strategies. To date, alkane-utilizing “Smithella "-like syntrophs that contain assA in their
draft genomes form a monophyletic clade distinct from S. propionica, suggesting that
these organisms likely represent a novel, uncultivated genus within the order
Syntrophobacterales. The cultivation and characterization of a requisite type strain
would therefore be of great value and could provide a model for understanding the
genetics, biochemistry, and ecology underlying methanogenic mineralization of alkane

substrates.

Materials and Methods

Sediment Collection

Samples were collected from the sediments of Paletta Creek in San Diego Bay
with technical assistance from the Office of Naval Research. Paletta Creek is a site
contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons
(PAHS), and chlordane (California Environmental Protection Agency, Last Accessed:
March 25th, 2015). Grab samples were collected and placed in Mason jars, which were
filled to capacity to exclude a head space. Samples were stored at 4°C and shipped to

the lab, where paraffin enrichments were conducted.

Establishment of Methanogenic Enrichment Culture

All sediment manipulations were performed in an anaerobic glove box, and
strict anaerobic technique was used for all culture manipulations and media/substrate
preparations (Hungate, 1969; Balch and Wolfe, 1976). Enrichments were established in
sterile serum bottles (160 ml) with 50 £ 0.5 g of sediment as inocula and 75 ml of
reduced, sulfate-free, bicarbonate-buffered, seawater mineral medium (Widdel and Bak,

1992). Primary enrichments were amended with equimolar amounts of several n-
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alkanes, including decane (C1oH>2), dodecane (C12H26), hexadecane (C1sHzs), and
octadecane (CigHss) (80 umol total hydrocarbon). Bottles were incubated under an
N2:CO- (80:20) headspace at 31°C. Methane production was used as a proxy for alkane
utilization to monitor cultures (see below). Incubations that produced significantly
more methane, relative to substrate unamended (i.e. no substrate) and sterile (i.e.
autoclaved) controls, were subcultured and amended with 20 mg of octacosane
(Ca2gHssg), 5 mg of tetracontane (CaoHs2), or 5 mg of pentacontane (CsoH1o2) as
substrates. Substrates were delivered in a 1 ml overlay of sterile 2,2,4,4,6,8,8-
heptamethylnonane (HMN). Repeated transfers were conducted for >3 years to obtain a

sediment-free culture capable of long-chain alkane degradation.

Methane Measurements

Methane was quantified as previously described (Wawrik et al., 2012b) by
analyzing 0.2 ml of the enrichment bottle headspace using a Varian 3300 GC equipped
with a flame ionization detector (FID) and packed stainless steel column (Poropak Q,

80/100; Supelco, Bellafont, PA).

Octacosane Quantification

For gquantitative experiments, the enrichment cultures were incubated in 25-mL
serum bottles containing 12 mL of medium overlain with 2 ml of HMN containing 2 mg
of CagHsg. Sterile (i.e. autoclaved cultures) and uninoculated controls were included.
The octacosane concentration was measured by sampling the HMN overlay. Small
aliquots (1 pL) were injected directly into an Agilent Technologies 6890 gas
chromatograph (GC) equipped with a DB-5ms capillary column (30 m x 0.25 mm, 1

pm film) coupled with an Agilent 5973 mass spectrometer (MS). The oven temperature
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was increased from 45°C to 250°C (at a rate of 10° min?), held for 10 minutes, and then
increased to 290°C (at a rate of 10° mint). The injector temperature was 250°C.

Helium was used as a carrier gas at a flow rate of 1.2 mL min™.

Microbial Community Characterization

For DNA extraction, subsamples of the SDB consortium growing on octacosane
were centrifuged at 14,000 x g for 15 min, and cell pellets were extracted as previously
described (Callaghan et al., 2010) via a method adapted from Rainey et al. (Rainey et
al., 1996). DNA was quantified using a Qubit 2.0 fluorometer and the Quant-iT dsSDNA
BR Assay Kit (Life Technologies, Carlsbad, CA). Community profiling was conducted
by PCR amplification and multiplexed 454-sequencing of 16S rRNA genes. The 16S
rRNA gene PCR was performed using the forward primer 27F (5°-
AGAGTTTGATCMTGGCTCAG-3’) and the reverse primer 338R (5°-
TGCTGCCTCCCGTAGGAGT-3’) for bacteria, and primers A8F (5°-
TCCGGTTGATCCTGCC-3) and A344R (5’-TCGCGCCTGCTGCICCCCGT-3’) for
archaea (Nakatsu & Marsh, 2007). All primers included 5’ Titanium Fusion adapter
sequences (forward primer A-tag: CCATCTCATCCCTGCGTGTCTCCGACTCAG;
reverse primer B-tag: CCTATCCCCTGTGTGCCTTGGCAGTCTCAG) as well as a
unique 8-nucleotide barcode tag in the reverse primer as previously described (Hamady
et al., 2008) to allow direct 454-sequencing. Reaction chemistry included 200 nM of
each primer in PCR Supermix (Life Technologies, Carlsbad, CA) and 2 pL of template
DNA. Thermal cycling was performed as follows: 95°C for 7 min. and 30 cycles of
95°C for 20 sec., 55°C for 20 sec., and 72°C for 40 sec. For amplification of archaeal

16S rRNA genes, the extension step was extended to 60 seconds. The PCR products
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were cleaned, DNA was included in a multiplexed 454-sequencing run, and the
respective sequences were computationally binned into bacterial and archaeal 16S
sequence libraries (Johnson et al., 2015). The resulting reads were quality screened by
removing any reads with average Q-scores < 25 and trimming to remove ends with poor
quality (Q<25). Sequences were clustered and classified using the QIIME pipeline after
de-multiplexing and clustering into Operational Taxonomic Units (OTUs) via UCLUST
(Edgar, 2010) at the 97% identity level. From the resulting OTUs, a representative set
of sequences was aligned to the SILVA small subunit rRNA reference alignment
(www.arb-silva.de) using the PyNAST algorithm (Caporaso et al., 2010) to allow

classification.

Metagenomic Analysis

Metagenomic sequencing proceeded in two phases. Initially, genomic DNA was
shotgun sequenced by means of the Roche 454 GS FLX Titanium platform. The
resulting data (202,122 high quality reads longer than 100bp) aided primarily in the
design of assA PCR primers for RT-PCR experiments (see below). Subsequently, a full
lane of Illumina MiSeq PE 250 was used to generate a metagenome of greater depth.
All metagenome analyses described below reflect the larger, lllumina-based sequencing
run. Sequence adapters and polyA-tail artifacts were removed from reads using
Cutadapt (Martin, 2011) and HomerTools (Heinz et al., 2010). Paired end reads were
joined by TRIMMOMATIC (Bolger et al., 2014), and all unpaired reads were
discarded. Reads were assembled using Meta-Ray (Boisvert et al., 2010; Boisvert et al.,
2012) using a Kmer setting of 31 and discarding all contigs <1kb. Open reading frames

(ORFs) were predicted for all contigs using Prodigal (Hyatt et al., 2012), and the
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resulting protein-coding sequences were annotated via database comparisons to NCBI
Refseq (Pruitt et al., 2007), COG (Tatusov et al., 2000), PFAM (Finn et al., 2014),
M5NR (Wilke et al., 2012), and KEGG (Kanehisa and Goto, 2000; Kanehisa et al.,
2012). In addition, all ORFs were compared to a database of protein sequences
encoding enzymes/subunits involved in anaerobic hydrocarbon degradation including
alkylsuccinate synthase, benzylsuccinate synthase, naphthyl-methylsuccinate synthase,
ethylbenzene dehydrogenase, naphthalene carboxylase, acetophenone carboxylase,
phenylphosphate synthase and carboxylase, and anaerobic benzene carboxylase.
Database searches were performed using USEARCH (Edgar, 2010), DIAMOND
(Buchfink et al., 2015), and HMMERS3 (Finn et al., 2011). The abundances of
individual ORFs in the metagenome were determined by mapping unassembled,
unpaired reads with the short-read aligner Bowtie2 (Song et al., 2014). Phylogeny of
predicted ORFs was assessed by parsing blast outputs via the Lowest Common
Ancestor algorithm in MEGANS. Tetranucleotide frequency based analysis was used to
bin assembled DNA sequence data into genome scaffolds using MaxBin (Wu et al.,
2014). Given that assemblies of metagenomic Illumina data frequently yield contigs
where 16S rRNA genes are underrepresented, the 16S rRNA gene-containing reads
were then manually assembled into each genome scaffold via SeqMan (DNASTAR).
Scaffold completeness was estimated by comparison with a database of single copy
housekeeping genes (Wu et al., 2013) via HMMER search (Finn et al., 2011).
Recruitment analysis was conducted in RAST (rast.nmpdr.org), where draft genomes
for “Smithella” spp. were manually added to the RAST system, or by pairwise blastp

analysis using Diamond (Buchfink et al., 2015).
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assA Gene Detection and RT-PCR

Genes encoding the catalytic subunit of alkylsuccinate synthase (assA) were
previously reported for the SDB consortium via sequencing of cloned PCR products
(Callaghan et al., 2010). Subsequent 454-based metagenome analysis revealed 248
reads with significant homology to assA, which were assembled with the prior PCR-
derived reads (Appendix Il Table S4). PCR primers for each OTU were then designed
with the criterion that at least two mismatches to each of the untargeted OTUs should be
present (Appendix Il Table S5). Given the lack of overlap among 454-based
metagenomic OTUs, the mismatch criterion could not be achieved for contigs 347 and
348. A primer pair was therefore designed to target these two contigs that also included
perfect sequence identities to contigs 345 and 350. Annealing temperature gradient
PCR was performed for each primer pair. The PCR reactions included 5 ng of SDB
community DNA as a template and 1 uM of respective primers in PCR Supermix (Life
Technologies, Carlsbad, CA). Thermal cycling conditions were: 40 cycles of 95°C for
30 s, 55-65°C for 60 s, and 72°C for 75 sec. The highest temperatures where no
appreciable loss of amplification was observed in agarose gels were chosen as annealing
temperatures for RT-PCR experiments. The RNA was extracted as previously
described (Wawrik et al., 2012a). In brief, 10-mL samples of SDB culture were filtered
onto 0.45 um Supor filters (Pall). Filters were stored in 2-mL screw cap tubes
containing 750 pL of RLT buffer (Qiagen) and ca. 50 mg of 0.1 mm muffled glass
beads after flash freezing in liquid nitrogen at -80°C. Samples were later thawed, 7.5
uL of f-mercaptoethanol was added, and tubes were agitated for two minutes using a
bead-beater. Supernatants were extracted using a Qiagen RNEasy kit (Qiagen,

Valencia, CA) as recommended by the manufacturer. DNA contamination was
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removed by digestion with 0.1 U pL! of RQ1 DNAse (Promega, Madison, WI) at 37°C
for 30 minutes. PCR for 16S rRNA genes was conducted as described above to confirm
complete removal of DNA contamination from RNA samples. After DNAse
inactivation (10 min at 65°C), RNA was reverse transcribed using SuperScript®IIl (Life
Technologies, Carlsbad, CA) reverse transcriptase and random hexamers. The RT-PCR
reactions were performed by applying optimized PCR conditions derived from
annealing temperature gradient experiments, and positive amplification was assessed by
visualizing bands of the correct size via gel electrophoresis. All positive RT-PCR
reactions were subsequently cleaned using a Qiagen PCR purification kit (Qiagen,
Valencia, CA) and cloned using a TOPO®TA-Cloning Kit for Sequencing (Life
Technologies, Carlsbad, CA) as recommended by the manufacturer. Colonies were
screened for inserts via PCR using the M13 priming sites on the cloning vector, and
twelve PCR products of the correct size were Sanger sequenced for each positive RT-

PCR reaction to confirm that the detected mRNA corresponded to targeted assA OTUSs.

Phylogenetic Analysis

Phylogenetic analysis of 16S rRNA gene sequences was conducted on ClustalW
alignments of requisite 16S rRNA genes via neighbor-joining tree analysis using the
Tajima-Nei distance method, 5,000 bootstrap replicates, and pairwise deletion using
MEGAG (Tamura et al., 2013). For protein-coding genes (e.g. the catalytic subunit
genes for alkylsuccinate synthase, assA), predicted amino acid sequences were aligned
with a representative set of sequences from the database using ClustalW, and

alignments were manually curated. Neighbor-joining trees were generated using
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MEGAG6 (Tamura et al., 2013) using the Poisson model distance method and conducting

5,000 bootstrap replicates with pairwise deletion.

Comparative “Smithella” Genome Analysis

The dominant, binned “Smithella” genome (Smithella sp. SDB) from the SDB
culture, as well as “Smithella”’-like genome bins D17, SCADC, ME-1, and F21 from
previous reports of methanogenic alkane-degrading cultures (Embree et al., 2014; Tan
et al., 2014b), were annotated via RAST (Aziz et al., 2008), and subsystem analysis was
used to investigate the presence of metabolic pathways related to alkane metabolism
and energy conservation (Appendix Il Table S6). To determine the presence of
alkylsuccinate synthase-associated genes, the requisite genes in ass gene cluster 1 from
Desulfatibacillum alkenivorans AK-01 (Callaghan et al., 2012) were manually blastp
searched against the predicted proteins in each of the putative “Smithella” genome bins.
A match was considered to be positive at an E-score of <1E-10, an AA identity of >
25%, and if the blast alignment covered the length of the entire protein that was queried.
Additionally, a pairwise genome comparison was conducted between “Smithella” sp.
SDB and all genes found in Desulfatibacillum alkenivorans AK-01 and
Syntrophorhabdus aromaticivorans strain Ul (Nobu et al., 2015) via the blastp option of
Diamond (Buchfink et al., 2015) to identify homologs to membrane complexes
described in their respective genome descriptions (Callaghan et al., 2012; Nobu et al.,
2015). All predicted proteins from “Smithella ’-like genome bins SDB, D17, SCADC,
ME-1, and F21were also searched against the KOBAS database via the blastp option of
Diamond (Xie et al., 2011) to determine KEGG orthology, and metabolic pathways

were reconstructed using KEGG Mapper
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(http://www.genome.jp/kegg/tool/map_pathway.html). The KEGG maps were
primarily used to confirm observations for RAST annotation and to identify ABC
transporters. Signal peptides and transmembrane helices were predicted using SignalP
(Petersen et al., 2011) and TMHMM (http://www.cbs.dtu.dk/servicess TMHMMY/) tools

respectively. Twin arginine sites were predicted via TatP (Bendtsen et al., 2005).

In order to identify genes shared among all “Smithella”-like genome bins,
pairwise searches were conducted among all predicted proteins in genome bins SDB,
D17, SCADC, ME-1, and F21 via the blastp option of Diamond (Appendix Il Table
S3). Results were imported into a SQL.ite database in order to identify proteins in
“Smithella” sp. SDB, which had homologs in D17, SCADC, ME-1, and F21 (Appendix
Il Table S7). Since “Smithella” sp. F21 is not known to contain known genes related to
alkane activation, the same analysis was also conducted by excluding this genome bin
(Appendix Il Table S8). Draft genome completeness was estimated as previously
described (Wu et al., 2013) by blast searching 124 single copy marker genes shared by

all bacteria against all predicted proteins in each of the five “Smithella” genome bins.
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Figure 1. Phylogenetic analyses of the SDB consortium metagenomic data. (A)
Phylogenetic affiliation of reads containing partial 16S rRNA genes as determined by
USEARCH comparison (Edgar, 2010) to the Silva ribosomal RNA database release
111 (www.arb-silva.de). (B) Phylogenetic breakdown of all metagenomic reads as
determined by blastN comparison to the M5NR database via MG-RAST

(metagenomics.anl.gov).
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Figure 2. Phylogenetic analysis of the 16S rRNA gene sequence associated with the
SDB genome bin that contained an assA gene. The neighbor-joining dendrogram
(Tajima-Nei distance method; 5,000 bootstrap replicates; pairwise deletion) was
generated from an alignment with the most closely associated sequences as determined
by blastN analysis of the respective 16S rRNA gene. Sequences of related type strains
within the order Syntrophobacterales are also shown. (Note: “Smithella” sp. ME-1 is
not included because the draft genome does not contain a 16S rRNA gene sequence.)
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Figure 3. Phylogenetic analysis of assA genotypes observed in the SDB metagenome.
Metagenomic reads were assembled using Ray (Boisvert et al., 2012), and the resulting
contigs were screened for the presence of assA-like genes by blastN comparison with a
custom database of assA and bssA sequences. Full length assA genes were extracted
from contigs for phylogenetic analysis, and the neighbor-joining dendrogram (Poisson
model distance method; 5,000 bootstrap replicates; pairwise deletion) was generated
from an amino acid alignment with the most closely related known assA genotypes, as
well as several representative sequences from the database, including the catalytic
subunits of the related glycyl radical enzymes. Blue circles indicate the relative
abundances of the five detected assA OTUs in the metagenome. RT-PCR transcription
of the assA genotypes in cultures amended with octacosane with and without the HMN
carrier is shown to the right of the blue circles. Boxes: Green — transcript detected and
sequenced for confirmation; and Red — transcripts were not detected. Abbreviations:
AssA — alkylsuccinate synthase alpha subunit; BssA — benzylsuccinate synthase alpha
subunit; HbsA — (hydroxybenzyl)succinate synthase alpha subunit; HMN -
2,2,4,4,6,8,8-heptamethylnonane carrier; IbsA — (4-isopropylbenzyl)succinate synthase
alpha subunit; MasD — methylalkylsuccinate synthase alpha subunit; and NmsA — 2-
naphthylmethylsuccinate synthase alpha subunit.
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Figure 4. Genomic organization of genes involved in the anaerobic activation of
hydrocarbons via addition to fumarate that were detected in the SDB metagenome
(Contig/OTU - 345/149, 346/15, 347/5, 348/508, and 350/17) and the genomes of
several cultivated and uncultivated hydrocarbon-degrading bacteria. The genomic
organizations of alkylsuccinate synthase-associated genes in ‘Aromatoleum’ sp. HXN1,
‘Aromatoleum’ sp. OcN1, Desulfothermus naphthae TD3, and Desulfatibacillum sp.
Pnd3 were adapted from Webner (Webner, 2012). The genomic organizations of
alkylsuccinate synthase genes in “Smithella” strains D17, SCADC, and ME-1 were
derived from their genomic sequences (Tan et al., 2014b). The gene organization
shown for “Peptococcaceae’ sp. SCADC was derived from single-cell genomics data
(Tan et al., 2014c), whereas data for Desulfatibacillum alkenivorans AK-01 were
derived from the completed genome (Callaghan et al., 2012).
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Figure 5. Schematic of the hypothetical carbon and energy flow in the SDB as it
relates to interactions within the consortium (Box1), reverse electron transfer linked to
beta oxidation and the generation of proton motive force (Box 2), and ATP synthesis
(Box 3). Protein complexes identified in the binned genome data are shown in grey.
Metagenomic data implicate “Smithella” in the activation of octacosane via addition to
fumarate, generating Hz/formate, CO2, and acetate, which are utilized by
“Desulfuromonas” and the hydrogenotrophic and acetoclastic methanogens
“Methanoculleus/Methanolinea” and “Methanosaeta”, respectively.
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APPENDIX I: Genome Annotation and Analysis of
Hydrocarbon Degradation Features of Desulfoglaeba
alkanexedens ALDC.

Methods
Cultivation and DNA extraction

D. alkanexedens was cultivated for genomic DNA extraction on a reduced
basal marine medium supplemented with yeast extract (100 mg L) and butyrate (10
mM) as substrate at 31°C. Biomass was harvested from ~200 mL of culture during
exponential phase by centrifugation at 5,500xg for 15 min in sealed polycarbonate
vessels. The resulting cell pellet was resuspended in the Qiagen Genomic Tip
Bacterial Lysis Buffer B1 modified to contain a 10-fold higher concentration of EDTA

(46.5 g L't Na,EDTA).
Genome sequencing and annotation

Genomic DNA was extracted using the Qiagen Genomic Tip DNA Extraction
Kit (Qiagen Inc.; Valencia, CA) as the described by the manufacturer. Long genomic
DNA fragments were prepared into libraries, sequenced on the PacBio RSII platform,
and assembled with the HGAP2 algorithm by Washington State University Molecular
Biology and Genomics Core Facility. The resulting single contig genome sequence
was uploaded for automated annotation and public access in the JGI Integrated
Microbial Genomes version 4 pipeline (Markowitz et al., 2014). All downstream
phylogenetic analyses and refined sequence alignments were conducted using MEGAG6

software package (Tamura et al., 2013). Manual annotation of open-reading frames
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associated with alkane metabolism was performed using the DNASTAR software suite

(DNASTAR; Madison, WI).

Results

General Genome Features

The genome of D. alkanexedens ALDC is a single circular chromosome
3,365,583 bp in length with 84.43% of bases coding and an average mol G+C content
of 59.31%. No evidence of plasmids was found. There were 3020 protein-coding
genes identified and 2270 of these (73.65%) were assigned a functional prediction by
the IMG annotation pipeline. The genome contains 62 RNA genes, specifically: 6
rRNA genes (two copies of each 5S, 16S and 23S), 47 tRNA genes, and 9 other
miscellaneous categorized RNA genes. Transfer RNA genes associated with at least a
single codon for each of the 20 essential amino acids and selenocycsteine were
present. The 16S rRNA genes are 99.9% similar to each other and are both located on
the minus strand at locus tags 111218 and 113015. Based on the functional
assignments of annotated putative protein-coding sequences, D. alkanexedens ALDC
is predicted to be auxotrophic for 8 of the 20 essential amino acids (L-phenylalanine,
L-tyrosine, L-histidine, L-cysteine, L-isoleucine, L-leucine, L-serine, and L-

threonine).

Alkane Activation

Previous work demonstrated the activation of n-alkane substrates via the
radical-mediated addition to fumarate (Kropp et al., 2000; Davidova et al., 2005).

Two distinct gene clusters were identified encoding the requisite subunits for fully
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functional alkylsuccinate synthases (Figs. 1 & 2). Gene cluster 1 is encoded on the
minus strand and contains the requisite genes assABCDE and maskE, as well as
ancillary genes for large and small subunits of methylmalonyl-CoA mutase, an ATP-
dependent LAO/AO transport system, and a MmgE/PrpD family protein. Gene cluster
2 on the plus strand contains functionally homologous genes as in cluster 1, but also

contains assF and a gene coding for a putative carboxyl transferase.

The assA sequences identified within both gene clusters were highly similar to each
other, maximum amino acid sequence dissimilarity of 3.1%, and form a distinct
subclade within the polyphyletic group comprised of Desulfatibacillum spp., Azoarcus
sp. HXN1, and ‘Aromatoleum’ sp. OcN1 (Fig. 3). All of the AssA homologues were
most closely affiliated with AssAl (Dalk_1731) of D. alkenivorans AK-01 with 77%
sequence identity and residue chemistry similarity of 88%. Alignment of each AssA
protein sequence revealed the proposed catalytic glycine residue and single cysteine
residue (distinct from the conserved tandem cysteine for pyruvate-formate lyases) to

be conserved relative to other AssA homologues (Fig.4) (Callaghan et al., 2008).

A single copy of the alkylsuccinate synthase beta subunit gene (assB1 and assB2) was
identified within each of the gene clusters. These homologues share 92% identical
amino acid sequence to each other and are most closely associated with AssB2
(Dalk_2200; 55% identical, 72% positives) and AssB1 (Dalk_1729; 56% identical,
74% positives) of D. alkenivorans AK-01 for D. alkanexedens AssB1 and AssB2,
respectively.  Full length alignment (125 amino acids) of the AssB homologues from
D. alkanexedens to other reference proteins from Desulfatibacillum spp., “Smithella”

spp., and Aromatoleum sp. HxN1 revealed the conserved cysteine residues at “*C-X-X-
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4C-[X]15-%°C-[X]34->C, consistent with the distinctive iron sulfur cluster binding

motif proposed previously (Callaghan et al., 2008).

Similar analyses were performed for all identified assC and maskE genes. In each case,
all three homologous protein sequences (one in the gene cluster 1 and two in gene
cluster 2) for each allele conformed to the cysteine residue pattern previously proposed
by Callaghan and colleagues (2008): AssC, *C-X-X - "C-[X]14 - ?C-[X]25 -*8C; MasE,
3C-X-X - 8C-X 25- 32C-X-X - 3°C. The assC genes are highly similar to each other
with identical amino acid sequence and a maximum nucleotide dissimilarity of 1.2%.
Blast analysis of the protein sequences indicated the best match was to the AssC of the
uncultivated “Smithella” sp. SCADC at 69% sequence identity and 81% residue
chemistry similarity. The MasE homologues are also highly similar with a maximal
amino acid divergence of 2.7%. All MaskE sequences were closely affiliated with
homologues from D. alkenivorans AK-01, with MasE1 and MasE2’ both most similar
to Dalk_2197 (64% identity, 75% positives), while MasE2 was to Dalk_1732 (60%

identity, 76% positives).
Central Metabolism

Aside from Cs-C12 n-alkanes, D. alkanexedens ALDC was initially shown to
metabolize a limited number of substrates including: pyruvate, butyrate, hexanoate,
and 1-methyloctanoate (Davidova et al., 2006). In agreement with this initial
description, all genes necessary for the oxidation of linear fatty acids to acetyl-CoA
through the B-oxidation pathway were found. A pyruvate:ferredoxin oxidoreductase
(porABDG) was encoded in the genome with a single copy of each subunit co-

localized on the plus strand (locus tags 111576-79). No genes associated with a
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benzoyl-CoA ligase (E.C. 6.1.2.25) or a benzoyl-CoA reductase (E.C. 1.3.7.8) required
for the oxidation of aromatic substrates were found in the genome. The genome
contains a nearly complete glycolysis pathway, but is missing the critical enzyme
aldolase (E.C. 4.1.2.13) responsible for the cleavage of the 6 carbon skeleton. In
addition, genes for several enzymes in the pentose phosphate pathway are present that
should allow for the synthesis of key metabolic intermediates: erythrose-4P, Ribose-

5P, and 5’-phosphoribosyl-diphosphate (PRPP).

Acetyl-CoA produced from the oxidation of various substrates has several metabolic
fates encoded within the genome. A complete TCA cycle is present utilizing a si-
citrate synthase that is 65% identical (amino acid alignment) to that of
Syntrophobacter fumaroxidans MPOB (Sfum_2105). D. alkanexedens ALDC also
possesses a complete Wood-Ljungdahl pathway and an AMP-dependent acetyl-CoA
synthetase (ACS) for the conversion of acetyl-CoA to CO> or acetate under respiratory
or fermentative conditions, respectively. The ACS of D. alkanexedens ALDC (locus
tag 113073) shares 76% amino acid identity with the ACS from the order-level fatty
acid-oxidizing relative, S. fumaroxidans MPOB (Sfum_0745). No genes for a

phosphotransacetylase or acetate kinase were found.

Sulfur Metabolism

D. alkanexedens ALDC possesses all of the genes necessary for the activation
of sulfate to adenylylsulfate by sulfate adenylyltransferase (sat) and subsequent
reduction to sulfite and ultimately sulfide by adenosine-5’-phosphosulfate reductase
(aprAB) and dissimilatory sulfite reductase (dsrAB), respectively. In addition to

sulfate respiration, D. alkanexedens ALDC was shown to utilize thiosulfate as an
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electron acceptor under heterotrophic growth conditions (Davidova et al., 2006). A
gene encoding the catalytic subunit for a thiosulfate reductase (phsA) was identified,
though the additional electron transfer and cytochrome b containing subunits (phsBC)
were not observed. No genes encoding an anaerobic sulfite reductase (asrAB) were
detected in the genome. In addition, no genes associated with the assimilatory
reduction to sulfate via PAPS reductase and assimilatory sulfite reductase were
identified. Nor was any evidence found of genes associated with the oxidation of
sulfide by sulfur:quinone oxidoreductase or sulfur oxidation by the SOX enzyme
system. Several membrane complexes are required to couple the reduction of terminal
electron acceptors such as sulfate or thiosulfate to energy conservation. D.
alkanexedens ALDC possesses all of the genes for the Quinone reductase complex
(qrcABCD), the quinone-interacting membrane bound oxidoreductase complex

(gmoABC) and the transmembrane electron transport complex (dsrKMJOP).

Nitrogen Metabolism

The initial description of D. alkanexedens ALDC does not detail the specific
nitrogenous compounds used for either assimilatory or dissimilatory processes
(Davidova et al., 2006). No genes associated with the dissimilatory reduction of
nitrate to ammonia or denitrification were found in the genome. Similarly, there were
no observed genes for an assimilatory nitrate reductase. Glutamine synthetase and two
subunits of the glutamate synthase (gltBD) were found in the genome. The NADPH or
NADH binding subunit of glutamate synthase (GLT1) was not detected. In the
absence of an identifiable glutamate dehydrogenase, D. alkanexedens ALDC most

likely assimilates ammonia through the ATP-dependent GS-GOGAT pathway tied to
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the TCA cycle. Genes for all subunits of urease (ureCBA) were also detected,
suggesting that urea could also serve as a nitrogen source via the assimilation of the
resulting ammonia. Nitrogenase genes (nifDHK) were also identified and indicate the
potential for diazotrophy, though neither the fixation of dinitrogen nor the utilization

of urea have been demonstrated in cultivation by D. alkanexedens ALDC to date.
Discussion

Desulfoglaeba alkanexedens is one of the few currently known model
organisms known to activate n-alkanes by addition to fumarate under sulfate-reducing
conditions. As the sole member of the order Syntrophobacterales shown to utilize
linear paraffins as substrates, a study to sequence and annotate the genome of this
organism was undertaken to provide a framework for further physiological and
ecological investigations. Previous studies utilizing [**C]-n-dodecane revealed
metabolic intermediates indicative of a glycyl-radical enzyme catalyzed activation of
the subterminal carbon, and resulting addition to the unsaturation of fumarate

(Davidova et al. 2005).

Genome analysis has confirmed D. alkanexedens ALDC to be a strictly
anaerobic sulfate- (or thiosulfate) reducing organism with a limited range of substrates
that should support growth, as initially described (Davidova et al., 2006). Two distinct
homologous gene clusters encoding all of the necessary proteins for the alkylsuccinate
synthase enzyme were identified. Though possessing homologous genes, these gene
clusters are not co-localized on the chromosome and differ in strand orientation and
gene arrangement. Multiple homologous ASS/MAS gene clusters have also been

documented in the genomes of Desulfatibacillum alkenivorans AK-01 and Azoarcus
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sp. HXN1 (A. V. Callaghan et al., 2008; Callaghan et al., 2012; Webner, 2012). While
there is sequence divergence within the two ASS gene clusters of AK-01, the two
MAS operons recently identified in HXN1 are completely identical at the nucleotide
level. As seen with ASS cluster 2 in AK-01, the ASS gene clusters of D.
alkanexedens ALDC also possess multiple copies of certain genes within each cluster
(Figs. 1 & 2). Interestingly, ALDC is the first sequenced genome to show multiple
copies of assA within a single gene cluster, having a total of three copies of assA
within two gene clusters. The altered arrangement and multiple highly similar copies
of several ASS genes within these two gene clusters, in addition the identified inverted
repeat sequences may be evidence of previous intra-chromosomal homologous

recombination events.

After the activation of the n-alkane substrate and subsequent rearrangement,
the resulting fatty acid intermediate is further metabolized to acetyl-CoA via -
oxidation (Callaghan et al., 2012). The genome of ALDC encodes all of the requisite
proteins associated with the repeated oxidative decarboxylation of linear fatty acids.
Acetyl-CoA produced by the oxidation of substrates including pyruvate, n-alkanes,
and fatty acids has several potential fates encoded within the genome. During
respiration, acetyl-CoA can be completely oxidized to CO> via the Wood-Ljungdahl
pathway providing further electrons for energy conservation. Under fermentative
conditions such as during syntrophic paraffin degradation, acetyl-CoA is likely
converted to acetate by substrate-level phosphorylation via the AMP-dependent ACS.
Interestingly, the presence of a complete Wood Ljungdahl pathway suggests that

chemolithoautotrophic growth coupled to sulfate or thiosulfate reduction may be
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possible. The initial description of D. alkanexedens reported that H.:CO2 did not
support growth (Davidova et al., 2006), but this metabolism has been reported in D.
alkenivorans AK-01 which also possess similar pathways (So and Young, 1999;
Callaghan et al., 2012). No genes were detected encoding any of the subunits of a
benzoyl-CoA ligase or benzoyl-CoA reductase, supporting the previous assertion that

aromatic compounds cannot be utilized as substrates for growth.

Acetyl-CoA may also play another critical role in the metabolism of D.
alkanexedens ALDC by serving as the central link between the catabolic and anabolic
processes. The genome contains a complete oxidative TCA cycle and significant
portions of the glycolytic and pentose-phosphate pathways. These three pathways
likely serve as the dominant routes for a number of anabolic intermediates within the
cell.
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Figure 1. Alkylsuccinate synthase gene cluster 1. Blue arrows denote open-reading

frame orientation and frame. Spacing of all figure elements is proportional to genome
arrangement. Red blocks indicate identified inverted repeat sequences.
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Figure 2. Alkylsuccinate synthase gene cluster 2. Blue arrows denote open-reading
frame orientation and frame. Spacing of all figure elements is proportional to genome
arrangement. Red blocks indicate identified inverted repeat sequences.
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Figure 3. Phylogenetic analysis of protein-coding sequences of fumarate-addition
glycyl-radical enzyme alpha subunits. Neighbor-joining dendrogram was calculated
based on a poisson method with complete deletion. Statistical evaluation was
performed by bootstrap method with 500 replications.
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Figure 4. Translated amino acid alignments of fumarate-addition glycyl-radical alpha
subunits showing distinct conserved catalytic glycine (top) and cysteine (bottom)
residues.

Desulfoglaeba alkanexedens ALDC AssAl 464 ARTWVHQACMSPCPTT

Desulfoglaeba alkanexedens ALDC AssA2 464 ARTWVHQACMSPCPTT

Desulfoglaeba alkanexedens ALDC AssA2* 464 ARTWVHQACMSPCPTT

“Smithella” sp. SDB AssA 483 ARTWVHQACMSPCPTT

“Smithella” sp. D17 AssA (KFZ44314) 474 ARTWVHQACMSPCPTT

“Smithella” sp. SCADC AssA1 (KFO69021) 465 ARTWVHQACMSPCPTT

“Smithella” sp. SCADC AssA2 (KGLO6511) 478 ARTWVHQACMSPCPTT

“Smithella” sp. ME-1 AssA (NZ AWGX01000974) 482 ARTWVHQACMSPCPTT

Desulfatibacillum alkenivorans AK-01 AssA1 (ACL03428) 463 ARTWVHQACMSPCPTT

Desulfatibacillum alkenivorans AK-01 AssA2 (ACL03892) 464 ARTWVHQACMSPCPTT

Desulfatibacillum aliphaticivorans DSM 15576 AssA (G491DRAFT 03718) 463 ARTWVHQACMSPCPTT

Desulfatibacillum aliphaticivorans DSM 15576 AssA (G491DRAFT 04070) 464 ARTWVHQACMSPCPTT

Desulfosarcina sp. BuS5 AssA (WP 027352796) 462 ARTWVAQACI VPAPET

“Aromatoleum” sp. OcN1 MasD (CBK27727) 482 ARTWLHMACMSPAPTT

“Peptococcaceae” sp. SCADC1 2 3 AssA (KFI38250) 467 ARTWTAQACI VPCPGT

Geobacter metallireducens GS 15 BssA (ABB31773) 482 AHYWGLVLCMSPGVCG

Desulfosarcina cetonica BssA (WP 054693339) 482 AHDWANVLCMSPGLVG

Desulfobacula toluolica Tol2 BssA (WP 014955668) 482 AHNWANVLCMSPGLCG

Thauera aromatica TutD (AAC38454) 484 AHNWVNVLCMSPGI HG

Thauera aromatica BssA (CAA05052) 481 AHYWVNVLCMAPGLAG

Azoarcus sp. T BssA (AAK50372) 484 AHNWVNVLCMSPGLHG

Thauera sp. DNT-1 BssA (BAC05501) 484 AHNWVNVLCMSPGI HG

Magnetospirillum sp. TS-6 BssA (BAD42366) 480 AHNWVNVLCMSPGLAG

Aromatoleum aromatium EbN1 BssA (CAI07159) 481 AHYWVNVLCMAPGVAG

Azoarcus sp. HxN1 BssA (CAO03074) 469 ARTWVHMACMSPNPTT

Desulfobacula toluolica Tol2 HbsA (CCK78655) 442 ARDWALVLCMSPGI TG

Desulfosarcina cetonica HbsA (WP 054688969) 437 AREWALVLCMSPGVTG

Thauera sp. pCyN2 IbsA (AIS23708) 480 AHDWANVLCMSPGLVG

deltaproteobacterium NaphS2 NmsA (CA072219) 459 AAHWALVLCMAPGVS K

deltaproteobacterium NaphS3 NmsA (CA072220) 459 AAHWALVLCMAPGVS K

deltaproteobacterium NaphS6 NmsA (CA072222) 459 AAHWALVLCMAPGVGK

E. coli PFL (AAC73989) 412 NDDY Al ACCVSPMI VG

*

Desulfoglaeba alkanexedens ALDC AssA1 782 FNMVDDATLRAAQKDPEKY QEVI VRVAGYSAH
Desulfoglaeba alkanexedens ALDC AssA2 782 FNMV DDATLRAAQKDPEKY QEVI VRVAGYSAH
Desulfoglaeba alkanexedens ALDC AssA2* 782 FNMVDDATLRAAQKDPEKY QEVI VRVAGYSAH
“Smithella” sp. SDB AssA 801 FNVIDDATLRSAQREPEKY QEV I V- - - - - - -
“Smithella” sp. D17 AssA (KFZ44314) 792 FNV I DDTTLRSAQREPEKY QEVI VRVAGYSAH
“Smithella” sp. SCADC AssAl (KFO69021) 78 FNCVSDETLRSAQREPEKY QEVI VRVAGYSAH
“Smithella” sp. SCADC AssA2 (KGLO6511) 796 FNCVSDETLKSAQREPEKY QEVI VRVAGYSAH
“Smithella” sp. ME-1 AssA (NZ AWGX01000974) 800 FNCVSDETLRSAQREPEKY - - - - -
Desulfatibacillum alkenivorans AK-01 AssA1 (ACL03428) 788 FNMV SDETLRAAQKDPEKY SEVI VRVAGYSAH
Desulfatibacillum alkenivorans AK-01 AssA2 (ACL03892) 782 FNMV SDKTLRAAQKDPEKY QEVI VRVAGYSAH
Desulfatibacillum aliphaticivorans DSM 15576 AssA (G491DRAFT 03718) 78 FNMV SDETLRAAQKDPEKY SEVI VRVAGYSAH
Desulfatibacillum aliphaticivorans DSM 15576 AssA (G491DRAFT 04070) 782 FNMV SDKTLRAAQKDPEKY QEVI VRVAGYSAH
Desulfosarcina sp. BuS5 AssA (WP 027352796) 779 F NI VDNETLLAAQEKPEDTFEEMI VRVAGYSAQ
“Aromatoleum” sp. OcN1 MasD (CBK27727) 799 FNMV SDKVLRSAQKDPEGY QEVI VRVAGYSAH
“Peptococcaceae” sp. SCADC1 2 3 AssA (KFI38250) 784 FNMVDNETLYAAQKEPEKY SEL MVRVAGYSAH
Geobacter metallireducens GS 15 BssA (ABB31773) 799 FNCVSTAEMKAAQKEPEKHA QDLI VRVSGFSAR
Desulfosarcina cetonica BssA (WP 054693339) 799 FNVVSTAEMKAAQKEPEKHADLI VRVAGFSAR
Desulfobacula toluolica Tol2 BssA (WP 014955668) 799 FNVVSTAEMKAAQKEPEKHO QDLI VRVSGFSSR
Thauera aromatica TutD (AAC38454) 801 FNVVSTDEMRAAQREPEKHHDLI VRVSGYSAR
Thauera aromatica BssA (CAA05052) 796 FNVVSTEEMKAAQREPEKHA QDLI VRVSGFSAR
Azoarcus sp. T BssA (AAK50372) 801 FNVVSTDEMRAAQREPEKHSDLI VRVSGYSAR
Thauera sp. DNT-1 BssA (BAC05501) 801 FNVVSTDEMRAAQREPEKHH HDLI VRVSGYSAR
Magnetospirillum sp. TS-6 BssA (BAD42366) 797 FNVVSTEEMRAAQREPEKHHDLI VRVSGYSAR
Aromatoleum aromatium EbN1 BssA (CAI07159) 798 FNVVSTEEMKAAQREPEKHO QDLI VRVSGFSAR
Azoarcus sp. HXN1 BssA (CAO03074) 787 FNVI SDKVLRAAQNDPEGY QEVI VRVAGYSAH
Desulfobacula toluolica Tol2 HbsA (CCK78655) 760 FNVI SQEDMKAAQI EPEKY TDT L VRI AGYSAK
Desulfosarcina cetonica HbsA (WP 054688969) 755 FNVI SSDDMRQAQKEPEKFPDTI VRVAGYSAK
Thauera sp. pCyN2 IbsA (AIS23708) 797 FNVLSTEEMRAAQREPEKHA QDLI VRVSGYSAR
deltaproteobacterium NaphS2 NmsA (CAO72219) 776 FNVVETKDMLEAQKEPEKWESLI VRI AGYSAR
deltaproteobacterium NaphS3 NmsA (CAO72220) 776 F NV V ET KD MLEAQKEPEKWESLI VRI AGYSAR
deltaproteobacterium NaphS6 NmsA (CAO72222) 776 F NV VDTKDMLEAQKEPEKWQS MI VRI AGYS AR
E. coli PFL (AAC73989) 708 VNV MNREML LDAMENPEKY PQLTIRVSGYAVR
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Appendix Il: Chapter 3 Supplemental Materials.
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Figure S1. Methane production measured in the sediment-free SDB cultures amended
with (A) octacosane and (B) other medium- and long- chain n-alkanes. Data points
represent the averages of triplicate measurements. Error bars correspond to one standard
deviation. For some measurements, the standard deviations were very small, and the
error bars are masked by the corresponding data points.
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Figure S2. Phylogenetic profile of 16S rRNA genes obtained by 454 pyrosequencing
of (A) bacterial and (B) archaeal 16S rRNA gene PCR products. PCR products were
generated, barcoded, and sequenced as previously described (Johnson et al., 2015).
Briefly, bacterial 16S rRNA gene PCR products were generated with primers 27F and
338R, which contained 5° Titanium Fusion adapter sequences (forward primer A-tag:
CCATCTCATCCCTGCGTGTCTCCGACTCAG; reverse primer B-tag:
CCTATCCCCTGTGTGCCTTGGCAGTCTCAG) and a unique 8-nucleotide barcode
tag (Hamady et al., 2008). PCR reactions contained 0.2 uM of the ‘tagged’ forward
primer, 0.25 uM of the reverse primer, 0.25 pL of DreamTaq (5 units uL™) (Thermo
Fisher Scientific, Waltham, MA), PCR Supermix (Life Technologies, Carlsbad, CA)
and 2 pL of template DNA (1:15 dilution). PCR cycles were as follows: 95°C for 7 min.
and 30 cycles of 95°C for 20 sec., 55°C for 20 sec., and 72°C for 40 sec. Archaeal 16S
rRNA genes were amplified using primers A8F (5’-TCCGGTTGATCCTGCC-3’) and
A344R (5’-TCGCGCCTGCTGCICCCCGT-3’) with Titanium adaptors described
above and by applying an extension step of 55°C for 60 seconds. PCR products were
sequenced by loading equimolar quantities on a 454 sequencer using GS FLX Titanium
chemistry.
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Figure S3. Phylogenetic analysis of the 16S rRNA gene sequences associated with
archaeal genome bins that affiliated with 16S rRNA genes. The neighbor-joining
dendrogram (Tajima-Nei distance method; 5,000 bootstrap replicates; pairwise deletion)
was generated from an alignment with most closely associated sequences as determined
by blastN analysis of the respective 16S rRNA gene.
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Table S1. The stoichiometry of octacosane mineralization to methane in SDB cultures

after 16 weeks of incubation.
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Table S2. Characteristics of binned genomes in the SDB culture obtained via MaxBin

analysis of lllumina MiSeq data.
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Table S3. Number of genes with and without homology between the binned
“Smithella” sp. SDB genome and previously reported “Smithella”’-like genome bins
from methanogenic alkane-degrading cultures and Syntrophus aciditrophicus SB. All
protein-coding genes were compared via pairwise blastp comparison. The number of
protein features that have blastp scores of e <1E-10 in pairwise comparison is shown.

# of genes with homology in # of genes without homology in
Organism “Smithella” sp. SDB “Smithella” sp. SDB
“Smithella” sp. ME-1 1843 996
“Smithella” sp. SCADC 1993 1614
“Smithella” sp. F21 900 873
“Smithella” sp. D17 1059 687
Syntrophus aciditrophicus SB 1384 1782
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Table S4. assA genotypes detected in PCR-based clone libraries, 454- based
metagenomes, and Illumina-based metagenomes.

mRNA
mRNA Detected Via
Detected Via RT-PCR
454 Metagenome # of lllumina Metagenome i of PCR Library # of RT-PCR without
Contig # Sequences Contig # Sequences oTuU Clones with HMN HMN
345 83 149 9423 - - Yes No
346 48 15 7447 - - Yes Yes
347 32 5 1416 OoTU 1 12 No Yes
348 50 508 8511 - - Yes Yes
350 35 17 4822 oTU 4 6 Yes Yes
- - - oTU 2 14 n.a. n.a.
- - - OTU 3 1 n.a. n.a.
- - - OUTS5 1 n.a. n.a.

‘- = not detected; ‘n.a.” = not assayed; HMN = heptamethylnonane carrier phase for octacosane substrate
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Table S5. Number of mismatches between primers used for assA RT-PCR and assA
OTUs detected in metagenome.

assA Genes Detected in SDB

contig ID: 454 (lllumina) metagenome

RELATIVE PRIMER 345 346 347 348 350

POSITION* (149) (15) (5) (508) (17) PRIMER SEQUENCE
1410 C345_F 0 5 4 2 4 AGA GGC CTT GGA TCT GGC
2250 C345_R 0 13 6 0 4 ATC GGT GATAGCCTTCT
1505 C345/47/48/50_F 0 2 0 0 0 AAG GMA CCT GGG TCT GGA
2320 C345/47/48/50_R 0 5 0 0 0 TCG TCATCATTG CCC CAC
1885 C346_F 10 0 8 7 9 GCCTTATTT AAC GGC TAC
2308 C346_R 5 0 3 5 5 TCCCCATTT AGG CGC GTT
395 C350_F 6 7 12 9 0 AAA ATG CTA GTATTC AAG AT
712 C350_R 5 6 9 5 0 GTT GGATCC CAG CCA ATT

* Relative position to assA gene in Desulfatibacillum alkenivorans strain AK-01
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originating from methanogenic alkane-degrading consortia. (NOTE: Search parameters

Table S6. Comparison of genomic content of available “Smithella” draft genomes
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are shown at the bottom of the table. Text in parentheses refers to EC numbers or locus

tags within searched genomes.) Search parameters were as follows:
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® Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal invalid or wnenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the enginal provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby:.
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conditions and those established by CCC's Billing and Payment terms and conditions,
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o WILEY expressly reserves all rights not specifically granted in the combination of (1)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (1) CCC's Billing and Payment terms
and conditions.

® This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
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® This Agreement shall be govemned by and construed in accordance with the laws of
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objection to vemue in such court and consents to service of process by registered or
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certified mail, retum receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Arficles in fully Open Access Joumals and m Subscription
Journals offening Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commeons Atmbution (CC BY) License
only, the subscnpfion journals and a few of the Open Access Joumals offer a choice of
Creative Commeons Licenses. The license type 15 clearly identified on the article.

The Creative Commeons Attribution License

The Creative Commons Atinbution License (CC-BY) allows users to copy, disimbute and
iransmit an article, adapt the arficle and make commercial use of the arhicle. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commereial License

The Creative Commeons Atimnbution Non-Commercial (CC-BY-NC)License permits use,
disiribution and reproduction in any medmm, provided the enginal work is properly cited

and 1s not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Atiribution Non-Commercial-NoDenvs License (CC-BY-NC-ND)
permits use, distnbution and reproduction in any medium, provided the original work is
properly cited, 15 not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit” organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library hitp-//olabout. wilev. com/WileyCDA
/Section/id-410895 himl

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll fres in the US) or
+1-978-646-2777.
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