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ABSTRACT: Pavement cracking is one of the major concerns for pavement design and 

management. There have been rapid developments of automated pavement cracking 

detection in recent years. However, none of them has been widely accepted so far due to 

lack of capability of maintaining consistently high detection accuracy for various 

pavement surfaces. Using 1mm 3D data collected by WayLink Digital Highway Data 

Vehicle (DHDV), an entire system of algorithms, which consists of Fully Automated 

Cracking Detection Subsystem, Interactive Cracking Detection Subsystem and Noisy 

Pattern Detection Subsystem, is proposed in this study for improvements in adaptability, 

reliability and interactivity of pavement cracking detection. 

The Fully Automated Cracking Detection Subsystem utilizes 3D Shadow Simulation 

to find lower areas in local neighborhood, and then eliminates noises by subsequent noise 

suppressing procedures. The assumption behind 3D Shadow Simulation is that local 

lower areas will be shadowed under light with a certain projection angle. According to 

the Precision-Recall Analysis on two real pavement segments, the fully automated 

subsystem can achieve a high level of Precision and Recall on both pavement segments. 

The Interactive Cracking Detection Subsystem implements an interactive algorithm 

proposed in this study, which is capable of improving its detection accuracy by 

adjustments based on the operator’s feedback, to provide a slower but more flexible as 

well as confident approach to pavement cracking detection. It is demonstrated in the case 

study that the interactive subsystem can retrieve almost 100 percent of cracks with nearly 

no noises. 

The Noisy Pattern Detection Subsystem is proposed to exclude pavement joints and 

grooves from cracking detection so that false-positive errors on rigid pavements can be 

reduced significantly. This subsystem applies Support Vector Machines (SVM) to train 

the classifiers for the recognition of transverse groove, transverse joint, longitudinal 

groove and longitudinal joint respectively. Based on the trained classifiers, pattern 

extraction procedures are developed to find the exact locations of pavement joints and 

grooves. 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), which is one of multi-

objective genetic algorithms, is employed in this study to optimize parameters of the fully 

automated subsystem for the pursuing of high Precision and high Recall simultaneously. 

In addition to NSGA-II, an Auxiliary Prediction Model (APM) is proposed in this study 

to assist NSGA-II for faster convergence and better diversity. 

Finally, CPU-based and GPU-based Parallel Computing Techniques, including Multi-

GPU, GPU streaming, Multi-Core and Multi-Threading are combined in this study to 

increase the processing speed for all computational tasks that can be synchronous. 
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Chapter 1 INTRODUCTION 

 

 

1.1 Background 

Transportation system is of vital importance to the modern society. Over 3.9 million miles of 

roadway, which consists of the national highway infrastructure network of the United States, is an 

essential and extremely important component of the transportation system (Banks, 2002). 

Substantial funds are invested to numerous highway rehabilitation and maintenance projects in 

order to ensure the pavement serviceability in each year. Pavement preservation is essentially 

recognized as a data-driven process where pavements data play an obligatory role in optimizing 

the strategies and prioritizing resource allocation (Paterson and Scullion, 1990). 

In general, pavement data could include pavement type, materials, geometries, layer 

configurations, pavement textures, surface roughness, and pavement distresses and so on. The 

status of pavements has explicit or implicit impacts on ride quality, deterioration rate, pavement 

remaining life, safety and other functions. In pavement engineering, these data sets have been 

utilized with other external information in situ such as climate records and traffic data almost 

throughout the entire life cycle of pavements: design, construction, maintenance, rehabilitation 

and management (Haas and Hudson, 1978; Huang, 1993; TRB, 2001; Wang, 2011). 
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Some of these data are static and retrievable in the inventory database where the information was 

kept when the pavements were initially constructed or overlaid; they are commonly called as-

built information. The remainders, which are pavement performance data, are dynamic and need 

to be updated from the field on a regular basis to ensure timely decisions. Due to the massive 

mileages of the pavement system, the task to update the state of pavement performance has 

always been very challenging. Manual survey had been the dominant approach to collect 

pavement evaluation data for decades until the widespread application of modern sensors and 

advancements of computer science in the 1980s. Consequently, the automated survey systems 

started to be recognized in the industry (Haas and Hendrickson, 1990; Paterson, 1994; Cheng and 

Miyojim, 1997; Wang, 2000; Fu et al., 2011). Comparing to manual surveys, automated surveys 

are less labor-intensive, safer, more objective, more efficient and more repeatable. However, only 

30 states in the US had been collecting pavement surface images for data extraction by 2004 

(Mcghee, 2004). Even today, few agencies are dependent on automated systems of distress 

surveys for production level work. Instead, a number of agencies rely on semi-automated 

approach with human intervention because of low repeatability and reliability of the automated 

systems. Regardless of which method to be used for data collection, the real concern of highway 

agencies is whether the survey can generate accurate and precise results in a consistent manner. 

For manual survey, trained engineers or operators are to rate the physical pavement features of 

interest based on requirements of the protocols. However, subjective tendency is a concern: it is 

challenging to retain the data consistency of the evaluation due to the long-duration of work and 

the disagreement between raters. As a result, errors are prone to occur during the data processing 

phase (Morian et al., 2002; Wang et al., 2011). In contrast, the automated systems have the 

advantage to eliminate inconsistence and human-errors in the data processing phase as long as the 

design and integration of the data collection system are fully validated. 
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1.2 Problem Statement 

The advanced modern sensors and laser technology have made the automated high quality data 

collection no longer challenging. The remaining critical problem is the automated data processing 

systems that can produce highly reliable detection, classification, evaluation and reporting for 

decision makings in pavement engineering. However, it is extremely difficult to develop software 

solutions which could automatically produce highly reliable results even with decades’ endeavors 

on worldwide basis. The difficulties lie in two aspects. First of all, as a matter of fact, pavement 

surface distresses have numerous and unpredictable presences on diversely textured pavement 

surfaces. It is challenging to fully recognize them even with human interaction. Secondly, there is 

no protocol for distress classification and measurements that has been widely adopted by agencies 

for network level surveys. Therefore, in the automated recognition, the output quality is highly 

dependent on the protocols used, which indicates the selection of a proper protocol could be a key 

issue (Wang et al. 2011). Past experiences manifest that the emphasis to improve the reliability of 

automated recognition system is to make the protocols easier and more practical to be followed 

by computer algorithms. As an alternative solution, some pavement engineers have customized 

protocols for image-based automated recognition systems but, unfortunately, none of them has 

been widely adopted due to various reasons (Paterson, 1994; Wang and Elliot, 1999; Wang et al., 

2000; Raman et al., 2004; Fu et al., 2011). 

Pavement cracking is the fracture appearing on the pavement surface due to material fatigue, 

repeated loading, climatic deteriorations or other factors. It is one of the most significant 

pavement distresses that have direct impacts on pavement safety and ride quality, as well as a 

major indicator in diagnosing deterioration for all types of pavements (Paterson, 1994; Lee and 

Kim, 2005). Accurate cracking survey is necessary as taking proper and timely countermeasures 

could prevent cracking from further deterioration. However, cracking is the most difficult type of 

data to be detected automatically, compared to other data such as rut depth, ride quality, texture 
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and global positioning (Timm and McQueen, 2004). For the past two decades, numerous 

algorithms have been developed for automated cracking detection. However, the current 

automated cracking detection algorithms have various limitations, and none of the algorithms has 

been widely accepted (Wang et al., 2007; Tsai, 2010; Zhang, 2013). Particularly, no current 

automated detection algorithms can maintain consistently high detection accuracy for various 

roads due to the diversity and complexity of pavement surfaces. Meanwhile, researchers have not 

paid sufficient attention to data operator’s involvement in processing. In other words, the current 

automated algorithms have not provided a systematic methodology for users to improve the 

detection performance based on their experience and observations. As a result, few studies have 

shown a system of algorithms that can allow operators to improve the detection accuracy and 

reduce the noise percentage until they are satisfied. 

1.3 Objectives 

The objective of this study is to propose an efficient and practical computer-aided system with 

multiple algorithms that can implement pavement cracking detection at different automation 

levels based on the users’ acceptance and tolerance level. The objective of the Fully Automated 

Cracking Detection Subsystem is to develop algorithms that are capable of detecting cracks with 

high accuracy for many cases without human’s intervention. In order to provide an interface for 

the operators to conduct interactive detection based on their acceptance and tolerance level, the 

objective of the Interactive Cracking Detection Subsystem is to utilize computer-aided interaction 

between the operators and interactive algorithms for improvements in detection. Despite the 

interactive detection may consume a long time, it is anticipated that the Interactive Cracking 

Detection Subsystem can fully satisfy the users’ requirements on detection accuracy. Finally, 

based on the classifiers trained by Support Vector Machines (SVM), the Noisy Pattern Detection 

Subsystem is to detect pavement joints and grooves, which are the two major noisy patterns on 

rigid pavements that can seriously affect the accuracy of cracking detection. Once the pavement 
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joints and grooves are detected, they will be excluded from the cracking detection results. The 

exclusion of pavement joints and grooves will largely reduce false-positive errors of cracking 

detection on rigid pavements. Thus, the automation levels and objectives of the three detection 

subsystems can be concluded in Table 1.1. 

Table 1.1. Automation levels and objectives of the three proposed subsystems 

Subsystems Automation Level Objectives 

Fully Automated Cracking 

Detection subsystem 

Fully Automated 

Detect the majority of cracking without 

operator’s intervention 

Interactive Cracking 

Detection subsystem 

Bottom 

Level 

Automated but 

requiring training 

Detect the majority of cracking after 

operator’s training on selected samples 

Top 

Level 

Semi-automated 

Find missed cracks or delete noises 

based on operator’s acceptance level 

Noisy Pattern Detection 

Subsystem 

Fully Automated 

Detect pavement joints and grooves, and 

exclude the detected noisy patterns from 

cracking detection 

 

Unlike the Interactive Cracking Detection Subsystem, the Fully Automated Cracking Detecting 

Subsystem has no feedback as reference during its implementation. It is therefore necessary to 

optimize the parameters of the fully automated system so that high detection accuracy can be 

achieved for many cases. Based on representative cracked pavement data, the integration of Non-

dominated Sorting Genetic Algorithm II (NSGA II) and Auxiliary Prediction Model (APM) is 

utilized to optimize the parameters of the fully automated subsystem for best compromise 

between the two conflicting optimization goals: high Precision and high Recall. Eventually, 

combinations of CPU-based and GPU-based Parallel Computing Techniques are implemented to 
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greatly increase the speed of all computational tasks involved in detection algorithms that can be 

synchronous. 

1.4 Organization of Dissertation 

This dissertation is organized as following: 

Chapter 2 provides literature review on pavement cracking detection algorithms, pavement joint 

and groove detection algorithms and Multi-objective Genetic Algorithms. 

Chapter 3 describes the Fully Automated Cracking Detection Subsystem based on 3D Shadow 

Simulation and Noise Suppressing Algorithms. 

Chapter 4 utilizes NSGA-II to optimize the primary parameters involved in Fully Automated 

Cracking Detection Subsystem. In addition to NSGA-II, the APM is proposed in this chapter to 

assist NSGA-II for faster convergence and better diversity. 

Chapter 5 develops the Interactive Cracking Detection Subsystem. The interactive algorithms are 

proposed to improve the detection performance according to the operator’s feedback. The two-

level detection is developed to implement Interactive Detection at different automation levels. 

Chapter 6 proposes the Noisy Pattern Detection Subsystem for the detection of pavement joints 

and grooves. This subsystem applies SVM algorithms to optimize the four classifiers for the 

recognition of transverse groove, transverse joint, longitudinal groove and longitudinal joint 

respectively via the supervised learning on numerous training samples. Based on the four SVM 

classifiers, pattern extraction procedures are proposed to find the locations of pavement joints and 

grooves. 

Chapter 7 adopts combinations of CPU-based and GPU-based Parallel Computing Technology 

to increase the speed of all computational tasks involved in the detection algorithms that can be 

synchronous. 
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Chapter 8 lists the conclusions and recommendations for future work. 
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Chapter 2 LITERATURE REVIEW 

 

 

2.1 Pavement Cracking Recognition 

Over the recent decades, many algorithms have been developed to advance the automated 

pavement cracking recognition. Multilayer feed-forward neural-network classifier and a two-

stage piecewise linear neural network classifier were proposed by Kaseko et al. to perform 

automated detection, classification and quantification of cracks on video images (1994). Skeleton 

Analysis, Real-time Thresholding, Fuzzy Set theory and Neural Network techniques were 

adopted by Cheng et al. (1998; 1999; 2001; 2003) for pavement cracking recognition. Huang and 

Xu utilized image processing algorithms to seek for cracks starting from divided image cells to 

clusters of linear pattern based on grayscale information and morphological presences (2006). 

Wang et al. (2007) applied wavelet edge detection based on à trous algorithm to detect pavement 

distress with the consideration of multi-scale. Nguyen et al. utilized Conditional Texture 

Anisotropy (CTA) to detect pavement defects. Based on the CTA results, cracks, joints and 

bridged defects were classified using Multi-layer Perceptron Neural Network (MLPNN) (2009). 

Tsai et al. evaluated the performances of six existing image segmentation algorithms for 

pavement cracking detection using a scoring measure. It was demonstrated that the dynamic 

optimization-based method which combines global and local information generated good results 

(2010). 
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Cord and Chambon employed a supervised learning method based on Adaptive Boosting 

(AdaBoost) for Texture Pattern Recognition, with the purpose of distinguishing roads with 

defects from roads without defects (2010). Beamlet transform-based approach was proposed by 

Ying and Salari to detect and classify cracks in partitioned small image windows (2010). Nejad 

and Zakeri incorporated a radon neural network into wavelet modulus to build a multi-resolution 

neural network for pavement cracking classification (2011). An adaptive road crack detection 

system was developed by Gavilan et al. (2011), for which linear SVM-based classifier is used to 

distinguish pavement types and then the output is applied to tune parameters for cracking 

detection. There are also other researches that implement SVM-based classifiers for pavement 

cracking detection (Li et al., 2009; Moussa and Hussain, 2011; Daniel et al., 2014). Mathavan et 

al. (2012) integrated Texture Analysis and Kohonen Feature Map for segmentation of pavement 

images which can provide help to pavement cracking detection. Nishikawa et al. presented 

cracking detection algorithms based on Genetic Programming for concrete surface. The sequence 

and combination of several image filters were evolved following genetic processes in order to 

search the best multi-sequential image filters. Re-extraction of missed cracks and elimination of 

residual noises were conducted recursively at local regions using the best multi-sequential image 

filters until specific criteria are satisfied (2012). Zhang et al. introduced Matched Filtering 

algorithm to pavement cracking detection using predesigned rotated filters to match crack 

features by shape, orientation and intensity (2013). Lee et al. developed algorithms to detect 

cracks from concrete surface. Global binarization and local binarization based on Shape Analysis 

were both considered for the enhancement of detection performance. Based on the detection 

results, crack width, length and orientation were computed by specific algorithms. Afterwards, a 

pattern recognition approach based on Neural Network was applied finally to classify transverse 

cracks, longitudinal cracks and diagonal cracks. (2013). Gabor Filters were employed by Zalama 

et al. to extract visual features from pavement images for detection and classification of 

longitudinal and transverse cracks (2014). Li et al. adopted Back Propagation Neural Network 
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(BPNN) to classify linear cracks and alligator cracks based on the result processed by a 

framework of image processing algorithms. Additionally, the linear cracks were further 

categorized into longitudinal cracks and transverse cracks according to the orientations (2014). 

The vast majority of published developments on automated cracking surveys are based on 2D 

pavement surface visual data. In the last few years, 3D laser imaging technology has become the 

most powerful and sophisticated data acquisition platform for pavement surface data. 3D 

pavement elevation data is nearly invulnerable to ambient lighting conditions and noisy patterns, 

such as lane markings, tire marks and oil-spills, in terms of cracking detection, whereas visual 

data from 2D systems contain these various noises and unwanted information which must be 

processed separately, sometime with only limited successes. A recent study demonstrated that 3D 

pavement data can produce consistent results when detecting cracks even under different lighting 

conditions (Tsai and Li, 2012). Peng et al. employed Multi-seeding Fusion algorithm for 

automated cracking detection on 1mm resolution 3D data (2014). Most recently, Huang et al. 

combined 2D image and 3D information based on Dempster-Shafer theory for pavement cracking 

detection. It was concluded that the combination of 2D and 3D data sets as input data achieved 

higher accuracy and lower recognition error rate than using 2D images only (2014). 

2.2 Multi-objective Optimization 

With respect to performance optimization of the Fully Automated Cracking Detection Subsystem, 

the percentage of pixels are detected correctly and the percentage of pixels are detected 

incorrectly are essentially the two primary objectives that need to be evaluated during the 

optimization. Thus, the optimization of the Fully Automated Cracking Detection Subsystem 

eventually evolves to a multi-objective optimization problem. 

For a multi-objective optimization problem, the optimization objectives are generally conflicting 

with each other. Therefore, there does not exist a single solution that simultaneously optimizes 
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each objective. In contrary, there exist a number of Pareto-optimal solutions that are non-

dominated with each other in terms of the objectives. Multi-objective Evolutionary Algorithms 

(MOEAs) are popular approaches to producing Pareto-optimal solutions for a multi-objective 

optimization problem. Many of current MOEAs belong to the class of Multi-objective Genetic 

Algorithms, which simulate the process of natural selection and mainly consist of the four 

components: population initialization, fitness assignment, recombination (crossover and mutation) 

and environmental selection. Konak et al. overviewed and summarized most of the well-known 

and credible Multi-objective Genetic Algorithms as listed below (2006): 

 Vector Evaluated GA (VEGA); 

 Multi-objective Genetic Algorithm (MOGA); 

 Niched Pareto Genetic Algorithm (NPGA); 

 Weight-based Genetic Algorithm (WBGA); 

 Random Weighted Genetic Algorithm (RWGA); 

 Non-dominated Sorting Genetic Algorithm (NSGA); 

 Strength Pareto Evolutionary Algorithm (SPEA); 

 Improved SPEA (SPEA2); 

 Pareto-Archived Evolution Strategy (PAES); 

 Pareto Envelope-based Selection Algorithm (PESA); 

 Region-based Selection in Evolutionary Multi-objective Optimization (PESA-II); 

 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II); 

 Multi-objective Evolutionary Algorithm (MEA); 

 Micro-GA; 

 Rank-Density Based Genetic Algorithm (RDGA); 

 Dynamic Multi-objective Evolutionary Algorithm (DMOEA); 
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Konak et al. fully discussed the advantages and disadvantages of each aforementioned algorithm. 

Among these algorithms, NSGA-II (Deb et al., 2002), SPEA (Zitzler and Thiele, 1998), SPEA2 

(Zitzler et al., 2001), RDGA (Lu and Yen, 2003) and DMOEA (Yen and Lu, 2003) perform better 

than others in terms of elitism and diversity preservation mechanism. But NSGA-II is 

comparatively simpler to be implemented than SPEA, SPEA2, RDGA and DMOEA. 

Comparisons of Multi-objective Genetic Algorithms are also found in other literatures (Zitzler 

and Thiele, 1999; Zitzler et al., 2000; Deb, 2001; Coello et al., 2007). However, numerous 

comparison studies manifest an overall better behavior of NSGA-II and SPEA2. 

2.3. Noisy Pattern Detection 

Pavement joints and grooves are the two major noisy patterns on rigid pavements in terms of 

cracking detection. They must be excluded from cracking detection, otherwise countless false-

positive errors will be introduced. There are limited researches on automated detection of 

pavement grooves and joints. With respect to automated pavement groove identification, Wang 

and Davis proposed an automated groove identification program to evaluate the configurations of 

transverse grooves on airport pavements (2013). Sequentially, Beam-bridging filter was also 

introduced by Wang and Hayhoe to detect transverse grooves on runways (2013). However, these 

groove identification algorithms are limited to transverse grooves on airport pavements. Later on, 

Wang et al. suggested a template matched algorithm assisted by moving average filter for 

identification of longitudinal pavement grooves with 1mm resolution 3D data (2014). But these 

procedures are mainly for a general measurement on the longitudinal grooves by analyzing some 

sampled transverse profiles. Such a measurement is different from the detection for which the 

locations of all grooves need to be found. 

On the other hand, an automated pavement joint detection algorithm was developed by Nguyen et 

al. based on Conditional Texture Anisotropy (CTA). In order to separate joints from cracks 

detected by CTA, Multi-layer Perceptron Neural Network (MLPNN) is suggested by Nguyen et 
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al. to classify three types of detected defects: Joints, Cracks and Bridged Defects (2009). 

Although 100% accuracy on joint classification was reported in their research, the CTA is only 

conducted on 2D pavement images, and its performance on 3D pavement images is still unknown. 

More importantly, pavement groove, which is another major noisy pattern on rigid pavements and 

may introduce false-positive errors more than pavement joint, however is not considered in their 

research. Gavilan et al. proposed a combination of Canny Edge Detector and Hough Transform to 

detect pavement joints on 2D images. Firstly, the Canny Edge Detector is operated to locate dark 

edges. Then, Hough Transform is applied to extract straight lines from the edge detection results. 

It was reported that such a procedure yielded an overall Precision 90.34% and Recall 84.17% on 

278 joint samples (2011). This procedure states a clear route to pavement joint detection. But it is 

invented for joint detection on 2D pavement images, and its performance on 3D pavement images 

has not been examined. Moreover, the Canny Edge Detector is merely a primitive media in 

detection, and its performance is very limited for object detection on pavements (Zhang et al., 

2013). Furthermore, the reported Recall on 278 samples seems unsatisfactory, and improvements 

on Recall should be desired. No other automated approaches to separating pavement joints from 

pavement cracks have been found, although detection of joint faulting and other joint 

deteriorations has been discussed (Tsai, 2012; Hoegh, 2013; Wang, 2014). 

2.4 Summary 

In a summary, there are tremendous researches on pavement cracking detections. However, none 

of the researches has been generally recognized and broadly applied. For one reason, the 

pavement data involved in the researches follow various formats and standards as they are 

collected by different vendors. Due to the proprietary issues, no public benchmark data are 

available so far for commonly wared evaluations on the existing algorithms. For another reason, 

no researches have demonstrated consistently high detection accuracies for various roads even 
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with their own data. There is no evidence showing that a flexible level of detection accuracy 

based on the user’s preference can be guaranteed. 

Secondly, although there are several researches on the identification of pavement grooves and 

joints, they are restricted at different aspects and mainly based upon 2D images or airport 

pavements. Particularly, no literatures show a comprehensive system of algorithms that can detect 

transverse grooves, transverse joints, longitudinal grooves and longitudinal joints simultaneously 

but with clearly separated classifications. Therefore, one objective of this study is to develop an 

automated system of algorithms that can achieve these features from a comprehensive perspective. 

Lastly, there are systematic developments on Multi-objective Optimization algorithms. Many of 

them are intensively tested and proved to be efficient for varied cases. Therefore, the optimization 

of the Fully Automated Cracking Detection Subsystem just needs to pick up one of the efficient 

Multi-objective Optimization algorithms. 
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Chapter 3 FULLY AUTOMATED CRACKING DETECTION SUBSYSTEM 

 

 

3.1 Introduction to Data Collection System  

All 3D data used in this study are collected by Digital Highway Data Vehicle (DHDV) developed 

by WayLink Systems Corporation. With twenty years’ development, DHDV has been evolved 

into a sophisticated system that can collect full-lane data at a highway speed up to 60MPH (about 

100 km/h). The vertical resolution of 3D data collected by DHDV is 0.3 mm, while the resolution 

in both longitudinal and transverse directions is 1mm. Figure 3.1 shows the exterior and interior 

appearance of DHDV. A representative frame of 3D data collected by DHDV at 60MPH is 

illustrated in Figure 3.2. 

  

Figure 3.1. WayLink DHDV 
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Figure 3.2. Representative 3D Pavement Surface at 60MPH 

3.2 Fully Automated Cracking Detection Algorithms 

3.2.1 3D Shadow Simulation 

Over decades, a common approach to automated cracking detection is essentially the use of 

various filters and pre-processing algorithms in order to transform the original data into a 

comparatively simpler domain. In particular, the original data will be transformed into a binary 

domain, where suspected pixels are labeled as “0” and the others are labeled as “1”. As a result, 

the failure in detecting true cracks occurs when the original information is lost during the 

transformation. On the other hand, noises are introduced when the unwanted information is 

maintained during the transformation. The capability of a transformation algorithm lies in not 

only the correctness of transforming the original data, but also the degree that how much useful 

information is able to be extracted. In this study, a natural idea is proposed to shed light on the 

following two perspectives: 1) as the crack is a pattern that has lower height than the local 

neighborhood, the transformation should be able to capture local lower areas correctly; 2) the 

degree of extraction can be diverse and be controlled easily by setting certain constraints. 

3D Shadow Simulation is proposed in this study to extract local lower areas by modeling the 

projection of natural sunlight. It is assumed that the sunlight comes from an infinitely long 
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distance so that the sunlight beams are parallel everywhere. Meanwhile, no diffusions and 

reflections are considered in the modeling. Based on the assumption, local gradient and local dip 

are the two types of spatial occurrences that can be shadowed, as illustrated in Figure 3.3.  

 

(a) Local Gradient 

 

(b) Local Dip 

Figure 3.3. Shadowing of Local Gradient & Local Dip 

Since pavement crack is a long strip pattern constituted by local dips, local gradients should be 

discarded by combing the projections with two opposite lighting directions. Here, “opposite” 

means the two lighting directions are opposite to each other in the 𝑥𝑦 plane. As illustrated in 

Figure 3.4, local gradients do not present any shadowed areas under opposite lighting directions, 

while local dips could be shadowed under lighting of opposite directions. 
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(a) Local Gradient 

 

(b) Local Dip 

Figure 3.4. Composite Shadowing of Local Gradient & Local Dip under Lighting of Opposite 

Directions 

It is clear that the shadowed area under opposite lighting directions is lower than the local 

neighborhood. And the cracks are hided partially or entirely in the shadowed areas. The 

percentage of true cracks being shadowed is dependent on the projection angle. The projection 

angle is defined as the angle between 𝑥𝑦 plane and the projection direction, illustrated in Figure 

3.5. 



19 

 

 

Figure 3.5. Projection Angle 

When the projection angle is 90 degree, nothing can be shadowed. On the other hand, all pixels 

can be shadowed if the projection angle is 0 degree. Therefore, the projection angles between 0-

90 degrees will generate a diverse transformations of the original data into the binary map. Such a 

transformation is controlled only by a single parameter: the projection angle, which implies the 

advantage of 3D Shadow Simulation. 

Certainly, there could be many pairs of opposite lighting directions in the 𝑥𝑦 plane, as illustrated 

in Figure 3.6. 

 

Figure 3.6. Pairs of Opposite Directions in XY Plane 
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In the 𝑥𝑦 plane, the optimized pair of lighting directions should be perpendicular to the growing 

direction of a crack. However, cracks on pavement surface always present various growing 

directions. Instead of using excessive pairs of lighting directions that magnifies the computational 

complexity and increases processing time, two pairs of lighting directions are suggested in this 

study to implement tasks of finding longitudinal-dominated cracks and transverse-dominated 

cracks respectively. According to the projection directions of each pair in 𝑥𝑦 plane, the two pairs 

of opposite lightings are called Transverse Lighting and Longitudinal Lighting, as illustrated in 

Figure 3.7. 

 

(a) Transverse Lighting 



21 

 

 

(b) Longitudinal Lighting 

Figure 3.7. Transverse Lighting & Longitudinal Lighting 

It could be determined that Transverse Lighting is devised mainly for the detection of 

longitudinal-dominated cracks, while Longitudinal Lighting is designated to detect transverse-

dominated cracks. 

Denote 𝒖 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) as the normalized vector in the lighting direction, which subjects to: 

𝑢𝑧 ≥ 0                                                                (3.1) 

The inequality (3.1) indicates the light always comes above the 𝑥𝑦 plane, or parallel to the 𝑥𝑦 

plane. In order to determine which pixels can be shadowed, it is necessary to define the light 

tracing model. 

As the sunlight beams are assumed to be parallel everywhere, the sunlight imaginarily starts from 

each pixel and travels along the lighting direction until it is out of the data domain. Therefore, 

each pixel can be consider as the origin of a light beam. Denote 𝑝(𝑖, 𝑗) as the height of pixel (𝑖, 𝑗), 
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𝑷𝑖𝑗 = (𝑖, 𝑗, 𝑝(𝑖, 𝑗)) as the 3D point presented by pixel (𝑖, 𝑗), and 𝒍(𝑖, 𝑗) as the light beam whose 

origin is 𝑷𝑖𝑗. Given the sampling resolution ∆𝑠, a collection of 3D points 𝛀𝑖,𝑗 =

{𝑷𝑖𝑗
(1)
, 𝑷𝑖𝑗

(2)
, 𝑷𝑖𝑗

(3)
… , 𝑷𝑖𝑗

(𝑁)
} can be sampled along the light beam 𝒍(𝑖, 𝑗). That is: 

𝑷𝑖𝑗
(𝑘)

= 𝑷𝑖𝑗 + 𝑘 ∙ ∆𝑠 ∙ 𝒖                                         (3.2) 

Where: 𝑷𝑖𝑗
(𝑘)

 is the 𝑘𝑡ℎ 3D point sampled along 𝒍(𝑖, 𝑗); 

The 𝑥 and 𝑦 components of 𝑷𝑖𝑗
(𝑘)

 can approximate the location of a certain pixel in 𝑥𝑦 plane, 

while the 𝑧 component of 𝑷𝑖𝑗
(𝑘)

 reflects the height of light beam 𝒍(𝑖, 𝑗) at that pixel. In order to 

determine which pixels are visited by the light beam 𝒍(𝑖, 𝑗), the 𝑥 and 𝑦 components of 𝑷𝑖𝑗
(𝑘)

 are 

rounded to the nearest integers such that they can be associated with a specific pixel in the 𝑥𝑦 

plane. In other words, 𝑷𝑖𝑗
(𝑘)

 is approximated as: 

𝑷𝑖𝑗
(𝑘)

= 𝑟𝑜𝑢𝑛𝑑 (𝑷𝑖𝑗
(𝑘)
∙ 𝒆𝑥) 𝒆𝑥 + 𝑟𝑜𝑢𝑛𝑑 (𝑷𝑖𝑗

(𝑘)
∙ 𝒆𝑦) 𝒆𝑦 + (𝑷𝑖𝑗

(𝑘)
∙ 𝒆𝑧) 𝒆𝑧          (3.3) 

Where: 𝒆𝑥, 𝒆𝑦 and 𝒆𝑧 are the unit vectors for the 𝑥 axis, 𝑦 axis and 𝑧 axis respectively. 

In equation (3.2), the sampling resolution ∆𝑠 should be small enough such that no pixels will be 

ignored. The sampling resolution ∆𝑠 is set as ∆𝑠 = 1 in this study. Thereby the following 

inequality holds: 

{
∆𝑠 ∙ 𝒖 ∙ 𝒆𝑥 = 𝑢𝑥 ≤ 1
∆𝑠 ∙ 𝒖 ∙ 𝒆𝑦 = 𝑢𝑦 ≤ 1                                                     (3.4) 

The inequality (3.4) indicates no pixels will be missed with the sampling resolution ∆𝑠 = 1. 

With the light tracing model, a pixel could be visited by multiple light beams starting from 

different pixels. Therefore, 𝑷𝑖𝑗
(𝑘)

 is modified as 𝑷𝑖𝑗
(𝑖′𝑗′)

 to denote the 3D sample point at pixel 
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(𝑖′, 𝑗′) of the light beam 𝒍(𝑖, 𝑗). For simplicity, Light Height ℎ𝑖𝑗(𝑖
′, 𝑗′) is defined as the height of 

light beam 𝒍(𝑖, 𝑗) at pixel (𝑖′, 𝑗′). Thus: 

ℎ𝑖𝑗(𝑖
′, 𝑗′) = 𝑷

𝑖𝑗

(𝑖′𝑗′)
∙ 𝒆𝑧                                                    (3.5) 

For a pixel that is influenced by multiple light beams, only the Maximum Light Height at that 

pixel is retained. That is: 

ℎ𝑚𝑎𝑥(𝑖
′, 𝑗′) = max⁡{ℎ𝑖1𝑗1(𝑖

′, 𝑗′), ℎ𝑖2𝑗2(𝑖
′, 𝑗′), … , ℎ𝑖𝑚𝑗𝑚(𝑖

′, 𝑗′)}                 (3.6) 

Where: ℎ𝑖𝑘𝑗𝑘(𝑖
′, 𝑗′) is the height of 𝑘𝑡ℎ light beam 𝒍(𝑖𝑘 , 𝑗𝑘) at pixel (𝑖′, 𝑗′). 

Finally, a pixel is shadowed if the Maximum Light Height at that pixel is greater than its own 

height. That is: 

𝐵(𝑖, 𝑗) = {
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡ℎ𝑚𝑎𝑥(𝑖, 𝑗) > 𝑝(𝑖, 𝑗)
1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                (3.7) 

Where: 𝐵(𝑖, 𝑗) is the value of pixel (𝑖, 𝑗) in the binary map. 

Based on the aforementioned methodology, the procedures to generate shadow map are 

concluded below, where shadow map is the binary map in which shadowed pixels have the value 

“0” and the others have the value “1”. 

 Initialize the maximum light height at each pixel as ℎ𝑚𝑎𝑥(𝑖, 𝑗)=0; 

 For each pixel (𝑖, 𝑗), start tracing of the light beam 𝒍(𝑖, 𝑗) until it is out of the data domain; 

 Determine the pixels visited by 𝒍(𝑖, 𝑗) and update the corresponding maximum light 

heights at their locations; 

 Assign binary value for each pixel by referring to equation (3.7). 
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Examples of shadowing on 3D pavement surface under four individual lighting directions are 

shown in Figure 3.8. 

 

(a) Original 3D Data 

 

(b) Shadow Map 1 (Lighting Direction: Left-to-Right) 
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(c) Shadow Map 2 (Lighting Direction: Right-to-Left) 

 

(d) Shadow Map 3 (Lighting Direction: Top-to-Bottom) 
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(e) Shadow Map 4 (Lighting Direction: Bottom-to-Top) 

Figure 3.8. Shadowing on 3D Pavement Surface with 4 Lighting Directions 

In order to only retain local dips, shadow maps under opposite lighting directions are combined 

together to formulate a composite shadow map where pixels shadowed under both directions are 

assigned with value “0”, and the others are labeled with value “1”. That is: 

𝐵𝑐(𝑖, 𝑗) = {0⁡⁡⁡𝑖𝑓⁡𝐵
(𝑖, 𝑗) = 0⁡𝑎𝑛𝑑⁡𝐵̅(𝑖, 𝑗) = 0

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
                               (3.8) 

Where: 𝐵𝑐(𝑖, 𝑗) is the binary value of pixel (𝑖, 𝑗) on the composite shadow map; 𝐵(𝑖, 𝑗) and 𝐵̅(𝑖, 𝑗) 

are the binary values of pixel (𝑖, 𝑗) on the two shadow maps with opposite lighting. 

The composite shadow maps of the example data generated by Transverse Lighting and 

Longitudinal Lighting are shown in Figure 3.9. 
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(a) Composite Shadow Map by Transverse Lighting 

 

(b) Composite Shadow Map by Longitudinal Lighting 

Figure 3.9. Composite Shadow Maps by Transverse Lighting and Longitudinal Lighting 

It can be observed from Figure 3.9 that longitudinal-dominated cracks have clearer presence and 

better continuity on the composite shadow map generated by Transverse Lighting. On the 

contrary, transverse-dominated cracks are more sustainable under Longitudinal Lighting. In order 
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to integrate longitudinal-dominated cracks and transverse-dominated cracks together for latter 

analyses, the composite shadow maps under Transverse Lighting and Longitudinal Lighting are 

integrated as: 

𝐼𝑐(𝑖, 𝑗) = {
0⁡⁡⁡⁡𝑖𝑓⁡𝐵𝑐(𝑖, 𝑗) = 0⁡𝑜𝑟⁡𝐵̅𝑐(𝑖, 𝑗) = 0⁡
1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                              (3.9) 

Where: 𝐼𝑐(𝑖, 𝑗) is the binary value of pixel (𝑖, 𝑗) on the final integrated shadow map; 𝐵𝑐(𝑖, 𝑗) and 

𝐵̅𝑐(𝑖, 𝑗) are the binary values of pixel (𝑖, 𝑗) on the two composite shadow map generated by 

Transverse Lighting and Longitudinal Lighting. 

3.2.2 Noise Suppressing Algorithms 

When the integrated shadow map is obtained, the remaining task is to extract linear patterns from 

the integrated shadow map. In this study, the following two criteria are used for the 

implementation of noise suppressing. 

 A crack should be a continuously developed linear pattern whose length is much greater 

than its width; 

 The length of a crack should be greater than the defined minimum length. 

Before the implementation of noise suppressing, Clustering is applied to label collected pixels in 

the integrated shadow map such that further analyses can be conducted on cracking clusters rather 

than individual pixels. A common image processing technique, Blob Extraction (alternatively 

Connected-component Labeling), is adopted in this study to divide resulting binary images into 

connected subsets using the two-pass algorithm (Shapiro and Stockman, 2001). The first pass of 

the clustering algorithm is to assign temporary labels and record equivalences, while the second 

pass is to reassign temporary labels as the smallest labels using the Union-Find structure which is 

designed for “Union” operation (Merging two sets into one) and “Find” operation (determining 
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which set a specific element belongs to). An example of clustering is shown in Figure 3.10, where 

collected pixels are grouped in the same cluster and assigned with identical color. 

 

Figure 3.10. Example of Clustering 

Based on the clustering result, Linear Pattern Analysis is developed as a noise suppressing 

algorithm to provide some help in removing clusters which are very likely to be noises due to 

unsatisfied linearity. For Linear Pattern Analysis, the following features of a crack are considered 

in the evaluation: 1) a crack is a long strip pattern; 2) the width distribution of a crack in a small 

local area can be regarded as uniform; 3) the growing direction of a crack in a small local area 

does not change dramatically. 

Three indices are used to analyze the pattern of a potential cracking cluster: score of slimness, 

score of width uniformity and score of direction uniformity. Scoring slimness is essentially to 

calibrate the ratio of the total length of the potential cracking cluster to its average width into the 

range from 0 to 100. Based on preliminary investigations, the ratio of the total length of the crack 

to its average width is greater than 20 for most of pavement cracks. Thus, the score of slimness of 

a potential cracking cluster is defined as below: 
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𝑆𝑖,1 = min⁡(100,
𝐿𝑖

𝑊̅𝑖
×

100

𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
)                                          (3.10) 

Where: 𝑆𝑖,1- Score of slimness of 𝑖𝑡ℎ cracking cluster; 𝐿𝑖- Total length of 𝑖𝑡ℎ cracking cluster; 

𝑊̅𝑖-Average width of 𝑖𝑡ℎ cracking cluster; 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑- The threshold above which the ratio of the 

total length of a cracking cluster to its average width is completely acceptable, 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 20 is 

adopted in this paper. 

For the score of width uniformity, the width of each profile in a cracking cluster is compared to 

the width of next profile, if the difference between the two widths exceeds a certain degree, the 

current profile will be counted as an invalid profile. The number of invalid profiles will be 

accumulated as: 

𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑 = ∑ 𝐸(𝑖, 𝑗)
𝑁𝑖−1
𝑗=1                                                  (3.11) 

Subject to: 

𝐸(𝑖, 𝑗) = {
0,⁡⁡⁡𝑖𝑓⁡⁡

max(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)−min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)

min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)
≤

min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)

2

1,⁡⁡⁡𝑖𝑓⁡⁡
max(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)−min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)

min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)
>

min(𝑊𝑖,𝑗⁡,⁡⁡⁡𝑊𝑖,𝑗+1)

2

                   (3.12) 

Where: 𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑-Number of invalid profiles in 𝑖𝑡ℎ cracking cluster; 𝑁𝑖-Number of profiles in 𝑖𝑡ℎ 

cracking cluster; 𝐸(𝑖, 𝑗) –Indicator of invalid profile for the 𝑗𝑡ℎ profile in 𝑖𝑡ℎ cracking cluster; 

𝑊𝑖,𝑗-Width of 𝑗𝑡ℎ profile in 𝑖𝑡ℎ cracking cluster; 

With the number of invalid profiles, the score of width uniformity for the 𝑖𝑡ℎ potential cracking 

cluster 𝑆𝑖,2 can be derived by: 

𝑆𝑖,2 =
𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑

𝑁𝑖−1
× 100                                                       (3.13) 
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With respect to the score of direction uniformity, the current growing direction at a cracking 

profile is pointing from the center of last profile to the center of current profile. Then, the current 

growing direction will be compared to the next growing direction pointing from the center of 

current profile to the center of next profile. If the angle between the two growing directions is 

greater than a certain threshold, the current growing direction will be counted as an invalid 

growing direction. Therefore, the number of invalid growing directions is accumulated as below: 

𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑
′ = ∑ 𝐸′(𝑖, 𝑗)

𝑁𝑖−1
𝑗=2                                                 (3.14) 

Subject to: 

𝐸′(𝑖, 𝑗) = {
0,⁡⁡⁡𝑖𝑓⁡⁡

(𝑷𝒕𝑖,𝑗−⁡𝑷𝒕𝑖,𝑗−1)∙(𝑷𝒕𝑖,𝑗+1−⁡𝑷𝒕𝑖,𝑗)

‖(𝑷𝒕𝑖,𝑗−⁡𝑷𝒕𝑖,𝑗−1)‖×‖(𝑷𝒕𝑖,𝑗+1−⁡𝑷𝒕𝑖,𝑗)‖
≥ cos⁡𝛽0

1,⁡⁡⁡𝑖𝑓⁡⁡
(𝑷𝒕𝑖,𝑗−⁡𝑷𝒕𝑖,𝑗−1)∙(𝑷𝒕𝑖,𝑗+1−⁡𝑷𝒕𝑖,𝑗)

‖(𝑷𝒕𝑖,𝑗−⁡𝑷𝒕𝑖,𝑗−1)‖×‖(𝑷𝒕𝑖,𝑗+1−⁡𝑷𝒕𝑖,𝑗)‖
< cos⁡𝛽0

                   (3.15) 

Where: 𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑
′
-Number of invalid growing directions in 𝑖𝑡ℎ cracking cluster; 𝑁𝑖-Number of 

profiles in 𝑖𝑡ℎ cracking cluster;  𝐸′(𝑖, 𝑗) –Indicator of invalid growing direction at 𝑗𝑡ℎ profile in 

𝑖𝑡ℎ cracking cluster; 𝑷𝒕𝑖,𝑗-Center point of 𝑗𝑡ℎ profile in 𝑖𝑡ℎ cracking cluster; 𝛽0-The allowed 

maximum angle between two successive growing directions, 𝛽0 =
𝜋

12
 is used in the paper. 

Similarly, the score of direction uniformity for the 𝑖𝑡ℎ potential cracking cluster 𝑆𝑖,3 can be 

computed as: 

𝑆𝑖,3 =
𝑁𝑖,𝑖𝑛𝑣𝑎𝑙𝑖𝑑

′

𝑁𝑖−2
× 100                                                    (3.16) 

The weighted sum of the three indices is finally applied to give an overall score for the linearity 

of the cracking cluster. Consequently, cracking clusters which follow the statement below will 

survive in Linear Pattern Analysis, otherwise they will be eliminated. 

𝐹𝑖 = 𝛼1𝑆𝑖,1 + 𝛼2𝑆𝑖,2 + 𝛼3𝑆𝑖,3 ≥ 𝐹𝑚𝑖𝑛                                     (3.17) 



32 

 

Where: 𝐹𝑖-Linearity Score of 𝑖𝑡ℎ cracking cluster; 𝑆𝑖,1-Score of slimness of the 𝑖𝑡ℎ cracking 

cluster; 𝑆𝑖,2-Score of width uniformity of 𝑖𝑡ℎ cracking cluster; 𝑆𝑖,3-Score of direction uniformity 

of 𝑖𝑡ℎ cracking cluster; 𝛼1, 𝛼2, 𝛼3-Weight factors, 𝛼1 = 𝛼2 = 𝛼3 = 0.33 is used in this study; 

𝐹𝑚𝑖𝑛-Minimal linearity score, 𝐹𝑚𝑖𝑛 = 80 is adopted in this study. 

Figure 3.11 shows an example of some noisy patterns that are eliminated through Linear Pattern 

Analysis. 

 

(a) Original 3D Image 

 

(b) Result Before Linear Pattern Analysis 
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(c) Result After Linear Pattern Analysis 

Figure 3.11.Linear Pattern Analysis 

According to the definition of a crack described in the AASHTO Designation (AASHTO, 2013), 

the minimum length of a crack is 25mm. Therefore after Linear Pattern Analysis, if there are any 

tiny cracks that satisfy both of the following conditions, they will be considered as noises and 

then eliminated. 

 The length of the crack is less than 25mm; 

 The crack is isolated within the local neighborhood of a certain size. 

It should be noted that the second condition is set to protect those small parts of an acceptable 

crack from elimination. An example of eliminating tiny cracks is shown in Figure 3.12. 
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(a) Before Elimination of Tiny Cracks     (b) After Elimination of Tiny Cracks 

Figure 3.12. Elimination of Tiny Cracks 

In a summary, the Fully Automated Cracking Detection Subsystem applies 3D Shadow 

Simulation to transform the original 3D data into a binary map, followed by the use of noise 

suppressing algorithms to eliminate unwanted patterns from the binary map. Some typical 

examples of pavement cracks detected by Fully Automated Cracking Detection Subsystem are 

shown in Figure 3.13. 
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(a) Original 3D Data                                                  (b) Results 

Figure 3.13. Typical Examples by Fully Automated Cracking Detection Subsystem 

3.3 Case Study 

For the validation of the Fully Automated Cracking Detection Subsystem, a case study on real 3D 

pavement data is conducted in this chapter. Pavements of different levels of cracking severity are 

chosen for performance evaluation. As the projection angle has a great impact on the 3D Shadow 

Simulation, an appropriate set of projection angles for Transverse Lighting and Longitudinal 

Lighting is determined and fixed for the case study based on prior knowledge and preliminary 

testing. In the case study, the projection angle for both Transverse Lighting and Longitudinal 

Lighting is fixed as 60 degree. 
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3.3.1 Selected Pavement Segments 

Two pavement segments which have substantial amount and diverse types of pavement cracking 

are selected for case study. The first pavement segment (Pavement I) is from State Highway 

AR100-EB in Arkansas, while the second pavement segment (Pavement II) comes from the Hall 

of Fame Road located in Stillwater, Oklahoma. Both segments are 300m long. The cracking 

severity levels of the two segments are listed in Table 3.1. And the right-of-view of the selected 

pavement segments is shown in Figure 3.14. 

Table 3.1. Cracking Severity Levels of Pavement I and Pavement II 

Pavement ID Location Length (m) Level of Cracking Severity 

Pavement I Arkansas, US 300 Low & Medium 

Pavement II Oklahoma, US 300 Medium & High 

 

   

(a) Pavement I                                                       (b) Pavement II 

Figure 3.14. Right-of-way View of the Selected Pavement Segments 

3.3.2 Precision-Recall Analysis 

In order to evaluate the performance of pavement cracking detection algorithms, the concept of 

Precision-Recall analysis is utilized in this study as the evaluation methodology. Precision-Recall 

analysis was first introduced in the area of Information Retrieve (IR) as an evaluation metric 

(Fawcett, 2006; Davis and Goadrich, 2006). The calculation of parameters in this analysis is 
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shown in equation (3.18) ~ (3.21), where True Positive, True Negative, False Positive and False 

Negative are four detection outcome scenarios that constitute the confusion matrix of a detection 

result. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                             (3.18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                            (3.19) 

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒⁡(𝐹𝑃𝑅) =
𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                            (3.20) 

𝐹𝑎𝑙𝑠𝑒⁡𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛⁡𝑅𝑎𝑡𝑒⁡(𝐹𝑂𝑅) =
𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                         (3.21) 

In pavement cracking detection, True Positive pixels are the cracking pixels classified correctly as 

belonging to one of the cracking clusters, while False Positive pixels are the non-cracking pixels 

classified incorrectly as belonging to one of the cracking clusters. On the other hand, True 

Negative pixels represent non-cracking pixels that are classified correctly as not belonging to any 

cracking cluster. And False Negative pixels stand for cracking pixels that are classified 

incorrectly as not belonging to any cracking cluster but should have been. Therefore, as referring 

to equation (3.18) ~ (3.21), Precision is a measure of how many of the detected pixels are 

classified correctly as cracks, while Recall reflects the percentage of cracking pixels detected by 

the detection algorithm. In addition, False Positive Rate (FPR) and False Omission Rate (FOR) 

stand for the percentage of False Positive error (Type I error) and the percentage of False 

Negative error (Type II error) respectively. In a general view, False Positive errors will be 

reduced as the Precision is increased, while False Negative errors will also be reduced with a 

higher Recall. 
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Proceeding to Precision-Recall Analysis, the ground truth of all cracks on the two pavement 

segments are marked manually. The results of Precision-Recall Analysis on the two selected 

segments are illustrated in Table 3.2 and Table 3.3. 

Table 3.2. Performance of Fully Automated Cracking Detection Subsystem on Pavement I 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 91.68 91.09 0.28 0.30 

2 20-40 89.30 86.58 0.35 0.45 

3 40-60 93.39 88.60 0.30 0.54 

4 60-80 86.45 87.85 0.34 0.30 

5 80-100 94.43 89.87 0.15 0.29 

6 100-120 87.13 90.16 0.34 0.25 

7 120-140 92.01 85.77 0.15 0.29 

8 140-160 89.39 86.71 0.18 0.23 

9 160-180 95.73 94.59 0.11 0.14 

10 180-200 88.32 92.47 0.34 0.21 

11 200-220 89.26 85.99 0.33 0.44 

12 220-240 95.10 84.45 0.14 0.51 

13 240-260 91.83 88.01 0.29 0.45 

14 260-280 90.74 86.25 0.30 0.46 

15 280-300 94.68 91.87 0.15 0.24 

Overall 0-300 91.30 88.69 0.25 0.34 
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Table 3.3. Performance of Fully Automated Cracking Detection Subsystem on Pavement II 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 93.06 91.93 0.27 0.32 

2 20-40 93.20 90.70 0.28 0.40 

3 40-60 94.47 92.08 0.25 0.37 

4 60-80 89.43 90.30 0.22 0.20 

5 80-100 87.57 88.26 0.18 0.17 

6 100-120 94.56 89.50 0.09 0.19 

7 120-140 93.84 88.53 0.15 0.29 

8 140-160 92.89 93.11 0.13 0.12 

9 160-180 96.25 90.01 0.10 0.27 

10 180-200 91.39 87.40 0.14 0.21 

11 200-220 90.65 89.59 0.32 0.37 

12 220-240 92.63 91.63 0.15 0.17 

13 240-260 94.38 87.41 0.09 0.21 

14 260-280 91.75 93.14 0.28 0.23 

15 280-300 93.78 88.47 0.11 0.22 

Overall 0-300 92.66 90.14 0.18 0.25 

 

It can be observed from Table 3.2 and Table 3.3 that the fully automated detection algorithms 

achieves high Precision and high Recall for both segments. For Pavement I, the average Precision 

is 91.30%, while the average Recall is 88.69%. Comparatively, the fully automated detection 

algorithms reach higher Precision (92.66%) and Recall (90.14%) on Pavement II, which may be 

due to the higher severity and better continuity of cracks on Pavement II. Moreover, the 
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performance of the fully automated detection algorithms on all reporting sections does not change 

with a wild range. 

3.4 Summary 

In this chapter, 3D Shadow Simulation is proposed to transform the original 3D data to a binary 

map where local lower areas are shadowed and labeled as “0”, and local higher areas are not 

shadowed and labeled as “1”. The pairing of opposite lighting directions is conduced to 

differentiate local dips (potential parts of cracks) from local gradients. Transverse Lighting, 

which is a pair of opposite lighting in the transverse direction, serves to find the longitudinal-

dominated cracks. On the other hand, Longitudinal Lighting, which is a pair of opposite lighting 

in the longitudinal direction, is mainly to preserve transverse-dominated cracks. In addition to 3D 

Shadow Simulation, a sequence of noise suppressing algorithms is utilized to further eliminate 

noises from shadow maps. The case study on two pavement segments with diverse cracks 

demonstrates the good potential of the proposed fully automated cracking detection algorithms. 

The advantage of 3D Shadow Simulation is that diverse solutions can be derived by adjusting a 

single parameter: the projection angle. One significant implication of such diversity is that all 

cracks could be shadowed with a low enough projection angle, no matter how vague the contrast 

between the crack and the local background is. Once all cracks could be shadowed correctly, a 

robust system of noise suppressing algorithms will maintain a large portion of true cracks and 

thus have a high level of success. 

Furthermore, the selection of an appropriate projection angle is mainly associated with cracking 

width and cracking depth. As a matter of fact, the widths and depths of cracks on pavement 

surface have limited range, which means this fully automated detection subsystem is capable of 

maintaining high accuracy for many cases once the proper projection angles are assigned. 
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Chapter 4 OPTIMIZATION OF FULLY AUTOMATED CRACKING DETECTION 

ALGORITHMS USING GENETIC ALGORITHM 

 

 

Genetic Algorithm is an artificial intelligence that simulates the process of natural selection, 

where elite solutions are maintained through generations while the others are eliminated. Genetic 

Algorithm is applied frequently for search problems in a large decision space. According to the 

number of objectives, Genetic Algorithms can be divided into two categories: Single Objective 

Genetic Algorithms and Multi-objective Genetic Algorithms. Since the goal for the optimization 

of a cracking detection algorithm is eventually to maximize Precision and Recall simultaneously, 

Multi-objective Genetic Algorithms are discussed in this study. 

The objective of this chapter is to adopt a proper Multi-objective Genetic Algorithm that has 

adequate efficiency for optimization of the fully automated detection algorithm. The fundamental 

idea behind Multi-objective Genetic Algorithms is the evolutionary search of non-dominated 

solutions with high level of diversity along the pareto-optimal front. As mentioned in Section 2.2, 

Non-dominated Sorting Genetic Algorithm II (NSGA II) and Improved Strength Pareto 

Evolutionary Algorithm (SPEA2) are the two of most representative Multi-objective Genetic 

Algorithms. Since NSGA II has a lower complexity than SPEA2, NSGA II is adopted in this 

chapter. NSGA II possesses the capability in both preserving elites and maintaining diversity. 
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Through the systematic emphasis on the selection of a better non-dominated front, NSGA II can 

progress to the optimal solutions front by front. Additionally, the diversity is also preserved 

through the Crowded-Comparison approach proposed in NSGA II which penalizes crowed 

solutions and values isolated solutions (Deb et al., 2002). 

4.1 NSGA II with Auxiliary Prediction Model 

In addition to NSGA II, Auxiliary Prediction Model (APM) is proposed in this study to improve 

the convergence and diversity of solutions. The NSGA II evaluates groups of individual solutions 

in terms of convergence and diversity at each generation. However, it never predicts at each 

generation by using the information why a group is better than others in terms of dominance or 

diversity. Therefore, the APM is devised in this study to address three considerations: 

 Why the first front is better than other fronts; 

 Why some solutions are better than others in terms of diversity; 

 How a potentially better group can be predicted by analyzing the difference between an 

existing better group and an existing worse group. 

Since the convergence and diversity are of same importance to the final solutions, the APM 

essentially is divided into two separate models: Convergence Prediction Model and Diversity 

Prediction Model. The former is used to predict a group that may have better dominance, while 

the latter is applied to predict a group that has a potentially broader distribution. 

4.1.1 Convergence Prediction Model 

With respect to the number of non-dominated fronts, there could be two cases through 

generations: 

 Case I: Individuals are located at multiple fronts; 

 Case II: Entire population are located at the first front. 
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The Convergence Prediction Model is illustrated in Figure 4.1. 

        

(a) Case I                                    (b) Case II 

Figure 4.1. Convergence Prediction Model 

As illustrated in Figure 4.1(a), when there are multiple fronts, the first front is treated as Group 1, 

and the other fronts are regarded as Group 2. A direction vector in the decision space pointing 

from Group 2 to Group 1 will be computed. Afterwards, two groups will be predicted ahead of 

the two original groups in the computed direction. The two predicted groups will potentially have 

better dominance than the original groups. Denote 𝑶𝟏 as the centroid of Group 1, 𝑶𝟐 as the 

centroid of Group 2. Then, the direction vector 𝑽 pointing from 𝑶𝟐 to 𝑶𝟏 is: 

𝑽 = 𝑶𝟏 −𝑶𝟐                                                        (4.1) 

Then, the predicted solutions under Case I can be expressed as: 

𝑸 = {𝑸𝒊|𝑸𝒊 = 𝑻𝒊 + 𝜀𝑽}                                              (4.2) 

Where: 𝑸 is the predicted population; 𝑸𝒊 is the 𝑖𝑡ℎ individual solution in the predicted population; 

𝑻𝒊 is the 𝑖𝑡ℎ individual solution in the original population; ε ∈ (0,1] is a random variable that 

determines how far the predicted population are projected ahead. 
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Once the prediction is completed, the predicted groups will compete with the original groups. 

Only the best individuals from all groups will survive after the competition. Such a competition is 

the critical procedure to maintain the best individuals. 

However, as illustrated in 4.1(b), if the entire population are located at the first front, no certain 

better direction could be learned. In this case, a pair of random opposite directions will be chosen 

for each individual randomly selected from the original solutions. Afterwards, for each randomly 

selected individual solution, two solutions will be predicted ahead along the two selected random 

directions respectively. That is: 

{
𝑸𝒊 = 𝑻𝒌 + 𝑽𝑟,𝑘
𝑸𝒋 = 𝑻𝒌 − 𝑽𝑟,𝑘

                                                (4.3) 

Where: 𝑸𝒊 and 𝑸𝒋 are the pair of predicted solutions; 𝑻𝒌 is the 𝑘𝑡ℎ individual in the randomly 

selected population from which the two predicted solutions are projected; 𝑽𝑟,𝑘 is one of the two 

opposite random vectors selected for 𝑻𝒌. 

The randomness of the selection on predicting directions and original solutions allows the entire 

population more opportunities to escape from the local optimality. Moreover, the dual predicting 

directions emphasize the search in opposite directions. It should be stressed again that all 

predicted solutions will participate in the competition with original solutions, where only the best 

solutions are preserved. If the original solutions are already located at the Pareto-optimal front, 

the predicted groups will not win during the competition. Otherwise, once a predicted solution 

survives after completion, any other worse individuals could move towards it for potentially 

better solutions. 

4.1.2 Diversity Prediction Model 

Similarly, as illustrated in Figure 4.2, if a group of solutions has better diversity than the other 

group, the direction vector in the decision space pointing from the worse group to the better group 
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will be derived. Then, new groups will be predicted ahead of original groups in the predicted 

direction. 

 

Figure 4.2. Diversity Prediction Model 

Suppose the Group 1 is the better half of population in terms of diversity, while Group 2 is the 

other half of worse diversity. Then the prediction vector and predicted population can be obtained 

using equation 4.1 and 4.2. If Group 1 and Group 2 are identical in the measurements of diversity, 

no further predictions are considered as necessary in this study. 

In a summary, the NSGA II with APM is implemented as below: 
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4.1.3. Performance of NSGA-II with APM on Benchmark Functions 

In order to evaluate the performance of NSGA-II with APM, some benchmark functions with 

known optimality are needed. Five benchmark data from ZDT Test Suite, ZDT1, ZDT2, ZDT3, 

ZDT4 and ZDT6, are adopted in this study to compare the performance of NSGA-II with the 

performance of NSGA-II with APM (Zitzler et al., 2000). Each of the ZDT functions introduces 

different tangible difficulties in locating the true optima for optimization algorithms. This is the 

reason why they are widely accepted for performance evaluations. Particularly, each of the ZDT 

functions contains two optimization objectives, which is in accordance with the goal of this study. 

The comparison results are shown in Figure 4.3. 

Initialize Population; 

Initial Non-dominated sorting; 

For Each Generation 

Non-dominated sorting; 

Tournament selection; 

Generating Offspring; 

Non-dominated sorting on the extended population, including original population and the 

offspring; 

Population Update (Replacement); 

Convergence Prediction on the updated population; 

Diversity Prediction on the updated population; 

Non-dominated sorting on the integrated population, including updated population, 

predicted populations either for convergence or for diversity; 

Final Population Update (Replacement); 

end 
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        (a) ZDT1 Test Using NSGA-II             (b) ZDT1 Test Using NSGA-II with APM 

      

        (c) ZDT2 Test Using NSGA-II             (d) ZDT2 Test Using NSGA-II with APM 

      

        (e) ZDT3 Test Using NSGA-II             (f) ZDT3 Test Using NSGA-II with APM 
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        (g) ZDT4 Test Using NSGA-II             (h) ZDT4 Test Using NSGA-II with APM 

      

        (i) ZDT6 Test Using NSGA-II             (j) ZDT6 Test Using NSGA-II with APM 

Figure 4.3. Comparison between NSGA-II and NSGA-II with APM 

It is found from Figure 4.3 that NSGA-II with APM converges faster than NSGA-II, as NSGA-II 

with APM evolves with fewer generations but achieves much better results. In the meantime, 

NSGA-II with APM finds true optimal and diverse solutions successfully on all benchmark 

functions without getting stuck at local optima. 

4.2 Optimization on Fully Automated Cracking Detection Algorithm 

As mentioned before, maximization of Precision and maximization of Recall are the two 

optimization objectives in this study. For most cracking detection scenarios, Detection of high 

Precision often results in low Recall, while detection of high Recall yields low precision due to 
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the introduced noises. Therefore, a robust cracking detection algorithm should maintain high 

Precision and high Recall simultaneously at an acceptable level. 

4.2.1 Samples for Optimization 

In order to increase overall performance of the fully automated detection subsystem on various 

pavement surfaces, the samples are collected from different pavement segments representing 

diverse surface textures and various cracking attributes. In this study, 100 pavement samples in 

size of 512×512 are involved in the evaluation of overall Precision and Recall. And some of them 

are illustrated in Figure 4.4. Ground Truth of cracking on all samples is marked manually such 

that Precision and Recall can be computed directly by a pixel-to-pixel comparison. 
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Figure 4.4. Representative Samples for Optimization 

4.2.2 Decision Variables and Fitness Evaluation 

The two major parameters of the fully automated detection algorithm, Transverse Lighting Angle 

and Longitudinal Lighting Angle, are selected as the decision variables for optimization. The 

range of each decision variable is determined by prior knowledge and listed in Table 4.1. 

Table 4.1. Range of Decision Variables 

Transverse Lighting Longitudinal Lighting Angle 

Minimum Maximum Minimum Maximum 

40º 80º 40º 80º 

 

The Fitness Evaluation Functions are the overall Precision and Recall of the detection on all 

samples. Denote 𝑇𝑃𝑖 as the number of true positive pixels in the detection result on 𝑖𝑡ℎ sample, 

𝐹𝑃𝑖 as the number of false positive pixels in the detection result on 𝑖𝑡ℎ sample, and 𝐹𝑁𝑖 as the 

number of false negative pixels in the detection result on 𝑖𝑡ℎ sample. Based on equations 3.18 

and 3.19, the Fitness Evaluation Functions can be written as: 

𝐹𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖
𝑁
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)
𝑁
𝑖=1

                                             (4.4) 

𝐹𝑟𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖
𝑁
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑁𝑖)
𝑁
𝑖=1

                                                (4.5) 
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Where: 𝑁 is the number of samples. 

4.2.3 Optimization Results 

The optimized solutions are obtained by designating 100 individuals to evolve through 30 

generations. Figure 4.5 shows the optimization result. 

 

Figure 4.5. Optimization Result by NSGA II with APM 

It could be found from Figure 4.5, the NSGA II with APM generates diverse solutions 

progressing toward the right upper corner. In order to utilize the optimization result in practice, a 

final solution which reachs high Pricison and high Recall simultaneously is selected from the 

diverse non-dominated solutions. As illlustrated in Figure 4.6, the Precision and Recall of the 

final solution are 90.29% and 90.37% respectively. In addition, the associated Transverse 

Lighting Angle is 57.46 degree, while the associated Longitudinal Lighting Angle is 66.99 degree. 
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Figure 4.6. Preferred Solution 

Using the optimized Transverse Lighting Angle 57 degree and Longitudinal Lighting Angle 67 

degree, a comparison of detections on the same pavement segments discussed in Section 3.3 is 

conducted. Table 4.2 and Table 4.3 show the detection results using optimized lighting angles. 

Table 4.2. Performance of Fully Automated Cracking Detection Subsystem on Pavement I Using 

Optimized Lighting Angles 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 91.94 93.94 0.27 0.20 

2 20-40 94.76 94.02 0.17 0.20 

3 40-60 91.15 92.94 0.43 0.33 

4 60-80 88.49 85.46 0.28 0.36 

5 80-100 88.70 85.23 0.32 0.43 

6 100-120 89.51 89.95 0.27 0.26 

7 120-140 92.11 85.98 0.15 0.29 

8 140-160 91.60 85.79 0.14 0.25 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

9 160-180 92.36 95.23 0.21 0.13 

10 180-200 90.52 93.64 0.28 0.18 

11 200-220 87.96 83.49 0.36 0.52 

12 220-240 95.05 85.36 0.15 0.48 

13 240-260 91.93 87.95 0.29 0.45 

14 260-280 91.49 87.74 0.27 0.41 

15 280-300 95.01 95.83 0.15 0.12 

Overall 0-300 91.51 89.50 0.25 0.31 

 

Table 4.3. Performance of Fully Automated Cracking Detection Subsystem on Pavement II Using 

Optimized Lighting Angles 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 93.21 95.75 0.27 0.17 

2 20-40 93.01 90.83 0.29 0.39 

3 40-60 94.23 95.27 0.27 0.22 

4 60-80 88.75 85.24 0.22 0.31 

5 80-100 86.39 85.15 0.19 0.21 

6 100-120 92.90 93.83 0.13 0.11 

7 120-140 94.16 90.91 0.14 0.23 

8 140-160 95.22 93.98 0.08 0.11 

9 160-180 92.60 93.95 0.21 0.17 

10 180-200 95.18 87.71 0.07 0.21 

11 200-220 93.40 89.79 0.22 0.36 

12 220-240 92.14 91.78 0.16 0.17 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

13 240-260 94.08 87.66 0.09 0.21 

14 260-280 93.83 91.75 0.20 0.28 

15 280-300 94.82 88.12 0.09 0.22 

Overall 0-300 92.93 90.78 0.18 0.22 

 

Comparing Table 4.2-4.3 with Table 3.2-3.3, it is found that the optimized lighting angles yield 

slight improvements on the overall Precision and Recall, even though they generate worse results 

in some reporting sections. 

4.3 Summary 

In a summary, NSGA II with APM is adopted in this chapter to optimize the primary parameters, 

of the fully automated detection algorithms based on two objectives: high Precision and high 

Recall. APM is proposed in this chapter as a complementary procedure to predict individual 

solutions that are likely to have better dominance and diversity in each generation. It is 

demonstrated in the comparison study on the five ZDT benchmark functions that NSGA II with 

APM converges much faster than NSGA II only. It is also shown that the NSGA II with APM 

eventually obtains diverse non-dominated solutions by evaluating the overall Precision and Recall 

of detections on the 100 representative cracking samples. Lastly, the optimized parameters yield 

general improvements in the detection on the same pavement segments discussed in Section 3.3. 

The reliability of GA optimization greatly depends on the diversity of the samples selected for 

fitness evaluation. The collected samples in this chapter reflects different levels of severity and 

complexity of pavement cracks, which may ensure sufficiently high detection performance for 

many cases. However, due to complexity of pavement surface and the vast formulations of 

pavement cracking, the selected samples in this chapter are still inadequate to reflect various 
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situations of pavement cracks in real world. Therefore, the performance of the proposed fully 

automated algorithms cannot be predicted and guaranteed under a larger scope of pavement data. 

In order to ensure a higher level of confidence, an interactive detection subsystem which supplies 

the mechanism to retrieve pavement cracks with much higher level of confidence will be 

discussed in next chapter. 
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Chapter 5 INTERACTIVE CRACKING DETECTION SUBSYSTEM 

 

 

Various private and public endeavors in the last three decades on worldwide basis vastly 

underestimated the challenges and difficulties of developing fully automated cracking survey 

solutions for field production. A common problem for the current fully automated cracking 

detection algorithms is that consistently high detection accuracy is not guaranteed for large 

number of pavement sections due to unpredictable uncertainties and variations on pavement 

surfaces. Developers of the current automated cracking detection algorithms did not pay 

sufficient attention to data operator’s involvement in processing. In other words, the current 

automated algorithms have not provided a systematic methodology for users to improve the 

detection performance based on their experience and observations. 

An interactive cracking detection algorithm, which can substantially improve its accuracy 

according to operator’ feedback, is proposed in this chapter. Based on the interactive detection 

algorithm, a computer program is also developed to implement two-level interactive detection. 

The bottom level is automated and can be used to find the majority of cracking. The top level is 

assisted by the users and can be applied for semi-automated refinement. In particular, the top 

level can be used to find missed cracks or delete noises within any user-defined region. 
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5.1 3D Algorithms with Interactive Cracking Detection 

At pixel level, “ground truth” of cracking observed by different crack analysis persons may not be 

the same. Particularly, different observers might not have the same agreements on the presence 

and severity of fine cracks. For example, a 2-pixel wide crack in reality may seem to have 

dissimilar widths (i.e. 1-pixel wide or 3-pixel wide) for different observers. However, with 

respect to individual’s manual processing for cracking, the research categorizes three scenarios of 

detection performance. The detection results could be False-positive, False-negative or 

Acceptable. False-positive Detection means the percentage of noises exceeds acceptance level of 

the observer. False-negative Detection means the percentage of undetected cracks is higher than 

the acceptance level of the observer. Finally, the percentage of noises and the percentage of 

undetected cracks satisfy the performance requirement of analysis when the detection is 

acceptable. Figure 5.1 shows the three performance scenarios as basis of the proposed interactive 

algorithm.  
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                        (a) Original 3D Data                                              (b) False-negative Detection 

     

                        (c) False-positive Detection                                    (d) Acceptable Detection 

Figure 5.1. Detection Scenarios 

The appropriate interaction between the manual operator and the interactive algorithm is that the 

algorithm should improve itself with high level of success when the operator makes decisions on 

the detection result: false-negative or false-positive. In other words, the interactive algorithm 

should perform more negatively if the result is false-positive. On the other hand, it should be 

more positive if the result is regarded as false-negative. The response of an interactive detector to 

the observed results can be expressed as: 

{
𝑚∗ → 𝑚∗⨁⁡,⁡⁡⁡⁡𝑖𝑓⁡𝑚∗(𝑰) = 𝑰𝑛
𝑚∗ → 𝑚∗⊖ ,⁡⁡⁡⁡𝑖𝑓⁡𝑚∗(𝑰) = 𝑰𝑝

                                                     (5.1) 

Where: 𝑚∗-Interactive detector; ⨁ -Adjustment of interactive detector to be more positive; ⊖-

Adjustement of interactive detector to be more negative; 𝑰-Input Image; 𝑰𝑛-Output image with 

false-negative results; 𝑰𝑝 –Output image with false-positive results. 
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The biggest challenge for an interactive algorithm is how to guarantee the high level of correct 

response to the manual operator’s feedback. For example, an algorithm with many parameters 

would be lack of certainties in adjusting itself efficiently due to the complexity of adjusting 

multiple parameters at the same time to improve performance. Therefore, it is desired that an 

interactive algorithm could have as few tunable parameters as possible. Ideally, the interactive 

algorithm could only have one sensitive parameter so that it can have more straightforward 

interaction with observers. 

5.1.1 Design of Single Primary Parameter 

The proposed interactive algorithm is to extract cracks and suppress noises effectively while 

having only one sensitive parameter that can be used for desirable interaction with manual 

operators. 3D pavement surface data represent the height information of pavement surface. The 

cracking area is always lower than the local non-cracking area. In terms of image processing, the 

cracking area in a rendered 3D image is darker than the local background, as illustrated in Figure 

10. The term Minimal Contrast is introduced in this paper as the primary parameter of the 

proposed interactive algorithm. Given a local neighborhood 𝑨, if the potential cracking area 𝑪 

within this neighborhood has an average no greater than the average of non-cracking area 𝑩 

within the neighborhood minus Minimal Contrast 𝑚𝑐, then the area 𝑪 will be recognized as 

cracking area, which can be expressed as below. 

𝐂 = {
𝟎⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑝𝑐̅̅ ̅ ≤ 𝑝𝑏̅̅ ̅ − 𝑚𝑐

𝟏⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑝𝑐̅̅ ̅ > 𝑝𝑏̅̅ ̅ − 𝑚𝑐
     subject to:  {

𝑩⋃𝑪 = 𝑨
𝑩⋂𝑪 = 𝝓

                              (5.2) 

Where: 𝟎- Cracking Area; 𝟏-Non-cracking Area; 𝑝𝑐̅̅ ̅-Average of Area 𝐂;  𝑝𝑏̅̅ ̅-Average of Area 𝐁; 

𝑚𝑐 – Minimal Contrast;⁡𝝓 - Empty Set. 

For each 3D image, the original 3D data is normalized to [0, 255], which is the range of a gray-

scale image. Thus, the possible range of Minimal Contrast 𝑚𝑐 is also from 0 to 255. When 
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Minimal Contrast is set as 𝑚𝑐 = 0, all areas no brighter than the local background will be 

detected as cracking areas. On the contrary, almost no areas will be recognized as cracking areas 

when Minimal Contrast reaches up to 255. For any given 3D image, there could be an optimum 

Minimal Contrast that can produce acceptable detection result. The manual operator can tell the 

algorithm if the detection is false-positive or false-negative to allow the algorithm to improve 

itself by tuning the parameter, until the result is satisfying or the best performance has been 

achieved. As manifested by equation (5.2), Minimal Contrast 𝑚𝑐 is a straightforward parameter 

to be used for interaction. If the detection result is false-positive, the Minimal Contrast will be 

increased for more negative detection. Otherwise, it will be decreased for more positive detection. 

5.1.2 Line Scanning on 3D Surface 

The first procedure of proposed algorithms is to implement the Line Scanning method once the 

Minimal Contrast has been set to identify potential crack locations based on the 3D information 

of pavement surface height. This Line Scanning method is not the same as that used in line scan 

digital cameras which are based on 2D based image acquisition. In this paper Line Scanning is 

conducted at two directions: transverse direction and longitudinal direction. All local minima and 

maxima are marked from a transverse or longitudinal line based on the following specifications. 

{
 
 

 
 
𝑲𝑖,𝑚𝑖𝑛 = {𝑰(𝑖, 𝑦)|𝐼(𝑖, 𝑦 − 1) > 𝐼(𝑖, 𝑦), 𝐼(𝑖, 𝑦 + 1) > 𝐼(𝑖, 𝑦)}

𝑲𝑖,𝑚𝑎𝑥 = {𝑰(𝑖, 𝑦)|𝐼(𝑖, 𝑦 − 1) < 𝐼(𝑖, 𝑦), 𝐼(𝑖, 𝑦 + 1) < 𝐼(𝑖, 𝑦)}

𝑲𝑗,𝑚𝑖𝑛
𝑇 = {𝑰(𝑥, 𝑗)|𝐼(𝑥 − 1, 𝑗) > 𝐼(𝑥, 𝑗), 𝐼(𝑥 + 1, 𝑗) > 𝐼(𝑥, 𝑗)}

𝑲𝑗,𝑚𝑎𝑥
𝑇 = {𝑰(𝑥, 𝑗)|𝐼(𝑥 − 1, 𝑗) < 𝐼(𝑥, 𝑗), 𝐼(𝑥 + 1, 𝑗) < 𝐼(𝑥, 𝑗)}

                     (5.3) 

Where: 𝑲𝑖,𝑚𝑖𝑛-local minima at⁡𝑖𝑡ℎ longitudinal image line; 𝑲𝑖,𝑚𝑎𝑥-local maxima at⁡𝑖𝑡ℎ 

longitudinal image line; 𝑲𝑗,𝑚𝑖𝑛
𝑇 - local minima at⁡𝑗𝑡ℎ transverse image line; 𝑲𝑗,𝑚𝑎𝑥

𝑇 - local maxima 

at⁡𝑗𝑡ℎ transverse image line; 𝑰(𝑖, 𝑦)-Image pixels at 𝑖𝑡ℎ longitudinal image line; 𝑰(𝑥, 𝑗)-Image 

pixels at 𝑗𝑡ℎ transverse image line. 
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In this chapter, the total of successive pixels that start at a local minimum and outreach to the two 

closest local maxima located at the two sides of the local minimum is treated as a potential 

cracking profile, either being longitudinal or transverse: 

{
𝐂𝑖(𝑚)

′ = {𝑰(𝑖, 𝑦)|𝑦𝑚𝑎𝑥
(𝑖,𝑚)

< 𝑦 < 𝑦̅𝑚𝑎𝑥
(𝑖,𝑚)

}

𝐂𝑗
𝑇(𝑚)′ = {𝑰(𝑥, 𝑗)|𝑥𝑚𝑎𝑥

(𝑗,𝑚)
< 𝑥 < 𝑥̅𝑚𝑎𝑥

(𝑗,𝑚)
}
                                   (5.4) 

Subject to: 

{
 
 
 

 
 
 𝑦𝑚𝑎𝑥

(𝑖,𝑚)
< 𝑦𝑚𝑖𝑛

(𝑖,𝑚)
< 𝑦̅𝑚𝑎𝑥

(𝑖,𝑚)

𝑥𝑚𝑎𝑥
(𝑗,𝑚)

< 𝑥𝑚𝑖𝑛
(𝑗,𝑚)

< 𝑥̅𝑚𝑎𝑥
(𝑗,𝑚)

(𝑖, 𝑦𝑚𝑖𝑛
(𝑖,𝑚)

⁡) 𝜖𝑲𝑖,𝑚𝑖𝑛, (𝑥𝑚𝑖𝑛
(𝑗,𝑚)

, 𝑗) 𝜖𝑲𝑗,𝑚𝑖𝑛
𝑇

(𝑖, 𝑦𝑚𝑎𝑥
(𝑖,𝑚)

) , (𝑖, 𝑦̅𝑚𝑎𝑥
(𝑖,𝑚)

) 𝜖𝑲𝑖,𝑚𝑎𝑥

(𝑥𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗) , (𝑥̅𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗)𝜖𝑲𝑗,𝑚𝑎𝑥
𝑇

 

Where: 𝐂𝑖(𝑚)
′- 𝑚𝑡ℎ longitudinal potential cracking profile at 𝑖𝑡ℎ longitudinal line, including the 

𝑚𝑡ℎ local minimum at 𝑖𝑡ℎ longitudinal line; 𝐂𝑗
𝑇(𝑚)′- 𝑚𝑡ℎ transverse potential cracking profile at  

𝑗𝑡ℎ transverse line, including the 𝑚𝑡ℎ local minimum at 𝑗𝑡ℎ transverse line; (𝑖, 𝑦𝑚𝑖𝑛
(𝑖,𝑚)

⁡)– 𝑚𝑡ℎ local 

minimum at 𝑖𝑡ℎ longitudinal image line; (𝑥𝑚𝑖𝑛
(𝑗,𝑚)

, 𝑗)-𝑚𝑡ℎ local minimum at 𝑗𝑡ℎ transverse image 

line; (𝑖, 𝑦𝑚𝑎𝑥
(𝑖,𝑚)

) , (𝑖, 𝑦̅𝑚𝑎𝑥
(𝑖,𝑚)

)- Two local maxima at 𝑖𝑡ℎ longitudinal line that are closest to 

(𝑖, 𝑦𝑚𝑖𝑛
(𝑖,𝑚)

⁡); (𝑥𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗) , (𝑥̅𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗) - Two local maxima at 𝑗𝑡ℎ transverse image line that are closest 

to (𝑥𝑚𝑖𝑛
(𝑗,𝑚)

, 𝑗). 

Figure 5.2 shows an example of potential cracking profile. By referring to equation (5.2), 

potential cracking profiles satisfying the first condition will be kept for latter analyses; otherwise 

they will be eliminated through Line Scanning. The local background used for comparison with a 

potential cracking profile is a set of neighboring pixels situated besides the two local maxima, in 

other words the two local lips, which can be expressed as below. 
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{
𝑩𝒊(𝑚) = {𝑰(𝑖, 𝑦)|𝑦𝑚𝑎𝑥

(𝑖,𝑚)
− 𝜎 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥

(𝑖,𝑚)
⁡𝑜𝑟⁡𝑦̅𝑚𝑎𝑥

(𝑖,𝑚)
≤ 𝑦 ≤ 𝑦̅𝑚𝑎𝑥

(𝑖,𝑚)
+ 𝜎}

𝑩𝒋
𝑻(𝑚) = {𝑰(𝑥, 𝑗)|𝑥𝑚𝑎𝑥

(𝑗,𝑚)
− 𝜎 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

(𝑗,𝑚)
⁡𝑜𝑟⁡𝑥̅𝑚𝑎𝑥

(𝑗,𝑚)
≤ 𝑥 ≤ 𝑥̅𝑚𝑎𝑥

(𝑗,𝑚)
+ 𝜎}

          (5.5) 

Where: 𝑩𝒊(𝑚)-Background used for comparison with 𝑚𝑡ℎ potential cracking profile at 𝑖𝑡ℎ 

longitudinal line; 𝑩𝒋
𝑻(𝑚)-Background used for comparison with 𝑚𝑡ℎ potential cracking profile at 

𝑗𝑡ℎ transverse line; 𝜎-the size of background used for comparison (𝜎 = 0 adopted in this study). 

 

Figure 5.2. Potential Cracking Profile 

In general, Transverse Scanning is mainly responsible for finding longitudinal-dominated cracks, 

while Longitudinal Scanning is applied mainly for transverse-dominated cracks. Certainly, 

scanning could be implemented at multiple directions in order to find more diagonal cracks. 

However for digital image, the processing time greatly increases when irregular directions are 

considered. And it has been tested that Line Scanning in both transverse and longitudinal 

directions is sufficient to locate all cracks with proper Minimal Contrast in most cases. Figure 5.3 

shows an example of Line Scanning. 
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(a) Original 3D Image 

 

(b) Transverse Scanning 

 

(c) Longitudinal Scanning 

Figure 5.3. Line Scanning 
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5.1.3 Thinning 

Since the cracking profiles located by Line Scanning are lines starting from the local minima to 

the local lips at two sides, they may not necessarily be the true cracking profiles representing 

actual cracking widths. Therefore, Thinning is needed to find true profiles based on the results by 

Line Scanning. There are many existing algorithms for thinning. However, the main objective of 

current thinning algorithms is to skeletonize a thick pattern to a thin structure with a specific fixed 

width, particularly one-pixel wide for many cases. As a matter of fact, the width of a crack varies 

along with its extension. Therefore, each potential cracking profile should be examined so as to 

retain the correct width distribution of a crack. This paper proposes a different thinning procedure 

to reduce redundant pixels from Line Scanning results through the examination on all potential 

profiles maintained after Line Scanning. It is assumed that the cracking profiles terminate at 

pixels where image intensity change sharply. To be more specific, a cracking profile is supposed 

to start at a local minimum and outreach to the two winged pixels where local maximal gradients 

present. 

Similarly, Thinning is also implemented at both transverse and longitudinal directions. Since 

transverse thinning and longitudinal thinning are conducted separately, the image gradients are 

computed separately and only reflect intensity changes in transverse direction or in longitudinal 

direction. That is: 

{
𝐺(𝑥, 𝑦) = |

𝐼(𝑥,𝑦)−𝐼(𝑥,𝑦−1)

𝑦−(𝑦−1)
| = |𝐼(𝑥, 𝑦) − 𝐼(𝑥, 𝑦 − 1)|

𝐺𝑇(𝑥, 𝑦) = |
𝐼(𝑥,𝑦)−𝐼(𝑥−1,𝑦)

𝑥−(𝑥−1)
| = |𝐼(𝑥, 𝑦) − 𝐼(𝑥 − 1, 𝑦)|

                            (5.6) 

Where: 𝐺(𝑥, 𝑦)-Longitudinal gradient at pixel (𝑥, 𝑦); 𝐺𝑇(𝑥, 𝑦) -Transverse gradients at pixel 

(𝑥, 𝑦); 
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It should be noticed that the gradients only need to be computed at potential cracking pixels 

identified by Line Scanning. According to equation (5.4) and the assumption on a true cracking 

profile, the thinned potential cracking profiles can be described as: 

{
𝐂𝑖(𝑚) = {𝑰(𝑖, 𝑦)|⁡⁡𝑦𝐺,𝑚𝑎𝑥

(𝑖,𝑚)
< 𝑦 < 𝑦̅𝐺,𝑚𝑎𝑥

(𝑖,𝑚)
}

𝐂𝑗
𝑇(𝑚) = {𝑰(𝑥, 𝑗)|⁡⁡𝑥𝐺,𝑚𝑎𝑥

(𝑗,𝑚)
< 𝑥 < 𝑥̅𝐺,𝑚𝑎𝑥

(𝑗,𝑚)
}
                                (5.7) 

Subject to: 

{
 
 
 
 

 
 
 
 𝑦𝑚𝑎𝑥

(𝑖,𝑚)
< 𝑦𝐺,𝑚𝑎𝑥

(𝑖,𝑚)
≤ 𝑦𝑚𝑖𝑛

(𝑖,𝑚)
< 𝑦̅𝐺,𝑚𝑎𝑥

(𝑖,𝑚)
< 𝑦̅𝑚𝑎𝑥

(𝑖,𝑚)

𝑥𝑚𝑎𝑥
(𝑗,𝑚)

< 𝑥𝐺,𝑚𝑎𝑥
(𝑗,𝑚)

< 𝑥𝑚𝑖𝑛
(𝑗,𝑚)

< 𝑥̅𝐺,𝑚𝑎𝑥
(𝑗,𝑚)

< 𝑥̅𝑚𝑎𝑥
(𝑗,𝑚)

∀𝑦0𝜖[𝑦𝑚𝑎𝑥
(𝑖,𝑚)

, 𝑦𝑚𝑖𝑛
(𝑖,𝑚)

]: 𝐺(𝑖, 𝑦0) ≤ 𝐺 (𝑖, 𝑦𝐺,𝑚𝑎𝑥
(𝑖,𝑚)

)

∀𝑦0𝜖 [𝑦𝑚𝑖𝑛
(𝑖,𝑚)

, 𝑦̅𝑚𝑎𝑥
(𝑖,𝑚)

] : 𝐺(𝑖, 𝑦0) ≤ 𝐺 (𝑖, 𝑦̅𝐺,𝑚𝑎𝑥
(𝑖,𝑚)

)

∀𝑥0𝜖 [𝑥𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑥𝑚𝑖𝑛
(𝑗,𝑚)

] : 𝐺𝑇(𝑥0, 𝑗) ≤ 𝐺
𝑇 (𝑥𝐺,𝑚𝑎𝑥

(𝑗,𝑚)
, 𝑗)

∀𝑥0𝜖 [𝑥𝑚𝑖𝑛
(𝑗,𝑚)

, 𝑥̅𝑚𝑎𝑥
(𝑗,𝑚)

] : 𝐺𝑇(𝑥0, 𝑗) ≤ 𝐺
𝑇 (𝑥̅𝐺,𝑚𝑎𝑥

(𝑗,𝑚)
, 𝑗)

 

Where: 𝐂𝑖(𝑚)-𝑚
𝑡ℎ thinned potential cracking profile at 𝑖𝑡ℎ longitudinal line; 𝐂𝑗

𝑇(𝑚)-𝑚𝑡ℎ thinned 

potential cracking profile at 𝑗𝑡ℎ transverse line; (𝑖, 𝑦𝐺,𝑚𝑎𝑥
(𝑖,𝑚)

), (𝑖, 𝑦̅𝐺,𝑚𝑎𝑥
(𝑖,𝑚)

)- Two pixels of maximal 

longitudinal gradients located at the two sides of (𝑖, 𝑦𝑚𝑖𝑛
(𝑖,𝑚)

); (𝑥𝐺,𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗), (𝑥̅𝐺,𝑚𝑎𝑥
(𝑗,𝑚)

, 𝑗)- Two pixels 

of maximal transverse gradients located at the two sides of (𝑥𝑚𝑖𝑛
(𝑗,𝑚)

, 𝑗). 

Figure 5.4 illustrates improvements achieved by Thinning on locating cracking profiles. 



66 

 

 

(a) Original 3D Image 

 

(b) Line Scanning Result 

 

(c) Thinning Based on Line Scanning Result 

Figure 5.4. Thinning 
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5.1.4 Clustering and Connecting 

For the proposed interactive algorithm, Clustering is applied to label collected pixels in binary 

images after Thinning has been applied to 3D pavement surface data so that further analyses can 

be implemented on cracking clusters rather than on scanned cracking profiles. The Blob Exaction 

Algorithm (Shapiro and Stockman, 2001), which is a common technique and discussed in section 

3.2.2, is also adopted in this chapter to label connected pixels after Thinning. 

It has been observed that some fine cracks do not have desirable continuity in original images, as 

illustrated in Figure 5.5. 

 

Figure 5.5. Discontinuity of Fine Crack 

Generally, the discontinuity problem can have many reasons, such as inadequate data resolution, 

discontinuity of real cracks or even noises from data acquisition system. In addition, since the 

original image is assigned with single Minimal Contrast value, some true cracking profiles where 

local contrasts are smaller than the Minimal Contrast will thus be ignored during the process of 

Line Scanning, which also results in discontinuity problem. 

In order to solve discontinuity problem, a specific algorithm is developed in this study to look for 

connectable neighbors at the ends of a potential cracking cluster. First of all, the connecting 

algorithm will label branches for each potential cracking cluster, as illustrated in Fig.5.6. 
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Figure 5.6. Braches of a Cracking Cluster 

Secondly, the algorithm will determine the terminals of each branch where no other branch is 

connected. Then, the growing directions of all unconnected terminals will be derived based on the 

following equation. 

𝑫𝑘,𝑛 =
∑ [𝑷𝒕𝑛

(𝑘)(𝑒𝑛𝑑−𝑖)−𝑷𝒕𝑛
(𝑘)(𝑒𝑛𝑑−𝑖−1)]𝑁𝑡−1

𝑖=0

𝑁𝑡
                                (5.8) 

Where: 𝑫𝑘,𝑛- Growing direction of 𝑘𝑡ℎ branch at 𝑛𝑡ℎ terminal; 𝑷𝒕𝑛
(𝑘)(𝑒𝑛𝑑 − 𝑖) – Center point of  

𝑖𝑡ℎ foregoing profile from the terminal; 𝑁𝑡- Number of profiles used to compute growing 

direction. 

A small but adequate value of 𝑁𝑡  will emphasize the local tendency of the growing direction. 

𝑁𝑡 = 5 is used in this paper based on testing on numerous samples. With the growing direction of 

a branch terminal, a virtual growing of the branch starts at the terminal. Virtual points are first 

predicted along the growing direction as: 

𝑷𝒗𝑛
(𝑘)(𝑒𝑛𝑑 + 𝑖) = 𝑷𝒕𝑛

(𝑘)(𝑒𝑛𝑑) + 𝑖𝑫̂𝑘,𝑛, 0 < 𝑖 ≤ 𝑁𝑣                       (5.9) 

Where: 𝑷𝒗𝑛
(𝑘)(𝑒𝑛𝑑 + 𝑖)- 𝑖𝑡ℎ point predicted in the growing direction starting from the 𝑛𝑡ℎ 

terminal of 𝑘𝑡ℎ branch; 𝑫̂𝑘,𝑛-Normalized growing direction; 𝑁𝑣-Number of predicted points. 

For 𝑖𝑡ℎ predicted point, the original profile, which is closest to the predicted point and scanned by 

Line Scanning without comparing to background for noise filtering, will be thinned by the 
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aforementioned thinning algorithm and then adopted as the 𝑖𝑡ℎ predicted profile. Afterwards, the 

algorithm will implement a recursive process of virtual growing until one of the following 

stopping criteria is satisfied: 1) 𝑖𝑡ℎ predicted profile has been connected with other branches; 2) 

𝑖𝑡ℎ predicted profile has lost connection to (𝑖 − 1)𝑡ℎpredicted profile; 3) 𝑖 = 𝑁𝑣. 

If the virtual growing is successful in connecting the examined branch into other branches, all 

predicted profiles will be added to the detection result, otherwise they will be discarded. The 

number of predicted points 𝑁𝑣  determines positivity of the connecting algorithm. As a result, it 

should be assigned with a small value to avoid false-positive errors. 𝑁𝑣 = 5 is adopted in this 

paper. Meanwhile, it should be addressed that predicted profiles for longitudinal-dominated 

branches are all transverse, while predicted profiles for transverse-dominated braches are all 

longitudinal. Figure 5.7 shows an example of connecting two parts of the same crack. 

 

                                

          (a) Original 3D Image              (b) Disconnected Cracking                (c) Connected Cracking 

Figure 5.7. Connecting 

5.1.5 Neighborhood Analysis 

Minimal Contrast is employed in Line Scanning for finding potential cracking profiles. However, 

after clustering, it can be applied for recognition of potential cracking clusters. For Neighborhood 
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Analysis, each cluster is compared with the local background around the cluster being examined, 

as illustrated in Fig.5.8. 

 

Figure 5.8. Local Neighborhood for a Cracking Cluster 

Denote the longitudinal-dominated cracking cluster and transverse-dominated cracking cluster as: 

{
𝑪(𝑘) = {𝑪(1), 𝑪(2), … , 𝑪(𝑁)}

𝑪𝑇,(𝑘) = {𝑪(1)
𝑇 , 𝑪(2)

𝑇 ,… , 𝑪
(𝑁𝑇)
𝑇 }

                                          (5.10) 

Where: 𝑪(𝑘)-𝑘𝑡ℎ longitudinal-dominated cracking cluster; 𝑪𝑇,(𝑘)- 𝑘𝑡ℎ transverse-dominated 

cracking cluster; 𝑪(𝑖)-𝑖
𝑡ℎ longitudinal cracking profile in 𝑪(𝑘);⁡𝑪(𝑖)

𝑇 -𝑖𝑡ℎ transverse cracking profile 

in 𝑪𝑇,(𝑘); 𝑁-Number of longitudinal cracking profiles in 𝑪(𝑘); 𝑁𝑇-Number of transverse cracking 

profiles in 𝑪𝑇,(𝑘). 

Then, the local background used for Neighborhood Analysis is then defined in the study as: 

{
𝑩(𝑘) = {𝑩(1), 𝑩(2), … ,𝑩(𝑁)⁡}⁡

𝑩𝑇,(𝑘) = {𝑩(1)
𝑇 , 𝑩(2)

𝑇 , … ,𝑩
(𝑁𝑇)
𝑇 }

                                            (5.11) 

Subject to: 
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{
𝑩(𝑖) = {𝑰(𝑥𝑖 , 𝑦)|𝑦𝑖 − 𝜀𝑤𝑖 ≤ 𝑦 < 𝑦𝑖 ⁡𝑜𝑟⁡𝑦̅𝑖 < 𝑦 ≤ 𝑦̅𝑖 + 𝜀𝑤𝑖, 𝑦𝑖 ≤⁡ 𝑦̅𝑖}⁡

𝑩(𝑖)
𝑇 = {𝑰(𝑥, 𝑦𝑖

𝑇)|𝑥𝑖
𝑇 − 𝜀𝑤𝑖

𝑇 ≤ 𝑥 < 𝑥𝑖
𝑇 ⁡𝑜𝑟⁡𝑥̅𝑖

𝑇 < 𝑥 ≤ 𝑥̅𝑖
𝑇 + 𝜀𝑤𝑖

𝑇 , 𝑥𝑖
𝑇 ≤ 𝑥̅𝑖

𝑇}
 

Where: 𝑩(𝑘)-Local background around 𝑪(𝑘); 𝑩𝑇,(𝑘)-Local background around 𝑪𝑇,(𝑘); 𝑩(𝑖)-𝑖
𝑡ℎ 

longitudinal background profile in 𝑩(𝑘); 𝑩(𝑖)
𝑇 -𝑖𝑡ℎ transverse background profile in 𝑩𝑇,(𝑘); 

(𝑥𝑖 , 𝑦𝑖)⁡,⁡(𝑥𝑖 , 𝑦̅𝑖)- Two ends of longitudinal cracking profile 𝑪(𝑖); (𝑥𝑖
𝑇 , 𝑦𝑖

𝑇)⁡,⁡(𝑥̅𝑖
𝑇 , 𝑦𝑖

𝑇)- Two ends 

of transverse cracking profile 𝑪(𝑖)
𝑇 ; 𝑤𝑖-Width of longitudinal cracking profile 𝑪(𝑖); 𝑤𝑖

𝑇-Width of 

transverse cracking profile 𝑪(𝑖)
𝑇 ; 𝜀-Parameter used to determine the size of local background. 

It is indicated in equation (5.11) that the amount of local background extracted near a cracking 

profile is associated with the width of that profile, because of the tendency that local comparison 

between the cracking and the background usually diminishes when the cracking width decreases. 

Attentions may be paid to the appropriate size of the local neighborhood. The size of local 

neighborhood should be large enough to have adequate background for comparison. However, the 

local neighborhood cannot be excessively large; otherwise the local comparison will be 

attenuated. 

There could be many strategies to determine the size of the local neighborhood for Neighborhood 

Analysis. However, a practical strategy should be derived based on endeavors of optimization 

with vast 3D data. Thousands of 3D images reflecting diverse pavement textures and various 

cracking presences have been studied in order to determine the strategy for assigning appropriate 

size of the local neighborhood enclosing the potential cracking cluster. It has been determined 

that the parameter 𝜀 = 1 preformed desirably for most cases and hence is adopted in the paper to 

extract the local background for Neighborhood Analysis. Once the local neighborhood is 

determined, it would be straightforward to verify if the corresponding cluster is cracking or not 

simply by referring to equation (5.2). 
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5.1.6 Linear Pattern Analysis and Elimination of Tiny Cracks 

Noises can still remain after Neighborhood Analysis, particularly when a small Minimal Contrast 

is introduced. As discussed in Section 3.2.2, Linear Pattern Analysis can removes patterns with 

low scores in linearity, which provides further rejection on noises. Similar to the length limitation 

mentioned in Section 3.2.2, if a cracking cluster is isolated and its length is less than 25mm, it 

will be treated as noise and thus eliminated. 

In a summary, the proposed interactive algorithm employs Minimal Contrast as the primary 

parameter to examine cracking areas line by line and then cluster by cluster, while applying other 

procedures to suppress noises. Figure 5.9 shows the overall performances of the proposed 

interactive algorithm with five successively decreased Minimal Contrasts. It is demonstrated that 

there is an evident evolution in general of the proposed algorithm from being false-negative to 

false-positive when the Minimal Contrast decreases. Therefore, the proposed algorithm has good 

potential in responding to manual operator’s feedback to select the proper parameter value to 

substantially improve the Precision and Recall of cracking detection.  
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                            (a) Original 3D Image                                 (b) Detect Result under 𝑚𝑐 = 21 

        

                 (c) Detect Result under 𝑚𝑐 = 19                         (d) Detect Result under 𝑚𝑐 = 17 

        

                 (e) Detect Result under 𝑚𝑐 = 15                          (f) Detect Result under 𝑚𝑐 = 13 

Figure 5.9. Detection Results with Five Successively Decreased Minimal Contrasts 

5.2 Application of Interactive Cracking Detection Algorithm 

The interactive cracking detection is a process of evolving the cracking detector into a more 

sophisticated one according to the operator’s feedback so that the best performance or acceptable 

results can be achieved. To express the evolution of an interactive cracking detector in a time 

manner, equation (5.1) can be developed as: 
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{
 
 

 
 
𝑚(0)
∗ = 𝑚∗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑡⁡𝑡𝑖𝑚𝑒⁡0

𝑚(𝑘)
∗ = {

𝑚(𝑘−1)
∗ ⊕ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑚(𝑘−1)

∗ (𝑰) = 𝑰𝑛

𝑚(𝑘−1)
∗ ⊝ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑚(𝑘−1)

∗ (𝑰) = 𝑰𝑝

𝑚(𝑘−1)
∗ ⁡𝑎𝑛𝑑⁡𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛⁡𝑠𝑡𝑜𝑝𝑠⁡⁡⁡⁡𝑖𝑓⁡𝑚(𝑘−1)

∗ (𝑰) = 𝑰𝑎

⁡𝑎𝑡⁡𝑡𝑖𝑚𝑒⁡𝑘
             (5.12) 

Where: 𝑚∗-Initial detector; 𝑚(𝑘)
∗ -Evolved Detector at time 𝑘; 𝑰𝑎-Output image with acceptable 

results. 

A computer program is developed based on the methodology of interactive detection in order to 

implement two-level’s detection mentioned earlier in the study. Detection at the bottom level is to 

find the majority of pavement cracks automatically after a preferred Minimal Contrast has been 

selected by the users for the sections being analyzed, while the objective of detection at the top 

level is to find cracks missed by the bottom level or delete noises generated by the bottom level 

with users’ assistance. To be more specific, the two levels of detection are called Automated 

Detection and Assisted Detection respectively in the study. 

5.2.1 Automated Detection 

For Automated Detection, users are able to divide the entire road into multiple sections. 

Consequently, several representative images or even all of images within a section can be 

selected for training. Users can control a slider bar designed in the computer program to tell the 

algorithm to perform more positively or more negatively by reviewing the immediate detection 

results. Afterwards the algorithm will adjust the Minimal Contrast according to users’ feedback. 

Once an acceptable performance has been achieved through training, the trained Minimal 

Contrast will then be applied to the whole section. 

In the computer program, the section size of pavement is flexible so that the training can be 

conducted for the entire road, or for several images, or even for each image. When the section 

size decreases, the detection could be more adaptive and thus produce better results. However, the 

time for users to accomplish training increases with smaller sections. Therefore, users’ tolerance 
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and acceptance levels have a major impact on the detection performance of the interactive 

algorithm. Fig.13 shows the performance scenarios of Automated Detection in the proposed 

computer program. 

 

(a) False-negative Automated Detection 

 

(b) False-positive Automated Detection 
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(c) Acceptable Automated Detection 

Figure 5.10. Performance Scenarios of Automated Detection in Proposed Computer Program 

5.2.2 Assisted Detection 

Based on the results by Automated Detection, Assisted Detection can be implemented to find 

cracks missed by Automated Detection or even delete noises by increasing Minimal Contrast. For 

Assisted Detection, users can draw any region of interest and repeat interactive detection within 

the defined region until the best performance has been achieved. Figure 5.11 shows a missed part 

of cracking found by Assisted Detection, where the rectangle represents the user-defined region.  
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         (a) Automated Detection Result              (b) Missed Cracking Found by Assisted Detection  

Figure 5.11. Missed Cracking Detected by Assisted Detection 

It is proposed in the study that there always exists a non-cracking area 𝑩′ adjacent to the cracking 

area 𝑪 that has an average 𝑝𝑏
′̅̅ ̅̅  greater than the average of the cracking area 𝑝𝑐̅̅ ̅. If the non-

cracking area 𝑩𝒖 within the user-defined region 𝑨𝒖 approaches to 𝑩′, the following statement 

holds. 

lim
𝑩𝒖→𝑩′

𝑝𝑏𝑢̅̅ ̅̅ ̅ − 𝑝𝑐̅̅ ̅ = 𝑝𝑏
′̅̅ ̅̅ − 𝑝𝑐̅̅ ̅ > 0                                           (5.13) 

Subject to: 

{
𝑩𝒖⋃𝑪 = 𝑨𝒖
𝑩𝒖⋂𝑪 = 𝝓

                                                           (5.14) 

Where: 𝑝𝑏𝑢̅̅ ̅̅ ̅ − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑜𝑓⁡𝑩𝒖. 

The above statement indicates the cracking area within the user-defined region can definitely be 

detected with an appropriate positive Minimal Contrast, when the user-defined region contains 

any non-cracking area that has an average greater than the average of the cracking area. In order 

to increase the efficiency in finding fine cracks, the original 3D data at the defined region will be 

renormalized to [0,255], followed by increased contrast between fine cracks and the background 
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with high probability when the region size decreases. The extreme case will be only one cracking 

profile with some amount of background is selected for Assisted Detection. For such a scenario, 

the contrast between the cracking profile and the background can be maximized by 

renormalization so that the cracking profile will certainly be located correctly with proper 

Minimal Contrast, given that the background is brighter than the cracking profile. 

On the other hand, noises produced by Automated Detection can also be deleted with high 

Minimal Contrast, particularly when it is set to be 255. Therefore, the Assisted Detection, which 

is the top level of interactive detection, provides an approach to retrieving all cracks and 

eliminating all noises by substantially increasing the detection adaptability. The remaining issue 

is merely how much time the users would like to spend on refining the results of Automated 

Detection. Figure 5.12 shows some examples for comparison between Automated Detection and 

the combination of Automated Detection and Assisted Detection. It is demonstrated that Assisted 

Detection achieves substantial improvements over the results processed by Automated Detection.  



79 

 

   

        (a) Original 3D Image #1                (b) Automated Detection         (c) Automated & Assisted Detection 

   

        (d) Original 3D Image #2                (e) Automated Detection          (f) Automated & Assisted Detection 

   

         (g) Original 3D Image #3               (h) Automated Detection          (i) Automated & Assisted Detection 

Figure 5.12. Comparison between Automated Detection and the Integration of Automated 

Detection and Assisted Detection 

5.3 Case Study 

The same pavement segments mentioned in Section 3.3 are also selected in this chapter to 

evaluate the performance of the Interactive Cracking Detection Subsystem. For both segments, 

there are two strategies implemented for the Automated Detection. The first strategy is to apply 

identical trained Minimal Contrast to the entire segment. The other one is to employ three 

different trained Minimal Contrasts to three evenly divided subsections respectively. Table 5.1 

lists the Minimal Contrasts used for the two strategies. Based on the results of Automated 

Detection, Assisted Detection is then applied to retrieve true cracks missed by Automated 

Detection and delete false-detected noises. 
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Table 5.1. Minimal Contrasts used for Automated Detection 

Section ID Location (m) 𝑚𝑐 for Strategy I 𝑚𝑐 for Strategy II 

  Pavement I Pavement II Pavement I Pavement II 

1 0-100 

9.4 19.0 

13.0 14.0 

2 100-200 8.6 20.0 

3 200-300 7.4 21.2 

 

The performances of Automated Detection Strategy I and Strategy II are shown from Table 5.2 to 

Table 5.5, where the performance metrics are reported per twenty meters. It can be observed from 

Table 5.2 and Table 5.3 that Strategy I is capable of detecting 85.06% of the cracks on Pavement 

I with a detection precision 86.91% on average, while Strategy II can detect 91.11% of the cracks 

with an average detection precision 92.70%. 

With respect to Pavement II, Strategy I retrieves 86.16% of the cracks with detection precision 

87.34%. And Strategy II improves both Precision and Recall almost in every reporting section, 

comparing to the results of Strategy I. Eventually, the overall Precision and Recall on Pavement 

II are 90.79% and 90.31% respectively. 

The findings indicate the proposed interactive cracking detection subsystem is able to achieve 

good performance with appropriate training, and its performance even gets better with smaller 

section size for training and detection. 

Table 5.2. Performance of Automated Detection Strategy I for Pavement I 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 89.21 82.69 0.32 0.60 

2 20-40 79.03 89.18 0.95 0.36 

3 40-60 95.81 89.21 0.19 0.52 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

4 60-80 81.88 88.74 0.82 0.30 

5 80-100 87.64 89.12 0.34 0.37 

6 100-120 89.09 91.19 0.42 0.23 

7 120-140 89.80 87.58 0.21 0.27 

8 140-160 85.92 87.84 0.34 0.22 

9 160-180 91.06 80.61 0.23 0.50 

10 180-200 83.45 85.44 0.59 0.41 

11 200-220 88.76 85.44 0.45 0.43 

12 220-240 93.16 82.77 0.19 0.56 

13 240-260 75.07 89.27 1.46 0.41 

14 260-280 79.42 86.28 0.85 0.48 

15 280-300 96.61 55.17 0.07 1.23 

Overall 0-300 86.90 85.06 0.50 0.45 

 

Table 5.3. Performance of Automated Detection Strategy II for Pavement I 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 84.82 95.08 0.56 0.17 

2 20-40 89.83 92.69 0.35 0.24 

3 40-60 95.85 94.00 0.20 0.28 

4 60-80 92.56 93.25 0.25 0.17 

5 80-100 92.46 94.67 0.23 0.17 

6 100-120 95.33 92.87 0.11 0.19 

7 120-140 92.93 91.80 0.15 0.17 

8 140-160 93.36 93.55 0.11 0.12 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

9 160-180 87.17 91.79 0.39 0.21 

10 180-200 94.36 89.00 0.14 0.31 

11 200-220 95.21 89.57 0.16 0.29 

12 220-240 94.06 86.80 0.17 0.44 

13 240-260 95.89 89.79 0.15 0.38 

14 260-280 92.96 88.99 0.23 0.36 

15 280-300 93.99 80.36 0.15 0.56 

Overall 0-300 92.70 91.11 0.22 0.27 

 

Table 5.4. Performance of Automated Detection Strategy I for Pavement II 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 87.90 82.97 0.45 0.67 

2 20-40 86.53 84.21 0.56 0.67 

3 40-60 89.03 84.74 0.49 0.71 

4 60-80 89.38 83.62 0.21 0.34 

5 80-100 90.41 82.33 0.12 0.25 

6 100-120 85.06 84.29 0.26 0.28 

7 120-140 89.03 88.43 0.28 0.29 

8 140-160 84.37 90.82 0.30 0.16 

9 160-180 87.76 86.08 0.33 0.38 

10 180-200 85.95 85.66 0.24 0.24 

11 200-220 86.41 88.49 0.49 0.40 

12 220-240 87.66 87.91 0.26 0.25 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

13 240-260 87.45 86.29 0.21 0.23 

14 260-280 88.14 89.09 0.41 0.37 

15 280-300 85.07 87.53 0.29 0.23 

Overall 0-300 87.34 86.16 0.33 0.37 

 

Table 5.5. Performance of Automated Detection Strategy II for Pavement II 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 88.77 89.99 0.45 0.39 

2 20-40 90.45 93.94 0.42 0.26 

3 40-60 89.58 89.78 0.49 0.48 

4 60-80 92.54 93.27 0.16 0.14 

5 80-100 89.67 86.27 0.14 0.20 

6 100-120 92.46 91.84 0.13 0.15 

7 120-140 92.21 94.32 0.20 0.14 

8 140-160 94.45 91.61 0.10 0.15 

9 160-180 86.29 89.54 0.39 0.29 

10 180-200 88.99 88.14 0.18 0.20 

11 200-220 89.54 90.72 0.37 0.33 

12 220-240 92.46 87.99 0.15 0.25 

13 240-260 92.33 88.62 0.12 0.19 

14 260-280 89.21 89.09 0.36 0.37 

15 280-300 92.88 89.54 0.13 0.20 

Overall 0-300 90.79 90.31 0.25 0.25 
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Table 5.6 and Table 5.7 show the performance of the integration of Automated Detection and 

Assisted Detection. It can be concluded from Tables 5.3, 5.5, 5.6 and 5.7 that the involvement of 

Assisted Detection significantly increases the detection precision and particularly the recall. The 

recall increased by Assisted Detection for every section finally reaches up to almost 100 percent, 

which means almost all cracks can be detected by the integration of Automated Detection and 

Assisted Detection. The reason why the detection precisions for all sections are not as close as 

recalls to 100 percent is that some false-detected pixels attached to the true cracking were not 

recognized and eliminated by the observers due to difficulties in distinguishing them from the 

true cracking pixels. However, it was carefully examined that no obvious noises remain after the 

Assisted Detection. Most significantly, it is also found that all noises can be deleted once they are 

recognized by the observers. 

Table 5.6. Performance of the Integration of Automated Detection and Assisted Detection on 

Pavement I 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 95.15 99.83 0.18 0.01 

2 20-40 95.20 99.94 0.16 0.00 

3 40-60 97.36 99.98 0.13 0.00 

4 60-80 95.08 99.90 0.14 0.00 

5 80-100 95.39 99.88 0.14 0.00 

6 100-120 96.69 100.00 0.08 0.00 

7 120-140 94.36 99.92 0.13 0.00 

8 140-160 94.20 99.85 0.10 0.00 

9 160-180 91.61 99.72 0.25 0.01 

10 180-200 94.76 99.29 0.15 0.03 

11 200-220 95.35 99.52 0.15 0.02 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

12 220-240 95.47 99.49 0.14 0.02 

13 240-260 96.65 99.83 0.14 0.01 

14 260-280 95.00 98.80 0.17 0.04 

15 280-300 94.70 99.72 0.16 0.01 

Overall 0-300 95.14 99.75 0.15 0.01 

 

Table 5.7. Performance of the Integration of Automated Detection and Assisted Detection on 

Pavement II 

Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

1 0-20 99.35 99.97 0.03 0.00 

2 20-40 98.31 99.93 0.07 0.00 

3 40-60 97.98 99.88 0.10 0.01 

4 60-80 99.00 99.64 0.02 0.01 

5 80-100 99.43 99.91 0.01 0.00 

6 100-120 99.45 99.79 0.01 0.00 

7 120-140 97.13 100.00 0.07 0.00 

8 140-160 97.67 100.00 0.04 0.00 

9 160-180 96.42 99.92 0.10 0.00 

10 180-200 96.41 99.73 0.06 0.00 

11 200-220 98.72 99.80 0.05 0.01 

12 220-240 97.09 99.41 0.06 0.01 

13 240-260 96.94 99.33 0.05 0.01 

14 260-280 96.70 99.67 0.12 0.01 

15 280-300 98.49 99.92 0.03 0.00 
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Reporting Section ID Location (m) Precision (%) Recall (%) FPR (%) FOR (%) 

Overall 0-300 97.94 99.79 0.05 0.00 

 

In a summary, it has been demonstrated in the case study that the proposed interactive cracking 

detection subsystem can produce much better results with smaller section size, and the integration 

of Automated Detection and Assisted Detection is successful to detect almost all cracks and 

eliminate almost all noises. However, the processing time for Assisted Detection increases 

substantially compared with Automated Detection, especially when the missed cracks are 

scattered everywhere or mixed with noises. Therefore, the segmentation of pavements being 

processed by Automated Detection is critical for reducing the processing time. Specifically, 

pavement images with same surface type, similar pavement textures or noise levels should be 

grouped together for better detection performance. 

5.4 Summary 

In this chapter, interactive cracking detection algorithms that can substantially improve its 

cracking detection performance by adjustments according to the observer’s feedback are 

proposed. Since the correct response to observer’s feedback is critical to the performance of the 

interactive algorithm, this chapter exposes a series of novel methodologies to accomplish the 

interaction between the detection system and the observer with high level of success. Based on 

the proposed algorithms, a computer program with friendly user interface is developed to 

establish the interactive detection system and implement two levels of detection: Automated 

Detection and Assisted Detection. The primary objective of Automated Detection is to find the 

majority of pavement cracking automatically after a preferred Minimal Contrast is trained by the 

users for the sections being analyzed. In complement to Automated Detection, Assisted Detection 

provides a semi-automated approach to retrieving missed cracks and eliminating noises in any 

user-define region. Particularly, the interactive cracking detection can be repeated until the 
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detection results are satisfactory or the best performance has been achieved. According to 

Precision-Recall Analysis on two selected pavement segments where pavement cracks with 

diverse presences and different levels of severity are observed, the two-level detection shows the 

capability of finding almost all of the cracks while maintaining nearly no noises. 
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Chapter 6 NOISY PATTERN DETECTION SUBSYSTEM 

 

 

Pavement joint and groove are the two primary noisy patterns on rigid pavements that can 

introduce serious false positive errors in cracking detection, as they can be regarded as manmade 

“cracks” on rigid surfaces. Without protecting pavement cracks from joints and grooves, the 

cracking detection results would be unfeasible in terms of Precision. Therefore, the recognition 

and exclusion of pavement joints and grooves are critical for the cracking detection on rigid 

pavements. 

Support Vector Machine (SVM) based algorithms are proposed in this chapter to recognize 

pavement joints and grooves. SVM is a powerful supervised learning model that has been widely 

used in the field of classification and regression. There are many researches using SVM to 

classify pavement cracks (Li et al., 2009; Gavilan et al., 2011; Moussa and Hussain, 2011; Daniel 

et al., 2014). However, limited effort on the application of SVM for the recognition of pavement 

joints and grooves has been shown. 

On the basis of a sufficiently sophisticated SVM classifier that is capable of capturing the 

classification complexity, Feature Extraction is eventually the most important procedure to 

address the accuracy of classification. Therefore, this study proposes a methodology to extract 

features in relation to pavement grooves and joints which could yield high classification accuracy. 
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Instead of using multi-class SVM algorithms which increase the computational complexity, two-

class SVM algorithms are applied in this chapter to distinguish pavement joints and pavement 

grooves separately from other patterns. 

6.1 Kernel Function Based SVM 

Denote {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} as the two-class data set and 𝑦𝑖 ∈ {−1,1} as the corresponding class label 

of 𝒙𝒊. The decision boundary can be found by solving the following optimization problem (Boser 

et al., 1992; Cortes and Vapnik, 1995): 

⁡⁡⁡⁡
‖𝒘‖2

2
+ 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1𝒘,𝑏,𝜉

𝑚𝑖𝑛 ⁡                                                 (6.1) 

Subject to: 

{
𝑦𝑖(𝒘

𝑇∅(𝒙𝒊) + 𝑏) ≥ 1 − 𝜉𝑖
𝜉𝑖 ≥ 0

                                           (6.2) 

Where: 𝒘 is the normal vector of the hyperplane; 𝑏 is the offset of the hyperplane; 𝐶 is the 

tradeoff parameter between error and margin; 𝜉𝑖 is a “slack” variable that represents the 

classification error of 𝒙𝒊; ∅ is the selected kernel function; 

The first term in (6.1) represents the objective to maximize the margin between the two classes, 

while the second term is to minimize the errors if the hyperplane cannot fully separate the two 

classes. In practical use of SVM, the kernel function is specified to transform the original data to 

a hyperspace such that a non-linear operation in the original space is identical to a linear 

operation in the hyperspace. The commonly used kernel functions are listed below (Hsu et al., 

2010): 

 Linear: 𝐾(𝒙𝒊, 𝒙𝒋) = 𝒙𝒊
𝑇𝒙𝒋; 

 Polynomial: 𝐾(𝒙𝒊, 𝒙𝒋) = (𝛾𝒙𝒊
𝑇𝒙𝒋 + 𝑟)

𝑑 , 𝛾 > 0; 



90 

 

 Radial Basis Function (RBF): 𝐾(𝒙𝒊, 𝒙𝒋) = exp (−𝛾‖𝒙𝒊 − 𝒙𝒋‖
2
) , 𝛾 > 0; 

 Sigmoid: 𝐾(𝒙𝒊, 𝒙𝒋) = tanh⁡(𝛾𝒙𝒊
𝑇𝒙𝒋 + 𝑟); 

Among the kernel functions, RBF is recommended by many researches as the first choice. Hsu et 

al. have identified the reasons for choosing RBF in a great detail (2010). The significant 

advantage of RBF which is highly valued in this study is its versatility in capturing the 

complexity of the decision boundary, either for nonlinear or linear cases. Thus, it is anticipated in 

this study that the RBF based SVM could be sophisticated enough to find the complex relations 

between the feature data and the class labels. 

6.2 Sample Collection 

The objective of the classification in this chapter is to differentiate pavement joints and pavement 

grooves from other patterns observed frequently on pavement surfaces. Based on the principal 

direction, pavement joints can be subdivided into transverse joints and longitudinal joints. 

Similarly, pavement grooves can be categorized as transverse grooves and longitudinal grooves. 

Thus, transverse joint, longitudinal joint, transverse groove, longitudinal groove and the others 

are the five types of patterns defined in the study for the recognition of pavement joints and 

grooves, as illustrated in Figure 6.1. 

     

          (a) Longitudinal Joint                  (b) Transverse Joint                (c) Longitudinal Groove 
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         (d) Transverse Groove       (e) Others (Undamaged Surface)   (d) Others (Cracked Surface) 

Figure 6.1. Pattern Types Defined for the Recognition of Pavement Joints and Grooves 

In order to implement two-class SVM algorithms, it is necessary to define different training 

model for each pattern to be recognized. For instance, all of transverse joint samples will be 

labeled as Class 1, while the other four patterns are labeled as Class 2. Therefore, there will be 

four different classification models for the recognition of transverse joint, longitudinal joint, 

transverse groove and longitudinal groove respectively, as illustrated in Table 6.1. 

Table 6.1. Classification Models for the Recognition of Different Pattern Types 

Recognition 

Objective 

Classification Model 

Class 1 Class 2 

Transverse Joint Transverse Joint 

Longitudinal Joint, Transverse Groove, 

Longitudinal Groove and Others 

Longitudinal Joint Longitudinal Joint 

Transverse Joint, Transverse Groove, 

Longitudinal Groove and Others 

Transverse Groove Transverse Groove 

Transverse Joint, Longitudinal Joint, 

Longitudinal Groove and Others 

Longitudinal Groove Longitudinal Groove 

Transverse Joint, Longitudinal Joint, Transverse 

Groove and Others 
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The only difference between a transverse joint and a longitudinal joint, or between a transverse 

groove and a longitudinal groove, is the principal direction. In order to fully consider the 

principal direction of a pattern so that its features can be extracted more successfully, the 

sampling region for the recognition of transverse patterns is a long strip in transverse direction. 

Similarly, the sampling region for the recognition of longitudinal patterns is a long strip in 

longitudinal direction. The sampling sizes for the recognition of longitudinal patterns and 

transverse patterns are listed in Table 6.2. 

Table 6.2. Sampling Sizes for Transverse Patterns and Longitudinal Patterns 

Transverse Patterns Longitudinal Patterns 

Transverse Joint Transverse Groove Longitudinal Joint Longitudinal Groove 

Sample Width: 2048 mm 

Sample Height: 256 mm 

Sample Width: 256 mm 

Sample Height: 2048 mm 

 

For simplicity, the samples collected for the recognition of transverse patterns are called 

Transverse Samples, while the samples collected for the recognition of longitudinal patterns are 

called Longitudinal Samples. It should be noted that either Transverse Samples or Longitudinal 

Samples collected in this chapter contain the five types of patterns defined previously. Some 

representative Transverse Samples and Longitudinal Samples are shown in Figure 6.2 and Figure 

6.3 respectively.  
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(a) Transverse Groove                                  (b) Longitudinal Groove 

        

(c) Transverse Joint                                  (b) Longitudinal Joint 

 

(e) Others 

Figure 6.2. Representative Transverse Samples 

                                                                                     

      (a) Trans. Groove      (b) Long. Groove   (c) Long. Joint      (d) Trans. Joint       (e) Others 

Figure 6.3. Representative Longitudinal Samples 

In this chapter, 1000 Transverse Samples and 1000 Longitudinal Samples are collected with a 

careful supervision on the sampling diversity. Half of the samples will be involved in the training 
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of SVM classifiers, and the other half will be used for testing the accuracy of the trained 

classifiers. 

6.3 Feature Extraction 

6.3.1 Complexity Reduction Using 3D Shadow Simulation 

The features extracted from collected samples play a critical role in the success of a SVM 

classifier. The complexity of the original data of a 3D sample creates a lot of difficulties in 

extracting meaningful and effective features. Therefore, this study utilizes 3D Shadow Simulation 

discussed in Chapter 3 to reduce the complexity of the original data. After 3D Shadow Simulation, 

the original data can be transformed to a binary domain, where the pixels with smaller heights are 

shadowed and labeled as “0”, and other pixels with greater heights are not shadowed and thus 

marked as “1”. In this way, the complexity of the original data can be reduced significantly. With 

respect to data loss through the transformation, since both pavement groove and pavement joint 

are lower the local background, a large portion or even entire of them should remain as long strip 

shadowed patterns if the lighting direction is correct and the projection angle is low enough. In 

other words, it is feasible to maintain the pattern of pavement joint or pavement groove with an 

appropriate lighting. In order to preserve the pattern of a pavement joint or pavement groove in 

large portion, the projection angle is fixed as 45 degree for both Transverse Lighting and 

Longitudinal Lighting, which is tested as sufficiently low for most of cases. 

As discussed in Chapter 3, Transverse Lighting performs better in preserving longitudinal-

dominated patterns, while Longitudinal Lighting preserves more of transverse-dominated patterns. 

Therefore, Transverse Lighting is only conducted on Longitudinal Samples, and Longitudinal 

Lighting is merely applied to Transverse Samples for the reduction of complexity. Some typical 

examples of 3D Shadow Simulation on Transverse Samples and Longitudinal Samples are shown 

in Figure 6.4 and Figure 6.5.  



95 

 

          

(a) Transverse Groove                                   (b) Longitudinal Groove 

          

(c) Transverse Joint                                        (d) Longitudinal Joint 

 

(e) Others 

Figure 6.4. Longitudinal Lighting Results on Transverse Samples 

                                                                                               

      (a) Trans. Groove      (b) Long. Groove   (c) Trans. Joint      (d) Long. Joint       (e) Others 

Figure 6.5. Transverse Lighting on Longitudinal Samples 

It can be observed from Figures 6.4 and 6.5 that transverse patterns, including Transverse Groove 

and Transverse Joint, are maintained desirably under Longitudinal Lighting. Such a consequence 

is also found on longitudinal patterns when Transverse Lighting is applied. Moreover, the 
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intervention of 3D Shadow Simulation not only preserves patterns whose principal directions are 

close to the wanted orientation, but also attenuates other patterns whose principal directions is far 

from the wanted orientation, which broadens the gap between patterns of different principal 

directions. Based on 3D Shadow Simulation, the features to be extracted from the shadow maps 

are discussed in the following sections. 

6.3.2 Density 

Density is defined as the percentage of shadowed pixels on a sample, which can be written as: 

𝑑𝑖 =
𝑁𝑆𝑖

𝑤𝑖∙ℎ𝑖
                                                           (6.3) 

Where: 𝑑𝑖 is the Density of 𝑖𝑡ℎ sample; 𝑁𝑆𝑖 is the number of shadowed pixels in 𝑖𝑡ℎ sample; 𝑤𝑖 

is the width of 𝑖𝑡ℎ sample; ℎ𝑖 is the height of 𝑖𝑡ℎ sample; 

The Density can be an important indicator for the boundary between pavement joints and grooves. 

Additionally, it is also helpful for the exclusion of some unwanted patterns with too few or too 

many shadowed pixels. 

6.3.3 Average Width 

The Average Width is defined as the weighted average width of all shadowed clusters. Here, the 

shadowed clusters are obtained using the Blob Extraction algorithm mentioned in Chapter 3 and 

Chapter 5. 

𝜔𝑖 = ∑
𝑁𝑆𝑖,𝑗

𝑁𝑆𝑖

𝑚𝑖
𝑗=1 ∙ 𝜔𝑖,𝑗                                             (6.4) 

Where: 𝜔𝑖 is the weighted average width of shadowed clusters in 𝑖𝑡ℎ sample; 𝑚𝑖 is the number of 

shadowed clusters in 𝑖𝑡ℎ sample; 𝑁𝑆𝑖,𝑗 is the number of shadowed pixels of 𝑗𝑡ℎ shadowed cluster 

in 𝑖𝑡ℎ sample; 𝜔𝑖,𝑗  is the average width of 𝑗𝑡ℎ shadowed cluster in 𝑖𝑡ℎ sample. 
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Since the width of a pavement joint is usually greater than the width of a pavement groove, the 

Average Width can be a useful feature to be learned in order to separate pavement joints from 

pavement grooves. 

6.3.4 Average Angle 

Likewise, the Average Angle in this chapter is defined as the weighted average angle of all 

shadowed clusters. That is: 

𝜃𝑖 = ∑
𝑁𝑆𝑖,𝑗

𝑁𝑆𝑖

𝑚𝑖
𝑗=1 ∙ 𝜃𝑖,𝑗                                                 (6.5) 

Where: 𝜃𝑖 is the weighted average angle of shadowed clusters in 𝑖𝑡ℎ sample; 𝜃𝑖,𝑗 is the angle of 

𝑗𝑡ℎ shadowed cluster in 𝑖𝑡ℎ sample. 

The participation of Average Angle places considerations on the range of pattern angles, which 

may result in a distinct boundary between wanted orientations and unwanted orientations. For 

instance, the angle of a longitudinal joint is around 90 degree, while the angle of a transverse joint 

is close to 0 degree. 

6.3.5 Number of Long Strip Patterns 

The Number of Long Strip Patterns is proposed in this study as an important feature to recognize 

pavement joints and pavement grooves. As a matter of fact, pavement grooves are a bunch of 

long strip patterns paralleled even in a small region. On the contrary, pavement joint is only a 

single long strip pattern laid alone within a much larger region. Therefore, the Number of Long 

Strip Patterns can serve in splitting pavement joints and pavement grooves by showing the 

repetitions of long strip patterns within a small region. In this study, a long strip pattern is defined 

as the pattern whose length exceeds a certain threshold, which can be expressed by: 

𝑙𝑖,𝑗 > 𝜆 ∙ max⁡(𝑤𝑖, ℎ𝑖)                                                   (6.6) 
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Where: 𝑙𝑖,𝑗 is the length of 𝑗𝑡ℎ long strip pattern found on 𝑖𝑡ℎ sample; 𝜆 is the threshold value. 

𝜆 = 0.5 is used in this chapter, which means a strip pattern whose length is greater than half 

length of the longer edge of the sample will be treated as a long strip pattern. It should be noted 

that some portion of a pavement joint or a pavement groove may not be kept on the binary map 

due to the data loss during 3D Shadow Simulation or even the discontinuity of the original 3D 

data. As a result, a whole pavement joint or groove might be divided to several shadowed clusters 

due to the discontinuity. Figure 6.6 shows the discontinuity of some pavement grooves. 

 

(a) Transverse Groove Sample #1 

 

(b) Transverse Groove Sample #2 

Figure 6.6. Representative Discontinuity Problems 

The following procedures are proposed to seek for long strip patterns in their entireties for the 

solution of discontinuity. 

 For each shadowed cluster, draw a line that penetrates through the entire shadowed 

cluster and travels across the entire sample until it is out of the sample domain. 

 Count the shadowed pixels on the line plotted for each cluster. If the number of shadowed 

pixels on the line satisfies the inequality described in (6.6), this line will be recorded as a 

possible trend-line of a long strip pattern; 
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 At the first step, some pixels may be recounted by the lines plotted for different 

shadowed clusters, which could result in overestimation on the number of long strip 

patterns. Thus, at this step, all recorded trend-lines will be examined such that no two 

trend-lines are intersected with each other within the sample domain. Once two trend-

lines are intersected, only the one whose direction is closer to the preferred orientation 

(e.g. 90 degree for longitudinal patterns and 0 degree for transverse patterns) will be 

preserved. 

 Count the trend-lines survived eventually as the Number of Long Strip Patterns. 

Using the above procedures, Figure 6.7 shows the final trend-lines of the two samples cited in 

Figure 6.6. 

 

(a) Transverse Groove Sample #1 

 

(b) Trend-lines of Sample #1 

 

(c) Transverse Groove Sample #2 
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(d) Trend-lines of Sample #2 

Figure 6.7. Trend-lines Obtained by the Proposed Procedures 

In a summary, Density, Average Width, Average Angle and Number of Long Strip Patterns are 

the four basic features proposed in this chapter for the recognition of pavement joints and grooves. 

6.4 Training and Testing 

A well-known online SVM library, LIBSVM, is adopted in this section for the training and testing 

of SVM classifiers (Chang and Lin, 2011). As mentioned in Section 6.1, RBF is chosen as the 

kernel function for the SVM classifiers. Therefore, there are essentially two parameters to be 

considered in the process: 𝛾 and 𝐶. 

In order to retrieve a good set of 𝛾 and 𝐶 and avoid over-fitting problem, 𝑣-fold Cross-Validation 

and Grid Search are integrated together as a fast procedure to obtain a noble set of 𝛾 and 𝐶 which 

yields the best prediction accuracy on “unknown” data (Hsu et al., 2010). In the 𝑣-fold cross-

validation, the training data are divided into 𝑣 subsets. Afterwards, one subset is predicted based 

on the training on other subsets. 𝑣 = 5 is used in this chapter. For the Grid Search, numerous 

values of 𝛾 and 𝐶 which increase exponentially (i.e. 2−10, 2−9, … , 29, 210⁡⁡) are tried to obtain the 

best set of 𝛾 and 𝐶. A typical result of Grid Search is illustrated in Figure 6.8. 
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Figure 6.8. Typical Result of Grid Search 

Half of the collected Transverse Samples (500 samples) are involved in the training for the 

recognition of Transverse Grooves and Transverse Joints. Similarly, 500 Longitudinal Samples 

are learned in the training for the recognition of Longitudinal Grooves and Longitudinal Joints. 

Before training starts, the features of training samples are extracted by the methods described in 

Section 6.3. Then, the class labels are assigned according to the classification models listed in 

Table 6.1 for different recognition objectives. The features extracted for the four recognition 

objectives are plotted in a one-versus-one manner in Figure 6.9, Figure 6.10, Figure 6.11 and 

Figure 6.12 respectively. Note that the features Average Width, Average Angle and Number of 

Long Strip Patterns have been scaled into a range around [0, 1].  
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Figure 6.9. Extracted Features for the Recognition of Transverse Groove  
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Figure 6.10. Extracted Features for the Recognition of Transverse Joint  
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Figure 6.11. Extracted Features for the Recognition of Longitudinal Groove  
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Figure 6.12. Extracted Features for the Recognition of Longitudinal Joint  
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It is revealed in Figures 6.9-6.12, the two-class data for each recognition objective are separable, 

even though there are some data may be misclassified and the hyperplane seems to be 

complicated. For each recognition objective, the 𝛾 and 𝐶 are trained respectively using Cross 

Validation and Grid Search. Then, the training accuracies for the four recognition objectives are 

listed in Table 6.3. 

Table 6.3. Training Accuracies for the Four Recognition Objectives 

Recognition Objective Training Accuracy (%) 

Transverse Groove 99.6 

Transverse Joint 97.2 

Longitudinal Groove 99.4 

Longitudinal Joint 99.6 

 

It has been demonstrated in Table 6.3 that the training accuracy is consistently high for each of 

the recognition objectives. Based on the Support Vectors selected via the training, 500 Transverse 

Samples and 500 Longitudinal Samples which are different from the samples used in training are 

employed to test the efficiency of selected Support Vectors. Again, the 500 Transverse Samples 

are used for the recognition of transverse joints and transverse grooves, while the 500 

Longitudinal Samples are used for the recognition of longitudinal joints and longitudinal grooves. 

The testing accuracies for the four recognition objectives are shown in Table 6.4. 

Table 6.4. Testing Accuracies for the Four Recognition Objectives 

Recognition Objective Testing Accuracy (%) 

Transverse Groove 98.6 

Transverse Joint 97.0 

Longitudinal Groove 93.8 



107 

 

Longitudinal Joint 98.6 

According to Table 6.4, the selected Supported Vectors achieve high prediction accuracies on the 

unknown samples for each of the four recognition objectives, which implies the efficiency and 

reliability of the trained SVM classifiers. 

6.5 Pattern Extraction 

The classification discussed in previous section is fundamentally to assign a label to a sample 

indicating whether the target pattern occurs on that sample. However as referring to Table 6.2, 

each collected sample is a data block of the 3D surface and the exact location of the target pattern 

is still unknown. Therefore, the following pattern extraction procedures are proposed in this 

section to locate the target pattern for the practical use of classification outputs. 

 Determine the Recognition Objective (Transverse Groove, Transverse Joint, Longitudinal 

Groove or Longitudinal Joint); 

 Input the Supported Vectors associated with the Recognition Objective; 

 Sample Data using the size discussed in Table 6.2; 

 Apply 3D Shadow Simulation on the sample data to obtain the binary map 

 Extract Features from the binary map; 

 Classify the sample using the input Support Vectors; 

 If the sample is label as belonging to the class of the target pattern, pick up shadowed 

clusters situated on the Trend-lines learned during Feature Extraction. The picked 

shadowed clusters will be preserved as the parts of the target pattern. Other shadowed 

clusters will thus be eliminated. 

Based on the pattern extraction procedures, Precision-Recall Analysis is conducted on the 1000 

testing samples (500 Transverse Samples and 500 Longitudinal Samples), where the ground 

truths are marked manually. The Precision and Recall are listed in Table 6.5. It is demonstrated in 
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Table 6.5 that the methodology of Pavement Joint & Groove Detection based on the pattern 

extraction procedures and four SVM classifiers eventually progresses to the accomplishment in 

high Precision and high Recall on all testing samples collected from the real roads. 

Table 6.5. Precision-Recall Analysis Results on Testing Samples 

Sample Type Number of Samples Precision (%) Recall (%) FPR (%) FOR (%) 

Transverse Samples 500 98.72 95.86 0.07 0.22 

Longitudinal Samples 500 98.83 94.68 0.08 0.36 

Overall 1000 98.78 95.27 0.07 0.29 

 

The Noisy Pattern Detection Subsystem is finally embedded into a computer program, where the 

detected pavement joints or pavement grooves will be excluded from the cracking detection 

results. Figure 6.13 shows the performance of Noisy Pattern Detection Subsystem on some 

typical examples. 

   

(a) Original Cracking Detection Result #1         (b) Corrected Cracking Detection Result #1 
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(c) Original Cracking Detection Result #2         (d) Corrected Cracking Detection Result #2 

   

(e) Original Cracking Detection Result #3         (f) Corrected Cracking Detection Result #3 

Figure 6.13. Cracking Detection Results Corrected by Noisy Pattern Detection Subsystem 

6.6 Summary 

In a summary, a comprehensive system of algorithms based on SVM are proposed in this chapter 

for the detection of pavement joints and grooves. In order to differentiate transverse patterns 

(transverse joints and transverse grooves) from longitudinal patterns (longitudinal joints and 

longitudinal grooves), each sample is extracted from 3D pavement surfaces as a long strip region 

whose principal directions are identical to the principal direction of the target pattern, either 

transverse or longitudinal. 3D Shadow Simulation is then applied to transform the original 3D 

samples to the associated binary maps for the reduction of data complexity. During the 3D 

Shadow Simulation, Transverse Samples are only assigned with Longitudinal Lighting, while 

Longitudinal Samples are only assigned with Transverse Lighting. Density, Average Width, 

Average Angle and Number of Long Strip Patterns are the four features extracted from the binary 

maps. Later on, two-class SVM algorithms using Radial Basis Function are implemented to train 

the four classifiers for four different recognition objectives (transverse groove, transverse joint, 

longitudinal groove and longitudinal joint) based on the features learned from the training 

samples. It is demonstrated that the trained SVM classifiers achieve high accuracy in categorizing 

both training and testing samples. Based on the trained SVM classifiers, pattern extraction 

procedures are developed not only to classify the input samples, but also to find the location of 
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target patterns on the input samples once they are labeled as containing the target patterns. Finally, 

Precision-Recall Analysis are conducted on all the testing samples to evaluate the performance of 

the proposed algorithms on the detection of pavement joints and grooves. It has been shown that 

the proposed algorithms based on SVM classifiers are successful in detecting pavement joints and 

grooves on all the testing samples with a high level of Precision and Recall. 

 



111 

 

Chapter 7 PARALLEL COMPUTING TECHNIQUES FOR PAVEMENT CRACKING 

DETECTION 

 

 

The increase of processing speed is always a fundamental necessity in real world applications 

where massive data flow are required. The 3D pavement surface with 1mm resolution is 

unsurprisingly large even within a short section. For instance, the 3D pavement data for a 1 mile 

long and 4 meters wide lane has a giant size more than 12 gigabytes. Therefore, the speedup of 

pavement cracking detection algorithms will become much beneficial when a long road is to be 

analyzed. Regardless of the improvements on algorithms for the reduction of computational 

intensity, Parallel Computing is another approach to substantial time savings by completing many 

computational tasks simultaneously. The prerequisite of Parallel Computing is that the 

computational problem should be able to be broken into several parts that can be executed 

simultaneously. Over decades, there are tremendous developments in parallel computing 

technology which makes parallel computing techniques always the first choice when the 

processing time is necessarily concerned. Up to recently, parallel computing have been 

commonly acknowledged in numerous fields, including engineering, scientific applications and 

commercial applications (Grama et al., 2003). In terms of the hardware system, parallel 

computing can be executed on CPUs, GPUs or even a hybrid system of CPUs and GPUs. 
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The advantage of GPUs over CPUs is that GPUs have much more processors that can run 

simultaneously. However, the latency of a GPU processor is longer than the latency of a CPU 

processor, which means a single GPU processor runs slower than a single CPU processor. 

Additionally, most of the modern computers require the data transfer between CPUs and GPUs if 

the tasks are to be executed on GPUs. Although the GPUs are much faster in completing 

tremendous independent tasks concurrently, the data transfer consumes some amount of time due 

to the low bandwidth between GPUs and CPUs, which may affect the preferences on GPUs in 

some cases. Due to the different architectures of GPUs and CPUs, there are many factors, such as 

data size, computational intensity and independency level that can contribute to the choice of 

hardware system in which the parallel computing is performed. The objective in this chapter is 

not to explore any new parallel computing techniques, but to apply some of the existing parallel 

computing techniques executed on either GPUs or CPUs to accelerate all tasks in previous 

chapters that can be synchronous. 

7.1 Parallel Computing Techniques on CPUs and GPUs 

In order to implement parallel computing techniques, the hardware system has to supply a 

computing platform that can execute multiple tasks simultaneously. According to Flynn’s 

taxonomy, the computing platforms can be categorized into four classes based on the number of 

concurrent instructions and the number of data streams (Flynn, 1972): 

 Single Instruction, Single Data (SISD): no parallelism in either instruction or data stream; 

 Single Instruction, Multiple Data (SIMD): multiple data streams can be processed 

simultaneously under a single instruction; 

 Multiple Instructions, Single Data (MISD): multiple instructions can be operated on a 

single data stream; 

 Multiple Instructions, Multiple Data (MIMD): multiple instructions can be executed on 

multiple data streams. 
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Among the four classes, SIMD and MIMD have been the two most popular computing platforms 

so far. SIMD is the architecture used in modern GPUs, while most of modern CPUs belong to the 

class of MIMD. 

With respect to the domain of CPU-based processes, there are two parallel computing techniques 

representing different levels of parallelism. In a single CPU Core system, Multiple threads can be 

created and share the resources on that core, which is known as Multi-Threading (MT) 

Technology. The MT Technology designates the shared execution engine to work on the threads 

simultaneously by interleaving threads to keep the CPU core as busy as possible so that 

maximum available resources can be used by threads. Nevertheless, only the instruction-level 

parallelism can be achieved via MT technology, and the performance gains merely come from the 

latency hiding. Unlike MT technology, Multi-Core (MC) Technology achieves true parallelism 

among threads by providing multiple and independent CPU cores on the same chip. With such 

architecture, threads from different CPU cores are not interleaved but executed independently at 

the same time. In this way, thread-level parallelism is attained (Akhter and Roberts, 2006). In 

some cases, the combination of MT technology and MC technology, which means to configure 

multiple threads on each CPU core, can be attempted for even faster performances. 

GPU was originally invented to increase the speed solely for graphical computations. Based on 

the developments over decades, the modern GPUs now can be massively parallel with 

tremendous computational horsepower and suitable as well as programmable for various purposes. 

This brings about the intensive usage of GPUs in many fields, including Computational Finance, 

Manufacturing, Deep Learning, Animations, Fluid Dynamics and other industries which require 

intensive computations (NVidia, 2015). Currently, many types of GPU devices have been 

commercialized as a serial of products supplying diverse levels of computability. For example, 

some high level GPUs can achieve over than 5000 GFLOPS (a billion of floating-operations per 

second), while some low level GPUs can achieve less than 100 GFLOPS (NVidia, 2015). 
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Compared to CPUs, GPUs can reach much higher GFLOPS on average, which is the fancy 

feature of GPUs. Furthermore, more computing powers can be assigned when the hardware 

system is equipped with multiple GPU devices. As Big Data has been more and more concerned 

in recent years, GPUs with massive parallelism are being recognized as the future of computing. 

For efficient use of GPUs, there could be many parallel computing tactics to access GPUs. Some 

general techniques, such as GPU Streaming and Multi-GPU techniques, are adopted in this 

chapter. 

7.2 Implementation of Parallel Computing Techniques 

In this section, parallel computing techniques for the three detection subsystems are discussed 

respectively. 

7.2.1 Parallel Computing for Fully Automated Cracking Detection Subsystem 

3D Shadow Simulation is the most expensive procedure of the fully automated detection. The 

simulated light starting at a pixel needs to travel across the 3D image until it is out of the image. 

Such a process has to be repeated at each pixel. The computations become even more intensive 

when a lower projection angle is used. In order to reduce the processing time significantly, 

parallel computing techniques on a single GPU device is applied for the speedup of 3D Shadow 

Simulation. Each pixel is associated with a GPU thread. As the maximum light height at each 

pixel needs to be updated once when this pixel is visited by the light starting from another pixel, 

the atomic max function is used to avoid Race Condition (An undesirable situation occurs when 

two or more writing operations are executed at the same address). Table 7.1 lists the improvement 

by GPU techniques, where the processing time is the average time of trials on 10 different 3D 

images, and the tested GPU device is NVidia GeForce GT 750M (Computability 3.0). It should 

be noted the measured time for the succeeding algorithms discussed later in this section are all the 

average time of trials on 10 different 3D images. In addition, the 10 images tested for both of the 
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two cracking detection subsystems are all different from the 10 images used for noisy pattern 

detection subsystem. 

Table 7.1.Time Improvement on 3D Shadow Simulation by Single GPU 

Image Size 

Processing Time (milliseconds) 

Speedup Factor 

Single CPU Thread Single GPU (No Streaming) 

4096×2048 352 77 4.57 

 

After 3D Shadow Simulation, the Blob Extraction is implemented on a single CPU thread. No 

parallel computing techniques are utilized because Blob Extraction is a highly dependent 

procedure. However, Multi-Core Techniques are applied after the clustering via Blob Extraction 

is completed. The cracking clusters are divided into several subsets. Each subset is examined by 

the noise suppressing algorithms discussed in Section 3.2.2 on each CPU core independently. 

Table 7.2 illustrates the time improvement achieved by Multi-Core Techniques, where 12 

identical CPU cores (Intel CoreTM I7-4930K @3.40 GHz) are involved. 

Table 7.2. Time Improvement on Noise Suppressing Algorithms in Fully Automated Subsystem 

by Multi-Core Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup Factor 

Single CPU Thread 12 CPU Cores 

4096×2048 215 23 9.35 

 

The overall time improvement on fully automated subsystem is shown in Table 7.3. 
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Table 7.3. Overall Time Improvement on Fully Automated Subsystem by Combined Parallel 

Computing Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup Factor 

Single CPU Thread Combined Parallel Computing Techniques 

4096×2048 580 113 5.13 

 

7.2.2 Parallel Computing for Interactive Cracking Detection Subsystem 

In the interactive cracking detection subsystem, Line Scanning is the most expensive procedure. 

However, the distinct advantage of Line Scanning is that each scan line is independent. 

Furthermore, each pixel in Line Scanning can be technically independent as the search of a 

cracking profile can be conducted independently at each of the pixels belong to that cracking 

profile, although the search is repeated at these pixels. Therefore, GPU-based parallel computing 

is very suitable for Line Scanning in either transverse or longitudinal direction. Instead of 

assigning a GPU thread to each independent line, each pixel is assigned with a GPU thread to 

take advantage of the huge number of GPU threads. Similarly, each pixel in Thinning can also be 

technically independent as the thinning of each cracking profile can be repeated at every pixel 

belongs to that cracking profile. Therefore, the Line Scanning and Thinning can be implemented 

on the GPU device in a sequential order. Furthermore, the combination of GPU Streaming and 

Multi-GPU techniques are utilized to provide a two-layer GPU-based computing platform, as 

illustrated in Figure 7.1. 
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Figure 7.1. Two-Layer GPU-based Computing Platform 

First of all, the independent scan lines are evenly divided into 𝑁𝐺𝑃𝑈 ×𝑁𝑆𝑡𝑟𝑒𝑎𝑚  subsets, where 

𝑁𝐺𝑃𝑈 is the number of GPU devices to be used and 𝑁𝑆𝑡𝑟𝑒𝑎𝑚 is the number of streams to be 

designated on each GPU device. Then, every pixel in each subset is assigned with a GPU thread. 

Finally, Multi-Core technology is applied to trigger the multiple GPU devices and handle data 

transfers simultaneously. The time improvement by such a computational scheme is illustrated in 

Table 7.4, where 2 identical GPU devices (NVidia GeForce GTX TITAN Black, Computability: 

3.5) and 2 identical CPU cores (Intel CoreTM I7-4930K @3.40 GHz) are tested. 

Table 7.4. Time Improvement on Line Scanning and Thinning by Multi-Core & Two-Layer 

GPU-based Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup 

Factor 
Single CPU 

Thread 

2 CPU Cores + 2 GPUs + 4 Streams on Each 

GPU 

4096×2048 628 28 22.42 
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Similarly, Blob Extraction is used to label cracking clusters after Line Scanning and Thinning, for 

which no parallel computing are conducted. Afterwards, the rest procedures are analyses on 

cracking clusters. Therefore, Multi-Core techniques are applied for the rest procedures using the 

same partition method mentioned in Section 7.2.1. Consequently, the reduction on processing 

time of the rest procedures is shown in Table 7.5, where 12 identical CPU cores (Intel CoreTM I7-

4930K @3.40 GHz) are used. 

Table 7.5. Time Improvement on Noise Suppressing Algorithms in Interactive Subsystem by 

Multi-Core Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup 

Factor 
Single CPU 

Thread 

12 CPU Cores 

4096×2048 279 26 10.73 

 

The overall time improvement on interactive cracking detection subsystem is listed in Table 7.6. 

Table 7.6. Overall Time Improvement on Interactive Subsystem by Combined Parallel 

Computing Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup Factor 

Single CPU Thread Combined Parallel Computing Techniques 

4096×2048 924 71 13.01 

 

7.2.3 Parallel Computing for Noisy Pattern Detection Subsystem 

The training on SVM classifiers for the recognition of pavement joints and grooves are completed 

offline. Thus, there is no strong reasons to accelerate the training by parallel computing 

techniques. However, the pattern extraction procedures discussed in Section 6.5 needs to be 

accelerated so as to increase the real-time efficiency. First of all, 3D Shadow Simulation is 
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accelerated by the GPU-based techniques as mentioned in Section 7.2.1. Next, the combination of 

Multi-Core and Multi-Threading techniques is organized to reduce the processing time of the rest 

procedures, including regional data sampling, regional Blob Extraction, feature extraction, 

classification and trend-lines preservation. Table 7.5 lists the achieved time improvement, where 

12 identical CPU cores (Intel CoreTM I7-4930K @3.40 GHz) and 2 CPU threads are involved. 

Table 7.7. Time Improvement on Remaining Procedures after 3D Shadow Simulation in Noisy 

Pattern Detection Subsystem by the Integration of Multi-Threading and Multi-Core Techniques 

Image Size 

Regional 

Sample Size 

Sample 

Number 

Processing Time (milliseconds) 

Speedup 

Factor 
Single CPU 

Thread 

12 CPU Cores + 2 

CPU Threads 

4096×2048 

256×2048 or 

2048×256 

16 541 62 8.73 

 

Similarly, Table 7.8 illustrates the overall time improvement on noisy pattern detection subsystem 

achieved by the combination of multiple parallel computing techniques. 

Table 7.8. Overall Time Improvement on Noisy Pattern Detection Subsystem by Combined 

Parallel Computing Techniques 

Image Size 

Processing Time (milliseconds) 

Speedup Factor 

Single CPU Thread Combined Parallel Computing Techniques 

4096×2048 917 151 6.07 

 

7.3 Summary 

In a summary, several combinations of CPU-based and GPU-based parallel computing techniques 

are organized in this chapter to reduce the processing time of the three detection subsystems 

significantly. For fully automated cracking detection subsystem, parallel computing techniques on 



120 

 

single GPU device and Multiple CPU cores are employed, by which an overall speedup factor 

5.13 is attained. With respect to the interactive cracking detection subsystem, Multi-GPU and 

GPU Streaming are integrated as a two-layer GPU-based computing structure which yields a 

satisfactory speedup about 20 times faster on Line Scanning and Thinning. Later on, Multi-Core 

technology leads other procedures to a performance which is nearly 10 times faster. The overall 

achieved speedup factor for the interactive cracking detection subsystem is 13.01. Finally, the 

integration of Multi-Threading and Multi-Core is deployed for all the procedures except 3D 

Shadow Simulation in the noisy pattern detection subsystem. Including the time for 3D Shadow 

Simulation, the noisy pattern detection subsystem is roughly 6 times faster with the assistance 

from parallel computing techniques. 

The measured time in this chapter is based on specified 3D data, limited number of trials and 

particular hardware system. Differences in processing time may be found under a different 

environment. However, the powerfulness of parallel computing techniques has been clearly stated 

in the comparison to the use of a single CPU thread. 
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Chapter 8 CONCLUSIONS AND FUTURE WORK 

 

 

8.1 Conclusions 

The immaturity of pavement cracking detection motivates the study on a practical system of 

multiple algorithms for pavement cracking detection from a comprehensive perspective. Using 

1mm 3D pavement surface data, this study proposes three detection subsystems: Fully Automated 

Cracking Detection Subsystem, Interactive Cracking Detection Subsystem and Noisy Pattern 

Detection Subsystem, in order to address various needs in automation levels and detection 

accuracies on different types of pavement surfaces. 

First of all, the Fully Automated Cracking Detection Subsystem is proposed as a fast approach to 

pavement cracking detection without any human intervention. The Fully Automated Cracking 

Detection Subsystem utilizes 3D Shadow Simulation to transform the original data to a binary 

map called as Shadow Map where potential cracking pixels are labeled as “0” and the others are 

labeled as “1”. Sequentially, a serial of noise suppressing algorithms are proposed to remove 

noises from the Shadow Map. The performance of the Fully Automated Cracking Detection 

Subsystem is fully examined by the Precision-Recall Analysis on two real pavement segments. It 

is demonstrated in the Precision-Recall Analysis that the Precisions on both segments are above 

90 percent, while the Recalls on both segments are around 90 percent. 

 



122 

 

This indicates a high level of success in cracking detection when the complexity and diversity of 

pavement surfaces are considered. The significant advantage of 3D Shadow Simulation is its 

simplicity as it approximates and simplifies the projection of natural lights. In addition to its 

simplicity, 3D Shadow Simulation can provide diverse solutions by adjusting a single parameter: 

the projection angle, which makes the cracking detection feasible for various pavement surfaces 

and leads to a simpler control on the sensitivity of the detection. In order to increase the accuracy 

of the Fully Automated Cracking Detection Subsystem, NSGA-II which is a popular and efficient 

Multi-Objective Genetic algorithm is employed in this study to optimize the parameters of the 

fully automated algorithms. In addition to NSGA-II, APM is proposed in this study as a 

complementary procedure that can be integrated with NSGA-II for the pursuing of faster 

convergence and better diversity. It is demonstrated in the comparison study on five ZDT 

benchmark functions that the integration of NSGA-II and APM yields a much faster progress to 

the pareto-optimal front than using NSGA-II alone. According to the Precision-Recall Analysis 

on the same pavement segments using the optimized parameters, slight improvements on both 

Precision and Recall are found. 

Secondly, Interactive Cracking Detection Subsystem is proposed in this study as a slower but 

more confident as well as flexible approach to pavement cracking detection. This subsystem uses 

Minimal Contrast as the single primary parameter that can be trained by the users through the 

monitoring on the immediate detection results. The interactive mechanism is fulfilled as a process 

of parameter adjustments according to the user’s feedback. To be more specific, a computer 

program is developed to provide an interface connecting the operator and the interactive 

algorithms. Once the operator tells the algorithms if the current detection results are false-positive, 

false-negative or acceptable, the algorithms will respond accordingly. Based on the computer 

program, a two-level detection can be managed. Automated Detection, which is the bottom level, 

can be used to detect the majority of cracks automatically after the operator has selected an 
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appropriate Minimal Contrast for the sections being analyzed. Such a process can be repeated if 

the results are not acceptable from the operator’s point of view. In complement to Automated 

Detection, Assisted Detection, which is the top level, can be applied to retrieve undetected cracks 

and remove unwanted patterns within any user-defined region in a more subtle but much slower 

way. It has been demonstrated in the case study that the integration of Automated Detection and 

Assisted Detection can eventually locate nearly all of the cracks with almost no noises. The 

disadvantage of Interactive Cracking Detection Subsystem is the inevitable consumptions on time. 

In a general view, higher the requirement on detection accuracy is, longer the processing time 

will be. However, the Interactive Cracking Detection Subsystem indeed supplies a flexible and 

confirmative approach to finding almost 100 percent cracks without any noises. The significant 

implication of the Interactive Cracking Detection Subsystem is the detection of desired accuracy 

level can be guaranteed. 

Thirdly, the Noisy Pattern Detection Subsystem is proposed for cracking detection on rigid 

pavements. Pavement joints and grooves are the two major noisy patterns on rigid pavements that 

seriously affect the detection accuracy. The four classifiers for the recognitions of transverse 

groove, transverse joint, longitudinal groove and longitudinal joint respectively are trained by 

RBF based SVM algorithms through the learning of numerous training samples. In order to 

extract feature efficiently, 3D Shadow Simulation is adopted to transform the original samples to 

binary maps where pavement joints and grooves may be preserved in a large portion. In this way, 

the complexity of the original data can be reduced significantly, and the features extracted from 

the binary maps could be more useful. It has been manifested in Chapter 6 that the four SVM 

classifiers all achieve high accuracies in classifying both training samples and testing samples. 

Based on the four classifiers, pattern extraction procedures are proposed to find the exact 

locations of pavement joints and grooves from the sampling area according to the classification 

outputs. From the Precision-Recall Analysis on the 1000 testing samples, it can be concluded that 
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the proposed noisy pattern detection procedures generate a sufficiently high level of Precision and 

Recall. Once there are any pavement joints and grooves have been detected, they will be excluded 

from the cracking detection. In this way, the cracking detection accuracy on rigid pavements will 

be greatly improved. 

Finally, numerous combinations of CPU-based and GPU-based parallel computing techniques are 

implemented to increase the processing speed of all computational tasks involved in this study 

that can be synchronous. It can be observed in Chapter 7 that most of the computational tasks 

gain a speedup by a factor over than 5. 

8.2 Future Work 

The Transverse Lighting Angle and Longitudinal Lighting Angle are the two primary parameters 

used in the Fully Automated Cracking Detection Subsystem. They have been optimized using 

NSGA-II with APM through the evaluations on the overall Precision and Recall of the detections 

on all selected 3D images. In other words, the optimized parameters may not be best parameters 

for some of the 3D images. There is lack of a robust procedure to determine the best parameters 

for each 3D image. 

Similarly, the Minimal Contrast involved in the Interactive Cracking Detection Subsystem could 

also have different optimal values for different 3D images. No automated procedure is used to 

find the best Minimal Contrast for each 3D image during the Automated Detection. As a 

consequence, more time might be spent on the Assisted Detection in order to reach an acceptable 

solution. 

Finally, the 3D Shadow Simulation is also involved in the Noisy Pattern Detection Subsystem. 

And the best lighting angles for different samples are still varied without certainty. Although a 

low lighting angle (45 degree) is fixed in this study and can serve to preserve a large portion of 
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joint and groove patterns in many cases, it still is not be the best option for every 3D sample and 

thus could not contribute much to the adaptability of the algorithm. 

All in all, a robust adaptive algorithm needs to be developed for the automated determination of 

optimal parameters for every individual 3D image. A recommendation for such an algorithm is to 

estimate the percentage of noises and the percentage of true patterns in a stochastic way. 

Furthermore, the original image can even be partitioned into several subsets. Then, the best 

parameters are estimated and applied independently for each subset. If such an adaptive 

procedure can be attained, the cracking detection on various pavement surfaces will be more 

successful. 
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