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ABSTRACT

This study was concerned with determining the thrust
forces necessary for maintaining a free-floating drilling
vessel in position while drilling a well in deep water. Drill-
ing operations require that the vessel be held within a given
radius of the sea-bed position of the well. Typical mooring
systems for maintaining the position of the vessel consist of
eight chains held by anchors. The weight and cost of these
mooring systems imposes a limit to their use of about 1200
to 1500 feet water depth.

The semi-submersible drilling vessel is treated as a
rigid body with six degrees of freedom constrained by an
arbitrarily symmetric mooring system of anchor chains and
fixed anchor points. The primary forces acting on the vessel
are buoyancy, wind, ocean currents and waves. As a result
of the exciting forces and subsequent motion, the inertia
forces due to the mass of the vessel and the added mass of
the displaced seawater, drag, damping effects, and pertur-
bations of the mooring line forces must be considered.

Second order terms of the wave theory are retained to improve
the accuracy in relatively short wave lengths. Further, the
rotations, roll, yaw, and pitch are presented in terms of

the Euler angles to retain the non-linear effect of small
angle theory. The transcendental catenary equations which

iii



are basic when describing mooring systems are approximated
with a high degree of accuracy by Chebyshev polynominal ser-
ies. The equations of motion based on Newton's Second Law
result in a set of six second order differential equations
of the ordinary type which are non-linear. This system of
equations is solved numerically which simultaneously give
the instantaneous mooring line forces. The horizontal com-
ponents of the mooring forces are summed and equated to a
thrust vector whose magnitude and direction are the desired
result for a given sea and wind condition. The motion

response is confirmed by testing in a model basin.
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THRUST REQUIREMENTS FOR DYNAMIC POSITIONING
OF A SEMI-SUBMERSIBLE DRILLING VESSEL

CHAPTER 1
INTRODUCTION

The art of drilling and producing reserves from structures
located offshore has progressed at a spectacular pace. In 1949
there was one mobile unit capable of driliing in twenty feet
water depths [17]. Presently, this number exceeds 200; the
development of which has required an investment in execess of
a billion dollars. Many of these units are capable of con-
ventional drilling with subsea equipment in water depths of
1200 to 1500 feet. One such vessel, a dynamically positioned
ship has successfully cored the ocean floors in water depths
ranging up to 20,000 feet.

The trend in new construction, however, has been toward
the semi-submersible drilling vessel., The vessel shown in
Figure 1 is a recent design; however, many of the features
shown are typical of most semi-submersibles. This trend is
due primarily to the fact that the industry is actively ex-
ploring for reserves in world-wide areas where the environ-
mentai conditions of the seas and prevailing wind conditions
are adverse to what has been known as normal operating con-

1



This type of vessel has provem to be less suscep-

ditions.

tible to the excitation of the seas which results in motion

Therefore, the normal operating

with smaller amplitudes.

range is extended to somewhat more adverse conditions than

drilling ships.

that experienced by
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In these ureas, the 1nteérity of the mooring system and
its capability to maintain the vessel on station have been
the predominant factors in loss of operating time. This loss
of time which increases the cost of the well may be catego-
rized as follows:

a) Time that the rig is not operating due to pre-

cautionary decisions.

b) Time lost due to repair of the mooring system and
damage to subsea equipment which may have been
caused by failure of a mooring line or an anchor
slipping.

In general, the people responsible for drilling the well give
preference to (a) rather than take the chance of excessive
damage to equipment, most of which are not off-the-shelf
items. This philosphy has proven to be a valid and less
costly one for present-day designs mainly because the repair
must be done in calmer seas when drilling efficiency is at

a maximum, On the other hand, it is not an optimal situation
when a drilling operation of which costs may exceed $50,000.00
daily may be shut-down solely on the decisions of people
whose judgement and past experience may be questionable,

A third category which contributes to the cost of a well
is the setting and retrieving of anchors; again, this must be
done in a sea that is relatively calm. Much time has been
lost just waiting. In many areas, the seabed is too hard for

the anchors to provide sufficient holding power. Typical
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remedies for such situatioms have been to set anchors in

series (one or two a distance behind the first) or to drill
in permanent type anchors or piles. These alternatives have
taken expensive time -— days, weeks and even months.

Most engineers agree that the design limit of a mooring
system has been reached in water depths of 1200 to 1500 feet.
And this limit would be in a "mill-pond” compared to con-
ditions in the offshore areas of western Canada, the North
Sea, the Grand Banks and many others. This is primarily
because of just the shear bulk and weight of equipment re-
quired, To drill in deeper depths, the conventional mooring
system must be replaced in total with some other method for
maintaining the drilling vessel on station., To drill in
those areas with extreme and predominatly adverse sea con-
ditions and intermediate water depths the mooring systems
need an assist to keep the vessel within a reasonable tole-
rance of loeation in order that drilling may continue at an
economical pace,

An approach to this problem is s#he concept of dynamic-
positioning, a mechanical system of thrusters which could
provide the same restoration force as a system of mooring
lines. This idea is not new. In the 1950's, small coring
vessels were so equipped to secure cores frem the ocean
depths. In 1963 the Natiomal Science Foundation proposed
the design and construction of the "Mohole Platform”. This
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vessel was a semli-submersible type to be equipped with
dynamie¢ positioning to maintain station in the open ocean
for long periods of time for drilling through the earth's
crust. This idea was abandoned in 1968 in favor of coring
a series of much shallower holes without means for re-entry.
A re-emntry technique has since been developed., This program
which uses a ship with dynamic positioning has been regarded
by many as being totally successfui.

The level of sophistication of such a system could vary
widely, ranging from sight and manual control to a fully
computerized automatic control system complete with acoustie
transmitters and receivers that permits eontinuous monitoring
of the vessels relative position.

The inecentive and motivation for the engineer to use
such a system for positianingvshould be easy to see, Such a
mechanical system could very well eliminate some of the human
factors of decision making as to when a temporary well aban-
donment should be initiated. The capability of self-propul-
sion permits self-setting and retrieval of anchors in much
rougher seas than those that permit an anchor-handling crew
and workboat to work. In faect, if this requirement is elimi-
natad, one of the chief functions of the supply vessel is
also eliminated. This appears to be a step in the right
direction in redueing the overall eost of drilling offshére.
The above is in addition to having the capability of getting
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the job done. Then too, for a system that is something less
than adequate in many areas, a mooring system of anchors,
chains, windlasses, lockers, etc. is expemsive. Depending on
the length and size of chains and anchors, investmemts easily
exceed a million dollars to outfit a single vessel.

By the same token the concept of dynamic positioning is
not without problems. The teclmology is neither fully devel-
oped nor proven in the field. It was mentioned earlier that
ships have been used for coring in deep water with similar
equipment, One must realize the two essential differences
in this type of operation as compared to drilling amn oilwell:

a) In deep water, say in excess of 3,000 feet, the

response time for the system to react to an exci-
tation is not nearly as critical as in shallower
depths. The response time in depths of 400 to 600
feet and shallower must be relatively fast and above
all —-reliable., The eritical nature is due to the
angle at which the marine riser deviates from
vertical at the wellhead [33]. Ships whieh core at
extreme depths do not have this restriction. It

i1s easy to see that in deeper water the horizontal
displacement may be a much greater distamce without
causing too severe a dogleg as the drillstring
enters the wellbore at the seabed.,

b) A ship without the restriction of the marine riser,
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the associated choke and kill lines and other

paraphernalia that conneects to the subsea systea

may change its heading in order that its resistance

to the elements is at a minimm. A change in heading

allows full use of the main propulsion whieh in most

cases would be much more than adequate.

This leads to the question of interest in this study.
How much thrust is required to keep a semi-submersible on
station when subjected to the elements? This problem was
encountered in designing the "Mohole Platform" and was re-
solved by model testing techniques [25]. The approach taken
here will be to model the motion sf the vessel comstrained by
a mooring system analytically.
Statement of the Problem
In order to determine the thrust needed to keep the

semi-submersible within a given radius of the well, the
equivalent restoration forces of the mooring system must be
resolved. The total thrust required may them be equated to
the vector sum of the horizontal components of the moorings.
The temsions that arise in the mooring lines are directly
coupled to the displacements of the vessel as funetions of
time. In essence, a set of differential equations must be
formulated that will simultaneousiy yield the motien and

the mooring restoring foreces.

Formulating the Equations of Motion
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The ordinary differential equations that describe thne
vessel motion are formulated on the basis of Newton's
Second law, i.e., equating to the motions the sum of the
forces (and moments) acting on the body. The total force
is the sum of the forces arising from dynamic body motioms,
damping, hydrostatic restoring, excitation, and mooring
restoration.

The force exerted by the vessel in accelerating the
water partiecles gives rise to equal and opposite forees by
the water acting on the vessel. These forces arise from
the dynamie body motions which at the same time displaces
the surrounding water to a new position [27]. The mass of
the water displaced is usually expressed as the added mass.

The damping forces involve the dissipation of emergy
in the form of a drag foree and results from the relative
veloeity of a body to the velocity of the surroumding fluid.
The most significant types are thought to be dynamic damping
and skin frietion. The latter will be assumed negligible.

The hydrostatic restoring forces arise from econtinuous
change in the wetted lengths of the vertical eolumns. These
forces act in the vertical direction enly.

The excitation forces are due to the waves, wind and
current. Those forces due to waves result from integrating
the water pressure gradients over the wetted body. Their

magnitude will depend on the many parameters of wave theory

\
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and the theory itself, Wind forces act on the exposed areas
above the water and will be a fumetion of the vessels posi-
tion, wind direction and wind veloeity. Current may be
treated elther as a constant or as a variable and may be added
direetly to the relative velocity term and will considerably
affect the damping and displacement mechanisms.
| The restoring forces that arise in the mooring system
constitute a major problem within itself. The differemtial
equations as given by Pugsiey [35] and Routh [37] that de-
scribe a chain suspended between two points heve been deter-
mined as being intractable, ' However; in static equilibrium
a flexible chain is known to hang in the fors of a catemary
which is desecribed by a transcendental equation. A new
equation, anchor tension as a funetion of displacement will
be derived in terms of a Chebyshev polynominal expansion.
This equation which gives the tension explieitly may be in-
cluded in the equations of motion,

Once the forces have beem determined, the moments aroumnd
the vessel's center of gravity will be given by multiplying
the total force component on a particular member by the ap-

propiate moment arm.



CHAPTER 1l
LITERATURE REVIEW

Extensive literature is available on the motion of ships
at sea, wave theory, and hydrodynamiecs., The existing state
of the art and its shortcomings up to 1961 along with a huge
bibliography is presented in a monograph by Korvin-Krecukovsky
[22]. A recently published text by Muga and Wilson [28] serves
to update the fore-mentioned work with an attempt to bridge
the gap between present-day design practices and available
analytical techniques. These references which contain many
important contributions are generally available and will not
be explicitly discussed here.

The magnitude of research works pertaining directly to
the subject of motion and station-keeping of a semi-submers-
ible drilling vessel is somewhat limited. This is primarily
due to the fact that the semi-submersible is a relatively new
concept which was introdueed by the conversion of the sub-
mersible unit "Blue Water I" in 1961, This was followed by
successive construction of new units by various drilling con-
tractors., However, the mainstream of published research in
the area was undertaken 1963 by the National Science Founda-
tion with its proposed “Mohole Platform® which was later

10
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abandoned. Much of the literature available now is a direct

consequence of the “Mchole" study.

The following review is an attempt to summarize the con-
tributions of experimental and theoretical research whiech
relates te the present investigation., Brief summaries of
five mecion studies, three reports pertaining to mooring
systems, and one on maneuvering and station-keeping are pre-

sented in chronological sequence.

Reseaxch of Pugslev (December 1949)

The general equations of motion (three) for a wniform
chain suspended between two points are derived but not solved.
These partial differemtial equations which are nom-linear
are found to be somewhat intractable in their general form.
A simplification is made whose basis is on theory preseanted
in an early dymamics text by Routh [37] who adopts a condi-
tion more amendable to solution. This condition assumes that
a chain hangs in the form of a cycloid rather than a catenary,
In this case, solutions as stated by Pugsley are possible
only when the chain hangs with a dip that is small compared
with its span. Within these limitations, theoretical results
for the first three matural modes are resolved and compared
with small scale experiments with good agreement.

f B b 96
This report is just one of a series which investigates

the motion response of the proposed "Mchole Platform". The
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equations of motion for this particular vessel are derived in

detail with linear assumptions and an excitation provided by
a simple deep-water wave train whose direction of progagation
is arbitrary. Bain gives two analyses: 1) one set of equations
include the non-linear dynamic damping, and 2) the second
analysis is a simplification of the first with additional
emphasis on linearity. The results of the simplified analysis
are presented together with extensive test-tank data with
resonable agreement with exceptions for high-frequency waves.
This seﬁi-submersible was designed for dynamic positioning
and for drilling in ultra-decn water, However, the equations
of motion include neither the restoring forces of the positi.on-

ing system nor other effects such as wind and current,

This report bears on the static and dynamic response of
suspended arrays and their mooring systems to varying currents
and initial conditions. Bipod and tripod mooring systems are
examined in some detail. It is shown that a considerable in-
crease in mooriﬁg rigidity may be obtained by using a neutrally
buoyant cable which reduces the sag in the individual anchor
lines. Numerical calculations are carried out for the motion
of tetrahedral and spherical bodies submerged beneath the sea

surface and subjected to steady current loadings.

R of MeClu 0 Decemb 1966

The mathematical representation of motion for the “Mohole
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Platform® moving over the surface of the sea under the control
of an automatic positioning system is presented. The authors
conclude that the equations describing thrust variations are
functions of a) relative velocity, b) the angle of the thrust
vector to flow direction, and c¢) the angle of hull relative
to flow direction (where the configuration of the hulls per-
tains only to the “Mohole Platform"). An equation for maxi-
mum thrust required for a given sea and wind condition is
given in terms of the above parameters. BEmpirical coeffie-
ients were determined from towing and self-propelled maneuver-
ing tests of a scale model in addition to wind tunnel tests.

Further, a brief non-tecimical description is given for

the proposed positioning computer and motor control systems.
Regeare f M

A procedure is presented for the prediction of the longi-
tudinal motiens in regular head seas of ocean platforms sup-
ported by slender vertical floats., Experimental information
desceribing the hydrodynamic forces acting on the floats is
used to solve the equations of motion for harmomic oscilla-
tion in heave, surge, and pitch. These hydrodynamic forces
are obtained from tests conducted on a single isolated float,
They are expressed as two separable parts, one due toe the
disturbance impogsed by the waves acting as though the vehicle
were completely restrained and one due to the motion of the

vehicle as though there was no wave disturbance. Merecier
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found that the measured motion of a free four-float vehicle
compares favorably with the motion computed under the above
procedure, X
Regearch of Burke (Mav 1969)

An analytieal model is developed to compute the motions
of semi-submersible drilling vessels in waves for a variety
of configurations. The model is derived from a linear repre-
sentation of motions, simple ocean waves, and forces. The
vessel is represented as a rigid space frane'conposed of an
arbitrary number of cylindrical members with diameters,
lengths and oriemtations equally arbitrary. Forces derived
from a linear anchoring system and hydrodynamic principles
are superimposed in the cquations of motion. These equations
are solved numerically for motion in six degrees of freedom
for a simple sinusoidal wave-train with given amplitude,
period, direetion of propagation and water depth. Results
from the analysis of three semi-submersibles are ecompared
favorably with results of available model test data.

Research of Muga (May 1969)

This paper presents a lirear theory of motion for a
rigid ship-shape vessel with a linear spread-type mooring
system which is applied to a construetion barge moored in
the open ocean., Water level variations at three loeations,
ship rotatioms, accelerations, meoring foreces, and wind

velocity were measured in a Neumann Sea State 2 and 3.
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Three recordings representing nearly beam-on, quartering,
and stern-on seas were analyzed using time-series teclmiques
to provide amplitude-response operators for all of the ship®s
motions and mooring forces. The amplitude-response operators
were computed from a linear theory based on the slender-body
approximation. The coupled equations of motion for the six
degree of freedom svstem are derived and solved analytically,
The results in the form of complex-response operators are
compared with these obtained from actual measurement. General
agreement is found with exception to the yaw motion. In ad-
dition, discrepancies were found to exist for certain headings
and wavelength combinations which are explained by the presence
of eross-coupling terms and empirical values of damping coef-
ficients. Muga suggests that linear theory is adequate for
sea states of up to 3.

Regsearch of Panpalila and Martin (Mav 1969)

For a semi-submersible platform,a comparison is made
between results obtained from measurements at sea and those
predicted from model basin tests. The different techniques
used for model testing are discussed. Data pertaining to
“Anchor Tension Versus Surge Motion" are illustrated for
different chain weights, number of mooring lines, water
depths, and pretensions. Based on this information, the
authors conclude that heavier chain is most effective for
shallow water use while relatively light-weight chain is most

satigfactory for use in deeper water.
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Research of Wang (June 1969)

A theoretical method developed by Wang is presented to
derive and solve the equations of motion of a semi-submersible
type platform constructed from assemblies of vertical and
horizontal eylinders. The platform is assumed to act as a
rigid body responding to six degrees of freedom in simple
sinusoidal deep-water waves progressing from an arbitrary
direction. The solutions to the equations of motion are
used to construct transfer functions or response ratios.
With knowledge of the response ratios, the motion responses
and the forces exerted on the structure for a given sea
state are computed according to the linear superposition
principle. The platform in this study is free to drift;
i.e, the constraints of a mooring system are not included.

Wang's approach is very similar to that just presented
by Muga.



CHAPTER 11X
THEORETICAL CONSIDERATIONS

The "Literature Review"” in Chapter II indicates a strong
emphasis on simple wave theory and linearity for deriving the
equations of motion. General agreement with experimental
data has been found insofar as to when the testing procedures
had been held rigidly within the boumds of critical theoreti-
cal assumptions. This study will also have certain simplify-
ing assumptions which has been regarded as standard procedure.
However, its general course will tend in the opposite direection
-+=» higher-order wave theory and non-linearity.

Simple wave theory is based on the premise that motions
are sufficiently small to allow the free surface boundary
conditions to be linearized (this will be pointed out in the
development which soon follows). In particular, terms involv-
ing the wave amplitude to the second and higher orders have
been considered negligible., If the wave amplitude is large,
the small amplitude considerions are not valid as discussed
by Dean and Eagleson [5], and in aay theory it is necessary
to retain higher-order terms to obtain an accurate representa-
tion of the wave motion., In many applications offshore, it is

the extreme non-linear waves which possess a wave height-wave
17
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length ratio that cannot be considered as small &nd which are
of primary importance,

The second and higher corrections are well developed in
texts [ 5,21,42] and other literature [39,40] and will be given
only token coverage here. A full derivation of the second-
order wave theory applied in this study is presented in Appen-
dix A,

The theory of two-dimensional gravity waves on the sur-
face of water is usually known as "potential theory of
surface waves”, The wave crests are of infinite length,
uniformly spaced and parallel to each other, and are advaneing
in a normal direction at a certain celerity C, With in-
finitely long and wmiform wave crests, the various func-
tional relationships involved in the wave deacription remain
unchanged for any change of position along the direction
parallel to the wave crests. Only the horizontal distances
x measured in the direction of propagation, and the vertical
distances y have any effect on these functions. Such waves
are referred to as being two-dimensional. Since the wave
form advances at a coastant celerity C, the wave height, and
all other functions inveolved, in particular the pressure depend
on time t as well as the x and y distances; that is, all rela-
tionships have the general form F(x,y,t).

Seawater is assumed to be inviscid and incompressible

which gives two definitions
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Qa.g - % =0 (Irrotationality) , EQ. (1)
and

QY 4 OV = 0 (Continuity) . EQ. (2)

dx oy

Such motion is called "potential"” and is characterized by
the existence of a veloeity potential @ such that the
horizonta}l component of water velocity may be defined by

“"?’ EQ. (3)

and the vertical component by
ve-Q
oY EQ. (4)
Substituting Equations (3 and 4) into Equation (2) yields
the two-dimemsional Laplacian which must be satisfied for

any form of potential flow,
VE =0, EQ. (5)

In order to obtain an explicit expression for pressure,

one xust integrate the Eulerian equations of motion

‘%%'%%*%*V%' EQ. (6)
and
-%%5-%-}%*'?%, EQ0(7)

to obtain the integrated form of the Bernoulli equation in

terms of pressure

P=- ggy +Q%€- S(u?+ v3), EQ. (8)
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It is at this point that secend order theory begins to
deviate from simple wave theory. The small amplitude wave
theory is based upon the assumption that all motions are so
small that the quadratic terms u? and v® in Equation (8) are
negligible. The complication comes from the faect that Equa-
tien (8) is a mon-linear boundary condition; i.e., the pres-
sure intemsity at the wave free surface (y<7) is a constant,
The differential equation (the Laplaecian) remains the samej
but the retention of higher order terms to be satisfied at
the boundaries does indeed complicate the solutiom.

Since the vave form propagates at a comstant celerity C

without change in shape, one may reader the wave train sta-
tionary by superimposing a uniform current velocity in the
opposite direction, therefore effecting steady motion with
respect to a statiomary frame of reference. This is illus-
trated in f‘lsure 2.

The differential equation as givem by Equation(5) has
the following boumdary conditions:

1) At the seabed, y = -h, flow does not occur, i.e.

vw-%%-:Oaty--h. EQ. (9)

2) At the free surface, y = » a dynamic condition is
the requirement that the total emergy along the free
surface must be a constant, Q. This conditiomn is
derived from Equation (8) by letting the pressure
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be constant at the free surface, them
N+ %é[:(u-c)3 +v]=Q. EQ. (10)

3) The final boundary condition which must be satisfied
is a kinematiec condition which requires that no fluid
be transported across the statiomary free surface,
This condition is formulated by requiring the the
resulting veloeity vector to be everywhere tangent
to the free surface, i.e. ,

%1:-.: =$C y T Y =7, EQ. (11)

_ﬂy&@hlUdLek line v |

v \/eioc\{j
ComFOnu\‘f:s
h
u~C
Sea bed

VA A A A Ay A A AN ey ey G B BV AN A AN S AR AR AR A A AR AN A AN A AR A A R AN

Figure 2¢ Stationary Wave System.



22

A perturbation technique illustrated by Dean and Eagleson
[6] is used to solve the two dimensional boundary-value prob-
lem and is giveh full detail in Appendix A. The results are
expanded to three dimensions by letting the horizontal x
distance become xcosa + zsina where a is the angle of incidence.

This is illustrated in Figure 3.

crest

crest

hull-column

\\\huu-cdumn

Figure 31+ Three-dimensional wave system,
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Note that the wave train in the above figure is shown to be
propagating in a general negative direction. Thus, the
results of the boundary-value problem are modified by
changing the radial frequency ¢ to -o.

A typical hull-column segment of the vessel is shown
in Figure 4. The origin of the coordinate axis is placed
at the center of gravity by shifting the origin (which was

at the mean free surface) downward a distance b.

. _,__dc__‘1
y calm water
level : i )
i
.___T~___

C.G.

Figure 41 Typical hull-column segment.
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The required results of the boundary-value problem

modified to fit the situation are summarized as follows:
Veloglty Potential
g = acc—"ih—kﬂﬂzsmﬁk(xcoaa + zsina) + ot]

sinhkh
2;( )Cs—ﬁng—(hﬂﬂ)-sinﬂk(xcosa + zsina) + ot] ,
EQ. (12)
Waye Profile

7 = acos[k(xeosa + zsina) + ot]

+ l mm—(costhh-irZ)cosZ[k(xcosa + zsina) + ot],

X sinh’kh
EQ. (13)
cl t
X = dixection
- - &8 acoshk(hty-b)
u ZﬁCeos as cos[k(xcosa + zsina) + ot]

. 3(,&2)’ Ccopﬁ‘lﬁ%ﬁ%‘%‘.ﬁlwsz[h(xeosa + zsina) + ot] ,

EQ. (14)

y-direction
Ve - %B%Mﬂlsm[ k(xcosa + zsinx) + ot]

3 !
-3("15) CWnnsz(mosa + zsina) + ot] -

EQ. (15)

Z=direction

- Qﬁcamamgmmeos[k(xcoaa + zsina) + ot]
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-B(nf)a Csinx E%&{I%ﬁlcoﬂ[k(xcosx + zsinx) + ot].
£Q. (16)

Particle Accelerationg
x-direction

»
u =

e
Qf‘r’:'

u du
5 +v%}? Wy 0 Q. (17)

SV 4bV_,
+v6y 52 EQ. (18)

< °
i
Sl
5] ?E'

Lo
]
alz

+v¥ 4w
6x oy 6z ' EQ. (19)

It is noteworthy that the particle accelerations including
the convective terms are derived directly from the pressure
gradient relations developed in Equations (6) and (7). Pro-
ceeding, it is verified that the above relations for particle

accelerations can be expressed in terms of pressure gradients,

or
a = --& %5 . EQ. (17a)
v = -é %3!; , | EQ. (18a)
IR .g.g . EQ. (19a)

The pressure gradients which follow are fully developed

in Appendix B, beginning with page 162.
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Pregsure Gradjents
x-dixection

%5 = -(Ay + As)kcosacoshk(h+y-b)sin[k(xcosa + zsina) + ot]
-2Ajkeosacosh2k(h+y-b)sin2[k(xcosa + zsina) + ot]
+2A3kcosasin2[k(xcosa + zsina) + ot]
+iAgkcosasin4[k(xcosa + zsina) + ot]
+6Askcosacoshk(h+y-b)eos3[k(xcosa + zsina) + ot]
times sin[k(xeose + zsina) + ot]
+2Askeosasinh3k(h+y-b)coshk(h+y-b)
times sin[k(xcosa + zsina) + ot] ,

E_;Q. (20)
yY=-direction

%’-5 - (AI-I-AS)ksiﬂzk(hw-b)cos[k(xcosa + zsina) + ot]
+2A2ksinh2k(h+y-b)eos2[k(xcosa + zsina) + ot]

- 2A3ksinh2k(h+y-b)

-4A4ksinhék(h+y-b)

+2A ksinhk(h+y-b)sin®[k(xcosa + zsina) + ot]

times cos[k(xcosa + zsina) + ot]

- 6A gksinhk(hwy-b)eosh’ k(h+y=b)

times eos[k(xcosa + zsina) + ot] ,

EQ. (21)
Zz=direction

%{ = -(A,+ Ag)ksinacoshk(h+y-b)sin[k(xcosa + zsina) + ot]
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-ZAzksinacoshZK(h-l-y-b)sinZ[k(xcosa + zsina) + ot]

+2Aksinasin2[k(xcose + zsina) + ot]
444 ksinasin4[k(xcose + zsina) + gt]
+6A5ksinacoshk(h+y-b)cos3[k(xcosa + zsina) + ot]

times sin[k(xcosa + zsinax) + ot]
+2A5kslnasinh°k(h+y-b)coshk(h-ry-b)

times sin[k(xcosx + zsina) + ot] ,
Q. (22)
The coefficients Ay, Ays Ags Ay» and Ag arve defined in
Appendix B, page .

Equationg of Motiom
The semi-submersible drilling vessel shown in Figure 1

will be treated as a rigid space frame whose distances be-
tween members are comstrained to remain absolutely fixed.
This is to say that displacements due to elastic deforma-
tiens can be safely neglected in deriving the equatioms of
motion.

The gemeral motion of a rigid body can be defined by
six scalar differential equations corresponding to the six
degrees of freedom, three linear and three rotational degrees.
Nara [37] gives the equations of motion based on Newtom's
Second Law for'a tigid body im: their most general form as
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MX = 2!-‘¢>rcesx . EQ. (23)
MY = zForcesy . EQ. (24)
MZ = zForcesz y EQ. (25)
L ) - 3 - 1
- azHy 4 asz = ZI“Ioments;x ’ EQ. (26)

Y - 7 - {

Hy - 6H + GH = zuomentsy ’ EQ. (27)
.y - ‘ .

. " ony + 6xHy- ZMonentsz ' EQ. (28)

where
! - -
He = Iyx %%~ Ixy%y = Ixz 9z 0 EQ. (26a)
H =Ly Syt xyyc}'; - 1, 6, EQ. (27a)
] . . -
H, =1,,6, - Iyz°y +I1,,0, EQ. (28a)
and

'y =1 § - Ixy'&y-Ixz'&z ) . EQ. (26b)
Hy =, G, +1,6 1,6, , EQ. (27b)
® o o P
H, =-1,0,- Iyzay +I,,0, . EQ. (28b)

where Equations (23,24, and 25) define the linear displace-
ments of the mass center; and Equations (26,27 and 28) define
the rotational motion.

The following sections will derive the terms that are

included in above equations which will be summarily rewritten
at the end of this chapter.

Rigid Body Rotation
In order to avoid the problem of dealing with the inertia

terms which would be variables for a fixed coordinate system,
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it is convenient to define a stationary frame of reference

XYZ located at the center of gravity at time t = o (these
axes define the initial position) and to rigidly attach a
second set of axes xyz with the origin at the center of
gravity that is allowed to rotate. In essence, the rigid
body will have no motion with reference to the rotating
frame. The two systems of coordinates are illustrated

in Figure 5.

' )

C.G

DY

Z

Figure 51 Stationary (XYZ) and Rotating (xyz) Coordinate

Systemn,

In deriving the velocity and acceleration terms that are
to be later substituted into the equations of motion, it is
desirable to retain the full non-linear effect of rotation.

Past research has assumed small values for the roll (6), pitch
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(¢) and yaw (@) which linearizes the differential equations.

It is agreed that the small angle assumptions are probably
valid as long as the vessel remains at its drilling draft for
which it was designed to operate (partially submerged as

shown in Figure 1), however, this is a very definitely invalid
assumption when the vessel is at transit draft where only

the lower hulls are partially submerged. Then too, in this’
study the non-linear constraints of the mooring system are'

definitely affected by even small rotations in yaw.

Since the frame of reference adopted for the equations
of motion are rigidly fixed to the vessel and moves with it,
the position and orientation of the vessel must be relative
to the stationary axes XYZ. Also, since this problem deals
with finite rotations superposition of the angular displace-
ments are no longer valid. Goldstein [12] gives some insight
to this problem. Suppose A and B are two vectors associated
with transformations A and B, To qualify as vectors they
must be commutative in addition:
A+B=B+A.
But, the addition of two rotations, i.e., one rotation per-
formed after another corresponds to the product-zﬁ of the two
matrices., However, matrix multiplication is not commutative,
AB # BA, and hence AB are not commutative in addition and
cannot be accepted as vectors. By necessity, the concept of
finite rotations must be compromised.

The problem of determining the position and orientation of
the vessel relative to the stationary axes at any time At

is solved by deriving a general rotation matrix. The elements
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of which will be the direction cosines of the rotating axes

relative to the stationary axes. This derivation will be the
product of three successive orthogonal rotations in a specific
order which proves to be extremely 1mportant.

The first rotation (pitch) is counterclockwise about the

z-axis.,

4y

- X

Figure 61 Counterclockwise Rotation About the z-axis.
The transformation matrix which defines the orientation is

wirtten as

cosy¥ -siny 0
Ay = sing cosy 0 ’ EQ. (29)
0 0 1

Here, an important point that should be observed in the

above rotation and those that follow is that for orthogonality
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to be preserved, the determinant of Equation (29) must equal
+1 or -1, Further, for the rotation to be "proper" the deter-
minant must equal +1. A determinant whose value is -1 reveals
an "improper" rotation even though it may be orthogonal.

A second rotation (roll) about the x-axis is shown in

Figure 7.

4Y

Figure 7: Counterclockwise Rotation About the x-axis.

The transformation matrix is thus,

1 0 0
A, = |0 cosb sino| . EQ. (30)

0 ;sine cosb
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The third rotation (yaw) about the y-axis as shown in

Figure 8 has the transformation

i
(AN - X

1

Figure 8: Counterclockwise Rotation About the y-axis.

cosf 0 -sing

\g w!| O 1 0 ' EQ. (31)
sinf 0 cosf

A = [xﬁx,ijr. EQ. (32)

Therefore, with angular displacements of pitch, roll and
yaw the new position of an arbitrary point within the
rigid body relative to the stationary axes is given by

X = A, X+, y+ 1, z EQ. (33)

Y = A X+ Ay + Ay, 2y EQ. (34)
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Z =% X+ 05 Yo+ A2, EQ. (35)

where the small (xyz) indicate the coordinates of a point

on the rotating axes. As mentioned earlier, the elements

of the general rotation matrix are the nine direction cosines.
These terms which are somewhat lengthy are given in Appendix B,
page 139, The correctness of this transformation has been
verified by the rule that the sum of the direction cosines

squared must be unity,

3 2

2
2 2 2
Ay, T o Ag, Ay = 01, EQ. (36)
2 2 2
Aggt Agp + Agg = 1

A second test given by Goodman and Warner Dﬁ] specifies that

A + A A + A A =0 ,

v al 12" 22 /3" 23

M/ lal + A/zlaa + Alaxaa = 0 4 EQ. (37)
A + A A + A A =0 .,

21 3l 22 32 23 a3

In addition, to preserve the right-handed nature of the

co-ordinate system, one must satisfy the relations,

Ay T A Aot R R,

3z 13 Moy = Ny Ay ! EQ. (37a)

33 1/ 33 /3 a3/ .
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The direction cosines of the general rotation matrix does

in fact satisfy Equations (36, 37, and 37a).

This derivation has been similar to that for Eulerian

angles found in the texts [11, 13, 24, 36]

The total angular displacement along the axes XYZ is
0 ] 0
T TT T T T

The angles of rotation in terms of the Buler angles and

with respect to XYZ are now written as

G, = ¢sinfcose + ocosf , EQ.
6y = 8 - ¢sine , EQ.
@, = Yecosfcoseé - 0sind . EQ.

The inverse which is with respect to xyz follows

Gy = 6cos ¥ + Psinycose , EQ.
cT-y = flcos¥ cosé - Osiny, EQ.
a:.z = %"’ ¢Sin9 . EQ.

(38)

(38a)
(38b)

(38¢)

(39a)

(39b)

(39¢c)

Angular velocities in both axis systems are obtained by the

simple division of At . One should note that for the special

case of 6=f= ¥ =0, the angular velocities reduce to

X X EQ.

(40a)
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y EQ. (40b)

EQ. (40c)
which is a condition that must be satisfied.

The angular accelerations are taken as the total time
derivatives. For the XYZ system the acceleration components
are

0y = QU'sinﬂcose + ¢¢eos¢c‘ose - s/’/ési.nﬁsine

+ Bcosf - éfsing , EQ. (41)
&:}= - Jsine - Y8cose + ¢ ’
EQ. (42)
&= {cosPcoss - ¥PsinPcose -
YécosPsine - osind - dfcosP -
EQ. (43)

Derivation of Forces

The theory is clarified somewhat by the top view of the
superstructure in Figure 9. Each of the horizontal members
are divided symetrically about its respective column. The
dashed columns are ficticious (columns with zero diameters)
and serve only as a convenient computational scheme. The
dashed lines depict relatively small diameter members which
are not included in this analysis. The hull-column segment
shown earlier in Figure 4 is considered typical for those

which the hull lies paralled to the x-axis.
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Figure 91 Top View of Superstructure

The forces to be derived in the following analysis are

force perturbations from the case in which the vessel floats
in a calm sea, Three critical assumptions which greatly

simplifies the force derivations merits mention now. It is
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assumed that the presence of the body in the sea does not
alter the wave form in any manner; and, the physical dimen-
sions of the members are sufficiently small compared to the
wave length such that the motion of the sea may be considered
uniform across a column or hull diameter. It is further
assumed that forces on the hull sections are concentrated

at the intersection of the hull-column centerlines; whereas,
the horizontal force on a column is concentrated at the mid-
point of its instantaneous wetted length. These assumptions
appear to be the most critical. Other simplifications will
be pointed out as the analysis proceeds.

The derivations that follow are somewhat repetitious;
for example some of the hull forces in the x and z direction
differ only by a trigometric function. However, some forces
due to oblique flow are not applied to the hulls laying
parallel to the z-direction because they do not possess an
exposed end. It is primarily for this reason that all forces
will be given consideration even though some will be left
which contains an integral to be evaluated. The full detail
of the integrations are found in Appendix B. Those forces
which will be considered in the given order are as follows:

a) Forces due to interaction between the vessel and
the sea.

b) Forces due to varying bouyancy.

¢) Hull forces due to oblique flow.

d) Mooring line forces.
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e) Wind forces,
o _Intera o d
The interaction between the sea and the vessel involve
the concepts of added mass, drag, and pressure. In fluid
dynamic systems where forms accelerate relative to the fluid,
Milne-Thompson [27] indicates that the presence of the sur-
rounding sea effectively increases the mass of the moving

form by an amount AM proportionately equal to the mass of
fluid displaced. The AM will be referred to as w~he added

mass and is defined by

AM = CM(body volune) ,

where Cy is an added mass coefficient. The force exerted on
the form opposite in direction of motiomn is proportional to
its relative acceleration through the sea. This i3 basically
Newton's Seeond Law, F = ma.

The general equation of the acceleration vector of a
point P on the vessel due to motion in a calm sea is well
known from vector mechanies as

£Fe R+ (&%) + 8x(BxT) + a + 26xv , EQ. (44)
where the terms are lidentified as follows:
R = acceleration of the noving origin with respert
to XYZ.
(Gx3%) = tangential acceleration of P considered as
fixed in the xyz.

5x(8x%) = normal acceleration of P considered fixed

in xyz.
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a = acceleration of P as measured in the moving

system o

Zéxv = Coriolis component of acceleration due to the
motion on a rotating path.
The last two terms a and 20xv will be considered negligible.
Added to Equation (44) will be the acceleration cf the water
particles averaged over a length of the moving surface. This
gives the acceleration of a moving body relative to the sea,
o m . . o o
V=R + (oxe) + ox(oxe) - " J‘;Edé . EQ. (45)

Note the minus sign prieor to the integral; this is due to the
previously defined negative celerity C which is included in
the particle acceleration é. Note also, Equation (45) is de-
fined as a vector. The required.angular velocities and ac-
celeration components have been derived, Equations (38, 39,
40,41, 42 and 43) respectively. With these, the tangential
acceleration components are determined by the components of

the definition

. i J k
(oxe) = {6, & 6, EQ. (46)
X v z
which yield
(x@), = (2 6, - y8) 1, EQ. (47)
(ox2), = (x &, -28) 3, EQ. (48)
(ox2), = (v &, - x &)k , “BQ. (49)
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Likewise, the components of the normal acceleration are

obtained from

i 3 k
ox(ox@) = G ¥ 0z
[z 6y - ¥ G, Jlxé,-26][y 6 -x éy]
EQ.
which give

[ ox(ox@) 1, = [ 6y(yé,-x6.) - 6,(x6,-26,) ],  EQ.
[ ox(oxR) I, = [ 6,(z6,-y6,) - 6,(y6,-x6) 1,  EQ.
[ ox(0x32) 1, =1L 8, (xd,-26,) - oy(zéy~yéz) T EQ.

For motion in the horizontal directions, the hull-
column segments are treated separately. And, for the hull
sections only the forces due to the motion in the direction
normal to the hull's longitudinal axis are considered. The
forces on the hulls are assumed to be concentrated at a
point where the centerlines of the hull and column inter-
sect; whereas, for column motion normal to its longitudinal
axis, the force is assumed to be concentrated at the mid-
point of its iastantaneous wetted-length.

First, considering the hull forces in the z-direction,

only those which lay parallel to the x-axis are eligible.

(51)

(52)

(53)
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The theory is complete for the hull force exerted by the i
relative acceleration of the added mass and may be written

directly as

[

Fhaz =AMV, o Q. (34)
where
ﬁhz =7+ yh6%°zc6y(zcéy-yhéz)
Xe + %Lh
+ %h [x6,6,-x8~W(x,y,,2 ) Jdx - " EQ. (55)
*c T %Lh

The horizontal forces on the column are are determined
similarly except that the wetted length in which the force is
distributed is a variable due to waves and the motion of the
vessel itself. The approach taken is to evaluate the in-
tegrals with limits that correspond to a calm sea and then
multiply by the following exposure correction factor

wetted length .  wave . vertical
s(t) = in calm gea amplitude displacement .
wetted length in calm sea EQ. (56)

This is the proportion ©f instantaneous wetted lemgth to
vetted length in a calm sea as a function of time. This
correction will be applied to all horizontal column forces.
The force exerted on the column by the added mass acceleration

may now be written as
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Fopa ™ -s(t:)A!*iezTI':z . EQ. (57)
vhere

LT = '.- o - X ] 3 .o 0

VCZ 2 xC ovy zc E'y + Tx(xc rz zc rx)

b
+1 | D+ yo5 05 - Wxgyiz)dly, B (58)
Yn + 44,

and

Lo = b-¥p- 44, EQ. (59)

Likewise, witih appropiate components of tangential and

normal acceleration the forces in the x-direction are givem

by

Fryg = - My Vi s EQ. (60)
and

Foxa ™ 'S(t)AMcx%’cx ’ EQ. (61)
where

- “- o - ° 3 . B - .
Vpx = X Vp T %X, 0z + G}(yh Tx Xe G"’y)

2o * 3l .
+1 4 (26 +z20, &g - ulxgyyez )az ,

L y
zq - '%Lh EQ. (62)
TG = Z,0°)

(1] a
ox c’y ey 2V e Yz eI x
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b
. %a [y 3 = 7 &P ooy + Wxgeyez)ldy .
Yp + 3% EQ. (63)

For motion in the vertical direction, only the hull is
considered to have an added mass, In this direction all
hulls (1-24) are considered. The correspomnding force due
to the interaction is

Fya = - AthVhy ) EQ. (63)

where

_‘__ (1] rY ] *"
V.

- - - 3
hy Yoz, ) +x, 0, yh(cr + g~)

x +1
+ cl"y(z¢ €y + X ) = _J_fv(x.yh.z Jdx

2, +th EQ. (64)
- Sy v(x -yh-z)dz '
—Z;* 2e ~ %Lh
and
5§ m = {‘1) Jma-11s g U0 : i Tmen - 17-24
Prag Foxces Due to Interaction

The concept of am opposing force due to fluid flow past
a body is fundamental to fluid mechanics. This force is
commonly referred to as dynamic or square-law damping and is
given by
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Fy = - JRCpAVIV/ EQ. (65)

where A is the projected area normal to the direction of

flow and CD is a non-dimensional drag coefficient. The

absolute value signs are to insure that the resulting force
will be opposite in direction of the relative velocity V.
The components of relative velecity V are found from

the vector egquation’
Se
V=k+(Fx0) -2 | BdT EQ. (66)
(¥

wvhere
R = the velocity of the woving origin (C.G.)
referred to XYZ.

(T x§) = the time derivative of © , the pusition
vector to a point P within the moving
system, due to the rotation of xyz.

f2
13; Bds = the water particle velocity averaged
Z over a lemgth and is referred to XYZ.
The components of the product are obtained from the defini-

tion

5
(a—_x§) = o G':y g"" ’ EQ. (67)
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which yield the desired components

(oxe) = 26, - yé, ° £Q. (68)
(3x§)y=. x6, - z6, . EQ. (69)
(ox@),= y6, - x5, EQ. (70)

By making the appropiate substitutions, the drag forees are

written as
Fezqa = ~S(t)Dg, Ve, vezl ’ K. (71)
Fpoq * -nhzvhzlvhz 0 EQ. (72)
Foxd ™ S(t)Dchex Vox| K. (73)
Fixd ™ “Prxnx|Vex| EQ. (74)
Fhyd = “Phy hylth| ’ EQ. (75)
vhere

b

ch = 7 - xe Qt'y'l' %c [y GLX'V(XCQYQZG)]dY s EQ. (76)

yh"'ldh

ot .l.x.h
V., =2+yh03;-%h [xcr + w(xeyp ez )]dx o
Xo = 3Ly BQ. (77)
) b
Vex = X + 2, &y - % [y o, + ulxgeyez Jay »

Y * J“‘n | EQ. (78)
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1
2o * 3y
th =X - yhd; +~%h [zdy - u(xc.yh.z)]dz ’

- X
2. " 3 EQ. (79)
vhy =Y 4 xcdz - zcdx
1 1
Xe + ZLh Ze +'2Lh
- é?ﬁ v(x,yh,zc)dx - %5? V(xc:YhoZ)dz s
h
- 1 -1
Xo = 9y Ze ZLh
EQ. (80)
and
1, j-m, m=1-16 1,4 jen, n=17-24
éjm = ? 6Jn = *
0 ’ j"m 0 ’ j-n

Note once again that the resulting drag forces on the columns
are corrected by the exposure factor S(t).
Wave Damping Forces

Haveloek [15,16] and Ursell [43,44] have thoroughly
investigated the resistance and wave-making phenomena of
oscillating cylinders., The damping force of the wave is
similar in appearance to a linearigzed drag force, being
proportional to the relative velocity and has often been
confused with a viscous drag. But the fluid has been

defined as inviscid which in essence neglects forces of

a viscous nature,
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Following the work of Havelock and Ursell, Wang [46]
has termed the damping of the wave on a vertical cylinder
as negligibly small compared to the forces that arise on a
submerged cylindrical hull, This damping force was found
to be a function of the oascillating frequency, depth below
the free surface, mass, the radius of the submerged cylinder,
and directly proportional to the vessel velocity when
multiplied by a damping parameter. The wave damping forces

assoclated with this phenomena are defined as

Famx = B(osyy/TImOV, . EQ. (81la)
dey = B(o,yh/r)mavhy ’ EQ. (81b)
Famg = B(Osyy/TImeV, EQ. (81c)

where B(a,yh/r) is a damping parameter taken from experimental

and analytical data given in Appendix B page 219+ m is the dis-
placed mass of the member, o is the oscillating frequency and
V is the vessel velocity.

Forces Du (o] 2}

The pressure gradients are obtained by differeatiating
the Bernoulli equation and substituting the velocity poten-
tial and velocity terms, or vice-versa. The latter method
1s used to derive the gradients in Appendix B, p. 168 and
will not be repeated here. It is worth mentioning that the
equation so derived for pressure, Equation (B.73), does not
conform to that given by Muga and Wilsen [30] for second
order theory. One might suspect that Muga and Wilson have
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omitted terms that appear to be negligible; for example,
terms divided by (sinhkh)® . Certaimly, this would be a
valid omission for a range of the argument kh which is

defined by
= 20

In essence, whether the term may be neglected or not depends
on the ratio of water depth to wave length, h/A. For shallow
water with a long swell, this term would remain relatively in-
significant. In any case, Equation (B.73) with the higher-
order terms included is used to determine the pressure grad-
ients required by Equation (81).

Since the hulls and columns are of constant diameter
the integration may bé carried out over the lengch only.

For a column, this integration is in the form

b
nd2 B
= - ——-g
Fep = ~S(8) 7 fé'g v -
yh + %‘dﬁ N A—e

The hull-pressure forces are obtained similarly without the

exposure factor S(t). These forces are summarized as follows

b
Nz
Fezp - - §-(2:-Q bz dy ’ EQ. (82)
Yn + 4%
x_ + 4L
nd? c 2
thp--—l.}ll‘sj. g—sdx. mo (83)
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b
s(t)rd )
pm.-_z._ﬁ 2 gy , EQ. (84)
Y * 3%,
zc+-%Lh
- - nd AP
thp —7&2 SJn > dz , EQ. (85)
Ze = 3l
xc"'%"‘ﬁ b
. md 2P ) s(t:)m:l’E dP
xg = gy Yo * 34,
Ze * 3y
3
- l'_:h Sim J2B az EQ. (86)
J 3y
Ze © %Lh
where
ly jm=m me=1-16 1, j=n, n=17-24
0O, jem 0, j¥n

This completes the derivation of forces due to the in-

teraction of the vessel and sea.
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Force Perturbations Due to the Rate of Change of Momentum
Newton's Second Law is actally defined by

- d
F dt(mv) ’

which equates a force to the time rate of change in momentum

and when expanded becomes
F=nde + v§2 . EQ. (87)
The first term, force due to linear acceleration has been

accounted for already; therefore, the force in question
becomes

F = V%% s EQ. (88)
The existence of the mass derivative dm/dt is due to the
continuous change of the column'’s wetted length in calcula-
ting the movement of the displaced mass of fluid. Differen-
tiating Equation (B.43) with respect to time, the instan-
taneous &etted length of a column, and multiplying by its
cross-section will produce the above derivative. After

this operation the force components are given by

3
. md d
F oy Vs 2L AW EQ. (89)
nQda- d
Foxm = ° _.E.Svcx HEAWL , EQ. (90)
- . md3- d
Fcym —--z;-ﬂvhy SEOW EQ. (91)

where
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adEAWL - ;((xc.b.zc) - (Y - zceoaoé
- xcsineésin¢’+ xccosecoss"?Z
- yhsineécosfb- yhc03031n¢¢7 . EQ. (92)

In a similar manner, the hydrostatic bouyancy is perturbed
due to the simultaneous change in bouyancy with a change in the

colum wetted lemgth., This perturbation is given as
F. = -0g"d8 ay EQ. (93)
cb ggs AW, *
Du Obl Flow

Consider a long cylinder moving at a velocity V at an

angle of incidence a to a uniform stream as shown in Figure 9.

Figure 10: Hull motion in oblique flow.
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It is given by Munk [31] and Bain [ 1] that the nose and

tail experience a lateral force per unit length

. )
%5 -g} g% sin2a 4 EQ. (%4)

vhere S is the area of a general cross-section. If Equation
(94) is rearranged to read |

dF = 0dSVsinaVeosa , EQ. (95)
and integrated from the begimming eof each end section (where
S = mMap/4) to the emd (where S = 0), the force will be given

by
+ fore

3
F = tz%?thosaVaim {_ aft EQ. (96)

Examining the nose section,

it is observed that +Tlhy (or -F\?hz) is analogous to -Vsina

and that 'ﬁcx corresponds to Veosa in Equation (96)., Thus,
the forece perturbations on the end of those hull forms
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affected are

-vhijcxj ’ J-l v2y 3. 6

Fhyo ™ 1%‘51-‘ 0 » 3%1,2,3,6,11,14,15,16 ,
VhysVexy o j=11,14,15,16
EQ. (97)
and
VnziVexs * 3=112:3:6
redp
Froo = — 253 0 » 3%1,2,3,6,11,14,15,16 , &
Wz Vexy  » 3=11414,15,16
EQ. (98)

Vessels of this type are moored by a system of mooring
lines, usually eight or more, symetrically spread over 360
degrees. The mooring lines in this analysis are made of a
very heavy chain which may be idealized as a completely
flexible; inextensible and uniformly heavy string whose
shape may be described by the catenary equationms.

Routh [37] derived the governing differential equations
of motion for a heavy string supported at the emnds but found
them to be intractable for an analytiecal solution. His
approach, and later Pugsley [35], to simplify the system was
to assume a stretched-aut catenary is closely approximated
by a eycloid which is solvable. Later Saxon and Cahn [38] and

Goodey [9] linearize the equations of motion to obtain an
asymtotic solution, This work was to describe the vibration
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of a string hanging between two points, a catemary. The prob-
lem one encounters in a mooring line is basically the samej;
except, the point from which it hangs is in motion and the
arclength is some function of time, This problem is yet
to be solved.

The approach taken in this analysis will be to neglect

the inertia effects of the chain's motion and to work with

ax = Vessel Displacement

Y' Y ‘be—-1
X X
]

- bo >

bd

Anchor Seabed
x ——/
0 ] 0
c c
I .

Figure 11: Typical mooring line in static equilibrium.
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the equations of static equilibrium, Consider the right-
hand side of a catenary shown in Figure 10 as being in
static equilibrium, The curve which forms the catenary
is well-known to be
y = ¢ cosh % ' EQ. (99)
and the tangential tension along the chain is
FeWy > EQ. (100)
where wc is the effective weight per unit length. Note
that a portion of the total chain lemgth lies flat on the
seabed. The tension is found readily assuming something
is known about the system. But, let the end point be dis~
placed to a new equilibrium position at x + Ax, then the
solution for tension is by trial and error. The displace- |
ment causes two things to happen that are difficult to handle:
1) It changes the arclength by lifting a portion of the
chain from the seabed, thus shifting the origin an
unknown distance to the left.
2) The increase in tension simultanecusly affeects the

parameter "c" defined by the ratio

= Ha
C w; L

where Ha is the chain tension at the origin.
It is desirable that the forces that arise in the mooring
system due to the motion of the vessel be in an explieit form

that can be evaluated quickly. To achieve this point, a

-
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separate pfoblem will be formulated to give the tension in
each line at the vessel as a funetion of distancé from the
anchor point which is stationary.,
Here, some of the parameters of the system are defined:

Total length, each chain = 5000 ft.

Effective unit weight = 91.4 1b./ft.

Water depth = 1000 ft,
The arclength with the chain completely slack corresponds
to the water depth, Calculating the tension at this point,
the slack distance, and successively increasing the arc-
length by equal increments to the total length, data points
for tension at the vessel as a function of distance from
the anchor are found. The variation in chain tension due
to vertical displacements is assumed to be negligible. The
computer program in Appendix C makes this calculation for
417 data points. Selected data is plotted in Figure 12 for
a tension range of approximately 100,000 1bs. to 1,200,000
1bs.

These data points are fitted by "least-squares" to a

finite series of Chebyshev polynominals which results in
an explicit equation for the tension Fn at the vessel as a
function of vessel displacement in the form

Fa(x) =2BnPn_1(x) ) EQ. (101)
where the polynominal is calculated in the form of its
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Water Depth = 1,000 feet, 3 1/4 inch chain

1200

1000

800

600

400

Line Tension at Fairlead - kips

200

4000

Figure 12:

4200 4400 4600 4800 5000

X + AX, Distance From Anchor Point - feet
Tension at the fairlead as a function of distance

from the anchor point.
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TABLE 1
MOORING LINE DATA
Water Depth = 1000 feet 3 1/4 inch chain at 105,11 1bs/ft.
X+ AX feet Anchor Tension 1lbs, Percent (o}
4032 (completely slack) 91434 .0127
4070 92217 «0344
4118 93779 -.0012
4173 96171 .0061
4202 97797 -.0108
4252 101130 .0071
4294 104560 .0071
4330 108100 -.0058
4375 113600 -.0022
4430 122280 . 0064
4471 130440 -.0023
4514 141220 -,0036
4559 156200 <0040
4601 174830 .0012
4644 200520 -,0028
4687 236300 .0016
4730 288020 .0006
4773 367980 -,0011
4816 501950 .0010
4859 749470 -,0002

4898 1203500 .0011
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Chebyshev expansion

ZBnPn_l(X) = BIPO(X) + szl(x) + s00 + BnPn-l(X) .

EQ. (102)
The detail of the curve-fitting technique and the solution
for the coefficients are given in Appendix C.
A relative error of the fitted curve was calculated

for each of the data points to determine the accuraey where

Error = E%—F-Q x 100 . EQ. (103)
D

The relative error in the fitted curve is less than 0,01
pereent in the above tension range with elighteen terms; this
could be reduced by using additional terms in the polynominal
expansion during the “least squares® process.

As mentioned earlier Equation (101) gives the tangential
tension at the vessel. In order to separate this force into
its component parts, an identical curve fitting procedure is
used to determine the corresponding angle that the forece

deviates from horizontal. This angle is defined by
6 = arctan[:EFth_l(xD)] . EQ. (104)

The horizontal and vertical restoration forces of the

mooring system are now written as

Fon(xp) = fcos & :E}th_l(xD) . EQ. (105)

and
Fyn(Xp) = -sin 6 DB (xp) EQ. (105a)
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The sign of Equation (105) depends on the location of the

particular mooring line as shown in Figure 13,

[ g
A~ \ [ o

1 4
N

C.G.

o ~
{ S

Figure 13: Top view and orientation of mooring system.
To utilize the above equations for chain temsion, initial
distances from each anchor point.must be apepified which
gives the ténsions at calm conditions,
Wind Forces

The general wind force equation appropiate to bodies

exposed to a uniform wind velocity Vw is
2
Fw = 0.0038AVw ’ EQ. (106)
where the units of Vw is in knots and the area of flat surface

A is in (feet)z. The constant, ,0038, contains the dimension-

less drag coefficient Cp = 1.0,
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The wind velocities used in this analysis together with
the wave amplitudes correspond to the Beaufort Scale of which

an abbreviated summary is given below.

Beaufort Scale
Beaufort Average Wind Average Wave
Force == Degcription Velocity-knots  Height-feet
0 Calm 0 0
1 Light Airs 2 0.05
2 Light Breeze 5 0.18
3 Gentle Breeze 8.5 0.6
4 Moderate Breeze 13.5 1.8
5 Fresh Breeze 19 4.3
6 Strong Breeze 24.5 - 8.2
7 Moderate Gale 30.5 14.0
8 Fresh Gale 37 23.0
9 Strong Gale 44 36.0
10 Whole Gale 51.5 52.0
11 Storm 59.5 73.0
12 Hurricane >64 >80.0

Basic data and calculated areas have been furnished by
the vessel owner; this data is included in Appendix D. From
this data the applied wind forces in the negative x and z

directions are found to be

3
Fx = =69.3056(V_cosacosy)” |, EQ. (107)

and
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-]
Fop © -73.4496(szinu.cose) . EQ. (108)

These forces are applied to the vessel as in a calm sea. The
affeet of roll and pitch are included; however, no attempt is
made to account for the change in the exposed area of the
columns due to motion and wave action.

ary of Fo

The forces on each of the hull-column segments are
linearly superimposed to give a total force. These terms

are summarized as follows:

Vertical Force

F, = - oM y‘\'?hy (Added Mass)
-nhyvhy|vhy| - Chyvhy (Drag and Damping)
1
. Xo t ZLh
ndy, 5P
- 0 6 jm By dx (Pressure)
1
Xc - -2'
b
;S_(_E)_fzi_c f %.f;dy (Pressure)
1
Yo * 7%
1
. 2, * 7ln
d
- ™h in %dz (Pressure)

1
%c = 2
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VigiVexy, I = 1620346 (Oblique Flow)
+ E%:f; 0 y J % 1,243,6,11,14,15,16
+vhijcxj’ J = 11,14,15,16
2
- EQ—EP_QAWL (Change in
bouyancy)

- sin 6 (éjk) ZBnPn_l(xD) .

Horizont Forc

Fx = -5(t)A MoxVex

-S(e )Dcxvcx lvcxl - chsj(t)vcx

b
nda P
“S(t)—zg éjn %idy
Y ¥ %dh

-3
wed
- "T'g ch éﬁAWL

<+ ’.'J‘-': 3.6

(Mooring lines)

EQ. (109)

(Added mass)

(Prag and
Damping)

(Pressure)

(Change in

momentum )

jcostBnPn_l(XD) 0ey §'% 3,6411,14 » {Mooring lines)

- 9 j)='11.14

Fox = = M Ve

“ Dp¥h Vil = CrixVnx

EQ. (110)
(Added mass)

(Drag and
Damping)
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Zo *+ 4y
d3
-."L;h éjn rdz 1+ (Pressure)
Zo © %Lh
EQ. (111)
Fog =-S(t)AMezVez (Added mass)
-Dcz\‘lcz|\7cz[ - cczsj(c)vcz (Drag and
Damping)
. b
-_"_2.9 o f %Edy (Pressure)
T + 34
H]
-P%gﬂ ch .?‘QE(AWL) (Change in
m’omentum)
‘+. .AJ L 3'11
',"caa& anPn-l(xD) { s (Mooring lines)
“ 9 J = 6.14
EQ. (112)
Fop ™A M,V (Added mass)
‘thvhzlvhzl - CooVing (Drag and
Damping)

. X + ilh
.'_’gh b 4m f %de (Pressure)
%, - 4
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. R -thjvcxj, j - 1’2.3'6 (Oblique FIW)
S Rdp 0 § = 15243,6,11414,15,16 .

+thyvcxj. jJ = 11,14,15,16
. (113)
where
s {1 v 3 =k ko= 36,1016
Jk 0, §nk
1y, t=mym=1-17
S - { ,
0, jam
1, j=n,n=17-24
Sin = { .
0, J&n
The uniform wind force which is applied to the vessel in its
entirety completes the equations of motion for linear
displacement,
24
MX = z EchJ-O-thj] - 69.3056(Vwcosacoa¢)a.
4=1 EQ. (114)
24
ME = D F, Q. (115)
=1
24

ME = Z [F gy #¥pnz ] - 73.4496(V_sinacoss)” .
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Egquations of Rotational Motion

Roll Moment

The moments around the center of gravity are determined
by multiplying by the appropiate moment arm. It was pre-
viously specified that horizontal and vertical forces acting
on the hull are concentrated at the intersection of the
hull-column centerline; whereas, forces which act horizontally
en the columns were assumed to be concentrated at the mid-
point of the wetted length. An exception to this is the
horizontal components of anchor line tension. In calm
water, these forces act at the same elevation as the center
of gravity for the particular vessel modeled.

For the roll moment consider the schematic shown in
Figure 14.

The figure depicts only the perturbation forces and
the anchor line force. For the moment equations only the
hydrostatic buoyancy force must be added to the vertical
force perturbation FyJ. This term is equivalent to the mass

of displaced seawater and is given as
3 . 3
+ Bae(o-yy §4p) + dyly] -

The total roll moment contains the effeet of wind which
has been determined from furnished data in Appendix D as
My(8) = -6411,55(Vysingcose)®, EQ. (117)
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Figure 14: Hull-column in large roll.

The total moment is then corrected for the position
change for the center of buoyamncy. The total buoyant force
is equal and opposite in direction of the welght of the
vessel acting through the center of gravity., In roll and
piteh the total buoyant force moves to a new line of action
where it exerts a restoring moment on the veuelw i’br positive
stability., The metacentrie height GM which is the vertical
distance between the center of gravity and the ecenter of
buoyaney in calm water must be determined by statie ineli-
nation tests on the vessel. This bit of data has also been

furnished by the vessel owner. The restoring roll mement
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due to this concept is well-known to be

-MSGMtaino

and is illustrated in Appendix B, p. 181.
With these additions the total roll mcaent is observed:
to be
| 24
M(o) = Z [ -ij(yhjsine-l'zcjcoso) + thj(yhjcooo-:cjaine)
J=1

+¥F,, j(’lj cos8-2, Jaine )

- Fh'zj(zc:l‘dcj)sine - ij(zcjd'dcj)coae:]

- uscutsine - 6411.55(sz11:¢¢030): '
EQ. (118)

where,kj designates the vertical distance from the z-axis to
the mid-point of the column's wetted length. The sign pre-
ceding dc in the mooring line moment is taken as the same as
the z, coordinate,

Included in Equation (118) is the damping moment of the
added inertia of the displaced water since the force terms
consider the addedmmass. Similarly, added inertia will be
included in the yaw and pitch moments which follow.

Yaw Moment

Since only horizontal forces produce a yaw moment the

hull and column forces are added to give a composite Fx' and

J
sz which is shown in Figure 15.
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Figure 15: Typical hull-column with large yaw angle.
The moment equation for yaw is observed to be
M(P) = 2 { ij(zcjcos#xcjsinﬁ) - sz(xcjeosbﬂcjstnﬁ)
+ Fhmxj[(zeJ*dCJ)cosﬁ‘(ijtdCJ)smﬁj
- 1, .
P (Ko s, Joonbi(z, 2 Dotnd]} - oo (11,

The wind forces would impose a minor effect on the yaw mcment ;
this is omltted due to insufficient data that is needed to give

the position of the surface areas relative to the horizemtal

plane,
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Pitch Moment

The piteh moment is found in much the same manmer as the
roll mement. Consider the typical hull-column segment il-

lustrated in Figure 16 which exhibits a positive coumter-
clockwise rotation about the z-axis.,

Figure 161 Typical hull-ecolumn with large piteh angle.

The total pitch moment is readily observed to be
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M) = D [Fyy(x, jconb-y, sins)
- Fpyy(Xe y8ingtyy yoo8y)
- Foxy(Ajcosfx, ysine)
* Fppyy(Xey¥d )siny

- ij(xcji’dc)ain%]

+ 6967, 07(Vweosa,cos ) 2

- M GM;sing . EQ. (120)

Again, the last term is the correction due te the position
change in the center of buoyancy.

Summary of Fauations of Motion

The development of the forces, moments, amgular velocities
and accelerations that enter into the general equations of
motion for a rigid body excited by a wave train with an ac-
companying wind force is mow complete. These equatioms are

rewritten in their final form as

24

MK = 2 [Fexy * Fuxy] + Fux , EQ. (121)
=1
24

MY = z Foy 0 | EQ. (122)
J=1
24

MZ = 2 [Fogy + Fpzgl + Fyp 0 BQ. (123)

3=
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ﬁ; - &ZH; + &yH; = M(8) , EQ. (124)

1, - O H, + 6 H, = M(8) , EQ. (125)

’; - &YH; + &XH; = M(¥) . ' EQ. (126)
Ihrust Requjrements

The objective of this study, to determine the required
thrust of a mechanical system to maintain the vessel within
a reasonable tolarance of location, may be reached by solving
the above set of ordinary differential equations. The solu-
tion for the linear and angular displacements will simul-
tanecusly yield the forces that arise in the mooring systeam
which keeps the vessel on station. It should be recognized
that only the horizontal components of the mooring line
forces contribute to statiom keeping. The required thrust

is equated to the maximum of the resultant sum

T, = max{( D PP+ ( D Fpp,¥ 1% EQ. (127)
in the direction
¥ = aretan [ 2 Fing/ z Frmxl * EQ. (128)

where ¥ is considered positive when clockwise from the pesitive
x-axis.

The thrust moment which is equally important in order to
keep the vessel oriented properly is takem directly from the
yaw moment, Equation (119)

Mr) = Y {ij[(zcjidcj)cosb-(chi’ch)st]
- mzj[xeji'dej)costeJ*dcj)sinﬁ] .
| EQ. (129)



CHAPTER 1V
SOLVING THE EQUATIONS OF MOTION

The six equations of motion are second-order ordinary
differential equations which contain many facets of non-
linearity. No attempt is made to simplify the equations to
obtain an analytical solution. This would be opposed to
one of the minor objectives of this study, the retention
of the non-linear features. It is indeed fortunate that
all second-derivative terms are linear with respect to
themselves. This permits a straight-forward numerical
integration by solving the linear matrix equation

[AJ{%] = b
at each time step.

The equations of motion derived in Chapter I1I are
rearranged where the left-hand side of the system contain
only terms involving a second derivative. 7This involves
transposing the second derivative terms in the "added mass",
Likewise, certain terms in the angular momentum equations
contain first-order terms alone and are transposed to the
right-hand side. The system of six second-order equations

is solved by reducing each to two first-order differential
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equations. This reduction is deduced by letting
X =Y,

yxl -% -fl(y,z) = Yya

, 3
Ya " gz = f (¥, 0¥300s00y, ot)

y =Y
%{ = fa(ya) = y,
v, =LY . £( £)
4% 4\Y;, 9Ya0eeerY, »
z2 =Y,
y‘,: n-g-zé = fr(y;) =y,
3

y, = %E% = £,(Y% oY, 00000y, ot)
o=y,

y7' -4 . £,(y,) =y,

ygl - %{% = fg(Y,_ 'Y, 00009y, »t)
$ =y,

dac = fo(%) =y,

Vo= 555 = Loy, 0y, .....y#/-zt)
Y =y,

v, =4 =1, (y,) =y,

2

ats = T2 (3, o%, 00000y, 08)
with the vector of given initial values



Y, (0)
y, (0)

LY,Z_ o)
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"PROSPCIR" —— Computer Program
The program "Prospetr” is writtem in single-precision

Fortran IV to solve the system of twelve first-order dif-
ferential equations. The program is divided into the
following parts:

a) MAIN

b) Subroutine PHPCG

¢) Subroutine FCT

d) Subroutine RHSV

e) Subroutine DISPL

f) Subroutine FOXYZ

g) Function P

h) Subroutine AMAT

i) Subroutine SIMQX

j) Subroutine OUTP

k) Subroutine PLOIR
MAIN

The "MAIN"-1line reads data and calculates numerous

constants that pertain to a particular hull or columm.
The constants are arranged as vectors containing twenty-
four elements; however, for the ficticious columns (17-24)

the elements are zero. Once, the data is set up, the
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integration routine PHPCG is called to integrate the equations
of motion. Integration will cease and return to MAIN after
a specified number of wave eycles. The MAIN will then return
to read an additional set of data or end on the error message
“END OF DATA SET UNIT 5",
SUBROUTINE FHPCG

The integration subroutine is taken directly from the
IBM Scientific Subroutine Package [1%3]. This subroutine uses
Hamming’s modified predictor-corrector methed to obtain an
approximate solution to a general system of first-order
ordinery differential equations with given initial values.,
It is a stable fourth-order integration procedure that re-
quires the evaluation of the right-hand side of the system
only two times per time step. This feature offers consider-
able savings in computation time as compared with other
methods of the same order of accuracy. However, the method
is not self-starting; that is, ﬁhe funetional values at a
single previous point are not aiou‘h to get the funetional
values ahead. To obtain the starting values, a special |
Runge~-Kutta procedure followed by one iteration step is
added to the predictor-corrector method., At the end of the
integration PHPCG returns to MAIN,

SUBROUIINE FCT

The subroutine *“FCT" has two functionss
1). The constants calculated in MAIN must be updated
with each time step since the angle of incidence
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is a funetion of yaw.

2). To caleculate the vector of derivatives in the
matrix equation when called for by the inte-
gration subroutine "PHPCG".

Values of the defivative vector are obtained by
calling the Subroutines RSHV, AMAT, and SIMQX. RSHV cal-
culates the elements in the right-hand side vector and
AMAT calculates the elements of the coefficient matrix.
Then Gauss-elimination (SIMQX) is applied to solve the
system of linear equations. The vector of derivatives
are returned to the integration subroutine PHPCG.,
SUBROUTINE RHSV

In essence, RHSV (abbreviated as right-hand side vector)
calculates the foreces and moments involved in the equations
of motion less those terms of "added mass" that contain
second-order derivatives (these are transposed to the left-
hand side).

The forces that arise in the mooring lines are de-~
termined by calling the subroutines DISPL and FOXYZ which
returns these values to RHSV,

RHSV returns the right-hand side vector to FCT.
SUBROUTINE DISPL

The only purpose of this subroutine is to determine
the horizontal displacement (X and z directions) of those
columns in which mooring lines are attached. The trans-

formation given by the general rotation matrix is used to
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give the added displacement due to rotation. DISPL returns
the displacements to RHSV,
SUBROUTINE FOXYZ

The horizontal and vertical components of anchor line

tensions are calculated from the displacement values deter-
mined by DISPL with a given initial distance from the anchor
point. The coefficients calculated by computer program in
Appendix C are expressed explicitly in this subroutine. The
tensions are then calculated by the Chebyshev polynominal
expansion where the value of each polynominal in the expansion
is given by the Function P, Values for anchor tension are

returned to RHSV,

Function P

For each term in the Chebyshev expansion a calculation
is made using explicit polynominal equations derived from
the Chebyshev recurrance relation. This function subprogram
accomodates FOXYZ up to eighteen terms.
SUBROUTINE AMAT

The purpose of this subroutine is to calculate the
elements of the coeffieient matrix as called upon by FCT,
The elements are the coefficients of all secend-order deri-
vatives in the equaticns of motion including those second-
derivative terms inbedded in the "added-mass® which have
been transposed to the left-hand side, This two-dimensional
array is returned to FCT.
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UBRO

After the system of linear equations are set up by the
subroutines RHSV and AMAT, FCT calls upon this subroutine to
solve for the unknowns, a vector of first-order derivatives.
This subroutine is identical to SIMQ in the IBM Seientific
Subroutine Package [9]. The solution is obtained by Gauss-
elimination using the largest pivotal divisor. The right-
hand side vector is replaced by the solution vector within
SIMQX before returm to FCT.

SUBROUTINE OQUTP
As the name infers, OUTP is called upon by PHPCG to

print the results of integration at each time-step.
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The computer program for solving the six non-linear
differential equations produces a solution for the six degrees
of freedom (surge, heave, sway, roll, yaw, and pitch). The
theoretical results are plotted versus experimental results
of model tests for head and beam seas for a thirty feet high
regular wave train (see Figures 17, 18, 19, and 20),

The model tests were conducted without any attempt to
nodel the mooring system. Only slack restraining lines were
used to eliminate the model drift., Further, wind or current
forces were not considered in the model testing,

The computer program was idealized to suit these condi-
tions; i.e., all mooring, wind, and current forces were set
equal to zero. No attempt has been made to match the model
test results by adjustment of the added mass and/or damping
coefficients.

Comparison of results of model testing versus the
analytical approach, one finds that the comparison is very
close and well within the inherent basin and scaiing error

associated with model testing.
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Wind tunnel testing, although very desirable could

not be arranged for this study.
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TABLE 2a

MOTION RESPONSE

MODEL TEST - COMPUTER RESULTS

Water Depth = 1000 ft.

Wind Speed = 0 kts.

Current Velocity = 0 kts,

Head Sea, X = 0 degrees

wave Amplitude = 15 ft,

Anchor Chain Tension = 0 1bs,

fg;;f? Wave Length -ft. Heave - ft. Pitch - Deg.
Model Computer Model . Computer

8 328 3.0 3.0 1.56 1.89
9 415 5.7 5.7 1.92 2.34
10 512 11.4 8.1 2.73 2.67
12 737 15.0 12.3 2.55 2,61
13 865 14,1 13.8 2.32 2.46
14 1000 15,0 15.0 2.04 2.25
15 1152 16,2 15.3 1.92 2.04
16 1310 15.6 15.0 1.59 1.74
18 1700 12.6 12.9 1.11 0.91




HEAVE RESPONSE - ft. (Dbl. amp)

Beam Sea, = 90 deg.
Water Depth = 1000 ft,.
Wind Speed = 0 kts.

20.0 Current Velocity = 0 kts.
@ - Computer Results

B - Model Test
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ROLL RESPONSE - DEG (single amp)

Beam Sea, = 90 deg.
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88



89

TABLE 2b
MOTION RESPONSE
MODEL TEST - COMPUTER RESULTS
Water Depth = 1000 ft.
wWind Speed = 0 kts.
Current Velocity = 0 kts,
Beam Sea o= 90 degrees.
Wave Amplitude = 15 ft,.

Anchor Chain Tension = 0 1bs,

Pgriod wave Length -ft. Heave - ft. Roll - Deg.

Model Computer Model Computer

8 328 0.3 0.3 2.14 2.43
9 415 2.1 3.9 2.61 2.78
10 512 7.2 6.3 2.85 3.06
11 620 9.6 9.3 2.85 2.96
12 737 12.0 11,3 2.67 2.82
14 1000 12.6 14.0 2.10 2.34
16 1310 12.9 14.7 1,77 1.65

18 1700 10.2 12.5 1.32 0.88



CONCLUSION
Chapter V

Determination of Thrust Requirements

The differential equations of motion for six degrees
of freedom have been formulated and a method of solution
has been presented. Determination of the thrust needed to
maintain the vessel within a pre-determined radius of the
well and under a given weather and sea condition requires
instantaneous magnitudes and directions of the resultant
force vectors at the fairleads associated with the mooring
lines. Equating the vector sum of the horizontal components
of the mooring line force vectors to a single thrust vector
with its magnitude and direction is basic to the subject
of this entire study. Equating the vector sum of the mooring
line components to the thrust vector is built into the com-
puter program and its value and direction is also determined
as a function of time. Although the instantaneous value of
the thrust vector is required, the general subject of this
study was defined to determine the maximum thrust required
to maintain horizontal displacement within a predetermined
radius over a broad range of weather and sea conditions which
could be further defined as the upper extremities of conditions

90
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that the vessel could be expected to continue normal drilling

operations. This range is chosen as Beaufort Force 7 thru 10.

Simple economics dictate that vessel heading should be
such that resistance to the elements be a minimum. Arbi-
trarily, Beaufort 10 was used for this determination. Thrust
requirements were then determined by incrementing the ap-
proaching weather and sea direction from a head sea (zero
degrees) to a beam sea (ninety degrees). All acting forces,
wind, current, and waves were assumed to be acting in the
same direction. The resulting data is shown in Figure 19
which clearly defines a heading of thirty degrees counter-
clockwise away from the weather as being optimum. It should
be noted that this optimum applies only for the particular
vessel used as an example in this study. The bottom portion
of the curve gives the minimum values resulting from vessel
oscillation., The heading of thirty degrees is used in all
subsequent calculations.

The next step is then to determine the thrust required
to obtain a steady-state displacement. A maximum displace-
ment equal to five percent of the water depth is generally
considered the limit of efficient drilling operations. In
order to determine the thrust required to stay within this
1limit, the pre-tensions in the mooring lines were incremented
and the displacement was determined under steady-state con-
ditions upon integration of the differential equations.

Obviously, larger displacements than desired result with
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Table 3a

Linear Displacements

Water Depth = 1000 ft.

Beaufort Force 10

Current Vel, = 3 kts.

Pre-Tensions = 299 kips (All lines)

Direction MinfNax Min/vax MinMan

(deg.) (fe.) (fr.) (ft.)
1.0 -79.7/-100.4 _— 79.7/100.4

15.0 «74.,4/-94.2 -5.1/-14.4 74.5/9%.2
30,0 -58.0/-75.6 -23.2/-40.7 62.5/85.9
37.5 ~44,2/-59.0 -41,7/-62.9 60.6/86.2
45,0 -30.6/-44.3 -56.7/-81.1 64.4/92.4
70.0 -2.5/-8,9 -92.1/-108.3 92.1/108.7
89,0 —_— -103.6/-113.8 103.6/113.8
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Table 3b

Restorations Requirements

Weather Mooring Line Thrust Thrust Moment
Direction Tensions Min/Max Min/Max
(deg.) | Min/Max (kips) (kips) (kips)

1.0 482/572 519/810 -58/+257
15,0 470/570 531/746 -827/+2718
30,0 390/461 437/645 -2967/+1282
37.5 423/518 420/656 -2691/-4732
45,0 449/568 454/713 -1287/-4836
70.0 534/633 703/907 -800/-4427
89.0 581/640 833/969 -785/-1923




95

low pre-tensions. This observation should have been antici-
pated by noting the soft spring constant at low tensions in
the curve shown in Figure 11. The resulting data is plotted
in Figure 22 for Beaufort Force 7, 8, 9 and 10. It is noted
that the plot approaches linearity and for practical purposes
the extrapolation to the five percent line is of sufficient
accuracy. The thrust values of the intersecting points are
then plotted against the Beaufort Scale as shown in Figure 23
which is the desired result. Other than the maximum and
minimum values of thrust, it is noteworthy to observe the
effects of the oscillating forces and vessel inertia associated
with waves as opposed to the uniform effects of current and
wind forces. The current and wind forces dominate the rela-
tively low amplitudes of oscillation on the lower portion of
the Beaufort Scale.

The theoretical approach to determine the thrust require-
ments is relatively simple compared to tank and wind tunnel
testing of models and is believed to be at least as accurate
as the experimental approach. The small cost of computer
solutions by the method presented compared to model testing
is most significant.

Although, the subsequent conversion of pounds of thrust
to horsepower is not presented, this necessary portion is
straight forward and is available directly from equipment

manufacturers.
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Table 4a:s Thrust Requirements to Maintain

x = 30 degrees

Current Vel.
Water Depth

= 3 kts.

Five percent Horizontal Displacement

Beaufort | Initial Chain | Surge Sway |Displacement|Thrust | Thrust at 5%
Force Tension - kips fec. ft. fe. kips kips
7 330 -46.5 <-34.0 57.6 481 | 489

7 362 -40.6 -30.1 50.5 488
8 330 -49.4 -38.3 62.5 533
8 380 -40.2 -31.6 51.1 549 >0
9 330 -51.7 <44.6 68.3 582
9 410 -37.7 -33.4 50.4 631 632
10 339 -61.9 -37.7 72.5 680
10 410 -38.9 -42.1 57.3 744 762
10 450 -34.2 -37.0 50.34 761
Table 4bs: Minimum Results from Oscillation
7 362 -39.1 -28.7 48,5 462
380 -35.6 -27.1 44,6 460
9 410 -28.2 -22.6 36.1 420
10 450 -17,6 -15,7 23.6 326
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In order to achieve the end result of being able to

calculate the thrust requirements, two major problems
were overcone whose solutions have other valuable appli-
cations,

The first of these problems was the polynominal series
approximation to the catenary which was shown to be quite
accurate. The explicit equations of the polynominals save
iteration on the transendental functions of the catenary
resulting in savings of considerable computation. This is
especially true in working with a system of catenaries
applicable to the spread mooring system. It was found
initially that iteration in each of the eight mooring lines
at each time step during the numerical integration of the
equations of motion was completely impractical.

The second problem was formulating the equations of
motion of the rigid body utilizing the Euler angles and
second order wave theorys both tended to seriously compli-
cate the differential equations. The resulting motion
response program is shown to give good data compared to
model tests. The motion response program has the desirable
feature in that it may be used during the design phase to
minimize vessel motion. Optimization of vessel motion by
model testing alone is cost prohibitive.

The same program used to determine thrust requirements
may also be utilized for mooring analyses of conventional

semi-submersible vessels and determination of maximum
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wvater depth capability of the mooring system.
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NOMENCLATURE
a = Wave amplitude, ft

Vertical distamce from center of gravity

to mean wat:ef level, ft
a = Length of moering lime laying on seabed, ft
n = Coefficient, Chebyshev polynominal expansion
¢ = Catenary parameter, ft
C = Wave celerity; ft/sec.

C.G. = Coordinate position, eenter of gravity
¢ - Drag coefficient, dimemsionless

Cy = Added mass coefficient, dimensianless

C_. = Coefficient, Chebyshev polyneminal expansien
d_ = Column diameter, ft.

dh = Hull diameter, ft.

ltvw.ll‘:,z = Composite drag coefficiemts for a columm,
(1b-gec?)/ft?
th.Dhthz = Composite drag coefficients for a hull,
(1b-sec?)/ft?

F‘ = Accaleration force of added mass, lb.

F b " Vertical column force due to change in buoyancy,

e
1b.
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Fex‘pcz = Total hydrodynamic column force in horizomtal
directions, 1lb.

Fm{'Ecym.ch- Change in column mementum, lb.

chp’Fczp = Wave pressure column force in horizoatal
dimctiw'. 1b,

Fd = Drag forece, 1lb.

F, o = Total hydrodynamic horizontal hull ferce, 1b.

F

F, hzo

hyo® = Hull end forces due to obligque flow, 1b,

Fm.'F“ = Components of mooring line force, 1lb.

thp.thp = Wave pressure hull forece, 1b,

wz = Horizemtal wind force, lb.
F_ = Total hydrodynamie vertieal force, 1b.

F_. = Wave pressure vertical forece om hull column,
1b,
g = Acceleration ef gravity, ft./sec?
GHL = Longitudinal metacentrie height, ft.

GMt = Transverse metacemtric height, ft,

h = Water depth, ft,

H = Wave height, treugh to erest, ft.

Ha = Horizemtal force at anchor, lb,

Iyxtlyytlz; = Principle mass momeats of inertia 1lb-ft-sec®

Ixy.lxzélyz = Cross products of mass moments of imertia,
1b-ft-geec?
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Wave number, ft-1

Coefficlent of accessien to inertia,
dimensionless

Columm length, ft.

M = Mass of vessel, (1lb-sec?®)/ft.

M(T,) =
M(6) M(D) yM()m
M (0) =

M¥) =

Pm=

P,.1(xp) =

Q =

U Vpw =

<
L

Thrust moment, lb-ft.
Total moments in roll, pitch sad yaw, lb-ft.

Transverse wind moment, lb-ft,
Longitudinal wind moment, 1lb-ft,

Wave pressure, psi

Chebyshev polyneminal of order n-1
Constant (Bermoulli equatien), ft.
Catenary accleagth, ft,

Total mooring lime lemgth, ft,

Exposure faetor, cclummn wetted lemgth,
dimensionless
Time, ‘seec

Thrust requirement, 1b,

Water particle velocities in x,y,2 direetima
respeetively, ft/see.

Relative velocity of lmll-ecolumm segaent,
ft/sec,
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V., = Wind veloeity, ft/see,
W = Total effective weight of catemnary
W, = Effective weight per unit length of
mooring line, 1D,
W = Coluzn wetted-lemgth, ft,

Xsysz = Coordinate axis of rotating system, ft.
X,YyZ = Coordinate axis of stationary system, ft,
Xp = Horizontal distance from amchor point

to the vessel, ft.

M., M., = Composite added colusn mass, sec”l

Mg Moy

M, , = Composite added mass of hull, gec- 1

@ = Angle of wave incidence, rad

y = Direetion of thrust, rad

6 = Tangent angle of moorimg line, rad
ﬂij = Kronecker delta, dimensionless

A = Wave length, ft.

J\“ = Direction cosines, dimensionless
¢ = Wave frequency, sec”l

Oxs0ys0, = Angular displacements, rad
©,8, ¥ = Euler angles, roll, yaw, pitch, rad-1
§ = Veloeity potential, ft?/sec
N = Elevation of wave profile, ft.



Q

1

B(G‘oyh/r)
€
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= Mass demsity, (lb-see?®)/ft

3.14159
Damping parameter, dimensionless.

Perturbation parameter, dimensionless,
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APPENDIX A

Congervation of Mass

Consider the volume element and the coordinate system
in Figure A.1.

QV + %(QV)AYJ /QW

/

QW + (Qw)az

7
Figure A.1: Fluid flow through a volume element.

The net "flow of fluid mass across the element's boundaries
in time ATt is

-[&(Qu) + %’(Qv) + -&(Qw)]Ax Ay Dz,
113
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at time t, the mass present within the element is

QAx Ay Az ,

then at time t + & t, the mass present will be

RQAX Ay &z + EQE(Qsz_\.yAz) At

where the second and higher order terms of the Taylor series
are truncated. The net increase in mass in a time increment

At is

ie- AX AY QAZ At .
st ¥

Since mass is neither created nor destroyed this must be

equal to the inflow of mass across the boundaries

Q Az ot o f0(8U) L 8(Sv) | s(w)jax Ay Az At
%EAxAyAzAt (B + byt 52]

which reduces to

.g_QE = -[-5.6§(Q u) + '69;( Q V) + -séz-(Q W)] ®

EQ. (A.1)
Expanding the right-hand side and transposing yields

Q e Q e u v
AR ARCAR AN A5 T 2K

EQ. (A.2)
It is further assumed that seawater, the fluid of interest,

is incompressible which reduces Equation (A.2) to

Su . oV . OW .
sx Toytoz =0

EQ. (A.3)
This result is the well-known continuity equation for an

incompressible fluid in steady or unsteady flow.
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Equations of Motion for a Fluid Particle

The equations of motion for a fluid particle will be
derived on the basis of Newton's "Second Law",

Forces = (mass)(acceleration).
This study assumes that seawater is a frictionless fluid
which implies a zero viscosity and is incapable of sustaining
a shear force. With this assumption the only forces acting
on a fluid element are 1) forces due to fluid pressure acting
normal to the element face and 2) the body forces which is
the force of gravity acting in the negative vertical only.

Consider the fluid element in Figure (A4.2).

QﬂAXA_‘jAZ
DP Ay JAXAE
J '+<P+ €—AJ> XA
| N A /)/
' /
: /
¥

I

A\ AZ :
Jm e e - o 2

—— - P -
y \
/7
, // { (p+ ZPax)ayee
|
4 i

//<:\L Paxo z

(F{-%%;Aé)zﬁxént5

Figure A.2: Forces acting on a fluid element.
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Summing forces in each direction and setting the sum equal

to the mass-acceleration product gives

QAysz - (p + %%M)AYAZ - emmya.z(%é + u-& + v-zl; + v-?z!);

EQ. (A.4)
Qaxay - (p + -2-5 Z)AXsy = QAXAYAZ(% + “'2¥ + v%g + w%g).
EQ. (A.5)

Qaxaz - (p + %gAy)AxAz - BRAXAYAZ =
Q axaysz($¥ + ugf + v%, + wil) - EQ. (A.6)
These equations are easily simplified to read
-3 B -R el evp vl Q. (A.7)

1 o)
-E.g.gu.g%-{-u%—,“‘-bv-gg'ﬁwxgg EQO(A.B)

AR T K R AT R EQ. (A.9)
The last three equations comprise the equations of motiom
for a fluid partiecle in the three coordinate directions.
An_Irrotational Filuid

Further development of the motion of fluid particles is
to be simplified by assuming that the fluid is irrotational
by the previous definition of a frictionless fluid; i.e., if
the fluid cannot sustain a shear force which imparts a moment
around the particles center of gravity the partiele will not

rotate. This is expressed as

% = 3 - B EQ. (A.10)
Yy = F -8 EQ. (A.11)

= 6 - [ ] [ ]
s %(g %!z!) . EQ. (A.12)
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where °xy' Oyz? and °yz are the angular velocities in their
respective planes., Clearly, if the fluid is takem to be with-

out rotation

% = -g-‘;' 9 EQ. (A.13)
¥=3, EQ. (A.14)
Sw _ 6

3y = 5% - EQ. (A.15)

The assumption of an irrotational fluid is fundamental
to the existence of a velocity potential where the field of
flow can be represented by a scalar quanity §. The velocities

of the fluid particle in the coordinate directions are de-

fined as
u = "g% ® EQ. (A016)
v = -g% ] EQ. (A.17)
W = _g%_ . EQ. (A.18)
ce'’ ua

Thus far, we have an incompressible, irrotational fluid
moving in three-dimensional space. It is desirable to utilize
the existence of the velocity potentials by making the sub-
stitution of Equations (A.16, A.17 and A.18) into the con-
tinuity equation (A.3),

Ex(48) + £5(-08) + 8 (L) = 0 EQ. (A.19)

which yields the three-dimensional Laplace equation for fluid
flow
V2§= 0 ’ EQ. (AQZO)
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where the del operator is given as

<7 . L 8
'2';23 + . EQ. (A.21)
Bernoulli Eguacion
By taking a time derivative of the veloeity potentials
- du . 3%
%% e EQ. (A.22)
- 8 = _ﬁ.
" Tt EQ. (A.23)
3
- 4y .é_ait. ' EQ. (A.24)

the equations of motion (A.7, A.8 and A.9) may be written as

%;%E +ulll 4 V'S'i wiy EQ. (A.25)

-3 --.&La%_-{-u%!l-i-v.s!-i-vs!. EQ. (A.26)
-g- l 6y - mé%%% + u%! + v%% + “TE . EQ. (A.27)

Observing that

ug = % =) , EQ. (A.28)

1462, EQ. (A.29)

v%% = % 1%(v3) ' EQ. (A.30)

and since Q is constant for an incompressible fluid one may
write

1 =L@, EQ. (A.31)

% 4 - L@ , EQ. (A.32)

T B=m®, EQ. (A.32a)

and Equations (A,25, A.26 and A.27) may be rewritten as
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S+ + 3+ VB v B2 =0, EQ. (A.33)
L [RE+8+ 7] +uly+ va¥ = 0, EQ. (A.34)
%['%%*%*%Wa]'*“%}z""‘%lz’*g:()’ EQ. (A.35)

Now introducing the concept that the fluid is irrotational and

by Equations (A.13, A.14 and A.15) the last set of equations

reduce to
9 [-g% + 2+ 3 +vi+we)] =0
X ] "Z : ’ EQ. (A.36)
3 -3¢+ R+ 3 +v2 +wH)] =0, EQ. (A.37)
% [-%—%+ g + —}(u“’ +v? + w°) + gy] = 0. EQ. (A.38)
This set is integrated directly to give
- %% + 8+ 5% + V7 +w®) = £,(vaz0t) EQ. (A.39)
- %% + % + ‘%(u2 + V2 + Wa) = fz(X'y,t) N EQD (AJ#O)

-2 iDL v W) by = t
St Q Z( W) gy 3(sti ) .EQ. (A.61)

Observing Equations (A.39 and A.40), one should note that
fl(y,z,t) = fz(x.y.t) . EQ. (A.42)
Subtracting Equation (A.41 from A.40) gives
gy = f£3(xy29t) - £5(xyy,t) . EQ. (A.43)
Observe further that neither g nor y may be a function of

either x or z. This indicates that

f3(x,z,t) = f3(t) EQ. (A.44)

a function of time alone which gives
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f3(y,t) = f3(t) - 8Y o EQ- (A045)

Substitution of Equations (A.44 and A. 45) into Equations
(A.40 and A,41) respectively, one will see that the resulting

equations are equivalent and read as

- 22 +2 5 3?4V +w?) = £45(0) . EQ. (A.46)
For steady fluid flow that does not change with respect to
time at a fixed point

f4(t) = constant, EQ. (A.47)
an arbitrary constant that may be incorporated into ¢ without

change in generality. This final result is

- %% + % +%(u2 +v3+w?) +gy=0. EQ. (A.48)
With this change the horizontal component of water velocity
is now u-C., This system of stationary waves is shown in
Figure A.3.

The differential equation applicable to this system has

been shown to be the familiar Laplace equation. In two-

dimensions this may be defined as

3 2
28+38 -0, EQ. (A.49)

The boundary condition at the seabed, y = - h is that fluid

flow does not occur across this surface,

- 99 _ = -

v=-@-0aty=-n. EQ. (4.50)
At the free surface, y =‘q} there are two boundary conditions
to be satisfied. The first is a dynamic requirement that

the total energy along the free surface be a constant, say Q.
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Formulating the Boundary Value Problem for Finite Amplitude
Wave Theory of Second Order.

The development thus far has been three-~dimensional,
This is to be reduced to two-dimensions by assuming that the
wave crests and troughs are parallel and infinite in length.
This assumption is indeed valid in view of the fact that our
interest lies only for a crest length just greater than the
maximum dimension of the vessel., It is also convenient to
assume that the wave form travels without change in shape and
propagates with a constant celerity C. Further, in order that
the motion be steady with respect to a reference system moving
with celerity C, a uniform current -C is superimposed effecting

steady motion with respect to a stationary reference system,

+y

Mean Water Line

Velocity

Components

u-C

Figure A.3: Stationary Wave System.
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Making these substitutions the steady-state form of Bernoulli's

equation (A.¥8 becomes

+ -a'?[(q-c)"' +v?] = Q. EQ. (A.51)
The second condition at the free surface to be satisfied is
that no fluid be transported across the free surface, i.e.;
the resultant velocity vector at the free surface must be

everywhere tangent to that surface. This condition may be

expressed as
dIn_. Vv X
&% = G-C EQ. (A.52)
A solution to this boundary value problem is to be

‘derived by a perturbation procedure primarily due to the

non-linear terms (u-C)® and v® in Equation (A.51), The

solutions for g , M and C are assumed to have the form

.
3= €8 , EQ. (A.53)

= n
née .Qn 9 EQo (A.Sll-)

1

and

c

-}
'Y n
Co +2.€
€% 1'12:1 ‘n EQ. (A.55)
where € is a small parameter to be determined. Because the
wave free surface is an unknown, it will prove advantageous

to define an expression for a general function f£(x,y) eval-

uated on y = 72_ as

f (X,'Tl) = 0 m| (%“)y_o EQ. (A.56)

which is nothing more than a Taylor series. Further, a
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general function {(x,y) may be defined as

£(3y) = Z,€% (x,y) EQ. (A.57)

Substituting Equation (A.537) into (A.56) and collecting like
powers of € leads to an expression for f(x,Q) correct to the

second order which is

£(xym) =€) + €¥(F, +7, 81) at y = 0. EQ. (4.58)

Now substituting the assumed solution for §, Equation (A.53)

into the Laplace equation (A.49) gives
' 2 2
= S " 3 n -
e[ Z,¢ §ﬂ] * '55"2[216 8,1 =0 EQ. (A.59)

this is expanded as

2 2 182 2 2
G‘D_Q. + ez +ooo+ GMI_ + e'&‘g tase = O.
oxt T ey eyt EO. (4.60)

Collecting like powers of € leads to
2 ] 2 2 2
278 23 2% nr®® L 2%84 - 0.
€ [3;{2 + %'};g] + Ea[axa + aya] toeot € [axa + aya]
EQ. (4.61)
Since € is unequal to zero, it is permissible to set the

coefficients of ¢ and powers of € to zero. The set of dif-

ferential equations to be satisfied now is
2
VE=0, n=1,2y000 EQ. (4.62)

The new boundary conditions at the seabed are
bb-?;n = 0 at y = ‘ho EQ. (A063)

The new dynamic boundary condition at the free surface (y=Q)

is found by expanding the term (u-C)> in Equation (A.51)
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?L + %’g’ [u®-2uC + c3+ v?] = Q, EQ. (A.64)

and substituting the equivalent terms for u and v giving
. 1 2_ 2 S
n-Q+ 35 (G- 2c @ + ¢ + @) =0,

where the unknown constant Q must be expressed in the form

o < N
Q= €Q + 2. €0Q .

EQ. (A.65)

EQ. (A.66)

The second free surface condition, Equation (A.52)

Wu-C) =vaty=n |, EQ. (A.67)
may now be written as ‘

SREY 3-8 at y =7 EQ. (A.68)
Substituting the series definitions of the unknowns é, ‘Q’,

Cy and Q into Equation (A.65),

267 - (. + 2€0)
(B E801% 2L E,08) e, + Zee ]

° n 2 D, S¢n 2
+(eC, +n;€ c) + [ Qn)]} =0, at y =7
EQ. (A.69)
expanding and gathering the coefficients of like powers of

gives this boundary condition in terms of the perturbation

parameter
€I58 - Qo] + elny-o+ S 3R+ Sl
rifn, - @+ PR+ H@&) + @7
+ zclgg' + 2C 1y 2 51+ C + 2C _C,]

+0(e7) =0aty=m . EQ. (A.70)
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Similarly, the second free surface boundary condition given

by Equation (A.68) becomes

€ (C 2 - g?;\) + &c e+ 80 22,

+ C,%%l. -%z - M %;%) =0at y=7n. EQ. (A.71)

From the zeroth order term in Equation (A.70), one observes
that

Q =52 . EQ. (A.72)
Next the coefficients of the first and second powers of

in Equations (A.62), (A.63), (A.70) and (A.71) will be
grouped and solved for the first and second order approxima-

tions respectively,

First Order Wave Theory

The coefficients of € are

V2, -0, EQ. (A.73)
%%l:O@y:-h, EQ. (A.74)
N - Qo+ %n’%g.+§g£1=0@y=o, EQ. (A.75)
and

CRR -Ri-0ey=-0. EQ. (A.76)

Separation of variables [4,41] may be used to solve Equatien

(A.73). Assume a solution in the form

$(xyy) = X(x) Y(y) » EQ. (A.77)
and taking derivatives gives
X"y + Xy" =0, EQ. (A.78)

separation of variables gives two differential equations



126

x" +k’x =0, EQ. (A.79)

and

i

Y"- k?®r =0, EQ. (A.80)

The equations are readily solved and substituted into Equation
(A.77) as
$, = -A cosh[k(h + y) Jsinkx , EQ. (A.81)

where k is defined as the wave number and is equal to

k=20 . EQ. (A.82)
One should note that since the wave form is constant re-
gardless of the celerity, it can be seen from Equation (A.75)
that

Q| = % e EQ- (A083)

Omitting these terms from Equation (A.75) and differentiating

with respect to x gives

%3%;?_‘_‘*_%_;}':0’}7:0. EQ. (A.84)

Now using this result in combination with Equation (A.76), the

term ( @7,/0x) may be eliminated to give

2 82 '
=0 54 +%¥' +0. EQ. (A.85)

Substituting the solution ftn:@v into the above result leads

to

Es Alk’cosh(kh)sinkx - Alksinh(kh)sinkx =0,

3 EQ. (A.86)
or

cg = £ tanh(kh) , EQ. (A.87)

This is the first order approximation for the wave celerity
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Coe
The expression for'Th may be found by substituting the
solution for ®,, into Equation (A.75) which follows

N = gg A,kcosh(kh)coskx EQ. (A.88)

at which the wave crest is located a x = 0, This solution
alone is usually referred to as the small amplitude or Airy

wave theory.

Second Order Approximation
Again referring to Equations (A.62), (A.63), (A.70) and

(A.71), the coefficients of €2 set equal to zero are

V=0, EQ. (A.89)
%%2=0 at y = - h , EQ. (A.90)

Ny - Q + gn%% + -}E[(%%)a + (%?*)2 + zc,%%

2
+ 2Co g%=2 " +cf +2c,Cz]=0aty=0,

EQ. (A.91)
and
2 2
o G ogn - P -0y -0,
EQ. (A.92)

Again, by separation of variables, a second order solution

periodic in x and satisfying Equatioms (A.89) and (A.90) is

easily found to be

92 = -Az cosh[2k(h+y)]sin2kx . EQ. (4.93)

The second order celerity C is obtained by taking the

partial derivative of Equation (A.91) with respect to x
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2 c 2 28,
R R R - %%'
+ zc,%g' + 2Co 3°x§a;a’+ 2Co axay gy =

=0 o

Solving Equation (A.92) for (@7 /ox) and substituting into

Equation (A.94) yields
P Cq 93
- -
' %;42 g %?" 'bxay

%gp +'§Q ész%y - %3 %%'%E"

-

-3
X

B

i

+
éﬁl(’l UOEO C‘Qr—l
B’
©
GDIO

o
b

o
o
<

%?, + .Cﬂo.u %ygl at y = 0., EQ. (A.95)

Substituting the appropriate forms ofm,, §: and §z into

Equation (A.95) and simplifying the result by using Equation

(A.87) leads to
Az sinh®khsin2kx

—6—— sin2kx - Z Et coshkhsinkx . EQ.

Equating coefficients of sinkx and sin2kx gives

2
= E%ALK"EEEH EQ.
Ay = B SIM ?
and

C1=Oo . EQ.

Substituting Az into Equation (A.93) gives the second

term for the velocity potential as

b= - E%%S%HHEEE cosh[ 2k(h+y)Jsin2kx . EQ.

(A.96)

(4,97)

(A.98)

order

(4.99)

The second order term for the wave form ﬂ!is determined from

’
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its free surface boundary condition, Equation (A.91), by
making the necessary substitutions at z = 0, This result
after much simplification is

AK® _ CoC2

Na = Qs - 4g g
312r2cosh?kh 4 h2k] 2
+.2§k C sinh2kh Jcos2kx EQ. (A.100)
Similar to the first order theory one sees that
21,2
@ =g R Q. (A.101)

The only remaining unknown in the solution now is the
perturbation parameter €., This may be specified by setting
the maximum value of the first order wave amplitude equal to
a, giving

a coskx = GEAEQQ coshkhcoskx , EQ. (A.102)

which gives

— a L ]
€ = EA CoooSHKR EQ. (A.103)

Now substituting the appropiate terms into Equations (A.53),

(A.54) and (A.55) gives the desired solutions for velocity

potential,
§ = - %IC Q;l%l.l_kifﬁll Sin(kx - dt)
- % ﬂ_;__z cosh Zkhty) sina(kx - ot) , EQ. (A.104)

the wave form,

n= g cos(kx = ot)

r 3
+ 3 q g?ﬁﬁ%ﬁﬁ (cos2kh + 2) cos2(kx - ot) , Q. (4.105)
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and the celerity ~

Co = (f tan kn)'% . EQ. (A.106)
Note that the celerity in Equation (A.106) is identical to
that of first order, Equation (A.87) since C, proved to be
Zero,
By previous definition the water particle velocities in the
x and y directions are the partial derivatives of the velocity

potential. These terms may now be expressed explicity as

= TH ¢ cosh k(h+v) -
u N o T cos(kx - ot)

3 2 cosh ;k§h+xz -
t 32 (%?) C =inifkh cos2(kx - ot) , EQ. (4.107)

and

= inhk 3 -
v 3? c ﬁéiﬁﬁéniXI sin(kx - ot)
+3 (@7 ¢ slob Zlhdv) ginp(kx - ot) »  EQ. (A.108)

This completes the development of wave theory of second
order used in the equations of motion developed in another

section,
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RIGID BODY EQUATIONS OF MOTION

Three Dimensional Wave Theory

The final results of the second-order wave theory de-

veloped in Appendix A is to be expanded to give the second

Crest
N
(Xcgyhvzc),r1 crest
hull- | -
column lﬁ:tﬁn
\_1_/
}

Figure B-1: Typical hull-column sections in a wave train.

132
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dimension z in the horizontal plane. Consider the figure
above which depicts a wave train whose direction of propa-
gation is at an arbitrary angle o relative to the coordinates
of the vessel., The hull-column sections are typical. Note
that the wave train is travelling in a general negative
direction relative to x and z. By replacing x in the two-
dimensional theory of Equations (A./05), (A./¢7), and (A./0%)
with

Xcosq + zsina
and changing the gign preceding ot and the sign of the

celerity ¢, the new equation for the wave form is

M= gcosacos[k(x.cosa + z sina) + ot] +

coshkh
sinhakh

%{ (cosh2kh + 2)cos[2k(x cosa + z sina) + 20t]s

Hz
X cosa

EQ. (B.1)
‘Qy = %COS[R(XCOSQ + gsina) + ot] +

n'gecoshkh
8 X sinh3kn

(cosh2kh + 2)cos[2k(xcosa + zsina) + ot] ,

EQ. (B.2)

_ H.. .
N, = ESLnacos[k(xccosa + z sina) + ot]

m H® . coshkh
iy 51na§T533EH(cosh2kh+2)cos[2k(xccosa + zcsina) + 20t].

EQ. (B.3)
Similarly, the particle velocities in the x and y directions

may be rewritten as
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(”H)Coo aCOShk(h+y b)"os[k(xcosa + zsina) + ot]

nhkh
- ;(Hﬂ) CcosaCOSh ﬁ Eh =blcos[ 2k(xcosa + zsina) + 20t] ,
EQ. (B.4)
v —-{3j)03$3351313——151n[k(XCosa + zsina) + ot]

sinhkh

%(ﬂ) Csi_nth(h+y— b)

sin/ 2k(xcosa + zsina) + 20t
sinh*kh [ 2k( ) + 2ot],

EQ. (B.5)

and in the z direction as

coshk(h+y-b)

=(T)Csj
w ==(—)Csina T

cos[k(xcosa + zsinco) + ot

2
_.%(EH) CsingSosh2k(hty-b)

cos| 2k(xcosa + zsin + otle
sinh¥kh [2k( a) + ot]

FQ. (B.6)
The particle accelerations are obtained by differentiating
with respect to time t which will be indicated by a dot

above the symbol

. (ﬂH) CosaCoshk(hty-b)

u sin| k(xcosa + zsina) + ot
sinhkh [ ( ) ]

cosh2k (h+y-b)

sin| 2k(xcosa + zsin + ot
sinhfkh [2x( sina) ]

2
+ %(E%) oCcosa

EQ. (B.7)

sinhk (h+y-b)

v = ) OC= TP kE cos[k(xcosa + zsina) + ot]

_ 3(oHy® jesinh2k (h+y-b) | .
H( k) o cos[ 2k(xcosa + zsina) + 20t] ,

EQ. (B.8)
and

* _  (THY resnecOshk(hty-b) . ;
W = (—x)oC51na TR sin[k(xcosa + zsina) + ot]
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+ 3(H)  oCsinacosh2k(hty-b)sin[ 2k (xcose + zsina) + 20t] .
25\ sinh?kh

EQ. (B.9)

Rigid Body Rotation

The vessel is treated as a rigid body free to rotate
about its center of gravity. This system requires six
degrees of freedom to define the vessels position in space.
The six coordinates may be further defined as three being
displacements of the center of gravity relative to a sta-
tionary coordinate system, and three rotations in a moving

coordinate system rigidly attached to the vessel as shown in

Figure B.2.
Y
[
Yy 4
Q¢
- X
ce ~
\’,X
7
Z
Z

Figure B.2: Six degree of freedom coordinate system.
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The angular velocities and accelerations associated
with the roll (e), pitch (%), and yaw (f) are to be derived
by first deriving a general rotation matrix. First rotate z-

axis counterclockwise on a unit circle as shown in Figure B.3.

Figure B.3: Rotation around the z-axis.
The transformation matrix for this rotation is

cosy =-sing O
A, = siny cos¢¥ O .
¥ EQ. (B.10)
0 0 1
Second, revolve the unit circle counterclockwise through an

angle 6 around the x-axis as in Figure B.4.
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R

Figure B.4: Rotation around the x-axis.

The transformation matrix is easily seen to be

1 0 0
Xe= | O cosé sineé *
0 ~siné coso EQ. (B.11)

Finally, rotate the unit circle in the xy plane counterclock-
wige thru an angle g as in Figure B.5. The transformation
matrix is
cosf O -sing
Ag = 0 1 0 .

Si.n¢ 0 cosﬂ EQ' (B. 12)
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N

Figure B.5: Rotation around the y-axis.

The complete transformation to define the position in space
of a point on a rigid body relative to its original position
in the xyz system is given as the product of the individual
rotation matrices

whereas, the transpose A will give the position relative to
the XYZ stationary system. The elements of the resulting
matrix are the direction cosines of a position vector to a

point and the original coordinate axes. This development
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results in the following elements:

A = cosficos¢ + sinPsinésiny ,

A = cosflsiny - sinflsineécosy,

A3 = sinfcos6 ,

Ay = -cosfsiny,

Az = Cc0S6cos8¥ .

A = siné .

A3 a -sinflcos¢+ cosfsinésiny ,

Asz = -sinfsing- cosfsinecosy ,

Azz = cosficose .
One should note that all coordinates of the vessel relative
to the rotating axis system remain constant; however, when
the restoring forces of the mooring system are to be derived,
the displacements relative to the stationary X Y Z systenm
will be needed. These displacements which will include the

displacement due to rotation may be written now for use

later as
X = )‘” xc + AZ.I yh + )‘3/ zc ’ EQ. (Bcl“')
Y = X, Xo + A Yh + Ase Za EQ. (B.15)

The components of angular velocities in the x, y, and 2
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Directions (of rotating system) due to each of the rotations

may be chosen directly from the rotation matrix. The com-

ponents of these angular displacements with respect to X Y 2

are:
- T T -ro v _‘_9 "ro
T = Ay Ao A0} + 27,210 + A, (9 ’ EQ. (B.17)
¥ 0 0
which reduces to
-¢sinfcose 6cosf 0
o= #8ine + 0 + @ ’ EQ. (B.18)
YcosfPcosd osing 0

which may be written in the classical form known as the Euler
angles:s

o, = -¢sinflcos® + 0Ocosd (roll) , EQ. (B.19a)

X

Oy = S"Sine + ¢ (ya“) ’ EQ. (Bolgb)

o, = ycosfcos® + 0sinfd (pitch) . EQ. (B.19¢c)

The angular velocities along the rotating axes (x,y,z)

are determined by the simple division of At or

&, = -¢sinfcose + dcosf , EQ. (B.20)
6, = {sine + g, EQ. (B.21)
6_ = Ycosfcose + 6sind . EQ. (B.22)

Z

By taking derivatives with respect to time the angular

accelerations are formed to be as follows:
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§ = - ¢sinfcosd - ¥PcosPcoss

b
+ ¥dsinPsine + OcosP - éésinﬂ ’ EQ. (B.23)
Eiy = ¢+ $bcosd + P , EQ. (B.24)

8y = ¥cosfcose - ¢Psinfcosé - YbcosPsine

+ 6sinf + ofcosP . EQ. (B.25)

It is emphasized that roll, yaw, and pitch are not de-
fined as 6, @, and ¥ except in the most simplified case

case where

o, = 8 when =9 =0,

°y = ) when 6 = ¥ = 0 ,

Uzﬂ%!-.'hen¢=9=0.

This is a condition that must be satisfied. However,
the Euler angles 9, f} and ¢ are defined as dependent varia-

bles in the equations of motion rather than Oyt oy. and o,e

The angular displacements are calculated directly from the

solution by integration.



Eauations of Motion

The six scalar equations of motion based on Newton's
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Second Law are now written in their most general form:

MX = ¥ Foreces

49

MY = & Forces

y

= § Foreces

- &Eﬂ; + ¢&H; = F Mamentsx )

= IexTx

“Iry 0%

=lsz Tx

-1

+1

@kHy =

Xy

f& = Ixz

y " lyz

a& + Izz

[ ' ” i o
Giﬂé + “Eﬁk Z Moments

FHy *

y ’

z Momentsz ’

(Be26)

(B.27)
(B.28)
(B.+29)
(B+30)

(B.31)

(Bo 29&)
(B,30a)

(Bo 313)

(B.2%b)

(B.30b)

(B.31b)
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Defore poing further, the theory will be somewhat

clarified if a plan is given for dividing the vessel into

sogments which are numbered. This plan
B.6, Facl: of the horizental menbers are
cally abont its respective column. The
fictitioms (columns with zerc diameter)
a convenient computational scheme. The

relatively small diameter members which

is shown in Figure
subdivided symetri-
dashed columns are
and scrve only as
dashed lines depict

are not included in

this analysis. A typical hull-column segment is shown in

Figure B.7.

i3 calm vater
level <:::1:::>

Figure B.7: Typical hull-column segment.
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The interaction between the sea and the vessel involves

the concepts of added mass and drag. 1In luid dynamic systemns
where forms accelerate relative to the {luid, it is well
founded that there will br a force exerted on the form pro-
portional to the relative acceleration. The concept of drag
forces proportional to the relative velocity squared are

even more familiar.

The relative acceleration of the added mass in an
arbitrary direction é'is formed by the following component
partss

‘§ = Acceleration of the moving origin with respect
o the stationary axis system.
(&x§k=-1hngentia1 acceleration of a point P fixed in

space within the rotating system xyz.

3x{&x§% = Normal acceleration of a point P similariy fixed
e in the rotating system,
B'Clg = Acceleration of the water particles integrated
§ over the moving surface.

Tt will be baest if all components of the relative tangential
and normal accelerations arc defined now. By definition
tangential acceleration is given by the cross-product in

matrix form

X Y z EQ. (B.32)
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whose components are
(Fx=)y = (26, - ¥6 )1 EQ.

(& <3 )y = (X8, - 26.)] FQ.

(Fx=), = (y6,_ - xay)k . EQ.

Whereas, the components of normal acceleration may be
from the definition

i j k
ox(6xg) = | Ox Oy 6,

[26,-y6,]  [x6,-z6 ] [y6,-xd,]

EQ.

which yields
[éX€xé)Jx = ay(yéx-xc‘ry)- éz(xdz-z‘éx) o EQ.
[éx€=x§)]y = 6z(zéy-ydz)- éx(yéx-xdy) ' EQ.
[6x(8x9)], = 6,(x5,-2¢8, )- 6y(zéy-yéz) . EQ.

(B.33)

(B.34)

(B.35)

obtained

(B.36)

(B.37)

(B.38)

(B.39)

where ox ., éy. and 6, are given by Equations (B.20), (B.21),

(B.22) and G;+8,» and & are defined by Equations (B.23),

(B.24), and (B.25) respectively.

Relative Acceleration of Added Mass in z Direction

For motion in the x and z directions the hull-column

sections are treated separately. Further, since the hull

motion does not produce a change in the displaced volume

(being fully submerged at all times), for added mass and

drag considerations only motion in a direction normal to
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its longitudinal axis will be included. The motion of a

column whose submergence varies with time must include the
affect of a continuous change in bouyancy due to the wave
form and vertical displacement.

For accelerated motion normal to a hull's longitudinal
axis, note from Figure B.6 that only numbers 1 thru 16 are

considered for the z direction. These will be given the

subscript m. Thus, the relative acceleration of the added
mass integrated over the hull length may be written as
c+'ZLhm - Rt ZLhm

Vi = 7 + yha %G d\ + Il xc o dx

“e” ZLhm Xe

x+1
o3
-2 52~ c(z Sy= Ynd, T‘hmf XaYp 02, )dx

X

which simplifies to

Vh =7 + y (o +5 U ) = x (0 =66 ) - z (62+53)
z cC Yy Xz c x vy
. y(TH coshk(h+yh-b)
(ff = ) ( ) sinhkh

X 7 .
times (cos[k(xc+ $Lym)cosa + kz _sina + ot]

-cos[k(xc- %Lhm)cosa + kz_sina + ctJ)

cosh2k (h+yy,-b)
sinhfkh

(@) () tana

+3()
)
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. 1 .
times (cos[Zk(xc+ thm)cosa + 2kz _sina + 20t]
- - l’, i [ E [ ] B
cos[Zk(xC aLhm)cosa + 2szSLna + th]) Q. (B.40)

The force exerted by the relative acceleration of the added

mass of a hull section moving in the z direction is
2

Fhea -ch%Em Lm"hzm EQ., (B.41)
where Cmis an empirical added mass coefficient. Note that
this term is negative which indicates that the force is ap-
plied as a d_amping term.

fhe force exerted on a colum by the relative acceleration

of the column's added mass is derived in a similar manner
with the exception that prpvision must be made to obtain the
instantaneous wetted length of the column corrected for the
effects roll, pitch, yaw, vertical displacement and a time-
varying wave height against the column. The wetted length of
the column in calm water, as seen from Figure B.7 is

Le = b-y--$dy o EQ. (B.42)
where Y is a negative coordinate., The effect of roll and
pitch can be treated geparately and superimposed only for
small angles. For larger angles, one must return to the
results of the rotation matrix. However, this is convenient
since the position of the wave form is relative to the sta-
tionary onu- nf axes. The traaspose of the rotation matrix
)\ save the new position of a hull-oolumn intersection relative
to a set of stationary axes due to body rotations. Using these
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relations, the instantaneous change in wetted length of a

columm is

AWy, = (kg bize) - Y - Ay, 0. (Ba%)

where the argument of 7y is given by Equations (B. 2).
Since the constants associated with the added mass

of a columm and the drag (to be discussed) are based on the
wetted length in a calm sea, Equation (B.43) must »e used as
part of an exposure factor which is defined as

S(t) = 1 - LAY, - 7 (XgaDezg) .
h'yh' .Sdh

EQ. (B.44)
The above exposure factor is the propoertion of instantaneous
wetted length of a colum to wetted length in a calm sea.
The relative acceleration of a colusm's added mass in
the z direction is similar to that of a hull except the in-
tegration must be over the wetted length of the column, This

term can be written as
b

- 1 .
Vv £ 7 e X 0. + e yqdy+a(xo-zq)
cz %y Bzyh'%jh x x

cZ ¢X
nt 3%

-2, 0, + Uyaycz - W(x,¥rz_)]dy
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vhich reduces to
o . . 2 P
T - - J - g +a
ch Z xc(cy X z) Z%( X y)

1 (y +3dd +b)(& +06 5 )
+
7 Yy 2

1 h X y 2
(—L  )(TE)gc-8ing  sinlk(x cosa + z sina) + ot]
¥ y, +3d -bksinhkh S e c )
) )

timoes [sinhk(h+yh -b) - sinhkh]

Z h

+ (3)( 1d b)(ﬁH) C*ﬁiﬁgiﬁsln[ZR(xccosa + zcsina) + 20t
Yh 2 h
times [sinth(h+yh + %dh»b) - sinh2khd, EQ. (B.45)

The force exerted by the relative acceleration of the column's

added mass may now be written as

: o med> v o 1 5 . 0. 46
F = S(t)Cm(TC)(b ¥, '.’Zdh) V., EQ. (B.46)

cza

Relative Acceleration of Added Mass in X Direction

The derivation of relative acceleration in the x direction
is very similar to that for z, except 1) the components of
tangential and normal acceleration must be in the x direction
given by Equations (B.34) and (B.38), 2) the integrations over
the hull lengths must be carried out with respect to z since
the hulls No. 17 through No, 24 (these hulls will be sub-
scripted withann) lic parallel to the z axis, and 3) com-
ponents of water particle acceleration must be given in the
» direction as defined by Equation (B.7). With these ex-
ceptions the relative acceleration of the hull forms in the

x direction is written directly,



v "f-)é',_—f]- 260 dz + 3 (y & - x6 ) - x 42
hx h z Ihn y1 h x cy c z
2" 'a_Lhn

1
Lc t ZLhn
__l s 2 - o . AR EN
t T [4023){ u(xc,yn,z.)sz

hn
. |
%o 7Lhn

which roeduces to
G

V =X=-v(5F - & = w35 ) - -2 2
b ¥,(o, yéx) + zc(oy v 66 ) (ay + 62)

+ (L )(glg)(g%)cotacozshk(h-l-yh. b)
t;;’ D sinhkh

times |cos[kx cosa + k(z + il Dsina + kot]
¢ ¢ 2 hn -
. 1 i
-cos[kaCcosa + 2k(z - 74 )sinn + Zkat])

cosh2k (h+yp-b)
sinh*kh

3, 1 mHy ¢ oC .
+ 7(1-};)(7)(‘2.1?)00La

times (cos[ka cosa + 2k(z
C C

1 ; R
+ thn)SLnon + 2kot]]
~cos[ 2kx cosa + 2k(z - %-Lhn)sina + 2kot]) .

EQ. (Bo‘/}7>
The force exerted by the hull's added mass for motion in the
x direction is

2 .

Similarly, the relative acceleration of a column®s

added mass in the x direction may be written as
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'b
V.=X+z26 -( 1 )RyS dy - § (x 6 - z &)
cX c’y b-yh- %dh Z 2z ez c'X
1
yh+ Edh
b
2
- P 1 » - — )
chy + (-b—:-};—:——ra—) yd‘xcydy . (b-y- T ) U<Xcgyyzc>dy )
h™ 3% f h 7% .
Ynt 39, Ynt 79

which reduces to

— _ oo o . - .2 .2 1 1 ] _ .
Vex = X+ 26+ 6,80 - x (6 +6,) + 3y, + 54, + DXE,8,— )
1 .TIE.{ 2’.&2‘2& inlk + . + ot
+(b_ I )(kk)sinhkhSIn[ (x,c050 + z,sina) + ot]
Y™ 2%

times [sinhk(h+y,+ %dh-b) - sinhkh]

2.
3 1 my eCeoext o3nMoK + 2,5 + 20t
+§(b_Yh_ jdh)( ) Sieinh h51n[2 (xccosa + z.sina) ot]

times [sinh2k(h+y, + %dh-b) - sinh2kh] . EQ. (B.49)

The force exerted on the column due to the above relative
acceleration of the column's added mass corrected fcr the

instantancous wetted length may be written as

N Qda o o 1 =
Foxa ™ -S(t)Cm(H—ZC)(b Yno 5900 Vcx EQ. (B.50)

Relative Acceleration of Added Mass in v Direction

For motion in the vertical direction, the udded mass of
all hull forms (No. 1 through No. 24) must be considered. The
The relative acceleration of a hull®s added mass in the vertical

direction is derived by the method used in the x and z direc-

tions. This term is written as
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1
+ ZLhm
- - l o-- e
hy = Y-z 0,4 T [xcz v(x,yh,zc)]dx

S !
Xc iLhm

1
zot ZLhn
+ X0, - _11125 (25, + V(x_yyps2)]dz

which upon integration over the appropriate lengths of the

Ihull forms reduces to

- hk (h+yy, -
ny = ¥ -2c8, + x G () el y2inik ity D

times (sin[k(xc+ %Lhm)cosa + kz sina + ot]
-sialk(x - %Lhm)cosa + kz sino + ct])

1 y,mH ¢ ol sinh2k (h+yp-b)
$3( )()( )
Inn” » 7 "2keosa”  gipnfn

times (sin[Zk(xc+ thm)cosa + 2kz sina + 20t]

~31nL2k(x - thm)cosa + Zkz sing + Zatj

+(T__)(HH>(0C, \sinhk(h+y -b)

ksina’ sinh kh
times (sin[kxccosa + k(zt+ %Lhn)sina + ot]
-sin[kx_ cosa + k(z - —Lhn)s1na + cL])

( 1 )(-T,.J.> ( TQ ) S].nthfh‘l'}’h b)

times (sin[kaCcosa +2k(z + %Lhn)sina + 20t]

-sin[ 2kx cosa + 2k(z - thn)SLna + Zot])
EQ. (B.51)
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where 1<>m< 16, and 17 <n < 24, The force related to
Equation (B.51) is simplified to read

Frya ™ 'Cn("gfﬁ),"’t{vhy . BQ. (B.52)

This completes the derivation of forces associated with the
relative accelerations of added masses due to the vessel's
motion. It is to be emphasized that the acceleration terms
1) translation, 2) tangential, and 3) normal are with respect
to the motions perpendicular to a longitudinal axis, neglecting
those terms perpendicular to the transverse axes which are
considered very small relative to the terms just derived.
In addition, the "Coriolis" terms which would consider the
acceleration an a rotating path is considered relatively smallj;
they too are excluded,
Drag Forces Due to Motjon

The second type of force due to interaction of vessel
and sea that is considered in this analysis is the familier
term called "drag force" given by

Fy == %QCDAVIVI . EQ. (B.53)

Many authors refer to Equation (B.53) as "dynamic damping”
or "square-law damping”. The symbol A represents the pro-
jected area normal to the direction of motion. The V's are
defined as the velocity of the surrounding fluid relative to
cylindrical form moving in a direction normal to its longi-
tudinal axis. The components of relative velocities of a

hull and column moving in the three coordinate directions
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will be derived in much the same way as the derivations of
the relative accelerations. In general, the relative velocity
is written as

L2
V,,- = é + (éx@)‘ - f/g df§ ’ EQ. (B054)

AL
where the components of the cross-product (&x2) are chosen

from the definition

i § Kk
(5xe) ={ 6, o, &, | - EQ. (B.55)
X y Z

THe terms incorporated into Equation (B.54) invelve:

1) é= velocity of a hull or column with respect to the sta-
tionary coordinate system XYZ,

2) (3xé%. = the velocity component due to rotation of a rigid
body,

3) f B d§ = the velocity component of the water particles
integrated over the appropriate surface and direction.

Relative Velocity in Z Direction

The relative velocity of a column in the z direction may
be expressed by substituting the corresponding terms in Equa-

tion (Bo 54).
b

V. =2-x6_+ % [¥6, - wx,sysz )]dy |,

cx cy o
Yh *+ ¥y

which after integration becomes
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37 . - 1 . .1_ .

Yow Z - xcay + 2(>h + zdh + b)gx

_..( 1 )('TIT)(.C._S.LI}_‘.Z.__.)CQC }\(X coso + =z Sina) + O‘t]
A keinhkl fo

b-Yh~ 5dp

times [ sinhk{hty,+ %dh-b) - sinhkh]

2
—3( 1 (zld 5 os! 2k(x cosa + z _sina) + 2ot
4oy~ 5 dh)‘ ) (Gl cosi2k(x cosa + 2 sinx) + 2ot]
times [sinhzk(n+yh+ %dh-b) - sinh2kh] . EQ. (5.56)

The drag force o a column moving in the 2z direction corrected
for the instantencous wetted lenpgth according to Equation

{B.53) 1s

n - -y, - L1a. YV |V
Yezd 7 ZS(L) Cpde (b h zdh’¥3|vczi . EQ. (B.57
Likewlse, the relative velocity of those lwmlls positioned
perpendicular to the z direction (Nos. 1 - 16 and subscripted

m) may be written as

) 1
X C+ thIn

—'—. \1'..1 P4
Vi, = 2t V0, Ton [xoy

- 7l

and after integration becomes

+ w(x,yh,zc)]dx ’

I S THy,_C coshk(h+yh-b)
Viy = 2 % 70y hccy+ ( A)(IE;E)tana sinhkh

times (sin[k(xc + %Lhm)cosa + kz _sino + ot]

-sin[k(xc - %Lhm)cosa + kz sina + ct])

¥ -
3(WH) S C )tanaCOSA?k(h+Xh b)
2Lk sinh?kh
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N : 1 - .3 -
times (s:.n[Zk(xC + ELhm)COba + 2kz sina + 2o0t]
: .1 . o i
-sin[2k(x_ - 5l )cosa + 2kz _sina + Zat]).
EQ. (B.58)
The drag force on a hull whose longitudinal axis is normal
to the z direction may be written as

. EQ. (B.59)

- - . 1 T
Frzd =~ 286 eV he Ve

Rolative Velocity in x Direction

The derivation ol relative velocity in the x direction
is identical in the method after choosing the correct terms.

For column motion

b
ch = X + zcéy - (___l__T__) [ydz + u(xc,y,zc)]dy ;
4 b-¥p 2%,
1
’n* 3%
which is evaluated as
T =¥ 5 - 1 14.)85
Vex = X # 20% 5(yp + b+ Zdh)oz
- 1 ailyCeosa Mk i -7
(b~yh- zdh)(x )(ksinhkh)cos“ (xccosa + zCSLna) + ot]

cimes  [sinhk(h+yy+ 2dy-b) - sinhkh]

23 1 mH\? ¢ Ccosa K + ino) + 2ot
A(ET_—t_%EE)(—x)-(stinh4kn>costz (xgeosa + zgsina) + 2ot]

times [sinth(h+yh+ %dh-b) - sinh2kh] . EQ. (B.60)

The drag [orce corresponding to this motion is

; - . lar+ o 21 - -
Fovd 35(e)RCyd (b-y, - 34, W [V .| EQ. (B.61)
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. . 1 .
S X Z o 2— N -
times (SIHEZR( ot 2Lhm)com + 2kz sina + 20t ]

-sin[Zk(xC - %Lhm)cosa + 2kz _sina + Zot]).
EQ. (B.58)
The drup force on a hull whose longitudinal axis is normal
to the z direction may be written as

o - _1-_ - X7 ‘-“
Fhza =~ 7 Cp%InaVhy [Vha| EQ. (B.59)

Rolative Velocity in x Directlon

The derivation of relative velocity in the x direction
is identical in the method after choosing the correct terms.

For column motion

b
-; — ‘ o 3 e 1 3 T T eV A
\cx X + zccy (E:"TfffT’) [ycz + u(xc,),ac)]d/ s
Yh™ 7% 1
Yn* 2%
which is evaluated as
v = Q . - J-_ 1 '
ox =Xt 209, 3(yp + b+ Edh)oz
- 1 milyeCcosq r i -7
(E:;;F—%E;)(K )(ksinhkh)cos_k(xccosa + ZCSLna) + ot]

timesy [sinhk(h+yh+ %dh-b) - sinhkh]

N 1 mHy2 (Ccosa -
2(m)(—x‘)- (m)COS[Zk(XCCOSQ + ZCSan-) + th]

Limes [sinth(h+yh+ %dh-b) - sinh2kh] . EQ. (B.60)

The drag [orce corresponding to this motion is

: = - 1 {1 - - :; = -
Fexa = - 35(t)RCHd (b-y, - 34, 3V [V [ EQ. (B.61)
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The relative volocity of those hull forms which lie normal
to the x direction (No's. 17 - 24 and subscripted with an n)

may be written as

. 1
2.% 3lpn
v .’ '.. 1 "' - Ly Ly
Viw = X - w6, + i;— [Qcy U(Xc,yh’é)]dé s
n .
z - &
¢” Z'm
which is intepraterd to give
-7 . o - \, rj_ e
ml,, C __coshk(h+yn-b)
+<T)(1—<'L_1;n')c sinhkh

times (sin[kxccosa + k(zc+ %Lhn)sina + ot

-sinfkx cosx + k(z - 1L )sina + ot]
e ¢ 7 hn

3,mlv¢, C __cosh2k(h+yn-b)
ot
HARRAY el e

times (sin[kaCcosa + 2k(z + %Lhn)sina + 20t]

-sin{2kx cosa + 2k(z - thn)sina + Zot]) .

2
EQ. (B.62)
Whereas, the drag force on the hull is
S § TG
Fhxd 29CanLthml‘hx| . EQ. (B.63)

Relative Velocity in y Directioan

As in deriving the relative acceleration in the y direc-
tiony, all of the hull forms must be included. Again, those

hulls positioned parallel to the x-axis will be subscripted
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with an my, and thosce parallel to the z-axis will be sub-
scripted with an n. The relative velocity in the vertical

direction is given as

1
xc+ ZLhm
v - e (. o 1 My o .
Vhy =Y (ACO'X)m + rhm L¥o, v(x,yh.zc)]d.<
- 1
Xe ZLhm
1
zC+ ZLhn

+ (Xcéz)n B %hn [Zéx +AV(Xchh’Z)]dZ s

.1
z¢” 3lyp
which is ovaluated as

.‘—' = c 5 -
]hy Y + }&CO'Z z_,cd'x

—(1H)( C )Sinhk(h-l-yh- b)
A kLhmcosa sinhkh

cimes cos[k{x + 3L Dcosa + i '
( [k( ot gL Jeosa + kz sina + ot]

-cos[k(xc- %Lhm)cosa + kz _sina + ct])

— 3¢mily c ysinh2k(htyp-b)
N 2kL; cosa’ sinh*kh

T I 1 . 1
times (congK(xC+ thm)cosa + Zsz31na + 20t ]

- M1 - 08 53
coskZR(xc %Lhm)uosa + Zkzcblna + ZOfﬂ

—(aly(,—C | )sin?k(h+yh~b)
A" kLppsina®  sinhkh

times (cos[kxccosa + k(z+ %Lhn)sinm + at]]

-cos[kx cosa + k(z_- %Lhn)sina + ct])
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3y C sinh2k(h+yp-b)
4K 7 2l sina’ sinh"kh

3 Y’ ~ r c 1 3
times (coshzkxccosa + Zk(zc+ thn)SLna + 20t ]
-cos[ 2kx cosa + 2k(z - %Lhn)sina + Zot]) 5

EQ. (B.64)
This result is used to determine the component of drag force

on a hull moving in the vertical direction as
= - 1 v |V

End Effect Due to Oblique Ilow

The third type of force due to interaction concerns the
force applied to certain hull forms that are discontinuous;
i.c.y those hull segments that form the ends (fore and aft)
of the vessel, Observing Figure B.6, it is seen that these
forces will be limited to hull No's. 1, 2, 3, €, 11, 14, 15,
and 16, Consider a hull whose longitudinal axis lies parallel
to the x direction which is moving at an angle of incidence
to a uniform stream as shown in Figure B.8. It has been
verified that the fore and aft ends experience'a lateral
differential force per unit length given by

dF = %QyzsinZQdS ) EQ. (B.66)

where S is the area of a general cross-section. This equa-
tion can be rearranged to read

dF = QdSVsinaVcosa
and integrated from the beginning of each section (where S =

nd;/a) to the end (where S = 0), This result is
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it is observed that ¥vhy or + th is analogous to -Vsina and

¥ch corresponds to +Vcosa in Equation (B.67)., Therefore the

forces exerted on the ends due to oblique flow may be written

as
-‘hyJchJ, J=1,2,3,6
Fago = E%‘lﬁ 0 s 3= 1,2,3,6,11,14,15,16
WyyiVexyr § = 11,14,15,16 EQ. (B.68)
and
Vg Vexse 3 = 1120316
Fpzo ™ 1%‘.5 0 s 3= 19243,6,11,14,15,16 -

+\7hzj\_/cxjp J = 11.14.15.16 EQ. (3069)

In Appendix A, Bernoulli's equation was derived in terms
of pressure., Omitting the hydrostatic pressure this relation

i8 rewritten as

k. %%; - Lu? +v7 +w) EQ. (B.70)

To use Equation (B.70) effectively the required substitutions
for OP/ot and the velocities must be made and them reduced

to an integrable form of pressure gradients rather than
pressure, When the pressure is caused by velocities and
accelerations in the fluid the resulting force is the pressure
integrated over a surface; or by the Divergence theorem,
pressure gradient integrated over a volume which will be the

approach taken here,
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Differentiating & , Equation (A./04) gives

- I coghk(h+y-b)
2T = aCo Lok cos[k(xcosx + zsinx) + at)

3 nc -coah2h(piv=b)
+3 ..fc - SQRAAS AN cos2[k(xcosx + zsinx) + ot]

EQ. (B.72a)
squaring the velocity terms and abreviating by letting
coshl = coshk(h+y-b) ,
coshZ = cosh2k(h+y-b), etc.

and
Bl = k(xcosa + zsina) + ot ,
B2 = k(xcosa + zsina) + ot, ete.
ieads to
3 . (8Ckeosa)®noan® 3
u (si o ) cosh®1 cos®Bl
-
+3(.;l§h£ﬂlﬂ)(%)coshlcoshlcowlcosn
a ? 3 H
+-z (%) cosh®2eo0s”B2 , EQ. (B.72b)
= -.a—c—ls_— 2 3 2
v (sl uhkh) sinh®1sin®B1
-]
+3(g35k) (TR )sinn1 sinh2s1inBlainB2
(ma®Ck __)°sinh®2stn? e
+ a(i%rh) sinh“2sin*B2 , EQ. (B.72¢)

W ow (Am‘)ncosh’lcosﬁl

+3(§-S-&9-m] - )(ﬁgﬁﬁ&)coshlcomhosneodz
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+ %(%:%alkgﬂ)zeoshQZcosaBz . EQ. (B.72d)

Substituting Equations (B.73a, B.73b, B.73¢ and B.73d) into
Equation (B.72 reads

- uv 3 na3Ce )
P = caC .gmm_cosm +3%na ;f.ge.y_oosnz
Qz { [(%) + (sgkisM) ]cosh lecos®B1

3 ]
* [3 AR (aiene) + (alkatng)(ma Coon :m)]
times eoahleothcosBlcosBZ
+ [%({-ﬁ-:-%ﬁgﬁ)a + %(%)}cosh’hea'm

A (si%)asinhalsm’m

-
+ 3(;‘1‘5“‘1 5 )(-l-giﬁg—k—l-‘)smmmhnmnmnnz

3
+* %ﬁ%ﬁ"ﬁm) sinh’Zain’Bz}. EQ. (B.72e)

By making use of the identity

cos®§ + sin?s = 1
and letting the econstants in front of each term become a
single constant, Equation (B.72e) simplifies to

P = A,coshlcosBl + A,cosh2cosB2

-A3(cosh'lcoaanl + sinh®1sin®B1)

-A,*(cosh"leos"BZ + 8inh®2sin3B2)
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-As(coshlcoshZeosBIcosBZ

+ sinhlsinh2sinBlsinB2) . EQ. (B.72f)
Again using the identities
sin®Bl = 1l-cos?Bl ,
8in?B2 = l-co0s3B2 ,
Equation (B.72f) is replaced by
P = A coshlcosBl + A,cosh2cosB2

-A3(eosh’1cos’31 + sinh®l1 - sinh®lcos?®Bl)
-Aa(cosh’ZUos'BZ + sinh3®2 - sinh®2cos?B2)

-Ac(coshlcosh2cosBlcosB2 + sinhlsinh2sinBlsinB2) ,

EQ. (Bo 723)
which by utilizing the relation

cosh® - sinh® =1 ,
reduces to

Pu= AlcoshlcosBl + AzcoshZcosBZ
-A3(c03331 + sinh3?1) - Aa(coszBZ + sinh3?B2)
-As(coshlcoshZcosBIcosBZ + sinhlsinh2sinBlsinB2) .

EQ. ( B.72h)
Further use of the identities

L |
cos3¢ 5 + %eoslf 3
ainhafn-% cosh2f - % s

Equation (B.72h) transforms to
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P= AleoshlcosBl + A2cosh2cosB2

- %As(eosbz + cosh2)

- -%%(cosm + coshé)
- As(coshlcoshZcosBlcosBZ + sinhlsinh2sinBlsinB2) -

EQ. (B.724)
Working with emly the coefficient of A; and usimg the hyper-
bolic identities
cosh2 = 1 + 2sinh?®1,
sinh2 = 2sinhleoshl,
this term becomes

coef(AS) = coshl(l + 2 sinh?1)cosBlcosB2

+2sinh®1coshlsinBlsinB2 , EQ. (B.723)
which is rearramged to read
coef(Ag) = coshlcosBleosB2
+2s8inh®1coshl(cosBlcosB2 + sinBlsinB2) .
EQ. (B.72k)
The factor in the second term corresponds to the cosine
doubie angle formula
cos(f- 5) = cosfecoss + sinfsin¥y
vhere
§-% = Bl-B2 = -B1 ,
wvhich for the cosine the entire factor reduces to just cosBl
vhich gives
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coef(AS) = coshlcosBlcosB2 + 2sinh?lcoshlcosBl ,
EQ. (B.721)
Now replacing cosB2 by its equivalent 1-2sin?Bl the coef-
ficient is in the form
coef(Ag) = coshlcosBl - 2coshlcosBlsin?Bl
+ 2sinh®BlcoshlcosBl . EQ. (B.72m)
which is a desirable form for differentiation and integrationm.
Substituting coef(AS) back into Equation (B.72i) and letting
the factor 1/2 become part of A and A,, the final form of
Bernoulli'’s equation for pressure is
P = A coshk(h+y-b)cos[k(xcosa + zsima) + ot]
+A, cosh2k(h+y-b)cos2[k(xcosmx + zsimx) + ot]
-Agcos2[k(xcosa + zsina) + ot]
-Ajcosh2k(h+y-b)

-Aacosth(h-Py-b)
-A cos4[k(xeosa + zsina) + ot]
-A4cosh4k(h+y-b)

-Agcoshk(h+y-b)ecos[k(xcosa + zsina) + ot]
+24;coshk(h+y-b)sin [k(xcosa + zsina) + ot]
times cos[k(xcosa + zsina) + ot]

-2A; sinh k(h+y-b)coshk(h+y-b)

times cos[k(xecosa + zsina) + ot] , EQ. (B.73)
where the coefficlents are given as
= QQQG' ’ . .
A sinhkh ' EQ. (B.74)
- 3cee-
Az 10 .inh k}l ] m. (3075)
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- Seadk ), EQ. (B.76)

A -‘*‘%mwkh) : BQ. (B.77)
3 3y, 2

As - lstnh%e . EQO (3078)

The desired pressure gradients are found readily by differ-

entiating as follows :

S—E - -(4, + AS)kcosacashk(h-ry-b)si.n[k(xeosa + zsina) + ot)

-2Azkcosacosh2k(h+y-b)sin2[k(xcosa + zsina) 4+ ot]
+2A3kcosasin2[k(xcosa + zsina) + ot]

%Aakcosa.si.nlo[k(xcosa + zsina) + ot]
+6A5kcosaeoshk(h4y-b)eos’[k(xeosc. + zsina) + ot)

times sin[k(xcosa + zsima) + ot]
+2Ackcosasinh?k(h+y-b)coshk(h+y-b)

times sin[k(xcosa + zsina) + ot] , EQ. (B.79)

2F » (A; + Ag)ksinhk(h+y-b)cos[k(xcosc + zsing) + ot]
+2A2!zsi.nh2k(h+y-b)c032[ k(xeosa + zsina) + ot]
-2Asksinh2k(h+y-b)

-4A4kainh4k(h*y- b)

+2Acksinhk(h+y-b)sin® [k(xcoa;z + zsina) + ot]

times cos[k(xcosa + zsina) + ot]
-6A;sinhk (h+y=b)cosh?k (h+y-b) Cosk(XCosk +25 ) +at].
EQ. (B.80)
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%E =--(4y + As)ksimcoshk(h-l-y-b)sin[k(xcoaa + zsinx) + ot]
-uzksi@costh(hw-b)sinz[k(xcosa + zsinz) + ot]
+2A ksinasin2[k(xcosa + zsina) + ot]
MA4k31@3m4[k(xcosa + zsina) + ot]
+6A5kain§eoshk(h+y-b)coa’[k(xcosa + zsina) + ot]

times sin[k(xcosa + zsina) + ot]
+2A5ksi.msi.nhzk(h-vy-b)coshk(hd-y-b)

times sin[k(xcosa + zsina) + ot] . EQ. (B.81)

Integrating the above pressure gradients over appro-
priate vglumes_leads to the following forces due to pressure:

Foxp = - 7_7_9‘;2_{ - (A, +A )cosa[ sinhkh-sinhk(h+yy+}d, -b)]

times sinB,(t)
-A, cosal sinh2kh-sinh2k(h+y, + 3dy-b)]
times si.an(t)

+2A3(b-yp- .%dh)kcosaaian(t)

#Ag(b-yy- %dh)kcosasinﬁﬁ(t)

+6A5cos;:[ sinhkh- sinhk(h-l'yh-l- %dh'b)]

times cos®B,(t)S5/N 3B, (¢)

+ é Ascos;:[sinh‘kh- sinh’k(hiy, + -%dh-b)] SihB,_(t)} .

EQ. (B.82)
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thp - -7/;;; {(A1 + Ag)cotacoshk(h+y, -b)[cosB, (t)-cosBs(t)]
+A,cotacosh2k(h+y, - b)[ cosB,, (t)-cosB,s(t)]
-Ajcota[ cosB,, (t)-cosB,s(t)]
-A,cota[ cosB,, (t)-cosB, ;(t)]
-uscomcoshk(h-ryh-b)[eoe334(r.)-coa°ns(c)]

-2A5cotasi.nh’k(h+yh-b)coahk(hivyh-h)

times E‘cosB4(t)~cosBs(t)]} . EQ. (B.83)
pr - prl + prZ + pr3 ’
v 41
Kot 2l b z + 3Ly,

3 3 2
- 2P - nd _m
=-2pf 2ax - Zicf 2Ry - Tl o,
xe 3y Tn* 30 z- 4y
mo (3084)

wdf | (Ay+Ag) - .
F, - _-_gh{._l.;g.um(wh b)[s1nB,(c)- sinBy(t)]

A - - -
+ .E;%&.sinhn(h-i-yh b)[sinB,,(t)-sinB,,(t)]

24 .
- Sodlysinh2k(hiy;-b)

4 -
- .c%.thsmak(hwh b)

+ é Eeg..:;.ai.nhk(h'-yh-.b)[ah‘t"’Bz(t:)- sin®B,4(t)]
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.. Lomnxm.gsx?és-vvaow: x?..es.s_”uwsu&nv-uwumu?v“_v,

EQ. (B.85)

.
SR PunAf.;uvms.ﬁu.8%?5.&&.58}3

[ coshZkh- coshZk(h+y, + wﬁ_v.uv”_nomwﬁ?v

-A[ cosh2kh-cosh2k(h+y, + 3d, -b)]

-A, [ coshkh- coshék(h+y, + wn_..uz

+2A5[ coshkh-coshk(h+y, + 44, -b)Jsin?B, (t)cosB,(t)
.W»umoo.uuww.oo-uow?#u... -S“_aoowpﬁnvvu

EQ. (B.86)

Yo3 4 (A145) s tmk (it ) stnBy(t)-stnBy(t)]

+ IP.:...#?&:.5_”.»553..35825

Jmmv.g?é:.s

&A
- ’ - c
ﬂ..qmwugi +¥;,~b)

5]
L

+ § spa-etank(iy-b) sin’, (t)- sin’By(t)]

L-»..E?.Q b)cosh*k(h+y, -b)

times TE»?Y.F&?A ’ EQ. (B.87)

Fogp ™ - mmm“.A>~+>uv.»-n_”m§§v.m§sk?¢w+ wa:..v&.SuH?v
= Apsima[sinhZkhesinh2k(hty,+ 1d,-b)]sinB,, (¢)
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+24 Jkstna(b-y,- 3d; )sinBy, (t)
MAakoim(b-yh- %dh)ai.nnu(t)

+6A5sinal sintkh- sinhk(h+y, + 34, -b)Jeos’B, (t)sinB, (t)

+ %AS atm[sinh"kh-ainh?k(hwh+ %dh-b)]siﬂl(ti}:
EQ. (B.88)

3
Fhap = - f%h {(A1+A5)tmcuhk(h+yh-b)[cosnz(t)-eosBs(\:)]
+A, tanxcosh2k(h+y, -b)[ cosB,,(t)-cosB,4(t)]
-Ajtana[ cosB,,(t)-cosB, ()]
-A,tana[cosB,,(t)-cosB, 5(t)]
zééstanacoshk(h+yh-b)[cos‘Bz(t)-cos°B3(t)]
3 )
- 2Agtanasinh’k(h+y, -b)coshk(h+y-b)
times [cosBz(t)-cosB3(t)]}, EQ. (B.89)
where ‘
By(t) = l(x,cosa + z.8ima) + ot , EQ. (B.90)
BZI(t) - ZBI(t) ) EQ' (309‘1)
Byy(t) = 4B,(t) EQ. (B.92)
Bz(t) = k(x + .}Lh)cosa + kz sina + ot , EQ. (B.93)

Bzz(t> - ZBZ(t) b) mo (3094)
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By(t) = k(x,~ 3L, )eosg + kz sing + ot , EQ. (B.95)
Byy(t) = 2B4(t) , BQ. (B.96)
B4(t) = kx,cosa + k(z + 3L, )sina + ot » EQ. (B.97)
By,(t) = 2B,(t) , EQ. (B.98)
Byy(t) = 4B,(t) » EQ. (B.99)
B5(t) = kx_cosa + k(z- 3L )eina + ot , EQ. (B.100)
st(t) = 2Bg(t) , EQ. (B.101)
Bys(t) = 4B5(t) . EQ. (B.102)

Once again, the integratioms over the column length was as if
it were in a calm sea. The forece perturbations on the columns

will be corrected for the instantaneous wetted length by the

exposure factor S(t) in the equations of motiom.

Forces Due to Change in Momentum
The time-varying wetted length of a column eith accom-

panying motion produces a rate of change im momentum.

or

= v M dv
F=V dt Tt

but, the second term is the linear acceleration which has been
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@

accounted for already. Therefore, the component forces are

chm EQ. (B.103)

i

1

<
0
b
al

- -- .d_m E [ ] B.104
Fcym Vhy at ’ Q. ( )

= «V g_nl. . .
Fczm = ch at EQ. (B.105)

The instantaneous change in wetted length of a column has been
defined by Equation (B.43). Differentiating AWL with re-
spect to time and multiplying by the column cross-section
will produce the mass derivative. So, the additional forces

exerted due to a rate of change in momentum are

- - d

Foxm = “Vex ggc W) o EQ. (B.106)

Fcym = hy dt(z-\wL) ’ EQ. (B.107)
.. d

Fopm Vo, de(AW) EQ. (B.108)

'cf—t(AWL) = .&%[TLy(xc,b.zc) -Y - Ayh]

fl
1

H N
3 31nB1(t)

nmH® coshkh
T m(costhh + 2)sinB21(t)

- Y + cos6ez, + (cosgcos8y- sin¢/ sinee)x,

(3111;/0089% + COS%Sinee)yh . EQ (B 109)
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The perturbation of the hydrostatic bouyancy force due
to simultaneous change in bou ancy with a change in the

column wetted length is

md2
FCh BQ&-[TQ AWL . EQ. (BollO)

relimi umm uati of Moti
The theory and derivation of forces exerted thus far
have been concerned only with the forces that arise due to
the vessels motion when subjected to a uniform wave train.
Wind forces and the restraints of a mooring system are yet
to be derived., At this time, the force terms (just derived)
are to be grouped and substituted into the equations of

motion, (B.23 thru B.28).

Surge Equation

MX =2(chj + Fpyy) EQ. (B.111)

Dropping the "j" subscript for brevity the hull and column
forces derived are superimposed to give a total force per-

turbation which is summarized as

F.= -S(t)[aM + D

ox | -D9sinB1(t)

CXVCX CXVCX l VCX

-D29sinB21(t) + D39sinB41(t) + D49cos B1l(t)sinBl(t)
+D59sinB1(t) ] 55m , EQ. (B.112)
e =0 AOM Ve + D Ve [Vl + D7(cosB4(t)-cosB5(t))

+D27(cosB24(t)-cosB25(t))~-D37(cosB44(t)-cosB45(t))
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-D47(cos°B4(t)-cos‘BS(t)-D57(cosm(t)-eosBS(t)}é;” ’

EQ. (B.113)
vhere the new parameters (D— —'s) are equated to the
constants involved in the integrated pressure gradients.

These terms are defined asgs

D9 = lg;écou(AlﬂS)[sinhkh-ainhk(hwh+% «b)] »

EQ. (B.114)
3
D29 = ~3Rcosud,[sinh2kh-sinhZk(hty, + 1d -b)]
-nd3cosad k(b-y, - 2d,) , EQ. (B.115)
D39 = 2mdicosad k(b-y, - 1d;) , EQ. (B.116)

D49 = 3IndicosaAs[simhkh-sinhk(h+y + 3d,-b)] »  EQ. (B.117)

D59 = ndgcosusfsmh°kh-sinh°k(h-o-yh+ -b)] , EQ. (B.118)

D27 = ndpeotalAycosh2k(h+y,-b) - A3l , EQ. (B.120)
D37 = wdlA,cota o Q. (B.121)
D47 = I'-iﬂ Ascotacoshk(nty, -b) , BQ. (B.122)

. .
D57 = l';;h Agcotasinh®k(h+y, -b)coshk(h+y,-b) «  EQ, (B.123)

Heave Egquation
MY = I Fyy s , EQ. (B.124)
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where:
F, = - Auhy ~DpyVpny | Vs ~[D1(810B2(t)-51nB3(t))

+D21(sinB22(t)-2sinB23(t)) - D31
+D41(8in?B2(t)-8in3B3(t))
-D51(sinB2(t)-sinB3(t))
+D2ecosBl(t)+D22cosB22(t)-D32
+D428in?B1(t)cosBl-D52¢c08B1(t)] 5 m

-[)D3(sinB4(t)-sinB5(t)+D23(sinB24(t)-8inB25(t))
-D334D43(8in3B4(t)-8in?B5(t)
-D53(sinBA(t)-s1nB5(t)0] 54y

ﬂd W

. -Vhyycx o J = 1,2,3,6
+1§_‘§= 0 o, 54 1,2,3,6,11,14,15,16 »

Wy Vex o 3 = 11,14,15,16 EQ. (B.125)

D1 = mdi(Ay-Ag)simhi(hiy,-b)/cosa EQ. (B.126)
D21 = mdgA,sinhZk(hiyy-b)/cosa , EQ. (B.127)
D31 = mdyA4L, sinh2k(h+y, -b)/cese

+2ud§A4Lhairﬂwk(h+yh-b)/cosa ’ EQ. (B.128)
D41 = IndfAssinhk(h+y,-b)/cosa EQ. (B.129)

D51 = sz;A coah'k(hﬁyh-b)aiﬂhk(h+y ~b)/cosa , EQ. (B.130)

D2 = _fn(Al 5)[coshkh coahk(h+yh+ iah.b)] s EQ. (Be131)
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- ]
D22 = T3S, [ cosh2kh-cosh2k(hty, + 1401+ m. (3.132)
2
D32 = T84,  coshZkh- coshk(hiy, + 14,-1)]
-}
+ Ez-ﬁAhfceaMkh-eosMk(hﬂh-l- J-dh-b)] ’ EQes (Be133)

D42 = giggAsfeoshkh-eoshk(hwhd- %‘h'b)] ’ EQ. (B.134)

D52 = r!ég&s[eoshfkh-cosh&(hﬂg Ja-»)] ¢  BQ. (B.135)

D3 - chﬁu 0 mo (30136)
P43 = Dileets , £Q. (3.139)
D33 = B5leets . EQ. (B.140)
Sway Equation ,
MZ =T (Fogy * Fugy) » EQ. (B.141)
where:

Fog = { -8 AN Ty +,9,,1,,| -Datan(e)
~D43inB21(t)+D34sinB41(t)+Di4can?B1(t)sindl(t)
nd2 -
wsomi(e1E T, fow) 5, me )

Fp ™ —{A MagVng + BV | Vgl - DS(c08B2(t)-coaB3(t))
-D25(cosB22(t)-conB23(t J+D35(eosB42(t)-cosB43(t))
+D45(cos>B2(t)-cos?33(t) ﬂ-DSS(cosBZ(t)-coaBIi(t»} ) m
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meds -vhzvcx v § 7 1024346
+ A 0 v 3 % 1,243,6,11,14,15,16
+thvex s J = 11,14,15,16
. EQ.
D4 = D9tana , EQ.
D24 = D2%tana , EQ.
D34 = D39%tana , EQ.
D44 = D49tana EQ.
DS = D59tans ; EQ.
b5 = P7tan®x EQ.
D25 = D27tan’a EQ.
D35 = D27tan% Q.
D45 = Dh7tan?% EQ.
D55 = D57tan’s , EQ.
Roll Homent

Consider the hull-columm segment with a positive

(B.143)
(B.144)
(B.145)
(B.146)
(B.147)
(B.148)
(B.149)
(B.150)
(B.151)
(B.152)
(B.153)

roll

angle 0 as shown in Figure B.9. The moment aroumd the C.G,

in roll due to the applied forces is readily seem to be

M(o) = -ij(yhjuino + cheose) + thy(yhj““ -zejti.no)

+ Fch()\Jeooo - zcjsino) ’ EQ.

(B.154)

vhere )\ 3 designates the distance from the z-axis to the mid-

way point of the column's wetted lemgth. This term may be

repregented by
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Ay m %[yhi- %dhvbb +7]_y(x°.b.zc) = Y +z.8in0 - x_singcosd

+ yh( l-cos8cosy)] .

‘Y
>, s
\\
\ Z=
ez \ S, z L8
\ X/”’ > e
pe \
, hm \
\ 3 k \\ i
Fem ) \
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'_L\hz N
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Figure B.9¥ Hull-columm in large roll. ,
The total moment givem by Equation (B.125) is to be corrected,
The total buoyamnt forece is equal and opposite in directics of

the weight of the vessel acting through the center of gravity.
In roll and piteh the total huoyant moves to a new lime of
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action where it exerts a restoring mement on the vessel for

positive stability as shown in Figure B.10,

EY
y -
R
J| \e l
g N
l ©
< l
: ‘ng
I

Figure B.10: Restoring moment and metacentric height,
The couple formed by the buoyant force in roll is

Mt(o) = - HﬁGMtsi.no ’ EQ. (B.156)

wvhere GMt is the transverse metacentric height. Feor sasll
angles GM, is independent of 0. This numerical distamce will
be treated as a comstant even though the remainder of the
analysis includes the affects of large angle rotation. Thus
far, the total moment on the vessel around the x-axis is
found to be

24
M(8) = z [-FyJ(thsi.no-t-chcoao) + thj(yhj“”"cj’u’)
=1
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+ Fezj(}tjcose-zejsino)] - MgGM,sino .

EQ. (B.157)

Pitch Moment
A typiecal hull-column segment i.n large pitca is shown in
Figure B.11l. The moment due to the applied forces in pitch is

easily shown to be

M(¥) = F; (xcjcosy-yhjsinsé) - thj(xejsin&&yhjcos;ﬂ)
+ chj(hjeos‘ﬁé—xc:)stn'}o) . EQO (30158)

The concepts of a couple being formed due to a new line of
action for the total buoyant force are also valid for pitching
motion., If the angle in Figure B.10 is changed to and aM,
to GM; (longitudinal metacentric height) the corresponding
restoring moment in pitch is found to be

M () = - MgQM, sin¢ EQ. (B.159)

With this addition, the total moment develeped thus far is
determined as
24

M(H) = Z[ij(xejcos;/-yhjsinﬁé) - thj(xcjsiu% + yhjcossé)
J=1
- chJ(,ZJcos%-ﬁ- xcjsinsé)] - MgGM;sin #.
EQ. (B.160)
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Figure B. 11: Typiecal hull - colusm with large pitch angle.

Jax Moment
In determining the moment in yaw, terms for the total

force (sum of separate forces on hmll and column) in the x
and z directions may be used rather than hmll sad columm
forces. Consider Figure B.12 which depicts the forces
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exerted on a typical hull-column with a large yaw amgle.

c.G.

20)

Figure B.12: Typical hull-columm in large yav.
The mement around the vertical axis is writtem as

M(@) = ij(zejcos#xcjsmﬂ) - sz(xejcumcjamﬁ) .
BQ. (B.161)
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The moments defined by Equations (B.129), (B.132), and
(B.133) are substituted into Equations (B.29), (B.30), and
(B.31) to defime the equations of motion im roll, pitch and

yaw., These equations are as follows:

Ixxa. - I L,& - rélyyr-lxy IyzO"')

x
+ ﬁ<ir(:[.":z(rz Ixz 6._x Iyz 0y)

g[-i‘”(yhjsim + zajcoso) + thj(zejsino - yhjeoso)

“J(ljcoso -2z jsine)] - MgGM_sine , EQ. (B.162)

Iyyay - Ixyux - Iyz 2 (,v(I

+ a"z(Ixx Oc'x'Ixy cry Ixz G’z) ’

zz 0% Ixzoy Iyz G'y)

= :[F (z cosf - X . sin@) - F,. (ch cosp + z. sinﬁ)] ’

. . - m. (B.163)
1,6, = I.,0, - Iy,zay - O"y(Ixx Cx” Ixy a-'y Ixz ”

+ ai(ryy Cy” Ixy " Iyz )

24
ZEF},J(chcoa;& - yhjain(//) - thj(xcjsin¢+ Yh4c08 )
J=1
- ch(ljcos¢ + x,48in #)] - MgGM;sin , EQ. (B.164)
where
ij = FOXJ + thj ’ Q. (B.165)
sz = FCZj + thj . mo (30166)
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The equations of motion for the six degree of freedom
rigid body system accounts for the interaction of the vessel
and sea with the excitation of second-order waves. These
equations do not yet include the restraining forces of a
mooring system or applied wind loads. These effects are to

be derived in Appendices C and D.



APPENDIX C
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MCORING SYSTEM

Vessels of this type are mcored by a spread mooring
system generally containing at least eight mooring lines and
anchors. The mooring lines in this analysis are made of very
heavy chain which may be idealized as a uniform heavy string

whose shape may be described by the catenary equations,

Derivation of Catenary Equations

Consider the curve formed by an ideal perfectly flexible

uniform string hanging freely between two points as shown in

Figure C.1.

Y F

F A WY s y

>y

h -

A
|

Figure Cs1t A ideal string hanging freely between two points.,
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The objective at this point is to derive the differemtial
equation which describes the system shown in Figure C.1,
solve and obtain a relation for the tension F in the mooring
line.
The portion AK is in equilibrium under a horizontal

tension F at A, the tension F directed along the tangent
at K, and the weight W of the arc AK. It is easy to see
that

W o= WS, EQ. (C.1)

dW = W ds , EQ. (C.2)
and by dividing by dx

W o=wde . EQ. (C.3)

In general, dx/dx is defined by the arc length equation as

dv, 3
d8 .1 (@)%, EQ. (C.4)

which may be substituted into Equation (C.3) to give
QH = <+ QX 2 % * ] C.5
ge w.(1 (dx) ) EQ. (C.5)

From the force triangle in Figure C.1l, one should note that

=4y - W
tand & T F,

which upon differentiation leads to

d3y _ 1 dv EQ. (C.6)
dx® Fh dx

Substituting Equation (C.5) into (C.6) gives the differemtial
equation of the uniform hanging string, otherwise known as
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the catenary. This result is

A%y « Yo (1 4+ (dv)a)x | EQ. (C.7)
dx? 120 dx

with the boumdary conditions
y=¢ at x=0 , EQ. (C.8)
%'0 at x=0 . EQ. (C.9)

This differential equation is non-linear; but fortunately,
it is quite easily solved by reducing the order whem letting

P = %xx ’ EQ. (C.10)

and separating variables. The result is

f-(-,_%.-ﬁ - ;ﬁf dx . EQ. (C.11)

Integration and some manipulation leads to

¥ u L
P+(1+P)%=cC exp(FﬁJ > EQ. (C.12)

where C is a constant of integration. Applying Equation (C.9)
which dictates that the slope (P) is zero at x = 0 gives
C =1, which leaves

P+(1+ P')% - exp(gﬁ) ’ BEQ. (C.13)

a first order non-linear differential equation. Observing
that
( 1L+P® )P =]l ,
and faetoring
( 1L+P"+P)( 1+P?-P)m=1 »
Equation (Cl3) ma- be changed to
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14P - P=exp(-gS) - EQ. (C.14)

Subtracting Equation (C.14) from (C.13) eliminates the radical

and leaves the result in a form conducive to straight forward

integration
%x! = % exp (%.’ﬁ) - exp(l."lﬁ) . EQ. (C.15)
Integration gives
y=% %P exp(EQ) + exp(mﬂh) + Cg o EQ. (C.16)
(] Fn Fn

Applying Equation (C.8), the remaining boundary conditiom is

F
Camec-_B . EQ. (C.17)

c

Now by suitably shifting the x-axis C; can be set to zero to

give
F
c = wl:. . EQ. (C.18)
(]
which is called the parameter of the catenary.
The final solution is
y = %(exp(%) + exp(-X)) = ccosh(%) > EQ. (C.19)

which is the familar catenary equation,
Integrating Equation (C.4) ieads to the companion equation for
arc length

s = csinh(X) . EQ. (C.20)

The tension F from the force triangle in Figure C.1 is

easily observed to be

F =F, sec § ,
but
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so
Fao ch sec § . EQ. (C.Zl)
It was shown previously that

B, ¢

80 the arc lemgth may be written in the fomm

s = ctan § . EQ. (0022)
Squaring and subtracting Equations (C.19) and (C.20) leads to
yﬂ = c® 4+ 83 ) EQ. (C.23)

a result which is needed now and will be quite useful later,
Substituting Equation (C.22) into (C.23) and using a trigo-
metric identity gives
y =¢c sec & o EQ. (C.24)
and making use of this relation in Equation (C.21) indicates
that the tension in the catenary is givem by
F=cy. EQ. (C.25)
These equations are transcendental in mature are very
difficult to use in obtaining an explicit equation for temnsion
at the vessel, For example consider a typical mooring line
with part laying flat on the seabed and the remainder forming
the catenary just deseribed in theory. The water depth and
total length of chain are known.
This system may be solved for F at the vessel (which is

of supreme interest) if the horizontal distance b or the arc
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length are known. But if the vessel is displaced in either
positive or negative directions a solution for F must be
found graphically or by trial and error. The difficulty
lies in the varying arc length. In essence, a very heavy
chain as shown is a non-linear spring that can be classified
as either "hard or soft" depending entirely on how far the

catenary is stretched out,

x = vessel displacement

—

anchor 4‘—’////// K/Juznuzt

Figure C.21 Typical mooring line in static equilibrium.
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The forces. that arise in the mooring system due to the
vessel®s motion must be included in the equations of motion
derived in Appendix B. It is very desirable that this force
be on expliclt term that can be evaluated easily rather than
in trancendental form. This can be done if two simplifi--

cations are made:

1) Assume that vertical motion of the vessel produces a
relative small change in the tension F and may be
negloected,

2) The inertia effects in addition to fluid drag of the
chain are negligible.

The general appfoach to solving this problem will be to

assume values for arce length and calculating the corresponding

tension at_the vessecl as data points on a curve F vs XD the
distance from the anchor point which is stationary. These
data points will be litted by "least squares"” to a finite
serics of Chebyshev polynominals, which will result in an
explicit cquation for the tension F as a function of vessel
displacement in the form
mn

Fe = Z,B"P“-“l(“) ' EQ. (C.26)

where the polynominal is calculated in the form of its

Chebyshov expansion

Zhnl“ =B1PO(};)+BZI’1(X)+. e o« +B P _(x).

mme-1

(C.27)
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Calculating Data Points
The total length of chain has been defined as ST'

This would be the upper limit of s if the vessel was dis-
placed to a point where the total length of chain would
form the catenarys i.e., no chain would be laying flat on
the seabed. The lower limit of s may be said to correspond
to the arc length when the chain is completely slack. This
length would equal to the vertical distance from the fair-
lead to the seabed, WD.
At the fairlead, one should note that

y=c+W. EQ. (C.28)
Substituting this relation into Equation (C.23) and simplifying
leads to

e 1
° =W (Wp +8%) EQ. (C.29)

which may be used to calculate the value of the parameter a
for assumed values of s. Setting Equation (C.28) equal to
the catenary, Equation (C.19)

¢ + Wy = ccosh(X) ,

or

E—E-YD - cosh(%) ’ EQ. (C.30)
the variable x is solved for by taking the inverse

X = ccosh'l(fﬁgp) ’ EQ. (C.31)
where

OOSh-lf = 1n2{ - —.l—fg 2.4.4’,,4 T.-%-:—%-:%?-‘"" EQ' (0032)
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The x in the above relations should not be confused with the
x in the equations of motion; x as shown in Figure C.2 is the
horizontal distance from the point where dy/dx = 0 to the
fairlead.
The amount of chain laying on the seabed may now be de-

ternmined by

by = Sy - csinh(¥). EQ. (C.33)
Similarly the horizontal distance from the anchor point to
the fairlead is

Xp=x+Db, , EQ. (C.34)

and the tension as defined by Equation (C.25). This is the
calculation required for one data point on the curve FvsxD.
Any number of data points may be calculated between the
limits of arc length; the more the better insofar as s is
reasonably equidistant. In this study 417 data points were
calculated for a chain whose total length is set at §O00

feet,

of Chel

The problem in any "least squares" technique is to de-

termine the coefficients of the series expansion such that
n

zlff(xi) - p(xi)]a = minimum,
j:
This problem leads to a system of linear equations

ra] {88 = {R EQ. (C.35)

where B is the vector of unknown coefficients.

Let XL and XD denote the lower and upper limits of Xpe
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By means of the linear transformation

) - 2R

- X EQ. (C.36)
the argument range X< Xp< X,; 1s reduced to -lsxnsl. The poly-
nominal is then calculated by Equation (C.27), the Chebyshev
expansion,

The vector B of the unknown coefficients is a solution
of the matrix Equation (C.35), where A is an m by m positive

definite matrix whose elements may be determined by

n
Ape .‘ij_ JLex )T T [e(x,)] ], (C.37)
The elements of the vector R are calculated by

n
ry= DT, 4[ex)] £ (xp) . BQ. (C.38)

The Chebyshev polynominals of degree k are determined by

the recurrance relation

T (x) = 2xT, _,(x) = T, _,(x) » k22 BQ. (C.39)
where

To(x) =1 BQ. (C.40)
and

Ty(x) = x EQ. (C.41)
Numerj.cal Regulte

Using a mooring system of chain whose unit weight is 91.4
lbs/ft. in seawater, total length of 5000 ft. and Wp = 1000 ft.,

a computer program was written to calculate the data and
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matrix equation for "least squares" fit for the Chebyshev
expansion of tension F at the fairlead. The matrix equation
is then solved by "Gauss" elimination. The results which are
given below are used directly in the equations of motion
which are solved by a separate computer program. The co-
efficients of the Chebyshev expansion are listed in Table

5a,

It was determined that eighteen terms would give a relative
error of less than 0.01 % by the Chebyshev approximation as
opposed to the calculated data points in the range 100,000 1bs,
< F < 1,000,000 1bs.. This error is calculated by the relation

error = EQF;—EE x 100 « EQ. (C.42)
Additional terms will improve the accurracy significently
if needed.

It must be remembered that the tension F at the fair-
lead formed by Equation (C.26) is directed along the tangent.
What is needed for the equations of motion are the horizontal
and vertical components. Therefore, a similar curve-fitting
procedure is used to fit a Chebyshev expansion to the curve
tan & vs xD where tan & is the tangent of the angle relative
to the horizontal at the fairlead. Much of the imitial cal-

culations may be used since

tan § = ginh % . EQn (C.43)
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TABLE 5Sa

Coefficients for Mooring

Line Tensions

B(1) =
B(2) =
B(3) =
B(4) =
B(5) =
B(6) =
B(7) =
B(8) =

B(9) =

3.3094528
3.9090561
2,5616797
1.5184452
0.8621944
0.4723058
0,2532643
0.1331087

0.0692389

B(10) =
B(11) =
B(12) =
B(13) =
B(14) =
B(15) =
B(16) =
B(17) =

B(18) =

0.0353964
0.01815837
0.0090104
0.0046683
0.0021917
0.0011888
0.0005230
0.0002541

0.0001899




200

TABLE 5b

Coefficients for Mooring Line

Tangent Angles

c(1) =

0.2861405

€(2) =-0,4993399

c(3) =
C(4) =
c(5) =
c(6) =
c(7) =
c(8) =

c(9) =

0.3677220
-0.2397937
0.1294944
-0.0427505
-0.0198204
0.0603033

-0.0818071

c(10) = 0,0884618

c(11) = -0.0841822
c(12) = 0,0730596
c(13) = -0,0583060
c(14) = 0,0428919
c(15) = -0.0286052
C(16) = 0,016939%
c(17) = -0,0081828

C(18) = 0,0026316
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An identical procedure of a "least squares"” fit yields the
coefficient vector of the tan § at the fairlead as a func-
tion of distance from the anchor. These coefficients are
listed in Table 5b. The relative error for the tangent angle
is slightly less for the same range of tension used pre-
viously. Once the coefficients are known, the tangent angle

is found by the inverse as
4§ = arctan 2 CnPn-l(XD) . EQ. (C.44)

Multiplying Equation (C.26) by cosé and sind the respective

horizontal and vertical components of force are obtained

Fp(Xp) = coss anPn-l(xD)} ’ EQ. (C.45)

and

This is the form that will be used and added to the

equations of motion derived in Appendix B.

Computer Program for Least-Squares Fit of Chebyshev Expansion

The following Fortran IV computer program simultaneously

calculates and solves for the two coefficient vectors Bn and

and C, just given.



COMPUTER PROGRAM

CHEBYSHEV POLYNOMINAL

APPROXIMATION FOR THE

CATENARY
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FUNCTION T(J,X)
IMPLICIT REAL*8(A-H,C-Z),INTEGER*4(I-N)
IF(J.GT.0) GO TO 1
T=1,

RETURN

IF(J.GT.1)GO TO 2
T=X

RETURN

IF(J.GT.2)GO TO 3
T=2%X¥%2-1,

RETURN

IF(J.GT.3)GO TO 4
T=l%X*%3= 35X

RETURN

IF(J.GT.4)GO TO 5
T=8%X%% - 8%X%%241,
RETURN

1F(J.GT.5)GO TO 6
T=16%X%%S5- 20%X%*x34+5%X

£0¢
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NINIIY

Xt TT =C%8Xw Y THGHRXRCE LT ~ L ¥ X% LT+ 6%¥X*#918T ~T T3#xX*¥Y201=1

¢1 OL 09(11°19°r)a1

NINIIE

*T-CxxX# 8+ X %00Y -9+ X*0C T T+8%¥X%08C T -0 T+¥X»Z1S=1
IT OL 09(01L°I9°'r)a1

R (ERACE. {
X#GHE##X*DCT -G X#TE I+ L¥¥X¥ILS ~64%X*9GC=1
0T O1 09(6°19°r)JI

NINIAYT

*THEXREE X0 TH9%8X¥9GC -8 ¥ X%8C T=1

6 O1 09(8°19'r)dIx

NINLIAY
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13

IF(J.GT.12)GO TO 13

T=2048%X#%1 2= 6144%X%%1046912%X%%8= 257 6 XX**6+968 %X %4~ 104%X*%*2+1 .
RETURN

Tu4096%X#%%1 3~ 1331 2%X*%*1 141664 0% X%~ 7968%X#*x7+31 684X %*5-492%X#*3
1413%X

RETURN

END

SUBROUTINE SIMQX(A,N,B,KS)
IMPLICIT REAL*8(A~H,0-Z),INTEGER%4(I-N)
DIMENSION A(1),B(1)

TOL=0,

KS=1

JJ=-N

DO 65 J=1,N

JY=J+1

JI=JJHN+1

BIGA=0.

1T=JJ-J

S0¢



20

30

35

40

50

DO 30 I=J,N
1J=IT+I
IF(DABS(BIGA)-DABS(A(1J)))20,30,30
BIGA=A(1J)

IMAX=I

CONTINUE
IF(DABS(BIGA)-TOL)35,35,40
KS=0

RETURN

I1=J+N%(J-2)

I1T=IMAX-J

DO 50 K=J,N

I1=I1+4N

12=114IT

SAVE=A(I1)

A(I1)=A(12)

A(I2)=SAVE
A(I1)=A(I1)/BIGA

SAVE=B( IMAX)
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60
65
70

B(IMAX)=B(J)
B(J)=SAVE/BIGA
IF(J-N)55,70,55
1QS=N%(J-1)

DO 65 IX=JY,N

IXJ=IQS+IX

I1T=J-IX

DO 60 JX=JY,N

IXJIX=N#e( JX-1)+IX
JIX=IXIX+IT
A(IXIX)=A(IXIX)-(A(IXI)*A(IIX))
B(IX)=B(IX)-(B(J)*A(IXJ))
NY=N-1

IT=NAN

DO 80 J=1,NY

IA=IT-J

IB=N-J

IC=N

DO 80 K=1,J

L02Z
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B(IB)=B(IB)-A(IA)*B(IC)
IA=IA-N

IC=IC-1

RETURN

END

SUBROUTINE CSHIV(AA,YY,XX)
IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N)
DIMENSION A(500)
IF(AA.GT.0.)GO TO 1

XX=0.

RETURN

Z=YY/AA

A(1)=DLOG(2*Z)
A(2)=.25/2/z

DO Z K=3,500

KK=K-~1

KL=2#K-4

KM=2#K~3

80¢



KNe=2#K-2
A(K)=A(KK )*KL*KM/ (KNXKN*Z*Z )
KSAV=K
IF(A(K).LE.1,E-70)GO TO 3
CONTINUE

AX=0,

AX=AX+A(KSAV)

KSAV=KSAV-1
IF(KSAV-2),5,1,4
XX=(A(1)-AX)*AA

RETURN

END

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N)

DIMENSION A(417),S(417),Y(417),X(417),F(417),DIST(417)
DIMENSION TX(417),R(20),Q(20,20),DYDX(417),RD(20),QD(20,20)
NDIM=20

NPT=417

DELS=6.25

60¢



IW=6
WD=400,

WC=60,

ST=3000,

S(1)=WD

DYDX(1)=100.

DDD=DYDX(1)

DO 1 I=2,NPT

1I=I-1

S(1)=S(1I1)+DELS

DO 2 J=1,NPT

A(J)=. 5%(S(J)*S(J)~WD*WD) /WD
Y(J)=DSQRT(A(J)*A(J)+S(J)*S8(J))
AA=A(J)

YY=Y(J)

CALL CSHIV(AA,YY,XX)

X(J)=Xx

F(J)=WC*Y(J)
DIST(J)=ST+X(J)-S(J)

012



140

138

139

CONTINUE
DO 3 J=2,NPT
H=DSQRT(F(J)*F(J)-(WC*S(J) )**2)
DYDX(J)=WC*S(J)/H

FFC=F(1)

DDC=DIST(1)

DO 140 J=1,NPT

DYDX(J)=DYDX(J)/DDD

F(J3)=F(J)/FFC

DIST(J)=DIST(J)/DDC

CONTINUE

DO 138 J=1,NPT
TX(J)=(2%DIST(J)-DIST(1)-DIST(NPT))/(DIST(NPT)-DIST(1))
DO 139 J=1,NDIM

RD(J)=0,

R(J)=0.

DO 139 K=1,NDIM

QD(J,K)=0,

Q(J,K)=0.
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DO 141 J=1,NDIM

DO 141 K=1,NDIM

DO 141 I=1,NPT

Q(J,K)=Q(J,K)+T(J=1,TX(I) )*T(K-1,TX(I))

QD(J,K)=Q(J,K)

DO 142 J=1,NDIM

DO 142 I=1,NPT

RD(J)=RD(J)+T(J-1,TX(1))*DYDX(I)

R(J)=R(JI)+T(J-1,TX(I))*F(1)

CALL SIMQX(Q,NDIM,R,KS)

CALL SIMQX(QD,NDIM,RD,KS)

DO 144 J=1,NPT
TEST=R(1)*T(0,TX(J))+R(2)*T(1,TX(J))+R(3)*T(2,TX(J) )4+R(4)*T(3,TX(
1J) )4R(5)*T(4,TX(J) )+R(6)*T(5,TX(JI) )4R(7)*T(6,TX(JI))
24R(8)*T(7,TX(J))+R(9)*T(8,TX(J) )+R(10)*T(9,TX(J))+R(11)*T(10,TX
3(J))4R(12)*T(11, TX(J) )4+R(13)*T(12,TX(J ) )+R(14)*T(13, TX(J)
TEST=TEST*FFC |
TDYDX=RD(1)*T(0,TX(J) )+RD(2)*T(1,TX(J) )+RD(3)*T(2,TX(J))+RD(4)*
1T(3,TX(J))+RD(5)*T(4, TX(J) )+RD(6)*T(5,TX(J) )+RD(7)*T(6,TX(JI))
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2+RD(8)*T(7,TX(J) )+RD(9)*T(8,TX(J) )+RD(10)*T(9,TX(J))+RD(11)*
3T(10,TX(J))+RD(12)*T(11,TX(J))+RD(13)*T(12,TX(J) )+RD(14)*T(13,T
4%(J3))

TDYDX=TDYDX*DDD

DYDX(J)=DYDX(J )*DDD

F(J)=F(J)*FFC

DIFF=(F(J)-TEST)/F(J)*100.
WRITE(IW,145)J,F(J),TEST,DIFF,DYDX(J),TDYDX
FORMAT(15,5E25.15)

CONTINUE

DO 147 I=1,NDIM

WRITE(IW,146)1,R(X),RD(I)

CONTINUE

FORMAT( 1HO, I5,5X, *R="*,E22.15,5X, *RD=",E22.15)

CALL EXIT

END
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PHYSICAL DATA

WIND FORCES AND MOMENTS

The forces and moments acting on the vessel for a given
wind velocity in the general direction of wave propagation
are to be determined. Basic data and calculations of areas
and moment arms furnished by the vessel owner are included
at the end of this appendix.

The data determines the transverse and longitudinal
wind moments for wind velocity and wind components in the X
and Z directions. For wind velocity Vw at an angle of in-
cidence o the components in the X and Zddirections are
Vwcosa and szina respectively. It is easily shown that the

normal components of force due to wind are
3
wa = . 69.3056(Vwcosacos ) EQ. (D.1)

and

3
Fop =" 73.4496(szinacose) EQ. (D.2)

The transverse moment (around the z-axis) has been determined

to be

= 3
Mw( ) = + 6967.07(Vwcosqcos ) EQ. (D.3)

and the longitudiinal wind moment (around the x-axis) as
M (0) = - 6411.55(V _sinacose)” . EQ. (D.4)
215
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The yaw moment (around the vertlcal axis) due to wind is
omitted due to insufficient data.

The above terms for forces and moments are to be included
in the appropriate equations of motion derived in Appendix B,
MASS AND MASS PROPEBRTIES*
Mass = 55,321,734 1bs.’-kips
= 430,724,040 ft.2-kips

Ixx

I, = 632,448,210 ft.2-kips

I,, = 426,417,240 fr.’-kips
_ 2 ..

Ixy = 633,484 ft.“-kips

I, = 1,709,465 fr.2-kips

Iyz = 11’837’974 ft.z-klps

CENTERS OF GRAVITY
Vertical C.G. Height is 49.45 ft,

Longitudinal C.G, is .02 ft. starboard of centerline.

Transverse C.G, is 1,57 ft. aft of centerline.

METACENTRIC HEIGHTS
GML(Longitudinal) = 24,40,

GMT(Transverse) = 23,50 ft.

* Note: Above properties are for a zero topside load only.



Member €o0l. O.D.

PHYSICAL DIMENSIONS AND COORDINATES

Hull O0.D. Hull Length

fte ft. fte "o “h e
L 22.50 25.50 61.00 124,57 -36.70 44,98
2 22.50 25.50 61.00 124,57 -36.70 ~45,02
3 22.50 25.50 64.00 61.57 -36.70 119.28
4 12.00 25.50 64,00 61.57 -36.70 44,98
5 12.00 25.50 64,00 61.57 «36.70 -45,02
6 22.50 25.50 64.00 61.57 -36.70 -3119.32
7 12.00 25.50 57.00 1.57 -36.70 119,28
8 12.00 25.50 57.00 1.57 -36.70 44,98
9 12.00 25.50 57.00 1.57 -36.70 -45,02
10 12.00 25.50 57.00 1.57 -36.70 -119.32
11 22.50 25.50 64.00 -58.43 -36.70 119.28
12 12.00 25.50 64.00 -58.43 -36.70 44,98
13 12.00 25.50 64,00 -58.43 -36.70 -45,02
14 22.50 25.50 64.00 -58.43 -36.70 -119.32
15 22.50 25.50 61.00 -122.43 -36.70 44,98
16 22.50 25.50 61.00 -121.43 -36,70 -45.,02

LTT



Member Col. O.D.

. Hul%t?.D. Hullf%?ngth X Vi Zg
17 0.0 12.00 67.00 124.57 9.45 - 0,02
18 0.0 18.00 51.00 61.57 9.45 81.73
19 0.0 18.00 51.00 61.57 9.45  -81.77
20 0.0 18.00 51.00 61.57 9.45  -81.77
21 0.0 18.00 51.00 - 58.43 9.45 81.73
22 0.0 18.00 67.00 - 58.43 9.45  -.0Q.02
23 0.0 18.00 51.00 - 58.43 9.45  -81.77
24 0.0 12.00 67.00 -121.43 9.45 - 0.02
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Figure E.51 Added Mass Coefficlent for an Oscillating Cylinder
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C MAIN PROGRAM

P W

mi N -

DIMENSION Y(12),DERY(12),PRMT( 5),DMCX(24),DMHY(25),DMHZ(24),

DMCZ(24 ) ,ALFA(24),CAPK(24),PDH(24),YH(24),DC(24),HL(24),
8J(24),YBAR(24),AF(8),DCX(24),DHY(24),DCZ(24),DHZ(24),
AUX(8,12),Q(24),ANU(24),FCX(24),FHX(24),FCZ2(24),FHZ2(24),
DHX(24 ) ,DMHX(24 ),X1(24),Y1(24),21(24)

DIMENSION A1(24),A2(24),A3(24),A4(24),A5(24),46(24),A7(24),A8(24),

A9(24),A10(24),A11(24),A13(24),E1(24)E2(24),E3(24) ,E4(24 ),
E5(24),E6(24),E7(24),E8(24),E9(24),E10(24),E11(24),E13(24),
B21(24),A22(24),A23(24),A24(24),A25(24),A26(24),A27(24),
A28(24),A29(24),A210(24),A211(24),A213(24),E21(24),E22(24),
E23(24),E24(24),E25(24),E26(24),E27(24) ,E28(24)

DIMENSION E29(24),E210(24),E211(24),E213(24),C1(24),C2(24),C3(24),

w P W

C4(24),C5(24),C7(24),C9(24),D¥24),D2(24),D3(24),D4(24),D5(24),
D7(24),D09(24),C21(24),C22(24),C23(24),C24(24),C25(24),C27(24),
€29(24),021(24)D22(24),D23(24),D24(24),D25(24 ) ,BYD(24 ),D27(24),
D29(24),B1(24),B2(24),B3(24),B4(24),B5(24),DSJ(24),A35(24),
A36(24),E35(24),E36(24),C31(24)
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DIMENSION C32(24),C33(24),D31(24),D32(24),D33(24),D69(24),C41(24),
C51(24),C61(24),C43(24),C53(24),C63(24),C34(24),C44(24),
C54(24),C35(24),C45(24),C55(24),C65(24),C37(24),C47(24),
C57(24),C67(24),C39(24),C49(24),C59(24),C69(24),D41(24),
D51(24),D61(24),D42(24),D52(24),D62(24),D43(24),D53(24 ),
D63(24),D34(24 ) ,D44(24),D54(24),D64(24),D35(24),D45(24),
D55(24),D65(24),D37(24)4D47(24),D57(24),D67(24),D39(24)

DIMENSION D49(24),D59(24)

DIMENSION RATA(20)

COMMON A35,A36,E35,E36,C31,C32,C33,D31,D32,D33,D59,D69,C41,C51,

1  C61,C43,C53,C63,C34,C44,C54,C35,C45,C55,C65,C37,C47,C57,C67,

2 c39,c49,C59,C69,D41,D51,D61,D42,D52,D62,D43,D53,D63,D34 , D44,

3 D54,D64,D35,D45,D55,D65,D37,D47,D57,D67,D39,D49

o Bt & LW N M-

COMMON Al,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A13,E1,E2,E3,E4,E5E6,
1 E/,E8,E9,E10,E11,E13,A21,A22,A23,A24,A25,A26,A27,A29,A210,A211,
2 A213,E21,E22,E23,E24,E25,E26,E27,E28,E29,E210,E211,E213,C1,C2,
3 c3,c4,C5,C9,C7,D1,D2,D3,D4,D5,D7,D9,C21,C22,C23,C24,C25,C27,C29
4  4D21,D22,D23,D24,D25,D27,D29,B1,B2,B3,B4,DSJ,BYD
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COMMON GML,GMT, SINA,COSA,CAPH,ANU, SJ, DMCX, DMHY , DMHZ , DMCZ, ALFA,
DHX, DMHX, X1, YI,2I,EIXY,EIXZ,EIYZ,DCX,DHY,DCZ,DHZ,OMEGA, PI,
WAMP, G, PIR04 ,AK,WAVEL,DEG, P12, EMASS, EIX,E1Y,EIZ,B,HH, T1,CAFK,
CSHKH, CSH2KH, SNHKH, SNHZKH, A28, B5, PDH, HL, DC, YBAR, RO, CM, VCMAX,
SNHKH3

COMMON TMOM, THRUST,WIND, ALPHA ,WNVX2,WNVZ2,WX,WZ,WMX,WMZ, AF,DIR,

1 FCX,FHX,FCZ,FHZ,Q,DOMX8,DOMX10,DOMX12,DOMY8,DOMY10,DOMY12,

S W N e

2 DOMz8,DOMZ10,DOMZ12,PER
COMMON SNHKH2, SNHKH4 , SNHKH5 , CSHKH3 , CSH4KH,, SNH4KH , OMEGAC, PIHL,
1 PIHL2,CMC,AC1,AC2,AC3,AC4,AC5,C,H

COMMON SINY7,COSY7,SINY9,COSY9,COSY11,SINY1l,Y7,Y8,Y9,Y10,Y11,
i Y12,C9S11,C7C11,C987C1,S9S87S1,89811,C9C11,C7S11,S9S7C1,C9C7,
2 s9c7,..89C11,C957S1,S9C7S1

COMMON XD(8),2D(8),YD(8),DH(8)HD(8),DIAG(8),RT(14),RD(14),AaX(4),
1 AY(4),A2(4),ISIN(24),JSIN(24),KSIN{24 ),NOEL,NOADM

WRITE (6,2)

PI=3,141592653897932
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dekdddksx THE FOLLOWING COEFFICIENTS ARE DERIVED BY SEPARATE PROGRAM
RT(1)=,585486207567359E01
RT(2)=-.655207363767616E02
RT(3)=.700250076790167E01
RT(4 )=-.390504932656121E02
RT(5)=.347744093045743E01
RT(6)=-.120584678480321E02
RT(7)=.110999717336903E01
RT(8)=-,119988117142609E01
RT(9)=.312869779676840E00
RT(10)=,258947534989535E00
RT(11)=,689791595390375E-01
RT(12)=.123090560725601E00
RT(13)=-,474291002936958E-02
RT(14)=,575121457054698E-01
RD(1)=,315570220253098E1
RD(2)=-,379663428077203E1
RD(3)=.448416616629841E1
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23

RD(4)=-.204884702675601E1
RD(5)=,159798259161104E1
RD(6)=-,574389211513435E0
RD(7)=.222001561998078E0
RD(8)=-.440981032013393E-01
RD(9)=-,340374970989804E-01
RD(10)=,307661923105107E-01
RD(11)=-,232107931651822E-01
RD(12)=.147666199923824E-01
RD(13)=-,738303718839151E-02
RD(14)=.231931035865417E-02

DEG=180. /P1

READ (5,23,END=99) DATA

FORMAT (20A4)

%%kAAHAMASS AND PRINCIPAL INERTIA TERMS##skrickiciok
READ(5,4 )EMASS, EIX,EIZ,EIY

#%¥kIk**CROSS- PRODUCTS OF INERTIA AND UPPER ERROR BOUND*¥ssssscis
READ(5,4 )EIXY,EIXZ,EIYZ, EPSI

82¢



Q O O 0

Q

O o0 0 o O

32

FdkkiickkBu+VALUE OF CG BELOW CAIM WATER LINE#iiirisdicidisisd
fdedched i xH=WATER DEPTHsrdtdidckokksededed

*¥Jk¥dex*GML=LONGITUDINAL METACENTRIC HEIGHT*¥%kssdscirickdcich
¥k **GMT=TRANSVERSE METACENTRIC HELGHT#¥diciciis

READ( 5,32)B,H,GML,GMT,NOEL,NOADM

FORMAT (4F8.3,218)

%k #¥k%%CONSTANTS FOR WIND FORCES AND MOMENTS#iicskssicsk
Kk k%VCMAX=CURRENT VELOCITY IN KNOTS#sisskdseddsk

READ( 5, 3)WX,WZ,WMX, WMZ,VCMAX

ik % ALPHA=ANGLE OF INCIDENCE,POSITIVE CLOCKWISE FROM POS
X-AXIS

#Jickdick%*NOTE THE ANGLE OF INCIDENCE ALPHA SHOULD NOT BE A
MULTIPLE OF PI/2,#%¥isidsdciedscicicioiiicid

edecdedck ek WIND=WIND VELOCITY IN KNOTS¥d¥csrksckiciriik

READ( 5,1 )ALPHA, WIND, CMC,CM, CDF

ALPH=ALPHA

ALPHA=ALPHA/DEG

K&Kk FKWAVEL=WAVE LENGTH IN FT.¥%dadksoksk

62¢



FkkihIXWAMP=WAVESWAVE AMP OR ONE-HALF OF WAVE HEIGHT##s##%
READ( 5,1 )WAVEL, WAMP, ADM,CD, C,CASE, TMIN,CYC
DO 80 I=L,NOEL
READ (5,37) DC(1),PDH(I),HL(I),X1(1),Y1(1),2I(1),DSJ(I),C69(1),
1 ALFA(I),ISIN(I),JSIN(I),KSIN(I)
37 FORMAT (2X,9F8.2,312)
IF(DSJ(I).LE.0.0) DSJ(I) = ADM
IF (C69(1).LE.0.0) C69(1I) = CM
30 CONTINUE
IF (NOADM,LE.0) GO TO 49
DO 35 I=1,NOADM
35 READ (5,36) DH(I),HD(I),XD(I),¥D(I),ZD(I)
36 FORMAT (10X,5F8.2)
49 WRITE (6,24) DATA
24 FORMAT (25X,2044/)
DO 39 I=1,4
39 READ (5,38) AX(1),AY(I),AZ(I)
38 FORMAT (26X,3F8.2)
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WRITE(6,4)EMASS,EIX,EIY,EIZ
WRITE(6,4)EIXY,EIXZ,EIYZ,EPSI
WRITE(6,1)B,H,GML,GMT

WRITE(6,3)WX,WZ,WMX, WMZ,VCMAX
WRITE(6,15)ALPHP,WIND, CMC,CM,CDF
WRITE(6,15)WAVEL,WAMP,ADM,CD,D,CASE, TMIN,CYC
WRITE (6,55)

55 FORMAT (6X, "ELEM COLUMN HULL HULL", 8X,"X",11X,
1"Yy",11X,"2", 8X, "DAMPING COEFF. HULL ISIN JSIN KSIN"/
2 7X,"NO DIAMETER DIAMETER LENGTH COORD. COORD. " ,6X,
3COORD. COEFF. MASS ANGLE"/

4 13X, 4("(FT.)",5X)s2X, "(FT.)",7X, "(FT.)",26X, “(DEG.)"//)
DO 60 I=1,NOEL
WRITE (6,56) I, DC(I), PDH(I), HL(I), XI(I), YI(I), ZI(I),
1 pDSJ(I), C69(I), ALFA(I), ISIN(I), JSIN(I), KSIN(I)

56 FORMAT (5X,I4,1X, 3(F8.2,2X), 3(F9.2,3X), F8.2, 2X, F7.2, 3X,
1 F8.2, 2X, 3(14,2X))

60 CONTINUE
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IF(NOADM.LE.O) GO TO 65
WRITE (6,27)
27 FORMAT (1HO,40X, "#¥%% ADDED DAMPING *%%"/)
DO 64 I=1,NOADM
64 WRITE (6,28) I,DH(I), HD(I),XD(I),¥YD(I),zD(I)
28 FORMAT (5X,14,11X,2(F8.2,2X), 3(F9.2,3X))
65 WRITE (6,40)
40 FORMAT (1HO,40X, "#%%* ANCHOR LOCATIONS #%*"/)
WRITE (6,41) (I,AX(I),AY(I),AZ(1),I=1,4)

.41 FORMAT (5X,I14,5X, "FWD PORT", 14X,3(F9.2,3X)/ 5X,14,5X,

1 “FWD STBD" , 14X,3(F9.2,3X)/ 5X,14, 5X, "AFT PORT", 14X,
2 3(F9.2,3X)/ 5X,I4, 5X, “AFT STBD",14X,3(F9.2,3X))
WRITE (6,5) CASE
1 FORMAT (9F8.3,2X,312)
FORMAT(1H1)
FORMAT( 5F14.4)
FORMAT(4E14.8)
FORMAT(1H1,58X,"CASE ",F6.3)
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14
15
16

17
18
19
20

FORMAT(8F15.4)

FORMAT(4F14.7)

FORMAT (2X,8F8.4)

FORMAT(1HO, 1X, "WAVE HEIGHT =",F5.0,"FT.",5X, "WAVE LENGTH =",F6,0,"
1FT.",5X, "WAVE PERIOD =",F5.1," SEC")

FORMAT(1HO,1X, "WAVE IS APPROACHING BOW AT",F5.1," DEGREES TO STB")
FORMAT(1HO,1X, "WATER DEPTH =",F6.1,"FT.")

FORMAT(1X, "WIND SPEED =",F5,0," KNOTS")

FORMAT(1HO,1X, "CURRENT =",F5.0,"KNOTS")

G=32,17

£el

EMASS=FEMASS/G
EIX=EIX/G
EIY=EIY/G
EIZ=EIZ/G
EIXY=EIXY/G
EIXZ=EIXZ/G
EIYZ=EIYZ/G
6D=1,05



D=1,05

RO=64. /G
AK=2,*PI/WAVEL
WAVH=2%*WAMP

NDIM=12
PIRO4=PI*RO/4.
PI2=P1/2.

HH=2%*WAMP

XAKH= EXP(AR*H)
XMAKH= EXP(-AK*H)
TNHKH=( XAKH~ XMAKH ) / ( XAKH+XMAKH )
SNHKH=, 5%( XAKH- XMAKH )
SNHKH2=SNHKH*SNHKH
SNHKH3=SNHKH**3
SNHKH4 =SNHKH**%4
SNHKHS5=SNHKH#%5
€SHKH=, 5% ( XAKH+XMAKH)
CSHKH3=CSHKH**3

vee



X2AKH= EXP(2%AK*H)
XM2AKH= EXP(-2%*AK*H)
X4AKH= EXP(4%AK*H)
XM4AKH= EXP(-4%AK*H)
SNH2KH=, 5% ( X2AKH- XM2AKH)
CSH2KH= , 5% ( X2AKH-+XM2AKH)
CSH4KH= . 50%( X4AKH+XM4AKH)
SNH4KH=, 5% ( X4 AKH- XM4AKH )
PIHL=PI%HH/WAVEL
PIHL2+PIHL*PIHL

C= SQRT(G*TNHKH/AK)
OMEGA=2%PI*C/WAVEL
OMEGA2=OMEGA*OMEGA
PER=WAVEL/C

TGAP=TMIN#PI /(180%OMEGA)
TLAST=PER*CYC
OMEGAC=OMEGA*C

CAPH=PI *#HH*HH*CSHKH* ( CSH2KH+2 . ) / ( 8*WAVEL*SNHKH**3 )
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WRITE(6,16 )WAVH,WAVEL, PER
WRITE (6,17) ALPHP
WRITE(6,18)H
WRITE(6,19 )WIND
WRITE(6,20)VCMAX
VCMAX=UCMAX*1. 689
AOMEG2=WAMP*WAMP*OMEGA*OMEGA
ACl=, SRRO¥HH*C*OMEGA/SNHKH
AC2=, 375%RO*PI*HH*HH*C*OMEGA/ ( WAVEL*SNHKH4 )
AC3=, 25%RO%( . 5¥HH*C*AK/SNHKH ) %*%*2
ACA4=9%RO/ 256 , % ( PI ¥*HH¥HH*C*AK/ (WAVEL*SNHKH4 ) ) %%2
AC5=3%R0/16 . *( PT*¥HHXHH*XHH*C*C*AK*AK ) / (WAVEL%SNHKHS5 )
WRITE(6,903) AC1,AC2,AC3,AC4,ACS
903 FORMAT (1X," AC ",5El5.5)
IF (NOADM.LE.O0) GO TO 101
DO 105 I=1,NOADM
105 DIAG(I) = ADM * OMEGA * PIRO4 * DH(I)*%2 * HD(I)
101 DO 100 I=1,NOEL
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PIROC=,25%PI* DC(I)*DC(I)
PIROH=,25%PI*  PDH(I)%*PDH(I)
ADM=DSJ(I)

CM=C69(1)

YH(I)=YI(I)

BYDB  =AK*(H+YH(I)-B)
B2YDB = 2.0 * BYDB
B4YDB=2%B2YDB

XBY = EXP(BYDB)

XMBY = EXP(-BYDB)

X2BY = EXP(B2YDB)

XM2BY = EXP(-B2YDB)
X4BY= EXP(B4YDB)

XM4BY= EXP(-B4YDB)

CBSH1=, 5%(XBY+XMBY)

CBSH2=, 5%(X2BY+XM2BY)
SBNH1=, 5%( XBY-XMBY)

SBNH2=, 5%(X2BY-XM2BY)
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238

(1)01CYy=(I)11V

(VEHNS*( T )YTH¥AY#C ) /THNES 0% ZTHId®G . *=(1)012V
(HDHNS#( I)TH*MV ) / THNAS»0#THId=(1)01V

(VHDHNS»( I)TH®AV%Z ) /ZHS90x%0%TTHId*#S L *=(1)82V
(IDHNS*( T YTH®IV ) /THSE0%0xTHId=(1I)8V
(1)S2v=(1)92V

(1)sv=(1I)9v

( HIHNS%( I ) TH¥MV ) /CHNES*OVOTROXCTHId*S £ *=(1)STV
(HMHNS*( T)TH#)V ) / THNEGS %0VOTRO¥ THId=( T )GV
(1)eev=(1)9ev

(I)TV=(I)¥vV

( VHYHNS % ( 1) TH%)V ) /ZHS90%0VOIROXZTHIdRG L *=( 1) 22V
(EDHNS*( I )TH*)V ) / THSEO%OVOIWOX THId=( 1) 2V
CTHNAS*THNAS=€ THNES

THNAS*THNES=Z THNES

THSEO%THSH90=C THSHD

(REYRX+ALYX ) %S *=¥HSEO

(RYRX -AEHX )G *=7HNES



A211(I)=A210(I)

A13(1)=A8(1)

A213(1)=A28(1)

C1(I)= (AC1-AC5)*SBNH1*PIROH

C21(I)= AC2*SBNH2*PIROH

C31(I)=2%AC3*AK*HL(I )*SBNH2*PIROH+4% AC 4xAK*HL(I )*SBNH4*PLROH
C31(1)=C31(I)

C41(1)=2%AC5%SBNH1/3.*PIRCH
C51(I)=(4*AC5*SBNH1*CBSH12*PIROH+2*AC5%SBNH13*PIROH)
C3(1)=C1(I)

C23(1)=C21(I)

€33(1)=C31(1)

C43(1)=C41(I)

C53(I)=C51(1)

C5(1)= PIROH*(AC1+AC5)*CBSH1

C25(I)= PIROH*(AC2*CBSH2-AC3)

C35(I)=PIRCH*ACA

C45( 1 )=2%PIROH*AC5*CBSH1
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C55(1 )=2*PIROH*AC5*SBNH12*CBSH1
C7(1)=Cc5(1)

C27(1)=C25(1)

C37(1)=C35(1)

c47(1)=Cc45(1)

C57(1)=C55(1)
D61(I)=PIRO4*PDH(I*PDH( I )*G*WAMP%SBNH1/SNHKH
D62(1)=PIRO4*PDH(I )*PDH(I )*G*3*HH*HH*SBNH2/ ( 16*WAVEL*SNHKH4 )*PI
BYD(I)=1./(B-YH(I)~.5%PDH(I))

A2YDB  =2%AK*(H+YH(I)+.5%PDH(I)-B)

AYDB  =AK*(H+YH(I)+.5*PDH(I)-B)
A4YDB=2%A2YDB

XA2 = EXP(A2YDB)

XMA2 = EXP(-A2YDB)

XAl = EXP(AYDB)

XMA1 = EXP(-AYDB)

XA4= EXP(A4YDB)

XMA4= EXP(-A4YDB)
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CSH1=, 5%( XA1+XMA1)

CSH2=, 5%(XA2+XMA2)

SNH1=, 5%(XA1-XMA1)

SNH2=, 5%(XA2-XMA2)

SNH4 =, 5%(XA4-XMA4 )

CSH4=, 5%( XA4+XMA4 )

CSH13=CSH1%%3

SNH13=SNH1%%3

A1(I)=BYD(I)*PIHL*OMEGAC*( SNH1-SNHKH)/(AK*SNHKH)
A21(I)=.75%BYD(I )*PEHL2*OMEGAC*( SNH2~- SNH2KH )/ (AK*SNHKH4 )*KSIN(I)
A3(I)=A1(I1)

A23(1)=A21(1)

A7(1)=BYD(I)*PIHL*C%*( SNH1-SNHKH)/(AK*SNHKH) *KSIN(I)
A27(1)=.75%BYD(I )*PIHL2%C%( SNH2- SNH2KH) / ( 2*AK*SNHKH4 )*KSIN(I)
A9(1)=A7(I)

A29(1)=A27(1)

D2(I)= PIROC*(CSHKH-CSH1)*(AC1-AC5)

D22(1)= PIROC*AC2*(CSH2KH-CSH2)
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D32(1)= PIROC*AC3*(CSH2KH-CSH2 )+PIROC*ACA*SNHKH4 *%2%( CSH4KH/ ( SNHK
1H4%%2 )-CSH4 / ( SNHKHA*%2 ) )

D42(I)= PIROC*2*ACS5%(CSHKH-CSH1)

D52( I )=4*PIROC*AC5%*SNHKH5*SNHKH5%*( CSHKH3/ SNHKH5- CSH13/SNHKHS5)/3.0
1+2%AC5%( (CSHKH3/3.-CSHKH)-(CSH13/3.-CSH1) ) * PIROC

C4(I)= (AC1+AC5)*( SNHKH-SNH1)*PIROC

C24(X)% (PIROC*AC2%(SNH2KH-SNH2)-2*AC3*AK/BYD(I)*PIROC)
C34(I1)=PIROC*4*ACA*AK/BYD(I)

C44(1)= 6%PIROCXACS5%( SNHKH-SNH1)

C54( I )=2%PIROC*AC5*SNHKH5%( SNHKH3/SNHKH5- SNH13/SNHKH5)/3.0
C9(1)=C4(1)

C29(1)=C24(1)

C39(1)=C34(I)

C49(1)=C44(1)

C59(1)=C54(1)

DHY(I )=, 5%¥D*RO*HL(I )*PDH(I)

CAPK(I)=PIRO4*G*DC(I )*DC(I)

C67(I)=CDF*ADM*OMEGA*PIROC*RO/BYD(I)
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100

D67(1)=ADM*PIROHXROXHL( I )*OMEGA
DCX(I)=CD%, 5¥ROXDC(I)/BYD(I)
DCZ(I)=DCX(I)

DMCX( I )=CMC*PIRO4*DC(I)*DC(I)/BYD(I)
DMCZ(1)=DMCX(I)
DHZ(I)=.5%D*ROXHL(I)*PDH(I)
DHX(I)=DH2(I)

DMHY(I) = CM*PIRO4*PDH(I )*PDH(I)*HL(I)
DMHX( I )=DMHY(I)*SIN(ABS(ALFA(I))/DEG)/CM
DMHZ( I )=DMHY(I)*COS(ABS(ALFA(I))/DEG)/CM
ALFA(I)=ALPHA-ALFA(1)/DEG

CONTINUE

PRMT(1)=0,

PRMT(2)=TLAST

PRMT(3)+TGAP

PRMT(4 )=ERSI

DO 1000 I=1,12

1000 Y(I)=0,
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*deddcicich%*DERY IS INITIALLY A VECTOR OF WEIGHTS, LATER THE VECTOR OF
c DERIVATIVES iiciriiriricicok
DO 2000 I=1,5
2000 DERY(I)=.01D0
DERY(6)=.02D0
DO 3000 1=7,11
3000 DERY(I)=.15D0
DERY(12)=.18D0
c JeickiekdickPRKGS IS INTEGRATION SUBROUTINE REFER IBM PACKAGES ik
CALL PRKGS(PRMT, Y,DERY,NDIM, IHLF,AUX)
GO TO 80
99 CALL EXIT
END
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SUBROUTINE OUTP(T,Y,DERY,IHLF,NDIM, PRMT)

DIMENSION Y(12),DERY(12),PRMT( 5),DMCX(24),DMHY(24),DMHZ(24),
DMCZ(24 ) ,ALFA(24),CAPK(24),PDH(24),DC(24),
HL(24),SJ(24),YBAR(24),AF(8),DCX(24),DHY(24 )DCZ(24 ),DHZ(24 ),
AUX(8,12),Q(24),ANU(24 ) ,FCX(24) ,FHX(24),FCZ(24),FHZ(24),

DHX(24 ) ,DMHX(24 ) ,X1(24),YI(24),21(24)

DIMENSION A1(24),A2(24),A3(24),A4(24),A5(24),A6(24),A7(24),A8(24),
A9(24,A10(24),A11(24),A13(24),E1(24),E2(24),E3(24) ,E4(24),
E5(24),E6(24),E7(24),E8(24),E9(24),E10(24),E11(24),E13(24),
A21(24),A22(24),A23(24),A24(24),425(24),A26(24),A27(24),
A28(24),A29(24),A210(24),A211(24),A213(24),E21(24),E22(24),
E23(24),E24(24),E25(24)4,E26(24),E27(24),E28(24)

DIMENSION E29(24),E210(24),E211(24),E213(24),C1(24),C2(24),C3(24),
c4(24,05(24),C7(24),C9(24),D1(24),D2(24),D3(24),D4(24),D5(24),
D7(24,D9(24),C21(24),C22(24),C23(24),C24(24),C25(24),C27(24),
€29(24),D21(24),D22(24),D23(24),D24(24),D25(24 ) ,BYD(24 ) ,D27(24)
»D29(24),B1(24),B2(24),B3(24),B4(24),B5(24),DSJ(24),A35(24),
A36(24,E35(24),E36(24),C31(24)

i W N = & NN -
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DIMENSION C32(24),C33(24,D31(24),D32(24),D33(24),D69(24),
1 ¢41(24),C51(24),C61(24),C43(24),C53(24),C63(24),C34(24),C44(24)
2 ,C54(24),C35(24),C45(24),C55(24),C65(24),C37(24),C47(24),
3  ©57(24),C67(24),C39(24),C49(24),C59(24),D41(24),D51(24),
4 D61(24),D42(24),D52(24),D62(24),D43(24),D53(24),D63(24),
5 D34(24),D44(24),D54(24),D64(24),D35(24),D45(24),D55G24),D65(24)
6 4D37(24),D47(24),D57(24),D67(24)4D39(24),D49(24),D59(24)
COMMON A35,A36,E35,E36,C31,C32,C33,D31,D32,D33,D59,D69,C41,C51,
1 c61,c43,c53,C63,C34,C44,C54,C35,¢45,C55,C65,C37,¢47,C57,C57,
2 C67,C39,c49,C59,C69,D41,D51,D61,D42,D52,D62,D43,D53,D63,D34,
3  D44,D54,D64,D35,D45,D55,D65,D37,D47,D57,D67,D39,D49
COMMON Al,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A13,E1,E2,E3,F4,E5,
E6,E7,E8,E9,E10,E11,E13,A21,A22,A23,A24,A25,A26,A27,A29,A210,
A211,A213,E21,E22,E23,E24,E25,E26,E27,E28,E29,E210,E211,E213,
C1,C2,C3,C4,C5,C9,C7,D1,D2,D3,D4,D5,D7,D9,C21,C22,C23,C24,C25,
c27,C29,D21,D22,D23,D24,D25,D27,D29,B1,B2,B3,B4,DSJ, BYD
COMMON GML,GMT,SINA,COSA,CAPH,ANU,;SJ,DMCX, DMHY , DMHZ , DMCZ ; ALFA,

P P A

1  DHX,DMHX,XI,YI,ZI,EIXY,EIXZ,£1YZ,DCX,DHY,DCZ,DHZ,OMEGA,PI,
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5

4

2

WAMP,G, PIRO4 ,AK , WAVEL, DEG, P12, EMASS, EIX,EIY,E1Z,B,HH, T1,CAFK,

3 CSHKH,CSH2KH, SNHKH, SNH2KH,A28,B5, PDH, HL,DC, YBAR,RO,CM,VCMAX,
4 SNHKH3

1
2

1

1
2

1

1

COMMONTMOM , THRUST , WIND, ALPHA , WNVX2 , WNVZ2 , WX, WZ , WMX , WMZ, AF, DIR,
FCX,FHX,FCZ,FHZ,Q,DOMX8, DOMX10,DOMX1.2 , DOMYS , DOMY10,DOMY12,
DOMZ8,D0OMZ10,D0MZ12,PER

COMMON SNHKH2, SNHKH4 y SNHKH5 , CSHKH3 , CSH4KH , SNH4KH , OMEGAC, PIHL,
PIHL2,CMC,AC1,AC2,AC3,AC4,A65,C,H

COMMON SINY7,COSY7,SINY9,COSY9,COSY11,SINY11,Y7,Y8,Y9,Y10,Y11,
Y12,c9S811,C7C11,C987C1,S957S1,59511,C9C11,C7S11,S9S7C1,CIC7,
89C7,S89C11,C98751,S9C7s1

COMMON XD(8),2ZD(8),YD(8),DH(8),HD(8),DIAG(8),RT(14),RD(14),
AX(4)4AY(4),AZ(4) 4 ISIN(24 ) JSIN(24 ) JKSIN(24 ) ,NOEL,NOADM

IF(T.GT.0.)GO TO 4

WRITE(6,5)

FORMAT(1HO, 3X, "T" ,4X, "WAVE", 8X, "SURGE" , 10X, "HEAVE" ,8X, "SWAY",
10X, "ROLL", 12X, "YAW",10X, “PITCH" ,4X, "THRUST/DEG" ;4X; "MOMENT"// )

WAVE=WAMP* COS(OMEGAT )+, 125%HHAHH*CSHKH*(CSH2KH-+2. )* COS(2%
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1  OMBEGA*T)*PI/(WAVEL%SNHKH3)

TX=Y(7 )*DEG

F=Y(9)*DEG

U=Y(11)*DEG

WRITE(6,1) T,WAVE,Y(1),Y(3),¥(5),TX,F,U, THRUST,DIR, TMOM, IHLF
FORMAT(1X,F6.23X,F6.2,6(3X,F11.4),3X,F8.0,"/",F5.1,F10,0,13)
WRITE(6,2) (AF(1),I=1,8)

FORMAT(IOX.“ANCHOﬁ TENSIONS NO. 1 THRU 8 ".8(3x.F8.0)/)

TIMER = 0.8 * PRMT(2)

IF(T.LT.TIMER)GO TO 8
OMD2TX=DOMX8*DERY( 8 )+DOMX10%*DERY( 10 )+DOMX12%DERY(12)
OMD2TY=DOMY8*DERY( 8 ) +DOMY10*DERY( 10 )+DOMY12*DERY(12)
OMD2TZ=DOMZ8*DERY( 8 )4+DOMZ10*DERY( 10 )+DOMZ12%DERY(12)

DO 7 I=1,24
FCXT==DMCX(I)%SJ(I)*(DERY(2)+Z1(I)*OMD2TY-,5%(B+YI(I)+.5%PDH(I)
1  %*OMD2TZ)+FCX(I)

FHXT=-DMHX(I )*(DERY(2)+ZI(I)*OMD2TY~-YI(I)*OMD2TZ)+FHX(I)
FCZT==DMCZ(I)*SJ(I)*(DERY(6 )+ 5%( B+YI(I)+. 5%PDH(I) )*OMD2TX~XI(X )*
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1

OMD2TY)+FCZ(1)
FHZT=-DMHZ( I )*(DERY(6 )+YI (I )*OMD2TX-XI (I )*OMD2TY)+FHZ(I)
FHYT=-DMHY(I)*(DERY(4 )+XI (I )*OMD2T2-2ZI (I )*OMD2TX)+Q(1)
WAV=WAMP*COS(B1(I) )+CAPH*COS(2*B1(1))
AGAP=50, -WAV+YBAR(I)
WRITE(6,6)I,FCXT,FHXT,FCZT,FHZT,FHYT,ANU(I),AGAP
FORMAT(1X,15,5E15.4,2F15.4)
CONTINUE
RETURN
END
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SUBROUTINE FCT(T,Y,DERY)

DIMENSION Y912),DERY(12),DMCX(24),DMHY(24),DMHZ(24),DMCZ(24),
BLFA(24),CAPK(24),PDH(24),YH(24),2C4(24),XC(24)4DC(24),
HL(24),83(24),YBAR(24),AF(8),RHS(6),A(6,6),DCX(24),DHY(24),
DCz(24),DHZ(24),Q(24),ANU(24 ) ,FCX(24 ) ,FHX(24 ) ,FCZ(24 ) ,FHZ(24),
DHX(24 ) 4D0X(24),X1(24),YI(24),21(264)

H W N -

DIMENSION A1(24),A2(24),A3(24),A4(24),A5(24),A6(24),A7(24),A8(24),
A9(24),A10(24),A11(24),A13(24),EL(24) ,E2(24 ), E3(24),E4(24),
E5(24),E6(24),E7(24),E8(24),E9(24),E10(24),E11(24),E13(24),
A21,(24),A22(24),823(24) ,A24(24),825(24 ) ,A26(24) 4 A27(24) , A28( 24
)»A29(24),A210(24),A211(24),A213(24),E21(24),E22(24),E23(24),
E24(24),E25(24),E26(24),E27(24),E28(24),

DIMENSION E29(24),E210(24),E211(24),E213(24),C1(24),C2(24),C3(24),
C4(24),C5(24),C7(24),C9(24),D1(24),D2(24),D3(24),D4(24),D5(24),
D7(24),D9(24),C21(24),C22(24),C23(24),C24(24),C25(24),C27(24),
C29(24),D21¢24),D22(24),D23(24),D24(24),D25(24),BYD(24 ),
D27(24),D29(24),B1(24),B2(24),B3(24),B4(24),B5(24),DSJ(24),
A35(24),A36(24),E35(24),E36(24),C31(24)

vt W =
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DIMENSION C32(24),C33(24),D31(24),D32(24),D33(24),D69(24),C41(24),

1
2
3
4
5
6

1
2
3

N P N

1

c51(24),C61(24),c43(24),C53(24),C63(24),C34024),C44(24),C54(24)
#C35(24),C45(24),C55(24)4C65(24),C37(24),C47(24)4C57(24),C67
(24),C39(24),c49(24),C59(24),C69(24),D41(24),D51(24),D61(24),
D42(24)4D52(24)4D62(24),D43(24),D53(24),D63(24),D34(24),Db4
(24),D54(24),D64(24),D35(24),D45(24),D55(24),D65(24),D37(24),
D47(24),D57(24),D67(24),D39(24),D49(24),D59(24)

COMMON A35,A36,E35,E36,C31,C32,C33,D31,D32,D33,D59,D69,C41,
c51,4C61,c43,C53,C63,C34,C44,C54,C35,C45,C55,C65,C37,C47,C57,
C67,C39,C49,C59,C69,D41,D51,D61,D42,D62,D43,D53,D63,D34,D44,
D54 ,D64 ,D35,D45,D55,D65,D37,D47,D57,D67,D39,D49

COMMON Al,A2,A3,A%4,A5,A6,A7,A8,A9,A10,A11,A13,E1,E2,E3,E4,E5,

E6,E7,E8,E9,E10,E11,E13,A21,A22,A23,A24,A25,A26,A27,A29,A210,

A211,A213,E21,E22,E23,E24,E25,E26,E27,E28,E29,E210,E211,E213,

c1,C2,¢€3,¢4,C5,C9,C7,D1,D2,D3,D4,D5,D7,D9,C21,C22,C23,C24,

C25,C27,C294D21,D22,D23,D24,D25,D27,D29,B1,B2,B3,B4,DSJ,BYD

COMMON GML,GMT, SINA, COSA,CAPH, ANU, SJ, DMCX, DMHY , DMHZ , DMCZ , ALFA,
DHX , DMHX,XI,YI,Z2I,EIXY, EIXZ,EIYZ,DCX,DHY,DCZ,DHZ, OMEGA, PI,
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2  WAMP,G,PIRO4,AK,WAVEL,DEG, P12, FMASS,EIX,EIY,EIZ,B,HH, T1,CAFK,
3  €SHKH,CSH2KH, SNHKH, SNH2KH, A28, B5,PDH, HL,DC, YBAR, RO, CM, VCMAX,
4  SNHKH3

COMMONTMOM , THRUST, WIND, ALPHA , WNVX2,WNVZ2 , WX, WZ , WMX, WMZ , AF, DIR,

1 FcX,FHX,FCZ,FHZ,Q,DOMX8,DOMX10,DOMX12,DOMY8,DOMY10,DOMY12,

2 DOMZ8,DOMZ10,DOMZ12,PER

COMMON SNHKH2,SNHKH4 , SNHKH5 , CSHKH3 , CSH4KH,, SNH4KH, OMEGAC, PIHL,

1  PIHL2,CMC,AC1,AC2,AC3,AC4,AC5,C,H

COMMON SINY7,COSY7,SINY9,COSY11,SINY11,Y7,Y8,Y9,Y10,Y11,Y12,

1 C€9s11,C7C11,C9587C1,5895751,59S811,C9C11,C7811,5957C1,C9C7,89C7,
2 S9C11,C9S87S1,S9C7S1

COMMON XD(8),2D(8),YD(8),DH(8),HD(8),DIAG(8),RT(14),RD(14),AX(4),
1 AY(4),A2(4),ISIN(24),JSIN(24),KSIN(24),NOEL,NOADM

NDIM=6

" T2=T

IF(T.LE.O0.)T1=0,

SINY7= SIN(Y(7))

COSY7= cos(Y(7))
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SINY9= SIN(Y(9))

COSY11l= COS(Y(11))
SINY1ll= SIN(Y(11))
Y7=Y(7)

Y8=Y(8)

Y9=Y(9)

Y10=Y(10)

Y11=Y(11)

Y12=Y(12)
C9S11=COSY9*SINY11l
C7C11=COSY7%COSY11
C9S7C1=COSYI*SINY7*COSY11l
S9S7S1=SINYI*SINY7*SINY11l
S9S11=SINY9*SINY11l
C9C11=COSY9*COSY11
C7S11=COSY7%SINY11
89S7C1=SINY9I*SINY7%COSY11
89C7=COSYI*COSY7
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S9C7=SINYI*COSY7
S9C11=SINY9*COSY11

C9S7S81=COSY9I*SINY7*SINY11

S9C7S1=SINY9*COSY7*SINY11

OMEGAT=OMEGA*T

DELT=T2-T1

WNVX2=(WIND* COS(ALPHA)*COSY11 )%%2

WNVZ2=(WIND* SIN(ALPHA)*COSY7 )%*2

OM@¥=- SINY7%Y12+C7S11%Y8+C7C11%*Y10

DO 1 I=1,24

ALFR=ALFA(I)+OMGY*DELT

ALFA(I)=ALFR

SINA= SIN(ALFR)

COSA= COS(ALFR)

TANA=SINA/COSA
ZC(I)=C9C7%2I(I)+(C9S7S1-S9CL1)%XI(I)+(C9S7C1+S9S11)%YI(I)
XC(1)=89C7*ZI(I)+(S9S7S1+C9C11)*XI(I)+(89S7C1-C9811)*YI(I)
DMYI=  (YI(I)+.5%PDH(I)+B)

vse
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VS00/(1)sev=(1)s2d

VS00/(1)SV=(I)sH

VNVL/(I)%2V=(1)%Td

VNVL/(I)vV=(I)¥va

VS0O%(I)ETV=(1)€Td

VSOO%(I)EV=(1)€d

VNVIx(1)Z2v=(1)2ed

VNVIx(I)ZV=(1)Zd

VNIS%(I)1evV=(I)12d

VNIS%(I)TV=(I)1d

129S00*HIVO+TIS00#dNVM=T AVM

((I)19%Z)S00=124S0D

((I)149)S00=14S00

LVOHENO+(VNIS*( (I)TH*S * =(I)0Z+(S )X )+VS0x( (I)OX+( T)X) )xAV=(1)sd
IVOFTNO+( YNISx( (I)TH*S *+(I)02+(S)A)+VS00x( (I1)OX+( 1)A) )V=(I)¥d
LYDHWO+(VNIS%((I)0Z+( S )X )+VS00%( (I)THxS * =(I)OX+( T)X) )xMv=(1)¢cd
LVOTWO+(VNIS*( (1)32+(S)A)+VS00»( (I)TH*G *+(I)OX+( 1)X) )»xWv=(1)Zd
LVOTHO+(YNIS®( (I)0Z+(S )X )+VS00x((I)OX+( T)A))xdV=(1)1¢



E6(I)=A6(1)/SINA
E26(1)=A26(1)/SINA
E7(I)=A7(1)*COSA
E27(I)=A27(1)%*COSA

E8(I)=A8(I)/TANA
E28(I)=A28(I)/TANA
E9(I)=A9(I)*SINA
E29(I)=A29(I)%*SINA
EL0(I)=A10(I)/SINA
E210(1)=A210(1)/SINA
E11(I)=A11(I)/COsA
E211(1)=A211(I)/C0OSA
E11(I)=A11(1)/COSA
E211(I)=A211(1)/COSA
E13(I)=A13(1)*TANA
E213(1I)=A213(I)*TANA
D1(I)=C1(I)/Ccosa
D21(1)=C21(1I)/COSA
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VNVIx(I)5G0=(1)ssd
VNVIx(I)St0=(1)sHva
VNVIx(I)S£C=(T1)S€Ed
VNVIx(I)SZ0=(1)SZd
VNVI»(I)S0=(1)sa
VNIS*(1)%50=(1)%5d
VNIS*%(I)¥%0=(1)%%a
VNIS»(I)%€0=(1)%€a
VNISx(I)%20=(1)%2a
VNIS%(I)%0=(I)%d
VNIS/(I)€S0=(1)€esd
VNIS/(I)Evo=(1)evda
(I)ego=(1I)eea
VNIS/(I)€T0o=(1)€2a
VNIS/(I)€0=(I)€a
VS03/(I)160=(1)1sd
¥S02/(I)1%#0=(I)1%d
(1)1€0=(I)1€ea



D7(I)=C7(1)/TANA
D27(I)=C27(I)/TANA

D37(1)=C37(1)/TANA

D47(1)=C47(1)/TANA

D57(1)=C57(1)/TANA

D9(I)=C9(I)*COSA

D29(1)=C29(1)*COSA

D39(1)=C39(1)*COSA

D49(1)=C49(1)*COSA

. D59(I)=C59(I)*COSA

SINB1=SIN(B1(I))

SINB21=SIN(2%B1(1))
YBAR(I)=Y(3)-~ZI(I)*SINY7+XI(I)*SINY11%COSY7~YI(I)*(1.-COSY7*COSY11
1)
SJ(I)=1.-BYD(I)*(YBAR(I)-WAMP*COSBl-CAPH*COSB21)
DUMY=SJ(I)

IF(DUMY,LT.0, )DUMY=0,

IF(DUMY,.QT.2. )DUMY=2,
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SJ(I)=DUMY
ANU(I )=, 5%( DMYI+WAMP*COSB1+CAPH*COSB21~-YBAR(1))

L CONTINUE
T1=T2
Cc *&kdkikx*RHSV CALCULATES THE RHS VECTOR#*sddicdickicdedkdoidk

CALL RHSV(T,Y,RHS)
c %dedkckkk%XAMAT CALCULATE THE COEFFICIENT MATRIX#sosessekdocicdesods
CALL AMAT(A,Y)
C Fekickkk*%xSIMQX SOLVES THE MATRIX EQ FOR THE DERIVATIVE VECTOR,REFER
TO IBM PACKAGE SIMQudescicisksksoksscs
CALL SIMQX(A,RHS,NDIM,KS)
IF(KS.EQ.1)GO TO 1000
DO 3 1I=1,6
I10DD=2%I-1
IEVEN=2%1
3 DERY(IODD)=Y(IEVEN)
RETURN
1000 WRITE(6,1100)

6S¢



1100 FORMAT(1X, "SINGULAR MATRIX")

RETURN
END

09¢



SUBROUTINE SIMQX{A,B,N,KS)

DIMENSION A(36),B(6)

FORWARD SOLUTION

TOL=0,0

KS=0

JJ==N

DO 65 J=1,N

JY=J+1

JI=JJN+1

BIGA=0

IT=JJ-J

DO 30 I=J,N

SEARCH FOR MAXKIMUM COEFFICIENT IN COLUMN

IJ=IT+I

IF(ABS(BIGA)-ABS(A(1J)))20,30,30
200BIGA=A(1J)

IMAX=I
30 CONTINUE

19¢



35

40

50

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF(ABS(BIGA)=TOL)35,35,40
KS=1

RETURN

INTERCHANGE ROWS IF NECESSARY
I1=J+N#(J-2)

IT=IMAX-J

DO 50 K=J,N

I1=I1+N

I12=11+IT

SAVE=A(I1)

A(I1)=A(12)

A(I2)=SAVE

DIVIDE EQUATION BY LEADING COEFFICIENT

A(I1)=A(I1)/BIGA
SAVE=B{IMAX)
B(IMAX=B(J)
B(J)=SAVE/BIGA

29¢



55

60
65

70

ELIMINATE NEXT VARIABLE
IF(J-N) 55,70,55

IQS=N#(J-1)

DO 65 IX=JY,N

IXJ=IQS+IX

IT=J-1IX

DO 60 JX=JY,N
IXIX=N#(JX-1)+IX

JIX=IXJX+IT
A(IXJIX)=A(IXIX)-(AIXT)*A(JIX))
B(IX)=B(IX)-(B(J)*A(IXJ))

BACK SOLUTION

NY=N-1

IT=N*N

DO 80 J=1,NY

IA=IT-J

IB=N-J

1C=N

£9¢



DO 80 K=1,J
B(IB)=B(IB)-A(IA)*B(IC)
IA=TA-~-N

80 IC=IC~1
RETURN
END

1A%



SUBROUTINE AMAT(A,Y)

DIMENSION Y(12),DMCX(24),DMHY(24),DMHZ(24),DMCZ(24),ALFA(24),
CAPK(24),PDH(24),YH(24),2C(24),XC(24),DC(24),HL(24),53(24),
YBAR(24),AF(8),A(6,6),DCX(24),DHY(24),DC2(24),DHZ(24),Q(24),
ANU(24),FCX(24),FHX(24),FC2(24),FHZ2(24 ) ,DHX(24 ) ,DMHX(24),
X1(24),Y1(24),21(24)

DIMENSION A1(24),A2(24),A3(24),A4(24),A5(24),A6(24),A7(24),A8(24)

1 ,A9(24),A10(24),A11(24),A13(24),E1(24),E2(24),E3(24),E4(24),

2 E5(24),E6(24),E7(24),E8(24),E9(24),E10(24),E11(24),E13(24),

3 A21(24),A22(24),A23(24),A24(24),A25(25),A26(24),A27(24),

4

5

N

A28(24),A29(24),A210(24),A211(24),A213(24),E21(24),E22(24),
E23(24),E24(24),E25(24 ) yE26(24),E27(24),E28(24)

DIMENSION E29(24),E210(24),E211(24),E213(24),C1(24),C2(24),
C3(24),c4(24),C5(24),C7(24),C9(24),D1(24),D2(24),D3(24),
D4(24),D5(24),D7(24),D9(24),C21(24),C22(24),C23(24),C24(24),
€25(24),C27(24),C29(24),D21(24),D22(24),D23(24),D24(24),
D25(24),BYD(24),D27(24),D29(24),B1(24),B2(24),B3(24),B4(24),
B5(24),DSJ(24),A35(24),A36(24),E35(24),E36(24),C31(24)

ni & LN =
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DIMENSION C32(24),C33(24),D31(24),D32(24),D33(24),D69(24),C41(24)
1 ,C51(24),C61(24),C43(24),C53(24),C63(24),C34(24),C44(24),C54
2 (24),C35(24),C45(24),C55(24),C65(24),C37(24),C47(24),C57(24),
3 C67(24),C39(24),C49(24),C59(24),C69(24),D41(24),D51(24 ),

4 D61(24),D42(24),D52(24),D62(24),D43(24),D53(24),D63(24),

5 D34(24),D44(24),D54(24),D64(24),D35(24),D45(24),D55(24 ),D65
6 (24),D37(24),D47(24),D57(24),D67(24),D39(24),D49(24),D59(24)

COMMON A35,A36,E35,E36,C31,C32,C33,D31,D32,D33,D59,D69,C41,C51,
1 ©61,C43,C53,C63,C34,C44,C54,C35,045,C55,C65,C37,C47,C57,C67,
2 €39,c49,C59,C69,D41,D51,D61,D42,052,D62,D43,D53,D63,D34,D44,
3  D54,D64,D35,D45,D65,D37,D47,D57 ,067,D39,D49
COMMON Al,A2,A3,A%4,A5,A6,A7,A8,A9,A10,A11,A13,E1,E2,E3,E4,ES,

E6,E7,E8,E9,E10,E11,E13,A21,A22,423,A24,A25,A26,427,A29,
A210,A211,A213,E21,E22,E23,E24,E25,E26,E27,E28,E29,E210,E211,
E213,C1,C2,C3,04,C5,C9,C7,D1,D2,D3,D4,D5,D7,D9,C21,C22,C23,
C24,C25,C27,C29,D21,D22,D23,D24,D25,D27,D29,B1,B2,B3, B4,

v & WN =

DSJ,BYD
COMMON GML,GMT,SINA,COSA,CAPH, ANU,SJ, DMCX,DMHY,DMHZ,DMCZ,ALFA,

997
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1  DHX,DMHX,XI,YI,ZI,EIXY,EIXZ,EIYZ,DCX,DHY,DCZ,DHZ,OMEGA, PI , WAMP
2 ,G,PIRO4,AK,WAVEL,DEG,P12,FMASS,EIX,E1Y,EIZ,B,HH, T1,CAPK,CSHKH
3  ,CSH2KH, SNHKH, SNH2KH,A28,B5, PDH, HL, DC, YBAR, RO, CM, VCMAX , SNHKH3
COMMONTMON , THRUST, WIND, ALPHA , WNVX2 , WNVZ2, WX, WZ, WMX , WMZ, AF , DIR
1  FcX,FHX,FCZ,FHZ,Q,DOMX8,DOMX10,DOMX12,DOMY8,DOMY10,DOMY12,
2 DOMz8,DOMZ10,DOMZ12,PER
COMMON SNHKH2 , SNHKH4  SNHKHS  CSHKH3 , CSH4KH, SNH4KH , OMEGAC, PIHL,
1 PIHL2,CMC,AC1,AC2,AC3,AC4,AC5,C,H
COMMON SINY7,COSY7,SINY9,COSY9,COSY11,SINY11,Y7, 8,Y9,Y10,Y11,
1 Y12,C9S11,C7C11,C9S7C1,S89S87S1,89511,C9C11,C7S11,8987¢C1,C9C7,
2 s9Cc7,S89C11,C98781,S9C751
COMMON XD(8),2D(8),YD(8),DH(8),HD(8),DIAG(8),RT(14),RD(14),AX(4),
1 AY(4),AZ(4),ISIN(24),JSIN(24),KSIN(24),NOEL,NOADM
sdckdckekdekix AMAT CALCULATES THE COEFFICIENT MATRIX #kdckdkdicdk
THE COEFFICIENT MATRIX IS SET UP AS FOLLOWS®
THE FIRST ROW IS SURGE ACCELERATION
THE SECOND ROW IS HEAVE ACCELERATION
THE THIRD ROW IS SWAY ACCELERATION
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THE FOURTH ROW ISROLL MOMEMTUM
THE FIFTH ROW IS YAW MOMENTUM
THE SIXTH ROW IS PITCH MOMENTUM
DO 1 I=1,6
DO 1 J=1,6
A(1,J)=0
S9C7C1=SINY9*COSY7%COSY11
S7C11=SINY7%COSY11l
C9C7C1=COSY9I*COSY7*CGSY11
C9C7S1=COSY9I*COSY7*SINY11
S$9S7=SINY9*SINY7
C9S7=COSY9*SINY7
C9S11=COSY9%*SINY1l
$7511=SINY7%SINY1l1l
C9S7C1=COSYI*SINY7%COSY11
DOMX8=S9S7S1+C9C11
DOMY8=C7511
DOMZ8=C9S7S1-S9C11
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DOMX10=8987C1~C9S11
DOMY10:=C7C11
DOMZ10=C3S7C1+89S11
DOMX12=S9C7
DOMZ12=C9C7
A2C2=FMASS

A2C8=0

A2C10=0

A2C12=0

A4C4=EMASS

A4C8=0

A4C10=0

A4C12=0

A6C6=FEMASS

A6C8=0

A6C10=0

A6C12=0

A8C4=0

69¢



A8C6=0
A8C8=EIX*DOMX8~ EIXY*DOMY8- EIXZ#DOMZ8
A8C10=ELX*DOMX10- ELXY*DOMY10- EIXZ*DOMZ10
A8C12=EIX*DOMX12- ELXY*DOMY12- EIXZ*DOMZ12
A10C2=0

A10C6=0

A10C8=EI Y*DOMY8- ELXY*DOMX8~ EIXZ*DOMZ8
A10C10=EI Y*DOMY10- EIXY*DOMX10- EIXZ*DOMZ10
A10C12=EI Y*DOMY12~ EIXY*DOMX12- EIXZ*DOMZ12
A12C2=0

A12C4=0

A12C8=EIX*DOMZ8- EIXZ*DOMX8- EI YZ*DOMY8
A12C10=EIZ*DOMZ10-EIXZ*DOMX10- EIYZ*DOMY10
A12C12=EIZ*DOMZ12~ EIXZ*DOMX12- ELIYZ*DOMY12
DO 2 1I=1,24

XC(I)=XI(I)

YH(I)=YI(I)

ZC(1)=2I(I)
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FkkIHhkk*ARM"S ARE THE MOMENT ARMS#ikiidikkdidick
ARMX1=ABS( YH(I) )*SINY7-ZC(I)*COSY7
ARMX2=ABS( YH(I) )*COSY7+ZC(I)*SINY7

ARMX3=- ANU(I)*COSY7+ZC(1)*SINY7
ARMY1=ZC(I)*COSY9-XC(I )*SINY9

ARMY2=XC(I )*COSY9+ZC(I )*SINY9

ARMZ1=ABS(YH(I) )*SINY11+XC(I)*COSY11
ARMZ2=ABS(YH(I))*COSY11-XC(I)*SINY11l

ARMZ3=- ANU(I )*COSY11-XC(I)*SINY1l

DMYI=,5%( YH(I)+.5%PDH(I)+B)

FHX8=DMHX(I )*(2C(I)*DOMY8~- YH(I )*DOMZ8)
FCX8=DMCX(I)*SJ(I)*(ZC(I)*DOMY8-DMYI*DOMZ8)
FHX10=DMHX(I )#*(ZC(I)*DOMY10-YH(I)*DOMZ10)
FCX10=DMCX(I)*SJ(I)*(ZC(I)*DOMY10-DMYI*DOMZ10)
FHX12=DMHX(I )*(2C(1)%DOMY12-YH(I )*DOMZ12)
FCX12=DMCX(I )*SJ(I)*(2C(I)*DOMY12-DMYI*DOMZ12)
FHY8=DMHY(I )*(XC(I)*DOMZ8-2ZC(I)*DOMX8)
FHY10=DMHY(I)%*(XC(I)*DOMZ10-2C(I)*DOMX10)

L7



272

01Z04+01ZHI+QTO9V=0TO9V

82Z04+82ZHJI+809V=809V

(I)£S%( I)ZOWG+( I)ZHNA+929V=909V
CIAHI+ZTOWV=C IOV

OTAHI+0TOYV=0TOHY

S8AHJI+8IHV=80HY

( 1)ZAHWG+70%V=%04¥

ZIXOI+ZIXHI+ZTOTV=C 102V
OTXOJ+0IXHI+QTOCV=0102V

8X0d+8XHI+8ITV=802V

(I)CSx( I )XOWA+( I)XHRA+ZOZV=2OTV

(TTAROA*( 1)OX - IXWOA*TAWA )% ( I)£S*(I)ZONA=2 1204
(TTAWOA%( I)0X ¢ TXWOA*( I)HX )*( I )ZHWA=C1ZHA
(OTAROG*( 1)IX-0TXWOA*TARAA )*#( I)S*( I)ZOWA=01Z0d
(0TAWOAx*( 1)0X~0TXWOQx( I)HR )»( I )ZHNA=01ZHA
(8AWOQx( I )OX-8XWOA* IAWA )5 ( I)S*(I)ZOWA=8Z04
(8AWOQ*#( I)OX-8XWOdx( I )HA )»( I )ZHWA=8ZHA
(TTXWOA*( 1)0Z -2 1ZROAx( T)0X )*( I )AHNA=Z TAHI
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0102V=(S*1)V

80TV=(%*1)V

20TV=(1'1)V

EZWIV*Z TXOd+ZZWIY*Z TXHI+ TZWIV g LAHI+Z 102 TV=Z 10T 1V

EZRIV#0 TXOd+ZZRIV*0 TXHA+ TZRIV»0 TAHI+0 TOT TV=010C 1Y
EZRIV#8XOI+ZZWY V4 8XHI+ TZWI V¥ 8AHI+8OT TY=8IT IV

) TZRIV»( 1 )AHRQ+70T TV=Y02Z TV

€ZIV*( T)S%( T )XORA+ZZNIV( T )XHRA+ZOZTV=20T 1V

ZAWAV#T1Z0d ~CANIV*Z TZH = TANEV#Z TXOJ+ TANS V% Z TXHI+Z 100 TV=2 1001V
CARY#0TZ0d -ZANEV*0 T ZHA - LARI V40 TXO 4+ TAWI V%0 TXHI+0 100 V=010V
ZXAWIV*#8Z0d ~ZAWIV#8ZHI - TANEV*8X0d+ LANIV*8XHI+800 TV=800 TV
ZAWIV#( I )LSx#( I)ZONA -ZARIV#( T )ZHNA-900TV=9001V

TAREV#( I)TS%( I)XONA+TANE Y ( T )XHRG+ZO0TV=2001V

EXWIV#Z 1Z0d ~ZXWIV*Z TZH - TXNE V% Z TAHI+Z TO8Y=Z 108V

EXIIV#0 120 ~TXWIV*0 TZHI - TXWI V0 TAHIH+0 TO8V=0TO8V

EXIIV ( T)ZOWA%( I )CS-ZXWEV3( I)ZHRA ~908V=908Y
IXWIV3( I )AHRA+Y08V=708V

Z1Z0a+71ZHI+TTO9V=2TI9V
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0T001V=(S*S)V
8201V=(¥*G)V
9001V=(€°G)V
2o01V=(1'S)V
C108V=(9*H)V
0108V=(S*%)V
808V=(%*%)V
908V=(g‘y)V
708V=(C*y)V
T109V=(94€)V
0T09V=(S*E)V
809V=(¥*c)V
909V=(g*€E)V
Z10%V=(9*2)VY
0TO%V=(S*2)V
8OWV=(#*T)V
YOyy=(2'C)V
Z102V=(9°1)V



275

and

NMNIAY
TI0T1V=(9%9)V
0TOZ1V=(S*9)V
8IoT1V=(°9)V
YOZIV=(Z*9)¥
TOT1V=(19)V
Z1001V=(9*G)V



SUBROUTINE PRKGS(PRMT,Y,DERY,NDIM, IHLF,AUX)
DIMENSION Y(1),DERY(1),AUX(8,1),A(4),B(4),C(4),PRMT(1)
DO 1 I=1,NDIM

AUX(8,1)=.06666666666666668 TROBBERY(I)
X=PRMT(1)

XEND=PRMT(2)

H=PRMT(3)

PRMT(5)=0.

CALL FCT(X,Y,DERY)

ERROR TEST

IF(H*(XEND-X))38,37,2

PREPARATIONS FOR RUNGE-KUTTA METHOD
A(1)=.,5

A(2)=,29289321881345248
A(3)=1.7071067811865475
A(4)=.16666666666666667

B(1)=2.

B(2)=1.
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B(3)=1.

B(4)=2,

c(1)=.5
C(2)=.29289321881345248
Cc(3)=1.7071067811865475
C(4)=.5

PREPARATIONS QF FIRST RUNGE-KUTTA STEP
DO 3 I=1,NDIM

AUX(1,I)=Y(1)
AUX(2,I)=DERY(I)
AUX(3,I)=0,

AUX(6,1)=0,

IREC=0

H=H+H

IHLF=-1

ISTEP=0

1END=0

START OF A RUNGE-KUTTA STEP

LLT



IF((X+H=-XEND)*H)7,6,5

5 H=XEND-X

10

1END=1
RECORDING OF INITIAL VALUES OF THIS STEP
CALL OUTP(X,Y,DERY,IREC,NDIM,PRMT)
IF(PRMT(5))40,8,40

ITEST=0

ISTEP=ISTEP+1

START OF INNERMOST RUNGE-KUTTA LOOP

J=1

AJ=A(J)

BJ=B(J)

cJI=C(J)

DO 11 I=1,NDIM

R1=H*DERY(I)

R2=AJ*(R1-BJI*AUX(6,1))

Y(K)=Y(I)+R2

R2=R2+R2+R2

8LC



11
12

13
14

15

16
17

18

AUX(6,1)=AUX(6,1)+R2-CJI*R1

J=J+1

IF(J-3)13,14,13

X=X+, SEO%H

CALL FCT(X,Y,DERY)

GO TO 10

END OF INNERMOST RUNGE-KUTTA LOOP

TEST OF ACCURACY

IF(ITEST)16,16,20

IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY

6L2

DO 17 I=1,NDIM
AUX(4,1)=Y(I)
ITEST=1
ISTEP=1STEP+ISTEP-2
THLF=IHLF+1

X=X-H

H=, 5EO*H

DO 19 I=1,NDIM



19

20

21

22

23

24

Y(I)=AUX(1,1)

DERY(I)=AUX(2,I)

AUX(6,I)=AUX(3,1I)

GO TO 9

IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE
IMOD=ISTEP/2
IF(ISTEP-IMOD-1IMOD)21,23,21

CALL FCT(X,Y,DERY)

DO 22 I=1,NDIM

AUX(5,I)=Y(1)

AUX(7,1)=DERY(I)

GO TO 9

COMPUTATION OF TEST VALUE DELT
DELT=0,

DO 24 I=1,NDIM

DELT=DELT+AUX(8,I )*ABS(AUX(4,1)-Y(I)
IF(DELT-PRMT(4))28,28,25

ERROR IS TOO GREAT
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25 IF(IHLF-10)26,36,36

26 DO 27 I=1,NDIM

27 AUX(4,1)=AUX(5,1I)
ISTEP=1STEP+ISTEP-4
X=X-H
1END=0
GO TO 18
RESULT VALUES ARE GOOD

28 CALL FCT(X,Y,DERY)
DO 29 I=1,NDIM
AUX(1,I)=Y(1)
AUX(2,I)=DERY(I)
AUX(3,1)=AUX(6,1)
Y(I)=AUX(5,1)

29 DERY(I)=AUX(7,I)
CALL OUTP(X-H,Y,DERY,IHLF,NDIM,PRMT)
IF(PRMT(5))40,30,40

30 DO 31 1=1,NDIM
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31

32

33

34
35

36

Y(I)=AUX(1,I)
DERY(I)=AUX(2,I)

IREC=IHLF

IF(1END)32,32,39

INCREMENT GETS DOUBLED
IHLF=IHLF-1

ISTEP=ISTEP/2

H=H+H

IF(IHLF )4,33,33
IMOD=ISTEP/2
IF(ISTEP-IMOD=-IMOB)4,34,4
IF(DELT- .02EO*PRMT(4))35,35,4
IHLF=IHLF-1

ISTEP=ISTEP/2

H=H-+H

GO TO 4

RETURNS TO CALLING PROGRAM
IHLF=11
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37

38
39
40

CALL FCT(X,Y,DERY)
GO TO 39

'THLF=12

g6 TO 39

IHLF=13

CALL OUTP(X,Y,DERY,IHLF,NDIM,PRMT)
RETURN

END
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SHBROUTINE ﬁHSV(r,Y,RHs)

DIMENSION Y(12),DMCX(24),DMHY(24),DMHZ(24),DMCZ(24),ALFA(24),CAPK
(24),PDH(24),YH(24),2C(24),XC(24),DC(24),HL(24),S3(24),YBAR
(24),AF(8),RHS(6),DCX(24),DHY(24),DCZ(24) ,DHZ(24),P(24),Q(24),
R(24),TH(24),FF(24),FR(24),ANU(24),FCX(24) ,FHX(24),FCZ(24),
FHZ(24),DHX(24 ) ,DMHX(24 ) ,X1(24)YI(24),21(24)

DIMENSION A1(24),A2(24),A3(24),A4(24),A5(24),A6(24),A7(24),A8(24)

1 ,A9(24),A10(24),A11(24),A13(24),E1(24),E2(24),E3(24),E4(24),

2 E5(24),E6(24),E7(24),E8(24),E9(24),E10(24),E11(24),E13(24),

3  A21(24),A22(24),A23(24),A24(24),A25(24),A26(24),A27(24),

4

5

& W N

A28(24),A29(24),A210(24),A211(24),A213(24),E21(24),E22(24),
E23(24),E24(24),E25(24),E26(24),E27(24),E28(24)

DIMENSION E29(24),E210(24),E211(24),E213(24),C1(240,C2(24),
c3(24),c4(24),C5(24),C7(24),C9(24),D1(24),D2(24),D3(24),D4(24)
»D5(24),D8(24),D09(24),C21(24),C22(24),C23(24),C24(24),C25(24 ),
C27(24),C29(24),D21(24),D22(24),D23(24),D24(24),D25(24 ) o BYD(24)
»D27(24),D29(24),B1(24),B2(24),B3(24),B3(24),B5(24),DSJ(24),
A35(24),A36(24),E35(24),E36(24),C31(24),

wi & W N =
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DIMENSION C€32(24),C33(24),D31(24),D32(24),D33(24),D69(24),C41

o B W N

1
1

2
3

1
2
3
4

(24),C51(24),C61(24),C43(24),C53(24),C63(24),C34(24),Ca4(24),
C54(24),C35(24),C45(24),C55(24),C65(24),C37(24),C47(24),C57
(24),C67(24),C39(24),C49(24),C59(24),C69(24),D41(24),D51(24),
D61(24),D42(24),D52(24),D62(24),D43(24),D53(24),D63(24),D34
(24).D44§24).D54(24).D64(24).D35(24).D45(24).D55(24),D65(24).
D37(24),D47(24),D57(24),D67(24),D39(24),D49(24),D59(24)

DIMENSION DELX(4),DELZ(4),ARM(12),FX(4),F2(4),TENSX(4),TENSZ(4),
FY(4)

COMMON A35,A36,R35,E36,C31,C32,C33,D31,D32,D33,D59,D69,C41,C51,
Cc61,c43,C53,C63,C34,C44,C54,C35,C45,C55,C65,C37,C47,C57,C67,
c39,c49,€59,c69,Db41,D51,D61,D42,D52,D62,D43,D53,D63,D34,D44,
D54,D64,D35,D45,D55,D65,D37,D47,D57,D67,D39,D49

COMMON Al,A2,A3,A%4,A5,A6,A7,A8,A9,A10,A11,A13,E1,E2,E3,F4,E5,E6,
E7,E8,E9,E10,E11,E13,A21,A22,A23,A24,A25,A26,A27,A29,A210,
A211,A213,E21,E22,E23,E24,E25,E26,E27,E28,E29,E210,E211,E213,
C1,C2,C3,C4,C5,C9,C7,D1,D2,D3,D4,D5,D7,D9,C21,C22,C23,C24,
c25,c27,c29,021,Db22,D23,D24,D25,D27,D029,B1,B2,B3,B4,DSJ,BYD
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1
2
3
4

1
2

COMMON GML.,GMT, SINA,COSA,CAPH,ANU,SJ,DMCX, DMHY,DMHZ ,DMCZ,ALFA,
DHX,DMHX,XI,Y1,ZI1,EIXY,EIXZ,E1YZ,DCX,DHY,DCZ,DHZ,0MEGA, PI,
WAMP,G, PIR04,AK, WAVEL, DEG, P12, EMASS, EIX,E1Y,E1Z,B,HH, T1,CAFK,
CHHKH,CSH2KH, SNHKH, SNH2KH, A28 ,B5, PDH, HL, DC, YBAR,RO, CM, VCMAX,
SNHKH3

COMMONTMOM, THRUST , WIND, ALPHA, WNVX2, WNVZ2 , WX, WZ, WMX,WMZ, AF,DIR,
FCX,FHX,FCZ,FHZ,Q,D0OMX8, DOMX10,D0OMX12,DOMY8,DOMY10,D0OMY12,
poMz8,boMZ10,DOMZ12, PER

COMMON SNHKH2 , SNHKH4  SNHKH5, CSHKH3 , CSH4KH, SNH4KH, OMEGAC, PIHL,

L PIHL2,CMC,AC1,AC2,AC3,AC4,AC5,€6,H

1
2

1

COMMON SINY7,COSY7,SINY9,COSY9,COSY11,SINY11,Y7,Y8,Y9,Y10,Y11,
Y12,€9S811,€7C11,C9S87C1,595751,59511,C9C11,C7S511,5957C1,C9C7,
$9¢7,89€11,£957S1,S9C7S1

COMMON XD(8),zD(8),YD(8),DH(8),HD(8),DIAG(8),RT(14),RD(14),AX(4),
AY(4),A2(4),ISIN(24),JSIN(24),KSIN(24),NOEL,NOADM

*dfdkiciokk RHSV CALCULATES THE RHS VECTOR #¥ickiiok

RHSV IS SET UP AS FOLLOWS
1) RHSV SUMS ALL THE FORCES AND MOMENTS FOR SIX DEGREES OF
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O 0O 0O 0O o o 0 o 0 o

FREEDOM
2) IN ADDITION, THE VECTOR CONTAINS THE FIRST DERIVATIVE
PORTIONS OF ACCELERATION AND ANGULAR MOMENTUM WITH A CHANGE
IN SIGN
3) RHS(1)=SURGE FORCE
4) RHS(2)=HEAVE FORCE
5) RHS(3)=SWAY FORCE
6) RHS(4)=ROLL MOMENT
7) RHS(5)=YAW MOMENT
8) RHS(6)=PITCH MOMENT
DO 6 I=1,24
XC(I)=XI(1)
YH(I)=YI(1)
2c(1)=21(1)
Fekkk Ik AWIND FORCES IN X AND Z DIRECTIONS#dridrstsrsnik
FWX=WX*WNVX2
FWZ=WZ*WNVZ2
Fiicicichk*WIND MOMENTS ABOUT X AND Zksskdwdridcscsesok sk
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WMY7=WMZ*WNVZ2
WMY11=WMX*WNVX2

*ckdkck***DISPL CALCULATES THE DISPLACEMENT OF THE FAIRLEADS#*dickdk
CALL DISPL(Y,DELX,DELZ,ARM,AX,AZ,AY)

FOXYZ CALCULATES THE MOORING LINE TENSIONS#scksckids
CALL FOXYZ(DELX,DELZ,FX,FY,FZ,TENSX,TENSZ,DIRC, THR,RT,RD)
DIR=DIRC

THRUST=THR

AF(1)=TENSZ(1)

AF(2)=TENSX(1)

AF(3)=TENSX(2)

AF(4)=TENSZ(2)

AF(5)=TENSZ(4)

AF(6)=TENSX(4)

AF(7)=TENSX(3)

AF(8)=TENSZ(3)

Y8Y8=Y8*Y8

Y10Y10=Y10%Y10
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Y12Y12=Y12%*Y12
Y8Y10=Y8%Y10

Y8Y12=Y8%Y12

Y10Y12=Y10%Y12

S9C7C1=SINY9*COSY7*COSY11l

S7C11=SINY7%COSY11l

C9C7C1=COSY9I*COSY7%COSY11l

C9C7S1=COSY9*COSY7%SINY11

$9S7=SINY9*SINY7

C9S7=COSY9*SINY7

C9511=COSY9*SINY11l

$7S11=SINY7%SINY11l

C7C11=COSY7%COSY1l

#%kAde¥s o ANGULAR  VELOCI TI ES#cskvesededesededescdekse
OMEGX=S9C7#Y12+(S9S7S1+CIC11 )*¥Y8+(S9S7C1-C9S11 )*Y10
OMEGY=~ SINY7#Y12+4C7S11%Y8+C7C11*Y10
OMEGZ=C9C7%Y12+(C9S751-59C11 )*Y8+(CIS7C1+89S11)*Y10
Jedrdededek*FIRST DERIVATIVE PART OF ANGULAR ACCELLERATION#%dicks
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DOMGX=~S957%Y8Y124+CI9C7*Y10Y124+C9S7S1*Y8Y10+S9C7S1*Y8Y8+S9S7C1*

¥Y8Y12-S9C11%Y8Y10-C9S11%Y8Y12+CIS7CL*¥Y10Y10+5S9C7C1*Y8Y10

-89S87S81%Y10Y12+S9S11%Y10Y10-C9C11*Y10Y12

DOMGZ=-C9S7%Y8Y12-S9C7%Y10Y12-S9S7S1*Y8Y10+COC7S1*Y8Y8+COS7 1%
Y8Y12-C9C11%Y8Y10+S9S11%Y8Y12-S9S7C1*Y10Y10+C9C7C1*Y8Y10-C9S7S
1*Y10Y12+C9S11*Y10Y10+59C11*Y10Y12

DOMGY=-S57811*Y8Y8-C7S11%Y10Y12-S7C11%Y8YL0-COSY7*Y8Y12+C7C11%Y8Y1
2

HPX=EILX*OMEGX~- EIXY*OMEGY~ EIXZ*OMEGZ

HPY=- EIXY*OMEGX+EI Y*OMEGY- ELIYZ*OMEGZ

HPZ=~ E1 XZ*OMEGX~ EI YZ*OMEGY+ELZ*OMEGZ

HDOTX=EIX*DOMGX- EIXY*DOMGY- EIXZ*DOMGZ

HDOTY=- EIXY*DOMGX+EL Y*DOMGY~- EI YZ%¥DOMGZ

HDOTY=- EIXY*DOMGX+EIL Y*DOMGY~ EIYZ*DOMGZ

HDOTZ=- EIXZ*DOMGX~ EI YZ*DOMGY+EIZ*DOMGZ

Fx¥%FNIckXFIRST DERIVATIVE PART OF ANGULAR MOMENTUMH%ksededdvd

RHS4 =~ (HDOTX~=OMEGZ*HPY+OMEGY*HPZ )

RHS5=~ ( HDOT Y- OMEGX*HPZ+OMEGZ*HPX )
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RHS6=- (HDOTZ- OMEGY*HPX+OMEGX*HPY)

KEXXAAXAAXTHRUST MOMENT %% %% vckkksksede®

TMOM=FX(1)*((AZ(2)+. 5*%DC(7))*COSY9-AX(2)*SINY9)-FX(2)*((~AZ(1)+
« 5*¥DC(3) )*COSYI+AX(1)*SINY9 )-FX(3)*((AZ(4 )+.5%DC(24))*COSYS
-AX(4 )*SINY9 )+FX(4)*((-AZ(3)+.5%DC(23) )*COSYI+AX(3)*SINY9 )~
FZ(1)*(AX(2)*COSY9+(AZ(2)+.5%DC(7) )*SINY9 )+FZ(2)*{AX(1)*COSY
9-(~AZ(1)+.5%DC(3) )*SINYI )+FZ(3)*(~AX(4 )*COSY9- (AZ(4 )+.5%DC
(24))*SINY9)-FZ(4 )*(-AX(3)*COSY9+(-AZ(3)+.5%DC(23) )*SINY9)

OMEGXX=OMEGX*OMEGX

OMEGYY=OMEGY*OMEGY

OMEGZZ=OMEGZ*OMEGZ

OMEGXY=CMEGX*OMEGY

OMEGXZ=OMEGX*OMEGZ

OMEGYZ=COMEGY*OMEGZ

VCSINA=VCMAX*SINA

VCCOSA=VCMAX*COSA

DO 2 1I=1,24

COSB1=COS(B1(1))
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292

((I)19%H)NIS =THANIS
((I)SHE)NIS =GANIS
((I)YE)INIS =%4NIS

((T)€9%Z)NIS =gTANIS

((I)TI¥T)NIS =ZTANIS
((I)E9)NIS =gINIS
((I)ZI)NIS =CANIS

((1)SA%Z)S0D =GZ4S00

((I)%ExZ)S0D =4Z4S0D
((1)5€9)S09 =5€4S00
((I)¥9)S00 =%4500

((I)€d*#T)S00 =¢T9S0D

((1)T9%C)S00 =¢¢4S0D
((1)£9)S00 =€£9S00
((1)29)S00 =Z4S090

((I)Td%Z)NIS =1ZINIS
((I)149)NIS =T1€4NIS

((1I)19%Z)S00=aT84809D



1

SINB24= SIN(2%*B4(1))

SINB25= SIN(2%B5(I))

COSB42= COS(4%B2(1))

COSB43= COS(4*B3(1))

COSB44= COS(4*B4(1))

COSB45= COS(4%B5(I))

SIN3B2=SINB2#%3

SIN3B3=SINB3**3

COS3B3=COSB3#*3

COS3B2=COSB2%%3

SIN3B4=SINB4#*%3

SIN3B5=SINB5%%3

COS3B4=COSB4%*3

COS3B5=COSB5%%3

DMYI=, 5%( YH(I )+.5%PDH(I)+B)

#idk A XA XRELATIVE VELOCI TIESs#richsedokssesesciodide

VBHX=JSIN(I)*(Y(2)+ZC(I)*OMEGY~YH(I )*OMEGZ+E8(X )*( SINB4~SINB5)
+E28(1)#*( SINB24-SINB25)+VCCOSA)
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1
2

1

1

1

1

1

1

VBHY=Y(4 )+XC(I )*OMEGZ-2ZC(1 )*OMEGX-JSIN(I)*E10(I)*(COSB4~-COSB5)-
JSIN(I)*E210(I)*(COSB24~COSB25)-KSIN(I)*E11(I)*(COSB2~COSB3)~
KSIN(I)*E211(I)*(COSB22-C0SB23)

VBHZ=KSIN(I)*Y(6)+YH(I)*OMEGX-XC(I)*OMEGY+E13(1)*(SINB2~-SINB3)
+E213(I)%*(SINB22-SINB23)+VCSINA)

VBCZ=(Y(6)-XC(I)*OMEGY+DMYI *OMEGX~-E9(I )*COSB1~-E29(I)*COSB21+
VCSINA )*KSIN(I)

VBCX=(Y(2)+ZC(I )*OMEGY~-DMYI#OMEGZ-E7(1)*COSB1-E27(1)*COSB21+
VCCOSA )*KSIN(I)

Kk %%%%WAVE PART OF RELATIVE ACCELERATIONsksskscsessess

TACZW=SJ(I )*DMCZ(I)*(EL(I)*SINB1+E21(I)*SINB21 )*KSIN(I)

TAHZW=-DMHZ( I )*KSIN(I)*(E2(I)*(COSB2~COSB3)+E22(I)*{(COSB22-
COSB23))

TACXW=-SJ(I)*DMCX(I)*(E3(I)*SINB1+E23(I)*SINB21)*KSIN(I)

TAHXW=-DMHX( I )*JSIN(I )*£E4(1)*CCOSB4=-COSB5)+E24(I)*(COSB24-
COSB25))

TAHYW=- DMHY(I )*KSIN(I)*(E5(I)*(SINB2~-SINB3)+E25(I)*(SINB22~
SINB23))-DMHY(I)*JSIN(I)*(E6(I )*(SINB4~-SINB5)+E26(1)%*
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&  SINB24-SINB25))

RERAAREXAXWAVE PRESSURE FORCES®X%#Xhkhfhndik®

WAVFY1=~(D1(I)*(SINB2-SINB3)+D21(I)*£3INB22-SINB23)-D31(L)+D41(I)

1  *(SIN3B2-SIN3B3)-D51(I)*(SINB2-SINB3) )*KSIN(I)

WAVFY2=- (D2(I)*COSB1+D22(I)*C0OSB21-D32(I)+D42(I )%*SINB1*SINB1%

1  COSB1-D52(I)%COSB1)%KSIN(I)

WAVFY3=-(D3(I)*§SINB4-SINB5)+D23(I)*(SINB24~-SINB25)-D33(1)+D43(I)

1  %(SIN3B4-SIN3B5)-D53(I)%*(SINB4-(SINB5))*JSIN(I)

WAVCZ=-(~D4(I)%SINB1-D24(I)*SINB21+D34(I)*SINB41+D44 (I )*COSBL*

1L COSB1*SINB1+D54(I)*SINB1)*KSIN(I)

WVFHZ1=- (D5(I )*(COSB2~-COSB3)+D25(I )*(COSB22-C0OSB23)-D35(1)*(COSB4

1 2-COSB43)-D45(1)%*(COS3B2-C0S3B3)~D55(I)*(COSB2-COSB3) )*KSIN(I)

1

WVFHX2=- (D7 (I)*C00SB4-COSB5)+D27(1)*(COSB24~-C0SB25)~D37(1)%*(COSB
44-COSB45)-D47(1 )*(COS3B4-COS3B5)-D57(1 )*(COSB4~COSB5) )*JSIN(I

2 0

1

WVFCX=- (~D9(I )*SINB1-D29(I )*SINB214+D39(I )*SINB41+D49(I )*COSB1%*
COSB1*SINB14+D59(I )*SINB1 )*KSIN(I)
MSIGN=ISIN(I)
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Jekededesck SMOMENTS ARMSHrdedededrsedek
ARMX1= ABS(YH(I))%*SINY7-ZC(I)*COSY7

ARMX2= ABS(YH(I))*COSY7ZC(I)*SINY7

ARMX3=- ANU(I )*COSY7+ZC(I )*SINY7
ARMY1=2C(1)*COSY9-XC(I)*SINY9
ARMY2=XC(I)*COSY9+ZC(I)*SINY?

ARMZ1= ABS(YH(I))*SINY11+XC(I)*COSY1ll

ARMZ2= ABS(YH(I))*COSY11-XC(I)*SINY11

ARMZ3=-ANU(I )*COSY11-XC(I)*SINY11

Fokdekicii*NORMAL ACELERATIONSHseksksssodcsiokss
ANCZ=XC(1)*OMEGXZ~-ZC(I)*OMEGXX-2C(I )*OMEGYY+DMYI*OMEGYZ
ANHZ=XC(I )*OMEGXZ-ZC(I )*OMEGXX-ZC(I)*OMEGYY+YH(I )*OMEGYZ
ANHZ=KSIN(I)#*ANHZ
ANCX=DMYI*OMEGXY-XC( I )*OMEGYY- OMEGZZ*XC(I )*OMEGXZ
ANHX=YH( I )*OMEGXZ~XC( 1 )*OMEGYY-XC(1 )*OMEGZZ+ZC(I )*OMEGXZ
ANHX=JSIN(I )*ANHX

ANHY=ZC( I )*OMEGYZ- YH(I )*OMEGZZ- YH(I ) *OMEGXX+XC(I )*OMEGXY
ANCX=KSIN(I)*ANCX
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ANCZ=KSIN(I)*ANCZ

ANCX=- SJ(I )*DMCX (I )*ANCX

ANHX=-DMHX( I )*ANHX

ANCZ=-SJ(1)*DMCZ(I)*ANCZ

ANHZ=-DMHZ(I)*ANHZ

ANHY=-DMHY(I )*ANHY

*%¥k%kk%%%FIRST DERIVATIVE PORTION OF TANGENTIAL ACCELERATIONs#ksoks
TACX=-DMCX(I)*SJ(I)*(ZC(I)*DOMGY-DMYI*DOMGZ )*KSIN(I)
TAHY=-DMHY(TI )*(XI(I)*DOMGZ-ZI (I )*DOMGX)
TACZ=-DMCZ(I)*SJ(1)*(DMYI*DOMGX-XC(I )*DOMGY)*KSIN(I)
TAHZ=-DMHZ (I )%*( YH( I )*DOMGX-XC(I )*DOMGY)*KSIN(I)
TAHX=-DMHX(I)%*(ZI(I)*DOMGY-YI(I)*DOMGZ)*JSIN(I)
XCB=S9C7*ZI(I)+(S9S7S1+CIC11)*XI(I)+(S9S7C1-CIS11)*YI(I)+Y(1)
ZBB=C9C7#ZI(I)+(C9C7S1-S9C11)*XI(I)+(CIS7C1+S9S11)*YI(I)+Y(5)
BETA=AK*(XCB-MSIGN#*, 5%¥HL(I ) )*COSA+AK*ZCB*SINA+OMEGA*T
BETA2=2%BETA

Fdkdekk®kQ IS VERTICAL FORCE#*kiciiksrkk
Q(I)=-DHY(I)*VBHY*ABS(VBHY )+KSIN(I )*WAVFY1+WAVFY2+JSIN(I)
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1  WAVFY3+PIRO4%PDH(I )*PDH(I)*MSIGN*VBHY*XVBCX+CAPK (I )*( WAMP=*
2  COSB14CAPH*COSB21-YBAR(I))-D67(I)*BBHY-C67(I)*VBHY*SJ(I)
Q(I)=Q(I)+ANHY+TAHY+TAHYW

%%J¥%%%%%FCZ IS FORCE ON COL IN Z DIRECTION*%sx
FCZ(1)=-SJ(I)*(DCZ(I)*VBCZ*ABS(VBCZ)-WAVCZ)
FCZ(1)=FCZ(I)+ANCZ+TACZ+TACZW~C67 (1 )*VBCZ*SJ(1)
FCZ(I)=KSIN(I)*FCz(I)

*%¥k¥kk*%%FHZ 1S FORCE ON HULL IN Z DIRECTION#veiskskk
FHZ(I1)=-D67(1)*VBHZ-DHZ(I )*VBHZ*ABS(VBHZ )+KSIN(I)*WVFHZ1+
1  PIRO4%PDH(I )*PDH(I )*MSIGN%VBHZ*VBCX

FHZ(I )=FHZ(I )+ANHZ+TAHZ+TAHZW

FHZ(I)=KSIN(I)*FHZ(I)

*%#k%isiXFHX IS FORCE ON HULL IN X DIRECTION#idnridoisikdk
FHX(I)=-D67(1)%VBHX~DHX( I )*VBHX*ABS(VBHX)+JSIN(I )*WVFHX2
FHX( I )=FHX(I )+ANHX+TAHX+TAHXW

frdekdcx%FHYX IS FORCE ON HULL DUE TO END PRESSURE##¥¥ik
FHYX=D61( I )*MSIGN*COS(BETA)+MSIGN*D62(I)*COS(BETA2)
FHX(I)=JSIN(I)*FHX(I)+FHYX
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kkk#k#¥%%xSUM UP MEMBER FORCES AND MOMENTS¥stsotickscisids
DO 5 I=1,NOEL

RHS(1)=RHS(1)+P(I)

RHS(2)=RHS(2)+Q(1)

RHS(3)=RHS(3)+R(I)

RHS(4 )=RHS(4 )+TH(I)

RHS(5)=RHS(5)+FF(I1)

RHS( 6 )=RHS(6)+FR(I)

IF(NOADM.LE.O) GO TO 470

DO 469 I+1,NOADM

ARMDX=ABS(YD(1) )*SINY7-ZD(I)*COSY7
ARMDZ=ABS(YD(I))*SINY11+XD(I )*COSY11l
FYD=-DIAG(I)*(Y(4 )+XD(I)*OMEGZ-2ZD(1 )*OMEGX)
FDMX=DYD*ARMDX

FDMZ=FYD*ARMDZ

RHS(2)=RHS(2)+FYD

RHS(4 )=RHS(4 )+FDMX

.« “469 RHS(6)=RHS(6)+FDMZ
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470 CONTINUE

#dek¥kdekkADD MOORING FORCES AND MOMENTS#riskeisods

RHS(1)=RHS(1)+FX(1)+FX(2)-FX(3)-FX(4)~FWX

RHS(2)=RHS(2)-FY(1)-FY(2)-FY(3)-FY(4)

RHS(3)=RHS(3)+FZ(1)-F2(2)+4F2(83)-FZ264)-Fwz

RHS(4)=RHS(4 )+FY(1)%(AZ(2)+.5%DC(7))%COSY7-FY(2)*(-AZ(1)+.5%DC(3)
)*%COSY7+FY(3)%(AZ(4 )+, 5%DC(24 ) )*COSY7-FY(4)*(-AZ(3)+.5%DC(23))
*COSY7-FZ(1)*(AZ(2)+.5%DC(7) )%*SINY7-FZ(2)*(-AZ(1)+.5%DC(3))*
SINY7-FZ(3)*(AZ(4 )+.5%DC(24 ) )%SINY7-FZ(4 )*(-AZ(3)+.5%DC(23))
*SINY7-WMY7 |

RHS(5)=RHS(5)+TMOM

RHS(6)=RHS(6)-FX(1)*AX(2)*SINY11-FX(2)*AX(L)*SINY11+FX(3)*AX(4)

2 *SINYL1+4FX(4)*AX(3)*SINY11-FY(1)*AX(2)*COSY11-FY(2)*AX(1)

3  %COSY11-FY(3)*AX(4)*CCSY11-FY(4)*AX(3)*COSY11+WMY11

& N~

RERURN
END
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SUBROUTINE DISPL(Y,DELX,BELZ,ARM,X,Z,YH)

DIMENSION X(4),2(4),YH(4),XX(4),22(4),YY(4),DELX(4),DELZ(4),
ARM(12),Y(12)

C1=C0Ss(Y(7))

C2=c0S(Y(9))

C3=c0Ss(Y(11))

S1=SIN(Y(7))

S2=SIN(Y(9))

$3=SIN(Y(11))

E1=C1%C2

F1=52%C1

Gl=-31

E2=83%S1*C2-S$2*C3

F2=C2%C3%S2*S1%S3

G2=C1%S3

E3=S52%S3+C2%S1%C3

F3=82%S51*C3-C2%S3

G3=C1*C3
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DO 2 1=1,4
ZZ(1)=E1*Z(1)+E2*X(1)+E3*YH(I)
XX(I)=F1%Z(I)4+F2X(1)*F3%*YH(I)
YY(I)=G1*Z(I)+G2*X(1)+G3*YH(I)
DELX(I)=Y(I)+XX(I)-X(I)
DELZ(I)=Y(5)+Z2(1)=-2(1)

DO 3 I=1,4

ARM(I )=XX(I)

ARM(I+4)=YY(I)

ARM(I+8)=22(1)

RETURN

END
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SUBROUTINE FOXYZ(DELX,DELZ,FX,FY,FZ,TENSX,TENSZ,DIRC,THR,RT,RD)
DIMENSION RD(14),RT(14),DELX(4),DELZ(4),FX(4),FY(4),FZ(4),TX(4),
TZ(4),DISTX(4),DISTZ(4 ), TENSX(4),TENSZ(4)

(=)

NDIM=14

*Xx¥xkxkA%¥DISTL IS THE HORIZ DISTANCE BETWEEN FAIRLEAD AND ANCHOR
WHEN CHAIN IS FULLY STREICHED OUT, THIS VALUE TAKEN
FROM SEPARATE PROGRAM%#¥kikkiik

DISTL=2964.32

*¥k¥kkk%%DISTL IS THE DISTANCE FROM THE ANCHOR TO GIVE THE DESIRED
INITIAL CHAIN TENSION. THIS VALUE IS TAKEN FROM SEPARATE
PROGRAM %k %ok

DISTi=2889.66

DD=100,

kkkfek*Xx*¥FFC IS THE CHAIN TENSION WHEN THE CHAIN IS COMPLETELY
SLACK ITS VALUE IS PRE-DETERMINED BY MULTIPLYING THE
EFFECTIVE UNIT WEIGHT OF CHAIN BY WATER DEPTH#*¥%¥J%¥¥ksist

FFC=24000,

Frkkdxk¥%X0 IS THE LENGTH OF CHAIN LAYING FLAT WHEN CHAIN IS

AR



COMPLETELY SLACK ik
X0=2600.
XL=1,
XR=DISTL/XO
DISTX(1)=(DISTI-DELX(1))/X0
DISTX(2)=(DISTI-DELX(2))/X0
DISTX(3)=(DISTI+DELX(3))/X0
DISTX(4 )=(DISTI+DELX(4))/XO0
DISTZ(1)=(DISTI-DELZ(1))/X0O
DISTZ(20=(DISTI+DELZ(2))/X0
DISTZ(3)=(DISTI-DELZ(3))/XO0
DISTZ(4 )=(DISTI+DELZ(4))/X0
DO 1 I=1,4
DELX(1)=0.0
DELZ(I)=0.0
TX(I)=(2*DISTX(I)-(XL+XR))/(XR-XL)
TZ(I)=(2*DISTZ(I)=-(XL+XR))/(XR-XL)
DO 3 I=1,4
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FX1=0

FZ1=0

DYDX=0

DYDZ=0

TXI=TX(I)

TZ1=TZ(1)

DO 2 J=1,NDIM

CHEBX=P(J-1,TXI)

CHEBZ=P(J-1,TZI1)

FXI=FXI+RT(J)*CHEBX*FFC
FZI=FZI+RT(J)*CHEBZ*FFC
DYDX=DYDX+RD( J ) *CHEBX*DD
DYDZ=DYDZ+RD( J ) *CHEBZ*DD

ANGX=ATAN(DYDX)

FX(I)=FXI%*COS(ANGX)

FZ(I)=FZI*COS(ANGZ)
TENSX(I)=SQRT(FX(I)*FX(I)+(FXI*SIN(ANGX))**2)
TENSZ(I)=SQRT(FZ(I)*FZ(I)+(FZI*SIN(ANGZ) )*%2)
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FY(I)=FXI*SIN(ANGX)+FZI*SIN(ANGZ)

FZT=F2(1)-Fz(2)+4Fz(3)-Fz(4)

FXT=FX(1)+FX(2)-FX(3)-FX(4)+.01

DIRC=ATAN(FZT/FXT)*180./3.14159
=SQRT(FXT*FXT+FZT*FZT)

RETURN

END
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FUNCTION P(J,X)
IF(J.GT.0) GO TO 1
P=1.

RETURN
IF(J.GT.1)GO TO 2
P=X

RETURN
IF(J.GT.2)GO TO 3
P=2%X%%2-1,

RETURN
IF(J.GT.3)GO TO 4
Pef#X#%3- 3%X
RETURN
1F(J.GT.4)GO TO 5
P=8%Xs¥#l- 8xX*%2+1.
RETURN
IF(J.GT.5)GO TO 6
P=16%X#%5- 20%X%%3+5%X
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