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Abstract: Climate change is a ubiquitous phenomenon that affects species at multiple 

spatial scales. Species’ trends that are currently being observed may have future 

implications for conservation within the context of a dynamic climate. We monitored 

northern bobwhite (Colinus virginianus; here-after “bobwhite”) and scaled quail 

(Callipepla squamata) space use and survival trends at a local scale, while also modeling 

the potential biogeographic responses of all temperate North American quail to predicted 

patterns of climate change. For instance, provision of artificial surface water during 

periods of extreme drought may not be warranted in future decades if water availability is 

decreased and if such provisions provide no benefit to species. Both bobwhite and scaled 

quail exhibited behavioral responses to the provision of anthropogenic surface water 

during periods of extreme drought by selecting for areas within 700 m of surface water. 

The probability of space use was greater in areas closer to water for bobwhite during the 

non-breeding season (𝛽 = -0.06, SE = < 0.01) and for scaled quail during the breeding 

season (𝛽 = -0.31, SE = 0.07). However, the presence of surface water sources did not 

influence survival or nesting success of bobwhite or scaled quail, thus this management 

practice is not supported.  In general, all temperate North American quail are predicted to 

lose areas of environmental suitability except the Gambel’s quail (Callipepla gambelii). 

Most species indicate a loss in southern latitudinal distributions. Bobwhite and scaled 

quail are predicted to lose areas of high relative abundance, where-as mountain quail 

(Oreortyx pictus) and California quail (Callipepla californica) are predicted to retain 

areas of high relative abundance. Local patterns of heterogeneity in thermal conditions 

may determine the magnitude of the responses of many of these species to climate 

change. We predicted that during periods of thermal extremes (<-15° C and >35° C), 

space use is least available for bobwhite. Furthermore, areas useable during the coldest 

thermal conditions are not similar to useable areas during periods of extreme heat events. 

These results further emphasize the need to understand local patterns and how they might 

affect regional responses in the context of climate change.
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CHAPTER I 

 

 

BEHAVIORAL RESPONSES AT DISTRIBUTION EXTREMES: HOW 

ARTIFICIAL SURFACE WATER CAN AFFECT QUAIL MOVEMENT 

PATTERNS 

ABSTRACT Supplementing wildlife populations with resources during times of 

limitation has been suggested for many species. The focus of our study was to 

determine responses of northern bobwhite (Colinus virginianus; Linnaeus) and scaled 

quail (Callipepla squamata; Vigors) to artificial surface-water sources in semi-arid 

rangelands. From 2012-2014, we monitored quail populations via radio telemetry at 

Beaver River Wildlife Management Area, Beaver County, Oklahoma. We used 

cumulative distribution functions (CDF) and resource utilization functions (RUF) to 

determine behavioral responses of quail to water sources. We also used Program 

MARK to determine if water sources had any effect on quail vital rates. Our results 

indicated that both northern bobwhite and scaled quail exhibited behavioral responses 

to the presence of surface-water sources. Northern bobwhite selected for areas < 700 

m and < 650 m from water sources during the breeding and non-breeding season, 

respectively. However the non-breeding season response was weak (𝛽 = -0.06, SE = 

< 0.01) and the breeding season (𝛽 = 0.01, SE = 0.02) response was non-significant 

based on RUFs. Scaled quail selected for areas < 650 m and < 250 m from water 

sources during the breeding and non-breeding season, respectively. The breeding 
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season RUF (𝛽 = -0.31, SE = 0.07) indicated a stronger response for scaled quail than 

bobwhite. Conversely, there was no direct effect of surface water on quail vital rates 

or nest success during the course of our study. Although water may affect behavioral 

patterns of quail, we found no evidence that it affects quail survival or nest success 

for these two species. 

INTRODUCTION 

Understanding the ecology of species at their distribution limits has important 

implications to conservation (Grinnell 1917, MacArthur 1972). Limits in a species’ 

distribution can provide insight into examining potential constraints on populations, 

or how populations may adapt to unique conditions that infrequently occur within the 

core of a species’ distribution (Sexton et al. 2009).   The availability of resources for 

wildlife, such as food, water, and cover (Leopold 1933) on distribution extremes may 

influence a species in ways that may not occur away from the periphery of its 

distribution. Furthermore, population responses and/or persistence can vary along 

gradients of resource and environmental variables, leading to the formation of 

distribution limits (Birch 1953).  

Sympatric populations of northern bobwhite (Colinus virginianus; hereafter 

“bobwhite”) and scaled quail (Callipepla squamata) offer a unique opportunity to 

study the influence of limiting resources on space use and vital rates, as these 

populations typically occur on the western and eastern extremes of the species’ 

distributions, respectively (Schemnitz 1964).  Within this region and other semi-arid 

and arid rangelands, the importance of water as a potentially limiting resource has 

been emphasized and the supplementation of water to enhance wildlife habitat 
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continues to be a subject of debate among biologists (Rosenstock et al. 1999). 

Recommendations for provision of artificial surface water may be a result of actual 

observable depletions of available surface water in ecosystems or from analogies of 

human situations in which water supplementation is necessary (Campbell 1960).  

Particular attention has been paid to providing surface-water sources to 

various species of quail in semi-arid and arid rangelands (Glading 1943), as the 

potential for population responses and economic payoffs is more likely in dry 

environments (Campbell 1960). However, ambiguity in tangible benefits of surface 

water to quail have existed since early results from studies by Grinnell (1927) and 

Vorhies (1928), though many of these studies relied purely on observational data to 

support or refute any benefits of surface-water sources. Due to limited data and 

ambiguous results, researchers and managers continue to try to assess if and when 

quail respond and/or benefit from the presence of artificial surface-water sources. 

 Generally speaking, scaled quail tend to be more drought tolerant than 

bobwhite (Schemnitz 1964) as they have better osmoregulation during times of 

extreme water deprivation (Giuliano et al. 1998). Because of this difference in 

physiology, a greater response of bobwhite to the provision of artificial surface-water 

sources in semi-arid regions would be predicted. Although direct individual use of 

surface water has been documented in bobwhite populations (Prasad and Guthery 

1986, Lehmann 1984), results on population responses to artificial surface-water 

sources have been mixed. For instance, Guthery and Koerth (1992) determined that 

water supplementation did not benefit bobwhite, particularly when water was not a 

limiting factor. Conversely, Hiller et al. (2009) determined that both non-nesting 
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bobwhite and bobwhite nest locations were located significantly closer to surface-

water sources compared to random locations, while Dunkin et al. (2009) provided 

evidence of bobwhite breeding and non-breeding selection to areas > 250m and < 

600m from surface-water sources. Such studies suggest that bobwhite may be 

responding behaviorally to the presence of surface-water sources, though do not 

indicate if such behavioral responses result in increased vital rates.  

 Similarly, there have been contrasting results when studying the response of 

scaled quail to surface-water sources. Direct use of surface-water sources have been 

documented for scaled quail, though at relatively low rates that may not be 

biologically meaningful (Campbell 1960). Additionally, scaled quail in Oklahoma 

were observed at locations closer to water than would be expected at random, though 

it was not determined whether this behavior was from direct use of water or from 

responding to other elements of habitat such as vegetation (Schemnitz 1961). 

Ultimately, it has been suggested that scaled quail may satisfy their water 

requirements from food sources and that providing surface-water sources is not 

necessary (Campbell et al. 1973). 

 In North America, an understanding of rangeland faunal responses to the 

provisioning of surface water will become increasingly important in future decades, 

as many of these rangelands are predicted to experience unprecedented droughts as a 

result of climate change (Cook et al. 2015). Furthermore, ground water withdrawal by 

humans often exceeds water recharge in aquifers within these rangeland systems 

(Dennehy et al. 2002, Moore et al. 2012), and recharge of these aquifers is predicted 

to be further reduced under future climate scenarios (Rosenberg et al. 1999). As such, 
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the efficacy of providing artificial water sources for rangeland wildlife may be 

confounded by increased water demand and decreased water availability.   

 In this paper, we present results of the most comprehensive study to date 

examining bobwhite and scaled quail population responses to surface-water sources. 

By addressing multiple facets of potential population responses, we hope to provide 

greater insight as to whether surface water confers any benefit to these two quail 

species. We assessed the direct benefit of water provision through increased quail 

vital rates, changes in resource selection of quail from provision of surface water, and 

the confounding effects related to artificial surface water and vegetation cover. Our 

objectives were to determine if sympatric populations of bobwhite and scaled quail 

respond behaviorally to artificial surface-water sources in a semi-arid region at the 

species’ distribution extremes. More specifically, we wanted to determine at what 

spatial scale birds may be behaviorally responding to water, whether or not the 

probability of space use by quail increased as distance from water decreased, and 

quantify any differences in vegetation cover between used and unused water sources. 

We also sought to estimate any relation between quail vital rates (nest success and 

adult survival) and presence of surface-water sources that may ultimately influence 

overall population levels. 

METHODS 

Study Area 

Beaver River Wildlife Management Area (WMA), located in Beaver County, 

Oklahoma (lat 36°50'21.62"N, long 100°42'15.93"W), consists of approximately 11 

315 ha managed by the Oklahoma Department of Wildlife Conservation (ODWC). 
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Most of the WMA consists of upland rangelands and the floodplain of the Beaver 

River. Much of the upland areas are dominated by tivilo fine sand soils, while the 

floodplain is dominated by lesho silty clay loam. Dominant grasses on upland sites 

consist of buffalograss (Buchloe dactyloides), little bluestem (Schizachyrium 

scopariu), and bromes (Bromus spp.; non-native). Dominant forbs on upland sites 

include western ragweed (Ambrosia psilostachya), queen’s delight (Stillingia 

sylvatica), and Texas croton (Croton texensis). Dominant shrubs on upland sites 

include yucca (Yucca glauca), sand sagebrush (Artemisia filifolia), sand plum 

(Prunus angustifolia), and fragrant sumac (Rhus aromatica). Dominant grasses in the 

floodplain areas include weeping lovegrass (Eragrostis curvala; non-native), little 

bluestem, and switchgrass (Panicum virgatum). Dominant woody plants in the 

floodplain include fragrant sumac, sand plum, salt cedar (Tamarix spp; non-native), 

eastern cottonwood (Populus deltoides), and sugarberry (Celtis laevigata). Western 

ragweed is the dominant forb in the floodplain areas.  

 Over the course of our study (2012-2014), average temperatures in summer 

ranged from 19.56-22.28, 25.72-27.22, and 26.78-30.06˚C during May, June, and 

July, respectively. The long term (1895-2014) average regional temperature during 

this period is 25.28˚C. Average temperatures in the winter ranged from -0.83-2.17, 

1.28-1.33, and -0.33-2.39˚C during December, January, and February, respectively. 

The long term average regional temperature during this period is -3.78˚C. Annual 

precipitation was 34.44, 50.29, and 39.42 cm in 2012, 2013, and 2014 respectively. 

The long term annual precipitation for this region is 49.63 cm. Climate data were 

obtained from the Beaver Mesonet station (Brock et al. 1995, McPherson et al. 2007). 
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During our data collection period (1 April 2012–31 March 2014), the WMA was 

classified under drought conditions ranging from severe to exceptional, and at no time 

was our study area out of drought conditions (The National Drought Mitigation 

Center, Lincoln, Nebraska, USA). Management practices consist of cattle grazing (1 

stocker/16 acres, grazed for 150 days; only during 2012), strip discing, and food plot 

establishment. 

Aerial imagery consisting of 2 x 2 m resolution was obtained during July 2012 

and used in our classification of six major vegetation types across the WMA: sand 

sagebrush, shortgrass/yucca, mixed grass, mixed shrub, riparian grassland, and salt 

cedar. Anthropogenic surface-water sources (hereafter: water sources) consisted of 

windmills with water tanks, solar water wells, and gallinaceous guzzlers with 

overhead cover (Glading 1943). There was only one permanent water source on our 

study site that was natural (pond < 0.01 ha), thus we limited the scope of our analysis 

to artificial surface-water sources. Furthermore, we did not categorize water sources 

(i.e., guzzlers vs windmills) in our analysis as the central focus of our study was to 

determine use of all anthropogenic water sources in general. Water sources were 

examined each season (breeding and non-breeding) and year to confirm whether they 

provided water. From 2012 to 2013, the number of water sources functioning across 

the WMA decreased from 48 (2012) to 36 (2013). These 12 water sources were non-

functioning because grazing on the WMA was discontinued due to continued drought 

conditions. As such, these water sources were not repaired after they ceased working. 

The density of water sources was 236 ha · water source in 2012 and 314 ha · water 

source in 2013 (Figure S1).  
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Radio-telemetry 

We captured bobwhite and scaled quail between February-October 2012-2013 using 

walk-in funnel traps (Stoddard 1931). Captured quail were banded with leg bands 

(size 7) and fitted with a necklace-style radio transmitter weighing 6 g (crystal-

controlled, two-stage design, pulsed by a CMOS multivibrator, Advanced Telemetry 

Systems, Isanti, Minnesota, USA) based on meeting a minimum body mass 

requirement (130 g). As our study area was located along the Beaver River corridor, 

areas used by scaled quail within the boundaries of the WMA were restricted 

primarily to the upland boundaries that were shared with private landowners. This 

limited the trapping efforts, and ultimately our sample size, for scaled quail during 

our study in comparison to bobwhite, which were located throughout the majority of 

the WMA.  

Radio-marked individuals were located a minimum of three times per week 

using a scanning receiver and a handheld Yagi antenna (Advanced Telemetry 

Systems, Inc, Isanti, MN). We located quail by homing (White and Garrot 1990) 

within 15 m and recorded the distance and azimuth to the actual quail location while 

also marking the Universal Transverse Mercator (UTM) coordinates of the observer 

with a GPS unit (Garmin International, Inc, Olathe, Kansas, USA). We recorded 

locations of quail at different times on subsequent days to capture the variability of 

diurnal patterns. To accomplish this, we grouped birds by different sections of the 

WMA, and alternated the order in which each section was monitored across days. Our 

trapping and handling methods comply with the protocol determined by Oklahoma 
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State University’s Institutional Animal Care and Use Committee Permit (no. AG-11-

22).  

Cumulative Distribution Functions 

Cumulative distribution functions (CDF) were used to determine selection-avoidance-

neutral behavior of quail in relation to distance from water sources during the 

breeding and non-breeding seasons. We defined the breeding season as 1 April-30 

September and the non-breeding season as 1 October–31 March (Burger et al. 1995a). 

A form of this method of analysis was presented by Kopp et al. (1998) and 

subsequently used by Dunkin et al. (2009) in a similar analysis of anthropogenic 

structure effects on bobwhite. This analysis provides a continuous method of 

determining selection-avoidance-neutral behavior for data with large sample sizes and 

allowed us to determine the spatial scale at which quail were responding to water 

sources. Such large sample sizes can often lead to statistical significance in a model 

without any biological meaning (Abelson 1995, Guthery 2008). CDFs are also 

beneficial in that we are able to use the entirety of our location data in the analysis. 

Dunkin et al. (2009) describes deriving an estimate of selection-avoidance-neutral 

behavior by subtracting the relative cumulative frequency (𝐺(𝑥)) of used locations by 

the cumulative frequency (𝐹(𝑥)) of random locations[𝐺(𝑥) − 𝐹(𝑥)]. CDFs are the 

integral of probability density functions (PDFs; Wackerly et al. 2002) and thus can be 

useful in determining selection-avoidance behavior in relation to continuous resource 

variables (Dunkin et al. 2009). This equation creates a function, in which a positive 

slope in the function indicates selection, and negative slope indicates avoidance, and a 

slope nearing 0 indicates a neutral relationship. The 𝐺(𝑥) − 𝐹(𝑥) function was 
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calculated for every 50 m interval (i.e, 0-49.99 m, 50-99.99 m, etc.), and we pooled 

these estimates between years for both breeding and non-breeding seasons for both 

bobwhite and scaled quail. We determined a non-significant relationship if 

confidence limits overlapped 0, which would result from increased variability 

between years. 

 Thirty random points (Martin et al. 2012) were created for every water source 

within our study area. We then estimated the Euclidean distance (m) from bird 

locations to artificial surface-water sources and random (or “pseudo” water source) 

locations. A total of 30 iterations were carried out in which pseudo water sources 

were randomly selected from our pool to estimate a bird’s location to a pseudo-water 

source. The number of pseudo water sources randomly selected for each iteration was 

equivalent to the number of actual water sources present across the WMA at the 

specific time period.  

 To account for the potential confounding effects of vegetation on selection of 

areas close to artificial surface-water sources, we determined any differences in 

vegetation cover within selection buffers around used versus non-used water sources 

using PROC NPAR1WAY in SAS 9.4 (Statistical Analysis System Institute Inc, 

Cary, North Carolina, USA). The selection buffer was based on a radius equal to the 

maximum distance (m) from a water source in which selection behavior was 

determined. We assumed a water source was used if a bird location was within 

selection buffers around individual water sources. A utilization-availability analysis, 

as outlined by Neu et al. (1974), was used to determine vegetation types that were 

selected more than expected by bobwhite and scaled quail. We used the results from 
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our utilization-availability analysis to compare % cover of selected vegetation types 

within and outside selection zones, while also relating this to the proportion of total 

bird points within and outside selection zones. Thus, if the majority of a 

representative vegetation type was outside the zone of selection, but the majority of 

points were within the zone of selection, we concluded that vegetation was not the 

sole driver of quail space use. 

Space Use and Resource Utilization Functions 

To validate relationships estimated from the CDFs, we also estimated the relationship 

of distance to surface-water sources on estimated probability of space use by a bird by 

estimating resource utilization functions (RUF; Marzluff et al. 2004, Millspaugh et al. 

2006). RUFs allowed us to directly compare space use to distance from surface-water 

sources for individual birds during the breeding season and for coveys during the 

non-breeding season. Space use by individual quail within coveys is non-independent 

(Janke and Gates 2013, Brooke et al. 2015) therefore we estimated RUFs for coveys 

during the non-breeding season to meet the assumption of independence of space use 

between individuals (Marzluff et al. 2004). The RUF method is advantageous over 

other resource selection methods because it treats each individual as the experimental 

unit rather than each location, while also restricting space use of a bird to an 

estimated home range, rather than by an arbitrary boundary (Marzluff et al. 2004). As 

CDFs use the entire population of bird locations to assess the influence of a resource 

variable on space use, RUFs allowed us to confirm the estimated relationship based 

on a sub-sample (individual birds or coveys with > 20 locations) of our location data. 

For instance, if a CDF indicated an attraction to surface water, the RUF would allow 
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us to determine if the concentration of locations became denser as the distance from 

water lessened.  

 Seasonal home ranges for individuals or coveys having >20 radio-telemetry 

locations (DeVos and Mueller 1993, Taylor et al. 1999) were created using the 95% 

fixed-kernel method (Worton 1989, Seaman et al. 1999) through the Geospatial 

Modelling Environment (GME; Spatial Ecology LLC, USA). A 95% limit was used 

to better compare our results with previously published literature that estimates quail 

space use (Lohr et al. 2011, Janke and Gates 2013, Peters et al. 2015). The likelihood 

cross-validation bandwidth estimator was used to obtain kernel density (KDEs) 

estimates (Horne and Garton 2006), which provided us with a unique smoothing 

parameter (h; Worton 1989) for each individual that we subsequently used in our 

RUF calculations.  

Utilization distribution rasters were created for each bird by assigning a use 

value ranging from 1 to 95% based on the relative volume of the utilization 

distribution (Marzluff et al. 2004, Kerston and Marzluff 2010). The utilization 

distributions were constrained to each bird or covey’s 95% volume contour 

determined from the previous step. Each cell was 10 X 10 m, which was also 

representative of the resolution of our distance to surface water environmental layer. 

Once utilization distributions were created, we extracted use and distance to water 

(m) values to points centered within every cell located in the utilization distribution. 

The distance to surface water layer was estimated using the Spatial Analyst Euclidian 

Distance tool in ArcGIS 10.2 (ESRI 2011). 
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After extracting use and distance to water values within each home range, the 

relationship of space use to distance from water was estimated on a cell-by-cell basis 

which produced a coefficient of resource use for each individual. We used the Ruf.fit 

package in Program R (ver. 3.1.1, R Foundation for Statistical Computing, Vienna, 

Austria) to estimate coefficients of resource use for our sample. To stay consistent 

with methods from our CDF analysis, we only computed RUFs for individuals that 

had the entirety of the estimated home range within the boundary of Beaver River 

WMA. Estimates of space use were loge-transformed to meet the linearity assumption 

for multiple regression models. To estimate the influence of surface water on our 

overall population, mean standardized β coefficients (𝛽) were calculated by season 

and species with conservative estimates of variance that incorporates inter-individual 

variation (Marzluff et al. 2004). We considered standardized coefficients to be 

statistically significant if 95% confidence intervals did not overlap 0. Furthermore, a t 

test was used to test the significance of our standardized coefficients against a null 

model where of  𝛽 = 0 (α = 0.95; Marzluff et al. 2004). Because our resource variable 

was a distance (m) measure, negative coefficients indicated that surface water had a 

greater than expected effect on space use, while positive coefficients indicated that 

surface water had a less than expected effect on space use (Marzluff et al. 2004). 

Finally, the number of individual birds or coveys that had significant positive, 

negative, or non-significant relationships to surface water were determined to display 

differences among individuals (Winder et al. 2013).  

Survival analysis 
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To determine if the presence of surface-water sources had any influence on 

bobwhite and scaled quail survival, we estimated seasonal survival rates coded on 

weekly time intervals (26 total intervals) using the known fate model with a logit link 

function in Program MARK for each species and season combination (White and 

Burnham 1999). We censored the first seven days after a bird was released in our 

analysis to control for a potential short-term effects of capturing and radio-marking 

(Guthery and Lusk 2004), and used a staggered-entry method to analyze survival with 

the known fate model (Pollock et al. 1989). This method left-censors individual’s 

encounter histories until they are captured and enter the monitored population. We 

right-censored individuals because of emigration from the study area, radio failure or 

loss, or when unknown fates occurred. We only analyzed survival of birds that had > 

20 locations and had estimated home ranges that were completely within the 

boundary of our study site so that we could stay consistent with our other analyses.  

 We included group metrics (age, sex, season, and home range size (ha)) and 

variables related to surface-water sources determined by our previous analyses 

(presence of water in a home range, number of an individual’s locations within our 

zone of selection, and RUF β coefficients) in our survival analysis to address our 

research objective. We also included a temporal and null model in our analysis. For 

the non-breeding season, RUF β coefficients were estimated for individuals based on 

covey associations. We used a ΔAICc value of < 2 (Burnham and Anderson 2002), to 

determine the most parsimonious model for explaining variance in survival. However, 

we assumed that any exploratory variables contained in models performing worse 

than our null model did not contribute any relative importance to quail survival.  
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Nesting 

Beyond adult survival, we also tested whether or not artificial surface-water sources 

had any influence on nest success. Quail were considered to be nesting if they were 

located at identical subsequent locations in the breeding season (Burger et al. 1995b). 

Once a bird was nesting, we marked (GPS) the location near the nest while the radio-

marked quail was present. We located the actual nest when the radio-marked quail 

was away from the nest or after hatch or abandonment. Once a quail was nesting, the 

incubation status (whether the quail is still nesting) was monitored daily by locating 

the radio-collared adult. We continued to monitor nests until they hatched or failed. A 

nest was defined as successful if > 1 egg hatched. We compared the Euclidean 

distance (m) of successful and unsuccessful nests to surface-water sources and to 

pseudo water sources (random points). Randomization of pseudo water source 

locations was identical to the methods described for our CDF analysis. Statistical 

significance of successful and unsuccessful nest distances to water and pseudo water 

sources was estimated based on the nature of the 95% confidence intervals (Hiller et 

al. 2009). 

Estimates of nest location distances to surface-water sources were pooled 

between species because of a low sample size for scaled quail nests (n = 12). 

Variance between successful and failed nests were unequal (F-value = 2.94; p < 

0.01), therefore the Satterthwaite confidence limits were used to test for significance 

using PROC TTEST in SAS 9.4.  

RESULTS 
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During the study, radio transmitters were placed on 487 bobwhite and 131 scaled 

quail. From this sample, we obtained a total of 5 569 and 6 180 bobwhite breeding 

season and non-breeding season locations respectively, and 1 108 and 1 922 scaled 

quail breeding season and non-breeding season locations, respectively. We were able 

to estimate home ranges for 80 bobwhite and 10 scaled quail in the breeding season 

and 25 bobwhite and 2 scaled quail covey ranges during the non-breeding season. 

During the 2012 and 2013 breeding season, we located a total of 61 nests, of which 

49 were bobwhite and 12 were scaled quail. 

Cumulative Distribution Functions 

Based on the slopes of our CDFs, both bobwhite and scaled quail locations were 

closer to artificial surface-water sources than expected (Figure 1). Scaled quail 

exhibited significant selection for distances 100-650 m in the breeding season (Figure 

1A). Scaled quail exhibited a much weaker response to surface-water sources during 

the non-breeding season compared to the breeding season. Specifically, a positive 

relationship was indicated from 50-250 m, however this was not significant based on 

confidence intervals and the overall sample resulted in a weak sigmoidal relationship 

(Figure 1B). Bobwhite exhibited significant selection behavior at distances 350-700 

m from water sources during the breeding season, while selecting for distances 50-

650 m during the non-breeding season (Figures 1C and 1D).  

 For bobwhite, there were a total of 34 and 24 surface-water sources that were 

considered used during the breeding and non-breeding seasons, respectively (Table 

1). During the breeding season, water sources considered used by bobwhite had more 

mixed shrub cover within the zone of selection compared to water sources considered 
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unused. During the non-breeding season, water sources considered used by bobwhite 

had more cover of sand sagebrush within the zone of selection compared to water 

sources considered unused. Not surprisingly because of sample size and habitat 

requirements, scaled quail used fewer water sources than bobwhite, with only 13 and 

7 used during the breeding season and non-breeding season, respectively (Table 2). 

During the breeding season, water sources considered used by scaled quail had less 

cover of salt cedar and riparian grassland and more cover of sand sagebrush within 

the zone of selection when compared to water sources considered unused. Water 

sources considered used by scaled quail during the non-breeding season had no 

significant differences in vegetation cover within the zone of selection when 

compared to water sources considered unused.  

 Our utilization distribution analysis resulted in four vegetation types being 

used more than expected (Tables 3 and 4). From these results, we determined the 

proportion of these selected vegetation types within their respective zones of selection 

around all water sources for each species and each season, as well as the proportion 

outside of the zones of selection (Tables 5 and 6). For both species, there were more 

locations within zones of selection than would be expected based on the proportion of 

selected vegetation types also within zones of selection, excluding the non-breeding 

season scaled quail sample. Specifically, during the breeding season, scaled quail 

exhibited the most pronounced relationship, in which 65% of their locations were 

within the zone of selection with water (< 650 m) while 53% of the total available 

preferred vegetation types were located outside the zone of selection (Table 6). 

Likewise, bobwhite during the non-breeding season exhibited a strong relationship, in 
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which 56% of their locations were within the zone of selection with water (< 650 m) 

and 67% of the total available preferred vegetation types were located outside this 

zone (Table 5). 

Resource Utilization Functions 

After filtering our sample of individuals to the boundary of the WMA, we were able 

to estimate RUFs for 117 individuals. A total of ten RUFs were estimated for scaled 

quail individuals in the breeding seasons and two coveys in the non-breeding seasons. 

We estimated 80 RUFs for bobwhite individuals in the breeding seasons and 25 

coveys during the non-breeding seasons. As our sample of estimable RUFs for scaled 

quail coveys was low (n = 2), we did not attempt to obtain 𝛽 for this sample.  

 Results from our RUF analysis concurred with the CDF relationships we 

estimated for our scaled quail breeding season and bobwhite non-breeding season 

samples (Table 7). Though our sample for breeding season scaled quail individuals 

was relatively low compared to our bobwhite sample the 𝛽 coefficient indicated a 

strong positive influence of space use related to distance from artificial surface-water 

sources (𝛽 = ˗0.31, SE = 0.07, 95% CI = ˗0.44 to ˗0.17). Likewise, space use by non-

breeding bobwhite was positively related to distance from artificial surface-water 

sources (𝛽 = ˗0.06, SE = 0.0002, 95% CI = ˗0.064 to ˗0.063), although this effect was 

much weaker than the scaled quail relationship. Space use related to distance from 

artificial surface-water sources for bobwhites during the breeding season was not 

significant (𝛽 = 0.01, SE = 0.02, 95% CI = ˗0.03 to 0.06).  

Adult and Nest Survival in Relation to Water 
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A total of 146 bobwhite and 28 scaled quail individuals were used in our survival 

analysis. For our bobwhite sample, no models performed better than the null model, 

suggesting we did not include variables that strongly influenced bobwhite survival 

(Table 8). Home range size (ha) was considered the best performing covariate in 

explaining scaled quail survival (β = -0.014, SE = -0.026 to -0.002) and no water 

variables performed above the null model (Table 9). We were unable to include the 

RUF β coefficient as a variable in our scaled quail survival analysis because of our 

low sample size. However, the β model for our bobwhite sample was not considered 

to be a competing model as it performed worse than our null model. 

The mean difference of distance from surface water between successful and 

failed nests was ˗66.8 m (SE = 128.9, 95% CI = ˗327.7 to 196.0), indicating there was 

no statistical difference between these samples as confidence intervals overlapped 0 

(Table 10). However, successful nests (and the pooled sample of all nests) were 

closer to artificial water sources compared to pseudo water sources (P = 0.01) 

whereas failed nests were not significantly closer to actual water sources when 

compared to their distance to random locations (P = 0.18).  

DISCUSSION 

We found that northern bobwhite and scaled quail exhibited a behavioral response to 

the presence of artificial surface-water sources in a semi-arid rangeland. These results 

were the most pronounced for scaled quail during the breeding season. Bobwhite 

behavioral responses were weaker, particularly within 350 m of water. These results 

indicated that placement of artificial surface-water sources in a semi-arid rangeland 

can influence quail behavioral patterns, at least in some years. Further, we found that 
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quail were selecting areas closer to water even when appropriate vegetation cover was 

available away from surface-water sources. This relationship indicates that there was 

a direct influence of surface water to the behavioral responses observed during our 

study beyond that which was driven by coarse scale vegetation cover and composition 

alone. 

Our nesting results indicate that nest-site selection may be influenced by the 

presence of artificial surface-water sources. However nest success was unaffected by 

the presence of these water sources. Previously, bobwhite have been shown to locate 

nests closer than expected to surface-water sources, though no difference in the 

distances between hatched and failed nests to water was observed (Hiller et al. 2009). 

Inhibition to reproduce and reproductive failure can occur when quail are exposed to 

water deprivation (Cain and Lien 1985, Guthery and Koerth 1992, Giuliano et al. 

1995), so there may be benefits in locating nests closer to surface-water sources 

during times of potential stress from water loss. However, drought occurred during 

the entirety of our study and yet there was no relationship between nest success and 

distance from water sources. Therefore, nesting quail were likely obtaining water 

from other sources such as food or dew (Guthery 1999). To our knowledge, there is 

no study relating nest site selection to the presence of surface-water sources for scaled 

quail. Unfortunately, the low sample size (n = 12) during our study did not allow us 

to compare interspecific differences in behavioral responses of bobwhite and scaled 

quail when choosing a nest site.  

The weak bobwhite behavioral response occurring closer to water sources was 

similar to results from other semi-arid regions of the bobwhite’s distribution in which 
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non-significant use occurred at distances < 250m (Dunkin et al. 2009). Although the 

𝛽 for breeding bobwhite did not indicate a significant effect towards surface-water 

sources, more than 50% of the birds in the sample had β estimates indicating a 

significant positive relationship with space use and distance to surface water. As 

discussed earlier, needs for water supplementation of bobwhite are typically not 

supported (Guthery 1999), though this may be influenced by preformed water sources 

already available in the environment (Hernández et al. 2007). Furthermore, bobwhite 

behavioral responses to surface-water sources may be related to bobwhite seeking 

thermal refugia at water sites (via guzzlers) or to increased food availability from 

better soil moisture conditions (Hiller et al. 2009). Although we do not rule out these 

possibilities, our results also indicate non-breeding season behavioral responses, in 

times when these alternative benefits (particularly thermal refugia) may not be 

occurring.  

Similar to bobwhite, scaled quail also exhibited behavioral responses to 

surface-water sources during the course of our study, though a non-significant 

relationship was observed at close distances (< 100 m) during the breeding season. 

Very little research exists exploring such responses of scaled quail to surface water, 

and those that do exist provide mixed conclusions (Campbell 1960, Schemnitz 1961). 

The physiological differences between scaled quail and bobwhite in relation to water 

requirements (Giuliano et al. 1998) could allow for the prediction that scaled quail 

responses to surface water should be weaker compared to bobwhite. Furthermore, 

because our study site is on the distribution limits of both species, adaptive behavioral 

responses to novel climate conditions could be expected (Sexton et al. 2009) in which 
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bobwhite may have stronger responses to surface water, though this was not 

supported by our breeding season data. Typical precipitation levels present within 

these species’ respective distributions vary drastically (Robinson 1956, Schemnitz 

1964, Giuliano et al. 1999), and scaled quail are considered to be more adapted to arid 

environments than bobwhite (Schemnitz 1964). However, response to and use of 

surface-water sources by desert Galliformes has been widely documented (Kam et al. 

1987, Delehanty et al. 2004, O’Brien et al. 2006, Larsen et al. 2007, Lynn et al. 

2008).  

We observed ambiguous relationships between site selection and areas within 

distances adjacent to water sources (i.e., 0-350 m), which resulted in neutral selection. 

A few factors could have contributed to these ambiguous results. Dunkin et al. (2009) 

indicates that mutually contradicting effects between a structure and the area it is 

located in may result in a neutral relationship closer to the structure. For instance, if a 

water source was indeed acting as an attractant, but was situated in a cover type that 

is avoided by quail, the net result may be a neutral relationship. Furthermore, this 

neutral relationship may be a result of a potential trade-off between resource use (and 

time allocated for using that resource) and predation risk (Brown 1999). However we 

were not able to directly test this hypothesis with our data.  

Water sources (such as guzzlers) could potentially increase quail survival by 

providing needed cover during critical weather events. Conversely, indirect negative 

effects, such as predation, could be more pronounced at artificial surface-water 

sources if water were limiting during times of drought by potentially creating predator 

sinks (Rosenstock et al. 1999, Hall et al. 2013). However, data generally suggest that 
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predation of varying wildlife species is not more pronounced at watering sites in 

semi-arid and arid regions (Krausman et al. 2006, Hall et al. 2013). Our results 

suggest there are no direct effects of surface water to quail survival. 

The density of available water sources on our study site was 236 ha · water 

source in 2012 and 314 ha · water source in 2013. Previous recommendations have 

suggested a density of 121 ha · water source (Hernández and Guthery 2012). Based 

on our CDFs, the presence of artificial surface-water sources affected quail movement 

up to ~700 m for bobwhite and ~650 m for scaled quail. Taking the maximum value 

of the two, an ideal distribution (from a quail behavioral standpoint) of artificial 

surface-water sources across our study site would result in ~1400 m between each 

surface water source. This would result in a density of 1 water source per 154 ha, 

which may already exist on many rangelands in which grazing of livestock occurs 

within the distribution of bobwhite and scaled quail.  

IMPLICATIONS 

We found that artificial surface-water sources affected quail behavior but not vital 

rates. We suggest that management efforts focused on increasing or sustaining quail 

populations through water supplementation on semi-arid rangelands are unfounded. 

Because bobwhite and scaled quail can often obtain sufficient water through 

arthropods and succulent vegetation (Campbell et al. 1973, Guthery 1999), managing 

conditions that increase vegetation cover and arthropod abundance may be more 

effective in conserving quail populations than providing artificial surface-water 

sources.  

ACKNOWLEDGEMENTS 



24 

 

Research was administered through the Oklahoma Cooperative Fish and Wildlife 

Research Unit with support from the Oklahoma Agricultural Experiment Station at 

Oklahoma State University. We thank W. R. Storer and C. E. Crisswell (ODWC); 

fellow graduate students J. P. Orange and J. M. Carroll; and all our technicians for 

their logistical help during our field research. We thank T. J. Hovick for input during 

the early stages of our research and K. Å. Andersson for technical assistance during 

data processing. Also, we are indebted to V. L. Winder for the wealth of information 

provided by her during the analytical process. Finally, we thank the associate editor 

and two anonymous reviewers whose input greatly improved our manuscript. 

Literature Cited 

Abelson, R. P. 1995. Statistics as Principled Argument. Lawrence Erlbaum 

Associates, Inc, Publishers, Hillsdale, NJ, USA. 40 p.  

Birch, L. C. 1953. Experimental background to the study of the distribution and 

abundance of insects: I.The influence of temperature, moisture and food on 

the innate capacity for increase of three grain beetles. Ecology 34:698-711. 

Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. 

Johnson, and M. D. Eilts. 1995. The Oklahoma Mesonet, a technical 

overview. Journal of Atmospheric and Oceanic Technology 12: 5-19. 

Brooke, J. M., D. C. Peters, A. M. Unger, E. P. Tanner, C. A. Harper, P. D. Keyser, J. 

D. Clark, and J. J. Morgan. Habitat manipulation influences northern 

bobwhite resource selection on a reclaimed surface mine. Journal of Wildlife 

Management: (in press). doi: 10.1002/jwmg.944 



25 

 

Brown, J. S. 1999. Vigilance, patch use and habitat selection: foraging under 

predation risk. Evolutionary Ecology Research 1:49-71. 

Burger, L. W., Jr., T. V. Dailey, E. W. Kurzejeski, and M. R. Ryan. 1995a. Survival 

and cause-specific mortality of northern bobwhite in Missouri. Journal of 

Wildlife Management 59:401-410. 

Burger, L. W., Jr., M. R. Ryan, T. V. Dailey, and E. W. Kurzejeski. 1995b. 

Reproductive strategies, success, and mating systems of northern bobwhite in 

Missouri. Journal of Wildlife Management 59:417-426. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and inference: a practical 

information-theoretic approach. Springer-Verlag, New York, New York, 

USA. 170 p. 

Cain, J. R., and R. J. Lien. 1985. A model for drought inhibition of bobwhite quail 

(Colinus virginianus) reproductive systems. Comparative Biochemistry and 

Physiology Part A: Physiology 82:925-930. 

Campbell, H. 1960. An evaluation of Gallinaceous guzzlers for quail in New Mexico. 

Journal of Wildlife Management 24:21-26. 

Campbell, H., D. K. Martin, P. E. Ferkovich, and B. K. Harris. 1973. Effects of 

hunting and some other environmental factors on scaled quail in New Mexico. 

Wildlife Monographs 34:3-49. 

Cook, B. I., T. R. Ault, and J. E. Smerdon. 2015. Unprecedented 21st century drought 

risk in the American Southwest and Central Plains. Science Advances 

1:e1400082. 



26 

 

Delehanty, D. J., S. S. Eaton, and T. G. Campbell. 2004. From the field: mountain 

quail fidelity to guzzlers in the Mojave Desert. Wildlife Society Bulletin 

32:588-593. 

Dennehy, K. F., D. W. Litke, and P. B. McMahon. 2002. The High Plains Aquifer, 

USA: groundwater development and sustainability. Geological Society, 

London, Special Publications 193:99-119. 

DeVos, T., and B. S. Mueller. 1993. Reproductive ecology of northern bobwhite in 

north Florida. Proceedings of the National Quail Symposium 3:83-90. 

Dunkin, S. W., F. S. Guthery, S. J. DeMaso, A. D. Peoples, and E. S. Parry. 2009. 

Influence of anthropogenic structures on northern bobwhite space use in 

western Oklahoma. Journal of Wildlife Management 73:253-259. 

ESRI 2011. ArcGIS Desktop: Release 10.2. Redlands, CA, USA: Environmental 

Systems Research Institute. 

Giuliano, W. M., R. S. Lutz, and R. Patiño. 1995. Physiological responses of northern 

bobwhite (Colinus virginianus) to chronic water deprivation. Physiological 

Zoology 68:262-276. 

Giuliano, W. M., R. Patiño, and R. S. Lutz. 1998. Comparative reproductive and 

physiological responses of northern bobwhite and scaled quail to water 

deprivation. Comparative Biochemistry and Physiology Part A: Molecular & 

Integrative Physiology 119:781-786. 

Giuliano, W. M., R. S. Lutz, and R. Patiño. 1999. Influence of rainfall on northern 

bobwhite and scaled quail abundance and breeding success. The Texas 

Journal of Science 51:231-240. 



27 

 

Glading, B. 1943. A self-filling quail watering device. California Fish and Game 

29:157-164. 

Grinnell, J. 1917. The niche-relationships of the California thrasher. The Auk 34:427-

433. 

Grinnell, J. 1927. A critical factor in the existence of southwestern game birds. 

Science 65:528-529. 

Guthery, F. S. 1999. The role of free water in bobwhite management. Wildlife 

Society Bulletin 27:538-542. 

Guthery, F. S. 2008. A primer on natural resource science. Texas A&M University 

Press, College Station, Texas, USA. 106 p. 

Guthery, F. S., and N. E. Koerth. 1992. Substandard water intake and inhibition of 

bobwhite reproduction during drought. Journal of Wildlife Management 

56:760-768. 

Guthery, F. S., and J. J. Lusk. 2004. Radiotelemetry studies: are we radio-

handicapping northern bobwhites? Wildlife Society Bulletin 32:194-201. 

Hall, L. K., R. T. Larsen, R. N. Knight, K. D. Bunnell, and B. R. McMillan. 2013. 

Water developments and canids in two North American deserts: a test of the 

indirect effect of water hypothesis. PLoS one 8:e67800. 

Hernández, F., R. M. Perez, and F. S. Guthery. 2007. Bobwhites in the South Texas 

Plains. Pages 273-296 in Texas quails: ecology and management (L. A. 

Brennan, Editor). Texas A&M University Press, College Stations, Texas, 

USA. 



28 

 

Hernández, F., and F. S. Guthery. 2012. Beef, brush, and bobwhites: quail 

management in cattle country. Texas A&M University Press, College Status, 

Texas, USA. 104 p. 

Hiller, T. L., A. B. Felix, and F. S Guthery. 2009. Association of northern bobwhites 

with surface water in the semi-arid Texas panhandle. The Wilson Journal of 

Ornithology 121:135-140. 

Horne, J. S., and E. O. Garton. 2006. Likelihood cross-validation versus least squares 

cross-validation for choosing the smoothing parameter in kernel home-range 

analysis. Journal of Wildlife Management 70:641-648. 

Janke, A. K., and R. J. Gates. 2013. Home range and habitat selection of northern 

bobwhite coveys in an agricultural landscape. Journal of Wildlife 

Management 77:405-413. 

Kam, M., A. A. Degen, and K. A. Nagy. 1987. Seasonal energy, water, and food 

consumption of Negev chukars and sand partridges. Ecology 68:1029-1037. 

Kerston, B. N., and J. M. Marzluff. 2010. Improving studies of resource selection by 

a greater understanding of resource use. Environmental Conservation 38:391-

396. 

Kopp, S. D., F. S. Guthery, N. D. Forrester, and W. E. Cohen. 1998. Habitat selection 

modeling for northern bobwhites on subtropical rangeland. Journal of Wildlife 

Management 62:884-895. 

Krausman, P. R., S. S. Rosenstock, and J. W. Cain III. 2006. Developed water for 

wildlife: science, perception, values, and controversy. Wildlife Society 

Bulletin 34:563-569. 



29 

 

Larsen, R. T., J. T. Flinders, D. L. Mitchell, E. R. Perkins, and D. G. Whiting. 2007. 

Chukar watering patterns and water site selection. Rangeland Ecology and 

Management 60:559-565. 

Lehman, V. S. 1984. Bobwhites in the Rio Grande Plain of Texas. Texas A&M 

University, College Station, Texas, USA. 87 p. 

Leopold, A. S. 1933. Game management. Charles Scribner’s Sons, New York, New 

York, USA. 481 pp. 

Lohr, M., B. M. Collins, C. K. Williams, and P. M. Castelli. 2011. Life on the edge: 

northern bobwhite ecology at the northern periphery of their range. Journal of 

Wildlife Management 75:52-60. 

Lynn, J. C., S. S. Rosenstock, and C. L. Chambers. 2008. Avian use of desert wildlife 

water developments as determined by remote videography. Western North 

American Naturalist 68:107-112. 

MacArthur, R. H. 1972. Geographical Ecology. New York: Harper and Row. 288 pp. 

Martin, J. A., W. E. Palmer, S. M. Juhan Jr., and J. P. Carroll. 2012. Wild turkey 

habitat use in frequently-burned pine savanna. Forest Ecology and 

Management 285:179-186. 

Marzluff, J. m., J. J. Millsapugh, P. Hurvitz, and M. S. Handcock. 2004. Relating 

resources to a probabilistic measure of space use: forest fragments and 

Stellar’s Jays. Ecology 85:1411-1427. 

McPherson, R. A., C. Fiebrich, K. C. Crawford, R. L. Elliott, J. R. Kilby, D. L. 

Grimsley, J. E. Martinez, J. B. Basara, B. G. Illston, D. A. Morris, K. A. 

Kloesel, S. J. Stadler, A. D. Melvin, A. J. Sutherland, and H. Shrivastava. 



30 

 

2007. Statewide monitoring of the mesoscale environment: a technical update 

on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic Technology 

24:301-321. 

Millspaugh, J. J., R. M. Nielson, L. McDonald, J. M. Marzluff, R. A. Gitzen, C. D. 

Rittenhouse, M. W. Hubbard, and S. L. Sheriff. 2006. Analysis of resource 

selection using utilization distributions. Journal of Wildlife Management 

70:384-395. 

Moore, G. W., D. A. Barre, and M. K. Owens. 2012. Does shrub removal increase 

groundwater recharge in southwestern Texas semiarid rangelands? Rangeland 

Ecology and Management 65:1-10. 

Neu, C. W., C. R. Byers, and J. M. Peek. 1974. A technique for analysis of 

utilization-availability data. Journal of Wildlife Management 38:541-545. 

O’Brien, C. S., R. B. Waddell, S. S. Rosenstock, and M. J. Rabe. 2006. Wildlife use 

of water catchments in southwestern Arizona. Wildlife Society Bulletin 

34:582-591. 

Peters, D. C., J. M. Brooke, E. P. Tanner, A. M. Unger, P. D. Keyser, C. A. Harper, J. 

D. Clark, and J. J. Morgan. 2015. Impact of experimental habitat manipulation 

on northern bobwhite survival. Journal of Wildlife Management 79:605-617. 

Pollock, K. H., C. T. Moore, W. R. Davidson, F. E. Kellogg, and G. L. Doster. 1989. 

Survival rates of bobwhite quail based on band recovery analyses. Journal of 

Wildlife Management 53:1-6. 

Prasad, N. L. N. S., and F. S. Guthery. 1986. Wildlife use of livestock water under 

short duration and contiguous grazing. Wildlife Society Bulletin 14:450-454. 



31 

 

Robinson, T. S. 1956. Climate and bobwhites in Kasas: 1955. Transactions of the 

Kansas Academy of Science 59:206-212. 

Rosenberg, N.J, Epstein, D.J., Wang, D., Vail, L., Srinivasan, R., Arnold, J.G., 1999. 

Possible impacts of global warming on the hydrology of the Ogallala Aquifer 

region. Climatic Change 42, 677-692. 

Rosenstock, S. S., W. B. Ballard, and J. C. Devos, Jr. 1999. Viewpoint: benefits and 

impacts of wildlife water developments. Journal of Range Management 

42:302-311. 

Schemnitz, S. D. 1961. Ecology of the scaled quail in the Oklahoma panhandle. 

Wildlife Monographs 8:3-47. 

Schemnitz, S. D. 1964. Comparative ecology of bobwhite and scaled quail in the 

Oklahoma panhandle. American Midland Naturalist 71:429-433. 

Seaman, D. E., J. J. Millspaugh, B. J. Kernohan, and G. C. Brundige. 1999. Effects of 

sample size on kernel home range estimates.  Journal of Wildlife Management 

63:739-747. 

Sexton, J. P., P. J. McIntyre, A. L. Angert, and K. J. Rice. 2009. Evolution and 

ecology of species range limits. Annual Review of Ecology, Evolution, and 

Systematics 40:415-436. 

Stoddard, H. L. 1931. The bobwhite quail: its habits, preservation and increase. 

Charles Scribner’s Sons, New York, New York, USA. 442-444 p. 

Taylor, J. S., K. E. Church, D. H. Rusch, and J. R. Cary. 1999. Macrohabitat effects 

on summer survival, movements, and clutch success of northern bobwhite in 

Kansas. Journal of Wildlife Management 63:675-685. 



32 

 

Vorhies, C. T. 1928. Do southwestern quail require water? American Naturalist 

62:446-452. 

Wackerly, D. D., W. Mendenhall, and R. L. Scheaffer. 2002. Mathematical Statistics 

with Applications. 6th ed. Thomson Learning Inc, Pacific Grove, California, 

USA. 154-155 p. 

White, G. C., and R. A. Garrot. 1990. Analysis of wildlife radio-tracking data. 

Academic Press, Inc, San Diego, California, USA. 42 p. 

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from 

populations of marked animals. Bird Study 46 (suppl):S120-S139. 

Winder, V. L., L. B. McNew, A. J. Gregory, L. M. Hunt, S. M. Wisely, and B. K. 

Sandercock. 2013. Space use by female greater prairie-chickens in response to 

wind energy development. Ecosphere 5:art3. 1-17. 

Worton, B. J. 1989. Kernel methods for estimating the utilization distribution in 

home-range studies. Ecology 70:164-168.  



33 

 

Table 1. Comparison of vegetation cover within northern bobwhite selection zones around used (breeding season n = 34; non-breeding 

season n = 24) and unused (breeding season n = 14; non-breeding season n = 12) artificial surface-water sources from 1 April 2012–31 

March 2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. Bold denotes significant differences (α = 

0.05). 

Cover Class 

Breeding season Non-breeding season 

Used Unused     Used Unused     

Mean SE Mean SE Z P Mean SE Mean SE Z P 

Riparian 

grassland 
0.02 0.01 0.06 0.02 1.91 0.06 0.03 0.05 0.06 0.08 0.69 0.49 

Bare Ground 0.01 < 0.01 0.01 < 0.01 0.28 0.78 0.01 0.01 0.01 0.01 -0.82 0.41 

Exposed 

soil/sparse 

vegetation 

0.01 < 0.01 0.02 0.01 -0.42 0.67 0.01 0.02 0.01 0.01 -1.02 0.31 

Mixed shrub 0.11 0.02 0.06 0.02 -2.01 0.04 0.11 0.09 0.08 0.12 -1.8 0.07 

Salt cedar 0.02 0.01 0.03 0.01 0.86 0.39 0.03 0.04 0.02 0.04 0.16 0.87 

Sand sagebrush 0.49 0.02 0.41 0.03 -1.62 0.10 0.50 0.15 0.40 0.09 -2.03 0.04 

Mixed grass 0.18 0.01 0.23 0.02 1.76 0.08 0.18 0.08 0.24 0.09 1.86 0.06 

Shortgrass/yucca 0.14 0.02 0.17 0.04 0.71 0.47 0.13 0.11 0.18 0.11 1.63 0.10 
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Table 2. Comparison of vegetation cover within scaled quail selection zones around used (breeding season n = 13; non-breeding 

season n = 7) and unused (breeding season n = 35; non-breeding season n = 29) artificial surface-water sources from 1 April 2012–31 

March 2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. Bold denotes significant differences (α = 

0.05). 
 

Cover Class 

Breeding season Non-breeding season 

Used Unused     Used Unused     

Mean SE Mean SE Z P Mean SE Mean SE Z P 

Riparian 

grassland 
0.01 0.01 0.04 0.01 -2.39 0.02 0.02 0.02 0.03 0.01 -1.00 0.32 

Bare Ground 0.01 < 0.01 0.01 < 0.01 -0.97 0.33 0.01 < 0.01 0.02 < 0.01 -0.20 0.84 

Exposed 

soil/sparse 

vegetation 

0.02 0.01 0.01 <0.01 0.63 0.53 0.01 < 0.01 0.03 0.01 -0.64 0.52 

Mixed shrub 0.08 0.03 0.10 0.02 -1.00 0.32 0.12 0.05 0.09 0.02 0.84 0.40 

Salt cedar < 0.01 < 0.01 0.03 0.01 -2.63 < 0.01 < 0.01 < 0.01 0.02 0.01 -0.91 0.36 

Sand sagebrush 0.53 0.04 0.44 0.02 2.00 < 0.05 0.54 0.06 0.40 0.03 1.88 0.06 

Mixed grass 0.22 0.03 0.19 0.01 0.91 0.37 0.18 0.04 0.21 0.02 -0.68 0.50 

Shortgrass/yucca 0.13 0.03 0.16 0.02 -0.95 0.34 0.11 0.05 0.19 0.03 -1.48 0.14 
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Table 3. Total cover and use of preferred vegetation types1 by scaled quail and northern bobwhite during the breeding season (1 April–

30 September) from 2012-2013 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA.  

    Scaled quail Northern bobwhite 

    2012 2013 2012 2013 

Vegetation type 
Total cover 

(%) 
Use CI Use CI Use CI Use CI 

Sand sagebrush 36 0.43 0.38 to 0.48 0.42 0.38 to 0.45 0.54 0.52 to 0.57 0.52 0.49 to 0.54 

Mixed shrub 8 —2 —2 —2 —2 0.29 0.27 to 0.32 0.28 0.26 to 0.31 

Salt cedar 2 —2 —2 —2 —2 —2 —2 0.03 0.02 to 0.04 

Mixed grass 18 0.25 0.21 to 0.29 0.22 0.19 to 0.25 —2 —2 —2 —2 

1Selection determined by analysis described by Neu et al. (1974). 
2Dashes indicate the vegetation type was not preferred during a particular year or for a particular species. 
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Table 4. Total cover and use of preferred vegetation types1 by scaled quail and northern bobwhite during the non-breeding season (1 

October–31 March) from 2012-2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. 

    Scaled quail Northern bobwhite 

    2012-2013 2013-2014 2012-2013 2013-2014 

Vegetation type 
Total cover 

(%) 
Use CI Use CI Use CI Use CI 

Sand sagebrush 36 0.47 0.43 to 0.52 0.45 0.41 to 0.48 0.47 0.45 to 0.50 0.52 0.50 to 0.54 

Mixed shrub 8 —2 —2 —2 —2 0.36 0.33 to 0.38 0.31 0.29 to 0.33 

Salt cedar 2 —2 —2 —2 —2 0.03 0.02 to 0.04 —2 —2 

 1Selection determined by analysis described by Neu et al. (1974). 
2Dashes indicate the vegetation type was not preferred during a particular year or for a particular species.
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Table 5. Total hectares and proportion of preferred vegetation type (cover1) compared to 

proportion of the total study area and proportion of northern bobwhite locations within and 

outside the zone of selection surrounding artificial surface-water sources from 1 April 2012–31 

March 2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. 

 

  Breeding season Non-breeding season 

  

Available 

cover 

(ha) 

% 

Cover 

Total 

area 

(%) 

Locations 

(%) 

Available 

cover 

(ha) 

% 

Cover 

Total 

area 

(%) 

Locations 

(%) 

Within 

selection 

buffer 

3 372 48 49 62 2 335 33 34 56 

Outside 

selection 

buffer 

3 643 52 51 38 4 680 67 66 44 

Total 7 015 100 100 100 7 015 100 100 100 
 1Cover is the total percent cover of selected vegetation types which were determined by methods 

described by Neu et al. (1974). Selected vegetation types by northern bobwhite during the 

breeding and non-breeding seasons were sand sagebrush, mixed shrub, and salt cedar. 
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Table 6. Total hectares and proportion of preferred vegetation type (cover1) compared to 

proportion of the total study area and proportion of scaled quail locations2 within and outside the 

zone of selection surrounding artificial surface-water sources from 1 April 2012–31 March 2014 

at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. 

 

  Breeding season Non-breeding season 

  

Available 

cover 

(ha) 

% 

Cover 

Total 

area 

(%) 

Locations 

(%) 

Available 

cover 

(ha) 

Percent 

Cover 

(%) 

Total 

area 

(%) 

Locations 

(%) 

Within 

selection 

buffer 

3 272 47 44 65 296 6 6 9 

Outside 

selection 

buffer 

3 713 53 56 35 4 750 94 94 91 

Total 6 985 100 100 100 5 046 100 100 100 
 1Percent cover is the total percent cover of vegetation types being selected for which were 

determined by methods described by Neu et al. (1974). Selected vegetation types by scaled quail 

during the breeding season were sand sagebrush and mixed grass and was sand sagebrush during 

the non-breeding season. 
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Table 7. Mean standardized resource utilization function coefficients (𝛽)1 and percentage of 

birds with positive (+), negative (˗), or non-significant (ns) β values2 indicating the relationship 

of space use to distance from artificial surface-water sources (m). Data is provided for northern 

bobwhite and scaled quail during breeding and non-breeding seasons 1 April 2012–31 March 

2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA.  

Sample Set n  β 95% CI1 + ˗ ns P-value3 

Bobwhite 

breeding 

season 

80 0.01 ˗0.04 to 0.06 39 51 10 0.63 

Bobwhite 

non-breeding 

season 

25 ˗0.06 ˗0.064 to ˗0.063 16 44 40 < 0.001 

Scaled quail 

breeding 

season 

10 ˗0.31 ˗0.44 to ˗0.17 0 80 20 < 0.01 

1Confidence intervals were estimated based on conservative standard errors that include inter-

animal variation (Marzluff et al. 2004). 

2The resource variable being tested is a distance based variable. As such, a negative β value 

indicates an increase in space use as an individual gets closer to an artificial water source. 

3The P-value indicates a test against a null hypothesis of  𝛽 = 0 as described by Marzluff et al. 

(2004; α = 0.05).
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Table 8. Ranking of a priori models based on ΔAICc values used to assess the influence of group 

metrics and surface water source variables on northern bobwhite survival from 1 April 2012–31 

March 2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA.  

Model AICc Δ AICc 
AICc 

Weights 

Model 

Likelihood 

No. 

Parameters. 
Deviance 

Null 17.8 0.0 0.19 1.00 1 15.8 

Water in home range 18.1 0.3 0.16 0.85 2 14.1 

Home range size (ha) 18.2 0.4 0.16 0.84 2 14.2 

Sex 18.6 0.8 0.13 0.70 2 14.5 

Season 18.8 1.0 0.12 0.61 2 14.8 

Age 19.1 1.3 0.10 0.53 2 15.1 

RUF β 19.8 2.0 0.07 0.38 2 15.8 

No. locations by water 19.8 2.0 0.07 0.37 2 15.8 

Time 64.7 46.9 0.00 0.00 26 11.3 
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Table 9. Ranking of a priori models based on ΔAICc values used to assess the influence of group 

metrics and surface water source variables on scaled quail survival from 1 April 2012–31 March 

2014 at Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. 

Model AICc ΔAICc 
AICc 

Weight 

Model 

Likelihood 

No. 

Parameters 
Deviance 

Home range size (ha) 29.8 0.0 0.67 1.00 2 25.3 

Season 33.9 4.1 0.07 0.13 2 29.4 

Null 34.0 4.2 0.08 0.12 1 31.9 

No. locations by water 34.2 4.4 0.07 0.11 2 29.8 

Sex 35.7 5.9 0.03 0.05 2 31.2 

Water in home range 35.9 6.1 0.03 0.05 2 31.4 

Age 36.3 6.5 0.03 0.04 2 31.8 

Time 73.0 43.2 0.00 0.00 26 13.9 
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Table 10. Distance (m) of pooled northern bobwhite and scaled quail nests to artificial surface-

water sources and random locations from 1 April 2012–31 March 2014 at Beaver River Wildlife 

Management Area, Beaver County, Oklahoma, USA.  
 

  

  
Distance to water 

sources (m) 

Distance to  

random locations 

(m)   

Sample n x SE x SE P-value1 

Nests 
     

 Successful 31 755.0 66.0 969.3 52.9 0.01 

Failed 30 821.8 112.7 1 002.3 69.9 0.18 

Total 61 787.9 64.4 985.6 43.3 0.01 
1Bold p-values denote significant differences between distances from nests to water sources 

compared to distance from nests to random locations (α = 0.05). 
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Figure 1. Average selection-avoidance-neutral trends (solid lines) with 95% confidence limits 

(dashed lines) of scaled quail and northern bobwhite based on distance from artificial surface-

water sources (m) from 1 April 2012–31 March 2014, Beaver River Wildlife Management Area, 

Beaver County, Oklahoma, USA. A, Scaled quail breeding season. B, Scaled quail non-breeding 

season. C, Northern bobwhite breeding season. D, Northern bobwhite non-breeding season. 
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CHAPTER II 

 

 

USE OF SPECIES’ ABUNDANCE DATA IN INTERPRETATIONS OF CLIMATE-BASED 

ENSEMBLE FORECASTING OF SPECIES’ DISTRIBUTIONAL SHIFTS 

ABSTRACT Ecological niche models (ENMs) have increasingly been used to estimate the 

potential effects of climate change on species’ distributions worldwide. Recently, predictions of 

population demographic variables and species abundance have also been obtained with such 

models. However, knowledge of specific environmental variables directly affecting species 

abundance, as well as abundance data itself, is often lacking. We used a widely studied guild 

(temperate North American quail) and the Maxent modeling algorithm to compare model 

performance obtained with three variable selection approaches: correlation/variable contribution 

(CVC), biological (i.e., variables known to affect species abundance), and random. To estimate 

species’ distributional shifts we generated ensemble forecasts using four global circulation 

models, four greenhouse gas emission scenarios, and two time periods (2050 and 2070). The 

CVC variable selection approach outperformed our biological approach for four of the six 

species. Model projections of all species indicated shifts in future distributions, with three 

species having an overall loss in projected suitable distribution (-3.43% to -61.12%) and three 

species having an overall gain in projected suitable distribution (1.04% to 50.39%). Our models 

projected loss of area for the northern bobwhite (Colinus virginianus) in the southern and 

western portion of the distribution, which are stronghold areas of high abundance. Similarly, 

scaled quail (Callipepla squamata) were predicted to lose areas of high abundance within their 

current distribution. Conversely, California quail (Callipepla californica) and mountain quail 

(Oreortyx pictus) were projected to retain population strongholds while still losing significant 

area of their distributions. Our results suggest mixed effects of climate change on future 
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distributions of temperate North American quail. Finally, special attention should be given to 

selecting variables for ENMs, and tests of model performance should be used to validate the 

choice of variables.  

INTRODUCTION 

Global climate change may drastically influence species populations worldwide and may have 

increased negative effects on species that are not able to adapt to changes in climate or to 

disperse to suitable conditions elsewhere (Walther et al., 2002; Thomas et al., 2004; Guisan, 

2014). Climatic conditions are important in determining an organism’s geographic distribution 

because of specific eco-physiological constraints (Grinnell, 1917; Veneir et al., 1999; Thomas et 

al., 2004; Monahan and Hijmans, 2008). Climate change has already caused shifts in the 

distribution of many species (Johnson, 1994; Thomas and Lennon, 1999; Parmesan, 2006), and 

is estimated to continue affecting distributions in the future (Lawler et al., 2009; Thomas, 2010). 

Ecological niche models (ENMs) can be useful in predicting changes in a species’ distribution 

(Austin and Van Niel, 2010), though such techniques often rely on the availability of a sufficient 

amount of occurrence and/or abundance data representative of the species’ distribution (Elith and 

Leathwick, 2009). This potential limitation has led to a large number of studies focused on avian 

species (Jiménez-Valverde et al., 2011; Sohl, 2014) because of the plethora of occurrence data 

publicly accessible through government monitoring programs (Breeding Bird Survey [BBS]; 

Pardieck et al., 2014), as well as citizen science programs (eBird; Sullivan et al., 2009).  

Though initially ENMs were focused on studying the biogeography of species, more 

recently research has focused on utilizing such models to help relate probability of occurrence to 

intrinsic growth rates (Thuiller et al., 2014), population size (Legault et al., 2013), population 

density (Oliver et al., 2012), reproductive parameters (Brambilla and Ficetola, 2012), and species 
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abundance (Vanderwal et al., 2009b; Van Couwenberge et al., 2013; Howard et al., 2014). 

Combined with population demographic information, these analyses can be used to more 

accurately target areas of conservation concern (Vanderwal et al., 2009b) by identifying potential 

“species’ strongholds”. However, an important assumption made about environmental variables 

incorporated in ENMs is that they are biologically meaningful to the species of interest, and the 

selection of these variables can greatly affect the performance and resulting ENMs (Peterson and 

Nakazawa, 2008; Rödder and Lötters, 2009). When incorporating population demographic 

information to ENMs, inclusion of biologically meaningful variables that directly relate to 

demographic rates and exclusion of “relaxed” variables (Rödder and Lötters, 2009), or variables 

that have little importance on such rates, should be taken into consideration (Rödder and Lötters, 

2010). Despite this concern, ecological niche modeling studies often use all 19 bioclimatic 

variables that are freely available (www.worldclim.org) and correlation/variable contribution 

filtering to dictate the modeling parameters (Dormann et al., 2013). 

Here, we investigate model performance differences under three variable selection 

methods and present an analysis of potential climate induced shifts in the distributions of the 

temperate North American quail species (California quail [Callipepla californica], Gambel’s 

quail [Callipepla gambelii], scaled quail [Callipepla squamata], northern bobwhite [Colinus 

virginianus], Montezuma quail [Cyrtonyx montezumae], and mountain quail [Oreotyx pictus]). 

These species are of conservation concern as they have experienced distribution-wide declines in 

recent decades (Oberholser 1974; Sauer et al., 2014), which may be exacerbated in future 

climates because of their low dispersal abilities (Li et al., 2010). Furthermore, many of these 

species are designated as umbrella species (Caro, 2003) for biodiversity conservation and have 

been shown to be positive indicators for the occurrence of other avian species of conservation 
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concern (Crosby et al., 2015). Thus understanding potential climate induced shifts in the 

distributions of these species may have conservation implications beyond temperate North 

American quail. Finally, these species offer an opportunity to relate abundance data to ENMs 

because extensive knowledge exists on what abiotic variables drive annual abundance and 

reproduction of most of these species (Table 1). Our objectives were to: 1) test whether ENMs 

performance improved with using only variables known to directly affect species’ abundance, 

compared to performance of models based on other variable selection approaches and 2) analyze 

species abundance data in relation to future distribution shift estimates to identify potential 

critical areas of loss in environmental suitability. 

METHODS 

Species Occurrence Data 

We collated species occurrence data from the BBS (Pardieck et al., 2014) and eBird (Sullivan et 

al., 2009) databases, similar to other ENMs studies (Hochachka et al., 2012; Hurlbert and Liang, 

2012; Sohl, 2014). The BBS is a multi-national bird survey program that has been used to 

monitor breeding bird population trends in North America since 1966 (Robbins et al., 1986; Link 

and Sauer, 1998). Its design includes using thousands of observers annually to conduct point 

count surveys along repeated transects located on roadways throughout much of North America 

(Robbins et al., 1986). Raw data and trend estimates are made publicly available through the 

BBS website (https://www.pwrc.usgs.gov/bbs/). A more detailed description of the BBS protocol 

and analysis techniques are provided by Robbins et al. (1986) and Peterjohn (1994). The eBird 

database is a citizen science program established to archive and share bird observations 

submitted by the public (Sullivan et al., 2009). Currently, this is considered the largest ecology 

based citizen science project (Hochachka et al., 2012). Inclusion of eBird records in our 
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occurrence dataset allowed us to consider geographic areas outside the current sampling range of 

the BBS survey (i.e., Mexico) in which some of our target species occur. The range of dates for 

occurrence data from the BBS and eBird was 1966-2000 and 1950-2000, respectively, which 

temporally matched the range in dates for the environmental variables included in the modeling 

framework discussed below. We note that eBird observations were more abundant in recent 

decades as opposed to the earlier decades during our study period, however this database was 

useful in obtaining occurrence information through the entire temporal range that coincided with 

our environmental data. 

 Because the species we examined are non-migratory game species, the overall number of 

occurrence points was much greater than typical sample sizes recommended for ENMs (Wisz et 

al., 2008). Oversampling and clustering of occurrence data can often lead to overfitting issues in 

a presence-only modeling framework (Elith et al., 2011; Boria et al., 2014). This relates to 

models fitting tightly to calibration data, which in turn will limit the ability of the model to 

predict independent evaluation data (Boria et al., 2014). Spatially rarefying occurrence data in 

such situations has been shown to improve models by limiting the possibility of over-fitting 

predictive models (Kramer-Schadt et al., 2013; Boria et al., 2014). Previous studies vary in the 

spatial rarefication buffer used (10-20km), with justification for these buffer distances based on 

ecology of the study species (Kramer-Schadt et al., 2013), spatial heterogeneity of vegetation 

(Boria et al., 2014), or the clustering nature and abundance of data points from a database (Sohl, 

2014). Similar to Sohl (2014), we chose a 20 km buffer around points for all six species we 

examined, a distance within their dispersal range (Campbell and Harris, 1965; Savage, 1974; 

Lehman, 1984; Pope, 2002). To spatially rarefy occurrence data, we used the Spatially Rarefy 

Occurrence Data tool in the SDM Toolbox (v1.1b; Brown, 2014) for ArcGIS 10.2.1 (ESRI, 
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Redland, California, USA). Further elimination of points included the removal of occurrence 

points that represented “introduced” or “stocked” populations, as we were only interested in 

modeling the distribution of native populations. To eliminate these types of entries, we removed 

any occurrences outside the known historic distribution of the species and any entries in which 

observers noted “stocked” or “introduced” individuals in the comments section. We also verified 

that locations were within the species’ historic distribution by validating our data with range 

maps downloaded from NatureServe (NatureServe 2015). Finally, as outlined by Sohl (2014), 

eBird includes different observation protocols that may influence the interpretation of occurrence 

type. The “exhaustive area counts” protocol can represent single occurrence coordinates for large 

areas covered by the observer and may not reflect occurrence at a scale relevant to ecological 

modeling. Likewise, the “traveling count” protocol represents a single occurrence coordinate for 

a large distance traveled. To account for these potential biases, we eliminated traveling count 

observations in which the observer traveled >2 km (Fink et al., 2010; Sohl, 2014) and exhaustive 

area counts in which the observer covered an area >100 ha (Sohl, 2014). 

Initial sample sizes and spatially rarefied sample sizes varied across species. Initial 

sample sizes ranged from 382 (Montezuma quail) to >38,000 (bobwhite) occurrence locations. 

After spatially rarifying our data, sample sizes were reduced to: 31, 216, 268, 317, 552, and 

2,013 for Montezuma quail, mountain quail, Gambel’s quail, scaled quail, California quail, and 

bobwhite, respectively.  

Climate Data 

We obtained baseline (1950-2000) climate data at a spatial resolution of five arc minutes (~9 km) 

from the WorldClim database (Hijmans et al., 2005).  We created three unique suites of 

environmental layers to run three separate models. We used this approach so that we could 
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directly test whether or not a model utilizing environmental variables known to directly affect 

local abundance performed better than other approaches. The three model suites used were: 

biological (use of variables known to directly affect local abundance), correlation/variable 

contribution (CVC; i.e., variable reduction through correlation analysis [Dormann et al. 2013] 

and variable contribution to model accuracy gain), and random (i.e., a selection of random 

bioclimatic variables equal to the number of variables contained in each biological model). To 

create the CVC suite, we initially selected 19 bioclimatic variables and eliminated highly 

correlated variables (|r2|>0.7; Dormann et al. 2013), as well as variables contributing <1% to 

model accuracy gain (Brambilla and Ficetola, 2012).  For the random model suite, we used 

randomly selected variables from the list of the 19 bioclimatic variables. The number of 

randomly selected variables was equal to the number of variables used in our biological model. 

For the biological model, we limited our variable selection to eight climate variables based on 

previous knowledge of these species’ ecological responses to environmental trends (Table 1). 

These eight variables included: maximum temperature of the warmest month (°C; Bio5), mean 

annual temperature (°C; Bio1), average maximum temperature for June, July, and August (°C), 

average annual rainfall (mm; Bio12),cumulative rainfall for winter (mm; December, January, and 

February), cumulative rainfall for spring (mm; March, April, and May), cumulative rainfall for 

summer (mm; June, July, and August), and cumulative rainfall for fall (mm; September, October, 

November). Average maximum summer temperature and cumulative seasonal rainfall variables 

were calculated using the monthly average environmental data available through WorldClim. For 

the biological suite, we estimated a Pearson’s correlation coefficient for all combinations of 

variables and used the threshold of |r2|>0.7 to eliminate highly correlated variables (Dormann et 

al., 2013). We also eliminated variables that had <1% contribution to accuracy gain of 
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preliminary models that we ran for the six species (Brambilla and Ficetola, 2012). These three 

approaches left us with a specific set of variables for each species of interest.  

 For future projections of the models, we used the best performing variable suite 

(discussed in the next section) as our baseline model for estimating future distributions. Climate 

data (the same variables) for future projections was also obtained from the WorldClim database 

at a spatial resolution of five arc minutes, similar to the baseline data. To account for variation in 

global circulation models (GCMs) on which the future climate datasets are based, we used an 

ensemble forecasting procedure to estimate future distribution shifts (Araújo and New, 2007). To 

capture variability across GCMs, we randomly selected four (Domisch et al., 2013) and used 

data at four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5), or scenarios of 

greenhouse gas emissions, across two time periods (2050 [average for 2041-2060] and 2070 

[average for 2061-2080]) in which data were available. The four random GCMs selected were 

the CCSM4, GISS-E2-R, HadGEM2-ES, and the MRI-CGCM3, all included in the 5th 

Assessment IPCC report (AR5; IPCC, 2014). In sum, for each species we obtained 32 models 

and corresponding future projections (4 GCMs X 4 emission scenarios X 2 time periods).  

 Previous research has emphasized the importance of training ENMs only based on 

environmental data existing within the known spatial distribution of a study species (Soberón 

and Peterson, 2005, Elith et al. 2010). We therefore trained our models with environmental data 

that were clipped to the spatial extent of the species’ potential study extent. We restricted the 

study extent to a 500km buffer around “contemporary” locations (Sohl, 2014). Sohl (2014) 

described contemporary locations as species occurrence points from the year 2001. As our most 

recent occurrence data was in 2000, we considered these locations to be our contemporary points 

which were used in creating the species’ study extent. In a similar study, a 200km buffer was 
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shown to be too restrictive for many species and their projected future distributions (VanDerWal 

et al., 2009a), thus Sohl (2014) suggested a 500km buffer to encompass potentially large shifts in 

projected occurrence data. Therefore, we used this buffered range as our study extent for 

selecting background points and projecting future species’ distributions. This buffer ensured that 

no occurrence points were located outside of our study extent for each species. Study extents 

after this procedure were: 1.80x1012 ha, 2.39x1012 ha, 2.63x1012 ha, 3.29x1012 ha, 3.43x1012 ha, 

and 7.43x1012 ha for mountain quail, Montezuma quail, Gambel’s quail, scaled quail, California 

quail, and northern bobwhite, respectively. We projected all of our data into the North American 

Albers Equal Area Conic projection (Snyder, 1987; Elith et al., 2011) as our study extents 

covered a large range in latitude (>200 km) based on our criteria (Elith et al. 2011). Once we 

identified the best performing model suite (out of three possible, CVC, biological, and random; 

see above) for each species, we projected it on future climate data from the GCMs across the 

entirety of North America. 

Maximum Entropy Modeling 

Incorporating species occurrence data and climate variables, we estimated quail distributions 

with the Maximum Entropy algorithm Maxent, version 3.3.3k (Phillips and Dudik, 2008). We 

chose not to include relative species’ abundance models as an environmental variable in our 

niche modeling process as these data were not available across the entire area of our species’ 

study extents. The Maxent algorithm is considered similar to Poisson regression (Renner and 

Warton, 2013) and is used for generating ENMs with presence-only data (Elith et al., 2006) and 

environmental variables. Maxent has been shown to have higher predictive power than many 

other modeling techniques (Wisz et al., 2008; Elith et al., 2011) by minimizing the entropy 



 

53 

 

between the probability densities of presence data and “background” data (locations without 

presence information).  

 The remaining analysis parameters for our distribution modeling were set to Maxent 

default options (Phillips and Dudik, 2008). This included the use of 10,000 background points, 

which has been shown to perform similarly when compared to models using all potential 

background points (Phillips and Dudik, 2008). We used a regularization multiplier of 1, 

performed 500 iterations per model, and used a convergence threshold of 0.00001 for each 

model. To test the validity of our models, we held-out 25% of our presence data for testing 

through random selection and used 75% for training each species model (Bahn and McGill, 

2012; Sahlean et al., 2014; Sohl, 2014). We replicated our baseline model 100 times using the 

bootstrap method. For each species we used 10 percentile training presence as the threshold 

method to convert the continuous occurrence probability estimates into binary, presence-absence, 

occurrence maps. This threshold rule has been shown to outperform other threshold rules in 

Maxent modeling (Liu et al., 2013). This threshold rule resulted in the use of average logistic 

thresholds of 0.223, 0.288, 0.304, 0.343, 0.374, and 0.374 for Montezuma quail, Gambel’s quail, 

California quail, mountain quail, northern bobwhite, and scaled quail, respectively. Thus, any 

cells with logistic values below these individual threshold values were categorized as unsuitable. 

Finally, we projected Maxent models onto the future climate change scenarios described above.  

To evaluate and compare the performance of our three model suites, we used test 

occurrence data and the binary occurrence maps to calculate omission error, averaged across the 

100 replicates for each suite and standardized by mean area predicted present (Wilson et al. 

2013), as well as the average Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC), a threshold independent method of evaluating models (Fielding and Bell 
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1997). Since test omission errors are sensitive to the amount of area predicted suitable (Anderson 

et al. 2003), we further assessed the performance of our model suites using the standardized 

omission error. This is calculated by estimating test omission for each model replicate based on a 

binary suitability map that has the same percent area of suitability, which was set at the mean 

percentage of suitable area predicted across all model replications for each species (Wilson et al. 

2013). This standardized test omission error thus allows for direct comparison of performance 

between models. The mean percentages of suitable area predicted for each species across 

replications and model suites were: 21.72%, 22.56%, 23.74%, 29.05%, 30.33%, and 55.76% for 

mountain quail, Montezuma quail, California quail, Gambel’s quail, scaled quail, and northern 

bobwhite, respectively. For the threshold-independent method of model evaluation (ROC), the 

AUC value can range from 0-1 and indicates the probability of a presence point having a higher 

AUC value than a random background point. This means that a value of 1 indicates a completely 

accurate prediction, whereas a value of 0.5 indicates no difference in the presence and the 

background point, and values <0.5 indicate predictions that perform worse than a random model 

(Phillips et al., 2006). The AUC value has been scrutinized for being a poor predictor of model 

performance (Lobo et al. 2007; Peterson et al. 2008), thus conclusions based solely on ROC 

AUC are not recommended. 

The importance of the environmental variables to building ENMs was assessed using two 

methods. First, we calculated in Maxent the average percent contribution of each environmental 

variable to individual species’ models. Second, we analyzed the partial plot response curves 

(Torres et al., 2010) that indicated the relationship between a single environmental variable and 

the probability of suitability when all other variables are kept at their average sample value 

(Phillips et al., 2006). Because we were interested in the variability of partial plot response 
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curves between model replications, we assessed the average partial plot response curves along 

with their standard deviation (Anadón et al., 2015). 

Post-modeling Analysis  

To estimate species’ potential distribution shifts in future climatic conditions, we used the Raster 

Calculator tool in ArcGIS 10.2 to compare differences in binary occurrence probabilities of 

current and future distributions. An ensemble suitability range for current distributions was 

assigned where all 32 model runs agreed on a binary presence for each species. We then created 

ensemble future distribution projections across both time periods, at three levels of projection 

agreement: 75%, 90%, and 100%. We used binary outputs to create our ensemble forecasts as to 

avoid uncertainty in the appropriateness of averaging different Maxent logistic values across 

models. We included three levels of agreement to capture variability between climate scenarios 

that may have altered degree of agreement. Based on these ensemble forecasts, we categorized 

distribution conditions that raster cells could be classified into 8 conditions (Table 2). We used 

these distributional conditions to estimate the overall percent gain or loss for future distributions 

relative to the current estimated distribution.  

Finally, we accessed relative abundance data for all species except the Montezuma quail, 

which were not available (Sauer et al., 2014). For each of the other five species abundance was 

estimated from BBS data for 2008-2012. These relative abundance values generally predict the 

average number of individuals for a specific species that can be seen along roadsides in ~2.5 

hours (Sauer et al., 2014). We conducted a one-way ANOVA of relative abundance among areas 

of current suitability to areas that are estimated to contract in future climate scenarios using 

PROC GLM in SAS 9.4 (Statistical Analysis System Institute Inc, Cary, North Carolina, USA) 
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and compared statistical significance between our distribution conditions using the Tukey-

Kramer test for unequal samples across 75%, 90%, and 100% ensemble forecasts.  

RESULTS 

Model Performance 

Based on standardized test omission errors, the CVC variable selection approach 

significantly outperformed the biological variable selection approach for all species except 

Gambel’s quail and Montezuma quail (Fig. 1). For Gambel’s quail, the biologically relevant 

variable suite significantly outperformed the CVC approach. There was no significant difference 

between these two variable suites when analyzing Montezuma quail data. Models for all species 

and all variable suites besides the random variable suite for bobwhite performed reasonably well 

(Swets, 1988), with all test AUCs averaging within 0.72 to 0.91 (Fig. 1). The random variable 

suite for bobwhite had a test AUC value of 0.67. Test omission rates at the 10% training 

omission threshold also indicated that our models performed well, with average rates ranging 

from 0.11 to 0.18 (Fig. 1). Based on the standardized test omission error values, we used the 

CVC variable suite for California quail, scaled quail, mountain quail, and bobwhite ENMs. We 

used the biological variable suite to create ENMs for the Gambel’s and Montezuma quail. 

Average variable contributions to model accuracy gain (averaged across 100 replicates 

per species) are indicated in Table 3. The Montezuma quail and the northern bobwhite had the 

least number of contributing variables whereas scaled quail and mountain quail had the most, 

after adjusting models for initial variable correlations and contributions. At least one bioclimatic 

variable was included in each species’ model set except for the Gambel’s quail. Mean 

temperature of the wettest quarter (BioClim8) was the most frequently included variable and 

occurred in four of the six species’ ENMs. Average partial plot relationships between all 
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contributing models and climate suitability are presented for all species in the supporting 

material (Fig. S1-S6). 

Future Species’ Distributions  

Based on 90% agreement between all future climate projections, California quail, scaled 

quail, mountain quail, and Montezuma quail are predicted to have a net loss in areas that are 

currently environmentally suitable when projecting models to 2070 (Fig. 2). In general, areas of 

net gains in future distributions occurred across high latitudes whereas distribution contraction 

occurred across lower latitudes (Figs. 3-5). However, areas that were predicted to remain suitable 

for mountain quail were not significantly different in elevation (𝑥̅ = 919.77 ± 13.37 m) compared 

to areas that were predicted to contract in suitability (𝑥̅ = 891.78 ± 25.59 m). Though disparity 

existed in estimated losses and gains of future projected distributions for all species between 

model agreement scenarios, Gambel’s quail was predicted to gain more environmentally suitable 

area in all model agreements when compared to the other five species (Fig. 2). Conversely, 

scaled quail were predicted to lose the most area of environmental suitability (Fig. 2). It should 

be noted that 75% model projection agreement (Figs. S8-S10) is likely more liberal and 100% 

model projection agreement (Figs. S11-S13) is likely a conservative estimate of future 

distributions and should be interpreted with some caution. 

Abundance Trends 

We noted important trends for four species when considering BBS relative abundance 

data in relation to areas predicted to remain suitable versus those that would contract in 

suitability under 90% model agreement. Northern bobwhite models indicate future loss of 

suitable areas that currently have high-to-intermediate levels of relative abundance for this 

species (Table 4). Scaled quail models indicate future loss of areas that currently have the highest 
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levels of relative abundance, suggesting a potential loss in this species’ “strongholds” (Table 4). 

Conversely, the California quail and mountain quail are projected to lose approximately 21% and 

17% of their suitable distributions in the 90% agreement of the ensemble future distribution 

predictions, respectively (Fig. 2). Yet areas that are currently suitable and remain suitable have 

significantly higher relative abundance than areas that are lost in future climate scenarios (Table 

4). There were no general trends with the Gambel’s quail data with respect to loss of areas that 

could be considered strongholds. As noted before, relative abundance data were not available for 

Montezuma quail. Similar information on relative abundance trends for the 75% and 100% 

agreement in the ensemble future distribution predictions is presented in supporting material 

(Tables S1 and S2). 

DISCUSSION 

Our results indicate that the traditional CVC variable selection approach outperformed a 

climate-based biological variable selection approach for four of the six species we studied.  

However, all variable selection approaches produced accurate estimates of current distributions 

based on three different model performance metrics. The only exception was the random variable 

selection approach for the northern bobwhite model, in which the average AUC value indicated 

poor performance (AUC = 0.67). Our ENMs predicted that only three of the six quail species are 

projected to have overall increases in environmentally suitable area under climate scenarios for 

2070, under our most liberal model agreement scenarios. There was generally no significant 

difference in relative abundance for areas of continued suitability versus areas of future 

suitability loss in the context of one of our six species (Gambel’s quail). Northern bobwhite and 

scaled quail were predicted to lose areas of suitability that currently support intermediate to high 

levels of relative abundance (or “species’ strongholds”) compared to the areas that remain 
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suitable. Conversely, California quail and mountain quail maintain “species’ strongholds” though 

are predicted to lose large areas of suitability in the southern portion of their current distribution.  

The use of a standardized test omission error to assess model performance has only 

recently been proposed to help eliminate the ambiguity and biases related to AUC and test 

omission errors (Wilson et al., 2013). Interestingly, there were relatively few differences in the 

results of our test AUC and standardized test omission errors, with the primary difference 

relating to the performance of our Montezuma and mountain quail data sets and the significance 

level of our Gambel’s quail data sets (Fig. 1). However, there were significant differences when 

standardized test omission errors were compared to traditional test omission errors, emphasizing 

the importance of standardizing this performance metric to better measure differences in model 

performance across variable suites.  

The CVC variable selection approach generally outperformed our abundance-based 

biological variable selection approach (i.e., for two-thirds of the species), though the magnitude 

of these difference varied from species to species (Fig. 1). Discrepancy existed between climate 

variables that influenced local annual abundance and variables that influenced species’ 

distributions in our study. This was evidenced by the lack of performance for our biological 

variable suite when compared to the CVC variable suite in the analysis of four of the six species 

(Fig. 1). The most reasonable explanation for these discrepancies is likely related to scale (Wiens 

et al., 1987), suggesting that factors that influence local species’ abundance do not always scale 

up to determine species’ distributions. A case in point can be made for the northern bobwhite, in 

which the broad distribution of this species would lend itself to varying effects of climate 

variables across latitudinal (i.e., temperature) and longitudinal (i.e., precipitation) gradients. 

Furthermore, for the two species in which the biological variable suite was used to determine 
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species’ distributions (Gambel’s quail and Montezuma quail), there was evidence of 

transmutability (O’Neill 1979) in the relationship of these variables as data were scaled up. For 

instance, a negative relationship between summer temperatures and productivity of Gambel’s 

quail has been reported (Heffelfinger et al., 1999). However our results indicate that, although 

maximum average summer temperature contributed most to our ENMs for Gambel’s quail 

(Table 3), there was actually a positive relationship between probability of suitability and 

maximum average summer temperature (Fig. S2). Transmutation across scales also occurred for 

the Montezuma quail data, in which the positive relationship between abundance and summer 

precipitation (Howard, 1979) changed to a unimodal relationship (i.e., an indication of niche 

breadth) when scaled up to the species’ distribution (Fig. S5). These results further emphasize 

the importance of considering scale when working with species’ distribution models. 

Based on our analysis of species’ relative abundance, scaled quail and northern bobwhite 

trends indicated the loss of areas with high and/or intermediate relative abundance, respectively 

(Table 4). Interestingly, a majority of these “strongholds” occur on the periphery of the estimated 

species’ distributions (Sauer et al., 2014). As climate induced shifts in distributions can often 

affect edge populations disproportionately (Hampe and Petit, 2005), direct loss of these 

“peripheral strongholds” could have major conservation implications (Steen and Barrett, 2015). 

Conversely, though California quail and mountain quail are predicted to have a net loss in areas 

that are environmentally suitable (Fig. 2), areas that are retained under future climate scenarios 

are currently areas with the highest relative abundance for these species (Table 4) and are 

centrally located within their current distribution (Sauer et al., 2014). We analyzed these data to 

help illustrate that even when species’ were predicted to have a net gain in areas of 

environmentally suitability, areas of predicted loss could include some population strongholds 
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and should be of  conservation concern. We note that just as distributions are expected to shift, 

dispersal patterns and species’ interactions with biotic and abiotic variables (Davis et al. 1998) 

will likely facilitate a shift in species’ abundance as well. Interpretations should take this into 

consideration and future research attempting to model shifts in the future abundance of these 

species would be beneficial.  

A general outcome in biogeographical studies in the context of future climate change is 

that non-montane species tend to shift distributions northward while montane species shift 

distributions towards higher elevations (Pounds et al., 1999; Parmesan and Yohe, 2003; 

Parmesan 2006; Guralnick, 2007; Beever et al., 2011). This trend has been exhibited in across a 

wide spectrum of vertebrates and invertebrates. Species endemic to high elevation montane areas 

may be more vulnerable to a changing climate as they become more restricted to smaller, higher 

elevation areas termed “sky islands” (Knowles et al., 2007). Geographic restriction of species to 

these sky islands may be a result of the traditional low elevation/competition vs. high 

elevation/physiological stress hypothesis (McArthur, 1972), though more recently this pattern 

has also been attributed to the phylogenetic niche conservatism process (Wiens et al., 2010; 

Gifford and Kozak, 2012), in which instantaneous niche retention exists (Pyron et al., 2014). If 

indeed niche conservatism determines high elevation distribution restrictions in certain species, 

they may be highly susceptible to geographic isolation due to climate change (Gifford and 

Kozak, 2012). In a broad analysis of Galliformes response to climate change in China, species at 

high elevations were predicted to have greater distribution shifts (Li et al., 2010). Similarly, in 

our study, mountain quail, which typically occur at elevations of 1,050-2,161 m (Brennan et al., 

1987), had predictions of distribution contraction. However, inconsistent with the concept of sky 

islands, the contraction of this species’ distribution did not occur at lower elevations, though did 
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occur at southern latitudes. Although an apparent sky island effect was not evident in our study 

with this montane species, avian species tend to respond the least with regards to elevational 

shifts related to climate change (Chen et al. 2011) and interspecific phenotypic differences may 

cause variability in generalized responses (Bestion et al. 2015) such as elevational shifts.  

All six species indicated general trends of southern latitudinal loss, at varying levels, in 

environmental suitability of their current distribution (Figs. 3-5). This has been shown in many 

other Galliformes, in which northward shifts were more common than any other directional shift 

(Li et al., 2010). These southern edge shifts in future predicted distributions should be viewed 

with caution. The low latitudinal periphery of a species’ distribution could actually have high 

stability because of heterogeneity in topography and in plant community structure, providing 

greater opportunities for establishing climatic niches (Parmesan et al., 1999; Hampe and Petit, 

2005). The variability in these responses is related to the scale in which most climate change 

research is focused. Detailed knowledge is becoming increasingly available on how organisms 

respond to fine-scale heterogeneity in a thermal landscape, particularly in relation to local 

topography and vegetation structure (Matala et al., 2013; Hovick et al., 2014; Varner and 

Dearing, 2014; Carroll et al., 2015). These behavioral responses could help to stabilize potential 

distribution shifts. For instance, a temperature related variable was the highest contributing 

variable for only half of the species (Table 3), with all relationships indicating the presence of a 

niche breadth except for the Gambel’s quail (Figs. S2-S7). It is likely that temperature was not 

the best contributor to many broad scale models in our study because many of these species have 

been known to phenotypically and behaviorally adapt to variation in temperatures at very fine 

scales (Reyna and Burggren, 2012; Guthery et al., 2001; Guthery et al., 2005), which may slow 

the rate of low latitudinal distribution contraction beyond that which our models predict.  
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The use of land cover data in ENMs has produced mixed results with regards to model 

performance and predicted distributions for many species, and varies species by species (Thuiller 

et al., 2004; Lee and Jetz, 2011; Mathews et al., 2011; Bucklin et al., 2015). However, there is 

often high uncertainty in projected future land cover models and these variables are often not 

included when projecting ENMs into future scenarios (Barbet-Massin et al., 2012). Thus our 

overall goal was to model the climatic suitability for these species rather than trying to 

incorporate both climate variables and land cover data under future scenarios. This is not to say 

that conservation biologists should ignore land cover in future conservation planning and 

management efforts. Indeed, current and future land cover across species’ distributions will 

likely influence abundance and distribution of Galliformes included in our analysis (Brennan, 

1991; Church et al., 1993; Guthery, 1997). Climate based models merely offer one of several 

tools to aid in decision making and should be viewed as such, with the inherent limitations 

acknowledged. 

Though conservation has historically been considered a crisis discipline with objectives 

focused on preventing the extinction of rare or threatened species (Soulé, 1985; Gaston and 

Fuller, 2008), recent arguments suggest conservation biologists should also focus efforts on 

conservation of more common species, as declines in such species may be representative of 

changes in ecological structure and functions (Gaston and Fuller, 2008). For instance, recent 

research indicates that across 144 European avian species, common species are declining the 

most whereas rarer species are generally increasing in abundance, a trend attributed to landscape 

scale deterioration in environmental quality (Inger et al., 2015). A benefit to modeling common 

species is that occurrence data and knowledge of biologically meaningful environmental 

variables can often be easily accessible, as we have demonstrated here. These data may give 
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conservation biologists insight into broad temporal and spatial trends related to at risk 

ecosystems. We suggest, as did Crosby et al. (2015), that relatively common species, in addition 

to rare species, should receive attention if maintaining biodiversity is a goal. 
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Table 1 Climate variables known to affect abundance and/or reproduction of temperate quail species in North America. 1 

Common name Scientific name Climate variable Reference(s) 

California quail Callipepla californica Fall-Spring precipitation (Francis, 1970) 

Winter precipitation (Botsford et al., 1988) 

Gambel's quail Callipepla gambelii Winter-Spring precipitation (Gullion, 1954; Hungerford, 1960; Raitt and 

Ohmart, 1966; Heffelfinger et al., 1999) 

Maximum July temperature (Heffelfinger et al., 1999) 

Scaled quail Callipepla squamata Winter precipitation (Giuliano and Lutz, 1993) 

Summer precipitation (Campbell, 1968; Campbell et al., 1973; 

Leyva-Espinosa, 2000) 

Spring precipitation (Campbell, 1968; Campbell et al., 1973) 

Annual precipitation (Bridges et al., 2001) 

Modified Palmer Drought Severity Index1 (Bridges et al., 2001) 

Northern bobwhite Colinus virginianus Maximum July temperature (Lusk et al., 2001; Lusk et al., 2002) 

Spring precipitation (Guthery et al., 2002) 

Summer precipitation (Guthery et al., 2002) 

Fall precipitation (Lusk et al., 2002) 

Modified Palmer Drought Severity Index1 (Bridges et al., 2001, Perez et al., 2002) 

Annual precipitation (Perez et al., 2002) 

Montezuma quail Cyrtonyx montezumae Summer precipitation (Brown, 1979) 

Mountain quail Oreortyx pictus N/A2 N/A2 

1 Not included in our analysis. 2 

2 Information not available.3 
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Table 2 Possible distribution conditions occurring within species’ distribution maps produced by 4 

the Maxent algorithm under future climate scenarios. 5 

Condition Description 

1 

distribution expansion from 

current to 2050 and 

remaining suitable from 

2050 to 2070 

2 
suitable at current and 

through all time periods 

3 

unsuitable from current to 

2050 but expanding from 

2050 to 2070 

4 

distribution contraction from 

current to 2050 but 

expanding from 2050 to 

2070 

5 

distribution expansion from 

current to 2050 but 

contracting from 2050 to 

2070 

6 

suitable from current to 2050 

but contracting from 2050 to 

2070 

7 
unsuitable at current and 

through all time periods 

8 

distribution contraction from 

current to 2050 and 

remaining unsuitable from 

2050 to 2070 

6 
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Table 3 Variables used1 in the Maxent algorithm for training niche models of temperate North American quail species and average 7 

variable contribution to model accuracy gain. Standard errors are in parentheses.  8 

Variable 
Callipepla 

californica 

Callipepla 

gambelii 

Callipepla 

squamata 

Colinus 

virginianus 

Cyrtonyx 

montezumae 

Oreortyx 

pictus 

BioClim2 1 0.00 0.00 0.00 49.62 (0.17) 26.83 (0.74) 0.00 

BioClim 3 24.22 (0.43) 0.00 24.32 (0.52) 0.00 0.00 11.39 (0.56) 

BioClim 4 0.00 0.00 0.00 0.00 0.00 27.32 (0.95) 

BioClim 8 16.84 (0.46) 0.00 12.35 (0.43) 1.55 (0.06) 0.00 10.79 (0.36) 

BioClim 9 2.25 (0.14) 0.00 0.00 0.00 0.00 0.00 

BioClim 11 0.00 0.00 12.64 (0.47) 0.00 0.00 0.00 

BioClim 14 0.00 0.00 0.00 0.00 0.00 9.47 (0.36) 

BioClim 15 0.00 0.00 9.0509 (0.40) 36.54 (0.16) 0.00 16.80 (0.96) 

BioClim 16 0.00 0.00 35.26 (0.54) 0.00 0.00 0.00 

BioClim 18 40.46 (0.45) 0.00 0.00 12.29 (0.20) 0.00 0.00 

BioClim 19 16.22 (0.52) 0.00 6.38 (0.18) 0.00 0.00 24.23 (0.65) 

Cumulative fall 

precipitation 
0.00 7.17 (0.36) 0.00 0.00 0.00 0.00 

Cumulative spring 

precipitation 
0.00 21.11 (0.62) 0.00 0.00 25.11 (0.70) 0.00 

Cumulative summer 

precipitation 
0.00 13.48 (0.26) 0.00 0.00 30.86 (0.73) 0.00 

Cumulative winter 

precipitation 
0.00 15.47 (0.26) 0.00 0.00 17.20 (0.80) 0.00 

Maximum average 

summer temperature 
0.00 42.78 (0.68) 0.00 0.00 0.00 0.00 

1 Variables with 0% contribution to model accuracy gain were not used in model training. 9 

2 BioClim variables are estimated from Hijmans et al.  (2005) and are described at www.worldclim.org.10 



 

81 

 

Table 4 Mean relative abundance (RA) estimates1 and standard errors (SE) of temperate North 11 

American quail species2 and associated conditions3 of distributions, based on ENMs using the 12 

Maxent algorithm, at 90% ensemble forecasting agreement. Significant difference in RA 13 

estimates indicated by Tukey-Kramer test results4 from a one-way ANOVA. 14 

Species Condition 
Mean 

RA 
SE 

Tukey-

Kramer 

grouping 

Callipepla 

californica 

2 7.79 0.09 A 

4 6.92 0.59 A 

6 5.07 0.29 B 

8 4.78 0.15 B 

Callipepla 

gambelii 

2 10.18 0.14 A 

4 3.80 1.83 BA 

6 5.11 1.33 BA 

8 1.57 0.49 B 

Callipepla 

squamata 

2 3.12 0.04 B 

4 2.09 0.24 C 

6 3.70 0.13 A 

8 2.46 0.08 C 

Colinus 

virginianus 

2 6.99 0.05 C 

4 21.47 0.74 A 

6 14.19 0.40 B 

8 14.63 0.29 B 

Oreortyx 

pictus 

2 2.45 0.04 A 

4 1.75 0.28 B 

6 1.60 0.10 B 

8 1.60 0.08 B 
1 Estimate from Sauer et al. (2014). Values generally predict the average number of birds for a 15 

species that can be seen along roadsides in ~2.5 hours. 16 

2 Data not available for C. montezumae. 17 

3 Descriptions for possible distribution conditions are given in Table 2. 18 

4 Letter categories represent significant differences between relative abundance values between 19 

scenarios at α = 0.05 level.20 
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Figure 1. Model performance metrics1 used in determining the best variable selection approach 

to estimate distribution shifts for temperate North American quail through the Maxent algorithm. 

Variable selection approaches included a biologically relevant (black bar), a random (grey bar), 

and a correlation/variable contribution (striped bar) approach.
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1 Asterisks indicate different levels of significance between the CVC and biological variable 

selection approach. * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001. 
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Figure 2. Estimated percentages of distribution shifts1 for temperate North American quail based 

on ensemble projections of Maxent models into 2070.

  

1 Ensemble forecast agreement is indicated as followed: 75% (black), 90% (gray), and 100% 

(striped). 
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Figure 3. Future predicted changes1 in distributions of California quail (Callipepla californica; A) and Gambel’s quail (Callipepla 

gambelii; B) projected to 2070 and based on ensemble forecasts (estimated through Maxent) at 90% agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.

B A 



 

87 

 

Figure 4. Future predicted changes1 in distributions of scaled quail (Callipepla squamata; A) and northern bobwhite (Colinus 

virginianus; B) projected to 2070 and based on ensemble forecasts (as estimated through Maxent) at 90% agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2. 
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Figure 5. Future predicted changes1 in distributions of Montezuma quail (Cyrtonyx montezumae; A) and mountain quail (Oreortyx 

pictus; B) projected to 2070 and based on ensemble forecasts (estimated through Maxent) at 90% agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2. 
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CHAPTER III 

 

 

ECOLOGICAL PINCH POINTS RESTRICT USABLE SPACE OF A GROUND-

NESTING BIRD 

ABSTRACT Habitat use has often been viewed as a means of improving fitness of 

individual organisms. However, these behavioral patterns have typically been considered 

within the context of predatory avoidance or foraging patterns. Recently a growing body 

of literature has identified thermal stress as a potential mechanism in determining habitat 

use. We sought to determine how extreme thermal conditions affect the habitat use and 

alter the amount of usable space for a ground-nesting shrub-obligate quail (northern 

bobwhite [hereafter bobwhite; Colinus virginianus]). We used radio-telemetry data 

collected from 2012-2015 to estimate usable space for bobwhite across an ambient 

temperature gradient (ranging from -20 °C to 38.33 °C). Occurrence data and 39 

vegetation cover environmental variables (at 2 x 2 m and 30 x 30 m grains) were used to 

model usable space through a Maxent algorithm. Estimated usable space ranged from 

18.55% to 57.13% of the landscape. However, the coldest and hottest ambient 

temperature categories (<15°C and >35 °C, respectively) were estimated as having the 

least amount of usable space (18.55% and 24.59% respectively). Range overlap analysis 

using ENMTools indicated that areas where birds were restricted during these times of 

thermal extremes were not highly similar (range overlap = 0.37) indicating that habitat 

under a given condition is not necessarily habitat under alternative conditions. Future 
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climate projections indicate that summer months may encounter a ~20% increase in the 

amount of time with ambient temperatures in the hottest temperature category, likely 

resulting in more frequent thermal “pinch points”. Our results demonstrate that habitat is 

often in a non-equilibrium state and that managers and ecologists should consider 

ecological pinch points when evaluating space use and habitat. 

INTRODUCTION 

Climate change is a ubiquitous pattern that affects the conservation of organisms 

(Walther et al. 2002, Gaston and Fuller 2008, Guisan 2014). Overall climate patterns 

throughout the world are expected to change (Houghton et al. 1990, Williams et al. 2007) 

with a continual increase in annual global temperatures predicted by climate models 

(IPCC 2014). Species that are unable to adapt or that exhibit strong niche conservatism 

face threats of declines or possible extinction (Parmesan 2006, Wiens et al. 2012). 

 Inter and intraspecific phenotypic differences (Chen et al. 2011, Bestion et al. 

2015) may cause variability in species’ responses to climate change through different 

tolerance levels in thermal niches (Bestion et al. 2015). Time lag effects can also lead to 

high variability among species’ response to changing climate conditions, in which habitat 

specialists or species with high niche conservatism may respond at different rates 

compared to habitat generalists (Thomas 2010, Chen et al. 2011, Wiens et al. 2012).  

 It has been suggested that heterogeneity in topography and in biotic factors such 

as the structure of the plant community play a role in the stabilization of populations 

through increased opportunities in establishing climatic niches (Parmesan et al. 1999, 

Hampe and Petit 2005). However, despite thermal tolerances being a long understood 

ecological driver of species distributions (Begon et al. 2006), it was only recently that 
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studies began to scale down to assess how organisms respond to fine scale patterns of 

thermal heterogeneity that are driven by landscape structure and heterogeneity (Hovick et 

al. 2014, Melin et al. 2014, Carroll et al. 2015, Marchand et al. 2015).  Structural patterns 

in a landscape can drive ecological processes and functions (Turner 1989), and 

moderation of thermal conditions is an important aspect of landscape patterns that may be 

vital during important life history stages for organisms (Hovick et al. 2014, Carroll et al. 

2015, Marchand et al. 2015). If habitat selection is to be considered a function of an 

organism ultimately seeking to increase their fitness (Roseberry and Klimstra 1984, 

Rosenzweig 1991, Block and Brennan 1993), certain extreme thermal conditions could 

decrease fitness levels. This would result in an organisms’ available habitat being 

“pinched” if only small amounts of the landscape provided adequate refuge from these 

stressful abiotic conditions.  

 Within the context of landscapes moderating thermal conditions, recent research 

has often focused on heat as the abiotic stressor driving species’ behavioral patterns. 

Likely, this is an artifact related to increasing risk of climate change, potential losses in 

reproductive opportunities (Hovick et al. 2014, Silva et al. 2015), or because events 

occurring during the breeding season (when extreme heat events typically occur) have 

been suggested as having a large influence on a species throughout the annual cycle 

(Pulliam and Milikan 1982). While there is obvious importance in understanding how 

heat events alter or constrain animal behavior, assessing the potential effects of thermal 

extremes on the opposite end of the spectrum (i.e., extreme cold events) or throughout the 

entire annual cycle may be equally as important when considering potential carryover 

effects that could ultimately impact the following reproducing population (Harrison et al. 
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2011). Further, recent discussions have argued for a better balance to be stricken with 

regards to seasonally-biased research, in which more attention should be given to full 

annual cycles (Marra et al. 2015).  Thus, by studying how organisms respond to a 

complete gradient of abiotic variables (i.e., ambient temperature), we may better 

incorporate full annual cycles to determine if certain thresholds may exist across the 

spectrum of an environmental variable. 

 To better understand how available habitat may exist in a non-equilibrium state 

with regards to extreme thermal conditions, we studied a population of northern bobwhite 

(Colinus virginianus; hereafter “bobwhite”) on the western periphery of their distribution. 

The bobwhite is a ground-nesting Galliforme that has generally experienced distribution-

wide declines (Sauer et al. 2014) due to habitat loss and fragmentation (Hernández et al. 

2013). However, along the western periphery of their distribution, habitat is often not a 

limiting factor and local abundance is typically driven by stochasticity in weather patterns 

(Lusk et al. 2001, Guthery et al. 2002, Lusk et al. 2002, Perez et al. 2002). As ground-

nesting avifauna tend to be more susceptible to extreme thermal conditions (Albright et 

al. 2010), and studies have suggested loss of usable space (Guthery et al. 2000) and 

temporally variable habitat availability (Carroll et al. 2015) with regards to extreme heat 

events, we sought to determine if available habitat can become restricted during periods 

of thermal extremes across the entire ambient temperature gradient. Specifically, our 

objectives were to: (1) determine if space use was “pinched” at thermal extremes (i.e., 

habitat availability was much less during thermal extremes), (2) determine how space use 

varied or was similar across a temperature gradient, and (3) use climate change 
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projections to understand the implications of thermal extremes on future potential space 

use for bobwhite.  

METHODS 

Study Area 

We conducted our research on the Beaver River Wildlife Management Area (WMA), 

located in Beaver County, Oklahoma (lat 36°50'21.62"N, long 100°42'15.93"W), which 

consists of approximately 11 315 ha managed by the Oklahoma Department of Wildlife 

Conservation (ODWC). A majority of the WMA consists of upland rangelands and the 

floodplain of the Beaver River. Much of the upland areas are dominated by tivilo fine 

sand soils, while the floodplain is dominated by lesho silty clay loam. Dominant grasses 

on upland sites consist of buffalograss (Buchloe dactyloides), little bluestem 

(Schizachyrium scopariu), and bromes (Bromus spp.; non-native). Dominant forbs on 

upland sites include western ragweed (Ambrosia psilostachya), queen’s delight (Stillingia 

sylvatica), and Texas croton (Croton texensis). Dominant shrubs on upland sites include 

yucca (Yucca glauca), sand sagebrush (Artemisia filifolia), sand plum (Prunus 

angustifolia), and fragrant sumac (Rhus aromatica). Dominant grasses in the floodplain 

areas include weeping lovegrass (Eragrostis curvala; non-native), little bluestem, and 

switchgrass (Panicum virgatum). Dominant woody plants in the floodplain include 

fragrant sumac, sand plum, salt cedar (Tamarix spp; non-native), eastern cottonwood 

(Populus deltoides), and sugarberry (Celtis laevigata). Western ragweed is the dominant 

forb in the floodplain areas.  

 During the course of the study, annual precipitation was 34.44, 50.29, and 39.42 

cm in 2012, 2013, and 2014 respectively, while long term (1895-2014) average annual 
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precipitation for this region is 49.63 cm. Average summer temperatures ranged from 

19.56-22.28, 25.72-27.22, and 25.32-30.06 °C during May, June, and July, respectively. 

The long-term regional average during this period was 25.28 °C. Average winter 

temperatures ranged from -0.83 to 2.61, 1.28 to 1.83, and -0.33 to 2.39 °C during 

December, January, and February, respectively. The long-term regional average during 

this period was -3.78 °C. Climate data were obtained from the Beaver Mesonet station 

(Brock et al. 1995, McPherson et al. 2007). However, at no time was our study area 

drought free (The National Drought Mitigation Center, Lincoln, Nebraska, USA). 

Field Methods 

Radio-telemetry 

We captured bobwhite between 2012-2015 using walk-in funnel traps as described by 

Stoddard (1931). Necklace-style radio transmitters weighing 6 g (Advanced Telemetry 

Systems, Isanti, Minnesota, USA) were attached to captured individuals if they met a 

minimum body mass requirement of 130 g. We located radio-marked individuals a 

minimum of three times per week using a receiver and Yagi antenna. Locations of 

individuals were determined through the homing method (White and Garrot 1990) by 

homing within ~15 m of each bird. The distance and azimuth to the bird location was 

recorded and the Universal Transverse Mercator (UTM) coordinates of the observer were 

used to estimate the true location of the radio-marked individuals. We also recorded the 

time (to the nearest minute) that a bird was located. Individuals and coveys were located 

at different times on subsequent days to capture any variability of diurnal patterns 

throughout the non-breeding season, as described by Tanner et al. (2015). All trapping 
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and handling methods complied with the protocol determined by the Oklahoma State 

University’s Institutional Animal Care and Use Committee Permit (no. AG-11-22). 

Data Analysis 

Occurrence Data 

We used bobwhite locations obtained from our telemetry efforts as known presence 

points in our space-use analysis. Telemetry collection occurred throughout the entirety of 

our study, resulting in an inherently large amount of presence locations for our analysis 

(i.e., >18,000 locations). For many research questions, a concern when incorporating 

such a large sample size in a presence-only modeling framework is that there is an 

increased possibility of over-estimation of usable space (Elith et al. 2011, Boria et al. 

2014). However, because our research objectives were to determine if birds were 

restricted to condensed areas during potential periods of environmental stress, we did not 

spatially filter our occurrence locations as this would have potentially eliminated any 

such relationship. Only identical occurrence locations (i.e., same coordinates for 

individuals occurring in a covey) were removed in our dataset to eliminate any spatial 

autocorrelation associated with covey associations (Janke and Gates 2013, Brooke et al. 

2015). We also eliminated any locations that occurred outside of the WMA so that no 

occurrence locations occurred outside the extent of environmental data included in our 

analysis (discussed below).  

 Bird locations were split into categories representing varying ranges of 

temperatures. Temperature (°C) values were obtained from the nearest Mesonet weather 

station (~2 km from nearest WMA boundary; Brock et al. 1995, McPherson et al. 2007) 

and were recorded every five minutes. All bird locations were matched with weather data 
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corresponding to the nearest minute. Temperature categories were arbitrarily split by 

every 5°C. This resulted in a range of temperatures from -20°C to 38.33 °C. Our highest 

and lowest temperature categories were represented with the least amount of observations 

(Table 1). However, these samples sizes are within the range of necessary observations 

needed to provide useful Maxent models (Hernandez et al. 2006, Wisz et al. 2008). 

Environmental Data 

To quantify vegetation cover on our study site, we used an unsupervised max combined 

vegetation classification method from 2 meter resolution satellite imagery using ArcMap 

10.1 (ESRI, Redlands, California, USA). Satellite imagery was collected in July 2013 

when cloud cover was minimized. This method resulted in 65 different classes which 

were reclassified into 10 ecologically meaningful cover types based on field observations 

and 214 ground-truthed points. The primary cover types that comprised both units were: 

mixed shrub (consisting of sand plum [Prunus angustifolia], fragrant sumac [Rhus 

aromatic], sand sagebrush (Artemisia filifolia), mixed grass (little bluestem 

[Schizachyrium scopariu], switchgrass [Panicum virgatum], bromes [Bromus spp.; non-

native]), short-grass/yucca (Yucca glauca), sparse vegetation/exposed soil, bare ground, 

salt cedar (Tamarix spp.; non-native), open water, developed housing, and crop 

(primarily winter wheat [Triticum aestivum]).  

We used Fragstats 4.2.1.603 (McGarigal et al. 2012) to incorporate class and 

landscape metrics based on our vegetation classification into our assessment of bobwhite 

space use. To eliminate redundancy and narrow our selection of variables included in our 

analysis, we used results from Ritters et al. (1995) to help with our initial variable 

selection (Fuhlendorf et al. 2002). Furthermore, because we included two different grain 
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sizes (2 m and 30 m) in our analysis, we also limited Fragstats variable selection to those 

variables least affected by changes in spatial resolution as indicated by results from 

Lustig et al. (2015). We chose these two grain sizes based on two criteria: 2 m resolution 

was used as it was the finest resolution data available for our study site; 30 m resolution 

was used to represent the resolution size of open-source data available to researchers (i.e., 

Landsat imagery). Finally, if there was a biologically meaningful reason to include a 

Fragstats variable within the analysis, these specific variables were also included. For 

instance, we included the contagion index in our initial suite of variables (which is a 

measure of interspersion and dispersion of a landscape) which has been shown to be a 

useful predictor of bobwhite presence (Roseberry and Sudkamp 1998). A list of variables 

initially included in our analysis are listed in Table 2. To account for collinearity of 

variables within our models, we estimated a Pearson’s correlation coefficient for all 

combinations of variables and used a threshold of |r|>0.70 to eliminate highly correlated 

variables (Dormann et al. 2013). Finally, we eliminated variables that had <5% 

contribution to accuracy gain (Sahlean et al. 2014) of preliminary models that we ran for 

each weather category to further increase the robustness of our space-use models. 

 Beyond the Fragstats metrics, we also included the categorical vegetation cover 

variable and the 2013 normalized difference vegetation index (NDVI) in our analysis. We 

calculated the NDVI using the equation (𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑉𝐼𝑆

𝑁𝐼𝑅+𝑉𝐼𝑆
) in which VIS represents the 

spectral reflectance in the visible region and NIR represents the spectral reflectance in the 

near-infrared region. All environmental variables were clipped to the extent of the study 

area boundary to maintain consistency throughout our analysis and because we were not 

interested in projecting a species distribution model (SDM) to other regions.  



 

98 

 

 To incorporate the 2 m and 30 m grain sizes, we used the Block Statistics and 

Resample tools in ArcGIS 10.2 (ESRI 2011). A majority rule was used to scale up our 2 

m vegetation raster to a 30 m raster. Both 2 m and 30 m resolution layers were used as 

the base layers for all subsequent Fragstats analysis. We reclassified all “no data” cells 

for Fragstats layers within the extent of our study area to 0 before incorporating them into 

our modeling procedures (Foley et al. 2008). 

Maximum Entropy Modeling 

A maximum entropy algorithm, Maxent version 3.3.3 (Phillips and Dudik 2008), was 

used to model bobwhite space use in relation to our environmental variables at both grain 

sizes. Though this algorithm has been traditionally used for species distribution 

modelling and large geographic scales (Elith et al. 2011), Maxent is considered similar to 

a generalized linear model (Renner and Warton 2013) and can be used to estimate space 

use or habitat selection at smaller extents using presence-only data. This tool has been 

shown to have higher predictive power than other similar modeling techniques (Wisz et 

al. 2008, Elith et al. 2011) by minimizing the entropy between the probability of presence 

data and “background” data (locations without presence information; i.e., telemetry 

locations). Presence information used in our modeling approach was seperated into the 5 

°C categories (12 total categories), resulting in 12 separate Maxent models with 

idiosyncratic environmental variables used for each model run. 

 We used the default options of the analysis parameters for our Maxent modeling 

(Phillips and Dudik 2008). This included the use of 10,000 background points, which has 

been shown to perform similarly when compared to models using all potential 

background points (Phillips and Dudik 2008). We used a regularization multiplier of 1, 
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performed 500 iterations per model, and used a convergence threshold of 0.00001 for 

each model. To test the validity of our models, we used a boostrap method with 100 

replicates (Araújo et al. 2014), in which 25% of our data was held-out for testing through 

random selection and 75% of our data was used for training our models (Bahn and 

McGills 2012, Sahlean et al. 2014, Sohl 2014). We used 10 percentile training presence 

as the threshold method to convert the continuous occurrence probability estimates into 

binary, presence-absence maps (Sahlean et al. 2014).  

Model complexity and variable selection can affect Maxent performance during 

the model building process (Warren and Seifert 2011). Indeed, model complexity was a 

concern when incorporating Fragstats metrics and vegetation variables into our Maxent 

modeling approach, as the number of variables that could be included can easily exceed 

100 unique variables (Lustig et al. 2015). There may have inevitably been variables that 

could have contributed better to our models. However, we used previous published 

literature and detailed knowledge of bobwhite ecology to help narrow the breadth of 

variables to decrease our model complexity.  

To evaluate our model results, we assessed the average Area Under the Curve 

(AUC) of the Receiver Operating Characteristic (ROC) and the average omission error 

which was calculated using test occurrence data and the binary occurrence maps. The 

AUC value can range from 0-1, and indicates the probability of a presence point having a 

higher AUC value than a random background point. This means that a value of 1 

indicates a completely accurate prediction, whereas a value of 0.5 indicates no difference 

in the presence and the background point, and values <0.5 indicate predictions that 

perform worse than a null model (Phillips et al. 2006).  
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Post-hoc Analysis 

 To determine similarities between predicted areas of space-use across temperature 

gradients, we used ENMTools v1.4.4 (Warren et al. 2010) to calculate range overlap 

between temperature categories using an overall average logistic threshold value to 

determine binary “presence-absence” categories. We compared overlap between the two 

thermal extreme categories (35°C to 40°C; -20°C to -15°C), the temperature category 

predicting the highest amount of space use, and the category containing the freezing point 

of water (0°C to 5°C), as bobwhite have been shown to behaviorally respond to freezing 

weather events to increase fitness levels (Janke et al. 2015). The values of this metric 

range from 0 (no overlap) to 1 (complete overlap).  

 Finally, we incorporated future climate change projections to evaluate the 

difference in the percentage of time occurring within each temperature category during 

the course of our study (current) versus 2050 and 2080. We used ensemble model 

predictions from high, medium, and low emission scenarios (A2, A1B, and B1 scenarios, 

respectively) using data provided by ClimateWizard (www.climatewizard.org). Future 

climate projections were based on downscaling methods as described by Maurer et al. 

(2007) and indicated projected changes in temperatures to future decades (2040-2069 and 

2070-2099) compared to baseline climate data (1951-2006). All future climate data was 

approximately 12 km resolution and values for the WMA were obtained by selecting the 

cell within the very center of our WMA shapefile. Models were obtained for each month 

to capture potential variability in ensemble models across months. 

RESULTS 

http://www.climatewizard.org/
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During the course of our study, we captured a total of 958 bobwhite (477 males, 470 

females, and 11 unknown; 496 adults and 462 juveniles), of which 700 received a radio-

transmitter based on minimum weight requirements. After censoring location data to 

remove brooding and nesting locations, as well as locations beyond the boundary of our 

WMA, we recorded a total of 16,467 unique bobwhite locations across years and seasons 

for use in subsequent analysis. However, since the “remove duplicate presence records” 

option was used during our Maxent analysis, not all locations were retained for our 

modeling procedure. Table 2 indicates the sample sizes of occurrence data used for each 

Maxent analysis. 

 After examining the results of correlation analysis and after removing variables 

that contributed <5% to our Maxent models we retained 15 and 21 variables for the 2 m 

and 30 m analysis respectively of the original 39 variables. A complete list of variables 

used for each model run and the average variable contribution are listed in supplementary 

material (Tables S3 and S4). 

 We found that usable space significantly decreased during periods of extreme heat 

and cold events when compared to intermediate temperatures. Although this trend was 

shown across both the 30 m and 2 m grain sizes, the magnitude of this relationship was 

strongest when using 30 m resolution data. The overall trend generally indicated a 

bimodal relationship of usable space across temperature gradients at the 30 m grain 

(Figure 1) and a multimodal relationship with the 2 m grain (Figure 2). Across both 

grains, the least amount of usable space available was during the coldest temperature 

category (18.55% and 29.41%; 30 m and 2 m grains, respectively). The maximum 

amount of usable space was estimated within the 15-20 °C temperature category, with a 
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total of 57.13% and 52.60% of the landscape predicted as suitable using 30 m and 2 m 

resolution data, respectively (Tables 3 and 4). Though the two temperature extreme 

categories had the highest AUC values, these two categories also had the highest test 

omission values (Table 3). Overall, all AUC values indicated useful model predictions 

across temperature categories (AUC >0.70; Swets 1988), while test omission values also 

indicated good performance for most models (test omission <0.20; Tables 3 and 4). Only 

the -20 to -15 °C, 30 to 35 °C, and >35 °C temperature categories had test omission 

>0.20. 

 Figure 3 (A-D) illustrates discrete suitable-unsuitable rasters of estimated usable 

space for bobwhite across four temperature categories (-20 to -15 °C, 0 to 5 °C, 15 to 20 

°C, and >35 °C). Larger proportions of usable space are estimated at intermediate 

temperature categories (0 to 5 °C and 15 to 20 °C) when compared to thermal extreme 

categories. These figures correspond to the average amount of usable space indicated in 

Table 3 across 100 Maxent replications.  Using the discrete rasters illustrated in Figure 3, 

we determined the amount of range overlap for each pairwise comparison of these 

temperature categories (Table 5). The average logistic threshold across these four 

temperature categories was used to determine the suitability threshold for bobwhite 

presence (𝑥̅ = 0.299). Range overlap values at a 30 m resolution between our hottest and 

coldest temperature categories indicate that the overlap of space usable to bobwhite 

during these temperatures events is not highly comparable (0.37; Figure 4A). This trend 

was similar when analyzed at the 2 m resolution (range overlap = 0.36). However, the 

hottest temperature category (>35 °C) and the coldest temperature category (<15 °C) both 
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overlapped considerably with the intermediate temperature categories (0.76 to 0.88; 

Figure 4B).  

Figures 4 and 5 indicate potential shifts in the percent of time per month occurring 

within each temperature category, compared between actual observed values during our 

study (solid line) and future ensemble climate model predictions (dashed line). Data in 

Figure 5 only illustrates future climate data from the 2080 A2 (high emissions) model for 

simplicity. Data indicating potential changes across the remaining five scenarios (2050 

A2, A1B, B1; 2080 A1B and B1) are presented in the supplementary material (Tables S5 

through S16). Overall trends show a distinct shift in the frequency of time occurring in 

each temperature category (i.e., a shift to hotter temperature categories). However, an 

increase in the percent of time occurring within our hottest temperature category (>35 °C) 

is evident beginning in May and continuing through October. The future predicted 

percent of time occurring during the coldest temperature category (<15 °C) does not 

reflect any major increases when compared to the hottest temperature category, as would 

be expected with climate change trends.  

DISCUSSION 

Extreme temperature events can negatively affect fitness levels which can affect habitat 

selection of terrestrial vertebrates (Rosenzweig 1991). Our data suggests that bobwhite 

begin to be “pinched” into smaller areas of usable space when extreme temperature 

events occur. Usable space was most limited during extreme periods of cold, however 

similar patterns of space loss occured during extreme heat events. Taking into account 

potential changes in temperature patterns due to climate change, the implications of space 

loss related to extreme heat events will likely be more important than space loss related to 
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cold events, at least within the southern Great Plains. Furthermore, range overlap analysis 

suggests that there is dissimilarity between usable space during periods of extreme heat 

versus extreme cold. This indicates that bobwhite require heterogeneity of vegetation 

types and vegetation structure to help alleviate potential stress from environmental 

conditions across an entire gradient.  

 Progress in research continues to illustrate the importance of landscape patterns 

on the process of habitat selection in response to changes in the thermal environmental 

(Sears et al. 2012, Hovick et al. 2014, Mellin et al. 2014, Carroll et al. 2015). Landscape 

patterns that include heterogeneity of vegetation, topography, and/or geology (Chen et al. 

1999, Sears et al. 2012) can alter the thermal environment and create microclimates 

(Begon et al. 2006) that allow individuals to thermoregulate (Kearney et al. 2009, Sears 

et al. 2012, Briscoe et al. 2014). The distribution of thermal refugia available to 

organisms during times of thermal stress influences their activity patterns and ability to 

behaviorally thermoregulate (Huey and Slatkin 1976, Sears et al. 2012). Our data 

suggests that, based on observed bobwhite space-use, the distribution of these refuge 

areas may be more limiting during extreme temperature events, as suitable space was 

predicted to significantly decrease during times of extreme heat and cold (Figure 3A and 

D; Table 3). This suggests that available habitat is in a non-equilibrium state for 

bobwhite, and that useable space is variable depending on environmental conditions.  

 During periods of extreme heat, ground-nesting avifauna have been shown to be 

more susceptible to stress compared to other avifauna (Albright et al. 2010) and are 

known to behaviorally moderate thermal conditions that they experience during different 

life history stages (Hovick et al. 2014, Carroll et al. 2015). This behavior has also been 



 

105 

 

shown to occur when decoupled from the potential influence of predation risk (Hiller and 

Guthery 2005). Furthermore, ground-foraging avifauna have been shown to alter their use 

of habitat in response to extreme heat events, and in fact may begin to select space that 

are typically avoided when they were not thermally stressed (Martin et al. 2015). Such 

behavioral responses to extreme heat conditions can result in space loss for individuals 

(Forrester et al. 1998, Guthery et al. 2005). 

For extreme cold events, avifauna may have behavioral or physiological traits that 

help with thermoregulation and fitness (Swanson 2010, Carr and Lima 2014) which could 

result in variable space use during these temperature events as a result of species’ specific 

traits (Lima 1990, Carrascal et al. 2001). Details on how ground-nesting avifauna respond 

to discrete events of extreme cold temperatures is lacking and offers an opportunity for 

future research. However, Janke et al. (2015) recently described how bobwhite increase 

selection of woody cover during snow events to increase their over-winter survival. 

Typically the selection of vegetation during the non-breeding season has been viewed 

through the lens of trade-offs between predation risk and foraging opportunities (Grubb 

and Greenwald 1982, Caraco et al. 1990, McNamara et al. 1994, Watson et al. 2007). We 

argue that the process of fine-scale selection of micro-climates to improve individual 

fitness during extreme cold events must be considered beyond the scope of predator 

avoidance for ground-nesting and ground-foraging birds. Although the predicted general 

increase in future temperatures throughout much of the Great Plains has possibly resulted 

in a major focus of hot thermal constraints on organisms, our data suggests that cold 

thermal constraints may also restrict space and warrants further investigation. 
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Disparity in the range overlap value between our hottest and coldest temperature 

categories (0.37) helps emphasize the importance of heterogeneity in vegetation structure 

and arrangement to facilitate tolerance of extreme thermal events. Furthermore, the 

greater range overlap values of the intermediate temperature categories (range: 0.76-0.88) 

indicate that these areas potentially act as “thermally neutral” areas when birds are not 

thermally stressed. However, our data suggest that when bobwhite are thermally stressed, 

space use is restricted at both ends of the temperature spectrum, though restricted in 

uniquely different ways. This illustrates that managers and researchers should not view 

cover as a stable or stagnant component of habitat. Instead, management of cover should 

account for spatiotemporal variation in behavioral patterns across an organism’s annual 

cycle. Moreover, an increased emphasis on managing cover for thermal refugia should be 

considered within the context of both weather variability and climate change, as 

temperatures within and beyond the hottest thermal category are predicted to become 

more common within the Great Plains in future decades. 

ACKNOWLEDGEMENTS 

Funding was provided by the Pittman-Robertson Federal Aid to Wildlife Restoration Act 

under project W-161-R (F11AF00069) of the Oklahoma Department of Wildlife 

Conservation and Oklahoma State University, administered through the Oklahoma 

Cooperative Fish and Wildlife Research Unit (Oklahoma Department of Wildlife 

Conservation, Oklahoma State University, U.S. Geological Survey, U. S. Fish and 

Wildlife Service, and the Wildlife Management Institute cooperating). Additional support 

was provided by the Oklahoma Agricultural Experiment Station at Oklahoma State 

University and the Bollenbach Endowment. We thank W. R. Storer and C. E. Crisswell 



 

107 

 

(ODWC), fellow graduate student J. M. Carroll, and our field technicians for their 

logistical support during our field research.  

Literature Cited 

Albright, T. P., A. M. Pidgeon, C. D. Rittenhouse, M. K. Clayton, C. H. Flather, P. D. 

Culbert, B. D. Wardlows, and V. C. Radeloff. 2010. Effects of drought on avian 

community structure. Global Change Biology 16:2158-2170. 

Araújo, C. B., L. O. Marcondes-Machado, and G. C. Costa. 2014. The importance of 

biotic interactions in species distribution models: a test of the Eltonian noise 

hypothesis using parrots. Journal of Biogeography 41:513-523. 

Bahn, V. and B. J. McGill. 2012. Testing the predictive performance of distribution 

models. Oikos 122:321-331. 

Begon, M., C. R. Townsend, and J. L. Harper. 2006. Ecology: from individuals to 

ecosystems. Fourth edition. Blackwell, Malden, Massachusetts, USA. 

Bestion, E., J. Clobert, and J. Cote. 2015. Dispersal response to climate change: scaling 

down to intraspecific variation. Ecology Letters: in press. DOI: 

10.1111/ele.12502. 

Block, W. M., and L. A. Brennan. 1993. The habitat concept in ornithology: theory and 

applications. Current Ornithology 11:35-91. 

Boria, R. A., L. E. Olson, S. M. Goodman, R. P. Anderson. 2014. Spatial filtering to 

reduce sampling bias can improve the performance of ecological niche models. 

Ecological Modelling 275:73-77. 



 

108 

 

Briscoe, N. J., K. A. Handasyde, S. R. Griffiths, W. P. Porter, A. Krockenberger, and M. 

R. Kearney. 2014. Tree-hugging koalas demonstrate a novel thermoregulatory 

mechanism for arboreal mammals. Biology Letters 10: 20140235. 

Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, 

and M. D. Eilts. 1995. The Oklahoma Mesonet, a technical overview. Journal of 

Atmospheric and Oceanic Technology 12:5-19. 

Brooke, J. M., D. C. Peters, A. M. Unger, E. P. Tanner, C. A. Harper, P. D. Keyser, J. D. 

Clark, and J. J. Morgan. Habitat manipulation influences northern bobwhite 

resource selection on a reclaimed surface mine. Journal of Wildlife Management: 

(in press). doi: 10.1002/jwmg.944 

Caraco, T., W. U. Blanckenhorn, G. M. Gregory, J. A. Newman, G. M. Recer, and S. M. 

Zwicker. 1990. Risk-sensitivity: ambient temperature affects foraging choice. 

Animal behavior 39:338-345. 

Carr, J. M., and S. L. Lima. 2014. Wintering birds avoid warm sunshine: predation and 

the costs of foraging in sunlight. Oecologia 174:713-721. 

Carrascal, L. M., J. D. Díaz, D. L. Huertas, and I. Mozetich. 2001. Behavioral 

thermoregulation by treecreepers: trade-off between saving energy and reducing 

crypsis. Ecology 82:1642-1654. 

Carroll, J. M., C. A. Davis, R. D. Elmore, S. D. Fuhlendorf, and E. T. Thacker. 2015. 

Thermal patterns constrain diurnal behavior of a ground-dwelling bird. Ecosphere 6: 

222. 



 

109 

 

Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D Brosofske, G. D. Morz, B. L. 

Brookshire, and J. F. Franklin. 1999. Microclimate in forest ecosystem and landscape 

ecology. BioScience 49:288-297. 

Chen, I-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range 

shifts of species associated with high levels of climate warming. Science 

333:1024-1026. 

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. García 

Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. 

E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell, and S. 

Lautenbach. 2013. Collinearity: a review of methods to deal with it and a 

simulation study evaluating their performance. Ecography 36:27-46. 

Elith, J., S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates. 2011. A 

statistical explanation of MaxEnt for ecologists. Diversity and Distributions 

17:43-57. 

Foley, D. H., L. M. Rueda, A. T. Peterson, and R. C. Wilkerson. 2008. Potential 

distribution of two species in the medically important Anopheles minimus 

complex (Diptera: Culicidae). Journal of Medical Entomology 45:852-860. 

Forrester, N. D., F. S. Guthery, S. D. Kopp, and W. E Cohen. 1998. Operative 

temperature reduces habitat space for northern bobwhites. Journal of Wildlife 

Management 62:1506-1511. 

Fuhlendorf, S. D., A. J. W. Woodward, D. M. Leslie, and J. S. Shackford. 2002. Multi-

scale effects of habitat loss and fragmentation on lesser prairie-chicken 

populations of the US Southern Great Plains. Landscape Ecology 17:617-628. 



 

110 

 

Gaston, K. J., and R. A. Fuller. 2008. Commonness, population depletion and 

conservation biology. Trends in Ecology and Evolution 23:14-19. 

Grubb, T. C., and L. Greenwald. 1982. Sparrows and a brushpile: foraging responses to 

different combinations of predation risk and energy cost. Animal Behavior 

30:637-640. 

Guisan, A. 2014. Biodiversity: Predictive traits to the rescue. Nature Climate Change 

4:175-176. 

Guthery, F. S., N. M. King, K. R. Nolte, W. P. Kuvlesky Jr., S. DeStefano, S. A. Gall, 

and N. J. Silvy. 2000. Comparative habitat ecology of Texas and masked bobwhites. 

Journal of Wildlife Management 64:407-420. 

Guthery, F. S., J. M. Lusk, D. R. Synatzske, J. Gallagher, S. J. DeMaso, R. R. George, 

and M. J. Peterson. 2002. Weather and age ratios of northern bobwhites in South 

Texas. Proceedings of the National Quail Symposium 5:99-105. 

Guthery, F. S., A. R. Rybak, S. D. Fuhlendorf, T. L. Hiller, S. G. Smith, W. H. Puckett 

Jr., and R. A Baker. 2005. Aspects of thermal ecology of bobwhites in North Texas. 

Wildlife Monographs 159:1-36. 

Hampe, A., and R. J. Petit. 2005. Conserving biodiversity under climate change: the rear 

edge matters. Ecology Letters 8:461-467. 

Harrison, X. A., J. D. Blount, R. Inger, D. R. Norris, and S. Bearhop. 2011. Carry-over 

effects as drivers of fitness differences in animals. Journal of Animal Ecology 80:4-

18. 



 

111 

 

Hernandez, P. A., C. H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of 

sample size and species characteristics on performance of different species 

distribution modeling methods. Ecography 29:773-785. 

Hiller, T. L., and F. S. Guthery. 2005. Microclimate versus predation risk in roost and 

covert selection by bobwhites. Journal of Wildlife Management 69:140-149. 

Houghton, J. T., G. J. Jenkins, and J. J. Ephraurms. 1990. Climate change: the OPCC 

scientific assessment report prepared for IPCC Working Group 2. Cambridge 

University Press, Cambridge, England, United Kingdom. 

Hovick, T. J., R. D. Elmore, B. W. Allred, S. D. Fuhlendorf, and D. K. Dahlgren. 2014. 

Landscapes as a moderator of thermal extremes: a case study from an imperiled 

grouse. Ecosphere 5:35. 

Huey, R. B., and M. Slatkin. 1976. Costs and benefits of lizard thermoregulation. 

Quarterly Review of Biology 51:363-384. 

IPCC. 2014. Summary for policymakers. in: Climate change 2014: impacts, adaptation, 

and vulnerability. Part A: global and sectoral aspects. Contribution of working group 

II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. 

Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, 

S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University 

Press, Cambridge, United Kingdom and New York, New York, USA, pp. 1-32. 

Janke, A. K., and R. J. Gates. 2013. Home range and habitat selection of northern 

bobwhite coveys in an agricultural landscape. Journal of Wildlife Management 

77:405-413. 



 

112 

 

Janke, A. K., R. J. Gates, and T. M. Terhune II. 2015. Habitat influences northern 

bobwhite survival at fine spatiotemporal scales. The Condor 117:51-52. 

Johnson, N.K. 1994. Pioneering and natural expansion of breeding distributions in 

western North American birds. In A Century of Avifaunal Change in Western 

North America. J.R Jehl and N.K. Johnson (eds.), pp 27-44. Cooper 

Ornithological Society. 

Kearney, M., R. Shine, and W. P. Porter. 2009. The potential for behavioral 

thermoregulation to buffer cold-blooded animals against climate warming. Proc. 

Natl Acad. Sci. USA 106:3835-3840. 

Lima, S. L. 1990. Protective cover and the use of space: different strategies in finches. 

Oikos 58:151-158. 

Lusk, J. J., F. S. Guthery, and S. J. DeMaso. 2001 Northern bobwhite (Colinus 

virginianus) abundance in relation to yearly weather and long-term climate patterns. 

Ecological Modeling 146: 3-15. 

Lusk, J. J., F. S. Guthery, R. R. George, M. J. Peterson, S. J. DeMaso. 2002. Relative 

abundance of bobwhites in relation to weather and land use. Journal of Wildlife 

Management 66:1040-1051. 

Lustig, A., D. B. Stouffer, M. Roigé, and S. P. Worner. 2015. Towards more predictable 

and consistent landscape metrics across spatial scales. Ecological Indicators 

57:11-21. 

Marchand, P., M. Garel, G. Bourgoin, D. Dubray, D. Maillard, and A. Loison. 2015. Sex-

specific adjustments in habitat selection contribute to buffer mouflon against summer 

conditions. Behavioral Ecology 26:472-482. 



 

113 

 

Marra, P. P., E. B. Cohen, S. R. Loss, J. E. Rutter, and C. M. Tonra. 2015. A call for full 

annual cycle research in animal ecology. Biology Letters 11: 20150552. 

Martin, R. O., S. J. Cunningham, and P. A. R. Hockey. 2015. Elevated temperatures drive 

fine-scale patterns of habitat use in a savanna bird community. Ostrich 86:127-

135. 

Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy. 2007. Fine-resolution climate 

projections enhance regional climate change impact studies. Eos Trans. AGU 

88:504. 

McGarigal, K., S. A. Cushman, and E. Ene. 2012. FRAGSTATS v4: Spatial pattern 

analysis program for categorical and continuous maps. Computer software 

program produced by the authors at the University of Massachusetts, Amherst. 

Available at the following web site: 

http://ww.umass.edu/landeco/research/fragstats/fragstats/html. 

McNamara, J. M., A. I. Houston, and S. L. Lima. 1994. Foraging routines of small birds 

in winter: a theoretical investigation. Journal of Avian Biology 25:287-302. 

McPherson, R. A., C. Fiebrich, K. C. Crawford, et al. 2007. Statewide monitoring of the 

mesoscale environment: a technical update on the Oklahoma Mesonet. Journal of 

Atmospheric and Oceanic Technology 24:301-321. 

Melin, M, J. Matala, , L. Mehtatalo, R. Tillikainen, O-P. Tikkanen, M. Maltamo, J. 

Pusenius, and P. Packalen. 2014. Moose (Alces alces) reacts to high summer 

temperatures by utilizing thermal shelter in boreal forests-an analysis based on 

airborne laser scanning of the canopy structure at moose locations. Global Change 

Biology 20:1115-1125. 

http://ww.umass.edu/landeco/research/fragstats/fragstats/html


 

114 

 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. 

Annual Review of Ecology and Systematics 37: 637-669. 

Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. 

Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. 

Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated 

with regional warming. Nature 399:579-583. 

Perez, R. M., J. F. Gallagher, and M. C. Frisbie. 2002. Fine scale influence of weather on 

northern bobwhite abundance, breeding success, and harvest. Proceedings of the 

National Quail Symposium 5:106-110. 

Phillips, S. J., and M. Dudik. 2008. Modeling of species distributions with Maxent: new 

extensions and a comprehensive evaluation. Ecography 31:161-175. 

Pulliam, H. R., and G. C. Millikan. 1982. Social organization in the nonreproductive 

season. Avian Biology 6:169-197. 

Renner, I. W., and D. I. Warton. 2013. Equivalence of MAXENT and Poisson Point 

Process Models for Species Distribution Modeling in ecology. Biometrics 69:274-

281. 

Ritters, K. H., R. V. O’Neill, C. T. Hunsaker, J. D. Wickham, D. H. Yankee, S. P. 

Timmins, K. B. Jones, and B. L. Jackson. 1995. A factor analysis of landscape 

pattern and structure metrics. Landscape Ecology 10:23-39. 

Roseberry, J. L., and W. D. Klimstra. 1984. Population ecology of the bobwhite. 

Southern Illinois University Press, Carbondale, USA. 

Roseberry, J. L., and S. D. Sudkamp. 1998. Assessing the suitability of landscapes for 

northern bobwhite. Journal of Wildlife Management 62:895-902. 



 

115 

 

Rosenzweig, M. L. 1991. Habitat selection and population interactions: the search for 

mechanism. American Naturalist 137:S5-S28. 

Sahlean, T. C., I. Gherghel, M. Papeş, A. Strugariu, and Ş. R. Zamfirescu. 2014. Refining 

climate change projections for organisms with low dispersal abilities: a case study 

of the Caspian whip snake. PloS one 9:e91994. 

Sauer, J. R., J. E. Hines, J. E. Fallon, K. L. Pardieck, D. J. Ziolkowski, Jr., and W. A. 

Link. 2014. The North American Breeding Bird Survey, results and Analysis 1966 – 

2012. Version 02.19.2014. USGS Patuxent Wildlife Research Center, Laurel, 

Maryland, USA. 

Sears, M. W., E. Raskin, and M. J. Angilletta. 2011. The world is not flat: defining 

relevant thermal landscapes in the context of climate change. Integrative and 

Comparative Biology 51:666-675. 

Silva, J. P., I. Catry, J. M. Palmeirim, and F. Moreira. 2015. Freezing heat: thermall 

imposed constraints on the daily activity patterns of a free-ranging grassland bird. 

Ecosphere 6:119. 

Sohl, T. L. 2014. The relative impacts of climate and land-use change on conterminous 

United States bird species from 2001 to 2075. PLoS ONE 9: e112251. 

Swanson, D. L. 2010. Seasonal metabolic variation in birds: functional and mechanistic 

correlates. Current Ornithology 17:75-129. 

Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-

1293. 

Tanner, E. P., R. D. Elmore, S. D. Fuhlendorf, C. A. Davis, E. T. Thacker, and D. K. 

Dahlgren. 2015. Behavioral responses at distribution extremes: how artificial 



 

116 

 

surface water can affect quail movement patterns. Rangeland Ecology and 

Management 68:476-484. 

Thomas, C.D. and J.L. Lennon. 1999. Birds extend their ranges northward. Nature 

399:213. 

Thomas, C. D. 2010. Climate, climate change and range boundaries. Diversity and 

Distributions 16:488-495. 

Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review 

of Ecology and Systematics 20:171-197. 

Walther, G., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. Fromentin, 

O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate 

change. Nature 416:389-395. 

Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative 

studies of environmental niche models. Ecography 33:607-611. 

Warren, D. L., and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the 

importance of model complexity and the performance of model selection criteria. 

Ecological Application 21:335-342. 

Watson, M., N. J. Aebischer, and W. Cresswell. 2007. Vigilance and fitness in grey 

partridges Perdix perdix: the effects of group size and foraging-vigilance trade-

offs on predation mortality. Journal of Animal Ecology 76:211-221. 

White, G. C., and R. A. Garrot. 1990. Analysis of wildlife radio-tracking data. Academic 

Press, Inc, San Diego, California, USA. 42 p. 

Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell, E. 

I. Damschen, T. J. Davis, J-A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D. Holt, 



 

117 

 

C. M. McCain, and P. R. Stephens. 2010. Niche conservatism as an emerging 

principle in ecology and conservation biology. Ecology Letters 13:1310-1324. 

Williams, J. W., S. T. Jackson, and J. E. Kutzbach. 2007. Projected distributions of novel 

and disappearing climates by 2100 AD. Proceedings of the National Academy of 

Sciences USA 104:5738-5742. 

Wisz, M. S., R. J. Hijmans, J. Li, A. T. Peterson, C. H. Graham, A. Guisan, and NCEAS 

Predicting Species Distributions Working Group. 2008. Effects of sample size on 

the performance of species distribution models. Diversity and Distributions 

14:763-773. 



 

118 

 

Table 1. List of variables used in Maxent analysis for northern bobwhite (Colinus virginianus) locations during 2012-2015 at Beaver 

River WMA, Beaver County, Oklahoma, USA. 

Metric 

Fragstats 

category 

(C/L) 

Description 
Number of 

variables 

Area CV (vegetation type) C Coeffecient of variation in vegetation type patch sizes 6 

Area Mean (vegetation type) C Mean area of vegetation type patches (m2) 6 

Edge density (vegetation type) C 
Total length (meters [m]) of vegetation type edge (m) divided by total 

area (m2) multiplied by 10,000 
6 

Perimeter-area fractal dimension 

of vegetation type patch 
C 

Shape complexity across all patches of a vegetation type. Range 

1<x<2. 
6 

Shape mean (vegetation type) C 
Mean of shape index (complexity of patch shape compared to a 

square) of a vegetation type across all patches 
6 

Area CV L Coeffecient of variation of patch area across all classes 1 

Area Mean L Mean area of all patches across all classes (m2) 1 

Contagion index L 
Measure of patch-type interspersion and overall patch dispersion (1 = 

no interspersion, 0 - max interspersion) 
1 

Edge density L 
Total length (m) of edge in the landscape divided by the total area of 

the landscape (m2) multiplied by 10,000 
1 

Perimeter-area fractal dimension  L 
Identical to class metric except includes all patches across vegetation 

types 
1 

Patch richness L Number of different patches within the landscape 1 

Shape mean L 
Mean of shape index (complexity of patch shape compared to a 

square) across all patches 
1 

2013 normalized difference 

vegetation index 
N/A 

 

1 

Vegetation type N/A Categorical variable of vegetation types 1 
1C indicates a class variable and L indicates a landscape variable.
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Table 2. Number of training and testing locations used for Maxent analysis of northern bobwhite 

(Colinus virginianus) space use across 12 temperature categories from 2012-2015 at Beaver 

River WMA, Beaver County, Oklahoma, USA. 

Temperature 

category (°C) 

Training 

locations 

(n) 

Test locations 

(n) 

Training 

locations 

(n) 

Test 

locations 

(n) 

  30 m resolution 2 m resolution 

>35 35 5 35 5 

30 to 35 109 36 135 15 

25 to 30 612 204 803 90 

20 to 25 1356 452 1854 206 

15 to 20 1513 504 2097 234 

10 to 15 1004 334 1345 150 

5 to 10 728 242 947 106 

0 to 5 626 208 803 90 

-5 to 0 512 57 531 60 

-10 to -5 373 42 389 44 

-15 to -10 90 11 93 11 

-20 to -15 33 5 33 5 
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Table 3. Predicted percent usable area1 for northern bobwhite (Colinus virginianus), suitable area 

standard errors (S.E.), lower and upper confidence intervals (L.C.I. and U.C.I.), and model 

performance metrics as determined through Maxent on northern bobwhite observations located 

from 2012-2015 at Beaver River WMA, Beaver County, Oklahoma, USA. Environmental data 

used in analysis was 30 m. 

Temperature 

category 

(°C) 

Suitable 

Area 

(%) 

Suitable 

Area 

S.E. 

Suitable 

Area 

L.C.I. 

Suitable 

Area 

U.C.I. 

Test 

A.U.C. 

Average 

test 

omission 

>35 24.59 0.008 0.23 0.26 0.84 0.25 

30 to 35 35.59 0.006 0.34 0.37 0.81 0.19 

25 to 30 49.18 0.003 0.49 0.50 0.77 0.13 

20 to 25 54.75 0.002 0.54 0.55 0.75 0.11 

15 to 20 57.13 0.002 0.57 0.57 0.73 0.11 

10 to 15 54.51 0.002 0.54 0.55 0.74 0.12 

5 to 10 52.59 0.002 0.52 0.53 0.76 0.11 

0 to 5 44.28 0.002 0.44 0.45 0.79 0.14 

-5 to 0 38.07 0.003 0.38 0.39 0.81 0.16 

-10 to -5 38.56 0.003 0.38 0.39 0.81 0.15 

-15 to -10 44.17 0.005 0.43 0.45 0.76 0.17 

-20 to -15 18.55 0.007 0.17 0.20 0.84 0.29 
1Discrete suitable areas were determined based on logistic thresholds using the 10% training 

presence threshold rule. 

2Area under the curve of the receiver operating characteristic.
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Table 4. Predicted percent usable area1 for northern bobwhite (Colinus virginianus), suitable area 

standard errors (S.E.), lower and upper confidence intervals (L.C.I. and U.C.I.), and model 

performance metrics as determined through Maxent on bobwhite observations located from 

2012-2015 at Beaver River WMA, Beaver County, Oklahoma, USA. Environmental data used in 

analysis was 2 m. 

Temperature 

category 

(°C) 

Suitable 

Area 

(%) 

Suitable 

Area 

S.E. 

Suitable 

Area 

L.C.I. 

Suitable 

Area 

U.C.I. 

Test 

A.U.C. 

Average 

test 

omission 

>35 30.27 0.010 30.25 30.29 0.84 0.19 

30 to 35 35.66 0.006 35.65 35.67 0.80 0.20 

25 to 30 42.10 0.002 42.10 42.10 0.80 0.14 

20 to 25 51.04 0.002 51.04 51.04 0.77 0.11 

15 to 20 52.60 0.001 52.60 52.60 0.75 0.11 

10 to 15 50.74 0.002 50.73 50.74 0.76 0.12 

5 to 10 43.55 0.002 43.55 43.56 0.77 0.15 

0 to 5 49.10 0.002 49.09 49.10 0.76 0.13 

-5 to 0 38.57 0.003 38.57 38.57 0.81 0.15 

-10 to -5 37.65 0.003 37.64 37.66 0.81 0.17 

-15 to -10 51.13 0.007 51.12 51.15 0.77 0.13 

-20 to -15 29.41 0.012 29.39 29.43 0.82 0.23 
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Table 5. Range overlap1 of discrete usable space for northern bobwhite (Colinus virginianus) 

compared between four temperature categories (°C) during 2012-2015 at Beaver River WMA, 

Beaver County, Oklahoma, USA. Discrete presence rasters were obtained from Maxent (v3.3.3) 

using 30 m resolution environmental data. Range overlap was estimated through ENMTools 

v1.4.4.  

Temperature 

Category ( °C) 
>35 15 to 20 0 to 5 -20 to -15 

>35 1.00 0.87 0.76 0.37 

15 to 20 0.87 1.00 0.88 0.86 

0 to 5 0.76 0.88 1.00 0.88 

-20 to -15 0.37 0.86 0.88 1.00 
1Range overlap values are estimated from 0 to 1 in which 0 represents no overlap and 1 

represents complete range overlap.
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Figure 1. Percent usable space (+/- 1 standard deviation) for northern bobwhite (Colinus 

virginianus) across a temperature gradient (°C) as determined through Maxent. Observations 

were collected during 2012-2015 at Beaver River WMA, Beaver County, OK, USA. 

Environmental data was analyzed at 30 m resolution. 
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Figure 2. Percent usable space (+/- 1 standard deviation) for northern bobwhite (Colinus 

virginianus) across a temperature gradient (°C) as determined through Maxent. Observations 

were collected during 2012-2015 at Beaver River WMA, Beaver County, OK, USA. 

Environmental data was analyzed at 2 m resolution. 
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Figure 3. Illustration of usable space for northern bobwhite (Colinus virginianus) as predicted through a Maxent algorithm at four 

temperature (°C) categories: >35 (A), 15 to 20 (B), 0 to 5 (C), and -20 to -15 (D). Observations were collected from 2012-2015 at 

Beaver River WMA, Beaver County, OK, USA. Data was analyzed using 30 m resolution environmental data. 
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Figure 4. Disparity in usable space for northern bobwhite (Colinus virginianus) across high (>35 

°C) and low (<15 °C) temperature categories as predicted through a Maxent algorithm (A). Inset 

B indicates the disparity between these two temperatures categories along with an intermediate 

temperature category (0 to 5 °C and 15 to 20 °C combined), which is outlined with a solid black 

line. Observations were collected from 2012-2015 at Beaver River WMA, Beaver County, OK, 

USA. Data was analyzed using 30 m resolution environmental data. 

A 
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Figure 5. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 (black line) compared to future climate conditions (dashed line) at Beaver River 

WMA, Beaver County, OK, USA. Climate projections1 are based on an ensemble model under a 

high emission scenario (A2) and projected to the year 2080. Data is presented for: Jan-Feb (A), 

Mar-Apr (B), May-Jun (C), Jul-Aug (D), Sep-Oct (E), and Nov-Dec (F). 

 

1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org.
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CHAPTER IV 

 

 

DOES THE PRESENCE OF ANTHROPOGENIC FEATURES POTENTIALLY 

INCREASE RISK OF HARVEST IN NORTHERN BOBWHITE? 

ABSTRACT As anthropogenic development and disturbance continues to grow 

throughout North America, it has become increasingly important to understand how 

organisms may respond to this disturbance. Beyond organisms experiencing direct 

impacts from the presence of anthropogenic features (mortality), interactive relationships 

may exacerbate the effects of anthropogenic disturbance within the context of these 

features. For example, hunting pressure may be positively influenced by the 

infrastructure paired with energy development by facilitating easier access via road and 

energy pad networks. To assess these relationships, we conducted research on northern 

bobwhite (Colinus virginianus; hereafter bobwhite) across a hunted and non-hunted area 

of Beaver River Wildlife Management Area, Oklahoma, using radio-telemetry from 

2012-2015. We found that bobwhite mortality risk increased as the distance from primary 

roads (m) decreased across weeks (hazard ratio [HR] = 1.007, P = <0.001) yet this 

relationship was detected in both hunted and non-hunted units. Additionally, mortality 

risk was greater for juveniles (HR = 1.39, P = 0.04). Bobwhite on the hunted unit avoided 

exposed soil/sparse vegetation more than bobwhite on the non-hunted unit (𝛽 = -0.01, CI 

= -0.02 to -0.0001), however this was a weak relationship. Based on our results, bobwhite 
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did not alter their space use or movement patterns in response to anthropogenic features 

or hunting but did have differential survival associated with primary roads.  

INTRODUCTION 

The effects of human activity on ecosystems has been so prominent that the late 18th 

century marked the beginning of what is known as the Anthropocene (Crutzen 2002, Ellis 

2011). During recent decades, empirical evidence indicates that conservation of 

biodiversity is falling short for many ecosystems (Butchart et al. 2010, Kareiva et al. 

2011). Sih et al. (2011) synthesized five major types of human-related impacts affecting 

such natural systems: habitat loss, exotic species, harvesting, pollutants, and climate 

change. As a result of these impacts, researchers have focused on monitoring and 

describing potential effects of these human impacts on wildlife populations worldwide.  

 Specifically, habitat loss has been suggested as the primary contributor to 

biodiversity loss in North America (Pimm and Raven 2000). Increases in energy 

development (Kuvlesky et al. 2007, Gilbert and Chalfoun 2011) and long-term impacts of 

agricultural development (Barnes 1993, Manning 1995) are significant changes that have 

left the North American prairie the most altered biome in North America (Samson and 

Knopf 1994, Askins et al. 2007). Such extensive losses of these native ecosystems have 

resulted in extensive declines in avian guilds (Sauer et al. 2014).  

Although energy development and its related infrastructure has existed in much of 

North America within the context of recent history (Braun et al. 2002), technological 

advances and increased demand in local and global markets may lead to wildlife coping 

with unprecedented levels of this development (Arnett et al. 2007, Johnson and Lefebrve 

2013). Potential effects of energy development on wildlife are complex and extensive, 
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and could be related to increases in noise and light pollution (Barber et al. 2010, Blickley 

et al. 2012, Shannon et al. 2015, Swaddle et al. 2015), direct mortality from collisions 

(Kunz et al. 2007, Reese and Connelly 2011, Loss et al. 2013), and behavioral changes 

from activity and habitat fragmentation (Slater and Smith 2010, Winder et al. 2013, 

Hovick et al. 2014, Ludlow et al. 2015, Mutter et al. 2015).  

With regard to energy development impacts on prairie species, particular attention 

has been given to resident ground nesting birds (i.e., Galliformes) as their life history 

strategies could make them more vulnerable to human development when compared to 

migratory species (Storch 2007, Hovick et al. 2014). With regards to grouse species, oil 

and gas structures have been shown to have the largest impact on behavioral responses, 

while roads associated with these structures were also shown to influence grouse 

behavior (Pitman et al. 2005, Hagen et al. 2011, Blickley, et al. 2012). Furthermore, wind 

energy development has been shown to alter behavioral patterns and nesting/brooding 

success of prairie grouse species (Winder et al. 2013, Lebeau et al. 2014). Most other 

Galliformes have received little attention with regards to responses to anthropogenic 

development. A notable exception, Dunkin et al. (2009) reported that northern bobwhite 

(Colinus virginianus; hereafter: bobwhite) tended to avoid fences and be attracted to 

roads, while exhibiting no behavioral response to oil and power line structures. 

Northrup and Wittemyer (2013) characterized the observed and potential impacts 

of energy development on wildlife species, identifying the importance of understanding 

confounding factors that can lead to wildlife impacts when increased development 

occurs. More specifically, they listed increased hunting pressure and increased illegal 

hunting as identified and potential impacts, respectively, of oil/gas development on 
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wildlife populations. Though increased hunting pressure was listed as an identified 

impact, it was ranked the lowest in frequency of occurrence among research to date. The 

interaction between anthropogenic development and hunting pressure could also 

exacerbate impacts on wildlife if game species are attracted to roads or linear features 

(Dunkin et al. 2009) or if development is focused on wildlife management areas (WMAs) 

where public hunting is focused. For instance, the infrastructure that comes with energy 

development on public hunting lands (roads, well pads, etc.) could increase access for 

hunters which in turn may increase the potential for harvest-induced mortality. Though 

harvest may be partially compensatory at times (Burnham et al. 1984), increases in 

harvest rates eventually can cause harvest-induced mortality to become additive rather 

than compensatory (Sandercock et al. 2011, Péron 2013). Thus, anthropogenic 

development on public lands such as WMAs could have unintended negative 

consequences related to hunting that may ultimately affect population levels. 

In this study, we sought to determine if anthropogenic structures and associated 

infrastructure affected non-breeding season ecology of bobwhite on hunted and non-

hunted areas. By incorporating data from both hunted and non-hunted areas, we hoped to 

determine if there were confounding effects between hunting impacts and anthropogenic 

development. Our objectives were to: 1) determine if weekly mortality risks differed 

between hunted and non-hunted bobwhite in relation to anthropogenic features across the 

non-breeding season, 2) determine if bobwhite space use was influenced by 

anthropogenic features and/or hunting, and 3) determine if bobwhite covey movement 

was influenced by hunting. 

METHODS 
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Study Area 

We conducted our research at the Beaver River Wildlife Management Area (WMA) 

which is located in Beaver County, OK (lat 36°50'21.62"N, long 100°42'15.93"W). The 

total area of the WMA is approximately 11,315 ha, however for our research, the WMA 

was split into two separate units (Beaver River unit 6823.94 ha; McFarland Unit 4501.26 

ha). Both units primarily consists of upland areas dominated by tivilo fine sand soils and 

a floodplain dominated by lesho silty clay loam.  

An unsupervised max combined vegetation classification method was used to 

develop our vegetation map from 2 meter resolution satellite imagery using ArcMap 10.1 

(ESRI, Redlands, California, USA). Satellite imagery was collected in July 2013 when 

cloud cover was minimized. This method resulted in 65 different classes which were 

reclassified into 10 ecologically meaningful cover types based on field observations and 

214 ground-truthed points. The primary cover types that comprised both units were: 

mixed shrub (consisting of sand plum [Prunus angustifolia], fragrant sumac [Rhus 

aromatic], sand sagebrush (Artemisia filifolia), mixed grass (little bluestem 

[Schizachyrium scopariu], switchgrass [Panicum virgatum], bromes [Bromus spp.; non-

native]), short-grass/yucca (Yucca glauca), sparse vegetation/exposed soil, bare ground, 

salt cedar (Tamarix spp.; non-native), open water, developed housing, and food plots 

(primarily winter wheat [Triticum aestivum]). A more detailed description of plants found 

within these cover types on these sites is described in Tanner et al. (2015).  

 During the course of the study, annual precipitation was 34.44, 50.29, and 39.42 

cm in 2012, 2013, and 2014 respectively, while long term (1895-2014) average annual 

precipitation for this region is 49.63 cm. Climate data were obtained from the Beaver 
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Mesonet station (Brock et al. 1995, McPherson et al. 2007). However, at no time were 

our two study units out of drought conditions (The National Drought Mitigation Center, 

Lincoln, Nebraska, USA).  

 Anthropogenic features on the WMA that were used in our analysis consisted of 

roads (four categories described below), buildings, and oil/gas structures. Power lines 

were not included as a feature as very few of these features existed within our study area 

and most birds were not exposed to their presence. Overall density of roads was 21.2 

m/ha.  Additionally, there were 6 buildings (1885.8 ha/building) and 95 oil/gas structures 

(119.1 ha/structure) on the WMA.  

Radio-telemetry 

Bobwhite were capture between 2012-2015 using walk-in funnel traps (Stoddard 1931). 

We attached a necklace-style radio transmitter weighing 6 g (Advanced Telemetry 

Systems, Isanti, Minnesota, USA) if a bird met a minimum body mass requirement of 

130 g.  We located radio-marked individuals a minimum of three times per week using a 

receiver and Yagi antenna. Locations of individuals were determined using the homing 

method (White and Garrot 1990). We homed in on individuals to within 15 m and 

recorded the distance and azimuth to the actual bird location while recording the 

Universal Transverse Mercator (UTM) coordinates of the observer with a Garmin GPS 

(Garmin International, Inc, Olathe, Kansas, USA). Individuals and coveys were located at 

different times on subsequent days to capture any variability of diurnal patterns 

throughout the non-breeding season. A detailed explanation is described in Tanner et al. 

(2015). All trapping and handling methods complied with the protocol determined by the 
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Oklahoma State University’s Institutional Animal Care and Use Committee Permit (no. 

AG-11-22). 

Andersen-Gill Models 

We used Andersen-Gill (AG) models to estimate hazard rates for quail across both units 

(Andersen and Gill 1982) using the survival package in Program R (ver. 3.1.1, R 

Foundation for Statistical Computing, Vienna, Austria) due to monitoring gaps and left-

truncated entry data for individuals (based on staggered entry design [Pollock et al. 

1989]). This model is similar to a Cox proportional hazard model (CPHM), however it 

allows for time-varying covariates when estimating hazard rates (Fleming and Harrington 

1991, Therneau and Grambsch 2000, Murray 2006, Fieberg and DelGiudice 2009). To 

estimate bobwhite hazard rates, we left-censored individuals if they entered the 

population after our initial time interval (Oct 1) and right-censored individuals if their 

fate was unknown (Johnson et al. 2004).  

Our dataset consisted of 26 time intervals, which were the number of weeks 

during the non-breeding season (1 Oct-31 Mar). To estimate the effects of anthropogenic 

features on bobwhite survival, we estimated the mean weekly Euclidean distance (m) to a 

feature for each individual. This consisted of distance to: oil and gas well pads, buildings, 

and the four different road types (county road, primary WMA roads, restricted access 

WMA roads [truck and all-terrain vehicle {ATV} traffic], and restricted access WMA 

roads [ATV traffic only]). To determine if the presence of hunting affected survival in 

our population, we also included a categorical variable based on the unit in which an 

individual was located in. If an individual changed units during our study, it became a 

new individual in our dataset corresponding to the other management unit (hunted or 
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non-hunted). Other categorical variables included in our analysis were age (adult or 

juvenile) and year (2012-2013 [year 1], 2013-2014 [year 2], and 2014-2015 [year 3]). Sex 

(male or female) of individuals was not included as a covariate in our survival analysis as 

we expected no difference in harvest rates (Shupe et al. 1990) or survival (Cox et al. 

2004, Seckinger et al. 2008, Tanner et al. 2012) between sexes for the nonbreeding 

season. We stratified our third road category (restricted access roads [truck and ATV 

traffic]) values into three distance categories (<500 m, 500-1499 m, and >1500 m) as this 

variable did not meet the proportional hazard assumption (Fox 2002). The primary 

assumption of the AG model, like the CPHM, is that hazards from covariates are 

proportional over time (Johnson et al. 2004). To test this assumption, we plotted 

Schoenfeld residuals and assessed significant deviances of residual plots from 0 

(Therneau et al. 1990, Fox 2002). Finally, we included a global model in our survival 

analysis, which included the additive effects of all variables of interest. 

We used Akaike’s information criterion adjusted for small sample sizes (AICc) to 

rank models relating covariates to hazard rates for quail over the non-breeding season. 

We considered models with a ΔAICc <2 plausible models and determined the most 

parsimonious based on model weights (wi) and ΔAICc values (Burnham and Anderson 

2002). We built models that we found biologically meaningful or models that specifically 

addressed our research questions. We considered parameters with confidence intervals 

overlapping 0 to be statistically uninformative to our survival analysis. 

Resource Utilization Functions 

We used resource utilization functions (RUFs; Marzluff et al. 2004, Millspaugh et al. 

2006) to estimate the relationships between covey space use and environmental variables. 
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We estimated RUFs for coveys rather than individuals as space use by individuals within 

coveys has been shown to be non-independent (Janke and Gates 2013). We estimated 

95% fixed-kernel densities (Worton 1989, Seaman et al. 1999) for coveys having >20 

radio-telemetry location (Tanner et al. 2015) using the Geospatial Modelling 

Environment (GME; Spatial Ecology LLC, USA). Because we were interested in 

differences of space use between coveys during the hunting season, we only incorporated 

coveys having >20 (Taylor et al. 1999, Peters et al. 2015, Tanner et al. 2015) locations 

during the hunting season in our analysis. We did not incorporate locations in our 

analysis that occurred during the non-breeding season but were outside of the hunting 

season, as our location sample sizes would not have been large enough to estimate RUFs 

for these time periods. A likelihood cross-validation bandwidth estimator was used to 

obtain kernel density estimates (KDEs; Horne and Garton 2006).  

 Along with the distance-based anthropogenic feature variables included in our 

survival analysis, we also incorporated vegetation cover types and theoretical hunting 

pressure variables into our RUF analysis. As we did not have a direct measure of hunting 

pressure within our hunting unit over the course of the study, we incorporated hunter 

behavior data discussed in Richardson et al. (2008) to estimate areas of potentially high, 

medium, low, and no hunting pressure. The data presented by Richardson et al. (2008) 

incorporated vegetation cover, distance from roads (<500 m, 500-<1,500 m, 1,500-

<2,500 m, and >2,500 m), and % slope (<3% and >3%) data and used GPS data from 

hunters at Packsaddle WMA (Ellis County, Oklahoma, USA) to determine selection 

indices for quail hunters. They separated slope categories so that both categories 

contained ~50% of the WMA (Richardson 2006). We used these data to model potential 
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hunting pressure on our study site because road density (Packsaddle WMA: 18.6 m/ha 

[Dunkin et al. 2009]; Beaver River WMA 21.2 m/ha) and slope (<3% slope: 50.76% of 

the area; >3% slope: 49.24% of the area) were similar between WMAs. We incorporated 

these data into a model of potential hunting pressure on our study site through the use of 

the weighted overlay tool in ArcGIS 10.2. Taking into consideration the selection indices 

of hunters provided by Richardson et al. (2008), we used vegetation cover, distance from 

roads, and % slope in our model, with each variable having equal weight. We assigned 

values (1-4) to each category within these variables, where 1 represented the highest level 

of theoretical hunting pressure and 4 represented the lowest. Table 1 indicates the values 

assigned to all categories within our variables.  

 We extracted values for space use and all environmental variables to points 

centered on every cell within each coveys home range. We then used the Ruf.fit package 

in Program R (ver. 3.1.1) to estimate coefficients of resource use for each variable and for 

every covey. All values of space use were loge-transformed to meet the linearity 

assumption for multiple regression models. Because the variables related to vegetation 

cover type and theoretical hunting pressure were categorical variables, we removed a 

class in each variable to serve as a reference class in our analysis (Jachowski et al. 2014). 

Therefore, we used the sand sagebrush cover type and the highest level of theoretical 

hunting pressure as the reference class for the vegetation cover and hunting pressure 

variables, respectively. The sand sagebrush class was used as a reference because it is the 

most abundant vegetation type on our study site (Jachowski et al. 2014). To directly 

address the question of whether bobwhite were altering their space use in relation to 

higher hunting pressure, we used the highest theoretical hunting pressure class as a 
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reference class to compare bobwhite space use of other hunting pressure categories. 

Mean standardized β coefficients (𝛽) and conservative estimates of variance were 

calculated for each environmental variable to estimate overall population responses to 

these variables across the hunted and non-hunted units (Marzluf et al. 2004). 

Standardized coefficients with confidence intervals overlapping 0 were considered non-

significant. Standardized coefficients for distance-based variables would indicate a 

positive relationships between space use and the variable if a negative value was 

estimated (i.e., space use increases with a decrease in distance from a feature). Finally, 

we estimated the number of individual coveys that had significant positive, negative, or 

non-significant relationships to our environmental variables to indicate differences 

among coveys.  

Movement Analysis 

To compare estimates of covey movement across hunted and non-hunted units, we 

calculated average daily movement across the non-breeding season for coveys with >10 

locations (Brøseth and Pedersen 2010). Coveys with >10 locations, rather than those with 

>20 locations, were used in movement analysis because we were not estimating KDEs for 

this stage of our analysis. We considered average daily movement to be the Euclidean 

distance between a covey’s locations across consecutive days (Williams et al. 2000, 

Brøseth and Pedersen 2010, Unger et al. 2012). Linear mixed effect models (Pinheiro and 

Bates 2000) were used to assess the influence of units, years, weekly time, and all 

possible interactions between these variables on covey movement. To meet the 

assumption of data normality, we used a CoxBox transformation (Box and Cox 1964) 

approach to determine the most appropriate transformation for our movement data. Based 
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on this approach, we used 𝑥0.101 to transform our data. A covey identity was included as a 

random effect to account for interdependence of movement data within each covey 

(Brøseth and Pedersen 2010). We used an AICc approach and used model weights (wi) 

and a ΔAIC <2 to determine the most parsimonious model (Burnham and Anderson 

2002). Finally, we used a restricted maximum likelihood (REML) approach to obtain 

parameter estimates for fixed effects in our models (Brøseth and Pedersen 2010) and 

considered any parameters with confidence intervals overlapping 0 to be non-significant 

in explaining average daily movement between coveys. 

RESULTS 

The quail hunting season began on November 10, 9, and 8 in 2012, 2013, and 2014 

respectively and ended on February 15 of the following year for all three years. A total of 

85, 62, and 45 bobwhite were alive and actively being monitored at the beginning of 

hunting season in 2012, 2013, and 2014 respectively. However, because we trapped 

periodically throughout the non-breeding season on both units, a total of 225, 211, and 

249 bobwhite were captured and radio-collared during the 2012, 2013, and 2014 non-

breeding seasons, respectively. This resulted in a total of 59, 62, and 42 unique bobwhite 

coveys during the 2012, 2013, and 2014 non-breeding seasons, respectively. Finally, a 

total of 16 and 14 unique coveys with >20 locations were located on the hunted and non-

hunted units, respectively 

Bobwhite survival 

Based on AICc values, the global model was the most parsimonious model when 

explaining bobwhite survival in relation to anthropogenic features and disturbance during 

the non-breeding season (Table 2). However, of all the variables retained in this model, 
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only three variables were considered significant within this model. These included a year 

effect on the year 2 season (year 2 season hazard rate [HR] = 0.60, SE = 0.22, P = 0.02), 

age (juvenile HR = 1.39, SE = 0.16, P = 0.04), and distance to primary WMA roads (HR 

= 1.0007, SE = 0.0002, P = 0.0009).  Individuals alive during the year 2 non-breeding 

season were 40% less likely to experience mortality compared to birds during the year 1 

non-breeding season, while only 9% less likely to experience mortality when compared 

to individuals alive during the year 3 non-breeding season (Figure 2A; year 3 season HR 

= 0.71, SE = 0.26, P = 0.17). Furthermore, juvenile bobwhite were 39% more likely to 

experience mortality compared to adults during the non-breeding season (Figure 2B) 

across all years. Finally, every 10 m decrease in distance from primary WMA roads was 

associated with a 0.07% increase in probability of mortality.  

 There were no differences in survival for individuals on hunted versus non-hunted 

units in our top model (P = 0.26) nor in our model selection results (Unit model ΔAICc = 

4.83). Furthermore, based on our hazard rate curves, there is no indication that once the 

hunting season started, hazard rates for birds increased significantly (Figure 2C). 

However, survival did consistently decrease across weeks for both hunted and non-

hunted units during the non-breeding season with ~20% of individuals surviving through 

the season (Figure 2C). 

Covey resource selection 

Across all three years, a total of 30 coveys representing 65 birds were used in estimating 

RUFs with locations occurring only during the quail hunting season. Salt cedar 

vegetation cover, low hunting pressure, and no hunting pressure variables were not 
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contained within the KDEs for all possible coveys in our analysis, resulting in lower 

sample sizes for these variables as denoted in Tables 3 and 4.   

 Generally speaking, there was little difference in space use of hunted versus non-

hunted coveys in relation to our variables of interest. Furthermore, almost all variables 

included in our analysis had a non-significant relationship to covey space use based on 

(𝛽) estimates with confidence intervals that overlapped 0. Of all the variables analyzed, 

only the exposed soil/sparse vegetation class had a significant difference between hunted 

and non-hunted coveys (Tables 3 and 4) when compared to use of sand sagebrush. 

Coveys on the hunted unit avoided this vegetation cover type significantly when 

compared to non-hunted coveys ((𝛽) = -0.01, CI = -0.02 to -0.0001), however if pooled 

across all coveys (both hunter and non-hunted coveys), this relationship was not 

consistent (pooled (𝛽) = -0.005, CI = -0.012 to 0.002).  

Covey movement 

There were no differences in covey average daily movement between hunted and non-

hunted units across all three seasons during our study (Table 5). Time-related variables 

(week and year) were the best explanatory variables included in our analysis. However, 

the parameter estimate for the week variable (β = 0.001, SE = <0.001) was not 

significantly different from 0 and thus was not considered a strong explanatory variable 

for covey average daily movement. When compared to year 1, only year 3 was 

significantly different based on parameter estimate confidence intervals (β = -0.08, SE = 

<0.001) indicating that average daily movement for coveys during year 3 was lower than 

years 1 and 2.  

DISCUSSION 
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We found no evidence that the presence of oil/gas pads or buildings increased the risk of 

mortality or affected space use of bobwhite coveys regardless of hunting. However, risk 

of mortality increased as the distance between coveys and primary WMA roads 

decreased, yet this relationship was not different between hunted and non-hunted units. 

Furthermore, bobwhite coveys did not select areas categorized with lower theoretical 

hunting pressure when compared to areas with higher theoretical hunting pressure, and 

distance-based variables related to anthropogenic features had no significant effect on 

covey space use for either  hunted or non-hunted units. Finally, bobwhite on the hunted 

unit did avoid exposed soil/sparse vegetation more than expected when compared to birds 

on the non-hunted unit. However, significant relationships of survival and space use to 

anthropogenic features and vegetation were weak overall. 

 Understanding the influence of anthropogenic development in landscapes is 

becoming increasingly important as energy development continues to increase. For some 

ground nesting birds there are documented negative behavioral responses to this 

development (Winder et al. 2013, Hovick et al. 2014). However, neutral effects of space 

use by bobwhite in relation to anthropogenic features has been shown in similar 

vegetation communities previously (Dunkin et al. 2009). Our data further support that 

bobwhite are not negatively responding to the presence of anthropogenic features based 

on space use and movement patterns. It is evident that bobwhite have some level of 

tolerance to anthropogenic features (Errington and Hamerstrom 1936, Rosene 1969, 

Dunkin et al. 2009, Unger et al. 2012, Unger et al. 2015). Yet, if usable space is a 

measure of an area’s potential to sustain bobwhite populations (Guthery 1997), at some 

density these anthropogenic features will eventually detract significant amounts of usable 
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space (Masden et al. 2009, Pruett et al. 2009). As an example, oil and gas well 

development in North America ultimately results in a loss of net primary productivity, 

which also indicates the loss of vegetation cover in an area (Allred et al. 2015). Additive 

effects of this development could remove a significant amount of usable space within a 

finite area. It is likely that we, along with Dunkin et al. (2009), did not detect an 

overwhelmingly negative response of space use by bobwhite to such features because 

feature densities were relatively low throughout our study sites.  

Beyond differences in survival between age classes and years, the average weekly 

distance (m) to primary WMA roads was significant in explaining non-breeding season 

survival during our study. The increased risk of mortality associated with these primary 

WMA roads could be attributed to an increase in exposure to meso-predators which often 

use these roads as travel corridors (Frey and Conover 2006). Other causes for this 

relationship may be related to increased exposure to vehicle traffic when approaching 

these primary roads. For instance, the presence of roads can increase mortality in greater 

sage-grouse (Centrocercus urophasianus) through risk of collision mortalities (Connelly 

et al 2000). However, we expect this is unlikely on our site as only 1 bird was suspected 

of a vehicle collision related mortality and because traffic was generally limited to 

researchers, hunters, and occasional commercial traffic related to energy pad 

maintenance. We predicted that if the presence of anthropogenic features increased the 

risk of harvest mortality for bobwhite, an interactive relationship would exist between 

these features and the unit (hunted versus non-hunted). Yet, our model including the 

interaction between distance to primary WMA roads and unit was not considered a 

plausible model (ΔAIC = 4.02). Furthermore, the singular model with only the unit 
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variable was also a poor performing model, and no difference in survival between our 

hunted and non-hunted individuals was detected.  

Bobwhite have been shown to be attracted to roads during both breeding and non-

breeding seasons (Dunkin et al. 2009, Unger et al. 2015, Brooke et al. 2015) while quail 

hunters also tend to hunt in areas <1,500 m from roads (Richardson et al. 2008). 

Therefore, if hunting were to have a significant effect on bobwhite survival on our study 

site, we would expect this interactive term to be significant with a larger effect size on 

our hunting unit. The lack of support for the interactive effect between distance to 

primary WMA roads and units could be attributed to a low amount of hunting pressure on 

our study site. Generally speaking, Oklahoma quail hunter numbers tend to decrease as 

quail densities decrease (Guthery et al. 2005). Based on August and October quail 

roadside surveys conducted by the Oklahoma Department of Wildlife Conservation 

(ODWC), 2012, 2013, and 2014 quail numbers were down 70%, 72.5%, and 5% 

respectively compared to 25 year averages in northwest Oklahoma (ODWC, unpublished 

data). If hunter numbers followed the trend of quail densities, hunting pressure should 

have been greatest during the 2014-2015 hunting season. However, 2013-2014 non-

breeding season survival was the highest during our study, when quail densities were 

estimated the lowest by roadside surveys within the northwest Oklahoma region. All 

indications from ODWC staff on site indicate that hunting pressure was in fact low but 

present throughout the study period (W. R. Storer, personal communication).  

It is evident based on our results that there is some amount of slack (Guthery 

1999) in bobwhite requirements of usable space on Beaver River WMA. This is 

illustrated by the general lack of significance in space us for all anthropogenic features 
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during our study. However, there is undoubtedly a threshold in which anthropogenic 

features and or disturbance will begin to negatively influence bobwhite space use and 

survival. This has been shown in populations occupying areas with higher urban and 

industrial development (Lohr et al. 2011). The lack of significance of bobwhite response 

during our study should be considered within the context of the low anthropogenic 

feature density and large amount of usable space across our study sites. Yet, if bobwhite 

are to be managed as an umbrella species (Crosby et al. 2015), consideration of faunal 

response to these features should be given beyond just the single species. For instance, 

the presence of many anthropogenic features (such as oil/gas features) are known to alter 

behavioral patterns of songbirds, such as song characteristics and territory sizes, which 

can potentially increase predatory exposure (Machtans 2006, Francis et al. 2011). 

Furthermore, many other Galliformes that occupy similar vegetation communities as 

bobwhite are known to respond negatively to these structures (Hovick et al. 2014), thus 

implications of introducing anthropogenic features across a landscape should consider the 

full suite of species that occupy the landscape. Despite the broader implications, it 

appears that bobwhite are resilient to anthropogenic development as long as adequate 

useable space exists on the landscape. 

IMPLICATIONS 

Relatively low levels of harvest pressure appear to have no negative impact on bobwhite 

populations, as illustrated by our results. There is also no evidence that anthropogenic 

features increased hunting pressure across our study site, however primary WMA roads 

appeared to increase mortality risk due to some unknown cause.  Possible explanations 

are potential increased exposure to meso-predators or disturbance from vehicle traffic. 
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We emphasize that low densities of anthropogenic features such as roads and oil/gas 

structures are compatible with bobwhite management within the context of landscapes 

already providing large areas of usable space. However, negative confounding impacts 

related to interactions between anthropogenic features and hunting pressure may exist in 

other regions within the bobwhite distribution. Therefore, as Williams et al. (2004) 

discussed, regional efforts should be made to assess whether anthropogenic development 

may be increasing hunting pressure so that harvest management is scaled appropriately 

based on local landscape configuration.  
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Table 1. Variable weights1 and assigned values given to vegetation cover types, distance from 

road categories, and slope (%) categories in estimating potential hunting pressure for northern 

bobwhite across the hunted unit of Beaver River WMA, Beaver County, Oklahoma, USA, 2012-

2015. Values were derived from data presented by Richardson et al. (2008) where 1 represents 

the highest potential hunting pressure and 4 represents the lowest, and were incorporated into a 

weighted overlay analysis in ArcGIS 10.2. 

Variable 
Assigned 

value 

Vegetation cover class 
 

Sand sagebrush 1 

Mixed shrub 2 

Mixed grass 2 

Shortgrass/yucca 2 

Exposed soil/sparse 

vegetation 
3 

Bare ground 3 

Food plot 3 

Salt cedar 4 

Distance from roads (m) 
 

<500  1 

500-<1,500  2 

1,500-<2,500  3 

>2, 500  4 

Slope (%) 
 

<3 1 

>3 2 
1All three variables received equal (33.33%) weights in the weighted overlay analysis.
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Table 2. Model selection of Andersen-Gill hazard models of survival for northern bobwhite 

during the non-breeding season at Beaver River WMA, Beaver County, Oklahoma, 2012-2015. 

Model K AICc ΔAICc wi 
Model 

likelihood 

Global 11 1622.81 0 0.31 -800.36 

Year + age + unit 4 1624.49 1.67 0.13 -808.24 

Primary WMA roads x unit + age 3 1624.67 1.86 0.12 -809.33 

Age 1 1624.69 1.88 0.12 -811.34 

Year 2 1624.82 2.01 0.11 -810.41 

Primary WMA roads 1 1626.13 3.32 0.06 -812.07 

Primary WMA roads*unit 2 1626.83 4.02 0.04 -811.41 

Gas wells 1 1626.85 4.04 0.04 -812.42 

Unit 1 1627.64 4.83 0.03 -812.82 

Buildings 1 1627.91 5.1 0.02 -812.95 

All roads 5 1629.15 6.34 0.01 -809.57 

All anthropogenic features 7 1630.67 7.86 0.01 -808.32 



 

158 

 

Table 3. Mean standardized resource utilization function coefficients (𝛽)1, lower and upper 

confidence intervals (LCI and UCI), and number of coveys with positive (+), negative (-), or 

non-significant (ns) β values indicating the relationship of space use to distance to anthropogenic 

features (m), theoretical hunting pressure2, and vegetation covey types3. Data is provided for 

northern bobwhite coveys during the quail hunting season4 (2012-2015) on a hunted unit of 

Beaver River Wildlife Management Area, Beaver County, Oklahoma, USA. 

Variable n (β) LCI UCI + - ns 

Medium hunting 

pressure 
16 0.02 -0.006 0.04 3 1 12 

Low hunting pressure 5 0.01 -0.01 0.03 0 0 5 

No hunting pressure 

(safety zones) 
5 0.02 -0.11 0.15 2 2 1 

Distance to buildings 16 -0.70 -1.90 0.50 5 5 6 

Distance to gas/oil 

wells 
16 0.07 -0.25 0.38 6 6 4 

Distance to county 

roads 
16 0.38 -0.21 0.98 6 5 5 

Distance to primary 

WMA roads 
16 0.13 -0.38 0.63 6 5 5 

Distance to restricted 

(truck/ATV) WMA 

roads 

16 0.06 -0.16 0.29 8 5 3 

Distance to restricted 

(ATV only) WMA 

roads 

16 -0.17 -0.75 0.41 5 6 5 

Mixed shrub 16 -0.002 -0.02 0.01 0 0 16 

Mixed grass 16 -0.001 -0.01 0.01 0 0 16 

Shortgrass/yucca 16 -0.003 -0.02 0.01 0 1 15 

Exposed soil/sparse 

vegetation 
16 -0.01 -0.02 -0.0001 0 1 15 

Bare ground 16 -0.01 -0.02 0.0006 0 1 15 

Salt cedar 8 -0.01 -0.05 0.02 0 2 6 
1 Confidence intervals were estimated based on conservative standard errors that include inter-

animal variation (Marzluff et al. 2004). 
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2Variable coefficients are relative to bobwhite covey space use in areas of highest theoretical 

hunting pressure. 

3Variable coefficients are relative to bobwhite covey space use in sand sagebrush. 

4The Oklahoma quail hunting season began on November 10, 9, and 8 in 2012, 2013, and 2014 

respectively and ended on February 15 during all three years.
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Table 4. Mean standardized resource utilization function coefficients (𝛽)1, lower and upper 

confidence intervals (LCI and UCI), and number of coveys with positive (+), negative (-), or 

non-significant (ns) β values indicating the relationship of space use to distance to anthropogenic 

features (m) and vegetation covey types2. Data is provided for northern bobwhite coveys during 

the quail hunting season3 (2012-2015) on a non-hunted unit of Beaver River Wildlife 

Management Area, Beaver County, Oklahoma, USA. 

Variable n (β) LCI UCI + - ns 

Distance to buildings 14 -0.60 -1.66 0.47 4 7 3 

Distance to gas/oil 

wells 
14 -0.21 -0.57 0.16 6 5 3 

Distance to county 

roads 
14 -0.07 -0.70 0.57 5 4 5 

Distance to primary 

WMA roads 
14 -0.17 -0.50 0.15 3 7 4 

Distance to restricted 

(truck/atv) WMA 

roads 

14 -0.21 -0.78 0.36 3 7 4 

Distance to restricted 

(atv only) WMA roads 
14 -0.30 -0.67 0.08 3 4 7 

Mixed shrub 14 0.006 -0.005 0.018 1 0 13 

Mixed grass 14 -0.004 -0.024 0.016 1 1 12 

Shortgrass/yucca 14 0.01 -0.004 0.02 0 0 14 

Exposed soil/sparse 

vegetation 
14 0.002 -0.007 0.011 1 0 13 

Bare ground 14 0.01 -0.01 0.02 1 0 13 

Salt cedar 5 0.001 -0.018 0.021 0 0 5 
1 Confidence intervals were estimated based on conservative standard errors that include inter-

animal variation (Marzluff et al. 2004). 

2Variable coefficients are relative to bobwhite covey space use in sand sagebrush. 

3The Oklahoma quail hunting season began on November 10, 9, and 8 in 2012, 2013, and 2014 

respectively and ended on February 15 during all three years.  
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Table 5. Akaike Information Criterion (AIC) model selection results of mixed effect models1 

explaining effects of time (week), year, and hunting (unit) on average daily movement of 

northern bobwhite during the non-breeding season 2012-2015 on Beaver River WMA, Beaver 

County, Oklahoma. 

Model K AICc ΔAICc wi 
Model 

Likelihood 

Intercept + Week + Year 6 
-

587.58 
0 0.21 299.88 

Intercept + Week + Year + Unit + 

Week*Year 
9 

-

587.33 
0.26 0.19 302.86 

Global 14 
-

587.29 
0.3 0.18 308.1 

Intercept + Week + Year + Unit + 

Year*Unit 
9 -587.2 0.39 0.17 302.79 

Intercept + Year 5 
-

586.18 
1.41 0.1 298.15 

Intercept + Week + Year + Unit 7 
-

585.53 
2.06 0.08 299.88 

Intercept + Year + Unit 6 
-

584.12 
3.46 0.04 298.15 

Intercept + Week + Year + Unit + 

Week*Unit 
8 

-

583.47 
4.11 0.03 299.89 

Intercept + Week 4 
-

568.85 
18.73 0 288.47 

Intercept 3 
-

568.39 
19.19 0 287.22 

Intercept + Week + Unit 5 -567.9 19.68 0 289.02 

Intercept + Week*Unit 5 
-

567.14 
20.45 0 288.63 

Intercept + Unit 4 
-

567.05 
20.53 0 287.57 

1 Covey identity was included as a random effect in all models. 
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Figure 1. Northern bobwhite (Colinus virginianus) non-breeding season survival as determined 

from Andersen-Gill hazard models. Survival curves are broken out by year (A), age (B), and our 

overall best performing model (C) for bobwhite on Beaver River WMA, Beaver County, 

Oklahoma, USA, 2012-2015. Week numbers correspond to the non-breeding season beginning 

on October 1 of each year. Vertical lines indicate the beginning and end of the quail hunting 

season in Oklahoma.



 

163 

 

Figure 1 continued.
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CHAPTER V 

 

 

SUPPLEMENTARY MATERIAL 
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Table S1 Mean relative abundance (RA) estimates1 and standard errors (SE) of temperate North 

American quail species2 and associated conditions3 of distributions, based on ENMs using the 

Maxent algorithm, at 75% ensemble forecasting agreement. Significant difference in RA 

estimates indicated by Tukey-Kramer test results4 from a one-way ANOVA. 

Species Condition 
Mean 

RA 
SE 

Tukey-

Kramer 

grouping 

Callipepla 

californica 

2 7.52 0.09 A 

4 4.87 0.55 B 

6 5.19 0.37 B 

8 4.55 0.20 B 

Callipepla 

gambelii 

2 10.09 0.14 A 

4 5.29 2.05 BA 

6 0.37 0.06 B 

8 1.72 0.71 B 

Callipepla 

squamata 

2 3.20 0.04 A 

4 1.13 0.35 B 

6 3.47 0.18 A 

8 1.78 0.07 B 

Colinus 

virginianus 

2 7.41 0.05 D 

4 16.40 1.76 A 

6 12.17 0.39 C 

8 14.34 0.35 B 

Oreortyx 

pictus 

2 2.37 0.04 A 

4 0.99 0.24 B 

6 1.50 0.12 B 

8 1.64 0.11 BA 
1 Estimate from Sauer et al. (2014). Values generally predict the average number of birds for a 

species that can be seen along roadsides in ~2.5 hours. 

2 Data not available for C. montezumae. 

3 Descriptions for possible distribution conditions are given in Table 2. 

4 Letter categories represent significant differences between relative abundance values between 

scenarios at α = 0.05 level.
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Table S2 Mean relative abundance (RA) estimates1 and standard errors (SE) of temperate North 

American quail species2 and associated conditions3 of distributions, based on ENMs using the 

Maxent algorithm, at 100% ensemble forecasting agreement. Significant difference in RA 

estimates indicated by Tukey-Kramer test results4 from a one-way ANOVA. 

Species Condition 
Mean 

RA 
SE 

Tukey-

Kramer 

grouping 

Callipepla 

californica 

2 8.05 0.10 A 

4 5.45 0.29 BC 

6 6.38 0.26 B 

8 5.09 0.13 C 

Callipepla 

gambelii 

2 10.38 0.14 A 

4 3.89 0.50 B 

6 4.94 0.45 B 

8 2.37 0.48 B 

Callipepla 

squamata 

2 3.00 0.05 B 

4 4.65 0.20 A 

6 3.02 0.07 B 

8 2.81 0.07 B 

Colinus 

virginianus 

2 6.94 0.05 C 

4 19.14 0.39 A 

6 5.82 0.11 D 

8 15.60 0.25 B 

Oreortyx 

pictus 

2 2.65 0.05 A 

4 2.09 0.23 B 

6 1.76 0.07 BC 

8 1.54 0.06 C 
1 Estimate from Sauer et al. (2014). Values generally predict the average number of birds for a 

species that can be seen along roadsides in ~2.5 hours. 

2 Data not available for C. montezumae. 

3 Descriptions for possible distribution conditions are given in Table 2. 

4 Letter categories represent significant differences between relative abundance values between 

scenarios at α = 0.05 level.
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Table S3. Percent variable contribution of variables used to estimate northern bobwhite (Colinus virginianus) space use across 

temperature categories using Maxent and 30 m resolution. Observations were collected from 2012-2015 at Beaver River WMA, 

Beaver County, OK, USA. 

1C. V. stands for coefficient of variation. 

 

  Variable contribution (%) 

  Temperature Category (°C) 

Variable >35 
30 to 

35 

25 to 

30 

20 to 

25 

15 to 

20 

10 to 

15 

5 to 

10 

0 to 

5 

-5 to 

0 

-10 to 

-5 

-15 to 

-10 

-20 to 

-15 

Area C.V.1 (mixed grass) 22.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.71 9.66 18.81 0.00 

Edge density 28.81 17.35 25.34 47.20 31.45 11.30 12.20 0.00 0.00 0.00 0.00 0.00 

Edge density (bare ground) 0.00 0.00 11.16 0.00 0.00 5.83 0.00 8.12 11.24 8.80 14.31 22.48 

Edge density (mixed shrub) 14.14 0.00 0.00 0.00 0.00 0.00 0.00 18.59 10.48 11.46 28.03 14.73 

Edge density (sagebrush) 12.34 19.05 24.28 9.14 15.98 9.62 0.00 0.00 13.04 0.00 0.00 0.00 

Edge density (salt cedar) 0.00 11.71 13.30 13.12 19.45 21.62 19.67 9.31 8.32 9.29 0.00 0.00 

Edge density (shortgrass/yucca) 12.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean area 0.00 27.12 20.71 21.28 33.12 51.63 44.64 26.73 25.34 32.60 0.00 0.00 

Mean area (bare ground) 0.00 6.39 0.00 0.00 0.00 0.00 0.00 6.31 0.00 0.00 0.00 0.00 

Mean area (mixed grass) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.37 0.00 0.00 0.00 0.00 

Mean area (mixed shrub) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.84 7.30 20.78 14.26 33.09 

Mean area (sagebrush) 3.76 0.00 0.00 9.26 0.00 0.00 0.00 6.92 0.00 0.00 16.12 0.00 

Mean shape index (mixed shrub) 0.00 0.00 0.00 0.00 0.00 0.00 15.52 0.00 0.00 0.00 0.00 0.00 

Perimeter-area fractal dimension 0.00 0.00 5.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perimeter-area fractal dimension 

(bare ground) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.07 

Perimeter-area fractal dimension 

(mixed grass) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.91 0.00 0.00 0.53 
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Table S3. Continued. 

  Variable contribution (%) 

  Temperature Category (°C) 

Variable >35 
30 to 

35 

25 to 

30 

20 to 

25 

15 to 

20 

10 to 

15 

5 to 

10 

0 to 

5 

-5 to 

0 

-10 to 

-5 

-15 to 

-10 

-20 to 

-15 

Perimeter-area fractal dimension 

(mixed shrub) 
0.00 10.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perimeter-area fractal dimension 

(sagebrush) 
0.00 8.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perimeter-area fractal dimension 

(salt cedar) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 

Perimeter-area fractal dimension 

(shortgrass/yucca) 
0.00 0.00 0.00 0.00 0.00 0.00 7.97 8.54 8.65 7.40 8.46 15.19 

Vegetation type 5.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.90 
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Table S4. Percent variable contribution of variables used to estimate northern bobwhite (Colinus virginianus) space use across 

temperature categories using Maxent and 2 m resolution. Observations were collected from 2012-2015 at Beaver River WMA, Beaver 

County, OK, USA. 

  Variable contribution (%) 

  Temperature Category (°C) 

Variable >35 
30 to 

35 

25 to 

30 

20 to 

25 

15 to 

20 

10 to 

15 

5 to 

10 

0 to 

5 

-5 to 

0 

-10 to 

-5 

-15 to 

-10 

-20 to 

-15 

2013 N.D.V.I. 5.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.47 

Area C.V.1 10.67 13.17 8.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.69 

Area C.V.1 (bare ground) 6.01 18.27 11.44 13.24 12.82 10.31 13.92 19.05 15.85 16.03 21.21 30.82 

Area C.V.1 (mixed grass) 0.00 0.00 0.00 0.00 0.00 0.00 6.53 0.00 5.05 7.45 0.00 0.00 

Area C. V.1 (shortrass/yucca) 0.00 0.00 0.00 0.00 0.00 0.00 6.65 0.00 6.85 9.08 0.00 0.00 

Edge density 0.00 42.97 31.16 47.87 48.55 35.86 15.64 11.47 0.00 0.00 0.00 0.00 

Edge density (bare ground) 0.00 0.00 0.00 0.00 0.00 12.99 10.91 14.35 16.87 17.50 6.66 0.00 

Edge density (mixed grass) 33.67 18.43 15.54 17.35 8.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Edge density (mixed shrub) 0.00 0.00 14.65 12.45 21.09 27.02 30.41 55.13 36.64 39.76 47.49 35.22 

Edge density (sagebrush) 23.49 0.00 8.96 0.00 0.00 0.00 11.49 0.00 17.62 9.33 0.00 0.00 

Edge density (salt cedar) 0.00 7.56 8.89 7.79 7.97 13.82 7.41 0.00 0.00 0.00 0.00 0.00 

Edge density 

(shortgrass/yucca) 
6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perimeter-area fractal 

dimension (bare ground) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.92 5.09 

Perimeter-area fractal 

dimension (mixed shrub) 
7.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vegetation type 9.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.72 14.69 
1C. V. stands for coefficient of variation. 
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Table S5. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for January. 

          Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 to 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 to 30 0.00 0.20 0.20 0.20 0.68 0.68 0.20 

20 to 25 1.34 1.73 1.73 1.73 2.43 2.43 1.73 

15 to 20 3.48 6.09 6.09 6.09 8.90 8.90 6.09 

10 to 15 11.25 13.57 13.57 13.57 15.33 15.33 13.57 

5 to 10 17.43 20.01 20.01 20.01 21.90 21.90 20.01 

0 to 5 23.80 24.17 24.17 24.17 25.16 25.16 24.17 

-5 to 0 25.31 23.18 23.18 23.18 18.74 18.74 23.18 

-10 to -5 13.24 8.67 8.67 8.67 5.62 5.62 8.67 

-15 to -10 3.29 1.60 1.60 1.60 0.59 0.59 1.60 

-20 to -15 0.29 0.21 0.21 0.21 0.07 0.07 0.21 

N/A2 0.58 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S6. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for February. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 to 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 to 30 0.14 0.54 0.62 0.54 0.96 0.75 0.62 

20 to 25 1.15 1.57 1.92 1.57 2.68 2.20 1.92 

15 to 20 4.25 6.71 7.19 6.71 8.56 8.04 7.19 

10 to 15 11.19 13.00 14.31 13.00 15.78 14.83 14.31 

5 to 10 17.23 19.94 20.01 19.94 21.57 21.10 20.01 

0 to 5 23.55 24.71 25.09 24.71 24.91 24.87 25.09 

-5 to 0 23.39 20.89 19.69 20.89 17.68 19.04 19.69 

-10 to -5 13.49 8.23 7.04 8.23 4.19 5.18 7.04 

-15 to -10 3.77 3.70 3.49 3.70 3.19 3.44 3.49 

-20 to -15 1.38 0.26 0.19 0.26 0.03 0.09 0.19 

N/A2 0.45 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S7. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for March. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 to 35 0.76 2.49 2.49 1.98 3.95 3.48 2.49 

25 to 30 4.84 5.50 5.50 5.38 6.42 6.10 5.50 

20 to 25 7.80 11.25 11.25 10.12 13.31 12.58 11.25 

15 to 20 14.29 16.89 16.89 16.59 19.00 18.71 16.89 

10 to 15 19.55 19.93 19.93 19.58 20.47 20.45 19.93 

5 to 10 20.74 20.19 20.19 20.63 18.93 19.32 20.19 

0 to 5 17.62 14.15 14.15 14.90 11.27 11.55 14.15 

-5 to 0 9.89 7.05 7.05 8.17 4.39 5.46 7.05 

-10 to -5 2.42 0.79 0.79 0.87 1.13 0.70 0.79 

-15 to -10 1.50 1.33 1.33 1.33 0.79 1.26 1.33 

-20 to -15 0.35 0.18 0.18 0.22 0.09 0.14 0.18 

N/A2 0.25 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S8. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for April. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.29 1.46 1.46 1.15 2.56 0.02 1.46 

30 to 35 3.10 4.17 4.17 3.70 6.20 0.06 4.17 

25 to 30 7.13 9.43 9.43 8.80 11.35 0.11 9.43 

20 to 25 13.01 18.55 18.55 17.29 20.25 0.20 18.55 

15 to 20 22.29 22.62 22.62 22.87 22.09 0.23 22.62 

10 to 15 21.01 19.85 19.85 20.04 19.15 0.19 19.85 

5 to 10 17.88 12.87 12.87 14.24 11.67 0.12 12.87 

0 to 5 10.17 8.71 8.71 8.98 5.49 0.06 8.71 

-5 to 0 4.43 2.33 2.33 2.89 1.25 0.02 2.33 

-10 to -5 0.68 0.02 0.02 0.03 0.00 0.00 0.02 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.00 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S9. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for May. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 3.20 9.14 9.14 7.31 15.29 12.18 9.14 

30 to 35 12.09 14.21 14.21 14.43 15.73 14.64 14.21 

25 to 30 15.73 18.86 18.86 18.07 22.72 21.43 18.86 

20 to 25 22.72 25.26 25.26 25.12 25.04 25.26 25.26 

15 to 20 25.04 19.04 19.04 20.18 11.97 15.25 19.04 

10 to 15 11.97 8.23 8.23 9.00 5.56 6.84 8.23 

5 to 10 5.56 3.32 3.32 3.65 3.11 3.21 3.32 

0 to 5 3.11 1.85 1.85 2.10 0.54 1.14 1.85 

-5 to 0 0.54 0.07 0.07 0.09 0.00 0.02 0.07 

-10 to -5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.04 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S10. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for June. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 9.71 19.19 21.34 16.93 27.97 23.36 19.19 

30 to 35 18.26 23.56 24.70 23.05 27.42 25.48 23.56 

25 to 30 27.42 26.49 26.01 26.22 24.16 25.68 26.49 

20 to 25 24.16 22.77 21.59 24.04 16.79 20.34 22.77 

15 to 20 16.79 7.20 5.94 8.36 3.41 4.75 7.20 

10 to 15 3.41 0.78 0.40 1.35 0.22 0.37 0.78 

5 to 10 0.22 0.00 0.00 0.02 0.00 0.00 0.00 

0 to 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-5 to 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-10 to -5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.02 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S11. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for July. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 17.51 27.02 27.02 24.97 35.72 31.15 27.02 

30 to 35 18.20 22.58 22.58 21.75 27.40 25.47 22.58 

25 to 30 27.40 27.42 27.42 27.07 23.07 26.04 27.42 

20 to 25 23.07 18.33 18.33 20.83 12.50 14.29 18.33 

15 to 20 12.50 4.44 4.44 5.10 1.13 2.88 4.44 

10 to 15 1.13 0.04 0.04 0.10 0.00 0.00 0.04 

5 to 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 to 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-5 to 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-10 to -5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.18 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S12. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for August. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 9.50 20.42 20.42 18.19 30.83 28.32 20.42 

30 to 35 21.33 22.73 22.73 22.89 24.76 24.21 22.73 

25 to 30 24.76 29.98 29.98 27.59 29.53 30.04 29.98 

20 to 25 29.53 23.34 23.34 26.48 14.08 16.29 23.34 

15 to 20 14.08 3.46 3.46 4.76 0.77 1.13 3.46 

10 to 15 0.77 0.03 0.03 0.06 0.00 0.00 0.03 

5 to 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 to 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-5 to 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-10 to -5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.02 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S13. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for September. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 3.64 10.67 9.11 9.11 15.69 14.02 10.67 

30 to 35 11.86 19.15 18.43 18.43 20.40 19.77 19.15 

25 to 30 20.40 24.09 23.05 23.05 27.53 26.81 24.09 

20 to 25 27.53 27.12 27.67 27.67 22.98 24.16 27.12 

15 to 20 22.98 14.38 16.27 16.27 10.54 11.95 14.38 

10 to 15 10.54 4.46 5.07 5.07 2.82 3.24 4.46 

5 to 10 2.82 0.10 0.37 0.37 0.00 0.00 0.10 

0 to 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-5 to 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-10 to -5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.04 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S14. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for October. 

  Percent time (minutes/month) 

Temperature 

category 

(°C) 

2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 1.02 1.02 0.67 2.26 1.57 1.02 

30 to 35 2.26 5.09 5.09 4.46 7.53 6.29 5.09 

25 to 30 7.53 11.38 11.38 10.51 14.53 12.78 11.38 

20 to 25 14.53 19.98 19.98 19.69 22.77 21.88 19.98 

15 to 20 22.77 23.46 23.46 22.61 24.11 23.87 23.46 

10 to 15 24.11 21.92 21.92 22.58 18.50 20.18 21.92 

5 to 10 18.50 12.97 12.97 14.45 8.90 10.68 12.97 

0 to 5 8.90 3.72 3.72 4.53 1.17 2.48 3.72 

-5 to 0 1.17 0.43 0.43 0.45 0.22 0.27 0.43 

-10 to -5 0.22 0.00 0.00 0.04 0.00 0.00 0.00 

-15 to -10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-20 to -15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 0.01 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org.  

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures. 
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Table S15. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for November. 

  Percent time (minutes/month) 

Temperature 

category (°C) 
2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 to 35 0.01 0.40 0.40 0.19 1.27 1.10 0.40 

25 to 30 1.82 3.06 3.06 2.80 4.37 3.77 3.06 

20 to 25 5.44 7.64 7.64 6.86 9.66 8.94 7.64 

15 to 20 11.01 14.24 14.24 13.85 15.90 15.74 14.24 

10 to 15 17.19 18.79 18.79 18.42 17.83 17.97 18.79 

5 to 10 16.94 15.04 15.04 15.30 15.93 15.83 15.04 

0 to 5 16.29 18.21 18.21 17.25 16.69 17.18 18.21 

-5 to 0 14.83 9.48 9.48 11.44 7.25 7.91 9.48 

-10 to -5 6.19 3.26 3.26 3.87 1.35 1.78 3.26 

-15 to -10 0.55 0.16 0.16 0.29 0.03 0.06 0.16 

-20 to -15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

N/A2 9.73 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures.
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Table S16. Percent time (minutes/month) occurring within temperature categories (°C) during 

2012-2015 compared to future climate conditions at Beaver River WMA, Beaver County, OK, 

USA. Climate projections1 are based on an ensemble model under a high, medium, and low 

emission scenarios (A2, A1B, B1 respectively) and projected to the years 2050 and 2080. Data is 

presented for December. 

  Percent time (minutes/month) 

Temperature 

category 

(°C) 

2012-2015 2050 2080 

    A2 A1B B1 A2 A1B B1 

>35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 to 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 to 30 0.00 0.04 0.01 0.04 0.26 0.26 0.01 

20 to 25 0.81 2.03 1.64 1.31 2.49 2.49 1.64 

15 to 20 3.64 6.51 6.00 4.97 8.61 8.61 6.00 

10 to 15 10.72 13.18 12.30 12.05 14.80 14.80 12.30 

5 to 10 18.54 22.55 21.55 19.89 24.68 24.68 21.55 

0 to 5 25.21 23.77 24.52 25.38 21.63 21.63 24.52 

-5 to 0 19.99 17.18 17.69 18.23 16.99 16.99 17.69 

-10 to -5 14.88 11.55 12.61 13.81 8.65 8.65 12.61 

-15 to -10 5.78 3.14 3.59 4.16 1.87 1.87 3.59 

-20 to -15 0.41 0.02 0.06 0.13 0.00 0.00 0.06 

N/A2 0.02 - - - - - - 
1Climate data obtained on Sep 25th, 2015 from www. Climatewizard.org. 

2 N/A represents periods in which the Beaver Mesonet station was not recording temperatures. 
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 Figure S1. Map of artificial surface water locations on Beaver River Wildlife Management Area, Beaver County, Oklahoma from 1 

April 2012-31 March 2014.
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Figure S2. Relationship between environmental variables and probability of climate suitability for California quail (Callipepla 

californica). Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S3. Relationship between environmental variables and probability of climate suitability for Gambel’s quail (Callipepla 

gambelii). Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S4. Relationship between environmental variables and probability of climate suitability for scaled quail (Callipepla squamata). 

Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S5. Relationship between environmental variables and probability of climate suitability for northern bobwhite (Colinus 

virginianus). Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S6. Relationship between environmental variables and probability of climate suitability for Montezuma quail (Cyrtonyx 

montezumae). Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S7. Relationship between environmental variables and probability of climate suitability for mountain quail (Oreortyx pictus). 

Response curves indicate mean response of 100 replicated Maxent runs and the +/- one standard deviation (grey). 
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Figure S8. Future predicted changes1 in distributions of California quail (Callipepla californica; A) and Gambel’s quail (Callipepla 

gambelii; B) projected to 2070 and based on ensemble ecological niche models at 75% model agreement as estimated through Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.
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Figure S9. Future predicted changes1 in distributions of scaled quail (Callipepla squamata; A) and northern bobwhite (Colinus 

virginianus; B) projected to 2070 and based on ensemble ecological niche models at 75% model agreement as estimated through 

Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.
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Figure S10. Future predicted changes1 in distributions of Montezuma quail (Cyrtonyx montezumae; A) and mountain quail (Oreortyx 

pictus; B) projected to 2070 and based on ensemble ecological niche models at 75% model agreement as estimated through Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.
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Figure S11. Future predicted changes1 in distributions of California quail (Callipepla californica; A) and Gambel’s quail (Callipepla 

gambelii; B) projected to 2070 and based on ensemble ecological niche models at 100% model agreement as estimated through 

Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2. 
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Figure S12. Future predicted changes1 in distributions of scaled quail (Callipepla squamata; A) and northern bobwhite (Colinus 

virginianus; B) projected to 2070 and based on ensemble ecological niche models at 100% model agreement as estimated through 

Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.
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Figure S13. Future predicted changes1 in distributions of Montezuma quail (Cyrtonyx montezumae; A) and mountain quail (Oreortyx 

pictus; B) projected to 2070 and based on ensemble ecological niche models at 100% model agreement as estimated through Maxent. 

 

 

 

 

 

 

 

 

 

 

 

1 Descriptions for possible distribution conditions are given in Table 2.  
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