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Abstract: The work in this thesis discusses the creation of affordable, simple, and
high quality engineering laboratory experiments that can be done by students at
home. The experiments will enhance the student’s understanding of theoretical con-
cepts within various engineering courses by providing a hands on learning experience.
These experiments use MATLAB/Simulink in conjunction with an Arduino. The
Arduino is an affordable open source microcontroller which has support within MAT-
LAB/Simulink, thus allowing students to easily access the functionality of the Ar-
duino without needing to have significant programming skills. Five experiments are
created and presented, and for each experiment, additional hardware components are
either purchased or 3-D printed. The first experiment is an introductory experiment
for setting up the main hardware. The second experiment is another introductory
experiment that uses a DC motor with encoder, a motor driver, and a 3-D printed
load to help teach the concept of Sampling and data acquisition with the Arduino.
The third and fourth experiments use essentially the same hardware as the Sampling
and data acquisition experiment, and are created to help illustrate the importance of
frequency response by performing the open loop and closed loop frequency response
of the DC motor with an attached load. The final experiment helps teach the concept
of optimal state feedback control of a Ball and Beam system. The experiments are
provided as handouts to the be followed by the students. The handouts, hardware
lists, software files, and 3-D printer files are provided on our website. The website
makes the labs easily accessible to anyone interested, and keeps the experiments or-
ganized. The combination of the experiments, the hardware and software, using a
3-D printer, and the website results in an affordable, simple, and high quality lab kit
with potential to be expanding into multiple engineering courses. Sean Hendrix and
I jointly developed the Take Home Labs concept.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

In engineering courses, laboratory experiments provide students with a hands on

learning experience to go along with the theoretical concepts being taught in the

course. However, the number of courses that have dedicated labs is limited. Labora-

tory experiments usually require extra space for students to work, expensive equip-

ment, teaching assistants, or limited lab time. Typical electrical engineering courses

that have dedicated labs are circuits courses, embedded programming courses, and

digital logic courses. Other courses usually rely on simulated homework and projects

to help teach the theoretical concepts of the course. Examples of these types of

courses are control systems and signal processing courses.

With the emergence of small, powerful, and affordable open source microcontrollers,

the potential for expanding the use of laboratory experiments into other engineering

courses is more feasible. This thesis discusses the creation of affordable, simple, and

high quality engineering laboratory experiments that can be done at home.

1.2 Literature Review

This section discusses the current options for laboratory experiments, mainly related

to control systems courses.

A control systems laboratory using a microcomputer is described in [2]. The lab-

oratory is its own dedicated course that is designed to be taken concurrently with an

introductory control systems course. The dedicated hardware is a lab station, and

the main component is a DC motor. In the addition to the DC motor, the lab station

includes; a computer for controlling the execution of each experiment, a digital to

analog (D/A) converter for interfacing the motor with the computer, a power ampli-

fier for amplifying the output current from the D/A converter, a sensor for capturing
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the motor’s motion, and a counter for counting the pulses from the sensor to record

the motor’s position and velocity. The lab station is to be used to teach the concepts

of open and closed loop step response, open and closed loop frequency response, sta-

bility, and root locus design. The lab station does not require any setting up by the

students, which ensures their time can be spent on understanding the concepts. At

the time of the paper, the lab had been run for one semester, and the students showed

a noticeable improvement in their understanding of the theoretical concepts. The lab

station was relatively large, limited to a DC motor, and focuses only on control sys-

tems.

In [1], a modular controls laboratory is created to help students in senior level con-

trols courses visualize and evaluate the performance of simulated results of a system,

when applied to the actual physical system. Multiple systems are designed and used

to provide a range of real systems for teaching controls. In addition to the controls

courses, the modular controls lab was able to add to the capstone design course by

allowing student teams to design new systems to be added to the overall controls

lab. In the controls course, the students learned theoretical control concepts and

also learned about real-time programming, effects of sampling rate, use of interrupts,

importance of maintaining correct units, effects of nonlinearities such as friction, and

the iterative process of design. These additional concepts are not easily learned from

simulations. Six experiments were completed; the Ball on Beam, the Magnetically

Levitated Sphere, the Cart and Pole, the Wedge Balancer, the Two-Link Pendulum,

and the Inverted “T”. The experiments were designed to be very modular, making it

easy to upgrade the labs as new technology emerged. The types of systems designed

and proposed are shown in Figure 1.1. The systems were fairly large and mainly

related to control systems.
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Figure 1.1: Exerimental Systems [1]

In [3], a fourth-order, linear mass-spring-damper system and an analog filtering sys-

tem were designed and packaged with a controller board for less than $100, and

provided for students as at-home system kits. A take home hardware kit for a Digital

Design Lab was developed for students in [4]. Two experiments that involve a DC

motor/tachometer system and a heater/temperature sensor system are provided in

[5]. The low cost hardware experiments were designed and used in several mechanical

engineering courses, and proved to be effective and enjoyable via student feedback. A

low cost lab kit platform based on an Arduino microcontroller is designed for teaching

technology of modern display systems is discussed in [6]. Student surveys showed high

praise for the overall lab kit, and specifically the Arduino platform. A low-cost rapid

control prototyping system using MATLAB/Simulink and an Arduino is discussed

in [7]. The Arduino and MATLAB are also used in [8] as part of take home lab kit

designed by six mechanical engineering senior design students at the University of

Minnesota.
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Experiment systems can also be purchased online for learning control design. This

makes the take home systems available to anyone, and not just the students in a

particular course. Quanser designs and manufactures advanced systems for real-time

control design and implementation [9]. Quanser has a large catalog of systems. Each

system is high quality, and comes with courseware developed by Quanser. Each sys-

tem is also compatible with MATLAB/Simulink and LabVIEW. The high quality of

these systems results in a high cost. MinSeg however, offers versions of a miniature

balancing robot for an affordable cost [10]. The kits can be purchased at various prices

depending on the board that comes with the system. The options are an Arduino

compatible board, an actual Arduino, and a Raspberry Pi. The labs are designed to

work with Simulink, which has support for each board. A series of experiments and

a Simulink support library is available to be used with the kit, and the experiments

are designed for use in a mechatronics course.

The existing literature and various options express the importance, benefits, and

interest in developing lab kits for use in engineering courses. There have been multi-

ple laboratory experiments introduced, but they are either too expensive, too large,

confined to a lab space, not easily accessible for everyone, or not very adaptable. The

following section discusses the approach for making a take home lab kit that does not

experience any of these problems.

1.3 Summary of Approach

The overall concept that is discussed in this report is the design of affordable, simple,

adaptable, and easily accessible take home labs that can be used to provide a hands

on learning experience for students within various engineering courses.

The Take Home Labs are designed to be small, so lab space is not needed. Stu-

dents can work on the experiments at home, at their own pace. To keep the labs

affordable, low cost open source hardware, 3-D printing, software that is widely avail-

able to students, and low cost components are used. The overall cost of the system

is similar to the price of a textbook. To make the labs easily accessible, a website

is designed to organize and distribute the experiments to anyone interested. The

experiments designed are introductory, undergraduate, and graduate level, and are
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available on the website as handouts that are made to be simple, easy to follow, and

used in conjunction with specific courses.

The main hardware component is an Arduino, which is an open source microcon-

troller that has support in MATLAB/Simulink. The experiments are therefore de-

signed heavily around MATLAB/Simulink, which does not require that the students

have significant programming skills. The Arduino is a powerful microcontroller, so

experiments for multiple engineering courses can potentially be designed, adding to

the flexibility of the overall Take Home Labs. 3-D printing portions of the experi-

ments allows for quick prototyping and various design possibilities. The 3-D printed

systems are designed so that they can be used for multiple experiments, and mul-

tiple courses. Having a website available not only organizes the experiments, it is

used to encourage participation from anyone by submitting comments, questions, or

their own labs, thus keeping the experiments up to date, and potentially adding new

experiments. Combining each of these elements enables an affordable, simple, small,

and adaptable take home lab kit to be created. The Take Home Labs concept was

developed jointly in this thesis and in [11]. Five experiments are described in this

thesis, and five complementary experiments are described in [11]. Together, these

documents represent the current state of the Take Home Labs concept.

1.4 Chapter Outline

This chapter has introduced the problem of limited laboratory experiments for en-

gineering courses, and the approach for overcoming this issue. Chapter 2 further

discusses the overall concept, and introduces the overall system design of the Take

Home Labs. Chapter 3 is an introductory experiment for setting up the main hard-

ware and software that is used for most of the other experiments. Chapter 4 is also

an introductory experiment that will review the concept of sampling, show how to ac-

quire data from the Arduino in real-time, at multiple sampling rates, using Simulink,

and provide insight into the differences between Normal and External Mode for sam-

pling and acquiring data. Chapter 5 is a Systems Dynamics dedicated experiment

that will explore the concept of frequency response by finding the open loop frequency

response of a DC motor with an attached load. Chapter 6 is also a Systems Dynamics

dedicated experiment that will further explore the concept of frequency response by

using the results from the open loop frequency response, and finding the closed loop
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frequency response of the DC motor with an attached load. Chapter 7 is an experi-

ment designed for a graduate Optimal Control course. The experiment requires that

the student design an Optimal State Feedback Controller for a Ball and Beam system.

The decision for the software, hardware, and the overall framework of the Take Home

Labs is discussed in the next section.
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CHAPTER 2

SYSTEM OVERVIEW

The purpose of the Take Home Labs concept is to provide access to a set of inexpensive

laboratory experiments that can be performed in a dorm room. The two major

components of the overall system design are the software and hardware. The hardware

and software that are used for the experiments are chosen based on price, simplicity,

and size. Making the entire system affordable is the top priority, as it is targeted

for college students. Affordable in this case means keeping the system cost below

$150, which is around the normal cost of a college textbook. To also ensure that the

experiments developed for the system can be done at a student’s home, the size of the

entire system should not be very large. There will likely not be a teaching assistant

to help students with the experiments, so the software chosen is easy to use, the lab

handouts are easy to follow and easily accessible, and the hardware components are

easily interfaced with the PC and easily built. This chapter discusses the different

elements that make up the overall framework for the Take Home Labs, and their

significance.

2.1 Software

2.1.1 Operating System

All of the experiments require using a personal computer (PC) for developing the

experiments. Therefore, designing the experiments to be compatible with an oper-

ating system that most students use is important. The program for running the

experiments, and the hardware components, need to be compatible with the chosen

operating system. Engineering students at Oklahoma State University (OSU) are rec-

ommended to have a laptop with Windows installed on it, as Windows is required for

some applications [12]. At other universities, it is likely that most students will have a

PC that runs Windows, thus Windows is the likely the best platform for running the

experiments. Another popular operating system is Macintosh (Mac), and students

with a Mac have the ability to install Windows on their PC. The potential need for
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Mac users to install Windows on their PC may be cumbersome, so the experiments

are also being designed to work solely on Macs. The main software used for designing

the experiments is compatible with both Mac and Windows.

2.1.2 Main Software Program

The software that is used for running and designing the experiments is MATLAB. In

MATLAB, the experiments are mostly designed using Simulink, which is a program

integrated into MATLAB. Simulink is a great choice because it is a graphical pro-

gramming environment that can be used to model, simulate, and analyze systems,

in a block diagram form [13]. Electrical and Computer Engineering courses at OSU

use MATLAB extensively for homework and/or projects. Simulink is a great tool for

designing and simulating control systems, which is one of the main focus areas of the

Take Home Labs. All engineering students enrolled at OSU can download MATLAB

for free through the College of Engineering, Architecture, & Technology (CEAT).

Most other universities also use MATLAB, and provide their students with free ac-

cess. For students attending universities that do not provide access, a student version

of MATLAB can be purchased for $99. That fact that MATLAB is widely available

to many college students for a reasonable price, or even for free, makes it very suitable

for implementing the experiments. Another reason Simulink is a great choice is the

built in support it has for many embedded hardware platforms. Without Simulink,

most of the hardware platforms require writing code to use its functions. Simulink

eliminates the need for writing embedded code, because many of the embedded hard-

ware functions are represented as Simulink blocks. Custom Simulink blocks called

S-Functions can also be created. This makes dealing with other hardware elements

easier, because the code needed to interface the sensors to the embedded hardware

can be written into a custom S-Function block, and added to the Simulink library.

This helps to keep the experiments simple and organized. To prevent students from

needing to make their own S-Function blocks, a custom Simulink library containing

S-Functions and other helpful blocks will be provided. In the Sampling and Data

Acquisition experiment, the students will add the custom library, THLlib, to their

Simulink library. The library is an altered version of the MinSeg RASPlib. The

MinSeg library already has S-Functions for reading one quadrature encoder, read-

ing two quadrature encoders, and reading an ultrasonic sensor. In addition to the

S-Functions, the RASPlib has a click function along with custom Simulink blocks to
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read different types of data sent to the serial port. The RASPlib is very helpful in

learning how to create custom S-Functions, and interface with different sensors. The

S-Functions and custom Simulink blocks within the THLlib are modified versions of

the RASPlib blocks, as well as new blocks created by myself and fellow research stu-

dents that are contributing the the Take Home Labs concept. To modify and create

new S-Functions, the embedded code used to program the embedded microcontroller

had to be modified or created within the S-Function block.

With Simulink, the experiments can be designed and simulated easily. The simu-

lation models and experimental models are similar, making it easy to convert the

simulation models quickly to run on the hardware. Running the Simulink model

on the hardware just requires preparing the Simulink model to run on the desired

hardware in the settings, and then downloading the model to the board. Simulink

automatically converts the model into the embedded code that runs on the hardware.

Simulink has more built in functionally for some hardware than others. Therefore, a

major factor in choosing the experiment’s embedded microcontroller is its compati-

bility with Simulink.

2.2 Hardware

2.2.1 Main Hardware

In order to help keep the cost of the system down, the main hardware components are

chosen so that they can be used in multiple experiments. The connection between the

software and hardware for the experiments is handled by an Arduino. An Arduino is

an affordable open-source microcontroller, and is the most important element of the

system. The experiments can not run without the microcontroller, and the low cost,

small size, and power of the Arduino help make the take home labs practical for college

students. Arduino has many different models of microcontrollers available. The

Arduino MEGA 2560 R3 is the model recommended for running the experiments. The

Arduino Uno is a cheaper alternative that can also be used to run the experiments,

but it is not as powerful as the Arduino MEGA 2560 R3. The Arduino MEGA 2560

R3 typically costs around $35 - $50, and the Arduino Uno typically costs around

$20 - $30. Simulink supports the Arduino boards, and accessing the functionality of

the boards using Simulink will be much easier than having to write a lot of code.

Figure 2.1 shows an example of some of the Arduino functions available in Simulink.
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Another reason the Arduino is the chosen microcontroller is its popularity. It has

been around since 2005, and the support for it has consistently been growing. There

are many projects, tutorials, and accessories available for Arduino, thus making it

easy to find examples for interfacing it with many different hardware components.

Figure 2.1: Simulink Arduino Library

Another main hardware component that is used in almost every experiment is a DC

motor. There are many experiments that can be developed around it, and it can be

used to help students learn many different topics within electrical and mechanical

engineering. The DC motor used is small, since the the experiments are designed to

be small, and will help keep the system cost down, since smaller motors are usually

cheaper. However, for most practical applications, a measurement of the motor’s po-

sition is needed. Encoders are good options for monitoring motor position, as they

have a high resolution and can mount easily to the motor’s shaft. Encoders are avail-

able in a wide variety, so it is not hard to find one suitable for most experiments.

However, encoders are usually fairly expensive, and if buying them separate from the

motor, they will need to be attached manually. With the motor being one of the main

components, it needs to be reliable. The reliability, simplicity, and usefulness of the

experiments may be affected if students have to attach encoders to motors themselves.

Therefore, finding a DC motor with an encoder already attached is the best option.

For the encoder, the higher the pulses per revolution (ppr) it has, the better the

resolution will be for the motor’s position. One of the main experiments that would

have the largest load attached to the motor is the Ball and Beam. Before trying to

find a motor, the Ball and Beam system was simulated for various sizes and masses.
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The simulations for various sized beams provided an idea of how much current would

be drawn by the motor, the voltage that would be needed, and the amount of torque

needed. Having an idea of the motor characteristics that are needed helps narrow

down the search for a motor, but finding an affordable DC motor with an encoder that

meets the needs for every experiment is challenging. On robotkitsworld.com, there

is a Mitsumi DC motor with a 1336 ppr quadrature encoder listed at $26.31. This is

a really good price for small motor with sufficient encoder ppr. This motor encoder

combination is also listed on www.aliexpress.com and ebay for around $6. The

products ordered from the robokits website ship from India, and the motors found on

aliexpress and ebay are shipped from China. The shipping rates vary, but the over-

all cost of the motor still ends up being the best option in comparison to anything else.

For each experiment that uses the motor, a motor driver and an external power sup-

ply need to be used as well. The external power supply is used because the Arduino

can not supply the amount of current that the DC motor needs. The Arduino itself

should be powered separately from the DC motor to help keep any voltage spikes or

motor glitches from possibly interfering with the power to the processor. The motor

driver controls the speed and direction of the motor. Motor drivers are common and

easy to obtain. The motor driver has to be able to handle the amount of current that

will be drawn by the motor during experiments, and has to be able to operate at the

voltage of the external power supply. The DC motor can operate up to 34 volts, and

has an armature resistance of 13.5 ohms. A 12 volt supply that can supply up to

3 amps of current is chosen as the external power for the motor. Since the motor’s

resistance is 13.5 ohms, at the maximum voltage, 888.9 milliamps will be drawn by

the motor. The 3 amp maximum of the voltage supply is more than enough. The

motor driver also needs to be rated for at least 888.0 milliamps and 12 volts.

There are numerous motor driver options that would meet these requirements. Some

motor drivers come just as the chip itself, and may need to be soldered to a printed

circuit board (PCB), or used with a breadboard. These separate motor driver chips

are usually cheap, but have a suggested application circuit that would need to be

constructed to use the driver properly. Other motor drivers may already come on a

PCB with the required application circuit elements. Using a driver that is completely

constructed or mostly constructed would require less work for the students. How-

ever, these motor drivers are more expensive than the motor driver by itself. After
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experimenting with multiple motor drivers, the DFRobot Arduino Compatible Motor

Shield (2A) is chosen because it is only $16, does not require much alteration by the

students, and fits directly on the Arduino Mega 2560 and Arduino Uno. Choosing a

motor driver that fits directly on the Arduino helps keep the overall system design

clean and simple. Choosing a motor driver that does not fit directly on the Arduino is

harder to assemble and keep neat since multiple wires have to be used to connect the

two. The DFRobot motor driver can drive up to two motors with maximum current

of 2 amps. The external power supply has a 2.1mm barrel jack connector, so in order

to connect the power supply to the motor driver, a 2.1mm female barrel jack to a

terminal is used. Two wires are added into the terminal output of the female barrel

jack adapter and input into the motor driver. The additional hardware that is used

in every experiment is a USB A to B cable for connecting the Arduino to the PC,

and wires for connecting the motor to the motor driver.

With the hardware introduced so far, introductory experiments for setting up the

Arduino and interfacing with the DC Motor can be performed. In order to expand

the experiments further, additional hardware needs to be purchased, or built. Specif-

ically, some type of load needs to be added to the motor’s shaft, and the motor needs

to be mounted. Making these type of parts helps keep the cost down, and allows

for various design capabilities. Therefore, the remaining parts are 3-D printed, or

purchased.

2.2.2 3-D Printer

The ability to design and make your own parts has greatly been improved by the

increased popularity and support for 3-D printing. 3-D printing is not new by any

means, but previously 3-D printing was very time consuming and expensive. This is no

longer the case, as there are numerous 3-D printers now available for less than $1000,

and there is a wide variety of affordable printing materials that can be used. With

the popularity increasing, more companies, people, and universities are exploring the

capabilities of 3-D printing, thus creating multiple options for 3-D printing parts.

At OSU, 3-D printers have been available for use by all CEAT students since Fall

2014. The 3-D printers available are the Solidoodle 4, and as long as you complete

the training, you can use any of the 3-D printers for free during lab hours. The

print size for parts with the Solidoodle 4 are 8”x8”x8”. With 3-D printers being
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so popular, and decreasing in price, it is likely that other universities have student

options for 3-D printing. There may not be multiple 3-D printers open for students

to use, but there may be a department or lab in which they can get the parts printed

for them for free, or at a low cost. There are also 3-D printing services available

online that will print the parts and mail them to you. Expanding and creating

multiple experiments is made easier using the 3-D printers. To integrate the main

hardware, a 3-D printed base platform is designed so that the Arduino, the motor

shield, the DC motor, and the other smaller components can be assembled together.

By printing the base platform for the main hardware, and connecting all of the main

hardware together, the students do not need to change the core design when working

on different experiments. The base platform and main hardware components are

shown in Figure 2.2 and Figure 2.3. Various loads and motor attachments can be

designed for specific experiments, and attached to the motor. This saves time when

moving from experiment to experiment, by requiring only the additional hardware

for a given experiment be printed, as opposed to needing to print and connect the

entire hardware system each time.

Figure 2.2: Main Hardware (1)
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Figure 2.3: Main Hardware (2)

2.2.3 Experiment Specific Hardware

Adjustable Motor Load

To make the experiments more practical for use in a course, easily adding variation

to the systems can help make each student’s experiment unique without changing

the main concept. Four of the five experiments involve the DC motor, and thus

require a load attached to the motor’s shaft. The load for the Sampling and Data

Acquistion, Open Loop Frequency Response, and the Closed Loop Frequency Response

experiments can be easily be made adjustable by using the 3-D printer. The loads

shown in Figure 2.4 are two loads used in the experiments. The larger load on the left

of the figure was created by another student, Sean Hendrix. The smaller load on the

right is a modified version of his load, that I created. The load has circular slots along

each arm so that up to four pennies can be added in each slot to vary the mass of the

load. In the center of the load is a 3-D printed insert that can securely attach to the

gear on the motor’s shaft. The insert needs to be printed separately because it has to

be printed at a higher resolution (0.1mm) in order for the small gear on the motor to

fit inside of it. Printing at higher resolutions takes much more time, so only the small

gear insert uses this resolution. Within a course, various combinations of pennies can

be assigned to different students so that the experimental results are different from

one another, ensuring each student does his/her own work. In addition to the three

experiments for the loads shown in Figure 2.4, two other experiments, Open Loop

Step Response and Closed Loop Step Response, designed by Sean Hendrix can use the

loads as well. The ability to create multiple experiments around these loads alone

14



shows the potential of 3-D printing for designing real experiments. Further proof of

the 3-D printers usefulness can be shown by designing more advanced systems.

Figure 2.4: Adjustable Load Comparison

Ball and Beam

The Ball and Beam is a more advanced system design that can be used to teach

multiple control theories for undergraduate and graduate courses. The Ball and

Beam is a nonlinear unstable system with two degrees of freedom, the ball moving

along the beam and the beam rotation. There are two potential models that can be

used for the Ball and Beam; controlling the beam angle at one the end of the beam,

or controlling the beam angle at the center of mass of the beam. The model for

controlling the beam angle at the beam’s center of mass is simpler than the model

for controlling the beam angle at the end of the beam. Also, the design of the Ball

and Beam with the beam angle controlled at the beam’s center of mass is simpler.

Therefore, this is the best model for making the Ball and Beam system. Keeping the

design simple will ensure that the 3-D printer can print it at a high quality, and it will

be easier for students to replicate and assemble. A theoretical model of the Ball and

Beam system with the beam angle controlled at the beam’s center of mass is shown

in Figure 2.5.
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Figure 2.5: Ball and Beam Model

The equations of motion of the system are provided below [14].

ẋ1 =
τ −mgcos(x2)x4 − 2mx1x3x4

Jbeam + Jball +mx2
4

(2.1)

τ =
Kt

Ra

(u−Kbx1) (2.2)

ẋ2 = x1 (2.3)

ẋ3 =
mx2

1x4 −mgsin(x2)
Jball
r2

+m
(2.4)

ẋ4 = x3 (2.5)

where

x1 = Beam Velocity

x2 = Beam Position(ϕ)

x3 = Ball Velocity

x4 = Ball Position(z)

u = Motor Voltage

τ = Torque

The constants are provided in the Optimal State Feedback Control (Ball and Beam)

experiment.

16



For the actual Ball and Beam system, there needs to be a way to measure the beam

position and ball position. Therefore, sensors are used to measure the positions,

which affect the actual design of the beam. The DC motor needs to be attached to

the beam, since the encoder on the motor measures the beam angle. There are multi-

ple possibilities for measuring the ball position; conductive plastic, resistive wire, an

ultrasonic range finder, or a vision sensor [15]. Conductive plastic is not easily found,

and does not seem like a reliable option. The resistive wire requires a metal ball

be used, thus potentially making the ball and beam too heavy for the small motor.

In addition to the mass, the resistive wire requires a good deal of maintenance and

attention to detail to assemble. The vision sensor is too expensive for this application

so it is not a good choice.

Ultrasonic sensors are cheap, but are sometimes noisy. The HC-SR04 costs less than

$3. The low cost makes it the best choice of the sensors mentioned thus far. The

HC-SR04 ultrasonic sensor has a range of 2 cm to 400 cm, with an accuracy of 3 mm.

Testing the experiment using the ultrasonic on one end of the beam, along with a ping

pong ball, the noise of the ultrasonic proved to be a big issue. The Ball and Beam

was able to balance, proving the controller worked, but the ultrasonic sensor would

experience random large jumps while the ball was not moving at all. The large jumps

caused the controller to think the ball position and velocity changed, which made the

motor apply a voltage to attempt to correct the ball position. To determine if the

source of the problem was the ping pong ball, multiple balls were used. After using

a foam golf ball, a rubber ball, and a soft mini baseball, the ping pong worked the

best. The ultrasonic waves do not reflect well for certain materials, and the reason

for the large jumps with the ping pong ball were its size and shape. The ultrasonic

wave did not reflect well because of the edges of the ball, which resulted in frequently

receiving incorrect readings. The ultrasonic works best with large objects, or with a

large flat surface in which the ultrasonic wave can easily be reflected. Smoothing the

output of the ultrasonic helped, but not enough.

In order to make sure the experiment is reliable, a different ball position sensor is

used. The best alterative to the ultrasonic sensor is the Sharp GP2Y0A41SK0F IR

(infrared) sensor. The function of the Sharp IR sensor is similar to the ultrasonic

sensor, but is more expensive. The Sharp IR sensor is an analog distance sensor with
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a detection range of 4 cm to 30 cm (1.5” to 12”), and costs around $10. The sensor

outputs an analog output voltage for corresponding distances, but this relationship is

nonlinear. To read the sensor correctly, a look-up table block is used in Simulink to

generate the nonlinear curve that matches the sensor’s output voltage versus distance

curve. The analog voltages corresponding to 3 cm and 40 cm are 3.025 volts and 0.3

volts. The description of the sensor says the lowest distance the sensor can read is 4

cm, but from the datasheet, it shows it can actually read as low as 3 cm.

To read the analog output voltage from the IR sensor, an analog input pin on the

Arduino is used. The Arduino’s analog input represents the input voltage as a digital

value ranging from 0-1023. The maximum voltage is determined by the analog input

reference voltage, which by default is 5 volts. This means that if the input to the

analog input pin is 5 volts, the output of the block will be 1023, and if the input to

the pin is 0 volts, the output of the block will be 0. The maximum reference voltage

can be changed from 5 volts to 1.1 V, 2.56 V, or an external voltage in Simulink’s

configuration settings. To set the maximum reference voltage externally, the voltage

desired has to be input into the Arduino’s analog reference pin. Since the maximum

output voltage of the IR sensor is 3.025 volts, the analog input reference voltage is

changed to 3.3 volts to provide a better resolution. The resolution of the analog pin

will be 3.2 millivolts, which makes the resolution of the IR sensor 0.32 mm per count.

This is a much better resolution than the 3 mm resolution for the ultrasonic sensor.

Another benefit of choosing the Sharp IR sensor as the ultrasonic sensors replacement

is that the beam design does not have to be altered much since the IR sensor functions

similarly to the ultrasonic sensor.

There are multiple possibilities for the actual beam that is 3-D printed. The ini-

tial design was similar to the theoretical picture. The center of the beam was lower

than the outer edges. The only difference was the ends of the beam were a little higher

so that the ball would not fall off of the end. The beam was 12 inches, and since the

3-D printer could not print the beam this large, it had to be broken up into two parts.

The problem with this design is the ball may fall off the sides, since the ball just rolls

along the top of the beam. Also, the need to connect two beams together may prevent

the beam’s surface from being level. Other designs were created, and ultimately the

beam design shown in Figure 2.6 was created in Solidworks. This final design uses the

Sharp IR sensor, and the design is very similar to the design used with the ultrasonic
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sensor. One end of the beam is elevated substantially, and the inside of the beam

is cut out in the shape of a ball, helping prevent the ball from falling off or out of

the beam. The other end of the beam is not elevated as high, because that is the

end the IR sensor is mounted to. The sensor itself is mounted on a separate smaller

attachment that offsets it from the end of the beam. The reason for the offset is that

when the ball rolls to the end of the beam closest to the sensor, it is still at a distance

greater than the smallest distance the IR sensor can read. Adding the IR sensor on

the end of the beam shifts the beam’s center of mass. Depending on the 3-D printer

used, and the settings of the printer, the 3-D printed parts that the students make

may not be exactly the same as those used to test the experiments. Therefore, in the

general area of the beam’s center of mass, the beam extends outward on both sides

and has multiple holes for connecting the motor and beam attachment. The multiple

holes allow the center of mass to be adjusted easily without needing to reprint the

beam. The motor and beam attachment is divided into three smaller parts; the top

attachment that connects to the beam, the bottom attachment that connects into the

top attachment, and the gear insert that is inserted in the the bottom attachment.

The reason for three separate parts is the limitations of the available 3-D printers.

The final Ball and Beam system is shown in Figure 2.7.

Figure 2.6: Beam Model - Solidworks
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Figure 2.7: Ball and Beam Final Design

System Cost

Most of the hardware used in the first four experiments can be used in the Ball and

Beam experiment as well. However, in addition to some of those components, others

need to be purchased. The entire system cost is shown in 2.1. The total costs are

assuming MATLAB/Simulink and 3-D printing are available for free. There are two

final costs, $119.58 and $139.27, and they are the estimated worse cases. The two

different costs are dependent on where the motor is purchased. Both costs meet the

goal of designing the system to be less than $150. Also, some of the hardware com-

ponents listed may not need to be purchased, as students may have them already, or

have access to them. This would bring the cost of the overall system down substan-

tially. The hardware needed for the first four experiments would not include all of

the parts listed in the table, resulting in a much lower price as well. Another factor

for the cost is that all of the hardware would not necessarily need to be purchased

all at once. As the experiments progress, new components are needed, but some of

the main components will have been purchased already. For each experiment, the

required hardware will be listed in the required materials section of the handout they

will follow.
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Total System Cost

Item Cost Location

Arduino Mega 2560 Rev3 $37.39 Robotshop.com

Mitsumi DC Motor with Encoder $6.62 or $26.31 Ebay or Robok-

itsworld.com

DFRobot Arduino Compatible Shield (2A) $16.00 Robotshop.com

12VDC 3A Wall Adapter Power Supply $9.95 Robotshop.com

Sharp GP2Y0A41SK0F IR Range Sensor - 4

to 30cm

$9.95 Robotshop.com

SIRC-01 Sharp GP2 IR Sensor Cable - 8” $1.95 Robotshop.com

Bracket Pair for Sharp IR - Parallel $3.49 Pololu.com

Ping Pong Ball $1.56 Walmart

USB Cable $1.99 Robotshop.com

5V Cell Phone USB Wall Adapter $6.95 Robotshop.com

Female Barrel Jack $2.25 Robotshop.com

Wires $4.98 Robotshop.com

Screwdriver Set $5.98 Amazon.com

Sticky Tack $3.29 Walmart

2-56 Screws (1/4”) $0.99 Pololu.com

2-56 Screws (5/16”) $0.99 Pololu.com

2-56 Screws (7/16”) $0.99 Pololu.com

4-40 Screws (1/4”) $0.99 Pololu.com

4-40 Screws (1/2”) $0.99 Pololu.com

2-56 Hex Nut $0.99 Pololu.com

2-56 Aluminum Standoffs (1/4”) $1.29 Pololu.com

Total Cost $119.58 or $139.27

Table 2.1: Estimated System Cost
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2.3 Student Handouts

The experiments will be distributed via student handouts. The student handout

is essentially a lab manual that the student will follow for each experiment. The

handouts are designed to be simple and easy to follow, since there will likely not

be a TA to help them. Each handout will begin with an objective section in which

the overall idea and framework of the experiment is discussed. The setup section

is next, in which the required hardware and software materials will be listed, any

prerequisite experiments will be provided, and the actual hardware and software setup

steps will be listed for the student to follow. The experimental procedures section

follows the setup section. The student will follow the all of the steps for completing

the lab. Throughout the experimental steps, the student will be asked questions about

important topics. The questions are intended to help keep the student thinking, and

to relate the experimental portions to the theoretical topics of the experiment. The

final section of the student handout is the conclusion section which reiterates the

main topics and things learned in the lab. This overall structure is used for every

experiment, which helps keep things consistent and organized. To make the student

handouts easily accessible to anyone who wishes to try them, they are provided on

our Take Home Labs (THL) website www.thl.okstate.edu.

2.4 Take Home Labs Website

The THL website is created to organize and distribute the experiments. With a

website, anyone can access the experiments at any time. The homepage of the website

gives an introduction about the overall idea of the Take Home Labs. When someone

is viewing the homepage, in the left most column will be sections of the website they

can navigate to easily. The different sections are Experiments, Courses, Participate,

About Us, Contact Us, and Take Home Labs. These sections will appear on the left

of any page, providing easy access back and forth between the main sections of the

website.
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Figure 2.8: Take Home Labs Homepage

2.4.1 Experiments

The Experiments page shows a list of categories for each experiment. Pressing one of

the categories jumps to a new page with a list of the experiments that are related to

the category. This is useful when someone is looking for a particular experiment based

on an idea they would like to learn. Pressing any of the experiment links will open the

main page for the actual experiment. In the middle of the actual experiment page,

there will be an introduction or objective about the experiment. The right section

of the page will list important links for the experiment. The links are Handout,

Hardware, Software. The handout link will open or download the PDF of the student

handout. The Hardware link will open a new page that lists the required hardware

for the experiment. The listed hardware components are links that will navigate to

pages where parts can be purchased. It is mentioned on the Hardware page that the

links are just for reference, the components can be purchased anywhere. The Software

link will open a new page that lists all of the experiments that have software files.

Pressing each link will download the required software and 3-D printer files for that

particular experiment.

Figure 2.9: Take Home Labs Experiments Page
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2.4.2 Courses

On the Courses page, a list of courses that the experiments pertain to are shown.

Pressing one of the courses opens a new page with a list of the experiments for that

particular course. This is another method for finding experiments, but based on

specific courses. Pressing any of the experiment links will open the main page of the

actual experiment the same way it does in the Experiments subsection.

Figure 2.10: Take Home Labs Courses Page

2.4.3 Participate

On the Participate page, information about the overall idea of the take home labs is

provided for newcomers to the site. The structure for the student handouts is listed,

with examples for anyone who wishes to add experiments to the site. This helps

promote other enthusiasts to participate, and gives them the same guideline and

structure the current experiments follow. Therefore, any new experiments that are

added will maintain the desired simplicity and low cost. In addition to submitting new

experiments, people can provide general comments about the existing experiments.

Feedback is helpful for keeping experiments and ideas up to date.
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Figure 2.11: Take Home Labs Participate Page

2.4.4 About Us/Contact Us

The About Us page just lists information about the people who have contributed to

the Take Home Labs website. The Contact Us page lists contact information that

can be used to submit any questions or concerns. This is the primary access point

people will use when they wish to participate.

2.5 Additions and Alternatives

There are other software and hardware that can be used for the experiments. Ad-

ditions and alternatives help keep the experiments flexible and open, making them

more attractive to different people. Some people may be more accustomed to other

software and hardware than those used currently. One popular addition for a software

program would be Labview. Some students may be more accustomed to Labview,

and some universities may have access to Labview instead of MATLAB. Additional

microcontrollers that could be added to work with the experiments are the Raspberry

Pi and Beagleboard. Both have support in Simulink. Like the Arduino, the Rasp-

berry Pi has numerous custom blocks in Simulink for using the board’s functionality.

The Raspberry Pi is more powerful than the Arduino, but is not as easy to use and

set up. There are multiple motor drivers that could be used, as long as the motor

driver is rated for 12 volts and can handle at least 2 amps. The same thing goes for

the power supply. Any 12 volt power supply can be used if it can supply at least 2

amps. Other voltage power supplies will work as well, but some of the experiment

models will need to be adjusted. An alternative motor is more difficult to than other

hardware components since the current motor is small and available for a low price.

Choosing a different motor would also change some of the 3-D printed hardware de-
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signs. However, the experiments will work for different motor encoder combinations

if desired, but the experiments would have to be adjusted. Other 3-D printed designs

can be created, and as 3-D printers continue to progress, better printers will be avail-

able. The better printers will likely not impose as many design constraints as the

current 3-D printers. This is where having the website will be very beneficial, as it

will allow others to participate with adding additional elements to the overall system

framework. The overall purpose of the the Take Home Labs is expressed further by

the following chapters. The chapters are example experiments that are available on

the website for students to download and attempt. The first experiment is a simple

introductory experiment. The next three experiments are example experiments that

are intended to be used in an undergraduate System Dynamics course, and the final

experiment is an advanced experiment intended for students in an Optimal Control

course.
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CHAPTER 3

BALL AND BEAM SYSTEM

Third chapter text goes here. Table 3.1 is another sample table.

Table 3.1: Sample multicolumn table

Parameter Column 1 Column 2

Subcolumn 1 Subcolumn 2 Subcolumn 1 Subcolumn 2

Parameter 1 Element 11 Element 12 Element 13 Element 14

Parameter 2 Element 21 Element 22 Element 23 Element 24

Parameter 3 Element 31 Element 32 Element 33 Element 34
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CHAPTER 4

BLINKING LED

4.1 Objective

Experiment one is an introductory lab designed to help the students setup and be-

come familiar with the hardware and software that is required for each of the controls

labs. In order to achieve this, the student will follow the steps provided to install

support for the Arduino in Simulink, and install the Arduino drivers on their com-

puter. Successfully installing the support needed for the hardware is crucial, thus the

student will need to verify that everything is installed correctly by using the hardware

and software to successfully blink an LED using two different methods for running

models on the Arduino with Simulink: Normal Mode and External Mode.

4.2 Setup

Before each experiment is run, there will be necessary hardware and software setup

steps to follow. These steps will allow the student to properly construct and interface

any of the hardware components that will be used in that particular lab. The neces-

sary software models will be constructed as well. The students should be more focused

on understanding the actual experimental steps, not the setup portion. Therefore the

setup section will be as detailed as needed to reduce the probability of the student

making a mistake. Before the setup steps are given, the relevant hardware and soft-

ware materials will be listed. These things could include, the Arduino, a motor driver,

DC motor, 3-D printed parts, 3-D printed files, Simulink files, etc. Since this is an

introductory lab, the hardware and software setup portion of this lab will be apart of

the actual experimental steps. Therefore, this section will only contain the hardware

and software materials that are needed.
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4.2.1 Required Materials

Hardware

• Arduino Mega 2560 R3

Figure 4.1: Arduino Mega 2560

• USB cable (Standard A to B plug)

Figure 4.2: USB Cable

Software

• MATLAB/Simulink R2013a or later
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⋆ The steps and images related to MATLAB/Simulink for this experiment

were created using MATLAB/Simulink 2013a. Therefore some steps and

images may be a little different if you are not using this version.

• Personal Computer with administrator access

Prerequisite Experiments

• This is an introductory experiment and does not require that any other exper-

iments be performed first

4.3 Experimental Procedures

The main concept of each lab will be contained in this section. These will be the steps

the student follows to further learn about different topics within control systems. In

this thesis, all of the relevant details and ideas will be given, but the lab handout

the student receives will not contain all of the information. The student will have

to use what they have learned to successfully complete the lab. Checkpoints and

questions may be inserted throughout the steps in order to give the student a chance

to stop, so that they can reflect on and verify some of the things they just completed,

especially when an important topic has been discussed. Since the students will have to

rely on their own knowledge and skills, there is a higher chance they may encounter

difficulties unrelated to the experiment topics. Therefore, troubleshooting sections

will be provided to hopefully eliminate any common issues that may be encountered.

4.3.1 Exercise 1: Installing Arduino IDE and Drivers

The first task is installing the Arduino drivers on the PC. The Arduino and the USB

cable will be needed at this time. These steps are based on the installation method

provided on the Arduino website. General information about getting started with the

Arduino can be found at www.arduino.cc/en/Guide/HomePage. This is a good place

to explore if you experience any difficulties with the following installation process.

1. In your web browser, navigate to www.arduino.cc.

2. At the top of the home page, select “Download”.
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Figure 4.3: Arduino Download Page

3. On the right side of the download page, select “Windows Installer” as shown in

Figure 4.4.

Figure 4.4: Windows Installer

4. A page asking you to contribute should show, select “Just Download”, unless

you would like to contribute to the Arduino software.

Figure 4.5: Contribute Page

5. An executable file will start to download. Once the download finishes, select

the file and install the Arduino IDE. You will need administrator access on your

PC to install the IDE.

6. When the install finishes, make sure the Arduino is not sitting on a metal or

conductive surface, as it may cause the pins on the bottom of the board to short
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together. Connect the USB cable from the Arduino to the computer. The green

LED on the Arduino should turn on, indicating the board is being powered.

Figure 4.6: Arduino Power ON LED

7. Wait for the computer to search for the drivers online.

Figure 4.7: Driver Search

8. If the computer fails to locate the drivers automatically, as shown in Figure 4.8,

follow the steps below in red, otherwise skip ahead to step 9.

Figure 4.8: Failed install
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(a) To manually install the Arduino drivers onto the computer, navigate to

Device Manager, and look for the Arduino Mega board. The board should

be under “Ports(COM & LPT)”, or “Other Devices”.

• If the Arduino is under “Other Devices”, it may be listed as “Unknown

Device”. To verify that this is the Arduino, unplug the USB from

the Arduino and see that the device is removed from the list. Now

reconnect the USB to the Arduino.

Figure 4.9: Unknown Device

(b) Right-click on the Arduino Mega or the “Unknown Device”, and select

“Update Driver Software...”.
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Figure 4.10: Driver Update

(c) Select “Browse my computer for driver software”

Figure 4.11: Browse for Driver

(d) Set the location to the “drivers” folder that is within the folder where

the Arduino software was downloaded, similarly to the location shown in

Figure 4.12. Deselect the box next to Include subfolders.
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Figure 4.12: Driver Path

(e) There will be a prompt stating that Windows cannot verify the publisher

of the driver, select “Install this driver software anyway”.

Figure 4.13: Windows Security

(f) Once Windows finishes installing the drivers, a message will appear stating

the driver software was updated successfully. Close this window.

9. Navigate to the Device Manager on the computer, and check that the Arduino

shows under “Ports(COM & LPT)”. The Arduino Mega should be listed as

“Arduino Mega 2560 (COMx)” where x is the communication port number

being used. Write down the communication port number as it may be useful

later on.
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Figure 4.14: Driver Check

4.3.2 Exercise 2: Installing Arduino support in Simulink

Now that the Arduino drivers have been successfully installed on the PC, the next

step is installing the Arduino support in Simulink.

10. Open MATLAB.

11. On the “Home” toolstrip, navigate to “Resources” and click the “Add-Ons”

dropdown menu followed by “Get Hardware Support Packages” as shown in

Figure 4.15.
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Figure 4.15: Get Support Package

12. Install the support package using the internet and hit “Next”.

Figure 4.16: Install Method

13. A MathWorks account will be needed to proceed, so log in with an existing

account or create a new one.

14. Once successfully logged in, check any boxes next to support packages related

to the Arduino and hit next.

15. Follow the remainder of the on-screen prompts until the installation is finished,

and exit out by clicking “Finish”.
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Checkpoint:

This section allows the student to stop and verify that the installation was successful.

Verification requires the student to open Simulink and check that the “Simulink

Support Package for Arduino Hardware” library shows up in the Simulink Library

Browser. The steps the student would follow are shown below:

16. Type simulink in the MATLAB Command Window.

17. The Simulink Library Browser should automatically open. Now, in the “Li-

braries” section, verify that the “Simulink Support Package for Arduino Hard-

ware” is there, as shown in Figure 4.17. For Matlab/Simulink versions released

after 2013a, the Arduino blocks will be grouped into categories. The blocks

used throughout the labs for these later versions will be under Simulink Sup-

port Package for Arduino Hardware → Common.

Figure 4.17: Support Package Validation
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4.3.3 Exercise 3: Blinking an LED

Now that the Arduino support is installed in Simulink, and the Arduino drivers have

been installed on the PC, the next step is verifying the PC can communicate with

the board properly. There are two methods that will be used to demonstrate proper

communication between the board and the PC: Normal Mode and External Mode.

Both methods have their pros and cons, and, depending on the project, one method

may prove to be more beneficial than the other. Thus, it is important to introduce

both methods now so that the student is familiar with them before starting any of

the later labs. A simple experiment to introduce both of these methods is blinking an

LED. A more extensive introduction to Normal and External Mode can be found in

experiment Sampling and Data Acquisition. Besides the Arduino and the USB cable,

there is no additional hardware needed for this experiment, because the Arduino has

a built-in LED.

Normal Mode

As indicated by its name, Normal Mode is just the normal method used to download

programs onto the Arduino. Usually, with an Arduino, the programs are developed

and downloaded to the board in the Arduino IDE, which is not needed for these

projects, since we are using Simulink. A program downloaded to the board in Normal

Mode will stay on the board until another program overwrites it. This means that

even when the board is disconnected from power and reconnected later, the program is

still loaded onto the board, and will just start executing again. The main disadvantage

with Normal Mode is that if any data needs to be recorded, they will be more difficult

to acquire than with External Mode. The main advantage with Normal Mode is that

it allows programs to run at a much faster rate than External Mode. The following

steps show how to use Normal Mode to blink the onboard LED of the Arduino. The

final Simulink Model will look like Figure 4.18:
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Figure 4.18: Simulink Model - Normal Mode

18. Open MATLAB, then open a new Simulink Model using either of the following

methods:

• In the MATLAB window’s “Home” toolstrip, choose File→New→ Simulink

Model.

• Type simulink in the MATLAB Command Window, then press the New

Model icon.

19. Open the Library Browser by pressing the icon, or selecting View→ Library

Browser.

20. Under the Libraries section add a Pulse Generator block to the model:

• Simulink → Sources → Pulse Generator

21. Under the Libraries section add an Arduino Digital Output block by selecting:

• MATLAB R2013a: Simulink → Simulink Support Package for Arduino

Hardware → Digital Output

• MATLAB R2013b/R2014a: Simulink → Simulink Support Package for

Arduino Hardware → Common → Digital Output

22. Save the Simulink model as any filename.

23. Double-click the Pulse Generator block, make the following changes and then

hit OK:

• Set “Pulse type” to Sample based
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• Set “Period” to 4

• Set “Pulse width” to 2

• Set “Sample time” to 1 second

Figure 4.19: Pulse Generator Parameters

24. Double-click the Arduino Digital Output block, make the following changes and

then hit OK:

• Set Pin number to 13, this is the pin the onboard LED is connected to.

25. Connect the Pulse Generator block to the Digital Output block. The model

should look like Figure 4.18.

26. Now select Tools → Run on Target Hardware → Prepare to Run...
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Figure 4.20: Prepare to Run

27. A window should appear as that in Figure 4.21. Set Target hardware to Arduino

Mega 2560, and wait a moment for the window to update.

Figure 4.21: Target Hardware

28. Select Solver on the left hand side of the window, then make the following

changes and hit OK.

• Set “Type” to Fixed-step

• Set “Fixed-step size” to .05
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Figure 4.22: Solver Setup

29. Now run the model by selecting:

• MATLAB R2013a: Tools → Run on Target Hardware → Run

• MATLAB R2013b/R2014a: Click the “Build Model” button or Ctrl+B

(a) Run: R2013a (b) Run: R2013b/R2014a

30. Wait until the the model has successfully downloaded to the board, now observe

the onboard LED of the Arduino shown in Figure 4.24. Describe what the LED

is doing. Estimate and record the timing. Is the timing consistent with the

settings you made in Figure 4.19? Explain.
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Figure 4.24: Arduino LED

⋆ The LED should be on for 2 seconds and off for 2 seconds because we

set the Pulse Generator block’s period to 4 samples, Pulse width to 2

samples, and Sample time to 1 second. Next, they will adjust these values,

re-download them to the board, and observe the changes.

31. Change the Pulse Generator block sample time from 1 second to 0.1 seconds.

32. Download the modified model onto the board. Describe the changes in the LED

operation. How has the timing changed? Did it change in the way that you

expected?

⋆ Now the student should notice that the LED blinking becomes faster since

the sample time was decreased.

33. Change the parameters of the Pulse Generator block so that the LED will be on

for 4 seconds and off for 1 second. Record your settings, download the modified

model, and describe the resulting operation. If the timing does not produce a 4

second on period and a 1 second off period, make the necessary changes to the

parameters of the Pulse Generator and test the operation again.

Troubleshooting: If there are any errors encountered throughout this section, try

the following:

• If MATLAB cannot find the board when attempting to run the model, try

setting the COM port manually. In Simulink, go to Simulation → Model Con-
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figuration Parameters. On the left side choose “Run on Target Hardware”, then

change “Set host COM port:” from Automatically to Manually. Then change

the COM port number to the value written down in the installation section

earlier.

• If Simulink cannot connect to the board either: try disconnecting and recon-

necting the USB cable, or closing and reopening MATLAB.

• Any other issues encountered may be solved by reading the Arduino trou-

bleshooting page located at http://www.arduino.cc/en/Guide/Troubleshooting

.

External Mode

In External Mode the user is given the ability to tune parameters, and monitor data

in real-time, without having to re-download the model each time parameters are

adjusted. Once External mode is started, it uses the serial port to communicate

between the board and the PC. Specifically, the serial port being used is port 0,

which is used by the USB. Therefore, to run in External mode, the USB should be

connected between the board and the PC. This ability to adjust and monitor changes

in real-time is what makes External Mode such an enticing option for running these

experiments. Students can benefit from being able to see the immediate effects their

changes have on the hardware. However, this ability to make changes real-time comes

at a cost. To communicate back and forth, the serial port is kept open and has a

limited amount of bandwidth. This limitation affects the rate at which the program

can run. External Mode’s ability to make real-time adjustments will be shown in the

following steps, using the Arduino’s onboard LED.

34. Open a new Simulink Model, and name it something different from the previous

model.

35. Add the following items from the Simulink Library Browser:

• Two Pulse Generators: Simulink → Sources → Pulse Generator

• Manual Switch: Simulink → Signal Routing → Manual Switch

• Arduino Digital Output Block:

– MATLAB R2013a: Simulink Support Package for Arduino Hardware

→ Digital Output
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– MATLAB R2013b/R2014a: Simulink Support Package for Arduino

Hardware → Common → Digital Output

36. Save the model, and connect the blocks so that they look like Figure 4.25.

Figure 4.25: Simulink Model - External Mode

37. Double-click the Digital Output block and set the pin number to be 13.

38. Double-click the top Pulse Generator block, make the following changes and hit

OK:

• Set “Pulse type” to Sample based

• Set “Period” to 4

• Set “Pulse width” to 2

• Set “Sample time” to 1 second

39. Double-click the bottom Pulse Generator block, make the following changes and

hit OK:

• Set “Pulse type” to Sample based

• Set “Period” to 4

• Set “Pulse width” to 2

• Set “Sample time” to 0.1 second

40. Set up the Arduino to run in External Mode. Select Tools → Run on Target

Hardware → Prepare to Run...
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41. Set Target hardware to Arduino Mega 2560, and wait a moment for the window

to update.

42. In MATLAB R2013a make sure to check the box next to “Enable External

Mode”, as shown in Figure 4.26. In R2013b or later, this step is skipped.

Figure 4.26: External Mode Enable

43. Select Solver on the left hand side of the window, then make the following

changes and hit OK.

• Set “Stop time” to inf

• Set “Type” to Fixed-step

• Set “Fixed-step size” to .05

44. Make sure the drop-down menu shown in Figure 4.27 is set to External.

Figure 4.27: External Mode Enable
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45. Download the model to the Arduino using the same method used for Normal

Mode. The program may not start running automatically so connect or run the

model by doing the following:

• MATLAB R2013a: Connect to the Target Hardware using , as shown

in Figure 4.28. If the Run button is not grayed out after connecting to

the hardware, you will need to press it also to starting running the model

in External Mode.

Figure 4.28: External Mode Connect: R2013a

• MATLAB R2013b or later: Press the Run button , as shown in Fig-

ure 4.29.

Figure 4.29: External Mode Connect: R2013b or later

46. Record what the Arduino’s LED is doing. Estimate timing. Is the timing

consistent with the parameter settings?

⋆ The LED should be blinking ON for 2 seconds, and off for 2 seconds, like

it was in the first part for Normal Mode, since the Pulse Generator has

the same parameter values.

47. Double click the Manual Switch in the Simulink Model. The switch should now

be connecting the bottom Pulse Generator to the Digital Output.
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48. Record what the Arduino’s LED is doing now. Describe any timing changes.

Explain why the timing changed. How is the process different than Normal

Mode? Which Mode is better? Why?

⋆ The LED should now be blinking ON for .2 seconds, and off for .2 seconds,

just as it was in the second part of the Normal Mode experiment. The

student should now be able to see that using External Mode they were

able to change the response of the LED without having to make changes

and re-download the model to the board.

49. Disconnect from the hardware:

• MATLAB R2013a: Press the Disconnect from Target button , as shown

in Figure 4.30.

Figure 4.30: External Mode Disconnect: R2013a

• MATLAB R2013b or later: Press the Stop button , as shown in Fig-

ure 4.31.

Figure 4.31: External Mode Disconnect: R2013b or later

50. Disconnect the USB from the Arduino and PC.

49



Troubleshooting:

• The most common error that may be encountered using External Mode is

Simulink being unable to connect to the Arduino. This can happen when run-

ning in External mode if a previous simulation was not stopped correctly. The

serial port may have been left open creating issues when trying to reconnect

to the board. Another possible cause is that the model was not rebuilt after

making changes. Possible fixes for this error are:

– Try rebuilding the model using Ctrl+B in MATLAB R2013b or later or

Tools → Run on Target Hardware → Run in R2013a.

– Disconnect the USB from the Arduino and reconnect. (This usually fixes

most of the errors).

– Try hitting the reset button on the Arduino, shown in Figure 4.32.

Figure 4.32: Arduino Reset Button

– Close MATLAB and re-open.

– Any other issues encountered may be solved by reading the Arduino trou-

bleshooting page located at http://www.arduino.cc/en/Guide/Troubleshooting.

4.4 Conclusion/Student Feedback

This section will conclude the experiment and reiterate the important topics. Student

feedback will also be provided in this section to show the effectiveness and difficulty of

the experiment from the student’s perspective. This introductory lab was constructed
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to show how to install the necessary support for the Arduino in Simulink, and on

the PC. Control of the Arduino’s onboard LED was used to verify everything was

installed correctly. There were two methods used to test this - Normal Mode and

External Mode. This lab only provided a glimpse of these two modes. A more in

depth comparison of the two modes is provided in the experiment Sampling and Data

Acquisition.
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CHAPTER 5

SAMPLING AND DATA ACQUISITION

5.1 Objective

This experiment is designed to show some of the key differences between using Normal

Mode and External Mode to run labs on the Arduino using Simulink. Differences in

sampling and data acquisition for the two modes are the main focus. The experiment

will review the concept of sampling, and will show how to acquire data at multiple

sampling rates for both Normal Mode and External Mode using a DC motor. This will

give an idea of how difficult it is to acquire data using both methods, and also provide

insight on which mode may be best for running experiments based on sampling needs.

5.2 Setup

5.2.1 Required Materials

Hardware

• DC Motor with Encoder

• Arduino Mega 2560 Rev3

• Motor Shield (DFRobot L298P)

• 12V DC Power Supply (12VDC 3A Wall Adapter Power Supply)

• USB cable (Standard A to B plug)

• Female Barrel Jack (2.1mm x 5.5mm Female CCTV Power Jack Adapter)

• 8 wires

• 3-D Printed Base

• 3-D Printed Motor Clamp
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• 3-D Printed Load (from Experiment: Intro to 3-D Printing)

• 2 #4-40 1/2” screws

• 2 #4-40 1/4” screws

• Small Flat screwdriver

• Small Phillips screwdriver

• Sticky Tack

• Sandpaper or Sanding Sponge (Optional)

Figure 5.1: Hardware Items(1)

Figure 5.2: Hardware Items(2)
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Software

• MATLAB/Simulink 2013a or later

⋆ The steps and images related to MATLAB/Simulink for this experiment

were created using MATLAB/Simulink 2013a. Therefore some steps and

images may be a little different if you are not using this version. If you are

in fact using a different version, make sure you know the steps for running

models onto the Arduino for your version of Simulink.

• MATLAB/Simulink files

• Take Home Labs Arduino Library

• 3-D Printer files

Prerequisite Experiments

The experiments listed below should be completed prior to this one. Steps and hard-

ware from these experiments may be needed or referenced throughout this experiment.

It is assumed that you already have the Arduino communicating with the PC, know

how to set up and run models in Normal and External Mode, can troubleshoot any

of the issues discussed in these three labs, and can 3-D print the required parts.

• Blinking LED

• Simple DC Motor

• Intro to 3-D Printing

5.2.2 Software Setup

The following steps cover the process of downloading and creating the necessary

files needed for this experiment. The first section covers downloading the required

Matlab/Simulink files from the website, and saving them in the MATLAB directory

that will be used. Downloading and adding additional Simulink blocks to the Simulink

Library is covered in the second section. The third section requires downloading the

3-D printer files dedicated to this experiment, so that they can be printed.
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Matlab/Simulink Files

1. Open your internet browser and navigate to csl.okstate.edu

2. On the left side of the Homepage, select “Experiments”

3. In the middle section of the Experiments page select “All”

4. In the middle section of the All Experiments page find and select Sampling and

Data Acquisition

5. On the Sampling and Data Acquisition page select “Software/Code” in the

rightmost section. Download the zipfile named Software Files.

6. Right-click the file and choose “Extract All...”, or use any other method of

extracting the files on your PC.

7. You will now need to set the path for these files, and you should extract the

folder somewhere such as the Downloads or Documents folder. Make sure the

box next to “Show extracted files when complete” is checked, as shown in Fig-

ure 5.3. Now select “Extract”

Figure 5.3: Zipped Folder Extract

8. A new window should open. Double-click the Software SampExp folder and

ensure the zipfiles in Figure 5.4 are shown

55



Figure 5.4: Software Files

9. Right-click the SamplingExperiment folder, and select “Extract All...”

10. Set the path for the folder to be extracted somewhere other than the current

location, and select “Extract”. You will need to know this folder location later

in the Experimental Procedures section, so you may want to write it down. You

can close the folder if it opens up after extracting it.

11. Leave the Software SampExp folder that contains the zipfiles open, and proceed

to the next section.

Additional Arduino Support Package

Many of the Take Home Labs experiments listed on the website require some type of

hardware, other than the Arduino. The hardware may include DC motors, encoders,

motor drivers, ultrasonic sensors, etc. In order to make it easier to interface with

these hardware components, there are custom Simulink S-Function blocks that have

been created. Essentially, the S-Function is just a Simulink block representation of

some code. More information about S-Functions can be found on the Mathworks

website. The Arduino coding language is just a set of C/C++ functions, and the S-

Function blocks you will download contain the code that is needed to interface with

these hardware elements. This eliminates the need to to write C code, and it also

helps keep the Simulink model organized.

The S-Function blocks that will be needed throughout the experiments will all be

contained in one location in the Simulink Library Browser. It should be mentioned

that the additional library that will be added is a modified version of the Rensse-

laer Arduino Support Package (RASPlib). Their library is available on their website

http://homepages.rpi.edu/~hurstj2/ along with their own curriculum dedicated

labs for their own specific hardware that you can purchase. The concept of their labs
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being dedicated to a curriculum and run with the Arduino and Simulink is similar to

the concept of our take home labs. This made their labs a good guide for working with

the Arduino and Simulink. Therefore, after learning how to use their library, some of

the custom blocks and files they created were modified to work with our experiments

and hardware. More information about their labs and what they do can be found on

http://minseg.webs.com/. Follow the steps below to add the additional support to

Simulink needed for this experiment.

12. Open MATLAB, and in the Command Window type pwd to get MATLAB’s

home directory on your PC. Copy the location or write it down.

Figure 5.5: MATLAB Home Directory

13. In the Software SampExp folder, shown in Figure 5.4, right-click the THLlib

folder and choose “Extract All...”

14. Extract the files to the location of your MATLAB home directory. You can

paste the directory if you copied it, browse and find it, or manually type it in.
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Figure 5.6: Support Folder

15. The THLlib folder should now be in the MATLAB home directory. There should

also be a MATLAB code file named “startup” in the same location, as shown

in Figure 5.7. If the file does not exist, navigate back to MATLAB.

Figure 5.7: Directory Folder

16. In MATLAB, select “New Script” , and in the script type your path to the

THLlib folder, as shown in Figure 5.8b for my path. Make sure to put the single

quotes around the folder path.
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(a) New Script (b) Startup File

Figure 5.8: Creating Startup File

17. Save the file as startup. This script will execute every time MATLAB starts,

and will add the path to the THLlib folder each time automatically. Close and

reopen MATLAB.

18. After you reopen MATLAB, type simulink in the MATLAB Command Win-

dow. Make sure the Library “Take Home Labs Arduino Support Package” is

now shown in the Simulink Library Browser. If it is not shown, follow the

instructions described in the sub-steps below.

(a) The Simulink library “Take Home Labs Arduino Support Package” was

created with version R2013a. Newer versions will need to fix the Simulink

environment so that the the older library will show. In the Simulink Li-

brary Browser window, press F5 or View → Refresh Tree View.

(b) After the library refreshes, the message “Some libraries are missing repos-

itory information. Fix” will appear at the top of the window as shown in

Figure 5.9. Press “Fix”.

Figure 5.9: Simulink THL Library Error

(c) The window shown in Figure 5.10 should appear. Select “Resave libraries

in SLX file format” and press OK.
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Figure 5.10: Simulink THL Library Error (2)

(d) Once the library is fixed, the “Take Home Labs Arduino Support Package”

should now show, as in Figure 5.11. If it does not show, try closing and

reopening MATLAB. Then recheck to see if the library shows by navigating

back to the Simulink Library Browser.

Figure 5.11: Simulink THL Library
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3-D Printing Files

In this section you will be required to download all of the 3-D printer files for this lab,

and then print them. Assembling the parts will be covered in the Hardware Setup

section.

19. Navigate back to the Normal vs External Mode and Sampling page on the Take

Home Labs website.

20. In the rightmost section, select “3-D Printer Files”.

21. Open the zipfile and extract the files.

22. Use the techniques learned in experiment Intro to 3-D Printing and print the

two .STL files provided in the folder.

5.2.3 Hardware Setup

This section contains the instructions for assembling the hardware components. First,

the DC motor, Arduino, and motor shield will be connected to the base. Next, the

DC motor and encoder will be connected to the Arduino, and the 3-D printed load

will be attached to the motor. Connecting the motor shield to the Arduino is covered

in the Simple DC Motor experiment, therefore these steps will not be shown in this

experiment.

Base, Arduino, and Motor Assembly

23. Set the DC motor onto the base as shown in Figure 5.12.
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Figure 5.12: Motor and Base

24. Place the DC motor clamp over the DC motor so that the drill holes line up

with the holes of the bottom piece.

Figure 5.13: Motor Clamp

25. Use two #4-40 1/2” screws to tighten the DC motor mount top piece around

the motor so that it is secure.
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Figure 5.14: Securing the Motor

26. Take the Arduino and position it on the base so that the drill holes line up. If

you still have the motor shield connected to the Arduino from the Simple DC

Motor experiment, and you do not want to screw the Arduino onto the base,

you can skip the next step. Otherwise, you will need to disconnect the motor

shield from the Arduino to screw the board onto the base, and then reconnect

the motor shield back onto the Arduino after.

Figure 5.15: Arduino on Base

27. Screw the Arduino onto the base using at least two screws, as shown in Fig-

ure 5.16b. The screws may not tighten down completely; this is fine.
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(a) Screw 1 (b) Screw 2

Interconnections

Now that the base and Arduino have been connected, remember to connect the motor

shield back to the Arduino, if you removed it. The DC barrel jack and motor should

be connected to the motor shield as well. This was completed in steps 1-8 of the

Simple DC Motor experiment. If you have not completed this, or if either of them

have been disconnected, follow the steps in that experiment. Be sure to notice that

the wires and power supply you will use in this experiment may be different from

those shown in that experiment. Therefore, the figures used in that section will not

exactly reflect what your final setup will look like. The main concern is that the motor

and female barrel jack should both be connected to the motor shield once steps 1-8

of the Simple DC Motor experiment are completed, as shown in Figure 5.17.
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Figure 5.17: Connections from Simple DC Motor Experiment

The motor and encoder pinout is shown in the Simple DC Motor experiment, but it

is also shown below. The wire connector may change colors in the future, so do not

rely on them in the figures. Focus on the label for each pin.

(a) Motor Pinout (b) Motor Pinout w/ Wires

28. The motor’s encoder, pins 3-6, needs to be connected next. Place four wires

into the remaining slots of the motor’s connector.

65



Figure 5.19: Encoder Connection

29. Take the wire connected to the “EN B” slot, pin 3, and connect it to digital pin

3 of the motor shield. Connect the wire in the “EN A” slot, pin 5, to digital

pin 2 of the motor shield.

Figure 5.20: Enc A and Enc B Connect

30. Connect the wire in the “VCC” slot, pin 4, to the 5V pin on the motor shield.

Connect the wire in the “GND” slot, pin 6, to any of the GND pins of the motor

shield.
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Figure 5.21: VCC and GND Connect

31. The motor and encoder should now both be connected to the motor shield.

Verify the encoder is receiving power by connecting the USB cable from the

Arduino to the computer. The encoder should now be powered, so a red light

inside the encoder’s enclosure should turn on.

Figure 5.22: Encoder Power ON

32. Finally, attach the load to the motor, which you printed in the Intro to 3-D

Printing experiment. Then place the base onto the edge of a table so that the

load has space to spin. Place some sticky tack in different places on the bottom

of the base to help the base stay in place during experiments.
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(a) Sticky Tack (b) System on the Edge of Table

5.3 Experimental Procedures

Digital systems, such as a PC and the Arduino, have limitations on how fast they can

perform tasks. The rate at which the Arduino is able to sample is the key limitation

that you will explore. Sampling is the process of creating a discrete-time signal from

a continuous-time signal. The value of a continuous signal is sampled, or measured,

at certain time intervals. Depending on the continuous signal being sampled, there

are requirements on how fast you need to sample in order to preserve the information

in the signal. The first exercise of this section will discuss sampling theory, using

Simulink to help illustrate the idea. This will be done by sampling a sine wave at

different rates and observing the output response. The second exercise of this section

will explore sampling with the Arduino using Normal Mode. A sine wave voltage will

be input into the motor. Since the motor is a linear system, the output position and

velocity should be sine waves of the same frequency. The amplitude and phase of the

output sine waves will change with frequency. Various sampling rates will be tested

to provide an idea of how fast or how efficiently the Normal Mode samples data. The

third exercise of this section is the same as exercise 2, but using External Mode.

Once these experimental procedures are complete, you will have a better understand-

ing of what sampling is, and how to select a good sampling rate for an input of a

certain frequency. Also, you will know how to acquire data in both Normal and Ex-

ternal Mode, and you will understand the strengths and weaknesses of each method.
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5.3.1 Exercise 1: Sampling Theory with Simulink

To help illustrate what sampling is, look at Figure 5.24 below. The signal at the top

of the figure is one cycle of the sine wave, A sin (2πft+ ϕ). A is the amplitude, f

is the frequency, and ϕ is the phase. As shown in the figure, T equals the period

of the signal. The period of the sine wave is the time it takes to complete one full

cycle. The signal at the bottom of the figure shows the same sine wave, but it is

sampled every Ts seconds, which is the sampling period. This means that every Ts

seconds, the value of the top signal in the figure is being recorded. The sampled sine

wave has a sampling frequency of 16/T Hz, which corresponds to a sampling period

of 0.0625*T seconds.

T/2 T

t

T = 1/f
T = period

f = frequency

0

A

x(t)

T/2 T

t

Ts = Sampling period

fs = Sampling frequency

0

xs(t)

Ts = 1/fs

Figure 5.24: Continuous and Discrete Sine Wave

The Nyquist Sampling Theorem states that a band-limited signal can be recovered

if the sampling frequency fs is greater than twice the highest frequency of the signal

being sampled. This is shown in Equation 5.1, where the term 2fmax is known as the
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Nyquist Rate.

fs > 2fmax (5.1)

If the signal is not sampled at greater than the Nyquist Rate, then a phenomenon

known as aliasing occurs. What this means is that higher frequency components will

be aliased or folded in and appear as lower frequency components in the output signal.

This would prevent the signal from being reconstructed properly. The following steps

of this subsection will help illustrate this idea.

33. Open MATLAB, and select the “Browse for folder” icon

Figure 5.25: Browse for Folder

34. Navigate to the location where you extracted the SamplingExperiment folder in

the software setup section, and press the “Select Folder” button.
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Figure 5.26: Experiment Folder Select

35. Make sure MATLAB’s “Current Folder” section shows the folder you selected,

and the “DCmotorDATA.m” file is in the directory.

Figure 5.27: Current MATLAB Directory

36. In the MATLAB window, select New → Simulink Model

37. Choose File → Save As. Set the filename to Exp2Sampling, and select Save.

“Exp2Sampling.slx” file should now be in MATLAB’s “Current Folder” section.
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Figure 5.28: Current Folder Sampling File

38. In the Simulink Library Browser add a sine wave to the model. (Simulink →
Sources → Sine Wave.) Add a Scope to the model. (Simulink → Sinks →
Scope.) Then connect to the two blocks as shown in Figure 5.29

Figure 5.29: Sampling Experiment Simulink Model

39. Double-click the Sine Wave block, and change the “Frequency” to 2*pi. Select

OK.
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40. Select Model Configuration Parameters , and choose Solver from the list on

the left.

(a) Configuration Parameters (b) Solver

41. Under Solver options, change “Type” to Fixed-step, then set the “Fixed-step

size (fundamental sample time)” to 0.25 and “Stop time:” to 2 seconds. Select

OK.

Figure 5.31: Solver Options

42. Double-click the Scope block, and select “Parameters”

Figure 5.32: Scope Parameters

43. Select the History tab, and deselect the “Limit data points to last:” box. Select

Apply at the bottom right. Then, select the Style tab. Change “Line:” to no

line, and “Marker” to O. Select Apply then hit OK. Exit out of the Scope.
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(a) Scope Data Points (b) Scope Markers

44. In the Sine Wave block, the Amplitude is set to 1, Frequency ω is 2π, and the

phase is 0. On paper, sketch what this sine wave will look like for two cycles.

How fast would you need to sample it to avoid aliasing?

⋆ The sine wave would look like
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sin(2*pi*t)

Figure 5.34: Input Sine Wave

⋆ Since ω is 2π, fmax for this sine wave is just 1 Hz. fs has to be > 2fmax,

so fs has to be > 2 Hz to avoid aliasing.

45. Re-sketch the sine wave assuming it is being sampled, and has a sampling

frequency of 4 Hz. What is the Sampling Period?
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⋆ The sine wave would look like
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Discrete Sine Wave w/ fs = 4 Hz

Figure 5.35: Output for 4Hz Sampling

⋆ Ts = 0.25 seconds.

46. In the Simulink model, select Run .

47. Double-click the Scope. Is this plot that you expected? Why or why not? How

does it compare to the sampled sine wave plot you drew?

48. Exit out of the scope, and navigate back to the Model Configuration Parameters

.

49. Change the Fixed-step size (fundamental sample time) to 0.025 and select OK.

50. Run the model, and open the scope.

51. How many points are shown on the plot? (Ignore the point at 2 seconds, because

it is the start of the third cycle of the sine wave.) Before you count the points,

calculate how many there should be, using the sampling time.

⋆ Ts = 0.025, which means fs = 40 Hz (samples per second). 40 samples per

second for 2 seconds = 80 points.
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52. In Model Configuration Parameters, change the Fixed-step size (fundamental

sample time) to 0.00025 and select OK. Run the model, and open the scope.

53. Ignoring the point at 2 seconds, how many points are shown on the plot? How

has decreasing the sampling rate changed the outputs thus far?

⋆ Ts = 0.00025, which means fs = 4000 Hz. There would be 8000 points on

the plot.

⋆ Each time the sampling rate has been decreased, the number of points

has increased. The more points, the closer the sine wave looks to the

continuous time signal.

54. In Model Configuration Parameters, change the Fixed-step size (fundamental

sample time) to 0.5 seconds and select OK.

55. Sketch what you expect the sampled output sine wave to look like for two cycles.

⋆ The sine wave would look like
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Discrete Sine Wave w/ Ts = 0.5

Figure 5.36: Output for 0.5 second Sampling

56. Run the model, and open the scope.

57. Does this agree with your sketch? Would the input sine wave be able to be

reconstructed from this output? Why or why not?
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⋆ No, because the sampling rate is not greater than 0.5 seconds.

58. In Model Configuration Parameters, change the Fixed-step size (fundamental

sample time) to 0.8 and Stop time to 10. Select OK.

59. Run the model, and open the scope.

60. What does the frequency of this signal seem to be? Is this what it should be?

If not, explain.

⋆ The output sine wave will look like Figure 5.37. Figure 5.38 shows what a

− sin (0.5πt) wave looks like. This is similar to the output sine wave if we

sample every 0.8 seconds. The output is supposed to be sin (2πt), since we

set f = 1 Hz. The actual output suggests that f = 0.25 Hz. This shows

how aliasing affects the output, and will prevent the actual signal from

being reconstructed.
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Figure 5.37: Output for 0.8 second Sampling
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Figure 5.38: − sin (0.5πt)

61. Save the model and close it.

5.3.2 Exercise 2: Sampling and Data Acquisition in Normal Mode

Now that the concept of sampling has been introduced, the next task is to sample

with the Arduino in Normal Mode. This section will use all of the required hardware,

and it is assumed that you know the entire process for running Simulink models on

the Arduino using Normal Mode. This process was described in both the Blinking

LED and Simple DC Motor experiments.

62. From the MATLAB window, open a new Simulink Model: New → Simulink

Model

63. Save the file as Sampling NM. The final Simulink Model will look like Figure 5.39
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Figure 5.39: Simulink Model for Normal Mode

64. Open the Simulink Library Browser , and add the following blocks to your

empty Simulink Model:

• Sine Wave: Sources → Sine Wave

• Constant: Sources → Constant

• MATLAB Function: User-Defined Functions → MATLAB Function

• Divide: Math Operations → Divide

• Arduino Digital Output: Simulink Support Package for Arduino Hardware

→ Digital Output

65. Double-click the MATLAB Function block. The MATLAB editor will now open.

Change the code to match that shown in Figure 5.40, then exit out of the editor.
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Figure 5.40: Simulink MATLAB Function Block Code

66. Double-click the Sine Wave block, set the Sine Type to “Time based”, Ampli-

tude to 4, Frequency to 2*pi, and Sample time to Ts. Press OK to exit.

67. Double-click the Constant block and change the Constant value to 12, or to

whatever is the voltage of your power supply. Press OK.

68. Double-click the Digital Output block and change the Pin number to 4. Press

OK.

69. Connect the current blocks as in Figure 5.41
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Figure 5.41: Simulink Model Setup - Normal Mode (1)

70. Add the following blocks to the Simulink Model:

• Constant

• Product: Math Operations → Product

• Arduino PWM: Simulink Support Package for Arduino Hardware→ PWM

• Quad Encoder Block: Take Home Labs Arduino Support Package →
QuadEncoder

• Serial Send single: Take Home Labs Arduino Support Package → Serial

Send single Port0

71. Change the new Constant block’s value to 255, and set the PWM block to Pin

5. Then connect the blocks as in Figure 5.42
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Figure 5.42: Simulink Model Setup - Normal Mode (2)

72. Finally, add the text blocks to the Simulink Model. In the Simulink Library

Browser, right-click “Take Home Labs Arduino Support Package”, then select

“Open Take Home Labs Arduino Support Package library”. A window similar

to that shown in Figure 5.43 should open. Click and drag “Plot Data ’single’”

and “Close All Instrument Objects” to the Simulink File. The final Simulink

model should now resemble the model shown in Figure 5.39.

Figure 5.43: Simulink Model Setup - Normal Mode (3)

73. Set up the model to run on the Arduino in Normal Mode. Set Sampling Time

to Ts. Refer to steps 26-28 of the Blinking LED experiment, if you do not

remember the setup process. You may also want to review step 29, if you forgot

how to run the model.
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74. In the MATLAB Command Window, type Ts = 0.25;. “Ts” should now be a

variable in the MATLAB Workspace.

Figure 5.44: Sampling Time - Normal Mode

75. Next, connect the Arduino to the PC, and load the model onto the Arduino.

Remember that in Normal Mode, once you download the model to the Arduino,

the code will begin running automatically. Therefore, do not connect the power

supply just yet. Note: If you receive an error stating that Simulink cannot

connect to the board, try to disconnect and reconnect the USB cable. Other

troubleshooting tips are found in the Blinking LED and Simple DC Motor

experiments.

76. Once the model is successfully downloaded to the Arduino, select the “Plot

Data ’single’” text in the Simulink model.

77. A window, “Plot Serial Data”, should open. Change the COM port to the port

your Arduino is using, and set the number of samples to plot to 32, as shown

in Figure 5.45. Then hit OK.
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Figure 5.45: Plot Serial Data

78. A figure should open up that will start plotting the serial data, as shown in

Figure 5.47. It may take a few seconds to open.

Figure 5.46: Serial Plot Window

79. Before connecting the power, check to see if the serial data that is being captured

is in sync. Press the “Autoscale” at the bottom of the plot window, as in
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Figure 5.47

Figure 5.47: Autoscale Serial Plot

80. If the scale on the vertical axis stays -1 to 1, as in Figure 5.48, skip ahead to

step 82. If the scale on the vertical axis changes, the plot may be out of sync,

proceed to step 81.

Figure 5.48: Autoscale Test

81. If the plot’s y-axis values are very large (as in Figure 5.49a), or the values are

changing on the plot, while the load is not moving (as in Figure 5.49b), the
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(a) Large Out of Sync Values (b) Small Out of Sync Values

Figure 5.49: Out of Sync Plot Examples

data is being read incorrectly. There are a few ways to get the data in sync (see

the substeps below the figure).
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(a) Press the “Byte Adjust” button to skip a byte. If the data was plotting

incorrectly, especially if the scale became very large, you will need to wait

until the incorrect data is cleared from the plot window because autoscaling

will not adjust to the much smaller correct values until those large values

are no longer shown on the plot.

(b) Once the incorrect data has passed, press the autoscale button to see if

the y-axis scale is now fixed, and the serial data equals zero.

(c) If the data is not fixed, you can repeat steps (a) and (b) until the y-axis

scale is no longer very large, or the data on the plot is at zero and not

changing. If you have to attempt to byte adjust the data more than 3 or

4 times, press the “Stop” button, and close the plot.

Figure 5.50: Serial Plot Stop Button

(d) Start the serial plotting process over by returning to step 76.

(e) If neither byte adjust or stopping and restarting the plot gets the data in

sync, try disconnecting and reconnecting the USB cable, and starting over

from step 75.

(f) Once the data is in sync, proceed to step 82.

82. Slightly move the load to the left and right, and then press the “Autoscale”

button again. The data in the plot should look similar to Figure 5.51, ensuring

the data is in sync.
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Figure 5.51: Serial Data Sync Test

83. Before plugging in the power, make sure the load is attached to the motor shaft

securely, and that your hands and any other objects are away from the spinning

load, to avoid potential injuries. Then manually move the load position back

as close to 0 as you can.

84. Plug in the power supply. Caution: The motor will start to spin the attached

load when you connect the power supply.

85. The plot should now show a sine wave similar to Figure 5.52a or Figure 5.52b.

You may need to press Autoscale while the load is spinning to fit the plot axes

to the data. The output plot you want should have seven to eight cycles of the

sine wave, since there are 32 samples being plotted. When the plot shows seven

to eight cycles of the sine wave, press the “Stop” button located at the bottom

left of the plot window.
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(a) Initial Correct Data (b) Byte Adjusted Correct Data

Figure 5.52: Correct Data Serial Plots

86. Disconnect the power supply from the Arduino.

87. Once the plot is stopped, the variables shown in Figure 5.53a should now be

in the MATLAB workspace. The “WindowData” variable is the data from

the serial plot window. Type DCMotorDATA in the MATLAB command win-

dow as shown in Figure 5.53b. This will run the “DCMotorDATA.m” file that

was inside the “SamplingExperiment” folder that was downloaded in the Soft-

ware Setup section. This file will produce two figures, the motor position in

counts, which is the “WindowData” variable, and the velocity of the motor in

counts/sec. Both figures plot the data versus time, and not versus samples, as

it did in the serial plot window. This will allow you to check if the frequency

of the sine wave is correct.
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(a) Workspace Data from Plot Serial (b) Running the Plot File

Figure 5.53: Handling the Serial Plot Data

88. Save all your figures for your lab report.

89. How can the velocity plot be created from the position data? What would you

say the frequency of the sine wave is based on the position and velocity plots?

Explain.

⋆ The velocity data is found by taking the position at the next time step

and subtracting the position at the current time, and then dividing by the

sampling time. v(t) = y(t+1)−y(t)
Ts

.

⋆ Example figures are shown in Figure 5.54a and Figure 5.54b. The output

sine wave frequency is 1 Hz, since it takes one second to complete a cycle

of the sine wave.
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(a) Normal Mode Position (b) Normal Mode Velocity

Figure 5.54: Example Plots for 4Hz Sampling

90. After you have saved your figures, in the MATLAB command window, type

close all and press enter to close all figures. Type clear all and press enter to

clear the workspace of all variables. Then type clc and press enter to clear the

command window.

91. Type Ts = 0.05; in the MATLAB command window. Then go back to the

simulink file and download the model to the Arduino.

92. Once the model is successfully downloaded to the board, press the “Serial Plot

’single’” text in the model as you did before. Enter your correct COM port,

and this time plot 80 samples. Press “OK”.

93. Connect the power supply to the Arduino.

94. Get the correct data, a sine wave, to show in the Serial Plot Window for three

to four cycles, and press “Stop” to save it to the workspace. An example plot

is shown in Figure 5.55.
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Figure 5.55: Example Plot for 20Hz Sampling

95. Disconnect the power supply from the Arduino.

96. Type DCMotorDATA in the MATLAB command window to run the .m file to

plot the position and velocity. Save the figures for your lab report.

97. What is the frequency of the sine wave, based on the position and velocity plots?

Explain. Discuss the difference between the results for 20 Hz and the results

for 4 Hz.

⋆ Example figures are shown in Figure 5.56a and Figure 5.56b. The output

sine wave frequency is 1 Hz, since it takes one second to complete a cycle

of the sine wave.

⋆ The 20 Hz results show much smoother sine waves than the 4 Hz results.
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(a) Normal Mode Position (b) Normal Mode Velocity

Figure 5.56: Example Plots for 20Hz Sampling

98. In the MATLAB command window, type close all and press enter. Type clear

all and press enter. Then type clc and press enter.

99. Type Ts = 0.01; in the MATLAB command window. Then go back to the

simulink file and download the model to the Arduino.

100. Once the model has been downloaded to the board, press the “Serial Plot ’sin-

gle’” text in the model as you did before. Enter your correct COM port, and

this time plot 400 samples. Press “OK”.

101. Connect the power supply to the Arduino.

102. Get the correct data, a sine wave, to show in the Serial Plot Window for three

to four cycles, and press “Stop” to save it to the workspace. An example plot

is shown in Figure 5.57.
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Figure 5.57: Example Plot for 100Hz Sampling

103. Disconnect the power supply from the Arduino.

104. Type DCMotorDATA in the MATLAB command window to run the .m file to

plot the position and velocity. Save the figures for your lab report.

105. What is the frequency of the sine wave, based on the position and velocity plots?

Explain. Discuss the difference between the results for 100 Hz and the previous

two cases. Which rate would you use for this signal? Why?

⋆ Example figures are shown in Figure 5.58a and Figure 5.58b. The output

sine wave frequency is 1 Hz, since it takes one second to complete a cycle

of the sine wave.

⋆ The 100 Hz results contain more samples than the first two cases. This

makes the plots look smoother and more like a continuous signal. The 100

Hz rate provides the best results of the three so it should be used.
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(a) Normal Mode Position (b) Normal Mode Velocity

Figure 5.58: Example Plots for 100Hz Sampling

106. In the MATLAB command window, type close all and press enter. Type clear

all and press enter. Then type clc and press enter.

107. Now type Ts = 0.0075; in the MATLAB command window. Then go back to

the simulink file and download the model to the Arduino.

108. Once the model has been downloaded to the board, press the “Serial Plot ’sin-

gle’” text in the model as you did before. Enter your correct COM port, and

this time plot 534 samples. Press “OK”.

109. Connect the power supply to the Arduino.

110. Get the correct data, to show in the Serial Plot Window for three to four

cycles, and press “Stop” to save it to the workspace. An example plot is shown

in Figure 5.59.
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Figure 5.59: Example Plot for 133Hz Sampling

111. Disconnect the power supply from the Arduino.

112. Type DCMotorDATA in the MATLAB command window to run the .m file to

plot the position and velocity. Save the figures for your lab report.

113. What is the frequency of the sine wave, based on the position and velocity plots?

Explain.

⋆ Example figures are shown in Figure 5.60a and Figure 5.60b. The output

sine wave frequency is 1 Hz, since it takes one second to complete a cycle

of the sine wave.
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(a) Normal Mode Position (b) Normal Mode Velocity

Figure 5.60: Example Plots for 133Hz Sampling

114. Save the Simulink file, and disconnect the USB cable from the PC.

5.3.3 Exercise 3: Sampling and Data Acquisition in External Mode

115. The Simulink model that will be used in External Mode is very similar to the

model used in the Normal Mode section. So start with the final Normal Mode

model by opening the Sampling NM.slx that was used in Exercise 2.

116. Save the file as a different name, Sampling EX, then delete the “Serial Send

single Port0” block, the “Plot Data ’single’” text, and the “Close All Instru-

ment Objects” text from the model, as shown in Figure 5.61a. Then add

a “To Workspace” block from the Library Browser(Simulink → Sinks → To

Workspace) and connect it to the output of the “QuadEncoder” block, as shown

in Figure 5.61b.

(a) Model Starting Place (b) Final Model

Figure 5.61: External Mode Model Setup
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117. Double-click the “To Workspace” block. In the block parameters, change “Vari-

able name:” toWindowDat, and for “Save format:” choose “Array”. Press “OK”

to exit the block parameters.

Figure 5.62: Workspace Block Parameters

118. Change the Simulink model configuration parameters to run in External Mode.

Since we created this file from the model in Exercise 2 that is configured to run

in Normal Mode, just change the following:

• Open the “Model Configuration Parameters” . In the “Solver” section,

leave the sampling time equal to “Ts”, as it was in Exercise 2.

• In the “Run on Target Hardware” section, select the box next to “Enable

External mode”, as shown in Figure 5.63, and press “OK” to close the

window.
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Figure 5.63: External Mode Parameters

• Set the stop time to 8 seconds, and change the simulation mode to “Ex-

ternal”, as shown in Figure 5.64.

Figure 5.64: Model Run Settings

119. In the MATLAB command window, type Ts = 0.25; and press enter.

120. Connect the USB cable to the PC and Arduino, and load the model onto the

Arduino.

121. Plug in the power supply, press to connect to the Arduino. Caution: The

motor may begin to rotate the load when you connect to the Arduino. If the

model does not start running, you will also need to press Run .

122. After 8 seconds the model will stop running and disconnect from the Arduino

automatically. The position data will be stored into the “WindowData” variable
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in the workspace. Type DCMotorData in the MATLAB command window to

generate the position and velocity plots versus time. Save the plots for your lab

report.

123. What is the output frequency for both the position and velocity plots? Explain

any differences between these plots and the plots you found for 4 Hz sampling

using Normal Mode. Remark: Check for any differences in the output magni-

tudes, and check for large jumps between time steps.

⋆ Example figures are shown in Figure 5.65a and Figure 5.65b. The output

sine wave frequency is 1 Hz, since it takes one second to complete a cycle

of the sine wave.

(a) External Mode Position (b) External Mode Velocity

Figure 5.65: Example Plots for 4Hz Sampling

124. In the MATLAB command window, type close all and press enter. Type clear

all and press enter. Then type clc and press enter.

125. Type Ts = 0.05; in the MATLAB command window. Then go back to the

simulink file and change the stop time to 4 seconds. Download the model to

the Arduino. Press the button to connect to the board, and then press the run

button.

126. After 4 seconds the model will stop running and disconnect from the Arduino

automatically. The position data will be stored into the “WindowData” variable

in the workspace. Type DCMotorData in the MATLAB command window to

generate the position and velocity plots versus time. Save the plots for your lab

report.
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127. What is the output frequency for both the position and velocity plots? Ex-

plain any differences between these plots and the plots you found for 20 Hz

sampling using Normal Mode. Remark: Check for any differences in the output

magnitudes, and check for large jumps between time steps.

⋆ Example figures are shown in Figure 5.66a and Figure 5.66b. It is difficult

to see anything wrong in the position plot, so the frequency would seem

to be 1 Hz as it should be. The velocity plot shows the correct time

between cycles, which is 1 second, but there are some fairly big jumps,

which should not happen if the sampling time is constant. In the Normal

Mode plots for sampling at 20 Hz, the magnitude of the velocity output

was about 2000 counts/sec. The most extreme case for External Mode has

a magnitude of about 2900 counts/sec. Another noticeable issue for the

External Mode velocity plot are the large jumps between time steps. An

example of this is shown in Figure 5.67, where there was a jump from about

2500 counts/sec to 300 counts/sec between 0.35 and 0.4 seconds. The most

logical explanation would be that the sampling time is not consistent. If

this is true, this could be a major issue because it will give incorrect data.

The position data does not seem to be affected much, but slightly wrong

position values could lead to large errors in the calculated velocity.

(a) External Mode Position (b) External Mode Velocity

Figure 5.66: Example Plots for 20Hz Sampling
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Figure 5.67: EM Velocity Plot Large Jump

128. In the MATLAB command window, type close all and press enter. Type clear

all and press enter. Then type clc and press enter.

129. Type Ts = 0.01; in the MATLAB command window. Then go back to the

Simulink file and download the model to the Arduino. Press the button to

connect to the board, and then press the run button.

130. After 4 seconds the model will stop running and disconnect from the Arduino

automatically. The position data will be stored into the “WindowData” variable

in the workspace. Type DCMotorData in the MATLAB command window to

generate the position and velocity plots versus time. Save the plots for your lab

report.

131. What is the output frequency for both the position and velocity plots? Explain

any differences between these plots and the plots you found for 100 Hz sam-

pling using Normal Mode. Remark: Check for any differences in the output

magnitudes, and check for large jumps between time steps.

⋆ Example figures are shown in Figure 5.68a and Figure 5.68b. Again it is

difficult to see anything wrong in the position plot because there are so

many samples, so the frequency would seem to be 1 Hz as it should be.

The velocity plot shows the correct time between cycles, which is 1 second,
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but the big jumps and the peak to peak differences look even worse than

at 20 Hz. Figure 5.69a and Figure 5.69b show one of the large jumps

in position and velocity. In comparison, the largest jump in the position

and velocity plots for the Normal Mode are shown in Figure 5.70a and

Figure 5.70b. Even if the very large jump is ignored in the velocity plot

for External Mode, the average difference between time steps is still about

1000 counts/sec, which is much higher than those shown in the Normal

Mode velocity plot.

(a) External Mode Position (b) External Mode Velocity

Figure 5.68: Example Plots for 100Hz Sampling

(a) External Mode Position (b) External Mode Velocity

Figure 5.69: External Mode Large Jumps
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(a) Normal Mode Position (b) Normal Mode Velocity

Figure 5.70: Jumps in Normal Mode Plots

132. In the MATLAB command window, type close all and press enter. Type clear

all and press enter. Then type clc and press enter.

133. Type Ts = 0.0075; in the MATLAB command window. Then go back to the

Simulink file and download the model to the Arduino.

134. If you have a stopwatch on your cellphone, or any other way to record time, get

it ready to time this experiment. If you do not have one, just count to yourself

and watch the simulation time at the bottom of the Simulink model, as shown

in Figure 5.70a. The simulation time will not appear until the model starts to

run.

135. Connect to the board. If you have a stopwatch press start at the same time you

press the run button, and if you do not have a stopwatch just begin counting

when you press the run button. In addition, watch the motor load, and measure

how long it takes to complete one cycle. Does it take one second?

136. How long did it take the experiment to finish? In the MATLAB command

window, type Ts = (the time you calculated)/(the number of data points);.

The number of data points can be found from the size of the WindowData

variable in the MATLAB workspace. For example, in Figure 5.71 the number of

samples would be 534, and say it took my experiment 7 seconds to finish. In the

MATLAB command window I would type Ts = 7/534; to adjust the sampling

time based on how long the experiment ran and how many data points were

recorded.
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Figure 5.71: Example Output Data Size

137. Type DCMotorData in the MATLAB command window to generate the position

and velocity plots versus time. Save the plots for your lab report.

138. What is the output frequency for both the position and velocity plots? Is this

what you expect? Explain.

⋆ The output frequency should not be 1 Hz anymore. The expected number

of output samples, when sampling every 0.0075 seconds for 4 seconds, is

534. Even though the experiment will run longer than 4 seconds, the

output is usually still going to be 534 data points. Therefore the real

sampling time will not be 0.0075. When the output plots are generated

based on the real sampling time, the frequency will be smaller. A typical

experiment resulted in a .5 Hz output sine wave, so the cycles of the sine

wave took 2 seconds to complete instead of 1 second.

139. Disconnect the power supply and USB cable.

140. Discuss the sampling accuracies for Normal and External Mode. Compare their

ease of use for collecting data. Overall, which method do you think would make

the best choice for running experiments on the Arduino with Simulink?

⋆ Normal Mode can accurately sample at least as fast as 133 Hz. External

Mode sampled poorly as early as 20 Hz. It was difficult to tell if External

Mode had sampling issues at 4 Hz, but additional sampling times could

be explored by the students to see if problems occur at rates between 4

Hz and 20 Hz. From my own tests, External Mode does sample poorly for

frequencies lower than 20 Hz. Normal Mode does have its limitations also.
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Since the data is being transmitting through the serial port, the sampling

rate is limited by the baud rate of the serial port. The default baud rate

is only 9600. Faster baud rates can be used so that you can sample faster,

but the probability of producing errors will increase.

⋆ External Mode is much easier than Normal Mode for collecting data. Ex-

ternal Mode only requires sending the data to a scope in Simulink, or send-

ing it to the workspace as a variable. In contrast, Normal Mode required

downloading additional custom Simulink blocks, and writing a script to

open the serial port and plot the data. Getting the right data to plot is

also a hassle, since the data can be out of sync and require skipping bytes

until it starts receiving it correctly.

⋆ Overall, Normal Mode is really the only reliable option if an experiment

requires accurate data, even at slow sampling rates. However, External

Mode is useful when you need to test sensors or when data accuracy is not

that important.

5.4 Conclusion/Student Feedback

This experiment was focused around the concept of sampling, and sampling with the

Arduino using Normal Mode and External Mode. The process for capturing data

in both modes was compared as well. The experiment proves that Normal Mode

performs accurate sampling, but it is somewhat complex for collecting data. The

current data acquisition method in Normal Mode also limits how fast you can run

experiments, because the output data is transmitted over a serial port. External

Mode proved to be much easier for acquiring data, but performed poorly when sam-

pling, even at slow speeds. If an experiment requires accurate sampling, then Normal

Mode is by far the best option. External Mode would be best suited for testing and

calibrating sensors before they are used within an experiment.
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CHAPTER 6

OPEN LOOP FREQUENCY RESPONSE

6.1 Objective

This experiment will demonstrate the importance of frequency response by finding

the open loop frequency response of a DC motor with an attached load. The open

loop frequency response will be found by applying a sinusoidal voltage, for multiple

frequencies, into the motor. For each frequency, the motor’s output position and

velocity will be recorded. The magnitude of the output position and velocity wave-

forms will be compared to the magnitude of the input voltage. Magnitude bode plots

for both output position and velocity versus input voltage will be generated. The

motor’s first order transfer function will be estimated from the experimental velocity

vs input bode plot. Bode plots for the estimated transfer functions will be generated

and compared to the experimental bode plots.

6.2 Setup

6.2.1 Required Materials

Hardware

The majority of the hardware materials required for this experiment are the same

materials used in the Sampling and Data Acquisition experiment. Listed below are

additional materials that may be needed if you wish to vary the mass of the load. A

list of the materials that were used in the Sampling and Data Acquisition experiment

will also be listed below for reference. The new materials are:

• Pennies - Minimum: 2 Maximum: 10

• Scotch tape

• Small 3-D Printed Load

Previous materials from the Sampling and Data Acquisition experiment:
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• DC Motor with Encoder

• Arduino Mega 2560 Rev3

• Motor Shield (DFRobot L298P)

• 12V DC Power Supply (12VDC 3A Wall Adapter Power Supply)

• USB cable (Standard A to B plug)

• Female Barrel Jack (2.1mm x 5.5mm Female CCTV Power Jack Adapter)

• 8 wires

• 3D Printed Base

• 3D Printed Motor Clamp

• 2 #4-40 1/2” screws

• 2 #4-40 1/4” screws

• Small Flat screwdriver

• Small Phillips screwdriver

• Sticky Tack

• Sandpaper or Sanding Sponge (Optional)

Software

• MATLAB/Simulink 2013a or later

⋆ The steps and images related to MATLAB/Simulink for this experiment

were created using MATLAB/Simulink 2013a. Therefore some steps and

images may be a little different if you are not using this version. If you are

in fact using a different version, make sure you know the steps for running

models onto the Arduino for your version of Simulink.

• MATLAB files

• 3-D Printer files
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Prerequisite Experiments

• Simple DC Motor

• Intro to 3-D Printing

• Sampling and Data Acquisition

6.2.2 Software Setup

The necessary software files that are needed for this experiment can be downloaded

from the Take Home Labs webpage. One method for downloading the files is shown

in the steps below.

1. Open your internet browser and navigate to csl.okstate.edu

2. On the left side of the Homepage, select “Courses”

3. In the middle section of the Courses page select “System Dynamics”

4. In the middle section of the System Dynamics page find and select Open Loop

Frequency Response.

5. On the Open Loop Frequency Response page select “Software/Code” in the

rightmost section. A zipfile named Experiment OLFR should download.

6. Right-click the file and choose “Extract All...”, or any other method of extract-

ing files on your PC.

7. Extract this folder somewhere convenient, and remember the location. This

will be the folder where all of the files and plots created for this experiment are

saved.

8. Navigate back to the Open Loop Frequency Response page, and select “3-D

Printer Files” in the rightmost section.

9. Select the Open Loop Frequency Response link to download the files. Open

and 3-D print both of the “.STL” files. You will print the required load and

gear insert. The gear insert is the same insert used for the load you printed in

the Intro to 3-D Printing experiment, and the load you will print is a smaller

version of the load printed in that experiment. Use the steps discussed in that

experiment to connect the two parts after printing them.
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6.2.3 Hardware Setup

The majority of the hardware for this experiment was used in the Sampling and Data

Acquisition experiment. If your hardware is no longer set up, review the “Hardware

Setup” section of the Sampling and Data Acquisition experiment. To vary the load’s

mass by adding pennies, follow the steps below.

1. Place the load on a flat surface with the penny holes facing up, as in Figure 6.1.

Figure 6.1: Load with no Pennies

2. Place sticky tack in one of the holes, as in Figure 6.2. The amount of sticky

tack that should be used depends on the number of pennies that will be inserted

into the hole. The more pennies, the less sticky tacky is needed. The size of the

sticky tack shown in Figure 6.2 is a good size if inserting two pennies in a hole.
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Figure 6.2: Sticky Tack Placement

3. Place a penny on top of the sticky tack that is in the hole, as in Figure 6.3. If

this is the only penny that will be inserted, skip the next step.

Figure 6.3: Penny Hole Placement

4. Place a small piece of sticky tack on the penny, as in Figure 6.4. Then place

another penny in the hole on top of the current one. Repeat this step until you

have your desired amount of pennies in the hole. Do not place sticky tack on

top of the last penny you add.
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Figure 6.4: Sticky Tack on Penny

5. Press down on the pennies until the top penny sits flush with the face of the

load. Tape over the pennies and around the outside of the load a few times,

as in Figure 6.5. This will help prevent the pennies from moving during the

experiment.

Figure 6.5: Taping the Pennies

6. Repeat the steps of this section for the opposite penny slot. If desired, also

repeat the steps for the other two penny slots. With pennies in every slot, the

final load should resemble the load in Figure 6.6.
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Figure 6.6: Load with Pennies

7. Once all of the pennies have been inserted, place the load back onto the motor

shaft. The full setup is shown in Figure 6.7.

Figure 6.7: Full Assembly

6.3 Experimental Procedures

The exercises in this section will demonstrate how to find the transfer function of a

Linear Time-Invariant system (LTI) using its frequency response. Frequency response

is the steady-state response of a system to a sinusoidal input. The DC motor is the

system that will be used. The first order model of the motor will be estimated using

the experimental results of the frequency response. In the first exercise you will derive

the motor’s first order transfer function, sketch the theoretical Bode Plot, and find

the transient response. In exercise 2 you will find the frequency response of the motor

by applying a sinusoidal input voltage for a range of frequencies. For each sine wave
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input, you will find the output position and velocity of the motor. For each frequency,

the peak to peak magnitude of the output position and velocity will be compared to

the peak to peak magnitude of the input sinusoidal voltage. The magnitudes will be

recorded and used to construct bode plots for position vs. input, and velocity vs.

input. The transfer functions of the motor will be estimated in exercise 3 using the

velocity vs. input experimental bode plot. The bode plot of the estimated transfer

functions will then be simulated and compared to the experimental bode plots.

6.3.1 Exercise 1: The Motor Transfer Function

This first exercise will use the physical characteristics of the motor to derive the

transfer function of the motor. Figure 6.8 shows the circuit diagram of the motor:

R
a

+

+

-

-

w
e e

b

i

J,b

Figure 6.8: DC Motor Circuit Diagram

The motor’s equations of motion can be found from the circuit diagram. The equa-

tions are shown below:

e = Rai+ eb (6.1)

Jω̇ = τ − βω (6.2)

τ = Kti (6.3)

eb = Kbω (6.4)

where J is the inertia of the armature and the load, Kt is the torque constant, Ra is

the armature resistance, Kb is the back emf constant, τ is the torque, i is the armature

current, e is the voltage applied to the motor, ω is the angular velocity of the motor,

and eb is the motor back emf.

8. Using Equations (1.1 - 1.4), solve for the blocks G1, G2, G3, and G4 in Figure 6.9.
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Figure 6.9: Empty Block Diagram for Motor

9. Use block diagram reduction to find the overall open loop transfer function ω(s)
e(s)

for the motor. Simplify the transfer function to match the form of Km

τms+1
, where

Km and τm are constants.

⋆ The simplified overall open loop transfer function is shown in Equation 6.5

ω(s)

e(s)
=

Kt

Raβ
+ 1

Kb(
J
β
+ JRa

KbKt

)
s+ 1

(6.5)

where

Km =
Kt

Raβ
+

1

Kb

(6.6)

and

τm =
J

β
+

JRa

KbKt

(6.7)

10. Sketch the magnitude of the bode plot for Km

τms+1
. Label the key points in the

plot as functions of Km and τm.

⋆ An example of the bode plot sketch is shown in Figure 6.10. The constant

maximum magnitude of the bode plot corresponds to 20log10(Km), and

the corner frequency ωc, or break frequency, corresponds to 1
τm

Figure 6.10: Example Bode Plot
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11. Find the transient response of the system, G(s) = Km

τms+1
, given an input x(t) =

Asin(ωt), and also find the steady state response.

⋆ First, convert the transfer function to the form: G(s) =
Km
τm

s+ 1
τm

.

⋆ X(s) = Aω
s2+ω2 and Y (s) = G(s)X(s).

⋆ From Y (s) =
Km
τm

(s+ 1
τm

)
Aω

(s2+ω2)
, find the partial-fraction expansion.

⋆ The partial-fraction expansion will give: Y (s) =
Km
τm

(s+ 1
τm

)
Aω

(s2+ω2)
= a

s+ 1
τm

+

cs+d
s2+ω2

⋆ By taking the Laplace Transform of the partial-fraction expansion, the

transient response will be: y(t) = ae−
t

τm + A |G(jω)| sin(ωt+ ∠G(jω)).

⋆ The steady state response will be: yss(t) = A |G(jω)| sin(ωt + ∠G(jω))

since the ae−
t

τm term decays to zero.

6.3.2 Exercise 2: Experimental Frequency Response

In this exercise you will find the frequency response of the motor with the load

attached by using the Arduino and Simulink. You will apply a sinusoidal input

voltage, for multiple frequencies, into the motor. For each frequency, you will need to

record the peak to peak steady-state output position and peak to peak steady-state

output velocity, and compare these magnitudes to the peak to peak amplitude of the

input sine wave voltage. The required frequencies for the sine wave input voltage

are provided in Table 6.1. Once the table is complete, the values will be used to

generate bode plots for the output position vs input voltage and output velocity vs

input voltage. Using the velocity vs input bode plot, you will estimate Km and τm.

12. Open MATLAB and set the MATLAB “Current Folder” location to the Ex-

periment OLFR folder you extracted in the software setup section. The files

SerialPlotData.m and BodePlotData.m should show in the “Current Folder”

section.

13. Open your Sampling NM model used in the Sampling and Data Acquisition

experiment, and save it as OpenLoopFreqResponse. Your model should now

resemble the model in Figure 6.11.
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Figure 6.11: Existing Simulink Model

14. Add a “Gain” block to the model (Commonly Used Blocks → Gain).

15. Delete the connection between the “QuadEncoder” block and the “Serial Send

single Port0”, and connect the “QuadEncoder”, “Gain”, and “Serial Send single

Port0” blocks as in Figure 6.12.

Figure 6.12: Simulink Model Changes

16. Ensure your model looks like the model in Figure 6.13, then save it.
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Figure 6.13: Final Simulink Model

17. Double-click the sine wave block and change the “Amplitude:” to 4, and the

“Frequency (rad/sec):” to 2*pi*fs.

18. In the MATLAB Command Window, type Ts = 0.01; and press enter. Then

type fs = .005; and press enter.

19. Connect the Arduino to the PC, and download the Simulink model to the

Arduino.

20. Once the model is successfully downloaded to the Arduino, select the “Plot

Data ‘single’” text.

21. In the pop-up window, change the COM port to the port your Arduino is using,

and set the number of samples to plot to 50000. Press “OK” to start plotting

the data.

22. Check to see if the plot data is out of sync by manually moving the load left and

right. If the data is in sync, it should resemble Figure 6.14. If your plot does not

look similar to this, press “Byte Adjust” and manually move the load again. If

the data is still incorrect, repeat this step a few more times if needed. After a few

attempts, if the data is still incorrect, press “Stop” and close the plot window.

Initiate the plotting process again by selecting the “Plot Data ‘single’” text

and entering the number of samples to plot. Repeat this step until the data is

correct. Additional techniques for troubleshooting the serial data can be found

in steps 79-82 of the Sampling and Data Acquisition experiment.

118



Figure 6.14: Serial Data Sync Test

23. Once the data is in sync, move the load back to the 0 position and plug in the

power supply.

24. Press “Autoscale” once the motor starts rotating, if the values are not visible.

Let the experiment run until you see at least 2 cycles of the output sine wave

before pressing “Stop”.

25. After pressing stop in the serial plot window, open the SerialPlotData.m file

in the MATLAB Current Folder section, and run the file to generate the

position vs time and velocity vs time plots.

26. Find the steady state peak to peak magnitudes for each plot, and record the

values in the first row of Table 6.1. Also, in the table, record the peak to peak

magnitude of the input sine wave, and the position vs input ( |θ||e|) and velocity

vs input ( |ω||e| ) magnitudes in decibels (dB), using 20log10.

27. In the MATLAB Command Window, type clear all; close all; clc; and press

enter.

28. Repeat steps 18-26 for each frequency provided in Table 6.1. When returning

to step 18, always set Ts = 0.01;, and set fs equal to the frequencies listed in

the table. The extra rows in the table can be used for additional frequencies.

Take as many readings as you need to get an accurate frequency response.
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Frequency Response

Number

of Points

Frequency

(Hz)

|e| (peak
to peak

volts)

|θ| (rad) |ω|
(rad/s)

|θ|
|e| (dB)

|ω|
|e| (dB)

50,000 0.005

25,000 0.01

5,000 0.05

2500 0.1

1000 0.5

500 1

Table 6.1: Open Loop Frequency Response

⋆ The experimental data found for the load using zero pennies is shown in

Table 6.2. The load weighed 17 grams, and two additional frequencies were

used.
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Frequency Response

Number

of Points

Frequency

(Hz)

|e| (peak
to peak

volts)

|θ| (rad) |ω|
(rad/s)

|θ|
|e| (dB)

|ω|
|e| (dB)

50,000 0.005 8 8267.5 310 60.29 31.77

25,000 0.01 8 4186 310 54.37 31.77

5,000 0.05 8 829.5 294 40.31 31.31

2500 0.1 8 396.15 255 33.86 30.07

1000 0.5 8 30 91 11.48 21.12

500 1 8 7.3 47.5 -0.795 15.47

1500 0.25 8 104.25 160 22.299 26.02

2000 0.175 8 182.9 200 27.18 27.96

Table 6.2: Experimental Data - No Pennies

⋆ The experimental data found for the load using 10 pennies is shown in

Table 6.3. The load weighed 46.7 grams, and no additional frequencies

were used.
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Frequency Response

Number

of Points

Frequency

(Hz)

|e| (peak
to peak

volts)

|θ| (rad) |ω|
(rad/s)

|θ|
|e| (dB)

|ω|
|e| (dB)

50,000 0.005 8 9201 344 61.25 32.67

25,000 0.01 8 4612.5 338 55.22 32.52

5,000 0.05 8 704.6 218 38.89 28.71

2500 0.1 8 217 135 28.67 24.54

1000 0.5 8 10.7 91 33.45 12.43

500 1 8 2.81 47.5 19.4 7.69

Table 6.3: Experimental Data - 10 Pennies

29. Open the BodePlotData.m from the MATLAB “Current Folder” location. Input

the |θ|
|e| values from your table inside the brackets of the GpdB variable. For

example, if all of the |θ|
|e| values were equal to 1, and no additional frequencies

were used, GpdB = []; would become GpdB = [1, 1, 1, 1, 1, 1];. The order

you enter the magnitude values depends on the order of the frequencies in

the variable f. The frequencies are in numerical order from smallest to largest.

Therefore, if you find output magnitudes for any additional frequencies, you will

need to add the additional frequencies, in the correct order, to the variable f. For

example, if additional frequencies of 0.25 Hz and 2 Hz are used and the output

magnitudes equal 1.5 and 2, the frequency variable in the BodePlotData.m file

needs to be changed to f = [0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2];, and the

magnitude variable should be changed to GpdB = [1, 1, 1, 1, 1.5, 1, 1, 2];.

30. Input the |ω|
|e| values from your table inside the brackets of the GvdB variable,

and run the file to produce the two bode plots.

⋆ The frequency response data for the load with no pennies produced the
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bode plots shown in Figure 6.15a and Figure 6.15b.

(a) Position vs Input (b) Velocity vs Input

Figure 6.15: Bode Plots - Load with No Pennies

⋆ The frequency response data for the load with 10 pennies produced the

bode plots shown in Figure 6.16a and Figure 6.16b.

(a) Position vs Input (b) Velocity vs Input

Figure 6.16: Bode Plots - Load with 10 Pennies

31. Comparing the experimental output velocity vs input voltage bode plot with

your theoretical sketch from step 10, estimate Km and τm.

⋆ The velocity vs input bode plot for the load with no pennies shows that

20log10(Km) = 31.77, which means Km = 38.75, and τm = 1
0.887

= 1.127.

⋆ The velocity vs input bode plot for the load with 10 pennies shows that

20log10(Km) = 32.65, which means Km = 43, and τm = 1
0.2239

= 4.467.

32. Save the plots for your lab report, and leave them open.
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6.3.3 Exercise 3: Simulation and Experimental Results Comparison

In this subsection, you will use the velocity vs input bode plot from Exercise 2 to

estimate Km and τm. Then you will use MATLAB the bode plots for ω(s)
e(s)

= Km

τms+1

and θ(s)
e(s)

= Km

(τms+1)s
and compare them to the experimental bode plots.

33. In MATLAB, create the transfer functions Gv(s) = Km

τms+1
and Gp(s) = Km

(τms+1)s

using the values you estimated for Km and τm in exercise 2. Figure 6.17 shows

the code you need to type in the MATLAB Command Window in order to

create the transfer functions. Change the variables Km and tm to equal your

values for Km and τm.

Figure 6.17: MATLAB Transfer Function

34. Plot the bode plot for your estimated |θ|
|e| on top of the experimental bode plot

from exercise 2 by typing figure(1);bodemag(Gp,w,‘--r’) and press enter. Type

grid on and press enter, then type legend(‘Experimental’,‘Simulated’) and press

enter. Your MATLAB Figure 1 should now show both the experimental and

simulated bode plots, with a legend in the top right corner.

⋆ A comparison of the bode plots for position vs input for the load with no

pennies is shown in Figure 6.18a, and the comparison for the load with 10

pennies is shown in Figure 6.18b.
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(a) Position vs Input - No Pennies (b) Position vs Input - 10 Pennies

Figure 6.18: Bode Plot Comparisons

35. Plot the bode plot for your estimated |ω|
|e| on top of the experimental bode plot

from exercise 2 by typing figure(2);bodemag(Gv,w,‘--r’) and press enter. Type

grid on and press enter, then type legend(‘Experimental’,‘Simulated’) and press

enter.

⋆ A comparison of the bode plots for position vs input for the load with no

pennies is shown in Figure 6.19a, and the comparison for the load with 10

pennies is shown in Figure 6.19b.

(a) Velocity vs Input - No Pennies (b) Velocity vs Input - 10 Pennies

Figure 6.19: Bode Plot Comparisons

36. Save both figures for your lab report as different names from what you saved

them as in exercise 2.

37. How well do your simulated bode plots match your experimental bode plots?
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Explain possible reasons for any differences.

6.4 Conclusion/Student Feedback

The open loop frequency response of a DC motor was used to demonstrate the impor-

tance of frequency response. The motor’s frequency response was found by inputting

sine wave voltages, of varying frequencies, into the motor and recording the output

positions and velocities for each frequency. The motor’s theoretical first order model

was estimated using the experimental frequency response data. The response of the

estimated model was then compared to experimental response, demonstrating how

well the first order transfer function of a system can be estimated using the experi-

mental frequency response of that system.
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CHAPTER 7

CLOSED LOOP FREQUENCY RESPONSE

7.1 Objective

This experiment will demonstrate the importance of frequency response by finding

the closed loop frequency response of a DC motor with an attached load. In the

closed loop model, various types of feedback and various values of feedback gains

will be used to demonstrate their effects on the system’s frequency response. For the

various feedback gains, the closed loop frequency response will be found by inputting

a sinusoidal reference position, for multiple frequencies, into the motor. For each

frequency, the motor’s output position will be recorded. The magnitude of the output

position will be compared to the magnitude of the reference input. Magnitude bode

plots for output position versus reference input will be generated. Simulated bode

plots of the closed loop model will be generated and compared to the experimental

bode plots.

7.2 Setup

7.2.1 Required Materials

Hardware

The hardware materials required for this experiment are the same materials used in

the Open Loop Frequency Response experiment. A list of the materials needed for

this experiment is provided below for reference.

• DC Motor with Encoder

• Arduino Mega 2560 Rev3

• Motor Shield (DFRobot L298P)

• 12V DC Power Supply (12VDC 3A Wall Adapter Power Supply)

• USB cable (Standard A to B plug)
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• Female Barrel Jack (2.1mm x 5.5mm Female CCTV Power Jack Adapter)

• 8 wires

• 3D Printed Base

• 3D Printed Motor Clamp

• 2 #4-40 1/2” screws

• 2 #4-40 1/4” screws

• Small Flat screwdriver

• Small Phillips screwdriver

• Sticky Tack

• Sandpaper or Sanding Sponge (Optional)

• Pennies - Same number used in the Open Loop Frequency Response experiment

• Scotch tape

• Small 3-D Printed Load

Software

• MATLAB/Simulink 2013a or later

⋆ The steps and images related to MATLAB/Simulink for this experiment

were created using MATLAB/Simulink 2013a. Therefore some steps and

images may be a little different if you are not using this version. If you are

in fact using a different version, make sure you know the steps for running

models onto the Arduino for your version of Simulink.

• MATLAB files

Prerequisite Experiments

• Open Loop Frequency Response
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7.2.2 Software Setup

The necessary software files that are needed for this experiment can be downloaded

from the Take Home Labs webpage. One method for downloading the files is shown

in the steps below.

1. Open your internet browser and navigate to csl.okstate.edu

2. On the left side of the Homepage, select “Courses”

3. In the middle section of the Courses page select “System Dynamics”

4. In the middle section of the System Dynamics page find and select Closed Loop

Frequency Response.

5. On the Closed Loop Frequency Response page select “Software/Code” in the

rightmost section. A zipfile named Experiment CLFR should download.

6. Right-click the file and choose “Extract All...”, or any other method of extract-

ing files on your PC.

7. Extract this folder somewhere convenient, and remember the location. This

will be the folder where all of the files and plots created for this experiment are

saved.

7.2.3 Hardware Setup

Since there was no additional hardware needed for this experiment, there is no ad-

ditional setup that needs to be done. The hardware should still be set up from the

Open Loop Frequency Response experiment.

7.3 Experimental Procedures

In this section you will derive the theoretical closed loop DC motor model using

the open loop transfer function that was found in the Open Loop Frequency Response

experiment. You will sketch the bode plot of the the theoretical closed loop DC motor

model, for various feedback gain values. Using the same gains, you will experimentally

find the closed loop frequency response of the DC motor and load. Using MATLAB,

you will then simulate the bode plots of the theoretical closed loop transfer functions,

and compare them with the experimental bode plots.
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7.3.1 Exercise 1: Simulated Closed Loop Response

8. The closed loop model for the DC motor is provided in Figure 7.1. Find the

closed loop transfer function Y (s)
R(s)

using block diagram reduction.

K
Km

τms+1
1
s

u ω

k2

+

yθ
r

+

+

−

Figure 7.1: Motor Closed Loop Model

⋆ Figure 7.2 shows the first step in simplifying the model by moving k2 over

the 1
s
block.

KKm

s(τms+1)

k2s+ 1

y
−r

+

Figure 7.2: Block Diagram Reduction

⋆ Figure 7.3 shows the final transfer function after reducing the feedback

loop and doing some simplification.

KKm
τm

s2+(
1+KKmk2

τm
)s+KKm

τm

r y

Figure 7.3: Block Diagram Reduction (2)

9. For K = 2 and k2 = 0 find the closed loop poles, the damping ratio, and the

natural frequency. Sketch the bode plot of the closed loop transfer function,

and save it for your lab report. What type of response is this? Explain?

⋆ The theoretical bode plot for the load with no pennies added is shown in

Figure 7.4.
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Figure 7.4: Theoretical Underdamped Bode Plot

⋆ The theoretical bode plot for the load with 10 pennies added is shown in

Figure 7.5
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Figure 7.5: Theoretical Underdamped Bode Plot

⋆ The response will be underdamped because ζ < 1. For the load with

no pennies, the poles are located at −0.4437 ± j8.281, ζ = 0.0535, and

ωn = 8.2926. Therefore, ωr = 8.2688 and Mr = 19.423 dB. For the

load with 10 pennies, −0.1119 ± j4.386, ζ = 0.0255, and ωn = 4.3877.

Therefore, ωr = 4.3848 and Mr = 25.85 dB. ζ and ωn can be found by

comparing the derived closed loop transfer function to the standard form

of a second-order system, shown in Equation 7.1. Since the response is

underdamped, and 0 ≤ ζ ≪ 0.707, the bode plot will have a peak at ωr

with a maximum value of Mr. Equation 7.2 and Equation 7.3 show how

ωr and Mr can be found from ζ and ωn.

G(s) =
ω2
n

s2 + 2ζωn + ω2
n

(7.1)

ωr = ωn

√
1− 2ζ2 (7.2)

Mr =
1

2ζ
√

1− ζ2
(7.3)
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10. Repeat step 9 for K = 2 and k2 = 0.5.

⋆ The theoretical bode plot for the load with no pennies added is shown in

Figure 7.6.

Figure 7.6: Theoretical Overdamped Bode Plot - No Pennies

⋆ The theoretical bode plot for the load with 10 pennies added is shown in

Figure 7.7
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Figure 7.7: Theoretical Overdamped Bode Plot - 10 Pennies

⋆ The response will be overdamped because ζ > 1. For the load with no

pennies, the poles of the transfer function are located at -2.07 and -33.2,

ζ = 2.127, and ωn = 8.2926. For the load with 10 pennies, the poles of

the transfer function are located at -2.688 and -7.1618, ζ = 1.122, and

ωn = 4.3877.. The bode plots will have a −20 dB
decade

change in slope at

frequencies equal to the magnitudes of the pole locations.

7.3.2 Exercise 2: Experimental Closed Loop Response

11. Open MATLAB and set the MATLAB “Current Folder” location to the Ex-

periment CLFR folder you extracted in the software setup section. The files

SerialPlotData.m and BodePlotData.m should show in the “Current Folder”

section.

12. Open your OpenLoopFreqResponse model used in the Open Loop Frequency Re-

sponse experiment, and save it as ClosedLoopFreqResponse. Your model should

now resemble the model in Figure 7.8.
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Figure 7.8: Existing Simulink Model

13. Click and drag over the motor control blocks as in Figure 7.9. Then press

Ctrl+X to cut the blocks.

Figure 7.9: Select Motor Control Blocks

14. Add a Subsystem block to the model (Simulink → Ports and Subsystems →
Subsystem).

15. Double-click the Subsystem block, and inside press Ctrl+V to paste the motor

control blocks. Delete the “Out1” port and connect the “In1” port to the

MATLAB function block, as in Figure 7.10.
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Figure 7.10: Motor Control Subsystem

16. Navigate back to the main model by pressing the “ClosedLoopFreqResponse”

text, as in Figure 7.11.

Figure 7.11: Exit the Subsystem Block

17. The model should now resemble Figure 7.12. Add a Sum block to the model

(Simulink → Commonly Used Blocks → Sum).

Figure 7.12: Current Model

18. Double-click the Sum block and change “List of signs:” to |+-. Now add the
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following blocks to the model:

• Another Sum block

• 3 Gain blocks: Simulink → Commonly Used Blocks → Gain

• A Difference block: Simulink → Discrete → Difference

• A “2 - Serial Send single Port0” block: Take Home Labs Arduino Support

Package → 2 - Serial Send single Port0

19. Connect the blocks together, as in Figure 7.13.

Figure 7.13: Final Model

20. Change the value of the gain block before the subsystem to K. Change the value

of the gain blocks after the difference block to 1/Ts and K2.

First Set of Gains

21. Double-click the sine wave block and change the “Amplitude:” to pi/2, and the

“Frequency (rad/sec):” to 2*pi*fs.

22. Create the constant variables you need in the workspace by typing in the fol-

lowing expressions in the MATLAB Command Window and pressing enter after

each one:
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• Ts = 0.01;

• fs = 0.05;

• K = 2;

• K2 = 0;

23. Connect the Arduino to the PC, and download the Simulink model to the

Arduino.

24. Once the model is successfully downloaded to the Arduino, select the “Plot

Data ‘single’” text.

25. In the pop-up window, change the COM port to the port your Arduino is using,

and set the number of samples to plot to 7500. Press “OK” to start plotting

the data. The input sine wave and output position are both being sent over the

serial port, so there will be two graphs showing in the plot window.

26. If the data is in sync, you should see a sine wave plotting, and a constant 0 being

plotted. If the data looks like Figure 7.14a, it is out of sync so press the “Byte

Adjust” button. When the data becomes in sync, it will resemble the right half

of Figure 7.14b. If your plot does not look like this, press “Byte Adjust” a few

more times, if needed. After a few attempts, if the data is still out of sync,

press “Stop” and close the plot window. Initiate the plotting process again

by selecting the “Plot Data ‘single’” text and entering the number of samples

to plot. Repeat this step until the data is correct. Additional techniques for

troubleshooting the serial data can be found in steps 79-82 of the Sampling and

Data Acquisition experiment.
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(a) Data Out of Sync (b) Data In Sync

Figure 7.14: Serial Plot Data

27. Once the data is in sync, plug in the power supply.

28. Press “Autoscale” once the motor starts rotating, if the values are not visible.

Let the experiment run until you see at least 2 cycles of the output sine wave

before pressing “Stop”.

29. After pressing stop in the serial plot window, open the SerialPlotData.m file in

the MATLAB Current Folder section, and run the file. The file will extract

the reference input and output position, and plot them vs time on the same

graph.

30. Find the steady state peak to peak magnitude of the output position, and record

the value in the third column of Table 7.1. In the fourth column, record the

peak to peak magnitude of the input sine wave. In the final column, record the

ratio of the output magnitude vs input magnitude |y|
|r| in decibels (dB), using

20log10.
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Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

7,500 0.05

5,000 0.1

2,000 0.25

1000 0.5

750 1

500 5

Table 7.1: Closed Loop Frequency Response

31. In the MATLAB Command Window, type clear all; close all; clc; and press

enter.

32. Repeat steps 22-31 for each frequency provided in Table 7.1. When returning

to step 22, always set fs equal to the frequencies listed in the table. The extra

rows in the table can be used for additional frequencies. Take as many readings

as you need to get an accurate frequency response.

⋆ The experimental data found for the load using zero pennies is shown in

Table 7.2. The load weighed 17 grams, and seven additional frequencies

were used.
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Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

5000 0.1 π 2.25 -2.9

2500 0.5 π 3.72 1.47

2000 0.7 π 4.21 2.54

1000 1 π 5.715 5.2

1000 1.3 π 6.2 5.9

500 2 π 21.8 16.8

200 5 π 0.68 -13.29

750 1.75 π 14.8 13.46

350 3.5 π 1 -9.94

500 2.5 π 1.76 -5.03

500 2.1 π 18.4 15.4

500 2.2 π 15.9 14.08

500 2.3 π 14.4 13.22

500 2.4 π 4 2.1

Table 7.2: Experimental Results - Underdamped w/ No Pennies

⋆ The experimental data found for the load using 10 pennies is shown in

Table 7.3. The load weighed 46.7 grams, and two additional frequencies

were used.
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Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

5000 0.1 π 2.29 -2.75

2500 0.5 π 4.88 3.8

2000 0.7 π 8 8.12

1000 1 π 15.55 13.9

1000 1.3 π 15.35 13.8

500 2 π 1.5 -6.42

200 5 π .15 -26.42

750 1.1 π 26.1 18.39

750 1.2 π 19.25 15.75

Table 7.3: Experimental Results - Underdamped w/ 10 Pennies

Second Set of Gains

33. Double-click the sine wave block and change the “Amplitude:” to 3*pi/2, and

the “Frequency (rad/sec):” to 2*pi*fs.

34. Create the constant variables you need in the workspace by typing in the fol-

lowing expressions in the MATLAB Command Window and pressing enter after

each one:

• Ts = 0.01;

• fs = 0.05;

• K = 2;

• K2 = 0.5;

35. Connect the Arduino to the PC, and download the Simulink model to the

Arduino.

36. Once the model is successfully downloaded to the Arduino, select the “Plot

Data ‘single’” text.
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37. In the pop-up window, change the COM port to the port your Arduino is using,

and set the number of samples to plot to 7500. Press “OK” to start plotting

the data.

38. Once the data is in sync, plug in the power supply.

39. Press “Autoscale” once the motor starts rotating, if the values are not visible.

Let the experiment run until you see at least 2 cycles of the output sine wave

before pressing “Stop”.

40. After pressing stop in the serial plot window, open the SerialPlotData.m file in

the MATLAB Current Folder section, and run the file.

41. Find the steady state peak to peak magnitude of the output position, and record

the value in the fourth column of Table 7.4. In the third column, record the

peak to peak magnitude of the input sine wave. In the final column, record the

ratio of the output magnitude vs input magnitude |y|
|r| in decibels (dB), using

20log10.

Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

7,500 0.05

5,000 0.1

2,000 0.25

1000 0.5

750 1

500 5

Table 7.4: Closed Loop Frequency Response (2)
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42. In the MATLAB Command Window, type clear all; close all; clc; and press

enter.

43. Repeat steps 34-42 for each frequency provided in Table 7.4. When returning

to step 34, always set fs equal to the frequencies listed in the table. The extra

rows in the table can be used for additional frequencies. Take as many readings

as you need to get an accurate frequency response.

⋆ The experimental data found for the load using zero pennies is shown in

Table 7.5. The load weighed 17 grams, and one additional frequency was

used.

Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

7,500 0.05 3π 8.3 -1.10

5,000 0.1 3π 7.87 -1.57

2,000 0.25 3π 6.3 -3.5

1000 0.5 3π 4.2 -7.02

750 1 3π 2.4 -11.9

500 5 3π 0.6 -23.9

1500 0.35 3π 5.3 -5

Table 7.5: Experimental Results - Overdamped w/ No Pennies

⋆ The experimental data found for the load using 10 pennies is shown in

Table 7.6. The load weighed 46.7 grams, and no additional frequencies

were used.
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Frequency Response

Number

of Points

Frequency (Hz) |r| (rad) |y| (rad) |y|
|r| (dB)

7,500 0.05 3π 8.35 -1.05

5,000 0.1 3π 7.88 -1.56

2,000 0.25 3π 6.35 -3.43

1000 0.5 3π 4.52 -6.38

750 1 3π 2.63 -11.09

500 5 3π 0.45 -26.4

Table 7.6: Experimental Results - Overdamped w/ 10 Pennies

44. Open the BodePlotData.m from the MATLAB “Current Folder” location. Input

the |y|
|r| (dB) values from Table 7.1 inside the brackets of the GpdB variable. Add

any additional frequencies to the variable f. The frequency variable should be

arranged in numerical order, from smallest to largest.

45. Input the |y|
|r| values from Table 7.4 inside the brackets of the GpdB2 variable.

Add any additional frequencies to the variable f2. The frequency variable should

be arranged in numerical order, from smallest to largest.

46. Run the file to generate the two bode plots. Save them for you lab report, and

leave them open. Discuss the relationships between your theoretical sketches of

the Bode plot and your experimental results.

⋆ The frequency response data for the load with no pennies produced the

bode plots shown in Figure 7.15a and Figure 7.15b.
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(a) Underdamped (b) Overdamped

Figure 7.15: Bode Plots - Load with No Pennies

⋆ The frequency response data for the load with no pennies produced the

bode plots shown in Figure 7.16a and Figure 7.16b.

(a) Underdamped (b) Overdamped

Figure 7.16: Bode Plots - Load with 10 Pennies

7.3.3 Exercise 3: Simulation and Experimental Comparison

In this subsection, you will use MATLAB to compute the bode plots for the motor’s

closed loop transfer function you found in exercise 1, using both sets of gains, and

compare them to the experimental bode plots.

47. In MATLAB, using the command tf, create the closed loop motor transfer

function you found and sketched in Exercise 1. Set the transfer function equal

to the variable Gcl.
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48. Create your Km and τm constant variables in the workspace. Then calculate

the bode plot for the gains K = 2 and k2 = 0 on the same figure as your exper-

imental plot, by entering the following in the MATLAB Command Window:

• figure(1);bodemag(Gcl,w,’--r’);grid on;

• legend(’Experimental’,’Simulated’,’location’,’Northwest’)

⋆ The experimental response vs the simulated response for the load with no

pennies, and using these gains is shown in Figure 7.17.

Figure 7.17: Bode Comparison No Pennies - Underdamped

⋆ The experimental response vs the simulated response for the load with 10

pennies, and using these gains is shown in Figure 7.18.
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Figure 7.18: Bode Comparison 10 Pennies - Underdamped

49. Save the figure for your lab report.

50. How well do the experimental and simulated responses match? Explain any dif-

ferences in bandwidth, low frequency magnitude, resonant frequency, resonant

peak magnitude, etc.

⋆ The underdamped experimental responses, for the load with no pennies

and with 10 pennies, both follow the same shape as the simulated re-

sponses. However, the experimental responses have lower magnitudes than

the simulated responses at lower frequencies, and the experimental re-

sponse’s resonant peaks are not located at the same frequency as the sim-

ulated response’s resonant peaks. This is mainly do to the nonlinearities

of the motor, which are not being accounted for in the theoretical model

being simulated.

51. Again, create the closed loop motor transfer function you found and sketched

in Exercise 1, but this time set the transfer function equal to the variable Gcl2.

52. Simulate the bode plot for the gains K = 2 and k2 = 0.5 on the same figure as
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your experimental plot, by entering the following in the MATLAB Command

Window:

• figure(2);bodemag(Gcl2,w2,’--r’);grid on; legend(’Experimental’,’Simulated’)

⋆ The experimental response vs the simulated response for the load with no

pennies, and using these gains is shown in Figure 7.19.

Figure 7.19: Bode Comparison No Pennies - Overdamped

⋆ The experimental response vs the simulated response for the load with 10

pennies, and using these gains is shown in Figure 7.20.
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Figure 7.20: Bode Comparison 10 Pennies - Overdamped

53. Save the figure for your lab report.

54. How well do the experimental and simulated responses match? Explain any dif-

ferences in bandwidth, low frequency magnitude, resonant frequency, resonant

peak magnitude, etc.

⋆ The overdamped experimental responses, for the load with no pennies and

with 10 pennies, both follow the same shape as the simulated responses.

However, the experimental responses have lower magnitudes than the sim-

ulated response until the higher frequencies. The experimental responses

have lower bandwidths than the simulated responses. This is also do to

the nonlinearities of the motor, which are not being accounted for in the

theoretical model being simulated.

7.4 Conclusion/Student Feedback

In this experiment the closed loop transfer function of a DC motor was derived. The

frequency response of the closed loop model was found experimentally using various
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types and levels of feedback gains. Bode plots of the closed loop model were then

simulated and compared to the experimental bode plots. The responses demonstrated

the effects the different types and levels of feedback had on the system’s response,

and how well the theoretical response matched the actual response.
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CHAPTER 8

OPTIMAL STATE FEEDBACK CONTROL (BALL AND BEAM)

8.1 Objective

In this experiment you will build and control a ball and beam system. Based on

the equations of motion, you will build the theoretical nonlinear model in Simulink.

The open loop response will be verified through simulation. Using MATLAB, you

will linearize the nonlinear model, and simulate the open loop response for the linear

model as well. Once the linear and nonlinear models have been verified, an optimal

state feedback controller will be designed and simulated. Then you will test your

optimal controller on the real system, and compare with the simulation results.

8.2 Setup

8.2.1 Required Materials

Hardware

All of the materials used in the Sampling and Data Acquisition experiment will be

used in this experiment, except for the 3-D printed load. Additionally, the hardware

listed below, and shown in Figure 8.1 and Figure 8.2 will be used.

Figure 8.1: Additional Hardware
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Figure 8.2: 3-D Printed Hardware

• Ping Pong Ball

• Sharp GP2Y0A41SK0F IR Sensor

• Sharp IR Mounting Bracket with 3 to 4 M3x5mm screws and nuts

• Sharp IR Cable

• 4 wires

• 9 - 2-56 Screws ( 3 - 1/4”, 3 - 5/16”, and 3 - 7/16”)

• 9 - 2-56 nuts

• 3 - 2-56 Stand offs

• 3-D Printed Beam

• 3-D Printed IR attachment

• 3-D Printed Gear insert

• 3-D Printed Motor attachments (Top and Bottom)

• Gorilla Glue
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Software

• MATLAB/Simulink 2013a or later

⋆ The steps and images related to MATLAB/Simulink for this experiment

were created using MATLAB/Simulink 2013a. Therefore some steps and

images may be a little different if you are not using this version. If you are

in fact using a different version, make sure you know the steps for running

models onto the Arduino for your version of Simulink.

• MATLAB/Simulink files

• 3-D Printer files

Prerequisite Experiments

• Sampling and Data Acquisition

8.2.2 Software Setup

The necessary software files that are needed for this experiment can be downloaded

from the Take Home Labs webpage. One method for downloading the files is shown

in the steps below.

1. Open your internet browser and navigate to thl.okstate.edu

2. On the left side of the Homepage, select “All Experiments”

3. In the middle section of the All Experiments page select “Optimal State Feed-

back Control (Ball on Beam)”

4. On the Optimal State Feedback Control (Ball on Beam) page select “Soft-

ware/Code” in the rightmost section. A zipfile named Experiment OSFC should

download.

5. Right-click the file and choose “Extract All...”, or any other method of extract-

ing files on your PC.

6. Extract this folder somewhere convenient, and remember the location. This

will be the folder where all of the files and plots created for this experiment are

saved.
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7. Navigate back to the Optimal State Feedback Control (Ball on Beam) page,

and select “3-D Printer Files” in the rightmost section.

8. Select the Optimal State Feedback Control (Ball on Beam) link to download

the files. Open and 3-D print all of the “.STL” files. Note: Before printing

each part, be sure to orient them correctly in the 3-D printing software. You

should not need any support material. The correct orientations are shown in

Figure 8.2, but you may have to orient the beam diagonally to make it fit on

the print bed.

8.2.3 Hardware Setup

Beam Construction

9. The base hardware for this experiment is shown in Figure 8.3. If you do not

have the hardware set up this way, follow the hardware setup steps provided in

the Sampling and Data Acquisition experiment.

Figure 8.3: Base Assembly

10. Take the gear insert and make sure it fits on the motor’s gear, as in Figure 8.4.

Then remove it from the gear. Note: You may need to use some force to fit the

gear insert onto the gear.
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Figure 8.4: Gear Insert

11. Place the gear insert inside the bottom motor attachment, as in Figure 8.5.

Note: You may need to sand the sides of the gear insert to make it to fit inside

the attachment.

Figure 8.5: Gear Insert inside Bottom Motor Attachment
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12. Place gorilla glue inside the top piece of the motor attachment, as in Figure 8.6a.

Place the bottom motor attachment piece inside the top motor attachment

piece, as in Figure 8.6b. Give the glue time to dry before moving the piece.

Note: You may need to sand the sides of the bottom motor attachment piece

to make it to fit inside the top motor attachment piece.

(a) Motor Top Attachment (b) Connecting Motor Attachments

Figure 8.6: Motor Attachments

13. Connect the standoffs to the end of the beam, as in Figure 8.7.

Figure 8.7: Beam Standoffs

14. Connect the IR sensor attachment to the standoffs using three 2-56 5/16”

screws, as in Figure 8.8.
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Figure 8.8: IR Attachment

15. Connect the IR sensor to the IR sensor mounting bracket using two M3x5mm

screws, as in Figure 8.9a. Connect the IR sensor cable to the IR sensor, as in

Figure 8.9b. Note: Remember the pin configuration of the IR sensor.

(a) IR Sensor Mount (b) IR Sensor Cable

Figure 8.9: IR Sensor Connections

16. Connect the IR sensor mounting bracket to the IR attachment, using one

M3x5mm screw and nut in the middle hole, as in Figure 8.10. Note: You

can also mount the IR sensor to the attachment using the two adjustable slots,

which would require using two M3x5mm screws and nuts.
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Figure 8.10: IR Connection to the Beam

17. Place the motor attachment, that you glued together, onto the motor’s gear, as

in Figure 8.11.

Figure 8.11: Motor Attachment to Motor

18. Take the beam and place it onto the motor attachment. Adjust the beam

over the motor attachment’s holes, so that the beam balances on the motor

attachment, as in Figure 8.12.
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Figure 8.12: Attaching the Beam

19. When you find a position where the beam is able to balance on the motor

attachment, screw the beam and motor attachment together, as in Figure 8.13a

and Figure 8.13b. Use as many screws as you desire, but make sure to use the

2-56 1/4” screw on the side closest to the motor, and use the 2-56 7/16” screw

on the opposite side.

(a) Shorter Screw Side (b) Longer Screw Side

Figure 8.13: Beam Connection

20. Stop and ensure your setup resembles Figure 8.14.
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Figure 8.14: Complete Beam Construction

IR Sensor Connection

21. Place 3 wires into the end of the IR connector, as in Figure 8.15.
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Figure 8.15: Wires for IR Connector

22. Connect pin 2 of the IR sensor to a GND pin on the Arduino, as in Figure 8.16a.

Connect pin 3 of the IR sensor to a 5V pin on the Arduino, as in Figure 8.16b.

(a) GND Connection (b) Vcc Connection

Figure 8.16: IR Sensor Connections

23. Connect pin 1 of the IR sensor to the Analog IN 0 pin of the Arduino, as in

Figure 8.17.
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Figure 8.17: IR Sensor Vo Connection

24. Take another wire and connect it from the AREF pin on the Arduino to the

3.3V pin on the Arduino, as in Figure 8.18a and Figure 8.18b.

(a) AREF Pin (b) 3.3V Pin

Figure 8.18: Arduino Analog Reference Voltage

25. Place the ball on the beam above the motor attachment, as in Figure 8.19.
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Figure 8.19: Ball and Beam

26. After adding the IR connection wires and the ping pong ball, the beam’s center

of mass point may be off. If this happens, you can add sticky tack to the bottom

of the beam to adjust the beam’s weight on either end, as in Figure 8.20.

Figure 8.20: Adding Sticky Tack

27. If you added sticky tack to make the beam balance, with the ball above the

motor attachment, the final assembly should look like Figure 8.19.

8.3 Experimental Procedures

In this section, you will build a Simulink model of the system, and simulate the open

loop response to verify performance. Then you will develop a linear model of your

system, simulate the open loop response, and compare the open loop response of

the linear model to the open loop response of the nonlinear model. After verifying
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the open loop responses for both the linear and nonlinear model, you will design an

optimal state variable feedback controller for the linear model. You will simulate the

linear and nonlinear system responses with the added optimal state variable feedback

controller. Then you will use the optimal state variable feedback controller to control

the physical ball and beam system you built, by using the Arduino and Simulink.

8.3.1 Exercise 1: System Model

Figure 8.21: Ball and Beam Model

The equations of motion for the Ball and Beam are shown below.

ẋ1 =
τ −mgcos(x2)x4 − 2mx1x3x4

Jbeam + Jball +mx2
4

(8.1)

τ =
Kt

Ra

(u−Kbx1) (8.2)

ẋ2 = x1 (8.3)

ẋ3 =
mx2

1x4 −mgsin(x2)
Jball
r2

+m
(8.4)

ẋ4 = x3 (8.5)
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where

x1 = Beam Velocity

x2 = Beam Position(ϕ)

x3 = Ball Velocity

x4 = Ball Position(z)

u = Motor Voltage

τ = Torque

The constants are

Kb = 0.01 (Back EMF)

Kt = 0.01 (Torque Constant)

Ra = 30 ohms (Armature Resistance)

Jbeam = 6×10−5 Kg-m2 (Beam Inertia)

m = 0.0027 Kg (Ball Mass)

r = 0.02 m (Ball Radius)

Jball = 7.2 ×10−7 Kg-m2 (Ball Inertia)

g = 9.81 m/s2 (Gravitational Constant)

28. Make a Simulink model of the system.

⋆ The model of the Ball and Beam is shown in Figure 8.22.

Figure 8.22: Ball and Beam Simulink Model
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29. Simulate the open loop response for 1 second, using an initial ball position of

0.1m.

30. Plot each system state vs time.

⋆ The open loop simulation results are provided below.

(a) Beam Velocity (b) Beam Position

Figure 8.23: Nonlinear System Open Loop Response

(a) Ball Velocity (b) Ball Position

Figure 8.24: Nonlinear System Open Loop Response

31. Is the response what you expected? Explain.

⋆ The results provided in the previous step verify that the open loop model

is correct. The beam will fall over when the ball is not at the equilibrium

point, which is indicated by the results for the beam angle. The ball would

fall off of the beam and the position would become large as shown in the
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ball position results. The beam would move to an angle of approximately
π
2
.

8.3.2 Exercise 2: System Linearization

32. Create a linear model of the system using the MATLAB command “linmod”.

Linearize the model about the equilibrium point where all states equal 0.

33. Simulate the open loop response of the linear model, for 0.1 second and using

initial ball positions of 0.1m and 0.01m. Compare with the responses of the

nonlinear Simulink model. Plot each state.

⋆ Comparisons between the linear and nonlinear open loop responses are

provided below.

(a) Beam Velocities (b) Beam Positions

Figure 8.25: Open Loop Response Comparisons (x4(0) = 0.1m)
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(a) Ball Velocities (b) Ball Positions

Figure 8.26: Open Loop Response Comparisons (x4(0) = 0.1m)

⋆ The open loop simulation results are provided below.

(a) Beam Velocities (b) Beam Positions

Figure 8.27: Open Loop Response Comparisons (x4(0) = 0.01m)
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(a) Ball Velocities (b) Ball Positions

Figure 8.28: Open Loop Response Comparisons (x4(0) = 0.01m)

34. How well do the linear model’s responses resemble the nonlinear model’s re-

sponses? How do they differ as the initial condition moves further away from

the equilibrium point?

⋆ The linear and nonlinear models perform similarly for some period of time,

then start to deviate from one another. From the results of the two simu-

lations, the linear and nonlinear responses deviate from each other sooner

as the initial condition is moved further away from the equilibrium point.

8.3.3 Exercise 3: Optimal State Variable Feedback - Simulation

35. Assuming there is no noise in the system, and all states are measurable, design

an optimal state variable feedback controller for your linear ball and beam

model using MATLAB’s “lqr” command. You will need to select the weighting

matrices in the performance index. Your intial settings are not critical, as you

can make changes later.

36. Simulate the linear and nonlinear closed loop systems for 5 seconds, with the

added controller. Use an initial ball position of 0.1m.

37. How does the response for the linear model differ from the response for the

nonlinear model?

⋆ Setting Q = I and R = 1 produced an unstable response, and setting

Q = I and R = 0.1 also produced an unstable response. The results for

Q = I and R = 0.05 are shown in the figures below.
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(a) Beam Velocities (b) Beam Positions

Figure 8.29: Closed Loop Response Comparisons - Beam

(a) Ball Velocities (b) Ball Positions

Figure 8.30: Closed Loop Response Comparisons - Ball

⋆ The results for Q = I and R = 0.01 are shown in the figures below. These

are the values that are used in my experimental closed loop response.
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(a) Beam Velocities (b) Beam Positions

Figure 8.31: Closed Loop Response Comparisons - Beam (2)

(a) Ball Velocities (b) Ball Positions

Figure 8.32: Closed Loop Response Comparisons - Ball (2)

38. Do the input voltages for each response seem reasonable?

⋆ The input voltages of the linear and nonlinear closed loop model using state

gains found with Q = I and R = 0.05 are shown in Figure 8.33a. The

input voltages of the linear and nonlinear closed loop model using state

gains found with Q = I and R = 0.01 are shown in Figure 8.33b. These

are the unsaturated voltages, and both sets of gains produce reasonable

voltages since the input voltage being used is 12 volts. Although the results

being shown are the unsaturated voltages, a saturation block is placed in

the simulation to ensure the response would still perform correctly for the

rated power supply voltage that will be used in the experiment.
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(a) Input Voltages - R = 0.05 (b) Input Voltages - R = 0.01

Figure 8.33: Closed Loop Response Comparisons - Input Voltages

39. If needed, make any adjustments to your controller design by changing the

weighting matrices to provide a fast response without exceeding physical limi-

tations.

40. If all of the states were still exactly measurable, but there were disturbances in

the system, how would the optimal gains change? Explain.

⋆ The gains would be the same. Since each state of a system is measurable,

the same optimal gains would be produced for both the deterministic and

stochastic case.

8.3.4 Exercise 4: Optimal State Variable Feedback - Experiment

41. Open MATLAB and set the MATLAB “Current Folder” location to the Ex-

periment OSFC folder you extracted in the software setup section. The files

SerialPlotData.m, OSFC Constants.m, and OSFCExpModel.slx should show in

the “Current Folder” section.

42. Open OSFCExpModel.slx. The model should now resemble the model in Fig-

ure 8.34.
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Figure 8.34: Experimental Model

43. Open the OSFC Constants.m file, and add your optimal gain values into the

variable “K”.

44. Run the file.

45. Set up the system so that it is balanced, with the beam parallel to the floor,

and with the ball at the center of mass point, as in Figure 8.35.

Figure 8.35: Ball and Beam

46. Connect the Arduino to the PC, but do not plug in the power supply. Download

the Simulink model to the Arduino. The model will already be set up to run

on the Arduino. If you receive an error about being unable to connect to the

Arduino, you may need to set the COM port manually in the Configuration

Parameters .
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47. Once the model is successfully downloaded to the Arduino, select the “Plot

Data ‘single’” text.

48. In the pop-up window, change the COM port to the port your Arduino is using,

and set the number of samples to plot to 500. Press “OK” to start plotting

the data. The beam position, ball position, and input voltage are all being sent

over the serial port, so there will be three plots showing in the figure.

49. Press “Autoscale”. The beam position and ball position should be close to

zero initially, and if the data is in sync, a small input voltage may be showing

in the plot. If the data looks like Figure 8.36a, it is out of sync so press the

“Byte Adjust” button. After the out of sync data passes, press “Autoscale”

again. When the data becomes in sync it will be similar to Figure 8.36b. If

your plot does not look similar to this, press “Byte Adjust” and “Autoscale” a

few more times, if needed. After a few attempts, if the data is still out of sync,

press “Stop” and close the plot window. Initiate the plotting process again

by selecting the “Plot Data ‘single’” text and entering the number of samples

to plot. Repeat this step until the data is correct. Additional techniques for

troubleshooting the serial data can be found in steps 79-82 of the Sampling and

Data Acquisition experiment.

(a) Out of Sync Data (b) In Sync Data

Figure 8.36: Experimental Serial Data

50. Once the data is in sync, ensure that the initial ball position is close to 0. If the

ball position is not close to 0, rotate the IR sensor left or right, as in Figure 8.37,

until the ball position is close to 0. After adjusting the sensor, be sure to tighten

the screw again, and ensure the system is still balanced.
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Figure 8.37: Adjust IR Sensor

51. Plug in the power supply.

52. The beam will likely not move since the ball is in the desired position initially, so

lightly tap the ping pong ball in either direction. Try not to block the IR sensor

as it may read the distance to your hand instead of the ball. Note: Tapping

the ball with too much force may cause it to bounce off either end of the beam,

which may cause the system to become unstable.

53. If the ball does not balance, press “Stop” and redo your optimal state variable

feedback simulation using different choices of the performance index. Repeat

this until you are satisfied with the response.

54. Press “Autoscale” once the ball and beam start moving, if the values are not

visible. Let the experiment run until the ball comes to rest after tapping it in

either direction. Do this a few times.

55. Manually move the ball to the longer end of the beam, and then let the ball go.

Press “Stop” once the ball balances.

56. After pressing stop in the serial plot window, open the SerialPlotData.m file in

the MATLAB Current Folder section.

57. Press Run .

58. Describe the response of the system. Does the ball settle at the desired position

exactly every time? If not, explain possible reasons for this.
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⋆ The experimental results for holding the ball at the end of the beam are

shown in Figure 8.38a and Figure 8.38b. The experimental results, while

tapping the ball in either direction, are shown in Figure 8.39a and Fig-

ure 8.39b.

(a) Beam Position (1) (b) Ball Position (1)

Figure 8.38: Experimental Output Positions (1)

(a) Beam Position (2) (b) Ball Position (2)

Figure 8.39: Experimental Output Positions (2)

⋆ For both cases, the system responds as it should. The ball balances well

every time, but not in the exact desired location. Potential causes for this

are: the model that is being simulated is not exactly the same as the real

model, since there are frictions, design differences, and other factors not

being taken into consideration.

59. Run the simulation again, but before plugging in the power, set the ball position

close to the initial position used in the simulations (0.1m). Keep the beam
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around 0 radians, and hold it as steady as possible. An example of this is

provided in Figure 8.40.

Figure 8.40: Ball Position Example

60. Plot and compare the output positions with the simulation results.

⋆ The experimental results while holding the ball at 0.1m initially are shown

in Figure 8.41a and Figure 8.41b. The simulation results, found in Exercise

2, are shown in Figure 8.42a and Figure 8.42b.

(a) Beam Position (3) (b) Ball Position (3)

Figure 8.41: Experimental Output Positions (3)
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(a) Beam Position (b) Ball Position

Figure 8.42: Simulation Output Positions

⋆ The general shape of the experimental and simulation outputs follow each

other. Noticeable differences are: the experimental response shows more

oscillations and does not settle exactly at the desired positions. Potential

causes for this are: the model that is being simulated is not exactly the

same as the real model since there are frictions, design differences, and

other factors not being taken into consideration.

8.4 Conclusion/Student Feedback

This experiment consisted of designing an optimal state feedback controller for a

ball and beam system. Before testing anything on the actual system, the open loop

response was verified for the nonlinear model. The linear model was found from the

nonlinear model using MATLAB, and the open loop response for the linear model was

found and compared to the nonlinear open loop response. An optimal state feedback

controller was designed and simulated for the linear and nonlinear models. Then the

controller was tested on the actual system and compared to the simulations.
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CHAPTER 9

CONCLUSIONS

In this thesis, the limited availability of laboratory experiments for engineering courses

was discussed. Laboratory experiments are a hands-on learning tool that help stu-

dents understand theoretical concepts, thus take home labs were designed to provide

an affordable, small, simple, and adaptable solution. Existing options were analyzed

and used to create a complete solution.

The Take Home Labs presented in this paper were designed around the Arduino,

which is an affordable open source microcontroller, and MATLAB/Simulink. This

hardware software combination is one of the major factors in the Take Home Lab’s

simplicity and low cost. Simulink’s support for the Arduino allows for the exper-

iments to be designed or modified by students without being strong programmers.

The ability to access the functions of a power microcontroller without the need to do

much programming is the key to making the Take Home Labs flexible and potentially

useful for many engineering courses. There are other lab kits that combine the use of

the Arduino and MATLAB/Simulink, but they are mainly confined to one system, or

one course. The contribution of 3-D printing in this report adds the ability to design

systems, that are used with the Arduino and MATLAB/Simulink, in a much more

flexible manner. The website adds another element to the overall framework because

it makes the experiments available to anyone. The student handouts, hardware parts,

and software files are all provided and easily accessible because of the website. The

website also allows for others to contribute by submitting comments, asking ques-

tions, or submitting new experiments. Control systems labs that can be used within

a course have been around for a long time. In the past, these labs needed specific

lab space, the systems were large, and they were confined to one or two courses. As

technology has evolved, the size, price, and accessibility of these types of labs has

improved, but the ability to use these lab kits for many courses has been limited.

The Take Home Labs in this report have provided an overall framework design that

is small, affordable, simple, and adaptable, which has not been done before.
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The Take Home Labs concept was developed jointly in this thesis and in [11]. Five

experiments were described in this thesis, and five complementary experiments are

described in [11]. Together, these documents represent the current state of the Take

Home Labs concept. The first experiment that was described in this thesis was an

introductory experiment for setting up the main hardware and software. The second

experiment was also an introductory experiment that reviewed the concept of sam-

pling, and sampling and data acquisition with the Arduino. The third experiment

was a Systems Dynamics dedicated experiment that explored the concept of frequency

response by finding the open loop frequency response of a DC motor with an attached

load. The fourth experiment was also a Systems Dynamics dedicated experiment that

further explored the concept of frequency response by using the results from the open

loop frequency response, and finding the closed loop frequency response of the DC

motor with an attached load. The final experiment was designed for a graduate Op-

timal Control course. The experiment required that the student design an Optimal

State Feedback Controller for a Ball and Beam system. These experiments were the

beginning of many potential experiments.

9.1 Future Work

The addition of more experiments will be one future improvement to the Take Home

Labs. The Take Home Labs can also be improved in the future by working with better

3-D printers as the prices continue to decrease, experimenting with other microcon-

trollers and hardware, and adding elements to enhance the simplicity and accessibility

of the website. More experiments will help the Take Home Labs expand to other areas

of engineering, and it will create a more diverse learning platform. The 3-D printer is

a major factor in making the designs adaptable, thus continuing to improve current

designs, and make new designs, as the functionality of 3-D printers improves, will

allow more flexible and complex systems be designed easily. Adapting the experi-

ments to work with the Raspberry Pi and the Beaglebone in the future will make

the experiments more attractive to students who may have not have experience with

the Arduino. The micrcontrollers are also affordable, and even more powerful than

the current Arduino, therefore they may be better options for more advanced future

experiments. To add to the simplicity and accessibility, adding videos to the website

or making a YouTube series of videos is a potential option for helping students with
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common problems they may encounter. Some students are more confident when they

hear someone explain things to them, and videos could help them feel more comfort-

able attempting the experiments. This would be a potential solution for not having

a TA since it provides the student with some assistance.
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