
MULTIOBJECTIVE DIFFERENTIAL EVOLUTION 

BASED ON FUZZY PERFORMANCE FEEDBACK: 

SOFT CONSTRAINT HANDLING AND ITS 

APPLICATION IN ANTENNA DESIGNS 

 

 

   By 

      CHATKAEW JARIYATANTIWAIT 

   Bachelor of Engineering in Electrical Engineering  

   Chiangmai University 

   Chiang Mai, Thailand  

   1997 

 

   Master of Engineering in Electrical Engineering  

   Chiangmai University 

   Chiang Mai, Thailand 

   2002 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   DOCTOR OF PHILOSOPHY 

   December, 2015  



ii 
 

MULTIOBJECTIVE DIFFERENTIAL EVOLUTION 

BASED ON FUZZY PERFORMANCE FEEDBACK: 

SOFT CONSTRAINT HANDLING AND ITS 

APPLICATION IN ANTENNA DESIGNS 

 

 

   Dissertation Approved: 

 

 

   Dr. Gary G. Yen 

  Dissertation Adviser 

 

   Dr. Martin M. Hagan 

 

 

   Dr. Qi Cheng 

 

 

   Dr. R. Russell Rhinehart 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee members 

or Oklahoma State University. 

ACKNOWLEDGEMENTS  
 

 First and foremost, I would like to express my deepest gratitude and appreciation to my 

advisor Dr. Gary G. Yen for the continuous guidance, mentorship, patience and invaluable help 

throughout my Ph.D. study. His dedication and experience has helped in refining my attitude 

toward this research and in future work. I would also like to thank him for helping me out with 

the utmost patience in writing thesis and guiding me on presentation skills. These learning 

experiences benefit me all my life. 

 I would like to thank my committee members, Dr. Martin M. Hagan, Dr. Qi Cheng, and 

Dr. R. Russell Rhinehart for their timely advice, discussions and suggestions. Dr. Hagan’s neural 

networks and Dr. Rhinehart’s optimization applications classes help me very much in my 

research. 

 Many thanks to my lab mates at the Intelligent Systems and Control Laboratory (ISCL): 

Zhenan He, Bin Ha, Weiwei Zhang, Wei-Feng Gao, Dr. Wang Hu, and Jixiang Cheng for the 

constructive discussions, useful suggestions and benchmark source codes during this research.    

 I also would like to thank the Ministry of Science and Technology, Royal Thai 

Government for the financial supports during this study. 

 Last but not least, I am forever thankful to my mother (Suttinee), father (Surachai), 

Pailin, Akkasit for their unconditional love and supports. I also thank my mother-in-law and 

brother-in-law who take care of everything for me in Thailand during my graduate work here. I 

would like to thank my husband and my daughter for their love, supports and patience. 



iv 
 

Name: CHATKAEW JARIYATANTIWAIT   

 

Date of Degree: DECEMBER, 2015 

  

Title of Study: MULTIOBJECTIVE DIFFERENTIAL EVOLUTION BASED ON 

FUZZY PERFORMANCE FEEDBACK:  SOFT CONSTRAINT 

HANDLING AND ITS APPLICATION IN ANTENNA DESIGNS 

 

Major Field: ELECTRICAL ENGINEERING 

 

Abstract: The recently emerging Differential Evolution is considered one of the most 

powerful tools for solving optimization problems. It is a stochastic population-based 

search approach for optimization over the continuous space. The main advantages of 

differential evolution are simplicity, robustness and high speed of convergence.  

Differential evolution is attractive to researchers all over the world as evidenced by 

recent publications. There are many variants of differential evolution proposed by 

researchers and differential evolution algorithms are continuously improved in its 

performance. Performance of differential evolution algorithms depend on the control 

parameters setting which are problem dependent and time-consuming task. This study 

proposed a Fuzzy-based Multiobjective Differential Evolution (FMDE) that exploits 

three performance metrics, specifically hypervolume, spacing, and maximum spread, to 

measure the state of the evolution process. We apply the fuzzy inference rules to these 

metrics in order to adaptively adjust the associated control parameters of the chosen 

mutation strategy used in this algorithm. The proposed FMDE is evaluated on the well-

known ZDT, DTLZ, and WFG benchmark test suites.  The experimental results show that 

FMDE is competitive with respect to the chosen state-of-the-art multiobjective 

evolutionary algorithms. The advanced version of FMDE with adaptive crossover rate 

(AFMDE) is proposed. The proof of concept AFMDE is then applied specifically to the 

designs of microstrip antenna array. Furthermore, the soft constraint handling technique 

incorporates with AFMDE is proposed. Soft constraint AFMDE is evaluated on the 

benchmark constrained problems. AFMDE with soft constraint handling technique is 

applied to the constrained non-uniform circular antenna array design problem as a case 

study. 

 



v 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION ......................................................................................................1 

 

 1.1 Motivations ........................................................................................................1 

 1.2 Statement of Problem .........................................................................................4 

 1.3 Contributions......................................................................................................6 

 1.4 Document Organization .....................................................................................7 

 

II. LITERATURE REVIEW ..........................................................................................9 

  

 2.1 Introduction ........................................................................................................9 

 2.2 Differential Evolution (DE) Fundamentals ......................................................10 

  2.2.1 The population ........................................................................................13 

  2.2.2 The population initialization ...................................................................13 

  2.2.3 Mutation ..................................................................................................13 

  2.2.4 Crossover ................................................................................................15 

  2.2.5 Selection ..................................................................................................17 

 2.3 An Illustrative Examples of DE .......................................................................18 

 2.4 Advantages of DE ............................................................................................21 

 2.5 Reviews of DE for Multiobjective Optimization .............................................21 

  2.5.1 Problem formulation ...............................................................................21 

  2.5.2 Pareto optimization .................................................................................22 

  2.5.3 DE for multiobjective optimization ........................................................24 

 2.6 Previous Works in Indicator-based MOEAs....................................................27 

 2.7 Selected State-of-the-Art Multiobjective Optimization Algorithms................28 

 

III. FUZZY MULTIOBJECTIVE DIFFERNTIAL EVOLUTION USING 

PERFORMANCE METRIC FEEDBACK ............................................................30 

 

 3.1 Introduction ......................................................................................................30 

 3.2 Mutation Strategy.............................................................................................33 

 3.3 Crossover Strategy ...........................................................................................33 

 3.4 Performance Metrics ........................................................................................34 

 3.5 Fuzzy Membership Functions and Fuzzy Inference Rules ..............................35 
 



vi 
 

Chapter          Page 

 

 3.6 Experiments and Results ..................................................................................38 

  3.6.1 The benchmark functions ........................................................................38 

  3.6.2 Experimental setup..................................................................................40 

  3.6.3 Metrics ....................................................................................................41 

  3.6.4 Experimental results................................................................................42 

 3.7 Remarks ...........................................................................................................45 

 

IV. FUZZY MULTIOBJECTIVE DIFFRENTIAL EVOLUTION WITH ADAPTIVE 

CROSSOVER RATE USING PERFORMANCE METRICS FEEDBACK ........51 

 

 4.1 Introduction ......................................................................................................51 

  4.1.1 Encoding CR into each individual ..........................................................52 

  4.1.2 Success rate .............................................................................................52 

  4.1.3 CR pool ...................................................................................................53 

  4.1.4 Randomly generated CR .........................................................................53 

 4.2 Fuzzy Membership Functions and Fuzzy Inference Rules ..............................53 

 4.3 Experiments and Results ..................................................................................57 

  4.3.1 AFMDE with various initial CR values ..................................................57 

  4.3.2 AFMDE and various membership function parameters .........................60 

 4.4 Remarks ...........................................................................................................64 

 

V. 5 BY 5 MICROSTRIP ANTENNA ARRAY SYNTHESIS FOR 12.5 GHZ 

BROADCASTING SATELLITE ..........................................................................65 

 

 5.1 Introduction ......................................................................................................65 

 5.2 The Microstrip Antenna Array Synthesis ........................................................66 

  5.2.1 5 by 5 Microstrip antenna array architecture and design goals ..............66 

  5.2.2 A surrogate model by Radial Basis Neural Network ..............................68 

 5.3 Experimental Setup and Results ......................................................................72 

  5.3.1 Experimental Setup .................................................................................72 

  5.3.2 Results .....................................................................................................74 

 5.4 Remarks ...........................................................................................................81 

 

VI. SOFT CONSTRAINT HANDLING FUZZY MULTIOBJECTIVE DIFFERENTIAL 

EVOLUTION AND ITS APPLICATION IN CONSTRAINED NON-UNIFORM 

CIRCULAR ANTENNA ARRAYS DESIGN PROBLEM ..................................82 

 

 6.1 Introduction ......................................................................................................83 

 6.2 Previous Works on Constraint Handling Approaches of Multiobjective  

       Objective Optimization Problems ....................................................................86 

  6.2.1 Hard-constraint based approaches for multiobjective optimization .......86 

  6.2.2 Soft handling of constraints-rationality and basic idea ...........................89 

  6.2.3 Constraint handling in constrained multiobjective DE ...........................90 

 



vii 
 

Chapter          Page 

 

 6.3 Soft Constraint Handling AFMDE ..................................................................92 

  6.3.1 Definition of constraint violation ............................................................92 

  6.3.2 Constraint violation degree-based nondominated sorting .......................92 

 6.4 Experiments and Results for Benchmark Functions ........................................94 

 6.5 Constrained Non-uniform Circular Antenna Arrays Design .........................100 

  6.5.1 Problem formulation .............................................................................100 

  6.5.2 Experimental setup and results .............................................................102 

 6.6 Remarks .........................................................................................................104 

 

VII. CONCLUSION AND FUTURE WORK ...........................................................112 

 

 7.1 Multiobjective Differential Evolution based on Fuzzy                                   

       Performance Feedback ...................................................................................112 

 7.2 Soft Constraint Handling ...............................................................................114 

 

 

REFERENCES ..........................................................................................................117 

 

 



viii 
 

LIST OF TABLES 

 

Table           Page 

 

   1.1 A classification of optimization approaches .........................................................2 

   2.1 Summary of some applications of DE ................................................................11 

   3.1 Fuzzy inference rules ..........................................................................................39 

   3.2 Comparison of IGD for FMDE and Other MOEAS on Rank Sum Tests ...........47 

   3.3 Comparison of IGD for FMDE and Other MODES on Rank Sum Tests ...........48 

   4.1 Fuzzy inference rules ..........................................................................................55 

   4.2 FMDE compared with AFMDE on ZDT and DTLZ test suites .........................58 

   4.3 FMDE compared with AFMDE on WFG test suites ..........................................59 

   4.4 Output fuzzy membership function parameters ..................................................61 

   4.5 FMDE compared with AFMDE1 to AFMDE4 on ZDT and DTLZ test suites ..62 

   4.6 FMDE compared with AFMDE1 to AFMDE4 on WFG test suite ....................63 

   5.1 Objective values ..................................................................................................77 

   5.2 Decision variables ...............................................................................................77 

   6.1 Results of g6 with relaxed constraints ................................................................84 

   6.2 Parameters of CTP test suites .............................................................................98 

   6.3 The distribution of hypervolume values using Mann-Whitney-Wilcoxon  

         Rank sum test ......................................................................................................99 

   6.4 Obtained Pareto solution examples of 12 elements non-uniform circular 

         array design .......................................................................................................105 

    

 

 



ix 
 

LIST OF FIGURES 

 

Figure           Page 

 

   2.1 The classical DE flowchart .................................................................................12 

   2.2 Illustration of DE/rand/1 scheme in 2-D space ...................................................14 

   2.3 A pictorial example of binomial crossover .........................................................19 

   2.4 A pictorial example of exponential crossover ....................................................19 

   2.5 A numerical example of utilizing DE/rand/1/bin to minimize  

         f(x) = x1+x2+x3+x4+x5  .......................................................................................20 

   2.6 A pictorial example of bi-objective optimization problem .................................24 

   3.1 Fuzzy multiobjective differential evolution flowchart .......................................32 

   3.2 Input membership functions ...............................................................................36 

   3.3 Output membership functions .............................................................................36 

   3.4 A sample run of FMDE on ZDT1. (a) The approximated and true Pareto fronts, 

         (b) Hypervolume performance metric, (d) Maximum Spread performance  

         metric over the course of evolution (generations), (e) Gamma and  

        (f) F control parameters of DE operator ..............................................................46 

   3.5 Sample approximated fronts by FMDE for benchmark function (a) ZDT2 

        (b) ZDT3, (c) ZDT4, (d) ZDT6, (e) DTLZ1, (f) DTLZ2, (g) DTLZ3, 

        (h) DTLZ4, (i) DTLZ5, (j) DTLZ6, and (k) DTLZ7 ...........................................50 

   4.1 Input membership functions ...............................................................................56 

   4.2 Output membership functions .............................................................................56 

   5.1 5 by 5 Microstrip antenna array ..........................................................................67 

   5.2 5 by 5 Microstrip antenna array synthesis by AFMDE ......................................68 

   5.3 Radial basis neural network ................................................................................71 

   5.4 Training RBF ......................................................................................................71 

   5.5 Average minimum distance from population to input data points ......................72 

   5.6 The obtained Pareto front ....................................................................................74 

   5.7 The AFMDE associated control parameters .......................................................75 

   5.8 5 by 5 microstrip antenna array configuration ....................................................78 

   5.9 Electric field propagation on 5 by 5 microstrip antenna array ............................78 

   5.10 5 by 5 microstrip antenna array pattern in 3D ..................................................79 

   5.11 Far field radiation pattern in 2D on y plane (x-z cut) .......................................79 

   5.12 Electric field propagation on 5 by 5 microstrip antenna array for the extreme 

           solutions in (a) f2 dimension (b) f3 dimension .................................................80 

   5.13 5 by 5 microstrip antenna array pattern in 3D for the extreme solutions in 

           (a) f2 dimension (b) f3 dimension ....................................................................80 

   



x 
 

Figure           Page 
 

   5.14 Far field radiation pattern in 2D on y plane (x-z cut) for the extreme 

        solutions in (a) f2 dimension (b) f3 dimension ....................................................81 

   6.1 Satisfaction degree curve of a constraint ............................................................94 

   6.2 Examples of obtained Pareto front for (a) CONSTER (b) SRN (c) TNK 

         (d) OSY (e) Welded beam (f) CTP1 (g) CTP2 (h) CTP3 (i) CTP4 (j) CTP5 

         (k) CTP6 (l) CTP7 (m) CTP8 .............................................................................98 

   6.3 A non-uniform circular antenna array on x-y plane..........................................100 

   6.4 The normalized radiation pattern in rectangular plot for the extreme 

          solutions (a) solution a (b) solution d (c) solution b (d) solution e  

          (f) solution  f.....................................................................................................108 

   6.5 The normalized radiation pattern in polar plot for solutions (a) solution a  

         (b) solution d (c) solution b, and soft constrained solutions (d) solution e  

         (f) solution  f......................................................................................................111



1 

 

CHAPTER I 
 

 

INTRODUCTION 

1.1 Motivations 

 In our everyday lives, we encounter problems that demand us to search for the best 

possible solutions. For example, planning monthly expenditure or buying the maximum amount 

of food given a limit budget. These problems can be formulated as optimization problems. The 

goal of the optimization problem can be described by a mathematical model as a number of 

objective functions.  An optimization problem can be categorized by the number of objective 

functions. If the problem considers only one objective function, it is classified as a single 

objective optimization problem (SOP).  If the problem involves more than one objective function, 

it is classified as a multiobjective optimization problem (MOP). However, most of our real-world 

problems are often MOPs. These MOPs’ objectives usually conflict with each other. For instance, 

minimizing the side lobe level while maximizing the gain of an antenna is mandatory to achieve 

an optimal performance. If we found an optimized solution for the side lobe level, it may come at 

the cost of degraded gain. Ideally, the optimizers that use to solve MOPs should find a set of 

trade-off optimal solutions, and the decision maker will choose one solution from the set by using 

the high-level qualitative consideration. 

 The classical principle to tackle MOPs is often converting the MOP at hand to a SOP by 

combining all objective functions into one objective function, and then optimizes that new 

function as it was a SOP. The single objective optimizer can then be used to solve the problem. 
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There are some example methods that follow this principle [1-2] such as weighted sum method, -

constraint method, goal programming, etc. These classical methods require a priori knowledge of the 

problem domain that is usually not available under the real world complications. In addition, we can 

obtain only one solution from these methods in a given single run. If we want to find N solutions (as 

same as the output of an ideal MOP optimizer), we need to run the optimizer N times and change the 

parameter setting for each single run. Hence, these methods are not efficient for solving MOPs. 

Hence, researchers have been developing the MOP optimizers that treat each objective equally and 

produce a set of optimal solutions in a single run. According to Price, Storn, and Lampinen [3], the 

MOP optimization techniques are broadly classified based on their objective function derivation 

properties: derivative-based (gradient based) and derivative-free method as shown in Table 1.1. 

 

Table 1.1 A Classification of optimization approaches 

Derivative property Single-point Multi-point 

Derivative-based 

(gradient-based) 

Steepest descent, 

Conjugate gradient, 

Quasi-Newton, 

etc. 

Multi-start and clustering 

techniques 

etc. 

Derivative-free 

(direct search) 

Random walk, 

Hooke- Jeeves, 

etc. 

Nelder-Mead, 

Evolutionary algorithms, 

Genetic algorithms, 

Differential evolution, 

etc. 
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 Most real world MOPs’ characteristics are in high dimension, non-differentiation, 

discontinuity, multimodality and/or NP-complete. The derivative-based approaches cannot be used, 

and some classical direct search techniques cannot effectively solve these MOPs. Therefore, 

researchers have been developing optimizers based on nature-inspiration, so called the evolutionary 

computation.  

 Evolutionary computation is a stochastic, population-based search algorithm inspired by 

natural evolution [4]. Natural evolution is mostly determined by natural selection or different 

individuals competing for resources in the environment. Those fitter individuals of the population are 

more likely to survive and propagate their genetic materials through the reproduction. The fittest 

individuals will survive till the end of the evolution process. The evolutionary computation 

algorithms simulate the nature evolution process in order to search for the fittest individuals which are 

the optimal solutions of the optimization problems. A few decades ago, Holland [5] proposed Genetic 

Algorithm (GA) which simulate Darwinian evolution to solve practical optimization problems; Fogel 

[6] introduced Evolutionary Programming (EP); Evolution Strategies (ES) was proposed by 

Rechenberg and Schwefel [7-8]; Eberhart and Kennedy [96] introduced the Particle Swarm 

Optimization (PSO). These algorithms play important roles in solving challenging MOPs. Later on, 

there are additional nature-inspired algorithms developed such as artificial immune systems [9], 

harmony search [10], memetic and cultural algorithms [11], etc. These approaches are unified as 

different representatives of evolutionary computation. 

 Around a decade ago, Differential Evolution (DE) was proposed by Storn and Price in 1995 

as a new evolutionary algorithm (EA) [12]. It is a stochastic population-based search approach for 

optimization over the continuous space [13-14]. DE is considered one of the most powerful tools for 

solving optimization problems. DE can handle mixed-type variables, constraints, multimodality, and 

also multiple-objective in nature. Implementing DE is easier than other EAs such as Genetic 

Algorithm (GA) even for a beginner in the optimization field. In addition, control parameters in the 
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design of a DE are very few. The powerful performance of DE attracts researchers to develop DE 

variants for solving optimization problems. Thus, a multiobjective differential evolution algorithm 

based on fuzzy performance feedback (FMDE) is proposed in this study in order to handle MOPs. 

Furthermore, FMDE is applied to a practical engineering problem: an antenna design problem 

specifically 5 by 5 microstrip antenna arrays for 12.5 GHz broadcasting satellite as a case study. 

 Although the above discussion emphasizes on unconstrained MOPs, there are other category 

of optimization problem: constrained optimization problems (COPs). In real world applications, many 

optimization problems are COPs. If a COP involves more than one objective function and a number 

of constraints, it will be called a constrained multiobjective optimization problem (CMOP). The 

constraints can be classified into two types: hard and soft constraints. Hard constraints are the 

constraint that any violations cause the system failure [96-97]. On the other hand, the soft constraints 

can be relaxed to some extent if the violations of them do not compromise the purpose of the 

requirements. In some cases, relaxation of the soft constraints can improve some objective functions. 

Therefore, a soft constraint handling is proposed in this thesis. FMDE incorporated with the soft 

constraint handling is developed to solve CMOPs. The soft constrained FMDE will be applied to a 

constrained non-uniform circular antenna arrays design as a case study. 

1.2 Statement of Problem 

 The mutation strategy and the control parameters, namely scaling factor (F), crossover rate 

(CR), and population size (NP), play the major roles in the success of a DE. Choosing the appropriate 

mutation operator and parameter values for a particular problem is a difficult task because it is a 

problem dependent, time-consuming, and trial-and-error process. In addition, balancing the 

exploration and exploitation throughout the search is the key to the success of an EA. During the 

evolution process we may need different mutation strategy and parameter values at different stages. In 

the beginning of the evolution we need a higher degree of exploration than exploitation in order to 
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search larger regions in the space. We may choose the mutation operator that possesses high 

exploration ability and the control parameter that promote the diversity. However, near the end of the 

evolution we need to emphasize on the local search that is exploitation. The mutation operator that 

favors local search should be chosen along with the control parameters that emphasize the 

exploitation. If we know the state of the evolution process, we may decide whether we should 

emphasize on exploration or exploitation, and choose suitable parameter values or the mutation 

strategies. 

 One possible way that we can observe the status of the evolving process is utilizing the 

performance metrics. Most of the performance metrics are calculated at the end of the evolution in 

order to assess the quality of the obtained nondominated front. For instance, generational distance 

needs the complete knowledge about the true Pareto front in order for calculation. We cannot assume 

the true Pareto front is available during the evolution search. The quality of the population can be 

measured by three properties of the obtained nondominated front [15], namely, the convergence, 

uniform distribution, and extensiveness. Although there are some proposed running performance 

metrics to measure the quality of the population on the fly, there are very few choices to allow us to 

measure the convergence, uniform distribution, and extensiveness of the population. Hence, we 

exploit three performance metrics to measure the three properties of the obtained nondominated 

solutions. The proposed fuzzy-based multiobjective differential evolution (FMDE) [95] utilizes 

hypervolume, spacing, and maximum spread as the input to the fuzzy inference rules that adaptively 

adjust the control parameters for the mutation scheme which is the greedy factor and the diversity 

factor every generation in order to balance the exploration and exploitation abilities of the population 

during the search process. Furthermore, the advanced version of FMDE (AFMDE) is introduced. 

AFMDE incorporate the adaptive CR by fuzzy rules to be discussed in Chapter IV. 

 One challenging practical engineering problem is antenna design. There are various antenna 

types [16] such as wire antennas, aperture antennas, array antennas, etc.  The very popular one among 
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them is microstrip antenna. Microstrip antennas are light weight, low-profile, conformal 

configuration, easy to manufacture, and low production cost by using printed-circuit technology. 

They are being used in widespread applications, for example, radars, missiles, aircraft, satellite and 

mobile communication, etc. [17-18]. Generally, designers will design microstrip antenna 

configuration, in order to achieve the optimal performance. The goals specified as maximizing 

antenna gain (G) while minimizing side lobe level (SLL), and minimized reflection coefficient. 

Antenna design problems can be formulated as MOPs. The gain, side lobe level, reflection coefficient 

are possible objectives whereas the antenna configuration is the decision variables. Since AFMDE is 

a multiobjective optimizer, therefore it can be applied to antenna design problems. The design of 5 by 

5 microstrip antenna array for 12.5 GHz broadcasting satellite service using AFMDE is studies as a 

case study to demonstrate the effectiveness and efficiency of the design process based on FMDE.  

 Furthermore, the soft constrained AFMDE is developed to solve CMOPs. In order to prove 

the concept of the proposed soft constrained AFMDE, solving the constrained non-uniform circular 

antenna arrays design is chosen as a case study. Non-uniform circular antenna arrays are popular in 

mobile and wireless communications such as air and space navigation, radar, sonar and other 

applications [16] [93]. The antenna array provides the higher directive radiation pattern than a single 

element antenna.  The design of antenna array is to determine the array geometry and the excitation at 

each array element. The goals are to minimize the SLL, maximizing directivity (D), and minimizing 

the first null beamwidth (FNBW) amplitude subject to the limitation of the array size (circumference) 

and FNBW requirement.  

1.3 Contributions 

 The contributions of this dissertation are summarized as the follows: 

 Develop a multiobjective differential evolution based on the fuzzy performance 

metric feedback (FMDE). This algorithm adaptively adjusts the control parameters 
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(i.e., the greedy factor () and scaling factor (F)) of differential evolution and 

balances the exploration and exploitation of the algorithm throughout the search 

process.  

 The advanced version of FMDE (AFMDE) is proposed by adapting the crossover 

rate (CR) in concurrent with  and scaling factor F based on fuzzy inference rules and 

performance metrics feedback. 

 Develop a soft constrained AFMDE (SFMDE) to handle constrained multiobjective 

optimization problems. The soft constraint handling exploits the relaxation of 

constraints and preference rule strategy. The proposed soft constraint handling is 

integrated with AFMDE in order to solve CMOPs. 

 Validate the proposed FMDE variants through antenna designs.  

1.4 Document Organization 

 This report comprises of seven chapters. Chapter II presents the background and literature 

review of differential evolution.  

 Chapter III provides a comparison between the proposed FMDE and state-of-the-art MOEAs 

and other DE variants for solving the benchmark multiobjective optimization problems. 

 Chapter IV provides a comparison between the advanced version of FMDE which adaptively 

adjust CR and state-of-the-art MOEAs and other DE variants for solving the benchmark 

multiobjective optimization problems. 

 In Chapter V, AFMDE was applied to the microstrip antenna design problem in order to 

prove the concept on a practical engineering problem. Since, the objective evaluation is expensive. 

Hence, a surrogate model is utilized as the objective model.  
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 In Chapter VI, a soft constraint handling is proposed. Then, AFMDE was integrated with this 

soft constraint handling and is tested on the benchmark CMOPs. In order to prove the concept, the 

soft constraint handling AFMDE is applied to the constrained non-uniform circular antenna array 

design problem.  

 Conclusions are discussed in Chapter VII.  Summary of the main contributions of this report 

are reviewed and limitations of the proposed works are identified and the future research directions 

are highlighted. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 Differential Evolution (DE) was proposed by Storn and Price in 1995 as a new 

evolutionary algorithm (EA) [12].  DE is a stochastic population-based search approach for 

optimization over the continuous space [14]. The main advantages of DE are simplicity, 

robustness and high speed of convergence; make DE one of the most powerful algorithms for 

global optimization. The fundamentals and advantages of DE, comparison with other 

optimization algorithms, and the surveys of DE variants are detailed in this chapter. 

2.1 Introduction 

 In human society, everyone is different. They are different lives, different minds, 

different expertise and so on. When people are together, they form a society and the social 

behavior will automatically emerge. One of the most influential features of social behavior is 

collective intelligence. That means integration of the differences in a single whole in order to be 

more powerful, more efficient, and more intelligent, and the more, the better [19].  

 DE is classified as one type of EAs, DE is unique, since DE utilizes both collective 

intelligence and evolution, “the intelligent use of the individual differences.” 

 The differential mutation is the key to success, dated back in 1994 when K. Price 

invented  Genetic Annealing [20]  and soon after that   R.  Storn  cooperated  with him in order to  
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solve the Tchebychev polynomial fitting problem by genetic annealing. This problem is 

formulated within a continuous space, so they changed from bit-string to floating-point encoding, 

and from logical operators to arithmetic ones. While they were doing some experiments, they 

discovered the differential mutation. They also observed that using the composition of differential 

mutation, discrete recombination, and pair-wise selection, the annealing mechanism is no longer 

needed. They removed the annealing factor and then DE was born. They first reported the DE in 

the ICIS technical report [12] and other publications later [13, 14]. Since then, DE has attracted 

researchers all over the world as a powerful global optimizer. 

 Even though DE is first introduced as the global optimizer over the continuous space, DE 

is also able to handle mixed-type variables, constrained, multimodal and multiobjective 

optimization problems [21]. In addition, researchers from several areas of science and 

engineering have been applying DE to solve optimization problems in their own fields. Summary 

of some applications of DE is shown in Table 2.1. Details on DE are explained in Section 2.2. 

2.2 Differential Evolution (DE) Fundamentals 

 The original version of DE [41] is described in this section. A flowchart of the classical 

DE algorithm is shown in Figure 2.1. 

 Like other evolutionary algorithms, it starts with the randomly initializing a population in 

the search space. In DE community, an individual of the population is called a parameter vector; 

NP parameter vectors form a population. Then the population enters the evolution loop: mutation, 

crossover, and selection operations. These three operations will be repeated until the stopping 

criterion is met. The details on each stage of DE will be explained in Subsections 2.2.1 – 2.2.5. 
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Table 2.1 Summary of some applications of DE 

Areas of Applications Examples of applications 

Control Systems and Robotics 

Controller design and tuning [22,23]  

Robot motion planning and navigation [24,25]  

Nonlinear system control [26]  

Scheduling 
Plant scheduling and planning [27]  

Traveling salesman problem [28]  

Chemical Engineering 
Chemical process synthesis and design [29]  

Parameter estimation of chemical process [30]  

Bioinformatics 
Gene regulatory networks [31,32]  

Protein folding [33]  

Neural Networks 
Training of wavelet neural networks [34]  

Training of feed forward neural networks [35]  

Electromagnetism, Propagation and 

Microwave Engineering 

Electromagnetic inverse scattering [36]  

Antenna array design [37]  

Microwave filter design [38]  

Image Processing 
Automatic clustering [39]  

Image watermarking [40]  
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Figure 2.1 The classical DE flowchart. 
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2.2.1 The population 

 The DE population contains NP D-dimensional parameter vectors. These vectors are real 

numbers. The current population is ,GxP  composed of vectors ,i Gx as 

    , , max,,   1,2,..., ,   1,2,...,G i G i NP G g  xP x  

    , , , ,   1,2,...,i G j i Gx j D x      (2.1) 

where NP is the number of population vectors,  G is the generation number,  and D is the 

dimensionality of the vector. 

2.2.2 The population initialization 

 The population is initialized by  

  , , , ,[0,1).( )i j j j U j L j Lx rand b b b       (2.2) 

where  Lb  and Ub  is the lower and upper bounds of the vectors  ,i jx  at generation  G=0,       

jrand [0,1) is uniformly distributed random number within the range [0,1). This number is 

generated for each element j of vectors. 

2.2.3 Mutation 

 After population initialization, DE uses the mutation to generate a candidate vector called 

the mutant vector ,i Gv  with respect to the target vector ,i Gx  by adding the base vector 1,r Gx  to 

weighted difference vectors.  This key operation of DE is shown in (2.3) 

 DE/rand/1:  , 1, 2, 3,i G r G r G r GF  v x x x    (2.3) 
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The random integers i, r1, r2 and r3 are randomly generated and mutually exclusive within the 

range [1, NP], used as indices to index the current parent vectors. As can be seen from (2.3), we 

need at least three vectors in a population. F is a positive scaling factor, which manages the trade-

off between exploration and exploitation. Originally,  0,1+F  means while there is no upper 

limit on F, effective values are seldom greater than 1.0 [3]. Storn and Price suggested that F 

should be 0.8 for general problems [12].  The original mutation strategy is called DE/rand/1 as 

DE/x/y/z represents DE/base vector/number of difference vectors/crossover. There are two types 

of crossover operators, namely, binomial and exponential crossovers. Therefore, DE/rand/1/bin is 

the DE/rand/1 mutation scheme with the binomial crossover and DE/rand/1/exp is the DE/rand/1 

mutation scheme with the exponential crossover. A pictorial example of DE/rand/1 is illustrated 

in Figure 2.2 

2x

1x

,i Gx

1,r Gx

3,
r

Gx

2,
r

G
x

min

2, 3,r G r Gx x

2, 3,( )r G r GF x x

1, 2, 3,( )r G r G r GF x x x

: parameter vectors in 

  current population (G)

 

Figure 2.2 Illustration of DE/rand/1 scheme in 2-D space. 
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 There are many mutation strategy proposed by many researchers. The most commonly 

used mutation operations are [42], 

 DE/rand/2: , 1, 2, 3, 4, 5,( ) ( )i G r G r G r G r G r GF F    v x x x x x         (2.4) 

 DE/best/1: , , 1, 2,( )i G best G r G r GF  v x x x             (2.5) 

 DE/best/2: , , 1, 2, 3, 4,( ) ( )i G best G r G r G r G r GF F    v x x x x x         (2.6) 

 DE/current-to-best/2: , , , , 1, 2,( ) ( )i G i G best G i G r G r GF F    v x x x x x        (2.7) 

 DE/rand-to-best/2: , , , 2, 3, 4,( ) ( )i G i G best G r G r G r GF F    v x x x x x        (2.8) 

Trigonometric mutation [43]: 

 
, 1, 2, 3, 2 1 1, 2,

3 2 2, 3, 1 3 3, 1,

( ) / 3 ( )( )

         ( )( ) ( )( )

i G r G r G r G r G r G

r G r G r G r G

p p

p p p p

     

     

v x x x x x

x x x x
         (2.9) 

where  
1, 2, 3,

1 1 1 1, 2, 3,

( ) ( ) ( )
, , ,     ' ( ) ( ) ( )

' ' '

r G r G r G

r G r G r G

f f f
p p p p f f f

p p p
     

x x x
x x x    and 

f(x) is the objective function. The indices r1, r2, …, r5 are randomly generated integers within the 

range [1,NP] and they are mutually exclusive and different from i. For each mutant vector, we 

must generate new indices. ,best Gx  is the individual vector that provides the best objective value in 

the population in the generation G. 

2.2.4 Crossover 

 After we get the mutant vectors from the mutation operation, we perform the crossover 

operation in order to increase the potential diversity of the population. Crossover is applied to 

each pair of the target vector and it’s mutant vector then we obtain a trial vector. The DE family 
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algorithms can use two types of crossover schemes: the binomial (uniform) crossover and the 

exponential crossover [44].  

2.2.4.1 Binomial crossover 

 The binomial crossover is the discrete recombination operator by (2.10): 

   

 , , ,

, ,

, ,

if (0,1)  or 
      .

i G j i G

j i G j rand

j i G

u

v rand CR j j

x otherwise



 
 


u

      (2.10) 

 The crossover rate or so called crossover probability CR  [0,1] is a user-defined 

constant that controls the fraction of parameter values copied from the mutant vector. CR is 

suggested to be 0.8-1 [20]. Here the crossover operator is uniform in the sense that each 

parameter of the mutant vector, regardless of its location has the same probability, CR, of 

inheriting its value from a given to the trial vector. For this reason, uniform crossover does not 

exhibit a representation bias. A pictorial example for binomial crossover is illustrated by Figure 

2.3. The target vector ,i Gx  exchanges its parameters with the mutant vector to ,i Gv  in order to 

form the trial vector ,i Gu . 

2.2.4.2 Exponential crossover 

 DE exponential crossover [44] is functionally equivalent to two-point crossover in GA. In 

exponential crossover, we begins with randomly choosing an integer n from the interval [1, D] as 

a starting point in the target vector, from where the exchange of parameters with the mutant 

vector starts. Another integer L is also randomly chosen from the range [1, D] depending on the 

crossover probability CR according to the pseudo code:  
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         L=0; 

         DO 

         { 

          L=L+1; 

         }WHILE (((rand(0,1)<CR) AND (L<D)) 

 

 

 After choosing n and L the trial vector is generated by 

  

 , , ,

, ,

, ,

, ,

  

, , 1 ,..., 1
 

, all other [1, ]

i G j i G

j i G D D D
j i G

j i G

u

v j n n n L
u

x j D



    
 



u

      (2.11) 

where 
D

 denote a modulo function with modulus D.  

 The parameters of the trial vector ,i Gu  are inherited from the corresponding mutant 

vector ,i Gv  starting from index n till the first time that rand(0,1) > CR. All the remaining 

parameters of the trial vector are inherited from the corresponding target vector. An example of 

exponential crossover is shown in  Figure 2.4.   In this example, exponential crossover starts with  

n = 3 which is randomly chosen and copied the parameter of the mutant vector to the trial vector 

until the first occurrence of rand(0,1) > CR, the rest of parameters are copied from the target 

vector to the trial vector. 

2.2.5 Selection 

 The selection stage is to determine whether the target or the trial vector survives to the 

next generation. The selection operator is a comparison between the trial vector ,i Gu  and the 

target vector ,i Gx . For a minimization problem, if the objective value of the trial vector is lower 

than the target vector, the trial vector is the winner. Then the trial vector replaces the target vector 

and enters the next generation. By this method, DE more tightly integrates recombination and 

selection than other EAs as the following [3]: 
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, , ,

, 1

,

, if ( ) ( )

,

i G i G i G

i G

i G

f f

otherwise


 


u u x
x

x
      (2.12) 

 In (2.12) the target vector is replaced by the trial vector even if both yields the same 

objective values. It is the feature of DE to move on a flat objective landscape over generations. 

For clarity, a numerical example of DE algorithm is demonstrated in Section 2.3. 

 In conclusion, there are three keys to DE success: spontaneous self-adaptability via 

difference vector mutation, diversity control by crossover, and continuous improvement by 

selection (elitism). 

2.3 An Illustrative Examples of DE  

 In order to illustrate the steps of the DE algorithm, a numerical example is presented in 

Figure 2.5 [45] which demonstrated the procedure to generate one vector for the next generation. 

This problem is to minimize an objective function 1 2 3 4 5( )f X x x x x x     . The population 

size is 6. The scaling factor F and the crossover rate CR are 0.8 and 0.6, respectively. The 

objective value of each individual evaluated by ( )f X and is shown in the top cell of the 

corresponding vector. For the first target vector (individual 1), three randomly chosen vectors are 

individuals 2, 4 and 6 which produce the mutant vector by (2.3). Consequently, the crossover of 

the mutant and the target vector occurred. Parameter 1 and 5 are selected from the mutant vector 

and the remaining from the target vector. Then, the selection is the next step. In the selection 

stage, objective value (cost value) of the trial vector and the trial vector is compared. Since the 

target vector has a lower value, it is selected and copied to the next generation. 
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Figure 2.3 A pictorial example for binomial crossover. 
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Figure 2.4 A pictorial example of exponential crossover. 
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Figure 2.5 A numerical example of utilizing DE/rand/1/bin to minimize 

1 2 3 4 5( )f X x x x x x    
 . 
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2.4 Advantages of DE 

 DE is one of the most powerful global optimizers, according to for the following 

arguments: 

 1. DE can handle mixed-type variables and constrained, multimodal and also multiple 

objective optimization problems. Hence, it is able to handle many types of optimization problems. 

 2. Its simplicity in implementation compared with other EAs.  

 3. The number of control parameters is very few. In classical DE, there are only three 

parameters- CR, F and NP. 

 4. Mutation operation using the difference vectors makes DE self-adaptive. It adapts the 

searching process to the objective landscape without the need of a priori knowledge about the 

problem characteristics. 

2.5 Reviews of DE for Multiobjective Optimization 

 Since DE was first introduced to the computational intelligence society around a decade 

ago, it has been attractive to researchers all over the world to improve and utilize it to solve 

optimization problems. The review of significant literatures on multiple objective optimization 

using DE is shown here. The author categorizes the literatures based on the modification of 

classical DE as the following classes: 

2.5.1 Problem formulation 

 Multiobjective optimization attempts to simultaneously minimize multiple objective 

functions. Without the loss of generosity, consider the multiobjective minimization problem 

(MOPs) [46] as: 
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1 2min ( ) [ ( ), ( ),..., ( )]

D kF F F



x

F x x x x     (2.19) 

and the n decision variable bounds: 

,    1,2,...,L U

i i ix x x i D        (2.20) 

where  1 2[ , ,..., ] D

nx x x x . 

 The function iF  is known as the objective function or fitness function, and ( )iF x is called 

the objective or fitness value of iF . x  represents a decision vector of n  decision variables, where 

each decision variable is confined by a lower bound 
L

ix  and an upper bound 
U

ix . The n  variable 

bounds constrain a decision space or search space,
nS  , and the k objective functions 

constitute an objective space, Z .  

 Decision vectors that minimize ( )F x  are also referred to as solutions. By duality 

principles, any objective function can be converted from minimization to maximization or vice 

versa as: 

 
max ( ) min( ( ))

min ( ) max( ( ))

i i

i i

F F

F F

  


  

x x

x x
    (2.21) 

2.5.2 Pareto optimization 

 In a single objective optimization problem, we search for the best possible solution or the 

global optimum. However, for MOPs, some objective functions conflict with the others, so we 

cannot optimize all objective functions simultaneously. Thus, for MOPs, there exist a set of 

optimal solutions, not a single optimal solution, under different trade-offs. The concepts of 

“Pareto Dominance” and “Pareto Optimality” are employed in order to obtain the set of optimal 

solutions. 
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Definition 2.1: Pareto Dominance  

Consider a minimization problem, a decision vector ax  is said to dominate another decision 

vector bx , denoted by a bx x , iff 

 1. ( ) ( )i a i bF Fx x  for all 1,2,...,i k  and 

 2. ( ) ( )j a j bF Fx x  for at least one (1,2,..., )j k  

Definition 2.2: Nondominated Set 

 Let  P represent the set of decision vectors in the search space, P S ,  the nondominated 

set are those decision vectors in Ρ that are not dominated by any members of the set Ρ. 

Definition 2.3: Pareto Optimal Set 

 A decision vector *x  is Pareto optimal if there exist no decision vector ix  for which 

( )iF x  dominates ( *)F x . The collection of such decision vectors that is Pareto optimal is known 

as the Pareto optimal set. This means that each solution in this set holds equal importance and is 

a good compromise among the trade-off objectives. The resulted trade-off curve in the objective 

space that obtained from Pareto optimal set is called the Pareto front. 

 A pictorial example of bi-objective optimization problem is illustrated in Figure 2.14. 

From Figure 2.6(a), ,  ,  a b cx x x and dx  are decision variables stay in the decision space. Their 

corresponding fitness values are ( ),  ( ),  ( )a b cF x F x F x and ( )dF x  in the objective space are shown 

in Figure 2.6(b) and the Pareto front as well. 
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Figure 2.6 A pictorial example of bi-objective optimization problem. 

2.5.3 DE for multiobjective optimization 

 The reviews of literature on multiobjective optimization using DE are shown here. The 

author categorizes the literatures based on the modification of classical DE as the following 

classes:  

2.5.3.1 Multiobjective DE based on Pareto dominance 

 Abbass et al. [47] proposed the Pareto-frontier differential evolution (PDE) algorithm to 

solve MOPs. An initial population is randomly generated from a Gaussian distribution with mean 

0.5 and standard deviation 0.15. All dominated solutions are removed from the population. The 

remains are only non-dominated solutions and will be select as the parents. The reproduction is 

DE/rand/1/bin. PDE also fixes the size of non-dominated solutions. If the size is over the 

predefined size, the crowded solutions will be removed based on a distance metric. The scale 

factor F is generated from a Gaussian distribution with zero mean and unity standard deviation. 

CR is set by empirical study and they found that in order to obtain a large number of non-

dominated solutions, CR should be small. Later, Abbass [48] modified PDE to be self-adaptive. 
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The control parameters, F and CR, are adaptive. They are inherited from the parent in the same 

way crossover is undertaken for the decision variables. The algorithm is called the self-adaptive 

Pareto differential evolution algorithm (SPDE).   

 Xue et al. [49] presented the Pareto-based multi-objective differential evolution  

(MODE). This algorithm implements the selection of the best individual for the mutation 

operation. The non-dominated solutions in the population are identified in each generation. For 

mutation of an individual p, it is identified first if it is a dominated one. If p is a dominated 

solution, a set of individuals that dominate p will be identified and randomly choose a solution 

from the set as pbest. (pbest-p) is the difference vector for mutation operation. Otherwise, p is pbest 

itself and the difference vector will be zero and has no effect. The major difference from single 

objective DE is that the best individual is varying rather than fixed for the reproduction stage. 

Also, they adopt ( )   selection (combined parents and offspring population), Pareto ranking 

and crowding distance in order to produce and maintain diversity. They also applied MODE to 

the decision support for a design-supplier-manufacturing planning problem [50].  

 Kukkonen and Lampinen [51] developed the generalized differential evolution version 

three (GDE3) to solve MOPs with constraints. GDE3 combines the Pareto-based differential 

evolution with the previous GDE version. If the problem is unconstrained single objective 

optimization, GDE3 is exactly the same as the original DE. This version uses a growing 

population and non-dominated sorting as same as NSGA-II [52] to obtain improved diversity and 

make the algorithm less sensitive to the control parameters. They also studied the effect of control 

parameters on GDE3 [53] and found that GDE3 is more robust than its previous version.  The 

algorithm performed worse for the rotated multiobjective optimization problems as documented 

in [54]. Application of GDE3 can also be found in [55]. 
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 Robic and Filipic [56] proposed a differential evolution for multiobjective optimization 

(DEMO). It combines the advantages of DE with the mechanisms of Pareto-based ranking and 

crowding distance sorting. DEMO maintains only one population and the population size can be 

extended during each generation. By the end of the generation, the extended population will be 

truncated to the fixed population size by using non-dominated sorting and crowding distance. 

Another major mechanism is the immediate replacement of the parent individual with the 

candidate that dominates it. This mechanism promotes the elitism and makes DEMO converge 

faster.  

 Iorio and Li [57] presented the non-dominated sorting DE (NSDE). They modified 

NSGA-II in the reproduction stage. Crossover and mutation operators of NSGA-II are replaced 

by crossover and mutation operators of DE, respectively. 

2.5.3.2 Non-Pareto based multiobjective DE 

 Li and Zhang [58] proposed a multiobjective DE based on decomposition (MOEA/D-DE) 

with variable linkages. They use a decomposition approach for converting approximation of the 

Pareto front into a number of single objective optimization problems. Then apply the 

DE/rand/1/bin to generate the trial solutions, and exploits the neighborhood relationship among 

the subproblems for making its search effectively and efficiently. This method does not employ 

the Pareto concepts. 

2.5.3.3 Self-adaptive multiobjective DE 

 Huang et al. [59] extended the SaDE [60] to solve MOPs. They named the algorithm as 

the multi-objective SaDE algorithm (MOSaDE). The algorithm automatically adapts the trial 

vector generation strategies and their associated parameters according to their previous 

experience of generating promising solutions as same as SaDE. However, MOSaDE uses non-

domination sorting and crowding in evaluation process. Later, Huang et al. [61] modified 
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MOSaDE in order to learn the suitable crossover rate and mutation strategies for each objective 

separately in MOPs. 

 Zamuda et al. [62] proposed differential evolution for multiobjective optimization with 

self-adaptation (DEMOwSA). They extended the DEMO by incorporating the self-adaptive 

control parameters F and CR. F and CR will be encoded into the decision variables and 

simultaneously evolved with the population. 

 Zhang and Sanderson [63] proposed the self-adaptive multiobjective DE with direction 

information provided by archived inferior solutions (JADE2) which is extended from JADE. 

JADE2 incorporated the self-adaption of F and CR and selection scheme based on Pareto 

dominance and crowding density. Adaptation of F and CR is based on the principle that the better 

values of control parameters tend to generate individuals that are more likely to survive and 

should be propagated.  

2.5.3.4 The multiobjective DE based on opposite operation 

 Dong and Wang [64] proposed the DE based on opposite operation to solve the MOPs. 

The proposed algorithm utilizes the idea of ODE [65]: population initialization and generation 

jumping dynamically based on the number of non-dominated solutions generated by DE. Also, 

the external archive is to store the non-dominated solutions that are sorted by the same 

mechanism as NSGA-II. 

2.6 Previous Works in Indicator-based MOEAs 

 The performance of MOEAs can also be enhanced through monitoring the progress of 

evolution process by performance metrics. These designs are often called Indicator-based 

MOEAs. Some of the most popular ones are summarized below.  
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 HypE [66] is a hypervolume-based multiobjective evolutionary algorithm. It applies 

computationally efficient Monte Carlo simulation to approximate the exact hypervolume value, 

and assigns ranks of solutions induced by the hypervolume indicator. These ranks of solutions 

can be used in fitness evaluation, mating selection, and environmental selection. By design, it 

balances the accuracy of the estimates and the computation cost of the Hypervolume calculation. 

 IBEA [67] avoids the dominance ranking and applies a binary performance indicator 

directly to the selection process.  IBEA is combined with arbitrary indicators that are first defined 

by the optimization goal and can be adapted to the preferences of the user without any additional 

diversity preservation mechanism such as fitness sharing. 

 SMS-EMOA [68] is a hypervolume-based evolutionary multiobjective optimization 

algorithm. The non-dominated sorting is used as a ranking method and the hypervolume 

contribution is applied as a selection strategy. The solutions from the worst rank front which 

contributes the least hypervolume will be removed from the population. 

2.7 Selected State-of-the-Art Multiobjective Optimization Algorithms 

 There are some popular MOEAs often chosen as state-of-the-art competitors for 

comparison in literature. Some of the most prevalent ones are outlined in the following. 

 The advanced version of nondominated sorting genetic algorithm (NSGA-II) [52] was 

improved from its original version. A fast nondominated sorting method is employed to Pareto 

rank individuals and a crowding distance measurement provides the density estimation for each 

individual. In fitness assignment, NSGA-II prefers the one with the lower rank, or the one that is 

located in a less crowded region if both solutions are in the same front. The crowding comparison 

method preserves the diversity of the population and no sharing parameter is required. The elitism 

mechanism does not allow an already found nondominated solution to be deleted. Therefore, 

NSGA-II combines a fast nondominated sorting approach, a parameterless sharing method, and 
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an elitism scheme in order to produce a better spread of solutions in a given MOP. However, the 

nondominated sorting needs to be performed on a population size of 2NP. 

 SPEA2 [69] assigns a strength value to each individual in both main population and elitist 

archive which incorporates both dominated and density information. To avoid individuals 

dominated by the same archive members having identical fitness values, both dominating and 

dominated relationships are taken into account. The final rank value of a current individual is 

generated by the summation of the strengths of the individuals that dominate it. The density value 

of each individual is obtained by the nearest neighbor density estimation. The final fitness value 

is the sum of rank and density values. In addition, the number of elitists in elitist archive is 

maintained to be constant. 

 A multiobjective evolutionary algorithm based on decomposition (MOEA/D) [58] 

decomposes a multiobjective optimization problem into a number of scalar single optimization 

subproblems and optimizes them simultaneously. Later, the new version of MOEA/D so called 

MOEA/D-DE [70] was introduced. MOEA/D-DE employs a DE operator and polynomial 

mutation. The simulation study of MOEA/D-DE shows that it is less sensitive to F and CR 

setting. 

 Since the associated control parameters of DE play important roles to DE performance.   

The parameter tuning for a particular problem is a challenging task because it is problem 

dependent and time-consuming trial and error process. Therefore, among multiobjective DE 

algorithms proposed, we are interested in a self-adaptive multiobjective DE development. The 

proposed algorithm utilizes the feedback information from the population to adaptively adjust the 

control parameters of the proposed multiobjective DE. The feedback information is gathered by 

the specified performance metrics and then feed to the fuzzy inference rules to adaptively adjust 

the control parameters.  Details on the proposed algorithm are presented in Chapter III. 
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CHAPTER III 
 

 

FUZZY MULTIOBJECTIVE DIFFERENTIAL EVOLUTION  

USING PERFORMANCE METRICS FEEDBACK 

 Since balancing exploration and exploitation of the population throughout the search 

process is a key ingredient of any evolutionary algorithms, how to trade-off those two abilities is 

a challenging task of any EA development. For a multiobjective DE, the mutation strategy and 

the associated control parameters play important roles to DE performance. To address the issue 

for those two tasks at hand, a fuzzy multiobjective differential evolution based on performance 

metrics feedback is proposed in this chapter. The performance of the proposed algorithm is 

quantified by the well-known ZDT, DTLZ, and WFG test suites.    

3.1 Introduction 

 The performance of the multiobjective optimization algorithms can be quantified by three 

design goals [15]. First, the distance of the resulting nondominated set to the true Pareto-optimal 

front should be minimized. Second, a good (in most cases uniform) distribution of the solutions to 

be found is desirable. Last, the extent of the obtained nondominated front should be maximized, 

i.e., for each objective, a wide range of values should be covered by the nondominated solutions. 

This understanding has motivated the idea to exploit the performance metrics, specifically 

hypervolume, spacing, and maximum spread which address the three optimization goals 

respectively,  as  inputs  to  fuzzy  rules.  The  designed  fuzzy  inference  rules  adapt  the  control    
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parameters of the proposed Fuzzy-based Multiobjective Differential Evolution (FMDE) algorithm 

in order to dynamically emphasize on the convergence or the diversity in balance of exploration 

and exploitation throughout the evolution process. The flowchart of the proposed FMDE is shown 

in Figure 3.1. 

 The FMDE begins with a randomly generated population and associated control 

parameters. The population will undergo the mutation and crossover processes. Afterward we 

combine the offspring and parent population together and identify the nondominated solutions of 

the combined population.  The obtained nondominated front will be measured by the chosen 

performance metrics, specifically hypervolume, spacing, and maximum spread. 

 These three measurements become inputs to a fuzzy rule based inference system. Outputs 

of the fuzzy rule based system determine the control parameters of DE, namely, scaling factor F 

and greedy factor  for the mutation strategy that is used in FMDE. The fuzzy rules will be 

evaluated at every generation in order to adaptively adjust the parameters of mutation strategy for 

the next generation. The combined population size of 2NP will be truncated to the size of NP. 

Then we update the archive by adding the nondominated solutions found from the combined 

population. In order to maintain the archive size, FMDE used the crowding comparison method 

from NSGA-II [52] as the diversity preservation in the archive. The new population undergoes 

the whole process until the stopping criterion is met. The stopping criterion is the preset 

maximum number of generations. 
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Figure 3.1 Fuzzy Multiobjective Differential Evolution flowchart 
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3.2 Mutation Strategy 

 Joshi and Sanderson [71] proposed the mutation operator as 

, , ,

1

(1 ) ( ),k k
a b

K

i G best G i G i i
k

F 


    v x x x x    (3.1) 

where [0,1]   is the greediness of the operator, [0,2]F   is the scaling factor, ,best Gx  is the best 

individual found in the parent population at generation G, ,  [1, ]k k

a bi i NP , and K is the number of 

differentials used to generate the perturbation. The control parameter  represents the degree of 

exploitation and greediness of the mutation operator. If  is larger, the mutation strategy is 

greedier. Consequently, mutant vectors will be generated near the best vectors in the parent 

population and emphasize the exploitation ability of the algorithm. The scaling factor F controls 

the diversity and exploration ability of the mutation. If F is larger, the degree of exploration is 

higher, and more diversity will be promoted around the mutant vectors. Choosing the appropriate 

values for  and F is often a trial-and-error, time-consuming, and problem-dependent task. 

Knowing the state of the current population through performance metrics, we can adjust the 

values of these parameters without a prior knowledge of the underlying problem, even though 

Joshi and Sanderson suggested that F should be set between 0 and 2. In this study, we follow the 

suggestion in [72] that F should be set even tighter between 0.4 and 1 because from the primary 

research of F indicated that if F is set between 0 and 2, but outside of 0.4 and 1, it slows the 

convergence speed and cannot converge for multiple local fronts problem. Given this 

consideration, our algorithm sets the range of F between 0.4 and 1. 

3.3 Crossover Strategy 

 As stated in Chapter II, there are two types of crossover strategies often employed in DE: 

binomial and exponential crossovers. Zaharie [73] analyzed the influence of crossover type on the 
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behavior of the DE designs, and found that the exponential crossover was more sensitive to the 

problem size than the binomial crossover does. Wang et al. [72] suggested that CR should be a 

low value near 0 or high value near 1. Given our experiment, we choose the binomial crossover 

and set CR to 0.3. We decide to fix CR throughout the evolution process because we would like to 

investigate the effects of balancing the exploration and exploitation via mutation operation alone. 

3.4 Performance Metrics 

 During the evolution process, we do not know the true Pareto front in a priori. We have 

to resort to choose the performance metrics that can measure the three design goals of 

optimization without a prior knowledge of the true Pareto front. Even there exist some running 

metrics such as those in [74], there are very few choices to allow us to measure the convergence, 

uniform distribution, and extensiveness of the population. Hence, we choose three performance 

metrics, namely hypervolume, spacing, and maximum spread to quantify the three properties of 

the obtained nondominated front. In order to evaluate convergence, the metric we choose is 

hyperarea ratio (hypervolume indicator) [75]. It calculates the size of the hypervolume enclosed 

by the obtained nondominated front PFknown and a reference point. For instance, an individual ix  

in PFknown for a two-dimensional MOP defines a rectangle area, ( )ia x , bounded by the chosen 

reference point and ( )if x . The union of such rectangle areas is referred to as hyperarea of 

PFknown, 

( ) (x ) xknown i i known

i

H PF a PF
 

   
 

.    (3.2) 

 It measures both convergence and distribution of a nondominated set, and reference 

points are set as discussed in [76]. Reference point can also be chosen as the anti-ideal of the 

worst possible performance in all objectives [77]. If hypervolume value is larger, we can interpret 

the status of the population as is converging and/or with good distribution. However, it is not 
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clear that the increased value is due to converging, or better distribution, or both. Therefore, we 

need another metric that can measure the degree of uniform distribution, i.e., spacing. Spacing (S) 

[78] is a metric measuring how the obtained nondominated solutions are evenly distributed: 

 
2

1

1
,

n

i known

i

S d d n PF
n 

        (3.3) 

where id  is the Euclidean distance in the objective space between individual ix  and the nearest 

solution of the obtained nondominated front, d is the mean Euclidean distance of di, and n  is the 

number of solutions in the obtained nondominated front. If S is zero, it indicates that all solutions 

of the nondominated front are equally spaced.  

 Maximum spread (MS) [15] measures the length of diagonal hyperbox formed by the 

extreme solutions observed in the nondominated sets. But it does not reveal the distribution of 

solutions. A normalized version of MS [1] is defined as 

2

max min
1

max min1
,

i i
M

m m
ii

m m m

f f
MS

M F F

 
 
 
 

     (3.4) 

where 
max

mF  and 
min

mF  are the maximum and minimum values of the m-th objective in the chosen 

set of Pareto optimal solutions. 
i

mf  is the value of the m-th objective function of the ith member 

of the obtained nondominated solutions and M is the number of the objective functions. 

3.5 Fuzzy Membership Functions and Fuzzy Inference Rules 

 The membership functions of hypervolume, spacing, and maximum spread (i.e., 

, ,andH Spacing MS   ) are shown in Figure 3.2. All three performance metrics use the same shape 

of membership functions. The input is the percentage change of performance metrics calculated 

every two successive generations and fuzzified to the decreasing and increasing membership 
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values. The chosen fuzzification is “and” method. The output membership function for  and F 

are the same shape. There are three status, namely, decrease, no change, and increase for  and F 

value. The centroid defuzzification is used, and then we get the percent change of  and F value. 

The output membership function is shown in Figure 3.3 

 

 

Figure 3.2 Input membership functions 

 

Figure 3.3 Output membership functions 

 

 The fuzzy inference rules are shown in Table 3.1. These rules are used for adjusting the 

values of  and F in order to emphasize the exploitation (greedy) or exploration (diversity) of the 
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mutation strategy for the next generation. Once we receive the quality feedback of the 

nondominated front through hypervolume, spacing, and maximum spread, we can design how we 

emphasize the exploitation or exploration abilities of the proposed algorithm. If we need to place 

strong emphasis on exploitation, we increase  and decrease F. On the other hand, if we need to 

encourage strong emphasis on exploration, we decrease  and increase F. However, if we need to 

place a mild emphasis on the exploitation, we can accomplish it by two approaches: increase  

and keep F unchanged, or keep  unchanged and decrease F. To place a mild emphasis on the 

exploration, we also can have two options as the same manner as exploitation: keep  unchanged 

and increase F or decrease  and keep F unchanged. 

 Rule number 3 describes the best status quo of the population because hypervolume is 

increasing while spacing is decreasing, that implies the population is converging and more 

uniformly distributed. The extensiveness of the obtained front is larger by increasing MS value. 

Thus, we will not change   and F because they should remain appropriate values for the current 

status. Compared to Rule 3, in Rule number 4 we need mild exploration in order to increase the 

extensiveness of the population. As a result, we do nothing with , but increase F slightly. 

 Rule number 6 on the other hand reveals the worst case scenario, because all three 

metrics indicate that the obtained front is diverging and losing diversity and extensiveness in the 

obtained nondominated front. We need strong exploration so to decrease   and increase F. 

 In the case of increasing hypervolume, it means the population is converging but we do 

not know whether the nondominated solutions are uniformly distributed or not. Thus, we turn our 

attention to spacing metric. If it is increasing, so the solutions are not well distributed and we 

need a mild exploitation. Rules 1 and 2 are under this scenario, but the maximum spread for Rule 

1 is increasing thus F is kept unchanged but   is increased accordingly. Maximum spread for rule 

number 2 is decreasing, the stage of population is converging but not well distributed and the 
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searched area is shrinking. Thus we need to increase a mild degree of exploration. Since the 

spacing is worsening, we decrease , and keep F unchanged. 

 If the hypervolume is decreasing, it implies that the search direction of the population is 

incorrect. As a result, we will increase the exploration ability. Rules 5 to 8 are under this case. 

Rules 5 and 7 actions are to increase a mild degree of exploration. Spacing of rule 5 is increasing; 

it implies that the solutions are crowded then we decrease   accordingly, while keep   

unchanged for rule 7. Rule 8 states that the population is not converging and the search area of 

the population is shrinking even though the distribution is good. To respond to this scenario, we 

add a mild degree of exploration by keeping  unchanged and increasing F slightly. 

3.6 Experiments and Results 

3.6.1 The Benchmark functions 

 The proposed Multiobjective Differential Evolution (MODE), namely FMDE, is tested 

on the ZDT and DTLZ test suites [15, 79]. Specifically, ZDT benchmark functions (i.e., ZDT1, 

ZDT2, ZDT3, ZDT4, and ZDT6) are bi-objective optimization problems. On the other hand, 

DTLZ1 to DTLZ7 benchmark functions are all three-objective. ZDT1 is with a convex Pareto-

optimal front, while ZDT2 is the nonconvex counterpart to ZDT1. ZDT3 represents the 

discontinuous Pareto-optimal front. It consists of several discontinuous convex parts. ZDT4 

contains many local Pareto-optimal fronts. The search space of ZDT6 is non-uniformity. Thus, it 

introduces two challenges: first, the Pareto-optimal front is non-uniformly distributed, and the 

density of the solutions is lowest near the Pareto front and highest away from the front. ZDT5 is 

usually not included in the experiment because the decision variable is a binary string. 

Additionally, DTLZ1 is a linear hyper-plane and has many local Pareto fronts where an MOEA 

can be attracted to them before reaching the global Pareto front. DTLZ2 is the spherical Pareto 

optimal front.   DTLZ3 is with the concave and multimodality front.   The local optimal fronts are 
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Table 3.1 Fuzzy inference rules 

Rules 

Inputs Outputs 

Actions 

Hypervolume Spacing MS  F 

1 Increase Increase Increase Increase 
No 

Change 

Mild 

exploitation 

2 Increase Increase Decrease Decrease 
No 

Change 

Mild 

exploration 

3 Increase Decrease Increase No Change 
No 

Change 

Do nothing 

4 Increase Decrease Decrease No Change Increase 
Mild 

exploration 

5 Decrease Increase Increase Decrease 
No 

Change 

Mild 

exploration 

6 Decrease Increase Decrease Decrease Increase 
Strong 

exploration 

7 Decrease Decrease Increase No Change Increase 
Mild 

exploration 

8 Decrease Decrease Decrease No Change Increase 
Mild 

exploration 

 



40 
 

parallel to the global Pareto optimal front. DTLZ4 is the modification of DTLZ2 to allow the 

solutions to be crowded near the plane. DTLZ5 is to test the ability of an MOEA to converge to a 

curve. DTLZ6 is modified from DTLZ5 to make the problem even harder. DTLZ7 has four 

disconnected Pareto optimal regions in the search space.  

 In addition, FMDE is also tested on WFG test suite [80]. WFG1 to WFG9 benchmark 

functions are scalable and include some properties that are different from DTLZ test suite. These 

properties involve non-separable problems, a truly degenerate problem, deceptive problems, a 

mixed shape Pareto front problem, and bias problems. We tested WFG1 to WFG9 in three-

objective functions. 

3.6.2 Experimental setup 

 The proposed FMDE is compared with three state-of-the-art MOEAs, i.e., NSGA-II [52], 

SPEA2 [69], MOEA/D-DE [58], and three indicator-based MOEAs, i.e., HypE [66], IBEA [67], 

SMS-EMOA [68]. Each algorithm is tested on the two-objective (five ZDT) test functions and 

three-objective (seven DTLZ) test functions with 30 independent runs. We also investigated the 

performance of FMDE, MOEA/D-DE, and the self-adaptive JADE2 on a wide range of different 

problems (i.e., three-objective WFG1 to WFG9 problems).  For each trial, an algorithm will stop 

if it reaches the maximum number of function evaluation at 250,000 for bi-objective and 300,000 

for three-objective problems. The population size is 100 for bi-objective and 300 for three-

objective problems. The FMDE uses the external archive and is updated as in [52]. The archive 

size for bi-objective and three objective problems are 100 and 300, respectively.   and F are both 

set at 0.5 for the first generation. K is 1 which implies we use only one differential vector. Even 

though CR offers the diversity control mechanism for DE as well, however, if we adaptively 

adjust , F, and CR, it can be overly used for the diversity effect. As a result, we set CR = 0.3 and 

F should be limit within [0.4, 1] for the whole experiments [72].  
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 The other parameter settings for the competing algorithms are the same as what 

suggested in the respective original papers. The reference points we set for calculating 

hypervolume indicator for all test function are specified in [76]. We choose the reference point 

(3,100) for ZDT1 and ZDT4. The other reference points for ZDT2, ZDT3, and ZDT6 are (3/2, 

4/3), (100, 5.446), and (1.497, 4/3), respectively. Additionally, the reference point for DTLZ1 is 

(1, 1, 1) and (1.180, 1.180, 1.180) for DTLZ2, DTLZ3, and DTLZ4. DTLZ7 uses (13.3725, 

5.3054, 5.3054) as the reference point. Since [76] does not state the reference points for DTLZ5 

and DTLZ6, we choose the reference point as (5, 5, 5) for both benchmark functions. The 

reference points for WFG1 to WFG9 are all set at (100, 100, 100). 

 The code for NSGA-II is available at http://www.iitk.ac.in/kangal. Similarly, MOEA/D-

DE can be found at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm, while SPEA2, HypE, 

and IBEA are available at http://www.tik.ee.ethz.ch/pisa. On the other hand, the code of SMS-

EMOA is available at http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start. 

3.6.3 Metrics 

 In comparing the performance among MOEAs, the performance metric used in this 

experiment is the inverted generational distance (IGD) [81]. Let truePF  be the uniformly 

distributed true Pareto front. Let AP  be the obtained approximated one. IGD is defined as 

( , )

( , ) true

A

v PF

A true

true

d v P

IGD P PF
PF





 ,   (3.5) 

where ( , )Ad v P  is the minimal Euclidean distance between every truev PF  and the set AP . IGD 

measures both the convergence and diversity of the obtained approximation front. If IGD = 0, it 

means that all the approximation solutions are in the true Pareto solutions and they cover all the 

extension of the true Pareto front. The uniformly distributed true Pareto fronts for calculating 

http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
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IGD for all test problems are taken from [82]. truePF  for ZDT1, ZDT2, ZDT3, and ZDT6 is 

1,001 whereas ZDT4 is 269. Also truePF  for DTLZ1 and DTLZ2 is 10,000, DTLZ3 and DTLZ4 

is 4,000, DTLZ5 is 166,500, DTLZ6 is 28,000 and DTLZ7 is 676. On the other hand, truePF  for 

WFG1 is 2,000, WFG2 is 2900. truePF  for WFG3, WFG5, WFG6, and WFG7 is 10,000. truePF  

for WFG4 is 9,997, for WFG8 is 10,100, and for WFG9 is 10,201. 

3.6.4 Experimental results 

 An example of the obtained nondominated front and the associated performance metrics, 

and control parameters are shown in Figure 3.4 for ZDT1. At the beginning of the evolutionary 

process,  and F start at 0.5. At approximately the 20th generation, the spacing reaches the highest 

while MS is the lowest. This implies the obtained approximate front is crowded and the distance 

between extreme solutions is short, even though the hypervolume is continuously increasing. The 

performance assessment implies that the population can find more nondominated solutions but 

they are crowded together in some part of the approximation front. Hypervolume is continuously 

improved and goes to steady state around the 100th generation. After that the hypervolume has 

very small fluctuation which means FMDE continuously improves its convergence and 

distribution. When the algorithm converges, we can see that the spacing went to near zero which 

is the ideal value for evenly distribution. The maximum spread of the algorithm is growing to 

approximately one which indicates that the algorithm reaches its maximum extent of the extreme 

solutions. Later on   is decreasing while F is increasing. This infers that the search process 

detects the promising region and then fast converges toward the direction that makes    value 

even higher in order to facilitate the exploitation ability. When the population converges, the 

exploration becomes prominent because every individual will be near or at the true Pareto front 

and we need to emphasize the local search then. As can be seen, the FMDE continuously 

improves its performance: hypervolume is increasing which demonstrates that the algorithm is 
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converging but we observe that the distribution is not good due to fluctuating spacing values. 

Meanwhile the fluctuation of the maximum spread indicates that the extreme nondominated 

solutions occupy a smaller space. After the 120th generations,   decreased to the lowest value 

near zero, but F is closed to one. This implies that the degree of exploration is higher than 

exploitation. What it means is that the algorithm converges, the number of the nondominated 

solutions found is fairly high, and the algorithm tries to do the local search to make the obtained 

front evenly distributed. Sample plots of the obtained approximate fronts for ZDT2, ZDT3, 

ZDT4, ZDT6, and DTLZ test suite (DTLZ1-7) are shown in Figure 3.5 for reference. It can be 

seen that FMDE performs very competitively on all test instances with various problem 

characteristics. 

 The mean value and standard deviation of IGD on ZDT and DTLZ test instances for 

FMDE, MOEA/D-DE, NSGA-II, SPEA2, HypE, IBEA, and SMS-EMOA are listed in Table 3.2. 

The WFG test results are shown in Table 3.3. We compare the performance between any two 

algorithms in terms of statistics by utilizing the nonparametric Mann-Whitney-Wilcoxon rank 

sum test on IGD. The performance of FMDE with respect to IGD on each test instance could be 

noted as better (“+”), same (“=”), or worse(“-“) than/as that of one chosen competitor if the p-

value generated by FMDE and its competitor is larger than, equal to, or smaller than a standard 

tabulated value of U-test at a significance level of 0.05 by a two-tailed test. The best value of IGD 

among those algorithms is highlighted by boldface in each test instance. 

 A row “Score” in Table 3.2 and Table 3.3 shows the difference between the number of 

“+” and the number of “-”, which gives an overall comparison between FMDE and one 

competing algorithm over all test problems considered. For example, comparing FMDE and 

HypE on ZDT and DTLZ test suites, FMDE outperforms HypE on nine problems (i.e., ZDT1 to 

ZDT6, DTLZ2 to DTLZ4, and DTLZ7), does almost the same on one problem (i.e., DTLZ6) and 
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underperforms on two problems (DTLZ1 and DTLZ5). As a result, the score listed in the last row 

and the column of HypE is 7 (i.e., 9 – 2 = 7). 

 Table 3.2 shows that the proposed FMDE algorithm outperforms MOEA/D-DE on eight 

out of twelve benchmark functions. In case of bi-objective, FMDE is competitive with MOEA/D-

DE. The performance of FMDE is statistically better than MOEA/D-DE on ZDT1, ZDT2, and 

ZDT3, but worse on ZDT4 and ZDT6. However, FMDE outperforms MOEA/D-DE on five out 

of seven three-objective test functions. FMDE outperforms NSGA-II on ten out of twelve 

functions. It outperforms NSGA-II on all ZDT test functions, but underperforms on DTLZ1 and 

DTLZ5. FMDE is competitive with SPEA2 on most bi-objective and three-objective problems. 

The comparison between FMDE and the indicator based algorithms shows that FMDE 

outperforms HypE on the ZDT suite and underperforms on the DTLZ1 and DTLZ5. FMDE 

underperforms IBEA on ZDT1, DTLZ1, DTLZ5, and DTLZ6 and does the same on DTLZ3 and 

DTLZ4. FMDE outperforms SMS-EMOA on ZDT6 and five DTLZ test instances except for 

DTLZ1 and DTLZ4, and underperforms on ZDT1 to ZDT3, and does the same on ZDT4. Table 

3.3 shows the results for WFG test suite. FMDE outperforms MOEA/D-DE on all nine test 

problems. FMDE outperforms JADE2 on seven problems except WFG8 and does the same 

performance on WFG6. The self-adaptive mechanism of FMDE can help improving the 

performance of DE algorithm on the bias problems such as WFG test instances. 

 Overall, FMDE is competitive with respect to the chosen competing MOEAs on all three 

test suites popularly used in literature. It is interesting to observe that the most difficult problems 

for FMDE are DTLZ1 and WFG8. The problem characteristics presented in DTLZ1 is the linear 

Pareto front, while WFG8 is the bias Pareto front. In summary, FMDE perform very well on the 

convex, nonconvex, multimodality and discontinuous problems. But it faces difficulties on the 

linear and bias problems. The preservation of diversity in FMDE may not be sufficient for solving 
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a higher degree of multimodality. It should be improved by adaptively adjust CR in our future 

research. 

3.7 Remarks 

 This chapter presents a MODE which utilizes performance metrics, namely hypervolume, 

spacing, and maximum spread to estimate the state of evolution in order to dynamically adapt the 

greedy and distribution parameters of a DE-based mutation strategy over the course of evolution. 

The direction of change for each parameter is determined through fuzzy inference rules. The 

effect of dynamically adjust these parameters is that we can emphasize the exploitation or 

exploration ability due to the status of the search process. The experimental results show that the 

proposed FMDE performs better than those chosen state-of-the-art competing MOEAs. This 

research demonstrates that we can integrate performance metrics observed and expert knowledge 

of optimization process together through fuzzy inference rules. Therefore, it is one credible 

approach to automatically adjust the control parameters without a prior knowledge on the 

landscape of the Pareto front. The advanced version of FMDE will be introduced in Chapter IV. It 

will adaptively adjust CR in concurrent with  and F. 
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Figure 3.4 A sample run of FMDE on ZDT1. (a) The approximated and true Pareto fronts, (b) 

hypervolume performance metric (c) spacing performance metric , (d) maximum spread 

performance over course of evolution (generations), (e) Gamma and (f) F control parameters of 

DE operator 
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Table 3.2 Comparison of IGD for FMDE and Other MOEAS on Rank Sum Tests 

Test 

Functions 

 

FMDE 
MOEA/D-

DE 
NSGA-II SPEA2 HypE IBEA 

SMS-

EMOA 

ZDT1 

Mean 
Std. 

p-value 

u-test 

4.800E-3 
2.560E-4 

 

 

1.460E-1 
5.293E-18 

3.012E-11 

+ 

9.400E-3 
8.775E-4 

3.012E-11 

+ 

8.500E-3 
8.8214E-4 

3.012E-11 

+ 

3.410E-2 
1.050E-2 

3.012E-11 

+ 

4.000E-3 
3.534E-5 

3.012E-11 

- 

3.600E-3 

1.4955E-5 

3.0199e-11 

- 

ZDT2 

Mean 
Std. 

p-value 

u-test 

4.700E-3 
1.9826E-4 

6.400E-3 
8.8219E-19 

3.012E-11 

+ 

3.926E-1 
2.954E-1 

3.012E-11 

+ 

2.923E-1 
3.056E-1 

3.012E-11 

+ 

3.974E-1 
2.840E-1 

3.012E-11 

+ 

4.692E-1 
2.590E-1 

3.018E-11 

+ 

4.400E-3 

9.723E-5 

1.070e-9 

- 

ZDT3 

Mean 

Std. 
p-value 

u-test 

3.500E-3 

2.3176E-4 
 

1.230E-2 

7.058E-18 
1.212E-12 

+ 

4.078E-1 

1.020E-2 
3.012E-11 

+ 

4.087E-1 

0.0067 
3.012E-11 

+ 

4.376E-1 

2.360E-2 
3.012E-11 

+ 

3.997E-1 

6.800E-3 
3.012E-11 

+ 

2.600E-3 

2.2173e-5 
3.012e-11 

- 

ZDT4 

Mean 

Std. 
p-value 

u-test 

6.949E-1 

6.792E-1 
 

7.000E-3 

2.500E-3 
3.160E-1 

- 

1.691E+0 

8.934E-1 
3.571E-6 

+ 

1.189E+0 

6.130E-1 
1.200E-3 

+ 

1.9488E+0 

8.659E-1 
3.012E-11 

+ 

1.930E+0 

2.368E+0 
9.500E-3 

+ 

1.930E+0 

2.368E+0 
5.895E-1 

= 

ZDT6 

Mean 

Std. 
p-value 

u-test 

3.700E-3 

6.545E-4 
2.100E-3 

0.000E+0 
3.012E-11 

- 

8.423E-1 

1.183E-1 
3.012E-11 

+ 

9.057E-1 

1.125E-1 
3.012E-11 

+ 

5.391E-1 

5.970E-2 
4.444E-7 

+ 

5.821E-1 

8.760E-2 
3.012E-11 

+ 

3.106E+0 

5.996E+0 
3.012e-11 

+ 

DTLZ1 

Mean 

Std. 
p-value 

u-test 

2.384E+2 

2.678E+0 
5.104E-1 

3.876E-16 
1.212e-12 

- 

4.203E+0 

2.973E+0 
3.012E-11 

- 

2.279E+0 

1.447E+0 
3.012E-11 

- 

2.063E+0 

8.387E-1 
3.012E-11 

- 

1.430E+0 

3.360E+0 
3.012E-11 

- 

5.384E-1 

1.200E-3 
1.440E-2 

- 

DTLZ2 

Mean 

Std. 

p-value 
u-test 

6.900E-2 

2.600E-3 

6.248E-1 

2.258E-16 

1.212E-12 
+ 

8.670E-2 

6.800E-3 

3.6897E-11 
+ 

5.460E-2 

1.300E-3 

3.012E-11 
- 

3.879E-1 

1.850E-2 

3.012E-11 
+ 

8.910E-2 

2.700E-3 

3.012E-11 
+ 

7.410E-2 

9.936E-4 

3.497E-9 
+ 

DTLZ3 

Mean 

Std. 

p-value 
u-test 

7.205E+0 

6.492E+0 

5.596E-1 

4.517E-16 

1.334E-8 
- 

3.455E+1 

1.044E+1 

6.696E-11 
+ 

2.496E+1 

7.6415E+0 

1.695E-9 
+ 

1.946E+1 

1.160E+1 

4.745E-6 
+ 

5.739E+0 

5.372E+0 

5.592E-1 
= 

1.034E+1 

7.011E+0 

3.150E-2 
+ 

DTLZ4 

Mean 

Std. 

p-value 
u-test 

7.240E-2 

5.800E-3 

 

2.947E-1 

2.258E-16 

1.212E-12 
+ 

1.275E-1 

1.012E-1 

3.500E-3 
+ 

1.0701E-1 

8.100E-2 

0.186E-1 
= 

1.914E-1 

8.310E-2 

9.919E-11 
+ 

8.970E-2 

8.120E-2 

3.988E-4 
= 

4.590E-2 

1.600E-3 

3.012E-11 
- 

DTLZ5 

Mean 

Std. 

p-value 
u-test 

6.115E-1 

1.220E-2 

 

7.934E-1 

3.3876E-16 

1.212E-12 
+ 

7.100E-3 

5.718E-4 

3.012E-11 
- 

5.500E-3 

2.359E-4 

3.012E-11 
- 

1.035E-1 

2.420E-2 

3.012E-11 
- 

1.260E-2 

1.100E-3 

3.012E-11 
- 

6.234E-1 

3.500E-2 

1.170E-2 
+ 

DTLZ6 

Mean 
Std. 

p-value 

u-test 

6.091E-1 
9.100E-3 

3.4069E+0 
1.355E-15 

1.212E-012 

+ 

3.406E+0 
3.650E-1 

3.012E-11 

+ 

1.978E+0 
1.731E-1 

3.012E-11 

+ 

7.844E-1 
3.885E-1 

9.352E-1 

= 

1.141E-1 

9.800E-3 

3.019E-11 

- 

6.927E-1 
2.565E-1 

2.366E-12 

+ 

DTLZ7 

Mean 
Std. 

p-value 

u-test 

4.980E-2 

1.900E-3 
8.747E-1 

4.517E-16 

1.212E-12 

+ 

1.500E-1 
9.210E-2 

3.012E-11 

+ 

1.262E-1 
1.423E-1 

3.012E-11 

+ 

1.960E-1 
7.130E-2 

3.012E-11 

+ 

1.162E-1 
1.265E-1 

1.206E-10 

+ 

5.340E-2 
4.620E-2 

5.573E-10 

+ 

Better (+) 

Same (=) 

Worse (-) 
Score 

 8 
0 

4 

4 

10 
0 

2 

8 

8 
1 

3 

5 

9 
1 

2 

7 

6 
2 

4 

2 

6 
1 

5 

1 
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Table 3.3 Comparison of IGD for FMDE and other MODEs on Rank Sum Tests 

Functions  
FMDE 

MOEA/D-

DE 
JADE2 

WFG1 

Mean 

Std. 

p-value 
u-test 

5.330E-1 

2.700E-3 

6.571E-1 

2.258E-16 

1.212E-12 
+ 

5.594E-1 

2.700E-3 

3.012E-11 
+ 

WFG2 

Mean 

Std. 

p-value 
u-test 

4.292E-1 

4.859e-4 

5.822E-1  

0.000E+0 

1.212E-12 
+ 

4.316E-1 

1.000E-3 

6.066E-11 
+ 

WFG3 

Mean 

Std. 
p-value 

u-test 

5.254E-1 

6.1244E-4 

8.315E-1 

3.388E-16 
1.212E-12 

+ 

5.307E-1 

1.300E-3 
3.012E-11 

+ 

WFG4 

Mean 
Std. 

p-value 

u-test 

4.011E-1 

4.300E-3 

1.1176E+0 
9.034E-16 

1.212E-12 

+ 

4.231E-1 
6.900E-3 

3.012E-11 

+ 

WFG5 

Mean 

Std. 

p-value 
u-test 

1.854E-1 

1.200E-3 

5.695E-1 

1.1292E-16 

1.2118E-12 
+ 

1.955E-1 

4.900E-3 

3.338E-11 
+ 

WFG6 

Mean 

Std. 
p-value 

u-test 

3.854E-1 

1.000E-3 

5.271E-1 

1.129E-16 
1.212E-12 

+ 

3.863E-1 

6.300E-3 
7.506E-1 

= 

WFG7 

Mean 
Std. 

p-value 

u-test 

8.360E-2 

1.060E-2 

6.404E-1 
0.000E+0 

1.2118E-12 

+ 

3.0007E-1 
2.430E-2 

3.012E-11 

+ 

WFG8 

Mean 
Std. 

p-value 

u-test 

4.570E-1 
2.000E-3 

5.345E-1 
3.3876E-16 

1.2118E-12 

+ 

4.436E-1 

3.100E-3 

3.012E-11 

- 

WFG9 

Mean 

Std. 

p-value 
u-test 

1.064E-1 

4.300E-3 

4.617E-1 

2.8230E-16 

1.2118E-12 
+ 

1.560E-1 

1.750E-2 

3.012E-11 
+ 

Better (+) 

Same (=) 
Worse (-) 

Score 

 9 

0 
0 

9 

7 

1 
1 

6 
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Figure 3.5 Sample approximated fronts by FMDE for benchmark function (a) ZDT2, (b) ZDT3, 

(c) ZDT4, (d) ZDT6, (e) DTLZ1, (f) DTLZ2, (g) DTLZ3, (h) DTLZ4, (i) DTLZ5, (j) DTLZ6, and 

(k) DTLZ7. 
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CHAPTER IV 
 

 

FUZZY MULTIOBJECTIVE DIFFRENTIAL EVOLUTUION WITH ADAPTIVE 

CROSSOVER RATE USING PERFORMANCE METRICS FEEDBACK 

 A classic DE involves three operators, i.e., mutation, crossover, and selection. FMDE 

focuses on adaptation of the associated control parameters of the mutation strategy alone. There 

are a few studies on the influence of the crossover strategy and the crossover rate to DE 

performance [72-73]. The conclusions from those crossover rate studies state that there is not a 

single crossover rate that is suitable for all types of optimization problems. The tuning of 

crossover rate usually needs a priori knowledge of the problem at hand. Therefore, the advanced 

version of FMDE (AFMDE) is proposed. AFMDE adaptively adjusts the crossover rate in 

concurrence with mutation parameters. The performance of AFMDE is quantified by the well-

known ZDT, DTLZ, and WFG test suites. The influence of the initial crossover rate and fuzzy 

membership function parameters to AFMDE performance is investigated as well. 

4.1 Introduction 

 The mutation operator plays an important role in DE and it promotes diversity in the 

population. However, only the mutation strategy alone cannot provide sufficient diversity for the 

search process. Therefore, DE adopts the crossover operation in order to further enhance the 

diversity of the population. This chapter introduces the advanced version of FMDE (in short 

called AFMDE) by adaptively adjust CR in concurrence with mutation parameters:  and F.  
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 There are literatures that proposed adaptively adjusting CR mechanism in DE 

optimization but most of them were applied to single objective DE variants. The various methods 

to adapt CR can be classified in the following: 

4.1.1 Encoding CR into each individual 

 Abbass [48] proposed the self-adaptive Pareto DE algorithm for MOPs by encoding CR 

into each individual. Then CR will be simultaneously evolved with other parameters. Brest et al. 

[83] proposed a self-adaptive DE (jDE) in which F and CR are encoded into each vector. The 

better values of these encoded parameters that produce the better offspring are more likely to 

survive. Zamuda et al. [62] proposed differential evolution for multiobjective optimization with 

self-adaptation (DEMOwSA). F and CR are encoded into the decision variables and 

simultaneously evolved with the population. 

4.1.2 Success rate 

 Huang et al. [59] proposed MOSaDE. The algorithm automatically adapts the trial vector 

generation strategies and their associated parameters according to their previous experience of 

generating promising solutions as same as SaDE [60]. However, MOSaDE uses non-domination 

sorting and crowding in evaluation process. Later, Huang et al. [61] modified MOSaDE in order 

to learn the suitable crossover rate and mutation strategies for each objective separately in MOPs. 

Zhang and Sanderson [63] proposed the self-adaptive multiobjective DE with direction 

information provided by archived inferior solutions (JADE2). The self-adaption of F and CR 

based on the principle that the better values of control parameters tend to generate better offspring 

are more likely to survive and should be propagated through the evolution process. 
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4.1.3 CR pool  

 Mallipeddi and Suganthan [84] proposed a DE with an ensemble of mutation and 

crossover strategies and its associated parameters (EPSDE).  A pool of mutation and crossover 

strategies along with a pool of each control parameter (F and CR) values are initialized. Each 

vector is randomly assigned mutation strategy and associated parameter values taken from the 

respective pools. The mutation operator and associated parameters that produce the better 

offspring (trial vector) are retained with that trial vectors, and will be used to generate the new 

vector in the next generation. The combination of these successful mutation and crossover 

strategies and associated parameters are stored in a “successful pool”. If the combination of the 

mutation operator and associated parameters fail to generate the better offspring (trial vector), the 

parents (target vector) will randomly assigned the mutation and crossover operators and 

parameters from the initialized mutation and crossover operators and parameter pools, or from the 

successful pool. 

4.1.4 Randomly generated  CR 

 Jingqiao and Sanderson [85] proposed a single objective DE with adaptive parameter 

control called JADE. They incorporate a new mutation strategy along with the adaptive control 

parameter F and CR. F and CR will be generated at each generation according to a Cauchy 

distribution. The location parameter of the Cauchy distribution will be updated at the end of each 

generation based on the set of successful F and CR values.  

4.2 Fuzzy Membership Functions and Fuzzy Inference Rules 

 Since  and F parameters in FMDE have an impact on balancing exploration and 

exploitation abilities of the population, if CR keeps changing in spite of population’s status, it 

may compromise the exploration and exploitation balance. Besides, adjusting CR for different 
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mutation strategies has different effects to the exploration and exploitation abilities. For instance, 

when DE/rand/1 is adopted, increasing CR will increase diversity and emphasize exploration 

ability of the population. However, if DE/best/1 is used, increasing CR will emphasize the 

exploitation ability of the population because the trial vectors will be generated near the best 

vector.  

 Therefore, the advanced version of FMDE (AFMDE) which incorporates adaptive CR is 

proposed. Consider FMDE mutation strategy (3.1) which is shown below again for convenience,   

, , ,

1

(1 ) ( ).k k
a b

K

i G best G i G i i
k

F 


    v x x x x    (3.1) 

 If CR is higher, the trial vector 
,i Gu  elements are more likely to inherit the mutant vector

,i Gv  elements. That means the diversity or exploration ability of the population is stronger than 

exploitation. On the other hand, if CR is lower, the trial vector 
,i Gu elements are more likely to 

inherit the target vector
,i Gx  elements. That means the diversity or exploitation ability of the 

population is stronger than exploration. Therefore, CR will be only adapted by two rules: rule 1 

and rule 6 as shown in Table 4.1. Rule 1 needs an emphasis on mild exploitation, thus, CR will be 

decreased. Rule 6 is the worst case scenario thus it needs strong exploration, hence, CR will be 

increased.   
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Table 4.1 Fuzzy inference rules 

Rules Inputs Outputs 
Actions 

Hypervolume Spacing MS  F CR 

1 Increase Increase Increase Increase No 

Change 

Decrease Mild 

exploitation 

2 Increase Increase Decrease Decrease No 

Change 

No 

Change 

Mild 

exploration 

3 Increase Decrease Increase No 

Change 

No 

Change 

No 

Change 

Do nothing 

4 Increase Decrease Decrease No 

Change 

Increase No 

Change 

Mild 

exploration 

5 Decrease Increase Increase Decrease No 

Change 

No 

Change 

Mild 

exploration 

6 Decrease Increase Decrease Decrease Increase Increase Strong 

exploration 

7 Decrease Decrease Increase No 

Change 

Increase No 

Change 

Mild 

exploration 

8 Decrease Decrease Decrease No 

Change 

Increase No 

Change 

Mild 

exploration 
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 The input and output fuzzy membership functions for AFMDE are shown in Figure 4.1 

and Figure 4.2, respectively. 

 

 

Figure 4.1 Input membership functions 

 

 

Figure 4.2 Output membership functions 
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4.3 Experiments and Results 

 AFMDE will be tested on the ZDT, DTLZ, and WFG test instances. The parameter 

settings are the same as FMDE experiments in Section 3.6. The sensitivity of initial value of CR 

and output membership function parameters is investigated as well. IGD will be used for 

measuring the performance of a MOEA. Mann-Whitney-Wilcoxon rank sum test on IGD is used 

to compare any two algorithms in terms of statistics with a two-tail test at the significance level of 

0.05.   

4.3.1 AFMDE with various initial CR values 

 FMDE and AFMDE with various initial CR values (i.e., 0.1, 0.3, 0.5, and 0.9) are tested 

on the ZDT, DTLZ, and WFG test suites. The results from Table 4.2 shows that AFMDE with 

initial CR = 0.1 (AFMDE0.1) is comparable with FMDE. AFMDE with other initial CR values 

underperform FMDE. In case of bi-objective problems (ZDT test suites), AFMDE with initial CR 

0.1 (AFMDE0.1) is comparable with FMDE. AFMDE0.1 outperforms FMDE on ZDT1 and 

ZDT3, does the same on ZDT6, but underperforms on ZDT2 and ZDT4. AFMDE0.1 

underperforms FMDE on DTLZ2, DTLZ3 and DTLZ7, but does the same on DTLZ1, DTLZ4, 

DTLZ5, and DTLZ6. Overall, AFMDE is considered statistically better than FMDE on ZDT1 and 

ZDT3.  

 Table 4.3 shows results for WFG test suites. AFMDE0.1 and AFMDE with initial CR 0.9 

(AFMDE0.9) have the same score. However, AFMDE0.1 outperforms FMDE on four problems 

(WFG1, WFG2, WFG7, and WFG8). It does the same on WFG6 and WFG9. AFMDE0.1 

underperforms FMDE on WFG3 to WFG5 whereas AFMDE0.3 outperforms FMDE on WFG5 

and does the same on the other problem. Overall AFMDE0.1 is comparable to FMDE, while 

AFMDE with other initial CR values underperform FMDE. 
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 Overall, the initial CR = 0.1 is the most promising performance among other initial CR 

values. The parameters of CR fuzzy membership function will be investigated in the next section. 

Table 4.2 FMDE compared with AFMDE on ZDT and DTLZ test suites 

Test 

Functions 

 

FMDE 

AFMDE 

 initial  

CR = 0.1 

AFMDE 

 initial  

CR = 0.3 

AFMDE 

initial  

CR = 0.5 

AFMDE 

initial  

CR  = 0.9 

ZDT1 

Mean 

Std. 

p-value 
u-test 

4.800E-3 

2.560E-4 
4.300E-3 

1.2663E-4 

4.0772E-11 
- 

5.300E-3 

4.443E-4 

3.770E-4 
+ 

6.113E-1 

1.517E-1 

3.020E-11 
+ 

2.751E-1 

4.230E-2 

3.020E-11 
+ 

ZDT2 

Mean 

Std. 
p-value 

u-test 

4.700E-3 

1.9826E-4 

5.200E-3 

5.414E-04 
4.943E-05 

+ 

1.401E-1 

1.985E-1 
3.020E-11 

+ 

9.311E-1 

1.956E-1 
3.020E-11 

+ 

8.812E-1 

2.701E-1 
3.020E-11 

+ 

ZDT3 

Mean 
Std. 

p-value 

u-test 

3.500E-3 
2.3176E-4 

 

3.200E-3 

1.5503E-04 

1.1937E-06 

- 

1.100E-2 
8.000E-3 

3.012E-11 

+ 

5.074E-1 
8.740E-2 

3.020E-11 

+ 

4.946E-1 
8.310E-2 

3.020E-11 

+ 

ZDT4 

Mean 

Std. 

p-value 
u-test 

6.949E-1 

6.792E-1 

 

2.548E+0 

3.217E+0 

2.800E-3 
+ 

4.134E+0 

4.634E+0 

2.959E-5 
+ 

4.020E+1 

5.966E+0 

3.020E-11 
+ 

3.934E+1 

6.3135E+0 

3.020E-11 
+ 

ZDT6 

Mean 

Std. 

p-value 
u-test 

3.700E-3 

6.545E-4 
3.600E-3 

5.9401E-4 

5.201E-1 
= 

3.800E-3 

8.6097E-4 

9.234E-1 
= 

5.000E-3 

1.200E-3 

7.739E-6 
+ 

4.300E-3 

8.738E-4 

4.900E-3 
+ 

DTLZ1 

Mean 

Std. 
p-value 

u-test 

2.384E+2 

2.678E+0 
2.375E+2 

1.887E+0 

2.062E-1 

= 

2.376E+2 

2.983E+0 
1.809E-1 

= 

2.384E+2 

3.272E+0 
9.792E-5 

+ 

2.400E+2 

2.939E+0 
4.210E-2 

+ 

DTLZ2 

Mean 

Std. 

p-value 

u-test 

6.900E-2 

2.600E-3 

7.360E-2 

3.700E-3 

1.286E-6 

+ 

8.39E-2 

8.500E-3 

6.696E-11 

+ 

9.320E-2 

7.600E-3 

3.020E-11 

+ 

9.620E-2 

7.100E-3 

3.020E-11 

+ 

DTLZ3 

Mean 

Std. 

p-value 
u-test 

7.205E+0 

6.492E+0 

1.833E+1 

1.518E+1 

8.147E-5 
+ 

1.617E+1 

1.064E+1 

3.988E-4 
+ 

1.090E+1 

8.792E+0 

3.020E-11 
+ 

1.684E+1 

1.372E+1 

3.182E-4 
+ 

DTLZ4 

Mean 

Std. 
p-value 

u-test 

7.240E-2 

5.800E-3 

 

8.530E-2 

6.280E-2 
3.953E-1 

= 

8.360E-2 

9.400E-3 
6.736E-6 

+ 

8.760E-2 

1.110E-2 
5.265E-5 

+ 

8.630E-2 

1.160E-2 
5.859E-6 

+ 

DTLZ5 

Mean 
Std. 

p-value 

u-test 

6.110E-1 
1.220E-2 

6.171E-1 
9.900E-3 

1.624E-1 

= 

6.085E-1 
1.720E-2 

6.627E-1 

= 

6.218E-1 
2.820E-2 

1.224E-1 

= 

6.077E-1 

1.970E-2 

4.464E-1 

= 

DTLZ6 

Mean 

Std. 
p-value 

u-test 

6.091E-1 

9.100E-3 

6.113E-1 

9.100E-3 
3.555E-1 

= 

6.135E-1 

8.900E-3 
9.620E-2 

= 

6.134E-1 

9.600E-3 
4.376E-1 

= 

6.107E-1 

9.300E-2 
7.062E-1 

= 

DTLZ7 

Mean 
Std. 

p-value 

u-test 

4.920E-2 

1.900E-3 

5.410E-2 
5.000E-3 

9.211E-5 

+ 

5.290E-2 
4.500E-3 

5.300E-3 

+ 

5.590E-2 
7.100E-3 

3.200E-11 

+ 

6.990E-2 
3.180E-2 

1.429E-8 

+ 

Better (+) 

Same (=) 

Worse (-) 
Score 

 5 

5 

2 
3 

8 

4 

0 
8 

10 

2 

0 
10 

10 

2 

0 
10 
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Table 4.3 FMDE compared with AFMDE on WFG test suites 

Test 

Functions 

 
FMDE 

AFMDE 

initial = 0.1 
AFMDE 

initial = 0.3 

AFMDE 

initial = 0.5 

AFMDE 

initial = 0.9 

WFG1 

Mean 

Std. 
p-value 

u-test 

5.330E-1 

2.700E-3 

5.384E-1 

3.300E-3 
1.473E-7 

+ 

5.342E-1 

2.800E-3 
1.494E-1 

= 

 

5.348E-1 

3.100E-3 
3.390E-2 

+ 

5.329E-1 

3.000E-3 

6.414 

= 

WFG2 

Mean 

Std. 

p-value 
u-test 

4.292E-1 

4.859E-4 

4.309E-1 

9.300E-3 

6.736E-6 
+ 

4.291E-1 

4.322E-4 

3.871E-1 
= 

 

4.328E-1 

7.484E-4 

3.020E-11 
+ 

4.308E-1 

8.297E-4 

8.1014E-10 
+ 

WFG3 

Mean 
Std. 

p-value 

u-test 

5.254E-1 
6.1244E-4 

5.240E-1 

3.355E-04 

7.389E-11 

- 

5.255E-1 
4.275E-4 

3.953E-1 

= 

5.286E-1 
1.300E-3 

6.066E-11 

+ 

5.281E-1 
1.200E-3 

7.389E-11 

+ 

WFG4 

Mean 

Std. 
p-value 

u-test 

4.011E-1 

4.300E-3 

3.952E-1 

5.400E-3 

7.199e-5 

- 

4.113E-1 

7.500E-3 
2.783E-7 

+ 

4.370E-1 

6.900E-3 
3.020E-11 

+ 

4.350E-1 

6.100E-3 
3.020E-11 

+ 

WFG5 

Mean 

Std. 
p-value 

u-test 

1.854E-1 

1.200E-3 

1.844E-1 

1.400E-3 

5.874E-4 

- 

 

1.851E-1 

1.300E-3 
3.112E-1 

= 

 

1.880E-1 

1.100E-3 
1.070E-9 

+ 

1.876E-1 

1.300E-3 
9.833E-8 

+ 

WFG6 

Mean 

Std. 
p-value 

u-test 

3.854E-1 

1.000E-3 

3.857E-1 

9.991E-4 
5.895E-1 

= 

 

3.853E-1 

9.307E-4 
4.370E-1 

= 

3.857E-1 

1.100E-3 
7.506E-1 

= 

3.856E-1 

1.200E-3 
8.303E-1 

= 

WFG7 

Mean 

Std. 

p-value 
u-test 

 8.360E-2 

1.060E-2 

9.730E-2 

1.290E-2 

8.147E-5 
+ 

7.990E-2 

1.030E-2 

1.669E-1 
= 

 

1.011E-1 

1.090E-2 

3.256E-7 
+ 

9.220E-2 

1.840E-2 

8.240E-2 
= 

WFG8 

Mean 
Std. 

p-value 

u-test 

4.570E-1 

2.000E-3 

4.585E-1 
1.600E-3 

4.714E-4 

+ 
 

4.563E-1 
1.700E-3 

6.570E-2 

= 

4.571E-1 
3.300E-3 

6.843E-1 

= 

4.565E-1 
2.900E-3 

4.376E-1 

= 

WFG9 

Mean 

Std. 
p-value 

u-test 

1.064E-1 

4.300E-3 

1.065E-1 

5.800E-3 
6.100E-1 

= 

1.076E-1 

5.800E-2 
4.119E-1 

= 

 

1.139E-1 

9.600E-3 
5.561E-4 

+ 

1.107E-1 

6.400E-3 
8.700E-3 

+ 

Better (+) 
Same (=) 

Worse (-) 

Score 

 4 
2 

3 

1 

1 
8 

0 

1 

7 
2 

0 

7 

5 
4 

0 

5 
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4.3.2 AFMDE and various membership function parameters 

 The impact of initial CR value was investigated in Subsection 4.3.1. The experimental 

results from Subsection 4.3.1 show that AFMDE with the initial CR 0.1 delivered the best results 

among other initial CR values. Hence, AFMDE0.1 membership function parameters will be 

investigated in this Subsection.  

 The input membership functions are the same as Figure 4.1. The output membership 

function for  and F are the same as Figure 4.2. In order to investigate the influence of the range 

of the percentage change of CR, the parameters a1, a2, b1, b2, c1, and c2 are varied for CR  but 

kept constant for F  and   as shown in Table 4.4. The other parameter settings such as 

population size, maximum number of function evaluations are the same as the previous 

experiments in Subsection 3.6. 

 The experimental results for FMDE and AFMDE1 to AMFMDE4 on ZDT and DTLZ 

test instances are shown in Table 4.5. AFMDE4 outperforms FMDE on seven test instances, i.e., 

ZDT1, ZDT2, ZDT3, ZDT6, DTLZ1, DTLZ2, and DTLZ4. AFMDE underperforms FMDE on 

ZDT4, and DTLZ3 and does the same on DTLZ5, DTLZ6, and DTLZ7. Overall score of 

AFMDE4 for ZDT and DTLZ suites shows that AFMDE outperforms the others. 

 Table 4.6 shows the results on WFG test suite. AFMDE3 and AFMDE4 scores are the 

same and better than AFMDE1, and AFMDE2, but comparable to FMDE. They outperform 

FMDE on four problems, i.e., WFG2, WFG3, WFG4, and WFG5. They do the same on one 

WFG9 and underperform on WFG1, WFG6, WFG7, and WFG8 over FMDE.  

 Considering overall performance for all test instances, AFMDE4 shows the best 

performance among AFMDE1 to AFMDE4 and FMDE.  
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Figure 4.1 Output membership functions 

 

Table 4.4 Output fuzzy membership function parameters 

Parameters  and F  
CR  

AFMDE1 AFMDE2 AFMDE3 AFMDE4 

a1 -50 -50 -30 -20 -30 

a2 -10 -10 -10 -10 -15 

b1 -20 -20 -15 -15 -20 

b2 20 20 15 15 20 

c1 10 10 10 10 15 

c2 50 50 30 20 30 
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Table 4.5 FMDE compared with AFMDE1 to AFMDE4 on ZDT and DTLZ test suites 

Test 

Functions 

 
FMDE AFMDE1 AFMDE2 AFMDE3 AFMDE4 

ZDT1 

Mean 

Std. 
p-value 

u-test 

4.800E-3 

2.560E-4 

4.300E-2 

1.266E-4 
4.077E-11 

- 

4.300E-2 

1.863E-4 
1.464E-10 

- 

4.200E-2 

1.566E-4 

8.993E-11 

- 

4.300E-2 

3.566E-4 
3.020E-11 

- 

ZDT2 

Mean 
Std. 

p-value 

u-test 

4.700E-3 
1.9826E-4 

5.200E-3 
5.414E-4 

4.943E-5 

+ 

6.200E-3 
9.100E-3 

5.100E-3 

+ 

9.200E-3 
2.580E-2 

2.433E-5 

+ 

4.500E-3 

1.115E-4 

3.020E-11 

- 

ZDT3 

Mean 
Std. 

p-value 
u-test 

3.500E-3 
2.318E-4 

 

3.200E-3 
1.550E-4 

1.194E-6 
- 

3.100E-3 

1.149E-4 

2.034E-9 
- 

3.100E-3 

1.058E-4 

6.722E-10 
- 

3.100E-3 

1.515E-4 

2.390E-8 
- 

ZDT4 

Mean 

Std. 

p-value 
u-test 

6.949E-1 

6.792E-1 

 

2.5479E+0 

3.2171E+0 

2.800E-3 
+ 

3.0841E+0 

2.953E+0 

1.385E-6 
+ 

5.2346E+0 

3.3792E+0 

3.825E-9 
+ 

3.891E+0 

3.669E+0 

1.254E-7 
+ 

ZDT6 

Mean 

Std. 
p-value 

u-test 

3.700E-3 

6.545E-4 

3.600E-3 

5.940E-4 
5.201E-1 

= 

3.400E-3 

4.093E-4 
3.150E-2 

- 

3.300E-3 

3.463E-4 

8.000E-3 

- 

3.400E-3 

3.566E-4 
4.900E-3 

- 

DTLZ1 

Mean 
Std. 

p-value 

u-test 

2.384E+2 
2.678E+0 

2.375E+2 
1.887E+0 

2.062E-1 

= 

2.368E+2 
1.949E+0 

1.990E-2 

- 

2.366E+2 
1.774E+0 

4.600E-3 

- 

2.365E+2 

1.776E+0 

3.300E-3 

- 

DTLZ2 

Mean 

Std. 

p-value 
u-test 

6.900E-2 

2.600E-3 

7.360E-2 

3.700E-3 

1.286E-6 
+ 

6.520E-2 

2.000E-3 

2.028E-7 
- 

6.230E-2 

1.800E-3 

4.504E-11 
- 

6.330E-2 

2.300E-3 

8.101E-10 
- 

DTLZ3 

Mean 

Std. 
p-value 

u-test 

7.205E+0 

6.492E+0 

1.833E+1 

1.518E+1 
8.147E-5 

+ 

2.084E+1 

1.431E+1 
4.943E-5 

+ 

1.916E+1 

1.348E+1 
4.943E-5 

+ 

1.570E+1 

1.155E+1 
5.874E-4 

+ 

DTLZ4 

Mean 

Std. 
p-value 

u-test 

7.240E-2 

5.800E-3 

 

8.530E-2 

6.280E-2 
3.953E-1 

= 

6.850E-2 

6.800E-3 
1.990E-2 

- 

6.520E-2 

7.400E-3 
8.663E-5 

- 

6.450E-2 

4.500E-2 

2.678E-6 

- 

DTLZ5 

Mean 
Std. 

p-value 

u-test 

6.110E-1 

1.220E-2 

6.171E-1 
9.900E-3 

1.624E-1 

= 

6.176E-1 
9.200E-3 

0.0963 

= 

6.167E-1 
8.900E-3 

1.494 E-1 

= 

6.137E-1 
1.010E-3 

6.843E-1 

= 

DTLZ6 

Mean 
Std. 

p-value 

u-test 

6.091E-1 

9.100E-3 

6.113E-1 
9.100E-3 

3.555E-1 

= 

6.136E-1 
8.600E-3 

5.190E-2 

= 

6.157E-1 
7.800E-3 

5.300E-3 

+ 

6.133E-1 
9.900E-3 

7.980E-2 

= 

DTLZ7 

Mean 

Std. 

p-value 
u-test 

4.920E-2 

1.900E-3 

5.410E-2 

5.000E-3 

9.211E-5 
+ 

6.360E-2 

6.050E-2 

3.000E-3 
+ 

6.430E-2 

6.020E-2 

7.730E-2 
+ 

7.280E-2 

7.220E-2 

6.627E-1 
= 

Better (+) 

Same (=) 
Worse (-) 

Score 

 5 

5 
2 

5 

4 

2 
6 

-2 

5 

1 
6 

-1 

2 

3 
7 

-5 
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Table 4.6 FMDE compared with AFMDE1 to AFMDE4 on WFG test suite 

Test 

Functions 

 
FMDE AFMDE1 AFMDE2 AFMDE3 AFMDE4 

WFG1 

Mean 

Std. 
p-value 

u-test 

5.330E-1 

2.700E-3 

5.384E-1 

3.300E-3 
1.473E-7 

+ 

5.389E-1 

2.900E-3 
1.011E-08 

+ 

 

5.380E-1 

3.100E-3 
1.254E-7 

+ 

5.379E-1 

2.800E-3 
1.873E-7 

+ 

WFG2 

Mean 

Std. 

p-value 
u-test 

4.292E-1 

4.859E-4 

4.309E-1 

9.300E-3 

6.736E-6 
+ 

4.286E-1 

4.710E-4 

2.154E-06 
- 

4.298E-1 

6.700E-3 

5.265E-5 
+ 

4.287E-1 

4.088E-4 

8.663E-5 
- 

WFG3 

Mean 

Std. 
p-value 

u-test 

5.254E-1 

6.1244E-4 
5.240E-1 

3.355E-4 

7.389E-11 

- 

5.241E-1 

3.170E-4 
8.153E-11 

- 

 

5.240E-1 

3.618E-4 
8.153E-11 

- 

 

5.241E-1 

3.155E-4 
9.919E-11 

- 

WFG4 

Mean 
Std. 

p-value 

u-test 

4.011E-1 
4.300E-3 

3.952E-1 
5.400E-3 

7.1988E-5 

- 

3.910E-1 
5.000E-3 

8.485E-9 

- 
 

3.880E-1 
4.400E-3 

1.957E-10 

- 

3.878E-1 

4.700E-3 

1.777E-10 

- 

WFG5 

Mean 

Std. 
p-value 

u-test 

1.854E-1 

1.200E-3 

1.844E-1 

1.400E-3 

5.874E-4 

- 

1.846E-1 

 1.200E-3 
1.120E-2 

- 

 

1.847E-1 

1.300E-3 
3.030E-2 

- 

1.847E-1 

1.300E-3 
1.910E-2 

- 

WFG6 

Mean 

Std. 

p-value 
u-test 

3.854E-1 

1.000E-3 

3.857E-1 

9.991E-4 

5.895E-1 
= 

3.858E-1 

7.7364E-4 

1.055E-1 
+ 

 

3.858E-1 

7.718E-4 

1.413E-1 
= 

3.858E-1 

6.399E-4 

1.910E-2 
+ 

WFG7 

Mean 
Std. 

p-value 

u-test 

 8.360E-2 

1.060E-2 

9.730E-2 
1.290E-2 

8.147E-5 

+ 

9.990E-2 
1.210E-2 

9.514E-6 

+ 

 

1.012E-1 
1.310E-2 

2.317E-6 

+ 

1.000E-1 
1.570E-2 

9.792E-5 

+ 

WFG8 

Mean 

Std. 
p-value 

u-test 

4.570E-1 

2.000E-3 

0.4585E-1 

0.0016E-3 
4.7138E-4 

+ 

4.583E-1 

1.800E-3 
5.561E-4 

+ 

 

4.582E-1 

7.7751E-4 
1.585E-4 

+ 

4.583E-1 

1.000E-3 
2.531E-4 

+ 

WFG9 

Mean 

Std. 

p-value 
u-test 

1.064E-1 

4.300E-3 

1.065E-1 

5.800E-3 

6.100E-1 
= 

1.060E-1 

4.800E-3 

9.941E-1 
= 

 

1.059E-1 

4.900E-3 

7.394E-1 
= 

1.061E-1 

4.600E-3 

8.766E-1 
= 

Better (+) 

Same (=) 
Worse (-) 

Score 

 4 

2 
3 

1 

4 

1 
4 

0 

4 

2 
3 

1 

4 

1 
4 

0 
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4.4 Remarks 

 The advanced version of FMDE incorporates the adaptive CR mechanism. The 

experimental results show that the initial CR value in the range of 0.3 to 0.9 is not sensitive to 

performance of AFMDE on ZDT and DTLZ test suites but sensitive to WFG test suite. The 

suitable initial CR value is 0.1. The investigation on membership function parameters shows that 

if the maximum percentage change of CR value is 30, AFMDE produces the most promising 

results and is not sensitive to the algorithm performance as well. If the maximum percentage 

change of CR value is greater than 30, AFMDE performance will be worsen. 
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CHAPTER V 
 

 

5 BY 5 MICROSTRIP ANTENNA ARRAY SYNTHESIS FOR 12.5 GHZ 

BROADCASTING SATELLITE SERVICE 

 The concept of AFMDE was presented in the previous chapter. AFMDE performance is 

quantified by conducting the experiments on the well-known benchmark test suites. The results 

show the competitive performance. In order to prove its practical usage, AFMDE is applied to a 

microstrip antenna array design as a case study. The microstrip antenna design is formulated as a 

three-objective optimization problem. Searching for a set of the trade-off optimal solutions can be 

done by AFMDE.  Furthermore, the objective evaluation of a 5 by 5 microstrip antenna array is 

computationally expensive. Hence, a radial basis function neural network is developed as a 

surrogate model for the objective function evaluations. 

5.1 Introduction 

 Microstrip antennas are low-profile lightweight antennas and are being use in various 

wireless communication systems [17-18]. A 5x5 microstrip patch antenna array synthesis for 

operating at 12.5 GHz broadcasting satellite service (BSS) is formulated as a MOP. The design 

goals for the antenna array involve three competing objectives- maximizing gain, minimize side 

lobe level and minimize the reflection coefficient. Since, the microstrip antenna array design is 

formulated as a MOP, and then AFMDE, a multiobjective optimizer, can be used to tackle this 

design problem. AFMDE searches for the optimal antenna array configurations which are the 

optimal trade-off  solutions.  Therefore, the end  users  (the manufacturers)  will make their own  
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decision to choose an optimal solution from the optimal set based upon the higher level 

information such as the manufacturing cost and the radiation pattern. 

 Generally, the evaluation of the objective values (gain, side lobe level and the reflection 

coefficient) can be computed by the commercial software such as COMSOL, FEKO, or IE3D. 

They are expensive, and the analysis of the radiation pattern is high computational expensive and 

time consuming. Hence, we create a surrogate model [94] by utilizing a radial basis neural 

network (RBF) in order to overcome these problems. 

 The rest of this Chapter is organized as follows. Section 5.2 states the problem 

formulation and radial basis neural network as a surrogate model. Section 5.3 presents the 

experimental setup and results. Remarks will be given in Section 5.4. 

5.2 The Microstrip Antenna Array Synthesis Formulation 

 The proposed AFMDE incorporates with a radial basis neural network is an optimizer to 

tackle a 5x5 microstrip antenna array operates at 12.5 GHz satellite broadcasting services [89] 

synthesis. In this section, we will describe the problem formulation, i.e., array configuration, the 

objective functions, a surrogate model and the framework of the design and optimization process. 

5.2.1 5 by 5 microstrip antenna array architecture and design goals 

 The 5x5 microstrip antenna configuration is shown in Figure 5.1. Spasos et al. [89] 

proposed this configuration. For simplicity, the array was formed as a planar array with one feed 

point and each patch are connected by a serial feed line. Each patch size is equal in size and in a 

square shape. 
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Connector length

Connector width

Feed line length

Feed line width

Patch size

Connector length

Connector width

Patch size

 

Figure 5.1 5 by 5 Microstrip antenna array 

  

 AFMDE decision variables consist of patch side, feed line width, feed line length, 

connector width, and connector length. Therefore, the dimension of each decision vector is five. 

 There are three objectives of this optimization problem, i.e., maximizing gain (G), while 

minimizing side lobe level (SLL) and the reflection coefficient (S11dB). 
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 The flowchart for the AFMDE that is applied to 5x5 microstrip antenna design is shown 

in Figure 5.2. It starts with the same process as AFMDE except for the objective evaluation. RBF 

will be used as objective evaluation. 

Initializtion

Mutation

Crossover

RBF

(Objective 

evaluation)

Selection
PMs

Calculation

Fuzzy rules to

adapt F

   , CR
Stop

Start

End
 

Figure 5.2 5x5 Microstrip antenna array synthesis by AFMDE 

5.2.2 A surrogate model by Radial Basis Neural Network 

 Most contemporary engineering field, computer simulations are used extensively on both 

design verification and during design process in order to improve the system reliability or reduce 

manufacturing cost. The design goals can be modelled as objective functions as in optimization 

problems. Then those objective values are obtained by computer simulations. However, those 

objective functions are often analytically intractable, sensitivity information is unavailable or too 

expensive to compute [94]. Objective evaluation can be highly computationally expensive, time-

consuming task (several hours, days or weeks per objective function evaluation) despite the 

increase of available computing power.  In order to overcome this difficulty, the expensive 

computation will be replaced by a surrogate model. The surrogate model should be at least locally 
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accurate representation of the real one. There are various types of surrogate modelling techniques. 

For instance, polynomial regression, Kriging, and support vector regression are a few popular 

choices. Among the surrogate modelling approaches, the radial basis neural network (RBF) is one 

of the most widely used technique. RBF was proposed by Broomhead and Lowe in 1988 [99] as 

an approximation technique. The good generalization ability, simple network architecture, and 

fast training make RBF popular in many applications, for instance, pattern classifications, 

function approximation, signal processing and control [90]. The architecture of the RBF is shown 

in Figure 5.3. RBF performs a mapping from an m-dimensional input space to an n-dimensional 

output space.  

 The n-dimensional input vector  
T

ixx  being passed directly to a hidden layer, 

assuming there are m neurons. Each of these neuron in the hidden layer applies a radial basis 

function which is the Gaussian function vector 
T

jh   h when jh  is the Gaussian function value 

for the neuron j in the hidden layer [91], 

2

2
exp

2

j

j

j

c
h

b

 
  
 
 

x
,     (5.1) 

where 
jic   c  represents the center point of the Gaussian function of the jth neuron from the ith 

input, i = 1,2,…,n, j = 1,2,…,m.  1,...,
T

mb bb , jb  represents the width value of Gaussian 

function for the jth neuron. The weight value of RBF is given in (5.2) 

 1,...,
T

mw ww      (5.2) 

 The output of RBF neural network consists of sums of the weighted hidden layer neurons 

as the following: 
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1 1 2 2
ˆ ...m m my w h w h w h    .    (5.3) 

 Therefore, the center and the width of the Gaussian in (5.1) are the control parameters for 

the network. There are many ways to choose the center and the width of a Gaussian function. We 

randomly choose the center from the training data set, and calculate the width from (5.4) [92] 

max

2

d
b

m
 ,      (5.4) 

where dmax is the maximum distance between the selected center, m  is the number of the hidden 

neurons. 

 The gradient descent method is used to train RBF. The parameter can be updated as the 

following: 

2

1

ˆ( ) ( )
N

l l

l

E t y y


       (5.5) 

1

( )
N

j l j

lj

E
w t e h

w
 




   


     (5.6) 

ˆ
l l le y y        (5.7) 

where (0,1)  is the learning rate, ˆ
ly  is the training output, ly  is the target output, and  l = 1, 

2,…, N, N is the number of a training data point.  

 Our chosen RBF architecture is 5-10-3. The empirically rules-of-thumb for choosing the 

number of neurons in the hidden layer in a feed forward neural network should be between the 

size of input and the size of the output layer [140]. However, our primary experiment on training 

the RBF shows that ten neurons in the hidden layer are the most suitable for our RBF. The 

training method is the gradient descent. Once the RBF is trained, we will use the network for the 
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objective function evaluation in AFMDE. The RBF weights training process is shown in Figure 

5.4. The input data are the antenna configuration (decision variables) and the target data are the 

objective values i.e., G, SLL, and S11dB.  

1x

2x

nx

1h

2h

mh



1w

2w

nw
my

i
j

 

Figure 5.3 Radial Basis Neural Network 
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Figure 5.4 Training RBF 

 There is no deterministic approach to set the number of training data. At the beginning, 

30 data points are used for training and measuring the average minimum distance between 

population and data these data points. If the distance is small, it means RBF approximates the 

objective values near the training data throughout the evolution process. Otherwise we increase 
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the number of training data points and monitor the average minimum distance. The average 

minimum distance for 70 data points has provided the best approximation given the limited 

amount of time. Therefore, we stop collecting data point and use 70 data points to train RBF. The 

average minimum distance for 70 data points is shown in Figure 5.5. The training was stopped at 

1,252 iterations. The error is 2.142E+3. However, the error remains high. This implies we may 

need more data points and different training approach or network architecture in order to improve 

the accuracy of the RBF which will be include in our future work.  

 

Figure 5.5 Average minimum distance from population to input data points 

5.3 Experimental Setup and Results 

5.3.1 Experimental setup 

 Spasos et al. [89] proposed a 12.5 GHz microstrip antenna array synthesis using 

Taguchi's method, with interconnected elements in order to achieve good matching (S11 < -10 

dB) without using any matching networks and high gain, suitable for the 12.5 GHz broadcasting 
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satellite service (BSS) frequency bands. It was claimed to be the current state-of-the-art in this 

technical field. As a result, it has been chosen as a competitor with respect to the approach 

proposed in this dissertation, AFMDE. 

 This antenna array consists of equally spaced rectangular patches joined together with 

microstrip lines and is fed through a simple microstrip line without any matching network. 

The parameters for antenna: 

1. The chosen substrate is the microwave laminate RT/duroid 5880 from Rogers with 

relative permittivity 2.2r  , loss tangent tan   = 0.0009, and thickness = 1.575 mm. 

2. Operating frequency is 12.5 GHz. 

3. Free air wavelength at 12.5 GHz = 24 mm. 

The objective functions: 

1. f1: maximizing G 

2. f2: minimizing SLL   

3. f3: minimize S11dB  

Decision vector: 

 The dimension of decision vector is 5, including patch side (patch_s), feed width 

(feed_w), feed line (feed_l), connector width (con_w), and connector length (con_l), 

patch_s 

(patch side, 

[mm]) 

(9.6 – 14.4) 

feed_w 

(feed line 

width, [mm]) 

(4.8 – 7.2) 

feed_l 

(feed line 

length, [mm]) 

(9.6 – 14.4) 

con_w 

(connector 

width, [mm]) 

(2.4 – 3.6) 

con_l 

(connector, 

length [mm]) 

(14.4 – 21.6) 
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 Parameter setting for AFMDE: population size NP=100, the maximum number of 

generation is 300, and the external archive size is 100. AFMDE will be run for 30 independent 

trials. The extreme solutions of each run will be compared. The solution with the highest gain will 

be the winner, and compared with results from Spasos et al. [89]. 

5.3.2 Results 

 The obtained Pareto front from AFMDE is shown in Figure 5.6. It can be seen from 

Figure 5.7 that the population becomes fast converging, but loss its diversity and the 

extensiveness of extreme solutions.  Around 250th generation,  is decreasing, but F and CR are 

increasing. This infers that the search process detects the promising region and fast converges to 

that direction.  After approximately 255th generation,  is closed to zero, but F is still high and 

near one. CR is decreasing. This implies that the degree of exploitation is higher than exploration. 

It means that the algorithm is converging and tries to perform the local search to make the 

obtained front evenly distributed.  

 

 

Figure 5.6 The obtained Pareto front 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.7 The AFMDE associated control parameters 
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 Since there are multiple optimum solutions from the approximation Pareto front, the  

extreme solutions in f1, f2 and f3 dimension is selected as the representatives to be compared 

with Spasos et al. [89] which use Taguchi’s method to design the microstrip antenna array. One 

main advantage of the proposed MODE method should be made clear. It provides a set of Pareto 

optimal solutions, not only including those extreme solutions, but compromised solutions among 

the objectives. These solutions provide numerous Pareto optimal choices for the decision-maker 

under various trade-offs under real-world complications. The objective values with respect to the 

decision variables are shown in Tables 5.1 and 5.2. We can see that the extreme solution in f2 

dimension demonstrates AFMDE’s ability to search for a solution better than Taguchi’s method 

in terms of side lobe level reduction. In addition, the extreme solution in f3 dimension shows that 

AFMDE can find a solution that better than Taguchi’s method solution in term of the reflection 

coefficient. 

 Figures 5.8 to 5.10 show the 5 by 5 microstrip antenna array and the radiation pattern of 

the AFMDE extreme solution in f1 dimension. Figure 5.8 presents the antenna configuration in 

3D. The square patch at the center is the microstrip antenna array. The half circle represents the 

perfectly matched layer (PML) which is used to truncate the computational domain. The PML has 

its function to absorb the outgoing wave and suppress the reflected wave. The propagation of 

electric field along the microstrip line and on the patch antenna is shown in Figure 5.9. The 

electric field energy from feed point propagates from the feed point to the center of the antenna. 

The microwave does not propagate throughout the whole patches. Consequently, the obtained G 

is lower than Taguchi’s method. Figure 5.10 shows the far field radiation pattern in three 

dimension space. It can be seen that the major lobe has its direction pointed in z axis which is 

reasonable with the configuration of the array that is shown in Figure 5.8. Figure 5.11 represents 

a y plane (x-z cut) of the far field radiation pattern of Figure 5.10. 
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 The electric field propagation on 5 by 5 microstrip antenna array, radiation pattern in 3D 

and 2D (y-plane) of the extreme solution in f2 and f3 dimensions are shown in Figure 5.12, 5.13 

and 5.14 respectively.  

Table 5.1 Objective values 

 f1 

(G) 

f2 

(SLL) 

f3 

(S11dB) 

Taguchi’s method 15 -13 -7 

AFMDE extreme 

solution in f1 

dimension 

9.2678 -8.2131 -10.7473 

AFMDE extreme 

solution in f2 

dimension 

6.8500 -13.5501 -11.4501 

AFMDE extreme 

solution in f3 

dimension 

7.1330 -10.2214 -12.7460 

 

 

Table 5.2 Decision variables 

 patch_s 

[mm] 

feed_w 

[mm] 

feed_l 

[mm] 

con_w 

[mm] 

con_l 

[mm] 

Taguchi’s method 10.823 6.875 11.196 2.498 16.569 

AFMDE extreme 

solution in f1 

dimension 

10.8506 6.9598 15.3574 2.6114 21.9665 

AFMDE extreme 

solution in f2 

dimension 

0.8984 5.4224 4.8421 0.3340 8.9841 

AFMDE extreme 

solution in f3 

dimension 

2.4386 5.4941 7.2262 2.5037 8.5808 
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Figure 5.8 5 by 5 microstrip antenna array configuration  

 

 

Figure 5.9 Electric field propagation on 5 by 5 microstrip antenna array 
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Figure 5.10 5 by 5 microstrip antenna array pattern in 3D 

 

 

Figure 5.11 Far field radiation pattern in 2D on y plane (x-z cut) 
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(a) (b) 

Figure 5.12 Electric field propagation on 5 by 5 microstrip antenna array for the extreme solution 

in (a) f2 dimension (b) f3 dimension 

 

  

 

(a) (b) 

Figure 5.13 5 by 5 microstrip antenna array pattern in 3D for the extreme solutions in (a) 

f2dimension (b) f3 dimension 
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(a) (b) 

Figure 5.14 Far field radiation pattern in 2D on y plane (x-z cut) for the extreme solutions in f2 

and f3 dimension 

 

5.4 Remarks 

 The 5 by 5 microstrip antenna array synthesis can be formulated as a MOP. AFMDE can 

be applied to tackle this problem. Radial basis function network is used as a surrogate model for 

the objective function evaluation because the computational cost is much lower than that of the 

commercial software. The design of RBF surrogate model may demand a higher number of data 

points or different training approach in order to improve the performance of the RBF. Asides, the 

experimental results demonstrate the ability of finding not only one, but a set of quality solutions 

that were never made available before specifically in terms of side lobe level and reflection 

coefficient. To sum up, AFMDE provides a set of Pareto optimal designs for the 5 by 5 microstrip 

antenna array. The end users (e.g. manufacturers) can choose an optimal design that meets their 

different requirements such as different main lobe direction, specific side lobe reduction, etc. 
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CHAPTER VI 
 

 

SOFT CONSTRAINT HANDLING FUZZY MULTIOBJECTIVE DIFFERENTIAL 

EVOLUTION AND ITS APPLICATION IN A CONSTRAINED NON-UNIFORM 

CIRCULAR ANTENNA ARRAYS DESIGN PROBLEM 

 Optimization problems can be free from any constraints. However, there are many real 

world optimization problems that involve various types of constraints. These problems are known 

as constrained optimization problems (COPs). If a COP involves more than one objective and a 

number of constraints, it is called a constrained multiobjective optimization problem (CMOP). In 

order to handle COPs, we search for the optimal solution within the feasible region. The search 

for feasible solutions is time-consuming and often leads to computational difficulties. The 

constraints can be classified into the hard and soft constraints. The hard constraints cannot be 

violated because it can cause the critical failures [96-97] while the soft ones can be relaxed to 

some extent if the violations of them do not compromise the purpose of the requirements. Under 

the soft constraint circumstances, the decision makers often prefer solutions with compromised 

tradeoff between solution quality and constraint violation. It is implying that some constraints 

may be relaxed within acceptable ranges to gain the performance improvement in some objective 

functions. Therefore, a soft constraint handling approach is proposed in this chapter. AFMDE is 

integrated with the proposed soft constraint handling method. It is tested on benchmark functions 

and applied to a constrained non-uniform circular antenna array designs as a case study.  
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6.1 Introduction 

 In order to illustrate the soft constraint handling concept, we use a single objective 

benchmark problem, g6 [100] as an example. The formulation of g6 is the following: 

 Minimize  

  
3 3

1 2( ) ( 10) ( 20) ,f x x x     

 subject to 

  
2 2

1 1 2( ) ( 5) ( 5) 100 0g x x x       

  
2 2

2 1 2( ) ( 6) ( 5) 82.81 0g x x x          

  1 2[13,100],   [0,100]x x  .  

 The optimization results are shown in Table 6.1. The overall constraint violation is the 

sum of the two constraints violation degrees. The feasible optimal solution of g6 is (14.095, 

0.84296) and the optimal objective value is -6961.8149. We can see from the infeasible solution 

(14.03915, 0.72594) that after relaxing two constraints at 0.1295% (the overall violation is 

0.1117), we gain 1.9018% improvement in the objective value (the objective value decreases 

from -6961.8149 to -7,094.2109). If the highest relaxation is 0.17%, the objective value is 

improved by 2.4972%. In conclusion, at the higher relaxation extent, we can obtain a higher 

degree of objective improvement.  

 As can be seen from the above example, it clearly indicates that relaxing the constraint 

violation at some extent can significantly improve the objective quantity.  
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Table 6.1 Results of g6 with relaxed constraints 

 

x1 x2 

f(x) overall violation 

objective 

value 

% objective 

improvement 

violation 

degree 

%violation 

feasible 

solution 
14.09500 0.84296 -6961.8149 - 0.0000 0.0000 

infeasible 

solutions 

14.03915 0.72594 -7094.2109 1.9018 0.1117 0.1295 

14.03863 0.72667 -7093.4224 1.8904 0.1127 0.1275 

14.07684 0.80787 -7001.4263 0.5690 0.0363 0.0377 

14.06692 0.79146 -7020.0762 0.8369 0.0562 0.1067 

14.07900 0.85129 -6993.1219 0.4497 0.0320 0.0937 

14.07603 0.80674 -7002.7129 1.5875 0.03794 0.0475 

14.0690 0.80664 -7003.1743 0.5941 0.0518 0.3065 

14.01431 0.68990 -7135.6621 2.4972 0.1614 0.1700 

 

 The above example involves a single objective COP, was demonstrated for clarity of the 

soft constraint handling concept. However, we are interested in the soft constraint handling for 

CMOPs. Typically, a mathematical model for a CMOP can be formulated as follows: 

   1 2min ( ) [ ( ), ( ),..., ( )]
n

T

kf f f f



x

x x x x           (6.1) 
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subject to 

        ( ) 0;jg x  1,2,3,...,j l                (6.2) 

   ( ) 0;jh x           1, 2,...,j l l m                   (6.3) 

   ;      1,2,3,...,L U

i i ix x x i n                 (6.4) 

where   1 2 3[ , , ,..., ]T n

nx x x x x           (6.5) 

 The function 1 2( ) [ ( ), ( ),..., ( )]T

kf f f fx x x x  denote the objective vector function to be 

minimized. x is a decision vector of n decision variables, where each decision variable ix  is 

bounded by a lower bound 
L

ix and upper bound 
U

ix . The search is performed in the decision 

space. The feasible region is defined by satisfying all constraints (6.2)-(6.3). A solution in the 

feasible region is called a feasible solution; otherwise it is an infeasible solution. All Pareto-

optimal solutions must also be feasible solution.  

 Constraints can be classified in two types: inequality constraints, (6.2), and equality 

constraints, (6.3). The number of inequality constraints is l while the number of equality 

constraints is m-l. However, the idea of treating all constraints equally and driving the population 

towards feasibility regardless of the importance level is usually not the best practical choice. In 

reality a decision-maker is often interested in the solutions that satisfy the hard constraints while 

marginally violate the soft constraints in order to gain additional benefits in objective quantity. 

For a highly constrained optimization problem that is difficult to decide which constraints are 

hard or soft, it will be very helpful to provide decision-makers with analysis on the importance 

level of each soft constraint and the comprehensive results (solutions) based on different violation 

level of constraints. 
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6.2 Previous Works on Constraint Handling Approaches of Multiobjective Optimization       

      Problems 

 MOEAs were originally designed as unconstrained multiobjective optimizers. Later, 

when CMOPs has received a lot of attention, methods for constraint handling have been gradually 

developed. Most of DE algorithms that were proposed to handle constrained optimization 

problems involved constrained single objective optimization problems. There are fewer number 

of the proposed MODE algorithms that devoted to solve the CMOPs.  The literature review on 

constraint handling approaches is demonstrated in this Section. The literature survey on MODE 

for CMOPs is presented as well. 

6.2.1 Hard-constraint based approaches for multiobjective optimization 

 There are various approaches that were proposed to tackle CMOPs. The hard constraint 

handling techniques can be mainly classified as the following 

6.2.1.1 Penalty functions 

 Penalty functions are the simplest and most commonly used methods for handling 

constraints using EAs. The principle idea is transforming a constrained problem into an 

unconstrained one by penalizing the objective function with the constraint violation.  The penalty 

function pushes the solutions toward feasible region. The constraint handling methods based on 

penalty function can broadly be classified into three categories: 

 1) The death penalty such as [105-106] is the first research on penalty function. The death 

penalty methods reject any individuals that violate any constraint and no information is extracted 

from infeasible individuals. If the added penalty does not depend on the current generation 

number and remain constant during the entire evolution process, then the penalty function is 

called static penalty function.  
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 2) The dynamic penalty methods was first proposed by Mu et al. [107] use comparison 

between the infeasibility degree of a solution and the threshold to accept or reject the solution, 

whereas Hadj-Alouane [108] use the generation number in determining the penalty factor. The 

dynamic penalty methods do not use the information gathered from the search process to control 

the amount of penalty. 

 3) To overcome the problem of dynamic penalty, the adaptive penalty methods are 

proposed. Tessama and Yen [109] designed their adaptive penalty function based on the number 

of feasible solutions in the current population to determine the amount of penalty added to 

infeasible individuals for constrained SOPs. The rank of each individual is determined by the sum 

of distance (i.e., a normalized variant of fitness) and the penalty. Later, Woldesenbet et al. [110] 

extended the idea to the more complicated multiobjective optimization problems. The related 

work on this category also proposed by [111-114]. 

6.2.1.2 Feasibility rules 

 These methods based on preference of feasible solutions over infeasible solutions using 

specific rules. Coello Coello [115] used the Pareto non-dominance concept to deal with 

constrained multi-objective optimization problems. Feasible solutions are always ranked higher 

than infeasible solutions, and infeasible solutions are ranked by the ascending order of constraint 

violations. Ray et al. [116] suggested a more elaborated constraint-handling technique based on 

non-domination check of constraint violations. Three different non-dominated rankings of the 

population are performed, using objective function values, the constraint violation values of all 

constraints, and a combination of objective functions and constraint-violation values, 

respectively. Domination check is based on individual comparison between these ranks. Deb et 

al. [117] proposed the NSGA-II for multi-objective optimization problems. To extend its utility to 

handle the constrained problems, a constraint handling approach is designed and incorporated. 
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Constrained-dominate relationship between two solutions is defined in which any feasible 

solution has a better non-domination rank than any infeasible solutions. All feasible solutions are 

ranked according to their non-domination level based on the objective function values. Among 

two infeasible solutions, the solution with a smaller constraint violation is assigned a better rank. 

6.2.1.3 Separation of objective and constraints 

 The design principle is to deal with the objectives and constraints separately. Surry and 

Radcliffe [118] measured the degree of constraint violation for each constraint and treated each of 

them as an objective in a multi-criterion problem. The approach views a constrained optimization 

problem alternatively as a constraint satisfaction problem (i.e., ignoring the objective function) 

and as an unconstrained optimization problem (i.e., ignoring the constraints). A population-based 

adaptive method is used to decide which view to take. Venkatraman and Yen [119] proposed a 

generic framework for constrained optimization problems. In the first phase, the objective 

function is completely disregarded and the search is directed solely toward finding a feasible 

solution. In the second phase, the simultaneous optimization of the objective function and the 

satisfaction of the constraints are treated as a bi-objective optimization problem. Yen and Leong 

[120] transformed the bi-objective constrained optimization problem into an unconstrained tri-

objective optimization problem, where the third objective is the overall constraint violation. The 

rank value and constraint violation are combined to update the personal best of PSO population 

for the infeasible case. Constraint violation and the feasibility ratio are used to guide the particles 

towards feasibility first and then influence them to search for global optimal solution. 

 The common characteristic of current constraint handling methods is that a feasible 

solution wins over an infeasible one in almost all cases, although some methods keep a certain 

number of infeasible solutions [121]. Details on constraint handling can be found in the well-

documented survey papers [134-136].  
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6.2.2 Soft handling of constraints-rationality and basic idea 

 The soft handling concept can be found in many fields. Berrada et al. [122] studied the 

nurse scheduling problem with a multi-objective mathematical programming approach. In the 

model, administrative and union contract specifications are expressed as hard constraints while 

the constraints related to days off, the number of consecutive working days, and other specific 

nurse's wishes in scheduling are formulated as soft constraints. Wang and Fang [123] considered 

the nondeterministic nature of the business environment of a manufacturing enterprise and 

described the single-objective production planning by using fuzzy mathematical programming 

model. The proposed improved genetic algorithm finds a family of inexact solutions within an 

acceptable level and can find a family of preferred solutions which provide more candidates than 

the exact approach for choice. A decision maker can select a preferred solution via the human-

computer interaction. Fargier and Lamothe dealt with soft constraints in hoist scheduling 

problems in chemical treatment line electroplating using the fuzzy approach [124]. Infeasibility 

Driven Evolutionary Algorithm is used in constrained optimization problems to search for 

optimum solutions near the constraint boundary [125-126]. A small proportion of infeasible 

solutions is allowed. The original constrained minimization problem with k objectives is 

reformulated as an unconstrained minimization problem with k+1 objectives, where the 

additional objective is calculated based on the relative amount of constraint violation among the 

population members. The proposed approach provides a set of marginally infeasible solutions for 

trade-off studies. Later the algorithm was modified to quantify the amount of constraint violation 

by ranking the infeasible solutions according to the violation levels [127-128]. The performance 

of the algorithm with infeasibility consideration is demonstrated through a lot of mathematical 

and engineering problems. 
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6.2.3 Constraint handling in constrained multiobjective DE 

 Even though there are many researches on constrained single objective DE, there are 

fewer proposed multiobjective DE algorithms to handle CMOPs. 

 Kukkonen and Lampinen [51] developed the generalized differential evolution version 

three (GDE3) to solve MOPs with constraints. GDE3 combines the Pareto-based differential 

evolution with the previous GDE version. If the problem is unconstrained single objective 

optimization, GDE3 is exactly the same as the original DE. This version uses a growing 

population and non-dominated sorting as same as NSGA-II [52] to obtain improved diversity and 

make the algorithm less sensitive to the control parameters. They also studied the effect of control 

parameters on GDE3 [53] and found that GDE3 is more robust than its previous version.  The 

algorithm performed worse for the rotated multiobjective optimization problems as documented 

in [54]. Application of GDE3 can also be found in [55].  

 Zielinski et al. [132] extend a single objective DE to handle CMOPs by modifying the 

dominance principle and the crowding distance of NSGA-II to handle the constraints. 

 Zhang et al. [133] proposed a hybrid of DE and GA algorithm for CMOPs. The search 

biases strategy is introduced by selection of the current best solution (for mutation in MODE) 

based on constraint Pareto dominance and crowding distance. Then a hybrid of MODE and GA 

with the (N+N) framework is given. The offspring will be generated by both MODE and NSGA-

II.  

 Zamuda et al. [137] proposed the DE with self-adaptation and local search for CMOPs. 

The algorithm uses the self-adaptation mechanism from [62] and a sequential quadratic 

programming local search. The constraint handling is done by controlling the  level constraint 

violation and altering the domination principle. 
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 Santana-Quintero el al. [129] proposed DEMORS to handle CMOPs by using a two-stage 

hybrid DE approach. In the first stage they use a multiobjective DE to generate an initial 

approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve 

the spread and quality of this initial approximation. 

 Qu and Suganthan [130] proposed a diversity enhanced constrained multiobjective DE 

(DE-CMODE) to overcome the premature convergence problem. DE-CMODE combines the 

current population with a diversified memory based on the crowding DE concept to increase the 

diversity of the differential vectors and thereby the diversity of the newly generated offspring. 

Later, they proposed an ensemble of constraint handling methods (ECHM) [131] which 

integrated with a MODE. Since no single state-of-the-art constraint handling technique can 

outperform all others on every problem. Therefore, an ensemble of three constraint handling 

techniques (self-adaptive penalty, superiority of feasible solution, and -constraint) is used. 

 Min-Nan et al. [138] proposed a hybrid constraint handling mechanism with DE. They 

combines the -comparison and penalty method together. Each constraint is assigned its own - 

value and is controlled the value by the amount of violation. The penalty method deals with the 

region where constraint violation exceeds the -value and guides the search toward the -feasible 

region. The new mutation strategy for DE was proposed as well. 

 Liang et al. [139] uses the information of infeasible solutions to help the multiobjective 

DE improve the convergence and diversity of solutions. The proposed method is to ensure that a 

certain number of good infeasible solutions will be kept in the evolution process to guide the 

search. 

 The previous work on multiobjective DE to handle CMOPs is all about hard constraint 

handling approach. These constraints are strictly to be satisfied without any exception. The 

proposed constraint handling techniques mainly based on the modified constrained Pareto 
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dominance rule. The performance of the optimizers for constrained optimization largely depends 

on the mechanism of constraint handling.  

 Since the constraints that are soft handled can improve some objectives, therefore it will 

be very useful for decision makers if a set of solutions are provided with good trade-off among 

objectives and trade-off between objectives and constraint violation. We proposed a soft 

constraint handling technique which is integrated within AFMDE. Details on the proposed 

concept are described in Section 6.3. 

6.3 Soft Constraint Handling AFMDE 

 In this Section, the proposed soft constraint handling method is described below.  

6.3.1 Definition of constraints violation 

 To measure the constraint violation, a common scalar value is used. Let jG be the 

violation of constraints j, then  
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6.3.2 Constraints violation degree-based nondominated sorting 

 Violation degree will be used to bound acceptable infeasible region. To express the 

degree of violation of a soft constraint, a Gaussian function is used to quantify the satisfaction 

degree of constraint violation: 
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 Figure 6.1 shows the satisfaction degree curve of a soft constraint, where jG  is the 

violation magnitude, ( )jG  is the violation degree, j  is the threshold (tolerance of constraint 

violation). The shape of the curve is controlled by a parameter . Solid line in this figure is the 

case of hard constraint when   approaches zero. As a result, hard constraint is considered a 

special case under this soft constraint formulation. The dotted lines correspond to the situations of 

various constraint relaxations. The degree of violation increases with  along the direction of 

arrow. Hard constraints must be satisfied by the solid line. Soft constraints can be relaxed within 

a certain range whose violation degree is showed by the dotted lines. 

 Let ( )jG x  be the violation of constraints j (j = 1, 2, ..., m) of an individual x, j  be the 

tolerance value of constraint j, ( )jG  be the violation degree of constraint j on individual x. 

 The overall violation degree of an individual is defined as: 

1

( )
m

j

j

G 


       (6.8) 

Based on relaxation of constraints, the proposed preference rule strategy between two individuals 

is designed as follows: 

 1) If both individuals are feasible solutions, the one with the better fitness value wins. 

 2) If one solution is feasible and the other one is infeasible when the overall violation 

degree of the infeasible solution is less than a predefined tolerance level , the solution with the 

better fitness value wins. Otherwise the feasible solution wins. 

 3) When both solutions are infeasible, 
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 If both individuals’ overall violation degrees are less than , the one with 

the better fitness value wins, in the case of non-dominated fitness value 

the solution with smaller violation wins; 

 If the overall violation degree of one solution is less than , while the 

other is greater than , the one with smaller violation value wins; 

 If both individuals’ overall violation degrees are greater than , the one 

with smaller value of violations is preferred, in the case of equal 

violation degree, the solution with better fitness wins. 

 AFMDE incorporates the proposed soft constraint handling approach in which both 

feasible and infeasible solutions are nondominated sorted based on preference rule strategy. The 

diversity preservation in the soft constraint handling AFMDE is the same as crowding distance 

sorting in NSGA-II. 

j jG

( )jG

1



 

Figure 6.1 Satisfaction degree curve of a constraint 

6.4 Experiments and Results for Benchmark Functions 

 The proposed soft constraint handling approach is integrated with AFMDE to handle 

CMOPs. The proposed concept is quantified by testing on benchmark functions: CONSTER 

[101], SRN [102], TNK [103], OSY [104], Welded beam [141] and CTP (CTP1 to CTP8) test 

suites [1] for 10 independent runs. The parameters for CTP2 to CTP7 are shown in Table 6.2. For 
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each trial, the algorithm will stop if it reaches the predefined maximum number of function 

evaluation at 300,000. The population size for all test instances is 100. In order to quantify the 

performance, the hypervolume is computed for each run. We compare the performance between 

the hard constrained and the soft constrained solutions by utilizing the nonparametric Mann-

Whitney-Wilcoxon rank sum test at the significance level of 0.05 by two-tailed test. The p-values 

are shown in Table 6.3. As can be seen, the proposed soft constraint handling approach has 

shown statistically improvements from hard-constrained approach unless stated. There are only 

CTP3 results for 50  and 100   that the hypervolume distributions are not different from the 

hard- constrained approach. The example Pareto fronts found for unconstrained, hard constrained, 

and a number of soft constrained optimization for all test instances are demonstrated in Figure 

6.2. It is clearly indicated that when constraints are relaxed within a relatively small value, the 

obtained Pareto fronts are very close to the hard constraint one. If the constraints are further 

relaxed, the approximation Pareto fronts are improved consequently. It should be noted that the 

different  values for each test problems also lies in the consideration that some front will be very 

close to each other. In the case of the welded beam problem which aims at welding a beam on 

another beam and must carry a certain load, the violation of the constraints will make the design 

unacceptable. Therefore, the result obtained by relaxation of any constraints has no specific 

meaning although some extended solutions have been found as shown in Figure 6.2(e). 
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(a) CONSTR 

 

(b) SRN 

 

(c) TNK 

 

(d) OSY 

 

(e) Welded beam 

 

(f) CTP1 
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(g) CTP2 

 

(h) CTP3 

 

(i) CTP4 

 

(j) CTP5 

 

(k) CTP6 

 

(l) CTP7 
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(m) CTP8 

Figure 6.2 Examples of obtained Pareto front for  (a) CONSTR (b) SRN (c) TNK (d) OSY         

(e) Welded beam (f) CTP1 (g) CTP2 (h) CTP3 (i) CTP4 (j) CTP5 (k) CTP6 (l) CTP7 (m) CTP8 

 

Table 6.2 Parameters of CTP test suites 

   a b c d e 

CTP2 -0.2 0.2 10 1 6 1 

CTP3 -0.2 0.1 10 1 0.5 1 

CTP4 -0.2 0.75 10 1 0.5 1 

CTP5 -0.2 0.1 10 2 0.5 1 

CTP6 0.1 40 0.5 1 2 -2 

CTP7 -0.05 40 5 1 6 0 
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Table 6.3 The distribution of hypervolume values using Mann-Whitney-Wilcoxon rank sum test 

TNK 

5   

1.8267E-4 

50   

1.8267E-4 

100   

1.8267E-4 

200   

1.8267E-4 

300   

1.8267E-4 

400   

1.8267E-4 

SRN 

10   

5.8284E-4 

100   

1.8267E-4 

200   

1.8267E-4 

300   

1.8267E-4 

400   

1.8267E-4 

500   

1.8267E-4 

OSY 

5   

1.8267E-4 

10   

1.8267E-4 

 

1.8267E-4 

200   

1.8267E-4 

300   

1.8267E-4 

500   

1.8267E-4 

CONSTER 

100   

1.8267E-4 

200   

1.8267E-4 

400   

1.8267E-4 

500   

1.8267E-4 

CTP1 

10   

1.8063E-4 

100   

1.8063E-4 

300   

1.8063E-4 

500   

1.8063E-4 

CTP2 

10   

7.9258E-4 

100   

2.4905E-4 

300   

1.1387E-4 

500   

1.2292E-4 

CTP3 

50   

6.776E-1   

(no difference) 

100   

7.337E-1 

(no difference) 

200   

1.8267E-4 

CTP4 

100   

3.2984E-4 

200   

3.2984E-4 

CTP5 

100   

4.3964E-4 

200   

7.6854E-4 

300   

2.4613E-4 

CTP6 

10   

1.8267E-4 

50   

1.8267E-4 

100   

1.8267E-4 

150   

1.8267E-4 

CTP7 

 

1.8063E-4 

300   

1.8165E-4 

CTP8 

50   

1.8267E-4 

100   

1.8267E-4 

200   

1.8267E-4 

300   

1.8267E-4 

400   

1.8267E-4 

500   

1.8267E-4 

 

50 

10 
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6.5 Constrained Non-uniform circular antenna arrays design 

 Sections 6.3 and 6.4 described the soft constraint handling technique with AFMDE and it 

was quantified by performing experiments on benchmark CMOPs. In this section, we will prove 

its practical usage by applying it to a constrained non-uniform circular antenna array design 

problem as a case study. Non-uniform circular antenna arrays are popular in mobile and wireless 

communications such as air and space navigation, radar, sonar and other applications [16] [93]. 

The antenna array provides the higher directive radiation pattern than a single element antenna.  

The design problem is formulated as a constrained three-objective optimization problem.  

6.5.1 Problem formulation  

 The non-uniform circular antenna array geometry is shown in Figure 6.3.  

1I

2I

3I

1NI 

1nI 

nI

NI

1d

2d3d

Nd

nd

1 x

y

 

Figure 6.3 A non-uniform circular antenna array on x-y plane 

The N isotropic point sources are non-uniformly spaced on a circle (of radius a) lying in the x-y 

plane. The radiation pattern of this antenna array can be described by its array factor. In the x-y 

plane, the array factor for the non-uniform circular antenna array can be represented as  

  
1

( ) exp( [ cos( ) ])
N

n n n

n

AF I j ka   


                                        (6.9) 
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where  nI = the amplitude excitation of the nth element,  

   = the azimuth angle measured from the positive x-axis, 

 n = the angular position of the nth element in the x-y plane, 

 n = phase excitation of the nth element and can be represented by 

0cos( )n nka          (6.10) 

1

2 N

i

i

ka a d


 

       (6.11) 

 
1

2 n

n i

i

d
ka






         (6.12) 

where N is the total number of elements in the circular array, a is the radius of the circular. id  is 

the distance between two adjacent elements nd and 1nd  . In this design problem, 0 is chosen to 

be zero, i.e., the main lobe of the radiation pattern is directed along the x-axis. 

 The non-uniform circular array synthesis problem is formulated as a CMOP:  

  1f : minimizing the maximum side lobe level (SLLmax)  

 2f : maximizing the directivity (D) 

 3f : minimizing the first null beamwidth (FNBW) amplitudes (FNBW_dB) 

subject to  

 1( ) 30g x FNBW    



102 
 

 2

1

( )
N

i

i

g x d N


  , N is the number of elements 

The decision variables are represented as 1 2 1 2[ , ,..., , , ,..., ]N Nd d d I I Ix ,  

where  N is the number of elements, 

 ,      1,2,...,id i N is the spacing between two adjacent elements Nd  and 1Nd  , 

 ,      1,2,...,iI i N is the amplitude excitation at the ith element. 

The lower bound of id  must be 0.5  to avoid the mutual coupling effect of the array [98]. 

6.5.2 Experimental setup and results 

6.5.2.1 Experimental setup 

 The proposed soft constraint handling AFMDE is applied to the constrained non-uniform 

circular antenna array design problem. In this case, the radiation pattern with the main lobe 

steered to 0 0  . Several experiments are conducted with different number of 12 array elements 

The population size is 300. The algorithm will stop if it reaches the maximum number of function 

evaluations at 300,000. The external archive size is 100. The constraint is soft handled with 

different relaxation degrees. For soft constraint handling experiments, the shape of constraint 

violation function is controlled by a parameter . The value of  for both constraints are the same 

at 100. The tolerance value of overall violation degree is 0.001 in order to guarantee that the 

obtained solutions are on the boundary of constraints and not far away from the original feasible 

region. On the other hand, the tolerance value of overall violation degree is zero and  = 10E-10 

for the hard constraint handling experiments. 
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6.5.2.2 Results 

 The constrained non-uniform circular design is tackled by the proposed soft constraint 

handling-based AFMDE. The results are shown in Table 6.4. The extreme solutions in the first, 

second, and the third objective dimension for both hard and soft constraint handling are selected 

as representatives of the optimal set. The hard constraint handling extreme solutions are shown in 

the first row which are a, b, and c in the first, second, and third objectives, respectively. The 

extreme solutions for soft constraint handling are d, e, and f in the first, second, and third 

objectives, respectively. 

 Firstly, we compare the extreme solutions of the hard and soft constraints handling in 

each objective dimensions. In the case of the first objective (minimizing SLLmax), we compare 

solution a with solution d. When relaxing both constraints, objective value f1 decreases from -

7.8267 to -11.4178 which is 45.88% improvement at the cost of 0.0382 violation degree. In the 

case of second objective (maximizing D), we compare the extreme solutions in f2 dimension 

between solution b and e. The results show that there is objective improvement in all dimensions 

at the expense of violation degree at 0.0010, which are 19.08% (from -6.5293 to -7.7748), 3.69% 

(from 15.4542 to 16.0240), and 10.8% (from -62.8200 to -69.5852) improvement in the first, 

second, and third objectives, respectively.  Solution c and f are compared in the case of the third 

objective (minimizing FNBW amplitude). In this case, as a result, the f1 and f2 is improved but 

not f3 values. f1 and f2 are improved by 9.24% (from -5.929 to -9.6939) and 2.41% (from 

14.7108 to 15.0657), respectively by the constraint violation degree is 0.188. To sum up, the 

comparison between the extreme solutions from the optimal solution set of hard and soft 

constraint handling methods prove that the soft constraints handling technique have gained 

improvement on one or more objectives. However, only comparisons between extreme solutions 

are not enough to quantify the soft constraint handling method. 
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 In order to quantify the efficiency of the proposed soft constraint handling approach for 

the non-uniform circular array design which is a CMOP, hypervolume is computed for hard 

constraint and soft constraint handling approaches. The last column of Table 6.4 shows the 

hypervolume of the optimal results for both hard and soft constraint handling cases.  It is clearly 

indicated that the hypervolume increased from the hard constraint handling (2.7349E+6) to the 

soft constraint handling (2.7791E+6) by 1.612%.  

 The rectangular plots of normalized radiation pattern in dB for the extreme solutions for 

hard and soft constraint handling approaches are shown in Figure 6.4. whereas the polar plots for 

the extreme solutions for hard and soft constraint handling approaches are shown in Figure 6.5.  

As can be seen from Figure 6.5, the soft constraint results clearly show smaller side lobes level 

than hard constraint handling results.   

 From the results, we can conclude that solutions obtained by soft constraint handling 

approach improve one or more objectives and also increase the number of optimal solutions 

found. The soft constraint handling technique provides options for decision makers. They can 

choose a solution based upon their requirements. If they need higher improvement in some 

objective dimension, they may choose a solution with acceptable degree of constraint violation. 

In addition, the proposed soft constraint handling approach provide flexibility in terms of relaxing 

each constraint differently by setting the threshold values, the shape of relaxation function and 

tolerance level.  

 6.6 Remarks 

 The soft constraint handling approach for CMOPs is presented in this chapter. The 

constraint violation degree is evaluated by the Gaussian function while the convergence and 

diversity is preserved by the preference rule strategy. The searching region is extended in order to 

obtain useful solutions from the infeasible boundary. AFMDE which incorporated with the soft 
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constraint handling technique on CMOP benchmark functions shows the statistic improvement 

from the hard constraint handling method. In order to prove the practical usage of the soft 

constraint handling method, AFMDE integrates with the soft constraint handling is applied to the 

non-uniform circular antenna array design problem. The results demonstrate the relaxations of the 

constraints with acceptable degrees improve both objective values and the number of optimal 

solutions found.  These provide options for the end users (e.g. decision makers, manufacturers) to 

make a decision based upon higher-level information and requirements.  

 

Table 6.4 Obtained Pareto solution examples of 12 elements non-uniform circular array design 

 solutions 

f1: SLLmax f2: D 
f3:  

FNBW_dB 

Overall 

violation 

 

Hypervolume 

Hard-

constraint 

Pareto 

solutions 

a 

b 

c 

-7.8267 

-6.5293 

-5.929 

15.3618 

15.4542 

14.7108 

-63.9410 

-62.8022 

-114.4406 

0 

0 

0 
2.7349E+6 

Soft-

constraint 

Pareto 

solutions 

d 

 

e 

 

f 

-11.4178 

(45.88%) 

-7.7748 

(19.08%) 

-9.6939 

(63.5%) 

 

14.7873 

(-) 

16.0240 

(3.69%) 

15.0657 

(2.41%) 

 

-59.5044 

(-) 

-69.5852 

(10.8%) 

-105.3999 

(-) 

0.0382 

 

0.0010 

 

0.0188 

2.7791E+6 

(1.612%) 
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(a) solution a 

 

 

(b) solution d 
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(c) solution b 

 

(d) solution e 
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(e) solution c 

 

(f) solution f 

Figure 6.4 The normalized radiation pattern in rectangular plot for the extreme solutions            

(a) solution a (b) solution d (c) solution b, (d) solution e (e) solution c (f) solution f 
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(a) solution a 
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(c) solution b 

 

 

(d) solution e 
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(e) solution c 

 

(f) solution f 

Figure 6.5 The normalized radiation pattern in polar plot for solutions (a) solution a (b) solution d 

(c) solution b, and soft constrained solutions  (d) solution e (e) solution c (f) solution f 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor (dimensionless)

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor (dimensionless)



112 
 

CHAPTER VII 
 

 

CONCLUSION AND FUTURE WORK 

 Differential evolution (DE) is one of the population-based optimization algorithms. DE 

has powerful performance and is able to handle multiple types of optimization problems. DE is 

also easier to be implemented than other evolutionary algorithm representatives and has few 

control parameters. Real-world optimization problems are mostly multiobjective in nature. Many 

of them are subjected to a number of constraints. Thus, DE as one of a powerful optimizer and its 

advantages has motivated this study. In this dissertation, the research goals are the development 

of a multiobjective differential evolution algorithm to solve the unconstrained and soft-

constrained handling multiobjective optimization problems. In addition, the developed algorithm 

is applied to the practical engineering problems, i.e., antenna design problem. 

7.1 Multiobjective Differential Evolution based on Fuzzy Performance Feedback 

 The delicate balance between exploration and exploitation ability throughout the search 

process is a key ingredient to any evolutionary algorithms. Differential evolution is one of the 

evolutionary algorithm representatives. It follows the principle of collective differential 

intelligence. The mutation strategy and the associated control parameters play important roles to 

differential evolution performance. How to maintain a good trade-off in between exploration and 

exploitation and adaptively adjust the control parameters throughout the evolution process have 

inspired the design of a multiobjective differential evolution in this study.  
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 The design principle of the proposed fuzzy-based multiobjective differential evolution 

(FMDE) is by adaptively adjusting the associated control parameters of a specific mutation 

strategy; FMDE can dynamically balance the exploration and exploitation abilities of the 

population. During the search process, the true Pareto front is unknown, therefore, the 

performance metrics specifically hypervolume, spacing, and maximum spread are used to 

monitor the state of evolution process. Hypervolume estimates the convergence status, spacing 

measures the diversity status, while maximum spread measures the extensiveness of the 

population. These three performance metrics feed to the fuzzy inference rules derived knowledge 

from domain experts and published literature. The fuzzy inference rules then dynamically adapt 

the greedy and distribution parameters of a DE-based mutation strategy over the course of 

evolution. The effect of dynamically adjust these parameters is balancing the exploitation or 

exploration ability throughout the search process. A comparative study of FMDE with the chosen 

state-of-the-art MOEAs on benchmark problems shows that FMDE performs statistically better 

than those chosen algorithms. The advanced version of FMDE (AFMDE) is proposed to 

dynamically adjust another control parameter, i.e., crossover rate, which has a direct impact on 

the performance of MODE. AFMDE performance is competitive with FMDE, yet providing 

flexibility to better regulate the mutation strategies on some more complicated problems.  

 Moreover, AFMDE is applied to a 5 by 5 microstrip antenna array for 12.5 GHz 

broadcasting satellite service synthesis. Three design goals, i.e., maximizing antenna gain, while 

minimizing side lobe level and reflection coefficient, are optimized simultaneously, Since 

objective evaluations are computationally expensive, therefore, a radial basis function neural 

network is developed as a surrogate model for objective evaluation. The results show that 

AFMDE finds a set of Pareto optimal designs specifically in terms of side lobe level and 

reflection coefficient. It provides a set of Pareto optimal solutions, not only including those 

extreme solutions but compromised solutions among the objectives. These solutions offer 
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numerous Pareto optimal choices for the reconfigurable antenna arrays under various real-world 

complications. 

 In future work, study on the impact of setting of initial values and ranges of parameters of 

the proposed algorithms are desired. In addition, research on additional performance 

measurements to obtain additional evolutionary information from the population in order to 

continuously improve diversity mechanism is interesting. For the real-world engineering 

applications, the study on development of a surrogate model, given very limited data samples, as 

objective evaluation combined with FMDE for optimization is interesting as well.    

7.2 Soft Constraint Handling 

 The main challenges for constrained optimization are optimizing the objective functions 

and simultaneously handling constraints. Some constraints can be violated within an acceptable 

degree without compromising the objectives. In real-world applications, some feasible solutions 

from the hard constraint handling may be impossible or difficult to be implemented. Therefore, if 

the constraints are soft handled, it may provide a set of optimal solutions within an acceptable 

range of constraint violation degree for the decision makers to choose from.  This practical needs 

to soft constraint handling principle has motivated the design of soft constraint approach in this 

thesis. The proposed soft constraint handling is based upon the concept that the constraints can be 

violated within acceptable degrees to extend the searching region in order to obtain useful 

solutions from the infeasible side of feasibility boundary. As a result, the higher quality solutions, 

i.e., objective improvement, can be found. The violation degree can be quantified by the Gaussian 

function or others. Elites and diversity are preserved by the preference rule strategy and the 

crowding distance, respectively. The preference rule strategy, based on relaxation degrees and 

tolerance level of the constraints, is actually non-domination sorting the feasible and infeasible 

individuals simultaneously. In addition, the search region is extended by this preference rule 
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strategy because infeasible solutions can be ranked higher than feasible solutions if their objective 

values are better within acceptable violation degrees. AFMDE is integrated with the proposed soft 

constraint handling approach to solve the constrained multiobjective benchmark problems. The 

same soft constraint handling approach can also be integrated within other MOEAs. The results 

show the soft constraint handling can achieve significant objective improvement at the cost of 

acceptable degree of constraint violations compared to the hard constraint approach.  

 AFMDE incorporated with the soft constraint handling is applied to the non-uniform 

antenna array design problem in order to prove the concept that if the constraints are relaxed at 

some extent, it can improve the quality of the solutions found. The non-uniform circular array 

design is formulated as three objectives optimization problem subjected to two constraints. The 

objectives are minimizing the side lobe level and the first null beamwitdth amplitude while 

maximizing the directivity of the array subject to the specific first null beamwidth and size of the 

array. Both constraints are treated as soft ones. The results show that if the relaxation degree is 

higher, the objective improvements on infeasible solutions found at an acceptable degree of 

constraint violation can be much better.  

 In the future work, the parameter sensitivity of the soft constraint handling is desired. The 

soft constraint handling technique may be extended to solve more complex real-world 

optimization problems, i.e., the dynamic multiobjective optimization problems (DMOPs) such as 

scheduling in manufacturing plant, dynamic resource management, etc. In DMOPs, the objective 

functions change over time. As a consequence, the optimal Pareto front changes over time as 

well. Therefore, the challenge is that optimization algorithms need to track the environmental 

change and be able find the moving Pareto optimal front and Pareto optimal set. The 

mathematical model for DMOP can be defined as 

   1 2min ( , ) { ( , ), ( , ),..., ( , )}
n kt f t f t f t




x
f x x x x     (7.1) 
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subject to  

   ( , ) 0;jg t x  1,2,3,...,j l      (7.2) 

   ( , ) 0;jh t x    1, 2,...,j l l m       (7.3) 

   ;       1,2,3,...,L U

i i ix x x i n          (7.4) 

where       
1 2 3[ , , ,..., ]T n

nx x x x x           (7.5) 

 Function ( , )tf x  denotes a set of objectives to be minimized with respect to time t, x is a 

decision vector of n decision variables, where each decision variable ix  is bounded by a lower 

bound L

ix and upper bound U

ix .  It is not only the objectives that change over time, but also the 

inequality (7.2) and equality (7.3) constraints change over time as well. 
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