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CHAPTER 1

INTRODUCTION

Students often find difficulty in understanding the relationship between control theory

and real systems [1]. While simulations often help to bridge the gap between theory

and application, simulations are inherently somewhat abstract. To help students bet-

ter understand this relationship, hands-on experiments are used in many dynamics

and control courses, and successfully relate theory with practice for students. How-

ever, laboratories offered within these courses at many universities are often limited

to a small number of experiments. Additionally, students are often pressed for time

in completing the experiments due to limited laboratory resources accommodating

large class sizes.

The work provided in this thesis will describe experiments that can be performed

at home, and at a time convenient for the students, eliminating the need for labora-

tory space. In addition, the experiments will not require supervision from teaching

assistants (TAs), traditional in most university laboratory settings. This is achieved

by providing a website hosting all of the information needed in completing experi-

ments.

The Take Home Labs website [2] was created to host materials for various exper-

iments described in this thesis, and includes links to all experiments, courses, and

components. The website also provides experimental templates for those who wish

to contribute their own experiments to the website. The range of experiments in this

thesis vary between introductory, undergraduate, and graduate levels. Given that

others may contribute their own experiments to the website, experiments will also be
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able to cover multiple disciplines (controls, signal processing, vibrations, electronics,

etc.). In order to host a large number of experiments, it is important that the asso-

ciated costs are low.

The experiments described in this thesis are inexpensive, costing less than the

price of a text book. This is achieved by utilizing resources provided by universities,

including MATLAB and Simulink and 3D printing. Also, the use of inexpensive com-

ponents (including the hardware for each experiment) promotes faster prototyping

in experiments with the aforementioned cheaper overhead costs. Rapid prototyping

is accomplished by utilizing 3D printers and easy to find off-the-shelf components.

The components provided on [2] are from many common websites for the student’s

convenience. However, students may also find less expensive components from other

websites. While take-home laboratories are different than the traditional laboratory

paradigm, they are certainly not a completely new concept.

Previous Work

Many types of interesting mechanical systems have been explored for laboratory ex-

periments in automatic control, including but not limited to: Ball on Beam, Magneti-

cally Levitated Sphere, Cart and Pole, Wedge Balancer, Two-Link Pendulum and the

Inverted T [3]. For instance, the approaches described in [4] and [3] offer laboratories

that work in conjunction with introductory-type courses in control system design.

Each experiment is exhibited on a series of workstations in a laboratory hooked to a

college network. They cover a multitude of topics, including:

• Step Response and System Poles

• Frequency Response

• State Variable Feedback Effects of Time and Frequency Responses

• Stability and Nyquist

2



• Root Locus Design

• Computer Simulation

The introductory experiments covered in the laboratory utilize the common theme

of a DC motor setup with an encoder. The motor requires minimum maintenance,

reducing the amount of hardware upkeep by students, allowing them to focus more on

the concepts from each laboratory. Additionally, each paper discusses topics used in

most introductory texts, which allows the laboratory follow the curriculums used at

many universities. The laboratories are designed to supplement the associated lecture

courses. While the laboratories are successful in subjecting students to different types

of real control problems, students can only complete experiments during a specified

lab time with the computers exclusively on that network.

Another approach to the control lab used in control theory courses is mentioned

in [5]. In this survey, there is heavy emphasis placed on using real-time software

packages, including: the MATLAB/Simulink Real-Time Toolbox, Real-Time Work-

shop, and Real-Time Interface. The idea presented in this lab is an open laboratory

for students, where students would implement designs in a lab setting. [5] also de-

scribes a PC-I/O interface to connect the physical models with the real-time software

packages on various models of control systems. However, the survey is general in men-

tioning that virtually any I/O interface should work with real-time software, which

is profound in opening the doors of take-home experiments to many types of micro-

controllers.

[1] expounds on the idea of using micro-controllers in conjunction with take-home

labs by offering their own version of ”take-home kits”. The paper mentions that ”stu-

dents all have computers that are suitable for take-home experiments.” Additionally,

[1] mentions that ”laboratory access is often limited”, which creates a need to expose

students to laboratories for a longer period of time. [1] boasts an increase in expo-

sure to laboratories with the use of a low-cost kit including a board (designed by the
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authors in [1]) to handle the PC-I/O interface. The main examples presented in the

paper are a DC motor tachometer and temperature measurement system utilizing

cheap, off-the-shelf components (including a PIC micro-controller, Windows based

user interface program, and cheap sensors). However, with the dependance on the

author’s own board, development and maintenance is still required and students are

limited to that specific board.

To eliminate the dependency on university space, student schedules, and specific

hardware interfaces, well documented websites ([6] and [7]) containing modular take-

home laboratories are available, so that students may perform experiments in their

own homes. [6] offers multiple types of experiments, and also offers documentation

for MATLAB and Simulink and National Instrument’s Labview in their experiments.

The caveat to the experiments offered from [6] is that they are expensive, resulting

in high costs for student in addition to their typical university expenses, including

tuition, textbooks, and room and board. [7] describes a less expensive prototyping

platform that utilizes only MATLAB and Simulink (connected to an Arduino using

the Arduino/Simulink interface) with access to resources that help the laboratories

run smoothly [7]. However, only one type of platform (a miniature Segway) is ex-

plored, and the laboratory documentation offers limited theoretical topics. Neither

[6] nor [7] allow outside contributions to their websites, limiting the control problems

to only those produced by each site.

Innovations

A growing trend at universities is student access to certain free resources, including

MATLAB and Simulink and 3D printing. The work provided in this thesis will utilize

these free resources in each experiment. This is different from other control system

laboratory approaches since most the laboratories in other works require large over-

head costs. Additionally, 3D printing is not considered in any previous works explored
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in this thesis.

Another feature of the take-home laboratories described in this thesis is that stu-

dents will not be limited to control system experiments. A wide range of experiments

will be provided in addition to the possible contributed experiments that others can

add to the Take Home Labs website. The Take Home Labs website [2] is different

from approaches [4], [3], and [5] in that the inexpensive take-home laboratories can be

accessed on the internet from anywhere. [2] also varies from [1] since both Raspberry

Pi and Arduino (well-documented, and supported circuit boards) may be considered

as PC-I/O interfaces, instead of a specific interface board that can only be purchased

from the creators of the [1] architecture.

The Take Home Labs website is successful in taking the best ideas from previ-

ous the websites [7] and [6], and creating the ”best of both worlds.” [7] is different

from [2] in that it only describes a miniature Segway experiment, where [2] promotes

multiple experimental platforms. While [7] is less expensive than [6], the laboratory

documentation offers limited theoretical concepts along with the experiments. [6]

differs from [2] in that each experiment on the website are expensive. Additionally,

each experiment is limited to only the platforms available on the website, and cannot

be altered from the pre-determined physical dimensions. Another difference with [6]

is that students are limited to exercises offering only control systems. [2] varies from

the other websites [7] and [6] in that anyone can contribute experiments. Also, all

of the experiments use hardware created from 3D printing, and the experiments are

not limited to only control systems. The chapters in this thesis will serve as instruc-

tor guides encapsulating the handouts given to students performing the experiments.

The Take Home Labs concept was developed jointly in this thesis and in reference [8].

Five experiments are described in this thesis, and five complementary experiments

are described in [8]. Together, these documents represent the current state of the

Take Home Labs concept.
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Thesis Organization

This thesis will begin with the system overview in Chapter 2, which describes the

Take Home Labs website, the software and hardware used in the experiments, the

3D printed motor load (used in Chapters 5 and 6), and the Furuta Pendulum model

(used in Chapter 7). Chapter 3, the Simple DC Motor experiment, describes an in-

troductory experiment, serving as a “Hello World” lab, common to many computer

science courses. Students will learn the basic hardware and software components by

interfacing MATLAB/Simulink with an Arduino connected to a DC motor. Chapter

4, the Introducation to 3D Printing experiment, describes an additional introductory

experiment, which introduces students to the 3D printing software, used to create 3D

printed hardware components in more advanced experiments. While the experiment

describes only one particular 3D printer, it can easily be modified to accommodate

other printers. Chapter 5, the Open Loop Step Response experiment, describes an

experiment used in an undergraduate “Dynamics or Control” course. Students will

find a first-order DC motor model for the physical system using the open loop step re-

sponse, given motor parameters from the datasheet. Chapter 6, the Closed Loop Step

Response experiment, describes an experiment that adds feedback to the Open Loop

Step Response experiment. Students will find the open loop poles and then, given

gains, observe the effects of a proportional-derivative feedback controller. Students

will both simulate the model using Simulink and observe the effects from the phys-

ical system. Chapter 7, the Pole Positioning State Feedback experiment, describes

an experiment that uses pole positioning on the Furuta pendulum (also known as

the Rotary Inverted pendulum) system. Students are tasked with creating their own

Simulink model based on given equations of motion and then told to iteratively find

gains that control the pendulum system. Subsequently, the gains will be applied using

full state feedback on the physical system. Chapter 8 will provide a conclusion for

this thesis and insight into future work.
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CHAPTER 2

OVERALL FRAMEWORK

The opportunity for students to take home inexpensive labs without the need for

a university laboratory or teaching assistants is the main concept presented in this

thesis. Additionally, the Take Home Labs website was created in order host a number

of experiments that students may easily access and complete at home. Take home

labs reduce the need for university resources, the impact on student schedules, and

the cost to students. This is achieved by providing simple hardware designs, and the

use of well-known software provided by universities (such as Matlab and Simulink).

This chapter will provide the system overview of the Take Home Labs website, and

the experiments presented in the body of this thesis, including all of the components

used to create them. After that, the 3D printed motor load and the Furuta pendulum

system (also known as the Rotary Inverted Pendulum), which form the basis for

several experiments, will be explained. The overall structure of the take home labs

consists of the following:

• Website

The Take Home Labs website (thl.okstate.edu) is the main source of informa-

tion for experiments. Student can easily access the website from anywhere an

internet connection is available. The website consists of a simple interface, with

links to all experiments, handouts, and lists of materials. 3D printed .stl files

are also available on the website.
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• Experiment Handouts

The experiment handouts are the main source of information given to students

performing experiments. The handouts can be found on the website and will

list all necessary materials (hardware, software, and prerequisite experiments)

needed to run the experiments correctly. Not included in the handouts are

the instructor sections, which provide the results for each experiment for the

instructors.

• Hardware

Hardware used in each experiment is placed together to form a physical struc-

ture, and varies depending on the experiment. Each experiment lists all nec-

essary hardware. Some hardware may be purchased from external websites.

Other hardware may be created from a 3D printer. All hardware is specified in

the experiment handout, and the website lists links to the appropriate sources

of hardware.

• Software Software used in the labs generally varies for each experiment. Each

handout lists the software necessary to run the experiments. Additionally, a

software setup portion in the handout lists the steps needed to set up the soft-

ware.
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2.1 Website

Figure 2.1: Take Home Labs Homepage

The Take Home Labs website provides two options to search for experiments. On

the Take Home Labs Homepage, the links Experiments and Courses list out all of

the links for experiments based on certain criteria. For example, experiments listed

under Experiments will be identified in a more general category. The Courses link

will list all of the course names, where each course name link will list links to every

experiment that pertains to that course.

2.1.1 Experiments

Figure 2.2: Take Home Labs Experiments Page

Under the Experiments link, experiments are listed as the following categories: All,

Introductory, Modeling, Control Systems, and Filtering. (It is expected that more

categories will be added.) Clicking on All lists all of the available experiments. The

other categories are explained in the descriptions below.
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Introductory

Introductory experiments provide initial exposure of students to the hardware and

software used in later experiments. These labs require no prerequisite experiments, as

they are the most basic level labs. Introductory experiments serve as “Hello World”

experiments, common to many computer science courses.

Modeling

Modeling experiments encapsulate the concept of modeling systems. For example,

System Identification would be considered in this category, since it is one concept

used in finding a system model. These types of experiments will vary, and serve as

intermediate level experiments used in modeling systems for other experiments.

Control Systems

Control system experiments typically explore feedback control systems. Control Sys-

tem experiments include, but are not limited to, the following: PID control, Lead-Lag

Compensators, Optimal control, Adaptive Control, and Digital Control. These ex-

periments will be presented in more advanced courses in graduate school settings.

Filtering

Filtering experiments consist of labs that focus on digital filtering and signal pro-

cessing. Labs under this category will function more as signals and systems type

experiments, rather than control systems. (Although, some control system experi-

ments may contain concepts from these experiments) Experiments listed under this

category represent the breadth of subjects which the take-home labs can cover, since

take home labs are not limited to only control systems.
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2.1.2 Courses

Figure 2.3: Take Home Labs Courses Page

Clicking on the Courses link on the Take Home Labs homepage will separate exper-

iments into categories that pertain to different types of courses, including, but not

limited to: Adaptive Control, Automatic Control Systems, Digital Control Systems,

Digital Signal Processing, Estimation Theory, Neural Networks, Optimal Control,

Signals and Systems, System Dynamics, and System Identification. However, this

section will focus on system dynamics and optimal control categories since they are

explained in more detail later in this thesis. Additionally, courses will be added to

this list, since additional experiments will be contributed to the website.

System Dynamics

System dynamics courses consist of the following examples: Simple DC Motor, Sam-

pling and Data Acquisition, Open Loop Step Response, Closed Loop Step Response,

Open Loop Frequency Response, Closed Loop Frequency Response, and PD Position

Control Design. The experiments listed in this category will describe dynamics and

control courses available at most universities.
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Optimal Control

Optimal Control experiments will serve as more advanced experiments for students

who are in graduate school optimal control courses. The topics for these experiments

would include pole positioning state feedback control, optimal state feedback control,

and optimal output feedback control. These experiments would typically use more

complex physical systems, like types of inverted pendulum.

2.1.3 Participate

Figure 2.4: Take Home Labs Participate Page

On the Participate page, others may contribute experiments to the website. In order

to maintain the structure of the take home labs, certain guidelines are explained on the

Participate page. Contributors to the website will be recognized on their contributed

experiment’s page and within the experiment handout.

Contributions

Contributions may come in the form of submission of new experiments, feedback on

current experiments, or general comments about the website. These types of con-

tributions will be invaluable to the take home labs, given that any sort of feedback

provides perspectives on the experiments that were not originally explored or consid-

ered. This allows the labs to reach more people, and, in turn, benefit others. Other
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guidelines presented are the following:

• Experiments must be able to be done at home with minimum equipment.

• Scopes, signal generators, spectrum analyzers, or any other devices will not be

required.

• Materials/parts are inexpensive and readily available online, or can be created

with a 3-D printer (with 3D printer files provided). They must also be cheaper

than the price of a text book.

• Clarity of the experiments is important, since no TA guidance will be available.

Prerequisite experiments must be clearly indicated, and must include at least

one of the introductory experiments. Background material for the experiment

must be limited to topics relevant to the experiment, and not hardware/software

related.

• Inexpensive microcontrollers, such as Arduino or Raspberry Pi, will be the heart

of most experiments.

• The use of Simulink Blocks to program the microcontroller is encouraged in

order to reduce the amount of programming by the student. The exception to

this would be experiments that are focused on programming topics.

LATEX Handout Template

Handouts for each contributed experiment are required. The following guidelines are

laid out on the website:

• Handouts must be submitted in LaTex form, and placed into a zip folder along

with all additional files (e.g. figures/plots). Files less than 10MB are preferred.

A LaTex template for experiment handouts is provided on the Participate page.
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• A list of hardware/parts needed to run the experiments (including links to order

the parts) will be required with each submission. However, the experiment

handout must exclude any active links, leaving only the list of parts listed.

• If necessary, code (including Simulink files) needed to run the experiment must

be zipped into one file and submitted along with each handout.

• If necessary, 3D printer files for parts included in the experiment must be zipped

into one file and submitted along with each handout.

2.2 Selection of Hardware Used In the Labs

The selection of common hardware used in creating experiment designs was a lengthy

process that included many iterations. While the components used in the final design

now achieve their intended functions, any foresight of their applicability in the final

design was not initially obvious. This section will first explain previous components

that were considered along the way. Next, the design considerations for the common

components that were used in the final design will be explained.

2.2.1 Previously Considered Common Components

Many components were considered along the way in the design of the final take

home labs. Among these, the motor shield and power supply were the components

that changed the most. Most of the experiments involve the use of a DC motor. The

motor shield supplies the voltage to the motor and the power supply powers the motor

shield. The subsections below will explain the component and design considerations

that went into removing it from the final design.
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Motor Shield: SN754410

Figure 2.5: First Considered Motor Shield (SN754410)

The SN754410 motor shield is made by Texas Instruments, a well known American

electronics company that creates many different types of IC chips. Aside from being

small and inexpensive (costing only a couple of dollars), this particular motor shield

has the following characteristics:

• Voltage range of 4.5V to 36V

• 2A maximum output current

• Works with DC Motors

This chip was considered because the voltage and current ranges overlapped the

ranges of the motor being used at the time (see the section labeled Mitsumi Motor

Encoder below for more information on this motor). However, since this chip requires

additional hardware (including wires and a breadboard) in order for it to run with the

Arduino correctly, it was desirable to find another alternative that required no wires

and could plug directly into the Arduino microcontroller. Eventually this component

was scraped when another option, with the same specs, was found and could plug

into the Arduino.
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Power Supply: (S-50-24)

Figure 2.6: First Considered Power Supply (S-50-24)

The S-50-24 power supply was originally considered because of the following qualitites:

• Inexpensive

• Voltage output of 24V

• Max current output of 2A

While the power supply performed well and was within the voltage and current re-

quirements of the motor, it was more desirable to find a power supply with more

voltage options. Additionally, it was desirable to find a power supply of a laptop

AC power adapter form factor. Eventually this component was scraped, and an AC

power adapter with the laptop form factor and large voltage range was found.

2.2.2 Final Common Components

Motor Shield: DFRobot

Figure 2.7: Final Motor Shield (DFRobot L298P)
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The DFRobot motor shield (see Figure 2.7) was the final choice for the motor shield

used in most experiments that require an interface with the Arduino. Since it can

easily be plugged into the Arduino, and function without the use of additional wires,

the motor shield was a good fit for the experiments. Additionally, the voltage and

current ratings were identical to the motor shield described in the Motor Shield:

SN754410 section, which caused no drastic changes in function.

Power Supply

Figure 2.8: Final Power Supply (Universal AC Adapter)

The Universal AC Adapter fit all of the necessary requirements for power to the motor

shield. Additionally it varies from the following voltages: 15V, 16V, 18.5V, 19.5V,

20V, 22V, and 24V. With a power rating of 70W a large range of currents are also

available and reach well within the 2A limit (with the highest current being 4.67A

and the lowest current being 2.92). However, the power that goes to the motor is

ultimately limited to the 2A rating on the motor shield, since all of the maximum

currents draws are larger than 2A.
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Microcontroller

Figure 2.9: Final Microcontroller (Arduino Mega 2560)

The Arduino Mega 2560 (see Figure 2.9) was chosen among a number of Arduino

boards that are compatible with MATLAB/Simulink. This Arduino was chosen over

other Arduino models due to the larger number of pins that are available. These

additional pins, especially during the prototyping phase, were invaluable for includ-

ing additional peripherals (such as encoders and motor shields). Additionally, the

Arduino comes with 256KB of onboard flash memory, which is larger than any other

Arduino boards compatible with MATLAB/Simulink. Extra memory was favorable

since the sizes of programs can vary and take up more space with added complexity

of experiments.

Motor/Encoder

Figure 2.10: Final Motor/Encoder (Mitsumi M25N-2R-14)

The challenge of finding a motor/encoder combo was difficult, since most motor/encoders

are either expensive, or have low encoder resolutions. The Mitsumi M25N-2R-14 (see
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Figure 2.10) was found with the following characteristics:

• Maximum voltage of 34V

• No load motor speed of 11,000 rpm

• No load current of 100mA or less

• Encoder resolution of 1336 counts/revolution

• Inexpensive (found as low as $7)

Given the high motor speed, range of voltages, high encoder resolution, and low

cost, this motor has proven to be very valuable for the take home labs. The only

disadvantage to this motor has been availability. The motor is used in a printer

and is manufactured in China, rendering it potentially out of stock in the future.

However, as far as function, it works well with all of the experiments that require a

motor/encoder.

Encoder

Figure 2.11: Final Pendulum Encoder (CUI AMT103)

The CUI AMT103 encoder functions as a rotary encoder that may be used for experi-

ments that require additional encoders, without a motor attached. With a maximum

resolution of 4096 counts/revolution, this encoder is very accurate and works well

with many applications. Additionally, it is inexpensive compared with other encoders

(costing of around $25), which keeps the total experiment cost low. In this thesis, the

Furuta pendulum problem utilized this encoder for measuring the pendulum angle.
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2.2.3 3D Printer (Solidoodle SD4)

Figure 2.12: Solidoodle 3D Printer (SD4)

While the 3D printer itself was not a component used in experiments, the Soli-

doodle SD4 (see Figure 2.12) was used to create many different components. Since

3D printing material is cheap (in this thesis PLA plastic was used) this printer was

valuable in creating additional components, while keep experiment costs low. In this

thesis, a number of components were created for the experiments described in sections

2.4 and 2.5 below.

2.3 Selection of Software

While the software selections for the experiments required less considerations than

the hardware, the software is considered the “heart” of each experiment. Without

software, the hardware is useless in allowing the experiments to function. The sub-

sections below describe the software that was used in all of the experiments.

2.3.1 MATLAB/Simulink

MATLAB and Simulink were used the most in allowing the experiments to function.

MATLAB is generally used in creating m-files that set parameters into the workspace,

a variable environment that shows all variable with their stored values after run time.

Simulink files consist of blocks that interconnect with one another creating a “visual
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coding” platform. Simulink is useful in limiting the amount of coding that students

actually perform during an experiment. Requiring less code allows students to focus

more on the underlying concepts without the burden of syntax.

2.3.2 Repetier Host

Repetier Host is an open-source software that is used with Solidoodle 3D printers.

Since the software is open source, there are no costs associated with this software.

Additionally, the software is quite user-friendly and requires a small learning curve,

unlike many other software packages.

2.4 3D Printed Motor Load (Pennies)

This section describes the 3D Printed Motor Load that is used in the following exper-

iments: Open Loop Step Response, Closed Loop Step Response, Open Loop Frequency

Response, and Closed Loop Step Response.

2.4.1 Description

Figure 2.13: 3D Printed Motor Load

The 3D Printed Motor Load was created as a load to be used in dynamics and

system courses that require a load attached to a motor. Additionally, there was a need

for a load to be created that could be different for each student in the course. Since
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the motor load needs to be inexpensive, and all students have access to pennies,

the experiments are kept inexpensive and add enough mass to the overall load to

change the open and closed loop step and frequency responses significantly. The 3D

printed motor load achieves this function with 12 penny sized slots along the arms

that can fit up to 4 pennies per slot. Assuming that the center of the mass will need

to be centered around the pivot of the motor, and class sizes are generally around

30 students, the mass can easily be configured to create different inertias for each

student in the course. See Figure 2.13 for an example load.

2.4.2 Insert

(a) 3D Printed Motor Load Insert

(Front View)

(b) 3D Printed Motor Load Insert

(Rear View)

Figure 2.14: 3D Printed Motor Load Insert

In the center of the 3D printed motor load is a 3D printed motor insert. The

insert was designed to easily fit onto the gear of the Mitsumi motor/encoder gear,

as well as fit into the 3D printed motor load. The insert acts as a medium between

the motor and the motor load. Additionally, if the insert becomes too worn down,

printing another one is cheap and takes approximately 10 minutes of print time at
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high resolution. See Figure 2.14 for an example insert.

2.5 Furuta Pendulum (Pole Positioning State Feedback)

This section describes the Furuta Pendulum (also known as the rotational inverted

pendulum) that is controlled using pole positioning state feedback. The Furuta pen-

dulum consists of a motor connected to a beam that spins parallel with the ground.

Attached to the end of the beam is a pendulum that can hang freely. The objec-

tive of the Furuta pendulum is to balance the pendulum straight up using the motor

connected to the beam. The following subsections will explain the equations of mo-

tion and the states chosen for the linear state-space model, the development for the

physical system on hardware, and the final physical system. The Furuta pendulum

can be used for many types of control experiments. A later chapter in this thesis will

describe an experiment using state feedback on the Furuta pendulum.
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2.5.1 Model

Equations of Motion

M2
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L2

x
0

z
0

L1l1

l2

x
1

z
1

Figure 2.15: Furuta Pendulum Model (Circled x Denotes Center of Mass)

The following equations of motion describe the dynamics of the Furuta Pendulum

model:

θ̈1 =
C2L1 cos(θ2)θ̇2

l2B
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2
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Where

θ1 : Angular Position of Base Arm

θ2 : Angular Position of Pendulum
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M1 : Mass of Base Arm

M2 : Mass of Pendulum

L1 : Length of Base Arm

L2 : Length of Pendulum

l1 : Length from Pivot to Center of Mass of Base Arm

l2 : Length from Pivot to Center of Mass of Pendulum

C1 : Viscous Friction Coefficient of Motor Pivot

C2 : Viscous Friction Coefficient of Pendulum Pivot

g : Gravitational Constant

τ : Torque

u : Motor Voltage

Ra : Armature Resistance of Motor

Kt : Torque Constant of Motor

Km : Back EMF Constant of Motor

N : Gear Ratio of Motor

States

The States for this model are:

x1 = θ1

x2 = θ̇1

x3 = θ2

x4 = θ̇2
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2.5.2 Development of Hardware

Developing the Furuta Pendulum system was not an obvious task from the start. It

required many different iterations of design considerations. The subsections below

describe the hardware revisions that were considered before developing a final design.

First Revision

Figure 2.16: Furuta Pendulum Model (First Revision)

The first design revision consisted of one piece that was attached to the motor. At

one end, the beam attached to the motor, and the other end housed a bearing and

functioned as the encoder mount, where the encoder measured the angle of the in-

verted pendulum. The bearing was used to reduce the friction of the pendulum at the

pivot. A set screw was used instead of a 3D printed insert to mount the motor, due

to the weight of the pendulum. Set screws hold the beam to the motor and keep the

assembly together stronger than a 3D printed insert, since the friction of attaching

and removing the insert would eventually wear it down. The encoder mount was

used to hold the encoder so that it was fixed to the end of the beam. This design

was eventually changed because the 3D printer had difficulty in printing the beam

as one part. Since the end where the encoder mounted extruded upwards and was a
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thinner piece, the 3D printer took a long time to print and the encoder mount had

questionable integrity at the end of the print (it broke off in some cases).

Second Revision

(a) Base (b) Encoder Mount

Figure 2.17: Furuta Pendulum Model (Second Revision)

The second revision of the Furuta Pendulum split the hardware from the first revision

into two pieces, one for the beam that attaches to the motor, and the other to mount

the encoder to. Both pieces connected to one another with screws to create one large

piece. The biggest differences between the second revision and the first revision is

that the second model was smaller to reduce the weight on the motor pivot, and the

model consisted of two separate pieces instead of one large piece. The model was

split into two pieces because the 3D printer had difficulty printing the large piece in

a timely manner. The two-piece methodology was found to make 3D printing much

faster, and was carried into the final design.
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2.5.3 Final Hardware Design

Figure 2.18: Furuta Pendulum Model (First Revision)

After the design process listed in the section above, the final revision of the Furuta

Pendulum 3D printed hardware was found. The Elbow Bracket and Pendulum Rod

hardware did not change throughout the design process for the Furuta Pendulum.

Base

The final base used in the final hardware was the same as the one created in the

second revision. This design decision was made based on the small size of the second

revision, and the time it took to print the part (which is roughly 20 minutes).

Encoder Holder

The final encoder became a smaller version of the second revision, since there was

unneeded 3D printing material in the second revision. Material was removed mostly

from the middle portion of the encoder mount and kept where the bearing and encoder

were mounted.
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Bearing Holder

An addition to the design was the bearing holder, which adds an additional bearing to

where the pendulum is attached to the encoder. This additional bearing was added to

further remove friction from the pendulum pivot. Without the additional bearing, the

pendulum screw, which attaches the beam/encoder mount assembly to the pendulum,

would press upwards on the encoder due to the weight of the pendulum. When this

occurred, the encoder would seize up (causing the pendulum to stay straight up, and

not move) due to the slots on the encoder rubbing against the internal walls of the

encoder. The additional bearing and bearing holder allows the pendulum screw to

stay straight, without adding unwanted friction to the system.

Elbow Bracket

The elbow bracket was never changed from the original design. This part functions as

the link between the pendulum and pendulum screw, and allows the twisting motion

of the pendulum pivot screw to translate to the rotation of the pendulum rod, by

placing the rod tangent to the pendulum pivot. Without the elbow bracket, the

pendulum would not be able to be mounted to the pendulum pivot screw.

Pendulum Rod

The pendulum rod, another hardware component that did not change with design

revisions, is the portion of the system that functions as the free-hanging pendulum.

While the mass of the pendulum is not very large, mass is easily added in the form

of sticky tack to the tip of the pendulum, allowing it to overcome the friction of

the pendulum pivot more easily. The function of the whole system is to keep the

pendulum rod standing straight up.
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2.6 Summary

Chapters 3 - 8 will describe how the hardware and software mentioned in this chapter

will be used in the experiments. Chapter 3 will describe an introductory experiment

that sets up the MATLAB/Simulink software described in section 2.3.1 to be used

with the DC motor, Arduino, and motor shield described in 2.2.2. Chapter 4 describes

an introductory experiment using the 3D printer described in section 2.3.2 and the

Repetier Host software in section 2.2.3. Chapters and 5 and 6 will use the hardware

described in section 2.4. Chapter 7 will use the hardware described for the Furuta

pendulum in section 2.5. The following chapters will be extensions to the experiment

handouts, in that they will function as the instructor guides to the experiments by

adding the results from each exercise to the handout.
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CHAPTER 3

Simple DC Motor

3.1 Objective

This chapter describes a typical introductory lab experiment. This lab serves as the

“Hello World” lab, common to most computer science courses. The objective is to

introduce students to the basic hardware and software components that will be used

in later experiments. Since students will be performing these experiments at home,

without assistance from TAs, it is important that any introductory experiment, like

the one described here, be very clear, and that it not require any previous experi-

ence with the hardware and software. The introductory experiments should help the

students build their confidence.

3.2 Setup

This section of the report describes all of the required materials needed to make the lab

work correctly. This is achieved by splitting the setups into two subsections, hardware

and software. The hardware subsection provides all necessary, physical materials the

student needs along with how they are physically connected. The software subsection

provides information and steps to download all of the software needed to run the lab

with the hardware.
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3.2.1 Required

This section lists all of the software and hardware materials that are needed to perform

this experiment. It also lists any prior experiments that should be performed before

running this experiment.

Hardware

12-24V DC Motor  
(Mitsumi M25N-2R-14)  

Small Flat-head  
Screw Driver Motor Shield (DFRobot L298P) 

15-24V DC Power Supply 

4 Male to Male Wires 

Female Barrel Jack 
2.1mm x 5.5mm 

Arduino Mega 2560 

USB A to B 
Connector 

Figure 3.1: Hardware Required for Laboratory

• DC Motor (Mitsumi M25N-2R-14)

• Microcontroller (Arduino Mega 2560)

• Motor Shield (DFRobot L298P)

• 15-24V Battery or Power Supply (Universal AC Adapter with 2.1mm x 5.5mm

Male Connector)

• USB B to A Converter Cable (USB 2.0 A-Male to B-Male Cable)

• 4 Wires (20cm Male To Male Jumper Wire)

• Female Barrel Jack (2.1mm x 5.5mm Female CCTV Power Jack Adapter)
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Software

• Matlab/Simulink 2014b

• Windows 7

Previous Experiments

• This is an introductory experiment and does not require that any other exper-

iments be performed first

3.2.2 Hardware Setup

This section describes the hardware design of the DC motor lab. The DC motor used

in this lab will be utilized in later labs, and this lab will develop a familiarity with

how the motor is interfaced to Simulink. A circuit diagram for the DC motor will be

included as well as a photo of the circuit connection.

Configuring Motor Shield

Figure 3.2: Correct Motor Shield Configuration
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1. Jumper the pins of the DFRobot motor shield as a PWM input with external

power (power outside of the Arduino Mega). Figure 3.2 shows the correct setup

of the motor shield with jumpers on the right four sets of pins (labeled as M2,

E2, E1, and M1 from left to right). These jumpers ensure that the motor shield

is configured to accept PWM signals to drive the DC motor.

2. Additionally, the motor shield has 6 pins in the bottom left-hand corner of

the board, which are also shown in Figure 3.2. Jumper the pins to accept an

external power supply in order to power the DC Motor. This requires that

the left four pins out of the six pins are jumpered, with the top-left two pins

jumpered together and the bottom-left two pins jumpered together.

Connecting Hardware

L298P Shield V1.2

Arduino Mega
2560

Power Supply
15-24V 70W

Figure 3.3: Circuit Diagram for Simple DC Motor Hardware

1. Check to see that all hardware shown in Figure 3.1 is available.
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2. Take the motor shield and plug into the Arduino board as seen in Figure 3.4.

Make sure that the pin labeled 5 on the motor shield is plugged into the A5

pin on the Arduino. Additionally, make sure that the Rx pin lines up with the

RX 0 pin on the Arduino. This will ensure that the motor shield is connected

properly to the Arduino.

Figure 3.4: Correct Motor Shield/ Arduino Connection

3. Next, connect the “M1 +” and “M1 -” of the motor shield (see Figure 3.6to

the corresponding “M+” and “M-” ports of the Mitsumi Motor (see Figure 3.5

using two male to male wires. Refer to Figure 3.7 for the final correct DC motor

connection with the motor shield.
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M+ M- EN-B VCC EN+A GND 

Motor + and Motor - 

Mitsumi M25N-2R-14 2241 
Connection Diagram 

Figure 3.5: Mitsumi M25N Motor Wiring Diagram

Figure 3.6: Motor Shield Motor Ports
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Figure 3.7: Motor Connected to Motor Shield

4. Next, connect the power ports (PWR+ and PWR-) of the motor shield (see

Figure 3.9) with the corresponding power ports (PWR+ and PWR-) of the

female barrel jack connector (see Figure 3.8). Each connector port has screw

terminals, so clamp them down on the wires by using a small flat-head screw

driver. The final connection should look similar to Figure 3.10.

Figure 3.8: Female Barrel Jack Power Ports

Figure 3.9: DFRobotics Motor Shield Power Ports
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Figure 3.10: Correct Power Connection

5. Now, connect the USB-B connector into the USB-B port on the Arduino board.

(The USB-B connector should be the more square-like connector of the USB

B to A convertor cable, see Figure 3.11). Don’t connect the USB-A connector

yet.

Figure 3.11: USB-B Connected

6. At this point, the motor shield should be mounted on the Arduino, the motor

should be connected to the motor shield, and the female barrel jack should be

connected to the motor shield. No power will be applied to the circuits until

simulations have been created and are ready to run on the Arduino.

38



3.2.3 Software Setup

This section will describe how to set up the Simulink diagram used to run the simple

DC motor. Matlab 2014b with Simulink should be installed before beginning this

section.

Installing Arduino Simulink

7. Open Matlab 2014b and type “supportPackageInstaller” into the command win-

dow. Note that for any Matlab versions before 2014, the command “target

intaller” could be used in the same way.

Figure 3.12: supportPackageInstaller in Command Window

8. The page labeled “Support Package Installer” should now be visible. Click the

radio button labeled “Install from Internet” and click the “Next” button at the

bottom right of the page.
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Figure 3.13: Install from Internet

9. Under the “Support for:” list, click on the tab labeled “Arduino.” While on

the same page, look under the “Support packages:.” Check the boxes labeled as

follows:

• Acquire inputs and send outputs on Arduino Uno, Due, and more

• Run Models on Arduino Uno, Mega 2560, Leonard, and More Boards

• Run models on Arduino Due (different IDE download)

After selecting those listed above, click Next (at the bottom of the page, refer

to Figure 3.14).

Figure 3.14: Arduino Support Checklist
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10. The prompt “Log in to MathWorks Account” should now be visible. Click “Log

In” at the bottom of the page.

Figure 3.15: Log in to MathWorks Account

11. Now the prompt for a username and password should be visible. This requires

the user to type in their respective email address and password associated with

their MathWorks account. After this information is entered, click “Log In”

under the “Password:” prompt.

Figure 3.16: Type in MathWorks Username and Password
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12. On the page “MATHWORKS AUXILIARY SOFTWARE LICENSE AGREE-

MENT” read over the license agreement by scrolling, ensure the box labeled “I

accept” is checked, and then click “Next” at the bottom of the page.

Figure 3.17: License Agreement

13. The page with the heading “Third-party software licenses” should now be visi-

ble. This page shows all of the libraries, which were chosen in step 3, to install.

Check over the list to ensure the correct software is being downloaded then click

“Next.”

Figure 3.18: Third-party Software Licenses

14. The “Confirm Installation” page should now be visible followed by a list of the

packages chosen. After verifying all 3 packages are listed, click on “Install” at
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the bottom of the page.

Figure 3.19: Confirm Installation

15. Now the page with the heading “Install/update complete” should be visible and

the button option labeled “Finish” should be available at the bottom right of

the page. Click Finish. This concludes the installation of the Arduino packages.

For support, help, and examples of using the Simulink Arduino blocks, refer to

the Simulink Support Package info window that pops up after the installation.

Figure 3.20: Install/Update Complete
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Installing Arduino Mega 2560 Drivers

16. Connect the USB-A connector coming from the Arduino into the desired com-

puter workstation.

17. Once connected, the computer will begin to search for the appropriate drivers for

the Arduino Mega 2560 board online. This is an acceptable means of acquiring

the appropriate drivers for the board (if the drivers are downloaded correctly).

18. Next, navigate to the Device Manager to see if the drivers were downloaded

correctly. There are many ways to do this, but a simple, quick way is examined

in this setup. Click the “Start” button in the bottom, right-hand corner of the

Windows environment.

19. In the Start Search box, type “mmc devmgmt.msc” without the quotations.

20. Click enter. Now a prompt labeled “User Account Control” will open requiring

administrative access to the Device Manager. Click yes. The Device Manager

should now be visible.

21. Next, Click the arrow to the left of “Ports (COM&LPT)” in order to expand

the list of COM ports. Included in the list should be “Arduino Mega 2560.” If

this is not included in the list, unplug the Arduino Mega 2560 board from the

USB port and continue to the next step. If it is on the list, you can continue to

the next section.

22. Plug the USB from the board back into the computer. Keep track of the device

name that appears in the Device Manager (under “Ports (COM&LPT)”) when

the Arduino is plugged back in. If the name is not “Arduino Mega 2560” and

appears to be “Unidentified Device” it is likely that the driver software did not

download correctly. To remedy this, continue to step 8. If the Arduino board is
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correctly shown in the Device Manager, then the driver setup is complete and

you can continue to the next section.

23. Since the drivers were not downloaded correctly, right click on the “Unidenti-

fied Device” option under “Ports (COM&LPT)” and select the option “Update

Driver and Software.”

24. Now a page labeled “Update Driver Software” should appear. Select the option

“Browse my computer for driver software.”

25. The title “Browse for driver software on your computer” should be visible.

Under the title “Search for driver software in this location” enter the location

as “C:\MATLAB\SupportPackages\R2014b\arduino-1.0.5\drivers.”

26. A message will appear claiming that Windows cannot verify the publisher of the

driver. Disregarding this notice, click the option “Install this driver software

anyway.”

27. Windows should now install the required drivers to run the Arduino Mega 2560.

To verify this is done correctly, a message will appear stating that the driver

software has been installed.

28. In the unlikely case that the two methods above did not work, the Arduino

website provides drivers for the Arduino Mega. Simply navigate to the website

<http://www.arduino.cc> and click on the “Downloads” tab. Go through

the steps outlined in the website in order to get the latest IDE for Arduino. In

doing so, the drivers will be downloaded during the process.

Setting Up Simulink File

29. With MATLAB R2014b open, create a new Simulink Model by navigating to

the top left hand corner and click the “New” drop down menu.
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30. Select the option “Simulink Model” An empty Simulink model window should

now be visible.

31. Now find the Library Browser block on the menu bar (below the bar containing

file, edit, etc.). Note that the block contains four squares of colors - red, blue

and white. Click on the Library Browser block. The Library Browser should

now be visible.

32. At this point, the Arduino Simulink package should be visible under one of the

options on the left half side of the browser (the portion with a scroll bar). If the

option “Simulink Support Package for Arduino” is not available in the menu,

please refer to the steps under “Setting Up Arduino Simulink” above in order to

have access to the Simulink/Arduino blocks. Otherwise, click on the drop down

menu under “Simulink Support Package for Arduino.” New options should now

be visible on the right hand side of the browser.

33. On the right side of the browser, double-click on the block labeled “Common.”

Various Arduino blocks should now be visible. Click, hold, and drag the block

labeled “PWM” and drop it on to the blank Simulink model window. PWM

or “Pulse Width Modulation” is a series of voltage pulses used to drive many

DC motors via digital output. The PWM signla is defined by the frequency of

the pulses and the percent of time that the pulse is high (the duty cycle). The

Simulink PWM block uses 490 Hz, so only a duty cycle input is required.

34. Double-click the PWM block and input 5 as the Pin number. Pin 5 on the

motor shield is used to specify the voltage being applied to the DC motor. Pin

5 accepts a value from 0 to 255, which varies the duty cycle from 0 to 100

percent in the PWM wave.

35. While in the Simulink Library Browser, click, hold, and drag the block labeled
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“Digital Output” and drop it on to the Simulink model window.

36. Double-click on the Digitial Output block and input 4 as the Pin number. Pin

4 on the motor shield is used to define the DC motor direction. In this case, a 1

on pin 4 specifies the clockwise direction and a 0 specifies the counter clockwise

direction.

37. There should now be two blocks (Digital Output and PWM) in the Simulink

model window. In order to find the rest of the blocks used in this experiment,

open or bring the Simulink Library Browser into focus once again. Click on the

option “Commonly Used Blocks” on the left half portion of the window. Grab

two “Constant” blocks and one “Gain” block and drop them into the blank

Simulink model window.

38. Connect the output of one Constant block into the input of the Gain block and

connect the output of the Gain block into the input of the PWM block. Click

on the name “Constant” and change it to “Voltage.” Click on the name “Gain”

and change it to “Voltage to PWM.”

39. Double-click on the Voltage to PWM gain and enter a value of 255/15. This

value converts the input from a voltage to a duty cycle percentage. A value of

0 into the PWM block represents 0 percent duty cycle and a value of 255 into

the PWM block represents a 100 percent duty cycle.

40. Additionally, connect the output of the other Constant block into the input

of the Digital Output block. Click on the name “Constant” and change it to

“Direction.” The result of the connections should look similar to Figure 3.21.

41. Before continuing to the Configuration Parameter setup, simply plug in the

USB-A connector from the Arduino board into the desired computer running

this project.
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Figure 3.21: Final Simulink Model Used for Simple DC Motor

Configuration Parameters

42. Click on the icon shaped like a serial port in the top right hand corner of the

Simulink model window, labeled “Deploy to Hardware.” This button is used to

build the code in Simulink and “deploy” or load it (in Arduino C code) onto

the corresponding Arduino board.

Figure 3.22: Click Deploy to Hardware
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43. On the page labeled “Configuration Parameters: file name/Run on Hardware

Configuration (Active)” click on the drop down menu next to “Target Hard-

ware:.” Choose the option “Arduino Mega 2560.”

Figure 3.23: Set Target Hardware to Arduino Mega 2560

44. Now, many more options should appear under the Target Hardware menu.

While many of these options are useful in regards to communication, leave

them as pictured in Figure 3.24. Ensure that the “Set host COM port:” is

chosen to be “Automatically.” This will allow Simulink to automatically detect

the Arduino COM port. (If Simulink is unable to find the Arduino COM port,

navigate to the device manager and find out the corresponding COM port for

the Arduino Mega 2560. Also set the “Set host COM port:” to Manually and

enter the correct COM port).
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Figure 3.24: Set COM Port to Automatic

45. On the left pane, click on the option “Solver.” While on the Solver page, change

the “Fixed-step size (Fundamental sample time):” to 0.03 seconds and the “Stop

time:” to inf (meaning infinite). (See Figure 3.25 After making these changes,

now click “OK” at the bottom of the page.

Figure 3.25: In Solver Pane, Change time to Inf and step size to 0.03

46. At this point, the model is now ready to run on the Arduino. Create a folder

named “Experiments” on your computer desktop. Save this file by clicking the

“Save” button at the top. Save the file into the “Experiments” folder as
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“SimpleDCMotor.slx” and click okay.

Figure 3.26: Model Prepared to Run on Arduino Mega
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3.3 Experimental Procedures

Now that the hardware and software have been set up, the exercises can be performed.

The exercises in this experiment will use two different “modes”. In the external mode,

data can be conveniently passed from the software on the Arduino to Simulink running

on the PC. In normal mode, it is more difficult to transfer data back and forth, but

the software on the Arduino can run faster. To learn more about these two modes,

perform Experiment: Sampling and Data Acquisition. The first exercise will be to

change the PWM values sent to the motor and visually analyze the resulting responses

in external mode. The next experiment will be to add a slider gain in between the

Voltage block and the Voltage to PWM gain block, which will enable the speed of

the motor to be changed fluidly. Finally, the model will be loaded onto the Arduino

via Normal mode. Normal mode allows faster sampling times, but at the expense of

less convenient access to data. This will be required more often in later labs.

3.3.1 Exercise 1: Comparing Duty Cycles

47. In the Simulink model window, double-click on the “Voltage” input block, and

change the value to 5. Then double-click on the “Direction” block, change the

value to 1, and click the green arrow at the top of the Simulink model window

to begin the simulation. Vary the input voltage with the following values: 6, 8,

12, and 15. Record the results by describing how the motor speed changes.

48. While keeping the value of the Voltage block as 15, change the value of the

Direction block from 1 to 0. Record how the motor response changes.

3.3.2 Exercise 2: Slider Gain Analysis

49. Using the same Simulink model, add a slider gain (from the Math Operations

Section of the Simulink Library Browser) between the Voltage block and Voltage
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to PWM block. Double-click the slider gain block and change the min and max

values in the block to 0 and 15, respectively. Also, add a “Scope” block (from

the Sources section of the Simulink Library Browser) to the output of the slider

gain. Now click on the green run arrow. While the model is running, slide the

gain from left to right, record the value from the scope for each increase in the

slider gain, and note the change in speed.

50. With the same model, change the direction from 0 to 1 (or vice-versa). Now

slide the gain and record the resulting motor response. Did the motor start

speeding up and slowing down in the opposite direction?

3.3.3 Exercise 3: Normal Mode

51. Remove the Slider-Gain block from the Simulink model used in Exercise 2. The

Simulink model should now look like the one used in Exercise 1.

52. Double-click on the Voltage block and change the value to 8. Additionally,

double-click on the Direction Block and change the value to 0. Now, at the

top of the Simulink model, where the drop down menu shows “External,” click

the drop down menu and select “Normal.” After this, click on the “Deploy to

Hardware” button, which is shaped like a serial port, in order to build the model

onto the Arduino. After the project compiles, record how the motor responds.

Does it run at a fixed speed?

53. Change the value in the Direction block to 1. Click the Deploy to Hardware

button. Describe the resulting response. Does the motor go the opposite direc-

tion?
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3.4 Conclusion/Student Feedback

3.4.1 Conclusion

This chapter provided a basic introductory experiment on the use of the Arduino to

control a DC motor. Simulink blocks were used to provide real time access to the

input of the motor using the “external mode,” implementation. An introduction was

also provided to the “normal mode” operation, in which software is downloaded to

the Arduino and runs outside the Simulink environment. This experiment forms the

foundation for many future experiments, as the concepts presented here are used in

almost all other labs.

3.4.2 Student Feedback
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CHAPTER 4

Introduction to 3D Printing

4.1 Objective

This chapter describes a typical introductory lab experiment. The objective is to

introduce students to 3D printing by printing parts that will be used in later experi-

ments. The introductory experiments should help the students build their confidence.

This experiment is described for a specific printer, but could be used with other print-

ers with a few modifications.

4.2 Setup

4.2.1 Required

Hardware

Figure 4.1: Hardware Required for Introduction to 3D Printing Experiment
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Figure 4.2: Solidoodle SD4 3D Printer Required for Introduction to 3D Printing

Experiment

• Solidoodle SD4 3D Printer

• PLA Plastic Spool

• Masking Tape (or painters tape)

• Paint Scraper

• Tweezers

Software

• Repetier Host V0.85b

• Windows 7
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Previous Experiments

• This is an introductory experiment and does not require that any other exper-

iments be performed first

4.2.2 Software Setup

Downloading Repetier Host (If the printer software is not already available

on your print server

1. Download the file setupRepetierHostSolidoodle 0 85 1.exe from the Take

Home Labs website (http://thl.okstate.edu).

2. Double-click on the file and follow the setup instructions.

NOTE: Follow the standard installation procedures. This would require click-

ing next for each prompt in the setup window until it says to click “Finish”.

3. Double-click on the Repetier Host desktop icon . If the Repetier Host page

appears with no error, then the setup is complete. If you have errors, refer to

the http://www.repetier.com/technicalsupport/ page for Repetier Host

support.

4.2.3 Hardware Setup

Power and USB for Solidoodle Printer

4. Obtain a power supply and USB B-to-A Convertor for the Solidoodle SD4 3D

Printer.

NOTE: If the power supply and USB cable is already plugged into your printer,

you may skip this section.
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5. Plug the power supply (barrel jack) into the Solidoodle 3D printer. Connect

the plug side of the power connector into a wall outlet. If the light inside

the Solidoodle printer does not come on, check to see that the power cable is

connected correctly to the power socket.

6. Plug the USB-B connector into the back of the 3D printer (see Figure 4.3), and

the USB-A connector into your computer’s serial port.

Figure 4.3: Tape Placed Length-Wise On Printer Surface

7. You have completed the power and USB connections for the Solidoodle 3D

printer.

Placing Masking Tape On Printing Surface

8. Obtain masking tape or painters tape.

9. Take a piece (slightly longer than the length of the bed, in the direction coming

from you, and going to the back of the printer) and rip it from the roll.

10. Place the piece of tape on the bed in the length-wise direction (see Figure 4.4).
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Figure 4.4: Tape Placed Length-Wise On Printer Surface

11. Cover the entirety of the printer surface with tape, leaving a gap between each

strand, as shown in Figure 4.5.

(a) Leave Gap Between Tape

Strands

(b) Cover the Whole Printer Surface

With Tape

Figure 4.5: Cover Printer Surface With Tape

12. The masking tape setup for the 3D printer is now complete.

Placing Plastic Into Extruder (with no existing plastic in the nozzle)

13. Retrieve the PLA plastic spool.

14. Open Repetier-HostV0.85b by double-clicking on the icon .
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15. Once the Repetier Host program appears, click on in the upper left-hand

corner of the screen. This will connect the Repetier Host program with the

Solidoodle 3D printer.

16. Click on the tab labeled Manual Control. Once the GUI has appeared,

scroll down until a bar labeled Extruder 1 appears. Type “200” in the

box to the right of the bar and press “Enter”. Click on the Heat Extruder

icon above.

17. Allow the Extruder to heat to 200 degrees Celsius. Once the text to the right

of the Extruder 1 button shows 200 degrees Celsius, proceed to the next step.

18. Feed the PLA plastic spool through the back opening of the Solidoodle printer.

(a) Feed PLA Plastic Into Printer

(Close-up View)

(b) Feed PLA Plastic Into Printer

(Side View)

Figure 4.6: Feed PLA Plastic Into Printer

19. Inside the 3D printer, pull the plastic through the hole further until it reaches

the nozzle. Push the plastic through the top of the nozzle assembly until it

touches the two disks. Make sure the plastic is on top of the grove between the

two disks. Do not push it any further.
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Figure 4.7: Put Plastic In Nozzle Assembly

20. In the Repetier Host program, set the Speed [mm/min] as 100, the Extrude

[mm] as 10, and the Rertract [mm] as 10. Click on the extrude icon (while

pressing the plastic slightly into the nozzle), which is the down-arrow farthest

to the right, shown in Figure 4.8.

Figure 4.8: Click Extrude

21. Continue clicking on the extrude button, waiting between each extrusion, until

you begin to see the color of your plastic appear from the nozzle.

NOTE: Click the extrude button a couple of more times after you begin to see

plastic to ensure you have a clear stream of plastic coming through. Make sure

that the plastic is between the two disks of the nozzle assembly the whole time

you are extruding.

22. Remove the excess plastic from the nozzle and the printer area using tweezers.
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(a) Extrude Direction (b) Plastic Appearing From Nozzle

Figure 4.9: Extruding Plastic Through the Nozzle

Figure 4.10: Remove Excess Plastic From Nozzle

23. You have completed the extruder setup for the Solidoodle 3D Printer. Skip to

the Experimental Procedures section if you are satisfied with the plastic

material currently in the nozzle. If you wish to retract out the material in the

nozzle (especially old plastic,) continue to the next section.

Placing Plastic Into Extruder (with unwanted plastic in the nozzle)

24. Repeat Steps 14-17.

NOTE: If you are already connected to Repetier Host, start from the next

step.

25. Hold on to the plastic coming out of the nozzle. While gently pulling on the
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plastic in the nozzle, click on the Retract button shown in Figure 4.11.

Figure 4.11: Click Extrude

26. Continue pulling and clicking retract until the plastic comes out of the nozzle.

(a) Retract Direction (b) Plastic Pulled From Nozzle

Figure 4.12: Retracting Plastic From the Nozzle

27. Once you have pulled the plastic from the nozzle, repeat steps 18 - 23.

NOTE: With old plastic in the nozzle (especially when the color that you just

retracted is different from what you wish to extrude into the nozzle) it will take

a while to extrude all of the old plastic out. Repeat step 21 until the color of

the plastic is the color of the plastic you are extruding through the nozzle.

28. You have completed the hardware setup for this experiment.
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4.3 Experimental Procedures

4.3.1 Exercise 1: Adjusting Print Surface

Printing Bed Level Part

29. Download the BedLevel.stl file from the website.

30. Open Repetier Host and click Load in the upper left hand corner.

31. Navigate to the folder where BedLevel.stl is saved, click on it, and then click

“Open” at the bottom right-hand corner of the window. The part should now

be in the 3D Viewer (see Figure 4.13).

NOTE: The extruder should already be heated up to 200 degrees Celsius. If

this is not the case, repeat step 16.

Figure 4.13: 3D View of BedLevel.stl Part

32. In the Repetier Host program, click on the tab labeled “Slicer” on the right
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hand side of the screen. Click on the Configure button on the top right hand

corner of the Slicer tab window (see Figure 4.14).

Figure 4.14: Click Configure

33. Once the Slicer Configure page appears, click on the drop-down menu under

the Print Settings tab and select Solidoodle .3mm. This will configure the

extruder to create strands of plastic that are .3mm thick.

Figure 4.15: Print Settings With .3mm Resolution

34. Click on the Printer Settings tab. In the column on the left side of the Printer
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Settings tab window, click Custom G-code. Add the following code to the

box under the “Start G-code” heading:

G28 ;home allaxes

G1 z5 F5000 ;liftnozzle

This code will run once you begin printing your 3D part. The code’s function is

to first calibrate the location of the nozzle (this will cause the extruder to move

around, finding it’s home position). Next, the code will wait for the extruder

nozzle to heat up to the specified G-code settings, which are automatically

generated for you later on.

35. Click the Save Current Printer Settings button next to the “Solidoodle

8x8” drop-down menu then click on the Filament Settings tab.

Figure 4.16: Printer Settings

36. Click on the drop-down menu under the Filament Settings tab and click Soli-

doodle PLA 1.75mm. Click the Save Current Filament Settings button

to the right of the drop-down menu.
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Figure 4.17: Filament Settings

37. Click Close at the top of right-hand corner of the Slicer window.

38. In the main Repetier Host program window, click onPrinter Settings

at the top right-hand corner of the window (You can also use the keyboard com-

bination Ctrl-P).

39. Click the drop-down menu Baud Rate and choose 57600.

40. Next to “Port:” click on the drop-down menu and choose the COM port that

corresponds to the 3D printer. If you only have one option to choose for the

COM port (while the printer is connected) then choose that option and skip

the next step. Otherwise, continue to the next step.

41. If multiple COM ports are listed, unplug the USB-B cable from the Solidoodle

printer and click . Check the ports listed in the drop-down menu.

Take note of the ports currently listed in the drop-down menu. Plug the USB-

B cable back into the Solidoodle printer and click once more.

Check the ports. The port that was not listed before is your printer’s COM

port number. Choose your printer’s COM port number by clicking on it in the

drop-down menu.
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42. Click OK at the bottom of the Printer Settings window. On the right-hand side

of the main Repetier Host program window, choose the Slicer tab. Click on

the big button that says Slice with Slic3r. A small window that says “Slicing

info” will appear temporarily.

43. Once the G-Code tab comes into view, click on the “Run Job” button .

44. The printer should now begin heating up the extruder (if the extruder is not

already hot).

Leveling the Bed

45. Open the Solidoodle printer door once the extruder begins moving.

CAUTION: Do not put any body parts near the extruder head. It will be

extremely hot and can result in burns when touched.

46. Find the three wing nuts beneath the print bed.

Figure 4.18: Wingnuts Under Printing Surface

47. After the extruder has made two or three loops around the plate, observe the

plastic coming out of the extruder nozzle. Follow the guidelines below for cor-

recting the level of the plate:
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• If the plastic appears to be thin and drooping (extruder is too far away from

print surface) on one side of the plate, twist the wingnut corresponding to

that side to the left. This will raise the plate.

• If the plastic appears to be thick and flat (extruder is too close to print

surface) on one side of the plate, twist the wingnut corresponding to that

side to the right. This will lower the plate.

• If the plastic is desirable on one side, do not change the level of that side.

Figure 4.19: Desired vs. Thin Plastic On Plate

48. Continue adjusting the plate levels until all of the plastic on the plate is extruded

as desired. After this, you may click Kill Job on the main Repetier Host

window.

49. This completes the bed leveling exercise. Close Repetier Host.

4.3.2 Exercise 2: Printing Motor Load

50. Open Repetier Host. Load the Motor Load.stl file from the website into the

Repetier Host program. Figure 4.20 shows the part as it should appear in the

3D viewer.
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Figure 4.20: Motor Load in 3D Viewer

51. Repeat steps 32-43 with the following exceptions.

• If the filament settings are already setup as they were in steps 32-36 then

you may skip those steps.

• Skip steps 38-42.

• After the first layer of the part has been laid on the plate (you will

notice the bed level lower) click on the Manual Control tab on the

main Repetier Host program window. You should notice that the Heat

Printbed button is illuminated. This means the

print bed is now heating. In the box next to “Temp” type 50 and press

Enter on the keyboard. The print bed should now heat up to 50 degrees

Celsius.

52. Observe the 3D printed part as it is layered by the extruder. Click the Kill
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Job button if any of the following things occur:

• The part begins to warp. This indicates that the print bed is too hot, or

the tape was not pressed to the plate enough.

• The extruder position becomes offset from where the part was originally

being laid to the plate. This can occur if the spool gets wound up on

the back, restricting the movement of the extruder. It is important to

pay attention to the printer, if just by sound, during runtime. This will

eliminate many issues you might run into later on.

• Anything catches on fire or becomes too hot.

• The printer begins to make loud, peculiar noises. The only noises you

should hear during runtime are the fans and the extruder moving along

(producing a light, whirring noise).

53. Once the part has fully printed, this exercise is complete. Once the extruder

and tray bed stop moving, you may close out of Repetier Host.

4.3.3 Exercise 3: Printing Insert

54. Open Repetier Host. Load the Load Insert.stl file from the website into the

Repetier Host program. Figure 4.21 shows the part as it should appear in the

3D viewer.
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Figure 4.21: Gear Insert in 3D Viewer

55. Notice that the part is standing on one side. Under theObject Placement tab

on the right-hand side of the screen, change the values for Translation, Scale,

and Rotation to have the values for their respective X, Y, and Z values as shown

in Figure 4.22.

Figure 4.22: Correct Object Placement Values

56. After making the changes to the Object Placement values, the 3D viewer should

look like Figure 4.23.
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Figure 4.23: Gear Insert in 3D Viewer (Corrected)

57. Repeat steps 32-43 with the following exceptions.

• In step 33 select Solidoodle .1mm in the drop down menu instead of

Solidoodle .3mm.

• Skip steps 38-42.

• After the first layer of the part has been laid on the plate (you will

notice the bed level lower) click on the Manual Control tab on the

main Repetier Host program window. You should notice that the Heat

Printbed button is illuminated. This means the

print bed is now heating. In the box next to “Temp” type 50 and press

Enter on the keyboard. The print bed should now heat up to 50 degrees

Celsius.

58. Repeat also steps 52 and 53.

59. You have now completed this experiment.
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4.4 Conclusion/Student Feedback

This chapter provided a basic approach to 3D printing. All of the parts created in

this experiment will be used in later experiments. This experiment serves as an intro-

ductory experiment and is by no means an “end all” to 3D printing. As students gain

exposure to using the 3D printers, they will begin to create more complex methods

that can be applied to the hardware.
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CHAPTER 5

Open Loop Step Response

5.1 Objective

This chapter describes a laboratory that will be used in an undergraduate “Dynamic

Systems or Control” course. The objective is for students to find a first-order model

for a DC motor using the open loop step response. Students will be given some of the

motor parameters from the motor data sheet and will derive the rest of the parameters

using the motor step response. They will then compare the actual response of the

motor with the theoretical response.

5.2 Setup

5.2.1 Required Materials

Hardware

All hardware from the Simple DC Motor experiment will be required. Additionally,

the following hardware will be used:

• Motor Load and insert created from the Introduction to 3D Printing experiment

• 3D printed Arduino Base Holder

• 3D printed Motor Holder

• 3D printed Motor Fastener (Two of them)

• M3 x 1/4 Inch Screws (6 PC Mounting Screws)
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• #4-40 x 1/2 Inch Screws (6 with corresponding nuts)

• Sticky Tack (2 Ounce Package or Greater)

• 4 wires

Software

• Matlab/Simulink 2014b

• Windows 7

Previous Experiments

This laboratory requires that the following laboratories have been completed:

• Simple DC Motor

• Sampling and Data Acquisition

• Introduction to 3D Printing

5.2.2 Hardware Setup

Mounting Arduino and Motor to Case

1. In addition to all of the hardware from the Simple DC Motor laboratory, obtain

the 3D printed Arduino Base, Motor Holder, 2 Motor Fasteners, and both the

M3 and #4-40 screw sets (12 total).
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Figure 5.1: All Hardware

2. Unplug the USB B to A cable from the Arduino. (There should be no wires

besides the motor and power connector wires connected to the Arduino.)

Figure 5.2: Unplug USB B to A cable from the Arduino

3. Remove the motor shield from the Arduino.
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Figure 5.3: Remove Motor Shield from the Arduino

4. Place the bare Arduino onto the 3D printed Arduino case. Ensure that all of

the holes in the case line up with the holes on the Arduino.

5. Fasten the M3 x 1/4 inch screws into each hole with the Phillips head screw

driver. (Make sure the the screws are snug, but do not over-tighten.)

Figure 5.4: Fasten Screws with Phillips Head Screw Driver

6. Attach the 3D printed motor holder to the end of the case opposite the USB

port on the Arduino. Use two #4-40 screws to fasten the motor holder to the

end of the case.
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Figure 5.5: Attach the 3D Printed Motor Holder to the Arduino

7. Place the motor into the curved surface of the motor holder. Attach the clamp

pieces (one at a time) to the outer flanges of the motor holder (around the

motor) with nuts and screws. Do not over-tighten the nuts and screws. (When

attaching the motor, make sure the encoder is pointed to the side, so the case

can sit flat on a surface.)

Figure 5.6: Motor Placed Inside Motor Holder With Clamp Pieces Attached

8. Plug the motor shield and USB cable back into the Arduino.
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Figure 5.7: Plug Motor Shield Back Into Arduino

9. This completes the case attachment for the Arduino.

Figure 5.8: Completed Case Setup
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Connecting Encoder to Arduino

L298P Shield V1.2

Arduino Mega
2560

Power Supply
15-24V 70W

Figure 5.9: Circuit Diagram for Simple DC Motor Hardware

10. Connect the “PWR” and “GND” ports of the motor encoder to pins “5V” and

“GND” on the Arduino, respectively, using two wires. There are two “GND”

pins located on the red port strip of the motor shield. Connect to the GND pin

closest to the “5V” pin.
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Figure 5.10: Connecting Power and Ground of Encoder to Arduino (Motor

Connector Side)

Figure 5.11: Connecting Power and Ground of Encoder to Arduino (Motor

Shield Side)
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11. Connect the “EN-A” and “EN-B” ports of the Mitsumi Motor to ports 18 and

19 on the Arduino, respectively, using the last two wires.

Figure 5.12: Connecting Encoder A and B ports to pins 18 and 19 on the

Arduino(Motor Encoder Side)

Figure 5.13: Connecting Encoder A and B ports to pins 18 and 19 on the

Arduino (Motor Shield Side)

Attaching Insert and Load to Motor

12. Obtain the gear insert and motor load from the Introduction to 3D Printing

Laboratory.
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Figure 5.14: 3D Printed Parts From Introduction to 3D Printing Experiment

13. The professor or laboratory director for this experiment will tell you how many

pennies to place in each slot. Insert the pennies into the slots you are given and

then tape them over so that the pennies do not fall out during the experimen-

tation portion of this laboratory.

Figure 5.15: Pennies Inserted Into Mass (Suspended with Scotch Tape)

14. Push the gear (on the motor shaft) into the gear insert. There are notches that

the gear teeth will fit into. The more open they are, the easier the insert will fit

on the gear. If the insert does not fit on the gear at first, take a knife and cut

out each notch (inside the insert) until each notch is wider. Remove the gear

insert from the gear once it fits.
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Figure 5.16: Opening Notches of Gear Insert With Knife

Figure 5.17: Gear Pushed Into Gear Insert

15. Insert the gear insert into the center of the 3D printed mass. Ensure that the

hexagonal shape of the gear insert fits into the center of the mass. (This may

require that you use sand paper to sand down the sides of the gear insert. Do

not sand too much, as the insert needs to fit snugly. Fine grain or 400 grit

sandpaper is highly recommended.)
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Figure 5.18: Sanding Gear Insert

Figure 5.19: Gear Insert Inside 3D Printed Mass

16. Push the gear into the gear insert/3D printed load combination. Make sure that

the plane of the load is orthogonal to the gear shaft (parallel with the table the

project is on).
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Figure 5.20: Gear Pushed into Mass/Gear Insert Combination

Figure 5.21: Completed Load Setup

Mounting Full Hardware Setup to Flat Surface

17. Find a flat surface (on top of a desk or table.) Wipe off the surface to eliminate

any loose particles that may be on it.

18. Obtain sticky tack. Roll the sticky tack into 5 different balls about .5 inches in

diameter.
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Figure 5.22: Sticky Tack Rolled Balls

19. Take one of the balls and split it into two equal halves. Take each half and roll

them into a long, cylindrical strands.

Figure 5.23: Cylindrical-shaped Sticky Tack

20. Place the sticky tack to the four corners of the case and the two strands to the

bottom of the encoder on the motor.
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Figure 5.24: Sticky Tack On The Bottom of the Case and Motor Encoder

CAUTION: Do not place the sticky tack directly below the motor shaft. The

tack can easily attach to the motor shaft and inhibit the motion by adding

unwanted friction.

Figure 5.25: Correct Sticky Tack Placement on Motor Encoder

21. Take the wires going to the Motor Encoder and wrap them under the leg of the

case closest to the power on the motor shield (This will keep the wires together
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and away from the moving motor load.) After the wires are under the leg,

press all four corners of the case and the bottom of the motor encoder to a flat

surface.

Figure 5.26: Wrap Wires Under Leg of Case
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Figure 5.27: Press Each Corner of the Case and the Motor Encoder to Flat

Surface

22. Plug the USB B connector back into the Arduino.
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Figure 5.28: Plug USB B Connector Into Arduino

23. The hardware setup is now complete.

Figure 5.29: Completed Hardware Setup
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5.3 Experimental Procedures

5.3.1 Exercise 1: Deriving Motor Transfer Function

Figure 5.30 below is the circuit diagram for the DC motor:

R
a

+

+

-

-

w
e e

b

i

J,b

Figure 5.30: Circuit Diagram for DC Motor

The equations of motion for the system are:

e = Rai+ eb (5.1)

Jω̇ = τ − βω (5.2)

τ = Kti (5.3)

eb = Kbω (5.4)

where J is the inertia of the armature and the load, β is the viscous friction coefficient,

Kt is the torque constant, Ra is the armature resistance, Kb is the back emf constant,

τ is the torque, i is the armature current, e is the voltage applied to the motor, ω is

the angular velocity of the motor, and eb is the motor back emf.

24. Solve for the transfer functions G1,G2,G3, and G4 in Figure 5.31, using Equa-

tions (5.1) - (5.4) .
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Figure 5.31: Empty Block Diagram for Motor

25. Using block diagram reduction, find the overall open loop transfer function Ω(s)
E(s)

.

Expected Hand-Written Results (For Instructors)

Students are first asked in step 24 to solve for the transfer functions that go into

blocks G1, G2, G3, and G4 from Figure 5.4. To solve this, we first take the Laplace

Transform Equations 5.1 - 5.4. After that, the correct transfer functions for each

block will look like the values in Table 5.1 below:

Table 5.1: Transfer Function Values for G blocks

Block Value

G1
1
Ra

G2 Kt

G3
1

Js+β

G4 Kb

Students are also asked to use block reduction and solve for the overall transfer

function Ω(s)
E(s)

in step 25. First, we combine blocks G1, G2, and G3 we have the

following result:
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Kt

Ra(Js+β)

Kb

E(s)
+ Ω(s)

−

We can further reduce this block diagram using the negative feedback loop rule. The

result is the solution of the transfer function Ω(s)
E(s)

is in the block diagram below:

Kt
JRa

s+
Raβ+KbKt

JRa

E(s)
Ω(s)

5.3.2 Exercise 2: Theoretical Open Loop Step Response

In this exercise you will derive the theoretical open loop step response for the DC

motor. In later exercises, you will compare this theoretical response to experimental

and simulated step responses.

26. Arrange your open loop transfer function G(s) = Ω(s)
E(s)

from the previous step in

the form

G(s) =
Y (s)

U(s)
=

Km

τms+ 1
(5.5)

27. Km is the open loop DC gain, and τm is the time constant. Assume that a

step input of A volts is applied to the motor, derive the motor velocity ω(t)

using partial fraction expansions, and plot the velocity versus time. Your step

response should be a function of Km and τm.
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28. How doesKm affect the step response? How does τm affect the step response? In

a later exercise you will find the step response of your DC motor experimentally,

and you will use the step response to determine Km and τm.

5.3.3 Exercise 3: Open Loop Step Response Variables

To produce the open loop step response (both experimentally and in simulation), you

will need to create a Matlab file (used to store variables into the Matlab workspace)

before running Simulink. Follow the steps below to create this Matlab file.

Setting Up Matlab File

29. Open Matlab 2014b. In the top left-hand corner of the main Matlab page, click

the button labeled “New Script” (See Figure 5.32).

Figure 5.32: New Script Button Location on Main Matlab Page

30. A page labeled “Editor-Untitled” should be visible. This is the Matlab “m-file”

editor. Save the m-file by clicking the Save button at the top left hand

corner.
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Figure 5.33: Save Button Location on m-file Editor Page

31. A page labeled “Select File for Save As” should now be visible. Navigate the

browser to the directory where your previous experiments were saved. Type

OL Constants.m as the File name. Save the file in this directory by clicking

Save at the bottom.

32. Type Ts = 0.01; (See Figure 5.34). This will be the sampling time.

Figure 5.34: Sampling Time Variable “Ts” Added to m-file

33. Type rp = 2*pi/1336; the Mitsumi motor/encoder has a resolution of 1336
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counts per revolution. This means that every time the motor has completed a

full revolution (2π radians), the encoder has provided 1336 counts. Multiplying

the output of the encoder count by rp produces the angular position of the

motor shaft (in radians).

34. Type Vmax = 15; this will be the maximum voltage used to power the motor.

35. Type v2d = 255/Vmax; this variable will be used to convert the motor input

voltage into a PWM duty cycle percentage. Figure 5.35 shows the completed

lines of code used in the Exp2 Constants.m file.

Figure 5.35: Final Matlab Variables

36. Save the file again by clicking Save at the top of the page (as in Step 27).

This completes the Matlab file setup.

5.3.4 Exercise 4: Experimental Open Loop Step Response

In this exercise, you will create an experimental Simulink model to load to the Ar-

duino. We call it experimental because it will be loaded to the Arduino’s memory

and run to collect data from the open loop step response of the motor. This open

loop step response data will then be interpreted in the next exercises to find the

appropriate Km and τm values.
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Setting Up Simulink File (Arduino)

37. Open the Simulink model “SimpleDCMotor.slx” that was created in the Simple

DC Motor laboratory.

38. Click on Model Configuration Parameters. Once the Configuration Parameter

page is visible, change the “Fixed-step size (fundamental sample time):” to Ts.

Click Apply and then OK.

39. In the Simple DC Motor Simulink model, double-click on the “Direction” block

and change the “Constant value:” to 1. Also, double-click on the “Voltage”

block and change the “Constant value:” to 5. Finally, double-click on the “Volt-

age to PWM” gain block and change the “Gain:” to v2d. The final fixes to these

blocks should look like Figure 5.36.

Figure 5.36: Modified Simulink Model from Simple DC Motor

40. Navigate to the Library Browser and add a Constant and Digital Output

block to the Simulink window.

41. Rename the Constant block to “Encoder Power”. Change the “Constant value:”

in the Encoder Power block to 1.

42. Add a Dual Encoder Positions block, 2 Gain blocks, a Difference block,
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and a Discrete Filter block to the model. Rename one Gain block to “Steps

to Radians” and the other to “Velocity Scaling”. Leave the other two blocks

with their default names.

43. Double-click on the Steps to Radians block and type rp into the “Gain:” box

and click OK. Double-click on the Velocity Scaling block and type 1/Ts into

the “Gain:” box and click OK. Double-click on the Discrete Filter block, and

under “Numerator” input the value 0.1. In “Denominator:” type [1 -0.9] and

then click OK. The Discrete Filter block will smooth the velocity measurements

from the encoder output.

44. Connect the output “Enc1 Position” of the Dual Encoder Positions block to

the input of the Steps to Radians block. Connect the output of the Steps

to Radians block to the input of the Difference block. Connect the output

of the Difference block to the input of the Velocity Scaling block. Connect

the output of the Velocity Scaling block to the input of the Discrete Filter

block.

Figure 5.37: Encoder Output Position to Velocity

45. Now add a Data Type Conversion block. Double-click on the block. Next to

“Output data type:” click the drop-down menu and choose the option “single”.

Click Okay and attach the output of the Discrete Filter to the input of the Data

Type Conversion block.

46. In the Library Brower, navigate to the “Rensselaer Arduino Support Package”

title. Right-click over the name and click “Open Rensselaer Arduino Support
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Package Library.” In the Library, left-click and drag the Serial Send single

Port0 block over to your Simulink model. Additionally, left-click and drag the

text Plot Data ‘single’ over to the model and place it under the Serial Send

single Port0 block.

Figure 5.38: Serial Send single Port 0 and Plot Data ’single’ Block and

Text Locations, Respectively

47. Connect the output of the Data Type Conversion block to the input of the

Serial Send single Port0 block. (When the model is running on the Arduino,

double-clicking on the text will open up the serial port and allow you to read

the data from the serial port.)

48. Now the Simulink file that will be deployed to the Arduino is complete (see Fig-

ure 5.39 for the final Simulink model). Before loading this model to the Arduino,

ensure that the Arduino is connected to your computer and the power supply is

connected to the motor shield. Save this file as OL Step Resp Arduino.slx

to the same folder where OL Constants.m is saved.
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Figure 5.39: Final Simulink Diagram to Load on Arduino

Collecting Experimental Data

The steps below will explain the common method for capturing data from the Ar-

duino. If you run into issues, refer back to the Sampling and Data Acquisition exper-

iment in Exercise 2 steps 78 - 82.

49. Open OL Constants.m and click the Run button at the top of the page.

50. Open OL Step Resp Arduino.slx and click the “Deploy to Hardware” but-

ton at the top-right of the page.

51. Once the model has successfully deployed to the Arduino, double click on the

text “Plot Data ‘single‘” inside the model window.

52. When the small window labeled “Plot Ser...” appears, enter the Arduino COM

port number under “Enter COM port to collect data:.” Also under “Enter Num-

ber of Samples to plot:” type single and for “Enter Number of samples to plot:”

type 2000.

NOTE: To find the COM port number for your Arduino, refer to the Simple

DC Motor experiment under the section “Software Setup → Installing Arduino

Mega 2560 Drivers,” specifically steps 20-24.
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53. Click Okay. Once the plot appears, plug the power cord from the power supply

into the motor shield.

CAUTION: Do not put your hands or any other parts of your body in front of

the motor load’s trajectory. Also, if the load does not begin spinning once the

motor shield is plugged in, immediately unplug the power and check to see if

everything is connected properly (review the “Hardware Setup” section in this

experiment for the proper hardware connections.)

54. Observe the plot. If the plot appears to be very jumpy (meaning that the values

do not look to be “smooth” and vary from extremely positive to negative values)

or if the values are not changing from zero, proceed to the next step. If the plot

appears to be smooth (rising to a value and staying around that value) then

skip to step 55 of this section; otherwise, continue to the next step.

55. Unplug the power from the motor shield, ensuring the motor load has come

to a complete stop. Press the reset button, which should be located under

the motor load trajectory on the Arduino.

56. Once the Arduino has fully reset, the plotting window should appear to output

a value of zero (flat line). If this is not the case, press reset once more until the

plot displays zero.

57. Plug the power cable back into the motor shield. If the data appears to be

increasing smoothly (not varying to very large and small values), continue to

the next step. If the data is still not smooth and largely varying, repeat

steps 52-53.

58. Let the data fill the plot window as it moves to the left in the plot window. Once

the data (starting with a value of zero) has filled the plot window completely,
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click the “Stop” button at the bottom of the screen. You should now have 2000

data points inside the window (which is 20 seconds.)

NOTE: you should expect to see a curve beginning at zero, rising up, and

settling to the steady-state value. Try to make the first value of the plot be

equal to zero by clicking stop once the zero velocity point crosses the origin.

59. In the upper left-hand corner of the figure click “File” and click “Save As.”

60. Save the figure as OL data.fig in the same folder as all of the other files you

have created in this experiment and click Okay. Close the figure. Another “Plot

Ser...” window should appear. Click the close button on the window.

61. Navigate over to the main Matlab window. Under the Workspace, find the vari-

ableWindowDat, right-click it and click “Save As”. Name the fileOL data.mat

and save it into the same folder where you saved OL data.fig.

62. You now have the experimental data for the open loop step response of this

experiment.

5.3.5 Exercise 4: Find Transfer Function from Experimental Data

Experimental Plotting File

63. Open the main Matlab 2014b window and click New at the top and then click

Script.

64. Once the new Untitled m-file appears, Click Save at the top of the page.

Save the file as OL Plot.m.

65. Copy and paste the text in Table 5.2 into the Matlab file. After adding the

code click Save and then click Run .
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Table 5.2: Code for Plotting Experimental Results

%Load the experimental data and store into a variable

Exp_dat = load(’OL_data.mat’);

Exp_dat = OL_data.WindowDat;

%Set the time vector to be the same length as Exp dat (20 Seconds)

T = 0:Ts:20;

%Plot the Experimental Data with Respect to Time

figure(1);

plot(T,OL_data, ...

’Color’, ’r’, ...

’LineWidth’, 1);

title(’Experimental Open Loop Step Response’); %Title

legend(’Experimental’, ’Location’, ’northwest’); %Legend

xlabel(’Time (seconds)’) % x-axis label

ylabel(’w (radians/second)’) % y-axis label

66. Calculate the time constant (τm) from the angular velocity vs. time plot found

in the previous step.

67. Calculate the DC gain (Km) from the experimental plot. (Remember that, for

this experiment, the step magnitude was A = 5.)

68. Using the calculated (τm) and (Km), find the first order transfer function. Use

the following form for the transfer function:
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G(s) =
Y (s)

U(s)
=

Km

τms+ 1
(5.6)

where Km is the steady-state value and τs is the time constant.

69. Compare the transfer function found in Equation 5.6 with the transfer function

found using the block diagram reduction in Exercise 1. How are the transfer

functions related? Find expressions for Km and τm in terms of Kt, Kb, J, β and

Ra.

70. Given that Kt = 0.0267 Nm
A
, Kb = 0.0269

V
rad

s
and Ra = 13.5 Ω, calculate the

remaining motor parameters (β and J).

71. You may wish to rerun the experiment to see if you get consistent values for

Km and τm. If the results are not consistent, explain why that could be.

5.3.6 Exercise 6: Compare Simulation and Experimental Results

Typical engineering practices involve first simulation followed by experimental testing

on a real system. You are unable to simulate the model for the motor and load

combination without parameters. For this experiment, the experimental values are

obtained first in order to find the model parameters for simulation. Now that those

values have been found, a Simulink model for simulation will be setup. The simulated

results will then be compared with the experimental results by overlaying each plot

on top of one another in the same figure. Steps explaining the setup of the Simulink

simulation file will be explained, and then you will be given steps to take the data

from the simulation and plot it in the same figure as the experimental results.
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Setting Up Simulink File (Simulation)

72. With MATLAB R2014b open, click the button labeled “New” to reveal the

dropdown menu. Under the blue bar labeled “Simulink” click the button labeled

“Simulink Model”.

73. With a new Simulink Model labeled “unititled” visible, click on “File” at the

top left hand corner of the page. In the drop-down menu, click “Save As....”

74. In the “Save As” page, navigate to the folder where you have saved the Matlab

file created from section Setting UpMatlab File. Name the fileOL Simulation.slx

and click Save.

75. Click the Model Configuration Parameters icon at the top of the page.

76. On the left column of the page click Solver (“Simulation time” should appear

at the top of the window.)

77. Change the “Stop time:” to 20.

78. Next to “Type:” click the drop down menu and choose Fixed-step. Once

available, change the value for “Fixed-step size (fundamental sample time):” to

Ts and then click “Okay.”

79. In the Simulink model, open the Library Browser and place a Constants block.

Double-click on the Constants block and change the value to 5. Change the

name of the block from “Constants” to “Input Voltage”.

80. Add an LTI System block to the Simulink model. Double-click on the block

and add the value tf(Km/5,[tau 1]) to the box labeled “LTI system variable”

and then click OK (See Figure 5.41).

107



Figure 5.40: Function Block Parameters

NOTE: Km is divided by 5 in order to take out the scaling effect that the 5

volt input creates. Without dividing by 5, the output of the loop step response

will be 5 times as large as we want it to be. Also, once you have typed in the

information into the LTI System block, the text on the block may show up

with question marks ???, if there is simply not enough room to display the text

on the block.

81. Add a Scope block to the Simulink model. Connect the input of the Scope

block to the output of the LTI System block.

82. Add a To Workspace block to the Simulink model. Connect the output of the

LTI System block to the input of the To Workspace block.

83. The Simulink simulation model is now complete (see Figure 5.41).
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Figure 5.41: Final Simulink Diagram to be Simulated and Compared With the

Experimental Results

Collecting Simulation Data

84. Open the OL Constants.m file created in Exericise 1.

85. Add the lines of code found in Figure 5.42 to the bottom of the m-file.

Figure 5.42: Add These Two Lines to Code

86. Replace each 0 value in the OL Constants.m file (shown in Figure 5.42) with

the values you found for Km and tau in steps 64 and 65.

87. Save the file and then press the “Run” button at the top of the page.

Navigate to the “MATLAB 2014b” home page. Under “Workspace” on the

right-hand side of the page, all of the variables from “OL Constants.m” should

be listed below.

NOTE: if any variables created in the “Setting Up Matlab File” section are

not listed under “Workspace,” simply add the missing variables to the bottom

of the OL Constants.m file and click Save once more. If any variables are

109



missing from the OL Constants.m file, the “OL Simulation.slx” file will not run

correctly.

88. Open OL Simulation.slx. Click the Run button at the top of the page.

89. Once the model has finished running, double-click on the Scope block. Click

the Autoscale button .

NOTE: Observe the plot; does the response look similar to the response found

in step 55? If not, check the Km and tau values you found in steps 64 and 65.

For now, the exact Km and tau values do not matter, just the general shape of

the plot (which should be increasing until it reaches a steady state value, where

it stays constant.)

90. Navigate back to the “MATLAB 2014b” home page. Under “Workspace” a new

variable simResp should now be available. Right click on simResp and click

“Save As...” Navigate to the folder in which you have saved this project, name

the “File name:” as Sim 1.mat, and click Save at the bottom of the page.

Experimental vs. Simulation Comparison Matlab File

91. Open the OL Plot.m file you created in steps 63 - 71.

92. Copy and paste the text from Table 5.3 to the bottom of OL Plot.m. Click

Save .
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Table 5.3: Code for Plotting Simulation Results (Added to OL Plot.m)

%Load the simulated data and store into a variable

Sim_dat = load(’OL_data.mat’);

Sim_dat = Sim_dat.simResp.Data;

%Plot the Simulated Data with Respect to Time

hold on;

plot(T,Sim_dat, ...

’Color’, ’k’, ...

’LineWidth’, 2);

legend(’Experimental’, ’Simulation’, ’Location’, ’northwest’);

93. Click Run at the top of the page.

94. Compare the responses of the simulation with the experimental data. Does the

simulated response match the experimental response? Describe the similarities

and differences. Write down the current value for Km and tau on a

piece of paper to keep track of them.

95. What would cause the differences between the responses?

96. If the plots look different, change the values for Km and tau to match

the simulation with the experimental open loop step response. After finding

the new values, change the Km and tau values in the OL Constants.m

file. After changing the OL Constants.m file, follow steps 84 - 93 once

more. If the simulated and experimental open loop step responses look almost

the same, continue to the next step.
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97. How much (if any) did the new values for Km and tau change from your original

values? For the new values of Km and τm, repeat step 67. How much did the

values for J and β change?

Expected Experimental vs. Simulation Results (For Instructors)

Since every student in the “Dynamic Systems or Control” course will be given a

different number of pennies to put into the load, two extreme cases for the open loop

step response were tested - the load with a full complement of pennies and the load

without pennies. The open loop step response was tested 3 different times for each

case, and the following results were observed:

Figure 5.43: Three Open Loop Step Responses With Full Pennies in Load (Using

Km = 18.5 rad
V s

and tau = 16.2 s For Simulation)
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Figure 5.44: Three 10 Second Open Loop Step Responses With No Pennies in Load

(Using Km = 17 rad
V s

and tau = 2.7 s For Simulation)

In order to better observe the steady state value for the full penny case, the

open loop step response plot ran for 20 seconds, as opposed to 10 seconds for the load

without pennies. The major change in response is the settling time. The settling time

is about 10 seconds longer for the load with full pennies. Expect for students running

this lab to observe a steady state value of Km equal to around 20 radians/second and

a settling time tau anywhere between 2 and 13 seconds, depending on the number of

pennies used.

In step 67 students are asked if they can solve for β and J given that constants

Kt = 0.0267 Nm
A
, Kb = 0.0269

V
rad

s
and Ra = 13.5 Ω. They can be solved by setting

G(s) in Equation 5.6 equal to the transfer function found for Ω(s)
E(s)

. We found the

simplified version of Ω(s)
E(s)

in Exercise 1 under the section labeled Expected Hand-

Written Results (For Instructors). So all we need to do is set them equal to each

other. Through calculations, it was found that for the Full Penny Load case, β =

0.000054 and J = 0.001732 Kg
m2 . For the Empty Penny Load case, β = 0.000198 and

J = 0.000314 Kg
m2 . As you can see, the inertia increased with the full penny load case

compared with empty penny load case. β, the viscous friction coefficient, appears to
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quadruple when the load is empty.

5.4 Conclusion/Student Feedback

This chapter provided an undergraduate level (Systems) approach to analyzing the

open loop step response of a DC motor. Both experimental and simulated responses

were generated and compared. This experiment utilized the Simple DC Motor, Serial

Communications Laboratory, Sampling and Data Acquisition, and Introduction to 3D

Printing experiments.
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CHAPTER 6

Closed Loop Step Response

6.1 Objective

This chapter describes an experiment that adds feedback to the Open Loop Step

Response experiment. Students will find the poles of the open loop motor model

from the Open Loop Step Response experiment. The objective is for students to

observe the effects of a proportional-derivative controller that will produce under-

damped and over-damped closed loop step responses. Students will find the closed

loop poles of the system and compare them with the open loop poles. Two sets of

gains corresponding to under-damped and over-damped responses will be given and

students will simulate the closed loop step responses corresponding to those gains.

The experimental response will then be found and compared with the simulated

response.

6.2 Setup

6.2.1 Required Materials

Hardware

• All hardware from the Open Loop Step Response experiment is required for this

lab. (No additional hardware is required)
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Software

• All software from the Open Loop Step Response experiment is required for this

lab.

Previous Experiments

• Open Loop Step Response

6.2.2 Hardware Setup

No hardware setup is required. You should have completed the hardware setup in the

Open Loop Step Response experiment.

6.2.3 Software Setup

No software setup is required. You should have completed the software setup in the

Open Loop Step Response experiment.

6.3 Experimental Procedures

6.3.1 Exercise 1: Deriving Closed Loop Motor Transfer Function

r yωu θ

k2 k1

Km
τms + 1

K s
1+

-

+

+

Figure 6.1: Empty Block Diagram for Closed Loop Motor

1. Using block diagram reduction on the block diagram in Figure 6.1, find the

closed loop transfer function Y(s)
R(s)

.
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2. Assume that the reference input, r(t), is a step function of amplitude π
4
. You

calculated Km and τm from the Open Loop Step Response experiment. Consider

the following two sets of gains:

• K = 56, K2 = 0.06, K1 = 1

• K = 15, K2 = 0.5, K1 = 1

First, find the closed loop poles for both sets of gains. Based on the pole loca-

tions, estimate the settling time, percent overshoot, and frequency of oscillation

of the closed loop step response for each set of gains. Also, find the steady state

value from the closed loop transfer function.

3. Using the values you computed in the previous step, sketch the closed loop step

responses for each set of gains. (You will make two different plots, one for each

set of gains.) Show scales on all axes.

Expected Hand-Written Results (For Instructors)

Students are asked to use block reduction and solve for the overall transfer function

Y (s)
R(s)

from Figure 6.1. To solve the block reduction, we must first take the open loop

transfer function ( Km

τms+1
) and put it into the closed loop block diagram form as below:

K K′

s+a
1
s

u ω

k2

+

Y (s)
θ

R(s)
+

k1

+

−

Where K ′ = Km

τm
and a = 1

τm
. This simplification makes it easier to compute the

closed loop poles from the final closed loop transfer function. Next, pass the k2 gain
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over the integrator, multiply K times the motor transfer function, and multiply the

transfer function by 1
s
to get the following result:

KK′

s(s+a)

k2s+ k1

Y (s)−R(s)
+

Setting k1 = 1 we can do simple feedback block reduction to find the closed loop

transfer function Y (s)
E(s)

:

KK′

s2+(a+KK′k2)s+KK′E(s) Y (s)

Recall that for the Open Loop Step Response experiment, we found the values for Km

and τm when the load was full of pennies and when it was empty. The values for

those parameters are:

• Full Penny Load: Km = 18.5 and τm = 16.2

• Empty Penny Load: Km = 17 and τm = 2.7

Given the gains K and k2 and the values for Km, and τm we can solve for the closed

loop poles (There will be 4 different sets of poles corresponding to each gain applied

to each load configuration) with the following equation:

Poles =
−(a+KK ′k2)±

√
(a+KK ′k2)2 − 4(KK ′)

2
(6.1)

After calculating the closed loop poles, we can also calculate the settling time and

frequency of oscillation. For this solution, the 2% settling time and frequency of
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oscillation are:

Settling T ime = 4
∥Re{pole}∥ (seconds) (6.2)

Frequency of Oscillation = Im{pole} ( radians
second

) (6.3)

Additionally, the natural frequency ωn and the damping ratio ζ are calculated by

setting the denominator of the closed loop transfer function equal to:

s2 + 2ζωn + ω2
n (6.4)

Which gives us the relations:

a+KK ′k2 = 2ζωn (6.5)

KK ′ = ωn
2 (6.6)

ζ may also be calculated from the following equation:

ζ = sin(atan(
Re{pole}
Im{pole}

)) (6.7)

Students are given the gain values for K and k2 and have the motor model parameters

Km and τm; therefore, they can solve the relationships in Equations 6.5 - 6.7 to find

the appropriate values for ζ and ωn. The damping ratio is also important in finding

the percent overshoot, which is calculated from ζ in the following way:

PercentOvershoot = 100 ∗ e−
ζπ√
1−ζ2 (6.8)

Table 6.1 below shows all of the closed loop poles, settling times, percentage over-

shoots, and frequencies of oscillation for the following configurations: full penny load
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under-damped, full penny load over-damped, empty load under-damped, and empty

load over-damped. The plots below the table show the closed loop step responses

(from Simulink) for each load configuration. In the table the settling times found

for each load configuration will serve as the upper and lower limits of the possible

settling times students can produce from their experiments. Similarly, the calculated

percentage overshoot for both the full and empty penny loads (underdamped) will be

the bounds for their values. If their calculated settling times or percentage overshoot

lie beyond these bounds, it is likely they have made a mistake with their calculations.

NOTE: The reference value used to calculate the closed loop step response is equal

to π
4
, which is the constant, dotted line shown in Figures 6.2 and 6.3. This value also

serves as the steady-state value of the closed loop step response.

Table 6.1: Results Found From Simulating Different Gains and Load Configurations

Load

Config
Damp

Closed

Loop

Poles

Set.

Time

(s)

%

Overshoot

(%)

Damp

Ratio

Freq.

of Osc.

( rad
s
)

Full Penny Over
-5.53

-3.10
1.29 0 1.042 0

Full Penny Under -1.95±7.75i 2.05 45.36 0.244 7.76

Empty Over
-45.52

-2.07
1.93 0 2.449 0

Empty Under -10.76±15.39i 0.37 11.12 0.573 15.39
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(a) Full Pennies Over-Damped Simulation (b) Full Pennies Under-Damped Simulation

Figure 6.2: Full Pennies Over-Damped and Under-Damped Simulation Results

(a) Empty Load Over-Damped Simulation (b) Empty Load Under-Damped Simulation

Figure 6.3: Empty Load Over-Damped and Under-Damped Simulation Results
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Setting Up Matlab File

4. Open the OL Constants.m file created in the open loop step response exper-

iment.

5. Save the file as CL Constants.m.

6. Type ref=pi/4; at the bottom of the Matlab file. This will be the reference

position for the closed loop step response.

7. On the next line type K =56; This will be the gain that is multiplied by

r− (k2ω+ k1θ). Since k1 is always equal to 1, K effectively multiplies (r− θ)−

k2θ̇ = e − k2θ̇. The term Ke is called proportional feedback, since it produces

an input that is proportional to the error. The term Kk2θ̇ is the derivative

feedback, and has a damping effect, like viscous friction.

NOTE: k1 will not be added to this Matlab file, since it will always be equal

to 1 for this experiment.

8. Type K2 = 0.06;

NOTE: The gains K and k2 (given in Step 2) will be reassigned with new values

corresponding to the second set of gains in Exercise 74.

Figure 6.4: Matlab File for Closed Loop Experiment
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6.3.2 Exercise 2: Simulated Closed Loop Step Response (First Feedback

Gain Set)

You will first simulate the closed loop step response before finding the step response

experimentally. This exercise will provide steps for editing the OL Simulation.slx

file you created in the Open Loop Step Response laboratory to produce a simulated

closed loop step response.

Setting Up Simulink File (Simulation)

9. Open the OL Simulation.slx file created in the Open Loop Step Response

experiment.

10. Save the file as CL Simulation.slx.

11. Change the simulation time to 10 seconds.

NOTE: You will run the file for 10 seconds instead of 20 seconds because the

closed loop step response will have a shorter settling time than the open loop

step response.

12. Delete the Scope and To Workspace connections to the LTI System block

by left-clicking on the connection and pressing Delete on the keyboard.

13. Additionally, delete the connection between the Input Voltage and the LTI

System blocks.

14. Add 2 Sum blocks, 2 Gain blocks, and 1 Integrator block to the Simulink

model.

15. Rename the Input Voltage block to Reference. Double-click on the same

block and change the “Constant value:” to ref.
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16. Rename one of the Gain blocks to K. Double-click and change the “Gain:”

value to K.

17. Rename the other Gain block to K2. Change the Gain: value to K2.

18. Connect the output of the Reference block to the input of one of the Sum

blocks. Connect the output of the Sum block to the input of the K block.

Connect the output of the K block to the input of the LTI System block.

19. Double-click on the Sum block from the previous step and next to “List of

signs:” change the second + sign (farthest to the right) to a - sign and click

okay.

20. Double-click the LTI System block and change the “LTI system variable”

text to tf(Km,[tau 1]). Connect the output of the LTI System block to the

input of Integrator block. Connect the output of the Integrator block to the

input of one of the Scope blocks. Rename the same Scope block to Angular

Position.

21. Right-click on K2 and hover the mouse over Rotate & Flip. Left-click on

Clockwise.

22. Connect the input of K2 to the connection between LTI System and Inte-

grator.

23. Double-click on the unused Sum block. Next to “List of signs:” move the two

+ signs to the left of the | sign (See Figure 6.5)
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Figure 6.5: Correct Setup for Second Sum Block

24. While the Sum block is still highlighted (the block is outlined in blue) hold

down the key combination Ctrl-R to rotate the block Clockwise and then let

go. Once again, hold down Ctrl-R and let go of the keys. The Sum block

should now have two inputs: one facing up and the other facing right. The

output should be facing to the left.

25. Connect the output of K2 to the input (facing in the upward direction) of the

Sum block from the previous step. Connect the input (facing to the right) of

the Sum block to the output of the Integrator block and the input of the

Angular Position scope block.

26. Connect the output of the Sum block from the previous step to the - input of

the other Sum block.

27. Connect the input of the To Workspace block (with value simResp) to the
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connection between the output of the Integrator block and the input of the

Angular Position scope block.

28. This concludes the setup of the simulation file for the closed loop step response

of the motor. See Figure 6.6 for the final Simulink simulation file.

Figure 6.6: Final Simulink Simulation Model Used in the Closed Loop Step

Response Experiment

Collecting Simulation Data

29. Open CL Constants.m and then press the Run button at the top of the

page. Navigate to the MATLAB 2014b home page. Under “Workspace” on

the right-hand side of the page, all of the variables from CL Constants.m

should be listed.

NOTE: if any variables created in the Setting Up Matlab File section are

not listed under “Workspace,” simply add the missing variables to the bottom

of the CL Constants.m and click Save once more. If any variables are missing

from the file, the CL Simulation.slx file will not run correctly.

30. Open CL Simulation.slx. Click the Run button at the top of the page.

31. Once the model has finished running, double-click on the Angular Position

scope block. Click the Autoscale button . Observe the plot. Does the
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closed loop step response appear to rise up from zero and settle to the reference

value (as in your theoretical sketch in Exercise 1)? If the plot looks to be correct

(with a run time of 10 seconds) continue to the next step. Otherwise, go back to

the Setting Up Simulink File (Simulation) section to ensure your Simulink

file is correct.

32. Navigate back to the MATLAB 2014b home page. Under “Workspace” a

variable (simResp) should now be available. Right click on simResp and

click “Save As...” Navigate to the folder in which you have saved this project,

type next to “File name:”CL simResp 1.mat, and click “Save” at the bottom

of the page.

33. You now have the simulation data found from Simulink for the first set of gains.

Simulation Plot File

34. Open the main Matlab 2014b window and click New at the top and then click

Script.

35. Once the new Untitled m-file appears, Click Save at the top of the page.

Save the file as CL Plot.m.

36. Copy and paste the text in Table 6.2 into the Matlab file. After adding the

code click Save and then click Run .

37. Save the figure as CL S 1.fig into your folder for this project. Refer to this

figure for the remaining steps in this section.

38. Compare the simulation results with the hand-written results you found in

Exercise 1. Does the simulated plot resemble the hand-written plot found from

the first set of gains? Discuss similarities and explain any differences.
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39. Estimate the settling time, percent overshoot, and frequency of oscillation of

the closed loop step response from the simulated plot and compare with the

handwritten plot.

40. Also compare the steady state values from each plot. Discuss the similarities

and explain any differences.

Table 6.2: Code for Plotting the Closed Loop Step Response Simulated Results

%Load the simulation data and store into a variable

CL_simResp_1 = load(’CL_simResp_1.mat’);

CL_simResp_1 = CL_simResp_1.simResp.Data;

%Set the time vector to be 10 Seconds with Ts time steps

T = 0:Ts:10;

%Plot the simulation data with respect to time

figure(1);

plot(T,ones(size(T))*ref,’–’, ’Color’, ’r’);

hold on;

plot(T,CL_simResp_1, ...

’Color’, ’k’, ...

’LineWidth’, 2);

title(’Simulated Closed Loop Step Response’); %Title

legend(’Reference’,’Simulated’, ’Location’, ’southeast’); %Legend

xlabel(’Time (seconds)’) % x-axis label

ylabel(’Theta (radians)’) % y-axis label
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6.3.3 Exercise 3: Experimental Closed Loop Step Response (First Feed-

back Gain Set)

This section will provide the setup of the Simulink file for the Arduino.

Setting Up Simulink File (Arduino)

41. Open the Simulink file created in the Open Loop Step Response experiment

named OL Step Resp Arduino.slx.

42. Add 2 Gain blocks, 1 Abs block, 2 Sum blocks, and 1 User Defined Fcn

block to the file. In the upper left hand corner of the Simulink model, click

“File” and then “Save As”. Save this file as CL Step Resp Arduino.slx in

the same folder where you saved the Open Loop Step Response Simulink file

OL Step Resp Arduino.slx.

43. Delete the connection from theVoltage block going into theVoltage to PWM

block. Connect the output of the Voltage block to the input of one of the Sum

blocks and the output of the Sum block to the input of one of the Gain blocks.

Double-click the Sum block and under “List of signs:” change the second +

sign (farthest to the right) to -. Click Okay. The Sum block should have a

minus sign for the bottom input.

44. Rename the Gain block from the previous step to K. Double-click and input

a value of K for the “Gain:” value. Connect the output of the K block to the

input of the Abs block.

45. Connect the output of the Abs block to the input of the Voltage to PWM

block.

46. Rename the Voltage block to Ref. Double-click on the block, change the

“Constant value:” to ref, and then click Okay. Connect the output of Ref to
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the (left) input of the Sum block from the previous step.

47. Change name of the User Defined Function block to Sign to Direction.

Double-click the block to reveal the Matlab editor window with the tab “Sign

to Direction” visible. Delete all of the code in the function and copy-paste the

text from the Matlab file shown in Table 6.3 into the block and click Save

at the top.

Table 6.3: Code for Sign to Direction Function)

function y = fcn(u)

%#Function that sets the output to 1 if the input is positive and 0 if the

% input is negative

if u >= 0

y = 1;

else

y = 0;

end

48. Connect the input (u) of the Sign to Direction block to the output of the

K block. To do this, left-click on the input of the Sign to Direction block,

hold, and drag the (red-dashed) line down to the connection where the K block

goes into the Abs block. Once on top of the connection (the red-dashed line

becomes a solid black line) let go of the mouse. (The output of the K block

should now be connected to both the Sign to Direction block and the Abs

block.)
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49. Delete the Direction block and its output connection to the Digital Output

block. Connect the output (y) of the Sign to Direction block to the input

of the Digital Output block (where the output of the Direction block was

connected).

50. Delete the Discrete Filter block and the connection the block has with the

Data Type Conversion block. Connect the output of the Velocity Scaling

block to the input of the remaining Gain block. Rename the Gain block to

K2 and double-click the block to change the “Constant value:” to K2.

51. Left-click on the K2 and hold down the keyboard combination Ctrl-I. This will

flip the direction of the K2 block to the output facing left. (This will help the

Simulink file look cleaner later in this setup.)

52. Left-click on the remaining Sum block and hold down the keyboard combination

Ctrl-I. The sum block output should now be on the right and the side input

should be facing to the right. Connect the output of the K2 block into the right

input of the Sum block. Connect the output of the Sum block to the - input

of the other sum block.

53. Connect the bottom + input of the Sum block to the connection between the

Steps to Radians block. Also connect the input of the Data Type Conver-

sion block to the same connection. The output of Steps to Radians should

be going to the inputs of the Difference, Sum, and Data Type Conversion

blocks.

54. Click Save. The Arduino Simulink file for the experimental closed loop step

response is now complete. See Figure 6.7 for the completed model.
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Figure 6.7: Final Closed Loop Step Response Simulink Model for Arduino

Collecting Experimental Data

55. Open CL Constants.m and click the Run button at the top of the page.

56. Open CL Step Resp Arduino.slx and click the “Deploy to Hardware” but-

ton at the top-right of the page.

57. Once the model has successfully deployed to the Arduino, double click on the

text Plot Data ‘single’ inside the model window.

58. When the small window labeled “Plot Ser...” appears, enter the Arduino COM

port number under “Enter COM port to collect data:.” The default values

for “Enter Number of Samples to plot:” is “single” and for “Enter Number of

samples to plot:” is 1000. If those values are anything different, change them

back to their default values.

Note: To find the COM port number for your Arduino, refer to the Simple

DC Motor experiment under the section “Software Setup → Installing Arduino

Mega 2560 Drivers,” specifically steps 20-24.

59. Click Okay. Once the plot appears, plug the power cord from the power supply

into the motor shield.
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CAUTION: Do not put your hands or any other parts of your body in front

of the motor load trajectory. If the load does not begin spinning once the

motor shield is plugged in, immediately unplug the power and check to see if

everything is connected properly (review the Hardware Setup section in the

Open Loop Step Response experiment for the proper hardware connections.)

60. Observe the plot. If the plot appears to be very jumpy (meaning that the values

do not look to be “smooth” and vary from extremely positive to negative values)

or if the values are not changing from zero, proceed to the next step. If the plot

appears to be smooth (rising to a value and staying around that value, as you

found in Exercise 1,) then skip to step 64 of this section.

61. Unplug the power from the motor shield. On the Arduino, click the reset button,

which should be located under the motor load.

62. Once the Arduino has fully reset, the plotting window should appear to output

a value of zero (flat line). If this is not the case, press reset once more until the

plot displays zero.

63. Plug the power cable back into the motor shield, being careful not to bump the

motor load (This will throw off the initial angular position of the load.) The

load on the motor should move. If the data appears to be increasing smoothly,

continue to the next step. If the data is still not smooth (or the initial angle is

off from zero), repeat steps 61-63.

64. Let the data fill the plot window as it moves to the left. Once the data (starting

with a value of zero) has filled the screen completely, click the “Stop” button at

the bottom of the screen. You should now have 1000 data points on the screen

(which is 10 seconds)

Note: you should expect to see a curve beginning at zero, rising up, and settling
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to the reference value, as you found in Exercise 1. Try to make the first value

of the plot be equal to zero by clicking stop once the zero velocity point crosses

the origin. For more info on doing this, refer to the Sampling and Normal vs

External Mode experiment.

65. Navigate back to the MATLAB 2014b main page. Under “Workspace” the

variable WindowDat should now be present. Right-click on it and click “Save

As.” Name the file CL expResp 1.mat and save it into the folder where the

CL Step Resp Arduino.slx file is saved.

66. You now have the experimental data for the closed loop step response and the

first gain set.

Experimental Plotting File

67. Open the CL Plot.m file you created in the Simulation Plot File section.

68. Add the text in Table 6.4 to the bottom of the CL Plot.m file. After adding

the code, click Save and then click Run .

134



Table 6.4: Code for Plotting the Closed Loop Step Response Experimental Results

%Load the experimental data and store into a variable

CL_expResp_1 = load(’CL_expResp_1.mat’);

CL_expResp_1 = CL_expResp_1.WindowDat;

%Plot the simulation data with respect to time

hold on;

plot(T,CL_expResp_1, ...

’Color’, ’g’, ...

’LineWidth’, 1);

title(’Simulated vs. Experimental Closed Loop Step Response’); %Title

legend(’Reference’, ’Simulated’, ’Experiemental’, ’Location’, ’southeast’); %Legend

xlabel(’Time (seconds)’) % x-axis label

ylabel(’Theta (radians)’) % y-axis label

69. Save the figure as CL SE 1.fig into your folder for this project. Refer to this

figure for the remaining steps in this section.

70. Compare the simulation results with the experimental results you found. Do

the simulated plot and the theoretical plot from Exercise 1 resemble the exper-

imental plot found from the first set of gains? Discuss similarities and explain

any differences.

71. Estimate the settling time, percent overshoot, and frequency of oscillation of

the closed loop step response from the experimental plot. Compare with the

handwritten and simulated plot.
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72. Also compare the steady state values from each plot discussing similarities and

explaining differences. What could cause the simulated response to differ from

the experimental response?

6.3.4 Exercise 4: Simulated Closed Loop Step Response (Second Feed-

back Gain Set)

73. Open the file CL Constants.m.

74. Change the gain values to K = 15; and K2 = 0.5; and click Save .

75. Repeat the experiment beginning with Section Collecting Simulation Data,

steps 29-40, with the following exceptions:

• In step 32 name the data you find from simulation as CL simResp 2.mat

for the second set of gains.

• Change each CL simResp 1.mat in the CL Plot.m file you created in

Table 6.2 to CL simResp 2.mat.

• Comment out the second half of the CL Plot.m file pertaining to the

experimental values you in Table 6.4 (for the time being, in order to observe

only the Simulated Plot)

• In step 38, save the figure as CL S 2.fig.

• In steps 39 and 40, compare CL S 2.fig with the hand-written results you

found for the second set of gains.

6.3.5 Exercise 5: Experimental Closed Loop Step Response (Second Feed-

back Gain Set)

76. Repeat SectionCollecting Experimental Data steps 55-72 with the following

exceptions:
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• In step 65 name the experimental data as CL expResp 2.mat.

• Before running the CL Plot.m file in step 68, uncomment the second

half of the code in the CL Plot.m file (Created in Table 6.4.) Change

each CL expResp 1.mat to CL expResp 2.mat. After making these

changes, then run the file.

• In step 69 save the figure as CL SE 2.fig.

• In steps 70 - 72, compare the simulated and experimental responses in

CL SE 2.fig with the handwritten results you found for the second set of

gains.
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Expected Simulated vs. Experimental Results Using Second Gain Set (For

Instructors)

The results for the simulated vs. experimental responses (See Figures 6.8 and 6.9)

show that the experimental results are not exactly like the simulation results. For

instance, the overdamped response full penny load configuration appears to have a

larger steady-state error than the empty penny load overdamped response. This is

due to the nonlinear friction present at the motor shaft. For the overdamped empty

penny configuration, it appears that the load is able to follow the simulation up to

a higher steady-state value before staying constant. Since there is less mass in the

empty penny configuration, it takes less voltage (thus less gain) to overcome the

nonlinear friction, which in turn produces a lower steady-state error. Something also

to note is that for the full penny configuration with overdamping the damping ratio

is equal to 1.042, which is very close to an almost critically damped case. This is

also more obvious with the settling time for the overdamped full penny configuration

(1.29 seconds) which is smaller than both the underdamped and overdamped cases of

the empty penny configuration (2.05 seconds and 1.93 seconds, respectively.) Since

the damping ratio is almost optimal for the full penny configuration, the settling time

is much faster.

For underdamped responses of each configuration, it appears that the full penny

configuration is able to settle closer to the reference value than the empty penny

configuration. This is likely by coincidence. Since the steady-state value for each

response is very close to the actual reference value, we have a satisfactory result.

Both responses are subject to nonlinear frictions in that neither completely reach the

peak values of the simulation, and they don’t exactly settle to the reference value.

The underdamped full penny configuration even appears to become out of phase with

the underdamped simulation response. While there appears to be a steady-state error

for every response (both overdamped and underdamped for both configurations) they
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all appear to follow very closely in the beginning to the predicted rising responses,

showing that in a range where the voltage is larger, the masses are able to overcome

the nonlinearities in the friction and behave with satisfactory results. It should be

expected that students will run into issues with the nonlinear frictions with their

various load configurations. Testing out each extreme (full penny and empty penny)

we were able to find gains that produce acceptable overdamped and underdamped

responses, for all possible combinations of load inertias.

(a) Full Pennies Over-Damped (b) Full Pennies Under-Damped

Figure 6.8: Full Pennies Over-Damped and Under-Damped Simulation Vs. Experi-

mental Results
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(a) Empty Load Over-Damped (b) Empty Load Under-Damped

Figure 6.9: Empty Load Over-Damped and Under-Damped Simulation Vs. Experi-

mental Results

6.4 Conclusion/Student Feedback

This chapter provided an experiment that adds feedback to the Open Loop Step

Response experiment. Simulink models for simulation were created and compared

with the experimental closed loop step response results.
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CHAPTER 7

Pole Positioning State Feedback

7.1 Objective

This chapter describes an experiment that uses pole positioning on a Furuta pendulum

(also called a Rotary Inverted Pendulum.) Students will create a Simulink model

based on the equations of motion for the Furuta Pendulum provided to them. The

objective is for students to use pole positioning with full state feedback to control

the Furuta Pendulum. The open loop simulations of both the linear and nonlinear

models will be verified. After the open loop verification, the closed loop model will

be simulated. After completing the simulations, the controller will be loaded to

the Arduino, and the experimental data will be captured from the serial port and

compared with the simulations.

7.2 Setup

7.2.1 Required Materials

Hardware

All hardware from the Open Loop Step Response experiment will be required (with

the exception of the 3D printed motor load and insert created in the Introduction to

3D Printing Experiment). Additionally, the following hardware will be used:
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Figure 7.1: Hardware Required for Pole Positioning State Feedback Experiment

NOTE: All 3D printed materials were printed using .3mm resolution.

• 3D Printed Beam

• 3D Printed Encoder Mount

• 3D Printed Bearing Holder

• 3D Printed Elbow Bracket

• CUI Encoder Kit (AMT 103-V)

• Small Screw Driver (Phillips)

• Aluminum Rod (1/2-ft x 1/8 in. Aluminum Metal Rounds)

• 4 x 13 x 5mm Shielded Mini Bearings (2)

• M4 x 0.70 x 40 Coarse Thread Phillips Pan Head Screw

• #4-40 x 1/2 in. Screws (6)
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• #6-32 x 1/4 in. Screws (2)

• #6 x 1/2 in. Self-Drilling Screw

• 4 Male to Female Wires (In addition to theOpen Loop Step Response experiment

wires)

Software

• Matlab/Simulink 2014b

• Windows 7

Prerequisite Experiments

• Simple DC Motor

• Sampling and Data Acquisition

• Introduction to 3D Printing

• Open Loop Step Response (Only the Hardware Setup Section, Steps 1-23.)

7.2.2 Software Setup

• No Software Setup is required. Use the same software as the Simple DC Motor

experiment.
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7.2.3 Hardware Setup

Encoder Setup

Figure 7.2: Hardware for Encoder Setup

1. Obtain the CUI encoder kit (with gray and black inserts), 2 bearings, 3D printed

bearing holder, 3D printed encoder mount, M4 x 0.70 x 40 coarse thread phillips

pan head screw, #4-40 x 1/2 Inch Screws (4 of them), and a small screw driver.

NOTE: You can find the .stl files for the 3D printed files on the website.

Simply 3D print the objects with a 3D printer. (Refer to the Introduction to

3D Printing Experiment for any help in doing this.)

2. Press the bearings into the 3D printed bearing holder and encoder mount.

(a) Press Bearing Into 3D Printed

Encoder Mount

(b) Press Bearing Into 3D Printed

Bearing Holder

Figure 7.3: Pressing Bearings Into 3D Printed Objects
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3. Using 2 of the #4-40 screws, mount the black backing of the CUI encoder kit

to the encoder mount.

NOTE: It is okay if the ends of the screws mounting the black backing to

3D printed encoder mount protrude through the other side of the 3D printed

encoder mount.

Figure 7.4: Mount Black Backing of the CUI Encoder Kit to the Encoder Mount

4. Stick the M4 x 0.70 x 40 screw through the back of the bearing holder (through

the bearing. See Figure 7.5)

Figure 7.5: Stick the M4 x 0.70 x 40 screw through the back of the bearing

holder
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5. The encoder should be configured with all of the white switches in the same

position as shown in Figure 7.6. This configuration sets the encoder resolution

to be 8192 counts per revolution.

Figure 7.6: Correct Encoder Configuration

6. Put the M4 x 0.70 x 40 screw through the encoder as seen in Figure 7.7.

Figure 7.7: Stick the M4 x 0.70 x 40 screw through the Encoder

7. Place the black encoder insert into the encoder (the narrower end will go into

the encoder.)
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Figure 7.8: Place the Black Encoder Insert Into the Encoder

8. Place the gray insert (narrow end down) into the black insert.

NOTE: Placing the gray insert inside the black insert will cause the black and

gray insert to stick to the position along the M4 x 0.70 x 40 screw in which they

are joined (also holding the metal encoder face locked in the same position along

the screw). When pressing the gray insert into the black insert, make sure there

is a small gap between the bearing holder and encoder. If the bearing holder

is too close to the encoder from the gray/black insert placement, you can hold

the encoder with one hand while pressing the longer end of the M4 x 0.70 x 40

screw down toward the encoder and twisting left. This will cause the encoder

assembly to function as a nut and move along the shaft, creating a gap between

the bearing holder and encoder assembly. The opposite is true if you hold the

gray/black insert and pull and twist right with the longer end of the M4 x 0.70

x 40 screw. This will cause the encoder assembly to move closer to the bearing

holder.
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(a) Press Gray Insert Into Black In-

sert

(b) Press Press Black/Gray Insert

Combo into Encoder

Figure 7.9: Press the Gray Insert Into the Black Insert and Ensure Gap is Reasonable

9. Slide the encoder mount assembly down onto the encoder along the M4 x 0.70

x 40 screw. Do not clip the backing and metal encoder face together yet.

Figure 7.10: Slide the Encoder Mount Assembly Down (Do Not Clip)

10. Ensure that the legs of the bearing holder will reach the encoder mount. If the

legs look like they will be too far away to reach the encoder mount, once the

metal encoder face is clipped with the black backing, move the encoder assembly

along the bolt closer to the bearing holder by twisting as mentioned in step 8

(to close the gap between them.) If the legs are so close that they will bend

once the encoder assembly is clipped together, then move the assembly along
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the longer part of the M4 x 0.70 x 40 screw. Once you are certain that the legs

will reach without issue, clip the metal encoder face to the black backing.

(a) Clip Top of Encoder (b) Clip Bottom of Encoder

Figure 7.11: Clip the Encoder Black Backing to the Metal Encoder Face

11. Once the encoder assembly is clipped together, take the remaining two #4-40

screws and (using the small phillips screw driver) mount the encoder mount to

the bearing holder (see Figure 7.12.)

Figure 7.12: Mount the Encoder Mount to the Bearing Holder

12. This completes the encoder setup.

NOTE: Spin the M4 x 0.70 x 40 screw to ensure there isn’t too much friction

in the pivot. If you find it difficult to spin the M4 x 0.70 x 40 screw, then back
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out the two screws mounting the bearing holder to the encoder mount, unclip

the metal encoder face from the black backing (a small flat-head screw driver

works well for this), and move the encoder inserts up and down the M4 x 0.70

x 40 screw until it is in a reasonable position. Then follow steps 9 - 12 once

more.

Figure 7.13: Final Encoder Assembly

Attaching Encoder Assembly to Beam

Figure 7.14: Beam Hardware

13. Obtain the 3D printed beam, the final encoder assembly from the previous

section, and the two remaining #4-40 screws.
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14. Align the bottom holes on the encoder setup with the holes on the side of the

beam.

15. Screw the two #4-40 screws through the holes of the encoder assembly into

beam. This will attach the encoder assembly to the beam.

Figure 7.15: Mount Encoder Assembly to Beam

16. This completes the steps for attaching the encoder assembly to the beam.

Attaching Pendulum to Encoder Screw

Figure 7.16: Hardware Used to Attach the Pendulum to the Encoder Screw
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17. Obtain the sticky tack, aluminum rod, 3D printed elbow bracket, and two 6-32

x 1/4 inch screws.

18. Cut the aluminum rod to about 4.5 inches in length using wire cutters.

19. Place the aluminum rod into the shorter end of the elbow bracket.

Figure 7.17: Place the Aluminum Rod Into the Elbow

20. Screw the 6-32 x 1/4 inch screw into one side of the smaller end of the elbow

bracket.

Figure 7.18: Hardware Used to Attach the Pendulum to the Encoder Screw

21. Slide the longer end of the bracket onto the encoder screw.
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Figure 7.19: Slide the Elbow Onto the Encoder Screw

22. On the opposite side where you clamped the pendulum with the other screw,

screw the remaining 6-32 x 1/4 inch screw (until snug) through the side of the

longer end of the elbow bracket. This will clamp the pendulum assembly (elbow

bracket and aluminum rod) to the encoder screw.
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(a) Front View of Elbow Clamp (b) Side View of Elbow Clamp

Figure 7.20: Screw to Clamp the Elbow Bracket to the Encoder Screw

23. Roll the sticky tack into a 1.5 inch diameter ball.

Figure 7.21: Roll the Sticky Tack into a Ball

24. Slide the ball of sticky tack onto the exposed tip of the aluminum rod on the

pendulum assembly.
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Figure 7.22: Slide Sticky Tack Ball Onto End of Aluminum Rod

25. The setup for attaching the pendulum assembly to the encoder/beam assembly

is now complete.

Figure 7.23: Final Pendulum/Beam/Encoder Assembly
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Attaching Pendulum/Beam/Encoder Assembly to Motor Shaft

(a) #6 x 1/2 inch Self-Drilling Screw

and Pendulum/Beam/Encoder As-

sembly

(b) Hardware From Open Loop

Step Response Experiment

Figure 7.24: Hardware for Attaching the Pendulum/Beam/Encoder Assembly to the

Motor Shaft

26. Obtain the #6 x 1/2 inch self-drilling screw, Pendulum/Beam/Encoder Assem-

bly (created in the previous section), and the hardware assembly created in the

Open Loop Step Response experiment

27. Screw the self-drilling screw into the back of the beam. (Do not go all the way

through. Only turn the screw 2 or 3 times, so that it is hanging out.)
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Figure 7.25: Screw Self-Drilling Screw Into the Back of the Beam

28. Place the motor shaft through the hole on the back of the beam. Screw the

self drilling screw snuggly to the motor shaft. Make sure there is a small gap

between the beam and the motor. If both surfaces touch, it will add unwanted

friction to the Furuta Pendulum system.

(a) Attach Beam to Motor

Shaft

(b) Gap Between Motor and

Beam

Figure 7.26: Beam Attached to Motor Shaft With a Small Gap Between the Top of

the Motor and the Beam
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29. Once the Pendulum/Beam/Encoder Assembly is attached snugly to the motor

shaft, the setup is complete.

Connecting Encoder to Arduino

Figure 7.27: Hardware for Connecting the Encoder to the Arduino

30. Obtain the assembly created in the previous section and 4 male to female wires.

31. Connect the female end of 2 wires to the Power and Ground pins of the encoder.
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(a) Pins of Encoder (b) Female End of Wires to

Power and Ground On Encoder

Figure 7.28: Pin-out and Power and Ground Wire Connections to Encoder

32. Connect the Power and Ground Wires from the Encoder to the 5V and GND

pins of the Arduino, respectively.

(a) 5V Pin Connection on Ar-

duino

(b) GND Pin Connection on Ar-

duino

Figure 7.29: Power and Ground Wire Connections to Arduino
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33. Connect the remaining 2 wires’ female ends to the Encoder A and Encoder B

pins of the encoder.

Figure 7.30: 2 Female Wires Connected to Encoder A and Encoder B Pins

34. Connect the Encoder A and Encoder B wires to pins 20 and 21, respectively,

on the Arduino.

Figure 7.31: Encoder A and Encoder B Wires Connected to Pins 20 and 21 On

the Arduino

35. Optional: Take a piece of scotch tape and wrap it around the wires and beam.
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This will keep the wires more tidy and reduce the chance of individual wires

becoming disconnected during runtime.

Figure 7.32: Optional: Scotch Tape Holding Wires to Beam

7.3 Experimental Procedures

This section will describe a physical plant model. For this experiment, you will design

a state feedback model using pole positioning. You will also develop Simulink models

(linear and nonlinear) that will verify their open loop and closed loop performance,

before applying your pole positioning gains to the real system. The experimental

portion of this experiment will help you develop a Simulink model that will be loaded

to the Arduino. You will then build a file to capture the experimental data and

observe the behavior of your real furuta pendulum.
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7.3.1 Exercise 1: Open Loop System Verification

Furuta Pendulum Model

M2

M1

1

2

L2

x
0

z
0

L1l1

l2

x
1

z
1

Figure 7.33: Furuta Pendulum Model (Circled x Denotes Center of Mass)

The following equations of motion describe the dynamics of the Furuta Pendulum

model:

θ̈1 =
C2L1 cos(θ2)θ̇2

l2B
+

M2L1l2 sin(θ2)θ̇
2
2

B
+

τ

B
− M2gL1 cos(θ2) sin(θ2)

B

− C1θ̇1
B

− M2l
2
2 cos(θ2) sin(θ2)θ̇1θ̇2

B

θ̈2 =
−L1 cos(θ2)θ̈1

l2
− C2θ̇2

M2l22
+ sin(θ2) cos(θ2)θ̇

2
1 +

g sin(θ2)

l2

B = −M2L
2
1 cos

2(θ2) +M1l
2
1 +M2L

2
1 +M2l

2
2 sin

2(θ2)

τ = [u−NKmθ̇1]
Kt

Ra

Where

θ1 : Angular Position of Base Arm

θ2 : Angular Position of Pendulum
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M1 : Mass of Base Arm

M2 : Mass of Pendulum

L1 : Length of Base Arm

L2 : Length of Pendulum

l1 : Length from Pivot to Center of Mass of Base Arm

l2 : Length from Pivot to Center of Mass of Pendulum

C1 : Viscous Friction Coefficient of Motor Pivot

C2 : Viscous Friction Coefficient of Pendulum Pivot

g : Gravitational Constant

τ : Torque

u : Motor Voltage

Ra : Armature Resistance of Motor

Kt : Torque Constant of Motor

Km : Back EMF Constant of Motor

N : Gear Ratio of Motor

Additionally, the States for this model are:

x1 = θ1

x2 = θ̇1

x3 = θ2

x4 = θ̇2
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Open Loop Verification

36. Using the equations of motion, develop a Simulink model of the Furuta pendu-

lum system. Use the following constants for your Simulink Model:

M1 = 0.0526 kg

M2 = 0.0155 kg

L1 = 0.093 m

L2 = 0.0121 m

l1 = 0.062 m

l2 = 0.095 m

C1 = 0.004

C2 = 0.00011

g = 9.81
m

s2

Ra = 13.5 ohms

Kt = 0.0267 N
m

A

Km = 0.0269
V s

m

N = 1

37. Using an initial condition of a small pendulum angle ( π
40
), simulate your model

for 5 seconds. (Using step sizes of 0.01 seconds, this should give you about 500

data points.)

38. Plot each state vs. time to verify the open loop performance of your model.

• Does the pendulum and beam move in the correct direction?

• Do they oscillate?
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• What position(s) do they oscillate around?

7.3.2 Exercise 2: System Linearization

39. Develop a linear model of the system by using the MATLAB command linmod.

40. Compare the open loop response of the linear model with the open loop response

of the nonlinear model you created in Open Loop Verification subsection.

• How does the open loop linear response differ from the nonlinear response?

• Do both the linear and nonlinear beam and pendulum angles follow one

another?

• What angles do the linear beam and pendulum angles settle around?

• What angles do the nonlinear beam and pendulum angles settle around?

Expected Open Loop Response (For Instructors)

The expected response for the open loop nonlinear pendulum angle and angular ve-

locity (see Figure 7.34) is for the pendulum to fall, oscillate, and settle around π

radians when the initial condition for the pendulum position is π
40

radians. The ve-

locity will also oscillate around 0 radians
second

. If the initial condition was − π
40

radians then

the pendulum would settle around −π radians. The base (or beam) angular position

and velocity (see Figure 7.35) will always settle around 0.

When the open loop nonlinear pendulum response is compared with the linear

responses in Figure 7.36, the linear pendulum angle appears to increase to infinity

while the nonlinear pendulum angle starts to move in the opposite direction. Since

the model is linearized around zero, the linear pendulum response will only follow

close to the nonlinear response around zero for small angles. A similar result appears

in Figure 7.37 for the base angle and angular velocity.
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Figure 7.34: Open Loop Pendulum Response (Nonlinear)

Figure 7.35: Open Loop Beam Response (Nonlinear)
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Figure 7.36: Open Loop Pendulum Response (Linear (red) and Nonlinear (blue)

Comparison)

Figure 7.37: Open Loop Beam Response (Linear (red) and Nonlinear (blue) Compar-

ison)

7.3.3 Exercise 3: Linear State Feedback Using Pole Positioning

41. Using the linear model, assume that all of the states are measurable. Find the

open loop poles of the system using the MATLAB command pole.

42. Design the pole positioning state feedback controller. Decide where you would

like to place the closed loop poles, and justify your decision.
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NOTE: Use the MATLAB command place to place the open loop poles in

your desired locations.

43. Using your linearized pendulum model, simulate the response of the state feed-

back system for the pendulum position initial conditions of π
40
, π
10
, andπ

4
.

NOTE: The base angle and base angular velocity will be two subplots in the

same figure. This will be the same for the pendulum angle and pendulum

angular velocity, in a separate figure. Plot the input voltage on a separate

figure for a total of 3 figures.

• Do the responses match your expectations, based on the pole locations you

set? Explain.

• How does the system respond as the initial conditions are varied?

• Does the system become unstable?

• How does the input voltage change as the initial conditions are varied?

Are the input voltages achievable?

44. Try to improve your design. Find the quickest possible response within physical

limits.

7.3.4 Exercise 4: Nonlinear State Feedback Using Pole Positioning

45. Apply the gains you found in the previous step to the nonlinear model and

simulate the response to the same initial conditions as the linear case.

46. Compare the nonlinear and linear responses by plotting both on the same figure.

Plot the base and pendulum angles and the angular velocities on two separate

figures. Also plot the input voltages on one figure. Explain any differences

between the linear and nonlinear systems.
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NOTE: Similar to step 42, plot the base angles and velocities (of both the

linear and nonlinear feedback responses, in the same plot) as two subplots in

the same figure. Do the same with the pendulum angles and velocities. Plot

the input voltages of the linear and nonlinear state feedback simulations on the

same plot, which produces 3 figures in total.

47. Try to improve your design.

Expected State Feedback Results (For Instructors)

As the initial condition for the pendulum angular position is increased, the error

between the linear and nonlinear responses begins to increase. Placing the closed

loop poles at [-0.80 -36.3985 -11.8414 -16.2092] produces the state feedback gains K =

[-5.7735 -9.5378 -187.3304 -17.9715], Figure 7.38 shows the response for the pendulum

angle with a very small initial condition of π
40
. The linear (red) and nonlinear (blue)

responses for both the pendulum angular position and velocity appear to have a small

error. The beam angular position and angular velocity responses in Figure 7.39 also

appear to have a small error between the linear and nonlinear responses. Figure 7.40

shows a max input voltage of about 14 volts, which is a reasonable voltage for the

physical pendulum system.

When the initial condition is increased to π
10

in Figure 7.41, the error between

the linear and nonlinear responses for the pendulum angular position and velocity

are similar to the previous initial condition responses. The base angular position

and velocity plots in Figure 7.42 appear to have an even smaller error between the

linear and nonlinear responses when compared with Figure 7.39. However, the largest

change is the input voltage in Figure 7.43 where the input voltage increases to a max

value of about 58. While this voltage could be attainable in a system where the

supply voltage could be 58 volts or higher, the max supply voltage the students will
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be using is only 15 volts. This means that the physical system will face difficulties

when trying to overcome this larger initial condition.

Figure 7.44 shows the pendulum angular position and velocity for the pendulum

when the initial position of the pendulum angle is increased to π
4
. While the linear and

nonlinear pendulum angular positions and velocities become stable with the initial

condition, the error between the linear and nonlinear curves has greatly increased.

The same result occurs in Figure 7.45 for the base angular position and velocity linear

and nonlinear plots. Additionally, the input voltage in Figure 7.46 rises to about 150

volts, which is not attainable by the power supply.

Figure 7.38: Closed Loop Pendulum Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
40
)
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Figure 7.39: Closed Loop Beam Response (Linear (red) and Nonlinear (blue) Com-

parison with a Pendulum Initial Condition of π
40
)

Figure 7.40: Closed Loop Input Voltage Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
40
)

Initial Condition of π
10
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Figure 7.41: Closed Loop Pendulum Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
10
)

Figure 7.42: Closed Loop Beam Response (Linear (red) and Nonlinear (blue) Com-

parison with a Pendulum Initial Condition of π
10
)
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Figure 7.43: Closed Loop Input Voltage Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
10
)

Initial Condition of π
4

Figure 7.44: Closed Loop Pendulum Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
4
)
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Figure 7.45: Closed Loop Beam Response (Linear (red) and Nonlinear (blue) Com-

parison with a Pendulum Initial Condition of π
4
)

Figure 7.46: Closed Loop Input Voltage Response (Linear (red) and Nonlinear (blue)

Comparison with a Pendulum Initial Condition of π
4
)

7.3.5 Exercise 5: Experimental State Feedback Using Pole Positioning

Setting Up Simulink File (Arduino)

On the website for this experiment you will be given a number of Matlab and Simulink

files that will be used to gather experimental data from the physical Furuta Pendulum.

Follow the steps below to set up the Simulink file with the correct configuration
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parameters and workspace constants to load the model to the Arduino and run the

Furuta Pendulum.

48. Extract the Pole Positioning.zip folder to your Desktop.

49. Open the Constants.m file provided in the Pole Positioning folder.

50. At the bottom of the Constants.m file, add the gains you found from your

Simulations as a 4x1 vector named K. Make sure the sequence of numbers

correspond, from the top to the bottom of the vector, as the following:

• Pendulum angular position (First K element)

• Pendulum angular velocity (Second K element)

• Base angular position (Third K element)

• Base angular velocity (Fourth K element)

51. Run the Constants.m file.

52. Open the RIV Arduino.slx file also included in the Pole Positioning folder.

53. Setup the Configuration Parameters by clicking on the Model Configuration

Parameters button. Ensure that the Solver type is “Fixed-step” with a

“Fixed-step size (fundamental sample time):” of Ts (which should be 0.01 in

the Constants.m file.) Also click on the “Run on Target Hardware” tab on the

left and ensure that the “Set host COM port:” is set as either Automatically

or to Manually and you have entered your “COM port number:” as the COM

port for your Arduino.

NOTE: Refer to Installing Arduino Mega 2560 Drivers in the Simple DC

Motor experiment to find the COM port if you do not remember it.

54. Load the Simulink model to the Arduino by clicking on the Deploy to Hard-

ware button. Do not plug in the power for the Furuta Pendulum.
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Collecting Experimental Data

55. Double-click on the subsystem block labeled “Plotting” in theRIV Arduino.slx

file. Once inside the subsystem block, left-click on the text Plot Data ‘single’.

56. The “Plot Se...” box should now be visible. Under “Enter COM port to collect

data:” input the COM port of the Arduino. Enter the data type as “single”

and the number of samples as “2000.” Click Okay.

57. Hold the reset button (located on the exposed area of the Arduino) and pull the

pendulum to the standing position (the sticky tack will be above the encoder.)

Once you have the pendulum as vertical as possible, let go of the reset button.

Once the data begins to fill the plot window, let the pendulum hang down (to

the bottom position.)

58. Plug the power cord from the power supply into the motor shield.

CAUTION: Do not put your hands or any other parts of your body in front

of the motor load trajectory. If the load does not begin moving immediately

after the power is plugged in, immediately unplug the power and check to see

if the hardware is connected properly (review the Hardware Setup section in

the Open Loop Step Response experiment for the proper hardware connections.)

Once you are assured the hardware is good, begin from step 50 once more.

59. Repeat step 57 again, except this time, when you let go of the reset button,

hold the pendulum up until the motor begins trying to stabilize the pendulum

to the standing positioning, then let go of the pendulum. After repeating step

57, skip to step 60.

NOTE: If at anytime (during the proceeding steps) the pendulum falls com-

pletely over, click “Stop” at the bottom of the plot window and close out of the
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plotting window. Unplug the power from the motor shield. Revisit your gain

calculations and simulations, making sure that they are correct. Once you have

fixed the gain values, start from step 50 again.

60. Click AutoScale at the bottom of the figure. If the plot expands to a very

large number (1038th power) and appears to be very jumpy (meaning that the

values do not look to be “smooth” and vary from extremely positive to negative

values,) or if the values are not changing from zero, proceed to the next step.

If the plot has 4 different lines (around the values 0, 50, 75, and 100) and they

all appear to be smooth (each signal is hovering around fixed values), then skip

to step 62 in this section.

61. Click the Adjust Byte button at the bottom of the screen. Continue to do

this until it appears no values are jumping to high and low values. Once the

data looks smooth, allow the junk data to empty the screen, and once it has

left the screen, click AutoScale once more. Continue to repeat this step until

the data auto-scales to the 4 different values mentioned in the previous step.

62. Let the data fill the plot window as it moves to the left. Once the data (starting

with a value of zero) has filled the screen completely, click the “Stop” button

at the bottom of the screen. You should now have 2000 data points (from all 4

states) on the screen.

63. Unplug the power from the pendulum system then navigate back to the MAT-

LAB 2014b main page. Under “Workspace” the variable WindowDat should

now be present. Right-click on it and click “Save As.” Name the filePP expResp 1.mat

and save it into the Pole Positioning folder.

64. You now have the experimental data for pole positioning on the physical system.
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7.3.6 Exercise 6: Pole Positioning (Experimental vs. Simulations)

Experimental Plotting File

65. Open the PP Plotting.m file that was provided in the Pole Positioning

folder.

66. Click Run .

67. Observe each plot. Compare each experimental plot with the states you found

in your simulated responses:

• Does the voltage appear to respond correctly to the changes in the pendu-

lum angle?

• Pick the same point on the pendulum angle, pendulum angular velocity,

base angle, and base angular velocity plots and multiply each by their

respective pole positioned gains then add those values together. Is the

value close to the input voltage at that point?

• Overall, do the experimental responses behave in a way that you would

expect?

• Does the physical pendulum fall over or does it stay up while the system

is energized?

• See if you can improve the system response by redesigning the state feed-

back by adjusting the desired closed loop poles. Explain your procedure.

Expected Experimental Vs. Simulation Results (For Instructors)

Figures 7.47 - 7.49 show the pendulum angle and angular velocity, base angle and

angular velocity, and the input voltage experimental results, respectively. Since each

plot has a lot of varying data, it is really only practical to look at small sections of the
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data to see if it is behaving as expected. Compare, for instance, the input voltage plot

in Figure 7.49 from t=0 to the first peak, and the corresponding pendulum angle result

in Figure 7.47. As the pendulum angle becomes negative from time zero to the first

valley, the input voltage becomes positive to overcome the negative pendulum angle.

In fact, the largest gain for this controller corresponds to the pendulum angle. This

is because the pendulum angle is inherently unstable, thus the gain has increased

the weight of the error on the pendulum, so the motor will correct the error for

small variations in the pendulum angle. Additionally, the input voltage never goes

over 10 volts, indicating that the angles of the pendulum never become greater than

pi
40
. The physical system is able to keep the pendulum upright. These responses

in the figures below were found using the gains indicated in the Expected State

Feedback Results (For Instructors) subsection. Using pole positioning, students

should vary their closed loop poles to achieve the quickest, most stable response,

while keeping the input voltage from exceeding the supply voltage (or rated motor

voltage). Additionally, students should expect to have a larger gain for the pendulum

angle than any other gain, since it is the most important state to control.

Figure 7.47: Experimental Results (Pendulum Angle and Angular Velocity)
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Figure 7.48: Experimental Results (Base Angle and Angular Velocity)

Figure 7.49: Experimental Results (Input Voltage)

7.4 Conclusion

This chapter provided an experiment that explains the process of building, simulating,

and running a Furuta Pendulum control system. Students were tasked with finding

the open loop poles of the system and then placing the closed loop poles in locations

that make the system stable. Simulink simulation and experimental files were created

and their results were compared and contrasted.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

The objective of this thesis was to develop inexpensive experiments that can be per-

formed at home, without the need of university resources, including lab space and

TAs. This was achieved by creating the Take Home Labs website (http://thl.okstate.edu),

which provides links to experiment handouts and to materials needed to complete ex-

periments. The software and hardware were kept inexpensive by using university

resources such as MATLAB and Simulink and 3D printing, which are typically free

to students at many universities. Additionally, lists of inexpensive, off the shelf hard-

ware kept the cost of each experiment down. Experiment handouts were carefully

designed, so that students can perform the experiments on their own, without the

help of TAs. Background material required of the students are theoretical concepts

and not technicalities associated with using the equipment.

8.2 Contributions

This type of lab concept has not been done before. All of the materials that make

up entire courses cost less than the price of a text book. Additionally, the labs are

infinitely expandable, in terms of the number of experiments that can be included,

and are “Open Source” meaning that anyone can contribute new labs and courses with

the handout templates available on the website. The labs are not limited to control

systems. Subjects such as signal processing, circuits, vibrations, instrumentation, etc.
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could be included on the website.

The software contributions included in this thesis are the Dual Encoder Block

created in Simulink, and all of the simulation and experimental Simulink and Matlab

files created in the Simple DC Motor, Open Loop Step Response, Closed Loop Step

Response, and Pole Positioning experiments. Hardware contributions consist of the

3D printed motor load from the Open Loop Step Response and Closed Loop Step

Response experiments, and the 3D printed hardware included in the Furuta Pendu-

lum experiment. Additionally, the experiment handouts and instructor guides for

each experiment were also developed, so that students may be able to perform the

experiments at home without a TA.

While many different software and hardware components were used to create the

experiments in this thesis, there were additional topics that were considered, but not

implemented. The next subsection will provide ideas for future Take Home Labs

contributions.

8.3 Future Work

There were some topics visited while creating the Take Home Labs experiments that

will require further attention. For instance, additional software that could be included

in experiments are the following:

• National Instruments Labview

• MAC OSx support

• Application support for both Android (Java) and Apple (Xcode) products

• Later versions of MATLAB/Simulink (after R2014b)

• 3D modeling using AutoCAD or Solidworks.
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This software was not included in existing experiments due to the time and cost it

would take. However, it is possible for external contributions to add these topics to

the website by using the handout templates. Additionally, other types of hardware

that could be added to future experiments include:

• Microcontrollers compatible with Simulink, including Raspberry Pi and Beagle

Board.

• Sensors, including but not limited to, solenoids for fluid or air systems, tem-

perature sensors (such as a thermocouple), inertial measurement units (IMU),

gyroscopes, and accelerometers.

• Linear actuators, including pneumatic, mechanical, and hydraulic

• Other rotational acuators, including additional brushed motors, stepper motors,

etc.

The experiments that have been developed so far have used three types of physical

systems: DC motor with load, Furuta pendulum, and the ball on beam (see Ref. [8]).

There are many other interesting systems that could be added: magnetic levitation,

cart and pole, Segway, liquid level, flexible beam, etc. Also, although most of the

experiments covered here are related to dynamic systems and control, the Take Home

Labs concept is suitable for many other topics, including digital signal processing, cir-

cuit analysis, vibrations, instrumentation, fluid mechanics, electronics, mechatronics,

etc.
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