
IN -ORCHARD IMAGING OF PECAN WEEVIL

AND EFF IC IENT IDENTIF ICAT ION US ING

ORTHOGONAL POLAR MOMENT

DESCRIPTORS

By
Aaron John Franzen

Bachelor of Science in Agricultural Engineering
University of Nebraska–Lincoln

Lincoln, Nebraska


Master of Science in Mechanical and Aerospace Engineering
University of Florida
Gainesville, Florida



Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 



IN -ORCHARD IMAGING OF PECAN WEEVIL

AND EFF IC IENT IDENTIF ICAT ION US ING

ORTHOGONAL POLAR MOMENT

DESCRIPTORS

Dissertation Approved:

Dr. Paul Weckler
Co-Committee Chair / Advisor

Dr. Ning Wang
Co-Committee Chair / Advisor

Dr. Carol Jones
Member

Dr. Mike Smith
Outside Member

ii



Name: Aaron John Franzen

Date of Degree: December, 

Title of Study: In-Orchard imaging of pecan weevil and efficient
identification using orthogonal polar moment
descriptors

Major Field: Biosystems & Agricultural Engineering

Abstract:
The pecan weevil is considered the most harmful late season pest of pecan and

requires population monitoring in orchards for proper pest management practices.
In this research, algorithms for detecting and identifying pecan weevil are developed
based on machine vision and pattern recognition components. Instrumented traps
were designed and constructed to collect images of insects as they enter a pecan
weevil trap. The instrumented traps were fitted to trees in a pecan orchard and
left to collect images through a late pecan growing season. These images were
processed by computer algorithm to be uniform, then used to test and train an
insect detection classifier system that can predict whether an insect is present in
the trap for each image.

Images containing insects were further processed to extract only the shape of in-
sect silhouettes. This silhouettes were then used to extract Zernike Moment, Pseudo-
Zernike Moment, Fourier-Mellin Moment, and MPEG Angular Rotary Transforma-
tion shape description features. The shape descriptors were combined into feature
vectors before being used to train classifiers that can discern pecan weevil from
non-pecan weevil insects. Pecan weevil identification was shown to be over %
accuracy depending on the shape descriptors used.

Two algorithms for reducing the number of features in the shape descriptor fea-
ture vector were developed based on concepts of Principal Component Analysis
and Fisher Multiple Discriminant Analysis. The two algorithms were then used to
select the features from the entire set of insect shape descriptors in order to reduce
the number of features that need to be stored and used in classification. These two
methods were able to reduce the number of shape descriptors from over  to as
few as  while maintaining classification accuracy above %.

iii



CONTENTS

 introduction 
. Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 

 review of literature 
. Pecan Weevil Biology and Management . . . . . . . . . . . . . . . . 

.. Pecan Weevil Lifecycle . . . . . . . . . . . . . . . . . . . . . 
.. Pest Management for Pecan Weevil . . . . . . . . . . . . . . 

. Embedded Electronics in Orchard Environments . . . . . . . . . . . 
.. Embedded Imaging Systems . . . . . . . . . . . . . . . . . . 
.. Wireless Sensor Networks in Orchard Environments . . . . . 

. Image Processing and Classification . . . . . . . . . . . . . . . . . . 
.. Insect Detection . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 
.. Shape Recognition Algorithms . . . . . . . . . . . . . . . . . 
.. Reduced Component Methods for Classifiers . . . . . . . . . 

 materials and methods 
. Insect Collection and Image Acquisition . . . . . . . . . . . . . . . . 

.. Insect Positioning and Imaging System Setup . . . . . . . . 
. Insect Presence Detection . . . . . . . . . . . . . . . . . . . . . . . 

.. Insect Detection Features . . . . . . . . . . . . . . . . . . . 
... Traditional Histograms . . . . . . . . . . . . . . . . 
... Cumulative Histograms . . . . . . . . . . . . . . . 

.. Insect Presence Classification . . . . . . . . . . . . . . . . . 
... Euclidean Distance Classifier . . . . . . . . . . . . 
... K-Nearest Neighbor Clustering Classifier . . . . . . 
... Variation of Number of Histogram Bins . . . . . . 
... Variation of Sub-Sampling Interval . . . . . . . . . 
... Histogram Adjustment for Contrast Enhancement . 
... Image Pre-Processing for Insect Presence Detection 

. Proposed Insect Identification Kernel . . . . . . . . . . . . . . . . . 
.. Image Pre-Processing for Insect Identification . . . . . . . . 

iv



.. Radial Moment Features for Shape Description . . . . . . . 
... Zernike Moments . . . . . . . . . . . . . . . . . . . 
... Pseudo-Zernike Moments . . . . . . . . . . . . . . 
... Fourier-Mellin Moments . . . . . . . . . . . . . . . 
... MPEG- ART Coefficients . . . . . . . . . . . . . . 

.. Cartesian to Polar Image Transformation . . . . . . . . . . . 
.. Computation of Radial Moments . . . . . . . . . . . . . . . 
.. Insect Shape Classifiers . . . . . . . . . . . . . . . . . . . . . 

... Support Vector Machine Classifiers . . . . . . . . . 
... Naive Bayes Classifiers . . . . . . . . . . . . . . . . 

.. Dimensionality Reduction Methods . . . . . . . . . . . . . . 
... Principle Component Analysis . . . . . . . . . . . . 
... Linear Discriminant Analysis . . . . . . . . . . . . 

. Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Insect Detection Experiments . . . . . . . . . . . . . . . . . 
.. Insect Identification Experiments . . . . . . . . . . . . . . . 
.. Classification Performance Metrics . . . . . . . . . . . . . . 
.. Moment Kernel Performance Metrics . . . . . . . . . . . . . 

 results and discussion 
. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Insect Detection Classification Performance . . . . . . . . . . . . . . 

.. Baseline insect detection classification metrics . . . . . . . . 
.. K-Nearest Neighbor Classification Baseline Performance . . 
.. KNN Performance with varied k . . . . . . . . . . . . . . . . 
.. Variation of histogram bins . . . . . . . . . . . . . . . . . . 
.. Variation of Sub-Sampling Interval . . . . . . . . . . . . . . 
.. Histogram Adjustment for Contrast Enhancement . . . . . . 
.. Multi-Class Classification Effects . . . . . . . . . . . . . . . 
.. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Proposed Insect Identification Kernel Performance . . . . . . . . . . 
.. Individual Moment Feature Performance . . . . . . . . . . . 

... Zernike Moment Performance . . . . . . . . . . . . 
... Psuedo-Zernike Moment Performance . . . . . . . . 
... Fourier-Mellin Moment Performance . . . . . . . . 
... ART Performance . . . . . . . . . . . . . . . . . . . 

.. Combined Feature Performance . . . . . . . . . . . . . . . . 
.. Comparison of Classifiers . . . . . . . . . . . . . . . . . . . . 

... Classifier performance with ZM features . . . . . . 
... Classifier performance with pZM features . . . . . . 
... Classifier performance with FMM features . . . . . 

v



... Classifier performance with ART features . . . . . . 
... Classifier performance with Combined features . . 

.. Reduced Feature Performance . . . . . . . . . . . . . . . . . 
... Results of PCA–based Feature Reduction . . . . . . 
... Results of FMDA–based Feature Reduction . . . . . 

.. Moment Feature Computation . . . . . . . . . . . . . . . . . 
 conclusions and recommendations 

. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Recommendations and Future Work . . . . . . . . . . . . . . . . . . 

bibliography 

Appendices

a zernike moment basis functions 
b pseudozernike moment basis functions 
c fourier mellin moment basis functions 
d mpeg- art moment basis functions 

vi



L I ST OF TABLES

Table . Equations for Zernike polynomials for p = 0 . . . 5. . . . . . . 
Table . Equations for Pseudo-Zernike polynomials for p = 1 . . . 5. . 
Table . Equations for Fourier-Mellin polynomials for p = 1 . . . 5. . . 
Table . Equations for ART radial basis functions for p = 1 . . . 10. . 
Table . Class membership for insect detection testing/training data. 
Table . Example confusion matrix for insect detection classification. 
Table . Insect shape images used for insect recognition. . . . . . . . 
Table . Polar Moment Features used as feature vectors. . . . . . . . 
Table . Binary Classifier confusion matrix and definitions. . . . . . 
Table . Confusion matrices for standard histogram baseline. . . . . 
Table . Confusion matrices for cumulative histogram baseline. . . . 
Table . Baseline performance for standard histogram features. . . . 
Table . Baseline performance for cumulative histogram features. . . 
Table . Confusion matrices for KNN standard histogram baseline . . 
Table . Confusion matrices for KNN cumulative histogram baseline 
Table . Baseline KNN performance for standard histogram features. 
Table . Baseline KNN performance for cumulative histogram features. 
Table . Confusion matrix for multi-class KNN classifcation . . . . . 
Table . Confusion matrix for multi-class KNN classifcation . . . . . 
Table . Performance of Combined Features with SVM . . . . . . . 
Table . Performance of Combined Features with binary NB . . . . 
Table . Performance of Combined Features with multi-class NB . . 

vii



L I ST OF F IGURES

Figure . Pecan weevils on pecan nuts. . . . . . . . . . . . . . . . . 
Figure . Nuts damaged by pecan weevil. . . . . . . . . . . . . . . . 
Figure . Pecan Weevil Traps . . . . . . . . . . . . . . . . . . . . . . 
Figure . Block Diagram of the instrumented pecan weevil traps. . . 
Figure . The image acquisition trap installed in a pecan orchard. . 
Figure . Example raw images of the five different image classes. . . . 
Figure . Image intensity histograms for images in each class. . . . . 
Figure . Good Image Capture (GIC) class histograms. . . . . . . . . 
Figure . Image cumulative histograms for images in each class. . . . 
Figure . GIC class cumulative histograms. . . . . . . . . . . . . . . . 
Figure . Contrast Enhancement effects on image histogram. . . . . . 
Figure . Histogram smoothing effects on contrast enhanced histogram. . 
Figure . Pre-processing steps for field acquired images. . . . . . . . 
Figure . Different source images require a bit different handling. . . 
Figure . Insect region re-sizing for training and classification . . . . 
Figure . Real portion of selected ZM radial-angular basis function. . 
Figure . ZM radial basis functions through p = 4 . . . . . . . . . . . 
Figure . Real portion of selected pZM radial-angular basis function . 
Figure . pZM radial basis functions through p = 3 . . . . . . . . . . 
Figure . Real portion of selected FMM radial-angular basis function . 
Figure . FMM radial basis functions through p = 10 . . . . . . . . . 
Figure . Real portion of selected ART radial-angular basis function . 
Figure . ART radial basis functions through p = 10 . . . . . . . . . . 
Figure . Circle/Square incompatibility . . . . . . . . . . . . . . . . . 
Figure . Square to Circle Transformation . . . . . . . . . . . . . . . 
Figure . Cartesian to Polar transformation results . . . . . . . . . . 
Figure . Effect of k on KNN performance for standard histograms. . 
Figure . Effect of k on KNN performance for cumulative histograms. 
Figure . Performance of KNN for varying k with standard histograms. 
Figure . Performance of KNN for varying k with cumulative histograms. 

viii



Figure . MCC of Euclidean Classifier with varying histogram bins . . 
Figure . MCC of KNN Classifier with varying histogram bins . . . . . 
Figure . Accuracy of Euclidean Classifier with varying histogram bins 
Figure . Accuracy of KNN Classifier with varying histogram bins . . 
Figure . Time to compute standard and cumulative histogram features 
Figure . Time to train and test Euclidean and KNN classifiers . . . . 
Figure . Time to compute standard and cumulative histogram features
Figure . Time to train and test Euclidean and KNN classifiers . . . . 
Figure . MCC of Euclidean Classifier with varied image subsampling 
Figure . MCC of KNN Classifier with varied image subsampling . . . 
Figure . MCC Score surface across histogram bins and sub-sampling 
Figure . Effect of contrast adjustment on Euclidean performance . . 
Figure . Effect of contrast adjustment on KNN performance . . . . . 
Figure . Effect of histogram smoothing on Euclidean performance . 
Figure . Effect of histogram smoothing on KNN performance . . . . 
Figure . Effect of Multi-class classification on Euclidean performance 
Figure . Effect of Multi-class classification KNN performance . . . . 
Figure . Multi-class effect on contrast adjusted histograms . . . . . 
Figure . Effect of multi-class classification on smoothed histograms . 
Figure . Relative time to train and test multi-class classifiers . . . . 
Figure . ZM classification performance for increasing moment order . 
Figure . pZM classification performance for increasing moment order 
Figure . FMM classification performance for increasing moment order 
Figure . ART classification performance for increasing moment order 
Figure . Comparison of classifier performance for ZM . . . . . . . . . 
Figure . Comparison of classifier error rates for ZM . . . . . . . . . . 
Figure . Comparison of classifier performance for pZM . . . . . . . . 
Figure . Comparison of classifier error rates for pZM . . . . . . . . . 
Figure . Comparison of classifier performance for FMM . . . . . . . . 
Figure . Comparison of classifier error rates for FMM . . . . . . . . . 
Figure . Comparison of classifier performance for ART . . . . . . . . 
Figure . Comparison of classifier error rates for ART . . . . . . . . . 
Figure . Basis functions for ten best PCA features . . . . . . . . . . 
Figure . Performance results based on PCA dimension reduction . . 
Figure . Basis functions for ten best MC FMDA features . . . . . . . 
Figure . Performance results based on MC FMDA dimension reduction
Figure . Basis functions for ten best binary FMDA features . . . . . 
Figure . Performance results for binary FMDA dimension reduction . 
Figure . Moment Feature Computation Time . . . . . . . . . . . . . 

ix



Figure A. Real components of the ZM basis functions (/). . . . . . 
Figure A. Real components of the ZM basis functions (/). . . . . . 
Figure B. Real components of the pZM basis functions (/). . . . . . 
Figure B. Real components of the pZM basis functions (/). . . . . . 
Figure C. Real components of the FMM basis functions (/). . . . . 
Figure C. Real components of the FMM basis functions (/). . . . . 
Figure D. Real components of the ART basis functions (/). . . . . . 
Figure D. Real components of the ART basis functions (/). . . . . . 

x



ACRONYMS & ABREVIAT IONS

API Application Programming
Interface

ART MPEG- Angular Radial
Transform

BIC Bad Image Capture

BIC-BM BIC-Backlight Malfunction

BIC-BM BIC-Backlight Malfunction
Type 

BIC-BM BIC-Backlight Malfunction
Type 

BIC-OS BIC-Over Saturated

BIC-SF BIC-Shutter Failure

BMPs Best Management Practices

COTS Commercial, Off-The-Shelf

FA Factor Analysis

FMDA Fisher Multiple Discriminant
Analysis

FMM Fourier-Mellin Moments

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

GPIO General Purpose
Input-Output

GIC Good Image Capture

GIC-NI GIC-No Insect

GIC-IP GIC-Insect Present

ISM Industrial, Scientific, &
Military

KNN K-Nearest Neighbor

MCC Matthews Correlation
Coefficient

NB Naive Bayes

OCR Optical Character
Recognition

PCA Principle Component
Analysis

pZM Pseudo-Zernike Moments

RAM Random Access Memory

RGB Red, Green, Blue

xi



RLE Run-Length Encoding

ROM Read-Only Memory

RSSI Received Signal Strength
Indicator

RX Reciever

SVM Support Vector Machine

TN True Negative

TNR True Negative Rate

TP True Positive

TTR True Positive Rate

TX Transmitter

TX-RX Transmitter<–>Reciever

UART Universal Asyncronous
Reciever Transmitter

UML Unified Modeling Language

µC Microcontroller

WSN Wireless Sensor Network

ZM Zernike Moments

xii



CHAPTER I

INTRODUCTION

In , United States pecan exports were worth over $ million with the value

of Oklahoma production exceeding $ million(USDA, ). The pecan is consis-

tently in the top three US tree nuts, in both annual harvest size and value. As one

of the few tree nuts that is indigenous to the United States, pecans are subject to

pressure from pests that have adapted to prefer pecan as food source and reproduc-

tive host, akin to the relationship in the date palm-palm weevil and the maize-corn

borer host-pest pairs.

The pecan weevil is a striking example of an adversarial indigenous host-pest

relationship. The pecan weevil has evolved to possess a long, tube shaped mouth

part that it uses to chew through the pecan shuck and shell, eat the nut meat, and

deposit eggs inside the nut. Weevil larvae eat what remains of the nut meat before

boring a larger hole through the shell and falling to the ground below. While some

feeding damage is acceptable for USDA quality grading of pecans, larval damage is

considered a serious defect and can result in entire loads of pecans being rejected by

a processor. Current year economic losses are limited to feeding and larval damage.





However, failure to control weevils in the current year results in larger populations

of weevils in subsequent years.

The pecan weevil is considered one of the most destructive insect pest of pecans,

potentially causing complete crop loss in years with large pest populations in un-

treated orchards. Unlike many other pests of pecans, the pecan weevil emerges and

does its damage during the late growing season, after much of the variable costs

of production have already been incurred. While many production costs have been

incurred by the late season, growers also have more management information at

their disposal, including yield and market price estimates for the season, as well as

knowledge of the overall balance sheet. Armed with the aforementioned informa-

tion, growers are able to make an informed decision on whether to treat for pecan

weevils at all, or how many pesticide applications should be applied.

Current Best Management Practices (BMPs) suggest that pecan growers should

place traps throughout an orchard and monitor for adult pecan weevil emergence

from the time the nuts reach the gel stage through the shuck splitting stage (Mulder

et al., ). Pesticide application is prescribed when certain loss thresholds are

reached, depending on the intended market, yield estimates, and market values.

Although trapping weevils is not labor intensive for small growers or backyard

producers, larger orchards may require an inordinate amount of time and labor for

this task. An automated system for monitoring pecan weevil emergence would free

that time and labor resources for other tasks.

The long term goal of this project is to move toward such an automated sys-

tem. As electronics technology continues to get smaller, more powerful, and more

power efficient, the thought of a wireless monitoring system is becoming closer to

reality. Previous work at OSU has developed image processing techniques that are

capable of discerning the pecan weevil from other insects that occur in the orchard





(Ashaghathra, ). The combination of such image processing capabilities and

the now available electronic components allow for a system to be constructed that

can capture images of insects in traps, process the images, and report the results

over a wireless link to a base station or even to the growers home. But, just as users

complain about short battery life on their mobile devices, growers will complain

about poor battery life in a weevil counting system, making it important that such

a system be designed such that one doesn’t spend as much time changing batteries

as would be spent counting weevils.

. research objectives

Past research and literature suggests that the pecan weevil can be discerned from

other insects through image processing techniques in a laboratory environment with

dead, manually positioned insects, whereas the performance of such identification

techniques has never been evaluated using living insects in natural poses. Image

or region histograms have been used to give a partial description of the scene at

hand, with the potential to rule out the presence of an insect in the image frame.

Orthogonal polar moment features have also been shown as a very promising fea-

ture for shape identification and classification, including insect shape and optical

character recognition. Combinations of features comprised of different descriptors

have been successfully combined into a single feature vector to successfully recog-

nize patterns in many data-mining and bio-informatics applications. Subsequently,

these feature vectors have been reduced in dimension without incurring a significant

reduction in classification performance through techniques such as Principle Com-

ponent Analysis (PCA) and Fisher Multiple Discriminant Analysis (FMDA). Further-

more, clustering and classification techniques such as K-Nearest Neighbor (KNN),





Naive Bayes (NB), and Support Vector Machine (SVM) methods have been proven

successful as methods to identify group or class membership based on diverse com-

binations of features in many research areas.

This study aims to combine advances in image processing, feature space reduc-

tion, and automatic membership classification in order to provide accurate, fast

identification of pecan weevils for future electronic monitoring applications. The

objectives of the study can be summarized as:

a. To evaluate the performance of image histograms as the feature-space for
insect presence detection in field conditions

b. To propose a new shape-description and identification kernel that is suitable
for in-situ insect shape description and identification

c. To evaluate Principle Component Analysis (PCA) and Fisher Multiple Dis-
criminant Analysis (FMDA) dimensional reduction techniques with the afore-
mentioned shape-description kernel (Objective B) for the potential of reduc-
ing computation needs in insect identification

d. To apply Naive Bayes (NB) and Support Vector Machine (SVM) classification
methods to both homogeneous and mixed feature set classification of insects
using the shape description kernel.

. research hypothesis

The hypotheses to be tested in this study follow from the research objectives, and
follow as:

a. Images collected with both ambient and back-lighting contain enough infor-
mation in their intensity histograms to determine if insects are present

b. Uniform processing of insect images, combined with orthogonal moment shape
descriptors, can be used to identify pecan weevils among other insects

c. Zernike Moments (ZM), Pseudo-Zernike Moments (pZM), Fourier-Mellin Mo-
ments (FMM), and MPEG- Angular Radial Transform (ART) can be used
in reduced dimensional form to identify a pecan weevil with a reduction in
required computation using different classification methods.





CHAPTER II

REV IEW OF L ITERATURE

. pecan weevil biology and management

.. Pecan Weevil Lifecycle

The pecan weevil, Curculio caryae (Horn’s taxonomy), of the order Coleoptera, is

a small beetle that is an obligate feeder of tree nuts. Pecan weevils are known

to attack Carya species including hickory and the preferred host of pecan, Carya

illinoinensis. Pecan weevils have also been observed to attack the Persian walnut,

Juglans regia (Mulder et al., ).

Pecan weevils reach -mm in body length as adults. They have a long mouth

part, or proboscis, that ranges from 3/4 to 5/4 of the body length. Females typically

possess a longer proboscis. Adult pecan weevils are typically light brown in color.

Adult pecan weevils are shown in Figure . (Mulder et al., ).

Pecan weevils in the larval stage are a milky yellow, legless grub with a reddish-

brown ring on the mouth end. Pecan weevil larvae feed on nut meat during the

late summer and early autumn before boring a hole through the shell and falling

to the ground below. Upon larval emergence from the nut, the pecan weevil grub

has reached an approximate length of  mm. The hole created in the side of the





(a) Male pecan weevil. (b) Female with longer probiscus.

Figure .: Pecan weevils on pecan nuts.

nut is the signature of larval damage, and is typically mm in diameter (Mulder

et al., ).

The pecan weevil life cycle lasts from one to three years when including all life

stages, from egg placement (oviposition) to death as an adult. Beginning approxi-

mately five days after adult emergence, female pecan weevils bore small (less than

mm diameter) holes in nut shells and lay eggs inside the shells starting at early

water stage and continuing through shuck split. The female pecan weevil typically

lays three to four eggs in each nut and will avoid nuts in which another pecan

weevil has previously oviposited. Smith and Mulder () found that in areas of

heavy infestation, eggs were present at the same time as third-instar larva.

Eggs hatch inside the nuts and the larvae mature through four instars of develop-

ment. The first three instars last around  days each with feeding done throughout.

The fourth instar includes approximately five days of feeding, but continues for one

or two years without feeding the larvae pupates. After the first five days of fourth

instar feeding, the pecan weevil larvae exits through the previously mentioned bore-

hole, drops to the ground, and prepares for overwintering. Pecan weevil larvae enter





the soil under the pecan canopy and form a semi-impermeable earthen pupal cell.

The larvae enter a state of diapause in this pupal shell where they will remain for

one or two years before pupating. In the diapause state, the larvae exhibit nearly

zero respiration or metabolism and are well protected in the earthen cell. After pu-

pation and moulting, the adult weevil often remains in the ground for an additional

year before emerging to mate and feed (Mulder and Grantham, ; Mulder et al.,

; Cottrell and Wood, , ).

Upon emergence as adults, pecan weevils enter the canopy to feed. Research

has shown that, although weevils can fly, the majority crawl to the tree trunk

and climb into the canopy. After emergence, pecan weevils normally live for -

days with females living longer than males. In improved pecan cultivation with

large nuts, females have been observed to survive up to  days. Pecan weevils use

their mouth parts to chew through the shuck and feed on the nut kernel. Feeding

injury, with a shallow depth of insertion, can occur on single nuts multiple times.

Additionally, there appears to be no inhibition of further feeding due to said shallow

insertion. Contrarily, deep insertion and oviposition with testa penetration does

inhibit further deep penetration for oviposition (Schraer et al., ).

Pecan weevils begin to feed and lay eggs from the onset of the nut’s water stage

through shuck split. Nuts with feeding damage prior to the gel stage are aborted

by the tree, falling to the ground before ripening. Pecan trees also abort nuts with

eggs and larva deposited before the gel stage. In this case, the absence of further

kernel development prevents the larvae from developing and ultimately causes larval

death. Nuts that have larval damage often remain on the tree well beyond shuck

split, taking on a dark brown or black color.





(a) Feeding dam-
age on gel
stage pecan.

(b) Larval exit holes on pecans at shell
hardening stage.

(c) Mature pecans with
larval damage.

Figure .: Nuts damaged by pecan weevil.

Both feeding and larval damage cause loss in the pecan crop value in orchards

that have been controlled for pecan weevil in the past, although larval damage is

typically much greater. Nuts with feeding damage have small spots on the shell

(Figure .(a)), and often have dark spots with a bitter taste in the kernel. Feeding

damage does not cause extreme loss in value, but will result in nuts grading out

lower on the USDA scale, thus reducing prices paid. Most nuts with larval damage

are worthless, as there is very little nut meat remaining (Figure .(c)). Nuts with

larval damage that do have nut meat remaining are still unsaleable (Figure .(b)).

Additionally, the presence of nuts with larval damage may result in bulk rejection

of a truck or bag of nuts (Mulder et al., ).

.. Pest Management for Pecan Weevil

Control of pecan weevils has become an economical imperative for farmers since

the advent of monoculture orchards of improved variety pecans, including intensive

production in the natural range of both the pecan tree and by extension, the

pecan weevil. Pecan weevils have not been observed to migrate long distances





from the soil from which they emerge as adults. As such, the pest has yet to

become a significant problem in many areas of production outside of the native

pecan range, including much of New Mexico (recently declared eradicated), Texas,

and Mexico. Conversely, areas inside the native range of pecans typically require

treatment for weevils, especially in improved orchards in the southeastern United

States, including Oklahoma (Mulder et al. (, )).

Pecan weevil management has evolved over the time that pecans have been culti-

vated by humans. In the earliest years of intensive cultivation, pesticides for pecan

weevil had yet to be developed. After identifying the pecan weevils as a late sea-

son pest, the earliest method for control was physically impacting the tree canopy,

causing the weevils to drop to the ground. This was typically achieved using large

groups of workers with long poles who were tasked with impacting the canopy in

the entire orchard to remove the weevils. Technological advances, including pesti-

cides and the airblast chemical applicator, allow for more complete control of the

pecan weevil, but have only been available together since the early s (Cottrell

and Wood, ).

Today, most of the control of pecan weevils is achieved with airblast sprayer

application of pesticides during the - day window between adult emergence and

oviposition in nuts. Complete control of weevils can be achieved with airblast appli-

cation of carbaryl or certain pyrethroids every - days from gel set to shuck split,

without regard for adult weevil emergence, market value of the crop, or projected

yield. For many growers, especially those targeting retail in-shell markets, this sys-

tem makes sense. However, growers targeting processed pecan markets might prefer

to make chemical applications only when: adult weevils are present in the orchard,

yield is expected to be acceptable, and market price is high enough to justify the





expense. In such cases, growers must monitor the emergence of adults from the

time the nuts reach gel stage through shuck split (Mulder et al., ).

While control methods have improved since the physical knock down methods,

monitoring methods have likewise changed since the development of Best Manage-

ment Practices (BMPs) for pecan production. Early monitoring for pecan weevils

was similar to the early control method. Sheets were used to cover the orchard floor

and the canopy was jarred with poles to knock weevils from the tree. The number

of weevils that fell to the sheet could then be used to make a management deci-

sion on the need for pesticide application. Other systems involve using traps that

attract pecan weevils to capture and count the insects during emergence. Either

containment, deception, chemicals, or the weevils own instincts are used to lure

them to the trap. Containment style traps include the wire-cone emergence trap,

which captures all the weevils that emerge from the circular base of a wire-mesh

cone which funnels all insects from the area to its (Figure . (a)). Deception is

used in the case of the Tedders trap. Noting that most pecan weevils crawl to the

tree trunk to enter the canopy, and hypothesizing that the weevils are drawn to

dark column structures by instinct, the tedders trap is a dark painted tower with

a modified boll weevil trap at the apex. It is placed between trees in the orchard,

while the tree trunks are painted or wrapped white (Figure . (b)). Weevils enter

these traps under the assumption that they are climbing a tree. Circle traps use

the pecan weevils instinct to climb the trunk without needing deception in order

to attract the weevil. Circle traps are screen or wire mesh funnels with a modified

boll weevil trap at the apex, and are mounted directly on the tree trunk (Figure

. (c)). In this case, the weevil is intercepted on his or her route to the canopy.

Chemical or pheromone attractants have been used with minimal success in both

Tedders and circle traps (Mulder et al., ).





(a) Pyramid traps. (b) Tedders traps
(dark tower in
forground).

(c) Circle trap on tree
trunk.

Figure .: Pecan Weevil Traps

Different weevil pressure thresholds exist, depending on the region and if im-

proved or native pecans are grown, to determine if chemical applications should be

made. Most of these thresholds take into account the aforementioned market price,

yield potential, and number of weevils captured per unit area and time. Many local

extension services in pecan growing regions offer advice on thresholds for chemical

application. It is important to consider that all previous inputs prior to the pecan

weevil emergence season are expended capital, and must be considered when decid-

ing whether to treat an orchard. Additionally, making the decision not to treat for

pecan weevil in year N may have negative consequences in years N+ 1 and N+ 2

due to the potential for a large number of adult pecan weevils emerging in those

latter years (Mulder et al., ).

Other methods for management aside from pesticides have been investigated, but

have not seen much commercial use due to cost, technological deficiency, or lack

of efficacy. Larval, rather than adult, control has proven difficult due to the hard

earthen cell that the larvae inhabit, the difficulty injecting chemicals deep enough

in the soil to reach the larvae, and the fact that during diapause, respiration and

metabolism rates are reduced to such a level that intoxication is extremely unlikely.





In terms of biological control, both fungi and nematodes have been explored as

methods to kill pecan weevils. So far, each of these methods has provided poor or

unpredictable results, leading to their use only in research settings(Mulder et al.,

).

. embedded electronics in orchard environments

Work in the area of electronics, sensors, and control systems has been ongoing in

orchard crops since the late ’s. More recently, electronic irrigation control has

been a topic of research interest (Dukes and Scholberg, ; Fernández et al., ,

). Fruit and nut growing operations have been areas of much precision agricul-

ture research due to the high value of such crops and the intensive management that

is often required. Tumbo et al. () used a combination of laser and ultrasonic

sensing to measure the volume of the canopy in a citrus orchard. Aggelopoulou et al.

() used machine vision techniques to develop apple yield predictions based on

early season flowering, while Oerke et al. () used thermal imaging techniques

to detect scab disease on apple tree leaves. Increasingly, Unmanned Systems are

being evaluated as potential scouting and monitoring tools for pests, diseases, and

stress in many orchard environments, including both utility vehicles (Bergerman

et al., ; Hamner et al., ) and aerial vehicles (Baluja et al., ; Coopmans,

).

.. Embedded Imaging Systems

Little work has been done in the area of imaging systems for orchard management

or monitoring. Most imaging applications in orchard environments have involved





vehicles, including vehicle guidance (Subramanian et al., ; Lang, ), remote

sensing (Berni et al., ), or animal monitoring (Moruzzi et al., ). Guarnieri

et al. () integrated a cellular phone into a coddling moth trap to track emer-

gence of the moth in high temporal precision but used no classification or iden-

tification methods other than expert interpretation, whileWen and Guyer ()

developed an automatic identification system for similar moths that are pests to

apples using laboratory-acquired images of the insects, achieving a maximum clas-

sification accuracy of .%.

.. Wireless Sensor Networks in Orchard Environments

Wireless sensor networks have seen much more adoption in orchards than have imag-

ing systems. Pierce and Elliott () developed a large scale frost monitoring and

weather monitoring network in Washington state. Antonio-Javier Garcia-Sanchez

() developed a system based on the .. IEEE standard to integrate scalar

and video data into a Wireless Sensor Network (WSN). Majone et al. () de-

scribes a 5000m2 deployment of  soil moisture and  temperature sensors in

an apple orchard in northern Italy. WSN continues to be a highly active research

area as many specialty crops continue to push forward in automation.

. image processing and classification

.. Insect Detection

Most research on insect detection has been concerned with detecting insect infes-

tation in stored products, mainly using acoustic or dielectric sensing techniques.





Additionally, the majority of efforts have looked to detect “many” insects as op-

posed to a single insect, or have had no need for a low-power method for insect

detection.

Ridgway and Chambers () explored detecting insects in wheat using NIR

reflectance spectroscopy. Nordström et al. () explored the detection of flying

insects in scenes during machine vision acquisition, but had no concern for power

consumption. Vick et al. () patented a method for detecting insects falling into

a pitfall sensor through detecting vibration. Franzen et al. () determined that

capacitance-based measurements are not sufficient for detecting single insects, both

via experiment and finite element simulation. They also found that, in controlled

environments, a simple optical beam-break sensor might be feasible as a single

insect detector.

.. Image Segmentation

Many methods for segmenting images have been created over the years. Segmenta-

tion is an operation in image processing in which different regions of an image are

separated from the rest as areas of interest. Segmentation is one of the first steps

of feature extraction, and can be based on many different features of interest.

In the case of this study, the feature of interest is ultimately the insects shape

or boundary. Boundary recognition is relatively easy with controlled lighting, and

only slightly more difficult in the case that the background is uniform and contrast

between background and object is sufficient.

In other research in which image processing of insect images is of interest, often

more minute details are the features of interest. Watson et al. () presented

the system known as DAISY, or Digital Automated Identification System. This





classifier is used to identify species of moths. However, it requires a human to

segment regions of the wings and thorax manually.

.. Shape Recognition Algorithms

Ashaghathra () used a combination of shape recognition algorithms based on

the boundary or region of a region in an image. Region based recognition algorithms

include Zernike Moments, Region Properties, and Geometric Moments. Perimeter

based methods include Fourier Descriptors and String Matching. Zernike Moments

proved to be the fastest method with the fewest of both type I and type II errors.

Using a combination of the methods independently, they were able to correctly

identify pecan weevil % of the time for a small set of images that were used for

both training and testing.

Other shape recognition methods include Pseudo-Zernike Moments, Fourier-Mellin

Moments, and statistical pattern matching. Fourier-Mellin and Pseudo-Zernike mo-

ments are region based recognition methods similar to Zernike moments. Hosny

presents a few variations on these methods, as well as other orthogonal polygon

based moments (Hosny, , , a,b,c, a; Hosny et al., ; Hosny,

b, a,b). Most variations are based either on improving the speed of cal-

culation, or improving the accuracy. This class of moment is commonly used in

handwriting or optical character recognition, or as an alternative coding set for

image compression and regeneration.

Statistical pattern matching techniques, which may include related areas of fuzzy

matching and neural network matching, seek to fit a known set of features from

an image into the closest distribution for a category of shape. Most require expert





segmentation or the exact same number of features for every image. As such, these

methods are not a good fit for a system that aspires toward automation.

Zernike moments, as used in Ashaghathra () for identifying pecan weevils,

belong to a group of polynomial functions that are orthogonal on the unit circle.

Orthogononal implies that the integral of the product of two polynomials is zero

for any combination of Zernike Moments (ZM). The ZM was originally developed

as a method to quantify the abberation of optical systems by Zernike (). Since

their introduction, the ZM has been used in image processing, more specifically,

image compression and reconstruction. They have also been used as descriptors in

pattern and shape recognition applications in image processing.

For many years, the ZM was one of the defacto radial moments used in image

processing. Zhenjiang () used ZM to identify and grade rose flowers and leaves.

Optical Character Recognition (OCR) is one of the most common applications used

for comparing performance of shape-recognition algorithms. Khotanzad and Hong

(); Hosny (b); Papakostas et al. () all used OCR to demonstrate the

effectiveness of their chosen descriptors.

More recently, researchers have been looking at the performance of other types

of orthogonal moments for shape recognition and reconstruction. Pseudo-Zernike

Moments (pZM) were created as a modification of the original ZM and shown to

provide improved performance in image coding and reconstruction by Bhatia and

Wolf (). Fourier-Mellin Moments (FMM) were used by Chen et al. (). There

are many other classes of orthogonal polynomials, including Chebyshev moments

(Celebi and Aslandogan, ), Hahn moments (Zhu et al., b), Legendre mo-

ments (Mukundan and Ramakrishnan, ), Hermite moments (Vick et al., ),

Racah moments (Zhu et al., a), as well as others.





.. Reduced Component Methods for Classifiers

Pattern Classification, as a field, is typically done through the process of prepro-

cessing raw inputs, extracting features from said inputs, and using a classifier to

decide which class the raw inputs belong in. As more feature descriptors are added

to the representative feature vector of the raw inputs, presumably more information

is available to a classifier to make better, or more informed, decisions. In real-world

classification problems, additional feature descriptors are useful to an upper limit:

when the same amount of information is represented in the feature space that was

present in the raw input form, additional feature descriptors tend to only “muddy

the waters” with the same or even worse results than simply using the raw in-

puts. In essence, once a certain number of feature descriptors are included, any

additional descriptor that could be added to the set is dependent on descriptors

already included (Duda et al., ).

In pattern classification problems, it can often be the case that the set of selected

feature descriptors are not independent from one another, exhibiting large covari-

ances across descriptors. According to Duda et al. (), “component analysis is

an unsupervised approach to finding the ’right’ features from the data.” Principle

Component Analysis (PCA), otherwise known as the Harhunen-Loeve Transform,

ranks data descriptors by their eigenvalues. Beginning with descriptors with the

smallest eigenvalues, descriptors are removed from the model until only those mak-

ing the largest contributions to the variance remain. This yields a k-dimensional

linear subspace that best represents the data based on minimum-square-error cal-

culation. It should not be assumed that reduction in feature space through PCA is

always beneficial for classification. If noise is large when compared to the distance

between classes, PCA will locate the direction of the noise instead of the signal.





Factor Analysis (FA) is a similar method to PCA used to reduce the dimensionality

of data by forming a linear combination of features. Whereas PCA discovers the

features that account for the variance in the data, FA looks for a lower dimensional

set of features that accounts for the correlations among features. FA combines

features into cluster centers used to represent the data (Duda et al., ).





CHAPTER III

MATERIALS AND METHODS

introduction

Image processing is a broad term describing the manipulation or quantization of

data within an image to extract information that might otherwise not be directly

observable. Image processing techniques might seek to improve the appearance

of details by increasing contrast between regions, to locate regions of an image

that contain objects of interest, to recognize written characters for text extraction

from images, and to classify regions that belong to one of many defined groups.

In this study, image processing techniques are utilized to determine if an image

includes an insect, and if so, to identify the insect species based on its shape.

Determining the presence of an insect in each image prior to further processing for

insect identification can reduce total processing time in the case that the presence

detection step is much less processing intensive than the steps involved in insect

identification.

Pattern Recognition is the term used to describe mathematical and statistical

methods that are used to decide an object’s class membership. Classification meth-

ods are usually based on a set of numerical or ordinal values that describe an object.





Images might contain regions of interest that can be described by a list of member

pixel coordinates, a list of the boundary pixel coordinates, a mathematical descrip-

tion of the positions of the pixels, or a combination of the previous. A combination

of descriptive values that describe a region is known as a feature vector. Feature

Vectors can include any number of individual properties that describe the region,

such as color, intensity, centroid, major and minor axis, size, and many others. In

most cases, some features are more powerful than others in classification problems,

and it is desirable to use the features that most effectively serve to discriminate

between classes, thus improving classification performance.

The remainder of Chapter  describes acquisition of images for the study, the

insect presence detection methods, the proposed insect identification kernel, the

comparison methods for feature vector performance, and classification methods

efficacy in identifying pecan weevil insects.

. insect collection and image acquisition

The insect collection and image acquisition system for the study was designed to

collect images of pecan weevil and other insects that might be present in pecan

orchards in their natural poses. The design intent for the system was that it be

integrated with Circle Traps that are currently used by commercial pecan growers

for pecan weevil monitoring. The acquisition system was built as a prototype, and

was used for only one weevil emergence season. Planned improvements, based on

first year performance observations, were not implemented due to factors including

drought, infestation of other insects, and the demolition of the original testing site

at the Oklahoma State University Botanical Garden and Arboretum.





.. Insect Positioning and Imaging System Setup

The field data acquisition system for this study is comprised of custom built pecan

weevil traps that integrate an imaging chamber with back-lighting, camera, and

microcontroller in a weather-protected enclosure. The block diagram for the strap

system is shown in Figure .. The imaging chamber is a custom-designed path for

insects to climb that attaches securely to the cone of a standard bowl weevil trap,

built in an hourglass shape that funnels insects to the back-lit imaging area that

is placed in front of the camera. The camera is a commercially available consumer-

grade camera (Canon Powershot A, Canon Inc, Ota, Tokyo, Japan) and was

selected from available options due to its available “Super-Macro Focus” mode that

allows imaging of objects as close as 0.5 cm. The camera was interfaced to an -bit

microcontroller board (Arduino Pro , SparkFun Electronics, Niwot, Colorado,

USA) by directly soldering wires for control signals to the user-interface buttons on

the back of the camera to control power, auto-focus, and image acquisition. Images

were acquired on fixed intervals of  or  seconds, and were saved directly to the

camera’s internal SD memory card.

The back-lighting in the imaging chamber is provided by white electrolumines-

cent sheeting placed in the imaging area on the side opposite the camera. The elec-

troluminescent sheeting requires a separate DC-to-AC power supply that provides

high-voltage, high-frequency current for its excitation, while the camera requires

a DC power supply at 3V DC. The DC-to-AC and 3V DC power supplies were

also interfaced to the microcontroller via direct soldering control signals to the con-

tacts on the user-interface buttons. The microcontroller was powered continuously,

while the back-lighting and camera power supplies were disabled when not in use.

The traps were operated on 6V sealed lead-acid batteries which were replaced and





Figure .: Block Diagram of the instrumented pecan weevil traps used for image ac-
quisition. In the image, red/black (black/gray) pair lines represent power
with diagonal green (gray) cross line indicating that the power is switchable.
Dashed blue (gray) arrows represent control logic lines.

recharged at one to four day intervals. The installed image acquisition trap is shown

in Figure .. In all, , images were collected between the two instrumented

traps over a -day period, with collection ending when weevils were no longer

emerging for the season, as observed via non-instrumented companion traps.

Image processing, pattern recognition testing and training, and statistical analy-

sis for the study were performed offline using a -bit commercial software package

(MATLAB Release b, The MathWorks Inc., ) with the Image Processing

and Statistics toolboxes, while graphs were generated using an updated version

of the same software (MATLAB Release a, The MathWorks Inc., ). The

software package was installed on a Dell mobile workstation with an Intel Core

I-QM .GHz quad-core processor, -GB DDR MHz Random Access

Memory (RAM), and a PCI-Express Solid-State harddrive. The operating system

was Windows . Pro -bit.





Figure .: The image acquisition trap installed in a pecan orchard. Labeled components
include A) microcontroller, B) power regulation and switching, C) Electrolu-
minescent DC-to-AC inverter, D) weevil collection cup, E) battery, F camera,
G) imaging chamber, H) Electroluminescent back-light, and I) Desiccant.

. insect presence detection

After the complete image set was collected, it was observed that the images could be

categorized into various classes, with further processing only completed for a certain

set of classes. Two base classes, Good Image Capture (GIC) and Bad Image Capture

(BIC) were established. The two base classes are further broken down into sub-

classes. The GIC class was broken into the sub-classes GIC-Insect Present (GIC-IP)

and GIC-No Insect (GIC-NI). The BIC class was subsequently broken into four sub-

classes: BIC-Backlight Malfunction Type  (BIC-BM), BIC-Backlight Malfunction

Type  (BIC-BM), BIC-Over Saturated (BIC-OS), and BIC-Shutter Failure (BIC-SF).

Example images for each of the five classes are shown in . on the following page.





(a) BIC-BM (b) BIC-OS (c) BIC-SF

(d) GIC-IP (e) GIC-NI

Figure .: Example raw images of the five different image classes. The top row, a-c, shows
the Bad Image Capture classes, while d-e show the Good Image Capture
classes. All images are field-acquired.

.. Insect Detection Features

The images in figure . have obvious differences in intensity, or brightness, despite

being collected from the same scene. The distribution of intensities across an entire

image, otherwise known as the intensity histogram, is proposed as a feature vector

for classifying images in the the classes GIC-IP, GIC-NI, BIC-BM, BIC-BM, BIC-OS,

and BIC-SF. Both traditional and cumulative histograms were used in this study.

... Traditional Histograms

The traditional histogram is commonly used as a method to visualize the fit of

sampled data to a density function in statistics, or to detect bi-modal distributions





that can be used to segment data. The histogram, m, is defined by dividing the

intensity range, 0− 255 in the case of -bit digital images, into j bins such that

n =

j∑
i=1

mi, (.)

where the total number of pixels in the image is n and i is the bin label. The

proposed histogram feature vector is normalized such that

1

n

k∑
i=1

mi ≡ 1. (.)

This normalization is also known as a relative histogram, and it allows images

of different sizes to be used in the same classifier since the effect of image size is

removed from the resulting vector. The relative histograms for the images in Figure

. are shown in Figure .. Note that the histogram shapes are quite different in

the three BIC class images, but are not of notable difference in the GIC class images.

This indicates that it should be easier to classify images between the three BIC

classes than those in the GIC classes.

The vast majority of the images captured for the study fall in the GIC class, with

a large percentage of the GIC images falling in the GIC-NI sub-class. This is due to

the fact that the event of an insect entering the imaging chamber roughly follows

a Poisson distribution for rare events. Images in the BIC class, while relatively

rare, could provide crucial information to growers or researchers about the status

of instrumented camera traps. In field conditions with a well-functioning system,

the problem of insect detection would converge to the case of classifying between

only the GIC-IP and GIC-NI sub-classes. In practice, the BIC classes could provide

useful diagnostic information for a given trap, indicating failure of a camera or





0 63 127 191 255
0

0.5

1

·10−2

Intensity

N
or

m
al

iz
ed

C
ou

nt

(a) BIC-BM

0 63 127 191 255
0

0.2

0.4

0.6

0.8

Intensity

N
or

m
al

iz
ed

C
ou

nt

(b) BIC-OS

0 63 127 191 255
0

0.05

0.1

0.15

Intensity

N
or

m
al

iz
ed

C
ou

nt

(c) BIC-SF

0 63 127 191 255
0

1

2

3

·10−2

Intensity

N
or

m
al

iz
ed

C
ou

nt

(d) GIC-IP

0 63 127 191 255
0

1

2

3

·10−2

Intensity

N
or

m
al

iz
ed

C
ou

nt

(e) GIC-NI

Figure .: Image intensity histograms of the images in Figure .. As in Figure ., the
top row, a-c, shows the Bad Image Capture classes, while d-e show the Good
Image Capture classes.

backlight. Additional failure modes might be found in different implementations of

an instrumented trap and could be added to the BIC class.

GIC image histograms as classification features do not differ dramatically in shape,

as the major difference in the scene is the presence of an insect, or lack thereof. This

results in histogram shapes that are much more similar between the two sub-classes.

Figure . show histograms for two sample images in Figure . for the GIC-IP and

GIC-NI sub-classes. Due to the similarity in histogram shape, it would be expected

that there are larger classification errors between these to sub-classes. With the

traditional histograms for the GIC-IP and GIC-NI sub-classes, it appears that the





GIC-IP distribution has four modes, or peaks, while the GIC-NI distribution is tri-

modal.

0 63 127 191 255
0

1

2

3

·10−2

Intensity

N
or

m
al

iz
ed

C
ou

nt

GIC-IP

GIC-NI

Figure .: GIC class histograms for the sample images in Figure .. GIC-IP is in blue
(dark), while GIC-NI is green (lighter). The histograms for these two subclasses
are much more similar than those of the BIC class.

... Cumulative Histograms

It is also possible to visualize an intensity histogram in a cumulative manner, where

subsequent bin values are summed as the intensity value increases. This is also

known as a cumulative frequency distribution chart, and is similar in concept to

the cumulative density function in statistics. The cumulative histogram, Mi, for

the histogram mq is defined mathematically as

Mi =

i∑
q=1

mq. (.)

Figure . shows the cumulative histograms for the five image sub-classes from

Figure .. It should be noted that cumulative histograms do not contain more or

less of a description of an image than their non-cumulative counterparts. Rather,

the cumulative histogram is a mapping of the standard histogram. As with any





mapping to be used in pattern recognition or classification, it is possible that the

cumulative histogram might provide different classification performance than stan-

dard histograms do. Both standard and cumulative histograms are evaluated for

suitability as a feature vector for insect presence detection in this study.

0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

(a) BIC-BM

0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

(b) BIC-OS

0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

(c) BIC-SF

0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

(d) GIC-IP

0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

(e) GIC-NI

Figure .: Cumulative histograms of the images in Figure .. As in Figure ., the top
row, a-c, shows the Bad Image Capture classes, while d-e show the Good
Image Capture classes.

Figure . shows the superimposed cumulative histograms for the GIC-IP and

GIC-NI sub-classes. With the cumulative histogram, it is easy to see the initial left-

shift of the GIC-IP intensity counts due to the insect present in the scene, as well

as the left shift in the GIC-NI at higher intensity counts due to the larger portion

of the backlight being unobstructed.





0 63 127 191 255
0

0.2

0.4

0.6

0.8

1

Intensity

C
um

ul
at

iv
e

C
ou

nt

GIC-IP

GIC-NI

Figure .: GIC class cumulative histograms for the images in Figure .. GIC-IP is in blue
(dark), while GIC-NI is green (lighter). The histograms for these two subclasses
are much more similar than those of the BIC class.

.. Insect Presence Classification

Classification of images into classes was done with both traditional and cumula-

tive histogram feature vectors using two classification methods: a simple Euclidean

Distance measure from class prototype centers, and K-Nearest Neighbor clustering.

For each classification method and feature type, the effects of varying the number

of histogram bins and sub-sampling of the images were evaluated with respect to

classification performance. Computation time was used as a proxy for energy at

each level of bin size and sub-sampling interval in order to determine an optimal

combination that is both accurate and efficient.

... Euclidean Distance Classifier

Classifying based on Euclidean Distance from a mean feature vector prototype for

each class is a rudimentary classification method. In essence, a group of histograms

from known classes are averaged in the training procedure to produce a class proto-

type. This is the value that is used for testing the group classification of subsequent





images of unknown class type, where the predicted class membership is based on

the minimum distance of the unknown image feature vector from each class pro-

totype. Given that vector x = {x1, x2, · · · , xn} is a vector with n dimensions, the

Euclidean Distance, or -norm, between the prototype and sample is

D(p, i) = ||~xp −~xi|| = 2

√√√√ n∑
j=1

(xp(j) − xi(j))2, (.)

where ~xp is the prototype feature vector for class p and ~xi is the unknown, or

to-be-classified feature vector for sample i. xp(j) and xi(j) are the j-th components

of the prototype and unknown feature vectors, respectively.

The Euclidean Distance Classifier determines predicted class membership based

on the minimum distance from the class prototype, or mean.

class(i) = argmin
p

[D(p, i)] (.)

Using the Euclidean Distance as the classification metric is a simple approach,

and is relatively efficient computationally. It is not sensitive to the number of

training observations used to create the prototype means, and is thus not degraded

in performance if the number of training observations for each class is radically

different, assuming that all training vectors are good representations of the class. It

does have the drawback that outliers in the training set contribute equally to the

prototype when compared to good representations, introducing the opportunity for

poor performance if an outlier is far from the prototype mean if it is not included.

The Euclidean Distance classifier is, in essence, a single parameter classifier that

operates under the assumption that all members of the feature vectors are inde-

pendent with respect to the rest of the vector. In the case of histograms, this is

likely a poor assumption as the covariance between adjacent bins is usually large





in natural images. In the case of relative, or normalized, histograms, there is also

a forced dependency introduced between non-adjacent bins: a large peak in a rela-

tive histogram in the “bright” area reduces the remaining bins‘ potential members

since the sum of all bins must equal one. With these caveats aside, the Euclidean

Distance function as a classifier is well understood and provides a benchmark for

the potential classification performance of other, more advanced classifiers.

... K-Nearest Neighbor Clustering Classifier

K-Nearest Neighbor (KNN) Clustering is an approach to pattern recognition and

machine learning that seeks to develop class partitions based on a combination of

the actual training samples rather than their mean prototype as in .... In KNN

classification, the training points are preserved as part of the classifier model, and

the sum of the distances from the unknown vector to the k nearest training points

in each class is used to determine the class membership. The KNN classifier uses

the same definition for Euclidean Distance as in Equation (.). For each unknown

feature vector, the total distance considered for classification of unknown vector ~xi

for class p and k neighbors is

DKNN(~xi,p) =
k∑
j=1

D(~xi,~xp,k), (.)

where ~xp,k are the k nearest training points to ~xp. It should be noted that, although

the distance in this research is taken to be the Euclidean distance, it is equally

valid to use the -norm (Manhattan distance), p-norm (arbitrary power function in

the exponent and root functions of the distance equation), or even inf-norm. The

Euclidean distance is used here by choice.





Again, classification is based on the minimizing class for distance based on the

rule

class(i) = argmin
p

[D(~xi,p)] . (.)

KNN Clustering is also a well-known algorithm and has been used widely in many

different pattern recognition and machine learning applications. When compared

with using the Euclidean distance and training data means for classification as

in ..., the KNN method is at least k-times as computationally intensive since

the number of distance calculations must be increased as the number of neighbors

considered grows. In practice, it is likely much more intensive if the training sets

are large since the nearest neighbors from each class will be unknown for each new

unknown feature vector to be classified. However, when compared to many other

classifiers it is still considered a fast, low overhead method.

The KNN tools included in MATLAB set the default number of neighbors con-

sidered to k = 1. In a sense, KNN with k = 1 determines which of the training

samples is the closest to the unknown feature vector to be classified. If there are

outliers in the training data for one class that are close to clustered areas of training

data for another class, it is possible to have misclassification in this region due to

only one data point. As k increases, the influence that a single outlier has on the

classification performance is reduced.

KNN Clustering is more sensitive to training data class size than the Euclidean

Distance method as the number of neighbors increases since classes with smaller

numbers of point in the training data may be overwhelmed in the classifier by the

training data from more common classes. For instance, in the course of this study,

the GIC-NI class images were more than a hundred fold more likely to occur in the

field data collection than were any of the BIC classes. If a classifier were trained





with only  input vectors, this would imply that the number of BIC images would

be in the double digits while GIC-NI would count over . In such a case, the rare

classes are limiting in the number of neighbors, k, that can be considered.

For this study, KNN performance on classifying weevil trap images is investigated

for neighborhoods ranging from k = 1 . . . 5 due to the smaller number of images

available from the BIC classes.

... Variation of Number of Histogram Bins

Image histograms, both traditional and cumulative, can be computed for any num-

ber of bins from two to the maximum number of intensity values that exist in the

image ( possibilities for the -bit images in this study). Computational inten-

sity and required RAM increase roughly proportionately as the number of histogram

bins increases, both for histogram computation and for subsequent classification of

images. This is due to the increased feature vectors produced with larger numbers

of bins, both for storage and for distance calculations. Since it is desired to have au-

tonomous, instrumented traps in the future that will likely be limited in computing

resources, any reduction in computation, RAM, or data storage and transmission is

desirable.

With reduced resources in mind, the effects of reducing the number of histogram

bins used as the feature vector for image classification is tested to determine the

effects of binning on computational requirements and classification performance.

The number of bins is varied in the study from j = 2 . . . 256.





... Variation of Sub-Sampling Interval

Another potential way to reduce computational complexity and data storage/trans-

mission requirements is to calculate histograms from smaller images. However, most

cameras have a fixed image size, and the computational and storage requirements

for down-scaling images are greater than that of computing histograms. Since the

images are already in memory after acquisition, one alternative method to scaling

the images prior to histogram computation is to sub-sample the images and com-

pute the histograms based on a fraction of the original pixels. For example, comput-

ing a 16 bin histogram for a 640× 480, 8 bit original image requires 304, 248 bytes

of memory and takes 1.5ms. Resizing the image to 160 × 120 and computing

the 16 bin histogram requires 323, 448 bytes of memory and takes 4.0ms, while

computing the 16 bin histogram subsampled every four pixels requires the same

304, 248 bytes, and takes 0.98ms. This requires the same memory footprint as the

original image while providing a 59% reduction in computation time, while provid-

ing a 6.3% reduction in memory use and a 414% reduction in computation time

when compared to the resized image.

In this study, the original input images are 640× 480 pixel, RGB images. The

original images are sub-sampled where sub-sampling is defined in MATLAB vector

notation as

Iinput = I(1 : 1 : N, 1 : 1 : M)

Icsampled = I(1 : c : N, 1 : c : M) (.)

where c is the integer sub-sampling rate. In words, subsampling is taking every

c pixel in both the horizontal and vertical axes, while the size of c is constrained

such that c 6 {minM,N}. In practice, it makes little sense for c to even ap-





proach M or N. For this study, image subsampling is implemented at levels c =

round(
√
2k), for k = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, where c = 〈1, 2, 3, 4, 6, 8, 11, 16, 23, 32〉.

Subsampling effects are evaluated for histogram computation performance improve-

ments and image classification performance.

... Histogram Adjustment for Contrast Enhancement

As can be noted in the histograms shown in Figure . and Figure ., typical

images collected in this study do not fill the entire span of possible intensity values

in their raw form. A common practice in image processing is to adjust images

such that their intensity values do span the entire intensity gamut. The MATLAB

function imadjust() provides this intensity adjustment to enhance contrast in

images, often with the desired side effect that regions of interest are easier to

segment from the rest of the image. By default, imadjust() stretches the images

intensity gamut such that % of the image falls in the pure black intensity range,

and % of the image falls in the pure white intensity range.

Since a portion of this study will need to extract insect silhouettes from the

images, this contrast adjustment is likely to be beneficial at some point in an

image’s path from raw to indicating whether there is an insect and whether that

insect is a pecan weevil. Additionally, the fact that ambient sunlight from outside

of the trap will unavoidably cause fluctuations in the average intensity of collected

images depending on the time of day, trap orientation, and the weather. This

ambient light is unavoidable because the system relies on insects being able to

enter the imaging chamber, thus necessitating at least one transparent opening to

outside of the trap.





While imadjust() improves contrast in images, it also has some effects that could

degrade image classification performance for insect detection. Figure . shows the

effects of applying a histogram calculation to the contrast-enhanced image. Note

that the stretching of the intensity gamut results in a sawtooth shape due to a lack

of interpolation in the algorithm, and because each image has a different average

intensity, the zero points in the new histogram do not always fall in the same

bins from one image to the next. The effect of this pattern is also evaluated for

improvement or degradation in classification performance.

It is possible that smoothing the contrast-enhanced histogram vector could pro-

vide both the benefit of improved contrast in the image for feature extraction and

improve classification performance. The proposed smoothing function simply re-

places any zero-valued bin in the adjusted histogram with the mean value of the

adjacent bins before being normalized to sum to one. The pseudo-code for this

smoothing function is

Algorithm . Histogram Smoothing Function in MATLAB
for index=2:(length(histogram)-1)

if histogram(index)==1

histogram(index) = (histogram(index-1) + histogram(index+1))/2

end if

end for �
The smoothed histogram, shown in Figure ., has the advantage that it does not

have zero-value entries interwoven through the curve. It also does not correspond

to an actual image in a direct way, again due to lack of interpolation in the function

imadjust().





(a) Original image (b) Adjusted image

0 63 127 191 255
0

1

2

3

·10−2

Intensity

C
ou

nt

(c) Original histogram

0 63 127 191 255
0

1

2

3

·10−2

Intensity

C
ou

nt

(d) imadjust() histogram

Figure .: The effects of imadjust() contrast enhancement on images and their his-
tograms. a) original pecan weevil image, b) histogram adjusted pecan weevil
image, c) the histogram for the original image, and d) the histogram for the
contrast adjusted image. The algorithm constrains the histogram such that
% of the pixels have zero intensity (black) and % have maximum intensity
(white), with the result a stretched histogram that may have a “comb” shape
due to some intensities having zero pixel count.





0 63 127 191 255
0

0.5

1

1.5

·10−2

Intensity

C
ou

nt

Figure .: The effects of the smoothing kernel in Algorithm . on contrast enhanced his-
togram. The “comb” effect shown in Figure .d is removed by the smoothing
kernel, resulting in a smooth histogram.

The effect of this smoothing function on histograms is evaluated with respect

to the classification performance when compared to raw image histograms and the

sawtooth-shaped histograms that the smoothing is designed to remove.

... Image Pre-Processing for Insect Presence Detection

Little pre-processing is required prior to using images for insect presence detection,

as the presence protection detection step is intended to be a pre-processing step

for insect identification classification in Section .. As implemented, there is no

pre-processing of images used in this step, but the effects of computing the contrast-

enhanced image prior to this are evaluated. One potential processing step that

might be added in future work is to crop input images slightly to remove the image

edges. This would not be necessary for an instrumented trap in which the entire

captured image was over backlighting rather than the present system in which the

imaging chamber is clearly in view in most images.





. proposed insect identification kernel

This section describes a proposed Insect Identification Kernel that was designed to

classify insects into their prospective species based solely on the region-based shape

of the specimens’ silhouette. The goal of the proposed kernel is to provide accurate

identification with low incidence of either false-positive or false-negative errors while

attempting to reduce computational requirements to the minimal level to meet

the identification needs. The remainder of this section describes the image pre-

processing steps required for identification, the proposed polar-coordinate features

used for training and classification of insects, the transformation method used to

handle Cartesian coordinate images efficiently with polar coordinate-based features,

and the proposed classifiers and their performance in the insect identification task.

It concludes with a reduced feature set representation that combines the most

effective of the proposed features and classifiers into the final proposed kernel.

.. Image Pre-Processing for Insect Identification

Pre-processing of images is required in order to attain a suitably sized binary image

for moment computation. Figure . shows potential input images for this study.

As can be seen, some are field acquired, some laboratory acquired. The field ac-

quired images require more pre-processing than do the laboratory acquired, which

must only be thresholded and windowed for binary conversion. In general, the pre-

processing steps for field acquired images are found in Listing .. In application

with a network of instrumented traps, some of the pre-processing steps would be

done on the node level. Figure . shows the steps of an image in pre-processing.





(a) (b) (c) (d)

(e) (f) (g)

Figure .: Pre-processing of field acquired images. a) Original, b) Grey-scale, c)
Contrast-Enhanced, d) Thresholded, e) Compliment, f) Edge-connections
removed, g) Small regions removed. It is possible that insects much smaller
than a pecan weevil would be removed as small regions. A consequence of
edge-connection removal is that partial insect shapes entering or exiting the
imaging chamber would be ignored.

Listing .: Pre-processing steps for insect shape recognition

1. Convert to grey-scale colorspace

2. Equalize the histogram

3. Threshold image for binary conversion

4. Take complement to make regions of interest equal one

5. Remove edge connected regions from binary image

6. Remove small regions from image

7. Remaining regions are potential insect �
Field acquired, Run-Length Encoding (RLE) compressed images from a net-

worked trap would be decompressed, and would enter in the pre-processing at step

 in Listing .. For this study, all images enter the pre-processing stage offline

in JPEG form that can be directly loaded in MATLAB via the Image Processing

Toolbox. After regions are cropped to the labeled connected regions, the images

are zero-padded at the edges until the insect region centroid is in the center of a

square image. If the square is smaller than 256X256, the cropped image is scaled





Field 
Acquired 

Raw Image

Field 
Acquired 

RLE Image RLE Decode

Preprocess 
Image

Compute 
Region 

Centroids

Crop to  
Smallest 
Centroid-

centered Square 
that Fits

N>256?

Scale to 
>256 with 

hqx 
algorithm

Scale to 128X128
Bi-cubic 

approximation

Labeled
Regions

No

Yes

To Rotary Moment 
Kernel

Figure .: Different source images require a bit different handling. Cropping to a
centroid-centered square image could require either adding or removing rows
and columns at the edges of the image.

to at least 256X256 using the HQX algorithm to prevent pixel losses attributed to

interpolation in bi-cubic enlargement of binary images. Then, traditional bi-cubic

interpolation scaling is used to scale the image to 128X128. At this point, the im-

age is ready for processing with the rotational moment kernel, starting with the

square to circle transformation described in detail in Section ... The final region

processing flow chart is depicted in Figure .. Figure . shows the results of

the region resizing.

.. Radial Moment Features for Shape Description

The shape representation features used in this study were selected based on evidence

in the literature that radial moment feature-based description of shapes provides for

accurate classification of both optical characters (Chen et al., ; Hosny et al.,

; Wang and Liao, ) and for insects (Ashaghathra, ). Three types

of orthogonal radial moments are used in this study, including Zernike Moments

(ZM), Pseudo-Zernike Moments (pZM), and Fourier-Mellin Moments (FMM). These





Figure .: Insect region re-sizing for training and classification. a) Original 145× 145,
b) HQX algorithm upscale 580× 580, c) Bi-cubic shrink 128× 128. HQX
upscaling prior to final scaling reduces the potential for lost pixels due to
decimation at region edges inherent to the bi-cubic scaling algorithm when
using binary images.

moments are not limited in the number of features produced for a given image,

requiring a decision to made as to how many features to use for describing images.

A fourth radial moment, the MPEG- Angular Radial Transform (ART), is defined

in the MPEG- standard as a shape descriptor that is constrained in the number

of features to provide a compact representation that may be limited in the shapes

it can accurately represent. The four descriptors are compared for their efficacy

in insect identification individually, and finally, combined as members of a mixed-

feature vector for insect identification.

The ZM was chosen for this study due to its well established use, while pZM

and FMM were chosen due to reported performance in the literature. Additionally,





as done in Hosny (a), these three moments can be re-written in a form that

allows the kernel to be pre-computed and used for all images, resulting in improved

overall speed of testing. The key attributes that make ZM, pZM, and FMM suitable

for this study are orthogonality, rotation invariance, scale invariance, and definition

over the unit circle (as opposed to Legendre moments, which are defined ∀(x,y) ∈

±∞). Orthogonal features are those that have no dependence on other features

a feature vector such that the covariance matrix is very close to zero for all non-

diagonal entries. Invariance properties imply that values do not change when the

given invariant property changes. Rotation invariance implies that the value of a

feature would be the same for a given shape and a rotated copy of that shape, while

scale invariance implies that the value would not change between an original image

and a scaled version of the original.

... Zernike Moments

The Zernike Moment was originally conceived as a way to quantify aberration in

optical systems, including telescopes and microscopes, by Dutch physicist Fritz

Zernike in . ZMs are defined on the unit circle where radius 0 6 r 6 1 and

−π 6 θ 6 π. For an image function f(r, θ) on polar coordinates, the ZM of the

order p and repetition q are defined as:

Zqp(f(r, θ)) =
p+ 1

π
×

(2π)∫
0

1∫
0

V
q
p (r, θ)·f(r, θ) · r dr dθ (.)

where, p = 0, 1, 2, 3, ...∞ and q is a positive integer such that (p− q) = even

and q 6 p. The bar above Vqp (r, θ) denotes the complex conjugate of the Zernike

basis function, given by:





Vqp (r, θ) = RZqp(r) · e
jqθ, (.)

where

p− q = even (.)

and

0 6 |q| 6 p, 0 6 p 6∞. (.)

RZqp(r) is the real-valued Zernike polynomial given by:

RZqp(r) =

p−|q|
2∑

m=0

(−1)m · (p−m)!

m!(p+|q|
2 −m)!(p−|q|

2 −m)!
· r(p−2m), (.)

which are normalized such that RZqp(1) = 1. This normalization ensures that

− 1 6 RZqp(r) 6 1 (.)

inside the unit circle. ZM are orthogonal in that they satisfy the condition

1∫
0

Rqp(r) · R
q
p‘(r) · r dr =

1

2 · (p+ 1)
· δpp‘ · Rqp(1), (.)

where

δpp‘ =


1 ∀p = p‘

0 ∀p 6= p‘

. (.)

The effect of the order, p, is to increase the frequency of the radial basis poly-

nomial, while the effect of repetition, q, is to increase the frequency of the angular

basis function.





When used as a shape descriptor, the ZM can either remain in complex form

as presented in equation ., or it can be converted to the real magnitude of the

complex moment. Using the real magnitude of the moment induces rotation invari-

ance where the original image f(r, θ) rotated by angle α to form the new image

g(r, θ) = f(r, θ−α) computes to the the same moment value:

Zqp(f(r, θ)) = Z
q
p(g(r, θ)) = Z

q
p(f(r, θ−α)). (.)

Additionally, the repetitions for q < 0 are no longer orthogonal when using the real

magnitude since
∣∣ej·q·θ∣∣ = ∣∣e−j·q·θ∣∣.

The first  ZM polynomials, excluding negative repetitions, are shown in Table

., including all radial basis functions up to order p = 5. The real portion of

the radial-angular basis functions can be seen in Figure ., while a graphical

comparison of the radial polynomials for all classes of radial moments can be seen

in Figure ..

Table .: Equations for Zernike polynomials for p = 0 . . . 5.

R00 = 1 R11 = r

R02 = 2 r
2 − 1 R22 = r

2

R13 = 3 r
3 − 2 r R33 = r

3

R04 = 6 r
4 − 6 r2 + 1 R24 = 4 r

4 − 3 r2

R44 = r
4 R15 = 10 r

5 − 12 r3 + 3 r

R35 = 5 r
5 − 4 r3 R55 = r

5

Note: The polynomials are denoted as Rqp, where p is the order and q is the repetition.

 Additional ZM radial-angular basis functions can be seen in Appendix A.





(a) VZM22 (b) VZM15 (c) VZM28

Figure .: Real portion of selected Zernike Moments (ZM) radial-angular basis function.
The imaginary portion of the same basis functions is opposite-signed copy
of the real portion rotated by  degrees.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

Radius, r

R
Z

q p
(r
)

RZ
RZ
RZ
RZ
RZ
RZ


RZ
RZ
RZ



Figure .: Zernike Moments (ZM) radial basis functions through p = 4. The radial basis
polynomials for ZM are constrained to be between ±1.

... Pseudo-Zernike Moments

Pseudo-Zernike Moments (pZM) are another class of radial moments that were

derived from the original acZM formulation, sharing many of the same properties

and applications, including optics and image shape description. pZMs have been

shown in practice to be more robust and less sensitive to noise than ZMs while

often performing better in representing shape features.





pZMs are defined similarly to ZM, using both equations . and .. With pZM,

the polynomial changes from that in (.) to:

RpseudoZqp(r) =

p−|q|∑
k=0

(−1)k
(2p+ 1− k)!

k!(p+ |q|− k)!(p− |q|− k)!
r(p−k) (.)

such that
0 6 |q| 6 p, 0 6 p <∞. (.)

Compared to the constraints for ZM orders and repetitions in (.) and (.),

it can be seen that there are more existing pZM features for a given order p 6 pmax

due to the relaxation of the “even” constraint in (.). All pZMs are used, as all

are orthogonal with respect to rotation of images as in (.) and there are no

repetitions of |− q|, |q|. pZM radial basis polynomials are not constrained to the

range (0, 1) as ZM are in (.), leading to larger range in their basis functions and

the potential to emphasize shape features more effectively.

The radial basis functions for the pZM are shown in Table . for orders p =

1, 2, 3, 4, 5. The real portion of the radial-angular basis functions can be seen in

Figure ., while a graphical comparison of the radial polynomials for all classes

of radial moments can be seen in Figure ..

... Fourier-Mellin Moments

Fourier-Mellin Moments (FMM) are a third class of radial moments that were

derived from the circular Fourier and radial Mellin transforms. As with pZM, FMM

have also been shown provide better noise immunity and perform better in certain

shape description and recognition applications. Unlike ZMs and pZMs, FMMs do not

have an angular repetition dependence in their radial basis function, meaning that

 Additional pZM radial-angular basis functions can be seen in Appendix B.





Table .: Equations for Pseudo-Zernike polynomials for p = 1 . . . 5.

RpZ01
= 3 r− 2 RpZ13

= 21 r3 − 30 r2 + 10 r

RpZ11
= r RpZ23

= 7 r3 − 6 r2

RpZ02
= 10 r2 − 12 r+ 3 RpZ33

= r3

RpZ12
= 5 r2 − 4 r RpZ04

= 126 r4 − 280 r3 + 210 r2 − 60 r+ 5

RpZ22
= r2 RpZ14

= 84 r4 − 168 r3 + 105 r2 − 20 r

RpZ03
= 35 r3 − 60 r2 + 30 r− 4 RpZ24

= 36 r4 − 56 r3 + 21 r2

RpZ44
= r4 RpZ34

= 9 r4 − 8 r3

RpZ35
= 55 r5 − 90 r4 + 36 r3 RpZ25

= 165 r5 − 360 r4 + 252 r3 − 56 r2

RpZ55
= r5 RpZ45

= 11 r5 − 10 r4

RpZ05
= 462 r5 − 1260 r4 + 1260 r3 − 560 r2 + 105 r− 6

RpZ15
= 330 r5 − 840 r4 + 756 r3 − 280 r2 + 35 r

Note: Excluding RpZ00 .
Note: The polynomials are denoted as RpZqp , where p is the order and q is the
repetition.

the same radial basis function is used for all repetitions of a given order, providing

potential computational savings when compared to the first two rotational mo-

ments, ZM and pZM. Basis functions for ZM and pZM depend on both order q and

repetition p in the radial form, while the radial basis function for FMM depends

only on the order q as see in equation ..

FMM also use the definitions given in equations . and .. The radial basis

function for FMM is the Fourier-Mellin Polynomial:

Rfmp(r) =

p∑
k=0

(−1)(p+k)
(p+ k+ 1)!

(p− k)!k!(k+ 1)!
rk (.)





(a) VpZM22 (b) VpZM15 (c) VpZM28

Figure .: Real portion of selected Pseudo-Zernike Moments (pZM) radial-angular basis
function. The imaginary portion of the same basis functions is opposite-
signed copy of the real portion rotated by  degrees.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Radius, r

R
p
Z

q p
(r
)

RpZ
RpZ
RpZ
RpZ
RpZ
RpZ
RpZ
RpZ
RpZ
RpZ



Figure .: Pseudo-Zernike Moments (pZM) radial basis functions through p = 3. The
radial basis polynomials for pZM are not constrained in magnitude as are
those for ZM.

where

p > 0. (.)

The angular repetitions, q, are not constrained for FMM to be less than the

absolute value of order p. However, for this research the values of q are kept within

the range 0 6 q 6 p, which is the same as the constraint used for pZM, and

maintains the rotational invariance when the magnitude of the complex moment is

used as a feature.





The radial basis functions for the FMM are shown in Table . for orders p =

1 . . . 10 . The real portion of the radial-angular basis functions can be seen in Figure

., while a graphical comparison of the radial polynomials for all classes of radial

moments can be seen in Figure ..

Table .: Equations for Fourier-Mellin polynomials for p = 1 . . . 5.

RFM1(r) = 3 r− 2

RFM2(r) = 10 r
2 − 12 r+ 3

RFM3(r) = 35 r
3 − 60 r2 + 30 r− 4

RFM4(r) = 126 r
4 − 280 r3 + 210 r2 − 60 r+ 5

RFM5(r) = 462 r
5 − 1260 r4 + 1260 r3 − 560 r2 + 105 r− 6

RFM6(r) = 1716 r
6 − 5544 r5 + 6930 r4 − 4200 r3 + 1260 r2 − 168 r+ 7

RFM7(r) =
6435 r7 − 24024 r6 + 36036 r5 − 27720 r4 + 11550 r3 − 2520 r2 + 252 r− 8

RFM8(r) = 24310 r
8 − 102960 r7 + 180180 r6 − 168168 r5 + 90090 r4 −

27720 r3 + 4620 r2 − 360 r+ 9

RFM9(r) = 92378 r
9 − 437580 r8 + 875160 r7 − 960960 r6 + 630630 r5 −

252252 r4 + 60060 r3 − 7920 r2 + 495 r− 10

RFM10(r) = 352716 r
10 − 1847560 r9 + 4157010 r8 − 5250960 r7 + 4084080 r6 −

2018016 r5 + 630630 r4 − 120120 r3 + 12870 r2 − 660 r+ 11

Note: Excluding RFM0
.

Note: The polynomials are denoted as RFMp
, where p is the order.

... MPEG- ART Coefficients

The final class of radial moments used in this research is the MPEG- Angular

Radial Transform (ART) as defined in the MPEG- standard. While very similar

to the ZM, pZM, and FMM, ART uses a radial basis function of cosine rather than a

 Additional FMM radial-angular basis functions can be seen in Appendix C.





(a) VFMM22 (b) VFMM15 (c) VFMM28

Figure .: Real portion of selected FMM radial-angular basis function. The imaginary
portion of the same basis functions is opposite-signed copy of the real portion
rotated by  degrees.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Radius, r

R
f
m

p
(r
)

Rfm
Rfm
Rfm
Rfm
Rfm
Rfm
Rfm
Rfm
Rfm
Rfm

Figure .: FMM radial basis functions through p = 10. The radial basis polynomials for
FMM are not constrained in magnitude as are those for ZM.

polynomial. It is not orthagonal, but is by default limited in order and repetition

such that aliasing is minimal. ART uses the same defining equation as in .. The

basis function for order p and repetition q is

{VART }
q
p(r, θ) =

1

p+ 1
· ej·q·θ · Rp(r) (.)

while the radial component is





Rp(r) =

1, p = 0

cos(π · p · r), p 6= 0
(.)

In the default implementation in the MPEG- standard, the orders and repe-

titions are limited to p = 1 . . . 10, q = 1 . . . 10, and each shape descriptor is

quantized to  bits/coefficient. In this research, the orders and repetitions are lim-

ited, but the shape descriptors remain in double precision floating point form. The

radial basis functions for ART, p = 1 . . . 10 are shown in Table .. The real portion

of the radial-angular basis functions can be seen in Figure ., while a graphical

comparison of the radial polynomials for all classes of radial moments can be seen

in (.).

Table .: Equations for ART radial basis functions for p = 1 . . . 10.

Rart1 =
cos(π r)
π Rart6 =

cos(6 π r)
π

Rart2 =
cos(2 π r)

π Rart7 =
cos(7 π r)

π

Rart3 =
cos(3 π r)

π Rart8 =
cos(8 π r)

π

Rart4 =
cos(4 π r)

π Rart9 =
cos(9 π r)

π

Rart5 =
cos(5 π r)

π Rart10 =
cos(10 π r)

π

Note: Excluding Rart0 .
Note: The polynomials are denoted as Rartp , where p is the order.

.. Cartesian to Polar Image Transformation

In order to compute the moments, an image is superimposed over the disks shown

in Figure ., multiplied, and summed over the whole unit circle. For most im-

plementations, image files are rectangular and on a Cartesian coordinate system.

This means that the rectangle must either be circumscribed inside the unit circle,

 Additional ART radial-angular basis functions can be seen in Appendix D.





(a) VART22 (b) VART15 (c) VART75

Figure .: Real portion of selected ART radial-angular basis function. The imaginary
portion of the same basis functions is opposite-signed copy of the real portion
rotated by  degrees.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

Radius, r

R
a
r
t
p
(r
)

Rart

Rart

Rart

Rart

Rart

Rart
Rart

Rart
Rart

Rart

Figure .: ART radial basis functions through p = 10. Since the radial basis functions
for ART are dependent on a cosine function, they fall between ±1.

ensuring that no information exists in much of the outer circle, or outside the circle,

ensuring that data from the corners of the image is discarded. This is depicted in

Figure ..

For this study, a transformation used by Hosny (a) will be implemented to

ensure all data remains in the moment calculation. This method maps the square

pixel into polar coordinates without discarding pixels, as shown in Figure ..

When using orthogonal moments for image coding and reconstruction, this reduces

some of the aliasing that occurs due to coordinate conversion. It is unknown whether





Figure .: The Circle/Square incompatibility introduced due to rectangular digital im-
ages and polar-coordinate basis functions defined on the unit circle. In case
(a), all pixels outside of the unit circle are dropped from the calculation,
including .% of the total shape near the corners that could be important
in defining the shape for classification. In case (b), the unit circle is drawn to
include all of the pixels in the square image. This results in % of the unit
circle being composed of points that are not of interest in the calculation.

this transformation will have benefits in the case of feature coding for recognition

purposes, but it allows for analytical evaluation of the moment functions on a

per-pixel basis.

The transformation is done by dividing the square image into concentric rings,

with the four pixels adjacent to the centroid set at the center of the rings. In radial

coordinates, the radius calculations depend only on the pixel’s ring membership,

while the angular calculations depend on the ring and the individual pixel coordi-

nates.

For an N×N image, the number of rings in the transformation is N/2. For each

ring, the upper and lower bounds of the radius r are pre-initialized. Subsequently,

the upper and lower bounds for the angular coordinate θ are pre-initialized for

each pixel in the images. This initialization improves computational efficiency when

many N×N images are to be used in the same problem. For the simple case of

N = 6, the initialized variables include:





rings(i, j) =



2 2 2 2 2 2

2 1 1 1 1 2

2 1 0 0 1 2

2 1 0 0 1 2

2 1 1 1 1 2

2 2 2 2 2 2


,

rl(ring) =
{
0 1

3
2
3

}
,

ru(ring) =
{
1
3

2
3 1

}
,

θl(i, j) =



7π
10

6π
10

5π
10

4π
10

3π
10

2π
10

8π
10

4π
6

3π
6

2π
6

π
6

1π
10

9π
10

5π
6

π
2 0 0 0

π π π 3π
2

11π
6

19π
10

11π
10

7π
6

8π
6

9π
6

10π
6

18π
10

12π
10

13π
10

14π
10

15π
10

16π
10

17π
10


,

and

θu(i, j) =



8π
10

7π
10

6π
10

5π
10

4π
10

3π
10

9π
10

5π
6

4π
6

3π
6

2π
6

2π
10

π π π π
2

π
6

π
10

11π
10

7π
6

3π
2 2π 2π 2π

12π
10

8π
6

9π
6

10π
6

11π
6

19π
10

13π
10

14π
10

15π
10

16π
10

17π
10

18π
10


.

This corresponds to the pixels 1 . . . 36 in Figure .. rings, θl, and θu are size

N×N, while rl and ru are size 1×N/2.





(a) Original Cartesian Image (b) Transformed Image

Figure .: The square to circle pixel mapping used in this research. This mapping
ensures that all of the pixels in the square image of interest are considered
in the calculation of moment features, and that none of the unit circle is made
up of area that will never contain part of the region of interest. The mapping
also converts the square pixel boundaries into polar coordinates, allowing for
exact calculation of integrals that are defined in the polar coordinate system.

(a) Cartesian weevil (b) Polar transformed
weevil

(c) Transformed weevil
superimposed on
original.

Figure .: Example image shape and Cartesian to polar transformation results. The
square to circle transformation deforms the original image slightly, with the
most severe deformation occurring along the diagonals of the square. While
this transformation causes deflection, images reconstructed from moment
features computed using the transformation will not be deformed.





.. Computation of Radial Moments

In this study, all insect shapes to be recognized are in the form of logical images,

with f(r, θ) = 1 for pixels that are in the shape and f(r, θ) = 0 for pixels outside of

the shape, assuming the transformation in .. are in effect. Note in . that the

integrals are separable because the radial basis is independent of θ and the angular

basis is independent of r. For each of the four radial moment descriptors, the basis

functions can be written as:

Vqp (r, θ) = I
q
p(r) · Jqp(θ) = Rqp(r) · ejqθ, (.)

where Iqp(r) is the radial basis and Jqp(θ) is the angular basis. After breaking the

basis into its radial and angular components, the radial moment equation can be

rewritten as

Zqp(f(r, θ) = f(r, θ)
⋂∑

n

∑
m

ru∫
rl

Rqp(r) · dr ·
θu∫
θl

ej·q·θ · dθ. (.)

For any of the ZM, pZM, FMM, or ART moments, rl and ru are the lower and upper

radius limits, respectively, for pixel (n,m). θl and θu are the lower and upper limits

for angle for the same pixel. The ∩ operator indicates that only portions of the

summation that are logical true in the image f(r, θ) are included in the moment.

Variables m and n are the pixel row and column indices for the input image.

Equation (.) is the underlying enabler for the radial moment engine devel-

oped for this research. The summation can be performed for each class, order, and

repetition in advance of testing, and can subsequently be used for use with each

image under test simply by summing the pixel values that are true in the image.





.. Insect Shape Classifiers

With the insect shape descriptors set as ZM, pZM, FMM, or ART, the next task is to

select a classification approach to determine the suitability of the chosen features

to represent insect shapes. Generally, a group of inputs known as the training set

is used to build a model that is subsequently used to classify further samples. In

the case of this research, the approach taken is that of supervised learning since

the true class of all insect shapes is known.

A good classifier is able to discern between different groups very accurately, with

minimal computational intensity. The two classifiers to be examined for insect shape

recognition are Support Vector Machine (SVM) and Naive Bayes (NB), which are

further described in this section.

... Support Vector Machine Classifiers

Support Vector Machine (SVM) classifiers seek to find the optimal hyper-plane in

N-dimensional space that separates a given class from the rest of the data. This

hyper-plane is optimal in that it gives the largest minimum distance to training

data examples. This minimal distance is given the name Margin in SVM, and is the

space that does not contain any training data. This makes the optimal hyper-plane

the one that maximizes the margin of the training data. The training data points

that are closest to the hyper-plane are given the name Support Vectors, which leads

to the name of SVM. Often there is no hyper-plane that fully divides two classes.

In this case the support vectors are used to determine class membership.

The MATLAB Statistics and Machine Learning Toolbox has two types of SVM

routines: one for a single class membership classifier, and one for a discriminator be-





tween two classes. In implementing SVM for this research, the two-class formulation

is used wherein the two classes are ’Pecan Weevil’ and ’Other’.

SVM defines a hyper-plane that optimally separates two classes of training data.

Feature vectors xi made up of radial moments are of dimension d, while the two-

class classifier constrains the class labels to be yi = ±1, with positive values for

the ’in’ class and negative values for the ’out’ class. The hyper-plane is defined as

〈w, x〉+ b = 0 (.)

where 〈w, x〉 is the inner product of vectors w and x, and b is a real number. The

classification problem is to find w and b to minimize ‖w‖ so that for all training

data (xi,yi) is

yi · (〈w, xi〉+ b) > 1. (.)

The support vectors are the data samples xi that fall on the boundary of the hype-

rplane such that yi · (〈w, xi〉+ b = 1. The optimal solution for separable data is

the set w and b that allows for classification of the form

class(z) = sign(〈w, z〉+ b). (.)

Given a dataset that has classes that are not separable, a soft margin is defined

to separate many rather than all of the data points. This is done by adding slack

variables, si and a penalty value, C. The training procedure is an optimization

problem of

min
w,b,s

[
1

2
〈w,w〉+C

∑
i

si

]
(.)





such that

yi · (〈w, xi〉+ b) > 1− si, and si > 0. (.)

This is known as the L1-norm problem, and is the form that is implemented in the

standard MATLAB SVM functions. The classifier function remains the same as in

(.).

... Naive Bayes Classifiers

The Naive Bayes (NB) classifier seeks to build a parametric probability distribution

for each class included in a training dataset, and then compare the predicted prob-

abilities between classes for unknown feature vectors in order to assign a predicted

class. Given the radial moments to be used as feature vectors in this research, NB

will be used with multi-variate normal (Gaussian) distributions. When compared

to SVM, NB has the advantage of being able to work on multi-class problems as

opposed to the binary or two-class limitation in SVM.

Training in NB with a Normal Distribution requires that the training data for

each class ci be used to compute the within-class mean µi and standard deviation

σi, where

µi =
1

n

n∑
j=1

xi,j, (.)

and

σi =

√√√√ n∑
j=1

(xi,j − µi)2, (.)





where i is the class index, j is the training vector index, and n is the number of

dimensions of the sample vectors. The probability of an unseen vector x belonging

to class ci is given as

P(ci|x) =
1

σi ·
√
2 · π

e
−

(x−µi)
2

2σ2 . (.)

The classification rule is set such that an unseen vector x is assigned to class i if

and only if P(ci|x) > P(cj|x) for 1 6 i 6 m, j 6= i. This is otherwise written as

class(x) = argmax
i

[P(ci|x)] . (.)

NB makes the simplifying, if not always true assumption that the the features

are conditionally independent of one another given the class membership. This

assumption can be defined as

P(x, ci) ≈
n∏
j=1

P(xj|ci). (.)

This is the “naive” assumption that lends to the naming of the procedure, as the

independence of the feature sets greatly simplifies the computation required.

.. Dimensionality Reduction Methods

In many different modeling or classification regimes, high-dimensional data has un-

intended consequences including increased computational intensity, greater storage

requirements, and even loss in model accuracy. Some variables included in a data

set can even be mainly noise. Dimensionality reduction methods are approaches to

reduce the length of feature vectors in such a way that classification performance

remains adequate, or even improves.





In this research, the chosen features could yield vectors with hundreds or thou-

sands of dimensions. In the case that only one type of orthogonal radial moment

is used, these thousands of features would continue to have mathematically inde-

pendent features. However, it is also possible that much of the discernment ability

of the said feature vectors lies within a small subset of the possible dimensions.

This section describes two methods for reducing the dimensionality of the insect

shape feature vectors, including Principle Component Analysis (PCA) and Fisher

Multiple Discriminant Analysis (FMDA).

... Principle Component Analysis

Principle Component Analysis (PCA) is a common procedure in regression analysis

for determining which of the dimensions describes the majority of the variance in

a given model. It is also used as a method to reduce the number of features of a

model. In PCA, the feature vector is reordered from 1 . . .N, with the features of

greatest variance listed with the lowest index. Higher index items can be pruned

from the list with minimal impact on the ability of the model to describe the data.

In application, PCA projects the features to a representation that best describes

the data in a least-squares sense.

PCA depends on the a matrix representation of the data vectors known as the

scatter matrix

S =

n∑
k=1

(xk − µ) · (xk − µ)> (.)

where k is the index of the sample vector, n is the number of samples, x is the feature

vector, and µ is the mean of all sample data. The scatter matrix is analogous to the





covariance matrix for data that is normalized to have zero mean. We also define

e as a unit vector such that ||e|| = 1 and note that

x = µ+ ae (.)

is a projection in the direction of e that passes through the mean data vector. The

scatter matrix projected onto a unit vector yields the result

Se = λe, (.)

where λ is an eigenvalue of the scatter matrix. This means that the optimal one

dimensional projection of the data, in the least squares sense, is a projection through

the mean along the eigenvector with the largest eigenvalue. Rearranging (.), the

result is the standard eivenvalue problem with operator J( ) the Jacobian of the

matrix

J(e) = e>Se. (.)

This can be extended to d ′ dimensions so long as d ′ < d, where d is the original

data dimensionality. The projection of the data into d ′ dimensions takes the form

x = µ+

d ′∑
i=1

aiei, (.)

where i is the eigenvector number, ei is the i-th eigenvector, and ai is an arbitrary

scalar value. This projection can be visualized as being the principal axes of the

hyper-ellipsoid of the original data.

The procedure for PCA dimensional reduction used in this research follows in

Listing ..





Listing .: Principal Component Analysis Procedure

1. Compute Scatter Matrix

2. Compute Eigenvalues of Scatter Matrix

3. Sort Feature Vectors by Eigenvalue in Ascending Order 1 . . .N

4. For the Eigenvector corresponding to largest Eigenvalue, select the

feature with the largest absolute value weight

4. Add selected dimension to Best Feature Vectors list, retrain and test

classification

5. If features remain in the unranked list, GOTO 4, ELSE

6. Record list of reduced features and performance �
... Linear Discriminant Analysis

Fisher Multiple Discriminant Analysis (FMDA) is a similar procedure to PCA in that

it is a way to project data in such a way that makes dimensional reduction possible.

Unlike PCA which seeks to select dimensions that describe the most variance in the

data, discriminant analysis seeks to select dimensions based on those that describe

most of the discriminating ability of the feature. The FMDA approach seeks to

maximize the between-class scatter matrix given the within-class scatter matrix,

while the PCA approach seeks to only maximize the overall scatter matrix. With

PCA, it is possible that most of the variance in the data is due to noise, where

selecting on maximum variance description may lead to selecting features that

describe only noise. With FMDA, the projection or selection of features is done to

maximize the distance between classes.

Given a set of n samples x1 . . .xn with n1 in the class c1 and n2 in the class n2,

with class labels w1 and w2 for the two classes, we can form a linear combination

of the components of x with the dot product equivalent to

z = w>x, (.)





where there is a set of corresponding n samples divided into subsets for the classes

c1 and c2. With ||w|| = 1, each z is a projection of x in the w direction. For the

two-class case, the scatter matrices Si for class i are

Si =
∑
x∈Di

(x− µi) · (x− µi)
>, (.)

where Di is the dataset belonging to class i. The within-class scatter matrix SW is

given as

SW = S1 + S2. (.)

The relation between the original space and the FMDA transformed space is

z2i = w>Siw, (.)

while the between-class scatter matrix is given as

SB = (µ1 − µ2) · (µ1 − µ2)>. (.)

The relation between the original space and the FMDA transformed space is

(µ1 − µ2)
2 = w>SBw, (.)

and the criterion for maximizing the ratio of SB/SW is

J(w) =
w>SBw
w>SWw,

. (.)





Equation (.) can be solved as a traditional eigenvalue problem as long as SW

is non-singular. This solution, as in PCA, is a projection through the mean in the

direction of the eigenvector with the largest eigenvalue.

The procedure for FMDA dimensional reduction used in this research follows in

Listing ..

Listing .: Fisher Multiple Discriminant Analysis Procedure

1. Compute Scatter Matrices SB and SW
2. Compute Eigenvalues of Scatter Ratio

3. Sort Feature Vectors by Eigenvalue in Ascending Order 1 . . .N

4. Prune one dimension from Feature Vectors from RHS, retrain and test

classification

5. If performance remains constant, GOTO 4, ELSE

6. Record list of reduced features and performance �
. experimental design

Experiments in this research were intended to determine which features, classifica-

tion methods, and image processing procedures would best enable detection and

identification of insects in an instrumented insect trap. Both insect detection and

insect identification problems are ultimately pattern recognition or classification

problems. The ultimate test for variables examined in this research is whether they

contribute to improved classification performance. Experiments and metrics for

comparing performance when using different classifiers or variables are presented

in this section, as well as the experiments used to demonstrate the performance of

the proposed moment computation kernel.





.. Insect Detection Experiments

For analysis of the suitability of histograms as features for insect detection, a ran-

dom sample of , from the , images were manually classified into the classes

GIC-Insect Present (GIC-IP), GIC-No Insect (GIC-NI), BIC-Backlight Malfunction

Type  (BIC-BM), BIC-Backlight Malfunction Type  (BIC-BM), BIC-Over Satu-

rated (BIC-OS), and BIC-Shutter Failure (BIC-SF). This set of classified images was

further divided into image sets for training and testing such that % were used

to train and % were used to test classifier performance over  random permu-

tations of the data. In the random permutations, the rule was enforced that nearly

% of the specimens for each class were included in both the testing and training

sets. The class membership for the dataset is shown in Table ..

Table .: Class membership for insect detection testing and training data.

Class Members

GIC-NI 

GIC-IP 

BIC-BM 

BIC-BM 

BIC-OS 

BIC-SF 
Note: This table represents the entire set of insect images used for both training classifiers and
testing classification performance for insect detection. The classes are randomly divided between
training and testing sets for a ten-fold cross-validation of classification performance.

The experiments for insect presence detection were a complete factorial treat-

ment of histogram bins, subsampling rate, histogram type, classifier, and in case





of K-Nearest Neighbor (KNN) classification, the number of neighbors used by the

classifier.

Listing .: Members of the factorial treatment for insect presence detection.

1. Histogram bins, i = 1 . . . 256

2. Subsampling rate, j = 1 . . . 10

3. Histogram type, k = 1 . . . 6

4. Classifier type, p = 1 . . . 2

4*. Number of neigbors, q = 1 . . . 10 �
The metrics used to compare performance across treatments are the confusion

matrix for the classifier, the correct classification rate, and the error rate. The

confusion matrix for an N-class classifier is an N×N matrix in which the diagonals

are the number of samples correctly classified, while the remaining members are

the number of samples classified incorrectly for each between-class pairing. Table

. shows an example confusion matrix for the performance of the 256th bin, full

size image, traditional unadjusted histogram feature vector with a single-neighbor

KNN classifier, summed across the ten random training permutations.

Table .: Example confusion matrix for insect detection classification.

Predicted Membership
GIC-IP GIC-NI BIC-BM1 BIC-BM2 BIC-OS BIC-SF

A
ct
ua

lM
em

be
rs
hi
p

GIC-IP      
GIC-NI      
BIC-BM1      
BIC-BM2      
BIC-OS      
BIC-SF      

Note: Table entries along the bold diagonal are counts of correctly classified images. The sum of
entries across rows would be the number of images belonging to each class, while the column
sums would be the number of images classified in each class. All entries off of the bold diagonal
are incorrect classifications.





.. Insect Identification Experiments

Insect images from instrumented weevil traps were combined with lab collected

images from Ashaghathra’s previous work to form a combined insect shape database

of , samples with only  samples from non-pecan weevil. Table . shows a

breakdown of the classes of insects in the database.

Table .: Insect shape images used for insect recognition.

Source Super Class Specimen Count

Field
NPW

Ants 

Moths 

Beetles 

Spiders 

PW
Double PW 

Pecan Weevil ,

Lab Pecan Weevil 

NPW Other 
Note: This table represents the entire set of insect images used for both training classifiers and test-
ing classification performance for insect identification. The classes are randomly divided between
training and testing sets for a ten-fold cross-validation of classification performance.

The database images were randomly divided into % training images and %

testing images, ensuring that both sets contain images from each class in Table ..

Feature vectors for each of the four classes were generated for each image, with

the maximum order of each radial moment type listed in Table ., providing a

maximum feature vector for each insect shape of n = 1, 068.

 See Ashaghathra () page  for a breakdown of non-weevil species.





Table .: Polar Moment Features used as feature vectors.

Radial Moment Maximum Order Number of Features

Zernike Moments  

Pseudo Zernike Moments  

Fourier-Mellin Moments  

Angular Rotary Transform  

Both the Support Vector Machine (SVM) and Naive Bayes (NB) classifiers were

trained with feature vectors from individual radial moment classes for maximum

order pmax = 2 . . .Max where Max is the number from column two in Table .,

and tested for classification accuracy with the testing set. This allows for testing the

efficacy of the radial moment classes themselves for coding discernible insect shapes.

Each individual radial moment class is then subjected to both Principle Component

Analysis (PCA) and Fisher Multiple Discriminant Analysis (FMDA) dimensionality

reduction techniques to determine the potential performance of a reduced-space

classifier using individual radial moment classes. The result is a factorial treatment

across radial moment classes, radial moment feature vector length, classifier type,

and dimensionality reduction technique.

In the combined feature vector formed from multiple polar moment classes, care

is taken to ensure that singularities are not formed in the feature space due to

repeated values. This is due to the fact that some of the radial and angular basis

functions are shared between the different radial moment classes. The total set of

equations for radial basis functions is combined, with repeat sets removed from the

combined vector. The combined sets are then reduced in dimension using both PCA

and FMDA, in the manner described in ...





.. Classification Performance Metrics

The effects of these treatments are compared using the same type of confusion

matrix as shown in Table . with either 2× 2 size for the a binary classifier or

C×C for a multi-class classifier, where C is the number of classes in the dataset.

In the case of the binary classification, we can refer to the the terms Accuracy Rate

(Acc), Error Rate (ER), Type I Error (ErrorI), and Type II Error (ErrorII) where

Acc =

∑
i=jDiag(confusion)∑

i

∑
j confusion

, (.)

ER =
1

Acc
, (.)

ErrorI =
confusion(1, 2)∑
i

∑
j confusion

, (.)

and

ErrorII =
confusion(2, 1)∑
i

∑
j confusion

. (.)

That is, the Accuracy Rate is the ratio of the correctly classified images to the

total number predicted. The Type I Error is the ratio of the total images that

are not pecan weevil but are predicted to be by the classifier, and the Type II

Error is the ratio of the total images that are pecan weevil that are predicted

not to be. In the multi-class classification, the Accuracy Rate equation remains

the same, but the sense of false positive or false negative of Type I and Type II

errors are not as straightforward. In this case, one of the classes is considered to

be the most important and the C× C confusion matrix is condensed to a 2× 2

case, allowing the ErrorI and ErrorII to be used. However, in the case of multi-

class classification, the general relationship Acc = 100% − Error1 − ErrorII no

longer holds as the equations for accuracy and error remain the same, but the mis-





classifications between the classes deemed less important are not included in the

error calculations.

The binary classifier has additional defined terms given its 2× 2 confusion ma-

trix, as shown in Table .. In the table, the “positive” entries are those that are

members of the class deemed more important, or are wrongly predicted to be by

the classifier. “Negative” entries are those that either belong to the other class, or

are incorrectly predicted to belong by the classifier. The “true” entries are those

that are correctly classified by the classifier, while the “false” entries are incorrectly

classified. True Positive (TP), is the number of testing samples correctly classified

in the true group, while False Positive (FP), is the number of testing samples in-

correctly predicted to belong to the true group. Conversely, True Negative (TN),

is the count of testing samples belonging to the negative group that are correctly

classified, while False Negative (FN), is the number of samples belonging to the true

class incorrectly predicted to belong to the false class by the classifier. The binary

confusion matrix terms give rise to the rate terms TPR, FNR, FPR, TNR, PPV , and

NPV which correspond to the rates at which the classifier correctly predicts pos-

itives, incorrectly predicts positives, incorrectly predicts negatives, and correctly

predicts negatives, the reliability of the classifier given a positive class prediction,

and the reliability of the classifier given a negative class prediction, respectively.

Three of the rate terms, TPR,TNR, and PPV , are also commonly referred to by

the terms Sensitivity, Recall, and Precision, respectively. The equations for each of

these rates in also included in Table ..





Measures of classifier performance other than accuracy and error rates used in

this study include the F1 score, G score, and the Matthews Correlation Coefficient

(MCC). The F1 score is the harmonic mean of precision and sensitivity, given as

F1 = 2 ·
TP

TP+ FN+ FP
. (.)

The G score is the geometric mean of precision and sensitivity, given as

G =
√
precision · sensitivity =

√
TP

TP+ FP
· TP

TP+ FN
. (.)

F1 and G both range from zero to one, with zero indicating poor classifier perfor-

mance and one indicating perfect performance. Both F1 and G are undefined in the

case that either there are no predicted positive samples, or there are no samples

that truly belong in the positive class. The MCC is a balanced measure of classifier

performance, depending on all four entries in the binary confusion matrix. It is

given as

MCC =
TP · TN− FP · FN√

(TP+ FP) · (TP+ FN) · (TF+ FP) · (TN+ FN)
. (.)

MCC is bound between −1 and 1, with a score MCC = 1 indicating perfect clas-

sification and MCC = −1 indicating that the classifier predicts perfectly wrong.

MCC = 0 is the special case where the total number of correct prediction is exactly

equal to the total number of incorrect predictions. Generally, MCC values greater

thanMCC = 0.7 are considered good classification results, with values approaching

unity as performance improves toward the perfect classifier.





Table .: Binary Classifier confusion matrix and definitions

Predicted

Positive Negative

True
Positive TP FN TPR = TP

TP+FN FNR = FN
TP+FN

Negative FP TN FPR = FP
FP+TN TNR = TN

FP+TN

PPV = TP
TP+FP NPV = TN

TN+FN

Note: The definitions for a binary classifier are shown. Abbreviations are TP for True
Positives, FP for False Positives, FN for False Negatives, TN for True Negatives, TPR
for True Positive Rate, FNR for False Negative Rate, FPR for False Positive Rate, and
TNR for True Negative Rate. Note that the terminology denoting positive and negative
is that of the medical field where that of a positive means that the subject would have a
condition based on a gold standard, while negative subjects do not have the condition.

.. Moment Kernel Performance Metrics

The proposed insect identification kernel computes moment features based on an

assumption that some of the variables used to calculate the moment features can be

created globally in memory, resulting in a savings in computation time. Depending

on the number of feature types selected for the identification task and the available

system resources, this global list of variables could include the pre-computed values

for each pixel in an image of given size, moment order, and repetition, or rather just

the values of the polar coordinate limits for each pixel in the transformed cartesian

to polar mapping.

The proposed rotary moment computation engine pre-allocates variables for each

pixel’s ring membership for the Cartesian to Polar transformation, the upper and

lower limit of the radius for each ring, and the upper and lower limits for the rotation





angle for each pixel. This pre-allocation is optional, and was intended to improve

moment computation efficiency for processing many insect shapes simultaneously.

Figure . shows the computation time required to compute one moment feature

for one image using the moment computation engine in four different scenarios:

. Pre-allocated variables with one image passed to the engine at a time in a
for-loop

. Pre-allocated variables with a stack of images in a single -D matrix passed
to the engine

. No pre-allocation of variables with a stack of images in a single -D matrix
passed to the engine

. Pre-allocated variables, stacked -D matrix of images, running in a parfor
parallel loop

The reference for comparison is the Lans Zernike Moment code that was used in

the work of Ashaghathra () to calculate Zernike Moments (ZM) features. This

method is used to calculate the moment feature in a for-loop as in the first scenario

of the moment engine listed above.

The next chapter in this work presents the results of experiments in both insect

detection methods and insect identification methods.





CHAPTER IV

RESULTS AND DISCUSS ION

. introduction

This chapter examines the results of the methods introduced in Chapter  with an

eye toward automated, camera-enabled, networked traps being deployed in pecan

orchards. For growers to use the feature vectors, algorithms, and classifiers ex-

amined in this research to make management decisions, it is important that the

performance of each is well classified and documented. In this research, good per-

formance consists of minimal impact on battery life of instrumented traps and well

defined classification performance for each recognition task.

For a system deployed in pecan orchards, the limiting factor for desired perfor-

mance is assumed to be power consumption at the by-trap level. Pecan orchards are

typically characterized by shade under the canopy and reduced wind velocities due

to the canopy, thereby limiting the potential for either solar or wind–based energy

harvesting. This lack of energy availability for collection necesitates solutions that

are minimally power intensive. Results presented in this chapter use computation

time on a modern PC as a predictor of computation time on an embedded micro-

controller system, and as such, as a proxy for power consumption. Put differently,





small computation time in MATLAB is taken to imply that the power consumption

for an embedded system would be proportionately small.

Classification performance in this research is considered to be the rate at which

the classifier correctly predicts the group membership of an unseen specimen, and is

dependent upon both the feature vector and the classifier used for prediction. The

nature of the classification, and the cost associated with misclassification, must

be considered when considering classification performance. For instance, a raw im-

age without an insect that is misclassfied as a with-insect image is only costly in

that unnecessary further processing would be applied to the image, draining the

battery. In contrast, a non-pecan weevil shape incorrectly classified as a pecan wee-

vil would change the overall count of pecan weevil in an orchard and could lead

to premature application of insecticide before the adult weevils have reached the

canopy. Although misclassified image captures could have negative impact on the

system power budget, it would not lead to the potential poorly timed application

of chemicals that would result from an insect shape classification system that is

highly biased toward predicting the pecan weevil class.

. insect detection classification performance

Performance of the insect detection classification methods in this research is depen-

dent on the histogram features being used, as well as the variations of histogram

bins and image subsampling, and finally, on the classifier used to make predictions.

The effects of each of these factors are presented here beginning with the type of

histogram features.





.. Baseline insect detection classification metrics

The baseline classification performance is taken to be the case of standard and cu-

mulative histograms for raw images with unity subsampling and 256 bins using the

Euclidean Distance classifier such that only two classes are considered: GIC-Insect

Present (GIC-IP) and OTHER, with OTHER consisting of GIC-No Insect (GIC-NI)

and the four Bad Image Capture (BIC) classes. This results in a 2× 2 confusion

matrix with correct classifications in the diagonal elements and misclassifications in

the anti-diagonal elements. The classifier is trained on 1, 017 images selected by ten

separate random permutations of the data such that 177 images were GIC-IP and

 were OTHER, which matches the distribution of classes across the whole data

set. The classifier performance was tested on 1, 019 unseen images with the same

distribution as the training set. Table . shows confusion matrices for this base-

line performance with standard histogram features, including the best, worst, and

average performance across the ten train-test pairs. Table . shows the confusion

matrices for baseline performance of cumulative histogram features.

The baseline classifier metrics are shown in Table . for standard histograms

and in Table . for cumulative histograms, including Accuracy rate, F1 score,

G score, Matthews Correlation Coefficient (MCC), and ErrorI and ErrorII rates,

where a classification is considered a false-positive when an image of class OTHER

is predicted to be in class GIC-IP. It should also be noted that both the training

and testing sets for each permutation of the dataset contains 82.6% OTHER class

images to only 17.4% GIC-IP class images.

Statistics for two “dumb classifiers” are also included in Tables . and . for

comparison. The first dumb classifier predicts membership based only on the class

membership percentages in the training data, and can be referred to as a Prior Prob-





Table .: Confusion matrices for standard histogram baseline. The confusion matrices
are shown for the (a) worst classification performance, (b) best classification
performance, and (c) average classification performance across the ten-fold
cross-validation of training and testing images.

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(a) Worst Performance, Acc = 58%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(b) Best Performance, Acc = 71%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP . .

OTHER . .

(c) Average Performance, Acc = 66%

Note: Bold entries along the diagonal are counts of correctly classified images, while off-diagonal
entries are incorrect classifications. The sum of all entries in each confusion matrix is the total
number of images in the testing set. Diagonal entries represent the True Positives (TP) and True
Negatives (TN) in the first and second rows, respectively. Off-diagonal entries represent the False
Negative (FN) and False Positive (FP) counts in the first and second rows, respectively. FP are
considered Type-I error while FN are Type-II error.





Table .: Confusion matrices for cumulative histogram baseline. The confusion matrices
are shown for the (a) worst classification performance, (b) best classification
performance, and (c) average classification performance across the ten-fold
cross-validation of training and testing images.

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(a) Worst Performance, Acc = 55.5%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(b) Best Performance, Acc = 58.1%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP . .

OTHER . .

(c) Average Performance, Acc = 56.1%

Note: Bold entries along the diagonal are counts of correctly classified images, while off-diagonal
entries are incorrect classifications. The sum of all entries in each confusion matrix is the total
number of images in the testing set. Diagonal entries represent the True Positives (TP) and True
Negatives (TN) in the first and second rows, respectively. Off-diagonal entries represent the False
Negative (FN) and False Positive (FP) counts in the first and second rows, respectively. FP are
considered Type-I error while FN are Type-II error.





ability Classifier. The Prior Probability Classifier predicts OTHER no matter the

histogram input based on the higher prevalence of OTHER-class training images,

and would have an accuracy rate Acc = 82.6%, with error rates of ErrorI = 17.4%

and ErrorII = 0% given that the training and testing sets maintain the same prior

probabilities. The second dumb classifier simply predicts all images to be in the

GIC-IP class without regard to the histogram features presented, and can be referred

to as a Select All Classifier. The Select All Classifier would have an accuracy rate

Acc = 17.4% with error rates of ErrorI = 0% and ErrorII = 82.6%, all based on

the prevalence of true class memberships in the testing image set. These two dumb

classifiers provide a sane bound for the expected performance of a classifier, as well

as a basis for comparing the performance of other classification methods. When

comparing modifications of the classification toolchain, changes in classification

performance must be compared to the baseline as well as the dumb classifier.

The baseline Euclidean classifiers have poorer overall accuracy than the Prior

Probability Classifier but have much lower rates of ErrorI. Similarly, the baseline

Euclidean classifiers have improved accuracy when compared to the Select All Clas-

sifier with much lower rates of ErrorII, with both results owing to the unbalanced

nature of the test image set. Maximum accuracy in the baseline is 70.7% using

standard histogram features and 58.1% using cumulative histograms. Note that,

for both baseline cases, the loss in accuracy is highly attributable to ErrorII due to

false-positive classification. Both standard and cumulative histograms demonstrate

performance that is stable across training and testing data permutations based on

the small ratio of the standard deviation of the accuracy to the mean, indicating

that the histogram features show good potential for use as classifiers. In all cal-

culated measures, the standard histograms perform better than the corresponding

cumulative histograms. Classification performance for both baseline feature sets





Table .: Baseline performance metrics for standard histogram features.

Standard Histogram Classifier Prior Prob
Classifier

Select All
Classifier

Min Mean Max St. Dev

Acc (%) . . . . . .

F1 . . . . . .

G . . . .
√
0.0/0.0 .

MCC . . . . 0.0/0.0 0.0/0.0

ErrorI (%) . . . . . .

ErrorII (%) . . . . . .

Note: Euclidean Distance Classifier with 256 bin standard histogram features and unity sub-
sampling across ten random permutations of training and testing images, including performance
metrics for dumb “select all” and “prior probability” classifiers. The prior probability classifier
always selects the class that is the most prevalent in the sample population, while the select all
classifier rejects the null hypothesis for any unseen sample. Acc is classification accuracy, MCC
is the Mathews Correlation Coefficient, ErrorI and ErrorII are the Type-I and Type-II errors,
respectively.





Table .: Baseline performance metrics for cumulative histogram features.

Cumulative Histogram Classifier Prior Prob
Classifier

Select All
Classifier

Min Mean Max St. Dev

Acc (%) . . . . . .

F1 . . . . . .

G . . . .
√
0.0/0.0 .

MCC . . . . 0.0/0.0 0.0/0.0

ErrorI (%) . . . . . .

ErrorII (%) . . . . . .

Note: Euclidean Distance Classifier with 256 bin cumulative histogram feature and unity sub-
sampling across ten random permutations of training and testing images, including performance
metrics for dumb dumb “select all” and “prior probability” classifiers. The prior probability classi-
fier always selects the class that is the most prevalent in the sample population, while the select all
classifier rejects the null hypothesis for any unseen sample. Acc is classification accuracy, MCC
is the Mathews Correlation Coefficient, ErrorI and ErrorII are the Type-I and Type-II errors,
respectively.





is likely marginal for applied use: while more than 94% of collected images that

should be further processed would be submitted for further processing, nearly 40%

of those would not actually need further processing due to lack of insect presence.

Time for computing standard and cumulative histograms were equal, averag-

ing 3.5ms for each 640 × 480 image in the set. Time for making the classifica-

tion was also nearly equal for both histogram types at tstandard = 6.08µs and

tcumulative = 6.01µs, as the number of calculations required for both classifications

is the same. Computation time may be either increased or decreased with modifi-

cations to the baseline. In the case that classification performance is improved, in-

creases in computation time may be warranted. However, marginal improvements

in classification performance that result in large increases in computation time

should be avoided.

.. K-Nearest Neighbor Classification Baseline Performance

The classification performance should see its greatest improvement when a more

robust classifier is used with the same features as those of the baseline. In this re-

search, the baseline is the Euclidean Distance Classifier using standard and cumula-

tive histograms as feature vectors, while the incremental classifier is the K-Nearest

Neighbor (KNN) binary classifier, using classes GIC-IP and OTHER. As expected,

the more robust KNN classifier provides significant performance benefits over the

baseline at the cost of increased calculation time.

The baseline KNN classifier was trained on 1, 017 of the same ten random permu-

tations of the 2, 036 images from the image set, and tested against the remaining

1, 019 images for each permutation. Confusion matrices representing the maximum,

minimum, and mean accuracy for the 1-Nearest Neighbor classifier are shown in





Table .: Confusion matrices for KNN standard histogram baseline. The confusion ma-
trices are shown for the (a) worst classification performance, (b) best clas-
sification performance, and (c) average classification performance across the
ten-fold cross-validation of training and testing images.

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(a) Worst Performance, Acc = 91.1%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(b) Best Performance, Acc = 92.6%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP . .

OTHER . .

(c) Average Performance, Acc = 91.6%

Note: Bold entries along the diagonal are counts of correctly classified images, while off-diagonal
entries are incorrect classifications. The sum of all entries in each confusion matrix is the total
number of images in the testing set. Diagonal entries represent the True Positives (TP) and True
Negatives (TN) in the first and second rows, respectively. Off-diagonal entries represent the False
Negative (FN) and False Positive (FP) counts in the first and second rows, respectively. FP are
considered Type-I error while FN are Type-II error.

The main difference between the KNN classifier and the Euclidean classifier is

that the model for KNN utilizes all of the training data for each classification while

the Euclidean classifier uses only the mean feature vector of the training set. This

results in improved performance, but also requires more memory and processing

time. Another important difference is that the KNN classifier can predict class

membership based on the distance between k neighbors in the training set, such

that k > 1. Larger k values require still greater processing time, as the number of

calculations required for any class prediction must be done k-times.





Table .: Confusion matrices for KNN cumulative histogram baseline. The confusion ma-
trices are shown for the (a) worst classification performance, (b) best clas-
sification performance, and (c) average classification performance across the
ten-fold cross-validation of training and testing images.

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(a) Worst Performance, Acc = 92.8%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

(b) Best Performance, Acc = 94.8%

Predicted

GIC-IP OTHER

Tr
ue GIC-IP . .

OTHER . .

(c) Average Performance, Acc = 93.9%

Note: Bold entries along the diagonal are counts of correctly classified images, while off-diagonal
entries are incorrect classifications. The sum of all entries in each confusion matrix is the total
number of images in the testing set. Diagonal entries represent the True Positives (TP) and True
Negatives (TN) in the first and second rows, respectively. Off-diagonal entries represent the False
Negative (FN) and False Positive (FP) counts in the first and second rows, respectively. FP are
considered Type-I error while FN are Type-II error.





Table .: Baseline KNN performance for standard histogram features.

Standard Histogram Classifier Prior Prob
Classifier

Select All
Classifier

Min Mean Max St. Dev

Acc (%) . . . . . .

F1 . . . . . .

G1 . . . .
√
0.0/0.0 .

MCC . . . . 0.0/0.0 0.0/0.0

ErrorI (%) . . . . . .

ErrorII (%) . . . . . .

Note:KNN Classifier with 256 bin standard histogram feature and unity subsampling across ten
random permutations of training and testing images with k = 1, including performance metrics for
dumb “select all” and “prior probability” classifiers. The prior probability classifier always selects
the class that is the most prevalent in the sample population, while the select all classifier rejects
the null hypothesis for any unseen sample. Acc is classification accuracy, MCC is the Mathews
Correlation Coefficient, ErrorI and ErrorII are the Type-I and Type-II errors, respectively.





Table .: Baseline KNN performance for cumulative histogram features.

Cumulative Histogram Classifier Prior Prob
Classifier

Select All
Classifier

Min Mean Max St. Dev

Acc (%) . . . . . .

F1 . . . . . .

G1 . . . .
√
0.0/0.0 .

MCC . . . . 0.0/0.0 0.0/0.0

ErrorI (%) . . . . . .

ErrorII (%) . . . . . .

Note:KNN Classifier with 256 bin cumulative histogram feature and unity subsampling across ten
random permutations of training and testing images with k = 1, including performance metrics for
dumb “select all” and “prior probability” classifiers. The prior probability classifier always selects
the class that is the most prevalent in the sample population, while the select all classifier rejects
the null hypothesis for any unseen sample. Acc is classification accuracy, MCC is the Mathews
Correlation Coefficient, ErrorI and ErrorII are the Type-I and Type-II errors, respectively.





The baseline 256 bin standard histogram classification performance is shown

in Table . while the baseline performance for using cumulative histograms is

in Table .. Perhaps surprisingly, the average accuracy for the KNN classifier is

ACC = 91.6% using standard histogram features and ACC = 93.9% with cumu-

lative histogram features, while the Euclidean classifier was more accurate with

standard histogram features. KNN achieves these accuracy improvements due to a

great reduction in ErrorII rates with a smaller and varying change ErrorI rates.

Mean ErrorII rates were reduced from 31.1% to 2.46% for standard histogram fea-

tures and from 39.5% to 1.74% for cumulative histogram features. Mean ErrorI

rates were increased from 3.17% to 5.92% for standard histogram features and de-

creased from 4.40% to 4.36% for cumulative histogram features. Computation time

for classification was tstandard = 56.8µs and tcumulative = 57.8µs, a full order

of magnitude greater than that of the Euclidean classifier. However, this increase

in computation time is relatively small when compared to the time required to

calculate the histogram features themselves at 1.1ms.

.. KNN Performance with varied k

Prior to performing experiments, it was assumed that classifier performance using

KNN classifiers would be improved as the number of neighbors, k, being considered

was increased at a cost of increased computational time. While larger neighborhoods

require greater computation time as expected, the classification performance does

not improve as was expected.

Figure . shows the effect of varying k from one to ten on the classification

ErrorI and ErrorII rates, as well as the effect of varying k on the average compu-

tation time required for a single classification with  bin standard histograms





1 2 3 4 5 6 7 8 9 10
0

5

10

Number of KNN Neighbors

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorI
ErrorII

56

58

60

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s)

Computation Time

Figure .: The effects of varying the number of neighbors, k, on KNN classifier per-
formance with standard histogram features. The height of the stacked bar
for each value of k is the total error rate, where the accuracy is equal to
Acc = 1− ErrorI − ErrorII.

averaged over the ten training and testing permutations. The overall error rate

increases as the number of neighbors increases, although the ErrorII rate is smaller

for k > 1. In the case of insect detection in an image from a trap, reductions in

ErrorII rate is desirable as this would be the rate of images that contain insects

that are classified as not containing insects. Computation time does increase as k

increases, with a k = 1 neighbor classification requiring 56.7µs while the computa-

tion cost of a k = 10 neighbor classification is only 59.1µs, representing an increase

of only 4.1% over the base while providing worse performance.

Figure . shows the effect of varying k from one to ten on the classification

ErrorI and ErrorII rates, as well as the effect of varying k on the average compu-





1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Number of KNN Neighbors

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorI
ErrorII

1 2 3 4 5 6 7 8 9 10

57

58

59

60

61

62

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s)

Computation Time

Figure .: The effects of varying the number of neighbors, k, on KNN classifier perfor-
mance with cumulative histogram features. The height of the stacked bar
for each value of k is the total error rate, where the accuracy is equal to
Acc = 1− ErrorI − ErrorII.

tation time required for a single classification with  bin cumulative histograms

averaged over the ten training and testing permutations. The overall error rate

increases as the number of neighbors increases, although the ErrorII rate is smaller

for k > 1. In the case of insect detection in an image from a trap, reductions in

ErrorII rate is desirable as this would be the rate of images that contain insects

that are classified as not containing insects. Computation time does increase as k

increases, with a k = 1 neighbor classification requiring 57.7µs while the computa-

tion cost of a k = 10 neighbor classification is only 59.5µs, representing an increase

of only 3.1% over the base while providing worse performance.





1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

Number of KNN Neighbors

Sc
or

e

MCC

F

G

Figure .: Performance measures for KNN classification for varying k with standard his-
togram features. The three classifier performance measures,MCC, F1, and G
are shown averaged across ten training and testing data permutations. Error
bar lengths are ± the standard deviation value for the ten training permuta-
tions. Lines are the linear least-squares fit. Two of the three data series are
offset in the x-axis to make markers more easily visible. Note that all three
are trending toward worse performance as the neighborhood size increases.

The MCC, F1, and G scores for varying neighborhood size k are shown in Figure

. for standard histogram features and in Figure . for cumulative histogram

features. The same trends hold for both types of histogram features, with overall

performance measures diminishing as the classifier neighborhood size k increases.

With KNN classifiers, the cumulative histogram features provide better classification

performance than standard histogram features, which represents a role reversal from

that of the Euclidean classsifier. The differences in computation time between the

two feature sets are negligible.

.. Variation of histogram bins

In this section, the effects of reducing the size of the histogram feature vectors

are explored for both standard and cumulative histogram features, and for both





1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

Number of KNN Neighbors

Sc
or

e

MCC

F

G

Figure .: Performance measures for KNN classification for varying k with cumulative
histogram features. The three classifier performance measures,MCC, F1, and
G are shown averaged across ten training and testing data permutations.
Error bar lengths are ± the standard deviation value for the ten training
permutations. Lines are the linear least-squares fit. Two of the three data
series are offset in the x-axis to make markers more easily visible. Note that
all three are trending toward worse performance as the neighborhood size
increases.





the Euclidean Distance classifier and the KNN classifier. Since it was shown in

.. that increasing the neighborhood size k for KNN reduced the classification

performance, KNN is only to be considered with k = 1. Reduction in the number

of histogram bins was expected to reduce computation time for both histogram

calculation and classification. Additionally, fewer histogram bins would create a

smaller memory footprint since the number of features in the vector is smaller.

Prior to the experiments, there was no expectation for the effects on classification

performance. Rather, it was only hoped that classification performance might be

enhanced with smaller feature vectors.

The best classification performance for the Euclidean classifier occurs when the

number of bins n = 14 for standard histogram features and at n = 9 for cumula-

tive histogram features, while the best performance for the KNN classifier occurs

at n = 10 for both standard and cumulative histogram features. The performance

in terms of MCC using both standard and cumulative histogram features is shown

in Figure . and Figure . for the Euclidean classifier and KNN classifier, respec-

tively. For both classifiers using standard histogram features, performance generally

improves as the number of histogram bins is reduced before falling off at n < 9 bins.

With cumulative histograms features, both classifiers maintain roughly the same

classification performance as the number of bins is reduced before slightly peaking

near n = 9 bins, then falling precipitously. For both classifiers and feature types,

the MCC score becomes unstable near the peak performance level, with alternating

improvement and decline before falling off to the minimum. Performance in terms

of MCC is generally considered to be good for any valuesMCC > 0.7. As such, the

KNN classifier could be considered a strong classifier for insect detection using ei-

ther histogram type, while the baseline Euclidean classifier would be no more than

adequate. Interestingly, the classification performance was better using standard





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

Magnified in (b)

Figure .: MCC scores for the Euclidean Classifier with varying histogram bin numbers.
(a) shows the full X-axis for n = 2..256, while (b) shows the zoomed view for
the area in (a) with the best performance. Error bars extend ±σMCC from
the mean, where σMCC is the standard deviation of the MCC score across
the ten testing sets.

histogram features with the Euclidean classifier while, the KNN classifier performed

better with cumulative histogram features, although the overall best performance

was with a KNN classifier using standard histogram features.

Classification accuracy improves in much the same way as the MCC score, as

shown in Figure . and Figure . for the Euclidean and KNN classifiers, respec-

tively. The measure of accuracy itself could be misleading due to the imbalance in

the class membership between class GIC-IP and class OTHER. This imbalance in

class membership means that the Prior Probability classifier would have an accu-

racy rate of ACC = 82.6% rather than 50% for balanced classes. The KNN classifier





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(b)

Magnified in (b)

Figure .: MCC scores for the KNN Classifier with varying histogram bin numbers. (a)
shows the full X-axis for n = 2..256, while (b) shows the zoomed view for the
area in (a) with the best performance. Error bars extend ±σMCC from the
mean, where σMCC is the standard deviation of the MCC score across the
ten testing sets.





2 30 58 86 114 142 170 198 226 254
0

20

40

60

80

100

Number of histogram bins, n

(a)

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y,

(%
)

Standard Histograms

Cumulative Histograms

5 10 15 20
50

55

60

65

70

75

80

85

90

(b)

Magnified in (b)

Figure .: Classification accuracy of the Euclidean Classifier with varying histogram
bins. (a) shows the full X-axis for n = 2..256, while (b) shows the zoomed
view for the area in (a) with the best performance. Error bars extend ±σACC
from the mean, where σACC is the standard deviation of the Accuracy across
the ten testing sets.

performs better than the Prior Probability classifier for both standard and cumula-

tive histogram features for all values of n except for the minimum accuracy level at

n = 2 (ACC = 75.3%). The best performance, in terms of accuracy, is at n = 10

for both histogram types, with accuracy at ACC = 94.9% for standard histograms

and ACC = 94.3% for cumulative histograms. In contrast, the Euclidean clas-

sifier only approaches the accuracy of Prior Probability classifier using standard

histogram features at its best case performance, where n = 14 and ACC = 80.0%,

while the best accuracy using cumulative histogram features comes at n = 7 where

ACC = 60.7%.





2 30 58 86 114 142 170 198 226 254
0

20

40

60

80

100

Number of histogram bins, n

(a)

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y,

(%
)

Standard Histograms

Cumulative Histograms

5 10 15 20
80

82

84

86

88

90

92

94

96

98

100

(b)

Magnified in (b)

Figure .: Classification accuracy of the KNN Classifier with varying histogram bins. (a)
shows the full X-axis for n = 2..256, while (b) shows the zoomed view for the
area in (a) with the best performance. Error bars extend ±σACC from the
mean, where σACC is the standard deviation of the Accuracy across the ten
testing sets.





2 30 58 86 114 142 170 198 226 254

1

1.5

2

Number of Histogram bins, n

T
im

e
(m

s)

Standard

Cumulative

Standard: y = −1.36× 10−4 ×n+ 1.24
Cumulative: y = −6.52× 10−5 ×n+ 1.24

Figure .: Time to compute standard and cumulative histogram features for 8 bit,
640× 480 grayscale images for varied number of histogram bins. Histogram
computation is based on number of pixels, and remains relatively constant
since the number of operations is the same no matter the number of bins.

Results in this section suggest that improved insect presence detection can be

achieved using fewer histogram bins in the feature vectors, and that performance of

the classification is either minimally impacted in the case of cumulative histogram

features, and even improved when using standard histograms. In terms of compu-

tation time, a reduction in the number of bins used for classification is beneficial

as it provides a corresponding reduction in computation for classification, but not

for histogram calculation. Figure . shows the nearly constant computation time

for standard and cumulative histograms ranging from n = 2 to n = 256.

The computation time savings from reducing the number of histogram bins oc-

cur when images are classified, although the computation savings are much greater

for the KNN classifier. Figure . shows the average time required to classify an

image histogram using KNN and Euclidean classifiers for both standard and cumu-

lative histogram feature vectors. As expected, the classification time for a given





2 16 30 44 58 72 86 100 114 128 142 156 170 184 198 212 226 240 254
0

200

400

600

Number of Histogram bins, n

T
im

e
(µ
s)

Standard, KNN

Cumulative, KNN

Standard, Euclid

Cumulative, Euclid

Standard: y = 5.18× 10−2 ×n+ 35.48
Cumulative: y = 5.41× 10−2 ×n+ 35.55

Standard: y = 2.10×n+ 26.43
Cumulative: y = 2.11×n+ 24.15

Figure .: Time to train and test Euclidean and KNN classifiers with a single image for
varied number of histogram bins. Reduction in number of histogram bins
provides more reduction in classification time for the KNN classifier than for
the Euclidean distance classifier.

classifier and histogram type mirrors that of the same classifier with the other type

of histogram features. Both KNN and Euclidean classifiers show reduction roughly

linear reduction in computation time as the number of histogram bins is reduced.

In the case of Euclidean classifiers, each 1× n reduction in histograms bins corre-

sponds to a 52ns reduction in computation time, while the same 1×n reduction

in histogram bins results in a 2.1µs reduction in computation time. Therefore, the

computation savings for reduced-n histograms are forty times greater for the KNN

classifier than they are for the Euclidean distance classifier.

.. Variation of Sub-Sampling Interval

Sub-sampling of input images is a potential way to reduce processing and memory

usage without creating new variables in the system. Unlike variation of histogram

bins in .., the reduced computation requirements for generating the histogram





1 2 3 4 6 8 11 16 23 32
0

0.2

0.4

0.6

0.8

1

1.2

Sub-sampling interval, pixels

T
im

e
(m

s)

Standard

Cumulative

Standard: y = 1.66× e−1.03x + 0.17× e−0.01x

Cumulative: y = 1.61× e−1.01x + 0.18× e−0.01x

Figure .: Time to compute standard and cumulative histogram features for 8 bit,
640× 480 grayscale images for varied image subsampling interval. Histogram
computation is based on number of pixels, resulting in a reduction in com-
putation time as the image is more coarsely sampled.

features are impacted rather than that of the classification. Figure . shows the

time required to compute histogram features with varied levels of input image sub-

sampling. The time required for histogram computation follows a roughly exponen-

tial curve where the time improvements for increased sub-sampling interval flatten

as the sub-sampling interval is increased. Figure . shows the time required for

training and classification of images based on their histograms for varied levels

of input image sub-sampling. As expected, the computation time for training and

classification does not depend on the sub-sampling interval, with time remaining

roughly flat across the sub-sampling interval axis.

Sub-sampling the images has little impact on the performance of classification

for either type of classifier or histogram. Figure . shows the classification per-

formance of the Euclidean Distance classifier in terms of MCC score for various

subs-sampling intervals, for histograms with 256 bins and 16 bins. Figure .





1 2 3 4 6 8 11 16 23 32
0

200

400

600

Sub-sampling interval, pixels

T
im

e
(µ
s) Standard, KNN

Cumulative, KNN

Standard, Euclid

Cumulative, Euclid Standard: y = −2.93× 10−2 ×n+ 79.08
Cumulative: y = −1.58× 10−1 ×n+ 81.93

Standard: y = −4.89× 10−1 ×n+ 579.66
Cumulative: y = −7.92× 10−1 ×n+ 580.83

Figure .: Time to train and test Euclidean and KNN classifiers with a single image for
varied image subsampling interval. Training and testing time is not signifi-
cantly impacted by image subsampling.

shows the classification performance of the KNN classifier in terms of MCC score

for various subs-sampling intervals, for histograms with the same 256 bins and 16

bins. Classification performance remains nearly constant across the sub-sampling

interval axis for nearly all combinations of classifier and histogram feature type,

with the exception of standard histogram features using the KNN classifier where

there is a noticeable negative impact on classification due to increased sub-sampling

interval.

Figure . shows the classification performance surfaces across both the number

of histogram bins and the sub-sampling interval. Based on this figure the best

choice for classifier type, number of histogram bins, and sub-sampling interval for

binary classification was the KNN classifier with 10 histogram bins, sub-sampled

at the maximum sub-sampling interval of every 32 pixels. Operating with these

parameters provides nearly the maximum savings in classification computation time

due to the reduced number of histogram bins, operating in the range where the cost





1 2 3 4 6 8 11 16 23 32
0

0.2

0.4

0.6

0.8

1

Subsampling: Sample every m pixels,

n = 256 bins

(a)

M
C

C
Sc

or
e

1 2 3 4 6 8 11 16 23 32
0

0.2

0.4

0.6

0.8

1

Subsampling: Sample every m pixels,

n = 16 bins

(b)

Standard Histograms

Cumulative Histograms

Standard: y = 1.39× 10−4 ×n+ 0.32
Cumulative: y = 9.21× 10−6 ×n+ 0.21

Standard: y = 9.56× 10−5 ×n+ 0.42
Cumulative: y = −9.12× 10−5 ×n+ 0.23

Figure .: MCC of Euclidean Classifier with varied image subsampling. (a) shows the
effects of image subsampling interval for histograms with 256 bins, while
(b) shows the same effects for histograms with only 16 bins. The effect of
subsampling interval on classification MCC is much less than the effect of
number of histogram bins.





1 2 3 4 6 8 11 16 23 32
0

0.2

0.4

0.6

0.8

1

Subsampling: Sample every m pixels,

n = 256 bins

(a)

M
C

C
Sc

or
e

1 2 3 4 6 8 11 16 23 32
0

0.2

0.4

0.6

0.8

1

Subsampling: Sample every m pixels,

n = 16 bins

(b)

Standard Histograms

Cumulative Histograms

Standard: y = −2.24× 10−3 ×n+ 0.69
Cumulative: y = −4.02× 10−4 ×n+ 0.78 Standard: y = −2.73× 10−4 ×n+ 0.73

Cumulative: y = 3.15× 10−4 ×n+ 0.76

Figure .: MCC of KNN Classifier with varied image subsampling. (a) shows the effects
of image subsampling interval for histograms with 256 bins, while (b) shows
the same effects for histograms with only 16 bins. The effect of subsampling
interval on classification MCC is much less than the effect of number of
histogram bins, with the only case of performance reduction due to increased
sampling interval coming for 256 bin standard histograms.





of using the KNN classifier versus the Euclidean Distance classifier is negligible. It

also provides the maximum savings in histogram computation time due to the sub-

sampling of the image. Additionally, the classifier performance is better with these

parameters than using the maximum number of histogram bins and the full input

image.

.. Histogram Adjustment for Contrast Enhancement

Images from the instrumented trap will need to be adjusted for contrast in order to

make it easier for insect shapes to be extracted from the overall image. This step,

while essential to the overall insect identification process, could be done either be-

fore or after insect detection is attempted. If the images are adjusted prior to insect

detection, the resulting adjusted image and it’s corresponding histograms could po-

tentially either improve or worsen insect detection performance while adding com-

putation time to the overall insect detection algorithm. Contrast adjustment does

not change the number of histogram bins or the sub-sampling interval, and has an

impact on the classification performance potential while adding computation time

for the adjustment itself. This section describes the impacts of adjusting images for

contrast prior to performing insect detection.

Contrast adjustment prior to insect detection improves performance of the classi-

fiers in nearly all cases. For the Euclidean Distance classifier, the average MCC score

performance is improved by 8% and 28% for standard and cumulative histogram

features, respectively. For the KNN classifier, the same MCC score improvement is

11% and 7.5%. Adjusting the histogram for contrast prior to insect detection im-

proves the performance of the KNN classifier with cumulative histogram features

such that MCC > 0.8 for all histogram bin levels where n > 6. Recall that MCC





1
4

8
1
1

1
6

2
3

3
2

2
3
2

6
4

9
6

1
2
8

1
9
2

2
5
6

0

0
.2

0
.4

0
.6

0
.81

Su
bs

am
pl

in
g

H
is

to
gr

am
B

in
s

MCCScore

(a
)
E
uc
lid

ea
n

D
is
ta
nc
e

C
la
ss
ifi
er
,

St
an

da
rd

H
is
to
gr
am

s

1
4

8
1
1

1
6

2
3

3
2

2
3
2

6
4

9
6

1
2
8

1
9
2

2
5
6

0

0
.2

0
.4

0
.6

0
.81

Su
bs

am
pl

in
g

H
is

to
gr

am
B

in
s

MCCScore

(b
)
E
uc
lid

ea
n

D
is
ta
nc
e

C
la
ss
ifi
er
,
C
um

ul
at
iv
e

H
is
-

to
gr
am

s

1
4

8
1
1

1
6

2
3

3
2

2
3
2

6
4

9
6

1
2
8

1
9
2

2
5
6

0

0
.2

0
.4

0
.6

0
.81

Su
bs

am
pl

in
g

H
is

to
gr

am
B

in
s

MCCScore

(c
)

K
N

N
C
la
ss
ifi
er
,S

ta
nd

ar
d
H
is
to
gr
am

s

1
4

8
1
1

1
6

2
3

3
2

2
3
2

6
4

9
6

1
2
8

1
9
2

2
5
6

0

0
.2

0
.4

0
.6

0
.81

Su
bs

am
pl

in
g

H
is

to
gr

am
B

in
s

MCCScore

(d
)

K
N

N
C
la
ss
ifi
er
,C

um
ul
at
iv
e
H
is
to
gr
am

s

F
ig
ur
e

.


:M
C

C
Sc
or
e
su
rf
ac
e
ac
ro
ss

hi
st
og
ra
m

bi
ns

an
d
su
b-
sa
m
pl
in
g.

T
he

pe
rf
or
m
an

ce
re
la
ti
on

sh
ip
s
re
m
ai
n
ro
ug

hl
y
th
e
sa
m
e

ac
ro
ss

th
e
tw

o
va
ri
ab

le
s.

C
la
ss
ifi
ca
ti
on

pe
rf
or
m
an

ce
is

be
tt
er

w
it
h
st
an

da
rd

hi
st
og
ra
m

fe
at
ur
es

us
in
g
th
e
E
uc
lid

ea
n

D
is
ta
nc
e
C
la
ss
ifi
er
,a

nd
be

tt
er

w
it
h
cu
m
ul
at
iv
e
hi
st
og

ra
m

fe
at
ur
es

us
in
g
th
e

K
N

N
C
la
ss
ifi
er
.





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−100

−50

0

50

100

150

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
co

nt
ra

st
ad

ju
st

m
en

t,
%

Figure .: Effect of contrast adjustment on Euclidean Distance performance. a) MCC
score versus number of histogram bins for insect detection classification, and
b) Percent improvement in MCC score when compared to the performance of
the Euclidean Distance classifier without performing contrast adjustment.

scores greater than 0.7 are considered to be strong classifiers. Such improvements

in classification performance do come at a cost in computation time, as contrast

adjustment for a 680× 480, 8 bit image takes 1.5ms on average, while computation

of the histogram features takes 1.1ms.

To address the “comb effects” due to the contrast adjustment described in Figure

., histogram smoothing is employed after histogram adjustment. Smoothing the

adjusted histograms has little impact on computation time, requiring just 93µs

per image. Additionally, any potential improvements in classification performance

are, at best, unpredictable, and at worst, actually damaging to classification perfor-

mance. Figure . and Figure . show the MCC scores and the relative improve-

ment in MCC due to smoothing the adjusted histograms for the Euclidean Distance

and KNN classifiers, respectively. For the Euclidean Distance classifier with stan-





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
0

20

40

60

80

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
co

nt
ra

st
ad

ju
st

m
en

t,
%

Figure .: Effect of contrast adjustment on KNN performance. a) MCC score versus
number of histogram bins for insect detection classification, and b) Percent
improvement in MCC score when compared to the performance of the KNN
classifier without performing contrast adjustment.

dard histogram features, the effect of smoothing the adjusted histogram is almost

wholly negative. With cumulative features, there is improvement in performance

for n > 200 histogram bins, but worse improvement for n 6 200. In the case of

the KNN classifier with cumulative histograms, the effects of smoothing are only

positive for n > 230, while smoothing has a negative effect for all cases n 6 230. In-

terestingly, the KNN classifier with standard histograms sees improved performance

for nearly all numbers of histogram bins n > 25, and even rivals the performance

of adjusted cumulative histogram features where MCC > 0.8 for 25 < n 6 128,

while the cumulative features had shown better KNN performance in all previous

tests.

Contrast adjustment by itself provides predictable, positive improvement in clas-

sification performance at the cost of greater computational intensity. As such, con-





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−100

−80

−60

−40

−20

0

20

40

60

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
sm

oo
th

in
g,

%

Figure .: Effect of histogram smoothing on Euclidean Distance performance. a) MCC
score versus number of histogram bins for insect detection classification, and
b) Percent improvement in MCC score when compared to the performance
of the Euclidean Distance classifier on contrast-adjusted histograms without
smoothing.

2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−50

−40

−30

−20

−10

0

10

20

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
sm

oo
th

in
g,

%

Figure .: Effect of histogram smoothing on KNN performance. a) MCC score versus
number of histogram bins for insect detection classification, and b) Percent
improvement in MCC score when compared to the performance of the KNN
classifier on contrast-adjusted histograms without smoothing.





trast adjustment should be considered as a step prior to insect detection clas-

sification if the microcontroller used for image capture and insect detection are

not memory-constrained. Smoothing the contrast adjusted histograms is not pre-

dictable, and often results in poorer classification performance. Smoothing should

not be performed without some future compelling reason.

.. Multi-Class Classification Effects

All results presented to this point have been based on binary classification for insect

detection in which images were considered to be in class GIC-IP or OTHER. Ad-

ditional improvements in classification results could reasonably be expected if the

main image classes were broken into sub-classes, allowing for improved discernment

ability of the classifiers due to differentiation of similar sub-classes prior to training.

This section presents the results of dividing the images into the two classes Good

Image Capture (GIC) and Bad Image Capture (BIC), and further into the sub-classes

GIC-Insect Present (GIC-IP), GIC-No Insect (GIC-NI), BIC-Backlight Malfunction

Type  (BIC-BM), BIC-Backlight Malfunction Type  (BIC-BM), BIC-Over Sat-

urated (BIC-OS), and BIC-Shutter Failure (BIC-SF). The sub-class GIC-NI and all

sub-classes of BIC were considered part of the OTHER group for binary classifica-

tion.

In multi-class classification, there are no suitable analogs for the performance

scores F1, G, and MCC that are used to evaluate and compare classification perfor-

mance. Even simple accuracy may be a poor way to evaluate classification perfor-

mance in the case that one type of classification is more “costly” than another. In

this research, the ability to discern the GIC-IP class from the rest is of much greater

importance than classification between the other classes. As such, the classifica-





tion results are pooled for all non-GIC-IP instances. This means that, even when

considering multiple classes to potentially improve classification performance, the

performance scores treat a BIC-SF image classified incorrectly as GIC-NI as a true

negative rather than a mis-classification since both the true class and the predicted

class membership are not GIC-IP.

Multi-class classification improves the performance of the Euclidean Distance

classifier for any number of histogram bins n > 6 using both standard and cu-

mulative histogram features by 10.4% and 11.6%, respectively. The improvement

in classification performance remains roughly constant for cumulative histogram

features while increasing in a linear fashion for standard histogram features as the

number of histogram bins increases. Figure . shows the MCC score for multi-class

Euclidean Distance classification with varied numbers of histogram bins, as well as

the improvement in performance when compared to the binary classification task.

Perhaps surprisingly, the use of multi-class classification results in exactly the

same performance as the binary case when using the KNN classifier, with no im-

provement or degradation in classification performance no matter the number of

histogram bins. Figure . shows the performance of the KNN classifier for multi-

class classification, as well as the difference in performance when compared to the

binary classification task. Table . is a confusion for the multi-class KNN classifier,

while Table . is the confusion matrix for the same parameters using binary KNN

classification. Since all images classified as other than GIC-IP are considered to be

true negatives for the performance measures, the resulting MCC score is the same us-

ing either binary or multi-class KNN classification. Every combination of histogram

bins, subsampling, contrast adjustment, or histogram smoothing results in the same

equivelant performance between binary KNN and multi-class KNN classification.





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−40

−20

0

20

40

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
M

ul
ti

-C
la

ss
,%

Figure .: Effect of Multi-class classification on Euclidean Distance performance. a)
MCC score versus number of histogram bins for insect detection classifi-
cation, and b) Percent improvement in MCC score when compared to the
performance of the Euclidean Distance classifier binary classification perfor-
mance.

2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−1

−0.5

0

0.5

1

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
M

ul
ti

-C
la

ss
,%

Figure .: Effect of Multi-class classification on KNN performance. a) MCC score versus
number of histogram bins for insect detection classification, and b) Percent
improvement in MCC score when compared to the performance of the KNN
classifier binary classification performance.





Table .: Confusion matrix for multi-class KNN classification using standard histogram
features with 256 histogram bins, unity sub-sampling, and k = 1 neighbor.

Predicted Membership
GIC-IP GIC-NI BIC-BM1 BIC-BM2 BIC-OS BIC-SF

A
ct
ua

lM
em

be
rs
hi
p

GIC-IP      
GIC-NI      
BIC-BM1      
BIC-BM2      
BIC-OS      
BIC-SF      

Note: Table entries along the bold diagonal are counts of correctly classified images. The sum of
entries across rows would be the number of images belonging to each class, while the column
sums would be the number of images classified in each class. All entries off of the bold diagonal
are incorrect classifications.

Multi-class classification does provide for improvement when using the Euclidean

Distance classifier for contrast adjusted images as well as smoothed histograms from

contrast adjusted images. Figure . shows the MCC scores for contrast adjusted

image histograms, while Figure . shows the MCC scores for smoothed histograms

from contrast adjusted images, both using the Euclidean Distance classifier. Gen-

erally, both types of features have improved classification performance with the

multi-class classifier. However, neither is improved to the extent that performance

is on par with the KNN classifier.

Using a multi-class classification does not impact the computational requirements

of generating the histogram features, as it is independent of their generation. Ad-

ditionally, the multi-class case has little influence on the time required to perform

classification in the case of KNN classification, while generally taking longer in the

case of Euclidean Distance classification. Figure . shows the relative increase in





Table .: Confusion matrix for binary KNN classification using standard histogram fea-
tures with 256 histogram bins, unity sub-sampling, and k = 1 neighbor.

Predicted

GIC-IP OTHER

Tr
ue GIC-IP  

OTHER  

Note: Bold entries along the diagonal are counts of correctly classified images, while off-diagonal
entries are incorrect classifications. The sum of all entries in each confusion matrix is the total
number of images in the testing set. Diagonal entries represent the True Positives (TP) and True
Negatives (TN) in the first and second rows, respectively. Off-diagonal entries represent the False
Negative (FN) and False Positive (FP) counts in the first and second rows, respectively. FP are
considered Type-I error while FN are Type-II error.

2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−100

−80

−60

−40

−20

0

20

40

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
M

ul
ti

-C
la

ss
,%

Figure .: Effect of multi-class on contrast adjusted histograms for Euclidean Distance
classifier. a) MCC score versus number of histogram bins for insect detec-
tion classification, and b) Percent improvement in MCC score for multi-class
classification compared to binary classification.





2 30 58 86 114 142 170 198 226 254
0

0.2

0.4

0.6

0.8

1

Number of histogram bins, n

(a)

M
C

C
Sc

or
e

Standard Histograms

Cumulative Histograms

2 30 58 86 114 142 170 198 226 254
−100

0

100

200

300

Number of histogram bins, n

(b)

C
ha

ng
e

du
e

to
M

ul
ti

-C
la

ss
,%

Figure .: Effect of multi-class on smoothed histograms for Euclidean Distance clas-
sifier. a) MCC score versus number of histogram bins for insect detection
classification, and b) Percent improvement in MCC score for multi-class clas-
sification compared to binary classification.

classification time for multi-class classification when compared to binary classifica-

tion.

.. Summary

The best insect detection performance in this research achieves an accuracy rate of

. proposed insect identification kernel performance

The proposed insect identification kernel in this research uses angular-radial ba-

sis functions computed on the shape of insects. An optimal system would have

excellent recognition rates while using as little computational requirements as pos-

sible. As such, the parameters presented in this section for comparison of different

features include computation time, memory requirements, and classification perfor-





2 16 30 44 58 72 86 100 114 128 142 156 170 184 198 212 226 240 254

0

100

200

300

Number of histogram bins, n

R
el

at
iv

e
M

ul
ti

-c
la

ss
co

m
pu

ta
ti

on
ti

m
e,

(%
)

KNN

Euclidean

Figure .: Relative time to train and test Euclidean and KNN multi-class classifiers
versus binary classifiers. The number of histogram bins has little effect on the
relative time required. KNN classification is very close to the same speed in
the binary and multi-class cases, while multi-class classification takes longer
than binary classification for the Euclidean Distance Classifier.

mance. Four angular-radial moment types Zernike Moments (ZM), Pseudo-Zernike

Moments (pZM), Fourier-Mellin Moments (FMM), and MPEG- Angular Radial

Transform (ART) are presented as separate feature vectors and combined feature

vectors with combinations of the four. Finally, the number of features of each type

is reduced based on methods of Principle Component Analysis (PCA) and Fisher

Multiple Discriminant Analysis (FMDA) to determine if there are features that best

represent prototypical insects for discernment from other classes.

Zernike Moments (ZM) features were the point of departure for this research based

on the findings of Ashaghathra (). In his work, he found the best performance of

ZM for pecan weevil identification to be with order p = 3 using manually positioned

insects post-mortem and in the laboratory setting. In this research, the majority of

the testing and training images were field collected of live insects in their natural

poses. Additionally, Ashaghathra used an algorithm that approximated the moment





integration and discarded portions of each insect shape to fit the circular nature

of acZM and the resulting circle-to-square incompatibility (See Figure .). This

research used the Cartesian to Polar Image Transformation in Figure ., and

thus uses the entire insect shape. In the next four sections, results are presented

based on binary classification using the Support Vector Machine (SVM) classifier.

A comparison of the performance using binary and multi-class Naive Bayes (NB)

classifiers follows in ...

.. Individual Moment Feature Performance

... Zernike Moment Performance

Zernike Moments (ZM) classification performance generally improves as the maxi-

mum ZM order increase, from order pmax = 1 to pmax = 26, then remain relatively

unchanged for pmax < 55. The maximum accuracy for ZM features at order p = 26

is Acc = 98.0%, with error rates ErrorI = 0.07% and ErrorII = 1.97%. Figure

. shows the ErrorI and ErrorII rates and the time required to perform one clas-

sification for varied levels of pmax from 1 to 60. Classification time increases in an

exponential manner as pmax increases, which is as expected since the number of

features in the feature vector for ZM also increases exponentially with pmax.

For pmax > 55, the orthogonality of the ZM begins to break down due to decima-

tion and the scale of images, resulting in a degenerate training matrix. This leads

to a sudden increase in ErrorI rate, which minimal for pmax 6 55, and a drop in

computation time for completing a classification due to the reduced dimensionality

of the resulting classifier model.





1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 60
0

10

20

30

40

50

60

70

80

Maximum Zernike Moment Order

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorII
ErrorI

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 60
0

10

20

30

40

50

60

70

80

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s /
in
s
e
c
t
)Computation Time

Figure .: ZM classification performance for increasing moment order. ErrorI and
ErrorII denote Type-I and Type-II error, respectively. Error rates are
stacked, with the top of each stacked bar representing the total error rate.
ZM have fewer repetitions for a given order resulting in fewer overall features
for any maximum order p. ZM are shown to order p = 60, whereas pZM and
FMM are only used to order p = 30.

... Psuedo-Zernike Moment Performance

Pseudo-Zernike Moments (pZM) classification performance generally improves as

the maximum pZM order increases, from order pmax = 1 to pmax = 21, then remains

relatively unchanged for pmax < 27. The maximum accuracy for pZM features at

order p = 21 is 97.3%, with error rates of ErrorI = 0.06% and ErrorII = 2.60%.

Figure . shows the ErrorI and ErrorII rates and the time required to perform

one classification for varied levels of pmax from 1 to 35. Classification time increases

in an exponential manner as pmax increases, which is as expected since the number

of features in the feature vector for pZM also increases exponentially with pmax.

For pmax > 27, the orthogonality of the pZM again begins to break down due

to decimation and the scale of images, creating a degenerate training matrix. This

leads to a sudden increase in ErrorI rate, which were minimal for pmax 6 27,





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

10

20

30

40

50

60

70

80

Maximum Pseudo-Zernike Moment Order

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorII
ErrorI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

10

20

30

40

50

60

70

80

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s /
in
s
e
c
t
)Computation Time

Figure .: pZM classification performance for increasing moment order. ErrorI and
ErrorII denote Type-I and Type-II error, respectively. Error rates are
stacked, the top of each stacked bar representing the total error rate.

and a drop in computation time for completing a classification due to the reduced

dimensionality of the resulting classifier model.

... Fourier-Mellin Moment Performance

Fourier-Mellin Moments (FMM) classification performance generally improves as

the maximum FMM order increases from order pmax = 1 to pmax = 26. The

maximum accuracy for FMM features of 95.9% occurs at order p = 26, with error

rates of ErrorI = 0.65% and ErrorII = 3.42%. Figure . shows the ErrorI and

ErrorII rates and the time required to perform one classification for varied levels of

pmax from 1 to 35. Classification time increases in an exponential manner as pmax

increases, which is as expected since the number of features in the feature vector

for FMM also increases exponentially with pmax.





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

10

20

30

40

50

60

70

80

Maximum Fourier Mellin Moment Order

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorII
ErrorI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

10

20

30

40

50

60

70

80

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s /
in
s
e
c
t
)Computation Time

Figure .: FMM classification performance for increasing moment order. ErrorI and
ErrorII denote Type-I and Type-II error, respectively. Error rates are
stacked, with the top of each stacked bar representing the total error rate.

For pmax > 27, the orthogonality of the FMM begins to break down due to

decimation and the scale of images, creating a degenerate training matrix. This

leads to a sudden increase in ErrorI rate, which were minimal for pmax 6 27.

... ART Performance

MPEG- Angular Radial Transform (ART) classification performance is nearly iden-

tical for all orders from pmax = 1..10 when using the SVM classifier. The maximum

accuracy for ART features at order p = 10 is Acc = 91.0%, with error rates

ErrorI = 0% and ErrorII = 9.0%. Figure . shows the ErrorI and ErrorII rates

and the time required to perform one classification for varied levels of pmax from

1 to 60. Classification time increases in a linear manner as pmax increases, which

is as expected since the number of repetitions of ART is equal for every pmax.

ART features are artificially limited to pmax = 10 with 11 repetitions per order

since there is no orthogonality of features and it is intended to be a encoded into





1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Maximum ART Moment Order

C
la
ss
ifi
ca
ti
on

E
rr
or
,(
%
)

ErrorII
ErrorI

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

C
la
ss
ifi
ca
ti
on

T
im

e,
(µ
s /
in
s
e
c
t
)Computation Time

Figure .: ART classification performance for increasing moment order. ErrorI and
ErrorII denote Type-I and Type-II error, respectively. Error rates are
stacked, with the top of each stacked bar representing the total error rate.
Note: Although this figure shows the same information as in Figure .
through Figure ., both the left and right side axis scales have been
changed such that the small trends are visible.

a fixed number of digits in MPEG images. These limits are such that ART feature

vectors never grow large enough to induce a degenerate training matrix as is seen

in the other three moment classes. When compared to the other classes, however,

ART features prove much less capable of identifying pecan weevils, at least when

using only ART features with SVM classifiers.

.. Combined Feature Performance

Combined feature vectors were created by concatenating feature vectors from in-

dividual moment types up to the order that produced the best classification per-

formance as individual features. Table . shows the number of features in each

combined feature set, the rates of ErrorI and ErrorII, Accuracy, MCC score, time

to train the classifier with 730 input vectors, and the time to classify an individual





feature vector. As individual feature types, ZM shows the performance at 98.0%

accuracy with an MCC score of 0.877, followed closely by pZM and FMM. In combi-

nations of two types of moments, the best performance comes with ZM combined

with pZM, slightly improving the performance of ZM alone from MCC = 0.877 to

MCC = 0.888. Surprisingly, combinations including ART improve upon the indi-

vidual performance for the three other moment types despite the poor performance

of ART on its own. The best overall performance for combined features is provided

by the combination of ZM, pZM, and ART, with an accuracy of 98.3% and acMCC

score of 0.900. The result is due to the significant reduction in ErrorII rate when

compared to that of the individual ZM, pZM, and ART features, but comes at the

cost of a small increase in ErrorI. Training time is relatively constant in all com-

binations that do not include FMM. For reasons unknown, the inclusion of FMM

features results in a four-order of magnitude increase in training time across all

combinations. Classification time increases linearly with the number of features in

the feature set.

.. Comparison of Classifiers

Two types of classifiers were used to identify insect shapes, including Support Vec-

tor Machines (SVMs) and Naive Bayes (NB). SVM is limited to binary classification

problems, while NB can be used either as a binary or multi-class classifier. In this

research, NB is used both in the binary and the multi-class forms. In the case of

multi-class NB classification, accuracy is reported based on the accuracy of classi-

fication in classes, while the ErrorI, ErrorII, and MCC score are reported in the

binary sense as there are not suitable multi-class analogs for these values. All results

presented prior to this section have been based on SVM classification results.





T
ab

le
.


:P

er
fo
rm

an
ce

m
et
ri
cs

of
C
om

bi
ne
d
M
om

en
t
Fe

at
ur
es

w
it
h

SV
M

cl
as
si
fic
at
io
n

Fe
at
ur
e

Fe
at
ur
e
C
ou

nt
E
rr
o
r I

E
rr
o
r I
I

A
c
c

M
C
C

Fe
at
ur
e
C
om

pu
ta
ti
on

T
im

e
C
la
ss
ifi
ca
ti
on

T
im

e
%

%
%

m
s

µ
s

ZM
,p
m
a
x
=
2
6




.


.



.

.





.
.



pZ
M
,p
m
a
x
=
2
1




.


.



.

.





.



.

F
M

M
,p
m
a
x
=
2
6




.


.



.

.





.



.

A
R
T
,p
m
a
x
=
1
0





.




.
.





.

.


ZM
+

pZ
M




.


.



.

.





.



.

ZM
+

F
M

M



.


.




.
.





.




.

ZM
+

A
R
T




.


.



.

.





.



.

pZ
M
+

F
M

M



.


.




.
.





.




.

pZ
M
+

A
R
T




.


.



.

.





.



.

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M



.


.




.
.





.




.

ZM
+

pZ
M
+

A
R
T




.


.



.

.





.



.



ZM
+

F
M

M
+

A
R
T




.


.



.

.





.



.

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

N
ot
e:
E
rr
o
r I
,
E
rr
o
r I
I
,
A
c
c
,
an

d
M
C
C

re
pr
es
en
t
T
yp

e-
I
er
ro
r,

T
yp

e-
II

er
ro
r,

cl
as
si
fic
at
io
n
ac
cu
ra
cy
,
an

d
M
at
he
w
s
C
or
re
la
ti
on

C
oe
ffi
ci
en
t,

re
sp
ec
ti
ve
ly
.





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

0.2

0.4

0.6

0.8

1

Maximum Zernike Moment Order

M
C

C
Sc

or
e

SVM
NB-mc
NB

Figure .: Comparison of classifier performance measured in MCC score for ZM. NB-mc
denotes multi-class NB classifier, while NB in the legend denotes the binary
case. The MCC score is undefined (0/0) for p = 1 with SVM.

... Classifier performance with ZM features

Figure . shows the MCC scores for ZM of order p = 1..30. SVM performs better

for all p > 6, achieving good classification results where MCC > 0.844 for maxi-

mum order 6 < p 6 30. NB classifiers, both binary and multi-class, still perform

adequately with MCC ≈ 0.8 for all orders p > 3. An interesting result is that,

while SVM performs better than NB in terms of overall performance, the ErrorII

rates are lower in all cases using NB classification. This means that, while SVM

makes a better classification overall, it is more likely to predict that a true pecan

weevil is not a pecan weevil than the NB classifier. Figure . shows the ErrorI

and ErrorII rates for the three classifiers at varying moment order.

... Classifier performance with pZM features

Figure . shows the MCC scores for the three classifier types using pZM features.

Much the same as with ZM features, the SVM classifier outperforms the two NB

classifiers for moment orders p > 5, although all three perform well enough to be





2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

,(
%
)

(a) Classifier ErrorI rates for varying ZM or-
der

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

I
,(

%
)

SVM
NB-mc
NB

(b) Classifier ErrorII rates for varying ZM
order

Figure .: Comparison of classifier error rates for ZM for varied moment order with
SVM, binary NB, and multi-class NB classifiers.

considered for further work. ForSVM theMCC score is consistently above 0.8, while

it remains greater than 0.75 out to order p = 25. Figure . shows the ErrorI and

ErrorII rates for the three classifiers at varying moment order. As with ZM, the

NB classifiers provide fewer Type-II misclassifications with greater rates of ErrorI

while the SVM classifier has virtually no Type-I error with greater rates of ErrorII.

... Classifier performance with FMM features

Figure . shows the MCC scores for the three classifiers using FMM features. In

a reversal of performance, the NB features perform better for all moment orders

except for the maximum, p = 25, with SVM performing much worse than with

ZM or pZM. Performance reaches a maximum MCC score of 0.833 at order p = 22

for NB with multi-class classification and 0.842 for binary classification, which is

significantly better than the maximum performance of MCC = 0.745 with SVM.

Figure . shows the ErrorI and ErrorII rates for the three classifiers at varying





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

0.2

0.4

0.6

0.8

1

Maximum Psuedo Zernike Moment Order

M
C

C
Sc

or
e

SVM
NB-mc
NB

Figure .: Comparison of classifier performance for pZM. NB-mc denotes the multi-class
NB case, while NB in the legend denotes the binary case. The MCC score is
undefined (0/0) for p = 1 with SVM.

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

,(
%
)

(a) Classifier ErrorI rates for varying pZM or-
der

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

I
,(

%
)

SVM
NB-mc
NB

(b) Classifier ErrorII rates for varying pZM
order

Figure .: Comparison of classifier error rates for pZM for varied moment order with
SVM, binary NB, and multi-class NB classifiers





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

0.2

0.4

0.6

0.8

1

Maximum Fourier-Mellin Moment Order

M
C

C
Sc

or
e

SVM
NB-mc
NB

Figure .: Comparison of classifier performance for ZM. NB-mc denotes the multi-class
NB case, while NB in the legend denotes the binary case. The MCC score is
undefined (0/0) for p = 1..2 with SVM.

moment order for FMM features. When compared with the same graphs for ZM and

pZM, the major difference is that the Type-II error rates are twice as great when

using FMM feature and the SVM classifier, while the Type-I error rates remain

similar for all classifier types across the moment types.

... Classifier performance with ART features

In the case of ART features, classification performance is significantly better with

NB, and nearly on par with the maximum classification performance of combined

feature sets using SVM classifiers. Figure . shows the MCC scores for the three

classifiers using ART features. MCC scores for ART features remain above 0.835

and 0.846 for NB classifiers using multi-class and binary classification, respectively,

while failing to surpass MCC = 0.226 using the SVM classifier. The performance

of NB with ART features is roughly as good as that of any of the combined feature

sets using SVM. Interestingly, the strong classification performance begins at order

p = 1 and continues to p = 10, with little change across the range.

 See Table .





2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

,(
%
)

(a) Classifier ErrorI rates for varying FMM
order

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

I
,(

%
)

SVM
NB-mc
NB

(b) Classifier ErrorII rates for varying FMM
order

Figure .: Comparison of classifier error rates for FMM for varied moment order with
SVM, binary NB, and multi-class NB classifiers

... Classifier performance with Combined features

Table . and Table . show the performance of NB classifiers for binary and

multi-class classification, respectively. For both cases, NB has higher ErrorI rates

with lower ErrorII rates. Ultimate performance in terms of the MCC score is gener-

ally better for the binary classification even though the MCC score is computed as

a binary performance metric for both types. Overall accuracy is much improved for

the binary classifier since the between-class misclassifications of non-pecan weevil

images count against the accuracy rate.

Although SVM generally performs better than NB for insect identification, the

reduced rates of Type-II error could allow NB and SVM to be potentially used in

tandem. This would mean using SVM classification in general, but checking the

corresponding binary NB prediction in the case that the SVM predicts a non-pecan

weevil. If both classifiers agree, the classification of non-pecan weevil would be





1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Maximum ART Order

M
C

C
Sc

or
e

SVM
NB-mc
NB

Figure .: Comparison of classifier performance for ZM. NB-mc denotes the multi-class
NB case, while NB in the legend denotes the binary case. The MCC score is
undefined (0/0) for p = 1 with SVM.

selected. ART features, while providing the worst-case classification with SVM, per-

form well when the metric is Type-II error.

.. Reduced Feature Performance

SVM and NB classifiers generally work well for feature vectors with many members

as long as the number of training samples used to train the classifier is much

greater than the number of features. In the case of combined feature vector sets

using all four types of moments, there are 909 unique features, which is a large

number compared to many recognition problems. Since many of these features

are orthogonal, the risk of overfitting a model is reduced, but there is still some

concern about the Curse of Dimensionality reducing classification performance

due to the large feature set. Additionally, computing moment features is relatively

 The curse of dimensionality is the phenomena that causes models to break down when the number
of variables is large in relation to the number of data samples. Many orthogonal features are
generally good, but more is not always better.





T
ab

le
.


:P

er
fo
rm

an
ce

m
et
ri
cs

of
C
om

bi
ne
d
M
om

en
t
Fe

at
ur
es

w
it
h
bi
na

ry
N

B
cl
as
si
fic
at
io
n

Fe
at
ur
e

Fe
at
ur
e
C
ou

nt
E
rr
o
r I

E
rr
o
r I
I

A
c
c

M
C
C

Fe
at
ur
e
C
om

pu
ta
ti
on

T
im

e
C
la
ss
ifi
ca
ti
on

T
im

e
%

%
%

m
s

µ
s

ZM
,p
m
a
x
=
2
6




.


.



.

.





.
.



pZ
M
,p
m
a
x
=
2
1




.


.



.

.





.


.


F
M

M
,p
m
a
x
=
2
6




.


.



.

.





.



.

A
R
T
,p
m
a
x
=
1
0




.


.



.

.





.
.



ZM
+

pZ
M




.


.



.

.





.



.

ZM
+

F
M

M



.


.




.
.





.




.

ZM
+

A
R
T




.


.



.

.





.




pZ
M
+

F
M

M



.


.




.
.





.




.

pZ
M
+

A
R
T




.


.



.

.





.



.

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M



.


.




.
.





.




.

ZM
+

pZ
M
+

A
R
T




.


.



.

.





.



.

ZM
+

F
M

M
+

A
R
T




.


.



.

.





.



.

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

N
ot
e:
E
rr
o
r I
,
E
rr
o
r I
I
,
A
c
c
,
an

d
M
C
C

re
pr
es
en
t
T
yp

e-
I
er
ro
r,

T
yp

e-
II

er
ro
r,

cl
as
si
fic
at
io
n
ac
cu
ra
cy
,
an

d
M
at
he
w
s
C
or
re
la
ti
on

C
oe
ffi
ci
en
t,

re
sp
ec
ti
ve
ly
.





T
ab

le
.


:P

er
fo
rm

an
ce

m
et
ri
cs

of
C
om

bi
ne
d
M
om

en
t
Fe

at
ur
es

w
it
h
m
ul
ti
-c
la
ss

N
B
cl
as
si
fic
at
io
n

Fe
at
ur
e

Fe
at
ur
e
C
ou

nt
E
rr
o
r I

E
rr
o
r I
I

A
c
c

M
C
C

Fe
at
ur
e
C
om

pu
ta
ti
on

T
im

e
C
la
ss
ifi
ca
ti
on

T
im

e
%

%
%

m
s

µ
s

ZM
,p
m
a
x
=
2
6




.


.



.

.





.


.

pZ
M
,p
m
a
x
=
2
1




.


.



.

.





.



.

F
M

M
,p
m
a
x
=
2
6




.


.



.

.





.



.

A
R
T
,p
m
a
x
=
1
0




.


.



.

.





.


.

ZM
+

pZ
M




.


.



.

.





.



.

ZM
+

F
M

M



.


.




.
.





.




.

ZM
+

A
R
T




.


.



.

.





.



.

pZ
M
+

F
M

M



.


.




.
.





.




.

pZ
M
+

A
R
T




.


.



.

.





.



.

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M



.


.




.
.





.




.

ZM
+

pZ
M
+

A
R
T




.


.



.

.





.



.

ZM
+

F
M

M
+

A
R
T




.


.



.

.





.



.

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

ZM
+

pZ
M
+

F
M

M
+

A
R
T




.


.



.

.





.



.

N
ot
e

:
A
cc
ur
ac
y
re
po

rt
ed

in
th
is
ta
bl
e
is
ba

se
d
on

th
e
m
ul
ti
-c
la
ss

cl
as
si
fic
at
io
n
ac
cu
ra
cy
,w

he
re

fa
ls
e
cl
as
si
fic
at
io
n
be

tw
ee
n
no

n-
pe

ca
n
w
ee
vi
l

cl
as
se
s
is

in
cl
ud

ed
in

th
e
ra
te
.
E
rr
o
r I
,
E
rr
o
r I
I
,
an

d
M

C
C

sc
or
e
ar
e
pr
es
en
te
d
in

th
e
bi
na

ry
se
ns
e
w
he
re

fa
ls
e
cl
as
si
fic
at
io
n
is

on
ly

co
un

te
d

ag
ai
ns
t
th
e
sc
or
e
w
he
n
a
pe

ca
n
w
ee
vi
li
s
cl
as
si
fie
d
as

no
n-
pe

ca
n
w
ee
vi
l,
or

vi
ce

ve
rs
a.

N
ot
e

:
E
rr
o
r I
,
E
rr
o
r I
I
,
A
c
c
,
an

d
M
C
C

re
pr
es
en
t
T
yp

e-
I
er
ro
r,

T
yp

e-
II

er
ro
r,

cl
as
si
fic
at
io
n
ac
cu
ra
cy
,
an

d
M
at
he
w
s
C
or
re
la
ti
on

C
oe
ffi
ci
en
t,

re
sp
ec
ti
ve
ly
.





1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

,(
%
)

(a) Classifier ErrorI rates for varying ART or-
der

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Maximum Moment Order

E
rr
o
r I

I
,(

%
)

SVM
NB-mc
NB

(b) Classifier ErrorII rates for varying ART
order

Figure .: Comparison of classifier error rates for ART for varied moment order with
SVM, binary NB, and multi-class NB classifiers

computationally expensive, taking as much or more time as actual training of the

classifier of performing classifications based on the features.

In this section, two methods for reducing the feature vector length are presented.

Both methods are based on dimensionality reduction techniques commonly used in

pattern recognition to project the feature space into a smaller number of dimensions.

Rather than projecting the features to a new space in a manner that uses all

of the original features, these methods select individual variables based on their

contribution to describing either the variance of the training set or the between-

class variance of the feature set. Any reduction in the number of features will be

beneficial in the case that there is minimal impact on the classification performance

as the reduced feature set will require fewer features to be computed, reduced

computation for classification, and reduced memory requirements for either storage

or data transfer.





... Results of PCA–based Feature Reduction

The Principle Component Analysis (PCA)–based method for feature reduction de-

veloped for this research begins with the largest number of possible features, com-

putes the scatter matrix of the training samples, solves the generalized eigenvalue

problem to obtain the eigenvectors and eigenvalues of the scatter matrix, then se-

lects the best dimension from the overall feature set as the feature with the largest

eigenvector projection for the largest eigenvalue. The selection process is iterated

on the remaining, un-selected features until all features have been selected, thus

creating an ordered list of features in the best PCA direction sense. This direction is

the feature that accounts for the majority of the variance in the samples, regardless

of if that variance is noise or if it is useful to discern between classes.

The first feature selected by the PCA–based method is the pZM of order p =

25 and repetition q = 4, otherwise written as pZM4
25. With this single feature,

accuracy rates of 93.9%, 94.2%, and 92.2% are achieved using SVM, binary NB ,

and multi-class NB, respectively. The corresponding MCC scores were 0.581, 0.623,

and 0.648. Figure . shows the real portion of the basis functions for the first ten

features selected by the PCA–based feature selection algorithm.

Upon examination of the first features selected, it is likely that the values of

these moments account for mainly noise in the model rather than provide good

discernment between classes, which is a known problem in any method that relies

on PCA. With that in mind, however, the performance of the single-member feature

vector as a classifier shows that at least some of the variance described by pZM4
25

is inherent to the model classes.

Figure . shows the performance of the SVM, binary NB , and multi-class NB

classifiers in terms of MCC score as features are added to the feature vector based





(a) pZM2324 (b) pZM2024 (c) pZM2124 (d) pZM2224 (e) pZM2023

(f) pZM025 (g) pZM1823 (h) pZM1924 (i) FMM1923 (j) FMM1822

Figure .: Basis functions for the ten best PCA features. These represent the ten best
moment basis functions to explain the variance in the full 1, 829 sample data
set of insect shapes.

on the best PCA direction. The classification performance declines as PCA features

two through ten are added to the feature vector despite these features describing

more of the variance than those that are selected subsequently. This is evidence

that much of the information carried by the second through tenth PCA features

is noise when considered as classification features. For SVM classification, perfor-

mance continues to rise after the tenth feature is added, while both binary and

multi-class NB continue to decline in performance until the sixty-first feature is

added. Peak classification performance occurs with 584 features with the SVM clas-

sifier, providing an accuracy of 97.9% and corresponding MCC score of 0.871. In the

case that further reduction of feature vector length is desired for computational or

storage reasons, 99% of this maximum performance can be reached with 274 fea-

tures (MCC = 0.863, 97.7% accurate), while 95% of the maximum can be reached

with only 86 features (MCC = 0.831, 97.25% accurate). Complete ordering 1, 036

of features using the PCA method takes 237 seconds.





0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

PCA Features from ZM, pZM, FMM, and ART

M
C

C
Sc

or
e

SVM MCC
NB-b MCC
NB-m MCC

0 200 400 600 800 1,000
0

5

10

15

Features

ErrorII
ErrorI

(a) SVM Classifier

0 200 400 600 800 1,000
0

5

10

15

Features

ErrorII
ErrorI

(b) Binary NB Classifier

0 200 400 600 800 1,000
0

5

10

15

Features

ErrorII
ErrorI

(c) Multi-class NB Classifier

Figure .: Performance results based on PCA dimension reduction. The top figure shows
the MCC scores for SVM, binary NB, and multi-class NB. Sub-figures a, b, and
c show the Type-I and Type-II errors in percent for the three classifiers as
the number of features increases. Error rates are stacked, with the top of the
stack representing the total error rate.





... Results of FMDA–based Feature Reduction

The FMDA–based method is very similar to the PCA–based method for dimensional

reduction, but it takes into account both the scatter matrix of the entire data set

and the scatter matrices from for each individual class, seeking to maximize the

ratio of the between class and within class scatter. For each iteration, this method

selects up to one fewer than the total number of classes as opposed to a single feature

as is done in the PCA–based method. In the proposed algorithm, the features that

are selected with each iteration are the first c− 1 features that have the maximum

projection in the eigenvectors correspondting to the c− 1 greatest eigenvalues. If

there are repeated features among the c−1 largest eigenvalues, the repeated feature

is only represented once in the ordered list of selected features. FMDA–based feature

reduction can be done either in a multi-class sense where c > 2, or in a binary sense

where c ≡ 2. In the binary sense, one feature is selected per iteration as in the PCA–

based method, but the between class scatter is considered in the selection rather

than solely relying on the scatter matrix of the entire data set.

Multi-Class FMDA–based Feature Reduction

The first iteration of the multi-class FMDA–based method for feature reduction

selects the features pZM23
25, pZM

4
22, FMM

13
19, FMM

2
19, and pZM

16
18, all of which

are unique from any of the first ten features selected by PCA. With these five

features, accuracy rates of 95.2%, 93.0%, and 90.0% are achieved using SVM, binary

NB , and multi-class NB, respectively. The corresponding MCC scores were 0.688,

0.587, and 0.556, representing both improvement and decline when compared to

the first feature selected in PCA. When compared to the first five features selected

by PCA, the performance of multi-class FMDA–selected features is slightly better,





(a) pZM23 +
25 (b) pZM4 +

22 (c) FMM13 +
19 (d) FMM2 +

19 (e) pZM16 +
18

(f) ART0 ᵀᵀ
10 (g) FMM19 ᵀᵀ

21 (h) pZM5 ᵀᵀ
11 (i) pZM1 ᵀᵀ

12 (j) ZM0 ‡‡‡
22

Figure .: Basis functions for the ten best multi-class FMDA features. These represent
the ten best moment basis functions to maximize the between class scatter
versus the within class scatter in the full 1, 829 sample data set of insect
shapes. Symbol + denotes first iteration selection, ᵀᵀ denotes second iteration
selection, and ‡‡‡ denotes third iteration selection.

with improvements in MCC score of 0.11%, 3.33%, and 8.31% for SVM, multi-class

NB , and NB NB classification, respectively. The real portion of the basis functions

for the first ten features selected by multi-class FMDA are shown in Figure ..

Figure . shows the performance of the SVM, binary NB , and multi-class NB

classifiers in terms of MCC score as features are added to the feature vector based

on the best multi-class FMDA direction. Although not noticeable in the figure, there

are far fewer data points in each of the graphs for multi-class FMDA than in the case

of PCA–based selection. Each of the iterations of multi-class FMDA selects between

one and six features as there are seven identified classes in the data set, and each

iteration is represented by one point in the figures. This results in only 190 data

points compared to 1, 036 in the case of PCA or binary FMDA.

Multi-class FMDA–based feature selection results in a more smoothly monotonic

increase in performance as features are added to the feature vector than does Prin-





ciple Component Analysis (PCA)–based selection. This comes at a reduced relative

increase rate in classification performance such that the maximum performance in

terms of MCC score does not occur until 186 out of 190 selections whereas it occurs

at 584 iterative selections out of a possible 1, 036 for the PCA–based method. The

maximum performance in the case of multi-class FMDA feature selection includes

1, 014 out of 1, 036 possible unique features. This maximum classification perfor-

mance does improve on that of the PCA–based though, with an increase in MCC

score from 0.899 compared to 0.871 for PCA. Performance of the NB classifiers is

worse than that that of SVM, with maximum MCC scores of 0.786 and 0.768 for

binary and multi-class NB, respectively. Complete ordering 1, 036 of features using

the multi-class FMDA method takes 62 seconds.

Using the features selected by FMDA with the SVM classifier, the number of fea-

tures can be reduced from 1, 014 to 794 while still achieving 99% of the maximum

performance with an accuracy rate of 98.3% and an MCC score of 0.891. For 95%

of the maximum performance, the feature set can be reduced further to 226 dimen-

sions with accuracy of 97.6% and MCC score of 0.855. Ninety percent of maximum

performance requires 128 features and achieves accuracy of 97.0% and MCC score

of 0.812.

The application of multi-class FMDA–based for this data set suffers due to the

small number of samples available in the non-pecan weevil classes, where there are

only five available examples of spiders or moths to be used between the training

and testing data sets. This small number of samples in some classes leads to the

within-class scatter matrix for the non-weevil classes to be ill conditioned, resulting

in imprecise solutions to the generalized eigenvalue problem. Additional samples

from these would be expected to improve performance, not only of classification,





0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

FMDA (Multi-class) Features from ZM, pZM, FMM, and ART

M
C

C
Sc

or
e

SVM MCC
NB-b MCC
NB-m MCC

0 200 400 600 800 1,000
0

5

10

Features

ErrorII
ErrorI

(a) SVM Classifier

0 200 400 600 800 1,000
0

5

10

Features

ErrorII
ErrorI

(b) Binary NB Classifier

0 200 400 600 800 1,000
0

5

10

Features

ErrorII
ErrorI

(c) Multi-class NB Classifier

Figure .: Performance results based on multi-class FMDA dimension reduction. The
top figure shows the MCC scores for SVM, binary NB, and multi-class NB.
Sub-figures a, b, and c show the Type-I and Type-II errors in percent for the
three classifiers as the number of features increases. Error rates are stacked,
with the top of the stack representing the total error rate.

but of feature selection for reduced dimensionality as the likelihood of a singular

scatter matrix would decline for larger numbers of samples in the matrix.

Results of Binary FMDA–based Feature Reduction

Binary FMDA–based feature reduction uses the same algorithm as the multi-class

case, but pools all non-pecan weevil samples into a single class. This results in

a binary, two class case for feature selection. Since FMDA projects a data set in

the c− 1 directions that best separate the classes, the binary form of FMDA–based

feature reduction selects exactly one feature per iteration. This is the same as in the

case of PCA–based feature selection, but with the distinction of considering the class





(a) pZM216 (b) pZM1014 (c) ZM214 (d) pZM714 (e) ZM218

(f) ZM1127 (g) ZM822 (h) ZM1018 (i) pZM919 (j) ZM1230

Figure .: Basis functions for the th through th best multi-class FMDA features.
These represent the moment basis functions that maximize the between class
scatter versus the within class scatter in the full 1, 829 sample data set of
insect shapes. The first eight features can be seen in Figure ..

membership of the samples and the discernment of classes when making feature

selections. As such, the binary FMDA–based method takes more computational

resources than the multi-class FMDA or PCA based methods.

The first feature selected by the binary FMDA–based method for feature reduction

was pZM of order p = 25 and repetition q = 23, otherwise written as pZM23
25, which

is the same as that selected by the multi-class method. With this single feature,

accuracy rates of 93.9%, 94.2%, and 92.2% are achieved using SVM, binary NB , and

multi-class NB, respectively. The corresponding MCC scores were 0.581, 0.623, and

0.648, which are exactly the same as the performance with the first feature selected

in PCA. The first ten features selected by binary FMDA are pZM23
25, FMM

2
19, ART

0
10,

pZM16
18, pZM

4
22, FMM

13
19, pZM

1
12, ZM

0
22, pZM

2
16, and pZM

10
14. Eight of the first

ten features are shown in Figure ., since they were also selected by the multi-

class FMDA method. Figure . shows the real portion of the basis functions for

the remaining two features, plus the following eight selected features.





Figure . shows the performance of the SVM, binary NB , and multi-class NB

classifiers in terms of MCC score as features are added to the feature vector based on

the best binary FMDA direction. The maximum classification performance occurs

with 1, 027 of the 1, 036 possible features included in the model, with a correspond-

ing accuracy of 98.4% and MCC score of 0.902. If further reduction in the number of

features is desired, 99% of maximum performance occurs with 956 features, achiev-

ing 98.2% and an MCC score of 0.895. Ninety five percent and ninety percent of

maximum performance require 364 and 25 features, respectively, and provide accu-

racy of 97.7% and 95.40% with MCC scores of 0.859 and 0.825. Complete ordering

1, 036 of features using the multi-class FMDA method takes 264 seconds.

.. Moment Feature Computation

The kernel for computing angular-radial moments was tested with four use cases,

and compared to the Lans code used in the work of Ashaghathra (). The four

use cases include:

. Pre-allocated variables with one image passed to the engine at a time in a
for-loop

. Pre-allocated variables with a stack of images in a single -D matrix passed
to the engine

. No pre-allocation of variables with a stack of images in a single -D matrix
passed to the engine

. Pre-allocated variables, stacked -D matrix of images, running in a parfor
parallel loop

The major variables tested are the impacts of pre-allocation of the moment variables

versus no pre-allocation, the impacts of single images passed to the kernel versus a





0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

FMDA (Binary) Features from ZM, pZM, FMM, and ART

M
C

C
Sc

or
e

SVM MCC
NB-b MCC
NB-m MCC

0 200 400 600 800 1,000
0

5

10

15

20

Features

ErrorII
ErrorI

(a) SVM Classifier

0 200 400 600 800 1,000
0

5

10

15

20

Features

ErrorII
ErrorI

(b) Binary NB Classifier

0 200 400 600 800 1,000
0

5

10

15

20

Features

ErrorII
ErrorI

(c) Binary NB Classifier

Figure .: Performance results based on binary FMDA dimension reduction. The top
figure shows the MCC scores for SVM binary NB. Sub-figures a, b, and c show
the Type-I and Type-II errors in percent for the SVM, binary NB, and multi-
class NB classifiers, respectively, as the number of selected features increases.
Error rates are stacked, with the top of the stack representing the total error
rate.





stack of images passed as a -D matrix, and the impacts of parallel computing for

stacks of images. Each of these variables is tested for a varying number of moments

to be computed.

Pre-allocation of memory allows the moment engine to compute moments sig-

nificantly faster than the Lans methods, starting with a single image at a time.

This is regardless of whether the images are passed to the function as individual

images or in a -D stack of images. For the single image moment computation, the

pre-allocated engine passed a single image requires 3.33 milliseconds compared to

14.0 milliseconds for the Lans method. When passed as a -D stack of images, even

the single-image stack results in further time savings, requiring only 1.43 millisec-

onds. The major difference between the pre-allocated version using a for-loop and

the pre-allocated version passed a stack of images is the amount of computational

overhead that is required. In the for-loop case, this overhead is incurred for each

moment computation. For the -D stack version this overhead is only computed

once for the entire -D stack of images.

For groups of images larger than four, the pre-allocated engine settles to a roughly

constant computational time, requiring approximately 0.742 milliseconds for the

per-image calculation and 0.429 milliseconds for the stacked image -D matrix

form. The reference Lans implementation requires 5.70 milliseconds per moment.

The result is a 87% reduction in computation time for per-image calculation and

a 92.5% reduction in computation time for the stacked image, -D matrix version

when compared to the Lans method.

The proposed engine takes more computational time when not pre-allocated

for groups of images up to eight when compared to the Lans method, and reaches

equivalent computational efficiency when compared to the per-image, pre-allocated





         
.








Moments Computed

C
om

pu
ta

ti
on

T
im

e,
(m

s)

Lans Reference Implementation
Engine-One Image per Iteration
Engine-Multiple Images Stacked
Engine-Multiple Images Stacked, NPI
Engine-Multiple Images Stacked, Parallel

Figure .: Moment Feature Computation Time. The angular-radial moment engine
computation time for a single 128× 128 moment computation. The engine
can be run with or without pre-allocated variables for the pixel rings, angu-
lar basis functions, and radial basis functions. The reference implementation
is the Lans code base that was used in the work of Ashaghathra ().

case for groups of images equal to or greater than 128. Improvements from pre-

allocation of variables are finally equalized without using pre-allocation when the

number of images grows to 4, 096.

The parallel version of the engine performs worse than any other scenario for

groups of image moments up to four, then surpasses the non-parallel, not pre-

allocated version for groups of images eight or larger. It is faster than the Lans

method for groups of images equal or greater than 16, and is roughly equivilent to

the pre-allocated per-image case for groups of 128 images or larger. The parallel

method only surpasses the series calculation in efficiency for groups of  images

or larger, and only slightly bests the serial version even with the largest of groups.

At 4, 096 moment calculations, the parallel version requires 0.327 milliseconds per

moment compared to 0.404milliseconds for the series version. This represents 19.0%





improvement in efficiency at 4, 096 moments, compared to 12, 900% more compu-

tational time when the number of images is only one.

In sum, the moment computation engine provides much better computational

efficiency than the Lans method as long as it is used as intended: with variables

pre-allocated and with large, stacked groups of images passed as one -D matrix.





CHAPTER V

CONCLUS IONS AND RECOMMENDATIONS

. conclusions

The research presented in this dissertation was carried out with the goal of enabling

automation of pecan weevil emergence monitoring during the late growing season.

The major contributions of this study were that it was the first to use an instru-

mented weevil trap system to monitor weevil emergence with time granularity of

minutes rather than days, it was the first to use images of live pecan weevil in their

natural posture for identification purposes, and it was the first to include a uni-

fied, efficient kernel for feature calculation. The system components developed in

this work should be sufficient for the implementation of a network of instrumented

traps, including insect detection and identification components.

The research objectives and research hypothesis introduced in Chapter  have

been investigated thoroughly in this dissertation. Conclusions based on each of the

four research objectives and their respective research hypotheses follow in the next

sections.





Image histograms for insect presence detection

In evaluation of the efficacy of using image histogram features to detect either the

presence or absence of an insect in the trap, it was found that there was enough

information in the histograms alone to detect insect presence with an accuracy

greater than 92% with KNN classification and cumulative histograms. The optimal

number of histogram bins for insect presence detection based on -bit images was

found to be between nine and twenty, with sub-sampling of images prior to comput-

ing histograms resulting in a great improvement in computation speed with little

to no impact on classification performance. Adjusting the contrast of images prior

to classification was also found to improve classification performance, although at

a cost of computational intensity. In summary, the research hypotheses that field

collected images contain enough information in their histograms to determine if

insects were present was true.

Insect identification with angular-radial moment features

In this research, it was found that any of the angular-radial moments evaluated

could be used to successfully discern pecan weevils from other insects that were

either imaged in instrumented traps or assumed to potentially be present in pecan

growing regions of the country. Used as features individually, correct recognition

rates with ZM, pZM, FMM, and ART features and SVM classification were found to be

98%, 97.3%, 95.9%, and 91.0%, respectively. ZM features proved to be the best indi-

vidual features and required fewer features to be included in the feature vector for

maximum performance. Used as combined features, the best classification perfor-

mance was found to be with ZM, pZM, and ART, with an accuracy rate of 98.3% and





a Matthews Correlation Coefficient (MCC) score of 0.900 using SVM classification.

This combined feature set required 553 features for maximum performance.

Support Vector Machine (SVM) classification was found to provide better per-

formance that Naive Bayes (NB) when compared based on MCC scores for nearly

all cases, most notably when using ZM or pZM features. For FMM, NB classification

was found to provide better performance until the maximum moment order reaches

twenty four, while NB was shown to provide better performance with ART features

of any order. SVM classification was found to be more prone to Type-II error with

virtually no Type-I error when using ZM or pZM features, while NB classification

was shown to have less Type-II error than SVM no matter the feature.

PCA and FMDA feature reduction

Two methods for reducing the number of variables in the angular-rotary moment

feature vector were developed in this dissertation, with one relying on principles

of PCA and the other on FMDA. Both methods were found capable of reducing the

number of features from the feature vector with losses in classifier performance that

were minimal. The PCA–based method was shown capable of reducing the number

of features from the maximum of 1, 036 to 86 while still maintaining performance

of 97.3% accuracy and 0.831 MCC score, while selecting a single feature that could

provide 93.9% accuracy and 0.647 MCC score. The multi-class FMDA–based method

selects multiple features in each iteration. The first five selected features alone

provided 95.2% accuracy and 0.688 MCC score, while the method was shown to

provide 97.0% accuracy and an MCC score of 0.812 using only 128 features. In the

binary case of the FMDA method, the first selected feature provided 94.2% accuracy





and 0.648 MCC score, while the method could reduce the number of features to

twenty five with 95.4% accuracy and 0.825 MCC score.

The feature reduction methods were also shown useful in removing “bad” features

from the feature vector. The binary FMDA–based method provided the maximum

classification performance and MCC score of any combination in the study when us-

ing 1, 027 of the available 1, 036 features, with metrics of 98.4% accuracy and 0.902

MCC score. In other words, FMDA based feature selection provided the maximum

insect classification performance by discarding the nine “worst” features from the

feature set.

Moment Computation Kernel

The proposed moment computation kernel was shown to provide large savings

in computation time. For a single moment computation, the engine reduced the

computation time by an order of magnitude when compared with the functions

used in the work of Ashaghathra (). Pre-allocation of variables for the kernel

provided a two-order of magnitude improvement in computation speed for the

kernel that required over a thousand images to be processed in the un-allocated

function before reaching parity in computation time.

Limitations of the current work

Over the course of completing the work presented in this dissertation, working

software has been created in the MATLAB environment using both original code

and functions from the Image Processing and Statistics toolboxes from the Math-

works corporation. Many of these functions are not readily available for embedded





systems designers, and would need to be implemented in another programming

environment in order for embedded systems to utilize the algorithms.

. recommendations and future work

In order to deploy a network of instrumented, connected camera traps, modifica-

tions to the current system, as well as additional research and development may

be warranted. Recommended future work includes:

• Improvements to the instrumented trap design

– Design with a fixed-mount, fixed-focus camera and curved imaging cham-
ber such that the field of view of the camera captures the same scene
in every image. This would improve the ability of the insect detection
classifier to detect insects as the noise introduced by moving camera and
changes in focus would be removed.

– Additional image capture triggering is warranted. Whether an optical
sensor or some other technology, capturing images only when a sensor
is triggered could reduce system power consumption. This is important
since the camera is the greatest consumer of power in the trap.

• Additional data for insect detection and identification

– Collect more images of living non-pecan weevil insects for training and
testing. Due to the nature of the orchard where the images used in this
study were collected, the number of pecan weevils is very large compared
to then number of other insects. This may be true in any orchard since
pecan weevil climb into traps out of instinct, but the addition of non-
pecan weevil training data could improve classification performance.

– Collect additional images of the imaging chamber with insects present.
Much like the previous bullet, the nature of the data collection method
resulted in many more images of an empty chamber than with insects
since most of the time there is not an insect entering the trap. Additional
data with insects present could improve performance of the presence
detection classifiers





BIBL IOGRAPHY

Aggelopoulou, a. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. a., and
Nanos, G. D. (). Yield prediction in apple orchards based on image process-
ing. Precision Agriculture, ():–. (Cited on page .)

Agilent Technologies (). NB handheld RF spectrum analyzer technical
overview. Technical report, Agilent Technologies, Santa Clara, California, USA.

Agrawal, D. P. and Zeng, Q.-A. (). Introduction to wireless and mobile systems.
Cengage Learning.

Al-Saqer, S., Weckler, P., Solie, J., Stone, M., and Wayadande, A. (). Identifica-
tion of pecan weevils through image processing. American Journal of Agricultural
and Biological Science, .

Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, J. G.-H. (). Wire-
less sensor network deployment for integrating video-surveillance and data-
monitoring in precision agriculture over distributed crops. Computers and Elec-
tronics in Agriculture, Volume ():–. (Cited on page .)

Arduino.cc. Arduino Mega Board. Arduino.cc, Ivrea, Italy.

Ashaghathra, S. M. (). Identification of Pecan Weevils Through Image Pro-
cessing. ProQuest. (Cited on pages , , , , , , , , , and .)

Bailey, D. R., Selker, J. S., Owen, J. S., and Wagner, J. (In Review). Wireless
network performance at a production container nursery. Applied Engineering in
Agriculture.

Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., and
Tardaguila, J. (). Assessment of vineyard water status variability by thermal
and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation
Science, ():–. (Cited on page .)





Bergerman, M., Singh, S., and Hamner, B. (). Results with autonomous vehi-
cles operating in specialty crops. In Proceedings - IEEE International Conference
on Robotics and Automation, pages –. IEEE. (Cited on page .)

Berni, J., Zarco-Tejada, P. J., Suárez, L., and Fereres, E. (). Thermal and
narrowband multispectral remote sensing for vegetation monitoring from an un-
manned aerial vehicle. Geoscience and Remote Sensing, IEEE Transactions on,
():–. (Cited on page .)

Bhatia, A. and Wolf, E. (). On the circle polynomials of zernike and related
orthogonal sets. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume , pages –. Cambridge Univ Press. (Cited on page .)

Bloem, S., Mizell III, R. F., and OB́rien, C. W. (). Old traps for new weevils:
new records for curculionids (coleoptera: Curculionidae), brentids (coleoptera:
Brentidae) and anthribids (coleoptera: Anthribidae) from jefferson co., florida.
Florida Entomologist, ():–.

Bloom, B. S., Engelhart, M., Furst, E. J., Hill, W. H., and Krathwohl, D. R. ().
Taxonomy of educational objectives: Handbook i: Cognitive domain. New York:
David McKay, :.

Boethel, D. and Eikenbary, R. (). Pecan weevil : seasonal emergence of larvae
from three pecan cultivars in oklahoma. Georgia Entomological Society. Journal,
():–.

Calcote, V. and Hyder, D. (). Pecan weevil preference for various pecan culti-
vars. Journal of economic entomology, ():–.

Celebi, M. and Aslandogan, Y. (). A comparative study of three moment-
based shape descriptors. In Information Technology: Coding and Computing,
. ITCC . International Conference on, volume , pages –Vol. .
(Cited on page .)

Chen, Q.-S., Defrise, M., and Deconinck, F. (). Symmetric phase-only matched
filtering of Fourier-mellin transforms for image registration and recognition. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, ():–
. (Cited on pages  and .)

Choras, R. (). Feature extraction of gray-scale handwritten characters using
Gabor filters and zernike moments. In Kurzynski, M., Puchala, E., Wozniak,
M., and Zolnierek, A., editors, Computer Recognition Systems , volume  of
Advances in Soft Computing, pages –. Springer Berlin Heidelberg.





CMUCAM Team (). Cmucam datasheet. Technical report, Carnegie Mellon
University, Pittsburgh, PA, USA.

Coopmans, C. (). AggieNav: A small, well integrated navigation sensor system
for small unmanned aerial vehicles. In Proceedings of the ASME International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference , DETC, volume , pages –. ASME.
(Cited on page .)

Cottrell, T. and Wood, B. (). Pecan weevil management: past, present and
toward a future strategy. Southwestern entomologist. Supplement, ():–.
(Cited on pages  and .)

Cottrell, T. E. and Wood, B. W. (). Movement of adult pecan weevils cur-
culio caryae within pecan orchards [electronic resource]. Agricultural and forest
entomology, ():–. (Cited on page .)

Digi International Inc. (). ZigBee RF module development kit. Technical
report, Digi InternationalR© Inc. , Minnetonka, Minnesota, USA.

Duda, R. O., Hart, P. E., and Stork, D. G. (). Pattern classification. John
Wiley & Sons. (Cited on pages  and .)

Dukes, M. and Scholberg, J. (). Soil moisture controlled subsurface drip irri-
gation on sandy soils. Applied Engineering in Agriculture, ():–. (Cited
on page .)

Eikenbary, R., McNew, R., Hall, M., Criswell, J., Taylor, G., Hedger, G., Morri-
son, R., Coppock, S., and Smith, M. (). Sampling methods for adult pecan
weevils. Oklahoma State University. Cooperative Extension Service. O.S.U. ex-
tension facts. Science serving agriculture, ().

Evans, R. G., Iversen, W. M., and Kim, Y. (). Integrated decision support,
sensor networks, and adaptive control for wireless site-specific sprinkler irrigation.
():–.

Fernández, J., Palomo, M., Dıaz-Espejo, A., Clothier, B., Green, S., Girón, I., and
Moreno, F. (). Heat-pulse measurements of sap flow in olives for automating
irrigation: tests, root flow and diagnostics of water stress. Agricultural Water
Management, ():–. (Cited on page .)

Fernández, J., Romero, R., Montaño, J., Diaz-Espejo, A., Muriel, J., Cuevas, M.,
Moreno, F., Girón, I., and Palomo, M. (). Design and testing of an automatic
irrigation controller for fruit tree orchards, based on sap flow measurements. Crop
and Pasture Science, ():–. (Cited on page .)





Franzen, A. J., Weckler, P. R., and Wang, N. (). Automated in-orchard imaging
of pecan weevils for insect recognition. In ASABE Annual International Meeting
Paper, number , Pittsburgh, Pennsylvania.

Franzen, A. J., Weckler, P. R., and Wang, N. (). Evaluation of single-insect
proximity detection methods for use in ultra-low-power systems. In ASABE An-
nual International Meeting Paper, number , Loiusville, Kentucky. (Cited
on page .)

Franzen, A. J., Weckler, P. R., and Wang, N. (). Wireless signal path loss
and transmission success rates in orchard environments. In ASABE Annual
International Meeting Paper, number , Dallas, Texas.

Guarnieri, A., Maini, S., Molari, G., and Rondelli, V. (). Automatic trap for
moth detection in integrated pest management. (Cited on page .)

Guo, X., Zheng, L., Li, M., Zhang, Y., Deng, X., and An, X. (). A movable data
acquisition and production management system for apple orchard. In ASABE
International Meeting, number . ASABE.

Hall, M., McNew, R., Eikenbary, R., and Hedger, G. (). Impact of pecan weevil
on pecan production in a pest-managed commercial orchard. Environmental
entomology, ():–.

Hall, M., Morrison, R., Hedger, G., Eikenbary, R., and McNew, R. (). Com-
parison of a cone emergence trap procedure with th eminotoring of tagged nuts
for timing insecticide applications for pecan weevil (coleoptera: Curculionidae)
control. Environmental entomology, ():–.

Hamner, B., Singh, S., and Bergerman, M. (). Improving orchard efficiency
with autonomous utility vehicles. (Cited on page .)

Harris, M., Jackman, J., Aguirre, L., and Ring, D. (). Longevity of post-
emergent adult pecan weevil in the laboratory and field. Environmental ento-
mology, ():–.

Harris, M., Neeb, C., Jackman, J., Ring, D., and Cutler, B. (). Pecan weevil
management in texas. Pecan quarterly, ():.

Harris, M. and Ring, D. (). Biology of pecan weevil from oviposition to larval
emergence. Southwestern entomologist, ():–.

Hosny, K. (a). Accurate pseudo zernike moment invariants for grey–level im-
ages. Imaging Science Journal, The, ():–. (Cited on pages  and .)





Hosny, K. M. (). Exact and fast computation of geometric moments for gray
level images. Applied mathematics and computation, ():–. (Cited
on page .)

Hosny, K. M. (). Fast computation of accurate zernike moments. Journal of
Real–Time Image Processing, (–):–. (Cited on page .)

Hosny, K. M. (a). Fast and accurate method for radial moment’s computation.
Pattern Recognition Letters, ():–. (Cited on page .)

Hosny, K. M. (b). New set of rotationally legendre moment invariants. Interna-
tional Journal of Electrical, Computer, and Systems Engineering, ():–.
(Cited on page .)

Hosny, K. M. (c). A systematic method for efficient computation of full and
subsets zernike moments. Information Sciences, ():–. (Cited on
page .)

Hosny, K. M. (a). Accurate orthogonal circular moment invariants of gray–level
images. Journal of Computer Science, ():. (Cited on pages  and .)

Hosny, K. M. (b). Image representation using accurate orthogonal gegenbauer
moments. Pattern Recognition Letters, ():–. (Cited on page .)

Hosny, K. M. (b). Fast computation of accurate Gaussian–Hermite moments
for image processing applications. Digital Signal Processing, ():–.
(Cited on pages  and .)

Hosny, K. M., Shouman, M. A., and Salam, H. M. A. (). Fast computation of
orthogonal Fourier–mellin moments in polar coordinates. Journal of Real–Time
Image Processing, ():–. (Cited on pages  and .)

Jennic, NXP Semiconductors (). Jn module datasheet. Technical report,
Jennic, NXP Semiconductors, Eindhoven, The Netherlands.

Johnson, D. T., Mulder, Jr, P. G., McCraw, B. D., Lewis, B. A., Jervis, B., Carroll,
B., and McLeod, P. J. (). Trapping plum curculio conotrachelus nenuphar
(herbst)(coleoptera: Curculionidae) in the southern United States. Environmen-
tal entomology, ():–.

Khotanzad, A. and Hong, Y. H. (). Invariant image recognition by zernike
moments. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
():–. (Cited on page .)





Lang, Z. (). Automatic steering control of plantation tractor based on image
processing. In Proceedings of SPIE, volume , page . (Cited on page .)

Leskey, T. C. and Wright, S. E. (). Monitoring plum curculio, conotrachelus
nenuphar (coleoptera: Curculionidae), populations in apple and peach orchards
in the mid-atlantic. Journal of economic entomology, ():–.

Li, Z., Wang, N., Hong, T., and Franzen, A. J. (). Experimental path-loss mod-
els for .GHz in-field wireless sensor network. In ASABE Annual International
Meeting Paper, number , Pittsburgh, Pennsylvania.

Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., Robol, F.,
and Salucci, M. (). Wireless sensor network deployment for monitoring soil
moisture dynamics at the field scale. Procedia Environmental Sciences, ():–
. <ce:title>Four Decades of Progress in Monitoring and Modeling of Processes
in the Soil-Plant-Atmosphere System: Applications and Challenges</ce:title>.
(Cited on page .)

Moruzzi, T. L., Fuller, T. K., DeGraaf, R. M., Brooks, R. T., and Li, W. (). As-
sessing remotely triggered cameras for surveying carnivore distribution. Wildlife
Society Bulletin, pages –. (Cited on page .)

Mukundan, R. and Ramakrishnan, K. (). Fast computation of legendre and
zernike moments. Pattern Recognition, ():–. (Cited on page .)

Mulder, P. and Grantham, R. A. (). Biology and control of the pecan weevil in
Oklahoma. Division of Agricultural Sciences and Natural Resources, Oklahoma
State University. (Cited on page .)

Mulder, P., Reid, W., Grantham, R., Landgraf, S., Taliaferro, L., Payton, M., and
Knutson, A. (). Evaluations of trap designs and a pheromone formulation
used for monitoring pecan weevil, curculio caryae. Southwestern Entomologist
Supplement, :–. (Cited on pages  and .)

Mulder, P. G., Harris, M. K., and Grantham, R. A. (). Biology and manage-
ment of the pecan weevil (coleoptera: Curculionidae). Journal of Integrated Pest
Management, ():A–A. (Cited on pages , , , , , , , , and .)

Nelson, S. and Payne, J. (a). Pecan weevil control by dielectric heating. Journal
of microwave power, ():–.

Nelson, S. and Payne, J. (b). RF dielectric heating for pecan weevil con-
trol. Transactions of the ASAE - American Society of Agricultural Engineers,
():.





Nordström, K., Barnett, P. D., and O’Carroll, D. C. (). Insect detection of
small targets moving in visual clutter. PLoS biology, ():e. (Cited on page .)

Oerke, E.-C., Fröhling, P., and Steiner, U. (). Thermographic assessment of
scab disease on apple leaves. Precision Agriculture, ():–. (Cited on
page .)

Papakostas, G., Boutalis, Y., Karras, D., and Mertzios, B. (). Efficient compu-
tation of zernike and pseudo-zernike moments for pattern classification applica-
tions. Pattern Recognition and Image Analysis, ():–. (Cited on page .)

Payne, J., Lockwood, D., and Ellis, H. (). Biology and distribution of the
pecan weevil in Georgia and tennessee. Pecan South, ():–.

Phillips Semiconductor, N. (). Lpc ArmTdmi microcontroller. Technical
report, Phillips Semiconductor, NXP Semiconductor, Eindhoven, The Nether-
lands.

Pierce, F. and Elliott, T. (). Regional and on-farm wireless sensor networks
for agricultural systems in eastern washington. Computers and Electronics in
Agriculture, ():–. <ce:title>Emerging Technologies For Real-time and
Integrated Agriculture Decisions</ce:title>. (Cited on page .)

Ree, B., Knutson, A., and Harris, M. (). Controlling the pecan weevil. Available
electronically from http://hdl. handle. net/, :.

Reid, W. (). Current pest management systems for pecan. HortTechnology,
():–.

Reyes, J. F., Correa, C., Esquivel, W., and Ortega, R. (). Development and
field testing of a data acquisition system to assess the quality of spraying in fruit
orchards. Computers and Electronics in Agriculture, :–.

Ridgway, C. and Chambers, J. (). Detection of external and internal insect
infestation in wheat by near-infrared reflectance spectroscopy. Journal of the
Science of Food and Agriculture, ():–. (Cited on page .)

Ring, D., Haensly, T., Cutler, B., and Harris, M. (). A gravity cage for mon-
itoring pecan nuts, leaves and pecan weevil dropping from pecan trees. Pecan
quarterly, ():–.

Ring, D., Snow, J., Payne, J., and Grauke, L. (). Tree species used as hosts
by pecan weevil (coleoptera: Curculionidae). Journal of economic entomology,
():–.





Rowe, A., Rosenberg, C., and Nourbakhsh, I. (). Cmucam: a lowoverhead
vision system. In Proceedings, IROS .

Schraer, S., Biggerstaff, M., Jackman, J., and Harris, M. (). Pecan weevil
(coleoptera: Curculionidae) emergence in a range of soil types. Environmental
entomology, ():–. (Cited on page .)

Shapiro-Ilan, D., Fuxa, J., Wood, B., and Gardner, W. (). Methods and ma-
terials for control of insects such as pecan weevils [electronic resource]. United
States Department of Agriculture patents, (US ,, B).

Shen, J. (). Orthogonal Gaussian-Hermite moments for image characteriza-
tion. Proc. SPIE, Intelligent Robots and Computer Vision XVI: Algorithms Tech-
niques, Active Vision, and Materials Handling, Pittsburgh, USA, pages –.

Singh, C., Pooja, S., and Upneja, R. (). On image reconstruction, numeri-
cal stability, and invariance of orthogonal radial moments and radial harmonic
transforms. Pattern recognition and image analysis, ():–.

Smith, M. W. and Mulder, P. G. (). Oviposition characteristics of pecan weevil.
Southwestern entomologist, ():–. (Cited on page .)

Subramanian, V., Burks, T. F., and Arroyo, A. (). Development of machine
vision and laser radar based autonomous vehicle guidance systems for citrus grove
navigation. Computers and electronics in agriculture, ():–. (Cited on
page .)

Tedders, W., Mizell III, R., and Wood, B. (). Influence of trap color on pecan
weevil monitoring. J. Entomol. Sci, :–.

The MathWorks Inc. (). MATLAB with Image Processing and Statistics Tool-
boxes Release b. Natick, Massachusetts. (Cited on page .)

The MathWorks Inc. (). MATLAB with Image Processing and Statistics Tool-
boxes Release a. Natick, Massachusetts. (Cited on page .)

Tumbo, S., Salyani, M., Whitney, J., Wheaton, T. A., and Miller, W. M. ().
Investigation of laser and ultrasonic ranging sensors for measurements of citrus
canopy volume. (Cited on page .)

Twain, M. (). Following the Equator: A Journey Around the World. American
Publishing Company.

USDA (). Pecan report. (Cited on page .)





Vick, K. W., Webb, J., and Litzkow, C. A. (). Insect detection using a pitfall
probe trap having vibration detection. US Patent ,,. (Cited on pages 
and .)

Vougioukas, S., Anastassiu, H., Regen, C., and Zude, M. (). Influence of foliage
on radio path losses (pls) for wireless sensor network (WSN) planning in orchards.
Biosystems Engineering, ():–. <ce:title>Special Issue: Sensing Tech-
nologies for Sustainable Agriculture</ce:title>.

Walia, E., Singh, C., and Goyal, A. (). On the fast computation of orthogonal
Fourier–mellin moments with improved numerical stability. Journal of Real-Time
Image Processing, ():–.

Wang, N., Zhang, N., andWang, M. (). Wireless sensors in agriculture and food
industry: Recent development and future perspective. Computers and Electronics
in Agriculture, ():–.

Wang, X. and Liao, S. (). Image reconstruction from orthogonal Fourier-mellin
moments. In Image Analysis and Recognition, pages –. Springer. (Cited
on page .)

Watson, A. T., O’Neill, M. A., and Kitching, I. J. (). Automated identification
of live moths (macrolepidoptera) using digital automated identification system
(daisy). Systematics and Biodiversity, ():–. (Cited on page .)

Wen, C. and Guyer, D. (). Image-based orchard insect automated identification
and classification method. (Cited on page .)

Xin, Y., Pawlak, M., and Liao, S. (). Accurate computation of zernike moments
in polar coordinates. Image Processing, IEEE Transactions on, ():–.

Yang, X., Guo, X., Li, M., Sun, C., Hao, L., Qu, L., and Wang, Y. (). An
empirical model for . ghz radio propagation in a gala apple orchard and eval-
uation of the model performance by simulation. Transactions of the ASABE,
():–.

Yoo, S.-E., Kim, J.-E., Kim, T., Ahn, S., Sung, J., and Kim, D. (). AS:
Automated agriculture system based on WSN. In Consumer Electronics, .
ISCE . IEEE International Symposium on, pages –.

Zernike, v. F. (). Beugungstheorie des schneidenver-fahrens und seiner
verbesserten form, der phasenkontrastmethode. Physica, ():–. (Cited
on pages  and .)





Zhang, C. and Kovacs, J. M. (). The application of small unmanned aerial
systems for precision agriculture: a review. Precision Agriculture, ():–.

Zhenjiang, M. (). Zernike moment-based image shape analysis and its applica-
tion. Pattern Recognition Letters, ():–. (Cited on page .)

Zhu, H., Shu, H., Liang, J., Luo, L., and Coatrieux, J.-L. (a). Image analysis
by discrete orthogonal racah moments. Signal Processing, ():–. (Cited
on page .)

Zhu, H., Shu, H., Zhou, J., Luo, L., and Coatrieux, J.-L. (b). Image anal-
ysis by discrete orthogonal dual hahn moments. Pattern Recognition Letters,
():–. (Cited on page .)





appendices



APPENDIX A

ZERNIKE MOMENT BAS I S FUNCTIONS

(a) Z11 (b) Z02 (c) Z22 (d) Z13 (e) Z33 (f) Z04

(g) Z24 (h) Z44 (i) Z15 (j) Z35 (k) Z55 (l) Z06

(m) Z26 (n) Z46 (o) Z66 (p) Z17 (q) Z37 (r) Z57

(s) Z77 (t) Z08 (u) Z28 (v) Z48 (w) Z68 (x) Z88

Figure A.: Real components of the ZM basis functions Z11 through Z88. The negative
repetition values are excluded since they are equivalent to rotations of the
positive repetition.





(a) Z19 (b) Z39 (c) Z59 (d) Z79 (e) Z99 (f) Z010

(g) Z210 (h) Z410 (i) Z610 (j) Z810 (k) Z1010 (l) Z111

(m) Z311 (n) Z511 (o) Z711 (p) Z911 (q) Z1111 (r) Z012

(s) Z212 (t) Z412 (u) Z612 (v) Z812 (w) Z1012 (x) Z1212

Figure A.: Real components of the ZM basis functions Z19 through Z1212. The negative
repetition values are excluded since they are equivalent to rotations of the
positive repetition.





APPENDIX B

PSEUDOZERNIKE MOMENT BAS I S FUNCTIONS

(a) pZ01 (b) pZ11 (c) pZ02 (d) pZ12 (e) pZ22 (f) pZ03

(g) pZ13 (h) pZ23 (i) pZ33 (j) pZ04 (k) pZ14 (l) pZ24

(m) pZ24 (n) pZ44 (o) pZ05 (p) pZ15 (q) pZ25 (r) pZ35

(s) pZ45 (t) pZ55 (u) pZ06 (v) pZ16 (w) pZ26 (x) pZ36

Figure B.: Real components of the pZM basis functions pZ01 through pZ36. The negative
repetition values are excluded since they are equivalent to rotations of the
positive repetition.





(a) pZ46 (b) pZ56 (c) pZ66 (d) pZ07 (e) pZ17 (f) pZ27

(g) pZ37 (h) pZ47 (i) pZ57 (j) pZ67 (k) pZ77 (l) pZ08

(m) pZ18 (n) pZ28 (o) pZ38 (p) pZ48 (q) pZ58 (r) pZ68

(s) pZ78 (t) pZ88 (u) pZ09 (v) pZ19 (w) pZ29 (x) pZ39

Figure B.: Real components of the pZM basis functions pZ46 through pZ39. The negative
repetition values are excluded since they are equivalent to rotations of the
positive repetition.





APPENDIX C

FOURIER MELL IN MOMENT BAS I S FUNCTIONS

(a) FMM01 (b) FMM11 (c) FMM02 (d) FMM12 (e) FMM22 (f) FMM03

(g) FMM13 (h) FMM23 (i) FMM33 (j) FMM04 (k) FMM14 (l) FMM24

(m) FMM24 (n) FMM44 (o) FMM05 (p) FMM15 (q) FMM25 (r) FMM35

(s) FMM45 (t) FMM55 (u) FMM06 (v) FMM16 (w) FMM26 (x) FMM36

Figure C.: Real components of the FMM basis functions FMM0
1 through FMM3

6. The
negative repetition values are excluded since they are equivalent to rotations
of the positive repetition.





(a) FMM46 (b) FMM56 (c) FMM66 (d) FMM07 (e) FMM17 (f) FMM27

(g) FMM37 (h) FMM47 (i) FMM57 (j) FMM67 (k) FMM77 (l) FMM08

(m) FMM18 (n) FMM28 (o) FMM38 (p) FMM48 (q) FMM58 (r) FMM68

(s) FMM78 (t) FMM88 (u) FMM09 (v) FMM19 (w) FMM29 (x) FMM39

Figure C.: Real components of the FMM basis functions FMM4
6 through FMM3

9. The
negative repetition values are excluded since they are equivalent to rotations
of the positive repetition.





APPENDIX D

MPEG-  ART MOMENT BAS I S FUNCTIONS

(a) ART01 (b) ART11 (c) ART21 (d) ART31 (e) ART41 (f) ART51

(g) ART61 (h) ART71 (i) ART81 (j) ART91 (k) ART101 (l) ART02

(m) ART12 (n) ART22 (o) ART32 (p) ART42 (q) ART52 (r) ART62

(s) ART72 (t) ART82 (u) ART92 (v) ART102 (w) ART03 (x) ART13

Figure D.: Real components of the ART basis functions ART01 through ART13 . The neg-
ative repetition values are excluded since they are equivalent to rotations of
the positive repetition.





(a) ART23 (b) ART33 (c) ART43 (d) ART53 (e) ART63 (f) ART73

(g) ART83 (h) ART93 (i) ART103 (j) ART04 (k) ART41 (l) ART24

(m) ART34 (n) ART44 (o) ART54 (p) ART64 (q) ART74 (r) ART84

(s) ART94 (t) ART104 (u) ART05 (v) ART15 (w) ART25 (x) ART35

Figure D.: Real components of the ART basis functions ART23 through ART35 . The neg-
ative repetition values are excluded since they are equivalent to rotations of
the positive repetition.





colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s semi-
nal book on typography “The Elements of Typographic Style”. classicthesis is
available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a col-
lection of postcards received so far is featured at:

http://postcards.miede.de/

http://code.google.com/p/classicthesis/
http://postcards.miede.de/


vita

Aaron John Franzen

Candidate for the Degree of

Doctor of Philosophy

Thesis: In-Orchard imaging of pecan weevil and efficient
identification using orthogonal polar moment descriptors

Biographical:

Born in Gothenburg, Nebraska, USA. Son of the late Rodney M Franzen
and Ruth A Ostergard.

Education:

Completed the requirements for the Doctor of Philosophy in Biosystems
& Agricultural Engineering at Oklahoma State University, Stillwater,
Oklahoma in December, .

Completed the requirements for the Master of Science in Mechanical &
Aerospace Engineering at the University of Florida, Gainesville, Florida in
.

Completed the requirements for the Bachelor of Science in your
Agricultural Engineering at the University of Nebraska–Lincoln, Lincoln,
Nebraska in .

Experience: Alumni Research Fellow, University of Florida, -; Research
Engineer, Oklahoma State University, -

Professional Memberships: American Society of Agricultural & Biological
Engineering, Alpha Epsilon, Tau Beta Pi


	Title Page
	Approval Page
	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Research Objectives
	1.2 Research Hypothesis

	2 Review of Literature
	2.1 Pecan Weevil Biology and Management
	2.1.1 Pecan Weevil Lifecycle
	2.1.2 Pest Management for Pecan Weevil

	2.2 Embedded Electronics in Orchard Environments
	2.2.1 Embedded Imaging Systems
	2.2.2 Wireless Sensor Networks in Orchard Environments

	2.3 Image Processing and Classification
	2.3.1 Insect Detection
	2.3.2 Image Segmentation
	2.3.3 Shape Recognition Algorithms
	2.3.4 Reduced Component Methods for Classifiers


	3 Materials and Methods
	3.1 Insect Collection and Image Acquisition
	3.1.1 Insect Positioning and Imaging System Setup

	3.2 Insect Presence Detection 
	3.2.1 Insect Detection Features
	3.2.1.1 Traditional Histograms
	3.2.1.2 Cumulative Histograms

	3.2.2 Insect Presence Classification
	3.2.2.1 Euclidean Distance Classifier
	3.2.2.2 K-Nearest Neighbor Clustering Classifier
	3.2.2.3 Variation of Number of Histogram Bins
	3.2.2.4 Variation of Sub-Sampling Interval
	3.2.2.5 Histogram Adjustment for Contrast Enhancement
	3.2.2.6 Image Pre-Processing for Insect Presence Detection


	3.3 Proposed Insect Identification Kernel
	3.3.1 Image Pre-Processing for Insect Identification
	3.3.2 Radial Moment Features for Shape Description
	3.3.2.1 Zernike Moments
	3.3.2.2 Pseudo-Zernike Moments
	3.3.2.3 Fourier-Mellin Moments
	3.3.2.4 MPEG-7 ART Coefficients

	3.3.3 Cartesian to Polar Image Transformation
	3.3.4 Computation of Radial Moments
	3.3.5 Insect Shape Classifiers
	3.3.5.1 Support Vector Machine Classifiers
	3.3.5.2 Naive Bayes Classifiers

	3.3.6 Dimensionality Reduction Methods
	3.3.6.1 Principle Component Analysis
	3.3.6.2 Linear Discriminant Analysis


	3.4 Experimental Design
	3.4.1 Insect Detection Experiments
	3.4.2 Insect Identification Experiments
	3.4.3 Classification Performance Metrics
	3.4.4 Moment Kernel Performance Metrics


	4 Results and Discussion
	4.1 Introduction
	4.2 Insect Detection Classification Performance
	4.2.1 Baseline insect detection classification metrics
	4.2.2 K-Nearest Neighbor Classification Baseline Performance
	4.2.3 KNN Performance with varied k
	4.2.4 Variation of histogram bins
	4.2.5 Variation of Sub-Sampling Interval
	4.2.6 Histogram Adjustment for Contrast Enhancement
	4.2.7 Multi-Class Classification Effects
	4.2.8 Summary

	4.3 Proposed Insect Identification Kernel Performance
	4.3.1 Individual Moment Feature Performance
	4.3.1.1 Zernike Moment Performance
	4.3.1.2 Psuedo-Zernike Moment Performance
	4.3.1.3 Fourier-Mellin Moment Performance
	4.3.1.4 ART Performance

	4.3.2 Combined Feature Performance
	4.3.3 Comparison of Classifiers
	4.3.3.1 Classifier performance with ZM features
	4.3.3.2 Classifier performance with pZM features
	4.3.3.3 Classifier performance with FMM features
	4.3.3.4 Classifier performance with ART features
	4.3.3.5 Classifier performance with Combined features

	4.3.4 Reduced Feature Performance
	4.3.4.1 Results of PCA–based Feature Reduction
	4.3.4.2 Results of FMDA–based Feature Reduction

	4.3.5 Moment Feature Computation


	5 Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations and Future Work

	  Bibliography
	Appendices
	A Zernike Moment Basis Functions
	B PseudoZernike Moment Basis Functions
	C Fourier Mellin Moment Basis Functions
	D MPEG-7 ART Moment Basis Functions

	Vita

