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IN COMPUTER GRAPHICS
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Abstract:

In a very CPU/memory intensive field of photo-realistic computer graphics, various 

techniques are employed in the attempt to conserve resources. One group of such optimization 

methods is dedicated to optimizing a representation of hair systems, grass systems or any group of 

objects that can be looked at as a generalized hair system. 

A classical method of computing hair systems is to represent each hair as a spline in memory 

and then compute intersections with each of them. This method gives good results, but usually 

consumes large amounts of memory. Another problem is - visually doubling the density of hair 

quadruples memory consumption.

Even when gigabytes of memory are available, a realistic hair scene, may overwhelm 

memory size, which may lead to an application crash or at least, to an I/O bottleneck and to 

increasing time of rendering.

Another method  is to compute a hair system procedurally inside of a specified volume. This 

produces a small memory foot-print, but makes animation difficult because individual hairs within the

volume are not controllable. 

In this work we propose a hybrid approach, where a single hair particle represents a 

cylindrical volume,  in which multiple hair fibers will be computed on-the-fly. This approach will 

produce a constant memory footprint for that cylindrical volume, regardless of how many individual 

hairs are computed and it will allow individual hairs to retain the behavior of that volume. As a result,

a proposed approach provides a significant reduction in memory footprint while increasing the 

number of hairs being computed.
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CHAPTER I

 1. 
INTRODUCTION

 1.1. Computer Graphics and photo-realistic images

Computer graphics is concerned with generation of imagery by using computers. Initially, the

imagery was produced purely for scientific data visualization and was used to display plots. As time 

went on, however, photo-realistic CGI became a research goal.

Prior to the 1980s, there were different research teams probing into the field and attempting 

to develop various techniques and algorithms so that they could compute images that would resemble 

real ones, without using photographs as source material. 

A key event happened when ILM (Industrial Light and Magic), which was a division of 

Lucas Film, Ltd, started working on animation and rendering techniques, after the success of the 

original Star Wars films. They were the first to create a fully computer generated photo-realistic 

animated character, a knight composed of elements from a stained glass window (“Young Sherlock 

Holmes”, 1985). 

 1.2. Typical problems with computer-generated hair

In order to create photo-realistic CGI, various algorithms need to be used to mimic the  

behavior and/or look of an object or a phenomenon that is being replicated. As a rule of thumb, the 

better an algorithm is at replicating the complexities of the real-world object, the higher space/time 

complexity that algorithm requires. This leads to resource constraints that stop artistic expressiveness 
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 CGI research has focused  on developing new algorithms that would help to solve those problems by 

utilizing resources in a smarter way or by offering a space/time trade-off.

Hair and hair-like object representations have become one of the areas of interest due to the 

need to represent hair, fur, grass and other hair-like objects for CGI. Unfortunately, due to their 

nature, those objects usually come in large numbers in the real world and that requires a lot of 

resources for dealing with them in the virtual reality. As a result, faster and less resource-hungry 

algorithms to represent such objects are still an active research area.

A classical hair-system representation (and the most widely used today) would be a set of 

curve segments connected in a chain. This is a great way to create a controllable hair, and it doesn't 

take that much memory to store a single hair in computer memory.

Unfortunately, realistic scenes may contain millions of individual hairs, and the task of 

rendering those becomes a problem. If we assume that there is a square volume with the number of 

hairs at every side being N, then we would need N2 hairs to populate the volume. And if we need to 

double the density of the hair, we would need four times more memory to do that. This leads to 

problems with the lack RAM, when dealing with large hair simulation/rendering scenarios.

 1.3. Open shading language (OSL)

Open shading language is a language for describing materials, lights, displacement and 

procedurally generated textures (or, more generally, patterns) for realistic 3D rendering systems. OSL 

was developed by Sony Pictures Imageworks as a simple, yet powerful tool that allows for creating 

complex light-material interactions without changing the code of the underlying rendering package. 

This allows the renderer to simulate various physically-based interactions and, as a result, render 

more realistically looking images. 

OSL works by obtaining different pieces of data directly from the renderer. These include 
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information about an intersection point between a ray that is being cast and a scene geometry, the type

of that ray (camera, shadow, etc.), its length, type of geometry that is being intersected, texture 

coordinates, and other additional information that is specific for the geometry, such as the length of a 

hair, its radius, height at which the ray intersects the hair. After obtaining that information an OSL 

shader can compute the surface properties  for the intersection point and pass that data back to the 

renderer to complete the 3D rendering. [1]

OSL has a C-style syntax and hence, can be translated into other shading languages without 

significant problems. OSL compiles into assembly-like byte code which brings it close enough to the 

hardware to give a good computational performance. [1]

One of the very powerful features of OSL is its so-called radiance closure – an explicit 

symbolic description of the way a surface or volume scatters or emits light, in units of radiance. This 

allows OSL to have closure primitives for BSDF, BSSRDF, emission, and volume scattering.

OSL is currently supported by several commercial rendering systems such the Arnold 

Rendering system (a stochastic ray tracing system from Sony Imageworks) as well as by the open-

source 3D package Blender through its Cycles renderer.
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CHAPTER II

 2. 
LITERATURE REVIEW

 2.1. Related work

One of the first major attempts at rendering hair by using 3d-texture (texel maps) in a volume

(Figure 2) without the use of splines, line segments or other types of geometry, was done by Kajiya 

and Kay in 1989 [2]. The key idea was to represent the 3D material (fur) by a cubic reference volume,

to be mapped onto a surface (like a thick skin). The copies of that volume (texels) are fitted on the 

bilinear patches of the surface, and are deformed in order to fit together(see Figure 1). Later Meyer 

and Neyret proposed a modified method, built of Kajiay's work, but with smaller volume patches 

which could be used multiple times. This resulted in an interactive algorithm that is fast enough for 

rendering images at 1-2 fps update rate.[3][4] 
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In this method, 3d textures were mapped onto small patches of the deformed 3d-primitive volume that

covers the whole surface of a complex 3D geometry. Mapping is done in accordance with the normal 

of the geometry surface under that primitive volume. In the essence, this is a variant of implicit 

representation of a hair system that doesn't keep individual fibers in memory.

Another approach was taken by Koh and Huang (2001) [5], Liang and Huang (2003)[6], 

Noble and Tang (2004)[7], Yuksel, Schaefer and Keyser (2009) [8] who wrote papers on various 

flavors of hair meshes and their implementations. The idea behind these was that an artist working 

with a high-level representation of the volume occupied by hair, controls the volume and hair shape 

without changing individual hair strand positions and the proposed methods take care of generating 

actual hair inside of that volume during rendering. A standard logic behind this set of algorithms can 

be viewed as: NURBS → hair strands → deformed/styled hair strands [8].

Also, there exists a more conventional, explicit method of rendering hair systems that 

depends upon representing a strand of hair or fur as a set of chained line/spline segments which may 

or may not include explicit translation from that form into polygons, before computing lighting, 

shadows and other things such as occlusion, self shadowing, that are important for realistic computer 

generated imagery[9]. There are various works done on that topic, including dynamic simulations and

use of various techniques that are covered very extensively in a comprehensive review by Yuksel et al

(2007).

Finally there is another paper combining an idea of instancing and displacement mapping into

a single algorithm, to provide relief maps [10] . 

 2.2. Existing techniques

Current and practical techniques include:
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• use of spline(s) or line(s) connected into a chain for representing a single fiber. This 

technique is the most common one used in photorealistic rendering. It requires storing 

coordinates of each of line/spline segment in memory (for splines, it will be additional 

control points). 

• use of spline(s) or line(s) connected into a chain for representing a single fiber with addition 

of children that are not controllable but yet generated as an interpolation of parent fibers. It is 

essentially the same as the first one, because children get generated before rendering begins 

and they require memory space to be stored in. This is how Blender3D hair system works.

• a completely procedural generation of fibers without any intermediate splines/line storing 

involved. This approach lacks control over individual strands or fibers. It consumes less 

memory but is not controllable at a fine level.

• use of standard mesh with a texture of hair + transparency channel. A technique that is 

currently not used very much. It was used when computers didn't have any other methods, 

described above and were lacking enough memory to do that. It doesn't cost that much 

memory-wise, compared to storing individual strands. There is minimal control over general 

motion of a group of hair that the set of polygons represents, but by todays standards is 

considered to be obsolete.

• NURBS based patches with a texture of hair. A method is based on projecting hair textures 

onto the animated NURBS surfaces, so that it becomes easier to animate. It resembles mesh 

with hair method, except NURBS surfaces provide smother surfaces.

1 
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CHAPTER III

 3. 
A PROPOSED METHOD

 3.1. Proposed method

Our proposed method offers a hybrid approach which should help to conserve memory, while

still providing a sufficient control over hair system so that it could be used in today's photo-realistic 

rendering software packages and in dynamic simulations. Pseudo-code of the proposed algorithm can 

be found in Appendix A, page 34.

Each individual hair cylinder of the conventional hair system (Figure 3) in our method 

represents a cylindrical volume that will be used to generate fibers, that will be placed inside of the 

that volume(Figure 4). 

The hair cylinder position and its orientation are stored in memory, but internally generated fibers
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 are not, and instead they are computed on the fly in pseudo-random positions, and only when that 

cylindrical volume is intersected by a ray (Figure 5). This allows us to have the same memory 

footprint for a single hair cylinder, regardless of how many fibers are generated inside of it. Thus 

memory consumption will decrease, compared to the standard method (Figure 4 vs Figure 6).

This approach assumes that the IO bottleneck from accessing memory (for hair coordinates) 

is much larger, than what it will be for generating those fiber positions on the fly.

Such a hybrid approach still allows the use of conventional hair dynamics calculation 

methods/tools that are currently available in various 3d software packages (without the need of 

rewriting tools or changing a working pipeline), while significantly decreasing a memory footprint. In

fact, given that the number of hair cylinders is kept the same, and only the number of fibers that are 

generated, is changed, the memory footprint for a given 3D scene should stay constant, regardless of 

the number of fibers being produced by a single cylinder. Despite the drawback of the proposed 

approach that doesn't allow for dynamic interaction between fibers inside of a single cylindrical 

volume, this is a very similar way of how today's hair systems compute hair dynamics. A set of fibers 

representing primary fibers and their movements are computed, while the secondary fibers (located in

between primary fibers) assume the role of “slave” fibers, simply following the behavior of primary 

fibers. This reduces computational cost by ignoring collisions between secondary fibers, but unlike 
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our method, secondary fibers are still stored in memory, albeit their dynamics are not computed, but 

rather inherited from the primary fibers.

Unlike a conventional hair system, where a spline or a line represents an individual fiber, in 

our system, each individual fiber, provided by a 3D-package should be viewed as a cylinder with a 

finite height and radius, so that its radius is comparable to its height. During rendering process, if a 

camera ray intersects that cylinder (original single fiber), then a shader is invoked.

The shader obtains point P of intersection between the incoming ray and the cylinder, and the 

shader  also obtains incoming ray direction I, and the normal of the surface of the cylinder N at the 

point of intersection (Figure 7). Based on that information, we compute center of the cylinder C 

(Expression  3.1).

C=P−normalize (N⃗ )⋅rcyl (3.1)

Using that, we can generate a fiber, located inside of that cylinder and check if the incoming 

camera ray intersects with that fiber. We do this once for each fiber in the cylindrical volume. If the 

ray hits a fiber, the algorithm computes that fiber's normal at the point where the ray intersects it 

(Figure 8). Then we assign a material for the surface point and return that information to the renderer. 

After obtaining all that data from the shader, the rendering system finishes computing the lighting for 
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the point. Thus, our method is an insertion into the existing pipeline, and not its complete overhaul.

 3.2. Optimization for the method

The approach described above is better than the conventional one in terms of memory foot-

print, but there is still room for improvement. The problem is that if we compute all those fibers 

inside of the cylinder, the ray doesn't not intersect with most of them. As a result such computation 

becomes very inefficient (Figure 9).

Instead of computing the whole set of fibers inside of the cylindrical volume, we can place 

fibers at a certain radius from the center of the main cylinder. This would create an internal coaxial 

cylinder and, by calculating where camera ray intersects with an internal cylinder, we can figure out 

the exact segment (shaft) of that cylinder and two arcs (at most) along which we need the fibers to be 

generated and checked for possible intersections with the ray (Figure 10).
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It is obvious that a single internal cylinder is not enough to create enough fibers to fill the 

whole cylindrical volume. This can be solved by adding several coaxial internal cylinders, each with a

different radius (Figure 11).

 3.3. Fiber placement

When the ray intersects with a cylindrical volume, we create a shaft parallel to the ray (Figure

12). The shaft is an area that is created by offsetting the ray by some value toward the center C of the 

cylindrical volume as well as away from it. The resulting area is bound by the offset rays is the shaft. 

It is used to calculate intersection of the ray with internal cylinders and computing points

p0 , p1 , p2 , p3 . When the internal cylinder intersects with the shaft, there are several possible cases 

which can create a different number of intersection points. Cases are shown in Figure 13 below: Note 

that Case3 is not supported by our algorithm - it treats it as the case with no intersections at all. 
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It is worth mentioning that, ϕ0 ,ϕ1,ϕ2 ,ϕ3  in Figure 13 are not points in space, and instead 

each of those values is a single float value (in degrees) from [0..360). They are obtained through 

computing a vector p⃗v (Expression 3.2) from points p0 , p1 , p2 , p3  and then computing the angle 

(Expression  3.3) which that vector has in relation to the coordinate system. This allows us to 

compute angular bounds for each of the sectors and subsequently helps to consistently generate fibers

on its internal circular path.

p⃗v=normalize (p i−c ) (3.2)

ϕ=atan2( pv . x , pv . y) (3.3)
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Figure 13. Possible shaft-internal cylinder intersection cases
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Figure 14 shows an example of how fibers are generated on the fly. Light color represents 

fibers that are being generated, while dark fibers represent only potential positions, that do not fall 

within the ray shaft (gray area) and are not generated.

 3.4. Order of traversal

For the images of fibers to look correct, we must choose the intersection pi  closer to the ray 

origin. We can do this by traversing the internal cylinder in the proper order and returning the first 

intersection point found with a fiber.

The order of checking should follow this rule: it starts at the intersection between a ray and an 

internal cylinder, that is closest to the camera  then it proceeds through all arcs of that circular path, 

toward the center of the cylinder, up until the central plane that is perpendicular to the ray and passes 

through C, then it goes from the central plane toward the other side of the main cylinder shown on the

Figure 15. 

13

Figure 15. Correct order of traversal

Cylindrical volume

Incoming ray

Fibers

Shaft along the camera ray

I

1

2

3

4
5

Central plane

C



Another problem is that in certain cases we have to have a special order for traversing fibers 

even inside of a certain arc/sector . In Case 2, (Figure 13) when a shaft intersects partially with an 

internal cylinder, only a single arc/sector bounded by two angle values is created. In this case, due to 

orientation of the sector to the camera, traversal order does matter; otherwise, it might create 

problems if distant fibers occlude fibers that are closer to the camera (Figure 16, left ). In this case 

we start at the closest (to point P) intersection point, and go along the circular path, following the 

camera ray direction, until another intersection point is met. This way we can ensure that the fibers 

that are farther away, will not occlude those that are closer to P and thus, the correct order will be 

maintained.

 3.5. Fiber position randomization

By default, our algorithm places fibers on the circular path with a center that coincides with 

main cylinder center C (Figure 17). Even if several internal circular paths are used, that is not enough 

to ensure the natural (random, that is) distribution of fibers inside of the cylindrical volume. Instead, 

this would produce a very symmetrical and artificial look. (Figure 18). 
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To fix that, we propose a randomization (Figure 19) that will offset a position of every fiber, away 

from or toward the center C by some value, as well as, an angular random offset - clock-wise or 

counter-clock wise, for each fiber along the path (Figure 20). 
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Figure 18. Multiple circular paths with fibers
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Both of these offsets (angular- based and radius-based) should be bounded by some 

reasonable numbers (Figure 20). If that random number range is chosen to be too large, then the 

correct order of traversal will be violated, due to fibers from one circular path overlapping/occluding 

a fiber from another circular path. Due to a strict order in which we traverse and check different 

internal circular paths, some fiber form a neighboring circular paths might end up in a wrong spot and

it will be computed incorrectly, due to the assumption, mentioned above.

Hence, another rule for rendering fibers in a correct order should be this: for each area of 

fiber's probable position (or possible offset ranges) (Figure 19) there should be only one fiber among 

all generated fibers on all circular paths, that can be placed anywhere inside of that area.

To do that without overlapping fibers, proper random value ranges should be chosen. Due to 

our set up, having a possibility of several concentric circles (internal cylinders), for each internal 

cylinder, that range of offset needs to be different. Mainly it should depend on how many fibers are 

placed on that circular path, individual fiber radius, and the diameter of the circular path. This should 

ensure that in no circumstances neighboring circular paths have overlapping fibers (Figure 18). Also, 

the shaft width needs to be controlled too, so that it includes enough space to accommodate random 

offsets.
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 3.6. Varying inter-fiber distance

An additional way to make fiber distribution less even would be to use incrementing angular distance 

at which fibers can be placed along their corresponding paths. The larger cylinder radius is, the 

smaller inter-fiber distance need to be. This should eliminate regions with higher fiber density that are

formed at the center of a hair cylinder otherwise.

 3.7. Fiber length randomization

Another randomization that can be implemented is randomization of the length of individual virtual 

fibers. This can be done by introducing a random component into the code where we compute true 

height of the fiber. Since the length needs to be stable (should be independent from position of the 

camera, hair system orientation, etc.) we can use angular position of a fiber for determining length of 

each individual fiber with the help of Linear congruential generator. 

 3.8. Linear congruential generator

For the verification purposes, LCG (Expression 3.4) was used, where ϕ is a unique number for each 

fiber and it is fiber's angular position. 

rand=mod(1207.523⋅ϕ ,1) (3.4)

 3.9. Fiber local coordinate system

In order for the technique to work on deformed fibers and fibers that have various tilt, a local 

coordinate system needs to be constructed, where local Z axis is parallel to a hair cylinder axis of 

rotation and hence, it can change orientation at a particular location depending on how deformed a 

cylinder is (Expression 3.5). Local X-axis is created by calculating a cross-product of a global X-axis 

with local Z axis  (Expression 3.6). Local Y-axis is obtained by computing a cross-product of local Z 

axis and local X-axis  (Expression 3.7). The origin of the coordinate system is at each hair cylinder 
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origin – which is bottom of the cylinder, (0,0) coordinates.

vector Z local=dPdu (3.5)

vector X local=cross (Zlocal , Xglobal ) (3.6)

vector Y local=cross (Z local , X local ) (3.7)

 3.10. Fibers with more complexity

The initial version of the algorithm assumes that the fibers are always straight in the local coordinate 

space. That is true if a hair container is not bent, however fibers might end up deformed. This depends

on the hair container deformation that is provided by Blender 3D. Figure 22 – Figure 25 give 

examples of how undistorted vs. distorted hair cylinder might look.
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Figure 25. Shape of a
deformed container

Figure 24. Fibers in a
deformed container

Figure 23. Shape of a
straight container

Figure 22. Fibers in a
straight container



Alternatively additional methods of finer fiber positioning might be used to make fibers look 

more complex. Such methods might include curving fibers as if they were located on ellipsoids as 

opposed to cylindrical surfaces. Since an ellipsoid is a more generalized form of a sphere, we can get 

deformation shapes (including a cylindrical shape) by using it. The result of such deformation can be 

seen in Figure 26, Figure 27.

Making fibers go around their respective local centers will produce curly fibers as it is shown in

Figure 28, Figure 29.

Rotating the origin of fibers in relation to the height will produce a group of fibers that not only go up

but also around the main hair cylinder central axis, as in Figure 30–Figure 32
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Figure 27. Ellipsoid is used to
compute placement of fibers

Figure 26. Degenerate ellipsoid is
used to compute placement of

fibers

Figure 28. Example of a cylinder
with curly fibers. Pattern 2

Figure 29. Example of a
cylinder with curly fibers.

Pattern 1 



These techniques can be combined to produce complicated fiber patterns, like in Figure 34 - Figure 

33.

 3.11. Data structure for maintaining right order of traversal.

Since our method relies heavily on the correct order of traversal, it is important to come up 

with a good and efficient way of doing that. We propose an additional data structure that gets created 

every time a shader is invoked (for each intersection of a camera ray with a hair cylinder, that is). The

data structure is an array of tuples, where each tuple has several fields. When the shader runs, it first 

checks if the fibers that are placed on the front arc, intersect with a camera ray. If there is no 

intersection, before going one level deeper, the shader needs to store parameters for the back arc (as 
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Figure 31. Example of a cylinder
with twisted fibers. Pattern 2 

Figure 30. Example of a cylinder with
twisted fibers. Pattern 1 

Figure 32.  Example of a cylinder with
twisted fibers. Pattern 3

Figure 33. Twisted and curled
fibers. Pattern 2

Figure 34. Twisted and curled
fibers. Pattern 1



the front arc that we just mentioned)  into the data structure so that it can be computed later without 

recomputing the whole set of parameters again. The data structure acts as a stack, and so, if no fiber 

was hit in one of the front arcs, we start popping elements of the data structure top. Because we 

started with the most distance back arc (in relation to the camera) that we pushed into the stack first, 

and finished pushing the most inner back arc (closest to the center of the hair cylinder), when we 

return to the data structure and pop the top element out of it for checking if it has intersecting with a 

ray fibers, the correct order of traversal is preserved – from the most inner cylinder, away from the 

center of the hair cylinder toward the back (in relation to the camera) side of the hair cylinder. In our 

implementation, data structure is a generic C-array with 40 entries and because it is not a vector or 

another dynamically allocated array, it should have small enough overhead that will not spoil the 

performance.
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CHAPTER IV

 4. 
FINDINGS

 4.1. Preliminary findings

A preliminary test was done by using a simplified version of the algorithm, so that instead of 

a multiple coaxial internal cylinder structure, we placed hairs in the cells of a grid and used a grid 

traversing algorithm. Fibers were placed only in those grid cells, which were hit by the camera ray. 

While the algorithm was not optimal in terms of CPU workload, it had a very similar memory 

footprint to our current algorithm in terms of optimality of CPU workload, however it shouldn't affect

the memory foot-print whatsoever.

# of fibers Conv. alg, memory
consumed, MB

Test alg, memory consumed,
MB

Conv. alg., CPU time,
seconds

Test alg, CPU time,
seconds

100 314 171 9.25 32.4

400 314 171 14.7 32.4

2500 338 179 21.6 32.3

10000 460 180 25.5 34.8

40000 920 182 30.26 43.6

160000 2900 188 39.5 65

360000 6300 190 54 85

402000 crash 190 crash 88

490000 crash 192 crash 90

1000000 crash 192 crash 133

Table 1. Preliminary results of a test algorithm run vs conventional 
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Table 4.1 shows the memory consumption of our early algorithm compared to Blender's 

standard hair algorithm using different numbers of fibers. 

We believe that even the small rise in memory consumption for the test algorithm was due to 

(most likely) a memory leak in Blender3D. It was determined that if a test 3D scene was used 

progressively through all test cases without relaunching Blender3D application, then this leads to 

increase in memory consumption, but if Blender3D is shut down and relaunched again and tested 

immediately with, say,  # of fibers is 1000000, then instead of 192MB consumption, it will give only 

167-170 megabytes.

We believe there must be a memory leak in the way Blender3D uses OSL shaders. This 

memory leak can't be attributed to the shader or algorithm itself, due to the fact that there is no notion 

of memory allocation/deallocation commands within the OSL environment.

This test algorithm demonstrates also, that in this unpolished version, the time spent 

computing the image is 157% of what the conventional algorithm offers, however the memory foot-

print is much small than what conventional method consumes. During renderings of a test scene with 

a very large number of fibers, our test algorithm continues to render, while the conventional one fails 

(application crashed) due to the lack of RAM.

The test run was performed on a Toshiba A505-S6035 laptop that has:

• Intel CPU i7 1.6 GHz  (quad-core + hyper-threaded = 8 threads );

• 8 GB of RAM (no swap file);

• OS Ubuntu 14.04 64 bit;

• Blender3D 2.73.

The conventional algorithm starts crashing Blender3D when the hair system has 

approximately 380000 fibers and more, with the largest successful size of the hair system - 360000 

fibers, and memory consumption of 6300 megabytes.
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By contrast, the algorithm doesn't crash and, as expected, consumes much less memory: for 

the 360000-fiber scene it used 190 megabytes (33 times less).

 4.2. Experiment setup

In order to measure performance of the proposed algorithm, we would need to create a 3d scene that 

would have the following:

• a similar number of rendered fibers;

• would use enough resources of the computer so that the performance difference as well as 

memory consumption difference is measurable;

• lighting conditions as well as material used should be the same;

• preferably a curved surface from which fibers grow. That should test how well a proposed 

method works with a local fiber coordinate system.

 4.3. Number of fibers

Since fibers in our method are generated by our algorithm, the number of fibers is a multi-

variable parameter, that number can be computed by Expression 4.1, where phi_step is a value in 

integer degrees between two adjacent fibers, when they are placed on one of the internal arcs. For 

example, value of 1 would give us 360 fibers per internal cylinder, whereas 2 would give us 180 

fibers per internal cylinder.

So, if we have 10 internal cylinders in a single hair cylinder, that would give us 3600 fibers 

per cylinder. Things get more complicated if phi_step changes for every internal cylinder. In our 

experiment, we set it to be incremented by 1 every time the next internal cylinder is computed. That is

done because phi_step acts as a cheap version of a randomizer. So, because of that change, the total 

number of fibers per hair system can be computed by using Expression 4.1 
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Totalnumber of fibers=( ∑
ϕstep=1

N internal cylinders

360
ϕstep )⋅N internal cylinders⋅N haircylinders (4.1)

 4.4. Conventional and proposed method. Total number of fibers and performance. Test scene 1

We set up two scenes to test difference in performance between a conventional and the 

proposed method. The number of actual fibers for the proposed method stayed the same, and number 

of internal cylinders wasn't changed either, while the number of fibers per each internal cylinder was 

changed. Results for the test scene 1 (renderings of how scene1 looks like for each of hair rendering 

methods can be found in Figure 35, Figure 36) are provided in Table 2, where RAM and RAM2 are 

two different memory consumption counters. RAM count is provided by the OS and RAM2 is 

provided by Blender3D itself. 

# of fibers Proposed method Blender Fibers

RAM, MB RAM2, MB Time, sec RAM, MB RAM2, MB Time, sec

10000 147 22.9 22.3 321 241 1.24

20000 147 22.9 23.7 321 241 1.3

50000 147 22.9 17.4 575 552 1.5

100000 147 22.9 16.48 974 1074 1.93

200000 147 22.9 21.55 1740 2117 2.73

350000 147 22.9 22.7 2686 3696 3.9

500000 147 22.9 20.5 3891 5077 7.7

1000000 147 22.9 22.3 crash crash crash

Table 2. Comparison of the proposed method and conventional hair system
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Figure 36. Virtual fibers in hair cylinders. 
Proposed method

Figure 35. Blender fibers. 
Standard hair system



As we can see in Figure 37 (blue line), the memory foot-print for the proposed method stays 

unchanged no matter how many virtual fibers are computed. Even the time of rendering in Figure 38 

(blue line) stays the same pretty much, although oscillations are noticeable, the average would give a 

constant time of rendering.  On the other hand, memory consumption for the conventional algorithm 

on Figure 37, Figure 38(red lines) changes dramatically and in accordance with the size of the data 

structure Blender has to keep for the hair system.  

Figure 39 shows a rendering of Scene2 – a carpet made using our algorithm.  The image was 

rendered at a resolution of 1920x1080 pixels, 32 samples, full global illumination enabled, 336 000 

virtual fibers, 320 blender fibers were used, 1050 virtual fibers per hair cylinder. During rendering, 

Blender consumed about 118 MB of memory totally and it took 33 minutes 38 seconds to render at 

1920x1080 pixel image, standard path tracing method, full global illumination enabled, 32 samples.

Scene2 with a standard blender hair system is rendered (Figure 40) in 2 min, 23 seconds and 

3277 megabytes of memory were consumed. It used 336 000 fibers,  1920x1080 pixels, 32 samples, 

full global illumination enabled.
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Figure 37. Memory consumption, MB
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Figure 38. Rendering time, sec
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 4.5. Number of internal cylinders vs. number of fibers for one internal cylinder.

According to our algorithm, it is expected that the number of internal cylinders does affect 

performance more significantly than a number of virtual fibers per each of those internal cylinders 

due to the way optimization is set up (Appendix A, page 34). Regardless of how many fibers need to 

be rendered on a single internal cylinder, the number of those that we check for the intersection with a

camera ray is very small (several fibers at most) which can be considered as O(1). On the other hand, 

the number of internal cylinders linearly affects the performance (Expression 4.2). 

O(1)⋅N internalcylinders=N internal cylinders (4.2)
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Figure 39. Fibers rendered with a proposed approach

Figure 40. Fibers rendered with a standard Blender hair system



# int cylinders # fibers
per int.
cylinder

2 4 10 30 45 90 180 360

phi_step 180 90 36 12 8 4 2 1

1 6.9 6.7 7 7 6.86 6.8 7 6.7

5 8.9 8.7 8.8 8.8 8.7 8.6 8.5 8.1

10 11.2 11.4 11.6 11.1 10.9 10.6 10.1 9.7

20 16 16 16.1 15.4 14.8 14.6 12.8 11.8

40 25.3 25.1 24.6 22.8 21.6 20.0 17.9 15.6

Table 3. Number of internal cylinders vs. # of fibers per internal cylinder (seconds)

The test scene 3 was done on a single hair cylinder and it was designed check performance of

the algorithm in cases where there is a single hair cylinder, but number of internal cylinders as well as

the number of virtual fibers per each internal cylinder change. It clearly can be seen that the larger the
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Figure 41. Speed of rendering of a single hair cylinder
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number of internal cylinders is, the longer rendering time becomes. However, there is another trend 

which is -- the larger the number of virtual fibers, the faster rendering becomes. This can be explained

by occlusion. The larger the number of fibers, the more fibers are there to occlude other fibers. The 

algorithm runs only until the first intersection between a fiber and a camera ray is detected. Hence 

more fibers will be computed faster, because they have a much higher probability to be front fibers 

and so the internal fibers will never be reached, meaning – internal cylinders are less likely to be 

computed. This means that the number of internal cylinders to be traversed during the computation is 

less than the total number of those cylinders that was requested. From the table as well as from our 

understanding of the algorithm, it is clear that the highest cost for algorithm is to compute multiple 

internal cylinders with very small number of fibers in them. No memory consumption numbers are 

needed for Table 3, since it is the same for any combination of parameters described in the Table 3 – 

regardless of how many virtual fibers are used, the only single hair cylinder is stored in memory and 

thus memory consumption doesn't change.

 4.6. Number of hair cylinders vs. rendering time.

Here we were testing how well the algorithm can handle multiple hair cylinders when they occlude 

each other. Two extreme cases are considered:

• Empty - internal cylinders have almost no fibers inside so that they are almost transparent on 

average (2 fibers per internal cylinder). For this test the number of internal cylinders is 10.

• Full –  hair cylinders are almost opaque because of the large number of fibers (360 fibers per 

internal cylinder). For this test the number of internal cylinders is 10.

# of hair cylinders 1 2 5 10 20 50 100

Empty (2) 4.4 6.6 15.8 31 61.3 228 685

Full (360 ) 3.2 5.2 13.7 24.6 50.5 134 360

Table 4. Number of hair cylinders vs. rendering time (seconds)
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As we can see, 100 empty cylinders with 20 fibers are rendered twice as slow comparing to 100 

cylinders with 3600 fibers per hair cylinder. That is the same effect that has been explained in Chapter

4.5 – the more fibers are requested, the less time it will take to render those. That is a proof that our 

method does what it should – conserve memory for high density hair/fur systems.

 4.7. Drawbacks of the method

While our algorithm provides substantial memory savings, it does come with some limitations:

• no easy way to control individual virtual fibers inside of a single group;

• this drawback is a limitation of a current implementation of our method, rather than the 

drawback of the method itself. Our “pure shader” approach doesn't actually displace the 

surface of a hair cylinder, to which our shader is applied. That is, it doesn't change for the 

renderer the location of the intersection between a virtual fiber and a camera ray)  and it is 

still located on the surface of a hair cylinder.  Proper implementation of displacement can 

change the point of intersection P of  the ray with a fiber, giving a renderer a true position of 

the fiber inside of a hair cylinder, as opposed to the one located on the surface of that 

cylinder. That should allow for more correct lighting and shadow computation;

• in the case a camera ray penetrates a cylinder through one of its bases, there is no way to use 

the shader, since Blender doesn't allow to obtain information about that case. Namely, there is

no information that would allow to unambiguously determine the position of the cylinder 

from just a point of intersection of camera ray and base of the cylinder. Because of that, 

cylinders need to be long enough so that in most cases the base will not be hit by a camera 

ray. Of course, there are some cases in which a light source goes inside of one of this 

cylinders, and because of the way our shader works, the lighting gets computed incorrectly, 
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since light rays doesn't hit any fibers inside because the shader simply doesn't get invoked;

• A more efficient method of placing hair cylinders on a surface is needed, otherwise some 

cylinders overlap each other almost completely making computations unnecessary longer, 

while not contributing to the visual fidelity of renderings;

• Method is not suitable (in its current unoptimized state, that is) for fast renderings of scenes 

that easily fit into memory. In it's current form, our method does not beat Blender's hair 

rendering system in terms of speed for small hair systems that fit into memory. This is a 

testament the Cycles hair system, which is quite fast until it runs into memory limits.

 4.8. Conclusions

Our algorithm demonstrates good results and shows much smaller and, in fact, constant 

memory footprint, when compared to the standard hair rendering method. Despite such memory 

savings, the quality of renderings is still on par with todays methods. Considering the fact that 

rendering of hair and fur systems is still a brute force approach, this algorithm shows very promising 

results in the task of lowering the memory footprint of such algorithms. 

2 
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CHAPTER V

 5. 
FUTURE WORK

 5.1. Ways to improve the proposed algorithm

We have considered a number of ways to improve our hair rendering algorithm. One way to 

improve the algorithm would be an adaptive version of the algorithm that will compute curvature of 

the surface that spawns off hair cylinders (parent surface). When cylinders are placed, their positions 

and radii can be controlled by the value of curvature. The larger the curvature of the surface is, the 

smaller the radius of a hair cylinder should be. That would allow for smaller number of fibers with 

larger radii to be placed on relatively flat parts of the parent surface, while still retaining detail look of

fur/hair at the curved parts of the surface thereby eliminating cases where large enough cylinders can 

create fibers that “float” above the surface.

Speed is another issue that could be addressed.  The current shader has not been extensively 

optimized, and we feel that there is quite a bit of room for improvement.
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APPENDICES

Appendix A.  Pseudo-code of the proposed algorithm

P – (3D point) point of intersection of a camera ray with main hair cylinder;

N – (3D vector) surface normal at point P;

I – (3D vector) direction of a camera ray;

isect –  (boolean) value, keeps the result of intersection between a camera ray and a virtual fiber

fiberNormal – (3D vector) computed normal of the surface of a virtual fiber at the point of its 

intersection with a camera ray;

front_arc, back_arc– (float [2]) a set of values that describe limits of front and back arcs that is a 

result of an intersection between a shaft (that goes along the ray) and an internal cylinder;

radius – (float)  radius of one of internal cylinders;

radius_step – (float)  value that is used to decrement radius of an internal cylinder;

num_int_cylinders – (int) number of internal cylinders that need to be checked;

DS – stack-like data structure that stores a tuple of several values that allows to compute fibers for  

back arcs later.

hair_shader(P, N, I){
isect = 0
for(i = 0, i < num_int_cylinders and isect == 0, i++){

compute_lims_for_single_cylinder(P, N, I, r, fN, front_arc, 
back_arc)

isect = walk_arc(P, N, I, fiberNormal, front_arc, r)
r =  r – radius_step
if (isect == 0) DS.push_back(back_arc, r)

}
for(i = 0, i < num_int_cylinders and isect == 0, i++){

DS.pop_back(back_arc, r)
isect = walk_arc(P, N, I, fiberNormal, back_arc, r)

}
return isect

}

walk_arc(P, N, I, fiberNormal, arc_limits){
isect = fiber_intersection_routine (arc_limits,P,N,I,fiberNormal)
if (isect == 1) { compute fiberNormal; return 1 }
else return 0

}
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