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Abstract: In vapor compression, a small portion of the compressor oil circulates with the 

refrigerant through the cycle components, while most of the oil stays in the compressor. 

The presence of oil increases the pressure losses and results in an additional thermal 

resistance to the heat exchange process. The goals of this study were to investigate the oil 

retention and its effects on heat transfer and pressure drop of refrigerants and oil mixtures 

in microchannel type condenser and evaporator.  

Two different louvered-fin aluminum microchannel heat exchangers set as condenser and 

evaporator were tested. The experiments were conducted in a custom-made test facility 

built ad-hoc for this study that controlled the amount of oil released to the heat 

exchangers and measured the corresponding oil retention, the heat transfer rates, and the 

pressure drops. The refrigerants used were R410A and R134a in combination with 

synthetic polyol ester (POE) oil. The saturation temperatures for condenser applications 

varied from 85 to 130 °F (29 to 54°C) while for evaporator applications, the range was 

from 33 to 48°F (0.5 to 9°C). The oil mass fraction (OMF) were varied from 0 to 5 wt.%.  

For microchannel type condenser, the results from the present work indicated that the oil 

retained in the condenser strongly depended on the OMF of the mixture. The oil retention 

volume increased if the OMF increased and it was measured up to 11% of the total 

condenser internal volume. The oil retention volume for high mass flux conditions were 

higher than those for low mass flux conditions and the effect of mass flux on the oil 

retention was small for low OMFs but it became more evident for OMFs of 3 wt.% and 

higher. Oil affected the heat transfer rate of the microchannel condenser and it penalized 

the heat transfer capacity by as much as 10 percent if the oil mass fraction was 3 wt.%. 

For both refrigerant R410A and POE mixture and refrigerant R134a and POE oil mixture, 

the heat transfer rate at low saturation temperature increased slightly if the OMF 

increased up to about 3 wt.%; then the heat transfer rate started to decline at higher 

OMFs. Oil also increased the refrigerant-side pressure losses of the microchannel 

condenser up to 19 percent with respect to oil free conditions. 

The oil retention volume in the microchannel evaporator was measured up to 13 % of 

total internal volume of evaporator. Oil affected the heat transfer rate of the microchannel 

evaporator and it penalized the heat transfer capacities by as much as 11% if the oil mass 

fraction was 3 wt.%. For air-conditioning and refrigeration systems, when OMFs were 

equal to or less than 1 wt. %, the decrease in heat transfer rates were within 4 %. The oil 

decreased the heat transfer rate and its impact was also depended on the mass flux. The 

refrigerant-side pressure drop across the microchannel evaporators increased by 10 to 25 

percent when oil was present inside the heat exchangers and the OMF was in the range of 

1 wt.%.  
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CHAPTER I 

1 Introduction 

1.1 Background 

In a refrigeration cycle, a small portion of oil circulates with the refrigerant flow through 

the cycle components, while most of the oil stays in the compressor. The compressor in a 

refrigeration system needs oil for the following reasons: to prevent surface-to-surface 

contact, to remove heat, to provide sealing, to keep out contaminants, to prevent 

corrosion, and to dispose of debris created by wear  (Vaughn, 1971). Most compressor 

mechanical failures are due to improper oil management that leads to a lack of proper 

lubrication inside the compressor. This means taking into account the fact that oil might 

be missing from the compressor because it can be held up inside the heat exchangers 

during actual system operating conditions.  

Oil retention is a complex function of fluid properties as well as geometry and 

configuration aspects. The circulating oil, which is missing from the compressor, can 

form a fairly homogeneous mixture with the liquid refrigerant or it can exist as a separate 

oil film inside the tubes and headers of the heat exchangers; the amount of oil is affected 

by the system conditions. Each heat exchanger in a refrigeration cycle has different oil 

retention characteristics, and large amounts of oil retention cause a decrease in heat 

transfer and an increase of pressure drop (Cremaschi et al., 2005). As a result, proper oil 
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management is necessary in order to improve the compressor reliability, increase the 

overall efficiency of the system, and minimize the system cost by avoiding redundancy. 

Abundant literature can be found on oil and refrigerant flow inside simple geometries. 

Sundaresan and Radermacher (1996) studied oil return characteristics in residential heat 

pump systems using R22, R407C, and R410A with mineral oil (MO) and synthetic polyol 

ester (POE) oils. From their experiments, they recommended the use of POE oils with 

new refrigerant blends such as R407C and R410A. Biancardi et al. (1996) conducted 

experimental and analytical efforts to determine the lubricant circulation characteristics 

of R134a/POE and R134a/MO pairs in a residential heat pump system and compared the 

behavior with a R22/MO mixture. The minimum flow rate for “the worst-case” scenario, 

in which the critical velocities occurred in the vertical vapor suction line, were 

determined by visual observations. They reported that minimum flow velocities ranging 

from 1.8 to 1.9 m/s (354 to 374 fpm) were required in the vertical upward suction lines 

when the system operated in the cooling mode. Oil return characteristic in vertical 

upward flows was also experimentally and theoretically investigated by Mehendale and 

Radermacher (2000) whereof the critical mass flow rates for preventing oil film reversal 

in a vertical pipe were estimated.  

Although most of the oil circulated in the system returns to the compressor, a small 

portion of the oil is retained in heat exchangers. The oil retained affects the heat 

exchanger performance through heat transfer degradation and pressure drop 

augmentation. In order to determine the oil retention volume, one option might be to 

measure the thickness of the oil film created during annular flow on the interior wall of 

the refrigerant tubes. Shedd and Newell (1998) proposed a non-intrusive, automated, 
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optical film thickness measurement technique to be used with a wide range of fluids and 

flow configurations. Later, Bai and Newell (2002), Shedd and Newell (2004) and 

Schubring et al. (2009) used a similar approach to describe the characteristics of annular 

two-phase viscous flow of air and water or air and 300 SUS Alkybenzene oil. Extensive 

experimental flow visualization in horizontal and vertical pipes was required and the oil 

film thicknesses were correlated with the oil mass flow rates, vapor velocity and pipe 

diameter. Shear stress correlations were developed and verified with the experimental 

data. Unfortunately this technique requires optical access to the refrigerant flow and 

might not be practical for microchannel heat exchangers. Not only the tubes in 

microchannel heat exchangers are likely to be too small to provide accurate 

measurements of the oil film thickness by optical methods, but also creating an optical 

access to the tubes of a microchannel heat exchanger might interfere with the real 

operation of the heat exchanger during refrigerant condensation. The flow regime during 

refrigerant condensation in the actual air conditioning applications of the microchannel 

heat exchanger is mostly annular and the oil film thickness is generally not uniform along 

the heat exchanger refrigerant path. Oil retention is affected by the flow pattern of the 

refrigerant-oil mixture because the magnitude of the forces exerted on the fluid element 

depends on the type of motion of the fluid, relative interfacial surface area between the 

two phases, and velocity slip ratio between gas and liquid phases. Few researchers 

investigated flow patterns for refrigerant-oil mixtures used in air conditioning industry 

while many researchers studied the flow characteristics for mixtures of air/water or 

air/pure oil. Riedle et al. (1972) were among the first researchers to characterize 

systematically the flow of oil-refrigerant mixtures. Their analytical model, based on 
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minimum gas velocities, introduced the concepts of void fraction, oil entrainment, and 

liquid film thickness for oil-refrigerant mixtures. An extensive review of flow boiling 

characteristics and flow patterns of refrigerant-oil mixture was presented in Bandarra 

Filho et al. (2009). 

While studies of oil return and oil transport in suction liners are quite numerous in the 

literature, measurements of oil retention in condensers and evaporators for air 

conditioning and refrigeration systems are rather sporadic in the open domain state-of-

the-art work. Oil retention is affected by the flow pattern of the refrigerant-oil mixture 

because the magnitude of the forces exerted on the fluid element depends on the type of 

motion of the fluid, relative interfacial surface area between the two phases, and velocity 

slip ratio between gas and liquid phases. Few researchers investigated flow patterns for 

refrigerant-oil mixtures used in air conditioning industry while many researchers studied 

the flow characteristics for mixtures of air/water or air/pure oil. Riedle et al. (1972) were 

among the first researchers to characterize systematically the flow of oil-refrigerant 

mixtures. Their analytical model, based on minimum gas velocities, introduced the 

concepts of void fraction, oil entrainment, and liquid film thickness for oil-refrigerant 

mixtures. Schlager et al. (1990) conducted experiments in order to determine the quantity 

of oil in smooth and micro-fin tubes during evaporation and condensation of refrigerant-

oil mixtures. They showed that the parameters that affect the oil retention were mass flux, 

oil mass fraction, viscosity, evaporator exit conditions (i.e., vapor quality at the 

evaporator outlet), and evaporation pressure. They used R22 in combination with 150 to 

300 SUS mineral oil. 
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Lee (2002) proposed a model for oil retention in Carbon Dioxide (CO2) air conditioning 

systems. The lubricant used was polyalkylene glycole (PAG) oil, which is partially 

miscible with CO2. Lee also showed the effect of the oil retention on pressure drops in 

the suction line, evaporator, and gas cooler. Pressure drops were easily doubled when the 

oil mass fraction increases up to 5 percent in mass concentration. Thus, design pressure 

drop correlations needed to consider this penalty factor due to oil accumulation in the 

heat exchangers. The oil effects on the evaporation heat transfer in microchannel heat 

exchangers were experimentally investigated by Zhao et al. (2002). Later, Hwang et al. 

(2004) were able to characterize the pressure drop and heat transfer capacity degradation 

of a low temperature CO2 refrigeration system based on the oil circulation. They used 

capacitive sensors to detect the trace of oil in the refrigerant flow. Cremaschi (2004) 

focused on measuring the oil retention in fin-and-tube evaporators and condensers of air 

conditioning and refrigeration systems. The refrigerants adopted were R22, R410A, and 

R134a in combination with three different types of oils: mineral oil (MO), polyol ester 

(POE), and polyalkylene glycole (PAG) synthetic lubricants. The effects of different 

refrigerant mass fluxes, solubility, and miscibility of the carrier fluid were experimentally 

investigated. 

In summary, there appears to be a growing number of studies on the oil effects on heat 

exchanger performance for conventional fin-and-tube heat exchangers. However, studies 

of the effects of oil on microchannel type heat exchangers are still limited in the open 

domain literature. The objective of this study is to measure the oil retention and its effects 

on heat transfer and pressure drop in microchannel evaporators and condensers used in 

air conditioning and refrigeration applications.  
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1.2 Study Objectives 

The overarching goal of the research was to investigate experimentally the effect of 

lubricant on heat transfer and pressure drop of refrigerant during flow boiling and 

condensation in microchannels. The analysis also utilized the results from a preliminary 

model for oil retention in microchannel heat exchangers that was developed in a separate 

study.  

The specifics objectives of the research are as follows: 

1) To construct an experimental apparatus capable of measuring the oil retention volume 

in microchannel heat exchangers used as both evaporators and condensers in R410A 

air conditioning systems and R134a coolers and refrigeration systems 

2) To measure the quantity of oil held up in two microchannel heat exchangers, one for 

R410A air conditioning and one for R134a coolers applications, operating in 

evaporator and condenser modes 

3) To provide data of oil retention in microchannel heat exchangers as function of oil 

mass fraction circulating in the heat exchangers, refrigerant flow rates, and refrigerant 

saturation temperatures 

4) To experimentally determine the impact of the oil that was held up inside the 

microchannel heat exchanger on the heat transfer capacity degradation and refrigerant 

side pressure drop  

5) To analyze the experimental results and use a model for oil retention in microchannel 

tubes of the condenser that was simple but accurate enough to be useful in practical 

engineering designs 
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6) To experimentally validate the oil retention model, including the predicted heat 

transfer rates and pressure drops for refrigerant and oil mixtures, with the data of the 

present work.  

 

1.3 Scope of Work and Experimental Test Matrix 

The research used two different louvered-fin aluminum microchannel heat exchangers: 

one type for the condenser and one type for the evaporator. All two microchannel type 

heat exchangers were commercially available and they were used in commercially 

available heat pump systems. The experiments were conducted in a custom-made test 

facility built ad-hoc for this study in order to replicate the real life operating conditions of 

the heat exchangers of air conditioning and refrigeration systems at Oklahoma State 

University (OSU) laboratory. The OSU test facility controlled the amount of oil released 

to the heat exchangers and it measured the corresponding oil retention, the heat transfer 

rates, and the pressure drops.  The test conditions were selected based on typical 

applications of refrigerant R410A in air conditioning systems and of refrigerant R134a in 

vending machines and water/wine coolers refrigeration systems. The oil used in the 

present work was synthetic polyol ester (POE) with viscosity grade of VG 32 (that is, 

Emkarate RL32-3MAF POE oil). The saturation temperatures for condenser applications 

varied from 85 to 130 °F (29 to 54°C) while for evaporator applications, the range of 

saturation temperatures was ranging from 33 to 48°F (0.5 to 9°C). Over 135 tests were 

conducted in the present study and the test conditions are summarized in Table 2-1.  
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Tests were conducted for two refrigerant mass fluxes at each saturation temperature. The 

first mass flux was representative of the mass flux for full load design conditions of the 

heat exchangers. The second mass flux was representative of the mass flux for part load 

conditions of the heat exchangers and it was intentionally selected between 50 to 67 

percent of the first mass flux in order to isolate the effect of mass flux on the oil 

retention. For each refrigerant mass flux, the oil mass fraction, (abbreviated as to OMF), 

was controlled and varied in a parametric fashion from 0 to 5 weight percent (abbreviated 

as to wt.%). 

The mass flux of the refrigerant was controlled by a variable speed gear pump. The 

saturation pressures in the microchannel heat exchangers were controlled by a series of 

auxiliary refrigerant-to-water heat exchangers. An electrically heated water tank and a 

low temperature chiller served as the hot and cold reservoirs, respectively. The pressures 

during the actual experiments were also controlled by the temperature of the incoming air 

stream to the microchannel heat exchangers and by the refrigerant amount that was 

charged into the test apparatus. The refrigerant mass flux, the incoming air temperature, 

and the air speed determined the outlet refrigerant-side conditions of the microchannel 

heat exchangers. For the evaporator tests, the degree of vapor superheat at the outlet of 

the heat exchanger was controlled to 11 to 15°F (∼6 to 8°C).  

Table 1-1: Test matrix of oil retention experiments in microchannel heat exchangers 

for air conditioning and refrigeration applications 

Test 

No. 

Saturation 

Temp.  

[°F]  (°C) 

Refrigerant 

& Oil 

Refrigerant Tube 

Mass Flux  

[lbm/hr-ft
2
 ]

 *
 

Oil Mass 

Fraction [wt.%] 

Component 

function / 

application 

Number of 

Tests data 

1 130  (54) R410A/POE GA 

GB 
0   0.5   1   3   5 

Condenser / 

AC units 
3 x 2 x 5 = 30 

2 105  (41) R410A/POE 
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3 85  (29) R410A/POE 

4 130  (54) R134a/POE 

GB 

GC 
0   0.5   1   3   5 

Condenser /  

refrigeration 

condensing 

units 

3 x 2 x 5 = 30 5 105  (41) R134a/POE 

6 95   (35) R134a/POE 

7 48  (9) R410A/POE 

GC 

GD 
0   0.5   1   3  5 

Evaporator 

(manufacturer 

A )/  AC units 

3 x 2 x 5 = 30 8 38  (3.3) R410A/POE 

9 32  (0) R410A/POE 

10 48  (9) R134a/POE 

GF 0   0.5   1   3  5 

Evaporator 

(manufacturer 

A ) /  AC units,  

Vending 

machines & 

water/wine 

coolers 

refrigeration 

systems 

5 x 1 x 3 = 15 

11 38  (3.3) R134a/POE 

12 33  (0.5) R134a/POE 

Total No. of Tests ---------------------------------------------------------------------------------------------> 135 

*The mass flux varied due to difference in both mass flow rate and microchannel port geometry. 

Details are provided in chapter 4: Experimental Methodology 
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1.4 Dissertation Organization 

The present dissertation contains 7 chapters. Chapter 1 provides a background and 

description of the oil retention in microchannel heat exchangers and it summarizes the 

motivations for the present work.  It also contains the objectives and scope of the present 

work. Chapter 2 discusses the literature review in detail and highlights the main lessons 

learned from the previous studies. It also provides some clarifications on the scope of this 

study, on why parts of the present work had to be analyzed in depth, and on questions 

that the present study aimed to address.  

Chapter 3 describes the experimental methodology chosen for this research and explains 

the test facility and its components details. This chapter describes the geometry of 

microchannel heat exchangers tested in the present study, test matrix, test objectives and 

test procedures. Instrumentation and data acquisition system are also covered in this 

chapter. Chapter 4 discusses data processing, data reduction and uncertainty analysis of 

the present study. 

Chapter 5 discusses the experimental results of the present study. Figures, plots, and 

charts obtained for tests listed in the test matrix are given and technical analysis of the 

experimental data is presented.  

Chapter 6 describes the model of oil retention, heat transfer and pressure drop model for 

the microchannel heat exchangers used in the present study. The validation of the model 

and of existing heat transfer and pressure drop correlations with the experimental data of 

the present work is also presented in this chapter. Chapter 7 summarized the content of 

the dissertation and the conclusions from the present study. Some recommendations for 
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future follow up research on the topic area of oil retention in microchannel heat 

exchangers are also given in Chapter 7. 
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CHAPTER II 

2 Literature review 

 

There are vast publications available on refrigerant-oil mixture effect on the performance 

of a refrigeration system, particularly for compressor and heat exchanger equipments, i.e. 

evaporator and condenser. The effects are highly dependent on the lubricant 

thermophysical properties and interaction between refrigerant and lubricant especially 

during phase change process where two-phase, two-component flow occurs. In the first 

sections, literatures on lubricant properties and their influence to the refrigerant-oil 

mixture properties, evaporation and condensation processes are summarized. The oil 

retention models and previous experimental methods available in the literature are 

discussed next. 

2.1 Relevant Studies on POE lubricant and Refrigerant Properties 

Refrigerant lubricant requirements are not limited to provide lubrication for compressor 

moving parts. It also acts as a seal that separate high pressure gas on the discharge side 

from low pressure gas on the suction side. A high viscosity lubricant can provide good 

sealing; however it introduces higher frictional resistance. Mineral oil (MO) is one of the 

first refrigerant lubricants used in the refrigeration system. Due to solubility limitation, 

especially with non-CFC refrigerants such as R134a and R410A, synthetic oils were 
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introduced. Polyolester (POE) is synthetic oil commercially used as lubricant in the 

refrigeration system for all types of compressor with HFC refrigerant such as R134a and 

R410A. POEs are produced from alcohol and carboxylic acid, where acids are used to 

give correct viscosity and fluidity at low temperature to match miscibility requirement of 

the refrigerant. Properties of POE and other refrigeration lubricant are widely available in 

literatures. 

The presence of lubricant in refrigeration system modifies the thermophysical properties 

of the refrigerant-oil mixture, especially during evaporation and condensation. The 

lubricant exists only as liquid phase, inducing a two phase-two component flow during 

both processes, and its concentration varies greatly as the quality changes. In addition, 

some refrigerant vapor is dissolved in liquid phase of oil-rich mixture which depends on 

temperature of the oil film and pressure of the refrigerant gas phase. These interactions 

between lubricant and refrigerant and their local behavior variations are responsible in the 

mixture properties changes. Study on lubricant properties, hence is uttermost important to 

understand the lubricant effect to heat transfer and pressure drop of refrigerant-oil 

mixture. 

There are two methods to analyze the effect of lubricant properties to refrigerant-oil 

mixture behavior that have been used extensively (Thome, 1995;1998). First method is to 

use pure refrigerant properties, i.e. saturation temperature, and consider the oil as a 

contaminant then introduce correction factor to account for its effect. Another method is 

to consider the refrigerant-oil mixture as a binary zeotropic mixture. The author presented 

general methods for determining bubble-point temperatures, specific heats of oils and 

refrigerant-oil mixtures, local oil concentrations and temperature enthalpy curves. 
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Although the latter is considered more accurate from thermodynamic point of view, it 

was derived using totally miscible lubricant and required full knowledge of mixture 

properties. 

The most apparent effect of the lubricant properties to refrigerant-oil mixture is its high 

viscosity, which are hundreds to thousands higher than pure refrigerant. Sunami (1999) 

presented tabulated values of viscosity, along with other physical and chemical 

properties, of mineral oils and synthetic oils- Polyolester and Alkylbenzene (AB). The 

viscosity of refrigerant-oil mixture is highly affected by the solubility of the refrigerant 

and lubricant combinations. The mixture is considered two-phase, two components 

mixture. While the vapor phase is essentially pure refrigerant, the liquid phase is 

composed of refrigerant and lubricant. The solubility of refrigerant-lubricant composition 

is a function of pressure and temperature. ASHRAE Handbook (2010) published 

solubility, viscosity and density charts of POE and R410A mixtures for ISO VG 32 and 

68 in a wide range of temperature and pressure based on works from (Cavestri et al., 

1994). Separate study form Yokozeki (1994) and Teodorescu et al. (2003) proposed 

solubility models for various refrigerant/oil mixture using Soave-modified Redlich-

Kwong (SRK) equations of state and validated the model with experimental data from 

literatures. Recent study from Wei et al. (2007) proposed simple correlations for various 

thermodynamic and transport properties of R410A/POE ISO VG 68 oil mixture, e.g. 

density, solubility, density, specific heat, viscosity, surface tension, thermal conductivity 

and enthalpy. 

In microchannel flow, surface tension (capillary) force has more important role compared 

to that in conventional tube (Kandlikar, 2004;Thome, 2004). The addition of lubricant to 
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pure refrigerant will increase the surface tension of the mixture, which tends to provide 

better wetting characteristics and affect flow regime and heat transfer mechanism during 

boiling and condensation. Despite its important role, there are not many literatures 

available for the surface tension property of refrigerant-oil mixture. The surface tension 

of a mixture can be far lower than the value obtained just using interpolation method 

between two component properties Riedle et al. (1972). The refrigerant-oil mixture 

surface tension of R410A/POE increases almost double with 30% of oil concentration 

Wei et al. (2007). Based on their experimental results the authors suggested correlation 

by Jensen and Jackman (1984) for refrigerant-oil mixture surface tension calculation. 

The miscibility of lubricant in the refrigerant also affects the performance of refrigeration 

and air conditioning system (Popovic et al., 2000). In the evaporator, entering fluid 

consist mainly liquid refrigerant with small amount of lubricant. As it progresses along 

the evaporator, liquid refrigerant vaporizes and the liquid leaving the evaporator is mostly 

lubricant. The phase separation can occurs, especially in flooded evaporator, where 

lubricant-rich liquid layer adheres to the surface, causing obstruction to heat transfer 

between the wall and the refrigerant and increasing oil retention in the evaporator and 

suction line of the system. The effect of miscibility of the lubricant in the condenser is 

less important because liquid flow is in the turbulent region and at relatively high 

temperature. 

The bubble point temperature of refrigerant-lubricant mixture can be estimated using 

correlation suggested by Thome (1995) as a function of vapor pressure and local oil 

concentration for different refrigerant and lubricant pairs. The local change of enthalpy 

for the mixture during evaporation can be contributed to the latent heat of the vaporized 
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liquid fraction, sensible heat of the liquid phase and vapor phase which are heated to 

higher bubble point temperature compared to that of pure refrigerant. 

2.2 Effect of Lubricant during Refrigerant Condensation 

A significant portion in this study was dedicated to determine the effect of lubricant in 

condensation process, including heat transfer and pressure drop. Despite the fact that the 

effect of lubricant in the condensation heat transfer was usually less significant compared 

to that in the evaporation, the study was particularly important in microchannel 

condenser. The difference can be attributed from the analysis of lubricant and refrigerant 

liquid phase separation that forms lubricant-rich liquid layers, which prevent optimum 

heat transfer (Shen and Groll, 2005;2005).  For the condenser, these layers formed only at 

solid-liquid interfaces while for the evaporator the layers exist both at solid-liquid and 

liquid-vapor interface. In addition, as the mixture progresses in the condenser, the 

lubricant continuously dissolved into condensed liquid refrigerant, providing oil-free 

layers at the top side of the condenser tube and maintains high heat transfer performance. 

The effect of the phase separations due to miscibility of the refrigerant-lubricant mixture 

also less importance in the condenser as explained in the previous section compared to 

that in the evaporator. 

The effect of oil mass fraction in the condensation heat transfer has been reported to vary 

non-linearly with oil mass concentration. Schlager et al. (1987), Eckels et al. (1993), and 

Bassi and Bansal (2003) indicated negligible effect of lubricant in the condensation heat 

transfer for oil mass fraction below 3%. However, the condensation heat transfer 

decreases as the oil mass fraction increases to higher values. Shao and Granryd (1995) 
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reported decreased mean heat transfer coefficient in a condensing tubes of 10 and 20% 

for oil mass fraction of 2 and 5%, respectively. The authors also noted different effect in 

condensation heat transfer at the beginning of the condenser and the latter parts. The 

difference was explained possibly due to higher condensation temperature for refrigerant-

oil mixture compared to that of pure refrigerant, resulting in earlier condensation at the 

beginning of the condenser. Similar effect of oil mass fraction to convective condensation 

were also reported using numerical approach with 5% of oil mass fraction, resulting in 

decreasing condensation heat transfer by 9-16%. (Lottin et al., 2003;Lottin et al., 2003) 

Convective condensation correlations for pure refrigerant in conventional channel are 

well-established in literature. Due to strong influence of flow pattern to heat and 

momentum transfer, proposed correlations were presented based on observed flow 

pattern. In a fully developed annular flow, which are commonly found in small diameter 

tubes, semi-empirical models were proposed by Shah (1979) and Tang et al. (2000). A 

more recent prediction method based on flow regime were presented by Thome et al. 

(2003) which were developed based on 15 refrigerants flow condensation with hydraulic 

diameter ranges from 3.1 to 21.4 mm. Other models proposed by Dobson and Chato 

(1998), Haraguchi et al. (1994) and Cavallini et al. (2004) attempted to predict 

convective condensation heat transfer coefficient which cover all flow regimes. A set of 

heat transfer coefficient correlations which cover three ranges of dimensionless 

parameters are still recommended in ASHRAE Handbook (2009) which were based on 

Ackers and Rosson (1960) and Ackers et al. (1959). 

Research on convective condensation in small diameter tube, especially microchannel, 

have become interest only a decade back, driven by the potential application of 
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microchannel condenser for residential air conditioning system. These developments 

require more understanding on heat transfer characteristics inside small diameter 

channels. The apparent influence of significantly difference hydraulic diameter to flow 

regime transition was reported by Garimella (2004). As the diameter decrease, the 

annular flow dominates while the wavy and stratified flow regime decrease or disappear. 

The effect of surface tension becomes more important while gravitational effect become 

less and less important. Few literatures are available for condensation heat transfer with 

hydraulic diameter less than 3 mm. A study by Cavallini et al. (2005) measured and 

compared condensation heat transfer coefficient inside 1.4 mm Dh multiport 

microchannel with refrigerant R134a and R410A with available correlation for 

conventional channels. The authors reported that the models under-predicted their 

experimental results. Yang and Webb (1997) proposed model which account for surface 

tension forces in microchannel. Wang et al. (2004) developed correlation for 

condensation inside channel with 1 mm hydraulic diameter. Their model includes 

combination effect of surface tension, shear and gravity forces during condensation. 

Available condensation heat transfer correlations for refrigerant-oil mixture employ 

several different approaches based on known pure refrigerant properties and established 

correlations for conventional or small diameter channel as described above. The first 

approach considers the lubricant as contaminant and introduces an oil-enhancement 

factor (EF) as correction for condensation heat transfer of pure refrigerant flow. Huang et 

al. (2010a) verified three correlations in this category, namely Schlager et al. (1990), 

Eckels et al. (1998), and Bassi and Bansal (2003) for EF. Cawte (1992) used different 

approach by using modified two phase multiplier to correct single phase heat transfer 



19 

 

coefficient in pure refrigerant flow. Here the author defined the multiplier as the ratio of 

two phase refrigerant-oil mixture and single phase liquid pure refrigerant. 

The third category, which becomes more common, uses established correlation for pure 

refrigerant flow and replacing the pure refrigerant properties with refrigerant-oil 

mixture’s properties. One of the methods was presented by Shao and Granryd (1995) who 

developed condensation heat transfer coefficient based on modified Tandon et al. (1995) 

correlation with R134a. Their correlations were developed for R134a/POE mixtures 

inside 6 mm inner diameter smooth tube with mass flux in the range of 120 to 160 

kg/m
2
s, and oil mass fraction from 0 to 5.1%. 
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Huang et al. (2010a) proposed correlations for condensation heat transfer coefficient 

which also belong to the same category above. Their experimental data include 

R410A/Ester Oil RB68EP mixture flow inside 4.8 and 1.6 mm ID and oil concentration 

range of 0-5%. Their proposed correlations were developed from Haraguchi et al. (1994) 

which covers both wavy-stratified and annular flows. Their correlation considers 
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condensation heat transfer Nusselt number as the superposition of Nusselt number for 

forced convection condensation and that for free convection condensation. The 

correlations were verified within -30 to 20% deviation from their experimental data. 
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The lubricant presence in the condenser takes important effect in the pressure drop 

increase. Cremaschi (2004) reported up to 30% increase in the pressure drop for 5% oil 

mass fraction in the condenser compared to oil-free condition. The author tested two 

commonly used refrigerant-oil pairs, namely R134a and R410A with mineral and POE 

lubricants. Similar effects also presented by Shao and Granryd (1995) for R134a/oil 

mixture which reported of 20% increase of pressure drop when oil was present. The 

increase of oil concentration also induces higher pressure drop in the condenser mainly 
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due to the influence of higher oil viscosity to the mixture properties. In addition, the 

thicker oil film at higher oil concentration also reduces flow area hence increases 

pressure drop. Pressure drop increases during condensation of refrigerant-oil mixture 

were found to be less severe compared to that of evaporation. It was related to the 

increasing mixture viscosity which induces higher shear stress increase during stratified 

flow pattern in the condenser than annular flow pattern predominantly found during 

evaporation (Tichy et al., 1986). The pressure drop increases were reported to be less 

severe as mass flux increases (Schlager, 1988;Cremaschi, 2004). It is interesting to note 

here that several researchers had reported unusual decrease of pressure drop during 

condensation (Schlager, 1988;Eckels et al., 1993;Zürcher et al., 1998). An explanation 

based on flow state was offered by (Shen and Groll, 2005). The authors applied Lockhart-

Martinelli (1949) pressure drop correlation to R134a/oil mixture obtained from Zürcher 

et al. (1998) and plotted the frictional pressure drop versus quality for different oil 

concentrations. They found sharp decrease of frictional pressure drop at high quality and 

the change was more for higher oil concentration. The explanation for this phenomenon 

was possibly due to the oil presence increases the mixture viscosity so significantly at 

higher quality, causing changes of flow state from turbulent to laminar. Hence higher oil 

concentrations tend to induce more laminar flow earlier, causing a decrease of pressure 

drop. 

As for condensation heat transfer, models to predict frictional pressure drop of 

refrigerant-oil mixture during condensation have been developed based on several 

approaches. The first approach is to introduce a penalty factor (PF) to correct two-phase 

frictional pressure drop of pure refrigerant and apply it to refrigerant-oil mixture 
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(Schlager et al., 1990;Eckels et al., 1993). Huang et al. (2010b) conducted comparison of 

PF correlations based on Müller-Steinhagen and Heck (1986) as pure refrigerant 

frictional pressure drop correlation. Another approach for calculating condensation 

pressure drop is to consider refrigerant-oil mixture properties as the input parameters. 

Zürcher et al. (1998) developed correlation for two-phase multiplier used in Friedel 

(1979) which account for refrigerant-oil mixture’s viscosity. Choi et al. (1999) developed 

correlation for refrigerant-oil mixture based on Pierre (1964) with modified friction 

factor. 

 

Z[ = 0.00506���;0.0]21 �̂0.122X 2-8 

 

where Kf  is two-phase number. For refrigerant-oil mixture, the Reynolds number for 

liquid only was replaced by that of mixture by considering local mixture viscosity from 

Yokozeki (1994). 

Huang et al. (2010b) proposed condensation pressure drop of R410A/oil mixture which 

also consider mixture viscosity. The authors modified Martinelli parameter used in two-

phase multiplier by considering pure R410A for vapor phase properties and R410A/oil 

mixture for liquid phase. The friction factor for vapor single-phase flow recommended by 

Jung and Radermacher (1989) was used. 
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ZE = 0.046��EW0.A0 2-10 

The applicable ranges are: inside tube diameter from 1.6 mm to 4.18 mm, mass fluxes 

from 200 to 600 kg/m
2
s and oil mass fraction from 0 to 5%. 

2.3 Effect of Lubricant during Refrigerant Evaporation 

The second objective of this research is focused on flow boiling evaporation of 

refrigerant-oil mixture in microchannel evaporator. The evaporator is the most sensitive 

component for lubricant presence in refrigeration system. In the evaporator, the oil is 

accumulated at the end of the evaporator. While the lubricant does not significantly affect 

the heat transfer capacity of the condenser, it greatly reduces heat transfer capacity of the 

evaporator. Lottin et al. (2003;2003) reported heat transfer capacity degradation of 

evaporator in the range of 20-35% using different correlation with 5% OMF. The 

pressure drop increases due to oil presence were reported by Cremaschi (2004) up to 20% 

with 8% oil mass fraction in the evaporator. 

Lottin et al. (2003;2003) performed numerical analysis of R410A and POE mixture in the 

refrigeration system. They reported no significant degradation of overall system 

performance for oil concentration below 0.5%. However the COP can decreases to 18.9% 

with 5% oil concentration by weight in the system. Experimental study of oil retention in 

air conditioning system was performed by Cremaschi et al. (2005) which includes 

commonly used refrigerants-oil mixture, i.e. R22/MO, R410/MO, R410/POE, 

R134a/POE, and R134a/PAG. Oil retention was measured in the suction line, and fin-

and-tube evaporator and condenser. The effect of the oil to the overall performance was 

reported for R22/MO where increased oil mass fraction from 0 to 9%, decreased the COP 
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and cooling capacity of 9 and 7%, respectively. Extension of the work was reported by 

(Radermacher et al., 2006) where a model for oil retention in the suction line and 

evaporator was developed and verified. Several researchers have reported an increase of 

pool boiling heat transfer coefficient at low oil concentration and decrease it at higher 

concentration (Monde and Hahne, 1987;Memory et al., 1995). 

As described earlier, the lubricant properties, which modify refrigerant-oil mixture 

properties, play important roles in the heat transfer degradation. Collier and Thome 

(1994) suggested that the flow boiling heat transfer coefficient is affected by: an increase 

of nucleate boiling contribution, a decrease in convective boiling contribution due to high 

local viscosity, and adverse effect of mass transport during evaporation processes. Shen 

and Groll (2005) suggested similar explanations due to foaming, increased wetted 

surface: due to the increased mixture viscosity and surface tension, there should be no 

doubt that the oil solution accelerates the formation of annular flow and enhanced 

nucleate boiling as described above. 

The most prominent flow boiling heat transfer model which has been used widely is the 

superposition model of Chen (1963). The model suggested that the flow boiling heat 

transfer mechanism was governed by nucleate boiling and convective evaporation 

contributions. The nucleate boiling contribution was obtained from Foster-Zuber (1974) 

pool boiling correlation and was considered to be suppressed with suppression factor S. 

The suppression factor was defined as the ratio of mean superheat to the wall superheat 

temperature. The convective evaporation was calculated by Dittus-Boelter (1930) 

equation for single-phase liquid turbulent convection inside tube. The convective 
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contribution was corrected by factor F, a convection multiplier as a function of Martinelli 

parameter.  

Another model which has been applied for conventional channels is asymptotic model of 

nucleate boiling heat transfer (hNcB) and convective heat transfer (hc) contribution in the 

form of: 
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The value of n was defined as 2 by (Kutateladze, 1961) using power law method, while 

Steiner and Taborek (1992) used n=3. On one of the method presented in Collier and 

Thome (1994), Gnielinski (1976) correlation was used to obtain hc and (Gorenflo, 1993) 

type of relationship for hNcB. 

Kandlikar (1990) proposed set of empirical correlations for heat transfer prediction inside 

horizontal and vertical tubes from extensive database of 24 experimental investigations. 

The model utilized non-dimensional convection and boiling number and introduced a 

fluid-dependent parameter Ffl. For the application in mini and microchannel, the 

correlations were modified in Kandlikar and Steinke (2003) considering laminar flow 

occurred in small diameter channels due to the small hydraulic diameter and low mass 

flux commonly employed in microchannels applications. The all-liquid flow Nusselt 

number used in their correlation was given by: 
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where C is dependent on the channel geometry and the wall thermal boundary condition, 

for example, for circular channel under constant heat flux and constant temperature 

boundary condition, the value of C were defined as 4.36 and 3.66 respectively. 

Kattan (1998) proposed a flow pattern-based heat transfer prediction model for horizontal 

tubes as follows: 
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According to them, flow boiling (hwet) occurs on the wetted tube wall perimeter and 

vapor-phase forced convection (hv) occurs on the dry tube wall perimeter represented by 

dry angle θdry. The flow boiling heat transfer can take the form of asymptotic model 

explained earlier and the convective evaporation component is obtained from film flow 

model and local void fraction of Steiner model. The model was further developed by L 

Wojtan (2005) by modifying the expression for the dry angle and extending the model for 

dryout and mist flow regimes. 

The models explained above consider the nucleate boiling heat transfer mechanism takes 

important role in flow boiling heat transfer and suggest this mechanism become more and 

more important as the channel’s diameter decreases as for the case of microchannels. A 

different view on what mechanism governs the flow boiling heat transfer inside 

microchannels was proposed by Jacobi and Thome (2002). They suggested that the 
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transient thin film evaporation in the elongated bubble mode governs the heat transfer in 

microchannels, instead of nucleate boiling mechanism noted earlier. 

Their model was further developed in Thome et al. (2004) with three-zone flow boiling 

model, namely liquid slug, evaporating elongated bubble and vapor slug. The heat 

transfer mechanism includes liquid convection, vapor convection at the presence of dry 

zone and thin film evaporation as the main contributions. The model distinct approach 

considers the transient variation in the local heat transfer coefficient during sequential 

and cyclic passage, in opposite of the all-regime empirical models. Ribatski et al. (2006) 

made comparison of extensive experimental data from 17 different studies of which most 

of them were performed in the test section with hydraulic diameter between 200 µm to 3 

mm. Their results reported the three-zone model as the most accurate models, although 

with 50% of mean absolute error and only predicted 45% of the data within ± 30% error 

band. So far the model only covers heat transfer coefficient prediction in the elongated 

bubble regimes (slug flow) in circular channels; hence further research are needed to 

extent for other flow regimes and channels geometries to develop a comprehensive 

phenomenology-based heat transfer coefficient prediction model. 

Different trends of local heat transfer coefficient versus vapor quality and the effects of 

mass flux and heat flux in flow boiling inside microchannels have been reported until 

date. Analysis by Agostini and Thome (2005) on 13 studies concluded that at low to 

medium vapor qualities, the heat transfer coefficient increase with the heat flux and 

decrease or relatively constant with respect to vapor quality. At the higher vapor quality, 

the heat transfer coefficient decreases sharply with vapor quality and independence on 

heat flux or mass flux. From the literatures studied, there are always positive effects of 
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heat flux to the heat transfer coefficient, except at high vapor quality, while the mass flux 

effect varies from no effect, an increasing effect or a decreasing effect. 

One of the drawbacks in flow boiling inside microchannels is its higher pressure drop due 

to friction increase compared to larger diameter channels. It is essential to develop two-

phase pressure drop models since the pressure drop, together with void fraction, are the 

most important aspects of two-phase flow. In addition, the model is the basic element for 

the design of microchannels heat exchanger devices. Collier and Thome (1994) described 

two main approaches to model frictional pressure drop in two-phase flow inside tubes, 

namely homogenous model and separated-flow model. The homogenous model has been 

used in various forms in the steam generation, petroleum and refrigeration industries for a 

considerable time. The model considers the two-phase flow as a single phase possessing 

mean fluid properties. The two-phase mean viscosity used to determine two-phase 

frictional factor can be obtained from one of the correlations by McAdams (1954), A. 

Cicchitti (1960) or Dukler (1964). 

The separated flow model considers the phases to be artificially segregated into liquid 

and vapor stream. The simplest approach for this model suggests each stream flows at a 

mean velocity. Lockhart-Martinelli (1949) developed separated-flow model which 

proposed an empirical approach to determine the two-phase frictional multipliers Φ2
 as a 

function of parameter X, where, 
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The value of C is a constant which depends on flow characteristic of each phase. For the 

two-phase flow in microchannels, the value of C would be 5 because liquid and gas flows 

are in laminar conditions. Mishima and Hibiki (1996), using data of air-water two-phase 

flow inside circular and rectangular channels with hydraulic diameter range of 1-4mm, 

have proposed a correlation for C: 
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Kawahara et al. (2002) suggested the value of C=0.24 for their two-phase flow of de-

ionized water and nitrogen inside a 100µm diameter microchannel. 

Pressure drop in multi-microchannels showed fluctuations due to flow instabilities in the 

upstream section as addressed in Bergles and Kandlikar (2005). These instabilities may 

results in flow reversals (vapor back flow) which significantly affect the local pressure 

drop. The instabilities were classified into upstream compressible volume instability and 

excursive instability. The former instability is an oscillating flow which may lead to 

CHF, occurred when there is a significant compressible volume at the upstream of the 

heated test section. In two-phase flow inside microchannels the compressible volume 

may be caused by an entrained bubble, flexible hose or large volume of removed gases 

from liquid flow. The excursive instability, also called fundamental static instability, 

occurred in flow boiling inside microchannels due to unique pressure drop characteristics 
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of boiling channels. Both instabilities can be reduced by utilizing throttle valve prior to 

the test sections even though this would require higher pressure drop and fabrication 

considerations. 

Recently, Ribatski et al. (2006) compared 12 well-known frictional pressure drop models 

of various channel diameters with experimental data from 9 different authors of which 

including data from mini and microchannels experiments. According to them, model 

proposed by Müller-Steinhagen and Heck (1986), which were developed for conventional 

channels, showed the best results with 53.1% data were predicted and mean absolute 

deviation of 31.3%. The second best results were shown by homogenous model which 

utilizing two-phase viscosity suggested by A. Cicchitti (1960) together with the model 

proposed by Mishima and Hibiki (1996). They also found that for vapor qualities higher 

than 0.6, all models showed poor prediction results. Their analyses indicated that the 

existing models cannot predict the pressure drop characteristic in flow boiling 

microchannels with reliable results. Furthermore, the models failed to capture the effects 

of flow patterns transitions in microchannels on the pressure drop results.  

2.4 Oil Retention Models 

This section summarizes previous strategy to model oil retention in heat exchangers and 

the limitations with respect to microchannel heat exchanger. One of the remarkable work 

on modeling heat exchangers was presented by Jiang (2003). The author used a segment-

by-segment approach within each tube.This made the model able to account for two-

dimensional non-uniformity of air distribution across the exchanger, to address the 

significant change of properties and heat transfer coefficients.It was able to consider the 
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two-phase regime and heterogeneous refrigerant flow patterns through a tube too. The 

effectiveness-NTU method for cross-flow configuration was also used for combined heat 

and mass transfer problems under dehumidification, by defining equivalent thermal 

resistance and heat capacity. So the air-to-refrigerant heat transfer and the refrigerant 

pressure drop are calculated for each individual segment. On the refrigerant side, each 

segment is provided with an inlet enthalpy, an inlet pressure, and a mass flow rate. The 

predicted conditions at the outlet of the segment are passed as input for the adjacent 

section until the entire refrigerant circuitry was completed. On the air side, the inlet air 

temperature was provided for each segment.  

The work bySchwentker (2005) improved the previous model including the effects of the 

oil on heat exchangers and the development of a specific model for plate tube heat 

exchangers. He included correlations developed specifically for refrigerant-oil mixtures 

to calculate heat transfer coefficients and pressure drop, and he calculated oil retention in 

heat exchangers with the use of correlations for the void fraction.  

A phenomenological model for oil retention in fin-and-tube heat exchangers was 

developed in Cremaschi (2004). The oil retention was predicted within the refrigerant 

circuitry of suction line, the fin-and-tube evaporators, and condensers for refrigerants 

R22, R410A and R134a and lubricant mineral oil, polyolester and polyalkyl glycol pairs. 

They results indicated that the oil retention was at the highest at suction line due to high 

liquid film viscosity of refrigerant-oil mixture and low inertia force of the refrigerant 

vapor. The authors also suggested that the higher mass flux and smaller diameter reduce 

the amount of oil retention. The lubricant property, i.e. higher viscosity found to increase 
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oil retention. Finally, the solubility and miscibility of the pairs also found to has effect on 

the oil retention. 

Cremaschi (2005) and Radermacher et al. (2006) compared void fraction correlations of 

Lockhart-Martinelli, (1949), CISE-Premoli et al. (1971), Chisholm (1972) and Turner 

and Wallis (1965) to be used in his oil retention model. Although all aforementioned 

correlations were developed for pure fluid, the authors include refrigerant-oil mixture 

property, i.e. viscosity and surface tension to account for the influence of the oil. The 

authors indicated that CISE correlation gives the best prediction of oil retention. The 

authors also introduced mixture property corrections to account for refrigerant-oil pair 

miscibility. Their model for evaporator and condenser were verified within 21 and 23% 

relative errors, respectively. Similar method was applied by Choi et al. (2009) in their 

numerical model of oil retention in heat exchangers. Both results are able to predict the 

trends of the oil mass fraction effect to oil retention. Lee (2003) conducted oil retention 

modeling and experiments of carbon dioxide air conditioning system. His model was able 

to predict oil retention in the suction line, evaporator and condenser within ± 20% of its 

experimental data. Void fraction correlation from Hughmark (1962) and Premoli et al. 

(1971) were found to give the best prediction. For application in microchannel heat 

exchangers, void fraction correlation suggested by Kawaharat et al. (2002) seems to be a 

promising candidate, given that the liquid property should be corrected to account for oil 

influence. 

: = 0.03b0.2
1 − 0.97b0.2 
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Diaz et al. (2011) proposed mathematical model for R134a-ester oil inside 3.22 mm 

diameter tube which consider three flow regimes along the tube, namely single phase 

liquid, bubbly and foam flow regions. A void fraction based on homogenous flow was 

used for bubbly flow. The authors divided foam flow region into foam deformation and 

plug flow regions and assumed slip velocity to calculate mixture mass flow rate. Their 

model for mass flow rate of the refrigerant-oil mixture was verified using experimental 

data from Castro et al. (2009) with maximum error of 21%. 

Works on the oil effects on refrigerant distribution in microchannel heat exchanger were 

recently reported by Li and Hrnjak (2013) with the focus on evaporator. The authors 

proposed a model for the refrigerant distribution, which was affected by the oil in 

circulation through the evaporator. The refrigerant distributions were reported to be 

worse as the oil mass fraction increased up to 3%. However more uniform distribution 

were observed at higher oil mass fraction. Further studies by the same authors include 

model and experiments for oil retention in automotive air conditioning system that had a 

microchannel condenser (Jin and Hrnjak, 2013;2014). The model, which used a 

thermodynamic approach originally proposed by Thome (1995), was able to predict the 

oil retention in microchannel condenser within 15% of error with respect to the 
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measurements. The authors suggested that that the lubricant was separated from the flow 

in the condenser header and started to accumulate in the bottom of the channels. 

 

2.5 Oil Retention Experimental Methodology 

A brief summary of available literatures on experimental methodology to measure oil 

retention in heat exchangers is presented next. In order to determine the oil retention 

volume, one option might be to measure the thickness of the oil film created during 

annular flow on the interior wall of the refrigerant tubes. Shedd and Newell (1998) 

proposed a non-intrusive, automated, optical film thickness measurement technique to be 

used with a wide range of fluids and flow configurations. Later, Bai and Newell (2002), 

Shedd and Newell (2004) and Schubring et al. (2009) used a similar approach to describe 

the characteristics of annular two-phase viscous flow of air and water or air and 300 SUS 

Alkybenzene oil. Extensive experimental flow visualization in horizontal and vertical 

pipes was required and the oil film thicknesses were correlated with the oil mass flow 

rates, vapor velocity and pipe diameter. Shear stress correlations were developed and 

verified with the experimental data. Unfortunately this technique requires optical access 

to the refrigerant flow and it might not be feasible for the small tubes in microchannel 

heat exchangers. The flow regime during refrigerant condensation in the actual air 

conditioning applications of the microchannel heat exchanger is mostly annular and the 

oil film thickness is generally not uniform along the heat exchanger refrigerant path. Oil 

retention is affected by the flow pattern of the refrigerant-oil mixture because the 

magnitude of the forces exerted on the fluid element depends on the type of motion of the 
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fluid, relative interfacial surface area between the two phases, and velocity slip ratio 

between gas and liquid phases. 

Cremaschi et al. (2005) measured the oil retention in fin-and-tube heat exchangers of air 

conditioning and refrigeration systems. In the study, oil retention was measured for both 

evaporators and condensers at different refrigerant mass flow. An increase of OMF 

promoted a drastic change of oil mass accumulated in the heat exchangers The authors 

reported that an increased OMF up to 5 wt%, the mass of oil held up in the evaporator 

and suction line was about 25% of the total mass of oil initially charged into the 

compressor for R410A/POE case. The corresponding scenario for R134a/POE was 15% 

of the oil initially charged into the compressor was held up in the evaporator and suction 

line and an additional 15% was retained in the condenser.  Clearly the oil retention was 

depended on the OMF, which should be chosen as one of the control variables during the 

measurement of oil retention for the oil retention research.  
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Figure 2.1: Example of oil retention volume, expressed in percentage of oil volume 

charged inside the compressor, in components of an R134a/POE refrigeration 

system (reprinted, by permission, from Cremaschi (2004)) 

 

Figure 2.1 presents the oil retention in each component as a percentage of the total oil 

volume initially charged into the compressor fromCremaschi (2004). One could observe 

that OMF and refrigerant flow rate are still the controlling variables for oil retention. 

There is an additional interesting fact that could be learned from the data provided in the 

figure. While the system experienced a large amount of oil retention in the suction line, a 

certain amount of oil retention was also found in the condenser. Overall the fin-and-tube 

evaporator had a small amount of oil retention, that is, only a few percentages with 

respect to the oil volume charged into the compressor. Since the proposed research 

focuses on microchannel heat exchangers used as condensers and evaporators,  
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Figure 2.1 provides order of magnitude estimation for the maximum amount of oil 

retention that we would expect in microchannel heat exchangers. The proposed test 

apparatus should be able to measure to this level of accuracy to satisfy the objectives of 

the research. Considering that microchannel heat exchangers have between 30 to 50% 

lesser internal volume than fin-and-tube heat exchangers with similar heat exchange 

capacity, the bars in the above figure clearly indicate that weighing the entire coil to 

detect the presence of oil is not a viable option for microchannel heat exchangers. If we 

consider this approach for a moment we can quickly conclude that we will end up with 

the technical challenge of measuring few grams of oil residual inside a coil that might 

weigh several kilograms. Both uncertainty of the weight measurements as well as 

repeatability of the oil retention measurements will be significantly compromised due to 

(i) the fact that the heat exchanger must be physically disassembled from the rest of the 

system before it can be weighted, (ii) refrigerant must be recovered from the heat 

exchanger before the weight measurements could take place and during the refrigerant 

recovery phase some unknown amount of oil might be carried out from the heat 

exchanger and migrate with the refrigerant; (iii) the accuracy and hysteresis of HVAC&R 

laboratory scales might be simply too high to meet the requirements. For these reasons 

measuring the oil retention using the difference of the weights between the dry coil and 

the coil with residual oil in it was considered an incompatible approach with the 

objectives. 
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CHAPTER III 

3 Experimental methodology 

3.1 Introduction 

The oil retention experiments were conducted using pump-boiler type closed loop 

refrigeration system in which the refrigerant was circulated by using a gear pump. Oil 

was injected in the refrigeration loop by using a variable frequency drive (VFD)-

controlled gear pump and the oil was injected at two locations, namely the inlet and the 

outlet of the microchannel heat exchanger (referred to as test section in this dissertation). 

To calculate the oil retention in the microchannel heat exchanger, the oil injection flow 

rate injected at the inlet and outlet of the test section and the time that the oil was 

observed in the sight glass installed downstream the microchannel heat exchanger for 

each injection were measured. The amount of oil retention in each test was calculated 

from numerical integration of the oil injection flow rate over the corresponding time. The 

amount of the oil retention at the microchannel heat exchanger was obtained from the 

difference between oil retained during oil injection at the inlet and the outlet of the 

microchannel heat exchanger. Preliminary tests of both oil separators were performed to 

determine the amount of oil-bypassing the oil separators by using the refrigerant 

sampling method specified by the ASHRAE Standard 41.4 (1996).  
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During the period for the oil injection at the inlet of the test section, the heat transfer 

capacity and the refrigerant-side pressure drop of the microchannel heat exchanger were 

measured. The heat transfer capacity was experimentally measured from the air side of 

the heat exchanger. Calibration tests were performed for the same system running with 

only refrigerant at the same flow rates and saturation pressure at the inlet of the 

microchannel. The results were then used as baseline data of heat transfer capacity and 

pressure drop of the test section when no oil was present in the system, i.e., in oil free 

conditions. The heat transfer rate and pressure drop during the tests with oil were then 

compared to that of the corresponding baseline data. Because the baseline data in oil free 

conditions and the experimental data with oil shared same total mixture flow rate, i.e. the 

refrigerant flow rate for the baseline data was equal to the mixture (refrigerant plus oil) 

flow rate for the experiments with oil. Same saturation pressure, same inlet refrigerant 

temperature, and same air side inlet temperature and velocity were maintained between 

the experiments with oil and the reference baseline tests without oil. The results of the 

comparison provided heat transfer factors and pressure drop factors that isolated the 

effect of oil on the heat transfer rate and pressure drop of the microchannel heat 

exchanger.  

3.2 Microchannel Heat Exchangers 

The study used two different louvered-fin aluminum microchannel heat exchangers; one 

type for the condenser and one type for the evaporator. All heat exchangers were 

commercially available and they were used in commercially available heat pump 

systems. The following section describes the heat exchangers and how they were 

installed in the air tunnel of the experimental test apparatus. 
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3.2.1 Microchannel Condenser That Was Tested in the Research 

The test section in the condenser tests was a 2-pass, 1.2 x 0.9 m (48 x 36 inch) aluminum 

louvered-fin type heat exchanger. A schematic figure is given in Figure 3.1. Each 

microchannel tube had four rectangular ports with a hydraulic diameter of 0.07 inch (1.7 

mm). The manufacturer data of the heat exchanger were not available, and the 

measurements were conducted at OSU research laboratory and they were summarized in 

Table 3-1. The internal volume of the condenser was about 2,436 cm
3
 (that is, 2.4 liters or 

149 inch
3
) and it was calculated based on the outside envelope dimensions and an 

estimated wall thickness for the headers. The microchannel tube internal volume was 

calculated by measuring the port internal diameter and the number of ports in each 

microchannel tube. These measurements were taken from two tubes at the top and bottom 

of the condenser, which served to hold the fins but were open, that is, not connected to 

the inlet and outlet vertical headers. We assumed that the internal geometry of these two 

tubes was representative of the internal geometry for all microchannel tubes of the 

condenser. This assumption was reasonable because (i) typically the same type of tubes 

are brazed altogether with the fins during a stage of the manufacturing process of a 

microchannel condenser and (ii) the tubes visually appeared to be of the same type, same 

dimensions, and of the same material. 

The two passes sections of the heat exchanger were determined by using infrared camera 

picture of the inlet header during preliminary tests. As expected for a condenser, the first 

pass had higher number of tubes than the second pass due to the presence of vapor phase 

at the beginning of condensation. With reference to Figure 3.1, the numbers of tubes on 

each pass were 69 for the condenser section at the top and 32 for the subcooler section at 
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the bottom. The manufacturer did not provide the internal dimensions of the 

microchannel heat exchanger used in the test section. The dimensions were estimated for 

analyzing the geometry effects and for modeling. The exact position of the partition 

inside the header was not known but it was found by using an infrared image of the 

header, as depicted in Figure 3.2. The superheated temperature of the refrigerant vapor in 

the first pass can be easily differentiated at the partition from the saturated temperature of 

the two-phase refrigerant at the outlet of the second pass.  

 

Figure 3.1: Schematic of the microchannel condenser tested in the research 
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Table 3-1 Dimensions of the microchannel condenser that was tested in the present 

study 

Description Measurement* 

Coil length (L) 48 in. (1.22 m) 

Coil height (H) 35.7 in. (0.90 m) 

Number of tubes in the first pass 69 

Number of tubes in the second pass 32 

Tube and Fin Material Aluminum 

Fin Type Louvered 

Number of refrigerant passes Two (condenser top 

& subcooler 

bottom) 

Outer diameter of each header 1.18 in. (30 mm) 

Total height of each header 35 in. (0.89 m) 

Height of the condenser inlet header, Hc ∼23.8 in (0.605 m) 

Height of the subcooler outlet header, Hs ∼11.2 in (0.285 m) 

Distance of the inlet copper tube from the bottom of the coil 21.25 in. (0.54 m) 

Outer diameter of the inlet copper tube. 5/8 in. (15.88 mm) 

Distance of the outlet copper tube and the bottom of the coil 1.5 in. (38.1 mm) 

Outer diameter of the outlet copper tube 3/8 in. (9.53 mm) 

Number of ports (microchannels) in each tube 4 

Hydraulic diameter of each port in the tube ~0.067 in. (1.7 mm) 

Aspect ratio of each port in the tube (width/height) 6.125 

Tube depth in the direction of air flow, td 1. in (25.5 mm) 

Microchannel tube spacing, space between adjacent tubes, ts 0.291 in. (7.4 mm) 

Microchannel tube thickness, tt  0.055 in. (1.4 mm)  

Fin density or pitch ~18 fin per inch 

Fin spacing, free space between adjacent fins ~0.05 in. (1.4 mm) 

Fin thickness ~0.002 in. (0.07 

mm) 

number of louvers on the fin 18 

Louver length ~0.252 in. (6.4 mm)  

louver height from the fin plane ~0.008 in. (0.2 mm) 

Louver pitch 0.889 louvers per 

mm 

Louver angle measured from fin plane ~30° 

Total internal volume of the condenser 2,436 cm
3
 (149 

inch
3
) 
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*Note: The dimensions of the microchannel heat exchanger sample were not provided by 

the manufacturer. The dimensions were estimated by conducting a limited number of 

measurements on the sample at Oklahoma State University Research Laboratory. 

 

 

Figure 3.2: Use of an infrared image to locate the partition inside the header of the 

microchannel condenser (Deokar, 2013) 
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3.2.2 Microchannel Evaporator That Was Tested in the Present Study 

A louvered-fin aluminum microchannel heat exchanger was experimentally tested as 

evaporator and it is referred throughout this paper to as evaporator A. Evaporator A was a 

single pass heat exchanger as shown schematically in Figure 3.3. The evaporator was 

installed in a cross flow configuration relative to the air flow direction. The dimensions 

of the evaporator are given in Table 3-2. 

 

Figure 3.3: Microchannel evaporator A: (top) actual picture of the first heat 

exchanger, A, tested in the present study and (bottom) schematic of the heat 

exchanger A with refrigerant flow direction during the evaporator tests 
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Table 3-2 Dimensions of the Microchannel Heat Exchanger-Evaporator That Was 

Tested in the Present Study 

Parameter Evaporator A* 

Material Aluminium 

Fin type Louvered 

Number of tube 98 

Height (H) 0.438 m (17.2 in) 

Width (W) 0.884 m (34.8 in) 

Number of slab / passes 1 

Sectional cross flow area of one entire tube 

(Aflow) 

12.6 mm
2 

(0.020 in
2
) 

Wetted perimeter in one entire tube (Pwet) 50.72 mm (2.00 in) 

Hydraulic diameter of one entire tube (Dh) 1.4 mm(0.055 in) 

Microchannel tube height 1.4 mm (0.055 in) 

Microchannel tube depth, in the direction of 

air flow, or depth of one microchannel heat 

exchanger slab 

25.4 mm (1.00 in) 

Microchannel tube spacing, space between 

adjacent tubes 

7.44 mm (0.29) 

Microchannel tube thickness 0.35 mm (0.014 in) 

Fin Pitch 0.79 fin/mm (20 fpi) 

Fin Height 7.44 mm (0.29 in) 

Fin Type Louvered 

number of louvers on the fin 16 

Louver length 6 mm (0.236 in) 

louver height from the fin plane 0.2 mm (0.008 in) 

Louver pitch 0.89 n.louv./mm 

(22.6 n.louv./in) 

Louver angle measured from fin plane 30 deg. 
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Inlet header diameter (measured as envelope 

diameter) 

31.75 mm (1.25 in) 

Outlet header diameter (measured as 

envelope diameter) 

31.75 mm (1.25 in) 

Total internal volume of the heat exchanger 1,890 cm
3
 (115 in

3
) 

*Note: The dimensions of the microchannel heat exchanger sample were not provided by the 

manufacturers. The dimensions were estimated by conducting a limited number of 

measurements on the sample at Oklahoma State University Research Laboratory. 
#
the sectional cross flow area, Aflow, and the wetted perimeter, Pwet, for one entire tube were 

provided by the manufacturer of this microchannel heat exchanger. The hydraulic 

diameters for microchannel evaporators were calculated as Dh = 4 Aflow/Pwet. 

 

3.3 Experimental Setup 

The microchannel heat exchangers were installed inside a thermally controlled enclosure 

and the inlet air psychrometric conditions were regulated by the large-scale climate 

control psychrometric chamber (Cremaschi and Lee, 2008). Pressure transducers and 

inline thermocouples were installed to monitor the refrigerant conditions along the test 

section and a dedicated differential pressure transducer was used to measure the 

refrigerant side pressure drop. The heat transfer capacities of the microchannel heat 

exchangers were measured from the air side heat transfer and the air flow rate measured 

and calculated according to ANSI/ASHRAE 41.2 Standard (1987). Heat balance tests 

were conducted when the refrigerant outlet was in subcooled condition for the condenser 

tests and in superheated vapor conditions for the evaporator tests. The error of heat 

transfer capacities measured from the refrigerant side and the air side were within ±5%. 
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3.3.1 Psychrometric chamber used to control the inlet air streams 

For the present study a large-scale psychrometric chamber (shown in Figure 3.4) was 

used to control the temperature, humidity, and velocity of the air entering the 

microchannel heat exchangers during the oil retention experiments. The psychrometric 

facility consisted of two adjacent air conditioned rooms that were controlled over a wide 

range of pshychrometric conditions with and without a live thermal load in it; one room 

artificially reproduced the outdoor climate conditions and it was used for the present 

study. 

 

Figure 3.4: Psychrometric chamber at Oklahoma State University (Deokar, 2013) 

The climate control psychrometric chamber, was fairly large with sufficient space to 

accommodate the microchannel heat exchangers for air conditioning, coolers, or 

refrigeration systems. The temperature range of the room was from 10°F to 130°F (-12° 
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to 54°C), and the relative humidity range was from 10% up to 95% R.H. In the chamber, 

air was first conditioned to the desired psychrometric states and then circulated in the 

rooms through an under-floor plenum displacement ventilation system. Our previous 

findings confirmed uniform temperature and velocity in the room, which had dimensions 

of about 20 ft by 21 ft floor area and 16 ft ceiling height (6 m x 6.4m floor area and 5 m 

ceiling height). More details about the facility design, construction, and specifications can 

be found in Cremaschi and Lee (2008). 

The chamber was fully operational with a total of 256 thermocouples, 32 high accuracy 

RTDs, and 96 analog inputs (voltage and/or current). All sensors were sampled at a rate 

of 2 seconds and the data were processed in real time. To maintain the facility at the 

desired set points, adjustments were made automatically by using 192 analog outputs that 

controlled different electric motors, heaters, variable frequency drives, mixing valves, 

and pumps.  

The psychrometric chamber allowed controlling the air flow conditions independently 

from the refrigeration side conditions. The refrigeration system serving the test section 

was build outside the chamber, in a large indoor high bay area of a basement of an air 

conditioned building. The temperature of the high bay area was fairly constant 

throughout the year thus the errors due to electrical noise from the sensor output signals 

and due to temperature variations of the electronics was minimized. Two refrigerant 

pipelines connected the test set up with the microchannel heat exchangers inside the 

chamber, as shown in Figure 3.5, and more in detail in Figure 3.8 for the condenser tests 

and in Figure 3.11 for the evaporator tests.  
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Figure 3.5: Layout of the oil retention test set up in the large scale psychrometric 

chamber (Deokar, 2013) 

 

The psychrometric room was designed so that a slow motion of the air was produced with 

air ascending in the room from a perforated floor. The displacement ventilation system of 

the chamber consisted of a conditioning loop, an under floor air plenum supply, and a set 

of adjustable ceiling filters.  Air was circulated through the conditioning loop first by 

using variable speed fans. The air flow rate was adjusted with the fans and a set of 

electro-mechanical dampers were used to adjust the supply air to the room. With 

reference to Figure 3.5 the first process the air goes through once inside the conditioning 

loop was cooling and dehumidification through water-to-air cooling coils. The coils’ 

surface temperature and capacity was controlled by a variable speed pump, electronic 

mixing valves and bypass valves. After being cooled and dehumidified, the air stream 
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was guided to a series of electric resistance heating coils, which raised the air temperature 

up to the required ambient room temperature for the tests. The electric resistance heaters 

allowed for temperature control and an immediate response time.  

3.3.2 Oil Retention Measurements in the Microchannel Condenser 

Initially a test apparatus was designed and constructed based on a vapor compression 

cycle, that is, with a compressor. However, it was changed later to a pump-boiler cycle 

by replacing the compressor with a gear pump and by adopting a low temperature chiller 

to liquefying the refrigerant before entering the pump. The pump-boiler test apparatus 

provided greater flexibility to control the mass flux, pressure, and degree of superheat at 

the inlet of the condenser or at the outlet of the evaporators when oil was introduced in 

the microchannel heat exchangers. This high degree of control of the refrigerant side 

operating parameters during the experiments was key in order to identify and isolate the 

effects of oil retention on the heat transfer rate and refrigerant side pressure drop. In other 

words, the pump allowed to conduct initial tests without oil and to conduct tests with oil 

at the same total mass flux, saturation pressure, and degree of superheat. Even small 

variations of these three parameters could potentially skew the experimental results and 

need to be accounted for eliminating potential systematic errors during the data reduction 

and analysis. In addition, the oil management with the vapor compression based test set 

up was very difficult to achieve because the balance of oil between the heat exchangers 

and the compressor was depended on pressure differentials. Controlling mass flux, 

saturation pressure, and degree of superheat while simultaneously adjusting for the 

pressure differentials in the test apparatus was not feasible in our laboratory. In time, the 

oil introduced in the heat exchangers during the experiments tended to gradually and 
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slowly accumulate in the compressor and during shutoff and startup periods the 

compressor either was flooded with oil or run dry for several minutes. Both scenarios led 

to compressor mechanical failure. The pump boiler test set up eliminated this issue and a 

gear pump was able to manage the oil and control the refrigerant side operating 

parameters at the same time of the actual heat transfer experiments. However, it should 

be emphasized in here that the pump boiler test set up required additional auxiliary 

equipment to cover the range of testing conditions of the present study. This equipment 

will be described later in the manuscript. While an in depth description of the original 

vapor compressor based test set up is out of the scope of the present study, a brief 

summary about its limitations and weakness is reported next to document the lessons 

learned during the first part of this research.  

3.3.2.1 Brief description of the initial vapor compression based test apparatus 

In the initial vapor compression based test apparatus there were two main circuits within 

which the oil circulated. A detailed description of the system was discussed in Deokar 

(2013). The first circuit for the oil flow consisted of the test section, which consisted of 

the port for oil injection, the microchannel heat exchanger, the expansion valve, the 

evaporator, and oil separators of the oil extraction device. Oil was released to this circuit 

at the injection port and extracted from this circuit at the extraction device. The second 

loop for the oil flow consisted of a compressor, a discharge oil separator (oil separator no. 

2 in Figure 3.6), and the oil return line to the compressor suction. The schematic of the 

initial (compressor-based) test facility is shown in Figure 3.6. A scroll type compressor is 

component (1). An auxiliary condenser (3) was placed in parallel with the test section, 

that is, with the microchannel heat exchanger. The metering valves (9-a) and (9-b) 
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enabled different mass flow rates through the microchannel heat exchanger by redirecting 

some flow through the auxiliary condenser. The pressure transducers and inline 

thermocouples monitored the refrigerant conditions, and a differential pressure transducer 

measured the pressure drop across the microchannel heat exchanger during the oil 

retention tests. The liquid refrigerant from both condensers then expanded in one 

expansion valve (component (8)) before going to the evaporator (component no. (7)). The 

refrigerant oil separator (2) was used at the discharge of the compressor to prevent the 

entrained oil droplets in the refrigerant from leaving the compressor and flowing to the 

test section. A metered amount of oil was either injected upstream (port-A) or 

downstream (port-B) of the microchannel heat exchanger using appropriate valves (10-a) 

and (10-b). The oil extraction device was used to separate the oil from the vapor 

refrigerant and for measuring the oil volume. The device used an oil tank with vertical 

sight glass and two custom made helical and coalescent oil separators in which the oil 

floating valves were removed. The volume of oil extracted by the oil extraction device 

into the tank was then measured using the graded sight glass tube and, initially for 

redundancy, an electric oil level capacitance probe sensor. 
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Figure 3.6: Schematic of the initial compressor based test facility designed and 

constructed for the research – later it was modified and upgraded to a pump boiler 

based test facility (Deokar, 2013) 

The oil was metered to the test section through the injection port from the oil reservoir 

and by using an oil injection gear pump. Some of the oil was retained in the microchannel 

condenser and in the evaporator downstream the condenser. Then oil was extracted at the 

oil separator, which was a coalescent oil separator, and the oil was transferred to the oil 

level tank. In the process of oil extraction, the oil separator did not extract 100 percent of 

the incoming oil because even if it had close to 100 percent efficiency, the oil separator 

was not ideal. Thus, the oil that slowly escaped the oil separator was potentially retained 
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in the accumulator installed on the suction line of the compressor. In the compressor 

circuit, an unknown amount of oil was lost by the scroll compressor, along with the 

discharged refrigerant and it was (at least theoretically) trapped and separated by the 

discharge oil separator that consisted of a helical and coalescent oil separators installed in 

series along the direction of the refrigerant flow. Again, the process of oil separation at 

the discharge oil separators was not ideal and an unknown, small but not measured 

amount of oil escaped the discharge oil separators and it circulated to the microchannel 

heat exchangers under testing. In simple words, the compressor acted as component that 

systematically introduced an unknown, uncontrolled, and potentially unstable amount of 

oil into the microchannel heat exchangers that were to be tested for oil retention. We 

were not able to eliminate this systematic error by using the compressor based 

experimental apparatus and only a pump based experimental apparatus was able to 

eliminate this source of uncertainty for the oil mass fraction circulating inside the 

microchannel heat exchangers during the heat transfer experiments. 

Figure 3.7 shows an example of the refrigerant side operating conditions during an oil 

retention tests and the main thermodynamic state points of the refrigerant are plotted on a 

P-h diagram. The cycles in the figure is for ef� = 0 wt.% (that is, no oil in the test 

apparatus) and the figure shows two cycles overlapping: the one in solid red line, which 

is the cycle performed by the refrigerant in the pump boiler test apparatus, and the one in 

dashed green line, which is the cycle performed by the refrigerant in the compressor 

based test apparatus. The difference between the maximum and minimum pressures 

observed was 235 psi (1620.3 kPa). The fluid in the compressor based cycle experienced 
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a large pressure drop in the expansion valve in addition to the minor pressure losses in the 

heat exchangers and pipelines. 

 

Figure 3.7: P-h diagram of Vapor Compression cycle and Pump-Boiler systems 

(Deokar, 2013) 

In the vapor compression cycle based test apparatus there were two main additional 

issues associated with the control of the refrigerant operating parameters during the tests 

and the simultaneous oil management between compressor, (which needed its own 

lubrication at all times), and the rest of the components of the test apparatus. As 

previously mentioned, one circuit for the flow of oil consisted of the test section, that is, 

the port for oil injection (port-A or port-B), the microchannel heat exchanger, the 

expansion valve, the evaporator, and the oil separator 2 of the oil extraction device. The 

second oil flow circuit consisted of the compressor and the its discharge oil separator (oil 

separator 1) and the oil return line to the compressor suction in which an adjustable oil 

metering valve was installed. An oil sight glass was also installed next to the compressor 
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housing and directly connected to the compressor housing to visually monitor the oil 

level inside the compressor. Unfortunately, it was not possible to completely eliminate oil 

traveling from one circuit to the other. While an unknown amount of oil that traveled to 

the test section could potentially result in a systematic error for determining the actual 

OMF in the microchannel heat exchangers under experimental investigation, a lack of oil 

or too much oil in the compressor caused mechanical failure. During the first year of the 

current study and after few tests with microchannel condensers, three compressors 

experienced mechanical failure and, upon further investigation, the failure of the 

compressors were due to severe bearings wear. After reaching steady state conditions, 

typical symptoms of imminent compressor failures were identified as (a) compressor 

current suddenly increased by over 50%; (b) compressor discharge temperature suddenly 

increased by about 50°F (27.2°C) without any external perturbation to the test setup; 

and/or (c) the oil level in the sight glass installed next to the compressor decreased below 

minimum level for proper lubrication. These symptoms occurred after several hours of 

run and, in one case, after only few hours of operation of the compressors in our test 

apparatus. It should be noted in here that the compressors were always run within their 

envelope operating design conditions specified by the manufacturer. Once a compressor 

stopped, any POE oil recovered from the compressor housing appeared dark in color, 

with small (but visible) metal particles in it. We opened one compressor and took a closer 

look at its interior and we observed that its bearings were visibly wear out. These 

observations indicated that oil that was originally charged inside the compressor, was 

carried over with the refrigerant outside the compressor housing at some point in time 

during the experiments. The compressor then run without lubricant in it for a certain 
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period until ultimately failed. Because the compressors were used in an non-conventional 

vapor compression system having multiple auxiliary components in parallel 

configurations and having long lines and multiple intermediate valves, any attempts to 

compensate for oil escaping the compressor was not successful in our compressor based 

test apparatus. In addition, it was not possible to isolate and quantify the uncertainty in 

the OMF due to the amount of oil that instantaneously travelled (and could be potentially 

retained!) to the microchannel condensers. Thus, we decided to switch to a pump boiler 

based test set up in order to eliminate the issues of contamination of the compressor oil in 

the test section and to control the refrigerant side parameters during the oil retention tests 

and the heat transfer experiments. The pump boiler loop was successfully utilized for 

testing the condenser and the evaporators and it is described in the next section.  

 

3.3.2.2 Pump-boiler based test apparatus 

The schematic of the pump-boiler loop of the experimental setup for the oil retention 

measurements in microchannel condenser is shown in Figure 3.8. The experimental setup 

included three main systems, namely a refrigeration loop, an oil injection system and an 

oil extraction system. A laboratory small-scale pump-driven refrigerant loop was 

constructed to control the refrigerant saturation temperature and the refrigerant flow rate 

to the test section. From the pump, the refrigerant flowed through a Coriolis mass flow 

meter and then it was directed to tube-in-tube evaporator coils to achieve superheated 

vapor conditions at the inlet of the oil separators. The refrigerant should be in 

superheated condition to allow the oil separation from the refrigerant and oil mixture at 
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the oil separators. The evaporator coils were water-heated heat exchangers in which hot 

water was supplied from a large hot water tank. From the evaporator coils the refrigerant 

circulated through the refrigerant line to the oil separators. The refrigerant was then 

directed to a plate heat exchanger that worked as superheater to control the degree of 

superheat of the refrigerant entering the test section. From the test section, the refrigerant 

mixture was circulated through a large plate-type heat exchanger acting as post-

condenser and subcooler. At the outlet of the subcooler, the refrigerant was liquid and it 

was fed back to the pump. The required system pressure and temperature were controlled 

to the steady-state conditions before each injection test by regulating the temperatures 

and flow rates of the water in the evaporator coils and of the air stream entering the 

condenser. In addition, a hydraulic accumulator was installed in the refrigerant line to 

stabilize the pressure during the oil injection and extraction processes. 

The oil injection system consisted of an oil reservoir and a gear pump. Before the 

injection, the oil inside the reservoir was heated by an electric flexible band heater to 

adjust the temperature of the oil close to the temperature of the refrigerant entering the 

test section. Refrigerant vapor, taken at high pressure, was used to pressurize the oil at the 

top of the oil reservoir and to assist the oil pump during the injection of the oil into the 

test section. The temperature and pressure of the oil reservoir were measured to 

determine the solubility of refrigerant in the oil that was released to the test section. This 

solubility was also experimentally measured with random periodic samples taken from 

the oil reservoir and analyzed according to the ASHRAE Standard 41.4 (1996). From the 

oil reservoir, oil was metered into the test section using a variable speed gear pump 

coupled by a variable-frequency drive. Additional fine tuning of the oil flow was 
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provided by a bypass metering valve. A Coriolis mass flow meter was used to measure 

the injected oil mass flow rate. When the oil was released to the test section, it formed a 

mixture with refrigerant and circulated in the refrigerant loop through the plate-type heat 

exchanger, refrigerant pump, and the evaporator coils. Then the oil entered the oil 

separators where it was separated from the refrigerant stream and extracted from the 

refrigerant loop. 



60 

 

Figure 3.8: Schematic of the experimental setup for condenser tests (modified from 

Deokar (2013) 

The oil extraction system consisted of two customized refrigerant oil separators that were 

placed in series, a mass flow meter and oil tanks as depicted in Figure 3.9. The first oil 

separator was a helical-type separator of large capacity and it separated the main oil 

stream from the refrigerant flow. A second oil separator was a coalescence-type separator 

installed downstream to remove all residual oil, if present. Both oil separators originally 

had internal floating valves in the oil compartment but the valves were removed to 

promote stable and continuous flow of the oil that was extracted from the refrigerant 
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loop. A sight glass was mounted in the oil line of the oil separators to visually observe the 

extracted oil flow. A special refrigerant dye was mixed with the oil to help the detection 

of the oil and visualization of the flow. An auxiliary heat exchanger was installed after 

the sight glass to further subcooled the refrigerant dissolved in the extracted oil. This 

subcooler improved the stability of the measurements of the mass flow rate for the 

extracted oil, which were done my using a Coriolis mass flow meter. The extracted oil 

were then stored in two oil tanks equipped with level sight glass indicators. During the 

injection tests, as the extracted oil filled the tanks, the refrigerant dissolved in the oil was 

continuously vent out and the refrigerant vapor was redirected through a series of 

pressure-equalization lines to the inlet of the auxiliary evaporator coils. The pressure 

equalization lines were critical to ensure that there was not any back pressure build up 

inside the oil tanks. Thus, the oil flow extracted from the oil separators continuously 

flowed down to the oil tanks because the back pressure inside the oil tanks was controlled 

to below the pressure inside the oil separators. 
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Figure 3.9: Oil extraction system (left) and mass balance at the oil extractor (right, 

the oil extractor consisted of the two oil separators connected in series, as indicated 

inside the red dashed square on the left side of the figure) 

The mass balance of the oil separators depicted in Figure 3.9 can be expressed as: 

g1h = gAh + gUh  3-1 

 

Where, 

g1h  = mass flow rate of refrigerant and oil mixture approaching oil separators (lb/hr) 

gAh  = mass flow rate of refrigerant and oil mixture extracted from oil separators (lb/hr) 

gUh  = mass flow rate of refrigerant and oil mixture bypassing oil separators (lb/hr) 

The extraction efficiency, ε, represents the ratio of the extracted over the entering mass of 

the refrigerant and oil mixture in oil separators, that is,  
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L = gh Agh 1 
3-2 

 

The efficiency was determined through a series of preliminary tests on the oil separators 

in which the entering mixture had oil mass fraction ranging from 1 to 5 wt.% and it 

circulated through the oil separators at various pressures and flow rates. The oil 

concentration in the exiting mixture was measured by using the ASHRAE Standard 41.4 

(ASHRAE, 1996) during these preliminary experiments and the efficiency of the oil 

separators, estimated by using Eq. 4-2, ranged from 95 to 99%. ε was depended on the 

concentration of oil in the mixture entering the separators and it decreased to 95% if the 

OMF was 1 wt.% or below. The oil separators efficiency was also checked periodically 

during the tests to confirm that no oil (or that a very small but known amount of oil) was 

bypassing the oil separators. Even when small, the mass of the oil bypassing the oil 

separator was accounted for with the oil separator extraction efficiency by substituting 

equation 3-2 into 3-1 and it resulted as follows: 

gh U = &1 − L- × gh 1 3-3 

 

The oil retention experiments were conducted by using this pump-boiler type loop, in 

which the refrigerant was circulated by a gear pump. As previously mentioned, oil was 

injected in the refrigerant loop by using a variable speed gear pump and the oil was 

purposely injected at two locations, namely the inlet and the outlet of the microchannel 

condenser (referred to as test section in this manuscript). The principle of the oil retention 

measurement procedure is illustrated in Figure 3.10. The amount of oil injected and 

extracted in the figure was measured from the injection and extraction mass flow rates. 
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The amount of refrigerant dissolved in the oil was taken into account based on solubility 

data from Cavestri and Schafer (2000) for given pressures and temperatures measured in 

the oil reservoir. At the time to, oil was released to the inlet of the microchannel heat 

exchanger. The oil flowed through the test section and reached the oil separators where it 

was extracted from the system. The extracted oil was visually detected at the oil line sight 

glass at time t1 and, at the same time, a regular step up increase of the oil flow rate 

measured from the Coriolis flow meter installed at the bottom of the oil separators in 

Figure 3.9 was recorded. The injection and extraction flow rates became stable and 

steady at time t2. It should be noted that refrigerant was also present in the liquid mixture 

flow that was extracted from the refrigerant loop at the oil separators location because 

both refrigerants R410A and R134a are soluble in POE oil. The solubility of the 

refrigerant in the oil was account for in order to calculate the net amount of POE oil 

present in the extracted oil rich liquid mixture of POE oil and refrigerant. It should be 

also emphasized that the extractor efficiency of separation was considered in order to 

obtain the total amount of oil that entered the oil extractor. From time t2 to time t3, the 

average difference between the oil mas injected and the oil mass extracted resulted in the 

oil mass that was held up in the microchannel condenser plus all connecting pipelines 

downstream the test section and in between the injection port and the oil separators, Ma. 

With reference to Figure 3.10, the amount of oil Ma was measured from the time integral 

of two oil flow rates as follows: 

f)PlbkS = l gh �mnop*oq@�mso* %;*uv*!
*w

− l gh o�*)p*oq@;�s (o%))*;(uv*!
*w

 3-4 
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A similar procedure was then conducted for the injection test at outlet port of the test 

section, and the mass of oil retained in the pipelines downstream the test section was 

measured by using the time integral shown in Equation 3-5: 

fxPyz�S = l gh �mnop*oq@;{*so* %;*uv*!|
*w|

− l gh o�*)p*oq@;�s (o%))*;(uv*!|
*w|

 3-5 

Where the symbols t’0 and t’3 indicates the new times at which the oil was released to the 

outlet port of the test section and at which the flow rate became stable and steady for the 

injection test at the outlet port of the test section. The average difference between the oil 

mass injected and the oil mass extracted during the injection test at the outlet port of the 

test section was the oil mass retained in the connecting pipelines between outlet injection 

port and the oil separators, Mb. The difference between the two amounts of oil masses 

resulted in the oil mass that was retained in the test section, Moil,retention, that is: 

 

Oil retention mass in 

the test section 
= 

Oil retention mass in 

the test section plus in 

the downstream 

pipeline 

- 
Oil retention mass in the 

downstream pipeline 
 

 

Or, according to the variables defined in Eq. 3-4 and 3-5, it yielded 

 

Moil,retention [ lbm ] = Ma [ lbm ] - Mb  [ lbm ] 3-6 
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Figure 3.10: Oil retention calculation: (a) injection at inlet of MCHX; (b) injection 

at outlet of MCHX 

At the end of each test, the system was flushed by running the refrigerant loop 

without oil for at least an hour and by collecting the residual oil in the oil extraction 

device. During this flushing cycle, the refrigerant in the test section was controlled to 

near saturated liquid conditions and the liquid refrigerant in the entire test section mixed 

with the residual oil. Since refrigerants R410A and R134a were soluble and completely 

miscible with POE oil when they were in liquid phase, the liquid refrigerant gradually 

picked up the oil and cleaned the main microchannel tubes of the test section. Two sight 

glasses were installed before and after the oil separators to detect the presence of any 

residual oil in the refrigerant loop during the flushing cycles. To facilitate the oil 

detection in the sight glasses, even when oil was in small traces, a fluorescent dye was 

added to the oil. When traces of oil were present in the refrigerant loop, the flow at the 

sight glasses appeared of yellow color with respect to transparent color when no oil was 

present inside the loop. The flushing cycles were run until no traces of oil were visually 

observed at the sight glasses of the refrigerant loop. When clear flow was confirmed, the 

assumption was that all oil retained in the test section was removed. However, small 

amounts of oil might have been present inside the headers of the test sections, where local 
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oil and liquid traps and local stagnation flows might have occurred during the flushing 

cycles. These small amounts of oil, if present, did not exited the microchannel heat 

exchangers under testing but they also did not affect the heat transfer rates and the 

refrigerant-side pressure drops. In other words, the flushing procedure was successful in 

cleaning all the significant residual oil held up in the test section because the initial heat 

transfer capacities and refrigerant-side pressure drops of the microchannel heat 

exchangers were restored after each flushing cycle. Thus, if oil was still present inside the 

test section after each flushing cycle, it had an effect on the heat transfer rate and pressure 

drops that was below the sensitivity of the present test apparatus.  

The main advantages of the technique used in the present work to measure oil 

retention in microchannel type condensers and evaporators can be summarized as 

follows: 

(i) it had good repeatability because it did not required any opening of the 

system, any disassembly of the test section, and any recovering of the 

refrigerant after each test; 

(ii) it had good accuracy because it did not required any weighting of the test 

section or sampling of the oil and it was based on a fairly simple mass 

conservation law;  

(iii) it allowed testing condensers and evaporators operating in conditions that 

were close to those of the actual applications; in other words it allowed testing 

of the microchannel heat exchangers operating in conditions similar to the 

ones that the heat exchangers experienced when they were part of real life air 

conditioning and refrigeration systems.  

(iv) it isolated and quantified the net effect of oil retention on the heat transfer 

capacities and pressure drops by measuring directly the heat transfer rates and 

pressure drops of the microchannel heat exchangers with and without oil and 
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at the same flows and pressures; the fact that a controlled amount of oil was 

metered to the heat exchanger improved the confidence on how much oil was 

present inside the test section at any instant of time during the tests. 
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3.3.3 Oil Retention Measurement in Microchannel Evaporator 

The oil retention in microchannel evaporator was measured for two different refrigerant 

and oil mixtures. Refrigerant R410A and POE oil mixture was used to study 

microchannel evaporators in air conditioning applications while refrigerant R134a and 

POE oil mixture was used to investigate microchannel evaporators for AC systems, 

water/wine coolers vending machines applications of refrigeration systems. All the test 

conditions carried out for the microchannel evaporator are given in Table 3-4, from test 

number 7 to 15. Experiments were carried out for saturation temperatures at and above 

freezing point of water i.e. 32°
 
F (0° C).  

The pump-boiler based test apparatus used to experimentally measured the oil retention, 

heat transfer rate, and pressure drop of microchannel condensers was modified to 

accommodate similar tests for microchannel evaporators. This section provides an 

overview of the modifictions of the test apparatus used for measuring oil retention, and 

the effects of oil on pressure drop, and heat transfer capacity in microchannel 

evaporators. As before, the experimental setup consisted of four main sections as follows: 

1. Pump-boiler refrigerant side loop (also referred in this paper to as “refrigerant 

loop”), 

2. Air flow loop, 

3. Oil loop, which consisted of the oil injection and oil extraction devices, 

4. All remaining auxiliary hydronic systems used to control the test parameters and 

the test setup operating conditions. 
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Figure 3.11: Schematic of the pump-boiler based experimental setup used in the 

evaporator oil retention tests 

The schematic of the pump-boiler based test setup for the oil retention measurements in 

microchannel evaporators is shown in Figure 3.11. The refrigerant pump-boiler loop 

system, oil injection loop and oil extraction device were similar to that of the condenser 

tests but with some minor modifications. For the microchannel evaporator tests, a series 

of electric tape heaters were installed along the refrigerant pipelines before the 

microchannel evaporators. These heaters controlled the degree of subcooling of the liquid 

Evaporator B 

(used in 

separate study) 
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refrigerant at the inlet of the evaporator. Furthermore, to guarantee sub-cooled liquid 

refrigerant at the inlet of the gear pump, a large plate-heat exchanger, labeled as 

condenser in the figure 4.8, was installed after the test evaporators. A low temperature 

chiller was used to cool the refrigerant to below saturation temperature before it entered 

the refrigerant gear pump. Liquid refrigerant from the pump was circulated to a Coriolis 

mass flow meter and then was heated slightly with a series of electric heaters in a 

preheater. With reference to Figure 3.11, the preheater had two sections: the first section 

was a variable electric power heater from point 2 to 3 and the second section was a 

constant electric power heater from 3 to s3. Both heaters were made of smooth copper 

tube with electric tape heaters wrapped around them. The first heater section had electric 

tape heaters that were controlled by a variable transformer in order to adjust the heat 

transfer rate to refrigerant flow. In the variable power heater, the liquid refrigerant was 

heated up to about 5 to 10 degree of subcooling and at the exit of the first variable power 

preheater, pressure and temperature of the liquid refrigerant were measured in order to 

determine its enthalpy. Then, in the second heater, the refrigerant liquid was heated to 

near saturation liquid temperature, that is, to slightly subcooled liquid state with only 1 to 

2°F (0.5 to 1°C) of subcooling at the inlet of the test microchannel evaporators. The 

second heater in the preheater section was very well insulated and the electric power was 

measured during the tests by using a voltmeter. Thus, from the inlet enthalpy in state 3, 

mass flow rate, and heat transfer rate measured from the second section of the preheater, 

the refrigerant inlet conditions at the inlet of the test section were experimentally 

determined. The refrigerant at the inlet was slightly subcooled liquid with temperature of 

1 to 2°F (0.5 to 1°C) below the thermodynamic refrigerant saturation temperature of 
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evaporation. This meant that refrigerant near to saturated liquid state entered the 

microchannel evaporators. This approach was intentionally chosen to promote uniform 

distribution of the refrigerant among the vertical microchannel tubes in the test 

evaporators. A sight glass (component s3 in Figure 3.11) was installed between the 

second preheater and the inlet of test section to visually confirm the liquid phase of the 

refrigerant at the inlet of the test evaporators. 

In the test section, the refrigerant evaporated in the microchannel tubes and exited as 

superheated vapor. The degree of superheat at the outlet of the evaporators was controlled 

to 11 to 15°F (6 to 8°C) by adjusting the air temperature of the air flow entering the heat 

exchanger and the refrigerant flow rate. The test section was installed inside a 

psychrometric chamber, which controlled the inlet air temperature, humidity, and air 

speed. Two sight glasses, referred as to components S1 and S2 in Figure 3.11, were 

installed along the refrigerant pipelines downstream the test section. Since refrigerant was 

in vapor phase in this part of the loop, these two sight glasses were used to visually detect 

the instant at which oil arrived to the sight glasses. This technique was used to determine 

the oil retention in the test evaporators. Then, the refrigerant vapor and oil mixture was 

directed to the oil separators in the oil extraction device. In this component, oil was 

separated from the refrigerant vapor and it was collected in the oil reservoir. The 

refrigerant vapor was circulated to the condenser and cooled down to subcooled liquid 

before it was recirculated back to the refrigerant gear pump. Both the oil injection and 

extraction devices were similar to the one used in the condenser oil retention tests. 

However, the methodology to determine the oil retention volume was slightly different, 

as discussed next. 
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3.3.3.1 Pump-boiler loop for the evaporators tests 

The schematic of the pump-boiler loop for the oil retention measurements in 

microchannel evaporator series is shown in Figure 3.11 as light green solid line loop.  

This section provides an overview of the pump-boiler system that was used for the tests. 

With reference to Figure 3.12, subcooled liquid refrigerant from condenser was fed into 

pump suction. The pump (component 1 in Figure 3.12) used in this system was same as 

the one used in condenser tests. The pump suction pressure and temperature (before 

component 1 in Figure 3.12 showed how much subcool was at pump suction. The liquid 

refrigerant at the pump suction had over 10°F (∼5°C) of sub-cooling in order to prevent 

cavitation of gear pump. From the refrigerant pump, the refrigerant circulated to a 

Coriolis mass flow meter and then was directed to the preheaters. The actual image in 

Figure 3.12 shows the positioning of condenser, pump, mass flow meter, and the 

direction of refrigerant flow.  
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Figure 3.12: Section of pump boiler loop from exit of oil separators until preheater 

tubes (Deokar, 2013) 

 

Figure 3.13: Variable power preheater and constant power preheater tube heat 

exchangers of the pump boiler loop  
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The subcooled refrigerant from the pump was heated in preheater tube (from point 2 to 

S3 in Figure 3.11) to near saturated liquid conditions. The preheater consisted of three 

electrical tape heaters installed around the refrigerant pipelines (from point 3 to S3 in 

Figure 3.11). The first electrical tape heater (from point 2 to 3 in Figure 3.11) was 

coupled with variable AC transformer (VARIAC). Constant power supplies were 

connected to the second and third electrical tape heaters (from point 3 to S3 in Figure 

3.11). The power supply to the first electrical tape heater varied from 0 to 500 Watts 

using the VARIAC, which was manually adjusted to control the temperature of the 

refrigerant at the test section inlet. The second and third electrical tape heaters were of 

constant power of 300 Watts each. The temperature and pressure readings (indicated with 

the symbols T and P at point 3 in Figure 3.11) indicated how much subcooled the liquid 

refrigerant was in this location of the refrigerant loop. This helped to estimate how much 

power supply was needed to bring the subcooled liquid refrigerant in 3 to near saturated 

liquid conditions at the inlet of the test section.  

Figure 3.14 shows how one of the electrical tape heaters of preheater was installed on 

refrigerant pipelines before entering the test section. The second and third electrical tape 

heater (from point 3 to 3s in Figure 3.11) was heavily insulated with fiberglass insulation. 

The component 8 in Figure 3.13 shows the exterior of fiberglass insulation on preheater. 

This insulation guaranteed that most of the heat from electrical tape heater was directed 

into the liquid refrigerant circulating inside the pipelines.   



76 

 

 

Figure 3.14: Example of an electric heater wrapped around a refrigerant copper 

tube and used as preheater for the evaporator tests 

 

In order to measure the pressure drop across the test section, the inlet and outlet of the 

test section were connected to the differential pressure transducer bank that was located 

outside the psychrometric chamber. With reference to Figure 3.11 and Figure 3.15 the 

differential pressure bank consisted four differential pressure transducers connected in 

parallel to each other. Each differential pressure transducer had different range from each 

other. Table 4-3 shows the range of each differential pressure transducer in the bank. The 

proper differential pressure transducer was selected and connected in parallel with the test 

section based on the actual pressure drop measured during the experiments. For example, 

after having reached the test conditions but before commencing the test, the actual 

pressure drop was measured with the differential pressure transducer DP4. If the actual 

pressure drop in the test section was about 0.8 psid, the DP4 was close and isolated and 

DP1 was opened and put in parallel to the test section. Then, DP1 was used during the 

recording period of the experiment. 
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Table 3-3: Range of the differential pressure transducers used in the experimental 

setup 

Differential Pressure Transducer  Pressure differential range 

DP1 0 to 20 kPa (0 to 3 psid) 

DP2 20 to 34.5 kPa (3 to 5 psid) 

DP3 34.5 to 55.2 kPa (5 to 8 psid) 

DP4 55.2 to 103 kPa (8 to 15 psid) 

 

  

Figure 3.15: The four differential pressure transducers installed in parallel and used 

in the evaporator tests 

The inlet of test section was connected two absolute pressure transducers. One pressure 

transducer at point 4 in Figure 3.11 had 0 to 500 psia range. The second absolute pressure 

transducer had a range from 0-150 psia and it had higher precision and sensitivity than 

the first one. This transducer was installed outside the chamber and it was connected to 

inlet of the microchannel test evaporators by using a long pressure line made by port ¼ 

inch diameter copper tubing. This high precision pressure transducer was used in order to 

improve the accuracy of the measurements of the inlet absolute pressure.  
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During the oil injection tests in microchannel evaporator A, the ball valve B1-A and B2-

A (see between points 4 to 5 in Figure 3.11) were opened and ball valves B1-B and B2-B 

were closed.  This configuration directed the refrigerant flow to the microchannel test 

evaporator A. As the refrigerant entered the test section, it evaporated in the 

microchannel tubes and exited as superheated vapor. The superheated refrigerant from 

test section outlet exited the psychrometric chamber and entered the oil separators. There 

were two sight glasses S1 and S2 installed before oil separators (indicated with the 

symbols S1 and S2 in Figure 3.11). The actual photo in Figure 3.16 shows the position of 

sight glass S1 and sight glass S2 with respect to oil separators. The sight glasses S1 and 

S2 were used as visual aid to see when refrigerant and oil mixture layer first appears in 

those sight glasses. In the oil separators oil was separated from the refrigerant vapor. 

After that the refrigerant from oil separator entered the condenser (see points 7 to 8 in 

Figure 3.11). The condenser was a large plate-heat exchanger used to cool refrigerant 

below its saturation temperature. The condenser was served with a glycol solution 

(Dynalene HC-40) from a low temperature chiller, and more details on the low 

temperature chiller are presented in section 3.5.2. 

 

 



79 

 

 

Figure 3.16: Photo of the position of sight glass S1 and sight glass S2 with respect to 

oil separators (the sight glasses S1 and S2 were used as visual aid to see when 

refrigerant and oil mixture layer first appears in those sight glasses). 

 

3.3.3.2 Air flow loop 

After the completion of condenser tests, the air flow loop was slightly modified for the 

evaporator tests. An additional dehumidification system was used to further remove the 

moisture from the air stream entering the microchannel test evaporator. Lowering the air 

dew point temperature was critical to prevent frost formation when the saturation 

temperature of the refrigerant inside the microchannel test evaporator was at 32°F (0°C). 

This was achieved by controlling the air dew point temperature of the entering air stream 

to below the refrigerant saturation temperature inside the microchannel test evaporator. 

Thus, the temperature of the heat transfer surfaces (both fins and microchannel tubes) of 
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the evaporator was above the air dew point temperature and condensation and frosting of 

the fins were eliminated. We refer to this condition as dry fins testing condition because 

during the oil retention experiments, the latent loads of the evaporators, if any present, 

were very small compared to the measured sensible load of the evaporators. 

 

3.3.3.2.1 Air flow loop for tests of the microchannel evaporators  

The air flow loop for medium temperature series was similar to that used for 

microchannel condenser tests.  

 

Figure 3.17: Test sections and Air sampling device in front of test section 

 

(used in separate study) 
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With reference to Figure 3.17, the air entered microchannel evaporators via a small 

tunnel in front of microchannel evaporator. The air was sampled before the microchannel 

evaporators through a mechanical air sampling probe. The sampled air dry bulb and wet 

bulb temperatures were measured by using RTDs in a standard dry/wet bulb probe 

device. 

Air entered into the slabs of an isolated microchannel heat exchanger (referred as 

evaporator B, used in separate study) and then entered into intermediate tunnel between it 

and microchannel evaporator A (between 1 and 2 in Figure 3.17). As air passes through 

the evaporator A (test section), the temperature of air decreases. The temperature of the 

air after the test section was measured using thermocouples and the mechanical sampling 

dry bulb probe. Figure 3.18 shows 5 out of 20 thermocouples that were installed at the 

outlet of the evaporators. Thermocouples were installed on a plastic thin wire forming 

grid of 5 rows and 5 columns and they were used to measure the local temperature of the 

air exiting the microchannel evaporator A.  
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Figure 3.18: Thermocouple grid arrangement during Evaporator A installation 

 

3.3.3.3 Oil injection and extraction systems 

The oil injection system for the tests on the microchannel evaporators was similar as that 

used in condenser tests. The experimental equipment used for oil extraction system was 

the same as that of the microchannel condenser tests. The oil collection method that was 

used for oil retention measurement in condenser test was not feasible in the evaporator 

tests. During the injection of oil in evaporator tests it was observed that there was not 

enough free flow of oil after the oil extractors. This was observed through sight glass that 

was located at the bottom of the oil extractors (see sight glass S4 in Figure 3.11) and the 

flow meter located below the oil separators (see MFM located below the HS and CS in 

Figure 3.11). In other words, there was not enough pressure difference to drive the oil 
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from the oil separators to the oil reservoir of the oil extractor system when the test section 

functioned as microchannel evaporator. This meant that measuring the flow rate of the 

extracted oil from the refrigerant loop was not possible for the microchannel evaporator 

tests. More specifically gh o�*)p*oq@;�s (o%))*;( in Equations 3-4 and 3-5 was either zero 

or fluctuating too much to be reliable. An alternative method was developed to estimate 

the oil retention in the microchannel evaporators. This alternative method was verified 

for condenser tests and it provided equivalent results of oil retention (as it will be 

presented later in the manuscript). The alternative method to measure oil retention in 

microchannel evaporators is described in detail next.  

 

3.3.3.4 Oil retention measuring methodology for the microchannel evaporator tests 

The methodology to measure the oil retention for the microchannel evaporator tests is 

explained briefly in this section. Liquid refrigerant from the pump was directed to a 

Coriolis mass flow meter and then flowed to the preheater tubes. In the preheater, the 

refrigerant was heated to near saturation conditions before entering the microchannel test 

evaporator.  
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Figure 3.19: Infrared Image of microchannel evaporator A for one medium 

temperature test; this image indicates refrigerant flowing vertically from bottom to 

top of the heat exchanger and fairly uniform refrigerant flow distribution  

The refrigerant inlet conditions were controlled at near saturated liquid conditions with 

the aim to promote uniform distribution of refrigerant and of the refrigerant and oil 

mixture. Infrared thermal images of the microchannel evaporator A were taken to 

confirm that the distribution was uniform. An example is shown in Figure 3.19, in which 

the color appears uniform along the horizontal sections. The liquid refrigerant entered at 

the bottom (dark blue color in Figure 3.19), evaporated in the vertical microchannel 

tubes, and exited as superheated vapor refrigerant at the top. Two sight glasses (indicated 

by the symbols S1 and S2 in Figure 3.11) were installed at the outlet of the test section. 

The refrigerant vapor circulated toward the oil separators in the oil extraction device. 
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From the outlet of the oil separators, the refrigerant circulated to the condenser and was 

brought to subcooled liquid conditions before it circulated back to the gear pump.  

After achieving the required mass flow rate of refrigerant and test condition in pump 

boiler system, oil was injected at the inlet port of the test section by opening ball valve 

B10 (component B10 in Figure 3.11). The time ‘t0’ is noted when injection of the oil was 

started. During the oil injection at the inlet of the test section, the oil mixed with 

refrigerant and flowed through the test section and proceeded to the outlet and then 

passed through the sight glasses (see again S1 and S2 in Figure 3.11). As the oil was 

released to the test section, the oil filled the test section and connecting pipelines until it 

reached the sight glass S1. A liquid film layer of lubricant appeared clearly visible at the 

walls of the sight glass S1. During each test for the evaporators, the sight glasses S1 and 

S2 were monitored by using video recordings of the flow. These videos helped to 

measure the time at which the oil was first observed on each sight glass.  

Figure 3.20 shows an example of a measurement of the time at which the oil reached the 

sight glass. At the top image, the sight glass was clear and only refrigerant vapor was 

present. In the center image, a first drop of oil appeared at the inlet of the sight glass. 

When a first complete layer of oil covered the sight glass S1 the time t1 was recorded. 

This was the scenario in the bottom image of Figure 3.20. Similarly, the time t2 was noted 

when a first layer of oil was observed to cover completely the sight glass S2. After oil 

was detected in both sight glasses S1 and S2, oil was continuously metered to the test 

section for additional 15 minutes to record the effect of oil on heat transfer rate and 

refrigerant-side pressure drop. After completion of one test, the test section was cleaned 

by circulating liquid refrigerant, which collected the residual oil in the test section and 
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connecting pipelines between test section and the oil separators. The cleaning procedure 

used in microchannel evaporator tests was similar to the cleaning procedure used for the 

condenser tests and described in section 3.3.2.  

 

 

Figure 3.20: Examples of a measurement of the time at which the oil reached the 

sight glass; a digital chronometer was video recorded next to the sight glass to 

synchronize the data (the uncertainty of the measured time was of max 2 seconds) 

After circulating the liquid refrigerant for about 1 hour, the oil residual was stored in a 

tank and the test section was ready for next test. The above procedure was carried out for 
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OMF of 0.5 wt.%, 1 wt.%, 3 wt.%, and 5 wt.%. A similar procedure was repeated when 

the oil was metered at the outlet of the test section but the OMFs were 0.5 wt.%, 0.8 

wt.%, 1 wt.%, 2.5 wt.%, 3 wt.%, and 5 wt.%.  

After completion of each test, the time it took the oil to travel from the sight glass S1 to 

the sight glass S2 was recorded: ∆tin=t1,in-t2,in was defined as time it took the oil to travel 

from the sight glass S1 to the sight glass S2 when the oil was injected at the inlet of the 

test section and ∆tin=t1,out-t2,out S1 when the oil was injected at the outlet of the test 

section. For same OMF and mass flow rate, ∆tin=∆tout but our experiments showed that 

for the same OMF, ∆tin was greater than ∆tout. In other words, oil travelled from S1 to S2 

with slightly lower velocity when the oil was injected at the inlet of the test section 

compared to when the oil was injected at the outlet of the test section. For estimation of 

the oil retention in the test section, the conditions downstream the test section during the 

injection tests at the outlet of the test section were corrected to replicate the conditions 

downstream the test section during the injection tests at the inlet of the test section. These 

conditions included controlling the same temperature, pressure, refrigerant mass flux and 

same oil velocity. When the outlet conditions were the same between inlet and outlet 

injection tests, then the oil retention in the test section was measured by taking the 

difference between two oil masses. The following example clarifies the procedure used to 

estimate the oil retention for one test. 

After completion of a test series, ∆tin and ∆tout were measured as function of OMF as 

shown in Figure 3.21. In this example, it was observed that ∆tin were greater than ∆tout 

and a correction was needed. If OMF was equal to 2.4 wt.% then ∆tout was 70 seconds 
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while ∆tin was 80 seconds. ∆tin became 70 seconds if the OMF was slightly higher, that 

is, of 2.8 wt.%. Therefore when oil was injected at the inlet of the test section with OMF 

of 2.8 wt.%, then the oil travelled in the pipeline downstream the test section with the 

same velocity of when the oil was injected at the outlet of the test section with OMF of 

2.4 wt.%. Now that we found the two OMFs for which the flow conditions in the pipeline 

downstream the test section were the same, we calculate the oil retention as follow: 

Oil retention mass in 

test section 

= 

Oil retention mass in test 

section plus in the pipeline 

- 

Oil retention mass in the 

pipeline 

 

That is, 

ORmass@OMF=2.8wt.%  = Ma@OMF=2.8wt.%@inlet  - Mb@OMF=2.4wt.%@outlet  

 

Where 

fN&@}~��A.I��%@�����- = l gh ;�s,�mnop*oq@�mso* uv* ,��
*w,��

= 275.0 Q
Ng� 

and 

fz&@}~��A.X��%@������- = l gh ;�s,�mnop*oq@;{*so* uv* ,���
*�,���

= 98.6 Q
Ng� 

 

And where  gh ;�s,�mnop*oq  = �h ���_���������&1��-  is the mass flow rate of oil injected at the inlet 

and at the outlet by subtracting the amount of refrigerant dissolved in the oil. The time 

t0,in and t0,out are the times at which the oil was first released to the inlet and outlet of the 
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test section. The time t1,in and t1,out are the times at which the oil was detected at the sight 

glass S1 for oil injection at the inlet and outlet of the test section. The final oil retention 

mass is 

ORmass@OMF=2.8wt.%  = 275.0 

grams 

- 98.6 grams = 176.4 grams 

 

And the oil retention volume was calculated with the following equation: 

e��	y�g�@Y�@�A.I,*.% = e�gN��@Y�@�A.I,*.%
ρ���@8I°� = 176.4 Q
Ng�0.980 Q
Ng/�gU = 180 �gU 

Where ρoil was the density of the oil at reference temperature of 68 °F (20 °C). The oil 

retention inside the microchannel evaporator A is normalized with respect to the total 

internal volume of the heat exchanger, that is,  

e��[,@Y�@�A.I,*.% = e��	y�g�@Y�@�A.I,*.%�*;*)s,��)% � = 180 �gU
1,890 �gU = 0.095 	
 9.5% 

In summary, for this example, if the OMF in the evaporator A is 2.8 wt.% then the oil 

occupies 9.5 percent of the total internal volume of the heat exchanger.  
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Figure 3.21: Example of time for the oil to travel along the pipeline versus OMF 

 

Figure 3.22: Mass of oil measured when injected at the outlet of the test section (M 

(OMF%@outlet)) versus OMF and for two locations of the fight glasses. 
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3.3.3.5 Heat transfer experiments with dry fin tests conditions 

Dry fin tests conditions were defined as when the moisture in the air did not condensate 

or did not frost on the microchannel evaporators air-side heat transfer surfaces during the 

period of the experiments. During the heat transfer experiments, the microchannel 

evaporators were tested in dry fin tests conditions. The dew point temperature of the 

entering air stream was lower than the refrigerant saturation temperature inside the 

evaporators. Figure 3.23 shows an example of the measurements of dry bulb temperature, 

wet bulb temperature and relative humidity (sensor) of air entering the test section. Dew 

point temperature was calculated using dry bulb and wet bulb temperatures for above 

freezing wet bulb temperature and the dry bulb temperature and relative humidity for 

below freezing wet bulb temperature. 
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Figure 3.23: Screenshot of the Labview graphic interface DAQ displaying the 

psychrometric conditions of the air at the inlet of microchannel evaporator 

 

Figure 3.24 shows an example in which frost formation accidentally occurred on the fins 

of microchannel evaporator A during an experiment. For this case, the saturation 

temperature of the refrigerant R410A in test section was 32°F (0°C). Since the 

experiments were conducted at constant blower speed, a gradual but continuous decrease 

of the air flow rate was symptomatic that frost might have been occurred. The air side air 

flow rate was continuously monitored live during the experiments by using a Labview 

graphic interface DAQ for the air flow rate, shown in Figure 3.25. The pressure 
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difference across the nozzle, ΔPNozzle, was proportional to air flow rate across the 

evaporators. If frost formed on the fins, then the air flow rate decreased and any variation 

of the airflow rate was indicated by a decrease in the measured instantaneous ΔPNozzle. 

The decrease in ΔPNozzle was used as used an indicator that frost started to accumulate on 

the test section. If frost formation occurred, then the test was interrupted and a defrost 

cycle was initiated. In order to defrost the microchannel, the saturation temperature of 

refrigerant in microchannel evaporator A was raised higher than 40
o
 F and the setup was 

run overnight with warm air that melted the frost. Then the test was repeated.  

 

Figure 3.24: Example of a case in which frost formation on the microchannel 

evaporator A occurred during the experiments (the test was interrupted, the 

evaporator was defrosted, and then the test was repeated in frost-less conditions) 
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Figure 3.25: Display of the Labview graphic interface DAQ for the air blower and 

for the flow nozzles used to measure the air flow rate during the heat transfer 

experiments 

 

3.3.4 Verification that the Two Methods Adopted in the Present Work for 

Measuring Oil Retention in the Microchannel Heat Exchangers Provided 

the Same Experimental Data 

As discussed in the previous sections, the oil retention inside condenser tests described in 

section 3.3.2 were performed by measuring the extracted oil flow rate from the oil 

separators. This method required that pressure difference was established between the oil 

separators and oil reservoir through a complex network of pipelines, metering valves, and 

pressure equalization lines (see Figure 3.8). In the evaporator tests, it was not practical to 

establish a similar pressure difference because the evaporator outlet, i.e, the oil separator 

inlet, was already close to the lowest pressure point of the pump boiler loop. In the 
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evaporator tests, the pressure difference between the oil separator and the pump suction 

was not enough to drive the oil down from the oil separator into the oil level reservoir. 

Therefore, the measurement of the oil retention was based on the sight glasses and visual 

observation and timing method of the oil flow, when testing the microchannel heat 

exchangers in evaporator mode. Several tests were conducted to verify that two methods 

were equivalent and provided the same oil retention data within the experimental 

uncertainty. This section explains these verification tests.  

First, it is important to emphasize that the efficiency of the oil separators of the pump 

boiler loop was not affected whether the test section was a condenser or an evaporator. 

Figure 3.26 and Figure 3.27 showed the thermodynamic state points of the refrigerant 

cycle in the pump-boiler test set up of the present work. The state points are plotted on P-

h diagrams and each component of the cycle is indicated in plots. For example, the gear 

pump operated in the liquid mixture phase on the left side of the P-h diagrams for both 

condenser tests in Figure 3.26 and evaporator tests in Figure 3.27. The oil separators run 

on the far right location of the P-h diagrams, that is, in the superheated regions of the 

refrigerant and oil mixture. In other words, for both condenser and evaporator tests, the 

condition of oil and refrigerant mixture at the inlet of oil separators was always 

superheated vapor phase and the oil separation process inside the oil separators was 

similar between the condenser tests and the evaporator tests.  
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Figure 3.26: P-h diagram and corresponding components for condenser tests 

 

Figure 3.27: P-h diagram and corresponding components for evaporator tests 
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Second, the equivalence of the oil retention volume measurements by using the collection 

of oil method in the oil level reservoir and the oil flow visual observation and timing 

method were performed for condenser tests and the results are shown in Figure 3.28. The 

data in this figure were obtained for refrigerant R410A at saturation temperature of 105°F 

(41°C) for OMF of 1.6 and 4.5 wt.%. The results showed that the oil retention volume 

normalized, ORVN, for both methods were in good agreement and the two methods 

provide equivalent oil retention results. The ORVN for the oil flow visual observation and 

timing method was slightly lower for both OMFs but the difference of ORVN values of 

0.004 and 0.006 was well within the experimental uncertainty for ORVN, which was 

±0.01 and it is indicated by the error bars in Figure 3.28. These results provided some 

confidence that the oil flow visual observation and timing method was accurate enough to 

be used in the condenser tests. Because the oil separation process shared similar 

characteristics between the condenser and evaporator tests, we assumed that the relation 

of the ORVNs between the two methods were valid for the evaporator tests.  
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Figure 3.28: Comparison between oil retention measurements in the condenser by 

using the two equivalent experimental techniques of the research. 
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3.4 Test Conditions and flow rates for the condenser and evaporators 

tests 

The test conditions were selected based on typical applications for the refrigerants R410A 

and R134a in air conditioning systems and for refrigerant R134a in vending machines, 

water/wine coolers of a refrigeration systems. The saturation temperatures for the 

condenser tests were from 85 to 130°F (29 to 54°C) while for the evaporators tests, the 

saturation temperature varied from 32 to 48°F (0 to 9°C). Flow rates and OMFs are 

summarized in Table 3-4 below. 

Table 3-4 Test matrix for typical air conditioning and refrigeration systems 

Test 

No.  

Saturation 

Temp.  

[°F]  (°C) 

Refrigerant 

& Oil 

Refrigerant 

Flow Rate  

[lbm/hr ] (g/s)  

Oil Mass 

Fraction [wt.%] 

Component 

function / 

application 

1 130  (54) R410A/POE 
600   (75) 

400   (50) 
0   0.5   1   3  5 

Condenser  

AC unit 2 105  (41) R410A/POE 

3 85  (29) R410A/POE 

4 130  (54) R134a/POE 
450   (57) 

250   (31) 
0   0.5   1   3  5 

Condenser /  

refrigeration  

condensing unit 
5 105  (41) R134a/POE 

6 95   (35) R134a/POE 

7 48  (9) R410A/POE 
360   (45) 

200   (25) 
0   0.5   1   3  5 

Evaporator A  

AC unit 8 38  (3.3) R410A/POE 

9 32  (0) R410A/POE 

10 48  (9) R134a/POE 

200   (25) 0   0.5   1   3  5 

Evaporator A 

AC units, 

vending 

machines, 

water/wine 

coolers  

11 38  (3.3) R134a/POE 

12 33  (0.5) R134a/POE 
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3.5 Further Details of the Equipment and Instrumentation of the 

Experimental Facility 

Table 3-5 provides a brief description of the main equipment and sensors used for the 

research. A state-of-the-art data acquisition system from National Instrument with 

Labview Real Time Controller was used for monitoring the tests, plotting, and recording 

the data. A designed pump-driven refrigeration system was used to control the saturation 

temperature of the refrigerant to the test section. A large variable speed fans was used to 

control the flow rate across the test section and for setting the environmental conditions 

during the tests. The heat transfer capacity was measured from the refrigerant side 

(primary method) and from the air side (secondary method) for redundancy. The main 

sensors are also shown on the right column of Table 3-5. 

Table 3-5 Main equipment and sensors of the psychrometric chamber used in this 

study 

Equipment Sensors 

Process Control and Data Acquisition System (DAQ) 
(National Instruments PXI controller platform) 

 

Dry and Wet-bulb temperature probes inside 

chamber 
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Equipment Sensors 

Labview and Real Time Controller 

 

Dry-bulb and wet-bulb RDTs for air side 

measurements Dry bulb and wet bulb 

temperatures are measured according to 

ASHRAE standard 37 (ASHRAE, 1988) 

 

Variable Speed Fan with VFD control 

 

Hot wire anemometer for local velocity 

measurements 

 

3 tons capacity water cooled heat pump unit. This unit 

will be used as auxiliary systems for outdoor room 

temperature below 40 °F  

Air Pressure Transducers 
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5 tons capacity air cooled heat pump unit. This unit 

will be used as auxiliary systems to dehumidify the 

inlet air to the microchannel evaporator at low 

temperature tests 

Air flow nozzle with RTD at the inlet of the 

nozzle. This calibrated nozzle measures the 

air flow rate according to ASHRAE standard 

41.2 (ASHRAE, 1987) 
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3.5.1 Air Tunnel Apparatus 

The microchannel heat exchanger is placed inside the psychrometric chamber, while the 

remaining components in the test setup are installed outside the chamber. This section 

describes the position of the microchannel heat exchanger inside the chamber, the 

instrumentation, and the fluid lines to the microchannel heat exchanger using images for 

clarity and emphasis. 

 

Figure 3.29: Air flow loop inside the psychrometric chamber at Oklahoma State 

University (Deokar, 2013) 

The primary method for measuring the capacity of the coil was to measure the heat 

transfer rate from the air-side of the heat exchanger. This air-side heat transfer rate is 
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calculated by measuring the air flow rate and the temperature difference of the air stream 

across the heat exchanger. A set of flow nozzles was used to measure the air flow rate 

and it was positioned downstream the heat exchanger as shown in the schematic of Figure 

3.29. Two probes were used to measure the average air dry bulb temperature entering and 

exiting the heat exchanger. Figure 3.30shows the side of the microchannel heat exchanger 

exposed to the ambient air. 

 

Figure 3.30: Front side of the microchannel heat exchanger exposed to the ambient 

air (air flow direction is entering the heat exchanger as indicated by the yellow 

dashed arrow (Deokar, 2013)) 

The position of the microchannel heat exchanger in the duct (having a chamber approach) 

is such that it has the same face velocity of air over its entire slab. Figure 3.31 is the 

image, as seen from inside the duct, of the air supply side of the microchannel heat 

exchanger. A set of thermocouples was installed downstream to measure the air 
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distribution as show in the schematic of Figure 3.31 labelled as thermocouples grid row. 

The grid consisted of 18 welded thermocouples on the air supply side and was placed 1 

in. away from the microchannel heat exchanger slab. The grid has 4 horizontal rows; 

starting from the top each row has 4, 5, 5, and 4 thermocouples. 

 

 

Figure 3.31: Back side (in the direction of the air flow) of the microchannel heat 

exchanger (air flow direction is exiting the heat exchanger moving toward the fan 

(Deokar, 2013)) 

Because of space limitation the oil, liquid, and vapor lines entered the chamber through 

its wall, travelled inside the air supply duct, and emerge from the inner left wall of the 

duct as seen in Figure 3.32 upon which they were connected to the microchannel heat 

exchanger’s header. The figure also shows the fluid lines coming out of the duct on the 

air (ambient) side and connecting to the microchannel heat exchanger. The connecting 
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lines inside the air supply duct are insulated to prevent their thermal interference with the 

air supply. 

Figure 3.32 also shows the position of the inline thermocouple and the pressure 

transducer on the refrigerant vapor supply line and the refrigerant liquid (or two-phase) 

return line. The differential pressure transducer connected between the supply and return 

lines measures the pressure drop inside the microchannel heat exchanger. In the event of 

excess pressure drop across the supply and return lines, the ball valves in series with the 

differential pressure transducer are closed to isolate the transducer. The differential 

pressure transducer can also be protected by opening the needle valve, which is parallel 

to it, causing the pressure on both the sides of the transducer’s diaphragm to balance and 

prevent its failure. 
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Figure 3.32: Instrumentation and configuration of refrigerant and oil lines 

connecting the microchannel heat exchanger 

The air side condition entering the microchannel heat exchanger was monitored using air 

sampling devices. The sampling devices on the two sides of the microchannel heat 

exchanger, one exposed to the ambient air and the other on the side exposed to the supply 

air, were constructed according to ANSI/ASHRAE Standard 41.1(2013). The following 

section gives the description of the components of the sampling device and how they 

work. 
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The sampling trees shown in Figure 3.30 and Figure 3.31 were similar in construction. 

Each sampling tree was constructed of a horizontal 4 in. (10.16 cm) diameter PVC pipe, 

the ends were capped, and the center was connected to a flexible duct. The horizontal 

PVC pipe has 12 vertical branches made of 1.5 in. (3.81 cm) diameter PVC pipes. Holes 

drilled into the branches face the air flow. The construction of the tree helps to 

mechanically collect small samples of air (collected through these holes) over a large 

region, mix them in the central horizontal PVC pipe, and then transport the mixture 

further through the flexible duct.  

A flexible duct carries the sampled air from the sampling tree to the relative humidity 

measurement probe. Further, the sampled air gets carried through a long PVC pipe to the 

dry bulb and wet bulb temperature-measuring RTDs. The long PVC pipe assists in having 

a fully developed flow before the air reaches the temperature sensors. The wet bulb probe 

has its own water reservoir in which its wick is dipped. A separate tank (seen in the top 

left corner of in-line centrifugal fan/blower helps to overcome the pressure drop in the 4 

in. diameter flexible duct and the long PVC pipe from the sampling tree to the dry and 

wet bulb RTDs, inducing a sufficient air flow velocity of around 1000 ft/min (5 m/s) over 

the temperature sensors.  The in-line centrifugal fan/blower from Suncourt Inc. Centrax 

(Model #TF104-CRD 4") has a capacity to have a flow rate of 200 cfm at least resistance. 

The flow rate at the temperature sensors is measured using a differential pressure 

transducer and a Pitot tube during the calibration phase. The blower then returns the 

sampled air back to the main airstream (on the downstream side of the sampling tree). 

The sampling devices on the two sides of the microchannel heat exchanger, one exposed 

to the ambient air and the other on the side exposed to the supply air, were constructed 
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according to ANSI/ASHRAE Standard 41.1(2013). Each sampling tree was constructed 

of a horizontal 4 in. (10.16 cm) diameter PVC pipe, the ends were capped, and the center 

was connected to a flexible duct. The horizontal PVC pipe has 12 vertical branches made 

of 1.5 in. (3.81 cm) diameter PVC pipes. Holes drilled into the branches face the air flow. 

The construction of the tree helps to mechanically collect small samples of air (collected 

through these holes) over a large region, mix them in the central horizontal PVC pipe, 

and then transport the mixture further through the flexible duct. In-line centrifugal 

fan/blower helps to overcome the pressure drop in the 4 in. diameter flexible duct and the 

long PVC pipe from the sampling tree to the dry and wet bulb RTDs, inducing a 

sufficient air flow velocity of around 1000 ft/min (around 5 m/s) over the temperature 

sensors.  The in-line centrifugal fan/blower from Suncourt Inc. Centrax (Model #TF104-

CRD 4") has a capacity to have a flow rate of 200 cfm at least resistance. The flow rate at 

the temperature sensors is measured using a differential pressure transducer and a Pitot 

tube during the calibration phase. The blower then returns the sampled air back to the 

main airstream (on the downstream side of the sampling tree). 

3.5.2 Chiller and Secondary Coolant Loop 

The chiller loop is utilized to provide cooling to the airflow loop. The overall schematic 

of chiller loop can be seen in Figure 4.16 with blue solid line. As seen in the figure, the 

chiller loop is directly connected to the low temperature chiller. The model number of 

this chiller is CPCW-12LT/TC2-1-9X2 manufactured by Cooling Technology Inc. This 

low temperature chiller supplies up to 2.0 tons capacity with leaving temperature of -

31.67°C (-25°F). The secondary coolant used by this chiller is Dynalene HC 40, while 

R404A refrigerant is used in the refrigerant side of the chiller. The chiller is equipped 
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with recirculating pump that supply up to 6 to 8 gpm with pressure rise between 25 to 30 

psi (172.4 to 206.8 kPa). This chiller is equipped with integrated temperature controller 

which can be used to set and control the leaving fluid temperature.  

This chiller is directly connected to refrigeration coil used to provide cooling to the air in 

the airflow loop. Additionally, one plate frame heat exchanger is installed in the chiller 

loop. This plate frame heat exchanger is used to exchange heat between the refrigerant in 

the chiller loop and the heat sink loop. 

 

Figure 3.33: Chiller and heat sink loop 
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3.6 Instrumentation and Data Acquisition System 

The oil retention measurement test facility utilized multiple sensors to measure the 

temperatures, pressures, mass or volume flow rates and other properties of air, refrigerant 

and oil. These sensors are discussed in brief in the following sections. These sensors were 

connected to National Instruments Data Acquisition (NI-DAQ) system with Real Time 

Labview Graphic Software Interface. The readings from the sensors were displayed, 

plotted, and recorded every 2 seconds. An example of the Labview graphic interface 

during one oil retention experiment is shown in Figure 3.34. 
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Figure 3.34: Labview control and graphic interface for oil retention tests 

The graphic interface consisted of two screens: the control screen (top image in Figure 

3.34) was used to provide the inputs to both the air side and refrigerant side control 

parameters of the test facility. The display screen (bottom image in Figure 3.34) plotted 
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all the readings from the sensors with time, which allowed us to identify stable and quasi 

steady state conditions of the test apparatus before starting the actual oil retention test.  

The instrumentation and main equipment used in the test setup for the oil retention test 

apparatus are listed in Table 3-6, which provides manufacturer, model, and a short 

description of the specification and functionality of each component. 

Table 3-6 Specification of the components used in the oil retention tests 

Component Manufacturer [Model] Specifications and description of use 

Ball Valves, Gate 

Valves, PVC pipes, 

Copper pipes and 

tubes, and fittings 

Grainger Inc., Lowe's, 

McMaster-Carr, 

Locke Supply Co, 

United Refrigeration 

Inc. 

Refrigeration system and Hydronic 

system (water side of the sub cooler, 

auxiliary heat exchanger and the 

evaporators). 

Bladder Accumulator McMaster-Carr 

[59595K12] 

Capacity of 1 gallon; used to stabilize 

the flow of the refrigerant in the 

Pump-Boiler System. 

Centrifugal pump Taco [1400 – 50 –A] Input: 230 V, 60 Hz, 1 phase, 2.4 A, 

3450 rpm; used to provide necessary 

head at the sub cooler and the 

superheater’s inline heater. 

Check valve McMaster-Carr 

[7775K12,7768K14] 

One is used on the oil injection line 

and the other on the pressure 

equalization line. 
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Coalescent Separator Temprite [925R] Separates up to 0.05 microns 

particles, height: 28.6 in. (0.73 m), 

diameter: 4 in. (10.2 cm). The bottom 

16.4 in. (41.6 cm) serves as a 

reservoir, which has sight glass for 

monitoring purpose. Internal float 

valve absent. 

Compressor's oil 

level indicator 

McMaster-Carr 

[1106K27] 

Designed for maximum pressure of 

290 psi, 9 in. in length; connected at 

the bottom of the compressor to 

check its oil/lubricant level. 

DAQ wire Olympic Wire and 

Cable Corp. [2824] 

Multi-conductor 24 AWG cable; 

used to connect the sensors to the 

DAQ system. 

Expansion Tank Bell and Gosset  

[HFT- 15] 

It has a total volume of 3 gallons and 

an acceptance volume of 1 gallon, the 

shell and diaphragm are made up of 

carbon steel and heavy duty butyl 

rubber respectively. It is pre charged 

to 12 psi, designed to handle 100 psi 

and 240°F,  weight is 5 lbs. 
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Flow Switch - water 

flow circuits 

Mcdonnell & Miller 

[FS6-3/4] 

Allows minimum flow rate of 0.12 

gpm and maximum flow rate of 2.5 

gpm. 

Gear Pump Motor Baldor.Reliance 

Super-E motors 

[CEM3545] 

Input: 230/460 V, 2.8/1.4 A, 60 Hz, 3 

phase, usage: 0.75 kW, 1 hp, 3450 

rpm; used for refrigeration and 

injection gear pumps 

Helical separator Henry Technologies 

Inc. [S-5188] 

Designed for 10 cfm for 10 tons 

refrigeration capacity, height: 19 in. 

(48.3 cm), diameter: 4 in. (10.2 cm). 

Internal float valve absent. 

High Temperature 

Heater Tapes 

OMEGA Engineering 

Inc. [FWH171-060] 

Input: 120 V, usage: 624 W with 5.2 

W/in^2, resists up to 900 °F (480 

°C); used to heat the oil-refrigerant 

mixture in the oil reservoir and the 

oil level tank. 

High-Pressure 

Safety  Valves 

McMaster-Carr 

[5825T21] 

The brass safely valve is placed after 

the refrigerant gear pump (not shown 

in any figures), and is designed to 

relieve the pressure from the system 

if it exceeds 500 psig (34.5 bar). 
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Inline Water Heater Chromalox 

[NWHSRG 06-

024PE1] 

Heating capacity of 2 KW, 480V, 1 

phase, INCOLOY® Sheath Element; 

used on the hot water loop having the 

refrigerant superheater. 

Injection Gear Pump Micropump   

Injection Oil 

Reservoir (Blue 

Tank), Oil Reservoir 

#1 

Emerson Climate 

Technologies  [AOR-

4] 

Capacity: 4 gallon (15.1 L), 2.5 ft. 

(0.88 m) tall; stores the oil to be 

injected using the injection gear 

pump. 

In-Line Centrifugal 

Fan 

Suncourt inc. Centrax         

[TF104-CRD 4"] 

Input: 120 V, 0.53 A, 60 Hz, 1 phase, 

usage: 60 W, 4 in. (10.2 cm) air inlet 

and outlet, 200 cfm, in-line 

centrifugal fan; used as a fan/blower 

on the air sampling device. 

Needle Valve 1/4" Parker Hannifin Corp. 

[4A-V4LR-B] 

Opens 10% per 1/2 turn - total 5.125 

turns; used on the pressure 

equalization and the oil injection 

lines. 

Needle Valve 3/8" Parker Hannifin Corp. 

[6A-V6LR-B] 

Opens 10% per 1/2 turn - total 5.5 

turns; used for refrigerant mass flow 

rate control. 
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Oil Level 

Tank/Cylinder 

Swagelok  

[304L-HDF8-1GAL] 

Capacity: 1 gallon (3.79 L); oil level 

tank is made up of two of these 

cylinders. 

Oil Reservoir #2 Parker Hannifin Corp. 

Sporlan Division  

[POR-3 ] 

Capacity: 3 gallon (11.4 L), stores 

the oil separated from the vapor 

refrigerant and then supply it back to 

the suction line of the compressor. 

Plate Heat Exchanger GEA [GB400L-14] 14 plates, heat transfer area of 16 ft
2
, 

and minimum heat transfer capacity 

of 15750 Btu/h 

Refrigerant Filter-

Dryer 

Parker Hannifin Corp. 

Sporlan Division  

[C-032] 

Size of 3 in
3
, removes moisture, dirt, 

acid, and sludge; initially was used 

on the refrigerant liquid line, then 

was transferred on oil line to filter it. 

Refrigerant Filter-

Dryer 

Parker Hannifin Corp. 

Sporlan Division  

[C-083-S-HH 3/8] 

Size of 8 in
3
, removes moisture, dirt, 

acid, and sludge; used after the 

refrigerant gear pump. 

Refrigeration Gear 

Pump 

Micropump 

[GC-M25.JVS] 

0.48 gallon/1000-rev (1.82 ml/rev), 

maximum differential pressure: 125 

psi (862 kPa) 
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Remote gas bulb 

control thermostat 

Honeywell [L4008A] Control thermostat with high 

temperature limit of 150°F (66°C); 

used on the Vapor Compression 

cycle system. 

Scroll Compressor Copeland  

[ZF15K4E-PFV] 

Used on the Vapor Compression 

cycle system. 

Service Manifold Ritchie Engineering 

Co., Inc. YELLOW 

JACKET product 

division  

[Series 41] 

Used to charge and recover the 

refrigerant from the system. 

Sight glass McMaster-Carr 

[1138K64] 

Pipe size - 1/2 in; used to monitor the 

oil-refrigerant extraction at the oil 

separators, and also to ensure that 

liquid refrigerant enters the 

refrigerant gear pump (not shown in 

any figures) 

Sight Glass Tube/ 

Level Indicator 

McMaster-Carr 

[1106K76] 

Designed for maximum pressure of 

240 psi, viewing glass of 18 in. 

length; it is graduated and connected 

to oil level tank to measure the 

volume of the extracted oil-

refrigerant mixture. 



119 

 

 

3.6.1 Temperature Measurements 

The temperature sensors on the air side were resistance temperature detector-type (RTD). 

RTD works based on the effect of temperature on the electrical resistance of material, in 

this case, platinum. Platinum is chosen in place of nickel or copper on account of its 

inertness, and also because its temperature and resistance relation is repeatable over a 

large temperature ranges. In this study, RTDs were used to measure dry and wet bulb 

temperatures at the inlet and outlet of the air flow across microchannel heat exchanger. It 

Suction Line 

Accumulator 

Grainger Inc. 

[6AXD3] 

Placed on the suction line to prevent 

any liquid refrigerant to enter the 

compressor. 

Suction line Filter-

Dryer 

Parker Hannifin Corp. 

Sporlan Division 

Catch-All [C-417-S-

T-HH] 

Separates moisture, dirt, acid, sludge 

doing to the compressor 

Variable frequency 

Drive 

Baldor Electric 

Company  

[VS1SP21-1B] 

Input: 230 V, 4.2 A, 60 Hz, 3 phase, 

usage: 0.75 kW, 1hp; Configured for 

the motors of the refrigerant gear 

pump and the injection gear pump. 

Variable Transformer Superior Electric 

[3PN116C] 

Input: 120 V, 50/60 Hz, 1 phase, 1.4 

KVA, output: 0 - 120V; variac for 

the heater tapes. 
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was also used to measure the temperature of air at the inlet other nozzle bank('[,�). The 

specification is listed in Table 3-7. 

Table 3-7Specifications of Resistance Temperature Detectors 

Item Item Specification 

Model P-M-1/3-1/8-6-0-T-3 

Type Pt100 

Range -148 to 752°F (-100 to 400°C) 

Accuracy Accuracy 1/3 DIN (-50 ±0.18°C, 0 ±0.1°C, 100 ±0.27°C);  

±0.1°F (±0.05°C) after calibration. 

Description 100 Ω at 0°C; temperature coefficient of resistance = 

0.00385 Ω/Ω/°C; 6" length, 1/8" diameter 

Manufacturer Omega Engineering, Inc. 

 

A thermocouple (TC) works on the principle of the thermoelectric effect, more precisely 

the Seebeck effect; where a junction (TC) of two dissimilar metals produces voltage 

when there is a temperature difference between the junction and the voltmeter. The 

voltage generated across the TC is then calibrated with the help of a reference cold 

junction to produce an accurate temperature reading. Thermocouples are used on air side, 

oil side and refrigeration side. The specifications of the TCs are shown in Table 3-8. 
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Table 3-8Specifications of the Thermocouples 

Item Item Specification 

Type T-type  

Model: Inline Thermocouple TMQSS-125G-6 

Model: Thermocouple Wire TT-T-24-SLE-1000, the wire needs to be welded. 

Range -40 to 130°F (-40 to 54°C) 

Accuracy ±0.5°F (0.3°C); ±0.1°F (±0.05°C) after calibration. 

Manufacturer Omega Engineering, Inc. 

 

Inline thermocouples are installed to measure the temperatures at the refrigerant gear 

pump inlet ('%{�%,�), the microchannel condenser inlet ('�p��,�), the microchannel 

condenser outlet ('�p��,;), and the evaporator outlet ('o�)%,;). They are also used to 

measure the temperature of the extracted oil-refrigerant mixture from the oil extraction 

device (';�sWo�,;), and the temperature of the injected oil-refrigerant mixture (';�sWo�,�). 
These inline thermocouples are placed in the stream of oil and refrigerant using 

compression fittings to prevent any possible leaks. 

A grid of 18 welded TCs is used on the air supply side of the microchannel heat 

exchanger. This grid helps in calculating the heat transfer to the air on selected sections 

of the microchannel heat exchanger slab. A TC is also placed at the inlet of the nozzle in 

parallel with the RTD, for cross-referencing.  

Several welded TCs are attached to external surfaces of the copper fluid line at particular 

locations where the measurement of temperature is required. The attachment is done with 
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a layer of thermal grease between the tip of a welded TC and the surface to reduce the 

contact resistance. The readings from these surface TCs are not used in the data analysis 

but they help to provide a better and more predictive control over the system. For 

example, the TCs used to measure the water temperatures in and out of the secondary 

condenser/sub cooler helped the system operator maintain a definite refrigerant 

subcooling at the gear pump inlet, or, the measurement of hot water temperatures at the 

evaporator helped in maintaining the superheat and the pressure of the system. TCs also 

help in activating the shut-off limits of the pumps; a two-phase flow or no flow will shut 

down the pump, preventing further damage. A welded TC is attached to the fin of the 

microchannel heat exchanger when capturing the infrared images in order to calibrate the 

camera. 

Calibration of the TCs and the RTDs is done in a temperature                                         

bath with reference to a NIST (National Institute of Standards and Technology) traceable 

thermometer having an accuracy of �') =±0.36°F (±0.2°C). The software by National 

Instruments, Measurement & Automation Explorer (MAX) is used along with the NI-

DAQ to record the data points at a sampling rate of 1 millisecond (1 kHz) during the 

calibration. These TCs and RTDs are calibrated to an uncertainty of �'x =±0.05°F 

(±0.03°C) with respect to the thermometer. Adding the errors in the thermometer and the 

calibrated TCs or RTDs in quadrature (Taylor 1996), gives the net error or uncertainty �' 

of 0.36°�&±0.2°C-in temperature measurements. Temperature measurements using the 

RTDs and TCs followed and exceeded the ANSI/ASHRAE Standard 41.1 (2013). 
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3.6.2 Oil and Refrigerant Pressure Measurements 

Absolute pressure transducers are installed to measure the pressures at the refrigerant 

gear pump inlet (�%{�%,�), the microchannel condenser inlet (��p��,�), the microchannel 

condenser outlet (��p��,;), and the evaporator outlet (�o�)%,;). They are also used to 

measure the pressure of the extracted oil-refrigerant mixture between the oil extraction 

device and the oil level tank (�;�s�o�,;), and to measure pressure of the injected oil-

refrigerant mixture (�;�s�o�,�) using the transducer at the oil reservoir. The specifications 

of the absolute pressure transducer are shown inTable 3-9. The absolute pressure 

transducers measuring the refrigerant’s vapor pressures at the evaporator outlet and at the 

oil separators have a sufficient draft of air flowing over them to prevent a high 

temperature at their circuitry that might damage the sensor or drift the readings. For 

refrigerant and oil lines having less than 5/8 in. (15.8 mm) outer diameter, the tubing to 

the pressure transducers is of the same size, while for higher diameter copper lines, the 

tubing are kept as small as possible to avoid turbulence at the sensor, which could 

measure total pressure instead of static pressure. Bourdon tube gauges are also used at the 

oil level tank and the oil reservoir to visually check the pressures while controlling it 

through the needle valves on the pressure equalization lines. All the pressure 

measurements on the refrigerant, oil, and air side are done according to ANSI/ASHRAE 

Standard 41.3 (2014). 
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Table 3-9 Specifications of the Absolute Pressure Transducers 

Item Item Specification 

Model 206 

Pressure Range 7 to 500 psia (50 to 3450 kPa) 

Accuracy ±0.65 psi (±4.5 kPa) 

Output 24 VDC Nominal 

Excitation 0-5 VDC 

Manufacturer Setra System, Inc. 

 

A differential pressure transducer was placed between the inlet and the outlet lines 

connecting the microchannel heat exchanger slab. It measures the pressure drop 

experienced by the refrigerant or the oil-refrigerant mixture when flowing through the 

resisting ports of the micro-channels. Figure 3.32 shows the position of the transducer. 

The specifications of the differential pressure transducer are shown inTable 3-10. 

Table 3-10 Specifications of the Differential Pressure Transducers 

Item Item Specification 

Model P55D-4-N-4-40-S-4-A 

Pressure Range 8 to 12.5 psi (55 to 86 kPa), actually it can measure 0 psi. 

Accuracy ±0.25% of full scale; ±0.03 psi 

Output 4 to 20 mA 

Excitation 9-55 VDC 

Manufacturer Validyne Engineering 
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3.6.3 Air Humidity Measurements 

The relative humidity (φ or RH) values of the ambient air and the air supplied by the 

microchannel heat exchanger are measured and then used along with the dry bulb 

temperatures to determine the density of the air flowing across the heat exchanger. The 

specifications are shown in Table 3-11. 

Table 3-11 Specifications of the Relative Humidity Sensors 

Item Item Specification 

Model HX71-MA 

Operating temperature range -13 to 185°F (-25 to 85°C) 

Accuracy ±3.5% from φ =15% to φ = 85%; ±4% below φ = 15%; 

and ±4% above φ = 85% when measured at 73.4°F 

(23°C). 

Manufacturer Omega Engineering, Inc. 

 

3.6.4 Air Flow Measurements 

The airflow nozzles are arranged in parallel at the nozzle bank to have a pressure drop in 

the airflow path. Pressure drop measurements are used to calculate the air flow rates 

($�f). This $�f value is then used for the air side calculations, to check the heat 

balance with the refrigerant side calculations. All the air flow measurements are done 

according to the ANSI/ASHRAE Standard 41.2 (1987). The specifications of the nozzles 

are shown inTable 3-12.  
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Table 3-12 Specifications of the Air flow Nozzles 

Item Item Specification 

Model Elliptical nozzle 

Metal Aluminum 

Bore Diameter 8” (203 mm), 7” (178 mm), and 0.5” (12.7 mm) 

Operating range 150 to 2,000 cfm (0.07 to 1 m^3/s) 

Accuracy ±0.4% of flow rate (using Setra 264 pressure transducer and 

precise calculation of uncertainty propagation);      

Tightest Tolerance ±0.001” (±0.0254 mm) = error in bore 

diameter.                                                                                                                                    

Manufacturer Helander Metal Spinning Company 

 

 

Very low differential pressure measurement of air was perfomed by an unidirectional 

differential pressure transducers, 2641-003WD, measure the air pressure drop across the 

nozzle bank (∆�)�,[ , ∆�2) and the microchannel heat exchanger (∆�)�,�p��, ∆�1), while 

2641-2R5WD measures the static pressure of the Psychrometric test room (�)�,)�x , �1) 

in which the microchannel heat exchanger is placed. The bidirectional differential 

pressure transducer, 2641-1R5WB, measures the static pressure before the nozzle bank 

(�)�,[,�, �2). The specifications are shown inTable 3-13. Simple Pitot tubes are used to 

measure the pressure inside the air ducts; they are either purchased or constructed from 

small size copper tubes. As recommended, these Pitot tubes have holes of 1/16 in. (1.6 

mm) diameter perpendicular to the direction of the air flow. 
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Table 3-13 Specifications of the Very Low Differential Pressure Transducers 

Item Item Specification 

Model 264 

Manufacturer Setra System, Inc. 

  

1.)Unidirectional Transducer 2641-003WD 

Pressure Range 0 to 3 in. W.C. (0 to 747 Pa)    

Accuracy ±0.25% of full scale; ±0.0075 in. W.C. 

Output 24 VDC Nominal 

Excitation 0-5 VDC 

  

2.)Unidirectional Transducer 2641-2R5WD 

Pressure Range 0 to 2.5 in. W.C. (0 to 623 Pa)    

Accuracy ±0.25% of full scale; ±0.00625 in. W.C. 

Output 0-5 VDC Nominal 

Excitation 9-30 VDC 

  

3.) Bidirectional Transducer 2641-1R5WB 

Pressure Range ±1.5 in. W.C. (±373 Pa)    

Accuracy ±0.25% of full scale; ±0.0075 in. W.C. 

Output 24 VDC Nominal 

Excitation 0-5 VDC 
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3.6.5 Oil Volume Measurements 

As described in the previous sections, in order to measure the oil retention volume in the 

test section, the amount of oil mass injected at the inlet of the test section and extracted at 

the outlet of the test section must be measured first. The oil mass balance provide the oil 

mass that was retained in the test section and in the connecting pipeline. By taking out the 

oil retained in the pipeline downstream the test section, which is measured in the same 

manner with the pipeline being the only component present between injection and 

extraction ports, the oil retained in the test section is determined. While the amount of oil 

mass injected at the inlet of the test section (or at the inlet of the downstream pipeline) 

was simple to measure by using a Coriolis mass flow meter, that is, the oil mass injected 

was the result from the time integration of the mass flow rate of oil pushed to the 

injection port from the oil gear pump, measuring the amount of oil extracted at the outlet 

of the test section (also the outlet of the downstream pipeline) was not a trivial task and it 

requires some more explanation.  

First, the liquid mixture extracted was not only oil but rather a mixture of oil and liquid 

refrigerant. The oil and refrigerant mixture from the oil separators circulated to a second 

Coriolis mass flow meter (referred to as “extraction flow meter”) and then it was stored 

in the oil level tank only if enough pressure differential was established to drive such 

flow. However, the pressure differential could not be too high as to divert the main 

stream of refrigerant vapor to the extraction flow meter because it would skew the 

measurements of the flow rate of liquid mixture present at the outlet of the test section. It 

should be emphasized here that we refer to liquid mixture because refrigerant is soluble 

in POE oil and thus the liquid collected at the extractor consists of POE oil and of 
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refrigerant dissolved in it. A set of pressure balancing lines and multiple metering valves 

were installed to regulate the pressure gradient across the extraction flow meter. Oil tanks 

were installed downstream to this flow meter, and they had an oil level sensor in order to 

measure the volume of liquid mixture that was stored inside the tanks. During condenser 

tests, the volume of mixture in the oil level tank was measured by using a custom made 

graduated sight glass tube installed next to the tanks and connected in parallel. An 

additional electric capacitance level probe was used to confirm the readings from the 

sight glass at regular time intervals. Both the sight glass and the electric capacitance 

probe measured the rate of volume increase of the mixture in the tank, or in other words, 

the rate of liquid mixture extracted at the outlet of the test section over time. The 

temperature and the pressure of the extracted mixture were measured so that density and 

the solubility of the mixture were estimated. Thus, once how much refrigerant dissolved 

in the extracted mixture was known, the actual mass of oil extracted was calculated. 

The oil level tank consisted of two steel cylinders and a copper tube connected in parallel 

configuration. Both the steel cylinders had a volume of about 1 gallon (3.7 liters). Two 18 

inches (∼46cm) long sight glass tubes were marked every 5 mL and 20 mL, respectively 

and they were staggered vertically in order to provide about 36 inches (92 cm) of 

graduated level scale for the mixture stored in the tanks. The sight glasses were installed 

in parallel to a vertical copper tube of 0.75 inch inner diameter, which was used when the 

oil extracted rate was very low in order to augment the sensitivity of the oil level 

measurements. The oil level tanks were opened to the oil loop only when the oil extracted 

rate was high in order to extend the time of the test. For this case, the rate of 

accumulation of the mixture in the tanks was high and the vertical copper tube was not 
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sufficient to collect all the liquid mixture. Both sight glass and capacitive level sensor 

were calibrated in-situ in preliminary tests by pouring a known amount of oil from at the 

top. While the sight glass level sensor provided the volume of liquid stored inside the 

tanks independently from the nature and type of the liquid, the capacitive level probe was 

affected by the presence of refrigerant dissolved in the oil. Often the dielectric constant of 

the extracted liquid mixture and the presence of flash vapor inside the tanks skewed the 

measurements of volume when looking at the output from the capacitive electric level 

probe sensor. For this reason, the sight glass level sensor was a preferred approach. 

Figure xx shows the detailed schematic of the oil level tank system. One steel cylinder 

was installed vertically while the second cylinder was slightly tilted. The cylinders were 

staggered in the vertical direction and a set of manual shut off valves were used to open 

or isolate each cylinder to/from the system. This configuration helped the sensitivity of 

the measurements of volume of mixture that was stored in the tanks. If the rate of mixture 

extraction was high or for long periods of time, both cylinders were opened to the system. 

The mixture reached the vertical cylinder first and, only after it exceeded the cylinder 

capacity, it started to fill the tilted cylinder, too. If the rate of mixture extraction was low, 

both cylinders were isolated and not used during the tests. Only the vertical copper tube 

was used to measure the volume of mixture extracted from the oil separator during the 

tests. Figure xx shows the calibration curve of the oil level tank, which was used to 

measure the volume of liquid mixture extracted. The calibration process involved pouring 

a known amount of volume of oil in the tank and marking the oil level every 5.0 mL on a 

graduated scale next to the sight glasses.  
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The oil level tanks were used in preliminary tests conducted with the vapor compression 

based test apparatus. With this apparatus, the extraction flow meter was a redundant 

method to verify the amount of liquid mixture extracted from the oil separator. However, 

for the pump-boiler test apparatus, there was not sufficient pressure gradient to drive the 

liquid mixture flow to the extraction flow meter and to the oil level tanks for long period 

of time. As liquid accumulated inside the tanks, the pressure inside them rose and the 

flow of extracted mixture stopped. Thus, for the pump-boiler test apparatus, refrigerant 

vapor was taken out from the top of the oil level tanks to an empty refrigerant cylinder. 

The rate was slow but continuous in order to control the pressure of the tanks 

downstream the extraction flow meter and thus to provide a minimum pressure gradient 

across the extraction flow meter to circulate (and measure the flow rate of) the extracted 

liquid mixture. At the same time, refrigerant was slowly pumped in to the refrigerant loop 

to conserve the total mass of refrigerant in the system. This approach successfully 

controlled the pressure gradient across the extraction flow meter without disturbing or 

interfering with the main refrigerant loop operating conditions. The time integration of 

the flow rate from the extraction flow meter provided the cumulative amount of liquid 

mass that was extracted from the oil separator.  
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Figure 3.35: Calibration curve for the oil level tank to measure the volume of oil 

extracted during initial test setup (Deokar, 2013) 

 

The mass flow rate of the refrigerant (gh o�), the injected oil-refrigerant mixture 

(gh ;�sWo�,�mn), and the extracted oil-refrigerant mixture (gh ;�sWo�,o�*) are measured using 

the Coriolis flow meter. The mass of the oil injected at the microchannel heat exchanger 

(g;�s,�m) is measured by integrating the value of the mass flow rate of injected oil with 

the time-period of the test. The Coriolis meter can be used to measure either liquid or gas 

mass flow rate, but it is only employed to measure liquid mass flow rates. The 

specifications for the mass flow meters are shown in Table 3-14and Table 3-15, 

respectively. The mass flow meter CMF025 is placed between the refrigerant gear pump 
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and the evaporator to measure the pumped refrigerant mass flow rate. One mass flow 

meter CMF010M is placed at the oil outlet/drain of the oil separator to measure the 

extracted oil-refrigerant mixture, while the other is placed after the injection gear pump 

on the injection line to measure the injected oil-refrigerant mixture’s mass flow rate. 

Table 3-14 Specifications of the Refrigerant Mass Flow Meter 

Item Item Specification 

Model  (CMF025) CMF025M319NRAAEZZZ   

Type Coriolis Flow and Density Meter 

Transmitter 2700C12BBAEZZZ 

Flow rate range 4800 lbm/h (2180 kg/h) 

Flow rate accuracy ±0.10% of the flow rate 

Zero stability 0.06 lbm/h (0.027 kg/h) 

Density range 312 lbm/ft^3(5000 kg/m^3) or (5 g/cm^3) 

Density accuracy ±0.0312 lbm/ft^3 (±0.5 kg/m^3) 

Temperature range 300°F (148°C) 

Temperature accuracy ±2°F (±1°C) 

Output 4 to 20 mA 

Pressure rating for sensor 1500 psig (10.4 MPa) 

Manufacturer Micro Motion Inc. 
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Table 3-15 Specifications of the Oil-Refrigerant Mixture Injection and Extraction 

Mass Flow Meter 

Item Item Specification 

Model  (CMF010M) CMF010M323NRAAEZZZ 

Type Coriolis Flow and Density Meter 

Transmitter 2700C12BBAEZZZ 

Flow rate range 240 lbm/h (108 kg/h) 

Flow rate accuracy ±0.10% of the flow rate 

Zero stability 0.0045 lbm/h (0.002 kg/h) 

Density range 312 lbm/ft^3(5000 kg/m^3) or (5 g/cm^3) 

Density accuracy ±0.0312 lbm/ft^3 (±0.5 kg/m^3) 

Temperature range 300°F (148°C) 

Temperature accuracy ±2°F (±1°C) 

Output 4 to 20 mA 

Pressure rating for sensor 1813 psig (12.6 MPa) 

Manufacturer Micro Motion Inc. 

 

According to the manufacturer, the rated accuracy of the mass flow meter is ±0.10% of 

the flow rate. But, if the actual flow rate is less than 
¤�¥� ¦�§¨����©0.001 , then the accuracy is 

± ª ¤�¥� ¦�§¨����©«��� ¥§�� 100¬% of the flow rate. The oil-refrigerant mass flow rate in the system 

varied from 3 to 20 lbm/h. The  
¤�¥� ¦�§¨����©0.001 = 0.00X20.001 = 4.5 lbm/h, which means that the 

flow rate from 3 to 4.5 lbm/h has the uncertainty greater than ±0.10% of the flow rate. If 

calculated, the uncertainty at 3 lbm/h is ±0.15% of the flow rate. Comparing the 
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percentage of the net region of 4.5 to 20 lbm/h with the region of 3 to 4.5 lbm/h it will be 

reasonable to choose the uncertainty as ±0.10% of the flow rate. This is illustrated in 

Figure 3.36. The refrigerant mass flow rate in the system is always greater than 300 

lbm/h, while the 
¤�¥� ¦�§¨����©0.001 = 0.080.001 = 60 lbm/h, which is very small compared to the 

flow rate of the refrigerant in the system. Hence, the uncertainty in the refrigerant flow 

rate is ±0.10% of the flow rate. 

 

Figure 3.36: Relation between the flow meter accuracy and the mass flow rate 

 

A weighing scale is used to measure the weight of the oil-refrigerant samples collected at 

the end of each injection test to determine the solubility of the refrigerant in the oil using 
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the gravimetric method. The specifications of the weighing scale are shown in Table 3-

16. 

Table 3-16 Specification of the Weighing Scale 

Item Item Specification 

Model SAW-L 

Capacity 50 lb (22 kg) 

Resolution 0.0005 lb (0.2 g) 

Accuracy ±0.01% of full scale; ±0.005 lb (±2.2 g) 

Manufacturer Arlyn scales 
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CHAPTER IV 

4 Data Reduction and Uncertainty Analysis 

4.1 Data Reduction 

The amount of oil carried over with the refrigerant in the microchannel heat exchanger 

was referred to as the oil mass fraction (OMF) and it was defined as follows: 

100×
+

=
refoil

oil

mm

m
OMF

&&

&

 
4-1 

where oilm&  was the measured flow rate of the oil released to the test section and 
refm&  was 

the measured flow rate of refrigerant in the test setup. Oil was injected at the inlet of the 

test section with OMF of x wt.%. Once the travel time for the oil to go from S1 to S2 was 

estimated, the corresponding OMF of (x -δx) wt.% for the injection at the outlet of the 

test section was also found. It should be notice that for the δx was small and for some of 

the tests it was zero. For these two OMFs identified, the oil travelled in the pipeline 

downstream the test section with the same velocity. Now that the two OMFs for which 

the flow conditions in the pipeline downstream the test section were the same were 

identified, the oil retention was calculated as follow: 

Oil retention 

mass in the test 

section 

= 

Oil retention mass in the test 

section plus in the pipeline 

- 

Oil retention mass in 

the pipeline 

4-2 
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That is, 

ORmass@OMF=x wt.%  = Ma@OMF= x wt.%@inlet  - Mb@OMF= (x-δx) wt.%@outlet  4-3 

 

Where 

fN&@}~�� ��%@�����- = l gh ;�s,�mnop*oq@�mso* uv* ,��
*w,��

= fN P Q
Ng�S 4-4 

and 

fz&@}~��&Wδ- ��%@������- = l gh ;�s,�mnop*oq@;{*so* uv* ,���
*�,���

= fz PQ
Ng�S 4-5 

And where  gh ;�s,�mnop*oq  = �h ���_���������&1��-  was the mass flow rate of oil injected at the inlet 

and at the outlet by subtracting the amount of refrigerant dissolved in the oil. The time 

t0,in and t0,out were the times at which the oil was first released to the inlet and outlet of the 

test section. The time t1,in and t1,out were the times at which the oil was detected at the 

sight glass S1 for oil injection at the inlet and outlet of the test section. The final oil 

retention mass in the test section was calculated as follows: 

ORmass@OMF=x wt.% [grams] = Ma - Mb  4-6 

 

And the oil retention volume in the test section was calculated as follows: 

e��	y�g�@Y�@�� ,*.%PcmUS = e�gN��@Y�@�� ,*.% PQ
Ng�S
ρ���@8I°�  PQ
Ng�/�gUS  4-7 
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Where ρoil was the density of the oil at reference temperature of 68 °F (20 °C). The oil 

retention inside the microchannel heat exchangers was normalized with respect to the 

total internal volume of the heat exchanger, that is, internal volume of the tubes plus the 

internal volume of the headers: 

e��[,@Y�@�� ,*.%P− S = e��	y�g�@Y�@�� ,*.%�*;*)s,�m*om)s �;s{�o   4-8 

The ORVN was a dimensionless number that varied from 0 for the case of no oil retained 

in the heat exchanger to 1, if the heat exchanger was completely filled up with oil. It the 

experiments ORVN varied from 0.01 to 0.15, that is, the oil retained in the heat exchanger 

ranged from 1 up to 15 percent of the total internal volume of the heat exchanger. An 

example of the above data reduction procedure was provided in section 3.3.3.4 of this 

dissertation.  

The amount of oil retention in the microchannel heat exchanger offers an additional 

resistance to refrigerant flow. If the OMF increases, oil retention in the test section 

increases as well. Consequently the pressure drops depend upon the refrigerant flow rate 

and on the OMF in the circulating refrigerant-oil mixture (Cremaschi et al., 2005). The 

oil effect on pressure drop was estimated by measuring the pressure drop in the test 

section at specific mass flow rates and OMFs. The refrigerant side pressure drop at the 

measured OMF, ∆4,�*� ;�s was compared to the corresponding pressure drop across the 

test section at the same total mass flow rate but with no oil present, ∆4,�*�;{* ;�s. The 

pressure drop factor (PDF) was used to represent the effect of the oil  and it is defined as 

follows: 
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oilwithout

oilwith

p

p
PDF

  

   

∆

∆
=  4-9 

The PDF is a cumulative factor that account for both acceleration and friction pressure 

drop components e.g. alteration of two-phase flow regime, increase in the liquid phase 

viscosity and the reduction of the free-flow area available to the refrigerant flow due to 

the oil retention. 

Similarly, the microchannel heat exchanger heat transfer capacity factor, HTF, was 

calculated based on the heat transfer capacity measured during test with oil and the 

corresponding operating conditions without oil, as follows: 

oilwithoutair

oilwithair

Q

Q
HTF

  ,

 ,

&

&

=  4-10 

Where °h)� is the heat transfer rate measured from the air side of the heat exchanger at 

given test condition by using the following equation: 

°)� = R)� ∙ $�f ∙ 60 ∙ �% ∙ &')�,;{* − ')�,�m- 4-11 

 

The volume flow rate of the air, CFM, through the microchannel heat exchanger was 

calculated from the pressure difference across the flow nozzle in agreement with the 

ANSI/ASHRAE Standard 41.2 (ASHRAE 1987). The properties of air were estimated by 

using ASHRAE Handbook – Fundamentals (ASHRAE 2001). The dry bulb temperature 

of the inlet air (')�,�m), the dry bulb temperature of the outlet air (')�,;{*) from the 

microchannel heat exchanger, and the volume flow rate (CFM) were measured. The 

density of the air (R)�) was estimated based on the temperature of the air stream at the 

flow nozzle and the specific heat was �%= 0.2405 Btu/lbm-°F, and it did not change 

significantly between two pair of tests with and without oil. Since the air flow rate was 
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also constant between two pair of tests with and without oil, the HTF can be reduced to 

the following result: 

K'�≈ ρ)�,,�*� ;�s⋅&')�,;{* ,�*� ;�s − ')�,�m-
ρ)�,,�*�;{* ;�s⋅&')�,,�*�;{* ;�s − ')�,�m- 

4-12 

 

 

Where the variations in specific heat at constant pressure of the air were neglected 

because they were small. While Eq. (4-10) is more accurate and it was used in the present 

study, equation (4-12) shows that the HTF is basically dependent only on temperature 

measurements. Thus, the experimental uncertainty on the HTF was fairly small.  

An example of HTF calculation during the condenser test is given next. The oil-

refrigerant mixture was injected upstream of the microchannel heat exchanger at a mass 

flow rate of gh ;�s�o�,�mn = 27 ± 0.006 lbm/h. The gravimetric method determines the 

solubility of this injected mixture as ± = 47.25 ± 2.18% w/w. The total mass flow rate of 

the oil-refrigerant mixture at the inlet of the microchannel heat exchanger was 

gh o�,*o(*W(op*�;m = 395.8 ± 0.005 lbm/h. The inlet pressure and superheat temperature 

measured at the inlet of the microchannel condenser were ��p��,� = 353.04 ± 0.65 psia 

and '�p��,� = 111.79 ± 0.36 °F, respectively. The heat transfer rate of the microchannel 

condenser rejected to the air during the injection test causes the temperature of the air to 

rise and by using equation (4-11) the calculated heat transfer is during this condition is 

°,�*� ;�s = 26,632.02 ± 1441.37 Btu/h. The oil-refrigerant fluid pressure drop measured 

by the differential pressure transducer during the injection test is ∆�@Y²³ = 2.74 ± 0.03 

psid. Using the mapping data the heat transfer and pressure drop in absence of oil are 
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interpolated at same total flow rate and the inlet pressure as °h,�*�;{* ;�s = 27,215.63 ± 

1441.37, and ∆�@Y²³�0 = 2.40 ± 0.03 psid, respectively. Using equation 4-10, the HTF 

was calculated as: 

98.0
216,27

632,26

  

   ===
oilwithout

oilwith

Q

Q
HTF

&

&

 

For the evaporator tests, for series 7, the saturation temperature at Microchannel 

Evaporator A inlet was controlled to about 48
o
 F, and the mass flow rate was 200 lb/hr. 

The superheat at microchannel evaporator outlet was controlled to 10
o
 F. An example for 

the main variables in this case are as follows: 

mr = 200 lbm/hr (Mass flow rate of refrigerant for no oil condition) 

moil = 10.2 lbm/hr (Mass flow rate of oil during injection) 

mtot,OMF=5 wt. % =mr + moil = 210.2 lbm/hr    (Mass flow rate of refrigerant and oil mixture) 

Therefore during oil injection period, the total mass flow rate of the mixture was about 

210 lb/hr, the measured heat transfer capacity was °h,�*� ;�s = 16,580 ´v�/ℎ
 and the 

measured refrigerant side pressure drop was ∆pwith oil = 1.023 psid. Performance mapping 

tests were conducted at refrigerant mass flow rate of 200 lbm/hr (referred in this example 

with the notation “without oil low”) and 212 lbm/hr (referred to as “without oil high”) and 

at the same refrigerant saturation temperature of 48°F, and degree of superheat of 

refrigerant vapor at the microchannel evaporator A outlet of about 10°F (5.5°C). These 

performance mapping tests provided four neighboring points for the heat transfer rate 

(°h,�*�;{* ;�s,s;, = 18,264 ´'µ/ℎ
, °h,�*�;{* ;�s,���� = 18,917 ´'µ/ℎ
,) and pressure 
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drop (∆4,�*�;{* ;�s,s;, = 0.75 4�¶u,∆4,�*�;{* ����,s;, = 0.9 4�¶u) of the microchannel 

evaporator A when no oil was present and when the refrigerant flow rate ranged from 200 

to 212 lbm/hr. Then, the actual heat transfer rate (°h,�*�;{* ;�s = 18,842 ´'µ/ℎ
) and 

pressure drop (∆4,�*�;{* ;�s = 0.882 4�¶u) for the corresponding baseline case of no oil 

at the refrigerant flow rate of 210 lb/hr was estimated from linear interpolation between 

each two pairs of the mapping points (i.e. the two neighboring points for °h,�*�;{* ;�s and 

the two neighboring points for ∆pwithout oil). The HTF and PDF factors resulted as follows: 

HTF = °h,�*� ;�s°h,�*�;{* ;�s = 16,58018,842 = 0.88 

PDF = ∆4,�*� ;�s
∆4,�*�;{* ;�s = 1.023 0.882 = 1.16 

It should be noted that during the evaporator tests, the absolute pressure varied by less 

than 3 psia in microchannel evaporator A when oil was injected in the refrigerant loop. 

This variation was small enough to be neglected for the estimation of °h,�*�;{* ;�s and 

∆4,�*�;{* ;�s. In other words, for most of the evaporation tests, a linear interpolation was 

used to calculate °h,�*�;{* ;�s and ∆4,�*�;{* ;�s from two points at different flow rates. 

The interpolation (or double interpolation) approach eliminated any source of systematic 

error that could potentially skew the results for HTF and PDF due to the fact that during 

the experiments the oil slightly altered the pressure and flow rate of the system. With this 

approach, the effect of oil in the microchannel heat exchanger was isolated in the 

experimental results and the comparison of heat transfer rate and pressure drop between 

the case with oil and the case without oil was more meaningful. The HTF and PDF 

calculated with the data reduction method of the present work were representative of the 
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degradation of the refrigerant-side heat transfer rate and of the increase of the refrigerant-

side pressure drop due to the oil retained in the heat exchangers.  

 

4.2 Uncertainty Analysis 

Based on the technical approach described in the previous sections, a preliminary 

uncertainty analysis was conducted according to the uncertainty propagation method 

suggested by Taylor and Kuyatt (1994). The accuracies of the main instrumentations used 

in this study are listed in Table 4-1. These values will be used to calculate the uncertainty 

of the important parameters based on uncertainty propagation analysis described in the 

following section. 
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Table 4-1 Accuracy of the main instrumentation for the study 

Sensor Manufacturer Model / 

Type 

Nominal range Accuracy 

Refrigerant 

Mass flow 

meter 

Micromotion  CFM025 

Elite series 

6 to 19 lb/min 

(45 to 143 g/s) 

±0.1% of reading 

Oil Mass 

flow meter 

Micromotion  CFM010 

Elite series 

0.01 to 0.8 lb/min 

(0.08 to 6 g/s) 

±0.5% of reading if 

flow <0.04 lb/min;  

±0.1%  of reading if 

flow > 0.04 lb/min 

Air flow rate Helander  Elliptical 

nozzle 

150 to2,000 cfm 

(0.07 to 1 m
3
/s) 

±2.2% of flow rate 

(using Setra 264 

pressure transducer) 

Temperature Omega T-type -40 to 130 °F  

( -40 to 54 °C) 

±0.5°F (0.3°C) 

High 

accuracy 

barometer 

Vaisala PX02 26-32 inHg  

(88 – 108 kPa) 
±0.25% of full scale 

Air pressure 

transducer  

Setra Model 264 0 ∼ 3 in WC 

(0 to 747 Pa) 

±0.25% of full scale 

Precision 

Temperature 

Omega RTD (Pt-

100) 
-40 to 130 °F  

( -40 to 54 °C) 

±0.2°F (0.1°C)  

Refrigerant 

Saturation 

Pressure 

Setra Model 

C206 

7 to 500 psia 

(50 to 3,450 kPa) 

±0.65psi (4.5 kPa) 

Differential 

pressure 

Validyne Diaphragm 

Typer 

0 to 50 psi 

(0 to 350 kPa) 

±0.25 psi (1.8 kPa) 

Watt 

Transducer 

Omega OM11 6,800 to 38,000 

Btu/hr 

(2 to 11 kW) 

0.2% of reading 
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4.2.1 Uncertainty Analysis of Microchannel Condenser Tests 

The T-type thermocouples and Pt-100 RTD sensors were calibrated in-situ and several 

times during the experimental campaign. Their accuracy was 0.5 °F (0.3 °C) for the T-

type thermocouples and 0.2 °F (0.1 °C) for the RDTs. If the variables of the air side heat 

transfer rate, that is, R)�, $�f, ∆')� = &')�,;{* − ')�,�m- have random experimental 

uncertainties of �R)�, �$�f, and �∆')� and these uncertainties are also independent 

from each other, then the theoretical experimental uncertainty of the heat transfer rate, 

�°)�, was calculated by using the Taylor series uncertainty propagation equation: 

�°)� = ¼"½¾°)�¾R)� �R)�¿A + ½ ¾°)�¾$�f �$�f¿A + ½ ¾°)�¾∆')� �∆')�¿A. 

4-13 

 

By applying the theory of uncertainty error propagation by Taylor and Kuyatt (1994) to 

the Heat Transfer Factor (K'�) Equation 4-13, gives the Equation 4-14 to calculate the 

uncertainty �K'�. 

�K'�_°)�
= ¼À_ 1°)�@Y�@�0 �°)�@Y�@`A + _ −°)�@Y�@°)�@Y�@�0A �°)�@Y�@�0`AÁ 

4-14 

 

The uncertainty above is the uncertainty in K'� based on the heat transfer calculation. 

While calculating the �K'�, the uncertainty �°)�@Y�@�0 was taken to be similar to the 

experimental uncertainty �°)�@Y�@. This was reasonable because the heat transfer rates 



147 

 

with and without oil were measured by using the same instrumentation and in the same 

period. The measured values for °)�@Y�@�0 and °)�@Y�@ were also close to each other 

and thus it is logical to assume that �°)�@Y�@ and �°)�@Y�@�0, were also close to each 

other. Equation 4-14 was simplified to: 

�K'� = ¼À_K'� �°)�°)�@Y�@`A + _K'�A �°)�°)�@Y�@`AÁ 

4-15 

 

Equation 4-15 simplification leads to Equation 4-16, which expresses the fractional 

uncertainty of K'� as a function of the fractional uncertainty of °)�@Y²³. 

�K'�K'� = Â1 + K'�A ∙ �°)�°)�@Y�@ 
4-16 

Similar to K'� uncertainty analysis, applying the theory of uncertainty propagation by 

Taylor and Kuyatt (1994) to the Pressure Drop Factor (�<�) Equation 4-9 gives the 

Equation 4-17 to calculate the uncertainty on the pressure drop factor, ��<�. 

��<� = ¼À_ 1∆�@Y�@�0 �∆�@Y�@`A + _ −∆�@Y�@∆�@Y�@�0A �∆�@Y�@�0`AÁ 4-17 

The uncertainty�∆�@Y�@�0 of the mapping data and the uncertainty �∆�@Y�@ of the 

pressure drop for tests with ef� > 0% were same and equal to ±0.03 psi (according to 

the specifications of the differential pressure transducer provided by the manufacturer). 

Equation 4-17 was simplified accordingly to get a new Equation 4-18. 

��<� = ¼À_�<� �∆�@Y�@∆�@Y�@ `A + _�<�A �∆�@Y�@∆�@Y�@ `AÁ 4-18 

The fractional uncertainty of �<� as a function of the fractional uncertainty of ∆�@Y�@. 
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��<��<� = Â1 + �<�A ∙ �∆�@Y�@∆�@Y�@  4-19 

The uncertainty of oil mass fraction, OMF depends on the measured solubility values and 

it was calculated according to the uncertainty error propagation theory described by 

Taylor and Kuyatt (1994). For the tests in which �;�s o(o�;� <365 psia, the 

uncertainties in the calculated solubility values increased from ±1% w/w (at 20% w/w) to 

±2.7% w/w (at 75% w/w) with a quadratic trend. For tests in which �;�s o(o�;� ≈ 495 

psia, the weights of the oil-mixture samples collected in the sampling cylinder were high. 

This reduced the fractional uncertainties of the weights measured with our laboratory 

scale and the calculated solubility values had lower experimental uncertainties.  

The uncertainties in the solubility values were propagated to the errors in the ef�. The 

errors in the  ef� also depended on the errors in the measured mass flow rates of the 

refrigerant and the injected oil-refrigerant mixture. The Coriolis mass flow meters had 

very good accuracies for the range of flow rates of the present work, which resulted in 

small uncertainties of the measured mass flow rates. This means that the uncertainties in 

the solubility dominated the propagation of experimental error for the OMF. For this 

reason, measurements of the solubility values of the injected oil-refrigerant mixture 

during the tests were used in the present work to estimate the solubility of refrigerant and 

oil mixture. The theoretical uncertainty errors for the main parameters of the present 

work are given in  

 

Table 4-2. 
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Table 4-2 Range and Uncertainty Limits of the Main Variables in Condenser Tests 

R410A tests Range of Data 

Uncertainty Parameter units min max 

��p��,� psia 269.06 494.60 0.13 % 

'�p��,� °F 99.60 134.08 0.36 °F 

gh ;�s�o�,�mn lbm/h 3.60 36.12 0.08 % 

gh ;�s,�mn + gh o�,�p�� lbm/h 350.34 613.20 0.01 % 

± % w/w 21.8 86.0 2.7 % 

ef�* % 0.46 5.54 0.11 % 

∆P§�¥,Ä in W.C. 2.8 3.0 0.25 % 

R)� lbm/ft
3
 0.070 0.073 0.27 % 

$�f cfm 2750 2900 0.55 % 

∆')�@Y²³ °F 3.84 12.11 0.51 °F 

∆')�@Y²³�0 °F 4.32 12.78 0.51 °F 

°)�@Y²³ Btu/h 11608 33801 4.5 % 

°)�@Y²³�0 Btu/h 13202 35306 4.3 % 

∆�@Y²³ psi 2.27 12.64 0.24 % 

∆�@Y²³�0 psi 2.19 12.21 0.25 % 

K'�_°)� - 0.87 1.11 5.2 % 

K'�_∆')� - 0.87 1.61 1.9 % 

�<� - 0.85 1.18 1.7 % 
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4.2.2 Uncertainty Analysis of Microchannel Evaporator Tests 

This section discusses further the uncertainty error in OMF, ORVN, HTF, and PDF for 

microchannel evaporators tests.  

Uncertainty in Oil Mass Fraction (OMF): The sensor and equipment used for the 

measurements of oil mass flow rate and refrigerant mass flow rate and of solubility of 

refrigerant in POE oil for microchannel evaporator tests were the same as that of 

condenser tests. The uncertainty in measurements of oil retention in microchannel 

evaporators was depended on the oil mass difference at the inlet port and at the outlet 

port, that is, 

ORmass@OMF=x wt.% [grams] = Ma – Mb 

Where Ma and Mb were total masses of oil described in data reduction section 4.1 and 

defined specifically by Equations 4-4 and 4-5. Each mass of oil is the result of a time 

integral of the form 

f = l gh ;�s,�mnop*oq
* 

*w
uv 

And using above time integral for inlet and outlet ports of the test section, the oil mass Ma 

and Mb are obtained.. The uncertainty calculation of oil retention mass includes 

uncertainty propagation of solubility of the refrigerant dissolved in the oil. The 

uncertainty of oil mass retention also involves the human operator error in estimating the 

time t0 and t1 of the above time integral of the flow rate.  In a conservative way, based on 

our experience we estimated the human operator error in detecting the time at which the 

oil passes through the sight glass to as ± 2 seconds.  
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Figure 4.1 shows the uncertainty bars in the calculated oil retention volume if the error in 

the time of oil detection at the sight glasses is ± 2 seconds.  For OMF at or below 3 wt. % 

this human error does not affect significantly the reported ORVn because the time of 

integration is long, that is, of several minutes. For OMF higher than 3 wt.%, the error 

bars in the ORVn resulted ±0.01, which could be significant. In order to achieve an error 

of within ±2 seconds in the time of detection of oil at the sight glasses, video recordings 

of the flow at the sight glasses were taken and synchronized during the oil retention tests. 

The digital images provided the time at which the oil arrived to the sight glass and 

covered its glass surfaces. Oil had a dye in it and it appeared as yellowish and greenish in 

color as opposed to refrigerant, which appeared as transparent fluid inside the sight glass. 

During a tests, video recordings of the sight glasses with actual time indicators (i.e., a 

digital chronometers) next to them were taken, as shown in  

Figure 4.2. Then, the recordings were synchronized in time, labeled, and archived. After 

the test was completed, the video recordings were played back at 3 time slower rate than 

real time. The digital frames of the sight glasses and chronometers indicated the instant in 

which the oil appeared first in a sight glass until the instant in which the oil covered the 

full length of the sight glass surfaces. The images of the digital chronometer, once 

synchronized, provided the exact times (within ±2 seconds) at which the oil arrived 

approximately at the end of the sight glass. The overall theoretical uncertainty plus the 

uncertainty due to human operator on the ORVN was estimated to ±0.01. For normalized 

oil retention volumes in the range of 0.05 to 0.1, this experimental uncertainty on the oil 

retention was 10 to 20 percent.  
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Figure 4.1: Uncertainity of ORV with t±2 seconds 
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Figure 4.2: Oil layer observed for various OMFs 

Uncertainty of pressure drop in microchannel evaporator was similar as the one described 

for the condenser tests. Four different differential pressure transducers were used based 

on the magnitude of the pressure drop across the microchannel evaporator. Each pressure 

transducer had a different full scale. For high mass flux tests, the pressure drop measured 

between microchannel evaporator inlet and outlet ranged from 5 psid to about 10 psid. 

Thus, for these cases, a differential pressure transducer of 15 psid full scale range or of 8 

psid full scale range were used. For low mass flux tests, the differential pressure 

transducer with 3 psid full scale range or 5 psid full scale range were used in order to 

improve the accuracy of the pressure drop measurements.  
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The uncertainty in the HTF for microchannel evaporator was similar to that of condenser 

for the medium temperature evaporator tests and it was of ±4.5%.  
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CHAPTER V 

5 Experimental Results and Discussion 

5.1 Microchannel Condenser 

The experimental results of oil retention, pressure drop and heat transfer factor of 

R410A-POE oil mixture in the microchannel condenser are presented next.  

5.1.1 Oil retention 

5.1.1.1 Note on the range of OMFs in actual air conditioning systems, vending 

machines, water and wine coolers of refrigeration systems 

It should be emphasized that OMF in actual air conditioning systems, vending machines, 

water and wine coolers, and refrigeration systems typically ranges from 0.5 to 1 w.t. % 

and sometimes it can be as high as 3 w.t. % for some operating conditions. The maximum 

OMF investigated in the present work was intentionally higher than 3 wt.% because the 

aim was to clearly highlight trends among the data of ORVN, HTF and PDF. However, 

the results in the present study when OMF was higher than 3 wt.% should not be 

interpreted as representative case for actual systems in the field. 

5.1.1.2 Air Conditioning Application with R410A and POE lubricant 

The results of oil retention in the microchannel condenser for air conditioning 

applications and with refrigerant R410A and POE lubricant mixture are shown in Figure 
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5.1 and Figure 5.2. The test conditions are represented by open and full symbols and 

letters A to F and they are summarized in Table 5-1. The first three columns of this Table 

indicate the saturation temperature and mass flux during the tests while the last two 

columns show the range of solubility ad miscibility for R410A and POE oil during the 

tests. The oil retention volume was normalized (ORVN) with respect to the condenser 

total internal volume and it was plotted versus oil mass fraction (OMF) for each 

saturation temperature and each mass flux studied in the present work. The degree of 

superheat at the inlet of microchannel condenser was set to 10°F (∼5 °C) in Figure 5.1, 

which was referred to as low degree of superheat, and to 65 °F (∼36 °C) in Figure 5.2, 

which was referred to as high degree of superheat throughout these sections of the report. 

The results indicated that the oil retained in the condenser was strongly depended on the 

OMF in the heat exchanger. The oil retention volume increased if the OMF increased and 

it was measured up to 11% of the total condenser internal volume, which consisted of the 

internal volume of all microchannel tubes plus the headers.  

 



157 

 

Table 5-1 Legend of the letters and symbols used in the figures reporting the tests 

results of microchannel condenser with R410A and POE 

 

*Mass flux G is the mass flux inside each of microchannel tubes. It was calculated from the 

mass flow rate divided by the total cross sectional area of all the microchannel tubes that 

belong to condenser section (Gcondenser) and that belong to the subcooler section (Gsubcooler) 

**Solubility values for the test ranges were obtained using Gravimetric method (ASHRAE, 

1996) 

***Miscibility range was based on Kang and Pate (1999) 
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Figure 5.1: Oil retention volume at low degree of superheat for R410A+POE oil in 

microchannel condenser 

 

Figure 5.1 and Figure 5.2 show that the oil retention volume for high mass flux 

conditions (open symbols and letters D, E, and F) are higher than those for low mass flux 

conditions (full symbols and letters A, B, and C). The effect of mass flux on the oil 

retention was small for low OMFs and becomes more evident for OMFs higher than 3 

wt.%. The oil retention volume was from 1.6 to 3 times higher for the cases of high mass 

flux compared to those of low mass flux cases.  
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For similar mass flux, the effects of saturation temperature on the oil retention were small 

for low superheat inlet condition (see Figure 5.1). The most marked effect of the 

refrigerant mass flux on the oil retention volume was observed for the test at low 

superheat condition and Tsat = 130 °F (54 °C), and it is reported in Figure 5.1 with the 

series C and F. An increase of the mass flux from 16 to 24 lbm/ft
2
-s (80 to 120 kg/m

2
-s) 

doubled the oil retention volume in the microchannel condenser. This can be explained 

by considering that at high refrigerant mass flux more liquid phase was present inside the 

condenser than at low mass flux because the air side entering conditions were kept 

constant between the two series of tests. The liquid phase travelled along the condenser 

with lower mass velocity with respect to the refrigerant vapor phase velocity. If more 

liquid was present inside the condenser then more oil was present inside the condenser 

because the concentration of the oil in the mixture was constant (for example looking at 

constant OMF line of 3 wt.% for the series at high and low mass flux). 
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Figure 5.2: Oil retention volume at high degree of superheat for R410A+POE oil in 

microchannel condenser 

When the saturation temperature increased, the miscibility of R410A and POE oil 

mixture decreased until the critical solution temperature could be reached and the mixture 

became completely immiscible. The critical solution temperature of R410A-POE oil 

mixture at high refrigerant mass fraction of about 0.8 (which is equivalent to OMF of 20 

wt.%) was about 113 °F (45 °C) (Kang and Pate, 1999). At saturation temperature of 130 

°F (54 °C), a decreased degree of miscibility of POE oil in R410A liquid refrigerant 

occurred with respect to the other (much lower) saturation temperatures tested in the 

present work. Because of this decreased miscibility, an increase in viscosity of the liquid 

phase occurred, especially near the internal walls of the condenser tubes. In addition, at 
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high mass flux of refrigerant-oil mixture, more oil mass was injected during the test 

period into the heat exchanger in order to set the OMF. Because of the reduced liquid 

phase velocity and of the augmented liquid viscosity, more oil can potentially be hold up 

inside the microchannel condenser.  

If we assume that the liquid phase formed a distinct layer separated from the vapor phase 

inside the microchannel tubes when the mixture undergoes a the two phase flow change 

process and inside the inlet headers of the condenser, then a low degree of superheat of 

the entering refrigerant vapor resulted in a lower superficial velocity when compared to 

the similar tests with high degree of superheat. This contributed to increase the oil 

retention volume because carrying the oil became more difficult when the refrigerant 

vapor had low superficial velocity and when the oil was less miscible with the liquid 

refrigerant. That was the case when saturation temperature was 130 °F (54 °C) and the 

degree of superheat was low, as that for the series C and F in Figure 5.1.  

Different trends were observed for high superheat inlet conditions, shown in Figure 5.2. 

The oil retention volume decreased as the saturation temperature increased and for both 

low and high mass fluxes. At high superheat conditions, most of the condenser internal 

volume was filled with refrigerant and oil in the two phase flow and the initial entering 

section of the condenser had superheated vapor. Because the degree of superheat was 

high, there was less liquid refrigerant in the internal volume of the condenser and the 

dominant effect for oil retention was not the miscibility of oil in the refrigerant liquid 

anymore.  
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By comparing the oil retention volume in Figure 5.1 with the corresponding data in 

Figure 5.2, it can be deduced that at Tsat of 105°F (41°C) the oil retention volume was 

higher when the inlet condition of the condenser was lower degree of superheat. In this 

condition, the refrigerant in the condenser internal volume was predominantly in two-

phase flow and the refrigerant vapor had lower superficial velocity in average when 

entering with low degree of superheat. For example, at Tsat of 105 °F (41 °C) the 

superficial vapor velocity of the refrigerant entering the condenser was about 187 ft/s (57 

m/s) for the low degree of superheat case and low mass flux (solid triangles data points 

with letter B in Figure 5.1). This velocity increased to 239 ft/s (73 m/s) for the 

corresponding case of high degree of superheat and for same mass flux in the solid 

triangles data points with letter B in Figure 5.2. This increase of the refrigerant vapor 

velocity reduced the oil retention volume inside the condenser. It should be noticed that 

the oil existed as either homogenous solution in liquid refrigerant or as a separate layer of 

oil rich-film at the microchannel tube wall. The presence of oil on both cases promoted 

oil held up in the microchannel condenser but in different ways. The two-phase region of 

the condenser was the main part where the oil was retained and oil was a component of 

the liquid phase mixture. The higher was the liquid phase volume inside the condenser, 

the higher was the oil retained in it. On the other hand, in the superheated section of the 

condenser, oil existed as liquid droplets and as film near the wall. The higher was the 

refrigerant vapor velocity, the higher was the oil carry over with it. The total oil volume 

retained in the condenser was depended on those two mechanisms, and the dominant 

mechanism varied for the saturation temperatures investigated in the present work. While 

a low degree of superheat tended to increase the oil retention, as reported in the data of 
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Figure 5.1 with respect to that of Figure 5.2, a generalization of this result to all 

saturation temperatures of the present work should not be made. For example, by 

comparing the oil retention data of series B, at OMF of 3 wt.% the ORVN is about 0.07 

with low degree of superheat in Figure 5.1 and it is reduced to 0.02 with high degree of 

superheat in Figure 5.2. However, the oil retention at Tsat = 85 °F (29 °C) was basically 

the same for both low and high degree of superheat cases, as shown in the series A and D 

of the two figures.   
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5.1.1.3 Refrigeration Application with refrigerant R134a and POE lubricant 

The results of oil retention in microchannel condenser for refrigeration applications with 

refrigerant R134a and POE oil mixture are shown in Figure 5.3. Test conditions are 

represented by open and full symbols and letters A to F summarized in Table 5-2.  

Table 5-2 Legend of the letters and symbols used in the figures reporting the tests 

results of microchannel condenser with R134a and POE 

*Mass flux G is the mass flux inside each of microchannel tubes. It was calculated from the 

mass flow rate divided by the total cross sectional area of all the microchannel tubes that 

belong to condenser section (Gcondenser) and that belong to the subcooler section (Gsubcooler) 

**Solubility values for the test ranges were obtained using Gravimetric method (ASHRAE, 

1996) 
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***Miscibility range was based on Kang and Pate (1999) 

The oil retention volume was normalized with respect to the condenser total internal 

volume, (ORVN), and it was plotted versus oil mass fraction (OMF) for each saturation 

temperature and each mass flux studied in the present work. The degree of superheat at 

the inlet of microchannel heat exchanger was 65 °F (36 °C). The experimental results of 

Figure 5.3 indicated that the oil retained in the condenser was strongly depended on the 

OMF. The oil retention volume increased if the OMF increased and for refrigerant R134a 

and POE mixture it was measured up to 10 % of the total condenser internal volume. 

 

Figure 5.3: Oil retention volume at high degree of inlet superheat for R134a+POE 

oil in microchannel condenser 
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By comparing Figure 5.2 and Figure 5.3, the oil retention volume for both R410A+POE 

oil and R134a+POE oil are strongly dependent on OMF and have maximum oil retention 

at the lowest saturation temperature. With refrigerant R134a and POE oil, the effect of 

refrigerant mass flux on oil retention was small for OMF below 2 wt.% and the oil hold 

up in the condenser was less than 3 % of condenser internal volume (Figure 5.3). This 

was not the case with R410A and POE oil where the mass flux effect was already 

important at OMF about 1 wt.% (see again Figure 5.2 for OMF of 1 wt.% and compare 

with Figure 5.3 at OMF of 1 wt.% ). 

It can also be seen from Figure 5.3, that at the same condensation temperature, the 

increase mass flux decreased oil retention volume with R134a and POE oil (series with 

solid line and dashed line). However, the opposite was observed for R410A and POE oil 

as depicted in Figure 5.2. 

If the OMF increased to above 3 wt.%, the high mass flux data (dashed lines in Figure 

5.3) had lower oil retention than the corresponding low mass flux data (solid lines in 

Figure 5.3) for all three saturation temperatures tested in the present work. At low 

condensation saturation temperature of 95°F (35°C), oil retention increased quite 

significantly if the mass flux decreased, as represented by the series with letters A and D 

in Figure 5.3. For these series, at OMF of 5 wt.%, the oil retention increased by about 

50% if the mass flux of the condenser section decreased from 18 lbm/ft
2
-s (88 kg/m

2
-s) to 

10 lbm/ft
2
-s (49 kg/m

2
-s). 

The lowest oil retention volume for R134a and POE oil was observed at highest 

saturation temperature and mass flux of 130°F (54°C) and 18 lbm/ft
2
-s (88 kg/m

2
-s), 
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respectively (Series F). This can be explained with the high refrigerant-oil solubility at 

high temperature and coupled with high mixture velocity due to high mass flux. 

 

5.1.2 Effect of oil retention on the heat transfer rate of the condenser 

As described in the data reduction section, the heat transfer factor (HTF) of the 

refrigerant and POE oil mixture was defined as the ratio of the measured heat transfer 

rate of the microchannel condenser when oil was retained inside the heat exchanger over 

the heat transfer rate of the microchannel condenser for the case when there was not any 

oil inside the heat exchanger. Both heat transfer rates were measured at similar total mass 

flow rate, i.e., the refrigerant flow rate entering the condenser in the case with no oil was 

similar to the mixture (refrigerant plus oil) mass flow rate in the cases with oil. This 

means that the refrigerant flow rate was decreased slightly down 4 to 5% when OMF 

increased from 0 to 5 wt. %. The saturation pressures of condensation were also the same 

between the case with no oil and the tests with oil. And the degree of superheated vapor 

refrigerant entering the condenser was a third variable kept constant in between the two 

test. Finally, the air inlet temperature and velocity were also constant between the cases 

of tests with oil and the baseline references with no oil. In other words, by comparing the 

heat transfer rates at same flow rate, pressure, and superheat, the HTF is a performance 

parameter that isolated and quantified the effect that oil retained inside the condenser had 

on the microchannel condenser refrigerant-side total heat transfer rate.  
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5.1.2.1 HTF for air conditioning applications with R410A and POE lubricant 

When OMF is 0 (i.e., no oil), the HTF resulted 1 by its own definition and it varied with 

OMF as shown in Figure 5.4 and Figure 5.5 for the microchannel condenser investigated 

in the present work. The test conditions are represented by open and full symbols and 

letters A to F and they were summarized in Table 5-1. At high saturation temperatures 

(cases with letters C and F), the HTF decreased if the OMF increased. Different trends 

were observed for medium saturation temperature and most intriguing results were 

observed at low saturation temperatures for both refrigerant mass fluxes and inlet 

superheat conditions (tests A and D). For medium saturation temperature of 105°F 

(41°C), indicated as B and E in the figures, the refrigerant-side heat transfer capacities 

seemed to be independent of the OMF for both mass fluxes and superheat inlet 

conditions. It is interesting also to note here that at low saturation temperature, the 

presence of oil was observed to increase the refrigerant-side heat transfer rate, although in 

non-monotonic fashion. The HTF in these conditions increased slightly as the OMF 

increased to about 3 wt.%; then the HTF started to decline at higher OMFs. POE oil did 

not change phase during the condensation process and it did not have as good heat 

transfer properties as that of refrigerant R410A. POE oil was a contaminant that added an 

additional thermal resistance to the heat exchange process between the air and the 

refrigerant in the microchannel condenser. Thus, the result of HTF decreasing when OMF 

increased could be somewhat intuitive because if POE oil was present in the two-phase 

flow mixture, then the convective heat transfer coefficient of the refrigerant-side was 

expected to diminish.  
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Figure 5.4: Heat transfer factor at low degree of superheat for R410A+POE oil in 

microchannel condenser 

On the other hand, the tendency of the HTF to increase if OMF increased to 3 w.t. % or 

more was unexpected. For several tests, which were conducted in different days and 

repeated several times, and particularly for low saturation temperature of 85°F (29°C), 

both series A and D in Figure 5.4 and Figure 5.5 indicated that the presence of oil 

augmented the refrigerant-side heat transfer rate. An in-depth thermodynamic and heat 

transfer analysis of this interesting behavior is provided later in this dissertation.  
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Figure 5.5: Heat transfer factor at high degree of superheat for R410A+POE oil in 

microchannel condenser 

 

The effects of refrigerant mass flux on the heat transfer rate had different results that 

were dependent on saturation temperature. At low saturation temperature, the HTF was 

slightly higher for high mass flux compared to that of low mass flux as shown in both 

Figure 5.4 and Figure 5.5 (cases A and D). On the other hand, at high saturation 

temperature (cases C and F), the HTF decreased significantly as the mass flux increased. 

At saturation temperature of 105 °F (41 °C), the HTF was not affected by the change of 

mass flux (series B and E). The effect of refrigerant mass flux on the condensation heat 
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transfer of refrigerant and oil mixtures was also reported to be small in the paper of Shao 

and Granryd (1995), in which they tested R134a-PAG oil mixture. The authors reported 

that for three different mass fluxes and for oil mass fraction up to 5 wt.%, there was no 

considerable change on the refrigerant-side heat transfer rate.  

Shao and Granryd (1995) findings agreed with the results of the present work from the 

test series B and E, that is, only for one saturation temperature of 105°F (41°C). This is a 

common reference used in air conditioning applications. However, in the present work, 

the effect of oil on heat transfer rate was depended on the saturation pressure of 

condensation. The HTF decreased as the saturation temperature increased. The 

degradation of heat transfer capacity was due to the augmentation of the liquid mixture 

viscosity of refrigerant-oil mixture compared to that of pure refrigerant R410A. Based on 

the viscosity analysis of the R410A-POE oil mixture as reported by Zhang and He 

(2009), the liquid mixture kinematic viscosity for the experiments of the present work 

increased by over 28% for the range of saturation temperatures tested in their work. The 

higher viscosity, along with the higher surface tension of the liquid refrigerant-oil 

mixture reduced the molecular and turbulent transport in the condensate film, hence 

decreasing the condensation heat transfer. This effect was further augmented by the 

annular flow regime that is typically established inside microchannel tubes. 

At low saturation temperature, the presence of oil increased the heat transfer capacity for 

low oil mass fractions. Again, similar results were also reported in the open domain 

literature by Shao and Granryd (1995) with R134a-PAG mixture. A possible reason for 

this observation is that the refrigerant-oil mixture had higher condensation temperature 

compared to that of pure refrigerant. This was also confirmed using vapor pressure 
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correlation suggested by Jeng et al. (2001) for R410A and POE oil mixture for the tests 

of the present work. At the same ranges of saturation pressure, the saturation temperature 

for the refrigerant and oil mixture at OMF of 5wt.% was up to 1.4°F higher than that of 

refrigerant R410A only. The higher saturation temperature caused the mixture to 

condense earlier at the beginning of microchannel condenser and increased the overall 

heat transfer capacity of the condenser. 

The test results at high degree of superheated vapor at inlet of the condenser had slightly 

higher HTF than the corresponding tests at low degree of superheated vapor. In other 

words, the reduction of the refrigerant-side heat transfer rate due to oil retention was 

smaller when the refrigerant entered the condenser with high degree of superheated 

vapor. This result was associated with lower oil retention volume when high superheated 

vapor entered the condenser. In the superheated section of the condenser, oil was present 

as liquid droplets entrained in the refrigerant vapor bulk flow and as oil-rich liquid film at 

the tube wall interface. Less oil in the superheated section of the condenser yielded to 

convective heat transfer process inside the microchannel tubes that was similar to that of 

refrigerant only case. Since the refrigerant-side heat transfer rate of the superheated 

section of the condenser was secondary to the heat transfer rate of the phase change 

section of the condenser, the higher was the superheated vapor, the lesser was the oil 

retention volume, and the lesser was the penalization of the heat transfer rate when oil 

was present.  
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5.1.2.2 HTF for refrigeration applications with R134a and POE lubricant 

Refrigerant R134a and POE oil mixture was tested for refrigeration applications and the 

effects of oil on the refrigerant-side heat transfer rate of the microchannel condenser are 

shown in Figure 5.6. Test conditions are represented by open and full symbols and letters 

A to F summarized in Table 5-2. When OMF is 0 (i.e., no oil), the HTF resulted 1 by its 

own definition and for R134a and POE mixture, the HTF varied with OMF as shown in 

Figure 5.6 for the microchannel condenser investigated in the present work. At high 

saturation temperatures (cases with letters C and F) and at medium saturation temperature 

for low mass flux (cases with letter B) and low saturation temperature for low mass flux 

(letter A), the HTF always decreased if the OMF increased. 

The presence of oil in the condenser reduced the heat transfer rate and the penalty was 

fairly significant at low refrigerant mass flux. These findings were consistent with the 

previous results on the oil retention where low refrigerant mass flux resulted on higher oil 

retention. The oil retained in the form of liquid rich layer inside the microchannel 

condenser hindered the convective heat transfer exchange between the refrigerant and 

internal walls of the heat exchanger. The heat transfer capacity penalization was less than 

10% at the highest saturation temperature tested in the present work. 

For medium saturation temperature of 105°F (41°C), indicated as E in Figure 5.6, and for 

low saturation temperature of 95°F (35°C), indicated as D, the refrigerant-side heat 

transfer capacities seemed to be independent of the OMF. It is interesting also to note 

here that at low saturation temperature of 95°F (35°C), indicated as D, the presence of oil 

was observed to slightly increase the refrigerant-side heat transfer rate, although this 
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increase was considered an experimental uncertainty of the measurements. The HTF in 

these conditions increased slightly by up to 3% as the OMF increased to about 3wt.%; 

then the HTF started to decline at higher OMFs. 

 

Figure 5.6: Heat transfer factor at high degree of superheat for R134a+POE oil in 

microchannel condenser 
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5.1.3 Pressure drop on the refrigerant side of the heat exchanger 

5.1.3.1 Air Conditioning Application with R410A and POE lubricant 

As described in the data reduction section, the pressure drop factor (PDF) of R410A-POE 

oil mixture was defined as the measured pressure drop across the microchannel condenser 

when oil was inside divided by the reference pressured drop across the microchannel 

condenser when there was not any oil and at constant total mass flow rate, saturation 

pressure, and degree of vapor superheat entering the condenser. The air inlet temperature 

and velocity were also constant between the cases of tests with oil and the baseline 

references with no oil. In simpler terms, the PDF was the parameter that isolated and 

quantified the effect of oil that was retained inside the condenser on the refrigerant side 

pressure drop across the entire condenser. When OMF was 0 wt.% (i.e., no oil), the PDF 

resulted 1 by definition and it varied with OMF as shown in Figure 5.7 and Figure 5.8. 

The figures indicate that the pressure drop factor increased if OMF increased. Up to 19 % 

increase of pressure drop was measured at Tsat = 130°F (54°C) with high inlet superheat 

of the condenser. The increasing pressure drop with oil presence was due to high 

refrigerant-oil mixture viscosity compared to that of refrigerant only. This increase of 

viscosity caused the increase on shear stress and of the frictional pressure drop associated 

with it. The increase of oil mass fraction also introduced higher amount of oil retention in 

the microchannel and it reduced the flow cross sectional area for the refrigerant vapor. 

This led to increasing pressure drop during the condensation process. Another reason for 

the pressure drop increase was the predominant annular flow established in microchannel 

during flow condensation(Schlager et al., 1987). For annular flow, the increasing 
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refrigerant-oil mixture viscosity increases the shear stress significantly compared to that 

of other flow regimes, such as stratified flow and wavy flow types.  

 

Figure 5.7: Pressure drop at low degree of superheat for R410A+POE oil in 

microchannel condenser 

As indicated in both Figure 5.7 and Figure 5.8, the pressure drop increased as the 

refrigerant mass flux increased although with varying magnitude. Both figures show that 

the effects became more important as oil mass fraction increased to about 3 wt.%. A 

significant rise of pressure drop was observed with the increase of refrigerant mass flux at 

high saturation temperature (case C and F in both Figures), while the results showed 

smaller effects for other conditions. In the same figure, at saturation temperature of 130°F 
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(54°C), the pressure drop factor at low mass flux (case C) was approximately 10% higher 

when OMF was 3 wt.% compared to that of without oil case, and the PDF doubled for 

high mass flux (case F). It is interesting to note that at this higher saturation temperature, 

the effect of refrigerant mass flux became more important although the viscosity of 

R410A-POE oil mixture decreased (Zhang and He, 2009).  

 

Figure 5.8: Pressure drop at high degree of superheat for R410A+POE oil in 

microchannel condenser 

It seems that the pressure drop during this condition was mainly affected by the oil-rich 

film that was separated and retained in the microchannel due to immiscibility of the 

mixture at higher saturation temperature (Kang and Pate, 1999). This observation was 
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also confirmed by the findings that for the above conditions (case C and F in Figure 5.7), 

both pressure drop and oil retention results showed positive relation i.e. when the oil 

retention increased, the measured PDF also increased. The oil-driven viscosity 

augmentation of the refrigerant-oil mixture and the presence of oil retention near the 

microchannel wall contributed to increase the PDF. 

The effect of saturation temperature on PDF at low superheat inlet conditions was small.  

While for high superheat inlet condition, as depicted inFigure 5.8, the increase of 

saturation pressure increased the pressure drop factor, the PDF for saturation 

temperatures of 105 and 130°F (41 and 54°C) were comparable and a significantly lower 

PDF was observed for lower saturation temperature of 85°F (29°C). 

The effect of superheat inlet condition on pressure drop can be observed by comparing 

data on Figure 5.7 with the corresponding symbol/letter in Figure 5.8. First the superheat 

effects on PDF were not monotonic. At low saturation temperature, the increase of 

superheat at the inlet caused the PDF to decrease (cases A and D in Figure 5.7 and Figure 

5.8), while at high saturation temperature, the increase of superheat led the PDF to 

decrease (cases C and F in Figure 5.7). The PDF for intermediate saturation temperature 

of 105°F (41°C) were not significantly altered by the change in the superheat inlet 

conditions. 

5.1.3.2 Refrigeration Application with R134a and POE lubricant 

The effect of oil presence on pressure drops in microchannel condenser for refrigeration 

applications are presented in Figure 5.9. For all saturation temperatures tested, the PDF 

was higher at lower refrigerant and oil mass flux. It is important to emphasize here that 
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the PDF represents the relative fraction of pressure drop between the tests with oil 

(numerator of the PDF definition in Eq. 4-9) and without oil (denominator of the PDF 

definition in Eq. 4-9) at the similar mass flux and inlet saturation pressure conditions. The 

PDF does not represent the absolute pressure drop at a given mass flux. Hence, although 

the pressure drop was higher at higher mass flux, the corresponding PDF depends only on 

the amount of oil and on the effect that the oil had on the pressure drop during the tests. 

As depicted in Figure 5.9, the oil presence significantly penalized the refrigerant side 

pressure drop in the microchannel condenser when refrigerant R134a and POE were 

used. Although there was some scattering of the pressure drop data, Figure 5.9 shows that 

even small OMFs of 1 w.t% can increase the PDF from 1.01 up to 1.10, that is, that even 

small amount of oil in the refrigerant flow increased the pressure drop from about 1% up 

to 10%. The effects were more marked at lower refrigerant and oil mass flux. These 

results were consistent with the oil retention volume test results, presented previously in 

Figure 5.3, where the amount of oil retained washigher for lower mass flux. While at 

OMF of 3 wt.% the PDF ranged from 1.03 up to 1.20 (i.e. up to 20% increase of pressure 

drop due to the presence of excessive oil inside the microchannel condenser), the 

maximum PDF in the microchannel condenser tested in the present work was1.37, and it 

was measured for OMF of about 5 wt.%. 
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Figure 5.9: Pressure drop factor at high degree of superheat for R134a+POE oil in 

microchannel condenser 

 

5.1.4 Thermodynamic and Heat Transfer Analysis of Condenser Experimental 

Results for the Heat Transfer Factor 

As mentioned in section 5.1.2.1 for R410A and POE mixture and in section 5.1.2.2 for 

R134a and POE mixture, the results for heat transfer capacity when oil was present 

varied among the oil mass fractions and saturation temperatures investigated. Some of the 

HTFs when oil was present were higher than 1, which meant that small amount of oil 

retained in the condenser augmented the heat transfer capacity of the microchannel heat 
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exchanger. This was an intriguing and counterintuitive finding and this section discusses 

further analysis of the effects of oil retention on saturation temperature, flow regime, and 

free flow area of the microchannel condenser. 

The influence of oil in the condensation heat transfer can be explained by one or more of 

the following mechanisms (Thome, 2004): 

1. Bubble point temperatures; the presence of oil with much higher saturation 

temperature compared to that of the pure refrigerant, increase the bubble point 

temperature of the oil-refrigerant mixture 

2. Oil alters the transport properties of the liquid phase; due to much higher 

molecular weight of the oil compared to that of pure refrigerant, the presence of 

oil notably change the density, liquid viscosity, specific heat and surface tension 

3. Foaming; the oil-rich liquid film at the microchannel heat exchanger’s wall 

promote the formation of foam. The foam may have positive effects on heat 

transfer due to the wetting of the top wall on otherwise stratified flow condition. 

Notable increase on heat transfer coefficient by about 10-60 % due to the 

presence of oil have been reported at intermediate vapor qualities (Zürcher et al., 

1998) 

4. Oil promotes wetting of the microchannel heat exchanger’s wall due to its larger 

surface tension compared to that of pure refrigerant 

5. The presence of oil influences the flow pattern transition, such as annular flow 

and stratified-wavy flow 
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The presence of oil has been found to change the saturation temperature of the 

refrigerant-oil mixture (Takaishi and Oguchi, 1987;Wei et al., 2008). In order to account 

for this effect, the saturation temperature of the refrigerant-oil mixture was estimated by 

using the thermodynamic approach proposed by Thome (Thome, 1995) and for the limits 

of OMF of 0 to 5 wt.%. The saturation (or the bubble point) temperature of refrigerant 

mixture of R410A and 5wt.% POE oil resulted in an increase of saturation temperature of 

about 1.8°F. This change of saturation temperature with the presence of oil shifted the 

baseline heat transfer capacity (Qwithout oil) that should be taken in the denominator of 

Equation 4-10. As a result the potential variation of heat transfer factor (HTF) was found 

to be less than 1% with respect to the HTFs reported in Figure 5.4 and Figure 5.5. From 

this analysis, we concluded that the change of saturation temperature during condensation 

of the refrigerant and oil mixture when oil was present was not a main contributing factor 

to the increase of HTF observed in Figure 5.4 and Figure 5.5. 

Another effect of the oil in the condenser has been related to the change of flow regimes 

during condensation (Shao and Granryd, 1995;Shen and Groll, 2005;Huang et al., 2010). 

Notable changes with the oil introduction in MCHX condenser is the flow regimes and 

refrigerant distribution in the header, microchannel passages and the connection between 

them. The presence of oil shifts the flow regimes toward laminar flow (Huang et al., 

2010) inside the microchannels. In addition the presence of oil in MCHX condenser with 

vertical header has been reported to create change in refrigerant distribution (Jin and 

Hrnjak, 2014). The distribution changes are not linearly correlated with oil mass fraction, 

instead the distribution is worse as OMF increases upto 3 wt.% then become more 

uniform at higher OMFs. The experimental data for the refrigerant R410A and the 
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mixture of R410A with 5 wt.% POE oil were plotted on the Mandhane (1974) flow map. 

At the inlet of the microchannel condenser, the flows were found to be in the annular type 

flow regime region in the Mandhane flow map for both cases of refrigerant only and 

refrigerant and oil mixture circulating in the condenser. The presence of oil increased the 

liquid superficial velocity by increasing the density of oil-rich liquid phase. Analysis for 

the change of liquid density at OMF of 5 wt.% showed that the increase of liquid 

superficial velocity up to 0.36 ft/s (0.11 m/s) due the presence of oil did not change the 

flow regime according to the map. Thus the flow with the presence of oil remained in 

annular and mist-annular flow regime. 

Following the above analysis on the change of phase velocity, although the presence of 

oil did not alter the vapor phase density (the vapor phase consisted of only refrigerant), 

there was considerable effect on the flow area reduction that might lead to increasing heat 

transfer during condensation in microchannel. Further analysis of cross-sectional flow 

area reduction alone with the presence of 5 wt.% oil at the inlet of microchannel 

condenser was performed using correlation from Huang et al. (2010). The reduction on 

flow area at 5 wt. % caused the Nusselt number to increase about 2.4% compared to that 

of no oil case. 

From the above considerations, it seems that increase of heat transfer factor up to 13.5% 

when oil was present with respect to oil free conditions, as observed in Figure 5.4 and 

Figure 5.5, was not completely due the variation of saturation temperatures, the change of 

flow regime, or the increase in the superficial velocity of the refrigerant vapor inside the 

microchannel tubes. While high oil concentrations will ultimately decrease the heat 

transfer capacity of the condenser, some other phenomena must occur when oil was 
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present in small quantities in the refrigerant flow inside the microchannel tube during 

phase change condensation. For the present study, a potential cause can be ascribed as the 

foaming and increasing wettability of the liquid phase due to the presence of the oil and 

improved refrigerant distribution. These hypotheses requires visual observation of the 

refrigerant-oil flow in the microchannel tubes and its headers. Because the HTFs of the 

present work were obtained as global values for the entire heat exchanger, we were 

unable to identify such phenomena. Further research on local heat transfer phenomena in 

microchannel tubes is needed to be able to identify and quantify possible causes that 

contributed increasing of heat transfer rate when OMFs were small and below 3 wt.%. 
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5.2 Microchannel Evaporator 

This chapter discusses the experimental results of oil retention measurements in 

microchannel evaporators in terms of normalized oil retention volume (ORVN), pressure 

drop factor (PDF) and heat transfer factor (HTF). The definitions of these three variables 

are same used for the condenser and they are given in Equations 4-8, 4-9, and 4-10. 

When oil was present in the evaporator, the heat transfer rate and refrigerant-side 

pressure drop were compared to those of the oil free case at same total mass flow rate, 

same saturation pressure, and similar degree of vapor superheated at the outlet of the 

evaporator.  

5.2.1 Oil retention volume in the evaporators 

This section discusses the oil retention in microchannel evaporator A with R410A and 

POE oil and R134a and POE oil and for two mass flux and several saturation 

temperatures.  The oil retention volume was measured by using the timing and video 

recording method of the oil flow entering and existing the test section; this method was 

discussed in section 3.3.3.4. The information of test conditions and the legend for the 

symbols used for the test series of R410A and POE oil and R134a and POE oil during the 

tests on evaporators are given in   
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Table 5-3 and Table 5-4. 

An example of the calculation of mass flux inside each microchannel tube is provided 

below for test series represented by the letter G and the solid round black symbol in Table 

5-3. The mass flow rate during the test of series G was 200 lbm/hr (90.7 kg/hr). This was 

the total mass flow rate, i.e., the refrigerant mass flow rate if OMF = 0 wt. % or the total 

mixture (refrigerant plus oil) flow rate if OMF > 0 wt. %.  

For evaporator A, the overall cross sectional area of each microchannel tube was 0.01953 

in
2
 (or 0.126 cm

2
), that is, 0.000135625 ft

2
. Since there were 98 tubes for microchannel 

evaporator A, the overall cross sectional flow area resulted: 

Åp;((,;�o)ss,��)% �  = 0.000135625ZvA ∗ 98 = 0.013291 ZvA 

Then, the total mass flux for the series G for the evaporator A resulted 

g"d,��)% � = gN�� Zy	È 
Nv�Zy	È N
�N = 200 &yz/ℎ
-&0.013291  ZvA ∗ 3600 � ℎ
? - = 4.2 yz�ZvA − �  	
 20.4 ÉQgA − � 

It should be emphasized in here that this is the total mass flux in each microchannel tube, 

i.e., the refrigerant mass flux if OMF = 0 w.t. % or the total mixture (refrigerant plus oil) 

mass flux if OMF > 0 w.t. %. 
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Table 5-3 Legend of the letters and symbols used in the figures reporting the tests 

results of microchannel evaporators with R410A and POE 

Symbol Letter 
Tsat 

*
GEvaporator A 

o
F (

o
C) lbm/ft

2
-s (kg/m

2
-s) 

 

 

G 33  (0.5) 4.2 (20.4) 

 

 

H 38  (3.3) 4.2 (20.4) 

 

 

I 48  (9) 4.2 (20.4) 

 

 

J 33  (0.5) 7.5 (36.7) 

 

 

K 38  (3.3) 8.4 (41.0) 

 

 

L 48  (9) 8.4 (41.0) 

*G is the mass flux inside each microchannel tubes. It was calculated from the total 

mass flow rate entering the evaporator divided by the total cross sectional area of 

microchannel tubes in the evaporator  

 

5.2.1.1 Microchannel evaporator A with R410A and POE oil 

The experimental results of oil retention volume (ORVN) in evaporator A with refrigerant 

R410A and POE oil are summarized in Figure 5.10. This figure shows the oil retention 

volume in the microchannel evaporator A on the y-axis and the oil mass fraction (OMF) 

of POE oil in refrigerant R410A on the x-axis. The oil retention volume normalized, 

ORVN, was the ratio of the oil retention volume over the total internal volume of the 

evaporator A, including the headers internal volume.  The effect of mass flux is 

represented as void and solid symbols and corresponding letters. Low mass flux series are 
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represented by the solid symbols (G, H, and I) while high mass flux tests are represented 

as void symbols (J, K and L series) (for details see Table 5-3). Each saturation 

temperature is given with a void and a solid symbol with same color and shape of the 

symbol. For example, the black circle data points in Figure 5.10 represent saturation 

temperature of 33°F (∼0.5°C) but the solid circle points (series G) are for low mass flux 

while the void circle points (series J) are for high mass flux. From a quick glance on 

those two series, it is evident that if the mass flux doubled then the oil retention in the 

evaporator was reduced by half. This result was observed when OMF was from 0 to 3 

w.t. %.  

The experimental results of ORVN suggested that the amount of oil retained in the 

microchannel evaporator was strongly depended on the OMF and the oil retention in the 

microchannel increased as OMF increased. In the evaporator, oil existed in the liquid 

mixture because the entering fluid was a mixture of saturated refrigerant liquid and POE 

oil and the evaporation of liquid refrigerant along the microchannel tubes created 

refrigerant vapor in which the oil droplets entrainment was small. This assumption is 

supported by authors’ previous work on refrigerant and oil flow visualization in air 

conditioning evaporators (Cremaschi et. al. 2005). During evaporation of the refrigerant 

along the length of microchannel tubes, the local concentration of oil in liquid mixture 

increased. Therefore the viscosity of liquid mixture increased along the length of 

microchannel tube, that is, along the direction of the refrigerant flow. For example, for 

OMF of 0.5 wt. %, the viscosity of liquid mixture in the microchannel tube increased by 

up to 40 times. In other words, the viscosity of the liquid mixture of saturated liquid 

refrigerant and POE at the inlet of the tube was 40 times lower than the viscosity of the 
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liquid mixture of POE oil and refrigerant dissolved in it at the outlet of the tube (most of 

the refrigerant was superheated vapor at the outlet of the microchannel tube but a small 

amount of refrigerant was still dissolved in the oil because of POE and refrigerant R410A 

are soluble and miscible at those temperatures and pressures). For OMF of 5 wt. % the 

liquid mixture viscosity increased by 7 times from inlet to outlet of the microchannel 

tube. The increase in the refrigerant R410A and POE oil mixture viscosity augmented the 

shear stress required to remove the oil, particularly the shear stress at the liquid-wall 

interface. Thus, oil increased its resistance to flow with and to be carried with the 

refrigerant vapor along the microchannel tube. It was sound to assume that oil tended to 

form a film layer around the wall, that is, to wet the internal walls of the microchannel 

tubes and of the outlet header. However, since the tests were conducted on a full size 

microchannel heat exchanger, this hypothesis was not verified in the present work and 

flow visualization experiments of refrigerant and oil mixtures in microchannel tubes are 

potential future work on this topic.  In Figure 5.10, when OMF increased from 0 wt. % to 

5 wt. % the oil retention volume in evaporator A also increased and it was measured up to 

12.5 % of total internal volume of evaporator A. The trends in Figure 5.10 are clearly not 

linear. At OMF below 2 wt.%, the magnitude of the ORVN for low mass flux cases 

(series G, H, and I) were different from that of high mass flux cases (J, K and L). For low 

mass flux series (G, H, and I), the amount of oil retention volume in evaporator A 

increased significantly as OMF increased from 0 to 1 wt. %. This finding was intriguing 

and the effect of potential systematic errors on the measured oil retention volume in the 

heat exchanger was further investigated. We recall the test methodology details described 

in section 3.3.3. The methodology was based mainly on timing and video recording 
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method of the oil flow when oil appeared at sight glasses. If we assume an operator error 

of ±2 seconds on detecting such time instances, the results varied to within the 

experimental uncertainty of the oil retention measurements, which are shown in Figure 

5.11 as an example.  For OMF of 0.5 and 1 wt.% the actual time that the oil took to travel 

from inlet to outlet of the evaporator was of several minutes (that is, about 10 minutes or 

more). Thus, a human operator of 2 seconds on detecting the instant at which the oil 

appeared on the sigh glasses had an impact on the ORVN that was within the 

experimental uncertainty reported for one representative point in Figure 5.10. It should be 

noted that the experimental uncertainty bars reported for only one representative point in 

Figure 5.10 to Figure 5.12 applies to all data points of the figures. The bars were 

intentionally omitted for the other points to avoid compromising the readability and 

quality of the plots.  
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Figure 5.10: Oil retention volume (ORVN) in microchannel evaporator A with 

R410A and POE oil 
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Figure 5.11: Oil retention volume (ORVN) in microchannel evaporator A with 

respect to sight glass S1, sight glass S2, and effect of the variation of the observed 

time by 2 seconds (the results for series H) 

 

Referring to Figure 5.11, the data in blue solid diamonds represent the actual 

measurements of oil retention in evaporator A for the series H. The green solid triangle 

data points represent the measured oil retention volume if the time of appearance at the 

sight glasses were to be shifted by ±2 seconds with respect to the original time measured. 

This figure also shows the brown square solid data points, which represent the measured 

oil retention volume in the evaporator A if a second sight glass S2 was used to measure 

the oil travel time. The second sight glass was downstream S1 with respect to the 

direction of the refrigerant flow. The comparison of the ORVN for the S1 series and S2 

series indicates that the measured oil retention volume was independent of the location of 
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the sight glass used to measure the oil travel time. This was because the oil retention 

volume in the evaporator was obtained from a difference between two volumes, i.e, the 

volume retained from inlet injection port to the sight glass and volume retained from 

outlet inject port of the evaporator to the sight glass. Moving the sight glass downstream 

simply altered those two measured volumes by the same quantity but their difference 

(which was the oil retention volume in the evaporator) did not change. Nevertheless, we 

verified that the oil retention volume was independent on the sight glass location for 

several tests of the evaporator and we used the second sight glass as redundant method to 

confirm the measurements obtained from the first sight glass.  

Even for small OMFs of 0.5 and 1 wt.%, the oil retained in the evaporator was quite 

significant and it was already 77 to 95 % of the oil retention volume measured when 

OMF was 3 wt.%. This result suggested that the geometry of the evaporator trapped a 

certain amount of oil regardless of the OMF in the main flow. Because only liquid 

mixture was present at the inlet of the evaporator, we concluded that the oil traps were 

most likely at the outlet header of the evaporator. In our experiments, recalling that the 

refrigerant flow inside the heat exchanger was vertical upward and that superheated 

refrigerant vapor was present at the outlet of the microchannel heat exchanger, we 

speculated that the oil was trapped in the valleys created between the microchannel tubes 

inserts into the outlet header. As the refrigerant and oil mixture flowed through the 

microchannel heat exchanger, the refrigerant evaporated leaving behind a liquid phase 

richer in POE oil. The oil-rich liquid mixture then filled the outlet header valleys until it 

flooded them. For these cases, the ORVN increased sharply with OMFs and lower mass 

flux augmented significantly the filling time. This could explain the remarkable 



194 

 

difference in ORVN in Figure 5.10 for low and high mass fluxes when OMF was below 1 

wt.%. Once the minimum threshold volume defined by the volume of the valleys in the 

outlet header was filled with oil, then any additional oil was carried with the refrigerant 

vapor out from the evaporator header. For these cases, the ORVN increase slowly with 

OMFs and the additional oil retention volume measured in the evaporator at OMF above 

1 wt.% is mainly due to refrigerant and oil solubility. A similar phenomena was reported 

in the literature by Jin and Hrnjak (2014) but for condensers, where oil separated at the 

inlet header of the condenser and started to fill the bottom channels first. Furthermore, in 

the present evaporator A, the superheated vapor velocity at microchannel tubes decreased 

from around 2000 ft/s to 2.4 ft/s in the outlet header. Low vapor velocity inside outlet 

header reduced the vapor refrigerant and oil rich liquid layer interfacial shear force, 

which was responsible to carry the oil.  This further promoted oil retention in the outlet 

header. At higher mass flux of refrigerant and oil mixture, the shear stress at the vapor-

liquid interface was also high when compared to that of low mass flux. The interfacial 

shear stress was depended upon the difference between the refrigerant gas velocity and 

liquid oil film velocity (Lee, 2002). Thus, at higher mass flux, hence higher vapor 

velocity, more oil was carried over with the refrigerant vapor out form the evaporator and 

the oil retention volume decreased.  

At the same saturation temperature, lower mass flux caused oil retention volume to 

increase between 5% and 3 times that for OMF ranging from 0.5 to 5 wt.%. It should be 

noted that for typical air conditioning applications, OMF is equal or less than 1 wt.%. 

From the experiments of the present work, the ORVN at OMF of 1 wt.% was less than 

4% of total internal volume for high mass flux series of J, K and L (represented as void 
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symbols in Figure 5.10) and the ORVN was up to 10% of total internal volume of 

evaporator A for low mass flux series G, H, and I (represented as solid symbols in Figure 

5.10).  

5.2.1.2 Microchannel evaporator A with R134a and POE oil 

This section discusses the experimental results of oil retention volume in microchannel 

evaporator A with refrigerant R134a and POE oil mixture. The experiments were carried 

out for saturation temperature of R134a at and above freezing temperatures, i.e.  33 
o
F (0 

o
C). Details of the test conditions are given in Table 5-4. The series (M, N, and O) for the 

oil retention experiments were carried out at mass flow rate of about 200 lbm/hr, and the 

saturation temperature was also varied in three stages ranging from 33 to 48 
o
F (0.5 

o
C

 
to 

9.5 
o
C). 

Table 5-4: Legend of the letters and symbols used in the figures reporting the tests 

results of microchannel evaporator A with R134a and POE 

Symbol Letter 

Tsat GEvaporator A  

o
F (

o
C) lbm/ft

2
-s (kg/m

2
-s)  

 

 

M 33  (0.5) 3 (15)  

 

 

N 38  (3.3) 3 (15)  
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O 48  (9) 3 (15)  

*G is the mass flux inside each microchannel tube. It was 

calculated from the total mass flow rate entering evaporator A 

divided by the total cross sectional area of all the 

microchannel tubes of the evaporator A (GEvaporator A). 

 

The results of oil retention volume (ORVN) in evaporator A with refrigerant R134a and 

POE oil mixture for series (M, N and O) are given in Figure 5.12. The results indicated 

that the oil retention in evaporator A was strongly depended on the OMF and the oil 

retention volume increased if OMF increased. The oil retention volume was measured up 

to 7.5 % of internal volume of evaporator A.  
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Figure 5.12: Oil retention volume for R134a+POE oil in microchannel evaporator A 

As OMF increased from 0 to 1 wt. %, the ORVN was up to 3 % of internal volume of 

evaporator A. The effect of saturation temperature was clearly visible when comparing 

the series (M, N and O) for oil mass fraction of 3 wt.%.   

P

Q

R
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5.2.2 Heat transfer factors (HTFs) for microchannel evaporator 

This section discusses the results of effect of oil on heat transfer rate of microchannel 

evaporator A with refrigerant R410A and POE oil mixture and with refrigerant R134a 

and POE oil mixture. The tests were conducted for two mass fluxes and at several 

saturation temperatures. The test conditions and the legend for the symbols used to report 

the experimental results from these tests were given in Table 5-3 and Table 5-4. The 

effect of oil on the heat transfer rate is provided in terms of heat transfer factor (HTF), 

which was the ratio of heat transfer rate measured from the air-side when oil was present 

over the heat transfer rate in oil-free conditions. Both heat transfer rates were evaluated at 

the same total mass flux, saturation pressure, and degree of superheated vapor at the 

outlet. Thus, the HTF isolated and quantified the effect of oil on the refrigerant-side heat 

transfer capacity. The results are summarized in plots in which OMF is on the x-axis and 

the HTF is on the y-axis. Low mass flux is represented by solid symbols (series G, H, and 

I) while the high mass flux is represented by the void symbols (series J, K and L series). 

Each saturation temperature was evaluated at both high and low mass flux. It should be 

emphasized in here that the refrigerant was well distributed across the microchannel tubes 

of the evaporators. Since we purposely decided to control the inlet conditions of the 

microchannel evaporators to slightly sub-cooled (or near saturated) liquid, the 

distribution of the refrigerant and oil mixture across the microchannel tubes was uniform 

during the tests of the present work. The flow distribution was only qualitatively 

observed by using thermal images of the evaporators during the tests. These images will 

be presented later in the manuscript but since the thermal image colors of the evaporator 

were uniform everywhere along the front face of the heat exchanger, we concluded that 
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all the microchannel tubes received approximately the same flow rate of refrigerant (or of 

refrigerant and oil mixture). The condition of saturated liquid at the inlet of the 

evaporator was not necessarily representative of real life evaporator applications but, in 

the present study, it avoided the challenge of non-uniform flow distribution of the 

refrigerant and oil mixture when oil was injected to the evaporator. As a result of the 

testing conditions imposed for the evaporators in the present work, the HTFs presented 

for the evaporators do not account for the effect that oil might have on the refrigerant 

flow distribution across the microchannel tubes and they do not account for the flow 

change, if any, inside the inlet headers of the microchannel heat exchangers. These 

effects, which are still due to the presence of oil in the mixture, might result in additional 

sources of heat transfer rate degradation in microchannel evaporators and their 

investigation could be part of future studies of this work.  

5.2.2.1 HTF of microchannel evaporator A with R410A and POE oil 

The experimental results of heat transfer factor (HTF) in evaporator A with refrigerant 

R410A and POE oil are summarized in Figure 5.13. This figure shows the HTF of the 

microchannel evaporator A on the y-axis and the oil mass fraction (OMF) of POE oil in 

refrigerant R410A on the x-axis. When OMF is 0 (i.e., no oil is present inside the 

evaporator), the HTF resulted 1 by its own definition and it decreased if OMF increased 

as shown in Figure 5.13. The effect of mass flux is represented as void and solid symbols 

and corresponding letters in the legend of the figures. Low mass flux series are 

represented by the solid symbols (G, H, and I) while high mass flux tests are represented 

as void symbols (J, K and L series) (for details about the legend, see Table 5-3). Each 

saturation temperature is given with a void and a solid symbol with same color and shape 
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of the symbol. For example, the black circle data points in Figure 6.14 represent 

saturation temperature of 48
o
 F (9

o
 C); the solid circle points (series G) are for low mass 

flux while the void circle points (series J) are for high mass flux. The results indicate that 

if the oil mass fraction (OMF) increased, the heat transfer factor of microchannel 

evaporator A decreased from 1 to 0.87. This represents a reduction of the refrigerant-side 

heat transfer rate due to oil by about 13%. However, at OMF of 1 wt.%, the reduction of 

the refrigerant side heat transfer rate was within the experimental uncertainty of ±4.5%. 

From Figure 6.14 it is clear that the effect of oil on heat transfer rate was to decrease the 

refrigerant-side heat transfer rate but the impact of oil was not significant if OMF ranged 

from 0.5 wt. % and 1 wt. %. The impact of oil on the heat transfer rate was measurable 

for OMFs of 3 wt. % and of 5 wt. % and the heat transfer rate decreased by about 8 to 

13%. The HTFs given in Figure 5.13 represent only the effect of oil because each test 

with oil was compared with the corresponding reference without oil at the same inlet 

saturation pressure, total mass flow rate, and degree of superheated vapor at the outlet of 

the evaporator. The air inlet temperature and velocity were also constant between the 

tests with oil and the baseline reference tests with no oil. Figure 5.14 provides the 

simulation results of the local refrigerant-side convective heat transfer coefficient of 

R410A and POE oil mixture along the direction of the refrigerant flow in a microchannel 

tube. Each tube was divided in 100 segments in order to compute 100 values (one for 

each segment) of the two phase flow boiling heat transfer coefficient inside the 

microchannel tube. The model used to obtain these results will be described in details in 

the next section but it is used here to highlight some insights on the convective heat 

transfer process inside the microchannel tube when oil was present. The simulation 
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results in Figure 5.14 indicate that the presence of oil in refrigerant R410A decreases the 

heat transfer coefficient when compared to refrigerant R410A heat transfer coefficient 

(blue series with legend 1-0OMF). This preliminary calculations show that oil tended to 

penalize the two phase flow heat transfer coefficient if refrigerant heat transfer coefficient 

correlations available in the literature were used for predicting the behavior of refrigerant 

and oil mixtures. This extrapolation of the heat transfer correlations might not be valid 

and should be carefully evaluated. However, developing local heat transfer coefficient 

correlations for refrigerant and oil mixtures was out of scope of the present work and 

might be potential future work.  

The plots from Figure 5.15 to Figure 5.18 show the direct effect of oil on the heat transfer 

rate, �h ����,�, which was measured from the air-side of the evaporator during the actual 

heat transfer experiments. �h ����,� was measured directly from the measurements of air 

flow rate (which was constant at all time during the tests) and of air inlet and outlet dry 

bulb temperatures. These figures shows how the heat transfer rate varied in real time 

during the tests when the oil was injected in the evaporator. The green solid line in each 

Figure represent the oil injection period. If the oil flow was zero than the green line is 

also zero; if the oil flow is greater than zero then the green line becomes high value. The 

measured data of instantaneous heat transfer rate in Figure 5.15 to Figure 5.18 were 

sampled every 2 seconds and the brown solid lines had some scattering. However, from 

these figures it was evident that when oil was introduced in the evaporator, the heat 

transfer rate decreased. The effect of oil on heat transfer rate was not directly visible from 

the instantaneous measurements of heat transfer rate if OMF was 0.5 wt. % and 1 wt. % 

(see Figure 5.15 and Figure 5.16). But when OMF was 3 wt. % and 5 wt. %, there was a 
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marked shift of the instantaneous heat transfer rate to below 15,000 Btu/hr (4.4 kW), 

shown in Figure 5.17 and Figure 5.18. 

 

Figure 5.13: Heat transfer factor in microchannel evaporator A with R410A and 

POE oil 
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Figure 5.14: Simulation results of the local convective heat transfer coefficient in 

one microchannel tube of evaporator A with R410A and POE oil mixture (Dell’orto, 

2014, printed with permission) 

 

Figure 5.15: Heat transfer rate measured from the air-side (�h ����,�) in 

microchannel evaporator A with R410A and POE oil at OMF at 0.5% 

 

Figure 5.16: �h ����,� in microchannel evaporator A with R410A and POE oil at 

OMF 1% 



204 

 

 

Figure 5.17: �h ����,�in microchannel evaporator A with R410A and POE oil at OMF 

3% 

 

Figure 5.18: �h ����,�in microchannel evaporator A with R410A and POE oil at OMF 

5% 

 

The worst case of decrease in HTF of the microchannel evaporator A in Figure 5.13 was 

measured at OMF of 5 wt. % and at low mass flux (series H) where HTF was reduced by 

13 % when compared to no oil conditions. For air-conditioning applications, when OMF 

is typically less than 1 wt. %, the decrease in heat transfer rate was less than 4%. The oil 

decreased the heat transfer rate and its impact was also depended on the mass flux. The 

HTFs were close to 1 for OMF less than 1 wt. % and for both high and low mass flux. 

For OMF higher than 1 wt. %, the impact of mass flux on HTF was measurable. For 

example, at OMF of 3 wt.%, a reduction of mass flux from high mass flux of 8.4 lbm/ft
2
-s 

(20.4 kg/m
2
-s, series K) to low mass flux of 4.2 lbm/ft

2
-s (20.4 kg/m

2
-s, series H) 

decreased the HTF from 0.96 (series K in Figure 5.13) to 0.90 (series H) for the same 



205 

 

saturation temperature of 38°F (3.3°C). Hu et al. (2011) conducted heat transfer 

experiments to study the heat transfer coefficient of R410A and POE oil mixture during 

flow boiling in a 7 mm diameter smooth tube. Their analysis showed that decreasing the 

mass flux of R410A/POE mixture at particular quality and oil concentration resulted in 

diminished local heat transfer coefficient. Their finding was in agreement with the 

experimental results of Figure 5.13, in which the HTFs for low mass flux series (letters 

G, H, and I) tended to be slightly lower than the HTFs for the high mass flux series (J, K 

and L). Furthermore, we recall that for the same OMF and saturation temperature, oil 

retention in the low mass flux series (G, H, and I) was higher when compared to that of 

high mass flux series (J, K and L). Due to high oil retention for low mass flux series (G, 

H, and I) there could be additional resistance added to heat transfer process in 

microchannel tubes. Finally, for evaporator A, the saturation temperature did not have a 

marked effect on HTF. This might be due to the normalization of the heat transfer rate 

with oil over the corresponding heat transfer rate with no oil at the same saturation 

temperature. The low mass flux series (G, H, and I) in Figure 5.13 were close to each 

other and the high mass flux series (J, K and L) were close to each other. For each group, 

the HTFs were within the experimental uncertainties of ± 4.5% for HTF, shown by the 

error bars for one representative data point in Figure 5.13 (the same experimental 

uncertainty bars applied to all data points of the figure).  
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5.2.2.2 HTF for microchannel evaporator A with R134a and POE oil mixture 

This section discusses the experimental results of heat transfer factor in microchannel 

evaporator A with refrigerant R134a and POE oil mixture. The experiments were carried 

out for saturation temperature of R134a at and above freezing temperatures, i.e.  33 
o
F (0 

o
C). Details of the test conditions are given in Table 5-4. The series (M, N and O) for the 

oil retention experiments were carried out at mass flow rate of about 200 lbm/hr, and the 

saturation temperature was also varied in three stages ranging from 33 to 48 
o
F (0.5 

o
C

 
to 

9.5 
o
C). The mass fluxes and test conditions are provided in Table 3-4. 

The HTFs in Figure 5.19 represent only the effect of oil because each test with oil was 

compared with the reference without oil at the same inlet saturation pressure, total mass 

flow rate, and degree of vapor superheated at the outlet of the evaporator. The air inlet 

temperature and velocity were also constant between the cases of tests with oil and the 

baseline references with no oil. The results indicates that the presence of oil decreased the 

heat transfer capacity of microchannel evaporator A with refrigerant R134a. For few 

exceptions it was observed that presence of oil slightly increased the heat transfer rate of 

the evaporator compared to case of oil free conditions. For OMF ranging from 0 wt.% to 

5 wt.%, the HTF of microchannel evaporator A decreased up to 12%. For refrigeration 

applications in which the OMF is typically less than 1 wt. % the HTF was about 0.96, 

which indicates a maximum decrease of heat transfer rate of 4% when compared to oil 

free conditions. These were the results for series M, N and O in Figure 5.19.  
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Figure 5.19: Heat transfer factor in microchannel evaporator A with R134a and 

POE oil 

 

5.2.3 Pressure drop factor of microchannel evaporator 

This section discusses the results of the effect of oil on the refrigerant side pressure drop 

for microchannel evaporator A with refrigerant R410A and POE oil mixture and with 

refrigerant R134a and POE oil mixture. The tests were conducted for two mass fluxes 

and at several saturation temperatures. The test conditions and the legend for the symbols 

used to report the experimental results from these tests are given in   

P

Q

R
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Table 5-3 and Table 5-4. The effect of oil on the pressure drop is provided in terms of 

pressure drop factor (PDF), which was the ratio of pressure drop measured across the 

refrigerant side of the microchannel evaporator when oil was present over the pressure 

drop in oil-free conditions (see again definition of PDF in Eq. 4-9). Both pressure drops 

were measured at the same total mass flux, saturation pressure, and degree of superheated 

vapor at the outlet. Thus, the PDF isolated and quantified the effect of oil on the 

refrigerant-side pressure drop. The results were summarized in plots in which OMF was 

on the x-axis and the PDF was on the y-axis. Low mass flux was represented by solid 

symbols (series G, H, and I) while the high mass flux was represented by the void 

symbols (series J, K and L series). Each saturation temperature was evaluated at both 

high and low mass flux. It should be emphasized in here that the refrigerant was well 

distributed across the microchannel tubes of the evaporators. The PDFs presented in this 

work did not account for the effect that oil might have on the refrigerant flow distribution 

across the microchannel tubes and they did not account for the flow change, if any 

occurred, inside the inlet headers of the microchannel heat exchangers. These effects, 

which are still due to the presence of oil in the mixture, might results in additional 

sources of pressure drop augmentation in microchannel evaporators and their 

investigation could be part of future studies of this work. 

5.2.3.1 PDF of Microchannel evaporator A with R410A and POE oil 

The experimental results of pressure drop factor (PDF) in evaporator A with refrigerant 

R410A and POE oil are summarized in Figure 5.20. This figure shows the PDF of the 

microchannel evaporator A on the y-axis and the oil mass fraction (OMF) of POE oil in 

refrigerant R410A on the x-axis. When OMF is 0 (i.e., no oil is present inside the 
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evaporator), the PDF resulted 1 by its own definition and it increased if OMF increased 

as shown in Figure 5.20. The effect of mass flux is represented as void and solid symbols 

and corresponding letters in the legend of the figures. Low mass flux series were 

represented by the solid symbols (G, H, and I) while high mass flux tests were 

represented as void symbols (J, K and L series) (for details about the legend, see Table 5-

3). Each saturation temperature was given with a void and a solid symbol with same color 

and shape of the symbol. For example, the black circle data points in Figure 5.20 

represent saturation temperature of 48
o
 F (9

o
 C); the solid circle points (series G) are for 

low mass flux while the void circle points (series J) are for high mass flux. The results 

indicate that if the oil mass fraction (OMF) increased, the pressure drop factor of 

microchannel evaporator A increased from 1 to 1.47. This represents an augmentation of 

the refrigerant-side pressure drop due to oil by about 47%. From Figure 5.20 it is clear 

that the effect of oil on pressure drop was to increase the refrigerant-side pressure drop. 

The impact of oil was still significant even when OMF ranged from 0.5 wt. % and 1 

wt. %. The PDFs given in Figure 5.20 represent only the effect of oil because each test 

with oil was compared with the corresponding reference without oil at the same inlet 

saturation pressure, total mass flow rate, and degree of superheated vapor at the outlet of 

the evaporator. The air inlet temperature and velocity were also constant between the 

tests with oil and the baseline reference tests with no oil. The increase in pressure drop 

can be attributed to the increase in viscosity of liquid mixture of refrigerant and lubricant 

in the microchannels. Hu et al. (2009) reported that the presence of lubricant enhances 

two phase pressure drop, where penalty factor ranges from 1.0-1.9 for 3.0 mm O.D. tube. 

As the amount of oil in refrigerant increased the penalty factor also increased.  
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Figure 5.20: Pressure drop factor in microchannel evaporator A with R410A and 

POE oil 

 

The worst case of increase in PDF of the microchannel evaporator A in Figure 5.20 was 

measured at OMF of 5 wt. % and at high mass flux (series J) where PDF was augmented 

by 47 % when compared to no oil conditions. For air-conditioning applications, when 

OMF is typically less than 1 wt. %, the increase in pressure drop was less than 20%. The 

PDFs were slightly above 1 for OMF less than 0.5 wt. % and for both high and low mass 

flux. At OMF of 3 wt.%, increase of mass flux from low mass flux of 4.2 lbm/ft
2
-s (20.4 

kg/m
2
-s, series H) to high mass flux of 8.4 lbm/ft

2
-s (20.4 kg/m

2
-s, series K) increased the 

PDF from 1.15 (series H in Figure 5.20) to 1.32 (series K) for the same saturation 

temperature of 38°F (3.3°C). Hu et al. (2008) measured and correlated two phase 
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frictional pressure of R410A/POE mixture flow boiling inside 7 mm diameter tube. Their 

experimental parameters include the evaporation temperature of 5 °C for two mass flux, 

the heat flux from 7.56 to 15.12 kW/m
2
, the inlet vapor quality from 0.2 to 0.7, and 

nominal oil concentration from 0 % to 5 %. Their results indicated that the frictional 

pressure drop of R410A/ POE oil mixture increases as mass flux increases for similar 

vapor quality. And frictional pressure drop was high in regions of high vapor quality due 

to high viscosity oil rich liquid mixture. Their findings are in agreement with the 

experimental results of Figure 5.20, in which the PDFs for high mass flux series (letters J, 

K, and L) tended to be significantly higher than the PDFs for the high mass flux series 

(G, H and I) and OMF above 1 wt.%. 

For similar OMF and mass flux, the impact of saturation temperature on pressure drop 

was less significant for OMF less than 1 wt. % and the results for these conditions were 

within uncertainty range of experimental instruments. For same mass flux and OMF 

higher than 3 wt. %, pressure drop was highest for saturation temperature of 33 ºF (0 ºC) 

for each OMF, represented as series G and J. As saturation temperature increased from 33 

to 38 ºF (0 to 3.3 ºC), the pressure drop factor decreased. Although change in liquid 

mixture viscosity at particular quality and saturation temperature from 33 to 38 ºF (0 to 

3.3 ºC) was negligible, there was significant decrease in liquid mixture density by 2.56 % 

for R410A+POE oil mixture at 5 wt. % POE oil. Furthermore, there was considerable 

decrease in surface tension of R410A+POE oil at the same concentration by 

approximately 22 % as temperature decreased from 33 to 38º F (0 to 3.3º C) (Wei et al., 

2007).  The decrease in surface tension could lead to decrease in wall shear stress which 

can lead to lesser pressure drop factor during evaporation in the microchannels. These 
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two effects coupled together could explain the high pressure drop factor at saturation 

temperature 33 ºF (0 ºC) with respect to the pressure drop factor measured at 38°F 

(3.3°C) in the present work. As saturation temperature increased from 38 to 48 ºF (3.3 to 

9 ºC) there was no measurable effect on pressure drop, for similar mass flux and OMF. 

The reason behind this was due to decrease in density approximately by 1 %, surface 

tension decreased by approximately 5 % as saturation temperature increased from 38 to 

48 ºF (3.3 to 9 ºC) (Wei et al., 2007). 

5.2.3.2 PDF of Microchannel evaporator A with R134a and POE oil mixture 

This section discusses the experimental results of effect of oil on pressure drop factor in 

microchannel evaporator A with refrigerant R134a and POE oil mixture. The experiments 

were carried out for saturation temperature of R134a at and above freezing temperatures, 

i.e.  33 
o
F (0 

o
C). Details of the test conditions are given in Table 5-4. The series (M, N 

and O) for the oil retention experiments were carried out at mass flow rate of about 200 

lbm/hr, and the saturation temperature was also varied in three stages ranging from 33 to 

48 
o
F (0.5 

o
C

 
to 9.5 

o
C). The mass fluxes, test conditions, and the legend for the symbols 

in Figure 5.21 are provided in Table 5-4. 
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Figure 5.21: Pressure drop factor in microchannel evaporator A with R134a and 

POE oil 

 

The PDFs in Figure 5.21 represent only the effect of oil because each test with oil was 

compared with the reference without oil at the same inlet saturation pressure, total mass 

flow rate, and degree of vapor superheated at the outlet of the evaporator. The air inlet 

temperature and velocity were also constant between the cases of tests with oil and the 

baseline references with no oil. The results indicates that the presence of POE oil 

increased the refrigerant-side pressure drop in microchannel evaporator A when 

refrigerant R134a was used. For OMF ranging from 0 wt.% to 5 wt.%, the PDF of 

microchannel evaporator A increased up to 57%. For refrigeration applications in which 
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the OMF is typically less than 1 wt. % the PDF was about 1.2, which indicates a 

maximum increase of pressure drop of 20% when compared to oil free conditions. 

For series M, N and O, the pressure drop increased by 35% only when the saturation 

temperature increased from 33
o
 to 38

o
 F (0.5 to 3.3°C, series M and N) while there was 

no significant increase in pressure drop when the saturation temperature increased from 

38
o
 F to 48

o 
F (3.3 to 9°C, series N and O). 
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CHAPTER VI 

6 Oil Retention Model  

The experimental work presented in the previous sections provided data on oil retention 

and its effects on microchannel condenser performance. A mechanistic model for oil 

retention model in microchannel condensers was developed in separate study and the 

results were used to help on analyzing the experimental results in this study. This section 

discusses briefly the model and its validation with the data of the present work and some 

data from the open domain literature. The model predicted the thermal performance of 

the microchannel condenser and the refrigerant-side operating conditions with and 

without oil (as well as the air-side conditions). The simulations of the entire heat 

exchangers were also used in the present work to provide some insights of the physics for 

oil retention, and to advance the understanding of the effects of oil on the heat transfer 

rates and pressure drops in microchannel condenser. 

6.1 Microchannel Condenser Model 

Microchannel type condensers have unique oil retention characteristics because of their 

small internal volume and of their header configuration. For microchannel heat 

exchangers, different models were developed to predict the heat transfer coefficient and 

to optimize the design of the heat exchanger for high performance. Often the models 

were based on a control volume approach and used an effectiveness-NTU method 

(Incropera and DeWitt, 2001) to solve the heat balance between the air side and the 
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refrigerant side. Huang (2012) developed a model to investigate various heat exchanger 

tube geometries. Schwentker (2005) developed a design tool for microchannel heat 

exchangers. 

The model developed in this dissertation used a similar approach and it is based on the 

heat exchanger model originally developed by Iu (2007). The user defines the coil 

geometry parameters and selects the appropriate heat transfer and pressure drop 

correlations. Several researchers investigated correlations to predict the heat transfer and 

the pressure drop of both the refrigerant side and air side in condensers (Chang and 

Wang, 1997;Chang et al., 2000). The behavior of the refrigerant and oil mixture during a 

condensation processes is also available in the literature (Schlager et al., 1990;Thome, 

1995;Bassi and Bansal, 2003). Huang (2012) investigated the influence of oil on 

condensation heat transfer coefficient of R410A for tubes of nominal diameters smaller 

the 5 mm. Their correlations were used in the present work as will be discussed later. 

From the brief literature summary above, it appears that there are several models that are 

able to predict the heat transfer rate and pressure drop of refrigerant R410A two-phase 

flow condensation in microchannel condensers but they do not often consider the 

presence of oil in circulation with the refrigerant nor they have been experimentally 

verified when oil is retained in the condenser. 

The model used a segmentation method to divide the heat exchanger into small sections 

along the refrigerant flow. By imposing a heat balance and by using the effectiveness-

NTU method, the outlet conditions are predicted for each section and passed as input to 

the adjacent section until the entire refrigerant circuitry is completed. The model 
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calculates the local thermodynamic properties in each section for the refrigerant R410A 

and Polyester (POE) oil mixtures based on the local oil concentration, pressure, 

temperature, and mass flux. Then the model predicts the volume of oil retained in the 

microchannel tubes and its influence on the refrigerant-side heat transfer coefficient and 

pressure drop. 

The present work used a numerical solver that was developed by Iu (2007) for 

numerically modeling heat exchangers. The model was implemented in FORTRAN and 

each single tube was divided in multiple segments whose capacity was computed using 

an effectiveness-NTU method.  

6.2 Microchannel Condenser Model Validation 

Experimental data of the oil retention and its effect on the heat transfer rate and pressure 

drop of microchannel type condensers were measured and were used to validate the 

predictions from the present model. The microchannel type condenser coil was tested at 

different operation conditions with refrigerant R410Aand R134a and POE lubricant. The 

experimental data were obtained for two level of degree of superheat entering the 

condenser: one with low degree of superheat and one with high degree of superheat. The 

experimental setup, the test procedures, and test conditions for the experimental data of 

the microchannel condenser were described in details in the previous sections of this 

manuscript.  

6.2.1 Air Conditioning Application with R410A and POE lubricant 

The heat exchanger was tested at various operating conditions and with refrigerant 

R410A and with refrigerant-POE oil mixture; the saturation temperature ranged from 85 
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to 130°F (29 to 54°C) and the total refrigerant flow rate for the condenser varied between 

400 to 600 lbm/hr (0.05 and 0.075 kg/s). Finally, the oil mass fraction was also varied 

from 0.5 to 5 wt.%.  

Before validating the model with the data of the present work, the air side heat transfer 

and the refrigerant side heat transfer and pressure drop with and without oil were 

independently verified with data from the literature. This was done to decouple the air 

side from the refrigerant side and isolate any potential sources of error in the model 

implementation. The numerical solver and algorithm was validated by Iu (2007). The air 

side heat transfer coefficients were verified with the correlations provided by Moallem et 

al. (2013), which were valid for a broad range louvered fin geometries commonly 

adopted in microchannel heat exchangers. The fin width, fin height, and fin depth of the 

present work were in the range of the correlation provided in Moallem et al. (2013).  

The predictions of the refrigerant two phase flow condensation heat transfer coefficient 

for refrigerant R410A and oil mixture at different oil concentrations were verified against 

the literature data presented in Huang et al. (2010) and the results are summarized in 

Figure 6.1. The figure shows the simulation results of the present model for the heat 

transfer coefficient at different oil concentrations. The heat transfer coefficient was 

predicted with an error between ±30% and the model underpredicted the data of heat 

transfer coefficient. The deviation were larger at low oil concentration. In agreement with 

the data by Huang et al. (2010), the two phase flow condensation heat transfer coefficient 

was lower for higher oil concentrations. However, the prediction from the present model 

did not show a decrease of refrigerant side heat transfer coefficient as that reported by 

Huang et al (2010).  
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Figure 6.1: Verification of the local refrigerant and oil mixture heat transfer 

coefficients during two phase flow condensation in microchannel tubes with data 

from the literature (Bigi, 2014) 

The local surface temperature of the microchannel tube was predicted by the model and it 

was compared with the data collected in the present work by using an infrared thermal 

camera. For each segment, after the average heat capacity was computed, along with the 

outlet temperatures of air and refrigerant, the segment average surface temperature was 

calculated as in Equation 6-1 or with the equivalent expression reported in Equation 6-2. 

 

TÊ¦�¥«§Ë� = T§�¥,����� + T§�¥,������2 +  QÊ¦�Í ∗ R§�¥ 6-1 

  

TÊ¦�¥«§Ë� = T¥�«,����� + T¥�«,������2 −  QÊ¦�Í ∗ &R¥�« + R��¨�- 6-2 

 

The thermal measurements were taken by using an infrared camera (Fluke Infrared 

Solutions IR FlexCam), which had an accuracy of ±1°C (∼±2°F). A surface thermocouple 
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(T-type thermocouple) was used for calibrating the emissivity on the infrared images. In 

order to be able to interpret correctly the information captured by the infrared images, 

additional tests were conducted on a sample of microchannel heat exchanger, similar in 

geometry to the one used for the oil retention tests. The sample was heated up inside an 

oven for about 60 minutes to ensure that the sample’s temperature was uniform in all its 

parts. An infrared picture of the sample was then taken and its surface temperatures were 

also measured with an infrared thermometer (Fluke, Model: 62 MAX+; Accuracy: ±1°C 

(±2°F) or 1% of the reading). 

 

Figure 6.2: Infrared images of a small sample of microchannel heat exchanger 

inside (a) and outside (b) an oven; the images were taken to calibrate the emissivity 

factors of the thermal camera (Bigi, 2014) 

The same procedure was repeated right after the sample was taken out of the oven. Figure 

6.2 shows the temperature distribution captured by the infrared camera when the sample 

of microchannel heat exchanger was inside (a) and outside (b) the oven. It is noticeable 

how the images show a great change in temperature distribution between fins and tubes 

as soon as the sample was taken out of the oven. In particular, from Figure 7.6 (b) it looks 
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like the tubes were at a lower temperature than the fins; this observation was unexpected 

as the temperature of the sample should still be almost uniform or, at least, the fins’ 

temperature was expected to decrease faster than the temperature of the tubes. Moreover, 

if the surface temperature measured with the infrared thermometer inside the oven was 

close to the one captured in the image (with a difference of about ±1°C (±2°F) between 

infrared camera and infrared thermometer), when the temperature was measured outside 

the oven, it was found to be closer to the temperature captured on the fins (with a 

difference up to ±2.5°C (±4.5°F) between infrared camera and infrared thermometer). It 

is possible that the captions of the infrared camera were disturbed by light reflection on 

the curved surface of the tubes. For these reasons, in order to validate the calculation of 

the surface temperature in the simulation, the temperature of the fins was used as a 

reference temperature for comparison, as opposed to the temperature of the tubes. 
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Figure 6.3: Infrared image of the microchannel condenser inlet with R410A and 

POE lubricant (a) and comparison of infrared image surface temperature with 

simulation results (b) for two different temperatures (Bigi, 2014) 

Figure 6.3 (a) shows two thermal images of the microchannel condenser for two tests. 

Figure 6.3 (b) shows the comparison of the tube surface temperature between the data 

and the simulation results. The cases reported in here are for a high degree of vapor 

superheat of about 63°F (35°C), for which the model had to predict a rapid decrease of 

surface temperature along the tube near the inlet header. 

Some deviation was observed at the inlet region of the microchannel tube when the 

degree of superheat was high. At the inlet section of the condenser, which was the section 
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with the largest error, the surface temperature predicted by the model was about 5.5°F 

(3°C) or lower than the measured temperature. After both the air and the refrigerant side 

heat transfer coefficients and pressure drops were independently verified with data from 

the literature, the model was further validated with the data of the present work. 

The model developed in the present work was also validated with the experimental data 

of this work when oil was retained in the microchannel condenser. Figure 6.4 shows the 

comparison between experimental data and predicted results for the oil retention volume 

(ORV) at low superheat conditions (top) and at high superheat conditions (bottom) of the 

microchannel condenser with refrigerant R410A and POE oil mixture. There is some 

scattering of the data in Figure 6.4 and the ORV was predicted from -50 to +70% with 

respect to the experimental data at low superheat conditions and within ± 70% at high 

superheat conditions. Figure 6.4 provides the summary of the comparison between 

experimental data and predicted results for the oil retention volume (ORV) at high 

superheat conditions of the microchannel condenser with refrigerant R134a and POE oil 

mixture. Again there is some scattering of the data in Figure 6.5 and the ORV was 

predicted from -43 to +70% with respect to the experimental data.  

The main reason for the discrepancy was due to the estimation of the oil retained in the 

headers and in the initial length of the microchannel tubes, in which refrigerant was 

superheated vapor. We observed that these sections of the condensers retained a 

significant portion of the total oil retained in the entire heat exchanger and sometimes 

they were dominant with respect to the oil miscible with the liquid phase of the 

refrigerant and oil mixture during two phase flow condensation. It is important to 

emphasize here that the sections of the condenser headers and microchannel tubes in 
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which refrigerant was in thermodynamic superheated vapor state, were assumed to retain 

oil in the form of a layer of oil rich mixture film that stretched and wetted the internal 

walls. While this assumption was sound the thickness of the liquid oil rich mixture film 

was estimated from the velocity of the vapor refrigerant and it was assumed constant 

among the various saturation temperatures. It was also assumed that the thickness varied 

linearly from 0 to a maximum value if the OMF increased from 0 to 5 wt.%. These 

assumptions might be the reason of the large error in the prediction of the ORV for some 

of the data points. However, overall the model provide the same order of magnitude of 

the oil retention that was measured during the tests. It should be finally noticed that for 

comprehensibility and for avoiding confusion, the uncertainty error bars are provided in 

only for few representative data points in the plots of Figure 6.4 but similar uncertainty 

error bars applied to all the experimental data points in the plot. 
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Figure 6.4 Comparison between experimental data and predicted results for the oil 

retention volume (ORV) at low superheat conditions (top) and at high superheat 

conditions (bottom) of the microchannel condenser with refrigerant R410A and 

POE oil mixture 
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Figure 6.5 Comparison between experimental data and predicted results for the oil 

retention volume (ORV) at high superheat conditions of the microchannel 

condenser with refrigerant R134a and POE oil mixture 

 

Figure 6.6 and Figure 6.7 provide an example of the comparison between experimental 

data and predicted results for the HTF and PDF of the microchannel condenser with 

refrigerant R410A and POE oil mixture and R134a and POE oil mixture and at 105°F 

(41°C), low mass flux, and high and low superheat conditions. These results shows that 

the simulation results of PDF follow the same trend as the experimental data and provide 

similar PDFs, except for few isolated data points. 
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Figure 6.6: Comparison between experimental data and predicted results for the 

HTF (top) and PDF (bottom) of the microchannel condenser with refrigerant 

R410A and POE oil mixture at 105°°°°F (41°°°°C), low mass flux, and low superheat 

conditions 
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Figure 6.7: Comparison between experimental data and predicted results for the 

HTF (top) and PDF (bottom) of the microchannel condenser with refrigerant 

R410A and POE oil mixture at 105°°°°F (41°°°°C), low mass flux, and high superheat 

conditions 

The predicted HTFs for R410A and POE mixture at both low and high superheat 

conditions were also in agreement with the experimental data as shown in Figure 6.6 and 

Figure 6.7 once the experimental uncertainty on the measured HTF data is considered. 

However, the simulations results for HTF seemed to under predict the degradation of heat 

transfer capacity due to the presence of oil when the OMF was higher than 3 wt.%. This 

was somewhat expected since the model assumed completely uniform refrigerant 
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distribution among the entire microchannel tubes regardless of the presence of oil. 

However, the oil might affect the internal distribution of the mixture in the condenser and 

subcooler and the distribution effects on the condenser heat transfer capacity are not 

accounted for in the model. The largest discrepancy was observed for refrigerant R134a 

and POE mixture, shown in Figure 6.8. The simulation results predicted a no change (or 

even a very small increase) of the heat transfer capacity and the HTF from the 

simulations ranged from 1 to 1.02 (i.e. an increase of 2%) if oil was retained in the heat 

exchanger. The experimental data showed a significant drop in capacity if the OMF was 

higher than 3 wt.%. Once possible reason about the discrepancy of the HTF shown in 

Figure 6.8 might be the error in estimating the properties for the mixture of refrigerant 

R134a and VG 32 POE oil. This is not a common mixture and thus its property are not as 

well defined as the ones for the mixture of refrigerant R410A and VG 32 POE. Typically, 

VG 68 POE is more commonly used with the refrigerant R134a in refrigeration systems 

and thus further testing and modeling efforts might be required in future work by using 

this type of oil in combination with refrigerant R134a. 
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Figure 6.8: Comparison between experimental data and predicted results for the 

HTF (top) and PDF (bottom) of the microchannel condenser with refrigerant R134a 

and POE oil mixture at 105°°°°F (41°°°°C), low mass flux, and high superheat conditions 
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CHAPTER VII 

7 Conclusions and Recommendations for Future Work 

7.1 Conclusions from the Present Study  

In vapor compression cycles the compressors need oil to prevent surface-to-surface 

contact, to remove heat, to provide sealing, to keep out contaminants, to prevent 

corrosion, and to dispose of debris created by wear. A small portion of the compressor oil 

circulates with the refrigerant through the cycle components, while most of the oil stays 

in the compressor. The oil amount carried with the refrigerant typically ranges from 0.5 

to 1 percent of the refrigerant flow rate circulating in the air conditioning or refrigeration 

systems. This means that oil might be missing from the compressor because it can 

accumulate inside the heat exchangers during actual system operating conditions.  

In refrigerant-to-air heat exchangers, the presence of oil increases the pressure losses and 

results in an additional thermal resistance to the heat exchange process; such effects are 

highly undesired yet unavoidable. In addition, improper oil management could lead to a 

lack of proper lubrication inside the compressor and ultimately to compressors 

mechanical failure. 

Oil retention in heat exchangers is a complex function of fluid properties as well as 

geometry and configuration aspects. The circulating oil, which is missing from the 

compressor, can form a fairly homogeneous mixture with the liquid refrigerant or it can 
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exist as a separate oil film inside the tubes and headers of the heat exchangers and the 

amount of oil retained inside the heat exchangers is affected by the system operating 

conditions. The condensers and the evaporators of air conditioning and refrigeration 

systems have different oil retention characteristics, and large amounts of oil retained in 

refrigerant-to-air heat transfer equipment decrease the heat transfer rate and increase of 

pressure drop: both effects are highly undesired yet unavoidable.  

The present study investigated the oil retention and its effects on heat transfer and 

pressure drop of refrigerants and oil mixtures in microchannel type condenser and 

evaporators. The present work used three different louvered-fin aluminum microchannel 

heat exchangers: one type for the condenser and two types for the evaporator. All three 

microchannel type heat exchangers were commercially available or installed in 

commercially available heat pump systems. The experiments were conducted in a 

custom-made test facility built ad-hoc for this research study in order to replicate at 

Oklahoma State University (OSU) laboratory the real life operating conditions of the heat 

exchangers of air conditioning and refrigeration systems. The OSU test facility also 

controlled the amount of oil in the heat exchangers and it measured the oil retention, the 

heat transfer rates, and the pressure drops.  The test conditions were selected based on 

typical applications of refrigerant R410A in air conditioning applications and of 

refrigerant R134a in vending machines and water/wine coolers refrigeration systems. The 

oil used in the present work was synthetic polyol ester (POE) with viscosity grade of VG 

32. The saturation temperatures for condenser applications varied from 85 to 130°F (29 

to 54°C) while for evaporator applications, the range of saturation temperatures was 

ranged from 33 to 48°F (0 to 9°C). 
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The oil mass fraction (OMF) in actual air conditioning systems, vending machines, and 

water/wine cooler systems typically ranges from 0.5 to 1 wt. % (weight percent), and 

sometimes the OMF can be as high as 3 wt. % for some operating conditions. The 

maximum OMF levels investigated in the present work were intentionally higher than 1 

wt.% and up to 5 wt.% because the aim was to clearly highlight trends among the 

experimental results. However, the results in the present study when OMFs were higher 

than 3 wt.% should not be necessarily interpreted as representative results for actual 

systems in the field. 

The specifics objectives that were achieved in the present study are as follows: 

1) The study constructed an experimental apparatus capable of measuring the oil 

retention volume in microchannel heat exchangers used as both evaporators and 

condensers in R410A air conditioning systems and R134a coolers refrigeration 

systems 

2) The study measured the quantity of oil held up in two microchannel heat exchangers, 

one for R410A air conditioning and one for R134a coolers applications, both 

operating in evaporator and condenser modes 

3) The study provided data of oil retention in microchannel heat exchangers as function 

of oil mass fraction circulating in the heat exchangers, refrigerant flow rates, and 

refrigerant saturation temperatures 

4) The study assessed the effect that oil held up inside the microchannel heat exchanger 

has on the heat transfer capacity degradation and refrigerant side pressure drop  
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5) The study performed analysis on the experimental data and utilized results from a 

model (developed from separate study) for oil retention and its effects to heat transfer 

and pressure drop in microchannel condenser 

In the study, a methodology to measure oil retention in a refrigerant-to-air heat exchanger 

and to isolate and quantify the effect of oil on the heat transfer rate and pressure drop 

developed. A new test facility that consisted of three main systems, namely a 

refrigeration loop system, an oil injection system and an oil extraction system was 

designed, constructed, and calibrated. In the refrigeration loop system, a variable speed 

gear pump and a series of heat exchangers were used to control the refrigerant saturation 

temperature and the refrigerant flow rate to the microchannel heat exchangers. The 

details of the experimental apparatus are provided in the body text of the manuscript. 

After extensive calibration, and after repeating several tests, the experimental uncertainty 

in the measured oil retention volume was ±10 percent. The uncertainty on the heat 

transfer rate was ± 5.2 percent and the uncertainty on the pressure drop was ± 0.25 

percent. When reporting the volume of oil held up inside the heat exchanger, the 

measured volume of oil was normalized with respect to the total internal volume of the 

heat exchanger, which was the sum of the internal volume of the microchannel tubes plus 

the internal volume of the headers. This normalization of the oil retention volume made it 

possible to compare the oil retention characteristics among heat exchangers with very 

different dimensions. The normalized oil retention volume increased from 0 if the OMF 

was zero (i.e., no oil) up to 0.15 when oil was present, which meant that 15 percent of the 

internal volume of the microchannel heat exchanger was filled with oil. In the variation 

of 0 to 0.15, the normalized oil retention volume experimental uncertainty due to 
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instrumentation accuracy, random error, human operator, and repeatability was within 

±0.01. 

When comparing the heat transfer rate for the case in which oil was present versus the 

case of oil free conditions, the air flow rate and air inlet temperature were constant. This 

resulted in the definition of the heat transfer factor (HTF), which is the parameter that 

was used in the present study to isolate and quantify the effect of oil on the refrigerant 

side heat transfer rate. The HTF varied from 1 if the OMF was zero (i.e., no oil) down to 

0.85 when oil was present and the experimental uncertainty on the HTF was within 2% 

(that is, ±0.01). Similarly, the effect of oil on the refrigerant-side pressure drop were 

given in terms of pressure drop factor (PDF). The PDF increased from 1 if the OMF was 

zero (i.e., no oil) to up to 1.9 when oil was present and the experimental uncertainty on 

the PDF was also within ±0.01. 

The experimental results obtained in the present study were analyzed and used in the 

validation of a separately developed model that calculated the oil retention, the overall 

heat capacity, and pressure drops.  

The main conclusions from the experimental efforts and the use of the model are 

presented below for the microchannel condenser, microchannel evaporators, and model 

validation results 

Microchannel condenser.  

For microchannel type condenser, the results from the present work indicated that the oil 

retained in the condenser was strongly depended on the OMF of the mixture. The oil 



236 

 

retention volume increased if the OMF increased and it was measured up to 11% of the 

total condenser internal volume, which consisted of the internal volume of all 

microchannel tubes plus the headers. The internal volume of the condenser was about 

2,436 cm
3
 (that is, 2.4 liters or 149 inch

3
). The oil retention volume for high mass flux 

conditions were higher than those for low mass flux conditions and the effect of mass 

flux on the oil retention was small for low OMFs but it became more evident for OMFs 

higher than 3 wt.%. This was explained by considering that at high mass flux more liquid 

phase was present inside the condenser than that at low mass flux condition and similar 

saturation temperature. The liquid phase travelled along the condenser with low mass 

velocity with respect to the refrigerant vapor phase velocity. Oil existed as either 

homogenous solution in liquid refrigerant or as a separate layer of oil rich-film at the 

microchannel tube wall. The presence of oil on both cases promoted oil held up in the 

microchannel condenser but in different ways. The two-phase region of the condenser 

was the main section of the heat exchanger where the oil was retained and in this section 

oil was simply mixed with the liquid refrigerant. When the oil concentration is 1 wt.%, 

the higher was the liquid phase volume inside the condenser, the higher was the oil 

amount mixed in it and thus the higher was the oil retention in the condenser. On the 

other hand, in the superheated section of the condenser, oil existed as liquid droplets and 

as film near the wall. The higher was the refrigerant vapor velocity, the better the oil was 

carried over with the refrigerant. The total oil volume retained in the condenser was 

depended on these two mechanisms, and the dominant mechanism was different based on 

the saturation temperature of condensation. While a low degree of superheat tended to 
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increase the oil retention, a generalization of the results from the present work to all 

saturation temperatures of condensation should not be made.  

Oil affected the heat transfer rate of the microchannel condenser and it penalized the heat 

transfer capacity by as much as 10 percent if the oil mass fraction was 3 wt.%. Different 

trends were observed for medium saturation temperature and intriguing results were 

observed at low saturation temperatures for two refrigerant mass fluxes and inlet 

superheat conditions. For medium saturation temperature of 105°F (41°C) the refrigerant-

side heat transfer capacities were fairly constant, even when a lot of oil was present inside 

the condenser. These results were observed for two mass fluxes and two level of 

superheated vapor at the inlet of the condenser. It is interesting also to note that at low 

saturation temperature of 85 to 95°F (29 to 35°C), the presence of oil was observed to 

increase the refrigerant-side heat transfer rate, although in non-monotonic fashion. For 

both refrigerant R410A and POE mixture and refrigerant R134a and POE oil mixture, the 

heat transfer rate at low saturation temperature increased slightly if the OMF increased up 

to about 3 wt.%; then the heat transfer rate started to decline at higher OMFs. POE oil 

was a contaminant that added an additional thermal resistance to the heat exchange 

process between the air and the refrigerant in the microchannel condenser. Thus, the 

reasons as to why the heat transfer rate of the condenser increased when oil was present 

at low the saturation temperature of condensation were not clear and required further 

research in future work. 

Oil also increased the refrigerant-side pressure losses of the microchannel condenser up 

to 19 percent with respect to oil free conditions. This was due to high refrigerant-oil 

mixture viscosity compared to that of liquid refrigerant for the flow inside the 
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microchannel tubes. The increase of oil mass fraction also resulted in oil retention in the 

microchannel condenser and the oil might block some of the channels and/or reduce the 

refrigerant flow cross sectional area in the condenser. Both phenomena led to higher 

pressure drop during the condensation process due to the presence of oil.  

Microchannel evaporators.  

During in-tube flow evaporation the local concentration of oil in liquid refrigerant 

mixture increased as the thermodynamic vapor quality increased. Therefore more oil is 

typically retained in the superheated region of the evaporator, where the viscosity of 

liquid mixture is at its highest. The oil retention volume in the microchannel evaporators 

was measured up to 13 % of total internal volume of evaporator. For typical air 

conditioning application, OMF is less than 1 wt.%, and the oil retention volume varied 

from 3 to 10% of total internal volume, depending on the configuration of the outlet 

header and direction of the refrigerant flow at the outlet of the evaporator. When the 

microchannel tubes in the evaporator entered the outlet header vertically from the top and 

the refrigerant flow was vertical downward, then the valleys in between the tube inserts 

inside the outlet header were not potential traps for oil accumulation. On the other hand, 

in a vertical upward flow with microchannel tube entering the outlet header from the 

bottom. Valleys created in the outlet header were potential locations for trapping the oil 

inside the evaporator due to reduced refrigerant vapor velocity, separation of the oil from 

the bulk stream, and accumulation of the oil in the valleys by gravity.  

The effect of saturation temperature was clearly visible. If the saturation temperature 

decreased then there was a significant increase in oil retention volume. 
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Oil affected the heat transfer rate of the microchannel evaporators and it penalized the 

heat transfer capacities by as much as 14% if the oil mass fraction was 5 wt.%. For air-

conditioning applications and water and wine cooler applications, when OMFs were 

equal to or less than 1 wt. %, the decrease in heat transfer rates were within 4 %. The oil 

decreased the heat transfer rate and its impact was also depended on the mass flux. The 

heat transfer factors (HTFs) were close to 1 for OMF less than 1 wt. % and for both high 

and low mass flux. For OMF higher than 1 wt. %, the impact of mass flux on HTF was 

measurable. For example, at OMF of 3 wt.%, a reduction of mass flux by half, that is 

from high mass flux of 8.4 lbm/ft
2
-s (20.4 kg/m

2
-s) to low mass flux of 4.2 lbm/ft

2
-s (20.4 

kg/m
2
-s), decreased the HTF from 0.96 to 0.90. This represented a decrease of 6% in the 

heat transfer rate for the same evaporation saturation temperature of 38°F (3.3°C) in the 

microchannels due to the decrease of mass flux from that of full load to part load 

conditions. These findings confirmed that the presence of oil in the evaporator was more 

marked at part load conditions. The refrigerant-side pressure drop across the 

microchannel evaporators increased by 10 to 25 percent when oil was present inside the 

heat exchangers and when the OMF was in the range of typical of air conditioning 

systems and refrigeration systems.  

Validation of model of microchannel condenser with refrigerant and POE oil 

mixtures.  

The extensive experimental work of this project RP 1564 provided data that were used to 

develop and experimentally validate a model for oil retention and for predicting the oil 

effects on microchannel heat exchangers heat transfer capacities and pressure drops. The 

model developed in this work used a segmentation approach of the heat exchanger to 
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divide the microchannel tubes into hundreds of short sections along the refrigerant flow 

direction. By imposing a heat balance and by using the effectiveness-NTU method on 

each segment, the outlet conditions from each segment were calculated and passed as 

input conditions for the adjacent segment until the entire refrigerant circuitry was 

completed.  The user defined the coil geometry parameters and selected the appropriate 

heat transfer and pressure drop correlations based on refrigerant type, mass flux, and tube 

and fin geometries. These correlations are summarized in the modeling sections of the 

present report.  

The model was able to capture correctly the trends and the magnitude of the penalization 

due to the oil on the heat transfer capacities and pressure drops of the microchannel heat 

exchangers at various oil mass fractions. The predicted oil retention volume was often 

lower than the measured oil retention volume. The main reason for the discrepancy was 

due to the estimation of the oil retained in the headers and in the length of the 

microchannel tubes, in which refrigerant was superheated vapor. We observed that these 

sections of the heat exchangers retained a significant portion of the total oil retained in 

the entire heat exchanger and sometimes they were dominant with respect to the oil 

miscible with the liquid phase of the refrigerant and oil mixture during two phase flow 

condensation and evaporation. The sections of the condenser headers and evaporator 

headers and the length of the microchannel tubes in which refrigerant was in 

thermodynamic superheated vapor state, were assumed to retain oil in the form of a layer 

of oil rich mixture film that stretched and wetted the internal walls. While this 

assumption was sound the thickness of the liquid oil rich mixture film was estimated 

from the velocity of the vapor refrigerant and it was assumed constant among the various 
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saturation temperatures. It was also assumed that the thickness varied linearly from 0 to a 

maximum value if the OMF increased from 0 to 5 wt.%. These assumptions might be the 

reason of the large error in the prediction of the ORV for some of the data points. 

However, overall the model provide the same order of magnitude of the oil retention 

volume that was measured during the tests of the present work. Preferential sites for oil 

accumulation in the microchannel heat exchangers headers were also identified in the 

present work and the amount of oil potentially retained in the headers was a significant 

portion of the total oil retention amount in the heat exchanger. Literature showed (and the 

experimental work of this project confirmed) that oil accumulated in the headers in the 

valleys created by the tube inserts inside the headers. This preferential sites for oil 

accumulation in the microchannel heat exchangers used in the experiments were not 

completely accounted for in the model. Thus, the model missed to predict a contribution 

to the oil retention volume due to the amount of oil held up inside the headers.  

Finally the simulation results of the microchannel type heat exchangers predicted the heat 

transfer capacities and the pressure drop with and without oil. The model predictions of 

the heat transfer capacities were in general quite good and had an error of about 5 to 

8% with respect to the experimental data of the present work. The pressure drop were 

estimated by the newly developed model with an error that range from 20 to 50% and 

the error increased significantly for some of the tests when oil was retained in the heat 

exchangers.   
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7.2 Recommendations for Future Work on this Research Topic 

The overarching goal of this study was to investigate the effect of lubricant on heat 

transfer rate and pressure drop of refrigerant during flow boiling and condensation in 

microchannels and to use the results to validate a model for oil retention in microchannel 

heat exchangers. The approach in the present work was to consider the entire heat 

exchanger, that is, the microchannel tubes and the inlet and outlet headers all together. 

While this approach had the advantages of being feasible and accurate for the 

measurements of oil retention volume, heat transfer rate, and pressure drop, it also had 

certain limitations such as the determination of local heat transfer coefficient and local 

flow conditions. This present study addressed several key questions on this research topic 

(as discussed in the previous conclusion section) but also opened new questions for future 

work on this topic.  

The main future work suggested are as follows. 

1. Future work might be to extend the results of the present work to additional 

microchannel heat exchangers with different microchannel tube internal geometries 

and refrigerant flow configurations. Also, the experiments can be carry out by 

changing the flow direction and the heat exchanger orientation (i.e. vertical vs 

horizontal microchannel tubes and vertical vs horizontal headers).  

2. Future work might be to extend the results of the present work to additional 

microchannel heat exchangers with different headers internal geometries and 

refrigerant flow configurations in the headers. The inlet and outlet (and intermediate 

headers for heat exchangers will multiple passes) are important elements that affect 
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the oil retained in a microchannel heat exchanger and oil retention studies in the 

headers are recommended in future work on this research topic.  

3. Future work might be to extend the results of the present work to additional 

refrigerant and oil mixtures and to expand the range of temperatures to very low 

temperatures for refrigeration applications (of -40°F (-40°C), for example). 

Measuring the oil retention is such low temperature conditions is not a trial task and a 

future study on this topic is suggested.  

4. The oil retention was observed to be dependent on oil mass fraction, saturation 

temperature and inlet of superheat. These parameters were linked to the variation of 

mixture properties and possible disturbances of two-phase flow regimes encountered 

in microchannel heat exchangers. Further studies on two phase flow regimes with 

refrigerant and oil mixtures and the effect that oil has on altering the flow regime in 

microchannel tubes with respect to refrigerant only case might lead to a better 

understanding about how the oil impact the heat transfer coefficient and frictional 

pressure drops inside the microchannel tubes. 

5. It was observed that for OMF of 5 wt. % the liquid mixture viscosity increased by 7 

times from inlet to outlet of the microchannel tube in an evaporator. The increase in 

the refrigerant R410A and POE oil mixture viscosity augmented the shear stress 

required to remove the oil, particularly the shear stress at the liquid-wall interface. 

Thus, oil increased its resistance to flow with and to be carried with the refrigerant 

vapor along the microchannel tubes. In the present work it was sound to assume that 

oil tended to form a film layer around the wall, that is, to wet the internal walls of the 

microchannel tubes and of the outlet header. However, since the tests were conducted 
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on full size microchannel heat exchangers, this hypothesis was not verified in the 

present work and the addition of flow visualization experiments of refrigerant and oil 

mixtures in microchannel tubes is potential future work on this topic. 

6. In the present work we emphasized that the refrigerant was well distributed across the 

microchannel tubes of the evaporators. Since we purposely decided to control the 

inlet conditions of the microchannel evaporators to slightly sub-cooled (or saturated) 

liquid, the distribution of the refrigerant and oil mixture across the microchannel 

tubes was uniform during the tests of the present study. The flow distribution was 

only qualitatively observed by using thermal images of the evaporators during the 

tests. These images showed uniform color of the evaporator everywhere along the 

front face of the heat exchanger and we concluded that all the microchannel tubes 

received approximately the same flow rate of refrigerant (or of refrigerant and oil 

mixture). The condition of saturated liquid at the inlet of the evaporators is not 

necessarily representative of real life evaporator applications but, in this study, it 

avoided the challenge of non-uniform flow distribution of the refrigerant and oil 

mixture when oil was injected to the evaporators. As a result of our method of testing 

for the evaporators, the HTFs presented in the present work do not account for the 

effect that oil might have on the refrigerant flow distribution across the microchannel 

tubes and the HTFs do not account for the flow change, if any, inside the inlet headers 

of the microchannel heat exchangers. These effects, which are still due to the 

presence of oil retained inside the microchannel heat exchanger, might result in 

additional sources of heat transfer rate degradation in microchannel evaporators and 

their investigation is suggested in future studies of this work.  
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7. The experimental results of the present study were used to validate a model in predict 

the refrigerant charge, the heat transfer rate, and the pressure drop of a microchannel 

condenser. Preliminary calculations showed that oil tended to penalize the two phase 

flow heat transfer coefficient if heat transfer coefficient and pressure drop 

correlations, which were available from the literature and developed primarily from 

refrigerants only data, were used for predicting the phase change heat transfer 

behavior of refrigerant and oil mixtures. This extrapolation of the heat transfer 

correlations might not be valid and should be carefully evaluated. Developing local 

heat transfer coefficient correlations and pressure drop correlations for refrigerant and 

oil mixtures flow condensation in microchannel tubes might be potential future work.  

8. In addition the oil retention model in the present works tended to underestimate the 

oil hold up in the heat exchangers. This was due to the lack of modeling of the 

microchannel headers internal geometries details. Literature showed (and the 

experimental work of this study confirmed) that oil accumulated in the headers, that 

is, in the valleys created by the tube inserts. Not only this accumulation might change 

the refrigerant flow distribution across the microchannel tubes but a model of the oil 

filling process of these valleys is missing. Future work might focus on modeling the 

oil retention in the headers of microchannel type heat exchangers in order to improve 

the accuracy of the oil retention model used in this study.  
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Nomenclature 

 

A  area, m
2
 (ft

2
) 

AB  alkybenzene 

CFC  chlorofluorocarbon 

COP  coefficient of performance, dimensionless 

cp  specific heat capacity, J/kg.K (Btu/lbm.°F) 

D  inner microchannel diameter, mm (inches) 

EF  enhancement factor 

f  friction factor 

g  gravity acceleration, m
2
/s (ft

2
/hr) 

G  mass flux, kg/m
2
-s (lbm/hr-ft

2
) 

h  heat transfer coefficient, W/m
2
.K (Btu/hr-ft

2
.°F) or enthalpy J/kg (Btu/lb) 

hfg  enthalpy of vaporization, J/kg (Btu/lb) 

HFC  hydrofluorocarbons 

HTF  heat transfer factor, dimensionless 

j  superficial phase velocity, m/s (fpm) 
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Ja  Jacob number 

Kf  two-phase number 

l  length of microchannel tubes, cm (inches) 

m  mass, grams (or lbm) 

gh    mass flow rate, grams/s or (lbm/min) 

MO  mineral oil 

MCHX microchannel heat exchanger 

NTU  number transfer unit 

Nu  Nusselt number, dimensionless 

OCR oil circulation ratio, same as OMF 

OMF  oil mass fraction, wt. % 

ORVN  oil retention volume normalized, dimensionless 

P  pressure, Pa (psi) or perimeter, m (ft) 

PAG  polyalkylene glycol 

PDF   pressure drop factor 

PF  penalty factor 

POE   polyolester 
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Pr  Prandtl number, dimensionless  

°h     heat transfer rate, kW (Btu/hr) 

R  thermal resistance, m2.K/W (hr-ft
2
.°F/Btu) 

RH  relative humidity, % 

Re   Reynolds number, dimensionless 

s  solubility of refrigerant and oil mixture, % wt. wt.⁄  

S  sight glass 

SUS  Saybolt universal second viscosity measurement method 

t  time, second 

T  temperature, °C (°F) 

u  absolute uncertainty 

v  velocity, m/s (fpm) 

V  volume, cm
3
 (or inch

3
) 

VG  viscosity grade 

We  Weber number, dimensionless 

Xtt  Martinelli parameter, dimensionless 
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Greek symbols 

∆P  refrigerant side pressure drop, kPa (psi) 

α  heat transfer coefficient, W/m
2
.K (Btu/hr-ft

2
.°F)  

ε   void fraction or efficiency, % 

β velocity ratio 

δ difference or uncertainty 

ρ density, grams/cm
3
 (lb/inch

3
) 

σ surface tension, N/m 

µ dynamic viscosity, Pa-s 

ν kinematic viscosity, cSt 

�Ò  viscosity ratio, dimensionless 

γ refrigerant-oil miscibility, dimensionless 

ω   oil concentration by weight 

φ   two phase multiplier 

λ   thermal conductivity, W/m.K (Btu/hr-ft.°F) 

 

Subscripts 

f, L liquid phase,  

hx heat exchanger 
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I inlet 

LO liquid only 

mchx microchannel heat exchanger 

mix  mixture 

N nozzle 

NcB nucleate boiling 

o oil or outlet 

OR oil retention 

r refrigerant 

g, v gas phase 

sat saturation 

w wall 

tp two phase 

x vapor quality 
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