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Abstract: Cyber Physical Systems (CPS) and Nanotechnology are emerging fields
that promise to unite the physical and computing realms through the use of impossibly
tiny sensor based devices called motes. The revolutionary nature of these systems
stems from the unique properties of these mote devices such as their use of sensors,
small size and low cost per unit.

These CPS networks are expected to control real time critical applications requiring
deployment in remote and hostile environments in which far reaching communication
or constant human oversight can not be assumed. For this reason some of the defining
characteristics of CPS are the ability to be self-configuring, self-policing and fault
tolerant. One area of concern is wireless communication technology, existing methods
have been deemed inadequate as a foundation for cyber physical systems.

We present a distributed wireless communication strategy that can achieve a proba-
bilistic degree of logical redundancy of communication between the motes that sense
information and the data sinks that consume the information. We can achieve this by
taking advantage of the expected low cost and small size of motes in order to assume
the inevitability of, or ability to deploy, very dense mote populations. Our strategy
then is to partition the motes in a densely populated CPS network into multiple
overlapping logical networks (LNETs). Each LNET operates as an independent CPS
and thus if some event is sensed by motes in n separate LNETs, then accounts of the
event will be reported with redundancy equal to n− 1.

Our simulations show that as population density fluctuates, partitioning in this man-
ner provides capacity scaling by expanding bandwidth and decreasing resource
contention, and increased reliability of communication due to logical redundancy.
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Chapter 1

Introduction

1.1 Cyber Physical System

Many fields within computer science incorporate the idea of networks of tiny comput-

ing devices. Some of the terms coined in this regard are smart dust, cyber physical

systems, programmable matter, ubiquitous computing, the Internet of things, utility

fog and claytronics[1, 2, 3]. These terms refer to similar concepts albeit with different

applications or hailing from different scientific domains. In this text we adhere to

the notion and nomenclature of Cyber Physical Systems (CPS), a burgeoning field of

research in computer science identified by the US National Science Foundation as a

key research priority in 2006[4].

The emerging field of cyber physical systems is jointly physical and computational[5].

a Cyber Physical System (CPS) is a system incorporating numerous tiny wirelessly

connected sensing devices called motes and devices that can manipulate physical

environment called actuators. A CPS will utilize its motes and actuators to learn

from and and manipulate its surroundings, bridging the gap between computing and

physical realms. The feasibility of tiny wireless motes was demonstrated in 1998
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when a group of researchers from the University of California, Berkeley demonstrated

a working mote smaller than a grain of rice[6].

Since CPS is an emerging field its definition, scope and requirements are somewhat

fluid. Key attributes necessary for full scale CPS adoption such as architecture, price

point, size, and adequate power sources remain inadequate, technologically infeasible

or commercially non-viable[5, 7]. In an examination of CPS foundations Lee claims

that until it is feasible to make wireless links predictable and reliable we must com-

pensate with “robust coding schemes and adaptive protocols”[3, 8].

The individual motes in a CPS will have limited capability by design but due to low

cost, large populations and small size these systems could “dwarf the 20th century IT

revolution” [5]. One reason that cyber physical systems have such great expectations

is due to their intended application. Groundbreaking uses for a CPS will be critical

applications necessary to keep us safe and sustain or improve our quality of life [9].

These applications include management of SCADA systems such as power and water,

coordination of air traffic and navigation of automobiles. A single collection of motes

may be composed of thousands, millions, possibly even trillions of motes[10, 11].

1.2 Problem Statement

Cyber physical systems are becoming integral to applications within vital sectors such

as military, infrastructure and transportation[12, 13]. Before these systems can be

fully adopted a number of foundational issues need to be addressed, these were enu-

merated in 2012 by Edward A. Lee of UC Berkeley with input from other prominent

figures in the CPS community. Beginning with a taxonomy given at a National Insti-

tute of Standards (NIST) workshop on CPS, Lee created the concept map in figure

1.1. This concept map provides defining characteristics of a CPS, describes some

2



Figure 1.1: Concept map from http://cyberphysicalsystems.org

important CPS applications, it also identifies needs from foundational papers such as

Lee’s own “Cyber Physical Systems: Are computing foundations adequate?”[5] and

Derler’s “Modeling Cyber Physical Systems”[14] that are necessary for solid founda-

tions on which to build next generation Cyber Physical Systems.

Cyber security problems involve the ability to be resilient in the face of malicious

attacks, an especially worrisome issue in CPSs that are remotely distributed and not

monitored by humans. An important part of cyber security is the ability to detect

attacks in order to prevent them from succeeding, or to mitigate the damage caused.

Scalability of network communication is particularly important because a CPS may

incorporate dynamic population changes due to the addition of motes, or because

motes exhaust their power sources.
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Figure 1.2: Concepts addressed within this dissertation

The research in this dissertation is aimed at improving cyber-security resilience and

providing scalability in a CPS considering a distributed environment comprised of a

large population of low power devices. Our work may also be useful in facilitating a

means of intrusion detection.

1.3 Definitions

In this section we give a brief overview of wireless communication and define many

of the terms used in this dissertation.

Radio communication Motes communicate using low power radio waves that are

modulated to represent binary data. A mote that wishes to send a message will act

as a radio transmitter and broadcast its modulated signal within a given frequency

range. Motes that are near enough to receive this broadcast and whose radios are

tuned to the correct frequency will receive the message and demodulate the signal

to retrieve the data. If two motes are within range of one another and tuned to the

4



same radio frequency the are called neighbors and the degree of a mote refers to the

number of neighbors a mote has.

Channels Invariably there exists a set of radio frequency ranges that can be used

for transmitting data, each range is referred to as a channel. The channels available

for use are defined by the communication protocol and often varies by country or

region. The channel used by motes for communication depends on various factors but

often comes down to avoiding congestion or interference. Congestion occurs whenever

too many neighboring motes attempt to transmit data simultaneously causing some

motes to postpone transmission, extreme congestion may result in failure to transmit.

A signal is counted as interference if the mote receiving it is unable to decode it to

produce a properly formatted packet.

Transmission range A radio broadcast is omni-directional, so when a mote broad-

casts a message it is at the center of a virtual circle or sphere defined by the transmis-

sion power of the radio. The radius r0 is the distance from the transmitter at which

the broadcast can be received. The area around a mote within which a transmission

can be received is referred to as the unit area and for two dimensions is calculated as

Ur = πr20

Density The density of a motescape is the average number of motes per unit of

area within its borders and is defined in equation 3.1 of chapter 3.

1.3.1 List of symbols

The symbols used throughout this text presented with a brief definition.

Symbols
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• F A field of motes or motescape.

• A The area of F .

• M The set of all motes that populate F .

– m Some mote m ∈M .

– |M | The size of set M , or the number of motes M contains.

• s0 The radius of a mote’s sensor range.

• r0 The radius of a mote’s radio communication range.

• U The unit of area against which density values are calculated.

– U1 Base unit of area, U = 1.

– Us Unit of area equal to sensor coverage area U = πs20.

– Ur Unit of area equal to radio coverage area U = πr20.

• deg(m) The degree of a mote m or the number of one hop neighbors m has.

• δ Density, the calculated population size per unit of area.

– δ(U) Function to calculate density with respect to unit of area U .

– δ1, δr, δs Shorthand for δ(U1), δ(Ur), and δ(Us) respectively.

– δ̂ An approximation of δ.

• µ The mean degree observed in a set of motes.

– µ(S) Algorithm for computing the mean degree of motes in set S.

6



– µr, µs Mean degree of devices that have a unit of area equal to Ur, and Us

respectively.

• ` Ideal degree, the mote degree that we want motes to have, should maximize

throughput and/or minimize collisions.

• C The set of channels (radio frequencies) available for communication.

Members of C are represented by consecutive integers starting with 1.

– c Some channel from the set of channels C where 1 ≤ n ≤ |C|.

– cbase Base channel, the default channel for communication and the lowest

numbered channel available.

• β Channel capacity, the bandwidth capacity of a single channel.

• γ Capacity factor, the number of channels with capacity β required to satisfy

demand.

• ϕ Redundancy factor, the number of logical redundant networks (LNETs) to

divide a motescape into.

1.4 Research Goals and Motivation

The goal of our research is to precipitate the use of redundant cyber physical systems

resulting in a more secure and reliable system.

This goal is motivated by foundational needs that have been identified as barriers to

CPS adoption by a group of leading CPS researchers. These needs include insuffi-

cient cyber-security, inadequate wireless communication, and a fundamental lack of

scalability[8]. Our motivation for using redundancy to address these needs stems from
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Figure 1.3: Two networks communicating an event redundantly to a sink.

the expectation that it will become feasible to have redundancy as a standard fea-

ture. This requires that mote hardware continues existing trends towards extremely

low per-unit costs and minuscule form factor[1, 15, 16]. Given this we assume the

existence of dense mote populations, whether dictated by application requirements,

deployment circumstances, or as an intentional design measure. We then leverage

this property of dense populations to address outstanding issues within the field of

CPS as enumerated in the concept map shown in figure 1.2. Table 1.4 maps the

relationship between these concepts and our research, how we address these concepts

is then described in greater detail below.

1.5 Issues identified and how they are addressed

In this section we will provide a road map of our research. We identify the issues

addressed by our research, define the issue, explain the relevance of each issue, and

describe how we address each issue giving links to relevant chapters and illustrations.
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Concept Metric of relevance

Applicability to CPS (1.5.1)

The applicability of the protocol
to wireless sensing devices in a dis-
tributed, networked environment

• Distributed algorithms (ch. 3. Density, 4.
Partitioning, 5. Protocol)

• Consideration of network data propagation
(sec. 5.2.1. Micro state and macro state)

• Use of wireless network simulation models
(sec. 6.2. Simulator models)

Scalability (1.5.2)

The ability to tolerate fluctuation
in demand for bandwidth caused
by changes in population density

• Dynamic channel allocation in response to
changes in mote population density (ch. 5.
Protocol, 6. Simulation)

• Scale bandwidth availability in the face of ris-
ing demand (ch. 3. Density, 6. Simulation)

• Reduction in failed transmission attempts
(ch. 3. Density, 6. Simulation)

Cyber security (1.5.3)

“The ability of a system to
continue operating satisfactorily
when stressed by unexpected in-
puts, subsystem failures, or en-
vironmental conditions or inputs
that are outside the specified op-
erating range.” [8]

• Improvement in availability (3. Density, 6.
Simulation)

• Facilitate a means to detect malicious data
(section 1.5.3)

Figure 1.4: How concepts from figure 1.2 are addressed within this dissertation
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1.5.1 Applicability to cyber physical systems

The notion of cyber physical systems is fundamental to our research. All protocols

and algorithms given in this dissertation assume distributed wireless communication

and our simulations use models apt for CPS.

1.5.2 Scalability

In chapter 5 we give a protocol that provides automatic network capacity scaling

by dividing mote populations into multiple logical networks (LNETS) or combin-

ing multiple LNETS in response to fluctuating population density as estimated us-

ing methods from chapter 3. Each LNET is allocated its own communication fre-

quency, dividing collision domains, reducing resource contention and increasing avail-

able bandwidth[17]. The result is the ability for network capacity to scale up or down

in response to demand addressing the requirement for scalable methodologies given

in figure 1.1.

1.5.3 Cyber security

Cyber security is a broad topic applicable to nearly every aspect of computing. Two

areas that are identified in figure 1.1 are resilience and intrusion detection. Resilience

refers to the ability of a network to function under adverse conditions and to recover

from failure or attack. This is particularly important in a CPS due to its defining

characteristic of autonomy and the criticality of application[5, 9].

We enhance cyber security first by increasing availability which along with con-

fidentiality and integrity make the three fundamental properties of information

security[18]. We bolster both system availability, the ability of the CPS to oper-

ate, and data availability, the odds that a packet will be successfully transmitted
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Figure 1.5: Use of redundancy to detect malicious data at sink

from source to sink. System availability is improved because each partition created

(4. Partitioning, 5. Protocol) serves as a redundant source of event reporting. This

allows the CPS to tolerate the loss of up to ϕ−1 channels of communication, where ϕ

is the number of partitions or redundancy factor. Data availability is higher because

the probability that at least one report of a given event is delivered increases by up

to ϕ− 1 orders of magnitude.

Furthermore, the creation of redundant partitions that function autonomously con-

strains any compromise of a single mote so that it does not affect operation within the

other partitions. And finally by providing redundant reports of events, a potential

means of intrusion detection is created. The ability of a data sink to compare multiple

accounts of each event may reveal malicious data, providing evidence of intrusion as

well as a means of mitigating the effect of the malicious data.

By augmenting availability and providing a potential means of intrusion detection we

addresses a subset of the cyber security concepts described in the concept map show

in figure 1.1.
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1.6 Contribution

Our contribution to the field of CPS are the LNET operational protocol, and two

algorithms we developed in order to implement it.

The LNET protocol (see 5. Protocol) is used by motes to make use of the techniques

and provide the benefits described in this chapter. In the process of implementing this

protocol we developed the turn-taking algorithm (see 4.2.5) for partitioning motes into

even and overlapping partitions (see 4. Partitioning). And in order to determining

the number of LNETs to partition motes into we developed a means to estimate

population density in a physical distributed environment that mitigates the error

introduced by edge motes (see 3. Density).

1.7 Organization

The simplified goal of our protocol is to automatically partition a population of motes

M to provide maximum redundancy and respond to demands for bandwidth. To

accomplish this we need to be able to derive population density which we accomplish

in chapter 3, divide motes into effective partitions which we do in chapter 4 and finally

we need a protocol that drives the process which we give in chapter 5.

In the remaining pages we discuss topics relevant to our work and provide details of

our methodology, algorithms and findings. We first give a review of literature relating

to this work and then proceed in a bottom up fashion explaining the intricacies of

calculating density, the problem of edge effect, and how motes can self partition.

Then in chapter 5 we present the network protocol and state diagram that make

use of density calculation and partitioning to address the problems identified in this
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chapter. Finally we present our simulation parameters and results. Table 1.6 gives a

brief description of the chapters in this dissertation.

Chapter Topic

1. Introduction Presents an overview of the problems we address, a de-
scription of our work and how it addresses the identified
problems.

2. Literature Review Discusses literature relevant to our work.

3. Density Defines density and discusses methods for calculating
it as well as some of its associated pitfalls. Presents a
means of estimating density that mitigates edge effect.

4. Partitioning Discusses methods for and issues with partitioning.
Presents a method for dividing motes into evenly dis-
tributed overlapping partitions.

5. Protocol Presents our LNET protocol which uses the density and
partitioning algorithms above to address the problems
previously identified in this chapter.

6. Simulation Presents the assumptions and models used in our sim-
ulations, and the data resulting from our experiments.

7. Conclusion Presents our conclusions, discuss additional research
opportunities.

Figure 1.6: Chapter descriptions
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Chapter 2

Literature Review

In this dissertation we give a method for mitigating the negative effects of highly

dense networks and improving the general resilience of wireless communications in

cyber physical systems. In this chapter we present literature that is relevant to the

problem of network reliability, network contention and information security as related

to cyber physical systems. As the field of CPS is relatively new much of the applicable

research is related in a more general or tangential manner.

2.1 Wireless communication

The ability of devices to communicate effectively and efficiently in wireless networks

is the heart of the problem we intend to address.

In 1987 Boris Pittel published the widely referenced On Spreading a Rumor [19]

which laid the groundwork for determining probabilistic bounds on disseminating

information through an ad-hoc wireless network with no central control point. Pittel

characterizes the problem as a situation in which a node wishes to spread a rumor to

all other nodes. At each stage of rumor spreading, each knower randomly chooses a
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single neighbor to tell the rumor to. The choice of neighbor is independent of previous

choices or whether it is a knower or an ignorant. The author then derives probabilistic

equations for determining how many knowers exist after t stages of rumor spreading

and how many stages are required before all nodes have heard the rumor. We use

Pittel’s equations to determine boundaries on waiting periods whenever our protocol

must disseminate information.

The article Reliable Broadcasting in Random Networks and the Effect of Density [20]

builds on the Pittel paper and The shortest-path problem for graphs with random

arc-lengths by Frieze and Grimmett[21] to show that by using the push protocol to

transmit data to random neighbors, the speed with which data saturates the network

is essentially unaffected by the fact that most links are missing and speeds are nearly

equivalent to that of a fully connected network. Although the authors examine den-

sity and its effect on performance, they concentrate on large random networks whose

nodes have small average degree and their computations primarily are concerned with

mitigating sparse networks rather than the effect of high density. The simulations

appear to be more calculation based rather than attempting to model physical pro-

cesses, for instance rather than detecting edges they simply use a formula to specify

likelihood of being an edge node based on density. This would be problematic for

our work since we intend to show methods to mitigate the effect of edge densities

in a variety of field sizes and shapes that would not be amenable to mathematical

modeling.

2.2 Density

Density is a simple concept on its face, but there are many subtle sub topics that

can render calculation of density and understanding its effect on network performance
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difficult. First of all the term density itself must be qualified as it can refer to multiple

characteristics. Network density (ϕ) refers to the number of motes per unit area in an

ad-hoc wireless network. Mote density, or degree, refers to the number of neighbors

experienced by a given mote in the network. Density is related to robustness since

in order to make sound decisions a system must have sufficient data and sufficient

data means making sufficient observations of an event, which is directly related to

the number of sensors available[22].

Given some basic variables we can easily calculate or estimate network density for

a rectangular or circular uniform random mote deployment. However the manner of

deployment, whether random or grid based and the degree of uniformity can have a

huge impact on the calculation and even meaning of density[23, 24, 22]. Moreover the

variables needed to calculate density, may involve a tremendous amount of overhead to

calculate and distribute in a distributed ad-hoc environment and may be unreliable[19,

20, 21].

Even if density is known, there is no standard method for determining the ideal density

which varies depending on a litany of variables such as hardware and application

requirements and distribution. This is complicated further when one considers the

ability to dynamically modify transmission power and hence the mean degree[25, 26].

A good introduction to the topic of density is the paper On Wireless Density [26]

by Christian Bettstetter. Bettstetter expands on strong mathematical results from

Cheng and Robertazzi[27] and Wu and Li[28] in order to give a comprehensive set of

equations and proofs for relating the radio range, field size and degree. We reference

these equations for density calculation in section 3.

One of the foundational papers Bettstetter uses is Optimum Transmission Radii for

Packet Radio Networks by Kleinrock and Silvester[25]. The authors analyze the

trade-off between greater connectivity and increased contention. Increasing power to
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the radio will widen the transmission range for wireless motes thereby reducing the

required number of hops for transmitting data between any two nodes. However this

also means a higher degree of connectivity and increased interference (contention).

The authors find that there is a transmission radius that optimizes network capacity

achieving a throughput proportional to the square root of the number of nodes in

the network. The authors also give a formula for calculating the expected degree of

a node when nodes are not required to have the same transmission range.

In the article Impact of Node Density on Throughput and Delay Scaling in Multi-Hop

Wireless Networks, the authors derive formulas based on the work from Kleinrock

and Silvester describing how density effects throughput within a system [29, 25]. The

authors also discuss issues with the widely used cell partitioned network model with

regards to density calculations.

2.2.1 Highly dense wireless networks

Existing literature dealing with the effects of density in ad-hoc wireless networks

invariably consider data from the viewpoint of mitigating sparseness and neglect the

impact of high density. This is understandable given that sparseness has been a more

realistic problem in practical usage.

Kuo et. al. prove that higher node density results in a lower required hop count when

connecting a source and destination over multiple hops, leading to exponential im-

provement in throughput. However the impressive claim of exponential improvement

in throughput is misleading. Their data shows that as the average degree increases

the improvement in throughput very quickly approaches an asymptotic boundary.

The results given hinge on beginning with an extreme minimal mean degree of 1 and

do not consider the effect of data loss due to insufficient network capacity[29].
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Mansouri et. al. state that if their density calculation yields a value greater than

200%, they simply set the density to 200% in order to “avoid an overweight estimation

of density”[24].

Bettstetter derives probabilistic bounds to avoid isolated nodes in homogeneous ad-

hoc networks but does not consider bounds for paralysis due to contention[26].

2.2.2 Probabilistic connectivity

Devices that use radio communications can typically control the power used for trans-

mission dynamically. Higher powered transmissions will travel further and be seen

by more recipients resulting in higher average degree. Since power is one of the most

critical resources in the motes that make up these systems however, this decision can

not be undertaken lightly[30, 9]. Additionally, the range of any mote sensors must

be taken into account to prevent adjustments in transmission range from resulting in

untenable sensor coverage[31].

The Kleinrock paper gives equations for adjusting transmission range in order to

achieve probabilistic connectivity of a desired degree. This result is expanded on in

the papers by Bettstetter and Gupta and we reference these equations for ensuring

connectivity within bounds of a given probability.[25, 26, 23]

2.2.3 Edge effect

Edge effect, the impact of border nodes on calculations of density is often mentioned

in regards to its impact on simulation, but is rarely studied as a subject in its own

right. The intensity of edge effect may be quantified by the ratio of edge motes to

interior motes. The contribution of edge nodes when measuring mean degree results
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in a skewed calculation. This is because the edge nodes must have a lower density

than interior nodes despite having the same connectivity properties[26, 27, 28, 25, 29].

A number of authors discuss the problem of edge effect in the context of simulation

efficiency this is because one of the methods of mitigating the problem is to exclude

edge nodes from contributing to sample populations which necessitates simulation of

additional nodes in order to achieve a desired sample size. Other recommendations

for mitigation are treating the network as a torus in that edge nodes on one side

simply wrap to the other side of the map.

Our work requires a protocol for calculating density in a physical system. In this

environment edge effect will be a real factor and likely be more pronounced than in

a simulation since a physical distribution is more likely to have fjords at the edges

(ragged borders) or interior holes where no motes exist.

In On the minimum node degree and connectivity of a wireless multihop network

the authors relate range, size and degree but do not draw conclusions specific to

any particular application. The author’s treatment of edge effect assumes a simula-

tion environment and makes no provision for physical hardware or the necessity of

a distributed algorithm for calculation and dissemination. Applying these ideas to

a physical system presents a more concrete problem since there may be no way to

determine edge nodes, and edges may be complex due to physical obstructions.

The article Critical Sensor Density for Partial Coverage Under Border Effects in

Wireless Sensor Networks [23] is one of the more thorough reports on border effects.

Drawing heavily on previous work by Lazos and Poovendran[22] the authors determine

the requirements for calculating edge effect for motes deployed into irregular shaped

fields and show the significance of border effects within these fields taking into account

both density and range. Previous works had neglected to consider sensing (or radio)

range which can play a critical role in manipulating density and coverage.
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This work illustrates the rapidly increasing complexity of determining edges in a

wireless network whose motes occupy a complex layout. While possible and useful

in simulation, it quickly becomes prohibitively complex for real world application,

especially for less regular shapes, and would require specialized hardware to determine

spatial positioning.

The authors admit to making unrealistic assumptions regarding the geometry of their

layouts and recommend approximating irregular motescapes by circumscribing similar

regular shapes which is only useful when we have foreknowledge of the shape. In

section 3 we will examine border, or “edge” effect and attempt to mitigate it regardless

of shape in a simple, practical and unassuming manner.

2.3 Coverage and Partitioning

Our proposal involves partitioning a dense network into redundant less dense networks

each of which provides sufficient coverage on its own.

The concept of using overlapping coverage for the purposes of redundancy does not

appear frequently in literature. In Integrated Coverage and Connectivity in Wireless

Sensor Networks, Wang et al. mention fusion based distributed detection methods as

a means to reduce false data acceptance via multiple coverage, though these methods

are done within a single homogeneous network[32].

The process of dividing a network is referred to as partitioning which is a well studied

branch of graph theory. Coverage and partitioning are related since partitioning a

network will result in multiple networks, each with a different degree of coverage than

the original.

Calculating coverage is one of the fundamental problems with wireless ad-hoc

networks[33]. Coverage may be defined as a performance metric for quantifying
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how well an area is monitored by the sensor deployment. Lazos and Poovendran

pose the coverage problem as a set intersection problem. This allows the authors to

analyze layouts that go beyond the simple shapes that are used in the vast majority

of literature on this topic[22].

Methods of using multiple radio channels to alleviate congestion and improve band-

width are discussed in [34]. In this paper channel assignment methods are catego-

rized as fixed, semi-dynamic and dynamic. We use a hybrid of fixed channel and

dynamic channel assignment that is most similar to Component Based Channel Al-

location (CBCA) introduced in [35]. CBCA allocates channels based on a necessary

data flow, however we emphasize allocation that results in even distributed coverage.

Component level channel assignment is the least complex method of channel shar-

ing and according to [33] has the practical advantages of using COTS hardware,

no synchronization requirements or channel scheduling overhead and only prudently

switches channels.

Two variations of the problem of determining k-coverage of sensors in a distributed

network is investigated in [36]. The variations of the problem are that of unit disk

coverage and non-unit disk coverage.

Once network density has been determined and the redundancy factor has been com-

puted we must partition our motes into subnetworks.

2.3.1 Partitioning methods

The simplest method for partitioning a dense graph is for each node to choose ran-

domly from a set of partitions. This may be adequate for the needs of a given

application, and is likely an improvement over exact grid based placement[37]. With

random selection, if our network of randomly distributed motes contains twice the
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population necessary for adequate coverage of its area, and each mote then randomly

selects one of two networks to join, the result will be two random networks, each

capable of adequate coverage.

While random selection is viable, we describe an algorithm that produces better

partitions in chapter 4.

Singh et al. expand on a seminal article from Barnes and Hut giving a way of

converting a system of nodes into a regular grid called a particle mesh so that it can

be manipulated more easily. This involves superimposing a grid over the nodes in the

graph and then translating the nodes to the nearest grid point. The accuracy of the

final solution depends on how fine the chosen grid is[38].

Although this is an elegant partitioning method, the hardware comprising a

motescape is unlikely to have access to the necessary spatial data for implementing

this.

2.4 Deployment

We do not delve deeply into alternate methods of deployment, but assume uniform

random distribution of motes throughout a given area. There has been some research

into the implications of various methods of deployment however. Most commonly the

differences between manual grid based deployment and random deployment.

In an article titled Factors that may influence the performance of wireless sensor

networks [24], the authors discuss uneven distribution and describe physical mote dis-

tribution methods such as column or grid based and the effects these have on the space

between motes. Zhang and Hou examine the implications of grid based deployment

concluding that contrary to intuition, grid deployments tend to render asymptotically

lower node density than random deployment[37]. This lends credence to our decision
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to use randomly distributed motes for our simulations though this decision was ini-

tially predicated on a desire to avoid unnecessary assumptions, embrace simplicity

whenever possible and to allow flexibility in the application of our protocol.

2.5 Multi-channel

There has been a good deal of research into multi-channel communication schemes,

but existing approaches address issues such as optimization, Quality of Service (QoS)

and reliability within a single homogeneous network [39, 40, 24, 41, 42, 29]. These

approaches tend to involve complex scheduling and coordination or multiple radios

per device which is at odds with motes expected to be extremely resource limited.

Moreover existing literature that considers density is nearly universally concerned

with sparse networks and do not consider the possibility of highly dense populations.

A paper by Raniwalla et al. titled Centralized Channel Assignment and Routing

Algorithms for Multi-Channel Wireless Mesh Networks [17] examines converging com-

munications from multiple channels in 802.11 networks using full featured computers

with multiple wireless communications cards and centralized algorithms for deriving

channel assignments.

The authors assert that multiple non-overlapping frequency channels can be used si-

multaneously to increase the aggregate bandwidth available to end-users, and that

this is common in infrastructure based networks but is “rarely used in the context

of multi-hop 802.11-based LANs that operate in the ad hoc mode”. The authors

also claim that by equipping motes with two network interfaces operating on dif-

ferent channels they can increase the total throughput by a factor of up to 8 over

conventional single-channel ad hoc network architecture.
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These results are interesting in that they show that leveraging multiple channels of

communication can be an effective technique for improving wireless communication

in ad-hoc networks. However the purpose of this paper is strictly improvement to

throughput and neither network density nor its effect are addressed. Furthermore

the authors’ requirement of two radios per mote impose hardware requirements that

we wish to avoid.

Architecture and evaluation of an unplanned 802.11b mesh network by Bicket et.

al. [43] is an examination of the effects insufficient density has on multi-hop mesh

networks. This paper covers many topics that mirror our proposed research, the

authors present results of multihop communication and examine the effects of density

on connectivity and robustness of communication. The results are presented only

from the perspective of achieving sufficient density. The possibility of overly dense

networks is never discussed, and simulation data is only given up to the point of

sufficiency.

2.6 Simulation models

Piyush Gupta and P. R. Kumar authored The Capacity of Wireless Networks [44]

which among other contributions defines the protocol model and the interference model

which are widely followed for determining success and failure for transmissions in a

multi-channel network[45, 46, 47, 34, 48, 49]. These models state that a transmission

from mi to mj, is successful only if all devices that could interfere are silent during

the entirety of the transmission. This allows for the hidden terminal problem whereby

a node inadvertently interferes with a neighbor’s reception because it is too far from

the transmitter to see its transmission.
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The predominant simulation model used for density studies is the cell partitioned

network model. This model is popular for its simplicity and ability to render statistics

in a user friendly manner[29, 50].

The cell partitioned model involves grouping multiple motes into a cluster, then all

motes in a given cluster only communicate within the cluster. Any communication

that needs to go outside of the cluster must be relayed through some chosen router

node. This model then restricts communication to one transmission per cell per

timeslot in order to avoid interference[51].

This model is useful for simulation but not considered practical. The required as-

sumptions of the cell partitioned model can render it unable to reflect the significance

of node density on network performance[29, 50].
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Chapter 3

Density

3.1 Introduction

The ultimate goal of this dissertation is to provide a means of partitioning dense mote

populations in a Cyber Physical System (CPS) to form multiple redundant systems

which we refer to as logical networks (LNETs). Before we can effectively partition

a single population of motes into multiple LNETs, we must first decide how many

LNETs to create. This requires us to know the density of our mote population and

be able to evaluate it with respect to some ideal density. It is very possible that

motes in a CPS will not have access to the information required for direct density

calculation, and in that case we can instead measure the mean mote degree giving

the average number of neighbors for each mote. This gives a value that should be a

close approximation of density, however in practice a subtle issue arises in the form

of a property called the “edge effect”.

Edge effect refers to the fact that the inclusion of motes that lie near the perimeter

of a motescape contribute lower degree counts to the mean causing the measured
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Figure 3.1: Motescapes with varying densities.

mean to be significantly lower than the direct density calculation. To get an accurate

density estimate we must find a way to counteract this edge effect.

3.1.1 Motivation

In chapter 1 we describe how knowledge of population density is required to partition

motes, and how mote partitioning addresses needs associated with scalability and

cyber security (1.1. Identified needs and requirements) by responding to fluctuation

in bandwidth demand (1.5.2. Scalability) and improving availability of systems and

data (1.5.3. Cyber security).

3.1.2 Definitions

The term density refers to a measure of how many motes exist per some unit of area.

In chapter 1 we define symbols for both calculated density δ, and measured density

µ, as well as the unit of area U , figure 3.1 illustrates an area with different densities.
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Degree: deg(m)

Degree is a function that gives number of one hop neighbors for mote m and is

analogous to the term degree as used in graph theory to denote the number of edges

of a given vertex. Given that the number of neighbors a mote has is directly related

to its range of communication, a mote’s degree can be used as a sample of population

size for unit of area Ur, which is the reachable area of m’s radio.

Unit of area: U

Unit of area U refers to the size of the unit we use for measuring population density,

that is we want to determine the average number of motes in an arbitrary area the

size of U . By using a unit of area equal to 1, U = U1 we get a population density

with respect to a fundamental unit such as square meter.

Our ultimate purpose for calculating density is to determine how many partitions

we can divide a motescape into such that each approaches an ideal degree `. In

section 3.1.2 we define degree a mote’s neighbor count, and so we will generally define

our unit of area to be the area covered by the wireless radio used for mote-to-mote

communication U = Ur. Though we do no address domain specific sensor issues, one

could easily substitute sensor coverage area U = Us, or any other circular area.

Calculated density: δ

Calculated density refers to dividing the area of a motescape into standard units

and then finding the expected population of an arbitrarily chosen unit of area within

the motescape. Calculated density is directly computed as opposed to measuring

populations or taking samples as described in section 3.1.2. Calculated density gives

an exact representation with no significant effort, however it requires knowledge of
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the area of a motescape A which can be difficult or impossible to calculate depending

on installed mote hardware and the physical layout of the motescape. Mote density

is calculated with equation (3.1) described by Bettstetter in [26], here the motescape

population size |M | is divided by the area A. This is the case where the unit of area

is equal to 1 and gives the number of motes we should expect to find on average

within any arbitrary unit of area such as one square meter. By equation (3.2) we can

multiply the physical density δ1 by a unit of area Ux in order to obtain the density

with respect to that unit of area, this gives the mote population expected within an

arbitrary unit of area the size of U .

δ1 = δ(U1) =
|M |
A

Physical density (3.1)

δ(Ux) = δ1Ux =
|M |
A
Ux Density with respect to Ux (3.2)

Example A 10x10 meter area containing one mote would yield δ1 = 1
100m2 = 0.01,

one hundredth of a mote per square meter, or one mote per 100m2. If the same

motescape had 200 occupants, we would get δ1 = 200
100m2 = 2, or two motes per square

meter. To apply a unit of area, assume U = π resulting in δ = 2 · π ≈ 6.28.

Measured density: µ

Density can be easily calculated in a simulation environment when its components

are known, however within a distributed network it is likely that density must be

measured since there is no inherent access to the required data, and may be no means

to acquire it. Measured density is represented by the symbol µ, and is simply the

mean degree observed within a population of motes. Like computed density, measured

density represents the population size we expect to find in an arbitrary unit of area
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of a motescape, however there are key differences: a) the unit of area is inherent to

the system being measured rather than being given; b) µ is the mean mote degree,

however degree is the number of neighbors observed by some mote m and does not

include m itself, hence µ will be one less than δ. Whenever comparing µ to δ, µ is

acting as an approximation to population size per unit of area, so we must either add

1 to µ or subtract 1 from δ.

The equation for measuring the density of a mote population as given in [26] is in

(3.3), this simply sums degrees for all motes in M and divides the result by the

population size. For the sake of efficiency sampling a subset of M would likely be

used in a real world environment.

µ(M) =
1

|M |
∑
m∈M

deg(m) (3.3)

When compared to calculating δ as explained in 3.2, determining µ requires a large ex-

penditure of resources since, the degrees of a statistically significant number of motes

must be measured. Furthermore δ gives a precise value while µ will contain error.

The error in µ is due to statistical error margins associated with sampling, and the

fact that the needed measurements take some time to complete and so motes sampled

early, may change their degree before the process completes resulting in inaccurate

measurements, but a larger source of error is that introduced into measurements by

the presence of “edge motes” as detailed in section 3.4.

3.1.3 Metrics

To determine whether our density estimation method is effective we identify an objec-

tive function in section 3.2 which represents an ideal value we can use for comparison.
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The objective function is a calculation of the expected mote density, since it is a cal-

culated value as opposed to a measurement, the impact of edge motes is eliminated

and the true mean degree being sought is represented. The baseline value upon which

we wish to improve is the measured mean degree of all motes in the motescape, so

edge effect is not mitigated in any way.

3.1.4 Contribution

Our contribution is an efficient method for estimating the mean degree of a physical

population of motes. Moreover our method reduces the impact of the edge effect

which affects a simple average and works with complex field shapes. We present

simulation results that validate our claim.

3.2 Measuring density and redundancy

The ability to calculate the mean mote density is a basic requirement of our LNET

scheme. Simple mean calculation is a straightforward procedure whereby motes de-

termine their own degree and then share this information throughout the network in

order to determine the mean. A mote can trivially calculate its own degree which is

simply the number of unique neighbors it is able to communicate with directly, that

is to say motes within range of radio transmission.

To measure our ability to calculate density we give equation (3.4) as our objective

function. This is derived from the formula given by Bettstetter in [26] to represent

the expected number of nodes for a unit of area. We scale Bettstetter’s equation

by the radio coverage area Ur which gives density with respect to the transmission

coverage of the radio used for wireless communication resulting in a more intuitive

value that is directly representative of mote degree.
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E(δ) =δ(Ur) =
|M |
A
· Ur (3.4)

3.2.1 Distributed density measurement

Measuring density, represented by the mean degree of motes within a distributed

environment is an instance of the distributed average consensus problem[52]. Though

this is a simple process using equation (3.3), it is costly in simulation since all motes

must locate and count their neighbors and in a distributed environment it requires

information exchange between every pair of motes in M which is costly and difficult

to manage and given the limited resources of motes it is unlikely they can keep track

of which nodes they have data for and which they do not. We wish to avoid this by

computing the average degree of all motes using only direct communication between

motes (single hop distance).

The iterative equation in 3.5 is widely used for arriving at consensus in a distributed

environment[52]. We can use this within each mote in a motescape to iteratively

hone in on a shared estimate of some value ∆. In order to calculate the standard

deviation we need to know the distribution of degree values, or how many motes have

each given degree. This requires that the data being distributed include not only δ,

but an array of “bins” in which each element contains two sub elements, element 0

is a degree di and element 1 is the number of motes that have that degree count(di).

Given the mote with the largest degree dmax and the mote with the smallest degree

dmin, the size of bins is at most dmax − dmin.
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∆m(t+ 1) = ∆m(t) +
1

|Nm|
∑
k∈Nm

(∆k(t)−∆m(t)) (3.5)

∆ = [δ̂, bins] (3.6)

bins = {(dmin, count(dmin)), · · · , (dmax, count(dmax))} (3.7)

The value ∆ in equation (3.6) contains mote m’s estimate of network density δ̂ and

its knowledge of how many motes have a given degree bins, t is an iteration counter,

Nm is the set of neighbors for mote m, and |Nm| is mote m’s degree. Each mote

m ∈ M initializes ∆1 using its own degree δ̂m(0) = |Nm|, and the values in bins are

calculated using its own neighbor set. Mote m then broadcasts its values to, and

collects estimates from, its neighbors. Once m has collected its neighbor’s estimates,

it can refine its own by calculating ∆2 using 3.5, after which it will broadcast its

improved estimate. This process repeats until all estimates are within a tolerance

of one another at which point motes will have agreed on a network density value

δ ≡ δ̂m∀m ∈M as well as the bins which can be used to calculate both the mean and

the standard deviation σ. Equation (3.8) illustrates how we can use the contents of

bins to determine the mean degree (our density estimate), we will use this in section

3.4 to recalculate δ̂ by multiplying each degree (b[0]) by the number of motes having

that degree (b[1]), then dividing by the number of motes, finally we add one since

degree is one less than density due to the fact that the mote observing the degree

excludes itself.

δ̂ =

∑
b∈bins

b[0]× b[1]∑
b∈bins

b[1]
+ 1 (3.8)
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Once we have a globally accepted value for δ we can utilize it to determining the

number of partitions to create based on need for capacity or desired for redundancy

(section 3.3.1).

3.3 Base density and density factors

The notion of partitions based on density implies the existence of a base value against

which density can be compared, representing one or more of the optimal, minimum or

maximum values for a given context. We have thus far discussed concepts associated

with density without addressing the scale that determines when a population is dense

or not dense, in this section we define two scalar variables each of which require

knowledge of scale. These indicators are redundancy factor which indicates the

level of redundancy as the number of LNETs, and capacity factor which determines

the total available bandwidth as the number of wireless channels.

3.3.1 Redundancy factor

We measure the network density in order to determine how many partitions to create

with the intention of introducing redundancy of communication. Redundancy comes

from reporting events via multiple LNETs. The redundancy factor (ϕ) refers to

excess coverage of a unit of area. In other words how many times the total motescape

population goes over sufficient population. We calculate the redundancy factor using

equation (3.9) which gives the ratio of density (represented by µ+ 1) to ideal density

` rounded to the nearest integer. We then limit ϕ to be no greater than the total

number of channels available |C| because ϕ dictates the number of LNETs we will

create, each of which is assigned a unique channel from C. The number of channels
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Figure 3.2: Redundant coverage

represented by C is a function of the radio hardware and may vary by geographical

region.

f =

 b
µ
`
c if remainder < 0.5

dµ
`
e otherwise

ϕ = min(|C|, f) (3.9)

Note that although we call ϕ the redundancy factor, the maximum redundancy is

ϕ − 1, or one less than the number of partitions since one report of the event is

non-redundant.

Figure 3.2 illustrates an event occurring in an area covered by three sensors, one

sensor’s coverage is required and the others are redundant, so ϕ is 3 and the event is

sensed redundantly twice.
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Example Given a motescape with ` = 25, µ = 93.75, ϕ = round(93.75 ÷ 25 =

3.75) = 4, the redundancy factor is 3 because the network can be partitioned into 4

networks each having a mean degree of µ′ ≈ µ÷ ϕ, µ′ ≈ 23.4375.

Base redundancy value

There is no standard formula for determining an ideal density for a wireless network

as it depends on hardware, application and deployment method[24][29]. The goal of

finding ideal density should be to obtain coverage while minimizing contention for

the shared wireless resource.

In [53] we determine an ideal radio density by simulating multi-hop transmissions

through random networks of varying densities in order to find the mean neighbor count

(µ) that achieved the best chance of successful data transmission. Our simulations

yielded µ ≈ 17 and σ ≈ 5.2. However this result is highly dependent on variables

such as neighbor activity, number of retries and back-off time.

3.4 The edge effect

In [26] Bettstetter notes that if we were to measure the mean degree of a motescape

using equation (3.3) we would expect the measured value to closely resemble the

objective function in (3.4). We would however find the resulting density to be lower

than anticipated due to the edge effect which refers to the impact edge motes have

on density measurement. An edge mote is a mote within transmission range of the

perimeter of the motescape, these motes have fewer neighbors on their ‘exterior’ side

and thus a lower average degree than interior motes. The relative lack of neighbors

edge motes have does not impact their communication abilities since the neighbor

density available to carry traffic inwards is not affected.
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Figure 3.3: The edge effect

The root cause of the edge effect stems from the fact that equation (3.4) is an ana-

lytical derivation and assumes an infinite motescape but an actual implementation,

either physical or simulated, will have a perimeter.

If we measure average degree using only interior motes, those not within transmission

distance of the field edge, we will get an accurate representation of expected degree

since the motes that would skew our results are excluded from the calculation[25, 29,

26].

Figure 3.3 illustrates the edge effect, having four corners, four sides and a single

center node with degrees of 3, 5 and 8 respectively. The measured average degree is

(4× 3 + 4× 5 + 1× 8)÷ 9 ≈ 4.4, in actuality all nodes have the same effective density

as the center node, but have differing degrees since they can only form connections

towards the center[26].

Another illustration of edge effect is shown in figure 3.4 in which a central mote

positioned near the center, edge and corner choose a set of neighbors that are mutually

exclusive from each other.
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Figure 3.4: Mutually exclusive neighbors of center, edge and corner motes.
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3.4.1 Countering edge effect

In section 2.2.3 we describe some simple and effective strategies that are typically used

for countering edge effect. Wrapping the edges around to form a virtual sphere or a

torus ensures that no edges are ever encountered. Requiring that motes positioned

within r0 of an edge be excluded from the mean calculation ensures that no edge

motes contribute to the mean. Both of these methods require knowledge of relative

position of motes to the perimeter, moreover if the motescape has a complex or

irregular shape or internal discontinuities the computational complexity involved in

determining which motes lie on an edge outstrips the benefit of doing so[23]. To our

knowledge compensating for edge effect hasn’t been addressed for a physical realm.

δ̂ = µ({m ∈M | deg(m) > µ− σ}) + 1 (3.10)

The equation in (3.10) is the logical expression of our approximation. We begin by

calculating the mean mote degree µ and its standard deviation σ. This gives us

an estimate of density but includes edge motes and is thus skewed. To correct for

this we then re-compute density as the mean of motes having degree greater than

one standard deviation below the mean, deg(m) > µ − σ. We add one to the final

estimate because when motes measure degree they do not include themselves but we

wish to approximate E(δ) from equation (3.4) which is a measure of population per

unit area.

Describing equation (3.10) more explicitly, we first identify the degree values below

our threshold of mu− σ using equation (3.11), we then calculate our refined density
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estimate excluding these values as shown in equation (3.12).

bins′ = {b ∈ bins : b[0] > µ− σ} (3.11)

δ̂′ =

∑
b∈bins′

b[0]× b[1]∑
b∈bins′

b[1]
+ 1 (3.12)

Figure 3.5 provides an illustration of using δ̂ and includes the mean degree of all motes

µ, the minimum degree required for inclusion in the calculation of δ̂ deg(m) ≤ µ− σ,

as well as the calculated density we use as our objective E[δ] and the resulting density

calculated with our approximation δ̂. The approximated value is much closer to the

objective than the mean, and the visual cue as to the motes excluded from the density

calculation make it clear that the majority of motes being excluded are indeed edge

motes. Though anecdotal, this example is typical and we show the results of more

sophisticated experiments in chapter 6.

Not only does this provide an efficient means for density estimation but it has the

advantage that it will work without additional complexity on fields that are odd

shaped or contain impediments that would make calculation difficult or impossible

to compute otherwise. Figure 3.6 shows a graph with several holes representative

of natural barriers such as water or buildings. The histogram beneath this figure

represents the degree bins used for calculation of the standard deviation.

The idea to use mean and standard deviation as a threshold for inclusion in our degree

measurements is based on intuition. The exact threshold of one standard deviation

below the mean comes from extensive simulation with various factors of the standard

deviation for differing motescape configurations.

To measure the accuracy of our estimated density, we generate random rectangular

motescapes with sizes ranging from 300x300 to 2000x2000.
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Figure 3.5: Motes excluded from density calculation by statistical estimation.
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Figure 3.6: Odd shaped network
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The size of the mote population is calculated using equation (3.13) with the maximum

areaA = 20002, unit of area U = π752, and δ = 6 is the density we want the motescape

to have once populated.

By holding the expected density value E(δ) invariant, the only variable that affects

our density measurements is the size and/or shape of the motescape.

population = δ
A

U
(3.13)

With each experiment conducted we compile the expected density E(δ) using equation

(3.4), the measured density µ(M) from equation (3.3), and the approximated density

δ̂ measured in motes selected by our approximation algorithm from (3.10)). In figure

3.7 we graph the deviation of δ and δ̂ from the objective function. It is clear that as

the field size grows the impact of edge nodes decreases. However our approximation

provides a more accurate density value than the simple mean approach, even as field

size grows very large.

Example: Assume we have a 10x10 meter field (w = 10, h = 10) containing 250

motes (|M | = 250), and transmission range of a meter and a half (r0 = 1.5m).

We can calculate our unit of area (Ur = πr20 ≈ 7.07m2) and total field area (A =

wh = 100m2). Using our objective function in (3.4), we multiply our population

size by the ratio of unit coverage area to total area to get the expected density:

E[δ] = 2507.07
100

= 17.675 which should be the average degree of interior nodes.

This objective function depends on a random distribution and in fact will not be

accurate for precise grid aligned nodes where changes in the transmission power will

result in either no change to the number of neighbors or the sudden inclusion or
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Figure 3.7: Deviation from E(δ) when varying field size.
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exclusion or a large group of neighbors since neighbors on all sides are equidistant.

For example if node 5 in figure 3.3 expands or contracts its radio range, even a small

amount it can change the degree from 0 to 4, in a large grid this same effect would

take place for all nodes in the grid simultaneously if they are all using the same radio

radius.

3.4.2 Effective density

In his article on node degree and connectivity Bettstetter gives equations to show

the effective area and node count of a two dimensional square field after taking the

edge effect into account[26]. We expand Bettstetter’s methods to work with any 2d

rectangular motescape in (3.14) or 3d cuboid motescape in equations (3.15).

Two dimensional motescape

We can split the total area of a two dimensional rectangular field into edge area

(3.14b) and interior area (3.14a) by calculating the area of a rectangle using a width

and height that has been reduced such that edges are not included. The width of one

edge is the radius of our radio range r0, we must multiply it by two, once for each side

of the motescape to get the formula in (3.14a). We can then compute the amount

of edge area as the remainder after subtracting the interior area from the total area

using equation (3.14b). Finally with equation (3.14c) we take the ratio of edge to

total area to quantify the intensity of the edge effect for a given rectangular field with

the requirement that the range of radio transmission can be fully encapsulated within
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the perimeter of the field. The interior area A grows faster than Aedge so the edge

effect becomes less significant as field size grows or r0 shrinks.

A2 = wh Area of 2d rectangular motescape

wedge = hedge = 2r0 An edge is within r0 of perimeter

A2
interior = (w − 2r0)(h− 2r0) (3.14a)

A2
edge = A2 − A2

interior (3.14b)

intensity =
A2
edge

A2
(3.14c)

In these equations A2 is the total area of a two dimensional field, w and h are its

width and height, r0 is the transmission radius of the radio used for communication

which determines the width of the field’s edge. These values allow us to state the

ratio of edge area to total area in equation (3.14c) which represents the intensity of

the edge effect.

Three dimensional motescape

Both contention due to density as well as the edge effect will be exacerbated by cyber

physical systems where the motes are embedded within three dimensional space.

This will result in a higher edge to area ratio, hence more nodes will negatively

impact density calculation. Li, Pan and Fang study the subject of density in three

dimensional networks in detail [47].

In determining the effect of edges within a cuboid area, we proceed in much the same

way as with a rectangular one. We subtract twice the size of the edge from each
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dimension when calculating the area in equation (3.15a) giving the area of an inner

cuboid which does not include the edges. We then use equation (3.15b) and subtract

the inner area from the total area to get the area occupied by edge motes. Finally

we determine the intensity of edge effect for the given shape with equation (3.15c).

A3 = whl Area of cuboid motescape

A3
interior = (w − 2r0)(h− 2r0)(l − 2r0) (3.15a)

A3
edge = A3 − Ainterior (3.15b)

intensity =
A3
edge

A3
(3.15c)

In figure 3.8 we show the relative intensity of edge effect for a cube, square, sphere

and circle as the area of the field increases.

3.5 Proactive density manipulation

With modern wireless communication, the radio transmission power is software con-

figurable within a given range, we can utilize this to achieve a desired mean degree

within a motescape. Since µ represents the average mote degree, then if we scale the

radio coverage area by a factor of k, the expected degree of m will likewise be reduced

by a factor of k.

In equation (3.16) we take the ratio of the desired density δ̂ to the measured mean

degree µ, ensuring that we adjust by one since degree is from the perspective of some

mote and it does not include itself.

k =
δ̂

µ+ 1
(3.16)
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Figure 3.8: Impact of field size on edge

The equations in (3.17) illustrate how we can scale a unit of area U by a percentage

k. If ra is the radius used by the motes in M , and we determine a desired percentage

of change using equation (3.16) then we can calculate a new transmission radius rb

that will result in the desired mean degree as rb = ra
√
k.

U =πr2a rewritten gives ra =

√
U

π

kU =πr2b rewritten gives rb =

√
kU

π

rb =
√
k ·

√
U

π
=
√
k · ra

(3.17)
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3.6 Conclusion

In this chapter we described the meaning of density and the unit of area for which it is

calculated. We explained the need to determine population density and how it fits into

the LNET partitioning protocol. We gave a formula for computing population density

and reasons why it may not be possible to calculate in a distributed environment.

We explained how mean degree is related to density, and gave a method by which

distributed motes can arrive at a consensus for mean degree. We then showed how

measuring mean degree results in a flawed density estimate due to the inclusion

of “edge motes”. We derive equations to quantify the effect of edge motes within

both a two dimensional and a three dimensional motescape. And finally we give a

method for approximating density by using the measured mean degree and eliminating

contributions that come from motes that are statistically likely to lie within the edge

of the motescape.
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Chapter 4

Partitioning

4.1 Introduction

Given a densely populated Cyber Physical System (CPS), we wish to divide its motes

into overlapping logical partitions (see figure 4.3), each of which will then be assigned

exclusive access to a wireless communication channel. By partitioning motes in this

manner we divide collision domains thereby reducing contention for bandwidth which

results in improved throughput and reliability[17, 34]. Additionally we gain the ability

to provide a degree of redundancy with respect to event sensing and transmission of

sensory information to the data sink where it will be consumed, resulting in a) an

exponential increase in the likelihood that an account of a given event reaches the

data sink; b) potential for the data sink to compare multiple event reports to ascertain

possible compromise or damage within a network and mitigate its impact[53].
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4.1.1 Motivation

In 1. Introduction we outline how partitioning dense mote populations into multiple,

overlapping logical networks (LNETS) that are more sparsely populated fits into

our scheme for addressing needs associated with scalability and cyber security (1.1.

Identified needs and requirements). Partitioning into independent LNETs allows

us to provide redundant sensor data which improves fault tolerance (1.5.3. Cyber

security). And bandwidth scalability (1.5.2. Scalability) is provided since each LNET

is allocated its own communication channel.

4.1.2 Definitions

Partition

We define a partition of the motes in M as the family of sets P = {P1, · · · , Pϕ},

where ϕ is the redundancy factor as defined in section 4.1.2. P is a partition of M if

and only if all of the following conditions hold:

Rule Explanation

1. ∅ /∈ P P is not empty;

2.
ϕ⋃
n=1

Pn = M Every mote in M is in P ;

3. if Pa, Pb ∈ P and Pa 6= Pb then Pa ∩ Pb = ∅ Each mote in M is assigned to exactly
one partition.

Figure 4.1: Formal definition of partition

Redundancy factor: ϕ

The redundancy factor ϕ is described in section 3.3.1, and represents the number of

partitions we will create, it is an integer derivation of the mean degree µ divided by

the ideal density `.

51



1. Each partition should cover roughly the same region as the original unparti-
tioned motescape F , albeit with less resolution;

2. Partition members should be evenly distributed throughout the motescape;

3. Each partition should have approximately the same number of members;

4. Each partition should have approximately the same mean density.

Figure 4.2: Desirable partition attributes

Since our partitions are intended to function as redundant data sources it is imperative

that partitions have sufficient population density such that each retains adequate

connectivity and coverage with regards to both communication range and sensor

exposure. This is expressed by all three of the goals listed above. Clearly partitions

can not function as a redundant event sources if they do not each cover the same

area in which the event occurs. If our partitioner fails to produce partitions with

proportionate spatial distribution and population sizes the result will be unequal

connectivity properties leading to disconnected segments, sparse coverage, or sub-

optimal operation.

4.1.3 Metrics

To evaluate the effectiveness of a partitioning algorithm we simulate a dense

motescape, execute the partitioner and measure the resulting partitions with respect

to the properties being tested. The measured properties are compared against

expectations such as defined by the objective function given in (3.4).

4.1.4 Contribution

We present the turn-taking algorithm in section 4.2.5 by which a set of motes co-

operatively partition themselves into evenly distributed, overlapping logical networks

(see figure 4.3f for illustration).
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4.2 Partitioning approaches

During partitioning we wish to divide motes into evenly distributed, overlapping sets.

So if we have a single set of motes that we wish to divide into two LNETs, we would

like each of the resulting partitions to contain approximately the same number of

motes, and we want the distance between motes in each partition to be even and

somewhat “gridlike”.

4.2.1 Metric for ranking neighbors

Partitioning requires identification of a property motes can use to select suitable

neighbors or reject poor ones. The desirable properties of a partition given in figure

4.2 indicate that proximity between motes is a good candidate for a ranking system.

Modern radio hardware used in network communication has access to a property

called the Received Signal Strength Indicator (RSSI) for each message received[54, 55].

While not considered suitable for measuring precise distances, RSSI can be used as a

relative measurement to distinguish between neighbors. A higher RSSI value indicates

a stronger signal and hence a short distance. We use the RSSI as a metric by which

a mote can rank its neighbors by relative proximity.

4.2.2 Random

Assigning motes arbitrarily to a partition may provide an acceptable distribution but

we strive to improve upon it and to decrease the likelihood of problems due to unlucky

choices.
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(a) 32 unpartitioned
motes

(b) Overlapping 5x5 grids (c) Motes nearest red in-
tersections

(d) Motes nearest gray in-
tersections

(e) Partitioned motes (f) Grids removed

Figure 4.3: Creating two overlapping partitions

4.2.3 Offset grid

Figure 4.3 illustrates the use of two identical square grids made up of s blocks per side,

the blocks having sides equal to the radius ri needed to divide the measured density

by two, this can be calculated using the formulae described in equation (3.17). The

grids are laid atop one another then offset horizontally and vertically by 1
2
ri. Since

the cell size is the ideal distance between motes, we can create partitions for each grid

by selecting the mote nearest to the internal intersections.

The grid partitioning shown in figure 4.3 aids in understanding our goal, but it isn’t

feasible in a distributed environment absent global spatial awareness by all motes.

Moreover the number of grid intersections is not arbitrary, and it becomes difficult to

position the grids as the number of partitions increases.
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Figure 4.4: Perfect distribution of neighbors.

4.2.4 Mutually exclusive neighbors

Another promising approach is for a mote to choose its initial neighbors by selecting

motes that are mutually exclusive from each other. In other words, if center mote C

has neighbors A and B, they are chosen to be in the same LNET as C only if A is not a

neighbor of B and B is not a neighbor of A. By choosing neighbors that are mutually

exclusive, we can be assured of a well distributed set of neighbors, with paths leading

towards a wide variety of targets. This is a fairly efficient method with only a small

amount of overhead required, especially if the needed neighbor information can be

piggybacked into some other required transmission. As illustrated in figure 4.4 six

neighbors will fit perfectly distributed around the perimeter at distance r with centers

that are distance r apart, however the perimeter motes each have two neighbors, one

on either side, so the maximum number of mutually exclusive neighbors a mote can

have is 5.

However, once a single set of mutually exclusive neighbors is chosen (5 or fewer),

there is no clear approach for how to proceed. And in our tests using various means

to choose neighbors beyond this first set, the turn taking method described below

consistently produced better results.
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Figure 4.5: Mote 1 and mutually exclusive neighbors 2,3,4,5.

4.2.5 Turn taker partitioning algorithm

Of the methods we tested, the turn-taking algorithm results in the most accurate

partitions, producing LNETs whose mean densities minimize deviation from our ob-

jective function (equation 3.4). In the turn-taking algorithm 4.7, a mote m must first

choose the partition it will join j where 0 ≤ j < ϕ, the choice is based on m’s own

survey results, or by random choice. Next the mote ranks its neighbors by signal

strength, then it proceeds to assign its neighbors to partitions that make the most

sense from its own point of view. Mote m begins with its least desirable neighbor

mote m0. Mote m informs its m0 of its new partition (j + 1 mod ϕ). If m0 has al-

ready been assigned to a partition the mote moves to m1,m2, · · ·mn. Once a neighbor

mx has accepted its assignment it becomes the neighbor’s turn to execute the same

process. When mx returns, m proceeds to assign mx+1 to partition j + 2 and again

defers to mx+1. This process continues until all of m’s neighbors have been assigned

partitions.
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Figure 4.6: Mutually exclusive neighbors chosen by center node.

procedure TurnTaker(mote, j, ϕ)
mote.partition← j mod ϕ
sort(mote.neighbors, RSSI)
for neigh ∈ mote.neighbors do

if !neigh.partition then
TurnTaker(neigh, j + 1, ϕ)

end if
end for

end procedure

Figure 4.7: Turn-taking partitioning algorithm
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The performance of linear turn taking is markedly better than random partitioning

as illustrated in figures 4.8 and 4.9. The data used in these images comes from

generating motescapes, each with dimension 1000x1000 and containing 1867 randomly

distributed motes with r0 = 75. We perform 100 experiments for each partitioning

method, during each experiment a motescape is created and its motes are randomly

positioned, and each mote discovers its neighbors. At this point the motescape is

partitioned into three by the partitioner, either random or turn taker and the mean

density of each of the resulting partitions are measured.

Figure 4.8: Density measurements when creating three partitions.

The data for figure 4.8 comes from 100 trials in which a set of motes is partitioned

into three LNETs and the density of each is measured. Clearly the turn taker algo-

rithm produces partitions whose densities are more consistent and have less variance

as compared to partitions created with the random partitioner. Figure 4.9 shows the

distribution of densities within partitions created by turn taker and Random parti-

tioning. The degree of motes in turn taker’s partitions have a narrower distribution

58



and thus a lower standard deviation with fewer outliers than those create by the

random partitioner.

Figure 4.9: Density measured in partitions created using turn taker and Random
partitioning methods.

The turn taker algorithm as described in figure 4.7 expects a single starting point

and proceeds in a linear recursive fashion which is incongruous with the notion of an

asynchronous distributed environment. In section 5.3.5 we give a modified version of

this algorithm (figure 5.2) that works in a distributed environment by allowing motes

to initiate partitioning asynchronously and requiring motes to wait for a brief random

period between attempted partition assignments.

4.3 Proactive redundancy factor manipulation

In section 3.5 we discuss the use of configurable radio transmission power to manip-

ulate the density of a motescape, by extension we can utilize this to influence the

redundancy factor. The redundancy factor is based around the idea of a minimum
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required density so if we are able to sufficiently increase mean density by extending

transmission radius we can likewise increase the redundancy factor. Conversely it

might be necessary to reduce transmission power in order to lower power usage in

motes, in this case mean density will be reduced and possibly the redundancy factor.

4.4 Conclusion

In this chapter we discuss various algorithms for partitioning a dense motescape as

well as some of our own hypotheses and findings. Utilizing the density approximation

from chapter 3 to determine how many partitions to create we develop and present

the turn taker algorithm for partitioning. This is the partitioning method we found

to produce the best results by creating partitions such that each covers approximately

the same area, has similar total population, and mean degree that approximates the

ideal.
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Chapter 5

Protocol

5.1 Overview

A defining characteristic of distributed sensor networks such as Cyber Physical Sys-

tems (CPS) is autonomous operation [10, 7, 34, 56, 57]. In order to be useful, motes

that make up a sensing network must first discover and organize themselves after

which they can run higher level protocols to discover network resources and deter-

mine routes for communicating with those resources.

5.1.1 Motivation

In chapter 1 we describe how the protocol described in this section addresses needs

associated with scalability and cyber security (1.1. Identified needs and requirements)

by responding to fluctuation in bandwidth demand as a result of changes in popula-

tion density (1.5.2. Scalability) and improving availability of systems and data (1.5.3.

Cyber security). The previous chapters 3 and 4 established the methods for deter-

61



mining density and partitioning motes that are necessary in order to implement this

protocol.

5.1.2 Definitions

Channel

A communication channel is described in appendix A.1 as a “range of radio frequencies

used to convey information between motes using a radio transmitter and a receiver.”

The number of channels and specific frequencies available depend on the type of

radio. Today’s prevailing standards for computer radio communication are IEEE

802.11 (Wi-Fi) and IEEE 802.15.4 (ZigBee) designed for low power and embedded

devices. The number of channels and their frequency ranges used by these standards

depends on the country in which the devices are sold and the version of the standard.

Various iterations of 802.11 involve radio frequencies in the 2.4, 3.6, 5, and 60 GHz

frequency bands, the 2.4 GHz range is divided into 13 or 14 channels depending on

location[58]. The low power 802.14 standard provides 16 channels in the 2.4 GHz

range, and allows use of some lower frequencies in other countries[59].

To execute this protocol all motes must first tune to a common base channel which

we denote as cbase. If cbase is not explicitly defined motes should choose the first

numerical channel available, by convention channels are numbered sequentially be-

ginning with 1 and representing frequencies ordered from lowest to highest. Whenever

a mote finds channel cbase to be unusable or deserted it should configure Cbase to the

next available channel and try again.

62



Figure 5.1: States and transitions.

Protocol description

A mote that has joined the CPS will proceed through a set of states that fall within two

operational categories termed the setup phase and the steady state phase. During the

setup phase communications channels are evaluated and ranked if needed, neighboring

motes are located, network density and sensor exposure are calculated and finally

motes choose a channel to communicate on and a logical network (LNET) partition

to join. When the setup phase ends motes transition to steady state mote and fulfill

the function for which they were created. While in the steady state phase system

change events may occur which cause the motes to re-enter the setup phase, these

are described further in section 5.2.3.

The states and transitions that make up the LNET protocol are represented in figure

5.1 and briefly described below, an in-depth description of the protocol states is given

in section 5.3.

Operational Phases

1. Initial state
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2. Setup Phase

(a) Determine the current “macro” state (sec 5.3.1)

i. If steady state, choose a channel and transition to steady state

ii. If macro assessment, wait for time T and begin discovery

iii. If motes are in any other states, wait until motes are in one of the two

previous states

(b) Discover all neighbors within a single hop

(c) Determine overall population density

(d) Select channel to become member of

3. Steady State Phase

(a) Operate for intended purpose

(b) Initiate channel survey in response to degraded frequencies

(c) Initiate LNET formation in response to topology changes

5.1.3 Contribution

We give an algorithm and set of states by which a set of motes can partition themselves

into functionally independent logical networks providing scalability and improved

resiliency.

5.2 The LNET protocol

The LNET phase encompasses the bulk of our contribution requiring motes to assess

and discover their environment, discern population density and form partitions. In
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this section we discuss details and procedures necessary for distributed operation and

dissemination of data required for motes to be able to form efficient partitions based

on accurate information.

We first discuss how the state diagram in figure 5.1 applies to individual motes as

well as the group of motes as a whole. We then discuss the means of coordinating a

large population of motes to enable distributed calculation and communication. We

then go into details concerning the operation of our protocol for each of the protocol

states.

5.2.1 Micro state and macro state

The states shown in figure 5.1 apply to each individual mote in a given motescape.

However since the motes move through the LNET phase as a group, the same state

diagram can also be used to describe the state of the LNET process as it applies to

all motes in M . We refer to the view of these as the micro state in an individual

context and the macro state in the group context.

As an example if all motes are in the neighbor discovery state, then the state of

the LNET is also that of neighbor discovery because the micro states and the macro

state are synchronous. But once some mote m transitions to density calculation,

the micro states are no longer homogeneous and so the state of the LNET is undefined

with respect to the state diagram in 5.1 until all individual motes are once again in

the same state.

When determining the macro state, we exclude motes that are in the initial state

macro assessment state. Because individual motes may be added at any time,

these motes are not yet part of the CPS. Thus if all the motes that have joined the
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CPS are in the same state, the existence of motes that are not yet active will not

cause an undefined macro state.

5.2.2 Coordination of motes

As with any cooperative distributed protocol there is a certain amount of coordina-

tion required between the distributed participants. In appendix A.3 we give a list

of waiting period definitions that we use or foresee being useful. These waiting pe-

riods should ensure sufficient time for completion of distributed processes such as

message propagation and channel switching. The actual amount of time represented

by these variables is highly dependent on a wide variety of factors such as deployment

environment, software implementation and mote hardware.

We mitigate the need for maximum transition and calculation periods by allowing

motes to catch up with state transitions initiated elsewhere. Generally a mote m will

operate in a given state for an alloted time period after which it will transition into the

next state and transmit a signal. The catch up ability lets m truncate its remaining

time in a given state if it sees a message indicating other motes have already begun to

transition to the next state. In this way, some of the error in synchronization caused

by message propagation or clock drift can be mitigated. Moreover the time in which

the macro state is undefined is minimized as is dependency on clock synchronization

between motes.

5.2.3 Triggering the LNET phase

The setup phase is initially triggered by mote deployment, and may be subsequently

initiated either periodically or due to external factors as enumerated below:
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LNET formation triggers

1. Period expiration (Ws)

2. Density change

3. Topology change

Period expiration

In appendix A.3 we describe various waiting periods to ensure sufficient time for pro-

cesses such as coordination among nodes, message propagation and channel switching.

The actual amount of time represented by these variables is highly dependent on a

wide variety of environment and implementation specific factors.

The initial deployment waiting period Wd begins from the time deployment

begins and should encompass enough time to allow deployment to complete. This

period should ensure that all motes begin neighbor discovery at about the same time

and prevents motes from wasting energy on multiple discoveries due to incomplete

deployment.

Upon initial deployment motes should wait time Wd before beginning the discovery

phase. The waiting period should ensure adequate time for mote deployment. Once

this period has elapsed for each mote it should enter into the discovery phase. Instead

of a period of time, Wd may represent an absolute time after which discovery phase

can begin.

The setup initiation period Wi is a waiting period of time that begins whenever the

decision to re-form the network has been made due to changes in topology or density.

This allows for all motes in the network(s) time to be notified that the network is

re-forming and revert to the base channel. This time period should be long enough

to encapsulate the timeout period Wo so any motes that were unable to receive the

notification message can time out and switch back to the base channel, however in

networks where motes have long periods of inactivity this may not be practical.
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It may be advisable to establish a transition period to give motes a buffer for

transitioning between phases. This period should encompass the amount of time

required for motes to perform state changes as well as accounting for clock disparity

among the various motes. This ensures that a mote is not caught between two different

phases.

Density change

Dynamic population change may result in inaccurate density and/or sub-optimal

LNET composition. These changes can occur as a result of factors such as node

movement, addition of nodes or removal of nodes that have ceased to function or

exhausted their power supply. If the number of motes in the network changes suffi-

ciently to warrant an increase or decrease in the number or makeup of partitions then

network motes may initiate network re-formation via control messages.

Wireless topology change

Changes in network topology may cause an existing LNET to experience communi-

cations error beyond a given threshold. A possible cause is external interference that

was not previously present. In this event some mote in the affected network must

initiate the re-formation process.

5.2.4 The LNET initiation process

When a mote decides to initiate the process of forming the network, it should record

the time as Tf and then broadcast a command to its neighbors informing them of

the decision. The command for re-forming the network should include the Tf so that

the amount of time motes wait before initiating the discovery process Wf can be
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calculated relatively by all motes in the network. This enables propagation of the

notification message and allows all motes to begin the formation process together

reducing time spent in non-operational states.

Once the motes in network n decide to initiate a reconfiguration, each mote should

complete the following steps:

1. Notify neighbors by broadcasting the command to re-form the network

2. Notify another network by randomly choosing another network, switch to its

channel and broadcasting the command to re-form the network

3. Switch to the base channel and begin discovery after a waiting period

Notify neighbors: Before new LNETs can be forged, existing LNETs must be

dismembered so all motes can participate in the process. Upon receiving a com-

mand to re-form the network a mote must rebroadcast the command to its neighbors

preserving the original time stamp Tf from the command it received.

Notify another network: After notifying its neighbors, mote m must randomly

choose a channel cr, switch to channel cr and broadcast the command message to

re-form the network.

Switch to base channel: The process of neighbor discovery requires that all motes

are communicating within the same channel. All motes are configured with a common

base channel cbase where neighbor discovery is attempted, or if cbase is not explicitly

defined motes should choose the first channel available cbase = c0.
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When discovery is initiated, all motes not already operating on channel cbase must

switch their radio to use this channel, allow time for transition and then begin the

discovery process.

If discovery cannot complete on channel cbase within time Wx, motes should update

the base channel to the next available channel cbase = cbase + 1 mod |C|. The mote

must then broadcast a message to alert neighbors of the new base channel and switch

the radio to the new cbase and try again.

Whenever a new mote is added to an existing network, it should attempt to discover

neighbors in cbase, if no response is received within the time Wx the mote shall iterate

through channels in the manner detailed above.

5.3 States

5.3.1 Macro assessment

When in this state a mote will assess the macro state of the LNET to determine

whether it is joining an operational system, or waiting with all other motes to begin

LNET formation. A mote will continue in this state until the macro state is found to

be either steady state or macro assessment.

If the macro state is determined to be steady state, the mote will join the existing

LNET. This can happen upon initial deployment if motes are added dynamically

rather than as part of a mass deployment, or if LNET formation occurs before all

motes are deployed. Similarly if a mote has to reboot due to error it will likely need

to join an existing LNET. Additionally if a mote has been absent for a period of time

for reasons such as power conservation must re-assess the state of the system.

Macro state → subsequent action
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• steady state → join the existing LNET

• macro assessment → begin the LNET formation protocol

• Others → monitor status until one of the above actions can be taken

Status query beacon and response

When a mote first enters this state it broadcasts a status query beacon. This beacon

indicates the mote is attempting to determine the macro state and any mote receiving

the broadcast must send a response if and only if it is operating in Steady state.

A query response indicates that the LNET protocol has taken place, and that the

new mote should join an existing partition. The query response will include the

information gathered from the LNET protocol which the new mote will need to join

an existing partition including the redundancy factor and lists of active and vetoed

channels as described in section 5.3.2.

Macro state determination

Motes that are assessing will note query beacons as well as query responses. If the only

transmissions seen for a specified period are status query beacons, the macro state

is assumed to be macro assessment and the mote may transition to neighbor

discovery.

If any motes respond with a status query response packet, the macro state is assumed

to be steady state and the mote should choose a partition to join and transition

to steady state. Since the populations are expected to be large, occasional additions

should not upset the overall balance and random choice is acceptable, however a

survey could be undertaken in order to find the best fit.
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5.3.2 Channel survey

A mote will enter this state only if the channel it is using for communication becomes

degraded as decided by itself or its neighbors. Reasons for this may include outside

devices that have begun using the channel either cooperatively where the outside de-

vices are aware of the existing motes or non-cooperatively in which the outside devices

are not aware of their intrusion. Cooperative use results in diminished bandwidth,

where as non-cooperative use causes interference. During this state all channels in C

will be evaluated and then ranked according to desirability, and the set of channels

eligible for use during the partitioning phase (section 5.3.5) will be derived from these

rankings.

When the survey begins each node will randomly choose a channel from C to evaluate.

It will then set its radio to listen on the selected channel and count the number of

interrupts that indicate signal reception. Once the channel evaluation time period We

has expired the node should return to base channel. The count of received decodable

(congestion) and un-decodable (interference) packets will be included in the beacon

during the upcoming discovery phase so that we can build a network wide consensus

of most suitable channels without requiring an additional global data exchange.

Once the tables have been created, motes will simply keep a sliding window average

of the number of un-decodable packets received per minute. If interference worsens

such that quality is far enough below an unused channel then the setup phase will be

initiated and networks reformed.

Managing topology changes

If a channel that was vetted by the channel survey becomes unsuitable after being

chosen by a set of motes, the mote making the determination of unsuitability must
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choose a new channel and veto the current channel. Given a list of channels that are

already allocated to an LNET CA, and a list of those that have been vetoed CV , a

mote may veto its own channel cm using the algorithm given below.

Vetoing a Channel

1. Remove the channel from the list of allocated channels CA = CA − cm and add

it to the veto list: CV = CV + cm.

2. Choose a new channel by modularly incrementing the existing channel until an

available channel is found: cm = {(cm + 1) mod |C| : cm /∈ (CV ∪ CA)}.

3. Broadcast a veto message to neighbors indicating the new channel Cm.

Any mote initially receiving the veto notification should update its own CA and CV

tables, re-broadcast the message to its neighbors and switch to the new channel. If

the new channel is found to be occupied, updated tables and restart the process.

5.3.3 Neighbor discovery

Neighbor discovery is accomplished by broadcasting messages over the common base

channel cbase. Discovery initially takes place en-masse either as the first phase of

the LNET protocol or immediately following the channel survey. Discovery may

be directly entered by new motes being added to the network that were not present

during the initial deployment or by motes that have become isolated from their former

neighbors.

Upon entering the discovery phase, each mote m will send an advertising beacon and

await responses.
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Discovery beacon

The use of wireless communication within a mote is expensive. Not only is it relatively

slow but it typically represents the largest energy demands. It is therefore imperative

that whenever a broadcast is to be undertaken that any opportunity to consolidate

additional data be taken advantage of in lieu of requiring a separate transmission. In

this spirit the discovery beacon may contain additional data from previous operations

or for use in future operations.

If a mote previously completed a channel assessment, it will include its rankings

and any vetoes. Additionally if the algorithm used during the partitioning state

is a simple random choice, then including a sufficiently large random value in the

discovery beacon will eliminate the need for a second neighbor discovery phase upon

transitioning to steady state.

Discovery beacon contents

1. Any channel rankings compiled during the assessment phase (section 5.3.2).

2. A unique ID by which a mote can be distinguished.

After a mote sends its discovery beacon, it will continue to listen for other beacons

and acknowledgments for time Wn or until any of its neighbors transitions to the next

state.

Beacon acknowledgment

Motes that receive a discovery beacon will respond with a neighbor acknowledgment

message. The existence of this acknowledgment means the responding mote x has

added mote m to its neighbor table and that m should likewise add x to its own

neighbor table.
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5.3.4 Density calculation

We use information about mote density to calculate a ratio of measured density to

ideal density in order to determine the number of channels needed to divide our colli-

sion domain as well as the number of redundant sensor networks that the motescape

can support. These density calculations can also be used to find trouble spots where

motes are distributed too closely or too sparsely. The details of density calculation

are described in section 3, the formula we use is given in equation (3.12) which is a

refinement that mitigates the problem of edge effect giving a more accurate estimate

of density.

5.3.5 Partitioning

Each node must now select one of the available channels to communicate on. The

method a mote uses to determine its channel is its partitioning method. In section

4.2 we discuss a number of approaches for partitioning in which motes adopt or are

assigned to a partition, or LNET. Since each LNET is assigned a unique communi-

cation channel, by executing the partitioning algorithm during this protocol phase

motes will be associated with a channel.

Random partitioning

During neighbor discovery each mote included a random or unique identifier in its

beacon message. Using a simple hash function we can deterministically map these

identifiers into the set of channels selected for partition use. This has the advantage

that each mote can now discover its true neighbors by applying the same hash function

to the its neighbor’s identifiers which negates the need for a second discovery phase.
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procedure TurnTakerDistributed(lnet)
if self.partitioned then

return
end if
self.partitioned = TRUE . Prevent re-execution.
if !lnet then

self.partition← random(0, ϕ) . Choose random LNET.
else

self.partition← lnet . Use neighbor assigned LNET.
end if
sort(self.neighbors, RSSI) . Order by proximity.
j ← self.partition
for neigh ∈ self.neighbors do

j = j + 1 mod ϕ
TX(neigh, TurnTakerDistributed(lnet = j))
wait(Wa) . Pause between assignments (take turns).

end for
self.channel ← C{self.partition} . Switch to new channel.

end procedure

Figure 5.2: Turn-taking distributed implementation

Turn taker partitioning

We presented the basic turn taker partitioning algorithm in chapter 4, as described

in figure 4.7 the algorithm is easy to follow and illustrative of how this method works.

However this version is not suitable for distributed operation, so in figure 5.2 we give

a variation of the basic algorithm that works within a distributed environment, this

is the algorithm we use for our full simulations.

Motes should record all neighbor assignments it sees during turn taking in order to

maintain its neighbor tables. By doing this motes can avoid having to undergo a

second neighbor discover phase once channels have been selected/assigned.
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5.4 Conclusion

In this section we utilize the density approximation from chapter 3 and the parti-

tioning protocol developed in chapter 4 in order to give the states and algorithms

necessary to allow a set of motes to maintain a mean density value within a given

tolerance. The viability of this protocol is borne out by our own implementation

and subsequent simulations using the Python programming language and the Mat-

PlotLib suite of scientific and statistical analysis software. We present the results of

our simulations in chapter 6.
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Chapter 6

Simulation

6.1 Simulation

We use custom simulation software written in Python and using the NumPy and

MatPlotLib modules from the popular SciPy stack for statistical analysis and graph-

ing. Our simulations are controlled by a discrete clock process, and include elements

that are stochastic and dynamic. We use simulation to test our hypotheses, compare

different approaches, calibrate algorithms and validate assertions.

Questions addressed with simulation

1. Does density have a significant effect on contention for bandwidth in a wireless

network?

2. Can this be effectively mitigated using multiple channels?

3. Is there an effective and efficient method for partitioning an ad-hoc wireless

network?
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4. What measurable improvements are gained within the context of a complete

protocol?

5. Is there an effective and efficient method for calculating the density of an ad-hoc

wireless network?

6.1.1 Purpose

The decision to code our own network simulator stems from requirements that are

specific to our study of creating and operating very dense networks of devices that

communicate using radio, a limited range broadcast medium. In particular we wanted

to gather statistics on the behavior of motes as they face heavy contention for access to

shared wireless communications frequencies. We investigated several popular network

simulation solutions but found them unsuitable for our purpose.

6.1.2 Existing simulation packages

We hoped initially to use existing simulation software to test our hypotheses and so

we investigated the suitability of several popular packages but encountered funda-

mental problems with each with regards to the particularities or perceived needs of

our research.

NS-3

We initially looked at NS-3, the well known modern successor to the venerable NS-2

simulator[60]. We quickly rejected NS-3 because it had no provision for simulating

low power wireless communication which we had initially perceived as a requirement.
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Castalia

Castalia is a Wireless Sensor Network simulator maintained by an Australian re-

search institution with the acronym NICTA, the meaning of which isn’t entirely

clear[61]. Castalia is built on top of OmNet++ which is a popular generic simulation

platform[61]. We needed to measure thousands of fairly anonymous and random de-

vices however Castalia seems to expect specifically defined and configured nodes with

individually specified connections.

TOSSIM

Hoping to leverage familiarity with TinyOS Alliance’s “TinyOS” operating system we

attempted to create a basic simulation using the TinyOS Simulator TOSSIM. After

some code investment we found that TOSSIM does not simulate radio propagation,

but provides an abstraction for peer to peer connections[62, 63].

Octave

Finally we decided upon a more generic approach of using GNU Octave[64]. Octave

is an open source programming language that has extensive graphing capabilities and

is largely compatible with MathWorks’ Matlab. This approach worked to a point,

however it soon became clear that a complex simulation would require a fully featured

programming language.

Python and SciPy

Finally we discovered the scientific computing packages available for the Python pro-

gramming language, and in particular the SciPy stack[65]. SciPy encompasses several
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core packages, the most relevant for our needs are NumPy and MatPlotLib. Like Oc-

tave, NumPy provides features modeled on Matlab which facilitated porting our

Octave code into Python while MatPlotLib contains a powerful graphing library for

visualizing simulation results.

6.2 Simulator models

Whenever possible we have modeled our simulated configurations on existing proto-

cols and standards such as the low power radio standards defined in IEEE 802.15.4[59].

Whenever unable to find or procure the required configuration specification, we adopt

relevant industry or academic models.

6.2.1 Code structure

Our simulator code is broken into three main packages named PySim, Graphler and

CPSSim this structure is represented in figure 6.1.

PySim contains abstractions and class definitions for Fields and Nodes as well as

common utility functions such as saving and loading data and density calculations.

The Graphler module is focused on executing simple experiments, compiling and

displaying the results. This module has simplified Field and Mote classes and contains

numerous experiments in which motes have limited or no interaction. This module

also contains a front end to the MatPlotLib graphing functionality aimed at producing

visually consistent plots.

The CPSSim module executes only a few types of simulations as compared to

Graphler, but its simulations are more complex requiring session based mote interac-

tion, protocol implementations and multi-hop routing. The Graph and Mote classes
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Figure 6.1: Structure of simulator code

are granular and composed of a number of independent objects such as radio, packet,

medium each of which has its own configuration and state.

6.2.2 Event model

We initially coded our simulator as a trace-driven simulation model in which every

mote would execute as an independent thread. As we attempted to simulate large

mote populations this model immediately proved to be untenable. To achieve the

needed mote densities we re-factored the code so that all simulated activity is con-

trolled by a global clock, transforming our simulator to a discrete-event simulation

model.

Our simulations progress through discrete events controlled by a clock that has a

time granularity of one millisecond, or 1000 ticks per second. This time definition

lets us use realistic and recognizable values for simulated events such as message
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propagation, boot times and timeout errors while allowing simulation of sufficiently

large mote populations. The most intensive simulation we ran consisted of around

2500 motes having average degree between 40 and 50 running for a simulated 30

minutes which equates to 1.8 million clock cycles. Each time the clock ticks any

events that are due are executed. These are mostly functions within individual mote

objects, but can also be callbacks to the simulator for event notifications.

6.2.3 Distribution model

We assume a network of static motes distributed in a uniform random manner. A

static network is a network in which the nodes are not mobile. Mobile nodes result in

an ever shifting topology which requires frequent updates to keep routes and neighbor

tables current. Mobility in an ad-hoc network can improve overall capacity, but at a

cost of complexity [29].

6.2.4 Failure model

Communication can fail in two ways, an inability to get a successful CCA and inter-

ference. In order for a mote to begin broadcasting it waits until it detects no other

motes are transmitting within range, this is a successful CCA result. The CCA for a

mote will fail if any of its neighbors are in the process of transmitting. In the event of

CCA failure the mote will back off then retry until either the channel is clear or the

number of consecutive failures exceeds the number of configured retries. The back off

time ccaBackoff shown in figure 6.2 is calculated each time it is accessed using the

formula specified in IEEE 802.15.4 [59] for low power radio.

A mote’s reception can be interfered with if it has neighbors on opposite sides that

transmit simultaneously. This is the protocol model introduced by Gupta and Kumar
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that allows communication as long as the two motes communicating are closer to each

other than any other mote concurrently transmitting on the same channel[44].

6.2.5 Contention model

In order to simulate resource contention each mote in our field attempts to transmit

a small amount of random data “chatter” at semi-regular intervals to its one-hop

neighbors. The between chatter messages randomly varies for each mote as shown in

6.2. This chatter is not multi-hop and so is only visible to neighboring nodes.

At regular intervals an event occurs on the east side of the motescape. The event is

detected by any motes that are within sensing range. Event sensing is independent

of communication channel. The sensor motes then attempt to transmit information

about the event to a randomly chosen sink h hops away towards the west side of the

field.

6.2.6 Radio configuration and modeling

To determine radio configuration we use the following documents for reference: IEEE

802.15.4 standard for low power wireless communication[59], the CC2420 Technical

Manual for the popular low power CC2420 radio[66], and the CC2420 Radio Stack

documentation for the TinyOS operating system[67] as well as the TinyOS source

code itself[68].

Physical radio transmission range is defined in decibels, for simplicity we choose to use

a unit of distance. As a reference we choose simulation ranges similar to examples

from Bettstetter who uses a simulation field of 1000m2 containing 500 nodes and

transmission ranges r0 : [70m, 100m]. [26]
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Figure 6.2: Radio configuration.

# How o f t e n u n t i l next chat message
chatFrequency = random (1000 ,1500)
# Chat dura t ion
chatTime = random (10 , 30)
# Number o f r e t r i e s
c ca R e t r i e s = 3
# Backof f time
ccaBackof f = 10∗random (0 , 2∗∗4−1)
# Time r e q u i r e d to send one b y t e
propogat ionDelay = 1
# Transmission range in meters
radioRange = 75

6.2.7 Routing model

In our simulations, a single attempt consists of choosing a set of p motes m1, · · · ,mp

that form a multi-hop path of length p-1 through the motescape M. Starting with

mote m1, each mote will attempt to transmit the packet to the next mote in the path.

If the packet traverses all p-1 hops the attempt is a success, otherwise the attempt is

a failure. When measuring success with redundant networks, an individual attempt

can fail while the overall result succeeds. This is because with redundant networks

we only require a single instance of the event to arrive at the sink regardless of how

many are attempted.

6.3 Simulation control model

To validate our work we created simulation software using a stochastic deterministic

model in which an area of a given size contained various numbers of simulated motes.

Each mote could communicate with any of its neighbors within a range of r0. Each

mote attempts to communicate with one of its neighbors at random times once every

simulated second in order to simulate an active network. We then inject a message
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with a multi-hop route and measure delivery statistics such as success, failure, retries

and time for end to end delivery. For comparison we then create multiple logical

networks (LNETs) by assigning motes to different communication channels. For

instance a motescape that has twice the ideal population of motes would be divided

into two LNETs by causing each mote to communicate exclusively on one of two

channels such that any random mote has an equal probability of communicating on

either of two channels. Once partitioned a mote can only communicate with neighbors

that are assigned to its channel thereby limiting contention for bandwidth.

6.3.1 Ideal density

The idea of ideal density (`) is the mean node degree we would prefer to have in

our motescape. We use ideal density to describe how dense a network is and also to

determine a redundancy factor. For example, if we refer to densities of 1x, 2x, 3x etc...

we are specifying coefficients for the ideal density indicating that the network has 1,

2 or 3 times the ideal density respectively. The redundancy factor is the number of

networks we can divide our motescape into such that each network has a near ideal

density.

Since ideal density varies with many factors, we use simulation with varying densities

in a randomly distributed motescape to determine the density that yields the best

overall performance. We used a path consisting of 5 motes or 4 hops. The results

of this experiment shown in figure 6.3 indicates that in our simulated environment

an ideal density value of around 0.5 yields the best combination of reliability and

throughput. Lower densities may cause an inability to find a route to the sink while

a higher density may result in dropped packets due to congestion.
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Figure 6.3: Varying density to determine an ideal.

6.4 Simulation of redundancy

In this section we show the results of a set of simulations to show the effect of parti-

tioning on contention and reliability. The experiment used simulates an event in one

quadrant of a motescape, the motes that detect the event then attempt to transmit

an account of this event through some number of hops to a data sink in a different

quadrant.

6.4.1 Single channel

We first simulate the basic case where a single communication channel is used for all

motes, and measurements are taken for various densities. The results in figure 6.4
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show that as contention for the shared channel increases we see a marked decrease

in communication reliability. This is exacerbated as the number of hops required for

packet delivery increase.
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Figure 6.4: Single channel as density rises.

6.4.2 Multiple channels, independent partitions

In figure 6.5 we see that as mote density increases there is a corresponding increase in

the number of communications channels available. At the beginning of a trial, each

mote first arbitrarily chooses a communications channel from the pool of channels

given, and only communicates on that channel.
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In this simulation an “event” causes messages to be transmitted in each LNET but the

results are not correlated at the data sink so all messages are treated as independent

information. So if there are four LNETs and two LNETs successfully communicate

an event to the sink and two do not it counts as two successes and two failures.
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Figure 6.5: Multiple channels as density rises

The results in figure 6.5 demonstrate that this effectively mitigates the effect of con-

tention due to rising population and each network behaves as a single channel network

in a motescape with ideal density.
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6.4.3 Multiple channels, redundant partitions

In our final simulation we show the results where messages are correlated at the data

sink and thus each additional LNET provides redundancy. In this simulation we see

that we have not only reduced congestion but exponentially improved communication

reliability. The results in figure 6.6 show a motescape with 4x ideal density as we
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Figure 6.6: Redundant networks over multiple channels

vary the number of redundant networks from 1 to 4. Instead of treating each network

as a separate entity, we count success if any of the redundant networks successfully

transmits the results of an event over the required hops. In other words if there are 4
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networks and any of them is successful we count a success, and only if none of them

are successful do we count a failure.

6.5 Full protocol simulation

After validating the feasibility of this approach we moved on to create a full scale

simulation of our protocol in which motes discover neighbors, determine density and

partition themselves before switching to steady state. While in steady state motes

will randomly communicate amongst themselves to generate traffic as specified in

section 6.

Figures 6.7 and 6.8 clearly show the effects of increasing population density on a single

partition of motes. Motes begin to experience an inability to obtain a clear channel

for transmission, this causes the mote to store the data in a queue and wait to retry

the transmission according to the backoff algorithm described in section 6.2.6. If a

mote is unable to transmit after a number of retries it drops the packet and a failure

is recorded, as the density of the motescape continues to increase the communication

failures rise. Once the LNET protocol is executed the motes divide into three LNETs

communicating on independent channels, at this point both the queue lengths and the

transmission errors fall dramatically and remain low due to the reduced contention

provided by multiple LNETs.

6.6 Conclusion

Our simulations of partitioning and redundancy clearly show the need for scaling in

response to the inadequacy of single channel communication. Increasing the number

of LNETs in response to rising density we see dramatic improvement in performance
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Figure 6.7: LNET scaling in response to population increase

Figure 6.8: Breakout of statistics from full simulation.
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approaching the case of ideal density. And finally by using the LNETs as redundant

sources of data, we obtain exponential gains in communication reliability. Then our

protocol simulation shows that these results can be obtained in a full simulation where

motes operate independently and use distributed protocols for communication.
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Chapter 7

Conclusion

In chapter 1 we identified outstanding needs in the area of cyber physical systems and

laid out the contributions we make in addressing them. We proceeded in a bottom

up manner first giving a means of approximating density in chapter 3, then using the

density estimate as part of our partitioning algorithm in chapter 4 and finally giving

a protocol in chapter 5 that allows motes to use the partitioning algorithm to divide

themselves into logical networks (LNETs).

In chapter 6 we presented extensive simulation results where use of these methods

confer scalability, reduced resource contention and increased reliability of communi-

cation.

7.1 Further research

Our work has shown the viability of using redundant hardware to provide a more

robust remote autonomous environment. Avenues for continued research can be clas-

sified as either optimization or extension of the protocols and methods described.
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7.1.1 Optimizations

Fractional channel use In heavily populated areas, a number of channels may be

in varying degrees of use by devices that are not part of the motescape. In this case

we would like to be able to use these channels while taking their current occupancy

into account. Examples of how this might be approached are identification of a class

of motes that are less active, creating less dense partitions, or multiplexing a single

LNET over multiple channels.

Uneven distribution and critical motes Critical motes are those that lie in a

sparsely populated region and receive a disproportionately large share of traffic due

to being responsible for transmitting data for a much larger set of motes. In this case

the number of communications channels could be reduced only in the area of concern.

This would still require motes in the sparse areas to ferry data from multiple channels

across to motes in a more densely populated area, but would result in more robust

routes. Motes on the edges of sparsely populated sections or at endpoints may have

to communicate over multiple channels.

RAID like redundancy There are several variations of disk RAID (Redundant

Array of Independent Disks) that having functionality such as allowing data that

is corrupted or missing to be reconstructed using data that exists and parity infor-

mation. Application of these schemes to our redundant networks may bring further

improvements in performance and resiliency.

7.1.2 Extension

Detection of intrusion or failure Since a data sink may receive multiple reports

of each event it could compare the various accounts and attempt to detect incorrect
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or malicious results. It might also be possible to combine the data from multiple

sources to achieve higher resolution data.

Frequency hopping Frequency hopping is used in some protocols to avoid mali-

cious actors from eavesdropping on transmissions. Devices communicating wirelessly

agree to switch channels many times per second in an agreed upon order to keep the

eavesdropper from being able to easily record the conversation. If mote radio hard-

ware is capable of switching channels rapidly enough without unsustainable power

drain then entire LNETs may be able to rotate through a set of channels.

Mobile motes In this dissertation we have made the assumption of static motes but

it is not uncommon to think of systems whose constituents are motile. Application of

our methods to this type of motescape may require re-engineering the LNET protocol

to incorporate continuous integration.
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Appendix A

Definitions

A.1 Terms

Definitions of selected terms used throughout this text.

Terms

• Channel A range of radio frequencies used to convey information between

motes using a radio transmitter and a receiver.

• LNET A logical network comprised of a subset of motes from M that functions

as an independent system.

• Mote A tiny and inexpensive computer that contains sensors and uses multiple

channel radio for communication.

• Motescape The area in which motes are deployed, its characteristics and in-

habitants (motes).
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A.2 Symbols

Definitions of the symbols used throughout this text.

Symbols

• F A field of motes or motescape.

• A The area of F .

• M The set of all motes that populate F .

– m Some mote m ∈M .

– |M | The size of set M , or the number of motes M contains.

• s0 The radius of a mote’s sensor range.

• r0 The radius of a mote’s radio communication range.

• U The unit of area against which density values are calculated.

– U1 Base unit of area, U = 1.

– Us Unit of area equal to sensor coverage area U = πs20.

– Ur Unit of area equal to radio coverage area U = πr20.

• deg(m) The degree of a mote m or the number of one hop neighbors m has.

• δ Density, the calculated population size per unit of area.

– δ(U) Function to calculate density with respect to unit of area U .

– δ1, δr, δs Shorthand for δ(U1), δ(Ur), and δ(Us) respectively.
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– δ̂ An approximation of δ.

• µ The mean degree observed in a set of motes.

– µ(S) Algorithm for computing the mean degree of motes in set S.

– µr, µs Mean degree of devices that have a unit of area equal to Ur, and Us

respectively.

• ` Ideal degree, the mote degree that we want motes to have, should maximize

throughput and/or minimize collisions.

• C The set of channels (radio frequencies) available for communication.

Members of C are represented by consecutive integers starting with 1.

– c Some channel from the set of channels C where 1 ≤ n ≤ |C|.

– cbase Base channel, the default channel for communication and the lowest

numbered channel available.

• β Channel capacity, the bandwidth capacity of a single channel.

• γ Capacity factor, the number of channels with capacity β required to satisfy

demand.

• ϕ Redundancy factor, the number of logical redundant networks (LNETs) to

divide a motescape into.

A.3 Time periods

These are buffer periods defined to allow motes to synchronize between transitions.

Periods of time
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• Tf The initial time that a decision to re-form the network was made.

• Wa Time between neighbor assignments in the distributed turn taker algorithm.

• Wd Start time, or waiting period used to trigger initial setup phase.

• We Amount of time to spend evaluating channel suitability.

• Wi Time to wait after the decision to re-form the network before initiating the

setup phase.

• Wn Duration of the neighbor discovery period.

• Wo Timeout period before a neighbor unable to communicate with j% of its

neighbors switches to the base channel to begin discovery.

• Ws An optional period for operating in steady state mode after which the setup

phase should be triggered.

• Wx Timeout period before switching from channel c to channel c + 1 if the

discovery process is unable to complete due to external interference.
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