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Abstract: The use of field-based sensors can generate large amounts of data rapidly for 
phenomic modeling and management decisions; however some challenges may be 
encountered. AgriLogger software developed to rapidly acquire data for predictive model 
construction and implementation. AgriLogger features include user controls for data 
acquisition rate and a single output file for multiple sensors. Temporal and spatial data 
parsing was achieved from position and time stamps. Non-destructive biomass estimation 
of vegetation has been performed via remote sensing. This study examined several types 
of ground-based mobile sensing strategies for forage biomass estimation in alfalfa 
(Medicago sativa L.), bermudagrass [Cynodon dactylon (L.) Pers.], and wheat (Triticum 
aestivum L.). Forage quality analysis has historically been performed on physically 
collected samples through laboratory methods. Developing a sensor system which can 
collect data and provide estimates for crude protein (CP) in a more timely manner will 
allow near real time decision making by mangers. To evaluate the feasibility of such a 
system bermudagrass tall fescue (Festuca arundinacea Schreb.), and wheat were 
examined. AgriLogger reduced the post-processing time by a factor of 10 and data 
acquisition time by a factor of 60 as compared to commercially available alternatives 
which could be used for sensor data acquisition on vegetation. Predictive models were 
constructed via partial least squares regression and modeled estimates were compared to 
the physically measured biomass and CP. Differences between methods were minimal 
(average percent error of 11.2% for difference between predicted values versus machine 
and quadrat harvested biomass values (1.64 and 4.91 t ha-1, respectively). The predicted 
CP regressed with those measured in a laboratory using NIRS produced an R2 of 0.75 for 
a hyperspectral model. Wheat model prediction of crude protein bore n R2 of 0.65 and tall 
fescue R2=0.83. These data suggest that using mobile sensor-based biomass and CP 
estimation models could be an effective alternative to the traditional clipping and 
laboratory methods for rapid, accurate in-field estimation. 
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CHAPTER I 
 

 

EVALUATION OF A SYSTEM FOR HIGH-THROUGHPUT DATA ACQUISITION 

AND A MODELING APPROACH FOR FIELD RESEARCH AND PLANT 

BREEDING 

 

I. Introduction 

 

Manual sampling techniques such as tissue collection and plant measurement in plant research 

and breeding programs are time-consuming and labor-intensive. However, remote sensing of 

vegetation with an effective data acquisition tool, offers a potentially effective alternative to 

manual sampling. A mobile system which can traverse an entire research trial or large AOI (area 

of interest) without stopping for recording point data can allow substantial collections of data to 

be acquired in relatively small amounts of time. One of the challenges encountered when 

developing such a system is the software application used for data acquisition. The software 

application must allow for multiple streams of data to be acquired from multiple sensors 

(hardware), which generally require different communication configurations. The software 

strategy used to accommodate data inflow from these sensors also presents a challenge as the rate 

of emission will most likely be different from some or all hardware employed. Furthermore, post-

processing of the data for parsing according to AOI can be difficult as spatial and temporal data 

must be. simultaneously recorded to correspond with sensor outputs. 
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II. Review of Literature 

 

In large part, remote sensing of vegetation has been used to generate point data on a stop-and-go 

basis. The data collected from sensors would subsequently be stored on media and extracted after the 

collection event had concluded. This data collection dynamic has been performed using ultrasonic 

sensors for dry matter (DM) estimation in pastures (Hutchings et al., 1990; Fricke et al., 2011; Fricke 

and Wachendorf, 2013;), for canopy characterization in orchards (Zaman and Salyani, 2004; Planas et 

al., 2011), as well as crop production scenarios in wheat (Triticum aestivum L.) (Scotford and Miller, 

2004), cotton (Gossypium hirsutum L.) (Sui and Thomasson, 2006), and corn (Zea mays L.) 

(Freeman et al., 2007). Laser sensors have also been implemented to collect height data for corn 

(Selbeck et al., 2010), rape (Brassica napus L.), miscellaneous vegetation (Hopkinson et al., 2006), 

pasture (Ehlert et al., 2008), rye (Secale cereale L.), standing forests (Henning and Radtke, 2006), and 

wheat (Ehlert et al., 2010; Fumiki and Omasa, 2009). Utilization of sensor arrays or combinations 

have also adhered to this same data collection strategy in estimating biomass for white clover 

(Trifolium repens L.), red clover (Trifolium pratense L.), and alfalfa (Medicago sativa L.) with 

perennial ryegrass (Lolium perenne L.) (Fricke et al., 2013). Similar examinations were made in corn 

by Freeman (2007) and canopy height in wheat by Scotford and Miller (2004) using Normalized 

Difference Vegetation Index (NDVI) and ultrasonic sensors. More recently high-throughput 

phenotyping systems for plant breeding selection have combined a number of sensors into a system 

for measuring plant traits and response characteristics as well as modeling water utilization (Sanchez 

et al., 2014).  

Despite this ubiquitous point data trend in sensor data collection, some researchers have begun to 

examine custom software applications which allow real-time streaming of data into databases or 

output files and include data processing features prior to storage, allowing greater user control over 

the incoming data streams. Schuman and Zaman (2005) examined a custom software application for 
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ultrasonic orchard tree canopy size measurement which allowed viewing of real-time data inflow and 

storage of partially processed data into an access database. This real-time data acquisition method has 

also been employed for high-throughput phenotyping in wheat (Kipp et al., 2014). Despite some 

occurrence of custom software applications for acquiring high volume sensor data, a deficit remains 

in the literature on the basic functions needed for effective use in high-throughput systems. 

Objective 

The objectives of this research were to examine high-throughput data acquisition methods and to 

develop a versatile and intuitive software platform to effectively perform the following: 

1. Compare the functionality of software capable of logging multiple streams of data with 

unique communication configurations 

2. Allow inflow of multiple streams of digital or analog sensor data simultaneously 

3. Accommodate multiple unique configurations for incoming data streams 

4. Provide user control of incoming data: 

5. Acquisition rate 

6. Real-time AOI tagging 

7. Provide usability from either touch or mouse click from PC or tablet platforms on 

Windows OS (Microsoft Corp., Redmond, WA) 

8. Allow for additional unique data stream configurations 

9. Provide a database for retention of multiple data stream configurations 

10. Produce granular data output for modeling  

11. Produce AOI averaged raw data 

12. Produce AOI averaged modeled data 

13. Include optional empirical sensor calibrations 

14. Include threshold filtering of sensor data for omission of null values 
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15. Allow implementation of validated models for decision making 

16. Display real-time rolling outcome averages for AOI being sampled 

 

III. Methodology 

 

Experiments 

An alfalfa -bermudagrass [Cynodon dactylon (L.) Pers.] establishment experiment was conducted on 

the Noble Foundation Red River Research and Demonstration Ranch near Burneyville, OK (33.88o 

N, 97.28o W; elevation 234 m.). ‘600RR’ alfalfa was inter-seeded into an established ‘Midland 99’ 

bermudagrass sward in autumn of 2012 and spring of 2013. Data were collected four times (May, 

June, August, and October) during the 2013 growing season. Four replications of treatments were 

arranged in a randomized complete block design with a split-split-plot arrangement. A four 

replication RCBD bermudagrass/nitrogen fertilizer rate study was adjacently located and harvested 

concurrently with the alfalfa-bermudagrass mixture experiment. Sensor data was also acquired over 

two wheat variety trials comprising 560 entries. One trial was initiated at the Noble Foundation Dupy 

Farm near Gene Autry, OK (34.29o N, 96.99o W; elevation 220 m.), and the other experiment was 

located at the Noble Foundation Unit 3 Farm in Ardmore, OK (34.17o N, 97.08o W; elevation 268 

m.). Seven data collection events were initiated over the two trials and occurred from February to 

April of 2014. 

Mobile Platforms 

An electric golf cart was employed as a ground-based mobile platform for moving sensors across the 

trial areas in the alfalfa-bermudagrass experiment. A custom-fitted mast was attached to the cart to 

suspend the sensor array over vegetation in front of the cart. A 12 V power source was also added to 
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the cart and served as the power source for all sensors as well as backup power to the PC. A master 

power switch was utilized to enable termination or initiation of power to all sensors. 

A gasoline-powered Spider high-clearance tractor (LeeAgra, Inc., Lubbock, TX) was employed as the 

mobile platform for the wheat experiments. The factory-equipped spray mast located at the front of 

the tractor was converted to accommodate the sensor array. All sensors were powered using an 

additional 12 V power source retrofitted to the tractor specifically for this application. This system 

was also outfitted with a master power switch to control power to all sensors. 

Sensors 

Both platforms were equipped with an OmniStar XP GNSS-enabled GPS emitting positional data at 

10 Hz to correspond to all sensor readings. This rate of output provided recording of multiple 

locations within each AOI. In the alfalfa-bermudagrass experiment, vegetation height data was 

acquired using two time-of-flight laser distance sensors as well as a 120 MHz ultrasonic sensor. The 

laser sensed on a 2- to 4-mm footprint, which was inversely proportional to vegetation height. The 

ultrasonic sensor collected readings centered on a 7.5- to 15-cm footprint, which were inversely 

proportional to vegetation height. The calibration for height sensors was 0-93 cm, such that both were 

operated within effective detection limits of near 0 mm to 10 m specified by the manufacturer. Laser 

and ultrasonic data were acquired at rates from 10 to 50 Hz. In the wheat experiments, vegetation 

height was acquired at 10 Hz using the same laser and ultrasonic sensors but both were calibrated at 

0-74 cm. The systems also included an active field radiometer in order to collect reflectance readings 

and calculation of NDVI. Data were also acquired at rate of 10 Hz from the active radiometer. 

Approximately 3-5 seconds of data were acquired per AOI with the assumption the subsequent 30+ 

sensor readings would provide a representative sample of vegetation height and spectral reflectance.  

Physical Vegetation Measurements 
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In the alfalfa-bermudagrass experiment, physical vegetation height measurements were taken using a 

meter stick and a 0.1-m2 aluminum rising plate disk meter (NZ Agriworks LTD t/a Jenquip, Feilding, 

NZ) (Hakl et al., 2012;Interrante et al., 2012). Hand-separated alfalfa and bermudagrass subsamples 

were dried in a forced draft oven at 50°C for seven days to a constant weight prior to weighing for 

percent moisture calculation. Plot biomass weights were recorded on a whole plot basis by clipping 

plots to a 5-cm stubble height with a Cibus forage harvester (Wintersteiger Inc., Salt Lake City, UT) 

and are reported on a DM basis. Wheat biomass weights were estimated by hand-clipping a 0.16 m2 

quadrat to a 2.5-cm stubble height and dried in a forced draft oven at 50°C for five days prior to 

weighing and were also reported on a DM basis. 

Data Acquisition Hardware 

All height measurement sensors were hard-wire connected to a data acquisition module (DAQ) for 

single stream data acquisition. Laser sensors were current loop configured with an operating range of 

0 to 5 VDC. The 120 MHz ultrasonic sensor was also configured with an operating range of 0 to 5 

VDC. All height sensor data was transferred from the DAQ as digital output to a laptop computer via 

USB connection. Data from the active radiometer and GPS were output directly to the laptop 

computer via RS232 serial connection. 

Data Acquisition Software 

In both experiments, data were acquired and logged to a .txt file real-time using AgriLogger (Fig. 1.1) 

and WWP (WinWedge Pro©; TAL Technologies Inc., Philadelphia, PA). (Fig. 1.2) software 

platforms. Both applications required the user to designate the COM port number which corresponded 

to specific sensors. These software applications were never employed simultaneously for data 

acquisition although multiple applications of WWP were simultaneously run to capture multiple 

streams of data simultaneously. Both applications supported unique configurations for interfacing 
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with each data stream. Additionally, elimination of superfluous data fields with each record from 

some devices such as hardware identifiers, etc. was possible with both AgriLogger and WWP. 

 

Figure. 1.1. User interface of AgriLogger, an original software application produced by the Samuel 
Roberts Noble Foundation in 2014. It is designed to be operated from a touch screen device for 
acquiring serial or digital data from multiple output sources simultaneously in use as a data collection 
tool for high-throughput data scenarios. This user interface includes  areas of interest tagging 
controls, sensor stream inputs readouts, and model calculation outputs from incoming serial data. 

Area of Interest (AOI) Delineation 

The power cycling switch was used for plot delineation when acquiring data with WWP. At no point 

were output data streams interrupted, but as the power was cycled on, sensors would emit data (null 

readings were acquired when power was cycled off). Intra-AOI areas were delineated by null values 

in the logged data and AOIs by subsequent recorded sensor outputs. Conversely, AgriLogger enabled 

the user to insert identifiers real-time as the data were acquired via a mouse click or touch screen 

button in order to delineate AOIs from intra-AOI areas. When using AgriLogger, intra-AOI 

identifiers were assigned during the time spent crossing the intra-AOI areas and until all sensors were 
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oriented above the successive AOI. Positional data was acquired simultaneously with spectral and 

proximal data. 

 

Figure. 1.2. User interface for  WinWedge Pro©, a commercially available software application 
designed to be operated from a pc platform for acquiring serial or digital data from a single output 
source. 

 

Data Acquisition Rates and Strategies 

WinWedge Pro© accommodated capture and logging of serial data. Only one stream of data could be 

logged for one instance of the running program. As was previously mentioned, this necessitated 

multiple instances of the application to be run simultaneously to capture and log data from multiple 

instruments. This also resulted in the production of multiple .txt log files, one for each stream of data. 

Data contained within each file was logged at the rate dictated by the emitting device which resulted 

in variable rates across the multiple log files.  

AgriLogger allowed a number of incoming data streams, which was only limited by the processing 

capabilities of the hardware upon which it was installed. This feature was created such that all data 

streams could be output to a single temporally-spliced log file. AgriLogger tools were designed to 

employ user controls for data acquisition rate as well as active data tagging for AOI identification and 

output a .txt file with a number of observations retained for each AOI. A second tool designed to 
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output an additional .txt file containing only parameter averages for each AOI was also employed. 

These tools enabled the implementation of hard-coded modeling outcome calculations to be output on 

an AOI basis. An addition feature displayed rolling averages of model outcomes for each sensed AOI 

on-screen as data were acquired. In order for the this option to output useful information, hardware 

appropriate models were required. All streams of acquired data were sampled according to the 

Windows clock utility as opposed to “captured in totality” to allow the .txt log to contain one 

observation per stream of incoming data at the user dictated rate.  

Additional options provided in AgriLogger were height sensor calibration and threshold 

establishment. These features were installed so that filtering for invalid data (such as results from 

signal loss) could be performed automatically and not be included in output files. The configuration  

 

Figure.1.3. Configuration tab for AgriLogger allowing user access to sensor communication and data 
retention protocols as well as sampling rate, data storage location, threshold/calibration entry, and 
species specific model output selection. 

tab allowed access to sampling interval, threshold entry, and protocol configuration as well as file 

destination for logged data (Fig. 1.3). 
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Data Transformation 

Post-processing data transformation was performed only on laser readings, which were output as 

inversely proportional to vegetation height (i.e. directly proportional to distance from sensor). Laser 

readings were subtracted from the maximum output value which signified bare ground surface. This 

adjusted the data to a directly varying scale and agreed with the relationships between change in 

height/biomass and sensor output from the ultrasonic and spectral sensors. This transformation 

calculation was included in the averaging feature for the General utility in AgriLogger. 

Data Analysis-All Experiments 

Correlation of sensor readings to physically measured vegetation parameters were examined using 

SAS PROC CORR (Brownell et al., 2012; SAS, 2012; Golodets et al., 2013; Pilliod and Arkle, 2013). 

These correlations were initially examined to evaluate appropriate variables for modeling analysis 

inclusion. Models for vegetation parameter estimates were produced using partial least squares (PLS) 

regression via SAS PROC PLS with CVTEST and NOINT options such that the simplest models 

would be chosen (SAS, 2012; Chen and Zhu, 2013; Luo et al., 2014; Wuerschum et al., 2014). The 

cross-validation and model training aspects of PROC PLS allowed it to be used effectively for 

optimization of estimation model accuracy. To further evaluate suitability of data included in 

estimation models, Variable Importance Plot (VIP) scores and Centered Scaled Parameter Estimates 

(CSPE) (Mehmood etal, 2012) were examined. 

This strategy was adopted in order to achieve an acceptable balance in estimate accuracy and 

model/sensor system complexity by excluding less contributive variables from the system. Species-

specific and general models were constructed from two-thirds of the total data collected, with the 

remaining one-third employed as validation data.  Predicted versus measured height and biomass 

parameters from the validation data were regressed using SAS PROC REG (SAS, 2012). Accuracy of 

estimates was examined as a function of the mean from the sample percent difference between 
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estimates and measured values (Eq. 1.1). Competing indications of model performance were 

addressed using an Error, Consistency, and Mean Agreement (ECMA) score. The score equally 

weighted the standard deviation of percent error, mean of percent error, R2 of estimate to measured, 

as well as the actual difference in mean of estimate as compared to measured values (Eq. 1.2). This 

score was also calculated for destructively measured biomass from the bermudagrass-nitrogen study. 

From paired bermudagrass plots, it was possible to calculate repeatability of the destructively 

harvested method as the plots were in a side-by-side orientation such that an assumption of relative 

homogeneity could be made. It was necessary to make this comparison in order to create a standard 

by which the estimation models could be ranked. 

Mean Percent Error = Mean 
 |�����������������|
�������� ��� ����

�

�
    (Equation 1.1) 

ECMA = ("#$%%&'&$() #% *$)$+,&(-)&#( %#+ $.)&,-)$ /0 ,$-.1+$*
|$.)&,-)$ ,$-(2,$-.1+$* ,$-(| )

���� 4��5��� ���6�∗�������� ��8����6� 69 4��5��� ���6�   (Equation 1.2) 

 

IV. Findings 

 

WinWedge Pro© Post-Processing 

A custom post-processing application was developed in order to streamline handling of data produced 

using WWP. The primary function of the application was to compress data to a desired rate (i.e. 5 Hz, 

10 Hz, etc.) via averaging. This also enabled balancing the number of sensor readings across the 

sensors and resulted in a more manageable volume of data for AOI-based data parsing. The 

aforementioned time stamp was employed as the mechanism by which the averaging could be 

performed. An output file was subsequently created containing the compressed and averaged data at 

the temporal interval specified by the user. This file could then be manually edited for delineation of 

AOIs. The AOIs were parsed based on the occurrence of null values as delimiters. It was observed 

that a sub-second time interval of power ramp-up and ramp-down could be identified in data logged 
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using WWP in conjunction with the master power switch. It was subsequently necessary to identify 

this area at the beginning and end of each AOI in the logged data and remove it so as to avoid 

inclusion of erroneous data in AOI averages. Upon combining, filtering, and averaging the data, it 

was possible to combine the sensor data with physically-measured parameter data for statistical 

modeling. 

AgriLogger Post-Processing 

Manual editing of data for removal of non-AOI acquired sensor readings was also necessary when 

using AgriLogger. The active user control tagging mechanism enabled this to be done efficiently as a 

non-AOI identifier “A” representing the alley between plots was inserted on each line of data between 

each identified AOI. The data could then be quickly filtered to eliminate all superfluous information. 

The sampling logic utilized in AgriLogger also provided that only the user specified rate of data 

acquisition was retained in the output log file such that no post-process balancing of data was 

necessary. For output generated by the General utility, user selected model outcomes or parameter 

averages were retained but no inter-AOI data was included on the output log file.  

Data Analysis Efficiency 

The projects upon which this software development and evaluation occurred were designed to 

accommodate collection of data for modeling vegetative parameters. In order to develop the models 

necessary for parameter estimation, combining physically-measured and sensor-generated data was 

necessary. When employing WWP as the sensor data collection mechanism, this process was more 

time-consuming than AgriLogger due to the need to compress and edit the data. The efficiency of 

AgriLogger was largely a result of the ability to quickly parse AOIs and the accompanying sensor 

data without the need for compression and normalization of the number of records per each AOI. 

Averages could then easily be calculated for each AOI using SAS PROC MEANS (SAS, 2012) for 

model construction. This also created an opportunity to quickly assimilate the averaged data into GIS 
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software such that spatial separation of averaged values could be observed as a quality control 

measure (Fig. 1.4). This process allowed for the recognition of an apparent spatial offset due to the 

serpentine pattern by which the AOIs were sampled. 

 

Figure.1.4. Sensed height for wheat experiment used for spatial quality control of offset and ground 
truthing of sensed data. All data was collected using Agrilogger in combination with a mobile sensor 
array via a high clearance tractor. 
 

Both software applications were capable of logging data which populated models in much the same 

manner. This is evident in the Minimum Root Mean Press (MRP) of 0.75 produced from the PLS 

model when using WWP as compared to that of the AgriLogger data (0.78) (Table 1.1).  

This can also be observed by the similarity in the explanation of variation for the dependent variable 

(VDV) (Biomass) for AgriLogger versus WWP (43 and 48%, respectively). Both sets of data were 

collected on the initial harvest of the experiment but on different years such that an expectation of 

similarity is appropriate. From the summary statistics, it can be surmised that the forage production 

values associated with sensor readings are similar but some variation in distribution and range is 

present (Table 1.1, Fig. 1.5 and 1.6). Despite some differences in data range and distribution, similar 

modeling outcomes (VDV, MRP) illustrate that both software applications were effectively 

implemented for data acquisition. It must be noted that although modeling outcomes were not 

different when using one application versus the other, the amount of post-processing and data editing 

associated with the use of WWP was less efficient.  
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Table 1.1 Summary statistics and model statistics for alfalfa and bermudagrass sensor data modeled 
using AgriLogger and WinWedge Pro©. Data were modeled using PROC PLS (SAS, 2012) with 
default permutations and a twenty block folded validation set, and additional summary statistics were 
generated using PROC MEANS (SAS, 2012).  
 
Model statistics WinWedge Pro© AgriLogger SAS procedure 

Number of observations 378 378 PROC MEANS 

Minimum 882 230 PROC MEANS 

Maximum 7175 11852 PROC MEANS 

Mean 3921 3372 PROC MEANS 

Standard deviation 1321 2013 PROC MEANS 

Extracted factors 2 1 PROC PLS 

Minimum Root Mean Press 0.75 0.78 PROC PLS 

Explanation of variation in dependent variable 48% 43% PROC PLS 

Inner Regression Coefficients 47% 41% PROC PLS 

 Model effects (%) 

Laser 87 82 PROC PLS 

120 Mhz ultrasonic 89 81 PROC PLS 

Normalized Difference Vegetation Index (NDVI) 42 87 PROC PLS 

 Model weights (%) 

Laser 69 59 PROC PLS 

120 Mhz ultrasonic 67 48 PROC PLS 

NDVI 31 -66 PROC PLS 

 

Software Performance 

Initially, WWP was implemented as the software package for data acquisition. It was quickly 

recognized that for the most efficient system performance, additional user utilities were necessary. 

Three aspects which were initially identified as necessary for such a system to function properly 

were: i). unique configurations for each piece of hardware acquiring and transmitting data, ii). real-

time AOI data identification capabilities, and iii). single output file containing all parameters at a 

standard rate of acquisition. AgriLogger was successfully developed to provide these utilities while 

WWP only provided the first aspect mentioned above. 
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Figure. 1.5. Histogram of forage weights (kg ha -1) for alfalfa bermudagrass  plots with sensor data 
collected using AgriLogger and a sensor array from a mobile platform. 

 

The ability of the user to define unique configurations for each piece of data transmitting hardware 

was necessary due to the fact that interfacing protocols are typically different and may need to be 

adjusted. In addition, the assimilation of new hardware into the system for additional measurements 

would likely occur and require a software application with flexible configuration options. It was also 

observed that devices would transmit undesired data fields such as hardware identifiers with each 

record. Unique configurations to minimize and/or eliminate the insertion of these data fields were also 



16 

 

 

Fig. 1.6. Histogram of forage weights (kg ha -1) for alfalfa bermudagrass experiment  plots with 
sensor data collected using WinWedge Pro© and a sensor array from a mobile platform. 

 

necessary in order to reduce recording of unwanted data. Conversely, insertion of a time/date data 

field for each record was desired in order to merge or parse the data. This insertion required complex 

configurations in WWP, but was included as a default output field for data acquired using 

AgriLogger. 

On-the-go identification of AOIs was examined because power cycling in combination with WWP 

provided a parsing utility which required extensive manual post-processing and the use of additional 

software. Inserting incremental AOI identifiers satisfied the need for a more efficient mechanism to 

sort output files and eliminate undesired data in a much more time-effective manner. Acceptable 

functionality of this feature was observed when applied as an AOI averaging strategy. This utility was 
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not available with WWP and diminished the prospects for continued use of this software for some 

such high through-put systems. 

Possible processing hardware platforms were also a point of examination as the desired end software 

product would be required to operate on touch screen devices as well as laptop computers. Later in 

the software development process, it also became necessary to examine hardware platform 

performance capabilities as a page fault rate spike was initiated due to the magnitude of incoming 

data. This presented a substantial hindrance in acquiring data at rates in excess of 20 Hz for those 

devices which transmitted data strings that contained more than five data fields when using WWP 

(i.e. Active Spectrometer, GPS). Some alleviation of this was achieved at the application level by 

eliminating the display of the actual incoming data and replacing it with a counter such that an 

indication of incoming data could still be visually evaluated. It must be noted that even with the 

inclusion of this “fix,” some hardware platforms may not have the processing capabilities to 

effectively acquire data at rates in excess of 10Hz from multiple sources. 

Sensor Calibration and Threshold Establishment 

During field use, it is likely that some degradation of static physical sensor orientations may occur. 

This is less of a consideration for spectral sensors than for proximal sensors as a small change in 

relative height does not greatly affect spectral reflectance but can deleteriously influence the precision 

of height measurement instrumentation. In an effort to ensure minimal influence from this type of 

error, a calibration and filtering feature was included for AgriLogger. This feature was built in as a 

pop-up block which allowed the option of setting the bare ground threshold reading for the laser and 

ultrasonic sensors. This threshold was then implemented in the data transformation of the laser data 

and used as a filter for eliminating invalid data. The scales of measure for both the laser and 

ultrasonic sensors were linear with static units and allowed effective utilization of this feature in the 

event the sensor array was re-oriented upward or downward in height. The most recent threshold 
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entry was always retained and used for calculations until the calibration point for minimum height 

was reset. 

 

V. Conclusion 

 

When compared to WWP, AgriLogger provided utilities which allowed for efficient data acquisition 

from multiple output sources with important user control capabilities for data delineation. Although 

WWP also allowed for the same type of data to be acquired, inefficiencies in post-processing from 

AOI delineation and some hardware processing limitations reduced usability in this high-throughput 

system. Additionally, the single combined output data product resulting from the use of AgriLogger 

optimized the ability to acquire and evaluate data by reducing time needed to sort and edit files post-

processing. The single output file from both the Research and General interfaces also provided an 

effective mechanism by which the sensor or modeled data could be spatially analyzed using GIS 

software.  

Limitations when using AgriLogger may be encountered when a large number of incoming data 

streams are acquired, however this maximum has not been observed and will likely be dictated by 

computing hardware. In order to address real-time spatial parsing of data, an additional utility is 

currently in development so that a pre-generated AOI spatially reference polygon file could be 

implemented. This will allow AOI identifiers to be assigned automatically as data is acquired. This 

feature would only be useful for AOIs with historical spatial data or AOIs for which spatial data was 

acquired prior to sensing. Future advancements in development of successive AgriLogger versions 

will need to address repeatable or automatic COM port assignment as this must be verified or 

designated at the initiation of each use in the current version. The ability to introduce additional 

models at the user level, which incorporate other types of sensors, will also need to be addressed.  
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AgriLogger is currently in Beta testing status for application in a variety of venues as a data 

acquisition tool. Additionally, a remote uplink and data receptacle utilities are currently undergoing 

testing. This will allow for acquisition, upload and spatial parsing real-time from the field. The 

intended purposing of the software is for basic research data collection such that modeling of 

vegetation parameters may be performed for plant breeding selection and agronomic management 

evaluations. This application could ultimately be employed in livestock or crop production scenarios 

for high-speed data acquisition and may ultimately enable real-time management decisions. 

. 
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CHAPTER II 
 

 

ESTIMATION OF BIOMASS AND CANOPY HEIGHT IN BERMUDAGRASS, 

ALFALFA, AND WHEAT USING ULTRASONIC, LASER, AND SPECTRAL 

SENSORS  

 

I. Introduction 

 

An effective method for in-field estimation of biomass on a dry matter (DM) basis must produce 

accuracy comparable to the accepted measurement standard (i.e., destructive removal). Non-

destructive methods for estimating dry biomass have been developed using plant or canopy 

measurements (Tucker, 1980; Fricke, 2013). In large part, vegetative mass is considered a 

function of canopy or plant height (Lati et al.,2013; Machado et al.,2002). For these methods, 

canopy or plant height is recorded and an empirical relationship between height and DM is 

developed. Devices such as the rising plate meter, capacitance meter, and meter stick are 

examples of devices used for physical measurements of vegetation height and biomass estimation 

(Tucker, 1980; Sanderson et al.,2001; Fehmi et al., 2009; Doughtry.et al, 2013) The limitations 

associated with these techniques are labor and time intensiveness. Additionally, variation due to 

vegetation growth characteristics and spatial variability can be difficult to accurately represent by 

physical sample collection which limits the ability to develop a robust estimation model. 
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II. Review Of Literature 

 

Alternatively, remote sensing strategies (ultrasonic, laser, and sensor combinations) may overcome 

some of the limitations encountered with physical measurement strategies. A greater number of 

measurements can be taken in a considerably reduced amount of time and thus a larger area can be 

sampled. This increased magnitude in data collection provides opportunity for development of a 

statistically robust estimation model as a more comprehensive representation of the area of interest 

(AOI) can be collected. Ultrasonic proximity sensors employ intensity differential reflectance of 

sound waves to approximate distances. Ultrasonic sensors have been utilized for measuring height 

and estimating DM in pastures (Fricke, 2013; Fricke et al.,2011; Hutchings et al.,1990), canopy 

characterization in orchards (Planas de Marti et al., 2011; Zaman et al.,2004), as well as in wheat 

(Scotford and Miller, 2004), cotton (Sui and Thomason, 2006), and maize (Aziz et al., 2006). Laser 

proximity sensors employ time-differential reflectance of light to approximate distances. Laser 

sensors have been effectively used for height measurements in wheat (Ehlert et al., 2010; Fumiki and 

Omasa, 2009), maize (Selbeck et al.,2010), rape, rye, pasture (Ehlert et al., 2008), standing forests 

(Henning and Radtke,2006) and miscellaneous vegetation (Hopkinson et al.,2006). The combination 

of ultrasonic and active spectral reflectance have been used to estimate biomass in white clover, red 

clover, alfalfa, and perennial ryegrass, with R2 ranging from 0.90 for estimating alfalfa-perennial 

ryegrass mixtures to 0.99 for estimation of biomass for monoculture alfalfa (Fricke and Wachendorf, 

2013). Combining ultrasonic and Normalized Difference Vegetation Index (NDVI) measurements to 

estimate canopy height in wheat resulted in standard errors between 4.6 and 7.2 cm (Scotford and 

Miller, 2004). Similar results were found in maize using NDVI and ultrasonic sensors where an R2 = 

0.62 was reported for forage mass (Freeman et al.,2007).  

Spectral strategies seek to base biomass estimates on reflectance or absorption intensities of 

wavelengths from vegetation and/or soil (Fricke and Wachendorf, 2013; Erdle et al.,2011; Hong et 
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al.,2007; Jones et al.,2007). These spectral strategies can be effective at low LAI (Leaf Area Index) 

and biomass, but can become less accurate as the canopy closes when a point of reflectance saturation 

may occur (Gnyp et al.,2014; Erdle et al.,2011). Some direct contribution to reflectance saturation can 

be attributed to increase in vegetation height, but relationships between biomass and NDVI vary 

logarithmically, signifying an interaction of canopy closure and height (Freeman et al.,2007; Gamon 

et al.,1995). Normalized difference vegetation index has been employed in biomass estimation for a 

number of crop species. Freeman (2007) employed an active spectral sensor for calculating NDVI 

(Greenseeker) and recorded a positive relationship with R2 = 0.52 for forage DM yield in maize. 

Erdle (2011) reported R2 values of up to 0.91 and 0.84 for nitrogen content and biomass, 

respectively, when using active spectral sensors for NDVI measurement in wheat. Additionally, Gnyp 

(2014) observed R2 of up to 0.69 for above-ground biomass in rice  when regressed with NDVI 

alone, as well as  a 21-35% increase in explanation of above-ground biomass in rice when using a six-

band spectral model as compared to NDVI alone.  

Objectives 

There is limited published research on the combined use of ultrasonic, spectral, and laser sensors and 

their subsequent estimation models to measure forage height and DM. Therefore, the objective of this 

research was to evaluate the relationship between dry biomass measured via destructive removal and 

dry biomass estimated from a combination of sensor-measured canopy height and spectral 

reflectance. The evaluation was achieved by collecting both physically-measured and sensor-

measured plant canopy heights as well as active and passive spectral reflectance readings via a mobile 

platform for vegetation at the canopy level. The intended deliverable from this research was a system 

containing a collection of sensors and software which would enable efficient and accurate acquisition 

of data by which estimation of dry biomass could be achieved. 

III. Methodology 
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Alfalfa Bermudagrass Experiment : Site, Design, and Management 

A ‘600RR’ alfalfa-‘Midland 99’ bermudagrass mixture trial was conducted at the Noble Foundation  

Red River Research and Demonstration Farm near Burneyville, OK (33.88o N, 97.28o W; elevation 

234 m.). The soils are characterized as Slaughterville fine sandy loam (coarse-loamy, mixed, 

superactive, thermic Udic Haplustolls) with N-nitrate at less than 5 g kg-1, soil test value of 64 g P 

kg-1, 52 g K kg-1 (amended with 0.1785 t ha-1  0-0-60), B of 0.017 g kg-1 (amended with 0.00745 t 

kg-1), and pH of 6.3. A Hege 1000 cone planter no-till drill (Hege Equipment Inc., Colwich, KS) was 

used for inter-seeding alfalfa into an established bermudagrass sward in fall 2012 and spring 2013. 

Data was collected the following spring and summer after establishment. Treatments were arranged in 

eight replications of a randomized complete block design (RCBD) with a split-split-plot arrangement.  

Main plots consisted of three alfalfa planting dates (September, November, and February), subplots 

consisted of three alfalfa seedbed preparations (mow/hay-off, mow/hay-off plus glyphosate, and 

tillage), and sub-subplots (1.5 m x 6 m) consisted of seven fungicide and insecticide alfalfa seed 

treatments. An adjacent experiment with eight replicates of 1.5 m x 6 m bermudagrass only plots 

treated with seven levels of N fertilizer ranging from 0 to 0.224 t N ha-1 yr-1 was established and 

harvested concurrently with the alfalfa-bermudagrass mixture experiment.  

Physical Measurements: Alfalfa-Bermuda Experiment 

Data were collected from all plots four times in 2013 when alfalfa reached 10% bloom. Vegetation 

height measurements were taken using a meter stick and a 0.1-m2 aluminum rising plate meter (NZ 

Agriworks LTD t/a Jenquip, Feilding, NZ) (Interrante et al.,2012; Hakl et al.,2021). Species 

composition was estimated both visually and as hand-separated dry weights from harvested quadrats 

for the alfalfa and bermudagrass mixtures only (Laliberte et al.,2010). Visual composition was 

estimated and averaged across two observers (Kercher et al.,2003). Hand-separated alfalfa and 
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bermudagrass subsamples were dried in a forced draft oven at 50°C for five days to a constant weight 

prior to weighing. Plot biomass weights were recorded on a whole plot basis by clipping plots to a 5-

cm stubble height with a Cibus forage harvester (Wintersteiger Inc., Salt Lake City, UT) and are 

reported on a DM basis.  

Sensor Height, Spectral, and Spatial Measurements: Alfalfa-Bermuda Experiment 

A ground-based mobile platform was utilized for moving sensors across the trial areas using an 

electric golf cart (the golf cart was selected due to minimal suspension, Fig. 2.1) fitted with drop 

spindles and oversized tires spaced at 1 m, to minimize contact with the biomass contained within the 

plot area (1.5 m x 6 m). The cart was custom-fitted with a mast extending from the front upon which 

all sensors were attached. A single deep cycle 12 VDC marine battery was added to the cart and 

served as the power source for all sensors. Power and/or accessory power to all sensors was routed 

through a system power cycle switch by which all active data acquisition could be initiated or 

terminated simultaneously. Additionally, a GPS with OmniStar XP GNSS positioning (repeatability 

<10 cm, 95% CEP) was implemented to acquire position data for all sensor readings. The GPS was 

configured to output spatial data at a rate of 10 Hz such that multiple locations could be recorded 

within each plot. Height was measured using a single beam 660 nm time of flight laser distance 

sensor (“Laser”). The sensor was calibrated (calibration was performed prior to first use and verified 

by measurement at subsequent data collection events) to bare ground surface (0 cm) and 93 cm above 

ground surface as minimum and maximum heights, respectively. The laser readings were inversely 

related to height. The laser sensor used in this experiment differs from LIDAR laser systems which 

are typically aerial-based or ground-based static as opposed to mobile. Additionally, LIDAR laser 

systems typically scan a large area, utilize a large number of reflectance beams at numerous 

wavelengths, and they produce a “point cloud” (Selbeck et al.,2010; Ehlert et al.,2008).  The laser 

distance sensor used in these experiments emitted only one beam at one wavelength to produce a one 

dimensional pattern of measurements and did not have the multidimensional dynamics of a LIDAR 
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point cloud. The laser readings characterize the height of the vegetation for a 2- to 4-mm diameter 

footprint which was inversely proportional to vegetation height. Two ultrasonic sensors, operating at 

different frequencies, were examined to observe appropriateness for use on plant material. 

  

Figure 2.1 Electric golf cart used for transport of sensors across alfalfa-bermudagrass experiment 
shown with A. GPS, B. Ultrsonic Sensor, C. CropScan radiometer, D.Laser Sesnors, and E. 
Greenseeker. 

 

Sensor readings were directly proportional height. Readings from the ultrasonic sensors characterized 

canopy height in a 7.5- to 15-cm conical footprint, which were also inversely proportional to 

vegetation height. As the calibration for height sensors was 0-93 cm, all were operated within 

effective detection limits of near 0 m to 10 m specified by the manufacturer. All height data were 

acquired at the default sensor output rate (50 Hz-150 Hz) and configured to collect data centered on a 

0.12 m2 area. 

A 

B 

C 

E 

D 
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A Greenseeker® (Trimble, Sunnyvale, CA) was employed to collect NDVI with a maximum conical 

footprint of 0.1 m2 which varied inversely with forage height. Data were acquired at rate of 20 Hz 

from the Greenseeker® radiometer for each plot. Additionally, a CROPSCAN (CROPSCAN, Inc., 

Rochester, MN) with a conical footprint having diameter equal to on half of height to target was also 

used and acquired reflectance measurements at 450, 520, 530, 570, 590, 650, 690, 710, 780, and 900 

nm (8.2-13 nm band width). Sampling using the CROPSCAN was limited to two readings per plot in 

an east/west travel pattern as sampling time was approximately two to three seconds per acquisition. 

There were fewer CROPSCAN than Greenseeker® readings (two vs. 90 per plot, respectively) since 

each CROPSCAN acquisition event required a keystroke on the laptop computer compared to an 

automated acquisition from the Greenseeker® sensor. Prior to data acquisition for the alfalfa and 

bermudagrass experiment the orientation of the two instruments were adjusted such that no 

reflectance from the Greenseeker® radiometer influenced readings from the CROPSCAN. 

Transport and Temporal Logistics: Alfalfa-Bermuda Experiment 

Each plot was driven across at 3.2- 4.8 km hr-1 resulting in approximately five seconds of data 

acquisition per plot. This amount of time resulted in approximately 25-30 condensed and balanced 

sample values per plot per parameter (i.e. laser, GPS, Greenseeker®, etc.). After removal superfluous 

data associated with the power cycling, approximately four to five averaged readings per meter were 

assigned to each AOI. Rate of travel was dictated by the time necessary to acquire two samples with 

the CROPSCAN and the more extended data output time of this sensor as compared to others used. 

As previously stated, each sample required two to three seconds so five seconds were necessary to 

acquire both samples within the plot length. Length of data acquisition time per plot varied less than 

one second.  

The sensor array measured approximately 25 cm wide and 45 cm from front to back with the 

Greenseeker® radiometer located most forward and the ultrasonic proximal sensors located at the 
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rear. The GPS was oriented approximately 75 cm to the rear of the ultrasonic sensors and 

approximately 45 cm right of center. This offset was accounted for in subsequent data parsing. The 

offset among sensors required that initiation and termination of sensor logging be timed to ensure that 

all vegetation measurement sensors were above the AOI while logging the data.  

Wheat Experiment: Site, Design, and Management 

Two wheat trials were also employed for sensor data collection. The first wheat experiment was 

initiated at the Noble Foundation Dupy Farm near Gene Autry, OK (34.29o N, 96.99o W; elevation 

220 m.).  The soils are characterized as Dale silt loam with pH of 7.3 and N-nitrate, P, and K of 14, 

31, and 132 g kg-1, respectively. A Hege 500 cone planter grain drill (Hege Equipment Inc., Colwich, 

KS) was used for planting wheat in autumn 2013, and data was collected in the spring 2014. 

Approximately 1200 (1.5 x 3 m) plots of 500 wheat varieties were planted as part of variety selection 

trials. These were arranged in completely randomized block design (CRBD) with two replications.  

The second wheat experiment was initiated at the Noble Foundation Unit 3 Farm in Ardmore, OK 

(34.17o N, 97.08o W; elevation 268 m). The soils are characterized as Konsil loamy fine sandy with 

pH of 6.8 and N-nitrate, P, and K of 28, 50, and 111 g kg-1, respectively. This trial contained 136 (1.5 

x 3 m) plots comprised of 50 wheat varieties. A Hege 500 cone planter grain drill was also used for 

planting wheat in 2013. Between the two wheat trials, there were seven data collection events 

occurring from February to April 2014. 

Physical Measurements: Wheat Experiment 

Wheat biomass for both experiments was estimated by hand clipping one 0.16 m2 quadrat per plot to 

a 2.5-cm stubble height. Samples were dried in a forced draft oven at 50°C for five days prior to 

weighing and are reported as kg DM ha-1.  

Sensor Height, Spectral, and Spatial Measurements: Wheat Experiment 
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Sensor data was collected from the wheat trials using a gasoline-powered Spider high-clearance 

tractor (LeeAgra, Inc., Lubbock, TX) at a ground speed of approximately 1.6-3.2 km h-1 (Fig.2.2). 

The factory-installed spray mast attached to the front of the tractor was converted to a manifold 

configuration to accommodate the sensor array. All sensors were initially powered using the onboard, 

factory installed, 12 V power supply. For convenience this was later modified to use an independent 

12 V power source to power all sensors. Upon restarting the tractor engine a momentary power deficit 

would occur and required re-initializing the sensor system. The same GPS with OmniStar XP GNSS 

positioning as described in the alfalfa and bermudagrass trial was implemented to acquire spatial data 

for all sensor readings. The GPS was configured to output data at a rate of 10 Hz such that multiple 

locations could be recorded within each plot.  

Height was measured using two single 660 nm single beam time of flight laser distance sensors as 

well as a 120 MHz ultrasonic sensor. These sensors were the same make and model of those used in 

the alfalfa-bermudagrass experiment. All height sensors were calibrated at a bare ground surface and 

a 74 cm maximum in the same manner as those used in the alfalfa and bermudagrass experiment as 

well. All height data were acquired at a rate of 10 Hz and all sensors were configured to collect data 

centered on a 0.02-m2 area. A Greenseeker® was employed to collect NDVI at rate of 10 Hz for each 

plot. The passive radiometer (CROPSCAN) was not used on the wheat experiments. 

Transport and Temporal Logistics: Wheat Experiment 

The sensor array used in the wheat trials measured approximately 20 cm long by 10 cm wide. As was 

previously described in the alfalfa and bermudagrass experiment, it was necessary to ensure all 

sensors were above the plot prior to data acquisition initiation and termination.  Alley identifiers were 

assigned during the time spent crossing the alley areas and until all sensors were above the 

subsequent AOI, whereas plot identifiers were assigned to the incoming data. 
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Each plot was driven across at 1.6-3.2 km hr-1 resulting in approximately three seconds of data 

acquisition per plot and due to the fact a delay buffer of approximately one second was allowed at the 

beginning and end of each plot. This amount of time provided approximately 25-30 readings per plot 

per parameter (i.e. Laser, Ultrasonic, Greenseeker®). Variability in the length of data acquisition time 

per plot occurred but was similar to the cart configuration in the alfalfa and bermudagrass experiment 

and only existed on the order of less than one second.  

Data Acquisition Hardware: All Experiments 

For all experiments, analog data from the height measurement sensors were acquired using a data 

acquisition module (DAQ). Laser sensors were configured via a current loop to operate at a range of 0 

to 5 VDC and were connected directly to the DAQ for voltage output. The 120 MHz ultrasonic sensor 

was configured to operate at a range of 0 to 5 VDC, and voltage readings were directly output to the 

DAQ. The 240 MHz ultrasonic sensor was operated at a range of 0 to 10 VDC and voltage readings 

were directly output to the DAQ. From the DAQ, all analog data were transferred as digital output to 

a laptop computer for the alfalfa and bermudagrass trial and ruggedized tablet computer in the wheat 

trials via USB connection. 

Data from the Greenseeker® radiometer was output directly to the tablet and laptop via serial 

connection as NDVI values, which were generated by the autonomous radiometer processor. 

CROPSCAN readings were acquired and stored in the autonomous memory contained within the 

radiometer hardware.. It was not possible to insert plot markers into data from the CROPSCAN as it 

was necessary for the power source in this unit to remain autonomous and operational function could 

only be achieved through use of the factory provided software. However, it was possible to operate 

this software simultaneously on the same laptop, which was used for all other data acquisition. 

Agrilogger was developed to utilize a sampling logic which resulted in only the user-specified rate of 

data acquisition to take place. All data was written to a single log file at the user-specified rate.  In 
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contrast, WinWedge Pro© (WinWedge Pro©; TAL Technologies Inc., Philadelphia, PA), captured all 

data from incoming streams at rates dictated by the transmitting hardware. When using WinWedge 

Pro©, it was necessary to run multiple instances of the software simultaneously, one for each data 

stream (i.e. DAQ, GPS, and Greenseeker®). Each instance of the software produced one log file for 

the data stream being acquired, which resulted in multiple output files for each data collection event. 

The power cycling switch used for plot delineation when acquiring data with WinWedge Pro© at no 

point interrupted data streams. The power was cycled on such that sensor readings were acquired and 

null readings were acquired when power was cycled off. These areas of null values signified non-plot 

areas. 

 

Figure 2.2 Spyder used for transport of sensors across wheat experiments shown with sensor array 
containing A. GPS, B. Laser and Ultrasonic Sensors, C. Greenseeker, and D. Start and Stop trigger 
markers for array field of view extent. 

 

A 

B 
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This strategy required combining the data from all streams post-processing. AgriLogger enabled the 

user to insert identifiers real-time as data were acquired. The identifiers used to delineate plot areas 

from non-plot areas were inserted with a mouse click or touch-screen button.  

As previously stated, data acquired from the CROPSCAN were written to the autonomous storage 

capabilities contained within the unit. Utilization of factory included software application was 

necessary for post-processing reflectance data. This application produced one log file which could 

then be combined with data from all other sensors at post-processing based on sampling rate per plot 

and time stamp. 

Data Post-Processing 

For both WinWedge Pro© and Agrilogger, time and date fields (based on the laptop clock) were 

inserted into the data streams for each record received at the application level. This allowed for 

quality control and the ability to combine data during post-processing when using WinWedge Pro©. 

Combining log files produced when using WinWedge Pro© was achieved through implementation of 

a custom post-processing application (DataProcessing). The primary function of the DataProcessing 

application was averaging data to a desired rate (i.e., 5 Hz, 10 Hz, etc.) so as to balance the number of 

sensor readings across the sensors and reduce the data to a more manageable volume. The averaging 

was achieved by utilization of the aforementioned time stamp which had been inserted for each 

record. After the data were combined, it was output to a text file which contained the combined 

sensor data at the specified averaging interval (i.e., 5 Hz, 10 Hz, etc.). The output file from the 

DataProcessing software was then manually edited by attaching range and row identifiers to plot 

areas. These plot areas were delineated based on the aforementioned null values. The non-plot areas 

were manually removed from the data, leaving only the range and row identified plot areas. These 

plot areas could then be assigned a unique plot identifier.  
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Data acquired using AgriLogger was also manually edited to remove non-plot areas. Due to the user 

control and plot identification features provided in this software application, the magnitude of the data 

contained in the single output file were of a much smaller scale than that output by WinWedge Pro©. 

This was due to the sampling logic data acquisition strategy implemented in AgriLogger as opposed 

to the constant uncontrolled streaming of data with WinWedge Pro©. A user-specified sampling rate 

allowed for data acquisition at rates of up to 20 Hz and output of all parameters to a single log file. 

No post-processing application was necessary for reduction of the data through averaging. 

Post-processing data transformation was performed on laser measurements as calibrations produced 

readings which were inversely proportional to the height of measured vegetation. Laser readings were 

subtracted from the calibrated maximum reading (signifying the greatest distance from the sensor). 

This transformed the data to a directly varying scale which agreed with the directly varying 

relationships between vegetation height and readings from ultrasonic sensors. Both ultrasonic and 

laser readings were converted to cm values based on the minimum and maximum calibration heights 

at post-processing. 

Data Analysis: All Experiments 

Sensor readings were examined for correlation to physically-measured height and destructively-

measured DM (Pilloid and Arkle, 2013; Golodets et al.,2013; Brownell et al.,2012). The combination 

of output from multiple sensors as constituents of a predictive model for biomass was also examined. 

Comparisons were examined for the accuracy in estimation of height and DM for sensor models 

versus physical measurements performed. It must be noted that destructive harvest methods differed 

between the alfalfa-bermudagrass and the wheat experiments. Due to the 2.5-cm difference in harvest 

height, data analyses for biomass were performed based on harvest method and species for model 

construction. Additionally, the relationship between forage harvester and quadrat measurements of 

forage biomass was examined by regression analysis using SAS PROC REG (SAS, 2012).  



33 

 

Correlation: Sensor Measurements to Physical Measurements 

Physical and sensor measurement methods were examined for correlation to vegetative mass on a DM 

basis as well as sensor measurements to measured canopy height. These analyses were performed 

using SAS PROC CORR (SAS, 2012). Data used for model construction were included for the 

examination of correlation between sensor measurements and physical measurements. 

Model Construction 

Data were split into model construction and validation sets. This division was implemented to ensure 

the entire range of the data would be represented in both. Two hundred-twelve samples were used to 

generate estimation models for alfalfa only, with a validation set containing 89 samples. Seventy-

eight samples were used to construct the bermudagrass only model with 32 validation samples. Wheat 

biomass models were constructed from 193 samples and 97 validation samples. Since no physically-

measured canopy height data was collected for wheat, no canopy height estimation models were 

generated. Canopy height estimation models for the alfalfa and bermudagrass trial were constructed 

on a vegetation composition category basis, which consisted of individual species (alfalfa, 

bermudagrass), mixtures of the two (MIX), and across the entirety of the alfalfa and bermudagrass 

experiment data (ALL). The MIX group of data from the alfalfa and bermudagrass trial was 

comprised of sampled verified plots having botanical compositions ranging from 80% alfalfa:20% 

bermudagrass to 20% alfalfa:80% bermudagrass, (n=1002 for modeling and n=581 for validation). 

Estimation models were constructed using partial least squares (PLS) regression analyses (SAS 

PROC PLS) with CVTEST for selection of simplest models (SAS, 2012; Luo and Wang; 2014, 

Wuerschun et al, 2014; Chen and Zhu, 2013). Laser and ultrasonic sensor outputs as well as NDVI 

from the Greenseeker® and seven spectral bands from the CROPSCAN were examined for inclusion 

in sensor based biomass estimation models. Laser and ultrasonic data were examined in the same 

manner for canopy height modeling. 
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Parameters included in biomass and canopy height estimation models were selected by evaluation of 

Variable Importance Plot (VIP) values output from SAS PROC PLS using the plots=(parmprofiles 

vip) option, as a filter measure (Wold et al, 1993) (Table 2.1). These scores represent the contribution 

of a variable as a predictor due to the amount of variance explained and can be viewed as a 

percentage in relation to one another when a number of predictor variables are simultaneously 

examined (Wold et al, 1993). All components with VIP scores less than 1 were deleted from the final 

models for biomass and canopy height (Mehmood et al, 2012; Chong and Jun, 2005; Gosselin et al, 

2010). This strategy was adopted in order to achieve an acceptable balance in estimate accuracy and 

model/sensor system complexity by excluding less contributive variables and equipment from the 

system.  

Table 2.1. Variable Importance Plot (VIP) scores for sensor parameters considered for model 
inclusion †From Greenseeker®, ‡From CROPSCAN, for modeling alfalfa and bermudagrass 
biomass. 
 

Sensor measurement VIP 

 DM Canopy height 

Laser 1.37 1.08 
120 MHz sonic 1.32 1.01 

240 MHz sonic 1.11 0.95 
NDVI† 1.10  
690 nm‡ 0.90  
650 nm‡ 0.83  
710 nm‡ 0.74  
590 nm‡ 0.74  
450 nm‡ 0.72  
520 nm‡ 0.71  
570 nm‡ 0.70  
530 nm‡ 0.69  
780 nm‡ 0.68  
900 nm‡ 0.66  

 

Upon deletion of less contributive variables, PLS models were again constructed using cross-

validation (CVTEST option) with a 20-fold block training set (CV block=20) and the SAS default of 

1000 permutations (SAS, 2012). Subsequently a randomly selected block of twenty observations 

provided cross validation analyses for model training 1000 times for construction of each model. The 

parameter estimates produced from these analyses were then employed in an equation (models) for 
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calculation of biomass and canopy height estimates (Table 2.2). Botanical composition based canopy 

height models included the laser and the 120 MHz ultrasonic (VIP scores > 1).  

Evaluation of Accuracy in Model Estimation for Biomass and Canopy Height 

Regression analyses for canopy height and biomass estimations were performed to evaluate 

relationships between measured and estimated values using SAS PROC REG for samples from the 

Table 2.2. Dry biomass estimation model label key for sensor and physical measures for the alfalfa 
bermudagrass experiment and the wheat experiment with notation of specifies specific models and 
number of sensor inputs for each model.. 
 
Model number Estimate Species specific Number of sensors 

1 Dry biomass Y 3 

3 Dry biomass Y 2 

5 Dry biomass Y Meter stick 

6 Dry biomass N Meter stick 

7 Dry biomass N Plate meter 

8 Canopy height Y 2 

9 Canopy height N 2 

 

validation data only (SAS, 2012). Additionally, accuracy of estimation models was evaluated on a 

percent basis by calculating the by sample mean percent error (MPE) (Equation 2.1): 

Mean Percent Error = Mean 
 |�����������������|
�������� ��� ����

�

�
    (Equation 2.1) 

where :; is the biomass estimate for the <th plot using the method of interest, =; is the measured 

biomass of the <th plot using the harvest method (i.e., the accepted standard), and > is the number of 

plots measured. 

An Error, Consistency, and Mean Agreement (ECMA) scoring system was calculated for ranking and 

comparison of model estimation accuracy. Calculation of this scoring system considered agreement of 

measured and corresponding estimated means, the by sample error estimation, and the repeatability of 

the error across samples in a category. The ranking calculation was compiled such that higher index 

scores represented more accurate estimation based on mean agreement, error, and the consistent 
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nature of the error. The score included model error consistency (standard deviation of percent error, 

SPE), accuracy (mean of by sample percent error, MPE), and the agreement of the mean of measured 

compared to mean of estimated values (R2 of estimate to measured, as well as difference in mean of 

estimate ‘E’ and measured ‘M’) (Equation 2.2).  

ECMA = ("#$%%&'&$() #% *$)$+,&(-)&#( %#+ $.)&,-)$ /0 ,$-.1+$*
|$.)&,-)$ ,$-(2,$-.1+$* ,$-(| )

���� 4��5��� ���6�∗�������� ��8����6� 69 4��5��� ���6�   (Equation 2.2) 

Least significant difference (LSD) groupings (α=0.05) were compared among plots grouped 

according to destructively-measured biomass and physically measured canopy height using the 

biomass and canopy height estimation models as a post-hoc analysis of accuracy (validation samples 

only were used in this comparison). This was done to illustrate the efficacy of using biomass or 

canopy height estimations calculated from sensor readings in place of destructive harvesting methods 

or physical height measurements for trial evaluations. Biomass comparisons groups were delineated 

in 1.10 t ha-1 increments from 0 to 7.72 t ha-1. Canopy height comparisons were based on 10 

physically-measured canopy height classes at ten centimeter increments. These comparisons were 

performed using PROC MIXED (SAS, 2012 in combination with the PDMIX800 macro (Saxton, 

1998; Lauriault et al, 2013).  

 

IV. Findings 

Correlation  

Laser-estimated height measurements were the most correlated to physically-measured canopy height 

for all examinations (r = 0.88 bermudagrass - 0.78 MIX). Laser measurements were the most 

correlated to destructively-sampled biomass as well (r = 0.88 bermudagrass - 0.80 alfalfa). 

Additionally, NDVI measured using the Greenseeker® was most correlated to biomass (r = 0.75 - 

0.62) for all spectral data examined (Table 2.3). Additionally, regression analysis of the harvester 
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collected to quadrat collected biomass measurements yielded results showing quadrat harvests to 

produce AOI DM estimates on average 5% greater than measurements acquired using the harvester. 

Modeling Analyses: Variable Inclusion Selection  

All height sensor parameters were associated with VIP values greater than the exclusionary threshold 

of 1 (Wold et al., 1993; Mehmood et al., 2012; Chong and Jun, 2005; Gosselin et al., 2010) for both 

biomass and canopy height. The VIP values were greater for the 120 MHz ultrasonic sensor than for 

Table 2.3. Pearson coefficients for sensor collected parameters correlated to physical measures of 
bermudagrass, alfalfa, wheat and a mixture of alfalfa and bermudasgrass. †From Greenseeker®, 
‡From CROPSCAN. 
 

Sensor measurement Alfalfa Bermudagrass Mix Wheat 

Destructively measured  DM 

Measured height 0.83 0.83 0.82 
Plate meter 0.43 0.48 0.43 
Laser 0.80 0.88 0.86 0.86 
120 MHz sonic 0.74 0.87 0.85 0.85 
240 MHz sonic 0.75 0.81 0.66 
NDVI† 0.70 0.75 0.72 0.62 
450 nm‡ -0.35 -0.53 -0.41 
520 nm‡ -0.33 -0.54 -0.36 
530 nm‡ -0.32 -0.51 -0.32 
570 nm‡ -0.36 -0.50 -0.37 
590 nm‡ -0.41 -0.56 -0.38 
650 nm‡ -0.48 -0.65 -0.51 
690 nm‡ -0.47 -0.63 -0.54 

710 nm‡ -0.45 -0.52 -0.27  
780 nm‡ 0.13 0.02 0.32  
900 nm‡ 0.08 0.04 0.28  

Canopy height 

Plate meter 0.11 0.25 0.24 

Laser 0.83 0.88 0.78 
120 MHz sonic 0.76 0.82 0.73 
240 MHz sonic 0.73 0.71 0.68 

 

the 240 MHz ultrasonic sensor. The 120 MHz ultrasonic sensor was subsequently selected for 

inclusion in biomass and canopy height model construction. It was apparent while post processing 

data from the 240 MHz ultrasonic sensor that large areas were resultant output due to loss of echo 

which likely diminished contribution of this device in enhancing model accuracy. The spectral 

component NDVI was selected in the biomass model based on VIP values. Data from the 

CROPSCAN were not employed in the construction of models due to lower VIP scores than that of 
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NDVI from the Greenseeker®. It is likely data from the CROPSCAN were less contributive to the 

estimation of biomass as it was implemented from a mobile platform and data were acquired while 

moving across plots as opposed to a stationary orientation. The CROPSCAN was designed to be used 

as a stationary passive spectral radiometer but it was desired to, in this research, evaluate the potential 

contribution of the CROPSCAN as an element of a mobile system. 

Modeling Analyses: Biomass and Canopy Height Estimation Model Performance 

Laser-only models explained more variation in dependent variable (VDV) for bermudagrass biomass  

Table 2.4. Explanation of variation in dependent variable (VDV) from partial least squares regression 
modeling for dry biomass and canopy height by sensor estimation models and model equations for 
height (combination ultrasonic and laser model) and biomass (two sensor model:  laser and ultrasonic 
combination, and three sensor model: laser, ultrasonic and NDVI combination). †MIX-Mixture of 
alfalfa and bermudagrass; ‡ALL-All monoculture and mixed species from the alfalfa and 
bermudagrass experiment. 
 

 Canopy height Plate meter 120 Mhz ultrasonic Laser 

DM VDV VDV VDV VDV 

Alfalfa 68.5% 18% 55% 64% 

Bermudagrass 69% 23% 75% 78% 

Wheat 72% 74% 

MIX† 67.8% 19% 73% 73% 

 3 sensor model 3 sensor equation 2 sensor model 2 sensor equation 

Alfalfa 65.7% (46.22*Las+47.83(Son*NDVI) 65.5% (46.9*Las)+(43.13*Son) 

Bermudagrass 80.5% (65.3*Las)+58.3(Son*NDVI) 81% (65.7*Las)+(49*Son) 

Wheat 75% (118*Las)+108(Son*NDVI) 74% 231*Las 

MIX 78.9% 70.5(Las*NDVI)+63.7(Son*NDVI) 78.5% (61.3*Las)+(53.9*Son) 

  Plate meter 120 Mhz ultrasonic Laser 

Canopy height  VDV VDV VDV 

Alfalfa  1.2% 57% 69% 

Bermudagrass  6.1% 67% 77% 

MIX  5.6% 54% 61% 

ALL‡  6.1% 55% 64% 

   2 sensor model 2 sensor equation 

Alfalfa   70% (0.46*Las)+(0.42*Son) 
Bermudagrass   77% 1.02*Las 

MIX   64% 0.017(Las*Son) 
ALL   65% (0.74*Las)+(0.2*Son) 
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(78%) and wheat (74%) than did ultrasonic only models for biomass and canopy height (75 and 72%, 

respectively). Combination models which included laser and ultrasonic improved dependent variable 

variation explanation in all cases except for wheat biomass (75%)  

and bermudagrass canopy height (77%). Inclusion of NDVI for biomass modeling improved 

dependent variable variation explanation by an additional 1%. Biomass models based on physically-

measured canopy height were more effective than others in explanation of dependent variable 

variation for alfalfa only (68.5%). Plate meter-based models were less effective than others for 

canopy height and biomass estimation (0 to 6.1% and 18 to 23%, respectively) (Table 2.4). The 

greatest R2 observed (0.85) for any estimated to measured biomass relationship was the dual height 

sensor combination for bermudagrass. Comparison of biomass model estimation based on ECMA 

scores showed that models which included both height sensors as well as NDVI were more accurate 

in all cases except for bermudagrass (Table 2.5). The smallest R2 observed (0.13 to 0.25) in all cases 

was for the plate meter models. The meter stick measured height model was ranked second for alfalfa 

biomass estimation and was the only instance of a physical measurement model being ranked in the 

top two for biomass estimation. Regression of estimated canopy height to measured canopy height 

using model 9 for bermudagrass produced the greatest R2 for all cases (0.84). Canopy height 

estimates in alfalfa and the legume-grass mixture produced R2 values of 0.61 or less (Table 2.5).  

Post Hoc Comparisons:  

Sensor Estimation Models and Measured Biomass / Canopy Height Comparisons 

Sensor models consistently overestimated small destructively measured biomass values and 

underestimated large values. Order of mean estimates for measured biomass and sensor-estimated 

biomass agreed except in the grass-legume mixture. In this case of order inconsistency, only the 

greatest biomass categories were inconsistent with measured values (> 5.51 t ha-1). The three sensor 
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model (model 1) consistently produced lower biomass estimates than did the dual sensor model 

(model 3) for all species (Table 2.6).  

Sensor models consistently underestimated canopy height for taller measured values but produced 

estimates within 4 cm of the lowest measured height from models 8 and 9. The only exception in 

minimum canopy height estimation occurred in MIX model 8 estimates where the estimate was 10 cm 

lower than measured (Table 2.7).  

Table 2.5. Sensor model ranking based on Error, Consistency, and Mean Agreement Score (ECMA) 
†MPE (0.19), Standard Deviation of MPE (0.36) and R2 (0.87) for measured were calculated from 
paired bermudagrass plots. ‡MIX-Mixture of alfalfa and bermudagrass. 
 

Forage type 

Measure/ Estimation 

method Mean 

Mean- percent 

error (MPE†) 

Standard 

deviation MPE† 

R2 -measured 

to estimated† 

ECMA 

score 

DM (t ha-1) 

Alfalfa Measured DM 2.36    
Alfalfa 1 2.16 0.31 0.27 0.69 0.150 

Alfalfa 5 3.02 0.30 0.24 0.63 0.083 
Alfalfa 3 2.36 0.40 0.35 0.68 0.019 
Alfalfa 7 2.16 0.53 0.67 0.13 0.005 
Alfalfa 6 3.02 0.68 0.53 0.63 0.002 

Bermudagrass Measured DM† 3.33 0.19 0.36 0.87 

Bermudagrass 3 3.41 0.32 0.57 0.85 0.069 
Bermudagrass 1 3.45 0.36 0.6 0.81 0.033 

Bermudagrass 6 3.54 0.36 0.55 0.82 0.022 
Bermudagrass 5 3.98 0.47 0.65 0.82 0.005 

Bermudagrass 7 1.9 0.63 0.69 0.25 <0.000 

MIX‡ Measured DM 2.15    
MIX 1 1.83 0.30 0.26 0.79 0.035 

MIX 3 2.37 0.40 0.52 0.78 0.019 
MIX 6 2.76 0.68 0.79 0.55 0.002 
MIX 7 1.66 0.48 0.58 0.17 0.001 
MIX 5 3.1 0.85 0.91 0.55 0.001 

Wheat Measured DM 2.47    
Wheat 1 2.74 0.41 0.65 0.81 0.013 
Wheat 3 3.18 0.63 0.94 0.80 0.002 

Canopy height (cm) 

Alfalfa Measured height 30.8 

Alfalfa 9 22.5 0.30 0.17 0.61 0.04 
Alfalfa 8 21.0 0.33 0.18 0.59 0.03 

Bermudagrass Measured height 36.1 

Bermudagrass 8 29.0 0.21 0.12 0.79 4.05 
Bermudagrass 9 26.0 0.28 0.13 0.84 2.29 

MIX Measured height 28.2 
MIX 9 18.5 0.35 0.19 0.57 0.88 
MIX 8 7.2 0.77 0.17 0.59 0.21 
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The LSD values for biomass and height estimation models were greater than those for the measured 

values. These LSD values indicated more variation within estimates for both canopy height and 

biomass resulting in overlapping of mean estimate groupings in some cases. 

Due to the fact the groupings were based on measured canopy height and measured DM, those 

measured groups would be expected to express the lowest variation.  

Additional error is also likely introduced into the modeled DM mean estimates due to the fact that the 

destructively measured DM does not capture in entirety the vegetation being sampled by the sensors. 

This error is illustrated in the stubble height remaining after destructive harvest which is embedded in 

and accounted for by the sensor readings and subsequently inseparable from the sensor models and 

sensor based estimations. This type of error could account for instances of over estimation at low 

biomass levels. Radial growth expansion as vegetation matured as well as under canopy fill-in may 

account for instances of biomass underestimation. 

Biomass Estimation Using Physical Canopy Height Measurements 

Canopy height models varied by model and species, generally overestimating at lowest biomass 

categories and underestimating at highest biomass categories (Table 2.6). Model 6 overestimated 

whereas model 5 underestimated alfalfa biomass. Both measured height models overestimated 

bermudagrass biomass except for the greatest measured biomass. Biomass estimates for the mixture 

for both measured height based models overestimated at lesser values (< 2 t ha-1) and underestimated 

at greater values (>5 t ha-1).  

Plate meter biomass estimation model ordered mean estimates the same as measured for only the 

alfalfa and consistently overestimated low and underestimated large measured values. 

Destructive Biomass Measurement and Model Estimate Variability 

Due to the variation associated with destructively-measured biomass, it is unlikely that an estimation 

strategy based on this method of measure could achieve accuracy or precision in excess of the method 
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Table 2.6. Mean estimates comparisons and LSD groupings for destructively measured DM and 
sensor modeled estimates of DM. Uppercase letters denote statistical differences from other 
categories. †MIX-Mixture of alfalfa and bermudagrass. 
 
Forage Class DM class  Measured DM Sensor Estimate DM models (t ha-1) 

(t ha-1) (t ha-1) 1 3 

Alfalfa >1.1 0.85E 1.28D 1.5D 

Alfalfa 1.1-2.2 1.65D 1.86C 2.09C 

Alfalfa 2.2-3.3 2.72C 2.66B 2.89B 

Alfalfa 3.3-4.41 3.6B 3.26A 3.45A 

Alfalfa 4.41-5.51 4.88A 3.81A 4.01A 

LSD 0.22 0.44 0.44 

Bermudagrass >1.1 0.67F 1.45E 1.58D 

Bermudagrass 1.1-2.2 1.7E 1.97E 2.08D 

Bermudagrass 2.2-3.3 2.96D 2.89D 2.93C 

Bermudagrass 3.3-4.41 3.77C 3.8C 3.67C 

Bermudagrass 4.41-5.51 4.99B 5.2B 5.02B 

Bermudagrass 5.51-6.61 6.97A 6.19A 6.53A 

LSD 0.53 0.75 0.84 

MIX† >1.1 0.83G 0.98F 1.53F 

MIX 1.1-2.2 1.61F 1.26E 1.82E 

MIX 2.2-3.3 2.67E 2.32D 2.84D 

MIX 3.3-4.41 3.79D 3.02C 3.45C 

MIX 4.41-5.51 4.92C 4.45B 5.03B 

MIX 5.51-6.61 6.15B 5.06A 5.56A 

MIX 6.61-7.71 7.06A 4.56B 4.94B 

LSD 0.15 0.28 0.27 

Wheat >1.1 0.78F 1.51D 1.93D 

Wheat 1.1-2.2 1.57E 1.79D 2.27D 

Wheat 2.2-3.3 2.76D 2.81C 3.26C 

Wheat 3.3-4.41 3.85C 4.33B 4.75B 

Wheat 4.41-5.51 4.89B 4.98A 5.28B 

Wheat 5.51-6.61 6.25A 5.48A 5.85A 

LSD 0.27 0.53 0.54 

  Measured height DM Estimate models (t ha-1) 

 5 6 7 

Alfalfa >1.1 0.85E 1.18D 1.81D 1.7D 

Alfalfa 1.1-2.2 1.65D 1.72C 2.65C 2.08C 

Alfalfa 2.2-3.3 2.72C 2.39B 3.67B 2.31C 

Alfalfa 3.3-4.41 3.6B 3.05A 4.68A 2.63B 

Alfalfa 4.41-5.51 4.88A 3.51A 5.38A 3.07A 

LSD 0.22 0.46 0.71 0.46 

Bermudagrass >1.1 0.67F 1.62E 1.44E 1.6B 

Bermudagrass 1.1-2.2 1.7E 2.78D 2.47D 1.66B 

Bermudagrass 2.2-3.3 2.96D 3.53C 3.14C 1.73B 

Bermudagrass 3.3-4.41 3.77C 4.85B 4.31B 2.05B 

Bermudagrass 4.41-5.51 4.99B 5.63B 5.01B 2.34A 

Bermudagrass 5.51-6.61 6.97A 6.44A 5.73A 2.27B 

LSD 0.53 0.97 0.86 0.62 

MIX >1.1 0.83G 2.23F 1.98F 1.49C 

MIX 1.1-2.2 1.61F 2.88E 2.56E 1.49C 

MIX 2.2-3.3 2.67E 3.26D 2.91D 1.9B 

MIX 3.3-4.41 3.79D 3.56C 3.17C 1.89B 

MIX 4.41-5.51 4.92C 5.46B 4.86B 2.22A 

MIX 5.51-6.61 6.15B 5.95A 5.3A 2.1B 

MIX 6.61-7.71 7.06A 5.38B 4.79B 2.12B 

LSD 0.15 0.36 0.32 0.25 
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upon which it is based. This destructively-measured variability is illustrated by the R2 of 0.87 from 

paired visually identical bermudagrass plots included in Table 2.5. A number of factors lead to error 

associated with machine harvest examples of which include operator performance, height and type of 

vegetation, and weigh mechanism performance due to environmental variables. The use of a sensor 

array to estimate biomass is subject to none of the factors in the same way the machine harvest 

strategy would be. Subsequently, basing the estimation of biomass by sensor populated modeling 

when constructed from machine harvest weight data will introduce all error associated the machine 

harvest into the model as well as any error associated with the sensor system. This will suppress the  

Table 2.7. Mean estimates for measured canopy height (cm) and sensor model estimates of canopy 
height (cm). Uppercase letters denote statistical differences from other categories. 
† No height data occurred in this range for bermudagrass. ‡MIX-Mixture of alfalfa and bermudagrass. 

Forage Class Height class (cm) Measured canopy height (cm) Model 8 (cm) Model 9(cm) 

Alfalfa >15 12J 16CD 16DE 
Alfalfa 15-20 17I 14D 15E 

Alfalfa 20-25 21H 16D 18DE 
Alfalfa 25-30 27G 16CD 18DE 
Alfalfa 30-35 33F 22BC 22CD 

Alfalfa 35-40 37E 20BCD 23CD 
Alfalfa 40-45 43D 27B 28C 
Alfalfa 45-50 47C 26B 29BC 
Alfalfa 50-55 53B 32A 35AB 
Alfalfa 55-60 57A 35A 38A 
LSD 2 6 6 

Bermudagrass >15 14I 13D 11D 
Bermudagrass 15-20 16I 13D 11D 
Bermudagrass 20-25 21H 17CD 15CD 
Bermudagrass 25-30 29G 24BCD 20BCD 
Bermudagrass 30-35 31F 25BC 22BC 
Bermudagrass 35-40 36E 28B 25B 
Bermudagrass 40-45 42D 30B 27B 

Bermudagrass 45-50† * * * 

Bermudagrass 50-55 54C 43A 39A 
Bermudagrass 55-60 57B 47A 43A 
Bermudagrass 60+ 66A 51A 48A 

LSD 3 12 10 

MIX‡ >15 12J 2F 13E 

MIX 15-20 17I 3F 14E 
MIX 20-25 22H 3F 14E 
MIX 25-30 27G 5E 16D 
MIX 30-35 32F 7D 19C 
MIX 35-40 36E 6DE 19C 
MIX 40-45 42D 7DE 21C 
MIX 45-50 48C 22C 34B 
MIX 50-55 52B 27B 38A 
MIX 55-60 57A 31A 40A 
LSD 1 2 3 
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accuracy of the modeling due to the fact the number of error terms contributing to the calculation of 

biomass are from both the machine harvest as well as any associated with the sensors. 

 

V. Conclusions 

 

Using mobile sensor systems for biomass estimation can enable a greater rate of data acquisition than 

manual canopy height or destructive sampling provided an appropriate software option for data 

acquisition is employed. Results from this study illustrate quantification of only the canopy height 

with ultrasonic and laser sensors can provide for biomass estimation models equivalent to and/or 

more effective than those which include spectral components. This is an important distinction as the 

cost associated with assimilation of an active spectral radiometer into such a system can greatly 

increase costs. An increase of approximately 1% in dependent variable variation explanation was 

contributed to the system at a cost in excess of US$4000. In contrast, height sensors and a DAQ 

would only incur a total cost of approximately US$1500.  Additional costs for consideration would be 

the pc hardware needed, cost of software, and cost of vehicle for transport of the sensor array. 

Additionally, sensor estimates provide equivalent and/or superior estimates when compared to 

physical canopy height measurement and plate meter biomass estimation methods. It is arguable that 

the same is the case for collection of sensor-based canopy height data, though a maximum height 

threshold of accuracy is likely according to the physical limits and configuration of sensors used. Due 

to the commonly accepted nature of physically measured biomass estimates for research applications, 

sensor-based estimation strategies which utilize species differentiation in appropriate cases and 

ultrasonic/laser proximal sensor combinations have, in this research, been illustrated to produce 

comparable and/or more accurate results. Consideration should also be given to the time savings 

associated with using a mobile sensor system. During the course of these studies it was noted man-
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hours needed for physical collection of these data (30 hrs rep-1) were greater by a factor of 60 than 

the time needed to collect data with the sensor system (0.5 hrs). Furthermore, processing of data 

acquired using AgriLogger reduced man-hour requirements by a factor of 10.  

In order for the greatest level of accuracy to be obtained, it is likely necessary to implement specific 

models for predominant or monoculture species though a general estimation model may produce 

acceptable estimates for mixed species. It may also be possible to stratify implementation of models 

based on height measurement. This would allow adjustment of coefficients to accommodate 

minimum and maximum values which can be estimated imprecisely if only one model curve is 

applied to the entire range of canopy heights and biomass levels encountered. Further examination of 

spectral data as a model component may be necessary for other parameters not examined in these 

experiments. Future examination of additional species is also necessary to develop models for 

estimating DM across different environments and production systems. 

Qualification of relative vegetative performance based on canopy height and/or biomass would also 

be possible and could contribute to variety selection for plant breeding. Difficulties in system 

calibration and sensor data conversion to absolute measures could be avoided in a qualitative system. 

It can also be asserted that results reported for research could be based on sensor-estimated biomass 

without the expectation of appreciable differences than would be reported from destructively sampled 

methods or physical measurement based estimates. Estimating biomass without vegetation removal 

would be useful for plant breeders needing to quantify biomass along with seed yield. In addition, 

forage mass could be measured prior to and post-grazing to evaluate persistence and production under 

grazing that currently cannot be done. Ultimately, real-world production management decisions such 

as stocking rate adjustments or forage harvesting intervals could be made in a much more rapid 

manner.  

. 
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CHAPTER III 
 

 

Bermudagrass, Wheat, and Tall Fescue Crude Protein Forage Estimation Using Active 

Spectral and Canopy Height Data Collected from a Mobile Platform 

 

I. Introduction 

Forage quality analysis has traditionally been performed through laboratory (Kellems and 

Church, 1998) and NIRS analysis (Norris et al., 1976). These methods of forage analysis are 

accepted as accurate and used for livestock feed ration estimation but require a number of days or 

weeks for results to be delivered. Remote sensing provides an alternative which could provide 

forage quality estimates with less turn-around time and allow more rapid decision making for 

stocking rate adjustments or inclusion of a feeding supplement. 

II. Review of Literature 

 The examination of hyperspectral reflectance for indicating nitrogen content in vegetation is 

somewhat extensive. Estimation of bermudagrass [Cynodon dactylon (L.) Pers.] nitrogen content 

through the use of spectral sensors has been examined by Starks et al., (2004) for multiple 

wavebands in the 368-1100 nm (nanometer) range and produced estimates with R2 of 0.76 as 

compared to laboratory analysis. An R2 of 0.82 was reported by Starks et al., (2008) for nitrogen 

concentration to spectral reflectance in the 705-1685 nm range in warm season grass pastures..  
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Starks and Brown (2010) noted no cultivar specific model offered an advantage in improving 

estimation accuracy for nitrogen concentrations of three bermudagrass cultivars using hyperspectral 

reflectance measurements from 350-1125-nm. Guo et al., (2010) observed R2 values of 0.63 for 

forage CP (crude protein) estimation when hyperspectral data in the 350-2500 nm was collected in a 

semi-arid mixed prairie ecosystem. Biewer et al., (2009) examined spectral reflectance for 630-1000 

nm range in legume grass swards and reported an R2 of 0.86 for the relationship of estimated to 

laboratory analyzed CP. Albayrak (2008) published R2 values of 0.87 for nitrogen content prediction 

from spectral reflectance indices which 460 nm, 550nm, 650nm, and 780nm in sainfoin (Onobrychis 

sativa Lam.) pastures. Tang et al., (2004) reported R2 of 0.70 for CP to hyperspectral reflectance as 

well as R2 of 0.65-0.80 for hyperspectral reflectance to nitrogen concentration (Tang et al., 2007) in 

rice (Oryza sativa L.). Zhang et al., (2012) observed R2 of 0.96 for CP estimates from spectral data 

collected in the 200-1100 nm region when regressed with laboratory analysis in rice. Hyperspectral 

data has also been examined for correlation to nitrogen status in wheat (Triticum aestivum L.) 

(R2=0.44) and corn (Zea mays L.) (R2=0.72) (Chen et al., 2010). Eitel et al., (2008) reported NDVI 

(normalized difference vegetative index) to be only marginally correlated to chlorophyll 

concentration in dryland wheat (R2=0.46). Feng et al., (2014) reported R2 of 0.85 for wheat leaf 

nitrogen concentration and spectral reflectance at 755 and 680 nm. Fitzgerald et al., (2010) examined 

the correlation of canopy chlorophyll content index to canopy nitrogen content in wheat and observed 

an R2 of 0.97. Govind et al., (2005) found broad band spectral indices to be more sensitive to plant 

nitrogen content in wheat than hyperspectral reflectance indices. A limiting factor in utilizing the 

passive hyperspectral instruments implemented in these studies requires the need for consistent 

lighting conditions and small windows of optimal sampling conditions in the field. As a number of 

studies have shown, reflectance at visible to NIR (near infrared) spectra are highly correlated to 

nitrogen content in vegetation. It is intuitive that spectral sensing instrumentation which does not rely 

on environmentally variable lighting conditions and can acquire reflectance measurements will 

potentially provide a robust method for leaf nitrogen estimation. Erdle et al., (2011) recorded R2 
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values up to 0.96 for active spectral sensors acquiring reflectance measurements at 730nm and 760nm 

when regressed with wheat leaf nitrogen. Cabrera-Bosquet et al., (2011) reported R2 from 0.47 to 0.71 

between NDVI and above ground nitrogen content in wheat. Although a significant body of literature 

exists considering the relationship of spectral reflectance to vegetative nitrogen status, examination of 

active spectral sensing from a mobile platform for development of estimation models to predict 

forage crude protein have not been validated. 

Objective 

The objective of this project was to construct a predictive model from visible to NIR hyperspectral 

data from passive instrumentation and narrow band based RED to NIR spectral models from active 

sensors to approximate CP in bermudagrass (‘Midland 99’). The strategy employed included three 

components for constructing hyperspectral predictive models for CP: 1. Individual wavelength based 

model, 2.Eleven (10 nm wide) Band Model, 3. Three band model (69nm, 19nm, and 19nm wide). 

Additionally bermudagrass, tall fescue, and wheat CP estimation models were constructed using 

NDVI calculated from active sensor measurements. 

 

III. Methodology 

Bermudagrass Wheat and Tall Fescue Experiment Locations Descriptions and Design 

The bermudagrass experiment was conducted at the Noble Foundation Red River Research and 

Demonstration Farm near Burneyville, OK (33.88o N, 97.28o W; elevation 234 m.). The soils are 

characterized as Slaughterville fine sandy loam (coarse-loamy, mixed, superactive, thermic Udic 

Haplustolls) with N-nitrate at less than 5 g kg-1, soil test value of 64 g P kg-1, 52 g K kg-1 (amended 

with 178 kg ha-1 0-0-60), and pH of 6.3. The trial consisted of twenty eight plots per trial year (3.0 m 

x 6 m) treated with seven levels of N fertilizer ranging from 0 to 224 kg N ha-1 yr-1 in both 2012 and 
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2013. The 3.0 m width of these plots allow for splitting of the plots into two near identical side-by-

side 1.5 m wide plots for increased replication which resulted in fifty-six sub-plots. This resulted in 

four replications of a randomized complete block design (RCBD) with a split plot arrangement. The 

nitrogen applications were applied to ensure a range of CP, which would allow for viable trend 

analysis and model construction. These plots were sampled for hyperspectral data once in 2013 and 3 

times per year in both 2013 and 2014 for NDVI. 

Two wheat experiments were examined during the course of this study. The first wheat experiment 

was initiated at the Noble Foundation Unit 3 Farm in Ardmore, OK (34.17o N, 97.08o W; elevation 

268 m). The soils are characterized as Konsil loamy fine sandy with pH of 6.8 and N-nitrate, P, and K 

of 28, 50, and 111 g kg-1, respectively. This trial contained 80 (1.5 x 6 m) plots comprised of treated 

with seven levels of N fertilizer ranging from 0 to 224 kg N ha-1 yr-1 in 2014. Treatments were 

arranged in eight replications of a randomized complete block design (RCBD). A Hege 500 cone 

planter grain drill (Hege Equipment Inc., Colwich, KS) was used for planting wheat in 2014. As in 

the bermudagrass experiment, nitrogen applications were applied to ensure a range of CP, which 

would allow for viable trend analysis and model construction. Data was collected four times from 

October of 2014 to March of 2015. The second wheat experiment was initiated at the Noble 

Foundation Dupy Farm near Gene Autry, OK (34.29o N, 96.99o W; elevation 220 m.). The soils are 

characterized as Dale silt loam with pH of 7.3 and N-nitrate, P, and K of 11, 42, and 198 g kg-1, 

respectively. A Hege 500 cone planter grain drill (Hege Equipment Inc., Colwich, KS) was used for 

planting wheat in autumn 2014, and data was collected in November, December and January from 

sixty randomly selected plots. Three-hundred and fifty (1.5 x 3 m) plots of 70 wheat varieties were 

planted as part of variety selection trials. These were arranged in completely randomized block design 

(CRBD) with five replications.  

The tall fescue experiment was initiated at the Noble Foundation Unit 3 Farm in Ardmore, OK 

(34.17o N, 97.08o W; elevation 268 m). The soils are characterized as Konsil loamy fine sandy with 



50 

 

pH of 6.8 and N-nitrate, P, and K of 7, 25, and 55 g kg-1, respectively. This trial contained 40 (1.5 x 6 

m) plots treated with seven levels of N fertilizer ranging from 0 to 224 kg N ha-1 yr-1 in 2014. 

Treatments were arranged in four replications of a randomized complete block design (RCBD). Tall 

fescue plots were planted into a conventionally prepared seedbed using a Great Plains 3P605NT sod 

seeder (Great Plains Ag, Salina, KS). Data was collected seven times from April of 2014 to March of 

2015. 

For all experiments samples for laboratory NIRS FQA (forage quality analysis ) were acquired by 

hand clipping one 0.16 m2 (wheat and tall fescue) and two 0.11 m2 (bermudagrass) quadrat per plot to 

a 2.5-cm stubble height. Samples were dried in a forced draft oven at 50°C for five days prior to 

grinding and submission for analysis to the Samuel Roberts Noble Foundation NIRS laboratory 

(Ardmore, OK).  

Hyperspectral Data Collection: Bermudagrass Experiment 

Hyperspectral irradiance measurements were acquired at the canopy level for bermudagrass plots 

using a JAZ© passive hyperspectral spectrometer (Ocean Optics, Dunedin, FL) at 0.3 nm resolution 

from 340-1030 nm. The plots were each sampled six times for hyperspectral data using a JAZ field 

hyperspectral radiometer with three samples evenly spaced the length of the plot on the north 1.5m 

(north ½ width) and three on the south 1.5m (south ½ width). All hyperspectral data and FQA 

samples were collected within one hour at approximately one o’clock pm CST on a day which was 

characterized by very little wind and virtually no cloud cover (11-1-2013). Despite the autumn date of 

data collection no frost damage had yet been incurred by the bermudagrass and the vegetation was 

photo-synthetically viable. This late date was chosen as the air temperatures were mild enough to 

alleviate an over-heating issue which had rendered data from previous collection events unusable. 

Despite this precaution data for the fourth replication was not recorded due to equipment failure. This 

was not discovered until after leaving the location and subsequently acquisition of this data was not 
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possible as replication of the calibration and environmental conditions would have not been possible. 

The Jaz fibers were attached to a metal rod at approximately 122 cm above ground surface as to 

establish a consistent sensing height. The sensing footprint was approximately 0.11 m2.  

Active Spectral and Canopy Height Data Collection Bermudagrass, Wheat and Tall fescue 

Experiments 

In the bermudagrass experiment, A ground-based mobile platform was utilized for moving sensors 

across the trial areas using an electric golf cart (the golf cart was selected due to minimal suspension 

travel) fitted with drop spindles and oversized tires spaced at 1 m, to minimize contact with the 

biomass contained within the plot area (1.5 m x 6 m). The cart was custom-fitted with a mast 

extending from the front upon which sensors were attached. A single deep cycle 12 VDC marine 

battery was added to the cart and served as the power source for all sensors. Power and/or accessory 

power to all sensors was routed through a system power cycle switch by which all active data 

acquisition could be initiated or terminated simultaneously. A Greenseeker® (Trimble, Sunnyvale, 

CA) was employed to collect NDVI and IRVI (Infrared Vegetative Index) at rate of 20 Hz from each 

plot. Additionally, a GPS with OmniStar XP GNSS positioning (repeatability <10 cm, 95% CEP) was 

implemented to acquire position data for all sensor readings. The GPS was configured to output 

spatial data at a rate of 10 Hz such that multiple locations could be recorded within each plot. Height 

was measured using single beam 660 nm time of flight laser distance sensors (Pittman et al., 2015). 

Sensor data was collected from the wheat and tall fescue experiements using a gasoline-powered 

Spider high-clearance tractor (LeeAgra, Inc., Lubbock, TX) at a ground speed of approximately 1.6-

3.2 km h-1. The factory-installed spray mast attached to the front of the tractor was converted to a 

manifold configuration to accommodate sensors. A 12V deep cycle marine battery was also employed 

on this platform as the powers source for sensors. The Greenseeker® was also employed on this 

platform to collect NDVI at rate of 10 Hz for each plot. The same GPS with OmniStar XP GNSS 

positioning as described in the bermudagrass experiment was implemented to acquire spatial data for 
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all sensor readings. The GPS was configured to output data at a rate of 10 Hz such that multiple 

locations could be recorded within each plot.  

Data Acquisition and Post Processing 

A white standard was sampled after every third sample for irradiance corrections in post processing of 

hyperspectral data. A total of 63 samples were retained for analysis which included only three 

samples from fourth replication due to equipment failure and three omissions from reps 1, 2 and 3 due 

to corrupted data. Data were processed using Spectra Suite Software© (Ocean Optics, Dunedin, FL) 

with the white standard taken every third sample serving as the illumination correction standard. Dark 

standards for all processing were extracted from the initial calibration as no baseline shift was 

present. All spectral data were reported as relative reflectance values. All decimal wavelengths were 

averaged such as to provide one irradiance value per wavelength. For all active spectral experiments, 

all streams of data were captured real-time using AgriLogger or WinWedge Pro (Pittman et al., 2015) 

(WinWedge Pro©; TAL Technologies Inc., Philadelphia, PA). These software applications were not 

used simultaneously for concurrent data collection, and WinWedge Pro© was only used to capture 

data in initial stages of the bermudagrass experiment. Agrilogger was developed to allow only the 

user-specified rate of data acquisition to take place, while WinWedge Pro© captured all data from 

incoming streams at rates dictated by the transmitting hardware. Multiple instances of the application 

run simultaneously were necessary when using WinWedge Pro© where as Agrilogger was capable of 

collecting data from all incoming streams. AgriLogger enabled the user to insert identifiers real-time 

as data were acquired. The identifiers used to delineate plot areas from non-plot areas were inserted 

with a mouse click or touch-screen button and recorded on the single combined output file produced 

by Agrilogger. No plot delimiters could be inserted when using WinWedge Pro©, subsequently 

cycling of power to sensors was necessary in order to delineate plot areas via insertion of null values. 

Additionally, 1 output file was produced for each instance of the application running resulting in 

multiple output files for each data collection event when using WinWedge Pro©. The single file 
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produced when using Agrilogger was parsed based on spatial data with the recorded plot numbers 

being used as a quality control check measure. Data collected using WinWedge Pro© was parsed via 

spatial data with the occurrence of null values used as a quality control check. All NDVI, spatial and 

canopy height values were averaged on a by-plot basis to provide one composite value for each plot. 

Canopy height values were approximated using the method developed by Pittman et al. (2015). 

Data Analysis and Model Construction 

The data were split into a modeling data set and validation data set for each experiment. The data 

were sorted based on CP prior to splitting to ensure both modeling and validation sets contained 

consistent distributions of the CP range encountered. Modeling data for the hyperspectral 

bermudagrass experiment were examined for correlation to CP using SAS PROC CORR (SAS, 

2012). Variable importance plot scores (VIP) (Table 3.1) for hyperspectral data in relation to Pearson 

Coefficient (CP) were generated using partial least squares regression (SAS PROC PLS) (SAS, 

2012). The PROC PLS analysis of hyperspectral data allowed delineation the spectral areas which 

explained the most variation in CP. The product of the VIP and PC (VP Score) was used as a scoring 

mechanism to rank wavelength appropriateness for inclusion in predictive models (Table 3.1). The 

lower limit for model inclusion was set at a VP score above 0.68 as this provided inclusion of 3 

distinct tightly grouped spectral regions. Below this score no consistent pattern of regional scoring 

occurred. PROC PLS was then used to construct models using leave-one-out cross validation with 

1000 random permutations. Three models were constructed which included an individual wavelength 

based model, a ten nanometer band model and a spectral region band model (Table 3.2). The ten 

nanometer band model and spectral region model were based on averaged irradiance across the 

appropriate spectral region. Predictive models were constructed from 42 samples. Potential predictive 

accuracy for each model was evaluated based on the percent of variation explained by modeled 

variables for the dependent variable (VDV). Parameter coefficients were obtained from the PROC 

PLS output using the VARSS option. These coefficients were employed to calculate non scaled 
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Figure 3.1.Variable Importance Plot output from PROC PLS (SAS, 2012) for hyperspectral 
reflectance data collected from bermudagrass for CP estimation model variable selection. Spikes in 
the pattern indicate higher contribution in explanation of dependent variable variation (CP) and are 
more likely to contribute to accurate modeling. All variables with scores occurring beneath the 
exclusionary criterion line of 0.8 do not contribute significantly to the model. 

 

estimates from the calibration data and a conversion relationship was defined as regression equation. 

This combination of the coefficients and conversion equation (Table 3.3) were used to estimate CP 

for the remaining data not used in model construction (21 samples). Regression (PROC REG; SAS, 

2012) was used to evaluate the relationship of the CP estimates to the laboratory measured CP. Mean 

percent error (MPE) was between estimated and laboratory analyzed CP was calculated to illustrate 

the error associated with estimates. PROC MIXED was used to evaluate the nature of the relationship 

between CP and NDVI as well as IRVI for departure from linearity for all experiments (SAS, 2012).  
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Table 3.1.Pearson coefficients, Variable importance scores (VIP), and the product of VIP and PC (VP 
Score) for spectral reflectance for three CP estimation models in bermudagrass consisting of 
individual wavelengths in wide spectral regions, eleven 10nm bands, and three variable width 
regional bands. 

 

Wide Spectral Region Model Eleven 10nm Band Model Variable Bandwidth Model 

Wavelength PC VIP VP Wavelength PC VIP VP Band PC VIP VP 
440 -0.697 1.087 0.759 495 -0.768 0.913 0.701 440-449 -0.728 0.971 0.707 
441 -0.715 0.975 0.698 496 -0.773 0.918 0.71 450-459 -0.754 0.936 0.706 
442 -0.719 0.993 0.714 497 -0.776 0.923 0.716 460-469 -0.768 0.912 0.7 
443 -0.734 0.96 0.705 498 -0.771 0.914 0.705 470-479 -0.771 0.904 0.697 
444 -0.722 1.017 0.735 499 -0.773 0.916 0.708 480-489 -0.767 0.909 0.697 
445 -0.732 0.946 0.693 500 -0.776 0.916 0.711 490-499 -0.77 0.913 0.703 
446 -0.738 0.925 0.683 501 -0.776 0.915 0.71 500-509 -0.781 0.917 0.716 
447 -0.732 0.948 0.695 502 -0.775 0.91 0.705 560-569 -0.82 0.991 0.813 
448 -0.736 0.965 0.711 503 -0.777 0.913 0.71 570-579 -0.831 1.051 0.873 
449 -0.743 0.946 0.703 504 -0.78 0.917 0.715 700-709 -0.844 1.088 0.919 
450 -0.75 0.939 0.704 505 -0.782 0.92 0.72 710-719 -0.793 1.246 0.988 
451 -0.748 0.951 0.711 506 -0.782 0.919 0.719 
452 -0.745 0.955 0.712 507 -0.783 0.92 0.721 
453 -0.748 0.961 0.72 508 -0.785 0.92 0.723 
454 -0.75 0.937 0.703 509 -0.787 0.925 0.728 
455 -0.754 0.926 0.699 560 -0.811 0.968 0.785 
456 -0.754 0.937 0.707 561 -0.813 0.969 0.788 
457 -0.761 0.921 0.701 562 -0.817 0.984 0.805 
458 -0.765 0.916 0.701 563 -0.818 0.985 0.806 
459 -0.757 0.928 0.703 564 -0.82 0.991 0.813 
460 -0.762 0.923 0.704 565 -0.822 0.996 0.819 
461 -0.762 0.918 0.7 566 -0.823 0.999 0.822 
462 -0.766 0.911 0.699 567 -0.824 1.005 0.828 
463 -0.771 0.909 0.701 568 -0.825 1.01 0.834 
464 -0.772 0.904 0.699 569 -0.827 1.017 0.841 
465 -0.768 0.908 0.698 570 -0.826 1.012 0.836 
466 -0.767 0.914 0.701 571 -0.828 1.025 0.849 
467 -0.77 0.909 0.7 572 -0.829 1.037 0.86 
468 -0.765 0.92 0.705 573 -0.829 1.041 0.864 
469 -0.768 0.906 0.696 574 -0.83 1.048 0.87 
470 -0.776 0.899 0.698 575 -0.832 1.061 0.883 
471 -0.775 0.902 0.7 576 -0.832 1.066 0.888 
472 -0.774 0.904 0.7 577 -0.832 1.069 0.89 
473 -0.771 0.905 0.698 578 -0.833 1.078 0.898 
474 -0.768 0.908 0.697 579 -0.834 1.079 0.9 
475 -0.768 0.907 0.697 700 -0.837 1.121 0.938 
476 -0.768 0.905 0.695 701 -0.84 1.119 0.94 
477 -0.772 0.906 0.699 702 -0.843 1.12 0.944 
478 -0.767 0.906 0.695 703 -0.843 1.101 0.928 
479 -0.769 0.906 0.697 704 -0.845 1.102 0.932 
480 -0.765 0.906 0.693 705 -0.843 1.081 0.912 
481 -0.766 0.907 0.695 706 -0.843 1.081 0.912 
482 -0.763 0.907 0.693 707 -0.842 1.081 0.911 
483 -0.765 0.909 0.696 708 -0.843 1.093 0.922 
484 -0.769 0.911 0.702 709 -0.838 1.087 0.911 
485 -0.765 0.909 0.696 710 -0.836 1.097 0.918 
486 -0.766 0.907 0.695 711 -0.83 1.101 0.914 
487 -0.77 0.915 0.705 712 -0.824 1.13 0.932 
488 -0.766 0.909 0.697 713 -0.816 1.158 0.946 
489 -0.771 0.914 0.705 714 -0.803 1.205 0.968 
490 -0.769 0.913 0.703 715 -0.789 1.267 0.999 
491 -0.763 0.908 0.693 716 -0.775 1.322 1.025 
492 -0.766 0.91 0.697 717 -0.754 1.415 1.068 
493 -0.768 0.91 0.699 718 -0.719 1.577 1.134 
494 -0.768 0.912 0.701 719 -0.69 1.69 1.167 
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PROC PLS was implemented in the same way for NDVI model construction as in the hyperspectral 

model. 

Table 3.2.Three models examined for estimation of bermudagrass CP from hyperspectral reflectance 
data consisting of individual wavelengths in wide spectral regions, eleven 10nm bands, and three 
variable width regional bands 
 

 
 
 
 

Individual 
Wavelengths in 

Regions 

10 Nm 
Bands 

Regional 
Bands 

440-509 440-449 440-509 

560-579 450-459 560-579 

700-719 460-469 700-719 

470-479 

480-489 

490-499 

500-509 

560-569 

570-579 

700-709 

710-719 

VDV 73% 79% 68% 
 

Table 3.3. Parameter Coefficients for spectral bands and conversion equation to be applied post 
coefficient calculation for estimation of bermudagrass CP from hyperspectral reflectance data. 
 

Band (nm) Coefficient Conversion Equation 

440-449 4.38 y = 0.0362x2 + 2.4544x + 45.749 
450-459 2.92 x=Sum (Coefficient*Spectral  
460-469 1.56 Value) 
470-479 0.53 

480-489 -0.02 

490-499 -0.34 

500-509 -0.61 

560-569 -1.17 

570-579 -1.64 

700-709 -1.57 

710-719 0.46 
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Table 3.4.Model equations for prediction of CP from sensor data collected from a mobile platform for 
bermudagrass, wheat and tall fescue to be applied to validation data with seasonal influence where 
noted. 
 

Species Full Season Early Season 
 (Feekes 1-7) 

Late Season 
(Feekes 7-10) 

 
 
Bermudagrass 

 
30.68(NDVI4)+0.25(Laser 
Canopy Height cm)+3.13 

 
 

  

 
Wheat 

100-((11.63*NDVI3)+ 
(0.5*Laser Canopy 

Height cm)+ 
(50+IRVI2)+16) 

 
 

  

Tall Fescue  104(NDVI4)+7.33 16.5(NDVI4)+12 
 

VIP scores for the laser canopy height, IRVI, and NDVI were examined for model construction 

inclusion. Three instances of hardware failure and two instances of sampling error reduced the total 

number of observations for the bermudagrass experiment to 266 observations. This resulted in a 

modeling data set of 218 and a validation set of 48 samples. Additionally, due to sampling error and 

GPS failure, 176 total samples were retained for the tall fescue analysis contributing 63 to the 

validation data and 114 to model construction. Data for the wheat model consisted of 389 samples for 

model construction and 107 for validation, with four omissions due to laser sensor malfunction. All 

conversion and modeling equations for experiments in which data were collected from the mobile 

platform are included in Table 3.4. 

IV. Findings 

Hyperspectral Model-Bermudagrass 

CP concentrations from 74.7 (7.5%) to 168 (16.8%) g CP kg-1 were reported from the laboratory NIR 

analysis. This provided sufficient range to detect relationships between spectral data and CP 
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concentrations. Spectral data was collected for a region between 340nm and 1030nm. All spectral 

data with negative relative irradiance values were eliminated from the subsequent analyses. This 

reduced the effective spectral region examined to 440nm to 910nm. The VP scores further reduced 

the data to 110 individual wavelengths with regions from 440nm to 509nm, 560nm to 580nm, and 

700nm to 719nm. Of the three Models which were constructed using these spectra, the 10nm band 

model produced the highest VDV at 79%. The individual wavelength model produced a VDV of 73% 

and the wide band model produced a VDV of 68% (Table 3.2). As a result the 10 nm band model was 

 

Figure 3.2. Bermudagrass CP Estimates produced from a hyperspectral reflectance model regressed 
with CP measurements from laboratory analyzed samples. 

examined for predictive accuracy. Using the combination of the parameter estimates output from 

PROC PLS and the conversion equation, the measured to estimated CP for the validation data 

produced and R2 of 0.80 with an intercept of 3.82 (Figure 3.2). Additionally, 10.5% MPE was 

observed for estimates as compared to measured CP (Table 3.5).  

Active Spectral and Canopy Height Based CP Estimation Model-Bermudagrass 
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6

8

10

12

14

16

6 8 10 12 14 16

N
IR

S 
La

b
o

ra
to

ry
M

e
a

su
re

d
B

e
rm

u
d

a
 C

P
 g

 k
g

-1

Sensor Estimated Bermuda CP g kg-1



59 

 

CP concentrations ranged from 43 (4.3%) to 230 (23%) g CP kg-1 for bermudagrass as reported from 

NIRS laboratory analysis. Although the PROC MIXED analysis revealed no significant difference in 

the relationship of CP to NDVI as compared to square, cubed or quartic function of NDVI, the quartic  

Table 3.5.Laboratory measured CP and estimated CP from hyperspectral data collected on 
bermudagrass, as well as the by sample and Mean Percent Error (MPE) for validation data. 
 

Sample CP% 
(NIR) 

CP% 
Estimate 

% Error 

NS1011 7.58 10.01 0.32 

NS1021 10.14 9.8 0.03 

NS1031 14.15 12.2 0.13 

NS1041 14.66 11.84 0.19 

NS1053 13.55 12.96 0.04 

NS1063 7.47 10.4 0.39 

NS1073 11.03 10.94 0.01 

NS2021 7.84 8.42 0.07 

NS2031 15.87 13.63 0.14 

NS2034 15.87 14.22 0.10 

NS2043 9.30 10.62 0.14 

NS2053 13.19 13.98 0.05 

NS2062 16.16 15.09 0.06 

NS2072 10.90 9.47 0.13 

NS3011 14.42 12.86 0.10 

NS3023 9.49 9.46 0.01 

NS3032 16.80 16.73 0.00 

NS3043 7.83 7.9 0.01 

NS3052 14.12 11.77 0.16 

NS3063 13.93 13.81 0.01 

NS4011 14.36 13.65 0.04 

MPE 10.51 
 

NDVI based CP estimation model did though produced the highest VDV for CP (74.8%) in 

combination with laser canopy height estimates (Table 3.6). The only parameter selected for model 

construction inclusion was NDVI due to the fact the VIP scores for both laser estimated canopy 

height and IRVI both fell below the 0.8 threshold for inclusion (SAS, 2012). The MPE for NDVI 
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based CP estimation for bermudagrass was 11.66% (Table 3.6) and the linear regression relationship 

between the estimates and laboratory measured CP was characterized by an R2 of 0.85 (Figure 3.3). 

Active Spectral and Canopy Height Based CP Estimation Model-Tall Fescue 

Tall fescue CP reported from NIRS laboratory analysis ranged from 60 (6.0%) to 300 (30%) g CP kg-

1. The PROC MIXED analysis for tall fescue indicated a seasonal interaction, which influenced the 

relationship between tall fescue CP and NDVI measurements (SEASON P=0.0182). 

Table 3.6. Explanation of Variation in Dependent Variables (VDV) and Mean Percent Error (MPE) 
for CP estimation models from active spectral measurements and laser canopy height measurements 
for bermudagrass, wheat and tall fescue. Early Season (E: Feekes 1-7), Late Season (L:Feekes 7-10). 
 

Species/Model 
 

VDV 
 

MPE 
 

Bermuda 74.8% 12% 
WheatE 71% 9% 
WheatL 71% 23% 

Tall Fescue E 68% 16% 
Tall Fescue L 17% 19% 

 

Due to this interaction the tall fescue CP was examined by season and across seasons. NDVI was the 

only parameter selected for model construction inclusion due to the fact the VIP scores for both laser 

estimated canopy height and IRVI both fell below the 0.8 threshold for inclusion (SAS, 2012). 

Estimates regressed with laboratory CP analysis were observed as exhibiting an R2 of 0.63 across all 

seasons (Figure 3.4), 0.4104 (Figure 3.5) for fall and winter collected samples and 0.83 (Figure 3.6) 

for spring and early summer collected samples. The seasonal model for spring CP estimation (63 

model construction samples and 26 validation samples) from NDVI measurements offered a VDV of 

68% and MPE of 16% whereas that for fall (54 model construction samples and 33 validation 

samples) offered a VDV of only 17% and MPE of 19% (Table 3.6). This seasonal influence could 

likely be attributed to slow growing fall and winter forage with high CP concentrations though little 

photosynthetically viable biomass was present. While in contrast a higher volume of biomass was 
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produced in the spring growing season and provided a much more homogenous target for spectral 

reflectance measurements. 

Active Spectral and Canopy Height Based CP Estimation Model-Wheat 

Laboratory NIRS analysis reported a CP range for wheat of 135 (13.5%) to 390 (39.0%) g CP kg-1. 

The PROC MIXED analysis indicated no significance in interaction among seasonally categorized 

CP measurements, laser estimated canopy height, NDVI, or IRVI. The VIP score for all sensor 

measurements were above the inclusionary threshold of 0.8 (SAS, 2012). Subsequently all were 

selected for model inclusion with the highest VDV for NDVI occurring in association with the cubed 

function, the squared function for IRVI, and the untransformed function for laser canopy height 

(71%) (Table 3.6). The R2 for estimates as regressed to laboratory analyzed CP for the entirety of the 

validation data was 0.2725 (Figure 3.7) with an MPE of 14% (Table 3.6). In an effort to better 

understand this relationship the data was split into two sets: 1. data collected from 30 days after 

planting to the beginning of spring flush (November 2014 to February 2015: Feekes 1-7), and 2. data 

collected after the commencement of rapid spring growth (February 2015 to March 2015:  Feekes 7-

10). The regression relationship for senor based estimates to laboratory analyzed CP for the early 

season wheat was characterized by an R2 of 0.65 (Figure 3.8) with an MPE of 9% whereas the later 

season wheat relationship exhibited an R2 of 0.01 (Figure 3.9) with an MPE of 23% (Table 3.6). 

Some explanation of this can be offered in considering the potential CP variability which may occur 

due to mobilization of nitrogen in the wheat plant as morphological changes occur toward 

reproductive development in the spring. 
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Figure 3.3. Bermudgrass CP estimates from active spectral sensor and laser canopy height model 
regressed with laboratory analyzed CP for the same samples to examine the agreement of predicted 
values with measured values. 
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Figure 3.4. Tall fescue CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for early and full season forage growth for the same samples to examine the agreement 
of predicted values with measured values. 
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Figure 3.5. Tall fescue CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for fall and winter forage growth for the same samples to examine the agreement of 
predicted values with measured values. 
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Figure 3.6. Tall fescue CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for spring and early summer forage growth for the same samples to examine the 
agreement of predicted values with measured values. 
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Figure 3.7. Wheat CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for full season for the same samples to examine the agreement of predicted values with 
measured values. 
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Figure 3.8. Wheat CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for fall forage production for the same samples to examine the agreement of predicted 
values with measured values. 
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Figure 3.9. Wheat CP estimates from an active spectral sensor model regressed with laboratory 
analyzed CP for winter and spring forage production for the same samples to examine the agreement 
of predicted values with measured values 
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issue to examine as most hyperspectral instruments cannot be used from a mobile platform in an on-

the-go system where a continuous a stream of data is acquired as the system is moved across an area 

of interest. The ability to utilize sensing equipment in this on-the-go manner allows for data to be 

collected much more quickly over a greater area in substantially less time than would be necessary for 

the point type data collection associated with most hyperspectral instruments.  

In order to improve the accuracy with which CP can be modeled, further investigation using active 

spectral instrumentation that can obtain reflectance measurements for additional spectral bands or 

wavelengths could be contributive. Additionally, examination of a variety of forage species for sensor 

based CP estimation may also offer some insight to additional areas of spectra which may be 

appropriate for model inclusion. The models used for estimation of CP will likely be dependent on 

species and may be dependent on seasonally as well.  

The implications for decision making for stocking rates also should be considered as the data 

collected from a mobile platform such as used in this study, can provide estimates in substantially less 

time than would be expected for physical sample collection and laboratory sample submission. This 

type of system could also be useful for plant breeders in making cultivar selection for high quality 

forages without the time intensive data collection scenarios associated with sampling large collections 

of germplasm. 
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