
A NEW CHECKPOINT AND ROLLBACK FOR HIGH

AVAILABILITY OF MAPREDUCE COMPUTING

 By

 NIKHIL PENDEM

 Bachelor of Technology in Computer Science

 Kakatiya University

 Warangal, Telangana, India

 2011

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 July, 2015

ii

 A NEW CHECKPOINT AND ROLLBACK FOR HIGH

AVAILABILITY OF MAPREDUCE COMPUTING

 Thesis Approved:

 Dr. Nohpill Park

 Thesis Chair and Adviser

 Dr. Eric Chan Tin

Committee Member

 Dr. Johnson P. Thomas

Committee Member

iii
Acknowledgements reflect the views of the author and are not endorsed by committee
members or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Nohpill Park for the continuous

support of my thesis study and research, for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Eric Chan Tin Dr.

Johnson P. Thomas, for their encouragement, insightful comments.

I would like to thank my family for the support they provided me through my entire life and in

particular, I must acknowledge my best friend, Sridhar Vemula, without whose encouragement,

support and editing assistance, I would not have finished this thesis.

iv

Name: NIKHIL PENDEM

Date of Degree: JULY, 2015

Title of Study: A NEW CHECKPOINT AND ROLLBACK FOR HIGH

AVAILABILITY OF MAPREDUCE COMPUTING

Major Field: COMPUTER SCIENCE

Abstract: MapReduce is a programming model and an associated implementation for processing

and generating large data sets, so called big data. A MapReduce job usually splits the input data-

set into independent chunks which are processed by the maptasks in a completely parallel

manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. If

an error occurs in a name node other name node will take over the failed node and continues its

execution. Other than data node failure, if an error occurs during the program execution itself

then there must be a detection and recovery steps to correct the error.

A solution for this problem is to implement the checkpoint and rollback mechanism in the system.

When memory error occurs in the MapReduce program then execution in all the data nodes will

be stopped and it starts all over from the starting phase in hadoop. The proposed methodology is

to detect the heap space error [10] and provide a recovery operations by employing a new

checkpoint and recovery process. In order to realize this, a new phase based checkpoint and

rollback is proposed versus the hadoop default configuration. Once an error occurs in hadoop, the

memory size required by the program is raised then the configuration file setting is modified and

then a checkpoint is set and from there next phases will be executed. In this way, the entire

already completed phases are not needed to be re-executed. From the experimental results, the

hadoop availability is increased to 53.22% compared to the default hadoop configuration thereby

decreasing the running time of the application.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..4

 2.1 Checkpoint and rollback process in Hadoop ...4

 2.2 Checkpoint with a Standby NameNode ...6

III. PROPOSED METHODOLOGY ...9

 3.1 Error Injection ..10

 3.2 Error Detection in the Program ..10

 3.3 Configuration properties in Recovery operation..14

 3.4 Recovery through Java Virtual Calls ...14

 3.5 Error Recovery Process..16

 3.5.1 Error Recovery at Map Phase ...16

 3.5.2 Creation of Checkpoint ...18

 3.5.3 Error Recovery at Reduce Phase...20

IV. RESULTS ..22

 4.1 Software requirements ...22

 4.2 Evaluation ..22

 4.2.1 Calculation of Hadoop Availability ..22

 4.2.2 Total time with no error ..23

 4.2.3 Total time with error at map phase ...25

 4.2.4 Total time with error at reduce phase ...28

 4.3 Comparison of existing approaches with new methodology30

V. CONCLUSION ..33

REFERENCES ..34

vi

LIST OF TABLES

Table Page

 4.1 Total time with no error ..23

 4.2 Total time with error at map phase ...26

 4.3 Total time with error at reduce phase ...28

 4.4 Comparison of existing approaches with new methodology30

vii

LIST OF GRAPHS

Graph Page

 4.1 Availability Comparison with no error ...24

 4.2 Total time with no error: Normal Hadoop Vs New Hadoop25

 4.3 Availability Comparison with error at map phase ..27

 4.4 Total time with error at map phase: Normal Hadoop Vs New Hadoop..............27

 4.5 Availability Comparison with error at map phase ..29

 4.6 Total time with error at reduce phase: Normal Hadoop Vs New Hadoop30

viii

LIST OF FIGURES

Figure Page

 2.1 Checkpoint creates a new fsimage from an old fsimage and edit log5

 2.2 Checkpoint with NameNode configured ..7

 3.1 Normal MapReduce flow in the proposed new hadoop configuration11

 3.2 Error at Map phase ..12

 3.3 Error at Reduce phase ...13

 3.4 Modification of configuration properties ..14

 3.5 Facilitation through RMI ..15

 3.6 Error recovery at Map phase ...17

 3.7 Error recovery at Reduce phase ..21

1

CHAPTER I

INTRODUCTION

MapReduce is a new paradigm of applications computing to run on top of very large commodity

clusters. However, it is pointed out that a system composed of 10 thousand super reliable servers

can watch one fail per day [1]. Fault-tolerance is an important aspect in large clusters because the

probability of node failures increases with the growing number of computing nodes

exponentially. This is confirmed by a 9-year [2] study of node failures in large computing

clusters. Moreover, large datasets themselves are flawed, and contain data inconsistencies and

missing values (bad records) [3] to mention a few. This may, in turn, cause a task or even an

entire application to crash. The impact of task and node failures may be considerable in terms of

performance as well as reliability or availability.

MapReduce makes task and node failures invisible to users it automatically reschedules failed

tasks — due to a task or node failure — to available and optimal nodes. However, re-computing

failed tasks from the scratch as exercised in current default hadoop configuration can significantly

decrease the performance of long-running applications [4] — especially for applications

composed of several MapReduce jobs — by propagating and adding up delays. A common

solution is to checkpoint and save the state of ongoing computation on stable storage and resume

the computation from the last and known-safe checkpoint in case of failures. However,

checkpointing ongoing computation in MapReduce is challenging for several reasons:

2

(1) Checkpointing techniques require the system to replicate intermediate results on stable

storage. This can significantly decrease performance as MapReduce jobs often produce large

amounts of intermediate results [1].

(2) Keeping and sustaining checkpoints information on a stable storage generally requires heavy

use of network bandwidth, which is a the most known bottlenecking resource in MapReduce

systems [1].

(3) Recovering tasks from failures intermediate results from stable storage commit both network

and I/O resources heavily resuming [1].

Therefore, utilizing a straight-forward usage of traditional checkpointing techniques [5], [6]would

significantly decrease the performance of MapReduce jobs.

There is a few resilient map task checkpointing tactics(ReCT) such that map tasks create

checkpoints on the fly, making it possible to implement fault tolerance strategies behind the task

operations.

One of the existing checkpoint and rollback scheme is ReCT and it features the following

capabilities [7]:

1) Enhanced Map Task Checkpointing: Whenever a mapper generates an output spill, the mapper

sends meta data of this spill to the master. Reducers shuffle spill files created by mappers rather

than per-map output files. When a task attempt fails, a retry attempt will skip finished input

ranges.

2) Resilient Checkpoint Creation: Finer-grained checkpoint creation policy is included in ReCT.

Users can tell ReCT to create checkpoints at periodic intervals, or every time after certain amount

of input data is processed.

3

3) Comprehensive Evaluation: The word count program has been used as the most simple and

pure application of MapReduce, to comprehensively analyze behaviors, overhead and

performance improvement under task failures in ReCT [7]. Realistic data and applications are

also adopted in this evaluation to better understand both pros and cons of ReCT [7].

In this work, we implement the checkpoint and recovery methods to fix the memory errors such

as Java heap space [10] in the MapReduce program. The implementation is different from ReCT,

the proposed methodology will create checkpoints based on phase level while ReCT create

checkpoints at periodic intervals, or every time after certain amount of input data is processed. If

an error occurs in the program we increase the memory size required by the program and perform

the recovery operation. Thus we decrease the running time of MapReduce application by not

executing the already completed phases. In this way, the performance of MapReduce application

will be increased by achieving higher Hadoop availability as compared to the existing Hadoop

architecture.

4

CHAPTER II

REVIEW OF LITERATURE

The existing checkpoint mechanism in default Hadoop architecture will be reviewed in this

chapter.

2.1 Checkpoint and rollback process in Hadoop

Checkpointing is a vital of keeping up and enduring filesystem metadata in HDFS. It's pivotal for

productive NameNode recovery and restart, and is an essential marker of overall cluster health.

At an abnormal state, the NameNode's essential obligation is storing the HDFS namespace. This

implies things like the directory tree, file permissions consents, and the mapping of file to block

IDs. It's vital that this metadata are securely continued to stable storage for fault tolerance.

Normally, this filesystem metadata is put away in two distinct constructs [8]:

1. fsimage 2. edit log

The fsimage is a file that represents to a point-in-time snapshot of the filesystem's metadata. On

the other hand, while the fsimage document format is exceptionally productive to read, its

unsatisfactory for making little incremental upgrades like renaming a single file. Therefore, as

opposed to composing another fsimage every time the namespace is altered, the NameNode rather

records the modifying operation in the edit log for durability. Along these lines, if the NameNode

5

crashes, it can restore its state by first stacking the fsimage then replaying every one of the

operations in the edit log to make up most recent state of the namesystem. The edit log embodies

a progression of files, called alter log portions, that together speak to all the namesystem changes

made since the creation of the fsimage.

When checkpoint has to create?

An average edit ranges from 10s to 100s of bytes [8], however over time edits can accumulate to

become unwieldy. Several issues can emerge from these vast edit logs. In extreme cases, it can

fill up all the available disk capacity on a node, a huge edit log can significantly defer NameNode

startup as the NameNode reapplies all the edits. This is the place checkpointing comes in.

Checkpointing is a process that takes a fsimage and edit log and compacts them into another

fsimage. In this way, as opposed to replaying a possibly unbounded edit log, the NameNode can

load the last in-memory state directly from the fsimage. This is a much more effective operation

and diminishes NameNode startup time.

Fig. 2.1 Checkpoint creates a new fsimage from an old fsimage and edit log

 During a checkpoint, the namesystem also needs to restrict concurrent access

from other users. So, rather than pausing the active NameNode to perform a checkpoint, HDFS

defers it to either the Secondary NameNode or Standby NameNode, depending on whether

NameNode high-availability is configured.

6

2.2 Checkpoint with a Standby NameNode

High Availability(HA) Name Node is to add support for deploying two Name Nodes in an

active/passive configuration. This is a common configuration for highly-available distributed

systems, and HDFS’s architecture lends itself well to this design. Even in a non-HA

configuration, HDFS already requires both a Name Node and another node with similar hardware

specs which performs checkpointing operations for the Name Node. The design of the HA Name

Node is such that the passive Name Node is capable of performing this checkpointing role, thus

requiring no additional Hadoop server machines beyond what HDFS already requires.

 The standby NameNode maintains a relatively up-to-date version of the

namespace by periodically replaying the new edits written to the shared edits directory by the

active NameNode. As a result, checkpointing is as simple as checking if either of the two

preconditions are met, saving the namespace to a new fsimage, then transferring the new fsimage

to the active NameNode via HTTP.

7

Fig. 2.2 Checkpoint with NameNode configured

Here, Standby NameNode is abbreviated as SbNN and Active NameNode as ANN [8]:

 SbNN checks whether either of the two preconditions are met: elapsed time since the last

checkpoint or number of accumulated edits.

 SbNN saves its namespace to an a new fsimage with the intermediate name

fsimage.ckpt_, where txid is the transaction ID of the most recent edit log transaction.

Then, the SbNN writes an MD5 file for the fsimage, and renames the fsimage to

fsimage_. While this is taking place, most other SbNN operations are blocked. This

means administrative operations like NameNode failover or accessing parts of the

SbNN’s are blocked. Routine HDFS client operations like reading, and writing files are

unaffected as these operations are serviced by the ANN.

8

 SbNN sends an HTTP GET to the active NN’s GetImageServlet at

/getimage?putimage=1. The URL parameters also have the transaction ID of the new

fsimage and the SbNN’s hostname and HTTP port.

 The active NN’s servlet uses the information in the GET request to in turn do its own

GET back to the SbNN’s GetImageServlet. Similar to the standby, it first saves the new

fsimage with the intermediate name fsimage.ckpt_, creates the MD5 file for the fsimage,

and then renames the new fsimage to fsimage_.

9

CHAPTER III

PROPOSED METHODOLOGY

In the proposed methodology, a new checkpoint and rollback process in a different manner will

be implemented. In MapReduce program if there is any error occured then the program will be

suspended in the middle of execution. Since this is not a node failure no other node takes over the

remaining program for execution.

It is particularly targeted at memory errors such as java heap space error [10] in the MapReduce

program. Memory errors may be a serious issue in distributed applications, exhausting their

performance [9], regardless of the capability that they keep running on platforms with automatic

memory recovery as exercised in Java Virtual Machine (JVM). A memory error in a modern JVM

will cause an expensive restart of the JVM.

OBJECTIVE

The goal of this work is to increase the Hadoop availability. To achieve this a new phase-based

checkpoint and rollback method is developed. This methodology handles the heap space error

[10] which frequently occurs in MapReduce applications, it provides the necessary and efficient

recovery operations. If an error occurs in the MapReduce program, instead of terminating it in the

middle, the program will be tuned by increasing the memory size and split size. Then the

execution flow will roll back to the most recent checkpoint, from that point onwards the next

phase will be executed. Hadoop availability is compared with the default hadoop configuration.

10

3.1 Error Injection:

Error injection in MapReduce program is done through a command line argument. An argument

to the MapReduce program passed to specify the error type. It can be either the map-error,

reduce-error or no-error. The following command is an example of injecting the error.

$ hadoop jar <jar-filename> maperror <size of input in GB> <input-path> <output-path>

Default value of maximum heap space is set to 10MB in hadoop. This is done by setting the

"mapred.child.java.opts" to Xmx10M in the configuration file. If a maperror is passed to the

program, then an error at the map phase will occur. Then the MapReduce program will be tuned

by increasing the split size and memory size , as to be shown later. Java xmx is the maximum

memory allocation pool for a Java Virtual Machine (JVM) and if this sets to a lesser value then a

Heap Space Error will occur.

The implementation of checkpoint and rollback recovery process is summarized as follows.

 Error detection in the program

 Modifying configuration properties in recovery operation

 Recovery through Java Virtual Remote Calls

 Error Recovery Process

 Increasing the MapReduce Performance

3.2 Error Detection in the Program

If MapReduce program has terminated abruptly then there should be an error occurred in the

program. It is proposed in this work how to detect the error occurred in MapReduce and provides

the necessary solution to it. Particularly heap space error is targeted for detection in the

MapReduce program.

11

A thread is maintained in parallel to the MapReduce application and it will monitor the

implementation and process of completion of each phase. If the execution flow of each phase is

normally running during the MapReduce phase then it is an identification of no error in the

program. Otherwise, an error occurs in the MapReduce program.

The following diagram illustrates the normal flow of a MapReduce application in the proposed

new hadoop configuration.

Fig. 3.1 Normal MapReduce flow in the proposed new hadoop configuration

12

Initially, the input is taken from HDFS and InputFormat class is used to split the input into

multiple file splits. After dividing the file the initial checkpoint will be created. Once the initial

phase checkpoint is created the Map task will be executed. After successful completion of these

map tasks another checkpoint will be created called as intermediate phase checkpoint.

The next step in the MapReduce is Reduce phase where the output of each map task is processed

to the reduce phase. After successful completion of the reduce phase, a final phase checkpoint

will be created. After creating the final checkpoint in the MapReduce program all checkpoints

will be removed to save the memory in the local system.

Error at Map phase:

The following flow illustrates the error location occurred during the Map task.

Fig. 3.2 Error at Map phase

In the conventional MapReduce program, if an error occurs during map phase then the program

terminates in the middle of execution. But in the proposed methodology, if an error occurs during

the map phase the program will be tuned and the control will move over to the initial phase

checkpoint.

13

If an error occurs before the map task, i.e., at the Record Reader, then the input from the HDFS

will have to be obtained and then the file split operation is performed and the initial checkpoint

will be created. Then, it will proceed to the next phases.

Error at Reduce phase:

The following diagram illustrates an error occurs in Reduce phase.

Fig. 3.3 Error at Reduce phase

In conventional MapReduce program, if an error occurs during Reduce phase the execution flow

will be stopped in the middle of the execution and the program will be terminated. In this

methodology, instead of terminating it in the middle it will roll back to the immediate checkpoint.

Checkpoints will be created in each phase of MapReduce program such as checkpoints at Map

phase and Reduce phase. If any error occurs in any phase then program will roll back to the

nearest checkpoint which is created and known to be safe in MapReduce program.

14

3.3 Configuration properties in recovery operation

In the proposed methodology targeting at the heap space error, the following default attributes

will be considered and modified in the configuration file. They are split size, the number of splits

and the java xmx value.

Fig 3.4 Modification of configuration properties

Initially by deafult maximum heap size is set to 10 MB by using the configuration property

"mapred.child.java.opts", "-Xmx10m". Then, memory size will be modified based on the xmx

value. If xmx value is in between 10 and 50, then memory size will be modified to 100MB or if

xmx value is in between 50 and 100 then memory size will be modified to 150MB. In this way,

MapReduce will be tuned by modifying the maximum heap space size in the configuration file.

MapReduce application can also be tuned by increasing the split size. The initial split size is 128

MB and its value will be set by using the "mapred.max.split.size" property in the configuration

file. The split size will be modified according to the xmx value. If maximum heap size (java xmx)

value is in between 100 and 150, then split size will be modified to 150MB.

By modifying the above two configuration properties, the MapReduce application can be tuned

and recovered to a normal operation.

3.4 Recovery through Java Virtual Remote Calls

 In this process, the MapReduce application is tuned to increase its performance

15

and then a recovery process will be performed. Initially, the error occurred in the MapReduce

program is detected and then the most recent checkpoint in the program is checked.

Java Virtual Remote Calls

 The intermediate results in the map phase are stored in the individual local nodes

with unique triplet string of 12 bytes length. It is sufficient to store the checkpoint information

which includes the task ID and unique identifier. This data is stored in the local nodes, and a

custom Java remote method invocation sends the data to the Reducer node. The custom built

reducer input format takes in the intermediate data from the map phase and feeds it to

WrappedReducer. A Wrapped Reducer extends the user defined Reducer class and appends some

built-in helper methods.

Fig. 3.5 Facilitation through RMI

If the intermediate data is stored in the local HDFS, then this data and new configuration files will

be passed to the reduce phase such that it re-executes the reduce phase. Thus, it can lead to the

memory error in recovery process. As it starts from the middle of MapReduce program, that is,

from Reduce phase, it will take less time to complete its execution.

16

3.5 Error Recovery Process

A new phase level checkpoints is proposed, particularly checkpoints at Map phase and Reduce

phase are implemented.

 In the proposed MapReduce recovery process intermediate results are stored and

kept at several points in time to checkpoint the computing progress done by mappers and

reducers. This enables MapReduce to rollback and resume tasks from last checkpoints in case of a

task failure.

 As conventional MapReduce does not keep the progress of tasks, it must perform

failed tasks from the beginning. A Local Checkpointing is employed to deal with this. This

checkpointing stores task progress computation on the local disk of tasks without sending replicas

through the network so as to not increase network. It might seems like that local checkpointing

may considerably slow down tasks, since it has to repeatedly write all checkpoint information to

disk, including the output produced so far. In the proposed approach, however, tasks only perform

local checkpointing when they store intermediate results of tasks to disk anyway.

3.5.1 Error Recovery at Map Phase:

If a memory error occurs at map phase, a tuning operation is performed and will roll back to the

initial checkpoint.

17

Fig. 3.6 Error recovery at Map phase

After the initial checkpoint, the intermediate data stored in the local storage will be collected and

send this data to the map phase by using the RMI (Remote Method Invocation) method. Then.

this RMI will collect the data from the local disks and send them to the map phase. Finally, the

corresponding next phases will be executed up next as scheduled.

Pseudo code for error recovery at Map phase:

initCheckpoint(jb); //known as initial checkpoint

 try{

 userDefinedMap();

 // in the above method, we will retrieve the stored key value pairs from LOG

 // then we will run the all map methods in parallel

 // after successful completion above method the reduce phase will be performed

 } catch(HadoopMemoryException e){

 }

 initCheckpoint(jb); //known as intermediate checkpoint

18

3.5.2 Creation of Checkpoint

Initially, a checkpoint will be created called as initial checkpoint and then a Map method will be

called. If any error occurs in the Map phase then the memory size, split size will be increased.

Then, the most recent checkpoint information will be obtained and the Map-Recovery method

will be called. This method will have the information about the Map phase and tuning data with

the most recent checkpoint so that we do a recovery from the error at Map phase. After successful

completion of map phase intermediate checkpoint is created.

Pseudo code for creating the checkpoint:

begin initCheckPoint(JobHelper jb)

 CheckPoint chk = null;

 JobContext jb = getJobContext();

 if jb.isLocalCheckpoint() then

 chk = new LocalCheckPoint(jb);

 if jb.isRemoteCheckpoint() then

 chk = new RemoteCheckPoint(jb);

end

The above pseudo code is used to create a checkpoint in the program, and it can be either a local

checkpoint or remote checkpoint.

Pseudo code for creating local checkpoint:

begin LocalCheckpoint(JobHelper jb)

 String jobID = JobHelper.getJobID(context);

 String taskID = JobHelper.getTaskID(context);

 String id = jobID +":" +taskID;

 byte[] md5 = MD5Hash.digest(id.getBytes()).toString().getBytes();

 LocalFileSystem fs = FileSystem.getLocal(context.getConfiguration());

19

 Path inputPath = fs.makeQualified(new

Path("/opt/"+jobID+"/"+taskID+".tmp"));

 fs.mkdirs(inputPath);

end

In the above pseudo code, a local checkpoint is created in the local file system. The jobID, taskID

are retrieved and these two ids are combined. The local checkpoint will focus on task blocks in

the local file system where input is stored. With the id generated, an md5 will be created and by

using all the above the local checkpoint will be created. The checkpoint path will be stored in

local file system.

Pseudo code for creating remote checkpoint:

begin RemoteCheckpoint(JobHelper jb)

 String taskID = JobHelper.getTaskID(context);

 String id = jobID +":" +taskID;

 byte[] md5 = MD5Hash.digest(id.getBytes()).toString().getBytes();

 FileSystem fs = FileSystem.get(context.getConfiguration());

 Path inputPath = fs.makeQualified(new

Path("/user/tmp/"+jobID+"/"+taskID+".tmp"));

 fs.mkdirs(inputPath);

end

Creation of remote checkpoint is the same as creation of local checkpoint, except that it focuses

on hadoop filesystem rather than local file system. Remote checkpointing is a backup checkpoint,

because if a data node fails then the checkpoints which was created in the local system may get

lost. To address this, a remote checkpoint will have the equivalent checkpoint data, so that if any

data node fails it can be recovered from this remote checkpoint.

 A mapper executes this algorithm when it splits intermediate results to local disk.

Local Checkpointing first retrieves progress information from the buffer containing input data

before allowing for any further computation on the input buffer. After that, the mapper writes the

20

splits to local disk by parallel threads. If the split is correctly written, it proceeds to stored to the

local checkpoint storage on disk.

A simple string of 12 bytes length is sufficient to store the checkpoint information: taskID, a

unique task identifier that remains invariant over several attempts of the same task; splitID, the

local path to the split data; offset, specifying the last byte of input data processed by splitting

time. If an earlier checkpoint existed, it would be simply overwritten. Notice that split data is

implicitly chained backwards. Thus, any checkpoint with a reference to the most recent split is

sufficient to locate all earlier split files as well.

3.5.3 Error Recovery at Reduce phase:

If an error occurs at the reduce phase then the MapReduce program will be tuned and then roll

back to the intermediate checkpoint.

Pseudo code for error recovery at Reduce phase:

initCheckpoint(jb); // known as intermediate checkpoint

try{

 userDefinedReduce();

 // in the above method, it will combine map output key value pairs

 // we tune the MapReduce application

 // then it will perform recovery operation

 } catch(HadoopMemoryException e){

 }

 initCheckpoint(jb); //known as final checkpoint

 cleanupCheckpoints(true);

After successful completion of map phase one more checkpoint called as intermediate checkpoint

will be created then the reduce method will be called. If any error occurs in the reduce phase then

the memory size is increased and then recovery method will be called. This method will pass the

21

information about the Reduce phase tuning data with the most recent checkpoint so that a

recovery from the error at Reduce phase can be performed correctly.

Upon successful completion of Reduce phase another checkpoint referred to as the final

checkpoint will be created. Once the final checkpoint is created and the program doesn't cause

any error then all the checkpoints will be removed by calling the below method.

Fig. 3.7 Error recovery at Reduce phase

Pseudo code for deleting all checkpoints:

begin cleanCheckpoints()

 LocalFileSystem fs = FileSystem.getLocal(context.getConfiguration());

 fs.delete(inputPath);

end

The above pseudo code deletes the all checkpoints created in the program.

22

CHAPTER IV

RESULTS

4.1 Software requirements:

Operating system: Linux

Total Memory: 16 GB

Number of cores: 16

Number of nodes: 2

The proposed architecture can run for any MapReduce job. The word count program is used as a

benchmark to get the following findings.

 4.2 Evaluation:

The total time is the sum of running time and recovery time. Running time is the sum of map

phase time and reduce phase time. If an error occurs in the application, then the recovery time is

the time taken to dispatch the split, map or reduce phase from its last checkpoint.

4.2.1 Calculation of Availability:

Definition: It is the proportion of time a system is functioning [11], which is commonly referred

23

to as “uptime” (vs. downtime, when the system is not functioning). The Hadoop Availability is

defined by the following.

If t1 is the time taken to fail the maptask1 and t2 is the time taken to fail maptask2 then Mean

time to error occur = (t1+t2)/2.

4.2.2 Total time with no error

If no error has occurred in the MapReduce program then the execution of general Hadoop

architecture is faster than the new framework. The following table presents the Map-MTE (Mean

time to Error occur in map phase in node 1, 2), Reduce-MTE (Mean time to Error occur in reduce

phase in node 1, 2), checkpoint time in the MapReduce program with no error in it.

Input(GB)
 Map-MTE

(ms)

Reduce-MTE

(ms)

Checkpoint

time(ms)

1
Normal Hadoop 756926 265636 0

New Hadoop 756926 265636 3987

2
Normal Hadoop 1262358 452024 0

New Hadoop 1262358 452024 5643

3
Normal Hadoop 1728417 667499 0

New Hadoop 1728417 667499 7543

4
Normal Hadoop 2473399 862221 0

New Hadoop 2473399 862221 9765

5
Normal Hadoop 2968194 1039286 0

New Hadoop 2968194 1039286 13857

Table 4.1 Total time with no error

If the program runs with no error, then conventional hadoop architecture will execute faster than

the new proposed configuration as the checkpoint creation will take some time in the MapReduce

program. Thus, the total time for new configuration will take more time compare to the

conventional hadoop.

24

The availability in conventional hadoop with any input size is 100%, because there won't be any

error occurred in it. Availability with no error is defined as follows.

*100

For 1GB input size, availability in conventional hadoop

 = (1022562 / 1022562)*100 = 100%

For 1GB input size, availability in new hadoop

 = (1022562)/(1022562+3987)*100 = 99.61%

In the new hadoop, checkpoint time is added to the recovery process thus the availability has

decreased by 0.38% in the new methodology. Similarly, the availability for the remaining input

sizes for new methodology can be calculated.

The following graph illustrates the availability between conventional hadoop and new Hadoop

with no error in the program. The x-axis is the input size in GB and y-axis is the availability.

Graph 4.1 Availability comparison with no error

99.4

99.5

99.6

99.7

99.8

99.9

100

1 2 3 4 5

A
va

ila
b

ili
ty

Input(GB)

Availability comparison with no error

Normal Hadoop

New Hadoop

25

Based on Table 4.1 the following graph is plotted. It compares the total time between normal

Hadoop and new Hadoop architecture with no error in the program.

The total time is calculated as the sum of Map-MTE, Reduce-MTE and checkpoint time.

The x-axis is the input in GB and y-axis is the total time in milliseconds.

Graph 4.2 Total time with no error: Normal Hadoop Vs New Hadoop

From the above graph the conventional hadoop executes faster than the new hadoop , as the

creation of checkpoint will take few milliseconds in the proposed method.

4.2.3 Total time with error at map phase:

If a memory error occurs in the map phase then all nodes will be shut down and it has to start

from the initial checkpoint thus it is not needed to do split operation. As checkpoint has already

have split data and downtime will be decreased by not performing split operation.

The following table presents the Map-MTE (Mean time to Error occur in map phase in node 1,

map phase time, reduce phase time, and recovery time on running the MapReduce program with

error at map phase.

500000
1500000
2500000
3500000
4500000
5500000
6500000
7500000
8500000

1 2 3 4 5 T
o

ta
l

ti
m

e(
m

s)

Input(GB)

Total time with no error

Normal Hadoop Vs New Hadoop

New Hadoop

Normal Hadoop

26

Input(GB) Map MTE(ms) map phase

time(ms)

reduce phase

time(ms)

recovery

time(ms)

1
Normal Hadoop 267561 756926 265636 196800
New Hadoop 267561 698757 265636 5676

2
Normal Hadoop 564323 1262358 452024 391330
New Hadoop 564323 1098748 452024 6574

3
Normal Hadoop 876564 1728417 667499 290728
New Hadoop 876564 1437689 667499 8756

4
Normal Hadoop 953259 2473399 862221 667817
New Hadoop 953259 2097864 862221 10568

5
Normal Hadoop 1564395 2968194 1039286 831094
New Hadoop 1564395 2563270 1039286 15642

Table 4.2 Total time with error at map phase

 is used in this evaluation.

With an error at map phase the conventional hadoop architecture will terminate the program in

the middle and re-execute the flow from the scratch. In the proposed methodology, the execution

flow will be rolled back to the initial checkpoint and perform the further operations from there.

Thus total time for new framework will take less time compared to the conventional hadoop.

For the input size of 1 GB, the availability in conventional Hadoop is,

availability = [(267561) / (267561+196800)]*100 =57.61%

and availability in the new Hadoop architecture =

[(267561) / (267561+5676)]*100 = 97.92%

The availability is increased by 40.30%. Similarly, the availability for the remaining input sizes

are evaluated.

The following graph illustrates the availability between conventional hadoop and new Hadoop

with error at map phase. The x-axis is the input size in GB and y-axis is the availability.

27

Graph 4.3 Availability comparison with error at map phase

From the above graph, for any input size, conventional hadoop availability is lesser compared to

the new hadoop availability. This is achieved by decreasing the total running time.

From Table 4.2 the following graph is plotted. It describes the total time between conventional

Hadoop and the new Hadoop architecture with error at map phase. The x-axis is the input in GB

and y-axis is the total time in milliseconds.

Graph 4.4 Total time with error at map phase: Normal Hadoop Vs New Hadoop

40
45
50
55
60
65
70
75
80
85
90
95

100

1 2 3 4 5

A
va

ila
b

ili
ty

Input(GB)

Availability comparison with error at
map phase

Normal Hadoop

New Hadoop

500000

1500000

2500000

3500000

4500000

5500000

6500000

1 2 3 4 5 T
o

ta
l

ti
m

e(
m

s)

Input(GB)

Total Time with error at Map phase

Normal Hadoop Vs New Hadoop

Normal Hadoop

New Hadoop

28

Above graph illustrates the new framework executes faster than normal Hadoop. For any input

size the total time in new hadoop architecture is lesser compared to the conventional hadoop.

 4.2.4 Total time with error at reduce phase:

If memory error occurs in the reduce phase, then it has to restart its execution from the

intermediate checkpoint. Thus, there is no need to do split operation and map phase, because

checkpoint has already has split data and map phase output. The downtime will be decreased by

not performing split operation and map phase, and downtime= recovery time + reduce phase

time.

Therefore, from the above equation,

The following table presents the Reduce-MTE (Mean time to Error occur in reduce phase in node

1,2), map phase time, reduce phase time, and recovery time on running the MapReduce program

with error at reduce phase.

Input(GB) Reduce MTE

(ms)

map phase

time(ms)

reduce phase

time(ms)

recovery

time(ms)

1 Normal Hadoop 678543 756926 265636 783489

New Hadoop 678543 0 265636 2453

2 Normal Hadoop 1564385 1262358 452024 1266878

New Hadoop 1564385 0 452024 2987

3 Normal Hadoop 1876897 1728417 667499 1735091

New Hadoop 1876897 0 667499 39815

4 Normal Hadoop 2564379 2473399 862221 2482021

New Hadoop 2564379 0 862221 5743

5 Normal Hadoop 3075279 2968194 1039286 2978586

New Hadoop 3075279 0 1039286 7429

Table 4.3 Total time with error at reduce phase

29

With 1GB input data, availability in conventional Hadoop%= [678543/(678543+783489)]*100

 =46.41%

and availability in the new Hadoop architecture = [678543/(678543+2453)]*100

 =99.63%

With 1 GB input data, the availability in conventional Hadoop and the new Hadoop are 46.41 %

and 99.63 %, respectively. The availability achieved in proposed methodology has 53.22% more

compared to the conventional hadoop architecture.

The following graph compares the availability between conventional hadoop and new Hadoop

with error at reduce phase. The x-axis is the input size in GB and y-axis is the availability.

Graph 4.5 Availability comparison with error at reduce phase

The above graph illustrates that the availability in the new Hadoop architecture is much higher

compared to the conventional hadoop. Actually, map phase will take a lot of time compared to the

reduce phase. If an error occurs at reduce phase in conventional hadoop, then it will re-execute

the map phase. Thus, the map phase time can be saved in new methodology.

40
45
50
55
60
65
70
75
80
85
90
95

100

1 2 3 4 5

A
va

ila
b

ili
ty

Input(GB)

Availability comparison with error at
reduce phase

Normal Hadoop

New Hadoop

30

From Table 4.3, the following graph is plotted. It describes the total time between conventional

Hadoop and the new Hadoop architecture with error at reduce phase. The x-axis is the input in

GB and y-axis is the total time in milliseconds.

Graph 4.6Total time with error at reduce phase: Normal Hadoop Vs New Hadoop

The above graph illustrates the new hadoop executes faster than conventional hadoop. For any

input size, the total time in the new hadoop is less compare to conventional hadoop.

4.3 Comparison of existing approaches with new methodology

Property Existing Approach New Methodology

Program

restart location

if error

occurred

In Hadoop architecture, if an error

occurs in the program it will restart all

the way from the scratch i.e., from the

map phase regardless of where the

error has occurred.

In this methodology, if an error occurs

it goes to the nearest checkpoint set in

the program and from there the

program will restart.

How In general Hadoop, checkpointing is In this methodology checkpoint is

500000

1500000

2500000

3500000

4500000

5500000

6500000

7500000

1 2 3 4 5

T
o

ta
l

ti
m

e(
m

s)

Input(GB)

Total Time with error at Reduce phase

Normal Hadoop Vs New Hadoop

Normal Hadoop

New Hadoop

31

checkpoint

created

done by using fsimage and edit log [8]. created based on: taskID, a unique

task identifier that remains invariant

over several attempts of the same

task; spillID, the local path to the split

data; offset, specifying the last byte of

input data processed by split time.

Performance Checkpointing techniques require the

system to replicate intermediate results

on stable storage. This can

significantly decrease performance as

MapReduce jobs often produce large

amounts of intermediate results.

The intermediate results are stored in

the local system. When a new

checkpoint is created it has the

previous checkpoint data, then we will

delete the old checkpoint. This way

unnecessary wasting of systems

memory can be avoided.

When

checkpoint

created

Resilient map task checkpointing

tactics(ReCT) is an existing approach

to create checkpoints. Users can tell

ReCT to create checkpoints at periodic

intervals, or every time after certain

amount of input data is processed.

Checkpoints are created based on the

phase completion. That means less

checkpoints in the program can be

created.

Downtime If periodic interval time is very low

then ReCT creates lot of checkpoints

which yields high downtime.

Downtime reduced by not creating

unnecessary checkpoints.

Hadoop

availability

If error occurs in MapReduce, then

Hadoop availability is less in existing

Hadoop architecture.

The Hadoop availability increased by

50 percent by the new methodology.

32

Checkpoint

criteria

Recovery Algorithms for Fast-

Tracking (RAFT) MapReduce is

another approach to create checkpoint

in Hadoop. It creates checkpoints on

the task progress computation.

The implementation is different as it

is based on the phase level

implementation.

Which errors

are handled

Rafting method focus on task failures

and Master node failures.

The errors which occurred in the

MapReduce program.

Performance

with no error

Creating too many spills will

downgrade performance under less

failures, while it won’t benefit much

from ReCT.

Not many checkpoints will be created

compared to ReCT. So if program

doesn't have any error it will take

more time compared to general

hadoop execution and will take less

time compared to ReCT.

Running Time Total running time is high as it has to

re-execute from the scratch.

Total running time will be less as it

reduces the amount of re-execution.

Table 4.4 Difference between existing approaches and new framework

33

CHAPTER V

CONCLUSION

A new phase based checkpoint and rollback method has been proposed and implemented with a

specific target error, that is the heap space error. Detection and recovery schemes have been

developed to address and resolve the heap space errors. For error recovery purpose, the memory

size required by the program is raised in the configuration file, then a checkpoint is set, and then

the next phases will be executed. As a result of the proposed recovery scheme, the already

completed phases need not be re-executed.

From the experimental results, the proposed hadoop availability is increased by 53.22% compared

to the conventional and default hadoop configuration, thereby decreasing the running time of the

application and ultimately decreasing the downtime as well. Notice that if there is no error in the

program then the execution time of the proposed methodology is longer compared to the

conventional hadoop architecture, thus availability degrades from 0-10%. This is because the

additional operations such as creating checkpoints will lead to the additional time.

As a future work, an orchestration between replications and checkpoint-and-rollback methods

could be sought to further optimize the availability.

34

REFERENCES

Bibliography

[1] D. Jeffrey and G. Sanjay, "MapReduce: Simplified Data Processing on Large Clusters,"

Communications of the ACM - 50th anniversary issue: 1958 - 2008 , vol. 51, no. 1, pp. 107-

113, 01 January 2008.

[2] B. Schroeder and G. Gibson, "A Large-Scale Study of Failures in High-performance

computing systems," in Dependable Systems and Networks, 2006. DSN 2006. International

Conference on, Philadelphia, PA, 2006.

[3] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad and J. Dittrich, "RAFTing MapReduce: Fast recovery on

the RAFT," in Data Engineering (ICDE), 2011 IEEE 27th International Conference on,

Hannover, 2011.

[4] C. Yang, C. Yen, C. Tan and S. Madden, "Osprey: Implementing MapReduce-style fault

tolerance in a shared-nothing distributed database," in Data Engineering (ICDE), 2010 IEEE

26th International Conference on , Long Beach, CA, 2010.

[5] E. N. Elnozahy, L. Alvisi, Y.-M. Wang and D. B. Johnson, "A survey of rollback-recovery

protocols in message-passing systems," ACM Computing Surveys (CSUR), vol. 34, no. 3, pp.

375-408, 01 September 2002.

[6] C. Memory-Resident, "Checkpointing memory-resident databases," in Data Engineering,

1989. Proceedings. Fifth International Conference o, Los Angeles, CA, 1989.

[7] H. Wang, H. Chen and Fei Hu, "ReCT: Improving MapReduce performance under failures

with resilient checkpointing tactics," in Big Data (Big Data), 2014 IEEE International

35

Conference on, Washington, DC, 2014.

[8] W. Andrew, "Cloudera," 05 March 2014. [Online]. Available:

http://blog.cloudera.com/blog/2014/03/a-guide-to-checkpointing-in-hadoop/. [Accessed

13 February 2015].

[9] ˇ. Vladimir and S. Satish Narayana, "Automated Statistical Approach for Memory Leak

Detection: Case Studies," in On the Move to Meaningful Internet Systems: OTM 2011,

Hersonissos, Crete: Springer Berlin Heidelberg, 2011, pp. 635-642.

[10] E. Aaron, "MAPR," MapR Technologies, 2 1 214. [Online]. Available:

https://www.mapr.com/blog/how-to-avoid-java-heap-space-errors-understanding-and-

managing-task-attempt-memory#.Vb1duDZRHIU. [Accessed 20 2 2015].

[11] C. Eli, "Apache Hadoop Availability," Cloudera, 10 February 2011. [Online]. Available:

http://blog.cloudera.com/blog/2011/02/hadoop-availability/. [Accessed 02 June 2015].

VITA

Nikhil Pendem

Candidate for the Degree of

Master of Science

Thesis: A NEW CHECKPOINT AND ROLLBACK FOR HIGH AVAILABILITY OF

MAPREDUCE COMPUTING

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in your Computer

Science at Oklahoma State University, Stillwater, Oklahoma in July, 2015.

