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Abstract:  
 Research investigating catagenetic alterations of δ15Nbulk values in Devonian 
shales have shown little correlation between δ15Nbulk profiles and thermal maturities; 
instead it was concluded that δ15Nbulk values primarily reflect the paleoredox conditions 
during deposition. Separating inorganic nitrogen (IN) from bulk nitrogen has proven 
useful to be a useful proxy for characterizing catagenetic alterations because IN, in the 
form of NH4

+, is released from organic matter (OM) during thermal degradation and 
fixed by surrounding authigenic clays. Conceptually, three scenarios can exist between 
bulk and inorganic nitrogen isotopic values at a particular depth: (1) δ15Nbulk > δ15Ninorg 
(positive); (2) δ15Nbulk < δ15Ninorg (negative); or (3) δ15Nbulk ≈ δ15Ninorg (closed). Along 
with characterizing the paleoredox conditions of the Ohio Shale, our research will also 
evaluate the driving mechanism responsible for these relationships between δ15Ninorg and 
the original paleoredox-dependent δ15Nbulk value. 
  
 Using δ15Nbulk and TOC as our proxies for oxygen content and preservation of 
OM, it is possible to evaluate the paleoredox evolution during Ohio Shale deposition at 
the A. Lowe Heirs KL4-504695 in Pike County, Kentucky. The lower and upper Huron 
were deposited in predominantly anoxic conditions under the pycnocline, while the 
middle Huron was deposited under alternating suboxic and anoxic conditions. The 
Chagrin was predominantly deposited in a suboxic environment within the pycnocline. 
The Cleveland equivalent was deposited proximal to upwelling conditions but not within 
the oxygen minimum zone. The relationship between δ15Nbulk and δ15Ninorganic values is 
dependent on paleoredox conditions, clay contents, degradation-recondensation 
processes, and diagenetic and catagenetic processes. Negative crossover profiles, 
associated with anoxic intervals, suggests that isotopic buffering is occurring along with 
an observed inversion of normal fractionation kinetics during thermal degradation of OM, 
and the preferential uptake of heavy 15NH4

+
 by authigenic clays. Positive crossover 

profiles, associated with suboxic conditions, suggest that normal isotopic fractionation 
kinetics prevails, releasing isotopically light 14NH4

+ during the thermal degradation of 
OM. Closed intervals are indicative of compartmentalization and isotopic equilibrium 
exchange between stationary OM and circulating NH4

+ pools. 
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CHAPTER I 
 

 

INTRODUCTION 

 Characterizing the depositional environment of organic-rich shales has long been 

of interest for evaluating source rock and reservoir potential. The quality of organic 

matter (OM) preserved in shales varies immensely, depending on the amount of 

biological activity and the environment of deposition (Hunt, 1979). The Ohio Shale of 

eastern Kentucky is a marine black shale of Devonian age that is equivalent to other 

black shale formations of the North American craton spanning from New York and as far 

west as New Mexico (Ettensohn, 1992). The Ohio Shale is heterogeneous and is 

subdivided into a series of members and submembers: the lower Huron, middle Huron, 

upper Huron, Chagrin and Cleveland shales (Provo et al., 1978). Pioneering work by 

Rich (1951) was the first to suggest that the Upper Devonian bituminous shales of east-

central United States were deposited in poorly aerated waters in the deepest unfilled parts 

of the Appalachian geosyncline, and encroached upon by clinoform deposits. Originally, 

shale deposition in deep marine environments was thought to be controlled by water 

stratification and the vertical position of the pycnocline; however, black shale 

depositional environments have proven to be more dynamic. Characterizing the specific 

paleoredox conditions of black shale depositional environments has provided the 

intellectual merit for geochemical studies in the Ohio Shale and its individual members 
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(e.g. Ettensohn et al., 1988; Robl and Barron, 1988; Calvert et al., 1993; Rimmer, 2004; 

Rimmer et al., 2004; and Perkins et al., 2008). Although multiple depositional 

environment studies have been conducted on the Ohio Shale and its equivalents, research 

has yet to be performed on the utility of nitrogen isotopes (δ15Nbulk) as a proxy for 

paleoredox conditions in this formation. 

 Hoering (1955) was the first to use stable nitrogen isotopic delta values (δ15N) to 

characterize natural substances (e.g. plants, animals, coals, oils, and minerals). Other 

studies were then performed to characterize nitrogen isotopic values and isotopic 

fractionation related to non-marine and marine biogeochemical processes (e.g. Delwiche 

and Steyn, 1970; Wada et al., 1975; Wada and Hattori, 1976; Minagawa and Wada, 

1986; Checkley Jr. and Miller, 1989). Nitrogen isotopes have been used to evaluate 

sedimentary OM from an isotopic perspective since the 1970s (e.g. Peters et al., 1978; 

Rau et al., 1987. Subsequent studies using sedimentary δ15Nbulk have evaluated 

paleoredox conditions (e.g. Macko, 1981; Rau et al., 1987; Macko, 1989; Holmes et al., 

1996; Lehmann et al., 2002; Junium and Arthur, 2007; Quan et al., 2008; Quan and 

Falkowski, 2009; Godfrey and Glass, 2011), changes that occur as particulate OM 

descends through the water column (e.g. Altabet and Francois, 1994; Robinson et al., 

2012), and burial diagenesis within a few meters of the water-sediment interface (e.g. 

Müller, 1977; de Lange, 1992; Freudenthal et al., 2001; Lehmann et al., 2002). However, 

majority of these studies evaluated immature sediments that have not undergone thermal 

maturation during catagenesis. Research investigating catagenetic alterations of δ15Nbulk 

values in Devonian shales (Rivera et al., 2015) have shown little correlation between 

δ15Nbulk profiles and thermal maturities; instead it was concluded that δ15Nbulk values 
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primarily reflect the paleoredox conditions during deposition. Previous studies that 

separated inorganic nitrogen (IN) from bulk samples have proven IN to be useful for 

characterizing catagenetic alterations within an unconventional system during thermal 

maturation of OM (Williams et al., 1989; Williams and Ferrell Jr., 1991; Williams et al., 

1992; Williams et al., 1995). This is because IN, in the form for aqueous ammonium 

(NH4
+), is generated during the thermal degradation of OM and fixed by surrounding 

clays (Compton et al., 1992; de Lange, 1992; Schroeder and Ingall, 1994; Krooss et al., 

1995; Littke et al., 1995; Mingram et al., 2003; Jia, 2006; Schimmelmann and Lis, 2010). 

Conceptually, three scenarios can exist between bulk and inorganic nitrogen isotopic 

values at a particular depth: (1) δ15Nbulk > δ15Ninorg, (2) δ15Nbulk < δ15Ninorg, or (3) δ15Nbulk 

≈ δ15Ninorg. Along with characterizing the paleoredox conditions of the Ohio Shale, our 

research will also evaluate the driving mechanism responsible for these relationships 

between δ15Ninorg and the original paleoredox-dependent δ15Nbulk value. To support our 

research, δ15Nbulk, δ15Ninorg, organic carbon (δ13Corg) isotope analyses, and total nitrogen 

(TN), IN, and total organic carbon (TOC) elemental concentrations will be measured.  

 

1.1 The relationship: marine nitrogen cycle, sedimentary δ15Nbulk values, and redox 

conditions 

 The nitrogen cycle is one of the most complex and diverse biogeochemical cycles 

in the marine realm. The marine nitrogen cycle involves a range of nitrogen compounds 

and a variety of redox states (Fig. 1) as transformations are undertaken by marine 

organisms as part of the their metabolism, either to gain energy for growth or to 

synthesize structural components (Gruber, 2008; Mulholland and Lomas, 2008). The 
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main processes of the biologically driven marine nitrogen cycle on geological time scales 

are fixation, nitrification, denitrification, and anammox (anaerobic ammonium oxidation). 

Each of the aforementioned reactions predominates under specific redox conditions and 

is characterized by unique isotopic fractionation factors (α) (Fig. 2). When organisms 

assimilate the surrounding nitrogen into their body mass, the 15N content of the nitrogen 

source will be imprinted in the OM that is eventually deposited on the sea floor and 

incorporated into the sedimentary record (Minagawa and Wada; 1986; Altabet and 

Francois, 1994; Robinson et al., 2012). 

 Nitrogen fixation, the reduction of atmospheric N2 into fixed nitrogen, is the 

process responsible for nitrogen input into the marine system. Dissolved atmospheric N2 

is the most abundant form of nitrogen in the ocean; however, it is not bioavailable to 

Figure 1. Schematic diagram of the various transformations and redox states of nitrogen in the marine nitrogen cycle 
(Modified from Karl and Michaels, 2001) 
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most organisms (Karl and Michaels, 2001; Galbraith et al., 2008; Gruber, 2008). The 

reduction of atmospheric nitrogen to fixed nitrogen via nitrogen fixation allows other 

nitrogen consuming organisms to use the once unavailable dissolved N2 (Eq. 1.1). 

𝑁𝑁2 + 8𝐻𝐻+ + 8𝑒𝑒− → 2𝑁𝑁𝐻𝐻3 + 𝐻𝐻2 (Eq. 1.1: nitrogen fixation) 

Nitrogen fixation is the predominant processes in anoxic conditions since other nitrogen 

cycle processes are less prominent. Nitrogen fixation occurs with little isotopic 

fractionation (Delwiche and Steyn, 1970; Wada et al., 1975; Minagawa and Wada, 1986; 

Carpenter et al., 1997; Beaumont et al., 2000; Galbraith et al., 2008) (Fig. 2), leaving 

residual combined nitrogen isotopically depleted. This results in low δ15N values upon 

assimilation into OM and transfer into the sedimentary record.  

 Nitrification is the process that links the most reduced (ammonium) and most 

oxidized (nitrite and nitrate) forms of nitrogen. Nitrification involves the aerobic 

Figure 2. Schematic showing the isotopic fractionation and enrichment (ε) 
associated with different marine nitrogen biogeochemical processes with 
regards to δ15N (Modified from Montoya, 2008) 
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oxidation of NH4
+ in a two-step process by: oxidation of ammonium into nitrite (Eq. 1.2) 

by one consortium of bacteria, and nitrite into nitrate (Eq. 1.3) by another (Teske et al., 

1994; Gruber, 2008; Ward, 2008; Casciotti et al., 2011). 

2NH4
+ + 3O2 → 2NO2

− + 4H+ + 2H2O (Eq. 1.2: aerobic ammonium oxidation) 

2𝑁𝑁𝑂𝑂2− + 𝑂𝑂2 → 2𝑁𝑁𝑂𝑂3− (Eq. 1.3: aerobic nitrite oxidation) 

Nitrification is the predominant process in oxic conditions and is characterized by little 

isotopic fractionation (Delwiche and Steyn, 1970; Wada, 1980) (Fig 2.); therefore, 

producing low sedimentary δ15Nbulk values when residual nitrate is incorporated into OM 

and transported into sedimentary record (Altabet and Francois, 1994; Meckler et al., 

2007).  

 Denitrification is one of the processes responsible for the output of nitrogen from 

the marine realm. Denitrifiers reduce nitrate to N2 via the stoichiometric equation show in 

(Eq. 1.4: denitrification) (Gruber, 2008). 

𝐶𝐶106𝐻𝐻175𝑂𝑂42𝑁𝑁16𝑃𝑃 + 104𝑁𝑁𝑂𝑂3− → 106𝐶𝐶𝑂𝑂2 + 60𝑁𝑁2 + 𝐻𝐻3𝑃𝑃𝑂𝑂4 + 138𝐻𝐻2𝑂𝑂  (Eq. 1.4) 

Denitrifiers are facultative anaerobes, and under suboxic conditions use nitrate as a 

terminal electron acceptor (Karl and Michaels, 2001; Devol, 2008). Denitrification is the 

predominant reaction in suboxic conditions. Increased oxygen concentrations in the water 

column inhibit the denitrifying enzymes from functioning (Codispoti et al., 2001; Quan et 

al., 2008; Quan and Falkowski, 2009), but adequate amounts of oxygen must be present 

to support the production of nitrate (Karl and Michaels, 2001). Incomplete denitrification 

is characterized by a large isotope effect (Wada et al., 1975) (Fig. 2), leaving residual 

nitrate enriched in 15N that is translated into OM and into the sedimentary record 
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(Meckler et al., 2007; Galbraith et al., 2008; Quan et al., 2008; Quan and Falkowksi, 

2009; Quan et al., 2013).  

 Anammox also removes bioavailable nitrogen by combining ammonium and 

nitrite to form N2 and nitrate via the equation (Eq. 1.5) proposed by Brunner et al. (2013).  

𝑁𝑁𝐻𝐻4+ + 1.3𝑁𝑁𝑂𝑂2− → 𝑁𝑁2 + 0.3𝑁𝑁𝑂𝑂3− + 2𝐻𝐻2𝑂𝑂 (Eq. 1.5: anammox) 

Anammox is restricted to suboxic environments because it requires low concentrations of 

oxygen to oxidize ammonium, but high concentrations inhibit the reaction from taking 

place (Jetten et al., 2001). Prior to the discovery of the anammox reaction (Mulder et al., 

1995), strong enrichments of 15N in the residual nitrite and sedimentary δ15Nbulk values 

have been attributed to denitrification alone. Kuypers et al. (1995) emphasized the 

significance of anammox in the ocean and the potential consequences it has on the 

regional nitrogen budget. Brunner et al. (2013) concluded that anammox is characterized 

by large isotopic fractionation and there is a preferential removal of 15N from nitrite 

during the oxidation to nitrate. If denitrification was to occur at the same locale, the 

fractionation during anammox could be superimposed on the isotopic effects of 

denitrification, resulting in in large sedimentary δ15Nbulk values in OMZs (Brunner et al., 

2013).   

 The non-linear relationship between δ15Nbulk and oxygen concentrations results 

from the weighted average of all nitrogen fractionation processes occurring in a water 

column, and the predominance of the nitrogen reactions under specific redox conditions. 

Lower δ15Nbulk signals are associated with nitrogen fixation in anoxic environments 

(Beaumont et al., 2000; Galbraith et al., 2008), and nitrification in oxygenated water 

columns (Altabet and Francois, 1994; Meckler et al., 2007). In contrast, incomplete 
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denitrification and anammox in suboxic environments result in higher more enriched 

δ15Nbulk signals (Galbraith et al., 2008; Quan et al., 2008; Brunner et al., 2013). The 

conceptual model (Fig. 3) can be used to characterize the evolution of oxygen content in 

a water column at a particular site over time. An increase in δ15Nbulk indicates a transition 

to a suboxic environment either from anoxic (Arrow 1) or oxic (Arrow 4) conditions, 

while a shift to lower δ15Nbulk values indicates the transition from suboxia to oxic (Arrow 

2) or anoxic conditions (Arrow 3) (Quan et al., 2013). 

 

1.2 Diagenetic and catagenetic alterations 

 Majority of nitrogen isotope analyses have been conducted on samples that have 

undergone minimal alteration, such as studies constrained to alterations of nitrogen 

isotopes as particulate OM sinks through the water column (e.g. Altabet and Francois, 

1994; Robinson et al., 2012) or diagenesis nearest to the sediment-water interface (e.g. 

Figure 3. Schematic showing the relationship between bulk sedimentary δ15N values and deep water oxygen 
concentrations. The relationship between δ15N and oxygen concentrations is nonlinear. Higher δ15N values are 
associated with denitrification and anammox in suboxic conditions. Lower δ15N values are associated with nitrogen 
fixation in anoxic conditions and nitrification in oxic environments (Modified from Quan et al., 2013) 
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Müller, 1977; de Lange, 1992; Freudenthal et al., 2001; Lehmann et al., 2002; Möbius et 

al., 2011). However, subsequent alterations to nitrogen moieties during progressive 

diagenesis and catagenesis may result in the loss of nitrogen and potentially isotopic 

fractionation. Alteration of nitrogen is influenced by a variety of factors during 

diagenesis, including: OM types and concentrations, sedimentation rate, clay content, 

oxygen concentrations within the upper sediment column, mineralization processes, and 

aerobic/anaerobic degradation. OM and labile organic nitrogen (ON) can be altered via 

hydrolysis, carboxylation, fermentation, and deamination processes either by 

mineralization and biodegradation (Macko, 1981; Macko and Estep, 1984; Rau et al., 

1987; Macko et al., 1994; Nguyen and Harvey, 1997; Freudenthal et al., 2001). The 

macromolecular components (e.g. proteins, carbohydrates, and lipids) of organic detritus 

are broken down into simpler molecules (e.g. amino acids, sugars, and fatty acids) so they 

may be used by heterotrophic microbes as a source of metabolism (Killops and Killops, 

2005); thereby completing the mineralization of OM. Clay minerals play an important 

role in the degradation-recondensation of OM by offering protection to amorphous, 

labile, and simple molecular components from complete microbial degradation (Largeau 

and Derenne, 1993; Wu et al., 2012 and references therein). The mechanisms responsible 

remain ambiguous, but it has been hypothesized that preservative mechanisms include: 

sorption, encapsulation by clay mineral aggregates, and intercalation within expanding 

clays as organo-mineral nanocomposites (Kennedy et al., 2014 and references therein). 

Furthermore clays catalytically promote the structural rearrangement of ON into more 

structurally and thermally stable ON heterocycles and humic complexes; this process is 
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thought to be similar to natural humification by Maillard reactions and polyphenol theory 

(Wu et al., 2012 and references therein).  

 Aqueous NH4
+ generation coincides with the onset of oil formation (Hunt, 1979) 

and illitization of clay minerals (Kennedy, et al., 2014). The coincidence and timing of 

these three factors is impeccable. During thermal maturation, ON in OM is thermally 

degraded, and converted to aqueous NH4
+ (Williams et al., 1989; Compton et al., 1992; 

de Lange, 1992; Schroeder and Ingall, 1994; Krooss et al., 1995; Littke et al., 1995; 

Williams et al., 1995; Freudenthal et al., 2001; Mingram et al., 2003; Jia, 2006; 

Schimmelmann and Lis, 2010). Ammonium from proteinaceous OM can substitute for 

K+ in adjacent authigenic clays due to the similarities of atomic radii (Williams et al., 

1989; Compton et al., 1992; Drits et al., 1997; Papineau et al., 2005). This substitution 

and illitization causes the clay layers to collapse, which isolates the newly “fixed” NH4
+ 

from further exchange reactions (Williams et al., 1989; Nieder et al., 2011; Kennedy et 

al., 2104). However, it should be noted that the thermal degradation and generation of 

NH4
+

 from OM occurs with isotopic fractionation. Thermal degradation during 

catagenesis results in the preferential release of light 14NH4
+ isotope, because it requires 

less activation energy to cleave 14N from carbon compared to 15N (Williams et al. 1995; 

Freudenthal et al., 2001; Mingram and Braüer, 2001; Plessen et al., 2010). 
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CHAPTER II 
 

 

STUDY AREA 

 This study focuses on the (Late Devonian) Famennian Ohio Shale of the central 

Appalachian Basin. The research focuses on analyzing well cutting samples from the A. 

Lowe Heirs KL4-504695 completed on September 17, 2001 in Pike County, Kentucky 

(Carter Coordinates: 20-N-84, 2055’ FSL, 620’ FEL; Latitude: 37.605644, Longitude: -

82.50214) (Fig.4). The A. Lowe Heirs KL4-504695 was logged from 0 m (0 ft) to a depth 

of 1,108 m (3,636 ft). This well proved to be an ideal candidate for this research due to its 

continuous 209 m (686 ft) section of the Ohio Shale which comprises the lower Huron, 

middle Huron, upper Huron, Chagrin, and Cleveland equivalent shale members (Fig. 5). 

The reasoning for defining the uppermost Ohio Shale member as the Cleveland 

equivalent will be discussed further in more detail shortly.  

 

2.1 Divisions of the Ohio Shale 

 The Ohio Shale is the age-equivalent of other Upper Devonian shales such as the 

New Albany in the Illinois Basin, the Antrim in the Michigan Basin, the Chattanooga in 

Tennessee, and the Woodford in Oklahoma. Early studies initially divided the Ohio 

Shale, based on gamma ray signals and total organic carbon content, into the black Huron 

and Cleveland shale members which were separated by the gray silty-shale Chagrin 
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Member (Lewis and Schwietering, 1971). Furthermore, the Huron has been subdivided 

into the lower, middle, and upper Huron members. At our particular study site, the lower 

Huron Shale is approximately 47 m thick and ranges in colors from very dark gray, 

brown, very dark brown, to black. Above, the middle Huron Shale is approximately 80 m 

thick, and varies between predominant gray and dark gray colors with minor pinkish gray 

intervals. The dark gray to gray upper Huron Member is the thinnest interval at 16 m 

thick. The 40 m thick Chagrin is the lightest colored member of the Ohio Shale, varying 

between gray and light gray. The uppermost member of the Ohio Shale is the dark gray 

Cleveland equivalent, at 26 m thick. Although the Huron and Cleveland members have 

been described as black shales, based on high gamma ray signals (upwards of 700 API 

units), TOC content, and color indexing, only the lower Huron Member exhibits black 

shale qualities. The other members of the Ohio Shale, at our particular location, do not 

display these qualities; instead, they reflect flych-like clastic sedimentation.  

 

Figure 4. Location of the A. Heirs Lowe KL4-504695 well, Pike Co. (20-N-84, 2055' FSL, 620' FEL) in eastern Kentucky. 
The extent of the central Appalachian Basin in Kentucky is shown in gray. 
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Figure 5. Well log including gamma ray and induction curves for the A. Lowe Heirs KL4-504695 in Pike County, 
Kentucky. The Ohio Shale includes the following members: lower Huron (L HURON), middle Huron (M HURON), 
upper Huron (U HUR), Chagrin (CHAGRIN), and Cleveland equivalent (CLVD EQ). Above the Ohio Shale is the 
Mississippian Bedford-Berea (BDFD-BERE) fluvial sequence and the Sunbury Shale (SNBY) 
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2.2 Stratigraphic framework 

 In eastern Kentucky, the Famennian Ohio Shale sequence is the stratigraphic 

interval between the marine Olentangy Shale below, and the fluvial Bedford Formation 

and the Berea Sandstone above (Fig. 6). The Ohio Shale and its Appalachian Basin 

equivalents span from western New York, western Pennsylvania, eastern Ohio, through 

eastern Kentucky, West Virginia, western Virginia, and as far south as Tennessee and 

Alabama (de Witt, Jr. et al., 1993). Initial studies were able to subdivide the Ohio Shale 

into black shale and gray shale members via gamma ray log signals, with the latter being 

characterized by significantly lower gamma ray readings (Lewis and Schwietering, 

1971). The Ohio Shale contains includes two predominant sequences of carbonaceous 

Figure 6. Generalize stratigraphic column for eastern Kentucky (Modified from Repetski et al., 2013) 
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black shale, the Huron and Cleveland members, separated by a westward thinning tongue 

of gray silty-shale of the Chagrin Member (Lewis and Schwietering, 1971; Provo et al., 

1978; Neal, 1979; Schwietering, 1979; Hohn et al., 1980; Roen, 1980; Roen, 1984; de 

Witt, Jr. et al., 1993). Pioneering work by Rich (1951) in the Appalachian Basin was the 

first to suggest that Late Devonian black shale deposition had a deep-water origin and 

was so widespread that it can be used as a regional stratigraphic reference.  

 Early stratigraphic studies of Upper Devonian black shales in the Appalachian 

and adjacent basins were conducted in a localized fashion (Roen, 1980): leading to the 

multiple local nomenclatures for similar Devonian shale units within the Appalachian 

Basin. This prompted various Department of Energy sponsored studies, in order to lay the 

foundation for a regional stratigraphic correlation between various Upper Devonian shale 

units within the Appalachian Basin, as well as tying in adjacent basins. Initial 

stratigraphic correlation studies (e.g. Lewis and Schwietering, 1971; Provo et al., 1978; 

Neal, 1979; Schwietering, 1979; Hohn et al., 1980; Roen, 1980; Roen, 1984) utilized 

gamma ray logs from oil and gas wells to lithologically correlate the distribution and 

extent of shale units throughout the central-eastern United States.  

 The Huron Member is one of the thickest (upwards of 300 feet), and most 

proliferous hydrocarbon reservoir and extensive black shale unit in the Appalachian 

Basin, spanning from western New York, through eastern Kentucky, and into Tennessee 

(Roen, 1984). The Huron is characterized by an anomalously high gamma ray signature, 

upwards of several hundred API units, making it an ideal candidate for regional 

stratigraphic correlations. The Huron Member of the Ohio Shale correlates to the 

lowermost unit in the Gassaway Member of the Chattanooga Shale in southern Kentucky 
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and Tennessee (Provo et al., 1978; Roen, 1980; Roen, 1984), and the Camp Run Member 

and majority of the Clegg Creek Member of the New Albany Shale in western Kentucky, 

Indiana, and Illinois (Robl and Barron, 1988). Much of the regional correlations have 

focused on the Huron Member as a whole; however, the Huron Member of the Ohio 

Shale exists as two tongues of black shale separated by the gray middle Huron Shale. To 

the north, the lower Huron Member is equivalent to the Dunkirk Shale of the Perrysburg 

Formation in New York (Roen, 1980; de Witt, Jr. et al., 1993). East of Kentucky, the 

middle Huron Member grades into the lighter colored Brallier gray silty-shale facies in 

West Virginia (Neal, 1979; Ettensohn et al., 1988). The Chagrin Member, which 

separates the Huron and Cleveland Members of the Ohio Shale, correlates to the Three 

Lick Bed in Ohio and north-central Kentucky (Provo et al., 1978; Robl and Barron, 

1988), the middle unit of the Gassaway Member of the Chattanooga Shale in southern 

Kentucky and Tennessee (Roen, 1980; Roen, 1984), and the gray silty-shale and medium 

siltstones of the Chemung Formation in West Virginia (Neal, 1979). The Cleveland 

Member of the Ohio Shale correlates to the upper unit of the Gassaway Member in the 

Chattanooga Shale of Tennessee (Roen, 1980; Roen, 1984), the uppermost Clegg Creek 

Member of the New Albany Shale in the Illinois Basin (Robl and Barron), and the lower 

portion of the Big Stone Gap Member in southwestern Virginia (Roen, 1984). 

 Regional correlations eastward from Kentucky into West Virginia have proven to 

be difficult for the Cleveland Member. The Cleveland shale was deposited parallel to 

strike of the paleo-slope of the Appalachian Basin, spanning in a north-south direction 

from Ohio, through eastern Kentucky, and into Tennessee (Schmoker, 1981; de Witt, Jr. 

et al., 1993; Pashin and Ettensohn, 1995). Previous studies that conducted isopach 
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mapping (e.g. Roen, 1980; Roen, 1984) have shown that aerial extent of the Cleveland 

Shale does not extend into portions of eastern Kentucky, including our study site in Pike 

County. Gamma ray signals in the Cleveland should be equivalent to those that 

characterize the Huron Member of the Ohio Shale (Lewis and Schwietering, 1971); 

however, gamma ray signals for the A. Lowe Heirs KL4-504695 in Pike County show 

gamma ray values for the Cleveland are similar to those that characterize the Chagrin 

Member instead of the Huron Member. Schmoker (1981) concluded that the Cleveland 

Member is about 200 API units below normal in southeastern Kentucky although it is 

characterized by high TOC contents. The reason for the lack of radioactivity for the 

Cleveland-equivalent at our study site remains ambiguous. Multiple studies (e.g. 

Kepferle, 1993; Zheng et al., 2002; Lüning and Kolonic, 2003; Morford et al., 2009) 

have suggested that the lack of correlation between gamma ray signals and TOC may be 

due to an array of factors including: high sedimentation rates (dilution), bioturbation and 

the remobilization of uranium, or irrigation of sediments underlying more oxygenated 

water columns. Moving eastward from Kentucky, studies have shown that the Cleveland 

correlates to gray shale and siltstones in West Virginia that are undistinguishable from 

Chagrin facies; these studies have termed these gray shales above the Huron Members as 

“undifferentiated” (Neal, 1979; Hohn et al., 1980). Due to the lack of high radioactivity 

associated with typical Cleveland black shale sequences, the uppermost member of the 

Ohio Shale at our study site will be defined as the Cleveland equivalent for the remainder 

of this research.  
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2.3 Acadian Orogeny 

 The Acadian orogeny (411-315 Ma) was responsible for deposition of Devonian 

black shales that characterize the Appalachian Basin and other major Paleozoic black 

shale deposits in North America. The Acadian orogeny was the product of oblique 

convergence along a large sinstral strike-slip fault zone between the Laurussian and the 

Avalon terrane (Ettensohn, 1987) (Fig. 7). The Acadian orogeny can be subdivided into 

four tectocycles, which reflect the successive collisions that migrated southward between 

different parts of Laurussia and Avalonian fragments (Ettensohn, 1987). The third 

Acadian tectophase reflects the southward migration of deformation, the collision with 

the Virginia promontory, and docking of the Carolina terrane: which was responsible for 

the syn-orogenic deposition of five cycles of black shale sequences (Burket/Genesso, 

Middlesex, Rhinestreet, Huron, and Cleveland shales) and coarser flysch-like deposits on 

the western margin of the Appalachian Basin, beginning with the local unconformity of 

Figure 7. Tectonic setting during the Late Devonian Acadian orogeny and the impending collision of the Virginia 
promontory responsible for the 3rd Acadian tectophase (Modified from Pashin and Ettensohn, 1995) 
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Figure 8. Schematic showing the deposition of black shale, gray shale, and clastic sequences from the Middle to Late 
Devonian. The yoking of the peripheral bulge (Cincinnati Arch) between the Appalachian and Illinois basins generated 
the "cratonic" basin, allowing deposition of the Ohio Shale in both basins. Individual formation and member 
thicknesses are not drawn to scale. (Modified from Ettensohn et al., 1988) 

the Taghanic Onlap (Ettensohn, 2008) (Fig 8).  

 The lithospheric flexural response between the Appalachian and adjacent basins 

was responsible for the maximum geographic extent of Ohio Shale deposition and its 

equivalents in the Illinois and Michigan basins. As the fold-thrust belt of the orogen 

migrates cratonward, the foreland basin and peripheral bulge does as well. Destructive 

interference between the migrating peripheral bulges of the Illinois and Appalachian 

basins resulted in the lowering of the arch and yoking of basins (Ettensohn et al., 1988). 

The yoking of the basins and the lowering of the peripheral bulge (Cincinnati Arch) 

created a cratonic basin, allowing black shale deposition of the Huron and its equivalents 

to occur in the Appalachian Basin as well as neighboring basins (Fig. 8). Not until the 

late Frasnian-early Famennian did the transgressive Rhinestreet and coarser clastic upper 

Olentangy shales migrate into Kentucky (Ettensohn et al., 1988); however, the lower 

19 
 



Huron and equivalents were the first black shale sequences to extend to multiple basins.  

The infilling of the foreland basin and the cratonward shift of black shale facies records 

the vast extent and advancement of Acadian deformation, as well as the transgression of  

black shale subcycles during the third tectophase (Ettensohn, 1987; Ettensohn, 1992; 

Ettensohn, 2008). It was suggested by Ettensohn et al. (1988) that the merging of the 

Appalachian, Illinois, and Michigan basins acted like intracratonic depressions within a 

single larger basin, due to the excessive flych-like clastic influx.  

 

2.4 Eustasy  

 Tectonism alone has the ability to affect subsidence and the progradation of black 

shales sequences in a foreland basin (e.g. Ettensohn, 2008), but early depositional models 

(e.g. Ettensohn and Barron, 1981) suggested that lateral transition from transgressive 

black shale facies to regressive gray shales was governed by eustasy, and the vertical 

movement of the pycnocline during times of increased plate convergence or times of 

tectonic quiescence. Early depositional models advocated that transgressive and 

regressive shales were structurally controlled. However, by the Famennian the third 

Acadian tectophase was waning and the deformational front was far from the locus of 

convergence that subsidence was overwhelmed by increasing flysch-like clastic influx 

(Ettensohn et al., 1988). Although tectonism, or the lack thereof may have an influence 

on the cyclicity of sequential transgressive and regressive shale facies, other eustatic 

factors should be incorporated in order to fully understand the various transgressive and 

regressive sequences within formations and between individual members.  
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 Johnson et al. (1985) was one of the first to evaluate shelf sedimentary facies 

transitions from around the world in attempts to produce a more reliable paradigm for 

Devonian eustatic sea-level fluctuations. They concluded that early Famennian initiated 

with eustatic deepening, and the deposition of the transgressive lower Huron equivalent 

Dunkirk Shale. Following this initial transgression, the Famennian was characterized by 

prominent regressive tendencies (Johnson et al., 1985; Haq and Schutter, 2008), leading 

to the lowstand deposition and reworking of the Bedford-Berea Delta complex during the 

latest Famennian (Ettensohn, 2008). The mechanism(s) responsible for the overall 

regressive tendencies seen in the Famennian have led to multiple hypotheses. After 

evaluating depositional sequences of Upper Devonian Catskill Delta margin 

sedimentation, Tassell (1987) proposed that deposition of sedimentary sequences in the 

Acadian third tectophase were strongly influenced astronomically controlled 100,000 

year cycles related to the orbital eccentricity of Earth, as well as smaller scale 40,000 and 

20,000 year cycles related to precession and tilt orbital variations. Subsequent studies 

have proposed the forcing mechanisms for Famennian regression include glacial-eustatic 

(e.g. Pashin and Ettensohn, 1995; Filer, 2002; Ettensohn, 2008; Haq and Schutter, 2008; 

Isaacson et al., 2008; McClung et al., 2013). Late Devonian glacial deposits in the form 

of tillites have been well documented in Brazil, Bolivia and other Andean provinces in 

South America (Isaacson et al., 2008). Coeval evidence for Alpine glaciation in the 

Appalachians, have been identified in the form of diamictities (Brezinksi et al., 2008; 

Brezinksi et al., 2009). The paleoclimatic transition from greenhouse to more icehouse 

conditions during the Late Devonian led to Famennian glaciation and the overall eustatic 

regression (Ettensohn, 2008; McClung et al., 2013). Eustatic drawdown during the 
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Famennian glaciation, along with increased tectonism during the third Acadian 

tectocycle, resulted in the progradation of black shale and flysch-like clastics wedges 

cratonward in the Appalachian Basin. Shorter-term changes in Famennian sea-level may 

have been a result of third order eustatic cycles sequences (upwards of a few million 

years).   

 

2.5 Controls of organic carbon in the central Appalachian Basin 

 Paleogeograhpic reconstructions of North America (Fig. 9) shows that black shale 

deposition occurred in a large, nearly enclosed embayment in a tradewind belt near the 

northern margin of the temperate zone (Ettensohn, 2008). Various studies (e.g. Ettensohn 

Figure 9. Late Devonian paleogeographic map of North America showing the Appalachian Basin. Sample 
location of the A. Lowe Heirs KL4-504695 is designated by the white star (Modified from Formolo et al., 2014) 
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and Barron, 1981; Ettensohn et al., 1988; Robl and Barron; 1988; Pashin and Ettensohn, 

1992; Ingall et al., 1993; Kepferle, 1993; Murphy et al., 2000; Werne et al., 2002; 

Sageman et al., 2003; Rimmer, 2004, Rimmer et al., 2004; Perkins et al., 2008) have 

proposed multiple explanations for Ohio Shale and other Upper Devonian shale 

deposition, including: paleoredox conditions and the location of the pycnocline with 

respect to the site of deposition, dilution and sediment starvation, decomposition rates of 

organic matter (OM), rates of primary production, nutrient fluxes, coupled feedback 

mechanisms, and other environmental and hydrodynamic factors. Geochemical, 

petrographical, and faunal distribution analyses conducted by these studies concluded 

that organic rich shale deposition is not regulated by one single controlling factor, but 

controlled by a variety of elements. While it is hard to constrain all of the before 

mentioned factors, bulk nitrogen isotopes with other geochemical proxies can be used to 

evaluate the paleoredox conditions and the evolution of Ohio Shale deposition, and the 

controls of organic carbon preservation in eastern Kentucky. 
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CHAPTER III 
 

 

METHODOLOGY 

 Well cuttings from the A. Lowe Heirs KL4-504695 were collected at 

approximately 3 m intervals from the Kentucky Geological Survey well sample and core 

library in Lexington, Kentucky. The approximate range of sample spacing is associated 

with the drilling and mud logging processes. Mud loggers have to account for the lag 

time for well cuttings to be brought up hole and to the surface where they are caught. 

Three meter intervals allow best averages for well cutting sample depth calibration with 

minimal error. However, inaccuracies in sample depth calibration, due to caving and 

sample contamination during the drilling process, may occur. The validity of our data 

will be discussed in further detail later. Once samples were selected, shale chips were 

transported to the Noble Research Center at Oklahoma State University for sample 

preparation. Shale chips were then crushed and ground into a fine powder using an agate 

mortar and pestle. The crushed samples were then oven-dried for approximately 24 hours 

at 60°C in order to remove any residual water, and stored in glass vials. 

 

3.1 Stable isotopic compositions and elemental concentrations 

 Powdered samples were analyzed for for bulk nitrogen (δ15Nbulk), inorganic 

nitrogen (δ15Ninorg), and organic carbon (δ13Corg) isotopic values, and total nitrogen (TN), 
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inorganic nitrogen (IN), and total organic carbon (TOC) bulk elemental concentrations. 

The analyses were conducted in the geochemistry laboratory at the Henry Bellman 

Research Center at Oklahoma State University. Bulk and inorganic nitrogen and organic 

carbon delta values (δ15Nbulk, δ15Ninorg, and δ13Corg) and elemental concentrations (TOC, 

TN, IN) were determined using a Costech ECS 4010 elemental analyzer (EA) coupled 

with a ThermoFinnigan Deltaplus XL isotope ratio mass spectrometer (IRMS). The 

isotopic values are reported relative to air N2 standard for bulk and inorganic nitrogen 

ratios, and Vienna Pee Dee Belemnite (VPDB) standard for organic carbon ratios. The 

isotopic compositions are expressed in delta (δ) notation in parts per mil (‰): 

𝛿𝛿(‰) = � 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
− 1� × 1000 (Eq. 3.1: delta notation) 

where Rsample = 13C/12Csample
 or 15N/14Nsample and Rstandard = 13C/12CVPDB

 15N/14Nair
.. 

 Raw data were calibrated using standards of known isotopic composition to 

correct for any isotopic offset. NIST N3 (KNO3) and USGS 40 (L-glutamic acid) 

standards were used for nitrogen isotopic calibrations, while urea (CH4N2O) and USGS 

40 were used for carbon isotopes and TOC concentrations. An acetanilide (C8H9NO) 

standard was used to check for machine drift and calibrate elemental concentrations 

during each sample run. Replicates of nitrogen standards USGS 40 and KNO3 had a 

standard deviation of ± 0.2‰ and ± 0.1‰, respectively. Replicates of the δ15Nbulk and 

δ15Ninorg samples for the A. Lowe Heirs KL4-504695 had standard deviations of ± 0.2‰ 

and ± 0.3‰, respectively. Replicates of carbon standards USGS 40 and urea had a 

standard deviation of ± 0.2‰ and ± 0.3‰, and replicate samples for δ13Corg had a 

standard deviation of ± 0.3‰. For individual sample runs, 3 samples were run as 
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duplicates and 1 as a triplicate, with standards every 10 samples in order to ensure 

precision and reproducibility. 

 

3.2 Laboratory procedures 

 To analyze for TN and δ15Nbulk, approximately 35 mg of each powdered sample 

was placed into an individual tin boat. A vanadium pentoxide catalyst was added to each 

sample to help ensure complete combustion during analyses. In order to evaluate for IN 

and δ15Ninorg, cutting samples had to undergo additional preparation before analyses. This 

required ON to be removed from samples using a potassium hypobromite (KOBr) 

digestion method as described by Silva and Bremner (1966). Inorganic nitrogen in the 

form for fixed and exchangeable ammonium is typically determined using the Kjeldahl 

distillation method as described by Bremner and Keeney (1966); however this method 

involves tedious and difficult digestion, distillation, and titration steps. In a study by 

Minagawa et al. (1984), the Kjeldahl digestion and distillation method of complex OM 

did not provide complete chemical yields when evaluating for separate nitrogen specie 

isotopic values compared to the KOBr digestion and combustion method described 

below. By definition, exchangeable nitrogen is the NH4
+ that is extractable by a 2 M KCl 

solution, while fixed ammonium is the fraction that is not by 2 M KCl, but liberated after 

being subjected to a hypobromite solution (de Lang, 1992; Freudenthal et al., 2001). 

Therefore, for the remainder of this research, IN will refer to NH4
+

 fixed within clay 

minerals. Since this method utilizes liquid bromine, extreme caution is advised. 

 The exact digestions method used by Tuite Jr. (2012) is as follows. The KOBr-

KOH solution was prepared by adding 6 ml of bromine at 0.5 ml/minute to 200 ml of 2 
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M KOH while cooling the solution in an ice bath. Twenty ml of prepared KOBr-KOH 

solution was added to a flask containing 500-1000 mg of powdered sample, swirled, and 

left for 2 hours. 60 ml of deionized (DIW) was added to the flask and the contents were 

brought to a boil for 10 minutes on a hot plate then allowed to cool overnight. The 

supernatant fluid was removed and the samples were washed in 0.5 M KCl. Samples 

were then washed in de-ionized water (DIW) water until pH of the supernatant achieved 

neutrality, and then dried at approximately 50°C overnight. Analyses for inorganic 

nitrogen isotope measurements then followed the same procedure as bulk nitrogen 

samples. 

 To analyze for TOC and δ13Corg, approximately 10 mg of sample was 

progressively decarbonated in silver boats. Samples were first decarbonated using 25% 

HCl, then concentrated HCl until effervescence ceased. Once the decarbonation process 

was complete samples were dried at approximately 60°C for 3 days in order to ensure 

complete dryness and wrapped in tin capsules. Following drying the samples, the same 

procedure described for TN and δ15Nbulk were carried out. 

 

3.3 Calibration, quality control, and statistical analysis 

 Calibration of δ-values for a particular set of samples is determined by using 

isotopic standards. Primary standards (N2 air for nitrogen and VPDB for carbon) have a 

definitive δ-value, and are crucial for the standardization of isotopic measurements. This 

enables the comparison of data sets between multiple laboratories. Secondary standards 

(NIST N3, USGS 40, and Urea) are natural and synthetic compounds that have been 

calibrated to primary standards and the δ-values of these materials are agreed upon 
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internationally (Carter and Barwick, 2011). The raw δ-values of these secondary 

standards are then averaged, and the difference between the averaged raw δ-value and the 

actual secondary standard data is used to adjust raw δ-values for the sediment/gas/liquid 

samples: this process is referred to as normalization. If raw secondary standard δ-values 

have a large standard deviation, then adjusted sample δ-values will be less precise and be 

subjected to greater uncertainty. This is because secondary standards should display 

linearity, which refers to the ability of the measurement procedure to produce δ-values 

that are independent of the amount of material analyzed (Carter and Barwick, 2011). 

Likewise, if a progressive trend in raw standard δ-values is observed (e.g. δ-values are 

constantly decreasing or increasing during the sample run), machine drift may likely be 

occurring. To confirm machine drift, acetanilide standards are run to monitor the hourly 

and daily performance of an IRMS. Drift arises when an instrument response changes 

over time, which is often associated with changes in ambient temperature or the stability 

of electric circuits; however, machine drift can be properly corrected using specific 

algorithms (Cheatham et al., 1993). Duplicate and triplicate replicate samples should also 

be included during each IRMS sample run in order to check for reproducibility. The 

standard deviation of these duplicate and triplicate samples should have a target standard 

deviation equal to or less than 0.3 ‰ for nitrogen and carbon isotopic analyses (Carter 

and Barwick, 2011). Standard deviation values larger than this threshold lead to greater 

uncertainties when adjusting and correcting for true sample δ-values. Statistical analyses 

for reproducibility of sample and standard δ-values have proven mass spectrometry 

analyses conducted in this research are within the accepted quality assurance threshold. 

Minimum, maximum, average, and standard deviations of geochemical results for 
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individual members are presented for the lower Huron (Table 1), middle Huron (Table 2), 

upper Huron (Table 3), Chagrin (Table 4), and Cleveland equivalent (Table 5) shales. 
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CHAPTER IV 
 

 

RESULTS 

 Results of isotopic and elemental concentrations for δ15Nbulk (‰), δ15Ninorganic 

(‰), TN (wt. %), IN (wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN are presented in 

Appendix I, and plotted with respect to depth in Figure 10. 

 

4.1 Geochemical results: lower Huron Member 

 Sedimentary δ15Nbulk values range from -1.2 to -2.5‰ with a mean δ15Nbulk value 

of -1.8 ± 0.4‰. Sedimentary δ15Ninorg values vary from -1.5 to -2.1‰ with a mean 

δ15Ninorganic value of -1.7 ± 0.2‰. Total nitrogen varies from 1.6 to 1.9 wt. % and has a 

mean value of 1.7 ± 0.1%; IN concentrations range from 1.3 to 1.7 wt. % with a mean 

value of 1.5 ± 0.1%. Maximum and minimum δ13Corg values range from -29.1 to -30.6‰ 

with a mean isotopic value of -30.1 ± 0.4‰. TOC values vary from 3.8 to 9.3 wt. % with 

a mean concentration of 5.7 ± 1.4 wt. %. 

Table 1. Minimum, maximum, average, and standard deviation values for δ15Nbulk (‰), δ15Ninorg (‰), TN (wt. %), IN 
(wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN values the lower Huron Member. 

LOWER HURON MEMBER 
 δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

MIN -2.5 -2.1 1.6 1.3 -30.6 3.8 2.4 
MAX -1.2 -1.5 1.9 1.7 -29.1 9.3 5.4 

MEAN -1.8 -1.7 1.7 1.5 -30.1 5.7 3.3 
STD DEV 0.4 0.2 0.1 0.1 0.4 1.4 0.8 

30 
 



4.2 Geochemical results: middle Huron Member 

 Sedimentary δ15Nbulk values range from -0.2 to -2.3‰ with a mean δ15Nbulk value 

of -1.1 ± 0.5‰. Sedimentary δ15Ninorg values vary from -0.7 to -1.6‰ with a mean 

δ15Ninorganic value of -1.0 ± 0.2‰. Total nitrogen varies from 1.1 to 1.6 wt. % and has a 

mean value of 1.4 ± 0.1%; IN concentrations range from 0.9 to 1.4 wt. % with a mean 

value of 1.2 ± 0.1%. Maximum and minimum δ13Corg values range from -25.2 to -29.7‰ 

with a mean isotopic value of -27.5 ± 1.4‰. TOC values vary from 0.5 to 4.4 wt. % with 

a mean concentration of 1.5 ± 1.2 wt. %. 

Table 2. Minimum, maximum, average, and standard deviation values for δ15Nbulk (‰), δ15Ninorg (‰), TN (wt. %), IN 
(wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN values the middle Huron Member. 

MIDDLE HURON MEMBER 
 δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

MIN -2.3 -1.6 1.1 0.9 -29.7 0.5 0.4 
MAX -0.2 -0.7 1.6 1.4 -25.2 4.4 2.8 

MEAN -1.1 -1.0 1.4 1.2 -27.5 1.5 1.1 
STD DEV 0.5 0.2 0.1 0.1 1.4 1.2 0.8 
 

4.3 Geochemical results: upper Huron Member 

 Sedimentary δ15Nbulk values range from -1.1 to -1.9‰ with a mean δ15Nbulk value 

of -1.4 ± 0.3‰. Sedimentary δ15Ninorg values vary from -0.8 to -1.1‰ with a mean 

δ15Ninorganic value of -1.0 ± 0.1‰. Total nitrogen varies from 1.5 to 1.7 wt. % and has a 

mean value of 1.6 ± 0.1%; IN concentrations range from 1.2 to 1.3 wt. % with a mean 

value of 1.3 ± 0.1%. Maximum and minimum δ13Corg values range from -27.6 to -28.7‰ 

with a mean isotopic value of -28.2 ± 0.5‰. TOC values vary from 2.6 to 3.8 wt. % with 

a mean concentration of 3.1 ± 0.6 wt. %. 
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Table 3. Minimum, maximum, average, and standard deviation values for δ15Nbulk (‰), δ15Ninorg (‰), TN (wt. %), IN 
(wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN values the upper Huron Member. 

UPPER HURON MEMBER 
 δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

MIN -1.9 -1.1 1.5 1.2 -28.7 2.6 1.7 
MAX -1.1 -0.8 1.7 1.3 -27.6 3.8 2.4 

MEAN -1.4 -1.0 1.6 1.3 -28.2 3.1 2.0 
STD DEV 0.3 0.1 0.1 0.1 0.5 0.6 0.3 
 

 

4.4 Geochemical results: Chagrin Member 

 Sedimentary δ15Nbulk values range from -1.9 to 0.8‰ with a mean δ15Nbulk value of 

-0.1 ± 0.6‰. Sedimentary δ15Ninorg values vary from -0.6 to 0.0‰ with a mean 

δ15Ninorganic value of -0.3 ± 0.2‰. Total nitrogen varies from 0.9 to 1.4 wt. % and has a 

mean value of 1.0 ± 0.2%: IN concentrations range from 0.7 to 1.1 wt. % with a mean 

value of 0.9 ± 0.1%. Maximum and minimum δ13Corg values range from -24.8 to -28.5‰ 

with a mean isotopic value of -26.3 ± 0.3‰. TOC values vary from 0.3 to 2.1 wt. % with 

a mean concentration of 0.8 ± 0.6 wt. %. 

Table 4. Minimum, maximum, average, and standard deviation values for δ15Nbulk (‰), δ15Ninorg (‰), TN (wt. %), IN 
(wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN values the Chagrin Member. 

CHAGRIN MEMBER 
 δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

MIN -1.9 -0.6 0.9 0.7 -28.5 0.3 0.3 
MAX 0.8 0.0 1.4 1.1 -24.8 2.1 1.7 

MEAN -0.1 -0.3 1.0 0.9 -26.3 0.8 0.7 
STD DEV 0.6 0.2 0.2 0.1 1.3 0.6 0.5 
 

4.5 Geochemical results: Cleveland equivalent Member 

 Sedimentary δ15Nbulk values range from -0.5 to 1.6‰ with a mean δ15Nbulk value of 

1.1 ± 0.4‰. Sedimentary δ15Ninorg values vary from 0.5 to 1.6‰ with a mean δ15Ninorganic 
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value of 1.0 ± 0.4‰. Total nitrogen varies from 1.2 to 1.9 wt. % and has a mean value of 

1.5 ± 0.2%: IN concentrations range from 1.0 to 1.7 wt. % with a mean value of 1.2 ± 

0.2%. Maximum and minimum δ13Corg values range from -28.2 to -29.0‰ with a mean 

isotopic value of -28.7 ± 0.3‰. TOC values vary from 4.1 to 9.4 wt. % with a mean 

concentration of 6.1 ± 1.7 wt. %. 

Table 5. Minimum, maximum, average, and standard deviation values for δ15Nbulk (‰), δ15Ninorg (‰), TN (wt. %), IN 
(wt. %), δ13Corg (‰), TOC (wt. %), and Corg/TN values the Cleveland equivalent. 

CLEVELAND EQUIVALENT MEMBER 
 δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

MIN 0.5 0.5 1.2 1.0 -29.0 4.1 3.3 
MAX 1.6 1.6 1.9 1.7 -28.2 9.4 4.9 

MEAN 1.1 1.0 1.5 1.2 -28.7 6.1 4.0 
STD DEV 0.4 0.4 0.2 0.2 0.3 1.7 0.7 
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CHAPTER V 
 

 

DISCUSSION 

5.1 Paleoredox evolution and depositional model of the Ohio Shale 

 Using δ15Nbulk and TOC as our proxies for oxygen content and preservation of 

OM, it is possible to evaluate the paleoredox evolution (Fig. 11) and build a depositional 

model for our particular site in eastern Kentucky (Fig. 12). Anoxic conditions would 

promote nitrogen fixation as the predominant biogeochemical process that leads to low 

sedimentary δ15Nbulk values, and greater quantities of preserved OM. In contrast, suboxic 

water column conditions would lead to minimal OM preservation and promote 

denitrification as the predominant reaction resulting in higher sedimentary δ15Nbulk 

values.  

 The lower Huron Member was deposited in an anoxic system below the 

pycnocline, as indicated by low δ15Nbulk values and high TOC. The middle Huron was 

deposited in alternating suboxic and anoxic conditions, suggesting deposition at our 

particular site fluctuated within the pycnocline and below it. This is confirmed by the 

large ranges and standard deviations of δ15Nbulk and TOC values. The upper Huron was 

deposited below the pycnocline in anoxic conditions: indicated by lower δ15Nbulk and high 

TOC contents. The Chagrin Member was predominantly deposited in a suboxic 

environment within the pycnocline as characterized by higher δ15Nbulk and high TOC.
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One exception does exist within the Chagrin, expressed by lower δ15Nbulk values and 

increase in TOC at an approximate depth of 915 m. The Cleveland equivalent does not 

geochemically behave in the same manner as other transgressive lower and upper Huron 

shale members. The Cleveland equivalent is characterized by high TOC and the 

progressive increase in δ15Nbulk values are the greatest encountered throughout the entire 

Ohio Shale. This suggests suboxic water column conditions, denitrification, and OM 

preservation during the Cleveland equivalent deposition: which is atypical compared to 

true Cleveland black shale depositional interpretations. Geochemical studies by 

Ettensohn et al. (1988) and Robl and Barron (1988) were the first to suggest Cleveland 

black shale deposition was deposited under upwelling conditions; however, their sample 

locations were restricted to central Kentucky along the flank of the Cincinnati Arch. Our 

study site is located further east more proximal to the prograding Chagrin shelf. 

Schmoker (1981) concluded that the Cleveland Member is approximately 200 gamma ray 

API units below normal in southeastern Kentucky even though concentrations of TOC  

Figure 11. Schematic diagram using δ15Nbulk and TOC as proxies for oxygen concentration and OM preservation. 
Arrows show the generalized evolution of paleoredox conditions during Ohio Shale deposition. 
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Figure 12. Synthetic depositional model for individual members of the Ohio Shale 
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are high. The lack of correlation between gamma ray signals and TOC may be due to 

high sedimentation rates and/or bioturbation and the remobilization of uranium (Kepferle, 

1993; Zheng et al., 2002; Lüning and Kolonic, 2003; Morford et al., 2009). Furthermore, 

studies adjacent to Pike County, Kentucky, in West Virginia, have proven the Cleveland 

grades into a gray shale siltstone that is undistinguishable and “undifferentiated” from 

Chagrin facies (Neal, 1979; Hohn et al., 1980). Increased fluvial input and the 

progradation of greenish-gray shale facies may have disrupted upwelling as suggested by 

depositional models by Ettensohn and Barron (1981), especially locations nearest to the 

Chagrin shelf. After the deposition of the upper Huron Member, there is a progressively 

fining-upward trend through the Mississippian Bedford-Berea fluvial clastics, as 

indicated by the gamma ray log (Fig. 5). This suggests that at our particular site of 

deposition, the Cleveland equivalent represents flych-like sedimentation compared to true 

Cleveland black shale deposition in an oxygen minimum zone (OMZ) more westwardly 

in central Kentucky. Geochemical data for our study site in Pike County, Kentucky 

suggests the Cleveland equivalent was deposited proximal to upwelling conditions but 

not within the OMZ (Fig. 12); the proximity to the OMZ led to elevated rates of primary 

production and subsequent high TOC contents found within the Cleveland equivalent. 

 

5.2 Other geochemical proxies 

 Other geochemical proxies (δ13Corg and Corg/TN) can be used to strengthen our 

depositional environment interpretations. There is a correlation between sedimentary 

δ15Nbulk values, Corg/TN and, δ13Corg. Low δ15Nbulk suggests anoxia and higher 

preservation of OM, which coincides with high Corg/TN; in contrast, high δ15Nbulk values 
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is indicative of suboxia, which coincides with minimal OM preservation and low 

Corg/TN. The only exception exists within the Cleveland equivalent member, which is 

characterized by high δ15Nbulk and Corg/TN due to being deposited in suboxic conditions 

in close proximity to upwelling conditions.  

 Organic carbon isotope ratios have predominately been used to differentiate 

between marine and terrestrial OM. Maynard (1981) used δ13Corg as an indicator for 

dispersal patters of terrestrial and marine OM in the Ohio Shale and its equivalents. He 

concluded that non-marine OM (coal) has a δ13Corg value of approximately -25‰, while 

basinal black shale samples had values near -30.5‰. However, there are some caveats to 

the findings of Maynard (1981), some of which the author mentions: (1) the more than 

130  samples of Ohio Shale and age-equivalent units were taken from 6 states spanning 

from New York to Tennessee and averaged over the entire Appalachian Basin; thus, 

samples from other states may not represent the δ13Corg of the true Ohio Shale which is 

only recognized in Ohio and Kentucky; (2) photosynthetic plankton encompass a large 

range of δ13Corg values from -10 to -31‰ (Bickert, 2006); and (3) it was assumed that 

δ13Corg values are solely dependent on OM source. If the same end member δ13Corg values 

from Maynard (1981) were applied to our data, it would suggest that there are major 

contributions of both marine and terrestrial OM in the Ohio Shale in Pike County, 

Kentucky. Rock-Eval pyrolysis studies by Ingall et al. (1993), Rimmer et al. (1993), and 

Ryder et al. (2013) have proven that the Ohio Shale in the eastern Kentucky and the New 

Albany Shale in the adjacent Illinois Basin contain predominantly type II kerogen 

associated with high hydrogen indices and moderate oxygen indices, reflecting 

predominant marine OM sources. These studies also suggested that Ohio Shale and New 
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Albany samples that are characterized by lower hydrogen and higher oxygen indices 

could either be due to oxidation of type II OM during deposition or conversion of type II 

kerogen to solid bitumen during thermal degradation.  

 Therefore, the variations in δ13Corg values must reflect other mechanisms. Multiple 

studies (e.g. Hollander and McKenzie, 1991; Hodell and Schelske, 1998; Kump and 

Arthur, 1999; Popp et al., 1997; Schubert and Calvert, 2001; Jarvis et al., 2011) have 

shown that CO2 acts as an integrator during carbon isotopic fractionation during aqueous 

photosynthesis. Availability of CO2 in response to changes in the partial pressure of 

carbon dioxide (pCO2) have the potential to affect the carbon reservoir and δ13Corg signal 

in OM. Photosynthetic organisms typically discriminate in against 13CO2 during 

photosynthesis when pCO2 is high (Kump and Arthur, 1999; Jarvis et al., 2011); 

however, when pCO2 is lowered, CO2(aqueous) is limited due to restricted exchange 

between the aqueous and atmospheric CO2 pools, and photosynthetic organisms 

discriminate less against 13C and δ13Corg becomes progressively enriched (Hodell and 

Schelske, 1998; Schubert and Calvert, 2001). Instead of suggesting changes in types of 

OM, δ13Corg values in this research likely reflect variations in pCO2 and CO2(aqueous) 

possible driven by third order eustatic events.  

 

5.3 Validity of depositional environment interpretations 

 This research was conducted from well cuttings from the A. Lowe Heirs KL4-

504695 at approximately 3 m intervals, so there is some concern about discrepancies and 

inaccuracies due to sample depth calibration and possible sample contamination. 

Geochemical profiles need to be lithostratigrhapically correlated in order to support the 
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validity of our depositional environment interpretations. In theory, there should be an 

antithetic relationship between gamma ray signals and δ15Nbulk values for a particular 

interval, with lower δ15Nbulk values correlating to higher gamma ray signal, indicating 

anoxic darker shale deposition and higher δ15Nbulk with lower gamma ray signals 

reflecting suboxic lighter shale deposition. This antithetic relationship between δ15Nbulk 

and gamma ray signals is seen in our data set (Fig. 10), which supports our depositional 

interpretations since geochemical data matches the lithostratigraphy. 

 

5.4 Relationship between δ15Nbulk and δ15Ninorg 

 Now that the paleoredox conditions and evolution of each Ohio Shale member 

have been established, it is possible to evaluate the relationships between paleoredox-

dependent δ15Nbulk and δ15Ninorg. Along with characterizing the paleoredox conditions of 

the Ohio Shale, another goal was to evaluate the driving mechanism(s) responsible for the 

observed relationships between δ15Nbulk and δ15Ninorg through the core. Three conceptual 

scenarios exist between δ15Nbulk and δ15Ninorg values as shown in Figure 10: (1) δ15Nbulk > 

δ15Ninorg (positive), (2) δ15Nbulk < δ15Ninorg (negative), or (3) δ15Nbulk ≈ δ15Ninorg (closed). In 

general, there is a correlation between crossover profiles and the original paleoredox 

conditions; positive crossovers (δ15Nbulk > δ15Ninorg; shaded blue) are associated with 

anoxic intervals, while negative crossovers (δ15Nbulk < δ15Ninorg; shaded gray) are 

associated with suboxic intervals. Although there is a correlation between the original 

redox condition and crossover profiles, subsequent diagenetic and catagenetic processes 

need to be taken into account to fully evaluate the relationship between δ15Ninorg with 

respect to δ15Nbulk values.  
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5.4.1 Implications of negative (δ15Nbulk < δ15Ninorg) crossover profiles 

 Negative crossover profiles are associated with anoxic intervals, characterized by 

higher gamma ray signals (typically greater than 220 API), and high TOC and IN 

concentrations (Fig. 10). The fact that δ15Ninorg values are higher than δ15Nbulk is 

contradictive with regards to isotopic fractionation kinetics described for the thermal 

degradation of OM and the transformation into aqueous NH4
+ as thermal degradation 

during catagenesis results in the preferential release of light 14NH4
+ isotope (Williams et 

al. 1995; Freudenthal et al., 2001; Mingram and Braüer, 2001; Plessen et al., 2010). 

Therefore, higher δ15Ninorg values with respect to δ15Nbulk suggests: (1) isotopic buffering 

must occur during the thermal transformation of OM to aqueous NH4
+, releasing both 

isotopically light 14NH4
+ and heavy 15NH4

+; and (2) there is an overall preferential uptake 

and fixation of 15NH4
+ by authigenic clays compared to 14NH4

+. Diagenetic processes 

need to be taken into account to understand how isotopic buffering and preferential 

fixation of 15NH4
+ by authigenic clays during catagenesis is ascertained.  

 The degradation-recondensation processes of OM play a crucial role in achieving 

isotopic buffering. Anoxia promotes greater quantities of OM preservation and subjects 

sediments to mineralization and anaerobic biodegradation. These processes breakdown 

macromolecular components into simple molecules which can be used by heterotrophs 

(Killops and Killops, 2005); however, large clay contents (characterized by higher 

gamma ray signals due to adsorption of naturally radioactive elements), offer protection 

to amorphous, labile molecules from complete microbial degradation (Largeau and 

Derenne, 1993; Wu et al., 2012 and references therein) by preservative mechanisms 

described by Kennedy et al. (2014 and references therein). Furthermore, clays 
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catalytically promote the structural rearrangement of ON components, such as pyridine 

and pyrrole (Behar and Vandenbroucke, 1987; Ader et al., 2006; Vandenbroucke and 

Largeau, 2007), into more structurally and thermally stable ON heterocycles and humic 

complexes (Boudou et al., 2008) due to processes similar to natural humification (Wu et 

al., 2012 and references therein). The structural rearrangement into thermally stable ON 

heterocycles, such as N-C3 cyclazines, is crucial because it promotes isotopic buffering 

during the thermal degradation of OM to aqueous NH4
+ (Boudou et al., 2008), resulting 

in the release of both isotopically light and heavy NH4
+. Laboratory studies by 

Karamanos and Rennie (1978) suggested that after chemical equilibrium is achieved, 

clays preferentially fix 15NH4
+ due to the excess of 15NH4

+ in solution. Over geologic 

time, isotopically heavy 15NH4
+ would be fixed by surrounding authigenic clays, resulting 

in a negative crossover profile for anoxic intervals (Fig. 13).  

 

5.4.2 Implications of positive (δ15Nbulk > δ15Ninorg) crossover profiles 

 Positive crossover profiles are associated with suboxic intervals, characterized by 

lower gamma ray signals (typically less than 220 API), and low TOC and IN 

concentrations (Fig. 10). Lower δ15Ninorg values with respect to δ15Nbulk suggests normal 

fractionation kinetics prevail during the thermal degradation of OM to aqueous NH4
+: 

releasing isotopically light 14NH4
+ which is then fixed by authigenic clays.  

 Suboxic conditions promote rapid decomposition of OM via mineralization and 

aerobic degradation, reflected by minimal TOC and Corg/TN values. Compared to anoxic 

intervals, suboxic intervals including the Cleveland equivalent generally have lower clay  
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contents, as indicated by lower gamma ray signals. The lower abundance of clays inhibits 

the degradation-recondensation process, which is responsible for the protection of simple 

molecules from complete microbial degradation and the formation of thermally stable 

ON heterocycles required for isotopic buffering during thermal degradation. Upon 

catagenesis, normal isotopic fractionation kinetics prevail during the thermal 

transformation of OM, and isotopically light 14NH4
+ released and fixed by surrounding 

authigenic clays: resulting in a positive crossover profile for suboxic intervals (Fig. 13). 

 

5.4.3 Implications of closed (δ15Nbulk ≈ δ15Ninorg) intervals 

 The fact that closed intervals, those characterized by δ15Nbulk ≈ δ15Ninorg, occur 

tells us something related to the catagenetic process of fluid flow and the overall fracture 

network of an unconventional system. This suggests that isotopic equilibrium exchange is 

occurring within a compartmentalized unit. Williams et al. (1995) noted that mudstones 

act as a closed system, except along fractures, where NH4
+ derived from the local OM 

could be incorporated in authigenic clays with little isotopic fractionation. Exchange 

between reactive inorganic nitrogen in circulating formation fluids with stationary OM 

pools results in the overall isotopic buffering of δ15N values: reducing the variability 

between separate nitrogen isotopic species in thermally mature stratigraphic sequences 

(Schimmelmann and Lis, 2010). These compartmentalized zones possess an internal 

microscopic fracture network within the compartmentalized unit, allowing isotopic 

equilibrium exchange between different forms of nitrogen, resulting in approximately 

equal bulk and inorganic nitrogen isotopic values (Fig. 14). When comparing δ15Nbulk and 

δ15Ninorganic profiles with the gamma ray log (Fig. 10), closed intervals occur in 
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stratigraphic zones characterized by decreased gamma ray values (decreased clay 

content) while being sealed above and below by gamma ray spikes, suggesting closed 

intervals are sealed by impermeable shales units. 

Figure 104. Schematic diagram illustrating isotopic equilibrium exchange between stationary OM and circulating 
NH4+ within a compartmentalized interval 
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CHAPTER VI 
 

 

CONCLUSIONS 

 In the A. Lower Heirs KL4-504695 in Pike County, δ15Nbulk and other 

complementary geochemical proxies have proven useful for characterizing the 

paleoredox evolution of the Ohio Shale depositional environment. The lower Huron 

Member was deposited in anoxic conditions beneath the pycnocline, and is the only Ohio 

Shale member to display black shale qualities at this particular locale while succeeding 

members reflect flysch-like clastic deposition. The middle Huron was deposited in 

alternating suboxic and anoxic conditions, suggesting deposition at this particular site 

fluctuated within the pycnocline and below it. The upper Huron Member was deposited 

under anoxic conditions below the pycnocline. Following the upper Huron, the Chagrin 

Member was deposited in a predominantly suboxic environment within the pycnocline, 

although one exception does exist. While upwelling conditions were prevalent during 

latest Famennian, the Cleveland equivalent in Pike County, Kentucky was deposited 

proximal to upwelling conditions, but not within the OMZ responsible for true black 

shale deposition. Although inaccuracies are associated with well cutting sample 

collection, the geochemical data presented matches the lithostratigraphy in the gamma 

ray log: validating our depositional environment interpretations. 

 After establishing the paleoredox conditions of the Ohio Shale, it is possible to  
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evaluate the mechanisms and conditions responsible for the relationship between δ15Nbulk 

and δ15Ninorg values. There appears to be an intricate relationship between paleoredox 

conditions, degradation-recondensation processes, clay contents, and 

diagenetic/catagenetic processes. Negative crossover profiles, associated with anoxic 

intervals, suggests that isotopic buffering is occurring along with an observed inversion 

of normal fractionation kinetics during thermal degradation of OM, and there is a 

preferential uptake of heavy 15NH4
+

 by authigenic clays. Isotopic buffering is achieved 

during degradation-recondensation processes, in which clays promote the structural 

rearrangement of simple molecules into thermally stable ON (cyclazine) heterocycles. 

Upon thermal degradation, isotopically light and heavy NH4
+ is released, and over 

geological time 15NH4
+ is preferentially fixed by authigenic clays, resulting in a negative 

crossover profile. Positive crossover profiles, associated with suboxic conditions, suggest 

that normal isotopic fractionation kinetics prevails, releasing isotopically light 14NH4
+ 

during the thermal degradation of OM. This is achieved due to the lower clay contents 

which hinders the recondensation processes responsible for the generation of thermally 

stable ON heterocycles required for isotopic buffering during thermal degradation. 

Therefore, isotopic fractionation occurs and releases isotopically light 14NH4
+ which is 

then fixed by authigenic clays: resulting in a positive crossover profile. Closed intervals 

are related to the overall fracture network and associated with compartmentalization 

within a particular interval. Isotopic equilibrium exchange between stationary OM and 

circulating aqueous NH4
+ pools results in the mutual equivalent δ15Nbulk and δ15Ninorg 

values within the compartmentalized interval.  
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6.1 Recommendations 

 Further studies on well cutting samples from the A. Lowe Heirs KL4-504695 

from Pike County, Kentucky should include x-ray diffraction (XRD) analyses. XRD 

would allow one to identify and quantify the different types minerals present throughout 

the Ohio Shale. Different clay minerals have different affinities for adsorbing and fixing 

NH4
+ as it is thermally released during catagenesis. Also, it is recommended that the 

same X-ray photoelectron spectroscopy (XPS) techniques utilized by Boudou et al. 

(2008) should be conducted. This will allow us to characterize XPS peaks to structural 

ON moieties (e.g. pyridinic-N, pyrrolic-N, and cyclazines). Although it is mentioned that 

cyclazines are typically associated with higher metamorphic grade sediments, it was 

noted by references within Boudou et al. (2008 and references therein) that humic 

cyclazine complexes can spontaneous form at low temperatures.  
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APPENDIX I 
 

Geochemical values for bulk nitrogen isotope (δ15Nbulk), inorganic nitrogen isotope (δ15Ninorganic), organic carbon 
isotope (δ13Corg), total organic carbon (TOC), inorganic nitrogen (IN), and Corg/TN profiles for the individual 
members of the Ohio Shale  
DEPTH 

(FT) Member δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

2850 Clvd Eq 0.9 1.2 1.7 1.3 -28.8 5.8 3.4 
2860 Clvd Eq 1.2 1.6 1.9 1.7 -28.8 9.4 4.9 
2870 Clvd Eq 1.5 1.0 1.4 1.1 -28.4 5.7 4.2 
2880 Clvd Eq 1.6 1.2 1.3 1.0 * 5.8 4.3 
2890 Clvd Eq 1.4 1.2 1.6 1.4 -28.9 7.8 4.9 
2900 Clvd Eq 1.1 0.6 1.7 1.3 -29.0 5.6 3.4 
2910 Clvd Eq 0.5 0.5 1.2 1.0 -28.2 4.7 3.8 
2920 Clvd Eq 0.8 0.5 1.2 1.0 -28.4 4.1 3.3 
2930 Chagrin 0.8 0.0 1.2 1.0 -27.9 2.1 1.7 
2940 Chagrin 0.3 -0.2 0.9 0.7 * 0.6 0.7 
2950 Chagrin 0.2 -0.1 0.9 0.8 -25.3 0.5 0.6 
2960 Chagrin 0.1 -0.3 1.0 0.8 -24.8 0.4 0.4 
2970 Chagrin 0.0 -0.2 1.0 0.8 -25.0 0.4 0.4 
2980 Chagrin 0.1 -0.4 1.2 1.0 -28.0 1.4 1.2 
2990 Chagrin 0.1 -0.4 1.2 1.0 -28.5 1.9 1.7 
3000 Chagrin -1.9 -0.6 1.4 1.1 -28.4 1.8 1.3 
3010 Chagrin 0.0 -0.3 1.2 1.0 -26.9 0.9 0.7 
3020 Chagrin -0.2 -0.5 0.9 0.9 -25.8 0.4 0.5 
3030 Chagrin -0.3 -0.3 1.0 0.9 -26.3 0.5 0.5 
3040 Chagrin -0.3 -0.4 0.9 0.9 -25.4 0.4 0.4 
3050 Chagrin -0.3 -0.4 1.0 0.9 -25.8 0.3 0.3 
3060 Chagrin -0.1 -0.3 1.1 0.9 -25.2 0.4 0.3 
3070 Chagrin -0.3 -0.3 0.9 0.9 -25.5 0.4 0.4 
3080 U Huron -1.9 -0.8 1.5 1.2 -27.6 2.6 1.8 
3090 U Huron -1.3 -1.1 1.5 1.2 -27.8 2.6 1.7 
3100 U Huron -1.4 -1.1 1.5 1.2 -28.6 3.2 2.1 
3110 U Huron -1.2 -1.0 1.7 1.3 * 3.6 2.1 
3120 U Huron -1.1 -0.9 1.6 1.3 -28.7 3.8 2.4 
3130 M Huron -1.2 -1.2 1.4 1.2 -27.9 2.1 1.5 
3140 M Huron -1.6 -1.1 1.4 1.1 -29.0 2.2 1.6 
3150 M Huron -1.5 -0.9 1.4 1.0 * 2.0 1.4 
3160 M Huron -1.8 -0.8 1.3 1.1 -28.2 2.0 1.5 
3170 M Huron -0.6 -0.8 1.3 1.1 -26.1 0.7 0.5 
3180 M Huron -0.9 -0.7 1.4 1.2 -27.6 0.9 0.6 
3190 M Huron -1.3 -0.9 1.3 1.1 -27.9 0.9 0.7 
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DEPTH 

(FT) Member δ15Nbulk 

(‰) 
δ15Ninorg 

(‰) 
TN 

(wt %) 
IN 

(wt %) 
δ13Corg 

(‰) 
TOC 

(wt %) Corg/TN 

3200 M Huron -0.8 -0.9 1.3 1.0 -26.8 0.7 0.6 
3210 M Huron -0.2 -0.7 1.3 1.0 -25.4 0.6 0.5 
3220 M Huron -0.5 -0.9 1.3 1.1 -25.6 0.6 0.5 
3230 M Huron -0.5 -0.8 1.30 0.98 -25.2 0.49 0.37 
3240 M Huron -0.7 -0.7 1.33 1.25 -26.9 0.55 0.41 
3250 M Huron -0.7 -0.9 1.07 1.25 -25.8 0.52 0.48 
3260 M Huron -1.6 -1.2 1.50 1.38 -28.6 2.09 1.39 
3270 M Huron -1.2 -1.1 1.41 1.28 -27.1 1.02 0.72 
3280 M Huron -1.0 -1.0 1.37 1.24 -27.4 0.67 0.49 
3290 M Huron -0.7 -0.9 1.37 1.32 -28.6 1.39 1.01 
3300 M Huron -1.1 -1.0 1.53 1.42 * 1.83 1.20 
3310 M Huron -1.4 -1.2 1.41 1.40 -29.1 2.13 1.51 
3320 M Huron -1.9 -1.3 1.50 1.38 * 4.23 2.82 
3330 M Huron -2.3 -1.6 1.51 1.48 -29.6 4.11 2.73 
3340 M Huron -1.9 -1.4 1.56 1.43 -29.7 4.40 2.82 
3350 M Huron -0.7 -1.1 1.48 1.38 -28.4 1.01 0.68 
3360 M Huron -0.7 -1.1 1.35 1.42 -27.9 0.62 0.46 
3370 M Huron -1.1 -1.0 1.22 1.30 -28.8 0.58 0.48 
3380 M Huron -0.8 -1.0 1.35 1.32 -25.4 0.59 0.44 
3390 L Huron -2.5 -1.9 1.75 1.71 -30.0 7.11 4.07 
3400 L Huron -1.6 -1.6 1.76 1.65 -30.3 6.76 3.84 
3410 L Huron -1.4 -1.5 1.84 1.71 -30.3 6.57 3.57 
3420 L Huron -1.6 -1.5 1.78 1.57 -30.5 4.81 2.70 
3430 L Huron -1.3 -1.8 1.59 1.41 -30.3 4.08 2.57 
3450 L Huron -1.5 -1.7 1.68 1.45 -30.6 4.59 2.73 
3460 L Huron -1.2 -1.6 1.71 1.63 -30.2 5.47 3.19 
3470 L Huron -2.0 -2.1 1.85 1.70 -30.2 4.79 2.59 
3480 L Huron -1.7 -1.7 1.71 1.68 -29.9 5.75 3.36 
3490 L Huron -2.3 -1.9 1.66 1.52 -29.9 5.08 3.06 
3500 L Huron -2.1 -1.6 1.70 1.34 -29.8 5.50 3.23 
3510 L Huron -2.3 -1.9 1.69 1.57 -29.6 5.54 3.28 
3520 L Huron -1.6 -1.7 1.60 1.50 -29.9 3.80 2.38 
3530 L Huron -2.1 -2.0 1.74 1.83 -29.1 9.31 5.36 

* denotes that measurements were not collected due to machine error; therefore, δ13Corg 
averages and standard deviations for individual members are associated with some 
statistical error, but are assumed to be minimal  
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APPENDIX II 
 

Munsell color indices for individual members of the Ohio Shale. 

DEPTH 
(FT) Member Hue Value/ 

Chroma Color 

2850 Clvd Eq 7.5 YR 4/1 dark gray 
2860 Clvd Eq 7.5 YR 3/1 very dark gray 
2870 Clvd Eq 7.5 YR 4/1 dark gray 
2880 Clvd Eq 7.5 YR 4/1 dark gray 
2890 Clvd Eq 7.5 YR 4/1 dark gray 
2900 Clvd Eq 7.5 YR 4/1 dark gray 
2910 Clvd Eq 7.5 YR 4/1 dark gray 
2920 Clvd Eq 7.5 YR 4/1 dark gray 
2930 Chagrin 7.5 YR 5/1 gray 
2940 Chagrin 5 YR 7/1 light gray 
2950 Chagrin 5 YR 7/1 light gray 
2960 Chagrin 5 YR 7/1 light gray 
2970 Chagrin 5 YR 7/1 light gray 
2980 Chagrin 5 YR 6/1 gray 
2990 Chagrin 5 YR 6/1 gray 
3000 Chagrin 5 YR 6/1 gray 
3010 Chagrin 5 YR 6/1 gray 
3020 Chagrin 5 YR 7/1 light gray 
3030 Chagrin 5 YR 7/1 light gray 
3040 Chagrin 5 YR 7/1 light gray 
3050 Chagrin 5 YR 7/1 light gray 
3060 Chagrin 5 YR 7/1 light gray 
3070 Chagrin 5 YR 7/1 light gray 
3080 U Huron 7.5 YR 5/1 gray 
3090 U Huron 7.5 YR 5/1 gray 
3100 U Huron 7.5 YR 4/1 dark gray 
3110 U Huron 7.5 YR 4/1 dark gray 
3120 U Huron 7.5 YR 4/1 dark gray 
3130 M Huron 7.5 YR 5/1 gray 
3140 M Huron 7.5 YR 5/1 gray 
3150 M Huron 7.5 YR 5/1 gray 
3160 M Huron 7.5 YR 5/1 gray 
3170 M Huron 7.5 YR 6/2 pinkish gray 
3180 M Huron 7.5 YR 6/1 gray 
3190 M Huron 7.5 YR 6/1 gray 
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DEPTH 
(FT) Member Hue Value/ 

Chroma Color 

3200 M Huron 7.5 YR 6/1 gray 
3210 M Huron 7.5 YR 6/1 gray 
3220 M Huron 7.5 YR 6/2 pinkish gray 
3230 M Huron 7.5 YR 6/1 gray 
3240 M Huron 7.5 YR 6/1 gray 
3250 M Huron 7.5 YR 6/1 gray 
3260 M Huron 7.5 YR 5/1 gray 
3270 M Huron 7.5 YR 6/1 gray 
3280 M Huron 7.5 YR 6/1 gray 
3290 M Huron 7.5 YR 6/1 gray 
3300 M Huron 7.5 YR 5/1 gray 
3310 M Huron 7.5 YR 5/1 gray 
3320 M Huron 7.5 YR 5/1 gray 
3330 M Huron 7.5 YR 4/1 dark gray 
3340 M Huron 7.5 YR 4/1 dark gray 
3350 M Huron 7.5 YR 6/1 gray 
3360 M Huron 7.5 YR 6/1 gray 
3370 M Huron 7.5 YR 6/1 gray 
3380 M Huron 7.5 YR 6/1 gray 
3390 L Huron 7.5 YR 4/1 dark gray 
3400 L Huron 7.5 YR 3/2 dark brown 
3410 L Huron 7.5 YR 3/2 dark brown 
3420 L Huron 7.5 YR 4/1 dark gray 
3430 L Huron 7.5 YR 4/2 brown 
3450 L Huron 7.5 YR 3/1 very dark gray 
3460 L Huron 7.5 YR 4/2 brown 
3470 L Huron 7.5 YR 3/2 dark brown 
3480 L Huron 7.5 YR 4/2 brown 
3490 L Huron 7.5 YR 4/2 brown 
3500 L Huron 7.5 YR 3/1 very dark gray 
3510 L Huron 7.5 YR 3/1 very dark gray 
3520 L Huron 7.5 YR 4/1 dark gray 
3530 L Huron 7.5 YR 2.5/1 black 
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