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Abstract: NMR (Nuclear Magnetic Resonance) has been expanding its application since 

it was first discovered in the early 50s. In biophysics, it is a very powerful tool 

complement to X-ray crystallography for protein structure studies. In this dissertation, 

two different projects studied by two different NMR methods will be presented. In the 

first part, a membrane protein PLIN1 which resides on the surface of the cellular 

organelle lipid droplet is investigated by solid-state NMR (ssNMR). It has been shown 

that PLIN 1 exclusively locates on the surface of lipid droplet and upon phosphorylation, 

recruits lipase to digest the triglycerides stored in the lipid droplet. However, due to its 

membrane protein nature, its insolubility resists to crystallization. ssNMR is a perfect tool 

to study this membrane protein. PLIN1 was reconstituted into DMPG liposomes and 

multi-dimensional ssNMR spectra were acquired. According to proton spin diffusion 

data, a membrane interaction model was proposed and later verified by both molecular 

dynamics (MD) simulation and experimental reconstitution data. In the second part, a 

soluble protein Mortalin was studied by solution NMR. Mortalin is a heat shock protein 

70 (HSP70) family membrane primarily located in the mitochondria. In cancer cells, 

Mortalin is released to the cytoplasm and forms a complex with p53, sequestering it in 

the cytoplasm thus inhibiting its translocation to nucleus to induce cell apoptosis. The 

flexible heteroarotinoid (Flex-Het) SHetA2 with promising anti-cancer activity can bind 

to Mortalin and release p53 from the complex to induce cell apoptosis. We successfully 

determined the substrate binding pocket of Mortalin to be the interacting sites with 

SHetA2 by chemical shift perturbation (CSP). Using AutoDock as the prediction tool, at 

least two binding configurations of SHetA2 are generated with high binding affinity. 

According to these results, more SHetA2 analogs were designed and tested in AutoDock. 

We find that the analogs with longer linkers that can occupy both configurations of 

SHetA2 yield the highest binding affinity (lowest binding energy). These results will 

guide future drug designs to increase the efficiency of Flex-Het anti-cancer activity. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Nuclear Magnetic Resonance (NMR) spectroscopy has been continuously expanding its 

application areas since it was discovered after World War II when Bloch [1] at Stanford and 

Purcell [2] at Harvard reported NMR in bulk water and paraffin, respectively. The growth 

accelerated even more after the developments of pulsed Fourier transform NMR spectroscopy and 

the conception of multidimensional NMR spectroscopy. Despite its application in physics first, it 

is widely used in chemistry, biology, pharmaceutical and clinical diagnosis (MRI) nowadays.  

NMR theory is based on the spin angular momentum, an intrinsically quantum mechanical 

property that does not have a classical analog.  However, precession can be used to help visualize 

the behavior of the nucleus under external magnetic fields. The precession of the nuclear spin 

results an oscillating current that can be readily detected as free induction decay (FID). NMR has 

been a relatively insensitive method due to the fact that it detects the population difference 

between two states of the interested nuclei. In protein structure determination, X-crystallography 

is the dominant method. When the first NMR structure of a small protein BPTI was published, the 

reaction from the well-established community from X-ray crystallography was disbelief. They 

argued that the structure had been modeled using other proteins whose structures were previously 

determined by X-ray crystallography. But, with years of developments, such as higher magnetic 

field, cryoprobes, stability enhancements, and more complicated processing methods, nowadays, 
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NMR is a major structure determination technique complementary to X-ray crystallography.  The 

number of structure determined by NMR has been increasing steadily according to the Protein 

Data Bank statistics.  

  

 

Figure 1. The growth of protein structure solved by NMR according to RCSB protein data bank statistics. The number of 
protein structures solved by NMR grows steadily each year since 1986.Thre maroon bars represent the total structures 
accumulated every year while the blue bars indicate the structures solved by NMR each year. The inset is the enlarged 
portion of earlier years with extended scale for clarification. 

 Although comparing to X-ray crystallography, the number of total protein structures determined 

by NMR is still very small, NMR can provide other types of information that is hardly amenable 

by crystallography. For example, a wide range of time-scale dynamics can be investigated by 

different NMR techniques, from slow exchange by magnetization exchange spectroscopy 

(EXSY) to fast exchange by spin relaxation [3]. Chemical shift mapping can also provide 
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information on which part of the protein is interacting with substrates or ligands. This is very 

important for small molecule screening and optimization in drug discovery. Protein-protein or 

protein-ligand interactions play a key role in numerous cellular processes. However, even with 

defined structures for both partners in an interaction, co-crystallization of the complex might be 

difficult due to low affinity or local disorder. NMR can complement these interaction studies by 

chemical shift perturbation (CSP), paramagnetic relaxation enhancement (PRE), intermolecular 

NOE, H/D exchange rates and residual dipolar coupling.  

 

Another major advantage using NMR is that the sample flexibility. Not like protein 

crystallography, where the sample has to be crystalized and it is generally the bottleneck of 

applying crystallography for structure determination, NMR can be applied directly to protein in 

solutions or various solid forms such as powders, frozen solutions, microcrystals, gels or 

poteoliposomes [4-6]. This is extremely important for membrane proteins, which by nature is not 

soluble in aqueous solution and resist to crystallization.  

The membrane proteins consisted almost 30% of the whole protein in living cell [7] yet only 

about 500 structures are solved to date comparing to the total of over 100,000 structures in PDB. 

Membrane proteins are functionally important in cells as they connect the outside world and the 

interior of the cell. Numerous diseases are related to membrane proteins such as 

hyperinsulinemia, nephrogenic diabetes insipidus, congestive heart failure, liver cirrhosis, crystic 

fibrosis, lung edema, etc [8]. Solving the structures of these membrane proteins will guide the 

drug design for curing these diseases. To achieve this, two major problems in structure 
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determination of membrane proteins must be overcome. The first is to get sufficient amount 

membrane proteins expressed either in vivo or in vitro. The second is to apply the suitable 

technique to study the native state of the membrane protein. Recombinant protein expression has 

been used for decades and also readily applied to membrane proteins. However, they always tend 

to be expressed as inclusion bodies and require solubilization by denaturing conditions and then 

refold to its native structure. Detergents and/or lipids must be applied to make the protein soluble 

during the purification procedures. The final sample state is usually a mixture of proteins and 

detergents or lipids.  

Solid state NMR (ssNMR) is particularly suitable for studying samples like this. In solid samples, 

the nuclear spinning experience three major interactions: dipolar, chemical shift anisotropy, and 

quadrupolar interactions, which will cause very broad and featureless lines. By applying magic 

angle spinning (MAS) at 54.74° [9], these interactions will be average out leaving a much 

narrower spectrum. Normally, a high degree of 13C and 15N isotope labeling is required if 

molecular structure is to be investigated under MAS conditions. More importantly, the samples 

could be prepared in lipid bilayer, which is the very native environment as they are in vivo. Then 

the structure analysis can be preceded using a series of multi-dimensional correlation 

experiments. For example, the local dihedral angle constraints defined by backbone chemical 

shifts will provide the secondary structure information of the peptide [10]. The sequential 15N-15N 

distances can be used to refine the backbone topology [11]. The 3D structure will be finally 

determined if medium and long-range distance constraints can be derived from MAS NMR data. 

Selective labeling could also be applied if particular special interactions of atoms of interest are to 

be investigated. 
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The ssNMR is still at the very young stage. From all 541 unique membrane proteins in database, 

only 42 are determined by ssNMR. But it does provide a bright future for membrane protein 

structure determination. The sample requirements are not as constrained as other methods and the 

protein will stay in its very native state (in lipid bilayer) during the experiment.  

In this dissertation, I will first briefly review the history of NMR spectroscopy in Chapter II. The 

basic principles and instrumentation of NMR will be introduced in Chapter III and IV, 

respectively. In Chapter V, I will show my work on a membrane protein PLIN1, which is the 

characteristic protein of lipid droplet located on the surface of this organelle. ssNMR was applied 

to try to decipher the structure of this protein. According to the NMR data, we proposed a 

membrane interacting model for this protein and this model was verified by both molecular 

dynamics simulation and experimental data. In Chapter VI, the soluble substrate binding domain 

of Mortalin was studied by solution NMR. We revealed its binding sites to a small anti-cancer 

molecule SHetA2. Through this interaction, SHetA2 competitively binds to Mortalin and release 

p53 from the Mortalin-p53 complex and the later enters cell nucleus, regulating cell apoptosis in 

tumor cells. According to our results, we also further proposed several SHetA2 analogs with 

greater binding affinities to Mortalin, which potentially will provide more stable interaction and 

better anti-cancer activity. 
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CHAPTER II 
 

 

History of NMR 

 

NMR originated from the ideas that spins and magnetic moments are the intrinsic properties of 

both electrons and nuclei. The first was established by several studies among which was the 

Stern-Gerlach experiment [12], where beams of atoms were separated in an inhomogeneous 

magnetic field according to the electron magnetic moment. Rabi etc [13] found later in 1933 that 

deflection of beams of hydrogen atoms though a homogeneous magnetic field subjected to radio 

frequency electromagnetic energy which was absorbed by the hydrogen atom in a very sharp 

frequency. This is the first time NMR was observed. Gorter [14] tried to detect the heat produced 

by the absorption of rf resonance energy and anomalous dispersion of the rf field to observe 

magnetic resonance in LiF. But the sample choice caused a fruitless attempt because of the long 

relaxation time of LiF.  Instead of trying to detect the heat or dispersion, Bloch took another way 

to detect the resonance.  According to physics law, he knew that the macroscopic magnetic 

moment would be rotated away from equilibrium position that was parallel to the applied 

magnetic field when the rf energy was applied.  This displacement of the magnetic moment 

would then precess about the applied magnetic field at a well-defined frequency. This frequency 

could be detected if a resonance coil was applied, which is in the rf range. Bloch, Hansen and 

Packard performed the experiment on bulk water, and the first NMR or nuclear induction as they 

called was born [15]. Purcell, Torrey and Pound [2] fortunately and successfully detected the 
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absorption of rf energy by the magnetic moment of proton in bulk paraffin because not like LiF, 

proton has a relatively much shorter relaxation time. Both Bloch and Purcell were awarded Noble 

prize in 1952 as they discovered NMR independently.  

In early days, NMR was not easy to perform as researchers had to build everything from scratch 

like magnets, coils, amplifiers. Russell Varian caught this opportunity and built the first 

commercial NMR spectrometer based on homogeneous magnet. The NMR technique developed 

rapidly thereafter as researchers can buy a basic NMR system rather than building everything 

from scratch. Bloembergen, Purcell and Pound [16] explained the concept of nuclear relaxation. 

They also stated the Brownian motion of liquids were the main reason that liquid NMR signals 

were magnitude narrower than solids because their nuclear magnetic dipole-dipole interaction 

averaged to zero. With the improvements of homogeneity of the magnet, more precise 

measurement on liquid were achievable. However, according to the theory, resonance of a 

particular atom should have a fixed frequency in a given magnetic field regardless of which 

chemical compounds the nucleus was in as shown in equation 1.  

 𝜔 = 𝛾𝐵0 (1) 

However, the experimental results showed variations in of the signal from 19F and 31P beyond 

error level. It was then postulated that this is caused by the electromagnetic properties of the 

surrounding electrons of the nucleus. These electrons provided the so-called shielding effect and 

it can be denoted as coefficient σ. So the modified equation 1 was:  

 𝜔 = 𝛾𝐵0(1 − 𝜎) (2) 
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Where the value of σ depended on local environment of the nucleus, specifically the density and 

configuration of electrons. This shift was very annoying to physicists at first because they could 

not precisely measure the anticipated resonance frequency to determine the gyromagnetic ratio. 

However, it was later found to be the cornerstone to apply NMR to chemistry, as chemical shift.  

With the improvements of homogeneity and stability of magnetic field, 1H chemical shifts were 

determined because the shielding for proton was magnitude smaller than those for other nuclei. 

The demonstration of proton chemical shifts for ethanol in 1951 was the first time to show to the 

chemists what NMR spectroscopy could do to analytical chemistry [17]. Improvements in 

resolution further showed that even in the chemical shift resonance lines, there were a collection 

of resonance lines. And it was found that neighboring nuclei were responsible for these multiplets 

[18] and thus the idea of spin-spin coupling (scalar coupling) were conceived [19]. However, the 

lack of multiplets for OH group in ethanol drove the development of chemical exchange.  

Traditional continuous wave (cw) method varied the strength of the magnetic field of the 

spectrometer to find the resonance condition, which would show a deflection in the oscilloscope. 

However, this method was very time-consuming (several minutes per scan) and required high 

stability of the spectrometer during the entire acquiring period. Typical 1H resonance scan could 

take 5 to 10 minutes per scan, if longer time was needed, the random drift of the magnetic field 

might be the dominant factor. Due to the nature of NMR, the sensitivity was always a problem, 

especially when the sample was very diluted or limited amount, or even less sensitive nuclei were 

studied like carbon or nitrogen. Coherent time averaging was applied to deal with the problem 

because after N consecutive scans, the signal level could be N times stronger, while noise level 

only increased N1/2, thus increase the signal to noise ratio by a factor of N1/2. However, this is 
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sometimes not practically possible as increasing 100 times signal to noise ratio requires 10,000 

times of scans while each scan took 5 to 10 min to finish. Besides, most of the time only a small 

region of the whole cw spectrum was needed. The cw method was indeed time-consuming and 

inefficient. Bloch proposed the idea using PULSED rf excitation [1] as an alternative method 

rather than the traditional cw scan. It was first applied by mostly physicists to study systems with 

a single line, such as the broad line of a solid sample. It did not attract the chemists’ attentions 

mainly due to the complexity of the FID. Lowe and Norberg [20] showed the first time that the 

FID following an rf pulse could in principle be transformed to a spectrum that a normal cw scan 

would achieve. Ernst and Anderson [21] made it real in their publication. It was the development 

of small sized computer that made Fourier transform more real than on paper. The FT-NMR 

revolutionized the field. Not only the sensitivity was enhanced but also the timing window for the 

experiments are much shorter so that the dynamics and real-time reactions can be studied by 

NMR spectroscopy.  

Another Major breakthrough in NMR history is the development of 2D and multiple dimension 

spectroscopy. In 1971, Jeener originated the idea of 2D NMR spectroscopy, however, it was Ernst 

[22] that developed it into a practical method. In the 2D NMR spectroscopy, the nuclear 

magnetizations are allowed to precess during an initial time period, then various pulse sequences 

are applied to manipulate the coherence in this mixing period, and at last an FID is recorded. 

Applying Fourier transform on both dimension could transform the spectrum to be displayed on 

two orthogonal frequency dimensions. This method not only greatly increase the resolution 

comparing to 1 dimension spectrum, but also various interactions between different nuclei can be 

studied by applying different resonance frequencies. It is very powerful in assigning peaks in 
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complex spectra and studying interactions mediated by cross relaxation, chemical exchange or 

other physical factors [23]. 

Besides the wide application of NMR spectroscopy in organic chemistry, the developments of 

new powerful spectrometers, computer hardware, software, FT techniques, new multiple-

dimension methods, and line narrowing in solids, NMR spectroscopy finally can reach the far 

more complicated biological macromolecules. For small molecules, double resonance is the 

major tool to solve the chemical bonding schemes through the investigation of spin-coupling 

connectivity by selective decoupling. And the NOE measurements could give valuable 

information on internulcear distances. However, when such methods applied to proteins and other 

complex biopolymers, the complexity of the spectrum and the tedious acquisition time for 

hundreds of spectra lead to very limited success. The breakthrough was when COrrelated 

SpectroscopY (COSY) [24], which permitted the establishment of spin-coupling connectivities, 

and Nuclear Overhauser Enhancement SpectroscopY (NOESY), which allowed the relaxation 

effects to be used to estimate internuclear distances, were invented by Nagayama, Wüthrich, 

Bachmann and Ernst in 1977. Although the information obtained from COSY and NOESY could 

be extracted from a large number of sequential 1D spin-decoupling and NOE experiments, the 2D 

approach permits simultaneous measurements throughout the entire spectrum, increasing the 

efficiency by magnitudes. The enormous data acquired from the 3D experiments require fast 

speed and large capacity of modern computer as well as sophisticated software to support the 

Foureir transformation. The development of modern computer was essential for the application of 

NMR methods [25]. Solvent signal suppression is another major breakthrough in NMR history so 

that protein spectra can be acquired in water, permitting the NH resonances to be included in the 
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spin-coupling and NOE pathways. With this crucial addition of experiment, complete 3D protein 

structure can be determined solely on NMR spectra and the first structure of a 57-residue protein 

was published in 1985 by Wüthrich [26]. Therefore, an alternative method was finally established 

besides X-ray crystallography for biopolymers. 

The routes split into two at this point. In one direction, higher magnetic field and more 

sophisticated 3D methods were invented to get higher resolution thus more information can be 

obtained from the 3D spectra. In the other direction, some investigators were exploiting the speed 

and sensitivity of FT-NMR on small molecules in living cells, organisms or whole body. Bloch 

once joked about he was the first to apply in vivo study of NMR by putting his finger in the probe 

and observed water signals. However, water was the only signal they had at those years as they 

were so abundant in their spectra, little information could be obtained for other substances. Later, 

people were able to separate 31P signals from the bulk water [27]. Many groups succeeded 

growing tissues in the NMR tubes so that they can study cellular systems in living cells [28, 29]. 

Excised organs were perfused in the NMR tubes with nutrients so the metabolism could be 

investigated. Surface coils were developed to obtain signals from localized volumes near the skin 

of experimental animals. Depth pulses were designed to tailor rf excitation and define more 

precisely the volume of interest. The rf coils were even planted in animals to examine the internal 

organs. However, there is another way to use NMR non-invasively by applying magnetic field 

gradient. The Larmor equation became modified by the position thus the NMR frequency became 

a measurement of position. By repeating the NMR measurements in different directions, the 2D 

or even 3D image could be reconstructed by combining the spectra [30, 31]. And this became a 

well-known method called NMR imaging (MRI). Paul Lauterbur at Stony Brook University 
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generated the first MRI image of a living mouse in 1974. People immediately realized that NMR 

imaging had great potential for investigating human and animal anatomy since different water 

content and relaxation times in different tissues can be distinguished. The images of normal and 

pathological tissues can be readily obtained. In the late 1970s, Peter Mansfield, a physicist and 

professor at the University of Nottingham, England, developed a mathematical technique that 

would allow scans to take seconds rather than hours and produce clearer images than Lauterbur 

had. Damadian, along with Larry Minkoff and Michael Goldsmith, performed the first MRI body 

scan of a human being on July 3, 1977. Commercial development of MRI began ever since and 

quickly grew exponentially. Nowadays, almost every hospital installs MRI as a standard 

equipment. In 2003, Nobel Prize in Physiology or Medicine was awarded to Paul Lauterbur and 

Peter Mansfield for their "discoveries concerning magnetic resonance imaging". Although MRI is 

most commonly performed at 1.5 T, higher fields such as 3T are gaining more popularity because 

of their increased sensitivity and resolution. In research laboratories, human studies have been 

performed at up to 9.4 T and animal studies have been performed at up to 21.1T. 

NMR technology was quickly picked up by biologists and dramatic advances have been made in 

the application of high-resolution NMR spectroscopy in the determination of the 3D structure of 

large biopolymers, especially proteins. Earlier studies has been restricted to a molecular weight of 

10 kDa due to the complexity of the 2D spectra and the increased linewidth as the increasing 

molecular size.  The combination of isotope labeling (with 13C and 15N) and new experimental 

methods (transfer 1H magnetization through the peptide link from one amino acid residue to 

another to permit backbone sequential assignment) overcome the problem and 3D even 4D NMR 

spectra could be obtained. The precision of NMR methods is as good as that of X-Ray 
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crystallography while the NMR has the advantage of determining the structure in solution or in 

membrane which mimic the native state of the protein and dynamic processes can also be 

examined. 
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CHAPTER III 
 

 

THE BAISCS OF NMR 

 

Section 1: Introduction 

Spin is an intrinsic property of elementary particles. Quarks possess spins, thus the protons and 

neutrons which are made of quarks have spins. The combination of protons and neutrons, aka, 

nucleus, also possesses spins. The spin of a nucleus can be shown as a nuclear spin angular 

momentum I,  

 |𝐈| = [𝐈 ⋅ 𝐈]1/2 = ħ[𝐼(𝐼 + 1)]1/2 
 

(3) 

Where I is the angular spin quantum number, ħ is the Planck’s constant (6.63×10-34 m2kg/s) 

divided by 2π. According to the angular spin quantum number I, all nuclei can be categorized into 

three groups as shown in Table 1, 1) nuclei with odd mass have half-integral spins. 2) nuclei with 

even mass but odd atomic number have integral spins. 3) nuclei with even mass and even atomic 

number have 0 spins. Since nuclear magnetic resonance rely on nuclear angular spin momentum. 

All nuclei in the last category are silent to NMR spectroscopy. Nuclei with a spin quantum 

number greater than ½ possess electric quadrupole momentum due to the non-spherical 

distribution of electrons, which will significantly broaden the resonance lines and complicate the 

spectrum.  
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Table 1 

Mass number Atomic number 

Nuclear spin angular momentum 

quantum number I 

Odd Odd or Even ½, 3/2, 5/2, … 

Even Even 0 

Even Odd 1, 2, 3, … 

 

Typical nuclei that are most relevant to biological studies are listed in Table 2, among which the 

most interesting ones are 1H, 13C, 15N, 19F, 31P and 2H, where the 2H is an integer spin quantum 

number nucleus.  

Due to the quantum limits, when I2 ≡ I ⋅ I is defined, only one of the three Cartesian components 

can be specified. By convention, z direction component will be specified as  

 𝐼𝑧 = ħ𝑚 (4) 

, where m is the magnetic momentum quantum number and its value can be from (-I, -I+1 … I-1, 

I). Since Iz can only be 2I+1 discrete values and I is a constant, the spin angular momentum is 

quantized in space. It has 2I+1 quantum states corresponding to the 2I+1 values of Iz. In the 

absence of external field, all the quantum states have the same energy level and the spin angular 

momentum has no preferred orientation. The m also define a value called nuclear magnetic 

momentum, µ, which can be expressed by the nuclear spin angular momentum vector I, 

 𝛍 = 𝛾𝐈 (5) 
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 μ𝑧 =  𝛾𝐼𝑧 = 𝛾ħ𝑚, (6) 

where γ is the gyromagnetic ratio. It is an intrinsic characteristic constant of the nucleus and it 

determines the receptivity of NMR spectroscopy. The γ value of some biologically important 

nuclei are shown in Table 2.  

Table 2 magnetic properties of nuclei of biological interests 

Isotope Spin 

Natural 

Abundance 

(%) 

Quadrupole 

moment Q 

(10-28 m2) 

Gyromagnetic 

ratio γ (107 

rad s-1 T-1) 

Relative 

Sensitivity 

NMR 

frequency 

(MHz) at 

14.1 Tesla 

1H ½ 99.98 ─── 26.7522 100 600 

2H 1 1.5×10-2 2.87×10-3 4.1066 0.965 92.106 

3H ½ 0 ─── 28.5350 121 639.978 

7Li 3/2 92.58 -3.7×10-2 10.3976 29 233.178 

11B 3/2 80.42 4.1×10-2 8.5847 17 192.504 

13C ½ 1.108 ─── 6.7283 1.59 150.864 

14N 1 99.63 1.67×10-2 1.9338 0.101 43.344 

15N ½ 0.37 ─── -2.7126 0.104 60.798 

17O 5/2 3.7×10-2 -2.6×10-2 -3.6280 2.91 81.342 

19F ½ 100 ─── 25.1815 83 564.462 

23Na 3/2 100 0.10 7.0704 9.25 158.706 

25Mg 5/2 10.13 0.22 -1.6389 0.267 36.717 

31P ½ 100 ─── 10.8394 6.63 242.886 
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35Cl 3/2 75.53 -8.2×10-2 2.6242 0.47 58.788 

39K 3/2 93.1 5.5×10-2 1.2499 0.0508 28.002 

43Ca 7/2 0.145 -5×10-2 -1.8028 0.64 40.386 

51V 7/2 99.76 2.17×103 -5.2×10-2 38 157.734 

57Fe ½ 2.19 ─── 0.8687 3.37×10-3 19.386 

75As 3/2 100 0.29 4.5961 2.51 102.756 

77Se ½ 7.58 ─── 5.1214 0.693 114.402 

113Cd ½ 12.26 ─── -5.9609 0.109 133.092 

 

When there is an external magnetic field, the energies on each state is given by 

 𝐸 = −𝛍 ⋅ 𝐁, (7) 

 in which B is the magnetic field vector. The vector μ cannot collinear with the magnetic field B 

due to the face that |I| > Iz. So the minimum value of energy can be obtained when the projection 

of μ onto B is maximized. The energy of each states are quantized and proportional to their 

projections onto B. In NMR spectroscopy, external field are placed conveniently to the z 

directions, so the energy levels on each states are 

 𝐸𝑚 = −𝛾𝐼𝑧𝐵0 = −𝑚ħ𝛾𝐵0, (8) 

where B0 is the strength of the external magnetic field. So the projection of I onto z axis resulted 

in 2I+1 equally spaced energy levels, which are known as Zeeman splitting levels. It is a very 

important feature in NMR spectroscopy that the excited state has a lifetime on the order of 109 

longer than that of an electronic excited state due to the Einstein’s law of spontaneous emission 
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𝜏 ∝

1

𝜔
 (9) 

where τ is the lifetime of the excited state and ω is the transition frequency from ground state to 

excited state. According to Heisenberg’s uncertainty principle, the long lifetime could result in an 

extremely narrow spectral lines in the NMR spectrum. So very subtle changes in the population 

differences between the two states can be readily detected and the long lifetime enable multi-

dimensional NMR spectroscopy where the magnetization is transferred from one nucleus to 

another before detection.5 

 

Figure 2 The nuclear spin quantum angular momentum I shown as the vector on the surface of the cone. It cannot be 
specified due to the quantum uncertainty of the x and y components. Its projection on the z axis are the quantized 
value for Iz. a) a spin ½ nucleus. b) a spin 1 nucleus. 

At equilibrium, according to Boltzmann distribution theory, the two energy states are unequally 

populated with the lower energy state being the preferred state. The population on each state is 

given by 
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 𝑁𝑚

𝑁
= exp (−

𝐸𝑚

𝑘𝐵𝑇
) / ∑ exp (−

𝐸𝑚

𝑘𝐵𝑇
)

𝐼

𝑚=−𝐼

 (10) 

where Nm is the population of the nuclei in the mth state, N is the total population of the spins, Em 

is the energy on the mth state, kB is the Boltzmann constant (1.3806488 × 10-23 m2 kg s-2 K-1) and 

T is the absolute temperature in Kelvin. Substituting equation (8) into (9) will give 

 𝑁𝑚

𝑁
= exp (

𝑚ħ𝛾𝐵0

𝑘𝐵𝑇
) / ∑ exp (

𝑚ħ𝛾𝐵0

𝑘𝐵𝑇
)

𝐼

𝑚=−𝐼

 (11) 

Expand equation (10) into first order Taylor series results in  

 𝑁𝑚

𝑁
≈ (1 +

𝑚ħ𝛾𝐵0

𝑘𝐵𝑇
) / ∑ exp (1 +

𝑚ħ𝛾𝐵0

𝑘𝐵𝑇
)

𝐼

𝑚=−𝐼

≈ (1 +
𝑚ħ𝛾𝐵0

𝑘𝐵𝑇
)/(2𝐼 + 1) (12) 

So, the population on each state depends on both the nucleus type (γ) and the applied external 

field strength (B0). The larger the external filed, the larger the energy gap between two adjacent 

states, the larger differences in population between the two states. The energy difference between 

mth and (m+1)th states is given by  

 𝛥𝐸 = ħ𝛾𝐵0 (13) 

It is directly proportional to the external magnetic field for a given nucleus. For a spin ½ nucleus, 

which is the most studied nuclear type in NMR, the electromagnetic frequency required to excited 

the spins from lower state or α state (m = +1/2) to upper state or β state (m = -1/2) is given by 

 𝜔0 = 𝛾𝐵0 (14) 

 𝜈0 =
𝜔0

2𝜋
= 𝛾𝐵0/2𝜋 (15) 

And the ratio of the spin population in the two energy states is given by 
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 𝑁𝛽

𝑁𝛼
= exp (−

Δ𝐸

𝑘𝐵𝑇
) = exp (−

ħ𝛾𝐵0

𝑘𝐵𝑇
) (16) 

For 1H nuclei in a 14.1 Tesla magnetic field at room temperature (~300 K), the population 

difference between the two states is in the order of 1 in 105. This tiny surplus from the lower 

energy state will be manipulated and detected as the NMR signal. Therefore, NMR is a relative 

insensitive spectroscopic technique comparing to visible or ultraviolet spectroscopy. This is also 

why building high magnetic field magnet is very critical in NMR development.  

 

Figure 3 The two Zeeman levels for a spin ½ nuclei. The nuclei in the lower energy state (α state for a positive γ 
nucleus) spin parallel with the external magnetic field, while those in the higher energy state (β state) spins anti-
parallel. As the external static magnetic field strength increases, the energy gap between the two states increases. 

There are two ways to view nuclear magnetic resonance, classical vector formalism and quantum 

mechanical density operator formalism.  

Section 2: The Bloch Equation 
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When there is an external magnetic field, the spins states are unequally populated, the excess 

population in the lower energy state give rise the individual magnetic moment μ and angular 

moment I.  The magnetic moments and angular moments from different nuclei in a given sample 

add up to a macroscopic bulk magnetic moment M and bulk angular moment J. At thermal 

equilibrium, the transverse components from the individual moments are not correlated and 

average out to 0. Both bulk magnetizations of the sample are along the same direction as the 

external field, z. So the bulk magnetization can be expressed as M = M0k, where k is the unit 

vector in z direction in a laboratory frame. 

Bloch formulated a simple semi classical vector model to describe the evolution of the bulk 

magnetic moment M over time. When an external magnetic field is present, the bulk magnetic 

moment experiences a torque that is equal to the time derivative of the angular momentum as 

shown 

 𝑑𝐉(𝑡)

𝑑𝑡
= 𝐌(𝑡) × 𝐁(𝑡) (17) 

Multiply both sides by γ yields 

 𝑑𝐌(𝑡)

𝑑𝑡
= 𝐌(𝑡) × 𝛾𝐁(𝑡) (18) 

This expression shows how the bulk magnetic moment evolves with time and can be shown using 

a rotating frame with an angular velocity ω. Initially, the rotating frame is superimposed with the 

laboratory frame, all vectors are represented exactly the same. While the time differentials are 

represented differently in the two frames. Their relations can be shown in 
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(
𝑑𝐌(𝑡)

𝑑𝑡
)𝑟𝑜𝑡 = (

𝑑𝐌(𝑡)

𝑑𝑡
)𝑙𝑎𝑏 + 𝐌(𝑡) × 𝜔 = 𝐌(𝑡) × (𝛾𝐁(𝑡) + 𝜔) (19) 

Comparing the two equations (17) and (18), it is shown that the expression of the rotation are 

identical for rotating frame and laboratory frame except that in rotating frame, the magnetic field 

is replaced with an effective magnetic field Beff: 

 𝐁eff = 𝐁(𝑡) + 𝜔/𝛾 (20) 

When ω = -γB(t), the effective field Beff is 0. The bulk magnetization M(t) is time independent in 

the rotating frame and it precesses around B(t) at a constant frequency ω = -γB in laboratory 

frame, which is known as the Larmor frequency. For an external static field B0, the bulk 

magnetization precesses around the main static field at its Larmor frequency ω0 = -γB0 which is 

exactly the same frequency required to excite the transitions between Zeeman levels.  

 

Figure 4 Classical view of the bulk magnetization M in an external static magnetic field B0. It precesses around the B 

field at its Larmor frequency. The net result is a bulk magnetization vector M0 along the same direction as the B0 field, 

z direction. 
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Classical description only applies to isolated spins as each spin can be treated as a vector 

precessing around the main static magnetic field.  

As the bulk magnetization precesses, the varying magnetic field should create an induced 

electromotive force due to Faraday’s induction law. However, at thermal equilibrium, the bulk 

magnetization vector is collinear with the external magnetic field thus no induced current or emf 

can be detected due to the overwhelming external static magnetic field. But electromagnetic 

radiation can be represented as an oscillating magnetic field that interact with the bulk 

magnetization (as shown in Figure 5). With suitable frequency, normally in the radio frequency 

(rf) range for NMR, the bulk magnetization can be manipulated and the signal from the 

precession of the bulk magnetization can be readily detected.  

 

Figure 5 Electromagnetic waves can be treated as oscillating magnetic field. 

This short burst of radio frequency electromagnetic radiation is referred as a pulse. For an rf field 

linearly polarized to the x axis of the laboratory frame can be written as 

 𝐁𝑟𝑓(𝑡) = 2𝐵1 cos(𝜔𝑟𝑓 + 𝜙) 𝒊 (21) 

 = 𝐁1{cos(𝜔𝑟𝑓 + 𝜙)𝒊 + sin(𝜔𝑟𝑓 + 𝜙)𝒋} + 𝐁1{cos(𝜔𝑟𝑓 + 𝜙)𝒊 − sin(𝜔𝑟𝑓 + 𝜙)𝒋} (22) 
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where B1 is the amplitude of the applied field, ωrf is the angular frequency of the rf field or carrier 

frequency, ϕ is the phase of the field. As shown in equation (21), the rf pulse can be decomposed 

into two circularly polarized fields rotating in opposite directions about the z axis. The 

decomposition of the rf field at difference phases are shown in Figure 6.  

 

 

Figure 6 The illustration of the decomposition of radio frequency radiation into two circularly polarized fields rotating 

in opposite directions about the z axis. 

Only the field rotating in the same direction as the bulk magnetic moment will interact 

significantly with the bulk magnetization. The counter-rotating, non-resonant field only interact 

with the bulk magnetization to the order of (B1/2B0)2. Typically this value is very small and this 

interaction will be discarded. Thus, the simplification form of equation (21) will be 

 𝐁𝑟𝑓(𝑡) = 𝐵1{cos(𝜔𝑟𝑓 + 𝜙) 𝒊 + sin(𝜔𝑟𝑓 + 𝜙)𝒋} (23) 

In this case, where it is time dependent, the rotating frame transformation can be applied that 

makes the rotating frame rotates at angular frequency of ωrf about the z axis so that the equation 

of motion form the magnetization in the rotating frame Mr(t) can be written as 
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 𝑑𝐌𝑟(𝑡)

𝑑𝑡
= 𝐌𝑟(𝑡) × 𝛾𝐁𝑟 (24) 

The effective field Br in the rotating frame is given by 

 𝐁𝑟 = 𝐵1 cos 𝜙 𝒊𝑟 + 𝐵1 sin 𝜙 𝒋𝑟 + Ω/γ𝒌𝑟 (25) 

in which the Ω = -γB0 – ωrf = ω0 - ωrf is the offset, the difference between the effective field and 

resonance field. ΔB0 is known as the reduced static field affected by the B1 field and is equivalent 

to the z component of the effective filed, namely -Ω/γ. And the phase angle is defined such that 

for an rf field of fixed phase x, Bx = B1, By = 0. The magnitude of the effective field is given by  

  𝐵𝑟 = √(𝐵1)2 + (Δ𝐵0)2 = 𝐵1√1 + (tan 𝜃)−2 (26) 

The θ is the angle which the effective field is tilted from the z axis and it is defined as 

 
tan 𝜃 =

𝐵1

Δ𝐵0
 (27) 

So, the direction of the effective field is defined by both θ, which is in turn defined by the 

strength of rf field B1, and the offset, the difference between the carrier frequency and Larmor 

frequency, and ϕ, the phase of the rf field in the laboratory frame. Their relations are shown in 

Figure 7. 
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Figure 7 The orientation of reduced static magnetic field B0, radio frequency field B1 and effective field Br in the 

rotating frame. 

The Mr(t) precesses around the effective filed Br with an angular frequency of ωr where  

 𝜔𝑟 = −𝛾𝐵𝑟 (28) 

If the carrier frequency ωrf is equal to the Larmor frequency ω0, then the offset Ω which is ω0 – ωrf 

will be 0. At this frequency, the impact of the external static magnetic field B0 is removed. The 
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effective field will be collinear with the applied field B1. This is a so called on-resonance. When 

on resonance, the bulk magnetization M(t)  precesses around the B1 field with a frequency 

defined by the B1 field, ωr = -γBr = -γB1 ≡ ω1.  

If the radio frequency field is turned on for a period time of τp, which is called the pulse width or 

pulse length. The effective flip angle α of M(t) from effective field is given by 

 𝛼 = 𝜔𝑟𝜏𝑝 = −𝛾𝐵𝑟𝜏𝑝 (29) 

The precession of the bulk magnetization around the effective field in the rotating frame can be 

illustrated in Figure 8.  

 

Figure 8 The bulk magnetization precessing around the effective field in the rotating frame after a y phase radio 

frequency pulse is applied. a) Non-resonance case, where the effective field in in the y-z plane. b) On-resonance case, 

the effective magnetic field is collinear with the applied field in the y axis, the bulk magnetization is flipped 90° from B1 

and precess in the x-z plane. 

Section 3: Relaxation 
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The magnetization won’t stay in the x-y plane to spin forever after the pulse. However, it will 

slowly come from Zeeman splitting back to thermal equilibrium Boltzmann distribution. This 

process is defined as the spin-lattice relaxation or longitudinal relaxation. It is the mechanism by 

which the component of the magnetization vector along the direction of the static magnetic field 

reaches thermodynamic equilibrium with its surroundings (the "lattice"). R1 is defined to 

characterize the rate at which the longitudinal Mz component of the magnetization vector 

recovers towards its thermodynamic equilibrium, according to equation: 

 𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝑅1[𝑀0 − 𝑀𝑧(𝑡)] (30) 

Where M0 is the magnetization at thermal equilibrium. Solving this equation gives 

 𝑀𝑧(𝑡) = 𝑀0 − [𝑀0 − 𝑀𝑧(0)]𝑒−𝑅1𝑡 (31) 

Mz(0) is the magnetization at t = 0 where it is the beginning point of the decay process. So the 

longitudinal magnetization recovers to thermal equilibrium in the exponential fashion. In a 

special case, where Mz(0) = 0, which means the magnetization is flipped to the x-y plane after the 

rf pulse, the equation can be written as 

 𝑀𝑧(𝑡) = 𝑀0(1 − 𝑒−𝑅1𝑡) (32) 

So we can define a time T1 = 1/R1, which means the time it takes for the longitudinal 

magnetization to recover approximately 63% of its initial value after being flipped into the 

magnetic transverse plane by a 90° radiofrequency pulse. 

Another process account for the NMR decay is the spin-spin relaxation, which the transverse 

components of the magnetization vector exponentially decay to their equilibrium states. It can be 

shown as 
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 𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑅2𝑀𝑥𝑦 (33) 

where R2 is defined as the spin-spin relaxation rate constant of the transverse components of the 

magnetization vector and its reverse T2, which is 1/R2, is the spin-spin relaxation time constant. 

Solving this equation would result in 

 𝑀𝑥𝑦 = 𝑀𝑥𝑦(0)e−𝑅2𝑡 = 𝑀𝑥𝑦(0)𝑒−𝑡/𝑇2 (34) 

So the T2 is defined as the transverse components of the magnetization decay to 37% of its initial 

value (t = 0) which is caused by the rf pulse. Different material have dramatically different T2s. 

For proton as an example, it can vary from sub milliseconds (in crystals) to seconds (in fluids). So 

it can be used as a detecting method to study the different components in a given sample. Putting 

both relaxation rates back into equation (17) generates the famous Bloch equations in the 

laboratory frame 

 𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛾[𝐌(𝑡) × 𝐁(𝑡)]𝑥 − 𝑅2𝑀𝑥(𝑡) (35) 

 𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝛾[𝐌(𝑡) × 𝐁(𝑡)]𝑦 − 𝑅2𝑀𝑦(𝑡) (36) 

 𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝛾[𝐌(𝑡) × 𝐁(𝑡)]𝑧 − 𝑅1[𝑀𝑧(𝑡) − 𝑀0] (37) 

where M(t) is the bulk magnetization, B(t) is the magnetic field experienced by the nuclei and it 

is equal to Bx(t)i+By(t)j+(B0-Ω/γ)k. Opening up the brackets would give 

 𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛾[𝑀𝑦(𝑡)𝐵𝑧(𝑡) − 𝑀𝑧(𝑡)𝐵𝑦(𝑡)] − 𝑅2𝑀𝑥(𝑡) (38) 

 𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝛾[𝑀𝑧(𝑡)𝐵𝑥(𝑡) − 𝑀𝑥(𝑡)𝐵𝑧(𝑡)] − 𝑅2𝑀𝑦(𝑡) (39) 



30 
 

 𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝛾[𝑀𝑥(𝑡)𝐵𝑦(𝑡) − 𝑀𝑦(𝑡)𝐵𝑥(𝑡)] − 𝑅1[𝑀𝑧(𝑡) − 𝑀0] (40) 

In the rotating frame where Br = B1cosϕ ir + B1sinϕ jr + Ω/γ kr, if neither B1 nor ϕ is time-

dependent and the pulse is only applied for a short time so that τp ≪ T1 or T2, these equations can 

be written as 

 𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛺𝑀𝑦(𝑡) − 𝜔1𝑠𝑖𝑛𝜙𝑀𝑧(𝑡) (41) 

 𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝜔1𝑐𝑜𝑠𝜙𝑀𝑧(𝑡) − 𝛺𝑀𝑥(𝑡) (42) 

 𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝜔1𝑠𝑖𝑛𝜙𝑀𝑥(𝑡) − 𝜔1𝑐𝑜𝑠𝜙𝑀𝑦(𝑡) (43) 

It can also be written in a matrix form 

 
𝑑𝐌(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
[

𝑀𝑥(𝑡)
𝑀𝑦(𝑡)

𝑀𝑧(𝑡)
] = [

0 Ω −𝜔1 sin 𝜙
−Ω 0 𝜔1 cos 𝜙

𝜔1 sin 𝜙 −𝜔1 cos 𝜙 0
] 𝐌(𝑡) (44) 

The solution to this equation can be represented by a series of rotations of the magnetization 

M(0): 

 𝐌(𝜏𝑝) = 𝐑𝑧(𝜙)𝐑𝑦(𝜃)𝐑𝑧(𝛼)𝐑𝑦(−𝜃)𝐑𝑧(−𝜙)𝐌(0) (45) 

Each of these rotation operators can be written as 

 

𝐑𝑥(𝛽) = [

1 0 0
0 cos 𝛽 − sin 𝛽
0 sin 𝛽 cos 𝛽

] (46) 

 

𝐑𝑦(𝛽) = [
cos 𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos 𝛽

] (47) 
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𝐑𝑧(𝛽) = [

cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0

0 0 1

] (48) 

And rotation operator Ry(β) means the right hand rotation about y axis for an angle of β. In an 

ideal pulse NMR experiment, an on-resonance rf pulse of duration τp, strength B1, tilt angle θ = 

π/2, phase ϕ = π/2, the evolution of the magnetization after the pulse can be found by using the 

rotation operators as 

 

𝐌(𝜏𝑝) = 𝐑𝑦(𝛼)𝑀0 = 𝐢𝑀0 sin 𝛼 + 𝐤𝑀0 cos 𝛼 = (
𝑀0 sin 𝛼

0
𝑀0 cos 𝛼

) (49) 

where α = -γBrτp, depending on the magnetic field strength and duration of the pulse. A maximum 

transverse magnetization can be generated with α = 90°. This rf pulse is called a 90° or a π/2 

pulse, which equalizes the population of both spins states for the spin ½ nuclei. And a 180° pulse 

or π pulse reverse the population in the two spin states as shown in Figure 9. 
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Figure 9 The effects of on-resonance pulses. a) at thermal equilibrium, the two spin state are unequally populated 

according to Boltzmann distribution where N is the total number of spins and ΔN = NħγB0/(4kbT). b) after a 90° pulse, 

the population in both states are equal. c) after a 180° pulse, the population in the two states are reversed. 

The relaxations after the pulse can be detected during the so called acquisition time t which 

generates the signal called free induction decay (FID). This is the signal detected by the NMR 

spectrometer. Simplify the Bloch equation following the 90° pulse, Bxy = 0, Bz = B0, the free 

precession Bloch equation can be written as 

 𝑑𝑀𝑥(𝑡)

𝑑𝑡
= Ω𝑀𝑥(𝑡) − 𝑅2𝑀𝑥(𝑡) (50) 

 𝑑𝑀𝑦(𝑡)

𝑑𝑡
= −𝛺𝑀𝑦(𝑡) − 𝑅2𝑀𝑦(𝑡) (51) 

 𝑑𝑀𝑧(𝑡)

𝑑𝑡
= −𝑅1[(𝑀𝑧(𝑡) − 𝑀0] (52) 

The solution can be derived from these equations and they can be shown as 
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 𝑀𝑥(𝑡) = 𝑀0 sin 𝛼 cos(Ω𝑡) 𝑒−𝑅2𝑡 (53) 

 𝑀𝑦(𝑡) = 𝑀0 sin 𝛼 sin(Ω𝑡) 𝑒−𝑅2𝑡 (54) 

The combined complex notation of the solutions can be expressed as 

 𝑀+(𝑡) = 𝑀𝑥(𝑡) + 𝑖𝑀𝑦(𝑡) = 𝑀0 sin 𝛼 𝑒𝑖Ω𝑡−𝑅2𝑡 (55) 

So the precession of the magnetization after the rf pulse is damped by the spin-spin relaxation 

exponential factor –R2t. For the on-resonance 90° pulse, where Ω = 0, sinα = 1, the signal is an 

exponentially decay curve. The off-resonance pulses, the decaying curve will be damped by the 

offset as illustrated in Figure 10. 
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Figure 10 The on-resonance and off-resonance decay of the NMR signal. Solid line indicates the decay after an on-

resonance pulse, while dashed and dotted lines represent the signal of spins that are 150 Hz and 650 Hz off-resonance, 

respectively. All three resonances share the same T2 so they have the same envelope. 

Both the real and imaginary parts of the signal typically will be detected in the real NMR 

experiments with a proportional factor λ 

 𝑠+(𝑡) = 𝜆𝑀+(𝑡) (56) 

 In modern NMR, the decaying signal will be Fourier transformed into the frequency domain and 

give 
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𝑆(𝜔) = ∫ 𝑠+(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

0

= 𝜈(𝜔) + 𝑖𝑢(𝜔) (57) 

where 

 
𝜈(𝜔) = 𝜆𝑀0

𝑅2

𝑅2
2 + (Ω − 𝜔)2

 (58) 

 
𝑢(𝜔) = 𝜆𝑀0

Ω − 𝜔

𝑅2
2 + (Ω − 𝜔)2

 (59) 

The real part represents an absorptive Lorentzian lineshape and the imaginary part is the 

corresponding dispersive Lorentzian lineshape. Typically the real part of the signal will be 

displayed in the frequency domain of NMR spectrum. 

Section 4: Chemical Shift 

As shown before, magnetization would precess around the external magnetic field with their 

respective Larmor Frequencies and the precession can be detected after it was flipped to the x-y 

plane by an rf pulse. However, if all same nuclei have the same resonance transition frequency, 

NMR spectroscopy would not much useful except telling which elements are in the sample. In 

reality, the observed resonance frequencies depend on the local environments of each individual 

nucleus as the motion of electrons induced by the external magnetic field generates a secondary 

magnetic field that cause a shielding effect on the target nucleus. This difference, defined as 

chemical shift, enables the possibilities to distinguish same nuclear type in different environments 

thus make NMR useful in detecting different structures of the molecule.  

The local field experienced by the nucleus with the shielding effect is given by 
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 𝐵 = (1 − 𝜎)𝐵0 (60) 

where σ represents the shielding effect of the nucleus spin. For an isotropic electron distribution, 

the shielding is given by the Lamb Formula 

 
𝜎 =

𝑒2

3𝑚𝑐2
∫

𝜌(𝑟)

𝑟
𝑑𝑟 (61) 

 When the electron density around the nucleus increases, the shielding effect decreases, leading to 

a lower resonance frequency.  

For an anisotropic electron distribution, which is in most cases, the shielding effect is described 

by the second-rank nuclear shielding tensor, represented by a 3×3 matrix. 

 
𝜎 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] (62) 

In the principle axis system (PAS), where the z axis coordinates with respect to the spin of 

nucleus. The electric field surrounding the nucleus can be described by the principle components 

of the chemical shift tensor σxx, σyy, σzz. The isotropic chemical shift tenser can be written as the 

average of the three principle components 

 
𝜎𝑖𝑠𝑜 =

𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3
 (63) 

In solution, the rapid reorientation of the molecule caused by the collisions average out the 

chemical shift anisotropy that only a single isotropic chemical shift value can be observed. But in 

solids, the molecules will normally be oriented in all possible directions with respect to the 

external magnetic field and so a superposition of all possible chemical shifts is observed for each 

nucleus. Each magnetic moment of the system can be related for its PAS to the z axis by an angle, 
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θ, and its position in the x-y plane given by angle ϕ. The magnetization experienced at the 

nucleus on the basis of the PAS is given by 

 𝐵0
𝑃𝐴𝑆 = (sin 𝜃 cos 𝜙 , sin 𝜃 sin 𝜙 , cos 𝜃) (64) 

The chemical shift is written as 

 𝜔 = −𝜔0(𝜎𝑥𝑥 sin2 𝜃 cos2 𝜙 + 𝜎𝑦𝑦 sin2 𝜃 sin2 𝜙 + 𝜎𝑧𝑧 cos2 𝜃) (65) 

This equation can be reduced to 

 
𝜔 = −𝜔0𝜎𝑖𝑠𝑜 −

1

2
𝜔0Δ(3 cos2 𝜃 − 1 + 𝜂 sin2 𝜃 cos 2𝜙) (66) 

in which the –ω0σiso is the isotropic chemical shift that can be observed in liquid state, Δ is the 

chemical shift anisotropy and η is the asymmetry parameter. 

This gives rise to broad peaks with a very characteristic shape as shown in Figure 11. In 

Haeberlen convention, the chemical shift anisotropy and asymmetry parameter are defined as 

 Δ = 𝜎𝑧𝑧 − 𝜎𝑖𝑠𝑜 (67) 

 𝜂 =
𝜎𝑥𝑥 − 𝜎𝑦𝑦

𝜎𝑧𝑧 − 𝜎𝑖𝑠𝑜
 (68) 

 
𝛿 =

3Δ

2
 (69) 
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Figure 11 Haeberlin convention of chemical shift anisotropy. The three principle components of the chemical shift 

tensors are shown as indicated in the dashed lines. Notice the huge spam of the chemical shift tensors in solid. 

The resonance frequency is directly proportional to the external magnetic field. So the difference 

in chemical shift between two resonances measured in frequency will also change when the 

external magnetic field changes. It is very inconvenient to compare the results of the same sample 

obtained from different spectrometers that have different magnet field strengths. Besides, any 

little drift from the external field would cause a different resonance frequency so the magnet has 

to be measured very precisely and it is almost impossible even in a single experiment, let alone 

from one measurement to another. So, in practical, the chemical shift is measured in parts per 

million (ppm) relative to a reference resonance signal of standard molecule instead of direct 

frequency. The relative chemical shift can be expressed as 

 
𝛿 =

Ω − Ω𝑟𝑒𝑓

𝜔0
× 106 = (𝜎𝑟𝑒𝑓 − 𝜎) × 106 (70) 

The Ω and Ωref are the offsets of the sample and the reference, respectively, and ω0 is the Larmor 

frequency for this type of nucleus. Chemical shifts measure in this way are independent of the 
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external static magnetic field strength and signals from different spectrometers and experiments 

can be readily compared using ppm.  

 

Section 5 Limitation of classical model 

Classical vector model is very useful in displaying the bulk magnetization of isolated spins. 

However, it is very limited considering the interactions between spins. There are mainly two 

types of interactions between two spin nuclei: dipolar coupling and scalar (spin-spin) coupling. 

Dipolar coupling is extremely important in solids, however, in solution, it was averaged out to 0 

by the fast tumbling of the molecules. The splitting of the signals in the solution is due to the 

through bond coupling, which is mediated by the paired electrons forming chemical bond 

between the two nuclei. The interaction, named scalar coupling constant, is measured by nJab, 

where n is the number of chemical bonds separating the two nuclei and a, b indicate the two 

nuclei. Typically, the J coupling within 4 chemical bonds will be considered significant in NMR 

spectroscopy. 

J coupling constant will modify the energy level separated by the Zeeman splitting. Without J 

coupling, the two spin system for nuclei I and S can be shown by four wave functions 

 
𝜓1 = 𝜓 (

1

2
,
1

2
) , 𝜓2 = 𝜓 (

1

2
, −

1

2
) , 𝜓3 = 𝜓 (−

1

2
,
1

2
) , 𝜓4 = 𝜓 (−

1

2
, −

1

2
), (71) 

in which the first number in the parenthesis indicates the state of spin nucleus I, while the second 

of S. The energy levels on these four level can be shown as 
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 𝐸1 =
1

2
ℏ𝜔𝐼 +

1

2
ℏ𝜔𝑆, 𝐸2 =

1

2
ℏ𝜔𝐼 −

1

2
ℏ𝜔𝑆,  

𝐸3 = −
1

2
ℏ𝜔𝐼 +

1

2
ℏ𝜔𝑆, 𝐸4 = −

1

2
ℏ𝜔𝐼 −

1

2
ℏ𝜔𝑆 

(72) 

Given γI > γS > 0, the energy levels can be illustrated as shown in part a of Figure 11. The 

transition between states must obey the selection rule where Δm = ±1. So the transition can only 

happen between states 1-2, 1-3, 2-4 and 3-4. All other transitions are forbidden. The energy 

differences between these transitions are 

 |𝐸2 − 𝐸1| =  ℏ𝜔𝑆, |𝐸3 − 𝐸1| = ℏ𝜔𝐼 , |𝐸4 − 𝐸2| = ℏ𝜔𝐼 , |𝐸4 − 𝐸3| = ℏ𝜔𝑆 (73) 

Thus, the transition between energy states 1-2 and 3-4 share the same resonance frequency ωS, 

while the transition between energy states 1-3 and 2-4 share ωI. So a total of two resonance lines 

are predicted as shown in Figure 12.  

However, if the scalar coupling between nuclei I and S exists, the coupling constant JIS will 

modify each energy levels as (assuming weak coupling with 2π|JIS| << |ωI – ωS|) 

 𝐸(𝑚𝐼 , 𝑚𝑆) = 𝑚𝐼𝜔𝐼 + 𝑚𝑆𝜔𝑆 + 2𝜋𝑚𝐼𝑚𝑆𝐽𝐼𝑆 (74) 

So the resulting energy levels on each states are given by 

 
𝐸1 =

1

2
ℏ𝜔𝐼 +

1

2
ℏ𝜔𝑆 +

1

2
𝜋ℏ𝐽𝐼𝑆, 𝐸2 =

1

2
ℏ𝜔𝐼 −

1

2
ℏ𝜔𝑆 −

1

2
𝜋ℏ𝐽𝐼𝑆, 

𝐸3 = −
1

2
ℏ𝜔𝐼 +

1

2
ℏ𝜔𝑆 −

1

2
𝜋ℏ𝐽𝐼𝑆, 𝐸4 = −

1

2
ℏ𝜔𝐼 −

1

2
ℏ𝜔𝑆 +

1

2
𝜋ℏ𝐽𝐼𝑆   

(75) 

And the transitions would still obey the selection rules such that only the transitions between 

energy states 1-2, 1-3, 3-4, 2-4 can happen. And the energy differences between these transitions 

are given by 
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 |𝐸2 − 𝐸1| = ℏ𝜔𝑆 + 𝜋ℏ𝐽𝐼𝑆, |𝐸3 − 𝐸1| = ℏ𝜔𝐼 + 𝜋ℏ𝐽𝐼𝑆,  

|𝐸4 − 𝐸3| = ℏ𝜔𝑆 − 𝜋ℏ𝐽𝐼𝑆, |𝐸4 − 𝐸2| = ℏ𝜔𝐼 − 𝜋ℏ𝐽𝐼𝑆 

(76) 

And the resonance lines would be shown as a modified resonance close to its original position 

 𝜔12 = 𝜔𝑆 + 𝜋𝐽𝐼𝑆, 𝜔13 = 𝜔𝐼 + 𝜋𝐽𝐼𝑆, 𝜔34 = 𝜔𝑆 − 𝜋𝐽𝐼𝑆, 𝜔24 = 𝜔𝐼 − 𝜋𝐽𝐼𝑆 (77) 

So, none of these transitions share the same resonance frequency but rather has their own distinct 

resonance lines with a modification term πJIS as shown in part d of Figure 11.  

The classical vector model would only predict two resonance lines for the two spins system. 

However, considering scalar coupling, there are actually 4 resonance spectral lines can be 

observed. So, strictly speaking, classical vector model and Bloch equations can be only applied to 

isolated spins which are independent magnetization vectors. A more complicated methods must 

be developed to describe and predict the behaviors of spins. This is where the quantum 

mechanical density matrix could shine. 
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Figure 12 Energy levels of the two spin system (nuclei I and S) and the transition resonance frequency between states. 

Part a and c show the energy levels and transitions without scalar coupling. The transitions between energy levels 1-3 

and 2-4 share the same resonance frequency ωI while the transition between energy levels 1-2 and 3-4 share ωS. Part b 

and d show that when scalar coupling applies, the energy levels on each states are modified by the J coupling constant 

JIS, so the transition between those states are modified and centered on ωI or ωS but separated by 2πJIS. 

 

Section 6: Density matrix formalism 
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Also the classical vector model really helps in visualizing how the bulk magnetization precess, it 

is cannot deal with coupled spins. A more sophisticated system that not only follow the bulk 

magnetization, but rather a complete description of the evolution of the spin system at any time 

points is needed. That is the quantum mechanical density matrix formalism.  

Quantum mechanically, the two spin states for a spin ½ nucleus can be represented by two 

eigenkets 

 |𝛼⟩ = (
1
0

) , |𝛽⟩ = (
0
1

) (78) 

And of course the eigenbras would be as  

 ⟨𝛼|= (1 0), ⟨𝛽| = (0 1) (79) 

Any magnetization states ψ at any given time in the NMR experiment can be expressed in this 

vector space by the linear combination of these two basis kets with α and/or β coefficients as  

 |Ψ⟩ = 𝑐𝛼|𝛼⟩ + 𝑐𝛽|𝛽⟩ = (
𝑐𝛼

𝑐𝛽
) (80) 

 ⟨Ψ|= 𝑐𝛼
∗ ⟨𝛼| + 𝑐𝛽

∗⟨𝛽| = (𝑐𝛼
∗ 𝑐𝛽

∗
) (81) 

While the rotation operators can be represented by the Pauli spin matrices as 

 
𝐼𝑥 =

ℏ

2
[
0 1
1 0

] , 𝐼𝑦 =
ℏ

2
[
0 −𝑖
𝑖 0

] , 𝐼𝑧 =
ℏ

2
[
1 0
0 −1

] (82) 

All these operators are Hermitian and satisfy the commutation relations as  

 [𝐼𝑥, 𝐼𝑦] = 𝑖𝐼𝑧, [𝐼𝑦, 𝐼𝑧] = 𝑖𝐼𝑥 , [𝐼𝑧, 𝐼𝑥] = 𝑖𝐼𝑦 (83) 

Now, the Schrödinger equation for a quantum mechanical system is given by 
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 𝜕Ψ(t)

𝜕𝑡
= −

𝑖

ℏ
ĤΨ(t) (84) 

Where the Ĥ is the Hamiltonian of the system. This equation can be solved by separation of 

variables if the Hamiltonian is time-independent as 

 
𝜓

𝑑𝜑(𝑡)

𝑑𝑡
= −𝑖Ĥ𝜓𝜑(𝑡) (85) 

Where ψ is the time independent part of Ψ(t). The solution of it can finally be written as 

 Ψ(𝑡) = 𝜓𝑒−𝑖𝜔𝑡 (86) 

Where ω = E/ħ and the energy of the system E is defined by  

 
𝐸 = ∫ 𝜓∗Ĥ𝜓𝑑𝜏 (87) 

Thus, the expectation values of the magnetic moments can be solved by using these equations. 

For a spin ½ magnetic spin, the wavefunction in the static magnetic field can be written as the 

linear combination of the two basis states as 

 Ψ = 𝑐𝛼𝜓𝛼 + 𝑐𝛽𝜓𝛽 = 𝑎𝑒−𝑖𝜔𝛼𝑡𝜓𝛼 + 𝑏𝑒−𝑖𝜔𝛽𝑡𝜓𝛽 (88) 

Again, the ωα = Eα/ħ, ωβ = Eβ/ħ and a = |a|eiϕa, b = |b| eiϕb are phase complex numbers which also 

are normalized so that |a|2 + |b|2 = 1. The expected values of the spin ½ nucleus with μ = γI on 

each dimension would be given as 

 
〈𝜇𝑥〉 = ∫ Ψ∗𝜇𝑥Ψ𝑑𝜏 = 𝛾 ∫ Ψ∗𝐼𝑥Ψ𝑑𝜏 

=
𝛾ℏ

2
∫(𝑎𝑒𝑖𝜔𝛼𝑡 𝑏𝑒𝑖𝜔𝛽𝑡) (

0 1
1 0

) (𝑎𝑒−𝑖𝜔𝛼𝑡

𝑏𝑒−𝑖𝜔𝛽𝑡) 𝑑𝜏 

(89) 
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=
𝛾ℏ|𝑎||𝑏|

2
{𝑒−𝑖[(𝜔𝛼−𝜔𝛽)𝑡+𝜙] + 𝑒𝑖[(𝜔𝛼−𝜔𝛽)𝑡+𝜙]} = 𝛾ℏ|𝑎||𝑏| cos(𝜔0 + 𝜙) 

 
〈𝜇𝑦〉 = ∫ Ψ∗𝜇𝑦Ψ𝑑𝜏 = 𝛾 ∫ Ψ∗𝐼𝑦Ψ𝑑𝜏 

=
𝛾ℏ

2
∫(𝑎𝑒𝑖𝜔𝛼𝑡 𝑏𝑒𝑖𝜔𝛽𝑡) (

0 −𝑖
𝑖 0

) (𝑎𝑒−𝑖𝜔𝛼𝑡

𝑏𝑒−𝑖𝜔𝛽𝑡) 𝑑𝜏 

=
𝛾ℏ|𝑎||𝑏|

2𝑖
{𝑒−𝑖[(𝜔𝛼−𝜔𝛽)𝑡+𝜙] + 𝑒𝑖[(𝜔𝛼−𝜔𝛽)𝑡+𝜙]} = 𝛾ℏ|𝑎||𝑏| sin(𝜔0 + 𝜙) 

(90) 

 
〈𝜇𝑧〉 = ∫ Ψ∗𝜇𝑧Ψ𝑑𝜏 = 𝛾 ∫ Ψ∗𝐼𝑧Ψ𝑑𝜏 

=
𝛾ℏ

2
∫(𝑎𝑒𝑖𝜔𝛼𝑡 𝑏𝑒𝑖𝜔𝛽𝑡) (

1 0
0 −1

) (𝑎𝑒−𝑖𝜔𝛼𝑡

𝑏𝑒−𝑖𝜔𝛽𝑡) 𝑑𝜏 

=
𝛾ℏ

2
(|𝑎|2 − |𝑏|2) 

(91) 

where ω0 is the Larmor frequency and ϕ is a phase angle. These equations demonstrate the 

probabilities of each states of the spin which is exactly the same as showed in the classical vector 

model where the bulk magnetization precesses around the external magnetic field.   

If we defining the rotation operators as 

 𝐑𝑗(𝛼) = 𝑒−𝑖𝛼𝐼𝑗, (92) 

then any rotation of the initial magnetization σ(0) can be written as 

 𝜎(𝑡) = 𝐑𝑗(𝛼)𝜎(0)𝐑𝑗
−1(𝛼), (93) 

where j is the direction and it can be x, y or z. Expanding the rotation operator in x direction in 

Taylor series gives 
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𝐑𝑥

−1(𝛼) = 𝐄 + 𝑖𝛼𝐼𝑥 −
1

2
𝛼2𝐼𝑥

2 + ⋯ 

= 𝐄 (1 −
𝛼2

2! 22
+

𝛼4

4! 24
+ ⋯ ) + 2𝑖𝐼𝑥 (

𝛼

2
−

𝛼3

3! 23
+

𝛼5

5! 25
+ ⋯ )

= 𝐄 cos (
𝛼

2
) + 2𝑖𝐼𝑥 sin (

𝛼

2
) 

(94) 

Substituting the matrix representation of Ix into equation this equation results the matrix 

representation of the pulse operators as follows: 

 𝐑𝑥
−1(𝛼) = (

𝑐 𝑖𝑠
𝑖𝑠 𝑐

) , 𝐑𝑥(𝛼) = (
𝑐 −𝑖𝑠

−𝑖𝑠 𝑐
) (95) 

 𝐑𝑦
−1(𝛼) = (

𝑐 𝑠
−𝑠 𝑐

) , 𝐑𝑥(𝛼) = (
𝑐 −𝑠
𝑠 𝑐

) (96) 

 𝐑𝑧
−1(𝛼) = (

𝑐 + 𝑖𝑠 0
0 𝑐 − 𝑖𝑠

) , 𝐑𝑧(𝛼) = (
𝑐 − 𝑖𝑠 0

0 𝑐 + 𝑖𝑠
). (97) 

Thus, any pulse with any flip angle can be derived using these pulse operators. For example, an x-

phase 180° pulse applied to Iz can be calculated as 

 
𝐑𝑥(𝜋)𝐼𝑧𝐑𝑥

−1(𝜋) =
1

2
(

𝑐 −𝑖𝑠
−𝑖𝑠 𝑐

) (
1 0
0 −1

) (
𝑐 𝑖𝑠
𝑖𝑠 𝑐

) =
1

2
(

𝑐 𝑖𝑠
−𝑖𝑠 −𝑐

) (
𝑐 𝑖𝑠
𝑖𝑠 𝑐

) 

=
1

2
(𝑐2 − 𝑠2 2𝑖𝑐𝑠

−2𝑖𝑐𝑠 𝑠2 − 𝑐2) =
1

2
(

cos 𝜋 𝑖 sin 𝜋
−𝑖 sin 𝜋 − cos 𝜋

) =
1

2
(

−1 0
0 1

)

= −
1

2
(

1 0
0 −1

) = −𝐼𝑧 

(98) 

As we expected by classical vector model, this pulse rotates the magnetization from z direction to 

–z direction and reverse the population in the two states. If the angle is changed to 90° which is 

π/2, the rotation will result 
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𝐑𝑥 (

𝜋

2
) 𝐼𝑧𝐑𝑥

−1 (
𝜋

2
) =

1

2
(

cos
𝜋

2
𝑖 sin

𝜋

2

−𝑖 sin
𝜋

2
− cos

𝜋

2

) =
1

2
(

0 𝑖
−𝑖 0

) = −𝐼𝑦. (99) 

It is consistent with the classical vector model prediction, where the x-phase 90° pulse will rotate 

the magnetization from + z direction to – y axis. Now, if the pulse is removed, the magnetization 

– Iy will evolve freely guided by the time-independent Hamiltonian 

 Ĥ = (𝜔0 − 𝜔𝑟𝑓)𝐼𝑧 = Ω𝐼𝑧 (100) 

Applying this Hamiltonian onto – Iy would give  

 −𝑒−𝑖Ω𝑡𝐼𝑧𝐼𝑦𝑒𝑖Ω𝑡𝐼𝑧 = 𝐼𝑥 sin(Ω𝑡) − 𝐼𝑦 cos(Ω𝑡), (101) 

which shows that the magnetization rotates from – y at t = 0 to + x at Ωt = π/2, to + y at Ωt = π 

and to – x at Ωt = 3π/2, same as predicted from classical vector model.  

Density matrix formalism is particularly useful for multi-spin system, where the classical vector 

model is hard to use in order to illustrate the evolution of multiple spins. For example, a two spin 

system consist of I and S, the free-precession Hamiltonian is given by  

 Ĥ = 𝜔𝐼𝐼𝑧 + 𝜔𝑆𝑆𝑧 + 2𝜋𝐽𝐼𝑆𝐈 ⋅ 𝐒, (102) 

where the JIS is the scalar coupling constant. The strong coupling parameter θ is defined as 

 
tan(2𝜃) =

2𝜋𝐽𝐼𝑆

𝜔𝐼 − 𝜔𝑆
 (103) 

With the defined strong scalar coupling parameter, the eigenfunctions can be found for a system 

of two coupled spins as 

 Ψ1 = |𝛼𝛼⟩, Ψ2 = cos 𝜃|𝛼𝛽⟩ + sin 𝜃 |𝛽𝛼⟩,  (104) 
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Ψ3 = cos 𝜃 |𝛽𝛼⟩ − sin 𝜃|𝛼𝛽⟩, Ψ4 = |𝛽𝛽⟩,  

The transformation matrix U that converts product basis to strong coupling basis is given by 

 

𝐔 = (

1 0 0 0
0 cos 𝜃 sin 𝜃 0
0 − sin 𝜃 cos 𝜃 0
0 0 0 1

) (105) 

For weak coupling, where θ = 0° and the wavefunctions of the two energy levels |αβ> and |βα> 

are independent, the weak Hamiltonian can be simplified as 

 Ĥ = 𝜔𝐼𝐼𝑧 + 𝜔𝑆𝑆𝑧 + 2𝜋𝐽𝐼𝑆𝐼𝑧𝑆𝑧 (106) 

And the transformation matrix U that converts product basis to weak coupling basis is given by 

 

𝑈 = (

𝑐 + 𝑖𝑠 0 0 0
0 𝑐 − 𝑖𝑠 0 0
0 0 𝑐 − 𝑖𝑠 0
0 0 0 𝑐 + 𝑖𝑠

), (107) 

where c = cos(πJISt/2) and s = sin(πJISt/2). 

Now, for a 2 spin ½ system I and S, the rotation operator for both spins can be derived by apply 

rotation operator on the individual spin and then multiply the result, for example, the rotation 

operator on the x axis applied on spin I can be written as: 

 

𝐑𝑥(𝛼)[𝐼] = 𝐑𝑥(𝛼)⨂ 𝐄 = (
𝑐 −𝑖𝑠

−𝑖𝑠 𝑐
) ⨂ (

1 0
0 1

) = (

𝑐 0 −𝑖𝑠 0
0 𝑐 0 −𝑖𝑠

−𝑖𝑠 0 𝑐 0
0 −𝑖𝑠 0 𝑐

) (108) 

Apply the rotation operator on spin S gives 
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𝐑𝑥(𝛼)[𝑆] = 𝐄 ⨂𝐑𝑥(𝛼) = (
1 0
0 1

) ⨂ (
𝑐 −𝑖𝑠

−𝑖𝑠 𝑐
) = (

𝑐 −𝑖𝑠 0 0
−𝑖𝑠 𝑐 0 0

0 0 𝑐 −𝑖𝑠
0 0 −𝑖𝑠 𝑐

) (109) 

Now, multiply both could result the effect of the rotation operator on the weak coupling two spin 

system as 

 

𝐑𝑥(𝛼) = 𝐑𝑥(𝛼)[𝐼]𝐑𝑥(𝛼)[𝑆] = (

𝑐2 𝑖𝑐𝑠𝑢 𝑖𝑐𝑠𝑣 −𝑠2

𝑖𝑐𝑠𝑢 1 − 𝑠2𝑢2 −𝑠2𝑢𝑣 𝑖𝑐𝑠𝑢
𝑖𝑐𝑠𝑣 −𝑠2𝑢𝑣 1 − 𝑠2𝑣2 𝑖𝑐𝑠𝑣
−𝑠2 𝑖𝑐𝑠𝑢 𝑖𝑐𝑠𝑣 𝑐2

), (110) 

where c = cos(α/2), s = sin(α/2), u = cosθ + sinθ, v = cosθ – sinθ. This rotation operator for 2 spin 

system can be readily applied to any weakly coupled system. For example, an ideal 90° pulse 

with x-phase is applied to the two spin system. The initial state of the two spin system can be 

written as 

 𝜎(0) = 𝜔𝐼𝐼𝑧 + 𝜔𝑆𝑆𝑧 = 𝜔𝐼𝐼𝑧⨂𝐄 + 𝐄⨂𝜔𝑆𝑆𝑧 

= 𝜔𝐼 (
1 0
0 −1

) ⨂ (
1 0
0 1

) + 𝜔𝑆 (
1 0
0 1

) ⨂ (
1 0
0 −1

) 

= (

𝜔𝐼 + 𝜔𝑆 0 0 0
0 𝜔𝐼 − 𝜔𝑆 0 0
0 0 −𝜔𝐼 + 𝜔𝑆 0
0 0 0 −𝜔𝐼 − 𝜔𝑆

) 

(111) 

Apply the 90° x-phase pulse can be shown as 

 

𝜎(𝑡) = 𝐑𝑥 (
𝜋

2
) 𝜎(0)𝐑𝑥

−1 =
1

8
(

1 −𝑖 −𝑖 −1
−𝑖 1 −1 −𝑖
−𝑖 −1 1 −𝑖
−1 −𝑖 −𝑖 1

) × (112) 
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(

𝜔𝐼 + 𝜔𝑆 0 0 0
0 𝜔𝐼 − 𝜔𝑆 0 0
0 0 −𝜔𝐼 + 𝜔𝑆 0
0 0 0 −𝜔𝐼 − 𝜔𝑆

) (

1 −𝑖 −𝑖 −1
−𝑖 1 −1 −𝑖
−𝑖 −1 1 −𝑖
−1 −𝑖 −𝑖 1

) 

=
1

2
(

0 𝑖𝜔𝑆 𝑖𝜔𝐼 0
−𝑖𝜔𝑆 0 0 𝑖𝜔𝐼

−𝑖𝜔𝐼 0 0 𝑖𝜔𝑆

0 −𝑖𝜔𝐼 −𝑖𝜔𝑆 0

) = −𝜔𝐼𝐼𝑦 − 𝜔𝑆𝑆𝑦 

As expected, an ideal 90° x-phase pulse rotate both magnetization into – y axis. Now, taking into 

account of the coupling constant JIS, executing the exponential operator 

exp[i(ΩIIz+ΩSSz+2πJISIzSz)t] onto the magnetization after the flip would result 

 
𝑖

2
(

0 0 0 −𝑒−𝑖(Ω𝐼+𝜋𝐽𝐼𝑆)𝑡 − 𝑒−𝑖(Ω𝑆+𝜋𝐽𝐼𝑆)𝑡

0 𝑒𝑖(Ω𝑆+𝜋𝐽𝐼𝑆)𝑡 𝑒𝑖(Ω𝑆+𝜋𝐽𝐼𝑆)𝑡 0
0 𝑒𝑖(Ω𝐼+𝜋𝐽𝐼𝑆)𝑡 𝑒𝑖(Ω𝐼+𝜋𝐽𝐼𝑆)𝑡 0
0 0 0 𝑒𝑖(Ω𝐼−𝜋𝐽𝐼𝑆)𝑡 + 𝑒𝑖(Ω𝑆−𝜋𝐽𝐼𝑆)𝑡

) (113) 

The observed magnetization will be proportional to the trace of this matrix with four terms: 

exp[i(ΩI+πJIS)t], exp[i(ΩI-πJIS)t], exp[i(ΩS+πJIS)t], exp[i(ΩS-πJIS)t]. So the final spectrum 

observed will consist of four resonance lines at frequencies ΩI±πJIS and ΩS±πJIS, which has been 

shown before.
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CHAPTER IV 
 

 

NMR INSTRUMENTATION 

 

The basic NMR spectrometer consists of three main parts: the magnet, the console and the user 

interface computer. Each of these parts consist of some subsystems that work together to form 

modern NMR spectrometer.  A brief sketch of the NMR spectrometer is shown in Figure 13. 



52 
 

 



53 
 

Figure 13 Block diagram of a single channel NMR spectrometer. The main components includes the magnet with the 
sample probe, the transmitter and the receiver. The detailed description can be found in this each sections. 

 

Section 1: Magnet 

According to the NMR theory, the signal is directly proportional to the gyromagnetic ratio of the 

atom as well as the external magnetic field strength. Since we cannot control the gyromagnetic 

ratio of the atom as it is the intrinsic characteristic of the atom, the only variable we can 

manipulate is the magnetic field strength. Over years of innovation, nowadays, almost all magnets 

inside the NMR spectrometer are made of superconducting solenoid. To date, the highest 

commercially available spectrometer has a magnetic field of 23.5 Tesla with proton Larmor 

frequency of 1000 MHz, which is 500,000 times of the magnetic field of the earth. To achieve 

this kind of superconductivity, the superconducting solenoid is immersed in liquid helium at 4.2 

K which is surrounded by thermal radiation shield, a vacuum space, and then a dewar of liquid 

nitrogen to keep the minimum loss of liquid helium. The radiation shield which typically made of 

aluminum foil prevents the radiation of heat transfer. The vacuum prevents the conduction and 

convection of heat transfer. With such high insulation, the bore of the spectrometer, the 

shimming, excitation and detection coils as well as the sample can be placed at room temperature. 

Field homogeneity is very crucial to modern NMR spectrometers. When the superconducting 

coils is installed, the cryoshims will be adjusted to achieve a homogeneity field around the sample 

positions, typically less than 1 ppm inhomogeneity. After the superconducting coils starts to 

work, these cryoshims should not be changed. Upon daily uses, the room temperature shim coils, 

which are around the bore but outside the probe, should be adjusted to achieve better 

homogeneity with the sample inside the spectrometer bore. Present-generation magnets have field 
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homogeneity on the order of 1 ppb (part per billion). In addition to field homogeneity, stability of 

the magnet is also critical. It is affected by the inevitable decay of the magnetic field itself and 

external magnetic fields. In order to maintain the stability, a mini spectrometer called lock system 

was used parallel to the main spectrometer to monitor the locking frequency (typically 

deuterium). The lock system continuously measures the resonance frequency of the deuterium in 

the sample. If the resonance frequency of deuterium changes, the system will automatically 

correct it by changing the current in the shimming coil to maintain the lock frequency at the 

correct value.  

Section 2: Transmitter  

Radio frequency pulses that are used to excite spin states in NMR experiment are generated by 

transmitter. In order to achieve desired pulse width and frequency as long as correct phase and 

power level, the transmitter consist of several parts to execute these functions. The source of the 

radio frequency signal comes from the Frequency Synthesizer. It provides a stable continuous 

electromagnetic wave at desired frequency using a standard frequency reference. This source of 

continuous wave is gated by a transmitter controller that cut off the excess signals to create 

pulses. The transmitter controller also controls the phase, pulse power and gating switch. The 

amplitude is controlled by the computer controlled attenuator to desired level. The radio 

frequency pulse created by the gating is at low power. Before it is irradiated onto the sample, it 

will pass through the linear amplifier to obtain the pulse power that is required for a particular 

experiment. For the modern NMR spectrometer, each channel will equip one transmitter. For 

example, a triple-resonance spectrometer typically equips 3 transmitters for proton, carbon and 

nitrogen each in addition to the one used for locking. The power required on each channel is 
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directly proportional to their corresponding detecting nucleus gyromagnetic ratio. For proton, the 

power of the amplifier is typically at 50-100 W. For heteronucleus, the peak output power of the 

amplifier is on the order of hundreds of watts. 

Section 3: Duplexer  

The amplified radio frequency pulse coming from the transmitter will travel into the duplexer 

before it reaches the sample in the probe. The duplexer has two main functions. First, it block the 

strong rf pulse to get into the very sensitive signal detection circuitry. Second, when the NMR 

FID signal comes from the probe, it diverts it into the signal detection path rather than the path to 

the amplifier in the transmitter. This function is usually achieved by the arrangements of cables 

and diodes. But some duplexers use switches that can rapidly change between transmit mode and 

receive mode controlled by the pulse programmer. 

Section 4: Probe 

The probe is the most specialized part of the NMR spectrometer and is often the only part that 

needs to be changed from one experiment to another. It is a complex apparatus that holds the 

sample and is positioned coaxially in the bore of the magnet. Its main function is to place the 

sample into the homogeneous region of the magnetic field. The probe also equipped with a device 

that can rotate the sample in order to reduce the inhomogeneity of the sample so that narrower 

spectra can be achieved. The VT (variable temperature) control apparatus inside of the probe can 

also stabilize the temperature of the sample. In the probe, there are rf electronic circuits that serve 

as both the irradiation source of the rf waves and the detecting instruments for sub sequential rf 

emissions from the sample. Its design strongly affects the sensitivity of the spectrometer, the 
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homogeneity of the B1 rf field, the susceptibility to rf heating of the sample and the quality of the 

solvent suppression. For the simplest case, the rf circuit consists of a coil and two capacitors as 

shown in Figure 14.  

 

Figure 14 Schematic show of two types of probe coils: Parallel-series and Series-parallel LC circuits. Two capacitors, 
labeled as Ct and Cm, are adjustable for proper tuning and matching. The 50 Ω is the impedance of the circuit. 

The function of the coil as mentioned before, is twofold. First, during the pulse, the current 

coming from transmitter generates an oscillating magnetic field B1 to the sample. Second, when 

the pulse terminated, the coil detects the current created by the precession of the sample and send 

it to the duplexer and receiver. The coil is placed in such a way that the generated magnetic field 

is predominantly perpendicular to the main filed to create maximum flip angle during the pulse. 

In theory, two orthogonal coils detecting x-magnetization and y-magnetization should be used. 

However, it is hard to tune two orthogonal coils to the same frequency. Modern probes usually 
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recruit a single Helmholtz coil to achieve quadrature detection. The two capacitors in the circuit 

are labeled as matching capacitor and tuning capacitor. The matching capacitor couples the 

external signals into the probe circuit with maximum efficiency. The tuning capacitor which is 

parallel to the coil is to enhance the currents in the coil by electromagnetic resonance. These two 

capacitors are not independent, in a real experiment, both capacitors should be adjusted iteratively 

to optimize the NMR probe. The characteristics of the probe are given by two factors, quality 

factor Q and complex impedance Z, which are given by 

 𝑄 = 𝜔𝐿/𝑅 (114) 

 𝑍 = 𝑅 + 𝑖[𝜔𝐿 − 1/(𝜔𝐶)]. (115) 

The ω is the resonance frequency, L is the inductance of the coil, R is the resistance of the coil 

and C is the capacitance of the tuning capacitor.  

The signal to noise ratio (S/N) is a very important factor to be considered in designing an NMR 

probe. The factors contributing to the S/N can be shown as 

 
𝑆/𝑁 ∝

𝑁𝛾𝑒𝛾𝑑
3/2

𝐵0
3/2

𝐾

√Δ𝑓[𝑇𝑐𝑅𝑐 + 𝑇𝑎(𝑅𝑐 + 𝑅𝑠) + 𝑇𝑠𝑅𝑠]
 (116) 

 The N is the total number of observed nuclei in the sample, γe and γd are the gyromagnetic ratios 

of the excited and detected nuclei, B0 is the external magnetic field strength, K is a factor related 

to coil design, Δf is the receiver bandwidth, T is temperature, R is resistance and the subscription 

of a, c, s represent amplifier, coil and sample. According to this equation, lowering the 

temperature of the coil and amplifier could potentially increase the signal to noise ratio. This is 

the idea that cryogenic probes are designed to operate coil at ~20 K to enhance the detection. 

Although different nuclei resonant at quite different frequencies, it is technically feasible to share 
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the same coil between separate tuned circuits, each operating on a different frequency. This is 

called multiple tuning. For example, for a triple-resonance 1H-13C-15N probe, it only contains two 

coils. One coil is double-tuned for 1H and 2H while the other is double-tuned to 13C and 15N. 

Section 5: Receiver 

The receiver consist of a preamplifier, a phase-sensitive detector and analog-to-digital converter. 

Immediately after the NMR signal is collected by the coils in the probe, the current will be passed 

through the duplexer first. The duplexer diverts the weak signal toward the preamplifier in the 

receiver to be scaled up to a more convenient voltage level. The noise figure of the preamplifier is 

very critical for the NMR spectrometer since it provides the initial stage of amplification of the 

signal. Later parts will unavoidably process the real NMR signal as well as the noises coming 

from the preamplifier. To minimize losses, the preamplifier is located as close to the probe as 

practical. In order to interpret the NMR data, the electromagnetic signal has to be converted to 

computerized digital form. This process in done by the analog-to-digital converter. However, the 

problem for NMR signal is it typically is in the range of several hundreds of megahertz which is 

too fast for current ADCs. It is very important to down-convert these frequencies to a more 

feasible level to the ADCs. The down-conversion is achieved by the phase-sensitive detector. It 

compares the NMR signal with a reference signal coming directly from the rf synthesizer. It 

detect the offset of the signal which is the difference between the NMR signal around Larmor 

frequency and the reference signal. This offset signal is less than 1 MHz (typically in kHz range) 

which is slow enough to be handled by the ADC. The detector also include audio filters designed 

to restrict the frequency bandwidth of the receiver to minimize the noise. The offset signal could 

be either positive or negative and it is confusing if only one channel is used in the detector. This 
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is why a phase-sensitive detector is required to detect the NMR signal to achieve quadrature 

detection. The signal is first split into two by a splitter. Each of the signal is mixed with the 

reference signal to achieve the offset audio frequency in the mixer. The two reference signals in 

the two mixer are 90° out of phase so that the resulting signals coming out of the mixers are one 

cosine modulated signal at offset frequency while the other is sine modulated signal at the same 

frequency. Combining the signals coming from both mixers could tell the differences between 

positive and negative offset since the signals that are 90° out of phase will be canceled out in the 

sine modulated signals but doubled in cosine modulated signals as shown in Figure 15. 

 

Figure 15 The quadrature detection. The time domain signals are shown on the left panel and the Fourier-transformed 

frequency domain signals are shown on the right panel. For simplification, the signal coming from a single coil is 

shown as cosine modulated cos(ω0t) in (a). After Fourier transformation, two peaks will arise in the frequency domain 

at ±ω0. In order to find the correct resonance frequency, the signal is split into two. The first will be mixed with a 

cos(ωreft) modulated reference signal as shown in (b). The other is mixed with a sin(ωreft) modulated reference signal 

as shown in (c). Their corresponding frequency domain spectra are shown in (h) and (i) which resonant at ±(ω0 – ωref) 

and ±(ω0 + ωref). The audio frequency filters will remove high frequency signals that are too far away from the Larmor 



60 
 

frequency. So the time domain signals after the filter are shown as in (d) and (e) and the corresponding frequency 

domain signals are shown in (j) and (k). In both, only the ±(ω0 – ωref) signal still remain. The signals from the two 

channels are now combined to give the correct resonance as shown in (f) and (l). 

So the NMR signal is in complex form with both real and imaginary part. After the phase-

sensitive detector, each part of the signal is connected to their own ADC. The ADC measures the 

voltage level of the input signal and convert it into a binary codes. This process is called 

digitization. The time separation between the sampling points of the ADC is called the sampling 

interval or dwell time. The inverse of the dwell time is the sampling bandwidth or spectral width.  

Depending on the experimental requirements, difference ADCs can be used. If a wide range of 

frequencies is required as typically do in solid-state NMR, the more rapid sampling is needed so 

comparing to solution NMR. The ADC used in solid state NMR is typically around 4 MHz while 

in solution NMR around 250 kHz. The resolution of the ADC depends on the bit size of the ADC. 

However, sampling speed will be reduced if a higher resolution is needed. As a compromise, a 

16-bit ADC is typically used in modern NMR spectrometer and it can represent numbers between 

-28 and 28-1 (-32,768 to 32,767). The magnitude of the analog signal must stay within the 

dynamic range of the ADC otherwise it is either not accurately read (too high) or being ignored 

(too small less than ½ bit).  

In many experiments, the phases of the rf pulses and the NMR signals are changed in a dynamic 

way. This allows one type of NMR signals to be distinguished from experimental artifacts or 

from different types of NMR signals. So a post-digitization phase shifter can be applied after the 

ADC. The digitized complex signal is passed into the phase shifter and multiplied by a complex 

phase factor before it is passed to the computer. This phase shift after the quadrature detection is 

immune to instrumental imperfections such as misbalance of the two sections of the quadrature 

detector.  
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Section 6: Data Processing 

Direct Fourier transformation of raw recorded NMR data rarely yield optimal frequency domain 

spectrum. Typically, some manipulations will be done before or after the Fourier transformation 

to maximize the information that can be withdrawn from the spectrum. 

Zero-filling is a technique that adding a series of zeroes into a data sequence prior to Fourier 

transformation. Fast Fourier transformation require the data points to be an integral power of 2. 

So, for a set of data points that is not an integral power of 2, zeroes will be automatically added to 

make up to the closest number that is an integral number power of 2. Beyond this, since the NMR 

signal comprises of both real and imaginary parts and the imaginary part is usually discard in 

multi dimension NMR spectroscopy, adding zeroes could compensate the loss of imaginary part 

as the imaginary part can be recovered from the real part. So if you have a set of 2n data points, 

adding another set of 2n zeroes could increase the spectral resolution. Additional zero fillings 

cannot gain additional information beyond this point. 

Linear prediction is another way to increase the resolution of the spectrum. This technique is very 

useful for long T2 relaxation atoms where the FID is truncated before fully decayed out. It is 

especially useful in multi-dimension NMR where the indirect domain typically don’t have enough 

time to completely decay. It is very important to use linear prediction for the indirect dimension 

to avoid sinc wiggles created by the truncated FID.  

Apodization is another very important technique to get a smooth satisfactory lineshape in the 

spectrum. The Apodization process multiply a filter function in the time domain before Fourier 

transformation. The time domain signal needs to be reduced to zero smoothly and a matched 
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function has to be applied to the FID prior Fourier transformation in order to achieve maximum 

signal-to-noise ratio. The matched function typically should have the same decay envelop as the 

FID signal. However, apodization results in more line broadening. There has to be a compromise 

between the apodization and line width. It is worth to notice that apodization does not increase 

the peak area under the Fourier transformed spectra. 

Phasing is crucial in NMR data processing. The digitized signal usually displays a frequency 

dependent phase error. This phase error can be corrected by applying a zero-order phase 

correction function and first-order phase correction function. Zero-order phase correction is 

frequency independent while the first-order phase correction contributes to a linearly frequency-

dependent phase. By adjusting both phase correction functions, a nicely absorption lineshape can 

be achieved throughout the whole spectra. Another phase error usually comes from a clipped FID 

where the first several data points exceed the dynamic range of the ADC. This can cause a 

baseline distortion in the spectrum called baseline roll. By adjusting the time between the 

observed pulse and the start of sampling, the distortion can be reduced. The most famous pulse 

sequence Hahn echo is usually applied in the 1H NMR spectroscopy to reduce baseline distortion. 

Linear prediction of the first several data points can also be applied to correct baseline distortion.
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CHAPTER V 
 

 

THE LIPID DROPLET PROTEIN PLIN1 

 

Section 1 Abstract 

Neutral lipid triglycerides, a main reserve for fat and energy, are stored in organelles called lipid 

droplets. The storage and release of triglycerides are actively regulated by several proteins 

specific to the droplet surface, one of which in insects is PLIN1. PLIN1 plays a key role in the 

activation of triglyceride hydrolysis upon phosphorylation. However, the structure of PLIN1 and 

its relation to functions remain elusive due to its insolubility and crystallization difficulty. Here 

we report the first solid-state NMR study on the Drosophila melanogaster PLIN1 in combination 

with molecular dynamics simulation to show the structural basis for its lipid droplet attachment. 

NMR spin diffusion experiments were consistent with the predicted membrane attachment motif 

of PLIN1. The data indicated that PLIN1 has close contact with the terminal methyl groups of the 

phospholipid acyl chains. Structure models for the membrane attachment motif were generated 

based on hydrophobicity analysis and NMR membrane insertion depth information. Simulated 

NMR spectra from a trans-model agreed with experimental spectra. In this model, lipids from the 

bottom leaflet were very close to the surface in the region enclosed by membrane attachment 

motif. This may imply that in real lipid droplet, triglyceride molecules might be brought close to 

the surface by the same mechanism, ready to leave the droplet in the event of lipolysis. 

Juxtaposition of triglyceride lipase structure to the trans-model suggested a possible interaction of 
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a conserved segment with the lipase by electrostatic interactions, opening the lipase lid to expose 

the catalytic center. To verify this binding model, the full-length protein was chopped into four 

segments without overlapping based on the bioinformatics analysis to study their individual 

binding affinity to the liposome by reconstitution. It was found that the 4 helices domain can be 

reconstituted into the liposome very efficiently, which agrees with the bioinformatics analysis and 

confirmed its lipid binding function. Interestingly, we found the PAT domain could also be 

reconstituted into the liposome, indicating its potential hydrophobic nature that could either be 

another lipid interaction domain or interact with the hydrophobic domain with the lipase. 

Section 2 Introduction 

Animals store most of excess energy in the form of neutral lipid triglycerides for later use as 

metabolic fuel. The hydrophobicity of triglycerides allows them to be densely packed into lipid 

droplets, providing an energy density 10 times that of hydrated proteins and carbohydrates [32]. 

The lipid droplets are composed of a triglyceride core surrounded by a monolayer of 

phospholipids and a variety of proteins [33] and can be readily visualized by light and electron 

microscopy [34-36]. The structure of lipid droplets is similar to that of lipoproteins but they still 

have very distinct features. Firstly, lipid droplets can be synthesized by all types of cells but 

lipoprotein synthesis are restricted to hepatocytes and enterocytes [37]. Secondly, lipid droplets 

can be considered as cell organelles as they mainly store lipids in place while lipoproteins are the 

intercellular carriers that transport lipid building blocks from one place to another. At last, 

lipoprotein only contains very limited types of proteins which enable them to execute the 

transportation function and reach target with limited interactions with the environment during the 

process. The proteome analysis of lipid droplet surface binding proteins reveals up to hundreds of 
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different proteins that has different functions in cell skeleton interaction, lipolysis and other 

metabolism processes [38-50]. More evidences [51-57] show that lipid droplet has direct contact 

with various organelles in the cell such as ER, mitochondria, peroxisomes, endosomes and other 

LDs. It is reported that LD originates from ER through a process called budding, where the 

DGAT on the ER surface synthesizes triglycerides into the intramembrane space between the two 

layers of ER membrane, resulting the outer membrane to bud out with the triglycerides inside [58, 

59]. Utilization of the stored triglycerides requires enzymatic breakdown (lipolysis) by lipases, 

while the surface layer of the droplet controls the accessibility of lipases to the stored 

triglycerides. Among the proteins surrounding the lipid droplet surface, proteins in the PAT 

family (named after three earliest members) have raised great interest in recent years. The PAT 

family consists of the mammalian Perilipin, ADRP, TIP47, S3-12, and OXPAT, as well as insect 

lipid storage droplet protein 1 (Lsd1) and 2 (Lsd2) [60]. Perilipin, ADRP, and Lsd1 constitutively 

attach to the lipid droplets, and they maintain fat storage and regulation of lipolysis. TIP47, S3-

12, OXPAT, and arguably Lsd2 bind reversibly to the droplets; hypothetically they are 

responsible for the packaging of newly synthesized triglycerides into lipid droplets [60]. A new 

nomenclature has been recently proposed for the mammalian PAT-family of proteins [61] as 

Perilipin to PLIN1, ADRP to PLIN2, TIP47 to PLIN3, S3-12 to PLIN4 and OXPAT to PLIN5. 

Accordingly, from now on we will refer Lsd1 and Lsd2 in Drosophila as PLIN1 and PLIN2, 

respectively. Mammals and insects share significant conservation in the molecular mechanism of 

lipid droplet metabolism, highlighting the tremendous potential of using genetic technical 

advantages of insects to discover novel features of lipid homeostasis [60, 62]. Studies of fruit fly 

models have established a correlation between triglyceride accumulation and the level of PLIN2 

expression [63]. It is shown that the protein composition is related to the size of the lipid droplet. 



66 
 

For small lipid droplets in Drosophila, both PLIN1 and PLIN2 can be found but only PLIN1 

shows up on large lipid droplets. PLIN1 is found exclusively associated with lipid droplets [64]. 

It dynamically interacts with lipid droplet to control access of lipase to triglycerides thus regulates 

the lipids homeostasis. In mammals, PLIN1 block the basal lipolysis but activates hormone 

sensitive lipase upon stimulation. In contrast to mouse perilipin, which protects triglycerides from 

hydrolysis [65, 66], depletion of Drosophila PLIN1 leads to adult-onset obesity [67] while 

overexpression of PLIN1 induces lipid droplet to shrink and aggregate [68]. PLIN1 serves as a 

lypolytic switch, which upon protein kinase A (PKA) mediated phosphorylation, promotes the 

activation of triglyceride lipolysis [69]. 

The association of these proteins on the surface of the lipid droplets is critical to their ability to 

properly regulate both storage and release of the triglycerides in the droplets. Despite the pressing 

need to understand the interaction between these proteins and the lipid droplets, progress has been 

hampered by the scarcity of three-dimensional structure information for these proteins. The first 

and so far the only structure determined was for the C-terminal TIP47 (residues 191-437) at 2.8 Å 

resolution using X-ray crystallography [70]. The structure consists of an α/β domain and a four-

helix bundle that resembles the receptor-binding domain of apolipoprotein E. The deep 

hydrophobic cleft between the α/β domain and the four-helix bundle is consistent with binding to 

hydrophobic proteins and small molecules, rather than to the extended phospholipid membrane. 

This C-terminus construct was selected from one dozen truncations for soluble protein 

expression. Regrettably, it does not have the N-terminal 11-mer helical repeats that are probably 

responsible for reversible binding to lipid membranes.  
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Meanwhile, in vitro systems have recently become available for structural and functional studies. 

Recombinant PLIN1 has been purified and reconstituted in lipid droplet-like particles [71, 72]. 

Using an in vitro system, it was shown that phosphorylation of PLIN1 enhances the triglyceride 

lipase activity, demonstrating the direct connection between PLIN1 phosphorylation and the 

activation of lipolysis [71]. Hypothetically, PLIN1 phosphorylation causes changes on the droplet 

surface, making the internal triglycerides more accessible to the lipase [69]. The ability to 

reconstitute PLIN1 in lipoprotein particles opens the possibility to design structural studies to 

advance our understanding of the mechanisms of lipolysis regulation. Nevertheless, these 

lipoprotein particles are too large (~20 nm diameter) for solution NMR studies, and they are very 

difficult if not impossible to form diffraction quality single crystals for crystallography studies.  

Fortunately, several other structural techniques could be applied to this type of samples. For 

example, topologies of lipoprotein complexes have been determined using solid-state NMR [73, 

74], fluorescence spectroscopy [75, 76] and electron paramagnetic resonance (EPR) [77]. Among 

these, solid-state NMR is particularly suitable to study these lipoprotein complexes because three-

dimensional structure details could be obtained [78-81]. Here we report both NMR experimental 

data and structural models that could be useful to advance our understanding of protein targeting 

to lipid droplet and the function of PLIN1. 

Section 3 Materials and Methods 

Isotopically enriched (13C, 15N) ISOGRO, 15NH4Cl and uniformly labeled 13C-glucose, were 

purchased from Sigma-Aldrich (St. Louis, MO). Lipid 1,2-dimyristoyl-sn-glycero-3-

phosphoglycerol (DMPG) was purchased from Avanti Polar Lipids (Alabaster, AL). Benzonase 

was purchased from EMD Millipore (Billerica, MA). His-beads were purchased from Bio-Rad 
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(Hercules, CA). Lysozyme was purchased from MP Biomedicals (Santa Ana, CA). Thrombin was 

purchase from Bio Pharm Laboratories (Alpine, UT). All restriction cleavage enzymes and DNA 

polymerase as well as ligase were purchased from New England Biolabs (Ipswich, MA).  

3.1 Protein expression and purification 

The over-expression of PLIN1 (CG10374, NP_732904.2) as a fusion protein with thioredoxin-

[His]6-S tag  was carried out as previously reported [71] with slight modifications to incorporate 

stable isotopes for NMR studies. In brief, Drosophila total mRNA was reverse transcribed using 

oligo-d(T)18-primer and the resulted cDNA was used as template to amplify the coding region of 

Lsd1 (CG10374, NP_732904.2) by PCR. The left and right primers were 5’ -

GACGACGACAAGATGGCAACTGCAACCAGCGGCAGTGGA and 5’ -

GAGGAGAAGCCCGGTCTAGACGCCGTTGATGTTATTGTG. The product was ligated into 

the vector pET-32 Ek/LIC that contains an N-terminal coding sequence for thioredoxin followed 

by His-Tag and S-Tag coding sequences. E. coli strain NovaBlue GigaSingles cells were 

transformed with the recombinant plasmid. Positive clones were confirmed by DNA sequencing. 

Plasmids extracted from these clones were transformed into E. coli Rosetta 2 cells for protein 

expression. Recombinant protein expression was induced with 1 mM IPTG when OD 600 reaches 

0.8. After 4 hours induction, bacteria were collected and resuspended in buffer (50 mM Tris, pH 

8, 1 mM EDTA, 100 mM NaCl, 1 mM PMSF) containing 0.3 mg/ml of lysozyme. After 30 min 

incubation, the preparation was centrifuged at 100,000g for 1 h. The fusion protein expressed as 

inclusion bodies as they can be found in the pellet. The inclusion bodies were resuspended in 0.1 

M sodium acetate pH 5, 5 mM MgCl2 and incubated with DNase I at 37 °C for 1 h. Sample was 

centrifuged (35,000g, 20 min) and the pellet was resuspended in 20 mM Tris, pH 7.5, 6 M urea, 
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0.3% octylglucoside, 0.5 M NaCl and vortexed at 40 °C for 15 min. After centrifugation (5000g, 

20 min) the procedure was repeated twice. The final pellet was resuspended in 20 mM Tris, pH 8, 

8 M urea, 10% Sarkosyl, 0.5 M NaCl, 1 mM DTT and sonicated in two steps for 1 min each time. 

The preparation was centrifuged (5000g, 20 min) and the pH adjusted to 7.5. Trx–Lsd1 stock 

solution (5 mg/ml) was kept in the freezer. Before usage the preparation was diluted to 0.5 mg/ml 

and dialyzed to a final concentration of 20 mM Tris, pH 7.5, 2 M urea, 0.10 M NaCl, 0.01% 

cholate. For 13C-15N double labeled protein expression, transformed E. coli Rosetta cells with the 

recombinant plasmid (pET32-CG10374) were grown in 200 mL Luria broth medium at 37 ºC 

until optical density 0.8 at 600 nm. The bacteria pellet was collected by centrifugation, and 

cultured in 1 liter M9 minimal medium containing reagents enriched with NMR-active stable 

isotopes (13C-glucose and 15NH4Cl). The medium was supplemented with properly labeled algae 

extracts (ISOGRO) to boost protein yield. When optical density reached 0.8, protein expression 

was induced by addition of 1 mM IPTG. After 6 hours, cells were harvested by centrifugation. 

Thioredoxin-Lsd1 fusion protein was purified essentially as previously described [71]. The final 

protein pellet was resuspended in 20 mM Tris, pH 8.0, 6 M Urea, 150 mM NaCl, 10 mM 

dithiothreitol and a solution of protein stock (1.7 mg/mL) was stored in the freezer.  

3.2 Protein reconstitution 

DPMG lipid powder was dissolved in organic solution Chloroform first. The solution was 

agitated in a round-bottom flask and let dry under N2 gas flow at 37 °C dry bath (phase transition 

temperature for DMPG is 23°C). The coated DMPG film at the bottom of the flask were kept 

under N2 gas flow for another 30 min before vacuum overnight. The thin DMPG film was 

dissolved in 20 mM Tris, pH 7.5, 2 M urea, 0.10 M NaCl to a target concentration of 6 mg/ml. 
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The dissolved lipids was vortexed vigorously for 30 s at RT and then applied to sonication at 30 

°C for 1 hour. DMPG liposomes (400 nmol) were mixed with 8 nmol of fusion protein (Trx–

Lsd1) in 20 mM Tris, pH 7.5, 2 M urea, 0.10 M NaCl, 0.01% cholate followed by exhaustive 

dialysis for 24 h against phosphate buffer (5 mM Na3PO4 pH 7.5, 20 mM NaCl) at 4 °C. After 

exhaustive dialysis, thioredoxin-PLIN1/DMPG complexes were brought to 60% (w/v) sucrose 

and subjected to ultracentrifugation in a sucrose density gradient (30 to 60 % (w/v)). The distinct 

white band floating at a density of 1.17g/ml was collected as a single fraction. Complexes were 

sedimented by ultracentrifugation in an aqueous buffer and resuspended in a buffer containing 5 

mM Na2HPO4, 0.15 M NaCl, 0.1% octylglucoside at pH 7.4 and incubated with thrombin (1 

unit/mg of protein) for 15 h at 4 ºC to cleave the thioredoxin-[His]6 tag. The cleaved tags were 

removed by passing the cleaved solution through a 10 kD cutoff membrane filter. After 

centrifugation, the pellet containing PLIN1/DMPG complex was washed with 5 mM phosphate 

buffer (pH 7.5) and excess of water was removed in the speed vac for 1 h. Based on proton NMR 

signal intensities, the sample contained about 35% wt of water. These complexes were previously 

reported to have apparent diameter of 20 nm [71], and they are likely small unilamellar vesicles 

(SUVs) [82]. The head groups of anionic lipids, such as DMPG, facilitate interaction with 

positively charged protein sidechain groups and they are important for membrane attachment of 

the protein. Neutral lipid DMPC was also tested, but it resulted in dramatic protein loss by 

sticking to the dialysis membranes and the centrifuge tubes. DMPG provided a cost effective way 

to obtain isotopically enriched PLIN1 lipoprotein complexes. 

3.3 NMR spectroscopy 
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All Solid-state NMR experiments were carried out on a 600 MHz Varian INOVA spectrometer 

and a triple resonance magic-angle spinning (MAS) probe with a 1.6 mm spin module. All 

spectra were acquired with a MAS rate at 13.3 kHz. For 13C 1D and 13C-13C 2D experiments, the 

proton 90º pulse was 2.2 μs, cross polarization (CP) contact time 0.7 ms, locking fields of 73 kHz 

on 1H and 80 kHz on 13C channels, 100 kHz two pulse phase modulation (TPPM) decoupling 

[83], and dipolar-assisted rotational resonance (DARR) recoupling [78, 84]. For proton spin 

diffusion experiment, the proton-detected NHH pulse sequence was modified from the CHH 

sequence [79] with MISSISSIPPI solvent suppression [80] and an additional T2 filter (300 μs) 

[81] to suppress signals from the less mobile protein molecule as shown in Figure 16. The CP 

locking fields were 73 and 60 kHz on 1H and 15N channels, respectively. Contact time for the first 

CP (1H to 15N) was 1 ms, and 0.6 ms for the second CP (15N to 1H). 

 

Figure 16 NHH spin diffusion pulse sequence modified from Luo et al. [79]. Proton polarization excited by the initial 

90º pulse is transferred to 15N by cross polarization and stored in the longitudinal direction by the first 15N 90º pulse. 

The remaining proton signals are suppressed by MISSISSIPPI, which employs homospoil gradients and saturation 

pulses; S =200 us, H=20, W=50 us [80]. The polarization is brought back to the transverse plane by the second 15N 

90º pulse and transferred back to 1H. Polarization propagates from protein protons to solvent (water and lipids) via 

spin-diffusion (tm). A T2-filter (F) is added to remove protein signals [81], leaving only polarization solvent protons to 

be detected. The π pulse is placed in the middle of F. Narrow and wide filled rectangles represent π/2 and π pulses, 

respectively. This sequence can be used as CHH when the 15N channel is replaced by 13C. 
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3.4 MD simulation and spectral simulation 

All MD simulations were performed on up to 600 processors on a linux cluster supercomputer 

using software GROMACS 4.5.5 and GROMOS96 54A7 force field combined with DMPG lipid 

interaction parameters with simple point charge-extended (SPCE) water model [85]. The non-

bonded van der Waals interactions were estimated using Lennard-Jones potential with cutoff 

value of 1.2 nm and the bonds were constrained by linear constraint solver (LINCS) algorithm 

[86]. Electrostatic forces and energies were calculated using Particle-Mesh Ewald (PME) 

summation algorithm with cutoff value of 1.2 nm too [87].  

Two equilibration phases, constant volume (NVT) and constant pressure (NPT) ensembles, were 

subsequently carried out, each with 1 fs time steps. In the first phase, the system was coupled to a 

strong temperature bath using V-rescale coupling [88] with temperature coupling constant of τT = 

0.1 ps to maintain system temperature at 300 K. In the second phase, Parrinello-Rahman pressure 

coupling [89] with coupling constant τP = 5.0 ps to maintain the pressure semi-isotropically at 1 

bar and a weak Nose-Hoover temperature coupling with a coupling constant τT = 0.5 ps [90-92] 

was used to ensure a true NPT ensemble. A total of 15 ns equilibration was followed by a 50 ns 

production run of molecular dynamics (MD) in 2 fs step size, during which temperature and 

pressure were maintained using weak coupling methods (Nose-Hoover with τT = 0.5 ps and 

Parrinello-Rahman with τP = 2 ps).  

For a given structure model, backbone and α-carbon chemical shifts were predicted by shiftX 

[93]. Based on these chemical shifts, 13C-13C 2D spectra were simulated by program peaks2ucsf 
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in the Sparky package (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, 

San Francisco) with assistance of a custom computer script. 

 

 

3.5 Trypsin protection assay and Mass spectrometry 

Trypsin was applied to the liposome with reconstituted protein in it to identify the binding 

domain of PLIN1 with the membrane. Trypsin was prepared by dissolving the powder to 1 mM 

HCl and stored at -20°C. The reconstituted protein on the liposome was incubated with trypsin at 

a ratio of 1 unit/mg protein at 37 °C overnight. The control experiment was done using buffer-

exchanged protein in 2M urea, 0.05% cholate with trypsin at the same enzyme to protein ratio. 

The cleaved sample was run on SDS-PAGE first and the protein bands are excised for mass 

spectrometry.  The sample was reduced, alkylated, and using another trypsin digestion before 

applied to HPLC-Mass spectrometry. Peptide mass fingerprints were used for database search 

using Mascot [94].  

3.6 Truncated PLIN1 mutant clone and reconstitution 

PLIN1 was truncated into 4 different pieces according to bioinformatics analysis without 

overlapping to study their individual lipid bilayer abilities. The full-length protein was separated 

into 4 different domains: the N-terminal PAT domain, the 4-Helix domain which shows lipid 

interactions, the R1 domain which is the segment in between of the first two, and the C-terminal 

domain R2. Since we don’t have empty pET-32 Ek/LIC in hand, the recombinant pET-32-FL-
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PLIN1 was used as both the PCR template and the final insertion plasmid. Primers designed to 

clone each domain are shown in Table 3. Since the full-length protein use LIC system as the 

recombination method, it does not disrupt the restriction cleavage sites on the plasmid. Double 

restriction cleavage was applied for cloning all the four segments into the vector. The vector with 

full-length PLIN1 was extracted from E. coli with ZyppyTM plasmid miniprep kit according to 

instructions. The extracted plasmid was used as template for the PCR amplification. The PCR 

was conducted in a 5 min 95 °C preparation followed by 45 cycles of 30 s 95 °C denature , 30 s 

45 °C annealing, 60 s 60 °C extension. The PCR product and the vector with full-length PLIN1 

were digested using Hind III and Kpn I as restriction cleavage enzymes, respectively. The ligation 

was performed with inserts: plasmids at the molar ratio of 3:1 at 37 °C for 2 hours. The ligated 

plasmid was transformed to E. coli DH5α for amplification. The extracted plasmids were later 

transformed to E. coli BL21 (DE3) for optimal protein expression. For soluble proteins, cell 

lysate was filtered against 0.2 μm filter to remove any remaining cell debris followed by passing 

through the Ni-NTA column (BioRad, Hercules, CA). For insoluble protein, cells were lysed 

followed by 36,000 g centrifugation. The pellet was tested on different buffers with 20 mM Tris, 

50 mM NaCl buffers at pH 8 with different additions in the following order: 1) 1% Triton X-100, 

2) 2M Urea, 3) 1% Triton X-100 + 2M urea, 4) 5% Sarkosyl, 5) 8M urea + 10% Sarkosyl. The 

reconstitution of these truncated mutant protein into the DMPG liposome was conducted the same 

way for the full-length protein. 

Section 4 Results and Discussions 

4.1 Spectra of 13C,15N-PLIN1 
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Initially, 13C 1D spectrum on 13C, 15N-uniformly labeled PLIN1 was performed to assess 

resolution and sensitivity, providing feedback for sample preparation process. The spectrum was 

acquired at several temperatures to assess cross polarization dynamics (Figure 17). Overall signal 

intensity increased by 30% when the temperature was lowered from -15 to -37 ºC, due to the fact 

that cross polarization from proton to 13C is more efficient when the dipolar coupling is strong in 

rigid molecules. The lipid methylene intensity increased by 50% instead, indicating that the 

mobility of acyl chains is reduced at lower temperatures than the protein, which presumably binds 

to the surface of the lipid membrane. From these 1D spectra, signals can be identified for 

carbonyl, aromatic ring, Cα, and side chain carbons. 



76 
 

 

Figure 17 13C cross polarization spectra of 13C,15N-PLIN1 lipoprotein complexes at different temperatures. Spectra 

were acquired on a 600 MHz instrument with the sample spinning at 13.3 kHz. For each spectrum 128 scans were 

accumulated. The data were apodized with 40 Hz line broadening. Calibrated sample temperature values are labeled 

in the figure. 

Several 13C-13C 2D correlation spectra were obtained to examine the chemical shift dispersion 

among amino acid types, and to analyze the secondary structures based on chemical shifts (the 

resonance position in a spectrum, in ppm unit) [95]. The 13C–13C 2D spectrum (Figure 18), 

acquired with 10 ms DARR mixing [78], shows peaks in all the expected locations. For example, 

the serine, threoine, alanine, and isoleucine correlations have been labeled in the Figure. 

Correlations observed in isolated regions of the spectrum (e.g., Ala C-C) provide a means to 
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performing analysis of secondary structure. Further analysis within the unique chemical shift 

ranges of various residue types showed that the C, Cand CO (carbonyl carbon) signals were 

observed with chemical shifts indicative of their secondary structure. For example, 47% of the 

Ala C-C correlations intensities (Figure 18 inset) are found in the area consistent with C and 

C chemical shifts characteristic of α-helical structures; 31% of the intensities are found in the 

area characteristic of turn or random coil structures; 22% in the area characteristic of β-sheet. 

These numbers are consistent with the analysis based on circular dichroism spectrum: 34% α-

helix, 16% β-sheets, 50% turns or random coil. Figure 18B shows the 13C–13C 2D spectrum with 

50 ms DARR mixing to create longer-range correlations. Among the many new peaks, the 

isoleucine C1-C2 and the inter-residue C-C correlations are also observed. Moreover, the 

individual outlying peaks allow estimation of linewidth to be about 0.5 ppm. 
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Figure 18 13C-13C 2D correlation NMR spectra of the 13C, 15N-PLIN1 sample with 10 ms (A) and 50 ms (B) DARR mixing. 
The inset is the expansion of the alanine Cα-Cβ region, with three boxes marking the characteristic chemical shift 
ranges for the three types of secondary structure. Data were acquired on a 600 MHz instrument with the sample 
spinning at 13.3 kHz. Each spectrum took 42 hours, with 96 scans per row. Sample temperature was -37 °C.  

 

4.2 Membrane insertion by proton spin diffusion 

The attachment of PLIN1 on the surface of the lipid droplets is critical to its function in the 

activation of triglyceride hydrolysis. The four helices predicted in the central region have been 

hypothesized to be droplet targeting motifs based on their hydrophobicity (hydrophobic H6 and 

H8, amphipathic H7 and H9). To verify this hypothesis and to probe the depth of membrane 

insertion, NHH spin diffusion NMR experiment was performed at 45 ºC, higher than the gel to 

liquid-crystalline phase transition temperature (23 ºC) of DMPG (Figure 19A). This experimental 

temperature was chosen to give relatively sharp lipid methyl and methylene signals in proton 

spectra (Figure 19B). The proton resonances are assigned based on the published lipid NMR data. 
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Particularly, water resonates ca. 4.7 ppm, acyl chain methylene at ca. 1.3 ppm, and the terminal 

methyl groups of the acyl chains at ca. 0.8 ppm. In NHH spin diffusion experiments (Figure 16), 

proton polarization was first transferred to 15N by cross polarization and all remaining proton 

signals were then wiped off. The polarization was transferred back to protein proton and 

propagated to water and lipids via spin-diffusion (tm). The initial spectrum (tm = 0 ms, Fig. 19C) 

shows weak residue amide signals not completely removed by 300 s T2 filter; longer T2 delays 

hurt experimental sensitivity. The protein signal removal efficiency can be seen in Figure 20, 

where most of the signals were removed at τF = 600 μs. Nevertheless, the aliphatic region (0-4 

ppm) was free of interfering protein signals. The non-zero water signal likely originated from 

chemical exchange with lysine and arginine side chain amine protons, which could occur during 

15N to proton cross-polarization transfer. With increasing diffusion time (4 and 36 ms in Figure 

19C), water and lipid signals grew stronger.  
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Figure 19 (A) DMPG molecule with proton designations. (B) Direct proton excitation spectrum on uniform 13C,15N-

PLIN1 reconstituted into DMPG vesicles at 45C. The amide region is magnified in the inset. (C) NHH spin diffusion 

spectra with diffusion time as indicated in the figure; 600 scans were acquired for each spectrum. 

The dependence of peak intensities on serial diffusion times, namely, spin diffusion buildup 

curves, are shown in Figure 21. The buildup rate of how fast a buildup curve reaches its plateau 

relates to the distance between the protein and water or lipid groups. The curve of the terminal 

CH3 groups of the acyl chains in Figure 21 exhibits a much faster buildup rate than water, 

indicating that a region of PLIN1 has close contact with the lipid acyl chains. This region of 

PLIN1 is buried in the middle of the bilayer in the native-like lipoprotein complexes; in the native 

lipid droplets, it very likely reaches the interface between the lipid monolayer and the triglyceride 

core. This deeply buried region should be critical to droplet attachment for PLIN1. Moreover, 

when PLIN1 is activated by phosphorylation, this region may be involved in opening the 

phospholipid monolayer to grant lipase access to the stored triglycerides. 
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Figure 20 Suppression of protein signal by T2 filter in the NHH spin diffusion sequence. Eight scans were acquired for 

each spectrum. The diffusion time (tm) was zero. 

The CH2 buildup curve clearly shows a biphasic behavior, which can be decomposed into two 

exponential growth components. The fast component has a buildup rate similar to the CH3 curve, 

very likely arising from a region of PLIN1 in close contact with the acyl chain. The slow 

component may be attributed to long-range diffusion from cytosolic regions of PLIN1. The 

buildup rate of water is also relatively fast, indicating close contact of water with the protein. The 

rate is slower than the rates of CH2 and CH3 in close contact with the protein, due to a smaller 

dipolar interaction resulted from fast motion of water molecules.  
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Figure 21 Proton 1D spin diffusion data buildup curves as a function of mixing time. The CH2 and CH3 curves are also 

rescaled for easy comparison of buildup rates. The fast growing CH3 curve (down triangle) indicates a close contact 

between protein and the phospholipid acyl chain terminals, meaning that this part is deeply buried inside the lipid 

bilayer. While the CH2 group (up triangle) shows a clear biphasic behavior indicating that the there are two types of 

interactions with CH2 groups from the protein, possibly the one buried inside the bilayer and the one in the cytosol 

part. The experiment was performed at 45 ºC and data points were corrected for T1 relaxation. 

The proton spin diffusion data on water, CH2 and CH3 protons can provide a semi-quantitative 

evaluation of the protein regions located in different environments. The relative saturation 

intensities are roughly 85%, 8.5%, and 6.5% for water, CH2, and CH3 respectively, according to 

Figure 21 and taking into account that half of the CH2 intensity arises from close contact (Figure 

22). The sum of the latter two, 15%, represents percentage of the PLIN1 molecule anchored in the 

lipid membrane; this value is in very good agreement with the percentage (13%) of highly 

hydrophobic regions (residues 249 to 275 and 290 to 318) with regard to total number of amino 

acids (431) in the protein.  
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Figure 22 Decomposition of CH2 buildup curve into two exponential growth components. The fast growth component 

was taken into account for calculating build up intensity from close contact with protein residues. 

 

4.3 model building 

So far, there is no structure or structure model for any PAT proteins bound to membrane. The 

conserved PAT domain of the PLIN1 is highly soluble and unlikely to participate in lipid 

interaction. No transmembrane domain was found in PLIN1 using HMMTOP server [96]. 

Bioinformatics analysis indicated that four predicted helices might participate in membrane 

targeting: hydrophobic helices H6 (249-261) and H8 (290-300) as well as amphipathic helices 

with high hydrophobic moment H7 (265-275) and H9 (301-318) [71]. The spin diffusion NMR 

experiments above corroborated this hypothesis. It is therefore interesting to build structural 

models for the membrane-binding domain, contained in the segment stretching from residue 249 

to 318. This segment also includes a highly conserved hydrophilic motif 282EPENQARP289 that 

could act as a modulator of lipolysis.  
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Figure 23 The trans-model of PLIN1 membrane-anchoring motif. (A) Starting model constructed based on 

hydrophobicity of predicted helices (hydrophobic H6 and H8, amphipathic H7 and H9) and NMR membrane insertion 

information. (B) Top view of the model after 50 ns MD simulation in DMPG lipid bilayer. Alpha helices are shown in 

purple, coils in gray, turns in cyan, and 282EPENQARP289 motif in green. Lipids of the top leaflet are shown in orange, 

with the phosphorus shown in yellow sphere. (C) Side view of the model showing proximity between helices 6 and 8 

with the lipid methyl groups. The lipids from top layer are shown in orange lines while those from bottom layer in blue. 

(D) Juxtaposition of the triglyceride lipase structure (PDB 4TGL) to the PLIN1 model. PLIN1 is shown in black, with 

the 282EPENQARP289 motif shown in green, alpha carbon of E282 and E284 in red ball, alpha carbon of R288 in blue 

ball. TGL is shown in gray, with the opened lid (residues 82 to 96) in purple, the exposed catalytic center (S144, D203, 

H257) in CPK molecular models, alpha carbon of R86 in blue ball, and alpha carbon of D91 in red ball. 

Two models of the most probable membrane-binding motif (residues 249 to 318) containing 

predicted helices 6 to 9 [71] were manually constructed based on hydrophobicity distribution: 

trans-model in Figure 23A and cis-model in Figure 25A, respectively. The amphipathic helices 

H7 and H9 most likely lie in the membrane-cytosol interface. The loop between H7 and H8 is so 

placed as to expose the hydrophilic conserved 282EPENQARP289, which could be functionally 
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important. This requires the hydrophobic helices H6 and H8 to be placed parallel to the 

membrane surface. Had these two helices been aligned perpendicular to the membrane surface, 

this hydrophilic stretch would have been pulled into the membrane. First, the C trace was 

designed with assistance of Visual Molecular Dynamics (VMD) [97] and then the all-atom 

molecule structure was generated by Structural Alphabet based protein Backbone Builder from 

alpha Carbon trace (SABBAC) 1.3 [98]. The two starting models (shown in Fig. 5A and Fig. S4) 

were energy minimized in vacuum using GROMACS 4.5.5 [99] and then embedded in a bilayer 

containing 512 DMPG molecules, with the amphipathic helices right above the lipid phosphate 

groups. The atomic level coordinates and interaction parameters for well-equilibrated DMPG 

lipid bilayer [100] were downloaded from Lipidbook [101]. These models were put in periodic 

triclinic boxes, solvated with adequate water and counterions were added to obtain electrically 

neutral system. These systems were then taken through steepest descent energy minimization and 

found to converge to physically realistic minimum energy value with maximum force less than 

100 kJ/mol/nm. Then a total of 15 ns equilibration was performed, followed by a 50 ns 

production run of molecular dynamics (see details in Material and Methods). 

The final structure of the trans-model is shown in Figure 23 B and C. All helices were able to 

maintain the helical structures, but helices 7 and 8 slightly unwound. In the final structure, H6 

and H8 both have close contacts with the terminal methyl groups of the acyl chains from both 

leaflets, agreeing with the spin diffusion data (Figure 23C). The acyl chains of these lipids from 

the top leaflet wrapped around the helices to accommodate the perturbation caused by the protein. 

Such perturbation also caused the two leaflets to come close locally, allowing the terminal methyl 

groups from the bottom leaflet contact H6 and H8. Interestingly, lipids from the bottom leaflet 
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were getting very close to the surface in the region enclosed by the helices. This may imply that 

in real lipid droplet, triglyceride molecules might be brought close to the surface by the same 

mechanism, ready to leave the droplet in the event of lipolysis.  

In Figure 23D, the crystal structure of a fungus triglyceride lipase [102] is juxtaposed to the 

PLIN1 model. In this structure, the lid (82SSSIRNWIADLTFVP96, with residues 83 to 84 and 91 

to 95 as hinges and charged residues underlined) of the lipase is propped open by diethyl p-

nitrophenyl phosphate to expose a patch of hydrophobic area of 800 Å2 and the catalytic center 

residues S144, D203, H257. It is interesting that the footage of the lipase matches with PLIN1 

trans-model, and that the lipase lid has a similar orientation to the 282EPENQARP289 (charged 

residues underlined) motif of PLIN1. More importantly, two possible electrostatic interactions, 

one between the two glutamates (282E and 284E) on PLIN1 and 86R on the lipase and the other 

between 288R on PLIN1 and 91D on lipase, may be responsible to open the lipase lid in place of 

diethyl p-nitrophenyl phosphate. There is no structure of any Drosophila triglyceride lipase, 

however, sequence alignments show that several Drosophila fat body triglyceride lipases share 

conserved amino acids with the lid segment of the fungus lipase (Figure 24). The charged 

residues 86R and 91D of the fungus lipase have their counterparts in the Drosophila lipases (Figure 

24). Specifically, RLRNFTND of two isoforms of CG8552, which have been considered to be 

activated by PLIN1 in insects [60, 71], could facilitate electrostatic interaction for three pairs of 

amino acids with 282EPENQARP289 of PLIN1. 
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Figure 24 Sequence alignments of fungus Rhizomucor miehei triglyceride lipase chain A (PDB ID: 4TGL) [102] with 

Drosophila melanogaster triglyceride lipases: two isoforms of CG8552 (NP_001188714.1 and NP_001188715.1) 

[103], CG11055 (NP_611463.1) [103], and CG8823 (NP_477331.1) [104]. The alignments were performed using 

program SIM [105]. 86R and 91D of the fungus lipase and corresponding charged residues in other proteins are 

underlined. 

The interaction between the two proteins may also cause reorganization of the PLIN1 structure 

and further perturbation to the local phospholipid molecules. Energy released from the 

electrostatic interactions could convert to mechanical energy, causing the lipase to push against 

H7 and H9 of PLIN1 (Figure 23D). This could results in an increased area for the region enclosed 

by the helices, creating a passage for the stored triglyceride molecules, which were already very 

close to the surface, to diffuse toward the catalytic center. The interaction of PLIN1 and 

triglyceride lipase is probably modulated by phosphorylation and Ca2+. Phosphorylation of PLIN1 

promotes lipase activity in hydrolyzing triglycerides stored inside the lipid droplet [69, 71] and 

Ca2+ is also an activator of lipolysis [106]. These facts suggest that phosphorylation and binding 

of Ca2+ could promote conformational changes affecting certain protein regions. These changes 

would affect the interaction of the protein with lipid, affecting the accessibility of the lipases to 

the triglyceride molecules, or the interaction of PLIN1 with lipases and/or other proteins required 

in the activation process. Thus, future studies of the structures of PLIN1 with and without Ca2+ 
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may identify structural changes that would explain the role of certain protein regions in the 

function of PLIN1. 

 

Figure 25 The cis-model of Lsd1 membrane-anchoring motif. (A) Starting model constructed based on hydrophobicity 

of predicted helices (hydrophobic H6 and H8, amphipathic H7 and H9) [71] and NMR membrane insertion 

information. (B) and (C) are two views of the model after 50 ns MD simulation in DMPG lipid bilayer. Alpha helices 

are shown in purple, 3-10 helices in blue, coils in gray, turns in cyan, and 282EPENQARP289 motif in green. Lipids are 

shown in orange, with the phosphorus shown in yellow sphere. Only one bilayer leaflet is shown since the protein does 

not penetrate into the other leaflet. (D) Juxtaposition of triglyceride lipase (PDB 4TGL) to Lsd1. Lsd1 is shown in 

black, with the 282EPENQARP289 motif shown in green, alpha carbon of E282 and E284 in red ball, alpha carbon of 

R288 in blue ball. TGL is shown in gray, with the opened lid (residues 82 to 96) in purple, the exposed catalytic center 

(S144, D203, H257) in CPK molecular models, alpha carbon of R86 in blue ball, and alpha carbon of D91 in red ball. 

The starting and final structures of the cis-model are shown in Figure 24. Helix 8 is completely 

unwound and helix 9 also significantly changed its structure. Neither the trans-model nor cis-
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model penetrates into the bottom layer of DMPG bilayer, in agreement with the proposed 

function of attaching the protein to the phospholipids monolayer covering the lipid droplet. 

 

 

4.4 Model verification by NMR data 

Backbone and -carbon chemical shifts were predicted from structures by program shiftX [93]. 

Based on these chemical shifts, 13C-13C 2D spectra were simulated and compared with 

experimental spectra (Figure 26 and 27). The simulated spectrum of trans-model agrees very well 

with experiments. The C-CO peaks of T262 and T291 (lower left corner of Figure 26A) do not 

have corresponding peaks in the experimental spectrum acquired with 10 ms DARR mixing, 

which is chosen for establishing short-range (1- and 2-bond) resonance correlations. Matching 

peaks are found for the experimental spectrum acquired with 50 ms DARR for long-range 

correlations (Figure 27B). These two threonine residues possibly undergo unfavorable dynamics, 

resulting in weaker dipolar coupling between C and CO. On the contrary, more unmatched 

peaks are found for the cis-model (Figure 26B and 27). The T291 and T 262 C-CO peak (lower 

left corner of Figure 26B) do not have matching peak even for the spectrum acquired with 50 ms 

DARR mixing (Figure 27B). A280, T300, and S303 are also mismatched. Therefore, the cis-

model does not agree with NMR data. 



90 
 

 

Figure 26 Verification of structure models by 13C-13C 2D data. The experimental spectrum (gray) was obtained with 10 

ms DARR mixing [78]. Simulated spectra (black) for the trans-model (A) and cis-model (B) only consist of C-C, C-

CO, and C-CO correlations, without other side chain carbons. 

 

Figure 27 Verification of structure models by 13C-13C 2D data with 10 ms (A) and 50 ms (B) DARR mixing. Simulated 

spectra are shown in blue and red for the trans-model and cis-model, respectively. The simulated spectra only consist 

of C-C, C-CO, and C-CO correlations, without other side chain carbons. Outlying resonances are labeled. 

 

4.5 Model verification by experimental data 
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The reconstituted PLIN1 protein in DMPG liposomes were subjected to protease digestion assay. 

The liposome were digested by trypsin at 37 °C overnight. High density Tricine gel was applied 

for separating these small peptides after digestion and revealed several small fragments around 1-

3 kD as shown in Figure 28. The gel bands were cut off and sent for mass spec analysis.  

 

Figure 28 High density Tricine gel to separate small peptide after trypsin digestion of PLIN1-liposome. The very right 
lane is the marker with their molecular weights labeled. The second lane from the right is the full-length PLIN1 
reconstituted into the liposome. Starting from the third lane from right to the very left, these eight lanes are the 
digested PLIN1-liposome supernatant and pellet fractions in alternative order. The best resolved bands (1 band from 
supernatant and 3 bands from pellet) as labeled in the figure were cut off for mass spec analysis. 

According to the gel, there are two major bands in the pellet, consistent with our prediction that 

two helices are deeply buried inside the liposome, with corresponding molecular weights around 

1.2 kD and 1.5 kD, respectively. The mass spec were performed on each band separated by the 

high density gel. A total of 36 unique peptides were identified in the full-length sample, 25 for 

P1, 27 for P2, 30 for P3 and 9 for supernatant.  

According to the bioinformatics analysis, the full-length PLIN1 protein was truncated into 4 

different segments to test the binding affinity to liposome, respectively. The four segments are 

named as the N-terminus PAT domain, R1 domain (the Region between PAT domain and 4-Helix 

domain), 4 Helix domain and R2 domain (Region after 4-Helix domain on the C terminus). All 
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segments were cloned into pET32 vector using primers shown in Table 3 and then transformed 

into E. coli for protein expression individually 

Table 3 Primers designed to amplify each truncated mutant of Lsd1 

domain 5’ forward primer 3’ backward primer 

Restriction 

sites 

PAT 
5’ GT ATT GGT ACC ATG GCA 

ACT GCA ACC AGC GGC AGT 

G 

5’ GTT AGA AGC TTA TTT 

CAG AAC CGG ACG CAC 

CAG GTG 

HindIII, KpnI 

R1 5’ GT ATT GGT ACC CGC GCC 

GAT TCT GTC AAG CAA ATC 

5’ GTT AGA AGC TTA GAT 

GGT TCT TTG GGT AAG 

GCG GCG 

HindIII, KpnI 

4-Helix 5’ GT ATT GGT ACC GCA GAG 

GCT CGC GCC CTC AAA AAG 

5’ GTT AGA AGC TTA AAT 

ATG GTG GGC AAC CTC 

TGT TG 

HindIII, KpnI 

R2 5’ GT ATT GGT ACC ATC TAT 

ATC AAC CAC CGC ATC ATC 

5’ GTT AGA AGC TTA GTA 

GAC GCC GTT GAT GTT 

ATT GTG 

HindIII, KpnI 

Underline shows the complementary sequence to the template. Yellow means restriction cleavage 

sites. Red shows the added stop codon for the truncated recombination protein. 

The strategy for expressing the four segments was to use the pET32 with full-length PLIN1 gene 

as the template. The four segments were amplified by PCR as described in the Material and 

Methods. The amplified DNA were purified by agarose gel and subjected to digestion using Hind 

III and Kpn I as the restriction nucleases. The pET-32-fl-PLIN1 plasmids were also digested 

using the same nucleases. The digested product were purified again by gel and ligated by T4 

ligase. The ligation products were transformed into E. coli DH5α for amplification. The plasmids 

were confirmed correct by sequencing and transformed into E. coli BL21 (DE3) for protein 

expression. Protein expressions for all segments yield sufficient amount (> 10 mg/ml) for follow 

up tests. For R1 region, the recombinant proteins were mainly expressed as soluble form, 
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indicating they are probably not associated with membrane interaction. Interestingly, all segments 

have some expression in inclusion bodies, while 4-helix domain has some expression as soluble 

parts, indicating that solubility of recombinant proteins cannot directly reflect its actual natural 

hydrophobicity.  All proteins were purified the same way as full-length PLIN1. It is worth to 

mention that all these segments can be dissolved in 2 M urea buffer, which make them easier to 

be solubilized comparing to the full-length protein, which requires 8 M urea + 10% Sarkosyl. The 

solubilized proteins were buffer-exchanged to 0.01% cholate buffer after passing through Ni-

NTA column for purification. The purified proteins were subjected to DMPG liposome 

reconstitution assay as described before for full-length protein. The reconstituted liposomes were 

pelleted at 70,000 g centrifugation and washed with buffer before final centrifugation. Both the 

supernatant and pellet were subjected to SDS-PAGE analysis. 

 

Figure 29 SDS-PAGE results of the reconstitution of each segment from PLIN 1 protein. The protein were reconstituted 
into the liposome through a detergent-mediated method as described in the Material and Methods. After 
reconstitution, the liposomes were centrifuged down. The solution and pellet are separated and checked by SDS-PAGE. 
As shown in the figure, the PAT domain and 4-Helices domain can be integrated into the DMPG liposome, indicating 
their hydrophobicity. R1 and R2 domains cannot be integrated into the liposome, they are most likely the soluble parts 
of the protein. For PAT and 4H domain, the protein bands in the solution part means there are excess amount of 
protein in the sample preparation and some are still left in the solution after reconstitution. 
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As shown in Figure 29, it is interesting that not only 4-hliex domain can be reconstituted into the 

liposome, but the PAT domain also showed some ability to interact with the liposome. However, 

R1 and R2 domain have very low ability to be reconstituted into the liposome. It agrees with our 

NMR data and MD simulation model that 4-heix is the membrane interacting domain quite well. 

The PAT domain can also be reconstituted into the liposome. The bioinformatics analysis showed 

some hydrophobicity of this region, but no membrane interaction were predicted. It was reported 

that this domain was not required to bind to lipid droplet [60]. The GRAVY score of PAT domain 

gives -0.233 and PROSO (PROtein SOlubility) [107] shows very confused results because 

PROSO gives 0.557 which is just above the insolubility threshold 0.5, while PROSO II gives 

0.667 as soluble protein, the scores is also just above the threshold 0.6. The MEMEX 

(MEMbrane EXperimentability prediction) [108] gives a high insolubility probability of 1.0. All 

these results together showed the complexity of this domain. The hydrophobicity of PAT domain 

might contribute to the hydrophobic interactions with lipase. 

Section 5 Conclusion 

NMR spin diffusion experiments were consistent with the predicted membrane attachment motif 

of PLIN1, and they indicated that some regions of PLIN1 have a deep contact with the 

phospholipid acyl chains near the bilayer center. For a native lipid storage droplet that is covered 

by a lipid monolayer, PLIN1 could penetrate to the interface of the monolayer and the triglyceride 

core. Two structure models for the membrane attachment motif were generated based on 

hydrophobicity analysis and NMR membrane insertion depth information, followed by 

optimization in lipid environment. Both models consist of four membrane interacting elements 

that are roughly parallel to the membrane surface. Two amphipathic elements stay on the 
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membrane surface, and two hydrophobic elements are buried deeper. Simulated NMR spectra for 

the trans-model agreed with experimental spectra. Juxtaposition of the triglyceride lipase 

structure to the PLIN1 trans-model suggests a possible interaction of the conserved sequence 

(EPENQARP), which is on a long loop between lipid binding elements, with the lipase. The long 

loop could bind to the lipase lid domain by electrostatic interactions and open the lid to expose 

the catalytic center. Interaction with the lipase could also cause reorganization of the membrane 

attachment elements of PLIN1, leading to an increased area for the region enclosed by the 

membrane attachment motif. A passage may be created by this process for the stored triglyceride 

molecules, which are already very close to the surface due to perturbation by PLN1 attachment, 

to diffuse toward the catalytic center. Therefore, this structural model could help design future 

experiments to elucidate the role of PLIN1 in lipolysis.
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CHAPTER VI 
 

 

INTERACTION BETWEEN MORTALIN AND SHETA2 

 

Section 1 Abstract 

Retinoids are a group of small molecules that have been clinically proven with anti-cancer 

activities. They specifically induce cell apoptosis in malignant cancer cells but not normal tissue 

cells. However, the toxicity of this class always hinders its application in vivo. Heteroatom 

substitution on the ring generates a new class called heteroarotinoids showing dramatically 

reduced toxicity. Recent modification leads to a new novel class flexible heteroarotinoids (Flex-

Het) with a flexible linker between the heteroatom ring and aryl ring. Among these Flex-Hets, 

SHetA2 with thiourea linker is the most promising one, showing the greatest anti-cancer activity. 

Mass spec studies indicates SHetA2 binds to Mortalin, a heat shock protein 70 family member 

located in the mitochondria. It has been shown that in cancer cells, this protein is released to 

cytoplasm, sequestering p53 to block it from inducing apoptosis. In this study, we study the 

structure of the Mortalin substrate binding domain by solution NMR and show that it can interact 

with SHetA2. Chemical shift perturbation experiment demonstrates that the binding sites of 

Mortalin to SHetA2 are the substrate binding pocket. Docking of SHetA2 onto Mortalin by 

AutoDock result at least two favorable configurations, both are stabilized by 1) hydrophobic 

interactions of the hydrophobic heteroatom ring of SHetA2 with the hydrophobic substrate biding 

pocket of Mortalin; 2) the hydrogen bonds formed between the aryl ring NO2 group of SHetA2 
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and side chains amide groups from either R513 or K576. According to this binding model, we 

design several new molecules that can occupy both configurations of SHetA2 and test their 

binding affinity with AutoDock. We find one of the candidate shows a much higher binding 

affinity to the protein. These findings will guide future generations of anti-cancer Flex-Het 

design. 

Section 2 Introduction 

The study on retinoids can be originated back to the exploration of metabolism of Vitamin A 

[109]. It was found that Vitamin A was transformed to an activator, retinoic acid, which regulates 

RNA and protein expression in vivo [110-112]. Retinoids are natural and synthetic vitamin A 

analogs with at least one aromatic ring that function similar to steroid/thyroid hormone [113]. 

These retinoids activate the dimer retinoid acid receptors (RARs and RXRs) to regulate specific 

gene expressions [114]. The retinoids (especially all-trans retinoic acid and 13-cis-retinoic acid) 

have shown potential in the chemoprevention of a variety of different cancers in animal models 

and human cell lines [115-126]. However, the clinical application of retinoids are limited by their 

significant toxicity [127]. Lots of efforts have been expended to develop mimics of all trans-

retinoic acid with expectation of similar clinical effect but less toxicity. The search led to a novel 

group of compounds called heteroarotinoids (Hets) [128]. Heteroarotinoids are retinoid mimics 

containing an aryl ring and a heteroatom in the partially saturated ring. It has similar anti-cancer 

activity by activating RARs and induce gene regulation [129, 130]. The structure activity 

relationship studies found that increasing the specificity of heteroarotinoids for individual nuclear 

retinoic acid receptors could not separate the efficacy from the toxicity. The strategically insertion 

of heteroatom into the ring structure showed reduced toxicity in analogous of several retinoids 
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[129, 131, 132]. In particular, the toxicity of all-trans retinoic acid was reduced by 1,000-fold. 

Various Hets have been synthesized and tested on various cancer cell lines and several of them 

showed promising anti-cancer activities with reduced toxicity. Further exploration led to a group 

of compounds called Flexible Heteroarotinoids (Flex-Hets) where the linker between the 

heterocyclic ring and the aryl ring varied [132]. It was found that by introducing more flexible 

urea and thiourea linkers, the anti-cancer activity increased dramatically. Among all the Hets 

examined, the most potent one is called SHetA2 [133], the structure of which contains a thiourea 

group as the linker and Sulphur as the heteroatom in the heterocyclic ring. The official name is N-

(3,4-dihydro-2,2,4,4,-tetramethyl-2H-1-benzothiopyran-6-yl)-N’(4-nitrophenyl)thiourea. It 

showed the greatest level of efficacy and potency in the inhibition of a variety of different cancer 

cell lines while retaining low if not none level of toxicity on normal cells [132, 134-139]. SHetA2 

selectively inhibits cancer cell growth and induces cell apoptosis independent of the retinoic acid 

receptor pathway [140]. It was reported to suppress mitochondria permeability transition and 

enhance the cytochrome c release from mitochondria [134].  

SHetA2 showed strong activity against human head and neck cell carcinoma [130], ovarian 

cancer [141], lung cancer [142] and kidney cancer cells [143] by inducing apoptosis while 

exhibited very low toxicity and excellent discrimination between malignant and benign cells. Oral 

administration of SHetA2 in rats [144] showed inhibition of ovarian and kidney cancerous 

xenograft tumors growth at 10 mg/kg/day. It showed no genotoxicity by bacterial-Ames test, both 

in vivo and in vitro chromosomal aberration on mouse micronucleus [145]. The pre-clinic tests 

showed no significant toxicity at the highest given doses to rats and dogs for a 14 day period. In a 

28-day subchronic toxicity test, No Observed Adverse Effect Level (NOAEL) was achieved with 
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a dose of 1500 mg/kg/day on dogs [144]. Thus the therapeutic window for administrative safety 

with SHetA2 can be up to 150-fold above the effective dose in vivo. Pharmacokinetics studies 

[146] in mice revealed 10 mM concentration in plasma were achieved within 5 min. Oral 

bioavailability values were found to be 15% at 20 mg/kg and 19% at 60 mg/kg. The initial t1/2 of 

40 min and terminal t1/2 of 11.4 hours were obtained. Total body clearance was 1.81 μL/h/kg. All 

these data demonstrated the behaviors of SHetA2 is a favorable candidate for future development. 

Recently, a second generation of Flex-Hets were designed, synthesized and evaluated for 

biological activity on ovarian cancer cells [147].  But the most active candidate is still only at 

comparable level to SHetA2. SHetA2 so far is still the best anti-cancer Flex-Het. It effectively 

inhibits all the 60 human cancer cells lines in the National Cancer Institute (NCI) and was 

promoted into the RAPID (Rapid Access to Preventive Intervention Development, NSC 721689) 

program for preclinical studies as therapeutic and chemopreventive agent for cancer. 

It is well accepted that SHetA2 induces apoptosis in cancer cells. However, the detailed 

mechanism of the SHetA2 still remains elusive. One in vitro study showed that SHetA2 could 

reduce the level of Bcl-2 protein but not Bax and induce PARP-1 and caspase 3 cleavage to 

induce kidney cancer cell Caki-1 apoptosis [143]. It was also found that SHetA2 could repress the 

nuclear factor κB which regulates Bcl-2, cell differentiation as well as apoptosis. In both cancer 

and normal cells, SHetA2 induces G1 cell cycle arrest through reduction of cyclin D1. However, 

no directly evidence was found that SHetA2 directly interacts with these proteins. In order to 

search for direct interaction of SHetA2 with the protein, the small molecule was conjugated onto 

a magnetic sphere with slightly modification on the methyl group on the heteroatom ring [148]. 

The methyl group was converted to hydroxyl group so it can be linked to a long linker group on 
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the magnetic sphere. Both SHetA2 conjugated and non-conjugated spheres were incubated with 

human ovarian cancer cell A2780 whole cell protein extracts followed by washing with protein 

extraction buffer as well as excess amount of free SHetA2 molecules. The protein that was eluted 

from SHetA2-conjugated but not from non-conjugated spheres was subjected to mass 

spectrometry analysis. The protein Mortalin (HSPA9) was identified in both gel band excision 

QStar experiment and straight eluents analysis by Orbitrap. This is the first direct evidence that 

shows direct interaction of SHetA2 with protein in cell lysate. Further co-immunoprecipitation 

experiments confirmed the interaction between SHetA2 with Mortalin as SHetA2 disrupted the 

binding of Mortalin to p53 and p66shc inside cancer cells, where both meditate the mitochondria 

apoptosis pathway.  

Mortalin was first identified as a cellular mortality factor as comparing the mortal and immortal 

cells as it segregated with loss of immortality of serially passaged mouse embryonic fibroblasts 

cybrids [149, 150]. Immunostaining found this protein to be a pancytoplasmic protein in mortal 

cells. However, the antibody against Mortalin showed a distinct pattern which is perinuclear in 

immortal MEFs. It was found later that mouse possesses two Mortalins, MOT-1 (pancytoplasmic) 

and MOT-2 (perinuclear), with contrast functions but only two amino acids differences [151, 

152]. Overexpression of MOT-1 induces cellular senescence, while MOT-2 induces malignant 

transformation [153, 154]. Human only has one Mortalin homologue which functions as MOT-2 

in mouse [154, 155]. The encoding gene of human Mortalin is located on chromosome 5q31.1 

(gene name HSPA9B) [155, 156]. It was first called HMOT-2 until Mortalin was accepted. It is 

also known as p66mot-1, mtHsp70 (mitochondria stress-70 protein), GRP75 (glucose-regulating 

protein 75), HspA9 and PBP74 (peptide-binding protein 74). Human Mortalin is the mitochondria 
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heat shock protein 70 family member, but not induced by heat. It is a highly conserved molecular 

chaperone with high degree of identity with other Hsp70 family members as well as E. coli DnaK 

[157], S. cerevisiae SSClp [158], rat cytosolic Hsc70 [159] and endoplasmic reticulum (ER) Bip 

[160]. As the major mitochondria chaperone, the primary function of Mortalin is assisting 

mitochondria targeting protein folding and transportation through the mitochondria membrane 

with the help of Hsp60 [161, 162]. Although Mortalin mainly distributed in the mitochondria, it 

can also be found in cytoplasmic regions.  With different binding partners, it possesses diverse 

functions such as intracellular trafficking (Fibroblast Growth Factor-1, FGF-1) [163, 164], 

internalization of receptors (Interleukin-1 receptor type I) [165], protein modification 

(Mevalonate pyrophosphate decarboxylase MPD or MVD1 [166], voltage-dependent anion-

selective channel 1 VDAC-1 [167]) , iron-sulfur cluster biogenesis (Fe-S cluster [168] and J 

protein cochaperone), apoptosis suppression under mild stress response (p53, p66shc [169-172]) 

and immune responses (complement C8 and C9 [173, 174]). In particular, all Hsp70 family 

members have elevated expression levels in tumor cells, associating pre-malignant cell response 

to the selection process during tumorigenesis. These molecular chaperones contribute to the 

cellular immortalization due to the fact they buffer the conformational consequences of mutant 

proteins and help the cells survive through various stresses [175]. The mitochondria Hsp70 

member Mortalin was also found overexpressed in several tumor cell lines [176-178]. The 

interaction between Mortalin and p53 was first identified in the cytoplasm of tumor cells. 

Mortalin sequesters p53 in the cytoplasm fraction though physical contact and inhibits its normal 

transcriptional activation function which leads to uncontrolled cell proliferation, a hallmark of 

cancer cells [179-181]. And this interaction can be abrogated by MKT-077, a well-known 

inhibitor of Mortalin, which reactivates the wild-type p53 function. Overexpression of Mortalin 



102 
 

can reverse the p53-dependent suppression of centrosome duplication indicating the interaction 

was localized to centrosomes [182]. The physical contact of Mortalin and p53 happens during late 

G1, S and G2 phases of cell cycle while disassociation from them occurs during mitosis. This 

interaction has not been observed in normal cells, indicating that normal cell life expansion by 

Mortalin is p53-independent [161, 183]. 

Human Mortalin is a 74 kD protein with 679 amino acids. It shows higher similarity to bacterial 

homologue comparing to other Hsp70 family members, indicating it might descend from the 

precursor mitochondria which is an endosymbiont bacteria trapped inside of the cell. Due to the 

insolubility, no full-length Mortalin structure is available so far. A very recent study successfully 

expressed the full length protein as soluble form with the help of coexpression with the Hsp70-

escort protein1 (hHep1) [184]. However, only small angle X-ray scattering data was assessed and 

the low resolution surface shape was acquired. The ab initio model was superpositioined using 

two E.coli DnaK domains (NBD and SBD) as well as full-length DnaK. The superposition 

suggested an elongated shape of monomeric Mortalin comparing to DnaK. No detailed structure 

of the full-length protein have been revealed yet. Based on the evolutional conservation 

comparing to its Hsp70 family members, it is proposed that this protein should contain two 

domains just like the other Hsp70s. The two domains are ~42 kD Nucleotide-binding domain 

(NBD) and ~25 kD substrate-binding domain (SBD, or peptide-binding domain as PBD) with 

protease sensitive linker connecting them. The SBD can be further divided into two subdomains, 

the 13 kD β-sandwich domain (SBDβ) and the ~12 kD C-terminal helical domain (SBDα). They 

formed the so-called kettle model where NBD is the handle, SBD is the pot and the C-terminus is 

the lid. When NBD is bound to ADP, the two domains do not interact and it is a favorable 
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configuration for substrate to get into the substrate binding pocket inside the ‘pot’. Upon ADP-

ATP exchange, the SBDβ and linker region dock onto the NBD and induce a dramatic 

conformational change on the SBD through allosteric regulation, leading to the openness of the 

C-terminal ‘lid’ and release of substrate. So far, SBDβ together with the first two α-helices from 

SBDα and the whole NBD has been crystalized and their structure determined [185]. Using 

different deletion mutant recombinant protein, the co-immunoprecipitation assay presumed that 

Mortalin binds to p53 on the NBD, encompassing residues 253-282 although 105-538 segment 

didn’t show binding [186]. These data are still ambiguous if not wrong and deletion might cause 

partially structure unfold and result non-specific interactions. While in another study, it was 

shown that the purified SBD of Mortalin, instead of NBD, associated with p53 in a concentration-

dependent manor [187]. A mutation of V482F could abrogate the interaction which is also 

observed in DnaK, the bacteria homologue of Mortalin [188]. More interestingly, pre-incubation 

of Mortalin with a short peptide could greatly reduce its binding ability to p53. And the 

interaction between Mortalin and p53 can be abrogated by adding ATP if full-length protein was 

used [187]. All these evidences suggest that Mortalin binds to p53 through its substrate binding 

pocket on SBD. However, so far, no direct evidence such as co-crystallization showed the exact 

interacting domains between Mortalin and p53 yet.  

In this study, the structure of recombinant Mortalin SBD was accessed using solution NMR and it 

is found to be very similar to its crystal structure. We also used solution NMR to trace the 

chemical shifts of the purified recombinant Mortalin SBD protein titrated by SHetA2 with 

different molar ratios. Our results suggest that SHetA2 could physically bind to the substrate 

binding pocket of Mortalin. This could potentially disrupt the interaction of Mortalin with p53 
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due to the competitive inhibition thus leading to P53 translocation to nucleus and induce 

apoptosis. The docking experiments showed two main configurations of the interaction between 

SHetA2 and Mortalin which agreed with NMR data. According to these results, different SHetA2 

analogs were designed and tested with docking. It was shown that the small molecule that can 

occupy the space of both configurations of SHetA2 gave the most binding potential. This result 

would give further guide lines for improving the Flex-Het design and cancer drug development. 

Section 3 Materials and Methods 

Purified SHetA2 powder is kindly provided by Dr. Benbrook. The isotope (13C, 15N) enriched 

ISOGRO, 13C-glucose, 15NH4Cl are purchased from Sigma-Aldrich (St. Louis, MO). Ni-NTA 

purification kit is purchased from Bio-Rad (Hercules, CA). Lysozyme is purchased from MP 

Biomedicals (Santa Ana, CA). Thrombin is purchase from Bio Pharm Laboratories (Alpine, UT).  

3.1 Protein expression and purification 

Plasmid pET-52 with Mortalin SBD (AA#439-597) encoding gene was kindly provided by Dr. 

Benbrook. The plasmid was transformed into E. coli BL21 (DE3) for optimal protein expression. 

The stock cells were inoculated into LB medium and incubated at 37 °C until OD600 reaches 0.8. 

The cells were pelleted at 4000 g for 10 min and resuspended in 5 times volume of 13C-glucose, 

15NHCl4 minimum medium. The culture was incubated at 37 °C until OD600 reaches 0.8 again 

and then transferred to 20°C for induction. Final concentration of 1 mM IPTG was added to the 

culture and the cells are harvested after 20 hours induction by centrifugation. The cells are lysed 

by incubation with lysozyme at room temperature followed by sonication. The protein was found 

in the soluble part. The lysates were filtered against 0.2 μm pore size filter to remove any 
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remaining bacteria and then transferred to the Ni-NTA column for protein purification. The 

column was washed with 10 mM imidazole buffer and eluted with 1 M imidazole. The eluents 

were buffer exchanged to Tris-buffer and subsequently digested by HRV-3C protease to remove 

His-tag. The cleaved product were passed through Ni-NTA column again to remove the cleaved 

His-tag. The purity of the protein were examined by SDS-PAGE. Final concentration of the 

protein is 20 mg/ml and stored at 4 °C before use. 

3.2 NMR spectroscopy 

All NMR experiments were carried out on the Agilent INOVA 600 MHz spectrometer with the 

Nalorac 1H, 13C, 15N-labeled PFG triple resonance probe. VnmrJ software with Biopack suite of 

pulse programs was used to collect the data. All data were acquired at room temperature (25 °C). 

Backbone chemical shifts were assigned in a sequential manner using the following experiments: 

NHSQC, HNCA, HNcoCA, HNCACB, HNcoCACB, HNCO and HNcaCO. Data were processed 

using NMRPipe and analyzed using SPARKY. TALOS+ was used to calculate the secondary 

structure constraints and predict the secondary structure according to the backbone chemical 

shifts. 

3.3 SHetA2 titration 

SHetA2 was found to be water insoluble. DMSO was recruited as the solvent to dissolve SHetA2 

and the highest concentration we can have is 170 mg/ml. The DMSO dissolved SHetA2 was 

added into the 15N labeled protein solution sample at a molar ratio of protein to SHetA2 at 1:0.2, 

1:0.4, 1:0.6, 1:0.8, 1:1, 1:2, 1:4 and 1:8. A total of 10 mg protein in 400 μl buffer with 10% D2O 

was used for the titration experiment. For the first five titrations (1: 0.2 to 1: 1), 3.3 μl of 8.5 
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mg/ml SHetA2 dissolved in DMSO was added into the sample. The same volume of SHetA2 

solution with different concentrations added into the sample for the last three titrations (3.3 μl 

42.5 mg/ml to achieve 1: 2, 3.3 μl 85 mg/ml to achieve 1: 4 and 3.3 μl 170mg/ml to get to 1: 8). 

This would have the minimum effect on the protein concentration to ensure spectrum quality. As 

a control, the same amount of DMSO (solvent only without SHetA2) was tested on another batch 

of 15N labeled protein in parallel to the experiment and the same spectra with the same parameters 

were acquired. A quick proton 1D experiment was always checked before the NHSQC 2D 

experiment to ensure the sample is still in good condition and no significant loss of signals. The 

chemical shifts were assigned to each individual amino acids on both spectra. The chemical 

perturbation was calculated by using the difference between the SHetA2 titrated chemical shift 

minus the apo-state and the DMSO titrated chemical shifts minus the apo-state.  

 
𝛿 = √(𝛿𝑁𝑙

− 𝛿𝑁𝑠
)

2
+ [10 × (𝛿𝐻𝑙

− 𝛿𝐻𝑠
)]

2
, (117) 

where the δNl and δHl are the 15N and 1H chemical shift difference between the final SHetA2 

titration (protein: SHetA2 = 1:8) and apo-state. The δNs and δHs are the 15N and 1H chemical shift 

difference between the corresponding DMSO titration and apo-state. Two apo-state spectra were 

used to eliminate any variations between the two samples titrated in different experiments so that 

more accuracy would be expected. 

3.4 Protein assignments 

The peaks were first selected in NHSQC spectrum with a contour level that is sufficient to pick 

around 200 peaks (~168 residues after HRV-3C protease digestion). Using these 200 peaks as the 

reference, the peaks were selected from other 3D spectra (~400 peaks were selected from HNCA, 
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HNCO and HNcoCACB, ~ 200 peaks were selected from HNcoCA, HNcaCO and ~800 peaks 

were selected from HNCACB). The peak coordinates data along with intensity data were 

uploaded to the PINE server for auto-assignments followed by extensive labor for manual 

corrections. The finalized labeled spectra will be uploaded onto the BMRB. 

3.5 AutoDock docking simulation 

AutoDock was applied for predicting the interaction sites of small molecules (ligands) with 

Mortalin (macromolecule receptor). AutoDock 4.2 [189] suite was used for all the docking 

experiments and the results are first analyzed using AutoDock Tool (ADT) and then in VMD. For 

all small molecule ligand, the structure were generated using ChemSketchTM (Advanced 

Chemistry Development, Inc. ADC/Labs, Toronto, Canada) and converted to PDB file using 

OpenBabelGUI [190]. The ligand were set to rotate freely though single bonds to accommodate 

best conformation in space after docking. For protein, the crystal structure of Mortalin (3N8E) 

was downloaded from Protein Data Bank. The protein structure were prepared by ADT to obtain 

correct ionization and tautomeric states of amino acid residues. Only polar hydrogens were added 

back to the protein structure. Kollman united atom partial charges and salvation parameter were 

assigned. The docking grid box was selected to not only cover all the NMR perturbation sites to 

ensure the correct guide lines but also the surface of the protein to ensure binding specificity. 

AutoGrid was run first to prepare the coordinates system and then the Lamarckian Genetic 

Algorithm was sued with a population size of 150 and 25 million maximum evaluations for 10 

runs for AutoDock. All dockings were run on a personal computer with a 2.3 GHz Intel core i7 

CPU. 
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Section 4 Results and Discussion 

4.1 Recombinant Mortalin SBD expression and sample preparation 

The Mortalin SBD (AA 439-597) encoding gene was introduced into pET-52 vector through Nco 

I and BamH I double restriction cleavage sites with a customized stop codon right after the 

sequence. The recombinant protein was constructed with 10×His tag on the N terminus followed 

by a HRV-3C protease cleavage site (LEVLFQ/GP) and a linker (SGPASPR). The theoretical pI 

of the recombinant protein after treatment with HRV-3C protease is 5.31 and molecular weight 

(MW) is 18129.47. The plasmid was transformed into E. coli BL21 (DE3) for optimal expression. 

The cell was cultured in M9 minimum medium and induced by IPTG at 37 °C first, but it was 

found that no soluble protein was expressed at this temperature. This is probably caused by the 

fast expression of protein in high temperature and the folding process cannot complete in such a 

short time. The cell was then induced at a lower temperature (20 °C) overnight (20 hours). The 

recombinant protein was found in the soluble part in the cell lysates. The lysates were filtered to 

remove any remaining cells before loading onto the Ni-NTA column. The column was washed 

with three column volume of lysate buffer with 10 mM imidazole followed by 1 M imidazole 

elution. The eluent was buffer exchanged to Tris-buffer by passing through a 10 kD cutoff 

membrane.  The protein was digested by HRV-3C protease to remove the His tag on the N 

terminus. The cleaved 10 His tag was further removed by passing the protease-treated solution 

through Ni-NTA column again. The final sample was concentrated using the 10 kD cutoff 

membrane. The purity of the sample was over 95% checked by SDS-PAGE as shown in Figure 

30.  
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Figure 30 SDS-PAGE of purified Mortalin and digestion by HRV 3C protease. The lane on the left is the marker proteins 
with molecular weight labeled. The four lanes in the middle are the purified protein through Ni-NTA. The very right 
lane shows the protein after treated with HRV-3C protease. After removal the His-tag, the molecular weight of the 
protein goes from 20.7 kD to 18.1 kD. 

 

4.2 Solution NMR of Mortalin SBD and backbone assignments 

The 450 μL sample was mixed with 50 μL D2O for locking signal before loading into the NMR 

tube. A standard 5 mm solution NMR tube was used for the experiment. First, an NSHQC 

spectrum was acquired to assess the quality of the sample. It was shown that the spectrum was 

well dispersed and proton resonance ranged from 7 ppm to 9.7 ppm, indicating the protein was 

well-folded as shown in Figure 31. 
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Figure 31 1H-15N HSQC spectrum of the uniformly labeled Mortalin sample with assignments. All peaks expected from 

the recombinant protein are shown and labeled except the N-terminal Glycine 1 and Alanine 3 due to the unfavorable 

dynamics and they are in between two prolines. Prolines will not show up in the NH2D as they have no amide protons 

in the polypeptide. 

A sequential 3D backbone assignments experiments (HNCA, HNcoCA, HNCO, HNcaCO, 

HNCACB, HNcoCACB) were set to determine the structure of the protein. The peaks in NHSQC 
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were selected with such a contour level that approximately 200 peaks can be selected for the 168 

AA recombinant protein after cleavage. The resonances of the selected peaks in NHSQC were 

used as the guiding position in the 3D data set for peak selection. With proper contour levels, 

around 400 peaks were selected from HNCA, HNCO and HNcoCACB, ~ 200 peaks were 

selected from HNcoCA, HNcaCO and ~800 peaks were selected from HNCACB spectrum. The 

HNCA, HNcaCO and HNCACB provide the magnetization transfer information for both inter- 

and intra-residue, while HNcoCACB, HNcoCA and HNCO give only the intra-residue 

correlation. All these spectra are connected in such a way that each peak can find their partner in 

the other spectra to confirm the correct assignment. For example, normally two peaks from 

different carbon resonance frequencies but sharing the same proton and nitrogen frequency can be 

observed in the HNCA spectrum of residue i, one from residue i and the other from residue i-1. 

The peak from residue i can be found has a partner at the exact position in the HNcoCA spectrum 

of residue i+1 with a different nitrogen frequency, while the peak from residue i-1 has a partner in 

the HNcoCA spectrum of residue i itself. In this way, all resonance peaks from different spectra 

can be correlated through this process called backbone walk as shown in Figure 32.  
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Figure 32 The backbone assignments example. The HNCACB and HNcoCACB spectra for residues 102 to 106 were 

displayed in each slices. Each HNCACB slice contains four peaks: the C and C from residue i and the C and C from 

residue i-1. Each HNcoCACB spectrum of residue i contains two peaks both from residue i-1. All there peaks can be 

correlated to form a backbone walk trace that connect all chemical shifts in a sequential manner. 

The peaks positions along with intensities data were exported and uploaded onto the PINE server 

2.0 [191] for auto assignments. The assigned data returned in high confidence for over 90% of the 

amino acids (Figure 33). The predicted structure directly from the assignments agrees very well 
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with the crystal structure (PDB ID: 3N8E), where multiple β-sheets structure distributed in the N-

terminus while two helices with a turn in between were found close to the C-terminus (Figure 

35). The structure has not been finalized since some adjustments and corrections would be made 

on the assignments. Part of second helix toward the C-terminus was unstructured potentially 

because the missing of C-terminus 3 helices bundle and the folding of this region is not complete. 

 

Figure 33 Assignments possibilities for each amino acids in Mortalin according to all 7 spectra uploaded onto the 

PINE server 2.0 including NHSQC, HNCA, HNcoCA, HNCO, HNcaCO, HNCACB, HNcoCACB. Green bars indicates 

100% confidence. Yellow-green indicates over 90% confidence. Cyan means over 80%, yellow means ambiguous 

around 50%, while red means lower than 50% confidence. 
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Figure 34 Secondary structure probabilities predicted based on the chemical shifts directly assigned to each amino 

acids backbone. Green bar means α-helical while blue bar indicates β-sheet structure and the length of each bar 

represents possibility. 

The auto assigned spectra were examined in SPARKY program and manual adjustments and 

corrections were performed. The final corrected peak data were analyzed using TALOS+, a 

software which predicts the secondary structure based on ϕ/ψ location according to the NMR 

chemical shifts and amino acid type of the residue and its neighbors. The TALOS+ predicted 

secondary structure was illustrated in Figure 35. Again, it agrees very nicely with the crystal 

structure of the protein, with an eight β-sheets structure on the N-terminus and two connected α-

helices on the C-terminus. The second helix was partially unstructured on the carboxyl end and 
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this is because of the flexible C-terminus of the protein in the solution. While in the crystal 

environment, the C-termini of the two asymmetric units are in close contact, keeping the helices 

more stable comparing to the solution states.  

 

Figure 35 Secondary structure predicted by TALOS+ using the corrected Mortalin backbone chemical shifts. The 

structure predicted has a high overall confidence, especially in those structured regions. Both ends has a rather low 

confidence due to the fact that they are flexible regions in solution. Blue bars represent β-sheets structures while red 

bars represent α-helices and the lengths represent the probability. 

 

4.3 SHetA2 titration and chemical shift perturbation 

The interaction of protein with other agents such as ligand or other proteins can cause a local 

structure change or at least local electron density change. These changes can be readily detected 

by NMR spectroscopy. To investigate the interaction sites of Mortalin with SHetA2, chemical 

shift perturbation experiments were conducted. The SHetA2 was found to be water insoluble, so 

DMSO was used as the solvent for SHetA2. The highest concentration we got was 170 mg/ml. 

For the titration experiment, 500 μL of mg/ml protein sample was prepared and loaded into the 

NMR tube. NHSQC spectrum was acquired for the apo-state protein (without SHetA2). Then 33 
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μL SHetA2 solution was added into the sample tube to achieve the molar ratio of protein: SHetA2 

at 1:0.2. The NHSQC spectrum was acquired. The same procedure was repeated until the 

spectrum of the protein: SHetA2 ratio of 1:8 ratio was done. It was clear that some peaks are 

shifted as ligand added into the sample, as shown in Figure 36. 

 

Figure 36 Protein peak shifts caused by adding SHetA2. The protein backbone resonance peaks in the NHSQC 

spectrum were affected by SHetA2 titration. On the left, titration has little effect on these peaks. However, on the right, 

this V579 peak has a relative large position shift. Different colors indicating different molecular ratio of protein to 

SHetA2. (Red, apo-state 1:0; yellow, 1:0.4; green, 1:0.8, blue 1:2, purple, 1:8) 

In order to eliminate the disturbance of the solvent to the protein, a control experiment where the 

same amount of pure DMSO was added to the protein sample was performed and the NHSQC 

spectra on each step were recorded. All spectra from each titration steps were assigned using the 

apo-state a reference. The chemical shift perturbations on each protein to SHetA2 ratio were 

calculated as described in the Material and Methods. The chemical shift perturbation of each 

amino acid were shown in Figure 37. The top 10 most shifted peaks are L457, V471, S473, A475, 

G514, V515, I518, D572, K576, and E586. All these peaks together form a nice circle around the 

putative substrate binding pocket (as compared to the structure of HSP70 and DnaK) of the 

Mortalin SBD, indicating SHetA2 binding to this substrate binding cavity. This substrate binding 

pocket might be also the interaction domain of Mortalin with p53 protein. Due to competitive 
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inhibition, binding of SHetA2 disrupt the interaction between Mortalin and p53, releasing p53 

from the complex and the later translocate to the nucleus to induce apoptosis of the cancer cell. 

 

Figure 37 Chemical shift perturbation of SHetA2 on each amino acid residue of Mortalin. The height of the bar 

represents the relative chemical shift changes of SHetA2 titrated spectrum from DMSO titrated spectrum. The peaks 

from the final titration (protein: ligand=1:8) are used for the calculation. 

 

4.4 Multi-configurations of interactions between SHetA2 and Mortalin by AutoDock 

Mortalin has been shown to have the ability to sequester tumor suppress protein p53 in the 

cytoplasm region, inhibiting its ability to translocate into the nucleus and perform transcriptional 

regulation. In order to prove the SHetA2 can effectively bind to Mortalin and subsequently 

disrupt the interaction between Mortalin and p53, AutoDock was applied to study the interactions 

between SHetA2 and Mortalin. AutoDock is a suite of automatic docking tools that predict the 

interactions of ligand with biological macromolecules with known structure. It use Lamarckian 
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Generic Algorithm as well as empirical free energy scoring function to find the global minimum 

of the interaction energy between the ligand and receptor and explore all available degrees of 

freedom. The docking of SHetA2 was performed using the Mortalin crystal structure (PDB ID: 

3N8E) as the macromolecule. The resulted lowest energy states were shown in Figure. As guided 

by the titration data, the two lowest energy states were found with direct interactions with the 

NMR titration sites on Mortalin, with binding energy of -8.45 kcal/mol and -7.7 kcal/mol, 

respectively. For configuration 1 (-8.45 kcal/mol) as shown in Figure 38, the hydrophobic gem-

dimethyl group of SHetA2 was deeply inserted inside the substrate binding cavity of Mortalin, 

forming a strong hydrophobic interactions with methyl group on threonine T449. Additional 

hydrophobic interactions can also be found involving the hydrophobic end of SHetA2 and I447, 

V482, I484 and I518 deeply buried inside the substrate binding pocket of Mortalin. The two 

oxygen atoms on the nitro group of SHetA2 form hydrogen bonds with the two amidine protons 

from arginine (R513) to stabilize the hydrophilic end of the molecule (Table 4). The C-terminal 

E586 potentially interacts with R513 in the apo-state, adding of SHetA2 disrupts this interaction 

and E586 showed a large chemical shift change in the perturbation chart. In addition, another 

hydrogen bond can be found between carboxyl group of the serine (S473) and the NH group on 

the thiourea linker, and S473 also showed a large chemical shift change in the perturbation plot. 

For configuration 2 (- 7.7 kcal/mol) as shown in Figure 39, one of the oxygen atom from the nitro 

group on SHetA2 forms hydrogen bond with the amine group on K576, which is the most 

perturbed residue in the protein (Table 4 and Figure 37). Additional hydrogen bonds can be found 

between the NH groups on the SHetA2 thiourea linker with glutamine (Q470). The hydrophobic 

ring structure is barely inside the substrate binding pocket, in close proximity with S473 and 

V471. Some of these sites can be directly seen from the chemical shift perturbation chart such as 
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S473, V471, R576 and I518. However, some of them are not directly reflected by the perturbation 

chart potentially because the local secondary structure are not affected much and their backbone 

chemical shifts are not as sensitive. For these amino acids, side chain NMR experiments like 

NOESY could give more accurate perturbation effects. 

Table 4 The hydrogen bond interactions between the Mortalin (PDB 3N8E) and two configurations of SHetA2 

Protein configuration Hydrogen bond Bond length Binding energy 

Mortalin 1 R(513) N-H … O = N 2.84 Å -8.45 kcal/mol 

(3N8E)  R(513) N-H’ … O’ = N 2.74 Å  

  S(437) C = O … H-N 3.13 Å  

 2 K(576) N-H …O = N 2.64 Å -7.7 kcal.mol 

  Q(470) C = O … H-N 2.80 Å  

  Q(470) C = O … H-N’ 2.92 Å  

 

 

Figure 38 The first configuration of SHetA2 binding to Mortalin with binding energy of -8.45 kcal/mol. A) The nitro 
group on SHetA2 form hydrogen bonds with R513 from Mortalin. One of the NH group on the thiourea linker also 
forms hydrogen bond with CO group from S473. The hydrophobic tail of SHetA2 is deeply buried inside the substrate 
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binding cavity with strong hydrophobic interactions with F472 and T449. B) View from the other side of the substrate 
binding pocket of Mortalin. Additional hydrophobic interactions can be found between SHetA2 heteroatom ring with 
surrounding hydrophobic residues I447, I484, V482 and I518.  

 

 

Figure 39 The second configuration of SHetA2 binding to Mortalin with binding energy of -7.7 kcal/mol. The three 
hydrogen bonds between SHetA2 and Mortalin K576 and S470 stabilize the structure in this position. The hydrophobic 
heteroatom ring is shallowly buried inside the substrate biding cavity, in close proximity with residues V471 and S473. 

 

4.5 Improvements on small molecule structure to enhance binding 

Clinical studies showed that SHetA2 disrupts the interaction between Mortalin and p53, releasing 

p53 from the complex to translocate into the nucleus to regulate the apoptosis. We have proved 

SHetA2 can interact with Mortalin and this interaction could be the mechanism of how SHetA2 

competitively binds to the Mortalin substrate binding pocket, which most likely to be the p53 

interaction domain. However, multi-configurations of SHetA2 binding indicate this is not a stable 
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interaction. The fact that the chemical shift perturbation in the SHetA2 titration experiments 

didn’t not reach a saturation level even at 1: 8 molar ratio of protein: ligand further supports this 

conclusion. In order to investigate the binding preference of Mortalin to the small ligands, first, 

different SHetA2 analogs we have in hand were tested in the AutoDock to check their binding 

energy. A total of 31 different SHetA2 analogs were tested as listed in Table 5. 

Table 5 Binding Energy of SHetA2 analogs 

Analog No.  
or Name 

Structure 
Binding Energy 

(kcal/mol) 

1) SHetA3-16  -8.54 

2) SHetA4-17  -8.46 

3) SHetC2  -8.31 

4) 4,4 - HPR  -8.43 
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5) SL-1-50  -7.98 

6) OHet72  -8.28 

7) All-trans-RA  -7.56 

8)   -7.51 

9)  

 

 

 

-7.69 
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10)   -8.27 

11)   -8.09 

12)   -7.53 

13)   -7.86 

14)   -8.65 

15)   -7.79 
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16)   -8.23 

17)   -7.81 

18)   -9.65 

19)   -9.15 

20)   -7.57 

21)   -8.05 

22)    -8.67 
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23)    -8.3 

24)   -8.5 

25)   -8.76 

26)   -9.58 

27)   -8.41 

28)   -8.44 
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29)   -8.63 

30)   -7.97 

31)  32)  -8.06 

 
Comparing the binding energies of difference analogs with different functioning groups, we find 

that the NO2 group on the aryl ring is more favorable comparing to the CO2 group, while COEt 

group would achieve the same binding energy level as the NO2 group. The Sulphur or Oxygen 

atom in the linker region does not make much difference to the binding energy considering they 

are chemically very similar. However, in the heteroatom ring, Sulphur and Oxygen substituted 

rings have very different biding energies, indicating Sulphur in the heteroatom ring instead of 

Oxygen is very important. While the heteroatom ring on one end, the other end has a better 

binding when it is a ring structure comparing to chain structure. When both ends of the molecule 

are hydrophobic heteroatom rings (No. 18), it yields the highest binding energy at -9.65 kcal/mol. 

In this molecule, one of the heteroatom ring was deeply buried inside the substrate biding pocket 

just like SHetA2, while the other end has close contact with Methionine (M584). The binding is 

different from SHetA2 where the Hydrogen bonding contributes more to the structure. We also 
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find that the molecules that are longer in structure bind better, which supports our findings in the 

NMR titration study. So if the molecule is long enough to occupy both configurations of SHetA2, 

it would have the highest biding affinity to Mortalin. 

It has been shown so far that SHetA2 could bind to Mortalin in the substrate binding pocket. 

However, there could potentially be multiple configurations according to the NMR titration data 

and AutoDock results. The fact that the chemical shift changes in the NMR titration experiments 

didn’t reach a plateau even at the 1:8, which is the highest concentration we can get for SHetA2, 

also indicates that there could be multiple configurations. Both the two lowest binding energy 

configuration of SHetA2 showed strong interactions with the sites that has significant chemical 

shift changes. However, configuration 1 was stabilized by the hydrogen bonds between the nitro 

groups on the SHetA2 and R513 on the protein. However, R513 was not significantly perturbed 

by the SHetA2 titration according to the NMR data. But the hydrophobic heteroatom ring of 

SHetA2 is deeply inside the substrate binding pocket of Mortalin, in close contact with I518 and 

V515, both of which show significant chemical shift changes on the perturbation experiments. In 

contrast, the configuration 2 was stabilized by the hydrogen bond between one of the nitro 

oxygen on SHetA2 and the side chain amide group of K576, which shows significant 

perturbation. However, the hydrophobic heteroatom ring is barely inside the cavity, resulting an 

unfavorable binding state (binding energy is higher comparing to configuration 1). All these 

evidences indicate that the binding of SHetA2 to Mortalin is a dynamic process. According to 

both the titration data and the small analogs we have been analyzed by AutoDock, we predict that 

if the linker region can be longer, and the molecule could reach to the K576 as well as keep the 

hydrophobic heteroatom ring inside the hydrophobic substrate binding pocket of Mortalin, it 
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should be the most favorable binding position. To test this idea, we designed several novel 

molecules to be tested on AutoDock as shown in Table 6. 
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Table 6 AutoDock results of small molecules designed for better binding affinity. 
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Name Structure 

Binding Energy 

(kcal/mol) 

Analog 1  -9.56 

Analog 2 

 

-10.27 

Analog 3 

 

-11.09 

Analog 4 

 

-11.41 
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Analog 5 

 

-10.02 

Analog 6 

 

-11.93 
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Analog 7 

 

-10.36 

Analog 8 

 

-9.14 

 

First, we elongated the linker of SHetA2 from four bond thiourea chain to a six bond chain. In 

agreement with our previous predictions, the new structure analog 1 binds to Mortalin very well, 

and the binding energy is -9.56 kcal/mol. If we further elongate the linker to seven and eight 

bonds, the binding affinity further increases, with binding energy of -10.27 and -11.09 kcal/mol, 

respectively. Taking a look at their structures after docking in Figure 40A, all three hydrophobic 

heteroatom rings are almost at the same position inside the hydrophobic substrate binding pocket 

of Mortalin. The long arm is reaching out in contact with K576 on the helix of Mortalin. The 

longer linker between the two interacting region is more favorable so that the tension on the 

linker would be smaller, resulting a better binding affinity. The short arm has less freedom of 

rotation thus more rigid to constrain the structure. To further test our conclusion on the multi-

configurations of SHetA2, another set of small molecules (analog 4 to 7) was designed with the 

purpose to occupy all interaction sites from both configurations. All analogs 4 to 7 have two arms 

with different lengths. Analog 4 was designed with one arm the same as analog 1 and analog 6 
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was designed to with one arm the same as analog 3, analog 7 with an arm the same as analog 3, 

while analog 5 was designed to test the preference of double-double methyl group or single-

double methyl group on the heteroatom ring structure. According to the AutoDock results, with 

no surprise, analog 4 and 6 have significant lower binding energies to Mortalin comparing to the 

previous tested molecules. Checking the binding structure as shown in Figure 40B, both arms are 

occupying the positions exactly they are designed to bind. With the long arm reaching to the 

K576 forming hydrogen bonds, while the short arm forming hydrogen bonds with R513. And the 

longer arm analog 6 has an even lower binding energy comparing to the analog 4, in agreements 

with the differences between analog 3 and 1. Analog 5 shows a higher binding energy due to the 

double-double methyl group on the heteroatom ring that might affect the hydrophobic interactions 

inside the substrate biding pocket.  To test the effect of these methyl groups, analog 8 was 

designed with only single-double methyl groups comparing to analog 3, however, this does not 

increase its binding ability, potentially because in the single arm structure, the heteroatom ring 

has more space to move around inside the pocket to find a better binding sites, while in the 

double armed structure, this flexibility is more limited due to the tension created by the second 

arm.  
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Figure 40 Docking of Analog 3 and 6 into Mortalin. A) Analog 3, which possess a longer linker (8 bonds) comparing to 
SHetA2, is docked into the hydrophobic substrate binding pocket of Mortalin on the heteroatom ring end while the 
nitro group on the other end can reach to K576, forming a hydrogen bond. These are the strongest interactions shown 
in the NMR titration experiments. B) Analog 6, which were designed with two one extra arm can occupy both 
configurations of SHetA2, with hydrophobic interactions stabilizing the heteroatom ring in the substrate binding 
pocket, while the other two arms form hydrogen bonds with K576 and R513, respectively. 

 

Section 4 Conclusion 

SHeta2 has been clinically shown anti-apoptosis activity in cancer cells through disruption of 

Mortalin and p53 complex, releasing p53 to translocate into the nucleus to function as an 

apoptosis regulator. In this study, we investigate the structure of Mortalin using solution NMR, 

which indicates it has a high similarity to the crystal structure expect the more flexible 

unstructured C-terminus. We also demonstrate that SHetA2 interacts with Mortalin through 

binding to its substrate binding pocket with multiple configurations. Through this competitive 

binding, it disrupts the interactions between p53 and Mortalin. This mechanism can be further 

enhanced by designing new small molecule that occupy the interaction sites for both 

configurations of SHetA2. Our findings will definitely guide the chemical design of Flex-Hex 

SHetA2 analogs in the future studies. 
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APPENDICES 
 

 

Section 1: The SNARE complex 

The SNARE complex is system that mediates the fusion of vesicles inside the neuron cell with 

the cell membrane, releasing the neurotransmitter inside of the vesicle to activate sub-stream 

receptors. The name of SNARE originated from a protein called N-ethylmaleimide-Sensitive 

Factor (NSF), which is sensitive to the small molecule N-ethylmaleimide. The NSF can bind to a 

protein called Soluble NSF Attachment Protein (SNAP). And its receptor is named SNAP 

REceptor (SNARE). The SNAP 25 comes from SyNaptosome Associated Protein of 25 kD. In 

mouse, the SNARE complex consist of three proteins, Syntaxin 1A, SNAP 25 and Synaptobrevin, 

all of which contain the SNARE motif. These motifs together form the four helix bundle which 

pulls close of the vesicle and cell membrane to mediate membrane fusion. This complex is 

resistant to SDS but can be disassociated by heat (over 95 °C). 

All four SNARE motifs (Syntaxin 1A, both motifs of SNAP25, Synaptobrevin 2) from rat were 

cloned, expressed and purified, respectively. The complex were formed by incubating all purified 

components at a 1:1:1:1 ratio at 4 °C for 24 hours. We found that the SNARE complex can be 

formed after the incubation, however, not only the 1st order complex (which consists one 

component each), the higher order complex (oligomers of the complex) can also be found as 

indicated in the SDS-PAGE gel. The SNARE complex formation also showed a dynamic balance 

between the complex and the components. The higher concentration of the components, the more 

complex formed. However, there were always components left in the sample, no matter 

reconstitute first or forming complex first, making it hard to get a pure sample of the SNARE 
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complex to study its structure.  

 

 

Figure 41 Purification of all four SNARE motifs and the dynamic formation of SNARE complex. On the left, all four 
SNARE motifs are purified and checked by the SDS-PAGE. On the right, we show that the SNARE complex is in a 
dynamic balance between the complex and components. With decreasing concentration from left to right, more high-
order complex were disassociated. The first order complex remains almost the same concentration (the band in the 
middle). 

 

Section 2: The aligned NMR 

Application of NMR on the solid sample results broad spectra due to the chemical shift 

anisotropy, which is averaged out by Brownian motion in the liquid. However, in solid, chemical 

shift anisotropy is dominant. One way to overcome is the Magic Angle Spinning (MAS), in 

which the sample was placed 54.74 ° with respect to the external magnetic field. So the 

anisotropy term was effectively eliminated due to the (3cos2θ-1) will become 0 for the anisotropy.  

Another way to go around is to align the samples in a certain direction so that the chemical shift 

anisotropy aligned into one direction and the orientation of the membrane protein can be accessed 

by a specifically designed pulse sequence. The lipids can aligned automatically under eternal 
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magnetic field, which makes a perfect system to study membrane proteins. Here, we tried to align 

the DMPC/DHPC bicelle (at a ratio of q = DMPC: DHPC = 3.5: 1) and the sample aligned very 

well in the magnet after 2.5 hours equilibration. The alignments can be probed by the 31P NMR. 

The two distinct peaks are coming from the phosphorus belonging to the head group of each lipid 

molecule, respectively, with about 8 ppm separation (Figure 42). The small peptide Fowlicildin 

was mixed with the aligned bicelle sample and the same alignments of lipids can be achieved 

telling by 31P spectrum. However, the 13C signals were relatively low and 15N cannot be found. 

With either 2 ms or 0.5 ms contact time with 1 k scans.  It was reported longer contact time 

results more signals from mobile region of the peptide and shorter contact time results more 

signals from rigid regions. However, we haven’t been successful on acquiring the lower sensitive 

spectra so far.  
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Figure 42 31P 1D spectrum of aligned DMPC/DHPC bicelle sample. The DMPC/DHPC lipids are mixed with q=3.5 and 
aligned under a 400 MHz magnet for 2.5 hours. The distinct two peaks shown in the 31P spectrum are coming from 
the head group phosphorus from the head group of each lipid, respectively. The 6 ppm peak is from DHPC, which is 
parallel to the external magnetic field after alignments and 14 ppm peak is from DMPC which is perpendicular to the 
external magnetic field after alignments. 
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