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Abstract: Robots are being developed to be co-inhabitants to help the elderly people in an 

assisted environment. A semantic map can provide robots a lot of information in the 

environment they cohabit with people. So far, most mapping algorithms have been 

limited to build maps only based on visible points without much consideration on the 

occluded parts. This research is two-fold. First, it aims to develop a complete map to help 

robots gain a deeper insight of the house. The second goal is to reconstruct scenes by 

mimicking people’s indoor understanding. Based on the Manhattan assumption, we 

propose a technique that separates an indoor scene into major structures and indoor 

objects. The room structures are reconstructed with ideal planes to render each side of the 

room. The unseen regions of major structures and objects are generated by extending 

visible planes. Our system is applied to an artificial kitchen scene and a typical living-

room scene. The results show that the generated maps are more complete and 

semantically meaningful than the ones created by traditional data-driven approaches. Our 

algorithm has great potential to improve robots’ efficiency by accurately locating itself in 

a cluttered scene and finding useful objects. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Motivation and Background 

Elderly people have a growing number in US. A number of them tend to live independently or in 

an assisted living community. Much research has been conducted on developing robots to be co-

inhabitants or co-workers. Robot can help the elderly people in their living and monitor their 

health while keeping their privacy. Previously, robots have to depend on human commands. 

Ideally, the human-robot interaction (HRI) should be done in a more collaborative or cooperative 

way. Under this circumstance, assistance robots have a limited sense of the environment that they 

are in. Recently, a number of researchers have started to focus on developing a 3D map with the 

help of fast- developed depth sensor. By combining the technique of HRI, and self-localization 

and mapping (SLAM), many researchers [1], [2] have developed innovative projects. One of the 

ongoing research projects is about building a smart home for elder people. The objective of this 

project is to develop a robot that can do daily housework and to monitor the elder in case any 

emergency would occur. This robot, a human-like co-inhabitant, serves as a housekeeper, and it 

can do its work without humans’ consecutive commands. On contrast, the traditional robot, which 

follows the owner’s commands from time to time, makes people feel being watched with less 

privacy. To achieve this goal, robots need a semantic indoor map, which provides a good 

understanding of the house and allows the robot to be aware of the situation. So that it can be 
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proactive to arrange suitably work. For example, after finding the owner is making breakfast in 

the kitchen, the robot moves to the bedroom to do some organization. So the semantic map plays 

an important role for the robot to assist people’s living.   

 

 

Figure 1.1: A robot is serving a senior [3]. 

 

People have been trying to increase the accuracy of maps for many years [4]. The fast 

development of depth sensor makes the 3D mapping become a real popular topic. Depth sensors 

can provide depth maps, from which we can get point clouds: each pixel in a depth map has a 

corresponding position in 3D space. Although the point cloud is made of discrete points, it still 

can provide rich information for 3D modeling and visualization. A lot of work has been done to 

convert the point cloud to a solid model.  

Some research efforts are focused on improving the accuracy of 3D measurements of point clouds 

in order to show more details. Other researcher try to incorporate some assumption or prior 

knowledge to build a 3D model from the point cloud. The mostly used assumption is the 
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Manhattan assumption, which assumes that the major planes in an indoor scene probably follow 

one of the three major coordinates. Researchers used this assumption to segment the map of the 

indoor scene to get more indoor information of it. However, the main problem for depth sensors, 

such as Kinect, is that the sensor can only capture partial appearance of a scene. People can 

understand scenes better not only because we know what is seen, but also because we can infer 

what is unseen, especially in an indoor environment where many occlusions exist. It is almost 

improbable for the point cloud to get every detail of the indoor scene. So our object is to make the 

computer understand the scene by separating the objects from major room structure and inferring 

the occluded parts based on the Manhattan assumption.  

 

1.2 Objectives and Approaches 

As the first step to build a semantic map for robots, the specific task of our research is to identify 

the room structure (walls and floor) from the indoor scene point cloud, to build an ideal model of 

the room structure to make each indoor object have a complete shape, and to build a complete 

shape for each object from partial data.  

The algorithm used in this research is developed by only considering the distribution 

characteristics of the 3D point cloud, without texture or any color-based cues. We focus on the 

general shape of the room where the Manhattan assumption can apply. We use the idea of down-

sampling to keep the main planes of the scene and to get rid of insignificant details. Then we 

extract the norm features from the point cloud and use clustering algorithms to find the major 

coordinates. Afterwards, we find those planes that indicate the indoor structures, such as walls 

and floor. We reconstruct those planes in an ideal form: perpendicular, smooth, flat and 

connected. Thus an ideal room is made. After removing the points that are associated with the 
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room structure, the unseen planes of the indoor objects will be determined by assuming each 

object has a convex shape. 

 

1.3 Contributions  

Building a semantic map is a complex task combining vision, sound and interactions with 

humans. Our work is one of the fundamental parts of generating a semantic map. Based on the 

Manhattan assumption, we focused on the general structure of the room, and proposed a structure 

reconstruction algorithm that considers only the big picture and reduces the influences of trivial 

details. Moreover, based on the fact that the point cloud cannot show all the indoor planes, a 

method was introduced to infer each indoor object’s possessing space. Our work can make the 

computer have a good understanding of the indoor scene and provide a good starting point for 

future research.   

In this thesis, Chapter 2 presents some related work and introduces our work in the field of 3D 

modeling using depth sensors. We will also discuss several different research directions of vision-

based scene understanding. 

Chapter 3 describes our method applied to a single depth frame of an artificial scene that 

simulates a smart home for an elderly. This scene shows a typical structure of a kitchen, without 

any decorations. This is the first step of our algorithm, and our objective is to separate the walls 

and floor from the point cloud and make ideal ones to replace them.   

Chapter 4 is about indoor scene analysis. Our algorithm is applied to a more general case with a 

large point cloud of a real indoor scene. The techniques of density control and a two-step major 

coordinate extraction method will be introduced. The dataset is provided by K. Lai et al. [5]. The 

point cloud is made by fusing multiple Kinect frames without any further refinements. The 
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objective of this chapter is to analysis general large-scale indoor scenes. We will separate the 

room structure from the point cloud and generate an ideal room structure model.   

In Chapter 5, we are focused on indoor object representation and reconstruction. We compensate 

the unseen planes of the objects by assuming they have a cube shape.  Then use a voxel method to 

infer the unseen planes to get a rough model of the object. The objective of this chapter is to 

jointly represent major indoor structures along with individual objects.  

Finally, we will present our conclusions and discuss different directions for our further research. 
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CHAPTER II 

 

RELATED WORK 

 Our research is based on some existing research works. We will discuss them one by one in the 

following sections. In particular, a review of the traditional 3D modeling is present. Following 

that, some recent research with help of depth sensors on indoor reconstruction will be discussed. 

After it, we will focus on the indoor scene representation, which is found highly valuable in 

indoor scene reconstruction. At last, we will have a discussion about the Manhattan assumption.  

 

2.1 3D Modeling 

It has been a long time since people started trying to build 3D models of real objects and scenes. 

Numerous reconstruction algorithms have been developed to build 3D models from 2D images. 

SM Seitz et al. [6] provided several datasets with high quality to be evaluated and benchmark the 

performance of reconstruction algorithms. They used the Stanford spherical gantry [7] to get the 

specific latitude and longitude angles. After replacing the object with a chessboard they used the 

Matlab toolbox for camera calibration [8] to estimate camera parameters. All of the work was to 

get the camera parameters as accurate as possible. Given the same images and corresponding 

camera parameters, algorithms developed by researchers with different methods could get 

evaluated and compared.  
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(a)                                                                 (b) 

Figure 2.1: (a) Sample reconstruction using point-cloud based method. The surface is not smooth 

after meshing; (b) Ground truth [9]. 

 

Those methods can be roughly classified into three categories. Firstly, voxel based methods [10], 

[11], [12] , requiring the bounding box of the object, and the output resolution is based on the 

voxel size because of its quantification effect. Secondly, the method based on deformable 

polygonal meshes [13], [14], requires a good initial position to start the process of optimization, 

thus the applicability is reduced. At last, algorithms based on point clouds are simple and 

effective [15], [16], [17], but required poste-processes to get a solid model from sparse points, so 

the surface of the 3D model might not be smooth because the points are not highly close to each 

other (Fig.2.1 (a)). However, all the methods share a common problem: a quite long processing 

time is required to get a good reconstruction accuracy.   
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The traditional 3D reconstruction stereo reaches its bottleneck because the input images’ 

corresponding camera parameters are not accurate. Thus researchers started to use the depth 

information provided by depth sensors to make more accurate models.  

 

2.2 RGB-D Reconstruction 

With the help of depth information, many more methods are developed. These methods are either 

based on expensive equipment such as time of light (TOF) sensors or a very high computational 

algorithm [18], [19]. Depth-based methods have become more and more popular, the recent 

explosion of the RGB-D reconstruction mainly contributes to the release of Microsoft Kinect, a 

depth sensor with very low cost [20]. 

Henry et al. [2] used Kinect to develop one of the first methods to make a full mapping system for 

indoor scenes. They used Generalized Iterative Closest Point (GICP) to form multiple frames into 

one 3D map. But in their procedure, the features they used were extracted from RGB images. The 

corresponding depth information for each feature point was used to be the initial position during 

the GICP process. In another word, the depth map provided by Kinect was only used to accelerate 

the whole process. So essentially, the algorithm is still a color image based 3D method.     

To make a better use of the depth map, S. Izadi et al. provided the famous KinectFusion system 

[21]. They used voxel representation to output a solid 3D model instead of the widely used point 

cloud representation. The following problem of this method was the extremely expensive 

computation. Thus it could only be applied in a small area.  Much research has been conducted 

such as Zeng et al. [22] and Keller et al. [23] based on KinectFusion. They tried to extend the 

mapping area to a bigger size. But when the mapping size was big enough to build a whole room 

or more, new problems came such as the global consistency and the loop closure problem. Thus, 

some restrains from indoor scene characters are required to build a better map.  
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2.3 Indoor Scene Understanding 

As one of the main characters of high-level computer vision, computer’s understanding of the 

vision is now paid more and more attention. 

Bundle adjustment [24] solved the significant loop closure problem, as shown in Fig. 2.2. When 

connecting multiple views, the error of camera parameter estimation would get accumulated, thus 

the loop in the 3D model cannot be closed. The algorithm solved this problem by adjusting the 

camera parameters of each frame.  

 

 

Figure 2.2: Schematic of the loop closure problem: when the contour goes back to the starting 

point, the loop cannot get closed [25]. 

 

The limitation of Bundle Adjustment is that it can only work after finishing the round trip. The 

features in the current frame will be compared with any other past frames to determine if it is a 

visited position. Thus, it requires more computational resource when dealing with large-scale 

scenes. To solve this problem, Labbe et al. [26] presented an idea that mimics the memory style 

of human: the important things would be memorized, the details would be ignored but could be 

recalled when being focused on. In their method, only some typical features of each frame would 
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be saved to be compared with the current frame. If the similarity were high, more features of the 

frame would be loaded to make a further comparison to determine if the loop closure were 

detected. Their work is very inspiring that they provided a way of solving the reconstruction 

problems by looking at the general and typical features.  

The indoor scenes are all man made, just like the routes and cities. So they share a common 

typical feature: the Manhattan assumption [27], [28]. With the help of depth sensors, people can 

get more information from images and to do segmentations [29]. 

3D laser scan-based approaches are the traditional methods to get accurate depth information. But 

the laser scanner is high cost and with low frame rate. These makes it very inconvenient to 

handle. But even after the release of the low cost depth sensor, Kinect, the laser scanner is still 

very useful in many circumstances. One shortness of Kinect is that it saves every data point in its 

view. But using laser scanner, people can select the region they need. Xiao et al. [30] presented a 

project that used a laser scanner to build a structure model of a museum. The data points they 

made are all walls and floor as shown in Fig. 2.3. With this filtered data, they built the complete 

structure of the whole museum to make a 3D map to guide the visitors. Their work highlighted 

the very important character of an indoor scene: the structure.  

 

(a)                                               (b) 

Figure 2.3: (a) 3D point cloud captured from an indoor room; (b) A complete reconstructed room 

model [30]. 
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Cabral et al. [31] studied an algorithm to build the room structures from RGB images by 

assuming each pixel belonging to one of the three classes: floor, wall or ceiling. It is a bold 

assumption, but it catches the important character to show an indoor scene. It equals to add some 

prior knowledge that mimics the way how people understand the room. We can read and 

understand the scene even if no reconstruction is done for the indoor objects.  

 

 

(a)                                                                            (b) 

Figure 2.4: (a) A reconstructed room structure including floor and walls; (b) RGB images are 

attached to each plane. Although indoor objects are not reconstructed at all, people can still have 

a lot of information from the scene [31]. 

 

Object detection is another topic in indoor scene reconstruction. The object detection is closely 

related to the feature extraction. From the Haar wavelet [32] to recently developed HOG [33] and 

SIFT [34], features in color images are extracted to represent the objects [35]. The development 

of cost-effective depth sensors, such as Microsoft Kinect, have helped researchers a lot [36], [37]. 

Lai et al. [5] proposed an algorithm that detected the object from color frames and then 

reconstructed the object with depth-information. Tang et al. [38] provided an algorithm that 

extracts the object directly from depth map by detecting the discontinuities. Their work was based 
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on the fact that people can identify the separate objects by the different space occupation. For 

example, people can tell if a book is on the table, but they cannot tell how many books are piled 

together.  

So recent research has proved that, algorithms could do better after learning some treatments of 

the scene from people [24] , [31], [33], [38].  Computer’s understanding of the scene is more 

important to reconstruct an indoor scene than making a complex algorithm.  

 

2.4 The Manhattan Assumption 

The Manhattan Assumption came from an idea in the city plan, which is called the grid plan or 

the grid street plan. As Fig. 2.5 shows, the streets are perpendicular to each other. So they make 

grids from the top view.  
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Figure 2.5: The grid planned city map of Barcelona [39]. 

 

This idea is later introduced into the area of computer vision, and gets applied in three-

dimensional space. Most indoor scenes follow the Manhattan grid: lines are all parallel to one of 

the 3 axis (major coordinates). So the angles they make are all right angles.  

 

 

Figure 2.6: The viewer orientation estimation [40]. 
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(a) (b) 

Figure 2.7: Indoor scene segmentation using the Manhattan assumption: (a) An input image; (b) 

The segmented/labeled image [41]. 

 

Traditionally, there are two applications that based on the Manhattan assumption. One is to 

estimate the viewer orientation, as shown in Fig. 2.6. Based on the lines detected in a city view, 

the relative angle of viewer and the street grid could be estimate.  The other application is to 

segment the indoor scene, as shown in Fig. 2.7. Each pixel in an indoor scene image was assigned 

with one of the major coordinate in the 3D scene. However, this arbitrary segmentation is not 

good for 3D reconstruction because it treats each object as a piecewise plane. 
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CHAPTER III 

 

DEPTH-BASED INDOOR STRUCTURE RECONSTRUCTION 

 

In this chapter, we will talk about the indoor structure reconstruction using depth maps based on 

the Manhattan assumption [41]. This is a basic approach of using the Manhattan assumption into 

the area of indoor scene reconstruction. We will find the structure points in point cloud and build 

an indoor structure from it [30]. The scene is assumed to be a general one that follows the 

Manhattan assumption without too many trivial parts. In this chapter, there are six sections: (1). 

The Manhattan assumption in an indoor scene; (2). Feature extraction from depth images; (3). 

Clustering algorithms; (4). Major coordinate extraction; (5). Structure-object Separation; (6). 

Experimental Results.  

 

3.1 The Manhattan Assumption in an Indoor Scene 

The Manhattan Assumption came from an idea in the city plan, and got applied in computer 

vision to deal with indoor scenes. From Fig. 3.1 we can see, the indoor structures, such as floor 

and walls, are big planes that follow the Manhattan assumption. So from top view, indoor scenes 

are made of different shapes of rectangular, as the floor plan shows in Fig. 3.2. 
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Figure 3.1: Example of indoor structures: floor and walls. 

 

Figure 3.2: Floor plan sample: building’s major structures follows the Manhattan assumption 

[42]. 

 

Not only the building structures (walls and floors), but also the indoor objects are mostly 

designed to follow the Manhattan assumption [41]. People like to decorate their rooms based on 
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the directions of walls and doors. Thus the indoor objects are also parallel to one of the major 

coordinates, like Fig. 3.3 shows.  

 

Figure 3.3: A indoor scene sample where furniture and objects generally follow the Manhattan 

assumption [43]. 

 

From the figure above we can see, most indoor objects follow the 3 major coordinates. For 

example, the sofa is straightly facing the wall. The television is parallel to the wall. Although 

objects have different kinds of shapes, people tend to put them in a way to follow the Manhattan 

assumption of the room.   

We will apply this assumption to the indoor scene reconstruction with a depth sensor: Kinect 

[20]. Our work here is not to reconstruct each tiny detail of objects, but to regularize the overall 

indoor scene with the Manhattan assumption, assign each object its own room to do its own 

reconstruction. So we will tell walls and floors apart from objects. This gives a better 

understanding of the indoor scene to the computer. 

 

3.2 Feature Extraction from Depth Images 
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Based on the Manhattan assumption, each indoor scene has the major coordinates that indicate 

the orientation of most points. The task of this section is to extract the orientation features from 

input depth map. The feature we need is the norm of each data point. For each point the norm is 

calculated by minimizing the deviation of the point and its neighbors. However, the norms 

represented in Cartesian coordinates are on the surface of the norm sphere. The clustering 

methods will not work on ball surfaces. So we present the method of using the azimuth-zenith 

angle map to stand for the norm to do the clustering.  

 

3.2.1 Depth Map Denoising 

The depth map provided by depth sensors is very noisy. We use two traditional methods that are 

widely used [1]: (1). We select the data points that are within the valid range of the sensor; (2). 

We remove the inconsistent points by checking its 8 nearest neighbors. The sensor we use is 

Kinect V2. It has a valid range from 0.5m to 4m.  

 

 

(a)                                                                                    (b) 

Figure 3.4: (a) An RBG image of an office; (b) The corresponding depth map from Kinect. 
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As shown in Fig.3.4, the depth image is very noisy, such as the edge of the filing cabinet shown 

in the figure. We use the 0.5-4m valid range as shown in Fig. 3.5.  

 

Figure 3.5: The valid range of the Kinect sensor [20]. 

 

To remove the points that are outside of Kinect’s range, we first project the points in depth map 

into 3D space using the method provided in [44]. The output point cloud of the algorithm has a 

unit length that equals to 1mm. And then, we check the distance of each point in 3D to the 

original point (sensor). If the distance is within the valid range (0.5- 4m), the point will be kept. 

Otherwise, the point will be deleted.  

 

3.2.2 Definition of the Feature: Azimuth-zenith Map 

The general way to represent a norm is using a three-dimensional vector with unit amplitude. 

Thus the distribution of norms will be on the surface of a ball with the center at original point and 

radius equals to 1. But the Euclidean distance doesn’t work for the clustering algorithms on a ball 

surface. This fact makes it hard to find the typical norm based on the norms’ distribution. We use 
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the azimuth angle and zenith angle to represent a norm, thus on the azimuth-zenith map, the 

clustering methods can be applied.  

The azimuth angle and zenith angle come from the idea of transforming the Cartesian coordinate 

system into the spherical coordinate system. The spherical coordinate system is a system that 

describes the 3D space. It uses 3 parameters to represent a point in space: an azimuth angle 

(measures from X axis), a polar angle (measures from Z axis which pointing to the zenith), and a 

distance from the point to the original point.  

A point in the spherical coordinate is described as (r, θ, φ). They are the radial distance, azimuth 

angle, and zenith angle respectively, as Fig. 3.6 shows. Then, any direction can be represented 

using the azimuth angle together with the zenith angle (θ, φ) after setting the radius r = 1. We let 

the azimuth angle and zenith angle to be the two axis to make the azimuth-zenith map, as Fig.3.7 

shows.  

 

 

Figure 3.6: The spherical coordinate is shown in a Cartesian coordinate system. 
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We flip the norm pointing – z to + z, to remove the repetition. Thus the norms are distributed in a 

hemisphere, as Fig. 3.7 (a) shows. The norm features are azimuth angle θ and zenith angle φ 

pairs, as Fig. 3.7 (b) shows.  

 

 

(a)                                                                                    (b) 

Figure 3.7: The same norm set in two coordinate systems: (a) The Cartesian coordinate; (b) The 

azimuth-zenith coordinate. 

For each norm described as (x,y,z) in Cartesian coordinates, the functions to transform it to 

spherical coordinates using azimuth angle θ and zenith angle φ is: 

{
 
 

 
 𝜃 = tan

−1 (
𝑦

𝑥
),                    (𝑥 > 0)

𝜃 = tan−1 (
𝑦

𝑥
) + 𝜋, (𝑥 < 0; 𝑦 > 0)

𝜃 = tan−1 (
𝑦

𝑥
) − 𝜋, (𝑥 < 0; 𝑦 < 0)

              (3.1) 

𝜑 = cos−1(𝑧)                                                   (3.2) 
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3.2.3 Feature Extraction from Depth Map. 

To get the norm for each data point, we apply the N-nearest neighbor method to the depth map. 

To get the general norm of each plane, we need to get rid of the influence of local texture. As Fig. 

3.8 shows, the wall and carpet sometimes have the texture that makes them no longer perfectly 

flat, although people always treat them as flat planes in the indoor scene.  

 

 

Figure 3.8: Wall and carpet texture examples. 

 

The N-nearest neighbors take the local distribution into account to smooth this effect to some 

degree, but this method only works when the distances among points are almost the same. But the 

depth map can be taken from any angle; the points’ density for each plane varies.  
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Figure 3.9: Points are dense in the front plane, but sparse on the side. 

 

The widely used Gaussian filter can remove noises with Gaussian distribution [45]. But in the 

cases shown in Fig. 3.8, the fluctuation may not be Gaussian. Moreover, the filters would blurry 

the edges in the image. To overcome this problem we use the method to down-sample the depth 

image first, and then load the 3D location of the points in the down-sampled image from original 

depth map. The relationship of the depth map and the 3D position of each pixel is based on the 

original resolution of the depth map, thus the loading is necessary and important. This process 

works similarly as people always zoom in to see the details and zoom out to see the general 

shape.  
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(a)                                                     (b) 

Figure 3.10: (a) The idea of down-sampling; (b) The example of down-sampling the carpet 

texture: local texture is reduced after down-sampling. 

 

 

3.3 Clustering Algorithms  

Indoor scenes always have three major coordinates based on the Manhattan assumption. But in 

reality, the norms of an indoor scene are usually not pointing to the major coordinates directly. 

They distribute around the major coordinates to make clusters. Our task is to extract the major 

coordinates from those clusters with help of clustering algorithms. 

There are two kinds of clustering algorithms used in our method: 1. Based on knowing that there 

are three major coordinates on the indoor scene, we use parametric methods including the EM 

algorithm [46] and the K-means algorithm [47]; 2. Based on not knowing how many big planes 

are there in the scene, we use a non-parametric method: the mean shift algorithm [48].  
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3.3.1 Parametric Methods 

The Expectation-Maximization (EM) algorithm is widely used. It is a method to find the best 

parameters by maximizing a likelihood or a posteriori of the model with hidden variables. 

Given a set of observations X, the missing data C (classes), the objective function for EM 

clustering method is defined as:  

𝐿(𝜃; 𝑋) = ∑ 𝑝(𝑋, 𝐶|𝜃)𝐶                  (3.3) 

 Where 𝜃 is the parameters of each class in C. 

The process of EM algorithm has two steps that will be processed in each iteration: E-step and M-

step. E-step means expectation step, it makes the expectation of likelihood (usually uses log-

likelihood for computation) based on the parameters’ current value. M-step means maximization, 

it returns the updated parameters by maximizing the likelihood function provided by the E-step. 

Then, in the next generation, the E-step will be processed by using the updated parameters. Each 

step uses arbitrary values of data, assuming they are given, then uses them to get a better 

estimation. Thus with the two steps updating better results alternatively, the resulting values will 

converge to fixed points. 

EM algorithm is very sensitive to the initialization. It may get stuck at local maxima. So we use a 

quick algorithm- K-means algorithm to do the initialization for EM clustering.  

K-means clustering is to group the data into k clusters so that for each cluster. Its elements are 

concentrated around the center, while others are separated apart.  

The objective function is defined as:           

argmin
𝐶

∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖
𝑘
𝑖=1              (3.4) 



26 

 

Where 𝜇𝑖 is the center point for the class 𝐶𝑖 

For each iteration, each cluster will generate its own center to represent it. To reclassify the data 

points to those new centers of all the data. Then new clusters for the next generation is formed. 

Repeat the process until it converges. During this process, the Euclidean distance is used.   

However, the K-mean classification is a clustering with hard limits and the clusters are separated 

by lines, which is not a good method for data. The EM clustering is a better approach by adding 

Gaussian distribution assumption to data and can better deal with ambiguous data points. 

 

 

(a)                                                        (b) 

Figure 3.11: Comparison of two clustering algorithms. (a) K-means and (b) EM clustering. 

 

A comparison of the K-means clustering and the EM clustering is shown in Fig. 3.11. The K-

means algorithm is a linear segment method. It is quick but rough. The EM algorithm estimates 

each point-cluster classification probability. The EM algorithm can provide a better result by 
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considering the missing data but it is very slow. So we use the K-means method to make a quick 

initialization for EM clustering.   

 

3.3.2 Non-parametric Methods 

 The Non-parametric method we use is the mean shift method. The mean shift algorithm is a 

mode-seeking algorithm. It assumes that the given data distribution follows an underlying 

probability density function. It is used to locate the maxima of this density function. In our case, 

we don’t know how many big planes are there in the given indoor scene. This algorithm can find 

the number of the planes and the positions of them.  

The mean shift algorithm defines a kernel to give weights to neighbor points to compute the local 

mean. Apply this kernel to a data point to get the mean of it, and then shift the kernel to the mean 

for next iteration. So the local search will move to a denser area after each iteration. Repeat the 

process for all data points until it converges to several local peaks.  

In our algorithm, we use the mean shift algorithm with Gaussian kernel. Given 𝑛 points, the 

centroid of next generation 𝑦𝑖
𝑡+1

is calculated with each point 𝑥𝑗. 𝑡 is the iteration number and 

ℎ is the standard deviation. The process is as the formula described below:  

𝑦𝑖
𝑡+1 =

∑ 𝑥𝑗𝑒

−|𝑦𝑖
𝑡−𝑥𝑗|

2

ℎ2𝑛
𝑗=1

∑ 𝑒

−|𝑦𝑖
𝑡−𝑥𝑗|

2

ℎ2𝑛
𝑗=1

                            (3.5)  
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Figure 3.12: The illustration of the mean-shift algorithm: the red circle is the window to do the 

local average, each circle means one iteration. The red line shows the movement of the circle’s 

center. The window circle started from a low density area and moves to the high density area, 

thus the local peak  is found. 

 

3.4 Major Coordinate Validation 

This section talks about the method we use to validate the coordinate extract from the features. 

The major coordinate we extract from the norms distribution is a general representative. We test it 

by matching it with the local norms extracted from some patches of the down-sampled depth 

map. Each patch starts from a random point, then expands by adding nearby points that have the 

same norm as the starting point. The expansion ends when the patch size reaches a preset 

threshold, 10 points for example. If the differences between the major coordinates and local 

norms are close, it means the norms we extract are representing the planes in the scene. Otherwise 
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it means the result is biased to some degree, a bigger step to do the down-sampling is required to 

get a more simplified scene by removing the trivial parts. The flow chart is shown in Fig. 3.13. 

 

Figure 3.13:  The flowchart of major coordinate validation. 

 

3.5 Major Coordinate Extraction Algorithm 

In summary, the major coordinate extraction starts with the original depth map. After denoising 

(see Section 3.2.1), the input depth map is down-sampled. As illustrated in the section 3.2.3, we 

believe the down sampled points can better show the general shape. We extract features (section 

3.2) from the point cloud of the down-sampled depth map and use the EM algorithm (section 3.3) 

to get the three major coordinates’ candidate. This candidate will be verified by checking if it 

agrees with some random patches in the down-sampled depth map (section 3.4). Otherwise we 

will use a bigger step to down-sample the input depth map because the previous down-sampled 
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effect is not enough to show the general shape. The flow chart of our algorithm is shown in Fig. 

3.14. 

 

Figure 3.14: The flowchart of the proposed depth-based major coordinate extraction algorithm. 
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We use the EM algorithm to do the clustering of features which is initialized by the K-means. 

Normally, the K-means algorithm is sensitive to the initial center assumptions in the first 

generation. But in our case, the three major norms in the indoor scene are perpendicular to each 

other and thus well separated on the azimuth-polar map. This means the algorithm will not get 

stuck at the local maxima. Moreover, the depth map for this algorithm is not a random one, it 

shows the big planes in an indoor scene.  Thus, in our experiments, the K-means method is not 

easily stuck on the local minima. Rerun the algorithm several times to find the stable solution.  

After finding the major coordinate, the point cloud will be rotated to follow them. Thus the big 

planes, such as walls, floors and table surface, will be perpendicular to one of the 3 major 

coordinates. 

 

3.6 Structure-Object Separation 

This step is to reconstruct the general structures of a room, while the indoor objects are kept 

unharmed.  For example, there’s a table standing on a carpet. The table will be represented with 

the original point cloud. But the carpet will be reconstructed with a perfect flat plane, because the 

carpet is the major structure by playing the role as the floor. On the other hand the table will be 

kept with the original point cloud because we do not want to lose any details of the indoor 

objects. Thus, other methods can be applied to do the reconstruction or recognition of the table. 

The separation of indoor objects and how to build representative cubes for each object will be 

explained in the next chapter. 

To find the basic structure of the indoor scene, the mean shift algorithm will be applied to each of 

the 3 major coordinates. Then the potential planes for each coordinate will be found. In the 

Manhattan assumption, all the planes belongs to one of the major coordinates. So the floor and 
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walls we need are among those potential planes. The flow chart to do this job is showed in Fig. 

3.15.  

 

Figure 3.15: The flowchart of the proposed structure-object separation algorithm. 
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3.7 Experimental Results 

We use an artificial kitchen scene to do the experiment to simplify the problem and get rid of 

trivial influences. The kitchen is built for the project “Building a smart home for the elders”. In 

the artificial kitchen, the objects include a washing machine, a stove, a sink and a refrigerator. 

These objects are made from paper boxes. Some typical features for each object are added but no 

texture, as Fig.3.16 shows. Some big plastic sponges are added behind the objects as the walls. 

This is an ideal kitchen scene that shows the general kitchen appearance. We will use a single 

depth map from the Kinect sensor to test our algorithms. Our goal is to find the major coordinates 

of the scene and then separate the structure (wall and floor) from the indoor objects. 

 

 

 

  

 

Figure 3.16: An artificial kitchen. 
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Figure 3.17: The input RGB frame (left) and the corresponding depth map (right). 

 

The input depth map is shown in Fig.3.17. A corresponding reconstruction result using Kinect 

Fusion [21] is provided in Fig.3.18. From the reconstruction result we can see, even using a good 

algorithm, the planes that are directly built from depth map are not flat. The connection of planes 

is not the right angle. This inaccuracy comes from the Kinect sensor. Our algorithm will be 

applied to overcome this inaccuracy.  

 

 

(a)                                                                        (b) 

Figure 3.18: The 3D reconstruction result from Kinect Fusion [21]: (a) Front view of the scene; 

(b) Top view of the scene. It is shown that the sharp corners become a rounded shape due to the 

imperfect point cloud data. 
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In our algorithm, the first step is to down-sample the input depth map and extract the norm 

features. Then we use a down-sampling method to find the major coordinate of the scene and 

rotate the point cloud to follow it. The down-sampling process can remove the influence of local 

details, as shown in Fig. 3.19 (b) and (c). 

 

 

 
(a)                                                                 (b) 

 

(c)                                                                  (d) 

Figure 3.19: Major coordinate extraction:  (a) Original point cloud; (b) The floor of original point 

cloud is not flat; (c) Local detail of the scene; (d) A partial point cloud after down-sampling. 
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(a)                                                     (b) 

 

 

(c)                                                                (d) 

Figure 3.20: Illustration of down-sampling:  (a) Normal distribution of the original point cloud in 

the Cartesian coordinate system; (b) The corresponding azimuth-zenith map of (a); (c)  

Recalculated norm distribution after down-sampling by factor 3; (d) The corresponding Azimuth-

zenith map of (c). 

 

Fig. 3.19 and 3.18 show that the down-sampling method can remove the influence of trivial 

details (Fig. 3.19 (b) and (c)) of the scene. Those details can make the norm distribution less 

concentrated (Fig. 3.20 (b)). After down-sampling, the distribution of norm gets clean. Thus the 

three major coordinates can be found.  
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The second step is to identify the wall and floor, and separate them apart. We replace the 

structure points with ideal planes. The indoor objects are kept in their original position. The 

results are provided to make comparisons in Fig.3.21.  

 

 
(a)                                                      (b) 

 

 

 
(c)                                                           (d) 

Figure 3.21: (a) The original point cloud; (b) Structure points are shown in black and indoor 

objects are shown in white; (c) and (d) original structure points are shown in black points; 

reconstructed ideal planes are shown in grey. 
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In Fig. 3.21, it shows that the original point cloud is separated into structure points and indoor 

object points. The structure points are reconstructed using ideal planes as Fig. 3.22 (c) and (d) 

show. The non-perpendicular corner problem (Fig.3.19 (b) and Fig. 3.21 (d) black) is solved (Fig. 

3.21 (d) grey). The reconstruction result is shown in Fig. 3.22. 

 

 

(a) (b) 

 

(c)                                                        (d) 

Figure 3.22: (a) and (b) are the input point cloud; (c) and (d) structure points are reconstructed f 

ideal planes.  
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Our method can make the depth map more meaningful by reconstructing the hidden structures to 

form the whole scene into a complete environment. The rounded corners are fixed based on the 

prior knowledge that we know the walls are perpendicular to each other in indoor scenes. So 

every structure in the scene is rectangular shaped.  

Our algorithm works well in this experiment. But a single depth map has a limited capacity, we 

need to extend the method to a point cloud for a bigger scene.  Moreover, the artificial scene is 

more ideal than real scenes. We will test and upgrade our method in the next chapter.  
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CHAPTER IV 

 

POINT CLOUD-BASED INDOOR SCENE REPRESENTATION 

 

The method provided in chapter three is a basic method. In this chapter, we will apply the method 

to more complicated indoor scenes, which are point clouds that generated from multiple frames. 

These scenes are large-scale indoor scenes with many objects that do not follow the Manhattan 

assumption. In this chapter, the basic method we provide in chapter three will be refined to fit 

these complicated circumstances. 

 

4.1 Point Cloud Density Control 

4.1.1 Point Cloud Introduction  

A point cloud is a set of points describing a scene in a same 3D coordinate. The point cloud 

usually represents the surface of objects. Point clouds can be generated by 3D sensors such as 

Kinect, or created by many algorithms with multi-views.  
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(a)                                                          (b) 

Figure 4.1: (a) A real point cloud example that covers a large scene. (b) A zoomed-in portion 

which reveals non-uniform and non-continuous point distribution [15]. 

 

Point clouds are made of discrete points. When it’s dense enough, it is good for visualization, but 

it is not good to turn into 3D applications directly. Some processes are needed, such as polygon 

mesh or triangle mesh models by combining nearby points.  

The point cloud obtained by Kinect comes from matching different frames of depth maps. Many 

work in this area has been done to improve the accuracy. The point clouds we used are with basic 

alignment but without further refinement [5]. 

 

4.1.2 Density Control Using Cell Grid 

The point cloud comes from matching multiple-frames. An object with more frames has more 

points. This means the points in each space volume are not the same. Although the object is better 

represented where the point cloud is very dense, it biased the general distribution of the norm. 

The total scene in general shall have each part equally weighted because everywhere has the same 
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importance. So it is necessary to have the density control when doing an indoor scene 

reconstruction.  

The method we used is the cell grid, which means to segment the whole point cloud into many 

cells with equal size. For each cell, only one representative point can be kept [15]. The position of 

that point is determined by averaging all the original points within the cell, as Fig. 4.2 shows.  

 

Figure 4.2: The illustration of density control. The point data are first segmented into cells and 

then each cell is represented one point inside. 

 

4.2 Measures of Large-scale Indoor Scene  

4.2.1 Identification of Walls  

In an indoor scene, walls are the boundaries that make the shape of room and limit the accessible 

space of the room. In the previous chapter, the room is simplified to be a box. But in reality it is 
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not. There are many designs that add walls in a room to decorate, or separate some rooms out 

from a big room, as Fig. 4.3 shows.  

 

 

Figure 4.3: Rooms are not perfect cubes.  

 

So we will treat the plane as a wall if it has a height over a threshold ht. This means, if the plane 

is tall enough, we will treat it as a part of the room’s structure.  

 

4.2.2 Vertical Norm Dominance  

In a large-scale indoor scene, there will be some planes not following major coordinates, which 

density control cannot handle. The horizontal norms that come from walls may not in the 

dominant position. But the floor is always the most stable and biggest plane. We will find the 

vertical norm (comes from floor) in the first step and try to find the other planes later.  One main 

character of the indoor scene is that the floor always has the biggest size, so it is very easy to get 
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identified. Because of the gravity, the floor is always the foundation of other objects. So it is very 

important and convenient to reconstruct the scene with help of the floor.  

As mentioned in chapter three, the indoor objects must stand on the planes. Here we made an 

assumption: every big object is standing on the floor. This assumption is actually reasonable 

because when looking at an indoor scene, people usually focus on the big stuff and treat what on 

them are just accessories. For example: people will treat the sofa and the cushion on it as a whole. 

This assumption is already applied in room interior decoration. The widely used floor plan is 

based on it.  

 

4.3 Large-scale Scene Major Coordinate Extraction 

We made a feed-back system to determine the step size of the cell in the density control. The cell 

size works similarly to the down-sampling method described in chapter three. After extracting the 

norm features, we found the vertical norm first. The validation process is the same as described in 

Section 3.4. We removed the well-classified points of the vertical coordinate based on the EM 

clustering. The next step is to find the horizontal norm pair that describes the walls. We used the 

mean shift algorithm to find all potential norms, because there might be big planes that did not 

follow the major coordinates. After checking the perpendicular restrains, the horizontal norm 

pairs were made. The pair with the most points would be the horizontal major coordinates 

because most indoor objects followed the major coordinates. The flow chart is shown in Fig. 4.4. 
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Figure 4.4: The flowchart of the large-scale major coordinate extraction. 
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4.4 Experimental Results  

The point cloud we used for our experiment is based on the research of K. Lai et al. [5].  The 

dataset is created by them. It was originally used for object recognition. The point cloud is 

obtained by aligning multiple video frames. The scenes they provide are indoor scenes that 

contain big furniture (sofa, coffee table, chair), and many small items (bowls, soda cans, caps). A 

sample point cloud is shown in Fig.4.5. Our task is to identify the room structure and reconstruct 

it using ideal planes while keeping the indoor objects as their original shape.  

 

Figure 4.5: A real point cloud of an indoor room [5]. 

 

The method of density control can help to make each part of the scene equally weighted, as 

shown in Fig. 4.6. The point cloud was made by going around the coffee table, thus the points 

that indicate the coffee table are denser than other parts. After density control, the coffee table has 

the same point density as other regions.  
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(a) 

 

 

(b )                                                              (c) 

Figure 4.6: (a) The down-sampled point cloud; (b) The point cloud of the coffee table; (c) The 

coffee table after density control. 

 

When doing the structure-object separation, we found the vertical nom and the floor points first. 

And then the horizontal coordinates were extracted and the point cloud would be rotated to follow 

the major coordinates.  

 



48 

 

 

(a)                                            (b) 

 

(c)                                                                      (d) 

Figure 4.7: The indoor objects are shown in (a) and (b). The points of room structures are shown 

in (c). The generated room structure (black) is shown along with the original point cloud in (d). 

 

In Fig. 4.7 (c), it is shown that the structure in original point cloud has many holes. The 

reconstructed structures are shown in a point cloud in Fig. 4.7 (d) to render inputs and 

reconstructions simultaneously. It shows that our algorithm can infer the unseen parts of the 
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structure and give the room a complete shape. The final reconstructions use ideal planes as shown 

in Fig. 4.8.  

 

 
(a) (b) 

Figure 4.8: Reconstruction results: (a) Input point cloud and reconstructed structures; (b) 

Structure points are substituted with ideal planes. 

 
The experiment also shows some problems of our method. When the wall is represented in a 

single layer of points, the structure may get disconnected to the objects attached to it (Fig. 4.8 (a) 

red sofa). In reality, each wall shall have a thickness. Another problem is from the density 

control. It equalizes each part of the scene, but also the unconfident regions. For example, in Fig. 

4.8 (b), the right side wall has a lot of outliers, but the process of density control keeps them (Fig. 

4.6 (a) left side). Thus, the position of the wall which is found by the mean shift algorithm, is 

biased to a wrong direction. These two problems work together to make the algorithm unable to 

handle sills (Fig. 4.7 (d) right side). Sills are always with a thickness, and the windows may 

contain many bad points because of reflection. So the reconstructed structure plane is dragged to 
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the outside of the room. That explains the wall behind yellow chairs classified as indoor objects: 

because the algorithm considered there was a wall behind it.  

To solve these problems, a better density control method is needed by checking the point number 

and consistency in each cube. A prior knowledge in room reconstruction also shall be added to 

deal with doors and windows.  
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CHAPTER V 

 

OBJECT DETECTION AND REPRESENTATION 

 

In the previous two chapters, we focused on the detection and reconstruction of indoor structures. 

The room is reconstructed using ideal planes. The process we provide can remove the structure 

points from the original input and leave the indoor objects. In this chapter, we will focus on the 

reconstruction of indoor objects by inferring the unseen planes using voxel-based methods.  

 

5.1 Voxel Representation  

A voxel a unit cube in three-dimensional space on a regular grid [49]. Similar to the idea of a 

pixel in an image, a voxel is the smallest change in volume. The size of voxel determines the 

accuracy of a reconstruction. Big voxels can give a general shape of the reconstructed object; 

small voxels can provide more details but require more computation effort.  
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Figure 5.1: Sample voxel representation of a cup [5]. 

 

We use voxel representation to do the reconstruction of indoor objects because we want to infer 

the volume of objects from the discrete point cloud.  

 

5.2 Inferring Hidden Plane of an Object  

Room-Object separation and cube construction: based on the hypothesis plane and the original 

point cloud, we will build the room structures first, form walls and floor. Then each object in the 

room will be presented as a cube (6-faces). After checking each hypothesis plane’s rough position 

together with the original point cloud, the best fit of plane-plane matching is found. During this 

process, more planes will be built, those are the hidden planes that we could not see but exist.    

This kind of labeling method is carrying the feature that the wall and floor are working as 

boundaries of an indoor scene. Although weird shaped rooms exist, most rooms’ walls are all 

following the major coordinates. Traditionally, the wall and floor selection is based on feature 

classification. But in the 3D indoor scene point cloud, the walls and floor are easier to find.  

After identifying the walls and floor as described in Chapter three and four, the rest are the indoor 

objects, the point cloud will be checked based on the hypothesis planes from the mean-shift 
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algorithm. For each hypothesis plane, the corresponding nearby perpendicular hypothesis plane 

will be checked to see if they belong to the same object cube. 

Clearly, not all faces of an object cube can be seen. There are three parameters that shall be 

determined for each cube: its length, width and height, which also means the amplitude along 3 

axis. Moreover, the indoor objects also follow the law of gravity: the object will not floating in 

the air. So every object will be standing on a plane. Another assumption we made is if it is hard to 

tell the distance of the object to the wall behind it, the object will be next to the wall. Thus, any 

two clear plane or one plane near a wall will be enough to create a cube to represent the object.  

 

 

(a)                           (b)                                  (c)                                (d) 

Figure 5.2: Cube assignment: (a) One face available, the cube that represents the object will be 

attached to the wall (b); (c) Two faces available, it’s enough to create a cube (d). 

 

Given the histogram of density 𝐷𝑖
𝑗(𝑥𝑖) along major coordinate 𝑖 for the points in potential plane 𝑗, 

the target function to determine the plane edge 𝑥𝑖 is given below, where 𝑔 is the step size of 

histogram and 𝛾 is the threshold to find where plane density change sharply.  

|𝐷𝑖
𝑗(𝑥𝑖) − 𝐷𝑖

𝑗(𝑥𝑖 + 𝑔)| > 𝛾                              (5.1) 
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However, this method can only be applied to cube-shaped objects. For those objects with smooth 

curves, such as sofas, this method would not work well.  

 

5.3 Voxel-based Object Completion 

After having the point cloud in major coordinates as described in Chapter three and four, the big 

planes in the scene would be perpendicular to one of the major coordinates. With the help of the 

“norm” information from previous steps, we project the points with same norm class onto its 

corresponding perpendicular coordinate, thus the histogram of this projection will show where the 

potential plane is. We use the mean shift algorithm [4] to find the number of the potential plane 

and its position. Then track back to the point cloud to see the rough position and size of each 

plane to make the plane a confident one. This process will be applied to each coordinate, and thus 

the hypothesis planes will be formed for each major coordinate.  

Based on the confident plane’s position, the cube that represents the object is generated as 

illustrated in section 5.2. To deal with the problem that the original point cloud and the generated 

cube may get overlapped, we propose a voxel-based object completion method. As shown in Fig. 

5.3, the point cloud of the reconstructed object is segmented into voxels. If a voxel contains both 

reconstructed points and original points, the reconstructed ones are eliminated to preserve the 

local structure provided by original data points.  
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Figure 5.3: Voxel-based object completion. 

 

5.4 Experimental Results 

We tested our algorithm by reconstructing the objects from the experiments in chapter three. The 

identified objects are shown in Fig. 5.4. The objects are not in their complete form. From the top 

view we can see, the top planes are very sparse.  

 

 

(a)                                                       (b) 

Figure 5.4: (a) Identified two objects are shown in white and black; (b) top view of (a). 
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As described in section 5.2, the confident planes are used to separate each object. But the object 

shown in white points actually has two parts. It cannot separate the two parts (a stove and a sink) 

for now because in this experiment, we only have one depth map, the data is limited, and the two 

structures are very alike in shape and attach to each other in space.    

For each object, we use the front plane where the points are dense to generate a cube-shaped 

container. The container describes the general shape of the object. Then, the method described in 

section 5.3, a complete model of the object is generated. The model has a cubic shape and 

preserves details provided by the original point cloud, such as the handles under the sink.  

 

 

(a)                                                (b) 

Figure 5.5: (a) A cube-shaped container defines the general shape of the object; (b) Generated 3D 

model of the object. 

 

The final reconstruction results of the artificial kitchen scene is shown in Fig. 5.6. Indoor 

structures are reconstructed using ideal planes and indoor objects are with complete shapes. Our 

algorithm made good results of the kitchen scene.  But for the data set used in Chapter four, it has 

many non-cubic based objects, such as sofas and a round coffee table with a cap and a cup on it. 
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These objects cannot be approached with cube containers. Moreover, our algorithm is based on 

confident big planes. These objects have many curves and even without big planes. To solve this 

problem, some training models may be needed. The objects can be classified to the model they 

belong to. Then our object completion algorithm can be implemented to generate the unseen parts 

of the object.  

 

 

(a)                                                     (b) 

 

(c)                                                              (d)  

Figure 5.6: (a) and (b) show the original point cloud; (c) and (d) present the final reconstruction 

results. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE RESEARCH 

 

6.1 Conclusion 

In this study, an indoor scene reconstruction algorithm was developed to reconstruct the indoor 

structure and indoor objects separately. This method can provide a complete indoor scene 

reconstruction by getting some understandings of the structure of the room first and identifying 

the indoor objects in the second place.  

We used the Manhattan assumption to regularize the indoor scene. To solve the problem that 

local texture might not show the general shape, we proposed a feedback system to determine the 

down-sampling scaler. After down-sampling, the major structure could be kept; the details would 

be ignored. Thus the major coordinates of the scene were extracted. We found the points that 

indicated the indoor structure from the input depth map, reconstructed the indoor structure with 

ideal planes to make a complete cube-shaped indoor structure. Moreover, to deal with the large-

scale complex indoor scene, the algorithm was adjusted to extract the vertical norm first from the 

floor and extract the horizontal norm after it. For the objects in an indoor scene, we proposed a 

method to infer the unseen planes to make each object to be a complete model rather than several 

discrete patches. The experiments showed that this method did well on cube-shaped objects, but 

not on round-shaped objects.  
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The original objective was to reconstruct an indoor scene to make the computer understand it. As 

the first step to build a semantic map, our method basically achieves the objective. There are still 

some spaces to improve, especially on the round-shaped object reconstruction.  

 

6.2 Future Research 

The final objective of our future research is to build a semantic map.  In this work, the indoor 

objects are reconstructed in a low resolution; it would be necessary to make the 3D models with 

higher accuracy. It would be interesting to apply our method in multi-views, to regularize the 

scene to get a more accurate map before triggering loop closure based on the Manhattan 

assumption. Moreover, more information of the scene would be considered such as humans’ 

motion and the sound made by each object. This leads to a new hybrid affordance-based and 

appearance-based object recognition approach for indoor semantic mapping.  



60 

 

REFERENCES 

 

[1] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald, 

"Real-time large-scale dense RGB-D SLAM with volumetric fusion," The 

International Journal of Robotics Research, vol. 34, pp. 598-626, 2015. 

[2] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using 

Kinect-style depth cameras for dense 3D modeling of indoor environments," The 

International Journal of Robotics Research, vol. 31, pp. 647-663, 2012. 

[3] prototype robot for assisted living. Available: 

http://www.paneuropeannetworks.com/science-technology/prototype-robot-for-

assisted-living/ 

[4] D. A. Forsyth and J. Ponce, "A Modern Approach," Computer Vision: A Modern 

Approach, 2003. 

[5] K. Lai, L. Bo, X. Ren, and D. Fox, "A large-scale hierarchical multi-view rgb-d 

object dataset," in Robotics and Automation (ICRA), 2011 IEEE International 

Conference on, 2011, pp. 1817-1824. 

[6] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, "A comparison 

and evaluation of multi-view stereo reconstruction algorithms," in Computer 

vision and pattern recognition, 2006 IEEE Computer Society Conference on, 

2006, pp. 519-528. 

[7] M. Levoy, "The stanford spherical gantry," ed, 2002. 

[8] J. Heikkila and O. Silvén, "A four-step camera calibration procedure with implicit 

image correction," in Computer Vision and Pattern Recognition, 1997. 

Proceedings., 1997 IEEE Computer Society Conference on, 1997, pp. 1106-1112. 

[9] J.-Y. Guillemaut and A. Hilton, "Joint multi-layer segmentation and 

reconstruction for free-viewpoint video applications," International journal of 

computer vision, vol. 93, pp. 73-100, 2011. 

[10] O. Faugeras and R. Keriven, Variational principles, surface evolution, pde's, level 

set methods and the stereo problem: IEEE, 2002. 

[11] A. Hornung and L. Kobbelt, "Hierarchical volumetric multi-view stereo 

reconstruction of manifold surfaces based on dual graph embedding," in 

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society 

Conference on, 2006, pp. 503-510. 

[12] J.-P. Pons, R. Keriven, and O. Faugeras, "Multi-view stereo reconstruction and 

scene flow estimation with a global image-based matching score," International 

Journal of Computer Vision, vol. 72, pp. 179-193, 2007. 

http://www.paneuropeannetworks.com/science-technology/prototype-robot-for-assisted-living/
http://www.paneuropeannetworks.com/science-technology/prototype-robot-for-assisted-living/


61 

 

[13] A. Zaharescu, E. Boyer, and R. Horaud, "Transformesh: a topology-adaptive 

mesh-based approach to surface evolution," in Computer Vision–ACCV 2007, ed: 

Springer, 2007, pp. 166-175. 

[14] C. H. Esteban and F. Schmitt, "Silhouette and stereo fusion for 3D object 

modeling," Computer Vision and Image Understanding, vol. 96, pp. 367-392, 

2004. 

[15] Y. Furukawa and J. Ponce, "Accurate, dense, and robust multiview stereopsis," 

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, pp. 

1362-1376, 2010. 

[16] M. Lhuillier and L. Quan, "A quasi-dense approach to surface reconstruction from 

uncalibrated images," Pattern Analysis and Machine Intelligence, IEEE 

Transactions on, vol. 27, pp. 418-433, 2005. 

[17] M. Habbecke and L. Kobbelt, "Iterative multi-view plane fitting," in Int. Fall 

Workshop of Vision, Modeling, and Visualization, 2006, pp. 73-80. 

[18] O. Hall-Holt and S. Rusinkiewicz, "Stripe boundary codes for real-time 

structured-light range scanning of moving objects," in Computer Vision, 2001. 

ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001, pp. 

359-366. 

[19] Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, "3D shape scanning with 

a time-of-flight camera," in Computer Vision and Pattern Recognition (CVPR), 

2010 IEEE Conference on, 2010, pp. 1173-1180. 

[20] Microsoft Kinect. Available: https://msdn.microsoft.com/en-

us/library/hh973078.aspx 

[21] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, et 

al., "KinectFusion: Real-time dense surface mapping and tracking," in Mixed and 

augmented reality (ISMAR), 2011 10th IEEE international symposium on, 2011, 

pp. 127-136. 

[22] M. Zeng, F. Zhao, J. Zheng, and X. Liu, "A memory-efficient kinectfusion using 

octree," in Computational Visual Media, ed: Springer, 2012, pp. 234-241. 

[23] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, "Real-time 

3D reconstruction in dynamic scenes using point-based fusion," in 3D Vision-3DV 

2013, 2013 International Conference on, 2013, pp. 1-8. 

[24] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, "Bundle 

adjustment—a modern synthesis," in Vision algorithms: theory and practice, ed: 

Springer, 2000, pp. 298-372. 

[25] L. M. Paz, P. Piniés, J. D. Tardós, and J. Neira, "Large-scale 6-DOF SLAM with 

stereo-in-hand," Robotics, IEEE Transactions on, vol. 24, pp. 946-957, 2008. 

[26] M. Labbe and F. Michaud, "Appearance-based loop closure detection for online 

large-scale and long-term operation," Robotics, IEEE Transactions on, vol. 29, 

pp. 734-745, 2013. 

[27] J. M. Coughlan and A. L. Yuille, "Manhattan world: Compass direction from a 

single image by bayesian inference," in Computer Vision, 1999. The Proceedings 

of the Seventh IEEE International Conference on, 1999, pp. 941-947. 

[28] H. Wildenauer and M. Vincze, "Vanishing point detection in complex man-made 

worlds," in Image Analysis and Processing, 2007. ICIAP 2007. 14th International 

Conference on, 2007, pp. 615-622. 



62 

 

[29] O. Barinova, V. Lempitsky, E. Tretiak, and P. Kohli, "Geometric image parsing in 

man-made environments," in Computer Vision–ECCV 2010, ed: Springer, 2010, 

pp. 57-70. 

[30] J. Xiao and Y. Furukawa, "Reconstructing the world’s museums," International 

Journal of Computer Vision, vol. 110, pp. 243-258, 2014. 

[31] R. Cabral and Y. Furukawa, "Piecewise planar and compact floorplan 

reconstruction from images," in Computer Vision and Pattern Recognition 

(CVPR), 2014 IEEE Conference on, 2014, pp. 628-635. 

[32] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, "Pedestrian 

detection using wavelet templates," in Computer Vision and Pattern Recognition, 

1997. Proceedings., 1997 IEEE Computer Society Conference on, 1997, pp. 193-

199. 

[33] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer 

Society Conference on, 2005, pp. 886-893. 

[34] D. G. Lowe, "Object recognition from local scale-invariant features," in Computer 

vision, 1999. The proceedings of the seventh IEEE international conference on, 

1999, pp. 1150-1157. 

[35] P. Viola and M. Jones, "Robust real-time object detection," International Journal 

of Computer Vision, vol. 4, pp. 51-52, 2001. 

[36] B. Sabata, F. Arman, and J. K. Aggarwal, "Segmentation of 3D range images 

using pyramidal data structures," CVGIP: Image Understanding, vol. 57, pp. 373-

387, 1993. 

[37] L. Bo, X. Ren, and D. Fox, "Depth kernel descriptors for object recognition," in 

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference 

on, 2011, pp. 821-826. 

[38] S. Tang, X. Wang, X. Lv, T. X. Han, J. Keller, Z. He, et al., "Histogram of 

oriented normal vectors for object recognition with a depth sensor," in Computer 

Vision–ACCV 2012, ed: Springer, 2013, pp. 525-538. 

[39] Urban Resolve Available: 

http://urbanresolve.tumblr.com/post/46259926486/salixtance-barcelona-city-grid 

[40] J. M. Coughlan and A. L. Yuille, "The Manhattan world assumption: Regularities 

in scene statistics which enable Bayesian inference," in NIPS, 2000, pp. 845-851. 

[41] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, "Manhattan-world stereo," 

in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 

Conference on, 2009, pp. 1422-1429. 

[42] Simple Blank House Floor Plan. Available: http://galleryhip.com/simple-blank-

house-floor-plan.html 

[43] Home designing. Available: http://www.home-designing.com/2015/06/modern-

apartment-designs-by-phase6-design-studio 

[44] Kinect2 Matlab tool. Available: 

http://www.codeproject.com/Tips/819613/Kinect-Version-Depth-Frame-to-mat-

File-Exporter 

[45] P. J. Burt, "Fast filter transform for image processing," Computer graphics and 

image processing, vol. 16, pp. 20-51, 1981. 

http://urbanresolve.tumblr.com/post/46259926486/salixtance-barcelona-city-grid
http://galleryhip.com/simple-blank-house-floor-plan.html
http://galleryhip.com/simple-blank-house-floor-plan.html
http://www.home-designing.com/2015/06/modern-apartment-designs-by-phase6-design-studio
http://www.home-designing.com/2015/06/modern-apartment-designs-by-phase6-design-studio
http://www.codeproject.com/Tips/819613/Kinect-Version-Depth-Frame-to-mat-File-Exporter
http://www.codeproject.com/Tips/819613/Kinect-Version-Depth-Frame-to-mat-File-Exporter


63 

 

[46] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from 

incomplete data via the EM algorithm," Journal of the royal statistical society. 

Series B (methodological), pp. 1-38, 1977. 

[47] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering 

algorithm," Applied statistics, pp. 100-108, 1979. 

[48] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space 

analysis," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 

24, pp. 603-619, 2002. 

[49] J. Ashburner and K. J. Friston, "Voxel-based morphometry—the methods," 

Neuroimage, vol. 11, pp. 805-821, 2000. 



 

 

VITA 

 

Lin Guo 

 

Candidate for the Degree of 

 

Master of Science 

 

Thesis:    INDOOR SCENE RECONSTRUCTION USIND THE MANHATTAN 

ASSUMPTION 

 

 

Major Field:  Electrical Engineering 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Master of Science in Electrical Engineering 

at Oklahoma State University, Stillwater, Oklahoma in July, 2015. 

 

Completed the requirements for the Bachelor of Science in Electrical 

Engineering at Tianjin University, Tianjin, China in 2012. 

 

Experience:   

 

Visual Computing and Image Processing Lab (VCIPL), OSU Stillwater, OK 

Research Assistant,                                                           Sep. 2014 – Present. 

 

Professional Memberships:   

               NA 


