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Abstract: The first essay determined the residential water demand and the factors 

affecting water demand for different periods (pre-drought vs. during-drought and summer 

vs. winter) in Oklahoma City area. Individual household water consumption, household 

age, household value, parcel size, water price, and weather variables from July 2009 

through December 2012 for Oklahoma City area were used. A two-stage least-squares 

estimation with an instrumental variable was used to develop a water demand model. 

Results indicated that water demand was inelastic to water price except for high 

consumption period. Parcel size, income, and temperature were positively related to 

water demand, while rainfall, household age, and water price negatively influenced water 

demand. 

The second essay determined the consumers’ preferences and willingness to pay for 

different turfgrass attributes while assessing the heterogeneity in preferences for 

attributes of turfgrass in five states (Florida, Georgia, Oklahoma, North Carolina, and 

Texas) of the U.S. Results based on a survey of 1,179 household consumers indicated 

that there was significant preference heterogeneity for the preferences of turfgrass 

attributes. The household turf consumers were clustered in two broad classes; “willing 

household consumer” and “reluctant household consumer”. Willing household 

consumers were characterized by high income and hobbyist, while reluctant household 

consumers were characterized by people more than 45 years. Results also indicated that 

willing household consumers were most likely to pay more for improved turfgrass 

attribute than were reluctant household consumers.  

The third essay determined the preference shares for the turfgrass attributes and 

compared and contrasted the results from the discrete choice experiment (DCE) and best-

worst method (BWM). An online survey was conducted and a mixed logit model was 

used to determine the homeowners’ relative preferences for turfgrass attributes. The 

results indicated that the most preferred attribute using either of the methods was low 

maintenance cost. Although the relative importance by the DCE and the BWM were 

statistically different, both methods yielded a similar preference ordering for low 

maintenance, drought tolerant, and saline tolerant turf, but different ordering for shade 

tolerant and low purchase price turf.   
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PREFACE 

Oklahoma experienced one of the driest periods on record from September 2010 through 

April 2014. The year 2012 was Oklahoma’s warmest year on record (Oklahoma Mesonet, 

2013a). Approximately 9% of the United States (U.S.) freshwater withdrawals is devoted 

to household water usage. However, as a result of a local and regional drought, water 

supplies are constrained for multiple uses including lawn irrigation which comprises 50-

70% of household water demand.   

Effective municipal water usage during prolonged droughts has been a major issue in 

water management policy in the U.S. Understanding municipal water demand during 

these periods and promoting water conserving turfgrass that has wider geographical 

adaptability to climate and soil variability are vital for preserving water availability in 

many municipalities. This dissertation is composed of three papers designed to determine 

residential water demand and consumer preferences for improved turfgrass attributes.  

The first paper (Chapter I) used spatially explicit household data to determine the 

residential water demand in Oklahoma City area for pre- and during-drought periods, and 

for seasonal consumption periods. This study determined the price and income elasticity 

of residential water demand under uniform volumetric water pricing. The study also 

compared the elasticity of both marginal and average pricing for pre- and during-drought 

periods and seasonal low and high water consumption periods. Results indicated that
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increases in water price had a very small effect on reducing water demand and the effect 

was minimal during-drought.  

The second paper (Chapter II) determined consumers’ preferences and willingness to 

pay for drought, shade, winterkill, and salinity tolerant and low maintenance attributes of 

turfgrass, while assessing the heterogeneity in their preferences for these turfgrass 

attributes. The results indicated that there was considerable preference heterogeneity 

among the household turf consumers. Household turf consumers were clustered in two 

classes; “willing household consumer” and “reluctant household consumer”. Willing 

household consumers were characterized by high income and hobbyist while reluctant 

household consumers were characterized by people of age over 45 years. Results also 

suggested that willing household consumers were likely to pay more for most turfgrass 

attributes than reluctant household consumers. 

The third paper (Chapter III) examined preference shares of the abiotic stress tolerant 

(drought, shade, winterkill, and salinity) and low maintenance attributes of turfgrass and 

compared and contrasted the results from the discrete choice experiment and the best 

worst method. The results indicated that the most preferred attribute using either of the 

methods was low maintenance cost. Although the preference shares for the turfgrass 

attributes between two methods were statistically different, the directions of preference 

ordering were similar for two methods except for shade tolerant and average purchase 

price attributes.   



1 
 

CHAPTER I 
 

 

ESTIMATION OF RESIDENTIAL WATER DEMAND UNDER UNIFORM 

VOLUMETRIC WATER PRICING 

 

ABSTRACT 

Understanding the factors affecting residential water demand is critical to implement 

and improve water management policies during the extreme climate conditions such as 

drought. As few studies relating water demand to uniform volumetric water pricing exist, 

this study aims to determine the price and income elasticity of residential water demand 

under uniform water pricing. Second, this study compares the elasticity of both marginal 

and average pricing for pre- and during-drought periods and seasonal low and high 

consumption periods. Individual household water consumption, household age, 

household value, parcel size, water price, and weather variables from July 2009 through 

December 2012 for Oklahoma City area were used. A two-stage least-squares estimation 

with an instrumental variable is used to develop a water demand model. Results indicate 

that water demand is inelastic to water price except for high consumption period. Parcel 

size, income, and temperature are positively related to water demand, while rainfall, 

household age, and water price negatively influence water demand. This study provides 

important insight into major variables affecting water demand using easily obtained data.
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Introduction 

Interest in efficient use of water resources has been growing as municipalities face variability 

in water supply and increasing demands for residential water. Several factors such as 

weather, water pricing, and household demographics and characteristics influence residential 

water demand. Moreover, water demand also shows seasonality (demand varies with the 

seasons of the year, the day of the week, or the hours of the day) due to changes in weather 

conditions (Arbués et al., 2003). Understanding the effects of determinants such as price, 

household characteristics, and demographics on water demand is necessary to develop 

effective domestic water supply management policies. An essential management needs is to 

better understand and predict how water demand changes seasonally and during drought 

conditions (Kenney et al., 2008; Rockström, 2003).  

Oklahoma has experienced one of the driest periods on record since September 2010 with 

the arrival of La Niña in the equatorial pacific waters (Cole and Leslie, 2011). The year 2012 

was Oklahoma’s warmest year on record (Oklahoma Mesonet, 2013a). In addition, 

Oklahoma has also experienced increasing variability in rainfall and temperature over the 

years, which extensively influences water demand. This makes the study of specific seasonal 

and drought period water demands relevant in Oklahoma. 

Although residential water demand has been a topic of research in the past, it has not 

been analyzed for Oklahoma City, OK. The Oklahoma City Utilities Department provides 

water to the people of Oklahoma City, OK and other municipalities in the Oklahoma City 

metropolitan area. Treated municipal water serves several different use categories including 

residential, agricultural, industrial, and commercial. Residential water demand includes water 

used by households for indoor activities including cooking, bathing, and washing, and 
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outdoor activities like landscape irrigation and recreation. According to water industry 

estimates, an average person uses about 3,000 gallons (11,355 m
3
) of water per month (City 

of Oklahoma City, 2013a).  

Several studies have estimated water demand and price elasticity of the demand (Gaudin 

et al., 2001; Hewitt and Hanemann, 1995; Kenney et al., 2008; Michelsen et al., 1999; 

Nieswiadomy and Molina, 1989). However, most of the previous studies were based either 

on flat rate pricing or increasing/decreasing block rate pricing structures. Although uniform 

volumetric pricing for water was/is in practice in several cities (such as Oklahoma City, 

Chicago, Memphis, Indianapolis, Baltimore, New York etc.), limited studies exist that are 

based on uniform volumetric pricing of water (Hoffman et al., 2006 and Olmstead et al., 

2007). Uniform volumetric pricing is different from flat rate pricing. A uniform volumetric 

pricing schedule is metered and combines a monthly fixed base service charge with a 

constant volume charge for the amount of water consumed by the households, measured in 

1000 gallons increments (3.79 m
3
). By contrast, flat rate pricing is unmetered and a fixed 

charge is paid for an unlimited amount of water consumed by each household. 

Hoffman et al. (2006) modeled water demand in Brisbane, Australia using marginal price 

and they found that price and income elasticities of water demand were inelastic. While 

Olmstead et al. (2007) assessed water demand model comparing increasing block rate pricing 

with uniform volumetric pricing and found that price elasticity varies with difference in 

pricing structure. Both of these studies uses marginal price as price vehicle. The current study 

extends the residential water demand model under the uniform volumetric pricing for both 

average and marginal pricing structures and also assessed the change in elasticity in different 

periods (pre-drought versus during-drought and summer-fall high consumption period (HCP) 
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versus winter low consumption period (LCP)) using individual household level data. Thus, 

the general objectives of this study are to estimate water demand while assessing different 

factors affecting water demand and to determine price and income elasticity of demand under 

the uniform volumetric pricing structure of water. The specific objective of this study is to 

identify the variation in price and income elasticity of water demand and other variables pre-

versus during-drought and in the HCP versus the LCP while using average and marginal 

pricing of water. 

Methodology 

Theoretical Review 

The consumer equates the marginal or average price of water to the benefit of water 

consumption in order to determine the quantity of water consumed. The other variables 

affecting consumer choice may include household size and structure, and weather variables 

like rainfall and temperature (Arbués et al., 2003).  

Water price is a major factor in controlling water demand. In most cases, water demand is 

estimated as inelastic since water has no substitutes for basic uses and consumers show a low 

level of awareness of the rate structure because water bills are only a small proportion of 

most household’s income (Chicoine and Ramamurthy, 1986). Water pricing provides an 

obvious mechanism for water utilities to strategically change consumers’ behavior. Demand 

management is highly influenced by price, whether the price is inelastic or elastic. Water 

demand is analyzed to test the hypothesis that customers respond to increases in both average 

and marginal prices of water as found in previous studies (e.g. Gaudin et al., 2001; Hewitt 

and Hanemann, 1995; Kenney et al., 2008). Previous studies used either average price 

(Gaudin et al., 2001; Kenney et al., 2008; Michelsen et al., 1999) or marginal price 
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(Nieswiadomy and Molina, 1989) to study the pricing effect on water demand. However, 

extensive discussion has occurred in the literature on pricing structure (Nataraj and 

Hanemann, 2011; Schleich and Hillenbrand, 2009) and whether consumers respond to the 

marginal prices or the average water price. An informed consumer may respond to the 

marginal price, while consumers with incomplete information about water pricing may react 

to the average price. Effects of both prices on water demand are compared in this study.  

In water demand studies, climatic effects have been used in various ways. For example, 

rainfall during the growing season (Foster and Beattie, 1979), evapotranspiration and rainfall 

(Billings, 1982), monthly average temperature, summer rain, and rise in temperature beyond 

57 ºF (14ºC) (Billings, 1987), and temperature together with annual rainfall (Stevens et al., 

1992) have all been used. Weather conditions can impact short term water demand decisions 

for uses such as landscape irrigation. Therefore, weather variables are also used as the 

explanatory variables for affecting water demand in this study. Hot-dry weather is expected 

to increase water demand compared to cold-wet weather conditions. Across the 

municipalities of Oklahoma, July and August are the maximum domestic water usage months 

(Moss et al., 2013). In these months water consumption is high, especially for lawn irrigation 

(Figure. 1.1). Consumption refers to the actual volume of water used and serves as a 

dependent variable for estimating the water demand models.  

The unavailability of demographic information for individual households is a limitation 

for assessing the impact of variability on household water demand. Current research suggests 

that household water demand is influenced by heterogeneity in households due to differences 

in wealth, income, and parcel size. The assessed value of the property is also occasionally 

used as a proxy variable for income in household-based studies (Dandy et al., 1997) because 
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it is highly correlated with income (Lyman, 1992). Jones and Morris (1984) used a proxy for 

family income based on educational level, car ownership, assessed property value, and the 

age of the residence to avoid a correlation problem. An increase in parcel size corresponds to 

an increase in lawn size and summer water demand since 50 to 70 percent of city water 

production is used to irrigate lawn during the summer months in the United States  (Kjelgren 

and Farag, 2002; Mayer and DeOreo, 1999). Houses built after 1994 have low-flow toilets 

and showers, as the U.S. Energy Policy Act of 1992 restricted household toilets to 1.6 gallons 

(0.006 m
3
) per flush (Rockaway et al., 2010). All shower and faucet fixtures manufactured in 

the United States since 1994 are regulated to have a maximum water flow at or below 2.2 

gallons (0.008 m
3
) per minute. Fixture water use, as measured by pre and post regulation date 

of house construction, affects household water demand. 

Data 

Study Area. The study area is the Oklahoma City metropolitan area, a large urban region 

in the central part of the state of Oklahoma. Oklahoma City is the capital city of Oklahoma 

and is a rapidly growing city and a metro-area with a population of 1.25 million, an increase 

of 8.1 percent since 2000 (Census 2010). The City of Oklahoma City Water Utilities Trust 

(OCWUT) is responsible for supplying water for Oklahoma City and the surrounding 

communities. The OCWUT currently serves approximately 600,000 municipal, domestic, 

and industrial water customers with a current demand of 241,768 acre-feet (298 Mm
3
) per 

year. Based on our analysis of billing records from 2009 through 2012, 50-60 % of total 

treated water is supplied to residential consumers, mostly single family homes. Monthly 

water consumption for 10,000 randomly selected residential households is used in this study. 

The monthly water consumption data was obtained from the OCWUT. The monthly average 
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residential water consumption from July 2009 through December 2012 is presented in 

Figure. 1.1 

Household Characteristics. Lack of individual residence data is a major obstacle in 

determining the impact of household characteristics on residential water demand. Based on 

the literature to date, the major household characteristics affecting residential water demand 

are household income, wealth, family size, lawn size, household value etc. (Cavanagh et al. 

2002; Jones and Morris 1984; Kenney et al. 2008; Lyman 1992; Renwick and Green 2000; 

Syme et al. 2000). This study used GIS referenced billing data to identify house assessed 

value, year constructed, and parcel size. The house value, parcel size, and the year 

constructed data were obtained from OCWUT, which was constructed by them from the 

assessor databases for the Oklahoma City metropolitan area. The assessed value of the 

household for 2011 is used as a proxy for an income variable because of the high correlation 

between them.  

Pricing Structure. Water pricing for Oklahoma City customers is structured based two 

categories: a base service charge and a constant per unit volume charge. The base service 

charge is the fixed price charged to individual households according to the meter size. The 

unit use charge is the price charged to households based on the volume of the water usage 

and is the marginal price paid for every 1000 gallons (3.79m
3
) of water usage. A sum of the 

base service charge and the total use charge is billed to the customers as the water charge. 

The base service fee and use charge (per 1000 gallons or 3.79 m
3
) change annually. The base 

service fee and unit use charge have been increasing annually by approximately 6% and 5%, 

respectively (Table 1.1). The monthly average price was estimated utilizing both water and 

sewer charges in this study.  
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Weather Conditions. Temperature and rainfall patterns for Oklahoma City area were 

obtained from Oklahoma Mesonet (Mesonet, 2013) and calculated for monthly periods from 

July 2009 through December 2012. The Oklahoma Mesonet, a joint project of Oklahoma 

State University and the University of Oklahoma, is a network of over 100 Mesonet 

automated weather stations across the state of Oklahoma (Brock et al. 1995). The Oklahoma 

City area receives about 35 inches (889 mm) of annual rainfall on average and rainfall is light 

and unreliable in the summer months (Oklahoma Mesonet 2013b). The area received a 

similar amount of average annual rainfall (36.8 inches or 934.7 mm) in 2010. However, the 

years 2011 and 2012 were drier than average, with annual rainfall 23% below the 30-year 

average in 2011 and 10% below in 2012. The summer of 2012 was slightly wetter than the 

summer of 2010, but summer of 2011 was excessively drier (Figure. 1.1).  

Procedure 

A basic condition for unbiased and consistent parameter estimation under ordinary least 

squares (OLS) is that there is no correlation between the error term and any of the 

explanatory variables. Using the average price in the water pricing model for demand 

estimation generates a simultaneity problem because the average price is determined by the 

consumed quantity of water and marginal price, therefore, will be correlated with the error 

term and the OLS estimation leads to biased and inconsistent results. Thus, the two-stage 

least squares (2SLS) method is applied using instrumental variables as in the previous studies 

(Kenney et al. 2008; Michelsen et al. 1999; Nieswiadomy and Molina 1989). In the first stage 

of this method, the endogenous variable is regressed on a set of instrumental variables that 

are not correlated with the error term but are highly correlated with the endogenous variable 

itself. The average water price is regressed against all the explanatory variables and 
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instrumental variables: the regional gas price (Energy Information Administration 2015) and 

the consumer price index (Bureau of labor Statistics 2015) in equation (1). The average price 

equation with instrumental variables can be expressed as follows: 

 

(1) 
ln(𝑃𝑖𝑡) = 𝛽0 +𝛽1 ln(𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽2 ln(𝑅𝑒𝑠𝑆𝑖𝑧𝑒𝑖) + 𝛽3𝑀𝑎𝑥𝑡𝑒𝑚𝑝𝑡 + 𝛽4 𝑇𝑜𝑡𝑃𝑟𝑐𝑝𝑡

+ 𝛽5𝑌𝑟𝑏𝑢𝑖𝑙𝑡𝑖 + 𝛽6ln(𝐺𝑃𝑡) + 𝛽7ln(𝐶𝑃𝐼𝑡) +𝜖𝑖𝑡 

where 𝑃𝑖𝑡 is the average price of water consumption in dollars in households i 

(i=1,…,10,000), month t (t=1,…,42) from July 2009 through December 2012, ResSize is 

household area, MaxTemp is the maximum monthly temperature, TotPrcp represents total 

monthly rainfall, GP is the regional gas price,𝐶𝑃𝐼 is the regional consumer price index, 

Yrbuilt is the indicator variable which is equal to 1 if the house was built after 1994 and 0 if it 

was built before 1994, 𝛽’s are the parameter estimates of the variables, and 𝜖𝑖𝑡 is the error 

term. 

A monthly regional gas price and consumer price index are introduced as instrumental 

variables as they are correlated with average water price and exogenous to water demand. 

The predicted value of average price at first stage is then used in the second stage, in an OLS 

regression, as an explanatory variable in place of the endogenous average price variable.  

The demand model is conceptually similar to previous studies which assume that 

household water demand is a function of price, weather, and household characteristics like 

income, parcel size, and the year constructed. The following model was used in this study: 

 

(2) 
ln(𝑄𝑖𝑡) = 𝛽0 +𝛽1 ln(𝑃𝑖𝑡−1) + 𝛽2 ln(𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽3 ln(𝑅𝑒𝑠𝑆𝑖𝑧𝑒𝑖) + 𝛽4𝑀𝑎𝑥𝑡𝑒𝑚𝑝𝑡

+ 𝛽5 𝑇𝑜𝑡𝑃𝑟𝑐𝑝𝑡 + 𝛽6𝑌𝑟𝑏𝑢𝑖𝑙𝑡𝑖 + 𝛾𝑖 + 휀𝑖𝑡 
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 where 𝑄𝑖𝑡 is the total amount of water consumed in households. 𝑃𝑖𝑡−1 is the lagged predicted 

average water prices from first stage (for average price model )/marginal water price (for 

marginal price model), 𝛾𝑖 is household random effect. In a household, the price of the 

previous month’s water bill is paid at the beginning of current month which influences the 

next or current month’s water demand.  

The variable definitions and summary statistics are provided in Table 1.2. The demand 

model is estimated to investigate the variability of the model for all billing periods: (July 

2009 through December 2012), pre-drought (July 2009 through August 2010) and during-

drought (September 2010 through December 2012) periods, and the LCP (January through 

May and October through December) and the HCP (June through September) separately. The 

model is also estimated for both average and marginal price signals. The 2SLS model is used 

for all periods for an average price model while for the marginal price model only the OLS 

estimation is done since there was no likelihood of simultaneity among marginal price and 

water demand. Due to the log-log relationship between demand, and price and income, the 

coefficient estimate on price and income in the model gives the price and income elasticity of 

water demand directly.  

Results and Discussions 

The parameter estimates of the variables in equation (2) using the average price for all billing 

periods, pre- and during-drought billing periods, and the HCP and LCP models are provided 

in Table 1.3. The parameter estimates for all billing periods, the HCP, and the LCP using 

marginal price are provided in Table 1.4. Pre- and during-drought variability in the marginal 

price model was not estimable as the marginal price varied by year only.  
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The water demand model in this study yielded the expected signs for most of the 

variables along with statistical significance (P < 0.1) for all explanatory variables in equation 

(2). The adjusted R
2
 value is ~0.16 for all billing, pre-drought and during-drought periods, 

and it ranged from 0.03 to 0.08 for the HCP and the LCP respectively (Tables 1.3 and 1.4). 

These R
2
 values are relatively low, but the significant estimates describe some relationship 

between water demand and explanatory variables. Other water demand studies using 

simultaneous equations showed low R
2
 values ranging from 0.07 to 0.50 (Hewitt and 

Hanemann 1995; Michelsen et al. 1999; Nieswiadomy and Molina 1989; Schleich and 

Hillenbrand 2009). A low R
2
 could be the result of omitted variables that affect demand that 

are unknown such as conserving or wasteful behaviors, the actual number of household 

residents, and the use of proxy variables for unknown variables such as fixture type and 

actual income.  

Most of the estimated parameter coefficients has the similar magnitudes for both the 

marginal and the average price models for all billing periods, pre-drought and during-drought 

periods, and the HCP and LCP models except price elasticity and rainfall. Price elasticity is 

more elastic for the average price model, compared to the marginal price model. The price 

elasticity of water demand is inelastic for the all billing periods for both average and 

marginal price models. For the average price model, the price elasticity of water demand is -

0.38 for all billing periods (Table 1.3), while for the marginal price model, price elasticity is -

0.66 (Table 1.4), consistent with the findings of previous studies. Brookshire et al. (2002) 

reported that the price elasticity of water demand is in the range of -0.11 to -1.59 with an 

average of -0.49. Espey et al. (1997) in a meta-analysis of 24 studies reported that elasticity 

ranged from -0.02 to -0.75.  
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Pre-drought and during-drought period price elasticities of water demand are also 

inelastic. People are expected to be less responsive to increases in price during a drought 

period, which is reflected by the average price estimate for the during-drought period model. 

The average price elasticity is more elastic in the during-drought period (-0.49) compared to 

the time range of the pre-drought period (-0.67). Price elasticity of water demand shows a 

similar pattern in the HCP for both the average and the marginal price models. In the HCP, 

both the average price and the marginal price estimates re positive and did not reduce water 

demand. Both the marginal and the average price elasticities for water demand are very 

elastic in the HCP compared to the LCP. These results indicate that an increase in price has a 

very small effect on water demand and that the effect is minimal during drought and the HCP 

(June, July, August, and September).  

The income elasticity of water demand is positive, highly significant, and less than unity 

during all periods for both the average and the marginal price models. This suggests that 

residential water is a necessity for households (Table 1.3 and Table 1.4). As expected, 

income elasticity of demand is more elastic in the during-drought period compared to the pre-

drought period and during the HCP compared to the LCP. Likewise, the coefficient for parcel 

size is also positive and highly significant for all periods, indicating that an increase in the 

size of a parcel increases water demand. The parameter estimates show that households built 

after 1994 are likely to consume less water. These results are also consistent with the results 

of previous studies (Cavanagh et al. 2002; Hewitt and Hanemann 1995; Nieswiadomy and 

Molina 1989; Renwick and Green 2000 ). A higher coefficient estimate on parcel size in the 

HCP compared to the LCP indicates that higher water demand may be related to lawn 

irrigation. 
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Intuitively, demand for water increases if the temperature increases, and decreases if 

there is more rainfall. Both models (average and marginal price) predicts that water use 

increased by about 1% for a 1°F (0.56 °C) increase in average daily maximum temperature 

over all periods. Similarly, for every additional inch (25.4 mm) of rainfall, water demand 

decreased approximately by 1% for all billing period. In this study, the weather estimates 

have the expected signs for all periods in both models (average and marginal price) except 

during the drought period and the LCP. The positive estimates for rainfall during-drought 

period and the LCP indicate that the water demand do not decrease during these periods. 

Several reasons might be responsible for this finding. Residents may irrigate lawns to 

maintain them during drought conditions due to increased evapotranspiration rates or they 

might have used more water for bathing and/or swimming. Similarly, during the LCP rainfall 

might not be enough to influence the water demand. However, further research is required to 

better understand the relationship between water demand and major determinants of water 

consumption during severe weather conditions. 

Summary and Conclusions 

Although the parameter estimates are similar for both the average and the marginal price 

models, the average price model showed a somewhat better fit (adjusted R
2
) for most of the 

billing periods. The average price elasticity is more inelastic and highly significant compared 

to the marginal price elasticity for all billing periods. Although the average price model gives 

better predictions for water demand, more research is required to confirm that the average 

price is a better price measure than the marginal price. 

The results indicate that price increases have very small effect on reducing water demand 

and the effect is minimal during-drought and during the HCP which are more inelastic in 
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these periods. Income elasticity is consistently less than unity and statistically significant 

over each period for both the average price and the marginal price models. Water demand 

decreases if the house was constructed after 1994 and increases as the parcel size increase. 

Since parcel size indicates the lawn size, our findings suggest a need for outdoor watering 

education to decrease wasteful irrigation, especially during the HCP. Xeriscaping subsidies 

for water conserving landscapes may also be a viable option. Parcel size is also readily 

observable in tax assessment data, allowing agency targeting of consumers by utilities facing 

supply restrictions. All other variables like temperature and house year built are statistically 

significant and have the expected signs. However, rainfall estimates has a positive effect on 

water demand during the drought and the LCP. This may be for bathing/swimming or for 

maintaining the lawns during the drought period. Rainfall during the drought and the LCP 

also do not eliminate the rain deficit for turf needs. However, more research using plant 

required water and evapotranspiration from remotely-sensed satellite data is to be matched 

with this household level data in the future to confirm adequate required irrigation in the high 

consumption periods.  

This study provides insight into the major variables that affect water demand. In the 

range of the unit water prices of $2.26 to $2.55 per 1000 gallons (3.79 m
3
) during the study 

period, water demand is mostly inelastic. However, a combination of price increases and 

education could lead to increased adoption of water conserving summer practices. Uniform 

volumetric pricing do not show variability between lower and higher water consumers, but 

block rate pricing imposes an increasing marginal price to the consumer for increasing water 

consumption, which is found to be more efficient on residential water conservation 

(Olmstead et al. 2007). Comparing the demand elasticities of other cities under block rate 
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water pricing, Oklahoma City can help to understand the effect of pricing on the price 

elasticity of water demand. In fact, Oklahoma City adopted a block rate pricing scheme in 

September 2014, with a higher second tier that would be implemented by 2016 to affect the 

most wasteful households using over 10,000 gallons per month (Gotcher, 2014). In addition, 

inclusion of more currently unknown demographic variables like household size (number of 

family members in household), the average age, and the education level of household 

members would improve water demand estimates and help target individual behavior for 

policy implementation. Unfortunately, more detailed household level data necessitates costly 

survey methods. This paper is able to provide basic intuition with data readily available to 

utilities and their regulators. 
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Table 1.1. Oklahoma City water service and sewer charges by date.  

Type Charges Date 

  

10/1/2008 10/1/2009 10/1/2010 10/1/2011 10/1/2012 

Water Service Base Charge $7.02 $7.37 $9.75 $10.14 $10.55 

 

Use Charge/ 

1000 gallons (3.79 m
3
) 

$2.15 $2.26 $2.35 $2.45 $2.55 

Sewer Base Charge $1.54 $1.62 $2.78 $2.89 $3.01 

 

Use Charge/ 

1000 gallons (3.79 m
3
) 

$3.09 $3.24 $3.37 $3.5 $3.65 

Source: City of Oklahoma City (2013)
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Table 1.2. Variable definitions and summary statistics.  

Variables Definition Units Mean Std. Dev 

Water 

consumption 

Household water consumption per billing period 1000 gallons  

(3.79 m
3
)  

8.87 10.88 

Residential value 

(Income) 

Value of the individual household used as a proxy for 

household income 

Dollars 108,608 109,599 

Marginal prices Annual marginal prices over the billing period Dollars/1000 gallons 

(3.79 m
3
) 

2.35 0.10 

Average prices Average prices per billing period Dollars/1000 gallons 

(3.79 m
3
) 

8.28 2.31 

Year built Indicator variable, 1 if the household was built after 1994 0-1 0.15 0.36 

Parcel size Size of the parcel of individual households Acres (ha) 

 

1,712 (693) 826 (334) 

Maximum 

temperature 

Average monthly maximum temperature per billing period °F (°C) 73.51 

(23.06) 

17.11  

(-8.27) 

Total rainfall Total monthly rainfall per billing period Inches (mm) 

 

2.81 (71.37) 2.34 (59.44) 

Gas prices Regional gas prices per billing period Dollars 3.21 0.48 

Consumer Price 

Index 

Regional Consumer Price Index per billing period Dollars 137.76 3.64 
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Table 1.3. Variable estimates and standard error (in brackets) for demand of water for all billing periods, pre- and during- drought 

periods, and high consumption and low consumption periods using average price, Oklahoma City (July 2009 through December 

2012). Coefficients are statistically significant at the 0.01 level. 

Variables All Billing 

Periods 

Pre-drought Drought High Consumption 

Period 

Low Consumption 

Period 

Intercept -3.81(0.12) -2.37(0.17) -3.74(0.13) -10.77(0.17) -2.95(0.12) 

Ln(Parcel Size) 0.31(0.03) 0.31(0.03) 0.31(0.03) 0.48(0.04) 0.31(0.03) 

Ln(Income)  0.28(0.02) 0.21(0.02) 0.31(0.02) 0.55(0.03) 0.20(0.02) 

Ln(Average Price ) -0.38(0.01) -0.67(0.05) -0.49(0.01) 1.58(0.02) -0.10 (0.01) 

Year Built -0.11(0.01) -0.10(0.02) -0.10(0.02) -0.12(0.03) -0.10(0.02) 

Rainfall -0.01(0.01) -0.01(0.01) 0.01(0.01) -0.01(0.03) 0.01(0.01) 

Maximum 

temperature 

0.01(0.01) 0.02(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 

Number of  

observations 

420,000 140,000 280,000 150,000 270,000 

Number of 

households 

10,000 10,000 10,000 10,000 10,000 

Adjusted-R-Square 0.15 0.16 0.17 0.08 0.04 

Note: Dependent variable is Ln (water consumption).
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Table 1.4. Variable estimates and standard error (in brackets) for demand of water for all 

billing periods, high consumption period, and low consumption period using marginal price, 

Oklahoma City (July 2009 through December 2012). Coefficients are statistically significant 

at the 0.01 level. 

Variables All Billing Periods High Consumption 

Period 

Low Consumption 

Period 

Intercept -4.99(0.12) -8.06(0.15) -3.18(0.12) 

Ln(Parcel Size) 0.36(0.03) 0.40(0.04) 0.32(0.03) 

Ln(Income)  0.30(0.02) 0.48(0.03) 0.20 (0.02) 

Ln(Marginal 

Price)  

-0.66(0.02)* 1.49(0.03) -0.01(0.03) 

Year Built -0.12(0.02) -0.11(0.02) -0.11(0.02) 

Rainfall -0.01(0.01) -0.01(0.01) 0.01(0.01) 

Maximum 

temperature 

0.01(0.01) 0.01(0.01) 0.01(0.01) 

Number of  

observations 

420,000 150,000 270,000 

Number of 

households 

10,000 10,000 10,000 

Adjusted-R-

Square 

0.15 0.06 0.03 

* Statistically significant at the 0.1 level. Note: Dependent variable is Ln (water 

consumption). 
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Figure. 1.1 Graphs showing (a) monthly average water consumption and (b) total monthly 

rainfall, July 2009 through December 2012 (Sources: City of Oklahoma City, 2013 and 

Mesonet, 2013). 
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CHAPTER II 
 

 

HETEROGENEITY IN PREFERENCES FOR TURFGRASS ATTRIBUTES 

 

ABSTRACT 

Maintaining a desirable lawn entails choosing a turfgrass that can balance challenges 

associated with water requirements, salinity, shade, winter stress, and high maintenance 

cost. Turf producers and breeders attempt to produce new and improved turf cultivars, 

but they are largely unaware of the consumers’ preferences for specific turfgrass 

attributes. This study determines consumers’ preferences and willingness to pay for 

turfgrass attributes. The results of a survey of 1,179 household consumers indicate that 

preferences for stress tolerance turfgrass are highly heterogeneous. The preferred model 

specification (a latent class model) shows that household turf consumers are clustered in 

two broad classes; “willing household consumer” and “reluctant household consumer”. 

Willing household consumers are characterized by high income and hobbyist, while 

reluctant household consumers are characterized by people of age more than 45 years. 

Results also indicate that willing household consumers are most likely to pay more for 

improved turfgrass attribute than reluctant household consumers. 
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For example, willing household consumers are willing to pay $0.90 per square foot (ft
2
), 

while reluctant household consumers are willing to pay $0.77 per ft
2
 more for low water 

requiring turf, (20,000 gallons per month) compared to high water requiring turf (60,000 

gallons per month). This categorization of consumers may help sod producers and 

breeders in targeting willing household consumers and strategize how to reach the 

unwilling consumers. 

Introduction 

The turfgrass industry is expanding rapidly as one of the fastest growing segment of 

agriculture in the United States (U.S.) due to its visual benefits for growing residential 

and commercial properties (Morris, 2003; Haydu, Hodges, and Hall, 2006). Even though 

turfgrass does not provide food, fiber or animal feed, lives of millions of people are 

impacted by turfgrass in many different ways including their physical and mental health, 

and social well-being (Beard and Green, 1994). It is the major vegetative ground cover 

and is the most widely used ornamental plant in the U.S. (Emmons, 2000). Turfgrass 

occupies about 50 million acres (20.2 million ha) and it produces 40-60 billion annual 

revenue in the U.S. (Haydu, Hodges, and Hall, 2006; Morris, 2003). Approximately 75% 

of the total U.S. turfgrass coverage is home lawn acreage (Hull, Alm, and Jackson, 1994). 

The turfgrass industry provides economic benefit to diverse groups such as athletic field 

managers and superintendents, lawn care operators, architects, landscape designers, 

owners, contractors, and seed and sod producers. Apart from providing an aesthetically 

pleasing surface for outdoor activities, turfgrass is also used for soil stabilization, water 

conservation, air and water filtration, and heat dissipation in urban areas. However, lawns 

occasionally create environmental externalities due to overuse of inputs like chemical 
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fertilizer, pesticides and herbicides, high water use, and solid waste (Bormann et al., 

1993).  

There is three times more acreage in lawns than there is acreage in irrigated corn, 

making turfgrass the largest irrigated crop of the U.S. in terms of surface area (Earth 

Observatory, 2005). According to the U.S. Geological Survey (USGS), of the 26 billion 

gallons (98 million m
3
) of water consumed daily in the U.S., approximately 7.8 billion 

gallons (29.5 million m
3
, 30%) are devoted to outdoor uses, mainly landscaping (Solley 

et al., 1998; Vickers, 2001). About 40-75% of household water use is accounted by 

turfgrass irrigation in arid and semi-arid regions (Morris, 2003; Mayer et al., 1999; 

Ferguson, 1987).  

Due to climate change and more prolonged droughts and increasing public demands 

on water resources for human consumption, less potable water will be available in the 

future for lawn irrigation. As a result, mandatory irrigation restrictions, water audits, 

water bans, increases in potable water prices, and limits on turfgrass irrigation have 

already been imposed in many cities to reduce water scarcity during droughts and meet 

water demand for the long term (EPA, 2002; Kenny et al., 2009). In fact, governing 

bodies (water management districts, counties, and cities) are establishing restrictive 

irrigation guidelines and/or implementing ordinances that limit the use of certain 

turfgrass species or the turf acreage in urbans. Other problems such as salinity, shade, 

winter stress, and high maintenance also affect the proper turfgrass management. The 

lack of freshwater or municipally treated water has compelled the use of effluent or other 

low quality water such as rainwater or the reclaimed water for lawn irrigation purposes, 

and/or to target alternative plant materials in the lawn. Hot and dry climates (drought 
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conditions) coupled with the use of low quality water may lead to higher concentrations 

of salt in the soil profile which adversely impact the growth of turfgrass and requires high 

maintenance. In addition, intrusion of seawater in the coastal cities and also the use of 

salt for road thawing have increased the salinity problem in turfgrass (Murdoch, 1987). 

Furthermore, several home lawns have a significant amount of shaded area and many 

turfgrass cultivars have largely been impacted by shade (Harivandi and Gibeault, 1996). 

Turfgrass loss during winter due to freezing temperature, termed as winter kill, is also 

one of the stress related problems of lawns (Frank, 2013). All these problems lead to 

increased demand of environmental stress tolerant (drought, salinity, shade, and 

winterkill) and water conserving turfgrass cultivars to cope with the stresses and to 

maintain the environmental benefits of turfgrass. Thus, efficient and sustainable turfgrass 

cultivars that are tolerant to the environmental stresses and require less water with wider 

geographical adaptation and broader regional impacts need to be developed.  These 

improved turfgrass cultivars will help conserve potable water resources and human 

efforts, and increase the sustainability of the turfgrass industry.  

When spending on lawn and landscaping, consumers are concerned with multiple 

attributes including attractiveness, ease of maintenance, cost, and stress tolerance. Sod 

producers and breeders often grow and develop a specific turf cultivar, but it may not 

reach consumers. Breeders may fail to convince producers of the salability of new and 

improved cultivars and consumers may be ignorant of the long term benefits of new 

cultivars. In order to meet demand, research scientists, producers, and turf industry 

practitioners must match turfgrass characteristics to buyer expectations and ability to pay. 

Unfortunately, there is a lack of information on consumer demand for turfgrass 
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characteristics, something this research seeks to remedy. The objectives of this study are 

to determine household consumers’ WTP for abiotic stress tolerant (drought, shade, 

winterkill, and salinity) and low maintenance attributes of turfgrass over southeastern and 

mid-southern states of the U.S., and address the possible causes of heterogeneity in the 

preference for the turfgrass attributes.  

Some previous studies have shown that people are willing to pay for environmentally 

amenable goods and services (Engel and Potschke, 1998; Hu, Woods, and Bastin, 2009; 

Straughan and Roberts, 1999). However, concerns for the environment vary widely 

among the consumers especially in adoption of new products and services. Thus, it is 

necessary to conduct consumer research to understand consumers’ attitude toward new 

products, i.e., improved turfgrass cultivars in this case. Little formal applied economic 

research has been performed on the consumers’ preferences and willingness to pay 

(WTP) for specific turfgrass cultivars. Yue, Hugie, and Watkins (2012) used a choice 

experiment with real turf products to assess consumers’ willingness to pay for low input 

and aesthetic attributes of turfgrass. They reported that consumers’ preference and WTP 

are high for aesthetic and low maintenance attributes of turfgrass. Yue, Hugie, and 

Watkins (2012) limited their study to a small portion (N=128) of household consumers of 

turfgrass in Minnesota, USA. Consumer preferences for any good or service including 

turfgrass may be characterized by heterogeneity which is accounted by variation in 

location, weather, household and demographic characteristics, and other factors.  Many 

choice experiments have shown that demographic characteristics such as age, education, 

and homeownership affect the willingness to pay for consumer goods (Birol et.al, 2006; 

Mahasuweerachi et.al, 2010). We expect preferences and behavior to vary by hard size 
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and consumer attitudes, such as whether they view yard work as a hobby, or a necessary 

chore to save on professional landscape maintenance (Boyer et al, 2015; Ghimire et. al, 

forthcoming). Limiting the study to a particular area might not address the heterogeneity 

issue and may induce a biased demand forecasting model. This study covers five states 

(Florida, Georgia, Oklahoma, North Carolina, and Texas), the principal southern warm 

season turfgrass market, to study heterogeneity among consumers and also includes more 

stress related issues of turfgrass such as shade, salinity, and winter kill. The information 

on the consumers’ preferences and WTP for these turfgrass attributes will contribute to 

connect the breeders’ research, sod producers, and end retail consumer market. Yue, 

Hugie, and Watkins (2012) used mixed logit model (MLM) to allow for preference 

heterogeneity among household consumers to determine WTP for different turfgrass 

attributes. Along with the conditional logit model (CLM) and the MLM, the mixed logit 

model with interaction terms and the latent class model (LCM) are estimated in this study 

to access heterogeneity in the consumers’ preferences and WTP for turfgrass attributes.  

Methodology 

Choice Experiment  

The initial step to design the discrete choice experiment (DCE) was to select the goods to 

be valued in terms of attributes (stress tolerant turfgrass cultivars in this study). The 

attributes for the DCE were identified initially based on the literature review and with the 

consultation with turf breeders, physiologists, and other experts in turf industry. The 

selected attributes and their levels are reported in Table 2.1. The attributes were selected 

to study the economic paybacks of the stress tolerant turfgrass attributes. A 41 × 33 ×

22 = 432   number of unique lawn scenarios could be constructed from all the attributes 
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and levels provided in Table 2.1. A fractional factorial design was constructed similar to 

Louviere, Hensher, and Swait (2000) where the numbers of profiles were selected to 

maximize D-efficiency, and each set had similar probability of choosing either of the 

alternatives. The fractional design (D-efficiency=96.4%) consisted of 18 sets of different 

lawn scenarios to evaluate. The set of 18 scenarios were randomly grouped in three 

different versions with six different DCE choice sets in each version.  

Each choice set contained three lawn scenarios: A, B, and C where A and B 

composed of different turfgrass attributes differing in levels, and C was an option to 

select neither scenario which is an “opt out” option, also considered as a status quo or 

baseline alternative. Respondents were asked to choose one option among the three 

provided options assuming to be in the hypothetical situation if they had to buy one of the 

scenarios. An example of the DCE choice set is provided in Figure 2.1.  

Data Collection 

The online survey was conducted in November 2013 in collaboration with International 

Survey Sampling using Qualtrics as the internet interface. The survey was conducted 

with homeowners in five U.S. states (Florida, Georgia, Oklahoma, North Carolina, and 

Texas). The survey was composed of choice experiments, and questions about the 

households, attitudes, and demographics of the households. A total of 1,179 completed 

surveys were received. The descriptive statistics of the respondents are provided in Table 

2.2. The respondents are mostly homeowners (98%) and they live in houses rather than 

apartments, condominiums, or mobile homes. The majorities of respondents have resided 

in their homes for more than 6 years (85%) and have yard size larger than 0.26 acres 

(68%). On average, respondents are 51 years of age with a deviation of approximately 15 
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years and about 64% of them are older than 45 years. Approximately 63% of the 

respondents have undergraduate or higher degrees. Respondents reported that they are 

85% white and 47% females. The average income of the household is $67,455 with a 

deviation of $48,033. Approximately 55% of households have annual income $50,000 or 

higher. 

In addition to the demographic and general household questions, attitudinal questions 

were also asked in the survey. Those attitudinal questions include  rating their lawns, 

main attitude for lawn care (if lawn care is hobby or respondents want to save money to 

hire the lawn care service or both or any other reasons of lawn care), and their 

preferences for a United States Department of Agriculture (USDA) certified lawn or 

pesticide free lawn. The respondents were asked to rate their lawns as well as their 

neighbors’ lawns on scale of 1 to 10 (where 1 is the worst and 10 is the best). On average, 

they provide higher rating to their lawns (7 out of 10 scale) than to their neighbor’s lawns 

(6 out of 10 scale), indicating the belief of  respondents that  they take care of lawns 

better than their neighbors do. Of the respondents, 32% take care of their lawns as hobby, 

29% take care of their lawns to save money by hiring the lawn care service, while 26% 

take care of their lawns for both purposes. Approximately 13% of the respondents gave 

other answers such as they were willing to do lawn care, but they are too old or lawn care 

is done by my husband or kids. The respondents in the survey are highly positive about 

the environmentally friendly product such as USDA certified (73%) and pesticide free 

turfgrass (82%).  
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Econometric Model 

Conditional Logit Model. The DCE method in theory is based on the Lancaster’s 

model of consumer choice (Lancaster, 1966), and theoretically and econometrically based 

on random utility theory (McFadden, 1974). The respondents are assumed to have 

random utility functional form which comprises the stochastic and deterministic 

components that can be represented as follows:  

(1) 𝑈𝑖𝑗𝑠 = 𝑉𝑖𝑗𝑠 + 휀𝑖𝑗𝑠 

where 𝑉𝑖𝑗 is the deterministic component which we can observe for individual i for 

alternative j and choice set s, and 휀𝑖𝑗 is the stochastic component. The observed utility is 

derived from the turf purchase scenario which depends on turfgrass attributes and levels 

in a particular scenario and can be represented as follows: 

(2) 𝑉𝑖𝑗𝑠 = 𝑿𝒊𝒋𝒔𝜷  

where 𝑿𝒊𝑗 isthe vector of turfgrass attributes and V can be expressed as a grouping of 

turfgrass attributes as follows: 

(3) 𝑉𝑖𝑗𝑠 = 𝑁𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝑖𝑗𝑠 + 𝛽1(𝑊𝑖𝑛𝑡𝑒𝑟𝐾𝑖𝑙𝑙𝐿𝑜𝑤𝑖𝑗𝑠) + 𝛽2(𝑊𝑖𝑛𝑡𝑒𝑟𝑘𝑖𝑙𝑙𝑀𝑒𝑑𝑖𝑗𝑠)

+ 𝛽3(𝑆ℎ𝑎𝑑𝑒𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑡𝑖𝑗𝑠) + 𝛽4(𝑊𝑎𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝐿𝑜𝑤𝑖𝑗𝑠) 

+ 𝛽5(𝑊𝑎𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑀𝑒𝑑𝑖𝑗𝑠)+𝛽6(𝑆𝑎𝑙𝑖𝑛𝑒𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑡𝑖𝑗𝑠)

+ 𝛽7(𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑛𝑐𝑒𝑐𝑜𝑠𝑡𝐿𝑜𝑤𝑖𝑗𝑠) + 𝛽8(𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑐𝑜𝑠𝑡𝐻𝑖𝑔ℎ𝑖𝑗𝑠)

+ 𝛽9(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑖𝑗𝑠) 

where 𝛽′s  are the parameters to be estimated for each attribute. 

𝑊𝑖𝑛𝑡𝑒𝑟𝐾𝑖𝑙𝑙𝐿𝑜𝑤= 1 if no turf is damaged by winterkill with probability of 50%, 0 

otherwise  
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𝑊𝑖𝑛𝑡𝑒𝑟𝑘𝑖𝑙𝑙𝑀𝑒𝑑= 1 if 20% lawn is damaged by winterkill with probability of 50%, 0 

otherwise  

𝑆ℎ𝑎𝑑𝑒𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑡 = 1 if turf is tolerant to shade, 0 otherwise  

𝑊𝑎𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝐿𝑜𝑤 =1 if water requirement for the lawn is 20,000 

gallons/month, 0 otherwise. 

𝑊𝑎𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑀𝑒𝑑= 1 if water requirement for the lawn is 40,000 

gallons/month, 0 otherwise. 

𝑆𝑎𝑙𝑖𝑛𝑒𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑡= 1 if turf is tolerant to salinity 0, otherwise. 

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑛𝑐𝑒𝑐𝑜𝑠𝑡𝐿𝑜𝑤 =1 if average maintenance cost is 20% less than now, 0 

otherwise.  

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑐𝑜𝑠𝑡𝐻𝑖𝑔ℎ =1 if average maintenance cost is 20% more than now, 0 

otherwise.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒 = Average purchase price of turfgrass ($/ft
2
) for a 5000 square feet 

lawn. 

No change is alternative specific constant which captures the effect (difference) in the 

utility of a respondent’s selection of option C in a choice set compared to Option A and 

B. The No change is specified to be equal to 1 when option C is selected and 0 if option 

A or B is selected.   

Consumers will choose a particular option j if it’s utility is higher than those for other 

alternatives. Assuming that the relationship between utility and attributes is linear in the 

parameters and variables function, the error terms 휀𝑖𝑗 are independent and identically 

distributed (IID) and follow a type I extreme value distribution, the probability of 

alternative j being chosen can be expressed as: 
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(4) 
𝑝𝑖𝑗𝑠 =

𝑒(𝑿𝒊𝒋𝒔𝜷)

∑ 𝑒𝐽
𝑘=1

(𝑿𝒊𝒔𝒌𝜷)
 

The log likelihood function for the choices made by all individuals is determined as: 

(5) 

ln 𝑙 =∑∑∑𝑑𝑖𝑗𝑠(ln(𝑝𝑖𝑗𝑠))

𝑆

𝑠=1

𝐽

𝑗=1

𝑁

𝑖=1

 

where 𝑑𝑖𝑗𝑠 is a binary variable that takes the value of 1 if a person i choose alternative j 

for the choice set s, 0 otherwise.  

Mixed Logit Model. There has been wide use of the CLM to estimate consumers’ 

utility in the choice experiment literature. The CLM assumes same parameters for all 

consumers for the attributes which indicates that all consumers have same preference for 

the attributes in question (Lusk and Parker, 2009; Peterson and Yosida, 2004). However, 

heterogeneity in preferences may exist due to differences in location, demographics, and 

attitudes. Among several methodologies the MLM is one of the methods that account for 

respondents’ preference heterogeneity which enables the estimation of unbiased estimates 

with accuracy and reliable demand for welfare measurements (Greene, 1997). Allowing 

model parameters to vary randomly over individuals, the MLM is characterized by 

accommodating heterogeneity as a continuous function of parameters (Train, 1998; 

Mcfadden and Train, 2000). The MLM incorporates unobservable heterogeneity by 

modelling a distribution of𝛽𝑖.  

(6) 𝜷𝒊𝒌 = 𝜷𝑘 + 𝝈𝑘𝜂𝑖𝑘 

The (relative) utility associated with each individual 𝑖 for attribute k is represented in 

a discrete choice model by a utility expression of the general form in equation (6) where 

𝜂𝑖𝑘 is an error term with distribution f(𝜂𝑖𝑘). Hence, 𝜷𝒊𝑘 is a random variable with 
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distribution f(𝜷𝒊𝑘), mean𝜷𝒌and standard deviation𝝈𝑘. For a given value of 𝜂𝑖 the 

conditional probability of choice j will be: 

(7) 
𝑝𝑖𝑗𝑠 =

exp(𝑿𝒋𝒔(�̅� + 𝝈𝜂𝑖)

∑ exp(𝑿𝒔𝒌(�̅� + 𝝈𝜂𝑖)
𝐽
𝑘=1

 

The multidimensional integral does not have a closed form so that the probability can 

only be achieved with simulation and parameters are determined by maximizing 

simulated log likelihood function. In the MLM, the observable attributes V can be 

expressed as a grouping of turfgrass attributes as in equation (1) with each 𝛽′s having a 

distribution as in equation (6). The maximum simulated log likelihood function for the 

choices made for R number of random draws is determined as: 

(8) 

 

 

 

ln 𝑙 =∑∑∑𝑑𝑖𝑗𝑠(ln
1

𝑅
∑𝑝𝑖𝑗𝑠𝑟

𝑅

𝑟=1

𝑆

𝑠=1

𝐽

𝑗=1

𝑁

𝑖=1

) 

Since basic MLM cannot identify the sources of preference heterogeneity among the 

consumer, the MLM with interaction terms was estimated to test the difference in 

preference for different groups of income level, age, gender, race, education, states, yard 

size, and lawn care attitudes. The interaction model can be specified as follows: 

(9) 𝑉𝑖𝑗𝑠 = 𝑿𝒊𝒋𝒔𝜷𝒊 +𝛿(𝑿𝒊𝒋𝒔 × 𝑨𝒈𝒆) +𝛾(𝑿𝒊𝒋𝒔 × 𝐹𝑒𝑚𝑎𝑙𝑒) + 𝜗(𝑿𝒊𝒋𝒔 × 𝑅𝑎𝑐𝑒)

+ 𝜌(𝑿𝒊𝒋𝒔 × 𝑺𝒕𝒂𝒕𝒆) + 𝜇(𝑿𝒊𝒋𝒔 × 𝑰𝒏𝒄𝒐𝒎𝒆) + 𝜃(𝑿𝒊𝒋𝒔 × 𝑳𝒂𝒘𝒏𝒄𝒂𝒓𝒆)

+ 𝜔(𝑿𝒊𝒋𝒔 × 𝒀𝒂𝒓𝒅𝒔𝒊𝒛𝒆) + 𝜏(𝑿𝒊𝒋𝒔 × 𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏) 

where 𝑋 is a vector of variables specified as in equation (3);𝑨𝒈𝒆 is the vector of age 

which is separated in three dummy variables that are coded 1 if the individual is in that 

age-group and 0 otherwise; Female is a dummy variable if individual is female and 0 

otherwise; Race is a dummy variable if individual is Caucasian and 0 otherwise; State is 
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a vector of state (i.e. Florida, Georgia, Oklahoma, North Carolina, Texas) and is coded 1 

if the individual lies in that state and 0 otherwise; Income is a vector of income that is 

separated in five categories and is coded 1 if the individual lies in that income category 

and 0 otherwise;  𝑳𝒂𝒘𝒏𝒄𝒂𝒓𝒆 is the vector of lawn care attitude which is separated in 

four dummy variable categories and coded 1 if individual possesses that attitude of lawn 

care and 0 otherwise; Yard size is a vector of size of yard of respondents that is separated 

in three categories and is coded 1 if the individual lies in that yard size category and 0 

otherwise; Education is a vector of levels of education that is separated in three 

categories and is coded 1 if the individual lies in that education category and 0 otherwise; 

and 𝛿,𝛾, 𝜗, 𝜌, 𝜃, 𝜔, 𝜏, and𝜇 are the parameters to be estimated for respective interaction 

variables. 

Latent Class Model. The LCM in contrast to the MLM is a semi parametric version 

of the MLM where heterogeneity is derived from different discrete classes with each 

class having its own parameters (Bhat, 1997; Wedel and Kamakura, 2000). In the MLM, 

utility is determined as a continuous function, however, consumers’ preferences may also 

cluster (Boxall and Adamowicz, 2002; Patunru, Braden, and Chattopadhyay, 2007). The 

sources of heterogeneity can be identified in the LCM as the characteristics of the 

covariates in the classes. The LCM can be regarded as a special case of the MLM with 𝛽𝑖 

taking a finite number of discrete class (C) with corresponding probabilities as: 

(10) 
Probabilityofchoosingoption𝑗|c =

𝑒(𝑿𝒊𝒋𝒔𝜷𝒄)

∑ 𝑒
𝑗
𝑘=1

(𝑿𝒊𝒔𝒌𝜷𝒄)
 

The probabilities of each class are estimated using conditional logit as follows: 
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(11) 
Prob(class = c) = 𝑄𝑖𝑐 =

exp(𝜃𝑐𝑧𝑖)

∑ exp(𝜃𝑐𝑧𝑖)
𝐶
𝑐=1

 

where 𝑧𝑖 is a vector of class specific variables such as income, age, or attitudes that have 

effect on class probabilities and 𝜃𝑐 is the corresponding parameter vector for class c. The 

vector 𝑧𝑖can comprise only constant if case-specific variables are not available or do not 

explain the class probability. The maximum simulated likelihood method is applied as 

follows: 

(12) 

 

 

 

ln 𝑙 = ∑∑∑∑𝑑𝑖𝑗𝑠𝑐 ln(𝑄𝑖𝑐 ∗ Probabilityofchoosingoption𝑗|c

𝐶

𝑐=1

𝑆

𝑠=1

𝐽

𝑗=1

𝑁

𝑖=1

) 

Measures of Fit. The best fitting model as well as best fitting class for the LCM is 

identified based on the balanced assessment of fitting parameters such as Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), and Pseudo R
2
. The 

information criteria are calculated as follows: 

(13) 𝐴𝐼𝐶 = −2(ln𝐿 − 𝑃) 

𝐵𝐼𝐶 = −ln𝐿 + (
𝑀𝑙𝑛𝑁

2
) 

𝑃𝑠𝑒𝑢𝑑𝑜𝑅2 = 1 −
ln 𝐿(𝑀𝑜𝑑𝑒𝑙)

ln 𝐿 (𝑁𝑢𝑙𝑙)
 

where ln𝐿the log likelihood value at convergence, P is number of parameters, and N is 

number of sample size. Equation (13) indicates that increase in N and P penalizes AIC 

and BIC. The best fitting model maximizes𝑃𝑠𝑒𝑢𝑑𝑜𝑅2, closer to 1. 

Willingness to Pay. The welfare measure in the DCE is done by estimating WTP for 

the particular attribute using the following formula: 
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(14) 
𝑊𝑇𝑃 = −1(

𝛽𝑘
𝛽𝑝𝑟𝑖𝑐𝑒

) 

where WTP is the welfare measure of attribute k,𝛽𝑘 are the marginal utility of the k
th

 

attributes of turfgrass included in the analysis, and 𝛽𝑝𝑟𝑖𝑐𝑒 is the marginal utility of 

increase in purchase price of turfgrass. This formula represents the marginal rate of 

substitution between average purchase price and attribute in question.  

Results and Discussions 

All models are specified so that the probability of selecting a particular turfgrass 

attributes scenario is a function of attributes of that scenario and of the option C (No 

Change) using the 7,026 choices elicited from 1,179 respondents. 

Conditional Logit Model 

The first model estimated is the CLM (Table 2.3). The coefficient estimates for the 

turfgrass attributes show the expected signs and most of the variables are significant at 

1% level except the saline tolerance attribute. The No Change is significantly positive 

which indicated that respondents on average are reluctant to choose options (A and B) 

provided in the survey. The negative sign price coefficient indicates that the 

homeowners’ utility decreases as the purchase price of turfgrass increases. Low and 

medium lawn area lost due to winterkill was preferred over larger lawn area lost due to 

winterkill. The positive sign on shade tolerance and saline tolerance coefficients indicates 

that homeowners prefer shade tolerant turf and saline tolerant turf. The regression results 

also indicate that household turfgrass consumers prefer low and medium water 

requirements rather than high water requirements for watering their lawns. The positive 

sign on the low maintenance cost attribute shows that homeowners prefer low 
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maintenance turf rather than no change. The negative sign in high maintenance cost 

indicates that homeowners prefer no change rather than high maintenance cost for 

turfgrass.  

Mixed Logit Model 

All attributes except the price attribute are specified randomly and normally distributed 

(Train, 1998; Revelt and Train, 1998; Morey and Rossmann, 2003; Carlsson et al., 2003) 

since the normal distribution is a good approximation and gives a better fit than any other 

distribution with no difficulty in interpretation and estimation (Meijer and Rouwendal, 

2006;  Sillano and de Dios Ortand, 2005). The MLM estimates reveal significant and 

large derived standard deviations for most of the variables suggesting heterogeneity in 

preferences (Table 2.3). To determine the source of heterogeneity, the parameters are 

interacted with different categories of the demographic and attitudinal characteristics of 

the respondent such as yard size, age, gender, race, education, income, and attitude for 

lawn care (Table 2.3). The results show the expected signs for all the parameters and only 

the significant interaction variables are reported in Table 2.3. A positive and significant 

utility estimate indicates that the utility of choosing an option increases with the attribute 

in question or its interaction with the demographic variables. In general, the variables 

higher yard size, higher income, white, female, and being hobbyist increase the utility of 

the household consumer, causing him or her to choose the improved turfgrass attributes 

(such as low and medium levels of stress in turfgrass compared to high). However, 

respondents over 45 years of age compared to younger respondents (<30 years) are 

averse to choose the improved turfgrass attributes options in the choice set. The fit 

statistics shows that the MLM and the MLM with interaction are statistically different 
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and  superior to the CLM in terms of overall fit and welfare estimate, consistent with the 

findings of previous studies (Breffle and Morey, 2000; Layton and Brown, 2000; 

Carlsson, Frykblom, Liljenstolpe, 2003; Kontoleon, 2003; Lusk, Morey and Rossmann, 

2003). 

Latent Class Model 

The LCM is used to determine the different classes of consumers with homogeneous 

preference nature within each class. Determining the optimal classes requires the 

balanced assessment of the fitting statistics (Andrews & Currim, 2003; Louviere, 

Hensher, and Swait, 2000; Wedel & Kamakura, 2000). The best fitting class has the 

smallest AIC, BIC parameters, and highest Pseudo R
2
.  The parameters are estimated for 

five classes (Table 2.6). As the number of classes increases AIC and BIC parameters 

continue to decrease and Pseudo R
2
 continues to increase (Table 2.6). Most of the 

variables are highly significant and more reliable in the two class model than the three 

class and higher number class models. Class three, four, and five have a probability of 

their class breakdown being a reliable prediction of less than 10%. Thus considering class 

probability more than 10% for each class and the decrease in the AIC,BIC, and that the 

increase in Pseudo R
2 

is not very high going from class 2 to 3, 3 to 4, and 4 to 5, a two 

class model is chosen as the best fitting model. Inclusion of demographic and attitudinal 

characteristics (age, income, lawn care attitude) as covariate provides a better fit to the 

model. Thus, the two class LCM with covariates is chosen as the best fitting model. 

The result of the two class LCM is provided in Table 2.4 which comprises of two 

sections; the top section gives the utility coefficient of each attributes of the turfgrass for 

two classes while the bottom section gives the coefficients of class membership for 
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demographic and attitudinal variables which are used as covariates in the LCM. The 

membership coefficients of the variables for second class are normalized to zero to allow 

the identification of remaining coefficients of the model (Boxall and Adamowicz, 2002). 

The utility coefficients for the turfgrass attributes show the expected signs for both 

classes except for saline tolerant attribute in the second class.  

The two classes are categorized as the “willing household consumer” and “reluctant 

household consumers” based on the values of No Change variable. For Class 1, the No 

Change was significantly negative which indicates that the respondents belonging to this 

class are very positive towards new changes in their lawn. This also indicates that they 

are more open to adopting the stress-tolerant turfgrass cultivars. While for class 2, the No 

Change was positive and significant, suggesting that they are reluctant to adopt new and 

improved turfgrass attributes. 

Class Characterization and Covariates. The bottom section of Table 2.4 gives the 

class membership in the LCM of the respondents based on their demographic and 

attitudinal characteristics. A significantly positive variable indicates that the variable 

increases the probability of a respondent to be in that particular class, while significantly 

negative variable indicates that the variable decreases the respondents probability to be in 

that class. The class membership functions indicates that the persons who take care and 

maintain their lawn as a hobby are significantly likely to be a willing household 

consumers compared to other people (Table 2.4). Likewise, high income people are also 

significantly likely to be a willing household consumer and people of age more than 45 

years are less likely to be a willing household consumers (i.e., reluctant household 

consumers). 
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Comparison of the Models 

The MLM, the MLM with interaction, and the LCM provided better fit than the CLM 

which is consistent with the findings of previous studies (Abidoye et al., 2011; Chung, 

Han, and Boyer, 2009; Train, 2003; Chung et al., 2012). A likelihood ratio test rejects 

that the CLM, MLM, MLM with interaction, and LCM are same. Statistical difference 

among the four models reinforces the use of best fit model (Table 2.5). Among four 

models (CLM, MLM, MLM with interaction, and LCM), the best fit model is LCM (the 

lowest AIC and BIC, and highest Pseudo R
2
). 

Homeowner’s Valuation for Turfgrass Attributes 

 Considering the best fitting model (LCM), the coefficient estimates from random utility 

model in Table 2.4 is utilized to determine the marginal WTP/WTA. Table 2.6 reports the 

marginal WTP/WTA values for each turfgrass attribute which was estimated as in 

equation (14) for each classes of the LCM.  The marginal value of each attribute 

represents the consumers’ compensation to adopt an attribute (WTP) or to forego an 

attribute (WTA). Household turfgrass consumers are willing to pay more for low vs. high 

compared to medium vs. high (for winterkill and water requirement attributes). They are 

also willing to pay for saline tolerant turfgrass (with exception of “Reluctant Household 

Consumer” class of the LCM) and shade tolerant turfgrass. Household turfgrass 

consumers are willing to pay more for lower maintenance cost compared to no change 

while they are willing to accept the compensation if the maintenance cost is higher from 

current situation.  
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The willing household consumers are generally willing to pay more than reluctant 

household consumers for most of the attributes included in this study. For example, 

willing household consumers are willing to pay $0.35 per square foot (ft
2
) while reluctant 

household consumers are willing to pay $0.28 per ft
2
 for shade tolerant turfgrass; willing 

household consumers are willing to pay $0.90 per ft
2
 while reluctant household 

consumers are willing to pay $0.77 per ft
2
, more for low water requiring turf (20,000 

gallons per month) compared to high water requiring turf (60,000 gallons per month); 

willing household consumers are willing to pay $0.46 per ft
2
 while reluctant household 

consumers are willing to pay $0.42 per ft
2
 more for medium water requiring turf (40,000 

gallons per month) compared to high water requiring turf (60,000 gallons per month); 

willing household consumers are willing to pay $0.08 per ft
2
 while reluctant household 

consumers are willing to accept $0.08 per ft
2
 for saline tolerant turfgrass. However, for 

some attributes such as low winterkill vs. high winterkill and low maintenance cost vs. no 

change (Figure 2.2) the willingness to pay amounts for the willing household consumers 

are lower than the reluctant household consumers.  

Summary and Conclusions 

This study contributes to the study of preferences and willingness to pay for improved 

warm season turfgrass attributes in the southeastern and mid-southern U.S. This is the 

second study to evaluate the preferences and willingness to pay for the turfgrass attributes 

and first to incorporate preference heterogeneity and assess its sources in the preference 

for turfgrass attributes. In this study, the basic CLM, MLM, the MLM with interactions, 

and the LCM are estimated. The CLM does not incorporate heterogeneity, while other 

three models incorporate heterogeneity. Interacting demographic and attitudinal 



46 
 

characteristics in the MLM with interactions and the LCM are estimated to evaluate the 

probable sources of preference heterogeneity for turfgrass attributes. Using a balanced 

assessment of fit statistics, the LCM with two classes of household consumers was the 

best fitting model. Two classes of LCM were identified with homogeneous preference 

approach within each class. Class 1 was characterized as “willing household consumer”, 

while class 2 was characterized as “reluctant household consumer”. Among two classes, 

willing household consumers are willing to pay more for the turfgrass attributes in 

general. The willing household consumers are most likely high income people, hobbyists, 

and younger than 45 years, a categorization which was also supported  by the MLM with 

interactions model. 

The results show that preferences for stress tolerant turgrass attributes are highly 

heterogeneous and the major sources of the heterogeneity could be demographics such as 

age, income, and attitudes. However, more research is required to identify the major 

causes of preference heterogeneity among the household turfgrass consumers. The results 

obtained in this study could be helpful for policy makers, sod producers, and breeders to 

target the potential adopters and strategize how to reach the reluctant consumers.  
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Table 2.1. Turfgrass attributes and levels  

S.N. Attributes Attribute Levels 

1 Lost lawn area to winter kill (50% 

probability) 

Low (0%) 

Medium (20%) 

High (40%) - base 

2 Shade tolerant Yes 

No - base 

6 Watering your lawn (gallons/year) Low (20,000 gallons) 

Medium (40,000 gallons) 

High (60,000 gallons) - base 

4 Sod tolerant to salinity Yes 

No - base 

5 Maintenance and reoccurring cost 

(mowing, spraying, grooming, 

fertilizing, and weeding) 

Low (20% less than now) 

High (20% more than now) 

No Change - base 

6 Total average purchase price for a 

lawn of 5000 square foot ( $/ ft
2
 ) 

$0.20, $0.40,  $0.60, $0.80 
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Table 2.2. Summary statistics of general, demographic, and attitudinal characteristics of the respondents. 

Variables Definition Mean/ 

Percentage 

Std. Dev. 

General Characteristics   

Own 1 if house is owned, 0 otherwise 0.98  

Years house owned  Average years of house owned 20 14 

House owned < 6 years  1 if house is owned < 6 years, 0 otherwise 0.15  

House owned 6-20 years 1 if house is owned for 6-20 years, 0 otherwise 0.54  

House owned >20  years 1 if house is owned for >20  years , 0 otherwise 0.30  

Yard Size (acres) Average size of the yard  0.52 0.45 

Yard size < 0.26 acres  1 if yard size is < 0.26 acres, 0 otherwise 0.31  

Yard size 0.26-0.40 acres 1 if yard size is 0.26-0.40 acres, 0 otherwise 0.31  

Yard size > 0.40acres 1 if yard size is > 0.40 acres, 0 otherwise 0.37  

Attitudinal Characteristics    

Rating of own lawn Average rating of their own lawn  7 2 

Rating of neighbor’s Lawn Average rating of their neighbor’s lawn 6 2 

Hobbyist 1 if lawn care is hobby , 0 otherwise 0.32  

Saver 1 if lawn care is done to save money for hiring services, 0 otherwise 0.29  

Both (hobbyist and saver)  1 if both, 0 otherwise 0.26  

Other   1 if other reason for lawn care, 0 otherwise 0.13  

Interested in USDA certified turf 1 if respondent is interested in USDA certified turf, 0 otherwise 0.73  

Interested in no pesticide turf 1 if respondent is interested to keep pesticide free lawn, 0 otherwise 0.82  
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Table 2.2. Contd... 

Variables Definition Mean/ 

Percentage 

Std. Dev. 

Demographic Characteristics    

Age (Years) Average Age  51 15 

Age <30 1 if age is <30, 0 otherwise 0.11  

Age 30-45  1 if age is 30-45, 0 otherwise 0.25  

Age >45 1 if age is >45, 0 otherwise 0.64  

Female 1 if respondent is female, otherwise 0.47  

White 1 if respondent is white, 0 otherwise 0.85  

Education <=high school  1 if respondent have high school or less education, 0 otherwise 0.38  

Education (Undergraduate) 1 if respondent has undergraduate, 0 otherwise 0.41  

Education(>Undergraduate) 1 if respondent have education more than undergraduate, 0 

otherwise 

0.22  

Income Average Income  $67,455 $48,033 

Income <$50,000  1 if income is less than $50,000, 0 otherwise 0.49  

Income $50,000-$74,999 1 if income is in between $50,000-$74,999, 0 otherwise 0.42  

Income $75,000-$100,000 1 if income is in between $75,000-$100,000, 0 otherwise 0.12  

Income>$100,000 1 if income is >$100,000, 0 otherwise 0.05  
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Table 2.3. Parameter estimates of conditional logit, mixed logit and mixed logit with interaction model. 

 Conditional logit Mixed logit Mixed logit with interaction 

Variables Estimates Estimates Std. Dev Estimates Std. Dev 

No Change 0.15(0.07)** 0.401(0.11)*** -0.08(1.23) 0.42(0.11)** 2.20(0.09)*** 

Lawn lost by winterkill (Low vs High) 0.50 (0.05)*** 0.71(0.08)*** 0.81(0.40)*** 0.63(0.29)*** 0.19(0.17) 

Lawn lost by winterkill (Medium vs 

High) 

0.25(0.05)*** 0.25(0.07)*** 1.06(0.30)*** 0.23(0.29) 0.34(0.19)* 

Shade Tolerant 0.44(0.03)*** 0.59(0.07)*** -0.07(0.75) 0.22(0.33) 0.69(0.07)*** 

Water requirement (Low vs High) 1.09(0.05)*** 1.40(0.01)*** -0.50(0.46) 1.25(0.30)*** 0.89(0.08)*** 

Water requirement (Medium vs High ) 0.56(0.05)*** 0.72(0.09)*** -0.05(0.65) 0.68(0.28)*** 0.12(0.14) 

Saline Tolerant 0.04(0.04) 0.06(0.05)*** 0.37(0.38) 0.41(0.22)** 0.51(0.09)*** 

Maintenance cost (Low vs No change) 0.16(0.05)*** 0.20(0.07)*** 0.01(0.58)*** 0.003(0.28) 0.21(0.19) 

Maintenance cost (High vs No change) -0.35(0.04)*** -0.85(0.15)*** 1.90(0.34)*** -0.32(0.29) 0.41(0.12)*** 

Average Purchase Price -1.27(0.08)*** -1.49(0.17)***  -1.66(0.33)***  

Water Requirement (Low)* Yard size 

(0.26-0.40 acres) 

   0.38(0.11)** 

 

 

Saline Tolerant* Yard size (0.26-0.40 

acres) 

   0.39(0.08)***  

Winterkill (Low)* Yard size (> 

0.40acres) 

   0.26(0.19)** 

 

 

Saline Tolerant* Yard size (> 0.40acres)    0.31(0.08)  

Winterkill (Medium)* Age >45    -0.32(0.15)***  

Saline Tolerant* Age >45    -0.23(0.23)**  

Water Requirement (Low)*Female    0.23(0.15)**  

Water Requirement (Low)*White    0.52(0.11)**  

Water Requirement (Medium)*White    0.36(0.15)***  
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Maintenance cost (Low)*White    0.26(0.14)***  

Winterkill (Low)* (Income $75,000-

$100,000) 

   0.48(0.19)**  

Winterkill (Medium)* (Income $75,000-

$100,000) 

   0.59(0.20)***  

Winterkill (Medium)* (Income > 

$100,000) 

   0.48(0.27)*  

Shade Tolerant* Hobbyist    0.27(0.11)**  

Water Requirement (Medium)*Both    -0.001(0.20)*  

Log-likelihood    -7026.19    -6607.11    -6792.33  

Pseudo R
2 

         0.10           0.15           0.14  

Sample size 1,179 1,179  1,179  

***, **, and * Represents significance at 1% level, 5% level, and 10% level, respectively. Numbers in parentheses are standard errors. 
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Table 2.4. Parameter estimates of the latent class model. 

Variables Willing household consumer Reluctant household 

consumer 

 Estimates Estimates 

No Change -1.27*** 

(0.10) 

2.44*** 

(0.21) 

Lawn lost by winterkill 

(Low vs High) 

0.38*** 

(0.05) 

1.30*** 

(0.16) 

Lawn lost by winterkill 

(Medium vs High) 

0.19*** 

(0.06) 

0.55*** 

(0.14) 

Shade Tolerant 0.36*** 

(0.04) 

0.84*** 

(0.11) 

Water requirement 

(Low vs High) 

0.93*** 

(0.05) 

2.34*** 

(0.18) 

Water requirement 

(Medium vs High ) 

0.47*** 

(0.05) 

1.28*** 

(0. 18) 

Saline Tolerant 0.09** 

(0.04) 

-0.25** 

(0.11) 

Maintenance cost (Low 

vs No change) 

0.03 

(0.05) 

0.57*** 

(0.12) 

Maintenance cost 

(High vs No change) 

-0.30*** 

(0.05) 

-0.63*** 

(0.14) 

Average Purchase 

Price 

-1.03*** 

(0.10) 

-3.06*** 

(0.27) 

 

Demographics and attitudinal 

covariates 

 

Estimates 

 

Constant 0.95***  

Hobbyist 0.62***  

Saver  0.17  

Both 0.22  

Age (<30) 0.45  

Age (>45) -0.90***  

Income ($50,000-$74,999) 0.08  

Income ($75,000-$100,000) 0.05  

Income (>$100,000) 0.64*  

   

Class probability 0.67 0.33 

Log likelihood -6277.77  

Pseudo R
2 

0.19  

***, **, and * Represents significance at 1% level, 5% level, and 10% level, respectively. 

Numbers in parentheses are standard errors.  
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Table 2.5. Fit statistic information of different models.  

Models Log 

Likelihood 

No of 

Parameters 

BIC AIC Pseudo R
2
 

Conditional Logit -7026.19 10 7041.55 14062.38 0.10 

Mixed Logit -6607.11 19 6636.29 13233.23 0.15 

Mixed Logit with interaction -6792.33 75 6907.51 13659.65 0.14 

Latent class model (2 class) -6277.77 29 6322.31 12584.55 0.19 

Latent class model (3 class) -6091.77 48 6165.49 12231.54 0.22 

Latent class model (4 class) -6021.30 67 6124.19 12109.59 0.23 

Latent class model (5 class) -5959.19 86 6091.27 12004.38 0.23 

Latent class model (2 class) 

(without covariates) 

-6586.30 20 6617.01 13192.60 0.15 

Latent class model (3 class) 

(without covariates) 

-6485.14 30 6531.21 13000.27 0.16 

Latent class model (4 class) 

(without covariates) 

-6434.30 40 6495.73 12908.59 0.17 

Latent class model (5 class) 

(without covariates) 

-6388.10 50 6464.88 12826.19 0.18 

The sample size is 1179 respondents.
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Table 2.6.  Willingness to pay for turfgrass attributes ($/ft
2
) for the latent class model 

(LCM). 

 LCM 

Probability 

Aggregated 

WTP 

Variables Willing 

Household 

Consumer 

Reluctant Household 

Consumer 

Lawn lost by winterkill 

(Low vs High) 

0.37 

(0.26-0.49) 

0.42 

(0.32-0.53) 

0.39 

(0.27-0.50) 

Lawn lost by winterkill 

(Medium vs High) 

0.19 

(0.07-0.29) 

0.18 

(0.08-0.27) 

0.18 

(0.08-0.28) 

Shade Tolerant 0.35 

(0.26-0.44) 

0.28 

(0.20-0.35) 

0.33 

(0.24-0.41) 

Water requirement 

(Low vs High) 

0.90 

(0.70-1.09) 

0.77 

(0.61-0.91) 

0.86 

(0.67-1.03) 

Water requirement 

(Medium vs High ) 

0.46 

(0.33-0.59) 

0.42 

(0.29-0.54) 

0.45 

(0.31-0.57) 

Saline Tolerant 0.08 

(0.01-0.16) 

-0.08 

(-0.15- -0.1) 

0.03 

(-0.04-0.09) 

Maintenance cost (Low 

vs No change) 

0.03
a 

(-0.08-0.13) 

0.19 

(0.09-0.27) 

0.08 

(-0.01-0.17) 

Maintenance cost 

(High vs No change) 

-0.29 

(-0.39- -0.18) 

-0.21 

(-0.31- -0.10) 

-0.26 

(-0.36- -0.16) 

Willingness to pay measures is calculated with the Delta method of the Wald procedure 

contained within LIMDEP 10.0 N LOGIT 5.0. Numbers in parentheses are confidence 

interval at 5% level. 
a  

indicates that the Wald procedure resulted in insignificant 

willingness to pay value for this attribute.  
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Figure 2.1.  An example of the discrete choice experiment choice set. 
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Figure 2.2. Marginal willingness to pay for turfgrass attributes for willing household consumer and reluctant household consumer. 
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CHAPTER III 
 

 

PREFERENCE SHARES FOR TURFGRASS ATTRIBUTES: A COMPARISON OF 

DISCRETE CHOICE EXPERIMENT AND BEST-WORST METHOD 

 

ABSTRACT 

Prioritizing the attributes may vary by the methods of choice experiments and for 

different types of products. This study compares preference shares for turfgrass attributes 

in five states (North Carolina, Florida, Georgia, Oklahoma, and Texas) in the 

southeastern and mid-southern United States using the discrete choice experiment (DCE) 

and the best-worst method (BWM). An online survey was conducted and a mixed logit 

model was used to determine the homeowners’ relative preferences for turfgrass 

attributes. The result indicates that the most preferred attribute using either of the 

methods was low maintenance cost. Although the relative importance by the DCE and the 

BWM is statistically different, both methods yield a similar preference ordering for low 

maintenance, drought tolerant, and saline tolerant turf, while different ordering for shade 

tolerant and low purchase price turf. This study is one of the first to use relative 

importance (preference share) scales to compare the DCE and the BWM from the 

homeowners’ perspective for the turfgrass attributes. 
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Introduction 

Determining consumers’ preferences for product characteristics has gained major 

attention in decision making and public policy. Prioritizing the importance for goods is 

necessary to understand and manage the outcomes of research in product development. 

Developing and releasing a product depends on the comparative importance consumers 

put for that product compared to other products with similar characteristics developed 

over years and decades of research. Public preferences for different products or the 

attributes of a product are usually elicited by direct or indirect valuation methods. The 

most popular and relevant method to elicit the consumers’ preferences in hypothetical 

scenarios are discrete choice experiments (DCE) and ranking methods such as best-worst 

method (BWM) (Bleichrodt, 2002).   

The DCE is a stated preference method which allows us not only to analyze 

consumers’ preferences, but also to determine the shares of preferences of the attributes 

used in the experiment. The share of preference indicates the relative importance of the 

attributes used in the study that ranges from 0 to 100 in percentage, shares of preference 

for the attributes sums up to 100 percent. Preference shares of attributes can be 

determined by measuring the utility (part worths) of attributes in various combinations of 

choices made (Louviere and Woodworth, 1983; Louviere, Hensher and Swait, 2000). The 

DCE is an indirect method of measuring utility or preference (Louviere and Islam, 2008) 

and has been widely used for environmental policy and other public policy decision 

making.  

The BWM, also known as Maximum Difference Scaling, is an alternative preference 

elicitation method. The BWM is a direct scaling procedure that directly  measures the 
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subjective dimension, such as “degree of importance” or “degree of interest” (Auger, 

Devinney and Louviere, 2004). This method assumes respondents are able to identify the 

best or worst and the most or least important options from the provided list of choices and 

analyses the respondent’s perceptive process of picking two items that are the farthest 

apart on scaling measurement. An interval scale of the items based on aggregate response 

gives ordinal ranking to variables used in the study (Louviere and Woodworth, 1991). 

The BWM is relatively simple method that yields coefficients for each attribute which 

can be used to determine the share of preference as the forecasted probability of the 

attributes.  

Both DCE (Ryan and Gerard, 2003; Cheragi-Sohi et al., 2008; Lancsar and Louviere, 

2008) and BWM (Goodman and Lockshin, 2005; Flynn et al., 2007, Lusk and 

Briggeman, 2009) methods have widely been used to determine the preference share of 

attributes separately. However, few previous studies exist that actually compare the 

preference share of attributes using both DCE and BWM (Potoglou et al., 2011; Whitty et 

al., 2014). Potoglou et al. (2011) and Whitty et al. (2014) compared the parameter 

estimates from the DCE and BWM methods. However, the current study compares the 

two methods on the preference share scale for the attributes. Although comparative DCE-

BWM studies have been performed on the health technology service sector (Potoglou et 

al., 2011 and Whitty et al., 2014), there are no studies that focus on the comparison of the 

DCE and BWM in the agricultural sector goods like turfgrass, an essential component of 

many residential homes and always in demand.  

This study reports an empirical comparison of the DCE and the BWM using data 

collected from a survey conducted to elicit homeowners’ values for different turfgrass 
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attributes. Turfgrass being a pervasive feature of the urban landscape in the United States, 

it covers larger area than any other irrigated crops in the urban landscape. In the context 

of weather variability, climate change, drought, and reduced water supplies, lawn 

maintenance has become a challenge. During drought and water shortage municipalities 

often prohibit the use of  potable freshwater in the turfgrass landscape considering it a 

low priority (Kjelgrcn, Ruppi, and Kilgren 2000). This has led to the use of low quality 

water like effluent or reclaimed water for turf irrigation. In addition, other stress related 

problems like excessive shade, winterkill, and high maintenance in urban landscape drive 

the demand for more innovative turf types which can tolerate stresses. However, turfgrass 

breeders are uncertain of consumers’ preferences for these improved cultivars. This study 

on how consumers’ prioritize several turf cultivars will contribute to research progress to 

focus on development and marketing of most preferred cultivars to meet the household 

consumers’ demand. The study on consumers’ preferences for improved turf cultivars 

will help to connect the research progress and turfgrass market to yield economic surplus. 

Thus, the specific objectives of this study are to identify the preference shares for 

different turfgrass attributes from homeowners of five states (Florida Georgia, North 

Carolina, Oklahoma, and Texas) in the mid-southern and southeastern United States and 

to compare and contrast results from the DCE and the BWM. 

Methodology 

Homeowners Survey 

To determine the share of preference homeowners’ place to the attributes of turfgrass, we 

utilize recent advances on the BWM and the DCE. In both DCE and BWM, respondents 

were presented with a number of profiles of turfgrass attributes. Attributes for the profiles 
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were initially derived from a literature review on preferences of turfgrass attributes for 

lawn (Yue, Hugie, and Watkins, 2012) and also with a consultation and agreement with 

the panel of breeders, physiologists, and other experts working on turfgrass industry.  

A web based online survey was conducted with 1,179 homeowners from Georgia, 

Oklahoma, North Carolina, Florida, and Texas in November 2013. Each survey includes 

the six BWM questions with each question containing three different options for different 

turfgrass attributes, the six DCE questions with each containing three different options 

followed by general and demographic questions. Respondents were asked to put 

themselves in the hypothetical position that they were buying turf for their lawns. A total 

of 1,179 complete surveys were received from the survey programmed by Qualtrics 

collaborating with a sample of respondents obtained from panel company Survey 

Sampling International.  

Survey Design 

Discrete Choice Experiment. The experimental design for the DCE is similar to 

Louviere, Hensher, and Swait, 2000. Six measurable attributes associated with turfgrass 

adoption ranging from 2 to 4 levels were identified. Description of the attributes and 

levels, and number of levels are provided in Table 3.1. These attributes and levels created  

41 × 33 × 22 = 432  possible combinations of attributes. However, a fractional factorial 

design that maximizes D-efficiency was determined and used. The fractional design 

consisted of 18 choice sets of turfgrass attributes profiles with D-efficiency of 96.4%. 

Three surveys each containing six different sets of the DCE choice set were determined. 

In each DCE choice set, there were three different options (A, B, and C). Options A and 

B contain the combination of turfgrass attributes and its different levels (turfgrass 
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attributes profiles), and option C represented the status quo or a no change option. For 

each choice set, were asked to choose one of the three profiles or options. An example of 

the DCE choice set is provided in Figure 3.1. 

Best-Worst Method. Similar to the DCE, an experimental design method was used 

to create the set of the BWM choice sets. The Balanced Incomplete Block Design (BIBD) 

method was used with six attributes of turfgrass (Table 3.2.). The BIBD design focuses 

on the balanced design where the attributes appear an equal number of times and in equal 

proportion to all other attributes. The almost optimal BIBD was constructed using PROC 

FACTEX in SAS Software (SAS Institute Inc., Cary, NC, USA) which made up of six 

choice sets, with each containing three attributes. For the BWM task, participants were 

asked to choose their most and least important turfgrass attributes out of three attributes 

for their lawns. An example of the BWM choice set is provided in Figure 3.2. 

Econometric Model 

The mixed logit model (MLM) is used to determine the utility of each attributes of the 

turfgrass for both DCE and BWM. The MLM has different parameters for each 

respondent (McFadden and Train, 2000; Greene and Hensher, 2003) while conditional 

logit model assumes each respondent have same parameters.  

Discrete Choice Experiment. In the random utility theory an individual𝑖’s utility 

from choosing alternative j and choice set sis 

(1) 𝑈𝑖𝑗 = 𝑿𝑖𝑗𝑠𝜷𝑖𝑗𝑠 + 휀𝑖𝑗𝑠 

where 𝑿𝑖𝑗𝑠 is the vector of the turfgrass attributes that describes and represents the 

characteristics of alternative 𝑗, 𝜷𝑖𝑗𝑠 is the parameter vector of attributes of turfgrass, 휀𝑖𝑗𝑠 

is independent and identically distributed (IID) error term that follows a type I extreme 
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value distribution. Allowing model parameters to vary randomly over individuals, the 

MLM is characterized by accommodating heterogeneity as a continuous function of 

parameters. The MLM incorporates unobservable heterogeneity by modelling a 

distribution of𝛽𝑖as:  

(2) 𝜷𝒊𝒌 = 𝜷𝑘 + 𝝈𝑘𝜂𝑖𝑘 

The (relative) utility associated with each individual 𝑖 for attribute k is represented in 

the DCE by a utility expression of the general form in Equation (2) where 𝜂𝑖𝑘 is an error 

term with distribution f(𝜂𝑖𝑘). Hence, 𝜷𝒊𝑘 is a random variable with distribution f(𝜷𝒊𝑘), 

mean𝜷𝒌and standard deviation𝝈𝑘. The distribution function can take any form such as 

normal, lognormal, etc. which is chosen by the researcher. In this study, we use the 

normal distribution for all attributes. The multidimensional integral does not have a 

closed form so that the probability can only be achieved with simulation, and parameters 

are determined by maximizing simulated log likelihood function. The distribution 

simulation was based on 200 pseudorandom Halton draws. 

In the DCE experiment, we can characterize the share of preference or relative 

importance for each attribute. This can be done by considering how much difference each 

attribute could make in the total utility of a product (Orme, 2010). The difference is the 

range in the attribute’s utility (part worth) values. The percentages from relative ranges 

are calculated, obtaining a set of attribute importance values that add to 100 percent. The 

share of preference for each attribute is calculated as follows:  

(3) 
𝑆𝑃𝑘 =

𝑅�̂�𝑘

∑ 𝑅�̂�𝑘
6
𝑘=1
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where 𝑆𝑃𝑘 is the share of preference of the 𝑘th
 attribute and 𝑅𝑁 is the range of the utility 

coefficients for the attribute. Relative preference represents the magnitude of preference 

of an attribute which contributes to a consumer’s valuation and purchasing decision. The 

share of preferences are estimated on the mean of the equation (3) evaluated in 1000 

random draws. The random draws following a normal distribution are generated using the 

estimated means and standard deviations of the MLM as in equation (2). After the mixed 

logit model is estimated, the estimated parameters are used as a prior and the person’s 

actual choices from the DCE method are used as a posterior. This Bayesian calculation 

allows for a conditional distribution on person’s actual choice as discussed by Train 

(2003). 

Best-Worst Method. Choosing the item that maximizes the difference in utility is a 

main assumption of the BWM.  A choice set with T items, results in T (T-1) tools or 

possible combinations of a set of best and worst items in a choice set. If 𝜆𝑡  is the location 

of the value t on the underlying scale of importance and the true level of importance is 

Iit = 𝜆𝑡 + 휀𝑖𝑡 , where 휀𝑖𝑡 is an error term with an extreme value distribution (Lusk and 

Briggeman, 2009; Finn and Louviere, 1992).  The probability that consumer chooses to 

maximize the distance between item t and k, that is as the best and worst out of T items is 

the probability (i.e. difference in 𝐼𝑖𝑡 and 𝐼𝑖𝑘 ) is greater than all other T (T-1)-1 possible 

differences in that choice set. This takes a conditional logit form as follows:  

(4) 
Prob(𝑡ismostpreferredand𝑘isleastpreferred) =

𝑒𝜆𝑡−𝜆𝑘

∑ ∑ 𝑒𝜆𝑙−𝜆𝑚𝑡
𝑚=1

𝑡
𝑙=1

− 𝑇 

where m are the pair of attributes seen, but not chosen as the maximizing pair. The  𝜆𝑡  
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 is estimated by maximum likelihood estimation based on probability statement in (4). 

That is, the dependent variable takes the value of 1 for the pair of attributes chosen by the 

consumer as best and worst, and a 0 for the remaining T(T − 1) −1 pairs of items in the 

choice set that were not chosen as best and worst. The estimated 𝜆𝑡represents the 

importance of attribute T relative to some attributes that were normalized to zero to 

prevent the “dummy variable trap.”  In the mixed logit form the relative importance of 

each individual can be identified as:  

(5) �̂�𝑖𝑡 = �̅�𝑖𝑡 + 𝝈𝑡𝜂𝑖𝑡 

where �̅� and 𝜎 are the mean and standard deviation of 𝜆𝑡 in the population and 𝜂𝑖𝑡 is the 

normally distributed random term with mean zero and unit standard deviation. Similar to 

the DCE, the BWM distribution simulation was also based on 200 pseudorandom Halton 

draws. 

The share of preference each attributes of turfgrass in BWM can be calculated as the 

forecasted probability that each attribute is picked as most important using the following 

equation: 

(6) 
Shareofpreferenceforattribute𝑡 = 

𝑒�̂�𝑡

∑ 𝑒�̂�𝑡𝑡
𝑙=1

 

Similar to the DCE, the share of preferences for the BWM are also estimated on the mean 

of the equation (6) evaluated in 1000 random draws. The random draws are generated 

(following a normal distribution) using the estimated means and standard deviations of 

the MLM as in equation (5). 
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Comparing the preference share in the DCE and the BWM. The preference shares 

for each attribute obtained from the DCE and the BWM are compared if the difference in 

preference share between two methods is statistically different. The preference ordering 

of the attributes among two methods is also analyzed (i.e. which attribute is the most 

preferred and which is the least preferred within each method). 

Data 

The details of the demographic and household characteristics of the 1,179 respondents 

are shown in Table 3.3. The majority of respondents consist of people more than 45 

years. The mean age of respondents across states ranged from 49 to 61 years, with 

standard deviation of about 15 years.  The mean annual household income of respondents 

ranged from $56,991 in Oklahoma to $79,604 in Texas, and their mean income is higher 

than the state’s average. Median household income is $45,339 in Oklahoma, $46,334 in 

North Carolina, $46,956 in Florida, $49,179 in Georgia, and $51,900 in Texas (US 

Census, 2013). The majority of the respondents are female in all states except Oklahoma. 

Mean lawn sizes of the respondents’ ranged from 0.35 to 0.49 acres across states, 

indicating that respondents had a larger lawn size in general. The average lawn size in the 

US varies from state to state, ranging from 0.06 acre in Washington D.C to 0.51 acre in 

Georgia (Chapman, 2015). 

Results and Discussions 

Parameter Estimates from the Mixed Logit 

Discrete Choice Experiment. The estimates of the variables for the DCE are given 

in Table 3.4. Coefficient estimates have the expected signs for all significant attributes. 

Most of the variables are significant except for the average price variable in all states. In 
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addition, the winter kill attribute is significant only in Oklahoma. The parameters are 

estimated for all states pooled together and for individual states. The joint likelihood ratio 

test indicates that each individual state is statistically different from pooled data. These 

coefficient estimates are used to calculate the preference share of each attributes for the 

homeowners.  

The shares of preference for the attributes using the DCE are provided in Table 3.5. 

All states together, the most preferred attribute for turfgrass is low average maintenance 

cost (53.6%) followed by shade tolerant turf (22.8%) and water conserving requiring turf 

(18.8%), while the least preferred attributes are low purchase price (0.1%), winterkill 

tolerant turf (0.7%), and saline tolerant turf (4.0%). The relative preferences of turfgrass 

attributes for their lawns using the DCE among individual states are slightly different but 

in each state three most preferred turfgrass attributes for homeowners are low average 

maintenance cost, shade tolerance, and water conserving turf, while the least valued 

turfgrass attributes are low purchase price, winterkill tolerance, and saline tolerance. In 

Florida and Texas, low average maintenance cost is the most preferred attribute followed 

by water conserving and shade tolerant turf. In Georgia, Oklahoma, and North Carolina, 

low average maintenance cost is the most preferred attribute followed by shade tolerant 

and water conserving turf. In all five states, low average purchase price is the least 

preferred attribute. Saline tolerant turf is more preferred than winterkill tolerant turf in 

Florida and Georgia, while winterkill tolerant turf is more preferred than saline tolerant 

turf in Oklahoma, North Carolina, and Texas. The preference share for low maintenance 

turf ranged from 42.4% (Georgia) to 59.1% (North Carolina), shade tolerant turf ranged 

from 16.5% (Florida) to 25.7% (Georgia), water conserving turf  ranged from 15.5% 
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(Oklahoma and North Carolina) to 22.1% (Texas), saline tolerant turf ranged from 1.2% 

(North Carolina) to 14.8% (Georgia), and winterkill attribute ranged from 1.1% (Georgia) 

to 5.4% (Oklahoma). The preference share for the average purchase price attribute is 

insignificant and less than unity for all states.  

Best-Worst Method. In the analysis of the BWM, one variable (winterkill tolerant) is 

dropped to avoid perfect collinearity in the variables. The parameter estimates of the 

BWM are provided in Table 3.6. Similar to the DCE, parameters of the BWM are 

estimated for all states pooled together and for individual states. The joint likelihood ratio 

test for the BWM also indicates that each individual state is statistically different from 

pooled data. The parameter estimates of the BWM are used to estimate preference share 

of each attribute through forecasted probabilities as in (7). Pooling all states together, the 

most preferred attribute using the BWM is low average maintenance cost (44.9%) 

followed by drought tolerant (25.8%) and low average purchase price (13.1%), while 

least preferred attributes are saline tolerant (6.4%) and shade tolerant turf (9.8%) 

(Table3.7).  The drought tolerant attribute is the most preferred attribute in Texas, while 

low maintenance cost is the most preferred attribute in other four states. The preference 

share for low maintenance turf ranged from 32.5% (Texas) to 50.6% (North Carolina), 

drought tolerant turf ranged from 18.6% (Georgia) to 43.4% (Texas), low average 

purchase price of turf ranged from 9.7% (Texas) to 15.7% (North Carolina), shade 

tolerant attribute ranged from 7.3% (Florida) to 13.8% (Georgia), and saline tolerant 

attribute ranged from 1.8% (Oklahoma) to 11.9% (Florida). 

Different factors such as latitude, soil characteristics, water availability, and weather 

conditions naturally affect demand for turfgrass varieties by state which drives 
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heterogeneity in preferences among states. All five states experience some sort of 

intermittent drought; Oklahoma and Texas were in a state of severe drought at the time of 

this study in 2013 (Fernando et al., 2015, Svoboda, 2014). Parts of North Carolina, 

Texas, and Georgia are subject to salinity. The importance of cold hardiness at North 

Carolina and Oklahoma are based on latitude and USDA cold hardiness zone as winter 

kill is important factor in these states in terms of bermudagrass and zoysaigrasses 

(Martin, 2015).  

Comparison of Preference Share of Attributes between the DCE and the BWM 

A pairwise comparison of differences in the share of preferences of turfgrass attributes 

between the DCE and BWM is presented in Table 3.8. The result shows that the 

preference levels by the DCE and the BWM are statistically different. However, out of 

top three most preferred attributes using the DCE, two attributes (low maintenance cost 

and drought tolerant turf) are also two of the most preferred attributes using the BWM 

(Figure 3.3). In Florida, Georgia, Oklahoma, and North Carolina, the most preferred 

attribute for homeowners using both methods is low maintenance turf (Figures 3.4, 3.5, 

3.6, and 3.7, respectively)  The most notable difference between two methods is observed 

with shade tolerant and average purchase price attribute (Table 3.8). The difference is 

relatively high for these two attributes in each state. The shade tolerant attribute is one of 

the highly valued attributes using the DCE, but it is one of the least preferred attribute 

using the BWM. In addition, the average purchase price is the least preferred attribute in 

the DCE, while it is mostly ranked the third valued attribute in the BWM. The possible 

reason for this might be due to insignificant parameter estimate for average purchase 

price attribute in the DCE. In Texas, the difference in the preference share for the drought 
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tolerant attribute is high as the respondents valued the drought tolerant attribute to be 

more preferred in the BWM, while low maintenance cost attribute is valued more in the 

DCE (Figure 3.8). Though the preference share is statistically different between two 

methods, the ordering in the share of preference was similar except for average purchase 

price and shade tolerant attribute. Previous studies have reported similarity (Potoglou et. 

al, 2011) as well as  differences in estimate of attributes from these two methods (Whitty 

et al., 2014). Similar to this study, Whitty et al. (2014) also reported differences between 

two methods but similar ordering of the attributes.   

Homegeneity in preference shares of the attributes among states and larger R
2
 in this 

study indicate that the BWM could be a better method to elicit relative preferences for 

attributes of a product. However, the variances of attributes for most of the variables in 

the DCE are lower compared to the BWM which might support the use of the DCE. 

Thus, there is no clear indication of one method being better over the other. Some studies 

argue that the BWM is preferable as there is only one option to choose either the “most” 

or “least” preferred and there is a least probability of bias in the rating scale (Cohen and 

Markowitz, 2002). However, studies also suggest that the DCE is more feasible and 

reliable method to elicit the preferences since the BWM becomes complicated due to 

difficulty of making the shift among attributes while choosing the best and worst options 

(Xie et.al, 2012).  

Summary and Conclusions 

This study compares the preference share of turfgrass attributes using the DCE and the 

BWM in five states (Florida, Georgia, North Carolina, Oklahoma, and Texas) of the 

southeastern and mid-southern United States. An online survey among homeowners was 
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conducted and the MLM was used for analysis of both methods to determine the relative 

preference of turfgrass attributes for the homeowners. Although the preference share by 

the DCE and the BWM is statistically different, both methods yield a similar direction of 

preference ordering for low maintenance, drought tolerant, and saline tolerant turf. 

However, the preference ordering for shade tolerant and low purchase price turf is 

different in two methods. The difference in the preference level between two methods 

indicates bias in the DCE due to the use of hypothetical scenario and differences in 

respondents’ inferences for the attributes that were omitted or not seen in the choice sets, 

affecting both means and variances of the variables (Islam, Louviere, & Burke, 2007). 

The statistical difference between two methods might also be due to two distinct choice 

tasks. In the DCE, respondent chose among three complete set of profiles for lawn, while 

in the BWM, they chose among three to six different turfgrass attributes. Implementation 

of a similar choice task for both methods could be helpful to examine if these two 

methods give similar preference in that context.  

In context to this study, the DCE could be more appropriate for application for turf 

wholesalers due to inclusion of an actual price variable and letting respondents indirectly 

choose an option and make tradeoff among a set of scenarios. In addition, the BWM may 

not perform well in priority setting context for applied marketing studies (Whitty et al., 

2014). However, the ambiguity about methods warrants further studies about the 

selection of the best method. The large standard deviations in the preference share of 

attributes indicate that there was heterogeneity in the relative importance of turfgrass 

attributes. The more complex methods such as latent class mixed models could be used in 
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further studies to address the sources of heterogeneity. A segment of population might 

respond similarly to both methods while others might respond differently. 

Overall, this study provides an early insight on the use of preference scales to 

compare the results of the DCE and the BWM from the homeowners’ perspective on 

preferring the stress tolerant turfgrass attributes. This study gives a notable outcome in 

reconfirming the findings from Yue, Hugie, and Watkins (2012) that people value low 

maintenance turf the most using both methods. In addition, drought tolerant turf is also in 

homeowners’ high priority list. Thus, this study provides framework for the turfgrass 

researchers and producers to invest and expand outreach on desirable turfgrass attributes 

for the homeowners.  
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Table 3.1. Turfgrass attributes and levels for the discrete choice experiment. 

S.No. Attributes Attribute Levels Number of 

levels 

1 Lost lawn area to winter kill (50% 

probability) 

0%, 20%, 40% 3 

2 Shade tolerant Yes , No 2 

3 Watering your lawn (gallons/month) Low (20,000 gallons), 

Medium (40,000 

gallons), High (60,000 

gallons) 

3 

4 Sod tolerant to salinity Yes , No 2 

5 Maintenance and reoccurring cost 

(mowing, spraying, grooming, 

fertilizing, and weeding) 

20% less than now , 

20% more than now , 

No Change 

3 

6 Total average purchase price for a lawn 

of 5000 square foot ( $/ ft
2
 ) 

$0.20, $0.40,  $0.60, 

$0.80, 

4 
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Table 3.2. Turfgrass attributes for the best worst method.  

 

  

S.No. Attributes 

1 Sod that is tolerant to drought 

2 Sod that is tolerant to winterkill  

3 Sod that is tolerant to shade 

4 Sod that require low average maintenance and reoccurring cost (like cost for 

mowing, spraying, grooming and weeding) 

5 Sod that is tolerant to salinity 

(Salty soil or water) 

6 Sod with low average purchase price ($/ ft
2
) 
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Table 3.3 Summary of the demographics of the respondents. 

States Age (Years) Household Income  

 % 

Female 

Lawn Size (acres) 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

All States 51 15 $67,455 $48,033 53% 0.52 0.45 

Florida  53 15 $65,693 $48,612 38% 0.37 0.35 

Georgia  49 15 $70,258 $54,534 45% 0.62 0.46 

Oklahoma  50 14 $56,991 $38,713 61% 0.57 0.49 

North 

Carolina 

61 14 $67,624 $49,770 46% 0.66 0.47 

Texas 49 14 $79,604 $45,073 38% 0.39 0.36 
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Table 3.4. Parameter estimates for the discrete choice experiment. 

 All States Florida Georgia Oklahoma North 

Carolina 

Texas 

Parameters Estimate Estimate Estimate Estimate Estimate Estimate 

Lawn Area Lost 

to Winter Kill 

0.001 

(0.001) 

[-0.001] 

(0.053) 

0.004 

(0.003) 

[-0.001] 

(0.116) 

0.001 

(0.004) 

[-0.001] 

(0.105) 

-0.005* 

(0.003) 

[-0.002] 

(0.089) 

0.001 

(0.003) 

[-0.001] 

(0.124) 

0.003 

(0.003) 

[-0.001] 

(0.105) 

Shade Tolerant 0.757*** 

(0.047) 

[0.006] 

(1.623) 

0.767*** 

(0.119) 

[0.008] 

(4.004) 

0.992*** 

(0.152) 

[0.051] 

(2.730) 

0.888*** 

(0.121) 

[0.005] 

(3.203) 

0.683*** 

(0.113) 

[-0.001] 

(3.915) 

0.561*** 

(0.089) 

[-0.002] 

(3.394) 

Water 

Requirement 

(per 1000 

gallons) 

-0.016*** 

(0.001) 

[0.0001] 

(0.034) 

-0.024*** 

(0.004) 

[-0.0001] 

(0.075) 

-0.016*** 

(0.003) 

[-0.001] 

(0.058) 

-0.012*** 

(0.003) 

[-0.001] 

(0.070) 

-0.012*** 

(0.003) 

[-0.001] 

(0.081) 

-0.015*** 

(0.003) 

[0.0001] 

(0.073) 

Saline Tolerant 0.133*** 

(0.042) 

[0.009] 

(1.064) 

0.410*** 

(0.115) 

[-0.009] 

(2.516) 

-0.141 

(0.155) 

[-0.788] 

(0.699) 

0.158* 

(0.087) 

[-0.004] 

(2.064) 

0.038 

(0.101) 

[0.004] 

(2.53) 

0.089 

(0.085) 

[-0.001] 

(2.201) 

Average 

Maintenance Cost 

-0.021*** 

(0.002) 

[-0.072]*** 

(0.006) 

-0.021*** 

(0.005) 

[0.107]*** 

(0.016) 

-0.015*** 

(0.005) 

[0.065] 

(0.015) 

-0.027*** 

(0.005) 

[-0.077]*** 

(0.013) 

-0.025*** 

(0.005) 

[-0.073] 

(0.015) 

-0.015*** 

(0.004) 

[0.052] 

(0.012) 

Average Purchase 

Price 

0.002 

(0.091) 

[0.007] 

(0.801) 

0.003 

(0.002) 

[-0.001] 

(0.017) 

-0.001 

(0.002) 

[-0.0003] 

(0.020) 

-0.001 

(0.002) 

[-0.001] 

(0.015) 

-0.002 

(0.002) 

[-0.001] 

(0.020) 

0.002 

(0.002) 

[-0.001] 

(0.018) 

Sample Size 1179 228 206 295 203 247 

Log likelihood -7430 -1414 -1271 -1835 -1263 -1572 

Pseudo R
2 

0.132 0.163 0.155 0.160 0.124 0.102 

*** and * Represents significance at 1% and 10%, respectively. Number in parentheses () 

are standard errors and number in brackets [ ] are standard deviations.  
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Table 3.5. Preference shares of attributes using part-worth of the discrete choice experiment. 

  Share of Preference 

Attributes All States Florida Georgia Oklahoma North Carolina Texas 

Lawn Area Lost to 

Winter Kill 

0.007 

[0.007] 

0.033 

[0.016] 

0.011 

[0.008] 

0.054 

[0.028] 

0.015 

[0.012] 

0.045 

[0.024] 

Shade Tolerant 0.228 

[0.100] 

0.165 

[0.069] 

0.257 

[0.095] 

0.239 

[0.101] 

0.226 

[0.114] 

0.212 

[0.087] 

Water Requirement 

(per 1000 gallons) 

0.188 

[0.083] 

0.208 

[0.086] 

0.161 

[0.060] 

0.155 

[0.066] 

0.155 

[0.079] 

0.221 

[0.091] 

Saline Tolerant 0.040 

[0.018] 

0.088 

[0.037] 

0.148 

[0.105] 

0.043 

[0.018] 

0.012 

[0.006] 

0.034 

[0.014] 

Low Average 

Maintenance Cost 

0.536 

[0.204] 

0.505 

[0.204] 

0.424 

[0.198] 

0.510 

[0.207] 

0.591 

[0.207] 

0.488 

[0.209] 

Low Average Purchase 

Price 

0.001 

[0.001] 

0.001 

[0.001] 

0.001 

[0.001] 

0.001 

[0.001] 

0.001 

[0.001] 

0.001 

[0.001] 

Number in brackets [ ] are standard deviations. 
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Table 3.6. Parameter estimates from the best-worst method. 

  All States Florida Georgia Oklahoma North Carolina Texas 

Parameters Estimate Estimate Estimate Estimate Estimate Estimate 

Shade Tolerant -0.055 

(0.037) 

[0.796]*** 

(0.109) 

0.268*** 

(0.219) 

[0.018] 

(1.925) 

-0.188* 

(0.101) 

[-1.281]*** 

(0.256) 

-0.255*** 

(0.095) 

[1.409]*** 

(0.221) 

-0.373*** 

(0.104) 

[0.921]*** 

(0.275) 

1.595 

(0.193) 

[-1.418]*** 

(0.245) 

Drought Tolerant 1.0254*** 

(0.057) 

[0.941]*** 

(0.104) 

1.225*** 

(0.116) 

[0.765]*** 

(0.218) 

0.468*** 

(0.092) 

[0.610]*** 

(0.299) 

1.272*** 

(0.146) 

[-1.191]*** 

(0.229) 

0.479*** 

(0.102) 

[0.794]*** 

(0.276) 

1.996*** 

(0.229) 

[-1.526]*** 

(0.259) 

Saline Tolerant -1.369*** 

(0.071) 

[1.786]*** 

(0.111) 

0.148* 

(0.083) 

[1.346]*** 

(0.184) 

-1.826*** 

(0.218) 

[-2.097]*** 

(0.303) 

-2.430*** 

(0.225) 

[1.504]*** 

(0.241) 

-1.923*** 

(0.235) 

[2.080]*** 

(0.313) 

-1.334*** 

(0.165) 

[1.979]*** 

(0.277) 

Low Average Maintenance 

Cost 

1.593*** 

(0.080) 

[-1.340]*** 

(0.109) 

2.131*** 

(0.185) 

[-1.246]*** 

(0.216) 

1.479*** 

(0.182) 

[-1.652]*** 

(0.280) 

1.663*** 

(0.178) 

[1.697]*** 

(0.243) 

1.758*** 

(0.216) 

[-1.595]*** 

(0.287) 

1.595*** 

(0.192) 

[-1.417]*** 

(0.254) 

Low Average Purchase Price 0.413*** (0.037) 

[0.485]*** 

(0.148) 

0.842***  

(0.088) 

[-0.585]*** 

(0.249) 

0.292***  

(0.083) 

[-0.386] 

(0.399) 

0.174***  

(0.084) 

[-1.002]*** 

(0.233) 

0.328***  

(0.093) 

[-0.739] 

(0.288) 

0.475***  

(0.091) 

[-0.571] 

(0.351) 

Sample Size 1179 228 206 295 203 247 

Log likelihood -14076 -2821 -2491 -3191 -2342 -2889 

Pseudo R
2 

0.47 0.43 0.45 0.59 0.51 0.51 

***,**, and * Represents significance at 1%, 5%, and 10%, respectively. Number in parentheses ( ) are standard errors and number in 

brackets [ ] are standard deviations.
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Table 3.7. Preference shares of attributes using the best-worst method. 

Attributes All 

States 

Florida Georgia Oklahoma North 

Carolina 

Texas 

Shade Tolerant 0.098 

[0.096] 

0.073 

[0.043] 

0.138 

[0.158] 

0.105 

[0.144] 

0.093 

[0.103] 

0.093 

[0.112] 

Drought Tolerant 0.258 

[0.197] 

0.219 

[0.163] 

0.186 

[0.144] 

0.313 

[0.252] 

0.187 

[0.156] 

0.434 

[0.287] 

Saline Tolerant 0.064 

[0.116] 

0.119 

[0.147] 

0.062 

[0.129] 

0.018 

[0.038] 

0.056 

[0.117] 

0.052 

[0.109] 

Low Average 

Maintenance Cost 

0.449 

[0.262] 

0.451 

[0.258] 

0.464 

[0.283] 

0.441 

[0.302] 

0.506 

[0.287] 

0.325 

[0.263] 

Low Average Purchase 

Price 

0.131 

[0.098] 

0.138 

[0.101] 

0.149 

[0.116] 

0.123 

[0.140] 

0.157 

[0.140] 

0.097 

[0.096] 

Number in brackets [ ] are standard deviations. 
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Table 3.8. Differences in preference shares for attributes between the discrete choice experiment and the best-worst method. 

 All States Florida Georgia Oklahoma North 

Carolina 

Texas 

Attributes DCE-BWM DCE-BWM DCE-BWM DCE-BWM DCE-BWM DCE-BWM 

Shade Tolerant 0.130** 0.092** 0.119** 0.134** 0.133** 0.119** 

Drought Tolerant -0.070** -0.011** -0.025** -0.158** -0.032** -0.213** 

Saline Tolerant -0.024** -0.031** 0.086*** 0.025** -0.044** -0.018** 

Low Average 

Maintenance Cost 

0.087** 0.054** -0.040** 0.069** 0.085** 0.163** 

Low Average Purchase 

Price 

-0.130** -0.137** -0.148** -0.122** -0.156** -0.096** 

Notes: ** Represents significance at 5% level. A pairwise T-test shows a significant difference between two methods.
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Figure 3.1. An example of the discrete choice experiment choice set.



93 
 

 

 

Figure 3.2.  An example of the best-worst method choice set. 
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Figure 3.3. Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for all states together. 
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Figure 3.4. Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for Florida. 

17% 

22% 

9% 

52% 

0.10% 

Shade Tolerant Drought Tolerant

Saline Tolerant Low Average Maintenance Cost

Low Average Purchase Price

(a) 

7% 

22% 

12% 45% 

14% 

Shade Tolerant Drought Tolerant

Saline Tolerant Low Average Maintenance Cost

Low Average Purchase Price

(b) 



96 
 

 

Figure 3.5. Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for Georgia. 
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Figure 3.6. Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for Oklahoma. 
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Figure 3.7 Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for North Carolina. 
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Figure 3.8. Preference shares for the attributes from (a) discrete choice experiment and 

(b) best-worst method for Texas 
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