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Abstract:  

As the area under winter canola (Brassica napus) production increase and producers gain 

more experience with the crop many want to improve their nitrogen management 

practices. Oklahoma State University research and extension personnel have been 

developing and promoting the use of N-Rich strips and sensor based nitrogen rate 

calculator (SBNRC) in winter wheat since the late 90’s. This study was conducted to 

determine if final grain yield of canola can be predicted with the use of normalized 

difference vegetative index (NDVI) and incorporate the yield prediction into a nitrogen 

fertilization optimization algorithm (NFOA) which would be used for an online SBNRC. 

In the fall of 2013 and 2014 trials were established at three locations.  Trials consisted of 

twelve treatments in a RCBD with three replications in 2013 and 6 replications in 2014. 

Treatments 1-7 included a range of pre-plant N rates, these treatments were used to 

develop the yield prediction model.  Treatments 8-12 consisted of a range of top-dress N 

rates, these treatments were used to validate the algorithms being developed. In 2013-

2014 growing season, no data was able to be collected due to complete crop failure. In 

2015, all data was combined and showed a high correlation between final grain yield and 

NDVI. When the data was narrowed to only sensor readings taken after growing degree 

days (GDD) reached 90, the relationship improved. Unlike previous algorithms 

developed, normalizing data with GDD or heat units did not improve upon the model. A 

low correlation was found between RIHARVEST and RINDVI which allowed the use of a 

RIADJUSTED value to be used in the NFOA. Utilization of the YP0 model and RIADJUSTED 

along with percent grain N (3.76%) and a NUE of 70%, the NFOA was developed. Using 

NFOA, top-dress N rates were calculated for both locations. The resulting 

recommendations were within 0 and 2 kg N ha-1 of the optimum N rate documented by 

the curve developed from the top-dress treatments. While much more work is needed this 

work documents that the use NDVI measurement and the N-Rich strip utilized in a yield 

prediction and RI model can be used to produce an accurate top-dress N rate.   
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CHAPTER I 
 

 

REVIEW OF LITERATURE 

 

 

Canola Management 

Canola (Brassica napus) has many uses from oil production for human consumption to biodiesel 

production. Canola production continues to increase in popularity with Oklahoma producers. 

According to the National Agriculture Statistics Service, canola production in Oklahoma has 

risen from 925 ha in 2007 to over 101,000 ha in 2013 (NASS). Rotating winter wheat (Triticum 

aestivum) with canola has many benefits including decreased pest pressure and increased 

economic return. Canola requires more nitrogen (N) than the cereals it’s usually rotated with 

(Rathke et al. 2005). The use of N-rich strips, optical sensors, and N rate calculators have been 

proven successful in production systems in Oklahoma (Butchee et al. 2011). These technologies 

could be applicable to winter canola systems as well. Research regarding N requirements of 

canola varies greatly. The N requirement for winter canola is approximately 60 g kg-1 (Conley et 

al. 2004). Timing and amount of N applied strongly affects winter canola productivity. Growth 

and yield of canola is significantly increased as N rates increase, but studies have shown that oil 

per unit seed weight decreases with the increasing N rate (Barłóg and Grzebisz, 2004). 
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Applied N fertilizer has shown an increase in pods per plant with no increase in seeds per pod 

(Hocking et al. 1997). Less than 50% of applied N is recovered by the seed at harvest, and if the 

plant is drought stressed, that number can be significantly reduced (Schjoerring et al. 1995). Early 

planting and high rates of N result in stem elongation and higher biomass which will make canola 

more susceptible to winter kill (Rathke et al. 2006). The nitrogen use efficiency (NUE) of canola 

tends to decrease with increasing N rates (Chamorro et al. 2002). Since canola has a low NUE, it 

is important to use all methods of N management that is available to producers (Rathke et al. 

2006). 

Current N Rate Recommendations  

Stanford (1973) outlined the components of nitrogen rate removal based on yield and percent N, 

soil contribution, and NUE. The major land grant N rates have been based on these components. 

During Stanford’s work in corn, he noted that it is important to know the internal requirement of 

N for an attainable yield. Using an efficiency factor between 50-70% can account for most of 

those factors (Stanford 1973).  Historically, producers have been using yield goals to determine N 

rates by subtracting the soil test N from an average of highest yields for the given field for the 

past five years (Raun et al 2001). Yield goals have been used to determine the N uptake portion 

of the Stanford equation. Residual soil N and mineralized soil N serve as N sources for 

succeeding crops. To account for soil N, soil testing procedures were developed and were 

available for use by producers. The yield goal method of N application has some downsides 

including not accounting for how much N will mineralize or immobilize in the soil for the season. 

This could lead to over or under application of N. Over application of N can result in 

environmental pollution and under application can result in economic losses for the producer.    

Lory and Scharf (2003) further showed that yield goals lack validity.                    
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In this study, recommended N rates in corn exceeded economically optimum N rate (EONR) on 

average by 90 kg ha-1 and were not correlated with EONR. Yield goals also do not include how 

efficient the plant is at using applied N. Efficiency of applied N is influenced by many factors 

including rate, time, climate, and soil conditions.  

Nitrogen Fertilization Optimization Algorithm 

The use of in-season measurements to create a N rate recommendation have been increasing in 

use and have been shown by many to both increase productivity and nitrogen use efficiency. One 

such approach utilized in winter wheat corn (Zea mays) and sorghum (Sorghum bicolor) is the 

nitrogen fertilization optimization algorithm (NFOA) first proposed by Lukina et al. (2001).  

Lukina describes the four components for calculating N rate based upon a series of in-season 

measurements and calculations. The factors utilized in the NFOA can be directly correlated with 

the inputs utilized in the equation Stanford produced in 1973.  The components of the NFOA are 

as follows.  

1. Yield Potential (YP) 

2. % Grain N Removal  

3. Response Index (RI) 

4. Efficiency Factor (NUE)  

Yield Potential 

Research around the world has developed tools to allow for the ability to estimate final yield in 

season to improve upon the yield component in the Stanford equation. One of the technologies 

with the greatest potential for in-season use is optical reflectance sensors. Photosynthetic 

pigments in leaves, such as chlorophyll and carotenoid, have relatively low reflectance in the 

visible spectrum (400-700nm) because of the high absorption at these wavelengths. Plants reflect 

high amounts in the near-infrared (NIR) part of the spectrum (700-1300nm). Chlorophyll has the 

highest reflectance in the red-edge portion of the spectrum (680-730nm) which is described as the 

abrupt change from visible light to NIR. Normalized difference vegetative index (NDVI) is 
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widely used as a green biomass predictor (Penuelas and Filella, 1998). NDVI is calculated as 

follows: 

���� =
���� − �	
�

���� + �	
�
 

Optical sensors have been widely used to capture reflected light at specific wavelengths from the 

crop canopy to calculate vegetative indices such as NDVI (Holzapfel et al. 2009). In wheat, Raun 

(2004) showed NDVI to be highly correlated with biomass at Feekes 4 and 6. By Feekes 10, 

NDVI began to decrease in correlation. NDVI was correlated with forage N uptake, grain yield, 

and final grain yield. Multiple studies in wheat (Raun et al. 2004, Labus et al. 2002, Raun et al. 

2001), bermudagrass (Cynodon dactylon) (Taylor et al. 1998), rangeland (Todd et al. 1998), and 

in canola (Osborne 2007, Holzapfel et al. 2009, Mkhabela et al. 2011) have shown NDVI to be 

highly correlated to biomass and that biomass is correlated to yield. It is important to note that 

NDVI cannot capture post sensing stresses which can lower yield potential. For example, high 

temperatures during flowering can result in decreased yields which NDVI cannot capture 

(Mkhabela et al. 2011). In season estimated yield (INSEY) is calculated by dividing NDVI by 

growing degree days (GDD) greater than zero. This estimates biomass produced per day (Raun 

1999). By dividing NDVI by GDD, Lukina et al. (2001) was able to normalize NDVI throughout 

the growing season which allows for sensing throughout the season. Teal et al. (2006) showed no 

improvement in yield prediction by dividing NDVI by GDD in corn but showed that this 

normalized values and allowed it to be used various climates. To predict yield early to apply a 

top-dress fertilizer based on predicted needs, the NFOA was developed (Lukina et al. 2001). The 

ability to predict yield in-season with NDVI is essential to the NFOA model. Yield potential is 

calculated as one standard deviation above the line that describes the relationship between 

measured grain yield and INSEY (Raun et al. 2005, Teal et al. 2006).  Mkhabela et al. (2011) has 

shown that with the use of MODIS-NDVI crops yields can be successfully predicted up to two 

months before harvest. The study showed that the predicted yields were within 10% of actual 
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yield. Combining atmospheric and soil data to the MODIS-NDVI has shown an improvement 

over NDVI alone (Mkhabela et al. 2011).   

N Removal 

There is approximately 33kg of N in one metric ton of canola seed. The straw may contain up to 

10kg of N per metric ton (Brennan 2006, Kansas State University Extension 2007). Percent grain 

N must be calculated to use in the NFOA. 

Responsiveness  

Response Index is the response additional N fertilizer has on final yield. Response index 

(RIHARVEST) is determined at harvest by dividing the yield of the N rich plot (non-limiting N plots) 

by the yield of the check plot (Farmer practice, YP0). Response index shows how responsive the 

crop is to applied N fertilizer. The NUE should be expected increase as RI increases (Raun and 

Johnson 2003). The RIHARVEST is calculated at harvest as a final measure of response. For this 

reason RINDVI should be used in season to adjust N rate. The RINDVI is the NDVI of the N rich plot 

(non-limiting N plots) divided by the NDVI of the check plot. Mullen et al. (2003) showed that 

RINDVI could be used to predict RIHARVEST and that RINDVI is a viable method to accurately predict 

in-season the potential for a response to additional N fertilizer. However, Hodgen et. al. (2005) 

noted that the relationship between RI NDVI and RI HARVEST did not have a slope of 1.0.  

Sensor Based Nitrogen Rate Calculation 

Oklahoma State University has developed algorithms that utilize optical sensors to collect NDVI 

and predict yield. The goal in using the SBNRC is to be able to give accurate top-dress and 

variable rates. Using optical sensors to give N rates have shown to increase nitrogen used 

efficiencies (NUE) in wheat (Raun et al. 2005, Lukina et al. 2001), corn (Raun et al. 2002), and 

canola (Holzapfel et al. 2009).  Basing mid-season nitrogen recommendations on these algorithms 
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have shown an increase of 15% NUE (Raun et al. 2005). By multiplying the predicted yield of the 

farmer practice (YP0) by RINDVI, you get the attainable yield if you fertilized (YPN). Nitrogen rate 

is the difference in YPN and YP0, multiplied by the percent grain N, and divided by a common 

efficiency factor between 0.5 and 0.7 (Raun et al. 2005, Raun et al. 2013). 

The calculation used to calculate top-dress N rate is: 

� ���	 =
����� � ��� − ���� � %�

���
 

 

On-line Sensor Based Nitrogen Rate Calculator 

The final product for this study would be an on-line SBNRC. This would allow producers that are 

currently utilizing optical sensors and N-rich strips in wheat to continue with this technology in 

their canola rotation. This is a user friendly website that uses the NFOA to calculate top-dress N 

rates. Butchee et al. (2011) using the SBNRC recommendation on large scale producer fields 

showed a decrease of applied N by 23 kg ha-1 on average when compared to farmer practice. This 

study also showed that while using the decreased N rates, final grain yield and protein levels 

stayed the same (Butchee et al. 2011). Implementations of technologies such as the SBNRC have 

the potential to save producers a significant amount of money. 

Objectives 

The objectives of this study were to develop a yield prediction model using in season NDVI, 

develop a nitrogen fertilization optimization algorithm for winter canola grown in Oklahoma, and 

evaluate the NFOA using treatments 8-12, and develop a sensor-based nitrogen rate calculator 

using the NFOA for winter canola in Oklahoma.
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CHAPTER II 
 

 

MATERIALS AND METHODS 

 

 

Three locations were established in the 2013-2015 growing seasons in Oklahoma. Location one 

was at the North Central Research Station (NRC) near Lahoma, Oklahoma using a conventional 

tillage system. Location two was located at the Lake Carl Blackwell Research Station (LCB) near 

Stillwater, Oklahoma in a no-till system. Location three was located at the South Central 

Research Station (CHK) near Chickasha, Oklahoma in a no-till system. Soil series descriptions 

can be seen in Table 1. The treatment structure consisted of a randomized complete block design 

with 12 treatments replicated three times. The 2014-2015 study had the same treatment structure, 

but replicated 6 times. For all site years plot size was three meters by six meters. Treatments 1-7 

had a range of pre-plant N rates from 0-134 kg ha-1 in 22 kg increments and no top-dress N. 

These treatments were used in the yield prediction and response index models. Treatments 8-12 

received a pre-plant N rate of 22 kg ha-1 and a range of top-dress N rates from 22-112 kg N ha-1 in 

22 kg increments (Table 2). These treatments were used for algorithm validation. Soil samples 

were collected randomly throughout each study location to a depth of 15 cm. Samples were sent 

to the Oklahoma State University Soil, Water, and Forage Analytical Laboratory (SWFAL) for 

complete analysis consisting of routine, secondary, and micronutrient concentrations, soil test
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results shown in Table 3. Canola was planted with a seeding rate of 5.6 kg ha-1 on 38 cm rows. In 

2014, the Chickasha location was planted using 18 cm rows. Herbicide and insecticide was 

applied on an as needed basis. Weeds were controlled pre-plant and post emergence prior to 

dormancy using 2.5 L ha-1 glyphosate. Pyrethroid was used to control insects at a rate of 146 mL 

ha-1. The fertilizer source was ammonium nitrate (34-0-0) broadcasted onto the soil surface. 

Greenseeker® reflectance data is collected every 14 days from rosette to flowering from the 

center two rows of each plot. The Greenseeker® is held approximately 60 cm above the crop 

canopy. Indices collected included: NDVI, Red 660nm, Red 710nm, Red 735nm, and near 

infrared (NIR). NDVI will be calculated by the sensor using (NIR-Red 660nm)/(NIR+Red 

660nm). At maturity the center 1.5m of each plot were direct harvested with a Massey Ferguson 

8XP plot combine. Sub samples of grain were collected from each plot and analyzed to determine 

grain quality. After harvest, SAS and linear regression will be used to model data.  
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CHAPTER III 
 

 

RESULTS 

 

 

In the 2013-2014 growing season, CHK had stand loss due to winter kill during flowering 

temperatures dropped below freezing for a week which resulted in a complete loss at this 

location. The soil crusted after planting LCB which caused replanting. This pushed planting date 

back to far for the plants to survive winter. At NRC there was not sufficient soil moisture at 

planting which resulted in small plants going into winter and ultimately a complete stand loss at 

this location. Due to the fact that all locations during the 2013-2014 year were lost to 

environmental impacts the remainder of the results section will focus on the 2014-2015 crop year 

for the LCB and CHK locations. The trial at NRC during the 2014-2015 crop year was lost again 

due to winter kill and dry, cold fall weather conditions.   

N Rate 

At CHK a wide range in treatments yields was observed, for example, the check plot (treatment 

1) had a range in yield from 1552.8 kg ha-1 to 888.7 kg ha-1 (data not shown). The highest 

yielding treatment was 1596.75 kg ha-1 and the lowest yielding treatment was 1071.82 kg ha-1 

(Table 4). Across all 72 plots the highest yielding plot was 1962.98 kg ha-1 and the lowest
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had a yield of 712.92 kg ha-1. However analysis of the yield data showed no significant impact of 

treatment. The wide range in yields can be attributed to a varied stand establishment. While 

nearly 100% stand was achieved in some plots others had diminished stands, in some cases as 

poor as 25%. This variation was likely due to a varied planting environment, residue from the 

previous wheat crop was poorly distributed and in areas in which residue was the most dense, 

crop establishment was the poorest.  When the data was analyzed separately as pre-plant 

treatments (1-7) or top-dress treatments (2, 8-12) there was no significant impact of treatment on 

yield. Therefore it was concluded that the site was non-responsive to nitrogen fertilization and the 

optimum pre-plant and top-dress rates for 0 kg N ha-1.  

 At LCB the individual plot grain yields ranged from 478.5 kg ha-1 to 2270.6 kg ha-1. At this 

location there was a significant treatment response (Table 4). Treatment 7 (134.4 kg N pre) had 

numerically the highest yield at 2010.17 kg ha-1, treatments 11 (22kg N pre 89 kg N top-dress), 

12 (22kg N pre 112 kg N top-dress), and 6 (112 kg N pre) were not statistically different with 

yields of 2006.9, 1926.35, 1811.6 kg ha-1 respectively. The non-fertilized check (trt 1) had the 

lowest recorded yield at 718.6 kg ha-1.  When the data was analyzed separately as pre-plant 

treatments (1-7) or top-dress treatments (2, 8-12) treatment was significant in both cases. As 

would be expected yield increased with increasing nitrogen rates.   On analysis of pre-plant 

treatments 6 and 7 were statistically higher than all other treatments with yields of 1811.6 and 

2010.2 kg ha-1 respectively, but were not statistically different from each other.  Treatment 2 was 

included in the analysis of the top-dress treatments to represent the un-fertilized check as all top-

dress treatments received 22 kg N pre-plant, the same as treatment 2. In analysis of top-dress 

treatments the 89 and 112 kg N ha-1 (trt 11 and 12) were not statistically different with yields of 

2006.9 and 1926.35 kg ha-1 respectively.  The yield of treatment 11 was statistically greater than 

all other treatments. Based on these results it was concluded that the optimum pre-plant rate in 

this environment was 112 kg N ha-1 and the optimum top-dress rate was 89.6 kg N ha-1 with a 22 
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kg N ha-1 pre-plant application. The data presented suggests that the optimum rate for the LCB 

location was 112 kg N ha-1 regardless of application timing. 

YP 

To evaluate the ability of NDVI to predict final grain yield individual plot data, i.e. NDVI and 

grain yield, was used in the correlation not treatment averages.   When NDVI from all sensing 

dates was evaluated for its correlation with final grain yield a polynomial equation best fit the 

data with a r2 of 0.64 (Figure 1.).  Unlike Teal et. al. (2006) observed in corn, the predictive 

nature of NDVI was not improved with the incorporation of a growing degree days greater that 

zero, INSEYGDD.  In this experiment the correlation between INSEYGDD and final grain yield 

resulted in a r2 of 0.46 (Figure 2). However when INSEYHU was evaluated it showed 

improvement over using INSEYGDD by increasing the r2 from 0.46 to 0.52 (Figure 3). The 

incorporation of an environmental component did not improve the ability to predict yield better 

than as the use of NDVI alone. The accuracy of the YP0 model was improved when the NDVI 

data was limited to sensor readings that were collected on or after 90 GDD. Using this data the 

relationship between NDVI and final grain yield improved and showed a stronger correlation 

with an r2 of .73 (Figure 4). Again the incorporation of INSEY (GDD) did not improve the 

correlation with an r2 of 0.69 (Figure 5) and in this case the use of INSEY (HU) (r2 of .70) was a 

better fit than INSEYGDD yet not a strong as NDVI alone (Figure 6). Partitioning the data out 

further only evaluating the last sensor reading taken at the initiation of bolt resulted in correlation 

between NDVI and final grain yield to be higher than when using all data yet lower than the 

>90GDD data set, with an r2 of .71 (Figure 7). This indicates that the optimal time of sensing to 

accurately predict final grain yield for this experiment was the time period between GDD 90 and 

pre-bolt.  However it was still possible to predict yield at all sampling points in this study.   
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While Freeman et. al. (2003), Raun et. al. (2001), and Teal et. al. (2006) used an exponential 

equation to best fit the relationship between INSEY and final grain yield the exponential model 

had a lower r2 in all cases.   For all data NDVI and grain yield the exponential and polynomial 

models has respective r2 of 0.64 and 0.54. The >90 day NDVI data had exponential and 

polynomial models has respective r2 of 0.73 and 0.65 and the pre bolt NDVI data exponential and 

polynomial models has respective r2 of 0.71 and 0.59 (data not shown).  

For the development of the NFOA the polynomial model for NDVI and grain yield using sensor 

reading collected after 89 GDDs will be utilized. The equation is as follows (Figure 8): 

YP0 = 13977 * (NDVI)2 - 5226.9 * (NDVI) + 1907.2 

 Where NDVI is: the average NDVI value collected from the Farmer Practice 

RI  

Hodgen et. al. (2005) and Mullen et. al. (2003) noted that in winter wheat, the relationship 

between RIHARVEST and RINDVI did not result in an equation with an intercept of zero and a slope of 

one.   Therefore there was a need to create an adjusted RI (RIADJUSTED) for accurate prediction of 

crop responsiveness in the NFOA model.  As in the YP0 evaluation individual plots are utilized 

not treatment averages.  To calculate a RINDVI value the NDVI of any given plot, within the 

treatment range of 2 to 7, was divided by the NDVI value obtained the 0N plot in its 

corresponding replication. For this work when all data was combined and the relationship 

between RIHARVEST and RINDVI was examined at both LCB and CHK, a low correlation with an r2 

of .22 was found (Figure 9). When the relationship between RIHARVEST and RINDVI was explored 

by location, the data from LCB resulted in a slightly better correlation with an r2 of 0.32 (Figure 

10). However at CHK a negative but poor relationship between RIHARVEST and RINDVI was 

observed, r2 = 0.11 (Figure 11). As previously discussed, CHK had no response to added N and 

variability in yield was determined by plant stand.  We hypnotizes that this lack of response to 
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fertilizer nitrogen explains the lack of or negative correlation between RINDVI and RIHARVEST at this 

location. For the development of the NFOA the linear model for the relationship between RINDVI 

and RIHARVEST utilizing only data collected from LCB will be used. The equation for the 

RIADJUSTED is as follows: 

y= 3.13x – 1.73 

Where: y = RIADJUSTED 

x = RINDVI 

 

NFOA 

A NFOA utilizing the YP0 model and the RIADJUSTED model previously recommended, a percent 

grain N content of 3.76%, and NUE of 70% was used to calculate a top-dress N rate 

recommendation for both sites. For the NFOA calculation, the NDVI values for treatment 2 and 7 

were used in the YP0 and RIADJUSTED calculations. The NFOA for CHK recommended the need 

for no additional fertilizer. The NFOA when calculated for LCB produced a recommended 

topdress rate of 98.6 kg N ha-1. The response curve developed from treatments 8-12 can now be 

used to validate these values. At CHK the optimum N rate was determined to be 0.0 kg N ha-1, 

which the NFOA accurately predicted. At LCB the top-dress response curve identified the 

optimum N rate for that location to be 89.6 kg N ha-1. This value is 9 kg N ha-1 less than the 

NFOA predicted rate. All the components of a NFOA have been discussed and the winter canola 

NFOA is as follows:  

[(YP0 * RIADJUSTED) - YP0] * % Grain N / NUE 

 Where: YP0 = 13977x2 – 5226.9x + 1907.2 

  RI = RIADJUSTED = 3.13(RINDVI) – 1.73 

  % Grain N = 0.0376 

  NUE = 0.70 
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CHAPTER IV 
 

 

DISCUSSION 

 

 

 The development of a NFOA will allow for accurate top-dress N rate recommendations to 

provide an alternative to applying all N pre-plant and ultimately reducing the risk of applying too 

much or too little N. Yield prediction is the most important component of the NFOA. Winter 

canola grain yield was highly correlated with NDVI within all YP0 models. However, when 

utilizing sensor readings collected after GDD reached 90 or more, the r2 increased from 0.64 to 

0.73. The r2 slightly decreased when only using the last sensor readings, taken at the initiation of 

bolting, to 0.71. These two models produced the highest r2 and are an indication that the best time 

to sense to get an accurate prediction of yield is after GDD reach 90 and prior to bolting. Unlike 

the algorithm developed for other grains, normalizing NDVI with the use of GDD and cumulative 

heat units did not improve the yield prediction. Utilizing heat units was an improvement over 

GDD, but still not as good as NDVI alone. It is also important to note that at least in this data set 

row space did not impact the correlation between NDVI and yield.  A correlation between 

RIHARVEST and RINDVI was not a one to one relationship so therefore to properly estimate the 

responsiveness to added N an adjusted RI equation was used. The yield model and RIADJUSTED 

equation presented represent one year of data collection. The robustness of the
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models will have to be improved with the addition of additional data collected  over a  series of 

years and locations.. It is important to continually update these algorithms to allow them to 

become accurate in multiple environments and account or changes in crop genetics. Canola NUE 

is not discussed often within literature, but the overall opinion is that it is highly dependent on 

variety and environments. Additional research would be needed to look into a more accurate 

NUE for winter canola. For this experiment, the NUE was set at 70% which may need to be 

refined in the future. This research is a good start to producing an online sensor based nitrogen 

rate calculator for use by producers. The data presented shows that canola yield can be accurately 

predicted using NDVI and the Greenseeker® sensor. It also shows that we are able to predict an 

accurate mid-season N rate for winter canola grown in Oklahoma. As previously discussed, the 

amount of N needed at CHK and LCB were vastly different with 0.0 N needed at CHK to 89.6 kg 

N ha-1 needed at LCB. This demonstrates the importance of technologies such as the SBNRC in 

the pursuit of a cropping system which is both economical and environmentally sound. 
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TABLES AND FIGURES 
 

 

 

Table 1. Soil series descriptions for dominate soil series at each location obtained from Web Soil 

Survey. 

Location Soil Series 

2013-2014 Lake Carl 

Blackwell  

Pulaski fine sandy loam (Coarse-loamy, mixed, superactive, 

nonacid, thermic Udic Ustifluvents) 

2014-2015 Lake Carl 

Blackwell 

Port silt loam (Fine-silty, mixed, superactive, thermic Cumulic 

Haplustolls) 

2013-2015 Lahoma Grant silt loam (Fine-silty, mixed, superactive, thermic Udic 

Arigustolls) 

2013-2014 Chickasha McLain silty clay loam (Fine, mixed, superactive, thermic Pachic 

Argiustolls)  

2014-2015 Chickasha Dale silt loam (Fine-silty, mixed, superactive, thermic Pachic 

Haplustolls) 
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Table 2. Treatment structure used for all locations including total nitrogen rate, pre-plant nitrogen 

rate, and top-dress nitrogen rate. 

Treatment Total N   Pre-Plant Top-Dress 

 kg ha-1 kg ha-1 kg ha-1 

1 0 0 0 

2 22 22 0 

3 44 44 0 

4 68 68 0 

5 90 90 0 

6 112 112 0 

7 134 134 0 

8 44 22 22 

9 68 22 44 

10 90 22 68 

11 112 22 90 

12 134 22 112 
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Table 3. Soil test characteristics for the South Central Research Station (CHK) near Chickasha, Oklahoma and Lake Carl Blackwell Research 

Station (LCB) near Stillwater, Oklahoma.  

 

 

 

 

 

 

 

 

  

Location pH BI NO3 P K SO4 Ca Mg Fe Zn B Cu 

   
ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

LCB 6.1 7.1 9 33 153 6 1387 312 59 0.76 0.25 1.65 

CHK 5.7 7 24 18 144 7 1645 513 36 0.48 0.35 1.08 
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Table 4. Treatment means showing t-grouping (LSD) for grain yield at the Lake Carl Blackwell 

Research Station (LCB) near Stillwater, OK, and South Central Research Station (CHK) near 

Chickasha, OK 2014-2015. 

 

 

 

 

 

 

 

 

 

 

 

* Means with the same are letter are not significantly different at 0.05 probability level. 

 

 

 

 

 

 

 

 

 

 

 

TRT Yield kg ha-1  

 CHK LCB 

1 1213 719 h 

2 1201 802 gh 

3 1436 1075 fg 

4 1286 992 ef 

5 1380 1285 de 

6 1168 1811 ab 

7 1597 2010 a  

8 1130 1218 ef 

9 1336 1527 cd 

10 1072 1707 bc 

11 1155 2007 a  

12 1193 1926 ab 

SED 43.24 135.74 
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Figure 1. Polynomial relationship between final grain yield and NDVI for all sensor readings.  

 

 

 

 

Figure 2. Polynomial relationship between final grain yield and INSEYGDD for all sensor readings  
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Figure 3. Polynomial relationship between final grain yield and INSEYHU. 

 

 

 

Figure 4. Polynomial relationship between final grain yield and NDVI using sensor readings 

taken after GDD reached 90 or more.  
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Figure 5. Polynomial relationship between final grain yield and INSEYGDD using sensor readings 

taken after GDD reached 90 or more. 

 

 

 

Figure 6. Polynomial relationship between final grain yield and INSEYHU using sensor readings 

taken after GDD reached 90 or more. 
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Figure 7. Polynomial relationship between final grain yield and NDVI using the last sensor 

readings at first bolt.  

 

 

 

Figure 8. Polynomial relationship between final grain yield and NDVI using sensor readings 

taken after GDD reached or exceeded 90. Where YP = yield potential, mean + 1 standard 

deviation.  
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Figure 9. Linear relationship between the response index measured at harvest and the response 

index measured in-season for both locations.  

 

 

 

 

Figure 10. Linear relationship between the response index measured at harvest and the response 

index measured in-season for the Lake Carl Blackwell Research Station.  
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Figure 11. Linear relationship between the response index measured at harvest and the response 

index measured in-season for the South Central Research Station.
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