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Abstract: With the growing recognition that toll-like receptor 4 (TLR4) interacts with 

opioids, this research aims to characterize these interactions in neuro-immune function.  

We have used the HEK-Blue™-hTLR4 cell line to investigate opioid-induced TLR4 

activity in the presence or absence of the TLR4 ligand lipopolysaccharide (LPS).  Our 

results suggest that the opioids methadone, oxycodone, and buprenorphine significantly 

downregulate LPS-induced TLR4 activity while the effect of morphine was not significant.  

To further investigate the role of opioids and TLR4 in neuro-immune interaction, we used 

the human microglial cell line CHME-5.  It was found that these cells robustly express 

TLR4 and the interleukin-1 receptor (IL-1R) but evidence regarding the human mu opioid 

receptor (hMOR) remains inconclusive.  Additionally, morphine and methadone 

significantly upregulate TLR4 protein expression independently while methadone 

downregulates LPS-induced TLR4 protein expression.  These findings have led to the 

conclusion that opioid-induced TLR4 activity and expression regulation may account in 

part for neuro-immune modulation by opioids.   
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CHAPTER I 
 

 

INTRODUCTION 

Opioids are common medicines used to treat both acute and chronic (primarily 

cancer) pain (Jamison et al., 2000).  Prescriptions for opioids to treat chronic noncancer 

pain have also been significantly increasing over the past twenty-plus years (Chou et al., 

2009).  Further illustrating the vast consumption of opioids in the United States (U.S.) is 

the fact that while the U.S. modestly comprises 4.6% of the global population, it accounts 

for the indisputable majority (80%) of the world’s opioid consumption (Manchikanti et al., 

2008).  This increasing licit use of opioids, coupled with the fact that they are also 

commonly abused (National Institute on Drug Abuse (NIDA), 2011), underscores the 

importance and urgency to fully understanding the effects of these drugs. 

The list of adverse effects from opioids is lengthy and includes nausea, vomiting, 

constipation, pruritus, immunosuppression, hyperalgesia, respiratory depression, and more 

(Chou et al., 2009; Vallejo et al., 2011, Trescot et al., 2008).  Of particular importance is 

the impact that these drugs have on the immune system.  Over the past couple of decades 

it has been proven that opioids modulate peripheral immunity (Gavériaux-Ruff et al., 1998; 

McCarthy et al., 2001; Mellon and Bayer, 1998; Sacerdote et al., 1997) and increase 

susceptibility to opportunistic infections (Roy et al., 2011).  Even more recently it has been 
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found that the immune effects of opioids extend to central nervous system (CNS) immune 

function and may even contribute to neuroinflammation and neurodegeneration 

(Hutchinson et al., 2011).  In corroboration of this opioid-immune interaction it has been 

shown by our laboratory that while morphine downregulates both human mu-opioid 

receptor (hMOR) mRNA and protein, the cytokine interleukin-1β (IL-1β) upregulates 

hMOR at both the nuclear and protein levels and even overrides the morphine induced 

downregulation (Mohan et al., 2010).  Additional opioid-immune interactions at toll-like 

receptor 4 (TLR4) have also been identified (Stevens et al., 2013; Hutchinson et al., 2010).  

It is this latter effect of opioid immunomodulation that embodies the research herein as it 

is hypothesized that methadone and morphine differentially modulate hMOR and TLR4 

receptor expression in microglial cells.   Identifying receptor profile differences in opioid-

immune interactions will provide a solid basis for clinically observed immunomodulation 

that may result from opioids via crosstalk (Sacerdote et al., 2008; Budd, 2006; Neri et al., 

2005; Kreek, 1990).  Lending credence to this theory is evidence that  receptors do not 

always function alone (Albizu et al., 2010; Fuxe et al., 2007; Weber et al., 2005; Zoli et 

al., 1994).  While it has not been found in the literature that heteromers between different 

receptor classes exist, it is likely that differential regulation of opioid and immune receptors 

may regulate opioid immunomodulation and the overwhelming body of evidence for it 

warrants investigation into all potential avenues for this phenomenon to occur.  Clinicians 

are also acknowledging that by not fully understanding this effect of opioids, they are doing 

a disservice to their patients (Budd 2006; Welters 2003).  This research will aid in 

identifying possible explanations for immunological changes that may be contributing to 

conditions such as Alzheimer’s disease and Parkinson’s disease, further identify potential 
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new ways to use opioids in modulation of neuroimmunopathologies, and ultimately 

elucidate a possible pathway for opioid immunomodulation. 

 

 

SECTION 1.1 

OPIOIDS 

 

Brief history of opioids.  The opium poppy plant, Papaver somnifoerum (Figure 1), is the 

source for opiate drugs such as morphine and codeine.  While the 

first recorded use of opium to treat pain is debatable, it is of general 

acceptance that the Sumerians first isolated opium sometime in the 

late third millennium B.C. (Brownstein, 1993).  Its use has also 

been identified in ancient Egyptian papyrus records (Trescot et al., 

2008), dating to confirmed use as early as circa 1500 B.C., and quite 

probably 5-20 centuries before then (Smith, 1930).  The Papyrus 

Ebers record of Egyptian medicine lists the poppy plant—berries, seeds, grain, and stalk—

as a plant remedy (Bryan, 1930a).  The berries were used in a paste to “drive out the pains 

that are in his [the god Ra] head” and the stalk was ironically used to treat constipation 

(Bryan, 1930b, 1930c).  The analgesic properties of opium span throughout the years, with 

records indicating its use for pain in ancient Greece, Arabia, European medieval times, the 

Renaissance, and today, albeit primarily as morphine (Bonica, 1991).  Many centuries 

passed before morphine was isolated from the poppy plant in, most likely, 1804 by the 

Figure 1.  Diagram of 

Papaver somnifoerum 

and its components.  
Courtesy of 

bioweb.uwlax.edu  
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German pharmacist Friedrich Wilhelm Adam Sertürner (Schmitz, 1985).  The exact date 

is debatable, but a couple of Sertürner’s publications that went unnoticed in 1805 indicate 

the discovery had occurred the previous year (Schmitz, 1985).  In the late-1800’s through 

the mid-1900’s morphine became a standard in advanced cancer and hospice care (Clark 

and Graham, 2008).  Today, morphine and other opioids are still used to treat cancer pain, 

chronic noncancer pain, and acute pain with continued success (Joranson et al., 2002; Chou 

et al., 2009).  

 

1.1.1 Morphine 

Morphine (Figure 2) is a natural opium alkaloid that is used to treat severe acute 

pain, as well as myocardial infarction, cancer, and noncancer pain (Brenner and Stevens, 

2010; Olsen et al., 2006).  While morphine synthesis 

was mastered in 1963 (Schmitz, 1985), it is somewhat 

difficult and continues to be obtained from the poppy 

plant (Gutenstein and Akil, 2006), helping to explain 

the U.S.’s mass consumption of the world’s opium 

supply (Manchikanti et al., 2008). 

Morphine is an opioid receptor agonist, 

primarily at the mu opioid receptor, MOR, with an 

affinity binding constant (Ki) of 1.168 nM (Volpe et al., 

2011).  Morphine is readily absorbed from the 

gastrointestinal tract and undergoes extensive first-pass 

metabolism (Vallejo et al., 2011).  Morphine has 15-64% bioavailability after oral 

Figure 2.  Molecular structure and 
chemical data for Morphine. 

Chemical Formula:  C17H19NO3 

Molecular wt:  285.34 g/mol 

http://pubchem.ncbi.nlm.nih.gov/summar

y/summary.cgi?cid=5288826 
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administration (Inturrisi et al., 1984) with 25% bioavailability generally accepted in 

medicine and as a result, morphine is typically administered parenterally to avoid this 

hepatic first-pass metabolism (Gutenstein and Akil, 2006).  Morphine can also be 

administered intrathecally or epidurally but because it is highly hydrophilic it can easily 

spread through the spinal fluid, causing latent respiratory depression by via supraspinal 

respiratory control centers (Gutenstein and Akil, 2006).  Morphine more readily crosses 

the blood brain barrier (BBB) when it has not been ionized and is therefore, more lipophilic 

(Trescot, et al., 2008).  P-glycoprotein (P-gp) is a primary transporter responsible for 

morphine efflux (Meineke et al., 2002).  This has been shown in the case of intestinal P-

gp, with quinidine blockade of the transporter resulting in elevated plasma morphine 

concentrations, but its role in brain efflux in humans remains debatable (Kharasch et al., 

2003a).  The typical half-life of morphine is roughly two hours (Stuart-Harris et al., 2000) 

and once in the system about one-third of the dose is bound by protein (Gutenstein and 

Akil, 2006) with plasma clearance ranging from 533 mL/min to 1256 mL/min in ill patients 

and 805 mL/min to 2590 mL/min in healthy volunteers (Meineke et al., 2002).  Morphine 

is conjugated with glucuronic acid to form two primary metabolites:  morphine-6-

glucuronide (M6G) and morphine-3-glucuronide (M3G), of which M6G has even greater 

pharmacological activity than morphine and contributes to analgesia (Penson et al., 2000; 

Portenoy et al., 1992).  M6G also has a longer half-life than morphine (Stuart-Harris et al., 

2000) and fewer side effects (Lötsch et al., 1996).  M3G contributes little to analgesia, if 

at all (Penson et al., 2000).  Both of these metabolites are able to cross the BBB and are 

excreted by the kidney, with 90% of excretion occurring within 24 hours; however, traces 

of morphine can be found in bile because of enterohepatic recycling (Parker et al., 1980) 



6 

 

but this is not believed to have much of an effect on the pharmacodynamics of morphine 

(Lötsch et al., 1996) as this is responsible for maintaining low concentrations of the 

glucuronide metabolites as opposed to a subsequent secondary increase in morphine levels 

(Osborne et al., 1990). 

It should be noted that the opioid history of the patient, both physician-prescribed 

and illicit, should always be known when considering morphine or other opioid treatment.  

Pharmacokinetic and pharmacodynamic changes may occur as a result of pharmacological 

tolerance, in which a greater amount of the drug is required to achieve the desired analgesic 

outcome (Vallejo et al., 2011).  Chronic opioid use can also produce other adverse side 

effects such as the aforementioned immunomodulation, hormonal changes, abuse, 

addiction, and hyperalgesia (Manchikanti and Singh, 2008).  Route of administration can 

also affect the pharmacological profile of morphine and should therefore also always be 

considered (Osborne et al., 1990). 

 

1.1.2 Methadone 

Methadone (Figure 3) is primarily prescribed to treat 

opioid addiction and is widely supported for this purpose 

within the medical community (Kreek, 2000).  Methadone 

directly alters the same areas of the brain that produce 

addiction as well as normalizes hormonal imbalances 

associated with addiction (Kosten and George, 2002).  It is 

also effective in treating chronic and cancer pain (Halpern, 

1977).  In recent decades, physicians have been increasingly 

Figure 3.  Molecular structure and 

chemical data for Methadone. 

Chemical Formula:  C21H27NO 

Molecular wt:  309.45 g/mol  

http://pubchem.ncbi.nlm.nih.gov/s

ummary/summary.cgi?cid=4095 
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prescribing methadone to treat chronic noncancer pain and pain that does not respond to 

other treatments (Chou et al., 2009).  This is primarily because it is inexpensive, is 

supported by insurance companies, and has a long half-life (Kuehn, 2012; Lugo et al., 

2005).  Unfortunately, this use is controversial as pain patients are more likely to self-

administer than those in methadone maintenance therapy (MMT) and with either guided or 

improper use of methadone, it is still a respiratory depressant with potential prolonged QT 

side effects—both of which can lead to death (Modesto-Lowe et al., 2010).  These side 

effects are likely aggravated by highly individual and variable pharmacokinetics (Fredheim 

et al., 2007; Chou et al., 2009). 

Methadone is a synthetic opioid with relative potency to morphine (Davis and 

Walsh, 2001) and is typically used in clinical and laboratory situations as a racemic mix 

with the l- (aka. R-) enantiomer exhibiting agonist activity at MOR with a binding affinity 

constant (Ki) of 3.378 nM (Volpe et al., 2011).  The d- (aka S) enantiomer expresses 

antagonist activity at the N-methyl-D-aspartate (NMDA) receptor (Davis and Inturrisi, 

1999).  Agonist activity has also been implicated at the kappa and delta opioid receptors 

(KOR and DOR, respectively) (Garrido and Trocόniz, 1999).  The dual receptor activity at 

MOR and NMDA makes methadone particularly useful in pain management, regardless of 

its response to traditional opioid treatment.  This is because the opioid receptor mediates 

transmission of the pain signal (Zubieta et al., 2001) and the NMDA receptor produces 

pro-nociceptive agents, such as substance P (Liu et al., 1997), making methadone an 

excellent choice for relief of non-relenting pain.  Greater methadone DOR agonism relative 

to morphine is implicated in a weaker cross tolerance than when patients are maintained 

on more traditional opioids with a more similar structure to morphine (Lynch, 2005).  As 
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far as activity is concerned, methadone has also been implicated as a 5-hydroxytryptamine 

(5-HT) and norepinephrine uptake inhibitor, albeit to a lesser extent for the latter (Codd et 

al., 1995).  The effects on 5-HT and norphinephrine may also contribute to the non-opioid 

mediated analgesic properties of methadone as monoamine-producing descending neurons 

can inhibit transmission of the pain signal (Codd et al., 1995; Dharmshaktu et al., 2012).  

The opioid-induced uptake inhibition of 5-HT helps explain the use of antidepressants in 

chronic pain such as migraine and diabetic neuropathy (Sharav et al., 1987; Dharmshaktu 

et al., 2012) and is considered to be a structural phenomenon as morphine—a phenanthrene 

containing an oxygen bridge—does not inhibit monoamine uptake while methadone—a 

phenanthrene without an oxygen bridge—does inhibit uptake (Codd et al., 1995). 

The half-life of methadone is long and variable at roughly 15-40 hours (Lugo et al., 

2005) with some reports of even 130 hours (Lynch, 2005).  Methadone is a basic, lipophilic 

drug that can be administered intravenously (Fredheim et al., 2008).  High oral and rectal 

bioavailability (Dale et al., 2004) and extensive tissue distribution have been observed in 

humans but the efficacy and viability in subcutaneous and epidural administration are 

questionable due to inflammation at the injection site (Davis and Walsh, 2001).  As a result, 

the route of methadone administration may contribute to varying pharmacokinetic and 

pharmacodynamic effects on the patient as alterations in bioavailability can occur when 

comparing oral versus intramuscular administration (Lugo et al., 2005).  Additionally, 

parenteral administration of methadone in addicts results in similar behavioral effects to 

parenterally administered morphine while oral doses of methadone do not produce 

behavioral changes (Gutenstein and Akil, 2006). 
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Methadone has a quick onset of action and is readily absorbed from the 

gastrointestinal tract, making it a great choice for oral dosing (Gutenstein and Akil, 2006; 

Trescot et al., 2008).  It is extensively processed in the liver, primarily via oxidation by the 

cytochrome P450 enzyme CYP 3A4-induced N-demethylation, to the inactive metabolite 

2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (Karasch et al., 2004; 

Fredheim et al., 2007) and is excreted in the urine (Garrido and Trocόniz, 1999) with 

increased excretion in acidic urine as a result of the basic nature of the drug (Davis and 

Walsh, 2001; Inturrisi CE, 1976).  Lack of drug accumulation in the urine of patients with 

renal failure indicates fecal excretion as well (Lynch, 2005).  Hepatic clearance is minimal 

and varies depending on duration of treatment.  For example, assuming a 1,500 mL/min 

hepatic blood flow rate in an opioid addict, the extraction ratio is twice that at the same rate 

in a chronic pain patient on methadone at 0.16 and 0.08, respectively (Garrido and 

Trocόniz, 1999), which is consistent with earlier findings that the liver only clears roughly 

10% of free methadone as protein bound methadone is not processed as was indicated in 

chronic pain patients (Inturrisi et al., 1987). 

Maximum concentrations of methadone in the brain are seen within 1-2 hours 

(Gutenstein and Akil, 2006) and a lack of active metabolites makes it appropriate to 

prescribe to patients with compromised hepatic function (Vallejo et al., 2011).  Inactive 

metabolites for methadone may contribute to the decreased amounts of neurotoxicity with 

methadone when compared to other opioids (Trescot et al., 2008).  However, a short 

analgesic period of 4-8 hours coupled with the long half-life may contribute to respiratory 

depression and death (Modesto-Lowe et al., 2010).  Methadone enters the CNS with 

concentrations in cerebrospinal fluid (CSF) as high as 73% that of plasma with peak levels 
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reached after 3-8 hours in MMT patients (Rubenstein et al., 1978).  The drug efflux 

transporter P-gp is used in intestinal methadone transport, as is the case with morphine, but 

its role in the BBB remains debatable and unclear (Fredheim et al., 2008; Karasch et al., 

2004).  Methadone is protein bound in tissue—including the brain—primarily to α1-acid 

glycoprotein (AAG), whose expression increases with stress, cancer, and inflammatory 

states (Romach et al., 1981).  Methadone binds to the plasma proteins albumin and gamma 

globulin (Olsen, 1973) with only about 12% remaining unbound in plasma (Inturrisi et al., 

1987).  Drug levels are maintained in the plasma at low concentrations once dosing has 

ceased due to a slow release from tissue stores (Dole and Kreek, 1973) with preferential 

storage in lipoproteins (Romach et al., 1981).  Plasma binding may also influence this slow 

release.  Protein bound methadone release increases with repeated dosing (Gutenstein and 

Akil, 2006) and is one potential reason why withdrawal from methadone is not as violent 

as from other opioids such as heroin or morphine. 

Dosing of methadone is generally recommended to begin at 10% or less of the 

equianalgesic dose of other opioids, not to exceed 30-40 mg per day (Chou et al., 2009) to 

avoid drug accumulation and overdosing that can result from the long half-life of 

methadone (Trescot et al., 2008).  Even opioid tolerant patients may not be completely 

cross-tolerant to the effects of methadone, which can at least in part be attributed to 

potential genetic variability (Modesto-Lowe et al., 2010; Fredheim et al., 2008) and greater 

DOR agonist activity when compared to morphine (Lynch, 2005).  As a result, caution 

should be exercised when switching to methadone from other opioids due to the high inter-

individual pharmacokinetic variabilities associated with the drug.  Pharmacodynamic 

properties are similar to those of morphine but methadone may produce a longer miotic 
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effect than other opioids (Inturrisi, 1976).  Side effects of dizziness, sleepiness, sweating, 

and an overall feeling of heaviness have been reported (Inturrisi et al., 1986) and 

methadone may also induce the cardiac arrhythmia Torsade de Pointes (Modesto-Lowe et 

al., 2010).  Despite the safe use of methadone in MMT, it is still considered to be an 

addictive drug with potential for abuse in pain management (Gutenstein and Akil, 2006). 

 

1.1.3 Oxycodone 

Oxycodone (Figure 4) is another opioid used in this 

study and was introduced to the medical community almost 

100 years ago in 1917 (Klimas et al. 2013).  The semi-

synthesis of oxycodone from thebaine, a major constituent of 

opium, first occurred in Germany and has since been used in 

Europe, Canada, the United States, Australia, and Finland—

where it is the parenteral drug of choice for acute pain (Kalso, 

2005).  Oxycodone was approved by the U. S. Food and Drug 

Administration as a sustained release analgesic, OxyContin®, in 1995 (Cicero et al., 2005).  

Routes of administration for oxycodone include oral (controlled and immediate release), 

rectal, intraspinal, and parenteral (Riley et al., 2008).  The route of administration has been 

implicated in variable analgesia, which may be due to a differential activity of G-proteins 

resulting from different administration routes, as potent effects can be seen after 

subcutaneous delivery and poor analgesia may result after intrathecal administration 

(Lemberg et al., 2006).  Oxycodone may be more potent than morphine in postoperative 

pain but the opposite may be the case for cancer pain (Kalso et al., 1991).   

Figure 4.  Molecular structure and 

chemical data for Oxycodone. 

Chemical Formula:  C18H21NO4 

Molecular wt:  315.36 g/mol  

http://pubchem.ncbi.nlm.nih.gov/s

ummary/summary.cgi?cid=52846

03 
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Oxycodone is an opioid receptor agonist at MOR (Kalso, 2005) with a binding 

affinity constant (Ki) generally accepted in the literature of ~20 nM at that receptor 

(Monory et al., 1999; Lalovic et al., 2006; Volpe et al., 2011), indicating that it has a 

weaker association at the recepetor than either morphine or methadone.  It has been 

suggested that KOR may be responsible for the analgesic effects of oxycodone (Ross and 

Smith, 1997); however, this is debated in the literature (Kalso, 2005) as the Ki’s for 

oxycodone at DOR and KOR are 958±499 nM and 677±326nM, respectively with a 95.7% 

relative affinity for MOR (Monory et al., 1999).  Perhaps an observed increase in analgesia 

via KOR is a result of KOR interaction with another receptor such as MOR or TLR4.  

Regardless of the specific receptor mediating the analgesia, oxycodone is similar in 

analgesic potency to morphine (Pöyhiä and Seppälä, 1994). 

Bioavailability of oxycodone is relatively high at about 60% with maximum 

concentrations occurring in the plasma at about one hour in healthy humans despite either 

intramuscular or oral administration (Pöyhiä et al., 1992).  Oxycodone is metabolized in 

the liver via cytochrome P450 enzymes.  CYP3A4 induces N-demethylation into the 

metabolite noroxycodone for roughly 46% of the dose while CYP2D6 induces O-

demethylation for about 11% of the dose to produce the metabolite oxymorphone (Klimas 

et al., 2013).  Small amounts of oxycodone may also be reduced to α- and β-oxycodol as 

has been indicated in vitro (Lalovic et al., 2006).  According to a pharmacokinetic-

pharmacodynamic model and GTPγS binding activity to G-proteins, both noroxycodone 

and oxymorphone undergo further metabolism to the active metabolite noroxymorphone 

(Klimas et al., 2013; Lalovic et al., 2006), which may further be reduced to α- and β-

noroxycodol (Lalovic et al., 2006).  It has not yet been clearly determined whether or not, 
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or to what extent, noroxymorphone or any of the other metabolites contribute to the central 

effects of oxycodone as there are conflicting reports about this matter in the literature 

(Kalso, 2005; Klimas et al., 2013; Lemberg et al., 2006). However, oxycodone as the 

parent compound is found in the brain [of rats] at concentrations twice that of drug in the 

plasma (Lalovic et al., 2006) and is therefore generally accepted as the source of oxycodone 

analgesia (Klimas et al., 2013).  At least one study in rats indicates that three times as much 

oxycodone enters the brain than is cleared, suggesting a role for active influx across the 

BBB and/or increased brain tissue binding that is not seen with morphine despite similar 

lipophilicities (Boström et al., 2006).  Liposolubility and protein binding of oxycodone is 

similar to that of morphine (Pöyhiä and Seppälä, 1994) but does not include interaction 

with P-gp (Boström et al., 2006).  Oxycodone is hepatically metabolized via cytochrome 

P450 enzymes, thus genetic variations or drugs that interact with these enzymes will affect 

the pharmacokinetics of oxycodone (Lalovic et al., 2004; Klimas et al., 2013).  The half-

life for oxycodone is about 4 hours but can be longer in renal and/or liver failure (Kalso, 

2005).  Excretion of oxycodone is primarily via the kidney (Pöyhiä et al., 1992; Riley et 

al., 2008). 

Side effects of oxycodone are similar to those of other opioids, such as morphine, 

but are generally not as intense (Kalso, 2005; Riley et al., 2008).  Oxycodone is also 

considered to be a drug with a high potential for abuse, comparable to that of morphine  

(Riley et al., 2008). 
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1.1.4 Buprenorphine 

Buprenorphine (Figure 5) was designed in the 1970s 

to be an antinociceptive agent without narcotic properties, thus 

largely devoid of the unwanted side effects that accompany 

traditional MOR-agonist opioid analgesics (Cowan et al., 

1977).  Buprenorphine is structurally similar to the opioid 

antagonist diphrenorphine, only differing by one functional 

group (Cowan et al., 1977).  While buprenorphine was 

designed as an analgesic alternative to morphine, early 

pharmacological data indicating a long half-life and less tolerance, toxicity, and abuse 

potential—relative to morphine—made it an ideal candidate to treat heroin addiction 

(Jasinski et al., 1978).  Buprenorphine first came to the market as an analgesic in the United 

States in 1981 (Trescot et al., 2008) but it wasn’t until 2002 when the U.S. Food and Drug 

Administration (FDA) labeled buprenorphine as a Schedule III drug and approved it to 

treat opioid dependency (Jones, 2004).  As a result, buprenorphine is primarily used to 

detoxify patients from heroin and other opioid addictions and to maintain their sobriety 

with equal efficacy as methadone (Bickel et al., 1988).  Buprenorphine may even be 

superior to methadone in detoxification (Ducharme et al., 2012); however, neither drug has 

been found to inherently maintain abstinence in lieu of other social support systems 

(Wright et al., 2011).  Buprenorphine is an excellent alternative for addicted patients who 

are deterred from the methadone clinic and/or in-patient rehabilitation facilities because 

with the proper licensing, primary care physicians are now able to prescribe buprenorphine 

to treat opioid dependencies (Jones, 2004).  Some clinicians and studies have recently 

Figure 5.  Molecular structure and 
chemical data for Buprenorphine. 

Chemical Formula:  C29H41NO4 

Molecular wt:  467.64 g/mol 

http://pubchem.ncbi.nlm.nih.gov/s

ummary/summary.cgi?cid=64407

3&loc=ec_rcs 
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begun to promote and study buprenorphine in its initially intended role—as an analgesic 

(Berland et al., 2013; Davis, 2012; Gordon et al., 2010; Yamamoto et al., 2006). 

Buprenorphine is a lipophilic drug and the clinically useful routes of administration 

include sublingual and transdermal, as these routes tend to be popular in research while 

abused routes of administration include intranasal, intravenous, and parenteral (Huestis et 

al., 2012; Middleton et al., 2011; Jasinski et al., 1978).  It is prescribed in tablet form for 

sublingual treatment of opioid dependency either by itself (Subutex®) or in a 4:1 ratio of 

buprenorphine:naloxone (Suboxone®) in order to deter illicit use and abuse.  While 

buprenorphine alone has abuse potential, albeit less than morphine, the naloxone in the 

formulation can precipitate withdrawal symptoms in opioid addicted individuals when it is 

crushed and injected (Jones, 2004) and also may induce withdrawal when ‘snorted’ as the 

bioavailability for intranasal naloxone was up to 30% in this study (Middleton et al., 2011).  

Individual on high opioid doses have a greater degree of physical dependency and are also 

likely to precipitate a withdrawal when taking buprenorphine alone because it has a higher 

affinity for MOR than other opioids of abuse (Ki=0.2157 nM, Volpe et al., 2011) and is 

more potent than morphine (Cowan et al., 1977), but possesses less intrinsic efficacy 

(Strain et al., 1995) because it is only a partial agonist at MOR (Martin et al., 1976). 

Buprenorphine has a quick onset of action at 5 minutes after subcutaneous injection 

(Cowan et al., 1977) but it is about 1-1.2 hours after clinically relevant sublingual 

administration (Compton et al., 2006).  Maximal plasma concentrations and brain MOR 

occupancy increase linearly with dose (Hestis et al., 2012) but there is a nonlinear 

association between MOR occupancy in the brain and plasma concentration, probably 

attributable to high affinity at MOR (Greenwald et al., 2003).  At high, nontoxic doses the 
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efficacy of buprenorphine begins to decrease and can even pharmacodynamically present 

as an antagonist, indicating a ceiling effect and generating a bell-shaped dose-response 

curve indicative of multiple receptor interactions (Cowan et al., 1977).  Indeed, 

buprenorphine has several molecular sites of action including agonist activity at opioid 

receptor like-1 (ORL-1), further contributing to antinociception; however, MOR agonism 

is primarily responsible for analgesia (Yamamoto et al., 2006).  Furthermore, it is a KOR 

antagonist (Leander, 1987) which may contribute to its successful use in opioid 

dependency and abstinence programs as KOR is implicated in the neurobiology of drug 

abuse, affecting dopaminergic tone and modulating addictive behavior (Kreek, 1996). 

These unique receptor activities contribute to the safety and utility of 

buprenorphine.  Additionally, buprenorphine has a long duration of action (Jasinski et al., 

1978), attributed to slow dissociation from MOR.  This is supported with the finding that 

heroin cravings are suppressed for at least 28 hours with 50% MOR occupancy in the brain 

by buprenorphine (according to human in vivo PET imaging) but by 52 hours post dosing 

and 33% MOR occupancy, symptoms of withdrawal become evident (Greenwald et al., 

2007).  This data supports that there is sufficient BBB transport and CNS MOR is at least 

partially responsible for the sustained drug effects of buprenorphine. 

Sublingual bioavailability of buprenorphine is about 70% in tablet form but 

deceases with liquid formulation (Harris et al., 2004).  Equal doses in males and females 

show that females have higher amounts of circulating drug and metabolites than males 

(Moody et al., 2011).  Extensive first pass hepatic metabolism occurs via phase I and phase 

II N-dealkylation and conjugation, and the drug is primarily excreted in feces as both free 

and conjugated metabolite (Cone et al., 1984).  Minimal amounts (<15% of dose) of the 
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conjugated inactive metabolite norbuprenorphine are renally excreted with no free drug in 

the urine regardless of oral, sublingual, or subcutaneous administration (Cone et al., 1984). 

The half-life of buprenorphine is up to 28 hours after intravenous administration and is 

detected for up to 76 hours (Greenwald et al., 2007).  Tolerance and cross-tolerance can 

occur with buprenorphine but at a slower rate compared to morphine (Cowan et al., 1977). 

Potent MOR agonist activity makes buprenorphine a candidate for illicit abuse but 

its pharmacokinetics tend to be more predictable than those of methadone, contributing to 

its safety (Compton et al., 2006).  In the past decade primary care physicians have been 

premitted to prescribe it to opioid-dependent individuals, increasing its availability to this 

population (Jones, 2004).  While toxicological data is scarce, buprenorphine has been 

identified in some autopsies at both therapeutic and lethal levels but can rarely be 

determined as the sole cause of death because a benzodiazepine and/or other drugs are also 

involved in almost every case (Pirnay et al., 2004).  Respiratory depression and other 

adverse physiological parameters such as lower heart rate and blood pressure are not 

pronounced with even high and/or accumulating concentrations of buprenorphine (Jasinski 

et al., 1978; Harris et al., 2004; Compton et al., 2005; Middleton et al., 2011).  Other side 

effects are similar to morphine but are more tolerated—the exception is a longer and greater 

miotic effect with increasing doses of buprenorphine (Harris et al., 2004). 

 

1.1.5 Δ9-Tetrahydrocannabinol (THC) 

While THC is not an opioid, the first set of preliminary experiments in this 

laboratory investigated the potential effects of this cannabinoid has on TLR4 activity.  

Because this was preliminary, only a brief discussion will occur on this drug.  THC is the 
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major active compound in marijuana and is the focus of much debate both in the scientific 

and political communities.  It has been found to be useful in treating many conditions, 

including pain, sometimes in conjunction with opioids in order to decrease the opioid dose 

(Lamarine, 2012).   

The typical method of ingestion for marijuana is via inhalation; however, some 

other means of administration include oral and ophthalamic as it also has pharmacological 

use in treating glaucoma (Grotenhermen, 2003).  THC binds to the cannabinoid receptors 

CB1 and CB2 with a relative equal affinity (Pertwee, 1999).  Once in the system, it is 

primarily distributed throughout adipose tissue (Rawitch and Rohrer, 1979), where it can 

be stored for up to a month in chronic users (Grotenhermen, 2003).  Chronic marijuana use 

is also associated with a decrease in cognitive skills, which suggests that neurotoxicity 

and/or neuroinflammation may be a contributing factor (Cutando et al., 2013).  This finding 

helped initiate the possible involvement of TLR4 in THC-induced cognitive dysfunction. 
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SECTION 1.2 

DRUG ABUSE, ADDICTION, DEPENDENCE, AND TOLERANCE 

The importance in addressing drug abuse and addiction has two primary facets:  1) 

To illustrate the high prevalence of use that these drugs embody outside of clinical 

guidance and knowledge as a current medical and social issue, and 2) To address the doses 

chosen for use in the research as both abusers and addicts traditionally have higher plasma 

drug concentrations due to the phenomenon of opioid tolerance.  These topics are of interest 

in this research because abuse, addiction, dependence, and tolerance are all mediated to 

some degree by MOR (Contet et al., 2004; Matthes et al., 1996).   

 

1.2.1 Drug Abuse 

Drug abuse is defined as the nonmedical use of a substance with the intent of 

achieving an altered mental or physical state (Hernandez and Nelson, 2010).  Both 

prescription and illicit, or “street,” opioids are commonly abused (Zacny et al., 2003).  

Many different drugs and drug types have abuse potential but for the purpose of this 

research, the focus will remain on opioids. 

In the mid-1800’s smoking opium was en vogue to get “high” beginning in the 

California west coast but after the hypodermic syringe was invented (c. 1856) and the 

subsequent discovery of heroin (1898), the trend became intravenous (IV) heroin (Ball, 

1965).  IV heroin abuse is still favored among some addicts, primarily in metropolitan areas 

where it is readily available and inexpensive (Cicero et al., 2005); however, a current and 

growing opioid trend is the abuse of prescription opioids, including pills such as 
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hydrocodone, oxycodone, and methadone and has reached epidemic levels (NIDA, 

Commonly Abused Prescription Drugs, 2011).  The abuse of IV heroin and prescription 

pills is responsible for twice as many deaths as homicide/violent crimes or auto accidents 

in many cities—large and small—leading to the attention of the U.S. Attorney General 

(Johnson, 2014).  Contributing to this is the fact that prescription drug abuse has increased 

over the past twenty years and may be attributed to greater availability from the increasing 

number of opioid prescriptions   dispensed (NIDA, Research Report series, Prescription 

Drugs:  Abuse and Addiction, 2011).  Each of the drugs highlighted in the previous section 

are all frequently prescribed and often abused (Cicero et al., 2005). 

The rise in these prescriptions is primarily due to two reasons:  1) greater 

recognition of and treatment for pain (Brennan et al., 2007) and 2) more patients receiving 

treatment for opioid dependency (Stein et al., 2012).  Further adding to the number of 

prescriptions written is that both primary care physicians and specialized pain clinics are 

managing pain patients (Olsen et al., 2006).  The prevalence of both legitimate and 

illegitimate pain patients exacerbates the burden on physicians to distinguish between the 

two and simultaneously maintain a high standard of care for all patients (Baldacchino et 

al., 2010). 

 

1.2.2  Addiction 

Addiction is a term commonly used in place of abuse and while the meanings are 

not mutually exclusive, they have distinct behaviors associated with them.  While the 

abuser and the addict may both aim to achieve altered mental and/or physical states 
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(Hernandez and Nelson, 2010), the addict’s behavior is more compulsive (Lutz and Kieffer, 

2013; Fishbain et al., 1992).  Risky addictive and substance abuse behaviors may present 

in those who recreationally abuse these drugs (McCabe and Cranford, 2012) and/or those 

on chronic opioid therapy (Chabal et al., 1997).  Some pain patients may actually be 

‘pseudoaddicted’ in that compulsive behaviors they might display result from 

undertreatment and subside once pain is effectively managed (Bell and Salmon, 2009).  

Ongoing work to reconcile definitions of abuse, addiction and dependence exist as the 

American Psychiatric Association (APA) has revised the criteria for these conditions in the 

Diagnostic and Statistical Manual of Mental Disorders for its fifth edition (DSM-5), 

released in May 2013 (Peer et al., 2013).  This is especially important as debate continues 

around the prevalence of addiction as an iatrogenic condition, resulting from legally 

obtained prescription opioids, and how the physician should approach and treat pain 

patients with concurrent substance abuse disorders (Bailey et al., 2010). 

 

1.2.3 Dependence 

Dependence may occur with opioid use and is considered to be a combined 

cognitive, behavioral, and psychological condition resulting from substance use that does 

not subside despite significant problems resulting from drug use (Minozzi et al., 2012).  

Physical dependence is identified by unpleasant withdrawal symptoms that present upon 

drug abstinence (Trujillo and Akil, 1991a), at which point users tend to self-administer 

additional drug(s) to alleviate these symptoms (Lutz and Kieffer, 2013).  This is when drug 

administration becomes necessary for the user to feel normal but the higher doses do not 

necessarily elicit a physiological response (Brenner and Stevens, 2010).  This is likely due 
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to NMDA receptor-mediated neuroplasticity as neuroplasticity is the result of learned 

behavior (Trujillo and Akil, 1991b) and NMDA receptors have also been shown to 

influence dependence as well as antinociception and tolerance (Mao, 1999).   

Discontinuation of the drug results in withdrawal symptoms only relieved by more drug.  

Attempt to avoid withdrawal symptoms commonly leads to addiction (Lutz and Kieffer, 

2013), which is believed to be at least the partial result of MOR activation because of its 

role in responding to endogenous opioids produced after addictive drug administration 

(Contet et al., 2004).  Additionally, MOR knockout mice experience neither analgesia nor 

addiction—corroborating the receptor’s role in these two conditions (Matthes et al., 1996).  

It quickly becomes clear that MOR is not solely associated with analgesia. 

 

1.2.4 Tolerance  

Tolerance refers to a decreased drug effect after continued use (Figure 6a); 

therefore, after tolerance develops, the dose must be increased in order for the drug to elicit 

a response (Trujillo and Akil, 1991a).  Tolerance is identified pharmacologically as a right 

ward shift in the dose-response curve as shown in Figure 6b.  Illustrating the concept of 

tolerance is the observation that plasma levels of morphine in a non-tolerant, or opioid 

naïve, person is 50 ng/mL, or 0.175 µM (Lötsch et al., 1996) while in an individual on 

constant pain management it can be as high as 1,440 ng/mL, or 5 µM (Ninković and Roy, 

2011).   

 Cross-tolerance occurs when tolerance to one drug translates to another drug in the 

same class, as this is the idea behind opioid substitution therapy to wean a patient off of 

morphine, for example, by instead prescribing methadone (Brenner and Stevens, 2010).    
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However, opioid cross-tolerance is incomplete—especially in the opioid tolerant patient 

taking MOR opioids—and the desired cinical outcome may take time to reach optimal 

effect as the doses are adjusted (Pasternak, 2005). 

Several mechanisms are implicated in the development of tolerance.  NMDA 

receptors are involved in neuroplasticity and learning and their involvement in tolerance 

has been studied.  Antagonism of NMDA receptors attenuates tolerance to morphine 

(Trujillo and Akil, 1991b) contributing to the hypothesis that tolerance is at least in part, a 

neuroplastic phenomenon. 

Further research has delineated that pharmacological tolerance can occur 

independent of physical dependency and that the mechanisms of tolerance most likely 

involve synaptic amplification at the connections between neurons, as concluded in a study 

using single neurons in a rat model (Christie et al., 1987).  While whole neurons are 

certainly involved in tolerance, the contribution of MOR receptor density is somewhat 

 

Figure 6.  Pharmacological representation of tolerance.  a. Pharmacodynamic 

attenuation of efficacy.  b. Pharmacokinetic right-ward shift in dose response 

curve present in tolerance.   

http://www.druglibrary.org/schaffer/heroin/ase/chap_3_6.htm 



24 

 

debated in the literature, as at least one study indicates that downregulation of MOR has 

no effect on pharmacological tolerance (Chan et al., 1997).  In quasi-support for the lack 

of MOR density contributing to tolerance, is the research indicating that MOR agonists 

differentially regulate the receptor and that receptor sensitization is more likely to be 

involved than receptor density; however, this is agonist-dependent as morphine does not 

desensitize MOR, while methadone and buprenorphine do (Blake et al., 1997).  The 

continued receptor activation by morphine may contribute to its addictive properties while 

the receptor desensitization by methadone and buprenorphine may help explain their 

effectiveness in treating dependence. 

In agreement with both receptor density and desensitization contributing to 

tolerance is the finding that chronic morphine treatment does not induce MOR 

desensitization and endocytosis, while methadone does (Finn and Whistler, 2001).  MOR 

is phosphorylated by G-protein receptor kinases (GRKs) which lead to internalization via 

a β-arrestin dependent mechanism at which point it can then be either recycled or degraded, 

reducing the number of receptors at the membrane (Finn and Whistler, 2001).  Increasing 

the dose causes a higher concentration of drug at the synapse, allowing a greater probability 

that the comparatively few receptors present will bind the agonist and inhibit pain signal 

transmission—thus contributing to tolerance.  Superactivation of the cAMP signaling 

pathway as a compensatory mechanism after continual inhibition by morphine was also 

suggested to be a marker for tolerance at the cellular level (Finn and Whistler, 2001).  While 

dependence and tolerance are relatively simple pharmacological effects to conceptualize, 

their mechanisms are complex and a subject of continuous research. 
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SECTION 1.3 

OPIOID RECEPTORS 

The opioid receptors were first discovered in the 1970s.  The seminal 1973 paper 

by Candace B Pert and Solomon H. Snyder in Science is generally regarded as the first 

time that a specific site for opioid binding was identified.  They achieved this by 

homogenizing rat, guinea pig, and mouse brain and conducting a radioligand binding study 

on the tissue with tritiated naloxone to measure ligand displacement from the receptor (Pert 

and Snyder, 1973).  Drugs characterized as potent opiates were able to displace naloxone 

binding at low concentrations, indicating an interaction at what was at the time deemed the 

“opiate receptor” (Pert and Snyder, 1973). 

Following this research was the hypothesis that other opioid receptors exist.  Martin 

et al., proved this in 1976 with experiments which induce chronic pain in a chronic spinal 

dog model and compared these effects to those seen in human.  It was determined that there 

are three distinct yet structurally similar opioid receptors that each respond to different 

agonists in a differential manner.  The first was called µ, for morphine; the second κ, for 

the agonist ketocyclazocine; and the third σ, for the agonist effects of SKF-10,047.  While 

this last drug did not produce obvious physiological effects typical of other opioids, the 

behavioral effects were intense and antagonized by naltrexone—suggesting that it was an 

opioid receptor agonist (Martin et al., 1976).  These receptor subtypes were expanded upon 

in 1977 by Lord et al., who corroborated the evidence for µ and κ receptors by comparing 

the potencies of different opioid agonists and using specific receptor antagonists to block 

individual receptors in the guinea pig ileum and mouse vas deferens, and by evaluating 

radioligand binding studies in guinea pig brain homogenates.  This study identified a 
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different opioid receptor in the mouse vas deferens, which was called δ for vas deferens 

(Lord et al., 1977).  These receptors (excluding σ) are now commonly referred to as MOR, 

DOR, and KOR in the literature for µ, δ, and κ opioid receptors, respectively. 

Recent data indicates that the σ receptor is not actually an opioid receptor as it has 

no resemblance to a G-protein coupled receptor (GPCR) like the others, but is instead 

believed to be a ligand-regulated molecular signaling chaperone whose expression in 

nervous tissue and weak responsiveness to opioids convoluted its true function (Zamanillo 

et al., 2013).  Recently, a fourth receptor called opioid receptor-like protein (ORL) has 

been identified and shares 60% homology to the other opioid receptors, which is the same 

percent homology that they share amongst each other; however, despite this homology, 

ORL does not bind opioids but is somehow involved in the pain response—contributing to 

the confusion, mystery, and current orphan receptor status surrounding this protein 

(Barlocco et al., 2000). 

Bioinformatic analysis indicates that these receptors evolved as a result of gene 

duplication and that rapid and positive selection of the MOR gene may have had the 

evolutionary advantage of enhanced analgesic capacity in humans (Stevens et al., 2007).  

Subtypes of MOR, DOR, KOR, and ORL are alternative splice products of the parent 

receptors, with MOR having the greatest number of receptor subtypes (Stevens et al., 

2007).  The MOR variants may be responsible for the differential analgesic effects to 

opioids that have been clinically observed (Pasternak, 2005; Choi, 2006).  Many currently 

identified splice variants have been shown to affect the potency and effectiveness of opioid 

analgesics and tend to exhibit their diversity at the intracellular carboxy c-terminal tail of 

the protein (Pasternak, 2005).  The third intracellular loop has also been identified as a site 
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for G-protein interaction and subsequent initiation of signaling (Georgoussi et al., 2006).  

Additional MOR genetic polymorphisms have been hypothesized to influence 

susceptibility to addiction—primarily the N-terminal extracellular single nucleotide 

polymorphism (SNP) A118G allele, which changes the amino acid asparagine to aspartic 

acid and may augment agonist binding affinity thereby increasing the likelihood for 

addictive behavior (Stevens et al., 2007).  However, this is controversial as conflicting 

studies indicate that further research is needed for a consensus on the role of genetic 

polymorphisms in addiction (LaForge et al., 2000).  As the research presented here focuses 

on MOR, all subsequent discourse regarding opioid receptors will focus on MOR structure, 

function, and signaling unless otherwise noted. 

 

1.3.1 µ Opioid Receptor (MOR) 

MOR is an opioid receptor that mediates ascending and descending pain signals 

between the periphery and the central nervous system (CNS) (Zubieta et al., 2001).  MOR 

also is involved in reward associated with social situations and addiction (Lutz and Kieffer, 

2013).  MOR is expressed throughout the CNS and the periphery.  It has been detected in 

human tissue at high levels (12-20 x 106 mRNA copies/µg) in certain areas of the brain 

such as the cerebellum, nucleus accumbens, and caudate nucleus, and lower levels (2-8 x 

106 mRNA copies/µg) in other areas such as the putamen, cerebral cortex, temporal lobe, 

hippocampus, substantia nigra, and spinal cord, with the lowest expression in the pancreas 

and small intestine (~2 x 104 mRNA copies/µg) (Peng et al., 2012).  It is important to note 

that the higher levels of MOR expression include brain areas in the mesolimbic dopamine 

reward system, which is implicated in addiction (Contet et al., 2004).  MOR mRNA is also 
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found in moderate levels in the dorsal root ganglion and adrenal gland (2-6 x 106 mRNA 

copies/µg) but is not detected in the human lung, spleen, kidney, heart, skeletal muscle, 

liver, or thymus (Peng et al., 2012).  Furthermore, MOR expression has been identified in 

hippocampal GABAergic neurons, and functional protein can be induced in Jurkat T 

immune cells upon interleukin-4 (IL-4) or tumor necrosis factor-α (TNFα) cytokine 

stimulation (Börner et al., 2007), contributing to its role in immunomodulation.  Further 

evidence for this is that the MOR transcript was also induced by IL-4 or TNFα in primary 

human T cells at comparable levels to the Jurkat T cells; however, for reasons not addressed 

by the authors the functional protein levels of MOR were only examined in the Jurkat T 

cells (Börner et al., 2007).  MOR (and KOR) is also expressed in human microglia 

(Kettenmann et al., 2011). 

MOR is a heterotrimeric membrane bound G-protein coupled receptor (GPCR) 

(Brenner and Stevens, 2010) with seven transmembrane passes (Traynor, 2012).  GPCRs, 

including MOR, associate with α and βγ G-protein subunits.  These subunits regulate 

adenylyl cyclase (AC) activity and can be generally divided into stimulatory (Gs) and 

inhibitory (Gi) proteins.  In the case of MOR, the α subunit is coupled to Gi, which was 

initially termed Ni as it was being identified (Birnbaumer, 2007), and Go proteins (Gαi/o), 

that are activated upon agonist binding (Ueda et al., 1988; Laugwitz et al., 1993).  There 

are three subtypes of αi proteins (1, 2, and 3) and two splice variants of αo proteins (A and 

B) and while it has been shown that MOR most efficiently couples to Gαi3 than the other 

G-protein subtypes, this has no effect on ligand biased signaling (Traynor, 2012; Clark et 

al., 2006).  Instead, research indicates that the β subunit of the βγ complex interacts with 

the C-terminal tail of MOR, contributing to differential agonist-stimulated signaling 
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(ligand bias), potentially employing monomeric Gα and the regulatory G-protein RGS4 in 

a signaling scaffold (Georgoussi et al., 2006).  The β and γ subunits maintain a tight 

association with each other (Hildebrandt et al., 1984) and as a unit can inhibit adenylyl 

cyclase (AC) activity (Figure 7).  This is rescued in the presence of Gs proteins (Smigel, 

1985).  Sodium also inhibits AC activity (Syed et al., 1987). 

Prior to receptor activation, the βγ subunit is bound to the α subunit (Hildebrandt et 

al., 1984) and guanine diphosphate (GDP).  After agonist binding the receptor undergoes 

a conformational change, allowing for the GDP to be exchanged for guanine triphosphate 

(GTP) at the α subunit and this Gα-GTP complex separates from the βγ subunit, initiating 

intracellular signaling (Traynor, 2012), binding to the calcium (Ca2+) channel and 

inhibiting Ca2+ flow into the cell (Figure 7) (Al-Hasani and Bruchas, 2011).  The reversal 

of GDP-GTP exchange is facilitated by inherent GTPase activity at a regulatory site (Cassel 

and Selinger, 1977) on the α subunit (Northup et al., 1983).  Activated Gαi-GTP then 

inhibits AC.  It is important to acknowledge that AC activity can be influenced by other 

factors too, such as phospholipase C (PLC).  PLC is a signaling molecule whose 

stimulation initiates phosphatidylinositol-4,5-bisphosphate generation of diacylglycerol 

(DAG) and inositol-1,4,5-triphosphate (IP3) (Zuo, 2005).  While PLC is commonly 

associated with and activated by the Gαq GPCR pathway, inhibition of PLC can block the 

inhibitory action that activated Gi proteins have on AC (Fan et al., 1992).  Inhibition of AC 

via MOR causes a decrease in cyclic adenosine monophosphate (cAMP) activity, which at 

least in part explains the analgesic effects of opioids (Collier and Roy, 1974) because 

cAMP has been shown to antagonize opioid antinociception (Ho et al., 1973).  cAMP 

signaling also regulates MOR gene expression via cAMP response element-binding protein 
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(CREB) in fentanyl-treated PC-12 cells (Lee and Lee, 2003) and may therefore be involved 

in genetic modulation of MOR in other cell types and under other drug treatments as well. 

 

 

MOR activation is also linked to ionic current and membrane polarization, which 

is what is primarily responsible for transmission of the pain signal from both spinal and 

supraspinal neurons (Brenner and Stevens, 2010).  Inwardly-rectifying potassium (K+) 

channels, primarily Kir3 (Figure 7), are opened by the Gα protein after receptor activation 

causes dissociation of the Gα from the βγ subunit (Al-Hasani and Bruchas, 2011).  This 

increases neuronal K+ currents and contributes to analgesia (North et al., 1987; Fan et al., 

1992).  Opening of CNS ATP-gated K+ channels by K+ channel openers induces 

antinociception by hyperpolarizing the cell; however, this is not antagonized by opioid 

antagonists, rather it has been suggested that changes in intracellular calcium may also 

modulate the K+ channels (Welch and Dunlow, 1993).  This is probable as it has been 

shown that opioids inhibit neuronal voltage-gated N-type Ca2+ currents (Seward et al., 

1991) and this can be mediated by the βγ protein (Figure 7) (Al-Hasani and Bruchas, 

2011).  This inhibition of Ca2+ is generally accepted as the effect that GPCR activation has 

on the ion despite a few findings that MOR may stimulate Ca2+ channels (Porzig, 1990).  

Figure 7. Summary of opioid 

receptor signaling.  Illustrates all 

mechanisms addressed in Opioid 

Receptors section.  “Biased agonism” 

suggests that different agonists at the 

same receptor can preferentially direct 

signaling in favor of one or more of the 

pathways outlined here.  Arrows 

indicate activation steps; T-lines 

indicate inhibition; P = 

phosphorylation.  Source: Al-Hasani 

and Bruchas, 2011.  
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Taken together, the increase in K+ conductance and resultant hyperpolarization attenuating 

Ca2+ flux involved in the action potential via MOR activation inhibits neurotransmitter 

release, at least in the locus coeruleus, contributing to the analgesic effect of MOR agonists 

(Duggan and North, 1984). 

Illustrating the complexity of MOR molecular signaling are some seemingly 

contradictory findings on Ca2+.  For example, MOR agonism may also briefly open L-type 

Ca2+ channels to allow calcium influx, increasing the activity of PLC for a short time 

(Smart et al., 1995) which could be a Gαq-independent mechanism for PLC activation and, 

as mentioned before, can inhibit AC (Fan et al., 1998).  It has also been found that in 

differentiated NG108-15 rat neuroblastoma-glioma cells the DOR agonist DADLE 

stimulates PLC activity via Gi/o activation leading to IP3-mediated Ca2+ rlease from 

intracellular stores (Jin et al., 1994).  Similar results were obtained in SH-SY5Y 

neuroblastoma cells where MOR was shown to induce IP3 via morphine but this study 

implicated extracellular Ca2+ influx because both pre-incubation with a calcium channel 

blocker and use of calcium-free buffers blocked IP3 formation (Smart et al., 1994).  The 

role of these excitatory effects on Ca2+ in opioid-mediated analgesia is still not completely 

understood but are likely to be more pronounced in chronic opioid exposure (Jin et al., 

1994). 

MOR phosphorylation (Figure 7) is important as it initiates both mitogen-activated 

protein kinase (MAPK) signaling—via extracellular signal-regulated kinase (ERK), c-jun 

N-terminal kinase (JNK), or p38—and β-arrestin recruitment (Al-Hasani and Bruchas, 

2011).  Phosphorylated MOR increases the affinity for β-arrestin binding to the receptor, 

leading to desensitization and endocytosis via clathrin-coated pits (Lefkowitz, 1998).  GRK 
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phosphorylation also uncouples the receptor from the G-proteins, discontinuing the G-

protein mediated signaling (Zuo, 2005).  This is not the only phosphorylation that mediates 

MOR desensitization as other mechanisms are suspected and being investigated (Williams 

et al., 2013).  Regardless of how receptor internalization is initiated, once it has been 

endocytosed the receptors are packed in recycling vesicles and trafficked back to the 

plasma membrane (Figure 7) to repeat the process, as long as agonist is present (Roman-

Vendrell et al., 2012). 

It is important to reiterate that MOR desensitization is agonist dependent.  For 

example, while the agonist DAMGO quickly desensitizes the receptor, morphine 

desensitization is much slower when it does occur and requires neither phosphorylation nor 

β-arrestin recruitment for desensitization (Chu et al., 2008).  Instead, it is generally 

accepted that morphine does not induce receptor desensitization and internalization, but 

rather continues to signal in the presence of agonist, leading to an increase in cAMP activity 

believed to be the result of cellular adaptations, including upregulation of proteins, e.g., 

AC (Al-Hasani and Bruchas, 2011) or perhaps switching G-protein associations from Gi/o 

to Gs proteins (Bian et al, 2012).  The desensitization of MOR is believed to contribute to 

opioid tolerance (Zuo, 2005; Williams et al., 2013) and pharmacological manipulations 

exploiting endocytosis may help prevent tolerance from occurring with opioid treatment. 
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SECTION 1.4: 

NEUROIMMUNITY AND NEUROINFLAMMATION 

 

Inflammation occurs in response to infection and/or injury in both the periphery 

and the CNS (Matyszak, 1998).  Similar to peripheral immunity, immune cells in the CNS 

are present to protect against infection and injury as they repair damaged tissue and remove 

dead cells.  These neuroimmune cells are termed microglia and astrocytes and while they 

respond to infection and inflammation, they can also contribute to neuroinflammation.  

Oligodendrocytes are also considered glia, but express a more mechanical role, forming 

myelin sheaths around axons (Stoll and Jander, 2005) to aid in neuronal communication 

(Hughes, 2012).  Astrocytes and microglia serve as central immune surveyors with 

microglia closely resembling peripheral macrophages, especially after they are activated 

by tissue infection or injury (Raivich et al., 1999).  In fact, macrophages that have 

infiltrated the CNS are virtually indistinguishable from activated microglia (Yong, 2010). 

Immune function in the CNS is quickly gaining interest as it is being recognized 

that neuroimmunity and neuroinflammation play a role in neurodegeneration, contributing 

to the etiology of conditions such as Alzheimer’s disease (Rothwell and Hopkins, 1995; 

Stoll and Jander, 2005) and Parkinson’s disease, with neuroinflammation as an underlying 

contributor in these two conditions (Calderόn-Garcidueñas et al., 2013; Magrone et al., 

2012).  Highlighting the importance of CNS immunity is the fact that the response to 

various pathologies is highly conserved in the CNS, suggesting an evolved and meticulous 

orchestration for CNS maintenance and repair (Raivich et al., 1999).  Taken together, this 

indicates that a thorough understanding of neuroimmunity will contribute greatly to the 
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development of therapies for many—if not all—of the neurodegenerative diseases plaguing 

society today. 

 

1.4.1 Blood Brain Barrier (BBB) 

The BBB plays a large role in neueroimmunity as it is the means through which 

peripheral immune cells (and other molecules) gain entry into the CNS.  Infiltration of cells 

and endogenous or exogenous molecules via the BBB can influence microglia and other 

cells present in the brain, with greater migration occurring during inflammation (Zhou et 

al., 2007).  The BBB is composed of tight junctions made of endothelial cells whose 

purpose is to provide a barrier, as the name suggests, between the central and peripheral 

systems and to help regulate capillary blood flow into the brain (Carvey et al., 2009).  Other 

components of the BBB that make what is called the neurovascular unit (NVU) include the 

basement membrane, perivascular microglial cells, astrocytes, neurons, and a limited 

number of pericytes (Luissint et al., 2012).  The BBB also has transporters, ion and drug 

pumps, and other machinery that help maintain brain homeostasis. 

The BBB has traditionally been viewed as the protector of the CNS, keeping 

peripheral cells and drugs segregated, contributing to the “immune-privileged” view of the 

CNS (Matyszak, 1998).  Research has shown that while this is true in that the BBB does 

serve as a physical interference between the periphery and CNS, it is more appropriately 

described as a gatekeeper letting in certain molecules to help maintain CNS function and 

aid in damage repair as necessary.  Drug efflux pumps, such as P-gp mentioned in sections 

1.1 and 1.2, are important in reducing drug concentrations in the brain. 
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The gatekeeping function of the BBB is illustrated by the crossing of some 

lymphocytes and monocytes, the latter of which can transform into microglia once in the 

brain (Vitry et al., 2003).  Activated T-cells also cross the BBB regardless of their antigen 

specificity under normal non-inflammatory and non-infectious conditions (Matyszak, 

1998; Yong, 2010).  Non-activated T-cells are not known to enter the CNS (Matyszak, 

1998); however, recent research has identified a dural lymphatic system that directly links 

the peripheral lymphatic system to the CNS (Aspelund, et al., 2015).  This indicates that 

the CNS in fact has a direct means of dispersing cellular waste that was not previously 

believed to exist. 

Combined with the novel findings concerning the lymphatic system, it is known 

that the BBB increases in permeability in times of infection and inflammation and this is 

due at least in part to changes in expression of proteins that make up the tight juncions and 

Serine/Threonine and Tyrosine phosphorylation (Luissint et al., 2012).  The increase in 

permeability is believed to allow a greater influx of peripheral immune cells to aid in the 

repair process (Raivich et al., 1999).  Cytokines, such as TNFα and Interleukin-1β (IL-1β), 

have also been shown to compromise BBB integrity in models of neurodegeneration, such 

as MPTP-induced Parkinson’s disease (Zhao et al., 2007).  This permeability was directly 

attributable to neuroinflammation and not associated with the accompanying loss of 

dopaminergic neurons (Zhao et al., 2007).  Understanding the BBB and its susceptibility 

to permeation in neuroinflammatory and neurodegenerative (most likely resulting from 

neuroinflammation) conditions illustrates the likelihood of increased drug concentrations 

entering the brain even when taken at prescribed doses and intervals. 
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1.4.2 Role of Microglia 

Microglia were first officially recognized in the early 1900’s by Dr. Pio del Rio-

Hortega, although some of his predecessors suggested their existence as early as the 1890’s  

 

(Rock et al., 2004).  del Rio-Hortega suggested that these cells are evenly distributed in the 

CNS, morph, migrate, proliferate, and can even behave as phagocytes (Kettenmann, 2011).  

This remains an accurate description today; however, ideas regarding their origin have been 

debated over the years.  It is now generally accepted that they originate from embryonic 

mesodermal cells that travel to the brain during development (Kettenmann et al., 2011; 

Rock et al. 2004).  However, the theory that microglia originate as monocytes from bone 

marrow and travel to the brain to differentiate into microglia (Vitry et al., 2003) contributes 

to the idea that bone marrow transplants or transplantation of activated microglial cells may 

help in some neuropathologies (Prewitt et al., 1997).  While research in this area is 

promising, the CNS immune response is very sensitive (Hughes, 2012), implicating that 

any changes in neuroimmune function may not have the intended outcome.  As the CNS 

immune response is tightly regulated, any external modifications to microglia may have 

different results depending on the conditions surrounding the cells (Yong, 2010). 

 

Figure 8. Human fetal 

microglial amoeboid 

phenotype at 11 weeks 

(left) and ramified human 

fetal microglial phenotype 

at 18 weeks (right).  Image 

courtesy of Rock, et al., 

2004. 
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As can be seen in Figure 8 above, microglia have an amoeboid shape during early 

fetal development before beginning to resemble traditional resting microglia at about 18 

weeks (Rock et al., 2004).  Resting microglia represent about 20% of the cells in the adult 

human brain (Stoll and Jander, 2005).  For many years it was thought that resting microglia 

have little purpose and simply wait for their cues to activate; however, it is now known that 

they are very active even when they are “resting.”  Pioneering research by Axel 

Nimmerjahn filmed microglia in their native, unresponsive state and found that they are 

very dynamic, extending and shortening their processes and moving them around in 

constant surveillance of their surroundings (Nimmerjahn et al., 2005).  Interestingly, the 

microglial soma exhibited little movement, if any, while the ramified processes were active 

and even showed some evidence of clearing some metabolic cellular debris (Nimmerjahn 

et al., 2005).  Manipulation of this behavior may be beneficial for neurodegenerative 

conditions such as Alzheimer’s and Parkinson’s diseases and it is also believed to 

contribute to normal neuronal maintenance, re-shaping the neurons and their environment 

while aiding in neuroplasticity and synaptic development (Hughes, 2012).  Real-time 

videos of microglia in action are available at 

www.sciencemag.org/ci/content/full/1110647/DC1.   

Another important and previously mentioned role for microglia is to respond to 

CNS injury and infection.  Microglia react by becoming “activated,” although as 

Nimmerjahn’s research illustrates, they are already quite active even during times of 

quiescence.  However, this “activated” state is accompanied by both phenotypical and 

reactive changes.  Once presented with traumatic injury and/or infection, microglia morph 

in response to the stimuli (Figure 9).  Microglia at rest are illustrated in Figure 9a and 
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present with a large soma and long ramified processes which are withdrawn upon activation 

(Figure 9b).  Withdrawal of the processes makes them shorter and thicker and the size of 

the soma is increased (Stoll and Jander, 2005; Nimmerjahn et al., 2005).  Upon complete 

activation they present in the amoeboid phenotype (Figure 9c) that was referred to in early 

embryogenesis (Rock et al., 2004).  Microglia are known to respond quickly to their 

surroundings (Matyszak, 1998) and this is likely because they are always monitoring the 

extracellular milieu and the surrounding cells, including neurons, astrocytes, and 

oligodendrocytes.  Their speed and efficiency allow them to evaluate the entire brain 

parenchyma every few hours (Nimmerjahn et al., 2005).   

 

In addition to physical changes in the microglial response, several proteins are 

upregulated at both the mRNA and protein levels.  Amyloidβ precursor protein (APP) is a 

large protein that is associated primarily with the early pathology of Alzheimer’s disease 

and is quickly synthesized in activated microglia—but not in astrocytes or neurons—after 

non-lethal peripheral nerve injury; however, neurons may contribute to APP production in 

other forms of inflammation or trauma (Banati et al., 1993).  Additional proteins whose 

expression is increased include (but are not limited to) cell adhesion molecules, cytokines 

Figure 9.  Distinct microglial phenotypes observed during activation.   a. The resting, ramified 

microglia with long, thin processes.  b. Intermediate microglia with shorter processes and a larger 

soma.  c. The amoeboid phenotype.  Cells are stained for the microglial marker Iba1+.  Images from 

Ekdahl, 2012. 

a. c. b. 
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and their receptors such as interleukin-1 receptor (IL-1R), toll-like receptors (TLRs), and 

opioid receptors (MOR and KOR) (Rock et al., 2004).  The fact that microglia express and 

regulate all of these receptors suggests that they are involved in the 

neuroimmunomodulatory effects of opioids.   

 

1.4.2.1 CHME-5 Microglia  

 CHME-5 microglia are a transformed and immortalized human microglial cell line 

that will be used in this research.  They were immortalized via transfection with the SV40 

large T antigen in 1995 (Janabi et al., 1995).  They respond to LPS and have been shown 

to express some cytokines such as IL-6, TNF, IL-1β (Atanassov et al., 1995; Lindberg et 

al., 2005).  They are an ideal cell line to investigate neuro-immune interactions because 

they are simple to maintain in the laboratory and are of human origin; however, little 

characterization of these cells is present in the literature.  

 

1.4.3 Role of Astrocytes 

Astrocytes are named such because of their stellar physical appearance as the term 

“astro” references “star” (Seth and Koul, 2008).  There are two main phenotypes of 

astrocytes that are predominantly expressed in the brain:  1) Fibrillary astrocytes that are 

found in the white matter and have long thin processes and 2) Protoplasmic astrocytes that 

are expressed primarily in the grey matter and have many more, yet shorter, processes 

(Raivich et al., 1999).  These cells have historically been viewed as fillers of non-neuronal 

brain tissue and while they do physically support surrounding cells such as neurons 

(Raivich et al., 1999), recent advances have proven them to be greater contributors to 
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neuronal function (Lange et al., 2012).  Figure 10 illustrates some established primary 

astrocytic functions, which will be addressed below.  

 

 

 

 

 

 

 

 

Astrocytes contribute to neurogenesis, which is likely region and developmentally-

age specific as spinal cord astrocytes do not promote neurogenesis while those in the 

hippocampus do and different stages of development may determine the ultimate fate of 

adult stem cells (Song et al., 2002).  In a similar role, they also participate in helping the 

newly-formed neurons mature and develop synapses—a process known as 

synaptogenesis—by secreting trophic factors such as activity-dependent neurotrophic 

factor (ADNF) (Blondel et al., 2000).  Astrocytes are also now known to respond to 

neurotransmitters such as gamma amino butyric acid (GABA) and glutamate via 

fluxuations in intracellular calcium (Seth and Koul, 2008).  Additionally, they have been 

known to express several potassium (K+) channels and contribute to K+ buffering both 

passively and actively uptaking excess extracellular K+ then likely releasing the stores 

when low K+ levels are detected (Wang and Bordey, 2008).  Providing further neuronal 

Figure 10.  Established 

astrocytic functions include 

1) angiogenesis, 2) 

synaptogenesis, 3) K+ and 

neurotransmitter uptake, 4) 

establish and maintain BBB 

integrity, and 5) metabolic 

support for neurons.  Image 

courtesy of Wang and Bordey, 

2008.  
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support, astrocytes utilize the endfeet present at the terminus of their projections to take up 

glucose via the glucose transporter GLUT1, which they then store to release to neurons in 

times of hypoglycemia and/or heightened neuronal activity (Wang and Bordey, 2008). 

In addition to direct neuronal support and communication, astrocytes participate in 

angiogenesis as well as modulation of blood vessel activity.  Astrocytes produce and 

release epoxyeicosatrienoic acid (EET) as a product of cytochrome P450 epoxygenation of 

arachidonic acid and this has been shown to induce mitosis and modulate capillary 

endothelial cells in promotion of angiogenesis (Zhang and Harder, 2002).  EETs also 

contribute to neurovascular coupling as the astrocytic product induces both vasodilative 

and vasoconstrictive dilations in blood vessels, at least in part due to increases in glial Ca2+, 

although neither the intensity nor proximity of the signal was found to correlate to either 

dilations or constrictions as these are most likely mediated via nitric oxide (NO) (Metea 

and Newman, 2006). 

The astrocytes’ role at the BBB varies depending on developmental stage.  In the 

process of development they may upregulate transporters and aid in the formation of tight 

junctions while in adults astrocytes are thought to maintain the tight junctions and help 

regulate vascular permeability (Wang and Bordey, 2008).  This is evident in both the 

normal and pathological brain as astrocytes regulate BBB integrity in both conditions and 

BBB disruption is evident in virtually all neurodegenerative diseases (Seth and Koul, 

2008).  Thus astrocytes, like microglia, are also influenced by changes in the extracellular 

milieu and the delicate balance between them behaving as neuroprotectors and 

neuropathogenitors can be swayed either way.   
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SECTION 1.5 

IMMUNE RECEPTORS 

Several receptors contribute to immune function.  These include, but are not limited 

to, the Toll-like receptors (TLRs), Interleukin receptors, and Tumor Necrosis Factor (TNF) 

receptor.  The receptors Toll-Like Receptor 4 and Interleukin-1 recetpor will be discussed 

in detail in the upcoming sections; however, because the TNFα receptor is not in the 

research presented here but is a major immune receptor, it will be briefly highlighted. 

 

1.5.1 Tumor Necrosis Factor (TNF) 

TNF is named so because dating back to the 1890’s it was discovered that tumors 

in cancer patients with concomitant bacterial infection would shrink; however, this would 

only occur with certain tumors and it was later found that its efficacy was increased in the 

presence of interferon (IFN) (Fiers, 1991).  TNF is an overall name that refers to a 

superfamily of receptors and cytokines.  The primary cytokines of interest are TNF and 

lymphotoxin (LT).  (TNF and LT were previously known as TNFα and TNFβ, 

respectively.)  TNFα is produced by several cell types, can be either membrane bound or 

soluble, and is mainly characterized as a pro-inflammatory cytokine whose activity is 

believed to contribute to the pathology of autoimmune disease (Idriss and Naismith, 2000).  

TNFα also has a dichotomous anti-inflammatory role and protects from infection by 

activating immune cells, inducing cell necrosis or apoptosis, and intriguingly, can even 

promote cell survival by activating nuclear factor kappa B (NFκB) (Idriss and Naismith, 

2000).  LT is only produced by T-lymphocytes, CD4+ and CD8+ cells, is solely membrane 
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bound, and has similar actions to TNF but has much less affinity for the receptors (Fiers, 

1991). 

The receptors for these cytokines are TNFR1 and TNFR2.  Both of these receptors 

are expressed on a variety of immune cells (Fiers, 1991) as well as neurons and glia (Shen 

et al., 2012).  Their extracellular domains are about 30% homologous but the intracellular 

domains are completely distinct (Barbara et al., 1996) with different intracellular signaling 

events for each receptor (Shen et al., 2012).  TNFR1 has been found to activate both 

serine/threonine mitogen activated protein (MAP) kinases and protein kinase C (PKC), the 

activation of both resulting in phospholipase A2 (PLA2) mediated arachadonic acid (AA) 

release and formation of prostaglandins and leukotrienes (Barbara et al., 1996).  TNFR2 is 

also activated by one common serine/threonine kinase as well as the kinase casein kinase 

1 (CK-1) that is unique to TNFR2; however, both receptors associate with other proteins 

such as the TNF receptor-associated factors (TRAF1 and TRAF2), TNF receptor-

associated protein (TRAP), TNFR1-associated death domain protein (TRADD), and 

receptor-interacting protein (RIP) (Barbara et al., 1996).  These proteins will be further 

addressed as they also interact with the immune receptor TLR4.  Receptor density at the 

membrane does not impact the cellular effect; however, soluble receptor proteins act as a 

decoy to bind soluble TNFα and regulate TNF receptor activity (Fiers, 1991).  Etanercept 

is a commercially available decoy drug that binds soluble TNFα to reduce inflammation 

(Shen et al., 2012).   
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1.5.2 Toll-Like Receptor 4 (TLR4) 

The toll like receptors (TLRs) are a relatively new receptor family, with the 

discovery of the first gene coding for a toll receptor in 1979.  The toll receptor gene was 

identified in the German lab of Christiane Nüsslein-Volhard and Eric Wieschaus while 

conducting studies on Drosophila melanogaster segmenting patterns (Nüsslein-Volhard 

and Wieschaus, 1980).  When they were evaluating mutant phenotypes, one of them 

displayed a completely ventral phenotype thus illustrating the importance of the gene in 

question and surprising the scientists.  As Nüslein-Volhard recalls…(see below) 

 

 

 

 

Although Nüsslein-Volhard had initially planned on calling the gene “ventral” after 

the most obvious result of the discovery, the first word shouted, “Toll!”—meaning “crazy, 

curious, amazing, cool, awesome”—was the name that stuck (Weissmann, 2010).  

However, the term Toll is not to be found in the seminal 1980 paper.  It finally was 

published as such from their lab in 1985 (Anderson et al., 1985) and has changed the 

scientific community forever. 

Basic research was first done on TLRs prior to the identification of TLR4.  It was 

found that the Toll gene codes for a transmembrane protein exhibiting typical extracellular, 

transmembrane, and intracellular domains, and also has a leucine rich domain characteristic 

“Probably I just shouted:  “Toll!” in a conversation with Eric 

Wieschaus…when he and I scored the fixed embryos together on 

a discussion microscope…[this] is the essential basis for our 

Nobel award.”  

– Christiane Nüsslein-Volhard, Personal communication to The FASEB 

Journal, May 14, 2010. 
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of a receptor (Hashimoto et al., 1988).  About a decade later it was determined that both 

Drosophila Toll and a very closely related human protein both signal the innate immune 

response via NF-κB, in a nearly identical manner as IL-1R, and all display homologous 

cytoplasmic domains (Medzhitov et al., 1997).  This was the first human Toll protein 

identified and it was named toll-like receptor 4 (Ostuni et al., 2010)—“toll-like” due to its 

high sequence homology to Drosophila Toll.   

Ten additional TLRs have been identified and can be divided into two groups:  

those that reside on the plasma membrane and respond to extracellular ligands (TLRs 1, 2, 

4, 5, 6, and 11) and those that reside in the endolysosomal compartments and respond to 

bacterial and viral nucleic acids (TLRs 3,7,8, and 9) (Barton and Kagan, 2009).  TLR10 is 

only expressed in humans and signals via similar TLR4 adaptor proteins (Hasan et al., 

2005) and TLR11 only in mice (Ostuni et al., 2010).  TLR4, like the other TLRs, stimulates 

the innate immune response upon ligand binding (Means et al., 2000).  The immunological 

role of toll receptors, as acknowledged by their discoverer, has begun to overshadow the 

initial discovery of dorsal-ventral patterning in Drosophila (Weissmann, 2010), despite the 

fact that both roles are pivotal in the life of the organism. 

 

1.5.3 TLR4 in Neurological and Other Diseases 

TLR4 is now widely known for its varying roles and scientists are beginning to 

uncover several beneficial and deleterious effects due to a TLR4 response.  Exemplifying 

the Dr. Jekyll and Mr. Hyde behavior is the fact that while TLR4 may be involved in adult 

neurogenesis, it readily contributes to neurotoxicity (Trudler et al., 2010).  One mechanism 

for this is via TLR4-induced inflammation in the CNS where TLR4 activity induces 
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microglial activation and it has been shown specifically that TLR4 induction of microglial 

activation is required for neurodegeneration (Lehnardt et al., 2003).  Not surprisingly, 

TLR4 activity is implicated in several pathological conditions.  One of these is Alzheimer’s 

disease, where TLR4-induced microglial activation is necessary for amyloidβ (Aβ)-

induced neurotoxicity and is supported by evidence of increased TLR4 expression at Aβ 

plaques in human post-mortem brain tissue (Walter et al. 2007).  On the other hand, TLRs 

2, 4, and 9 may all also participate in Aβ uptake in a mouse model of Alzheimer’s, 

providing a beneficial clearing of the Aβ deposits; however, while some research does 

support this—primarily for TLRs 2 and 9 (Tahara et al., 2006)—more evidence indicates 

that the pro-inflammatory mediation is the greater TLR4 contribution in the pathology of 

Alzheimer’s (Trudler et al., 2010; Buchanan et al., 2010). 

Experimental autoimmune encephalitis (EAE) is a research model in rodents used 

to study the human disease multiple sclerosis (MS) and it has been found that either without 

the TLR4 adaptor protein myeloid differentiation factor 88 (MyD88) or in double knockout 

mice lacking TLR4 receptor expression, development of EAE was attenuated (Aravalli et 

al., 2007).  TLR4 is also likey involved in the pathogenesis of Parkinson’s disease (PD), 

which is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta 

and loss of associated projections into the striatum, as there is an upregulation of TLR4 

and cluster differentiation factor 14 (CD14) mRNA and protein in this brain region evident 

in the mouse model of PD (Panaro et al., 2008). 

While TLR4 contributes to a variety of neurodegenerative diseases, a pathological 

hallmark of TLR4 activity is sepsis, where its activation is responsible for the acute 

systemic inflammation that damages otherwise healthy cells in humans and oftentimes 
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leads to their death (Buchanan, et al., 2010).  Recent evidence indicating that systemic 

inflammation and infection also contribute to neurodegenerative disease, as is indicated by 

several clinical observations of rheumatoid arthritis patients on chronic non-steroidal anti-

inflammatories (NSAIDs) being more resistant to development of Alzheimer’s and there 

is also a quick cognitive decline in neurodegenerative patients after having a systemic 

infection (Cunningham, 2013).  CNS inflammation is exacerbated from chronic 

inflammatory conditions such as atherosclerosis, smoking, diabetes, and liver disease 

(Cunningham, 2013)—and as has already been highlighted—TLR4-activated microglia are 

primary culprits in neurodegeneration and inflammation (Lehnardt et al., 2003).  As 

neuronal targets for neurodegenerative conditions have yielded small successes, the 

investigation into new drugs targeted at microglia is a viable alternative with the potential 

for effective therapeutics in a variety of illnesses (Buchanan et al., 2010). 

 

1.5.4 The TLR4 Complex 

1.5.4.1 LPS and Other TLR4 Ligands 

 The TLR4 receptor complex is large and several proteins contribute to its 

formation for ligand binding to initiate the intracellular signaling cascade.  The most widely 

recognized ligand for TLR4 is lipopolysaccharide (LPS), which is a cell wall component 

of Gram-negative bacteria (Ostuni et al., 2010).  LPS is comprised of three main parts:  an 

O-polysaccharide chain that is attached to a core (the outer core is attached to the O-

polysaccharide chain and is comprised of mainly hexose sugars while the inner core is 

attached to a lipid A moiety and is mostly characterized by its composition of more unique 

sugars such as heptose) that is followed by the lipid A moiety (Erridge et al., 2002).  The 



48 

 

lipid A moiety is a hydrophobic portion of the molecule that binds to the cells and is 

primarily responsible for the toxic effect of LPS, which is modulated by the number and 

length of acyl chains on the molecule and their phosphorylation state (Rietschel et al., 

1994).  At least two acyl chains are necessary to bind to the receptor; however, lipid A 

binding alone is insufficient to elicit a response (Rietschel et al., 1993).  Illustrating he 

variations of LPS activity is the lipid A analogue, eritoran, which is in clinical trials to treat 

septic shock and sepsis-related cardiac dysfunction (Wittebole et al., 2010) as a TLR4 

antagonist (Buchanan et al., 2010).  In addition, a highly conserved link exists between 

lipid A and the inner core that consists of a phosphorylated diglucosamine backbone joined 

to a minimum of one unique sugar, typically 3-deoxy-D-manno-octulosonic acid (Kdo), 

(Erridge et al., 2002).  While Kdo may be at least part of the pathogen associated molecular 

pattern (PAMP) that is recognized by TLR4, it is recognized in the literature that the 

conserved PAMP in LPS is the hydrophobic lipid A portion (Rietschel et al., 1993; Park et 

al., 2011).  Furthermore, while the lipid A moiety is responsible for the endotoxic activity 

of LPS, this may be modulated via the inner core Kdo component (Rietschel et al., 1993).  

Despite seemingly limitless variations of LPS structure via different sugars, numbers and 

lengths of acyl chains, etc., (Jin and Lee, 2008) conserved PAMPs—such as the Kdo sugar 

that is not typically found in humans and the inner core of LPS—are responsible for the 

diverse array of pathogens that initiate a TLR4 response. 

It is now known that TLR4 has an arsenal of ligands other than LPS, including 

endogenous danger molecules such as heat sock proteins, natural products such as 

curcumin and resveratrol, and endogenous and exogenous opioids (Buchanan et al., 2010).  



49 

 

comprehensive, yet seemingly ever growing, list of TLR4 ligands and their action on TLR4 

function is presented in Table 1. 

 

1.5.4.2 LPS Binding Protein (LBP) 

As was mentioned above, the receptor complex to recognize a ligand (notable LPS) 

is quite large and several proteins interact to activate TLR4.  The first step for TLR4 

recognition of LPS is via LBP.  Soluble LBP binds to the lipid A moiety of LPS with a 

high affinity at the NH2-terminus of LBP (Iovine et al., 2002), removing LPS from the 

bacterial membrane (Schumann et al., 1990; Wright et al., 1990).  The LPS/LBP complex 

then binds to another accessory protein, cluster differentiation factor 14, at the COOH-

terminus of LBP (Iovine et al., 2002) before activating TLR4; however, LBP alone is not 

sufficient to elicit a TLR4 response (Wright et al., 1990). 
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Table 1.  TLR4 ligands and their interactions with the receptor.a 

TLR4 Ligand Interaction with TLR4 Receptor or Signaling 

Lipopolysaccharide (LPS) 

and LPS derivatives 

Outer cell wall component of gram-negative bacteria; potent 

initiator of TLR4 signaling.  LPS structure varies with 

bacterial species 

Curcumin Polyphenol found in the plant Curcuma longa.  Inhibits TLR4 

by binding MD-2. 

Cinnamaldehyde (3-phenyl-

2-propenal) 
Anti-inflammatory, inhibits ligand-induced TLR4 

oligomerization and downstream signaling 

Ethanol Appears to redistribute TLR4 complexes on the cellular 

membrane by preventing receptor association and/or 

dimerization in the lipid raft 

E5564 (eritoran) LPS analogue clinically tested for sepsis; inhibits TLR4 

signaling 

Opioids Both opioid stereoisomers alter downstream TLR4 signaling.  

Opioid agonists (e.g. morphine) have different effects than 

antagonists (e.g. naloxone) 

TAK-242 (Ethyl(6R)-6-[N-

(2-chloro-4-fluorophenyl) 

sulfamoyl] cyclohex-1-ene-

1-carboxylate) 

Clinically tested cyclohexene derivative, selectively inhibits 

intracellular signaling by TLR4 

Paclitaxel (Taxol) Widely used cancer therapeutic, reported to inhibit MD-2, 

thereby knocking down TLR4 activity which was found to 

correlate with drug efficacy 

Resveratrol (trans-3,5,4-

trihydroxystilbene) 

Antioxidant reported to inhibit TLR4 signaling; found in the 

skin of grapes, it is known for anti-inflammatory and anti-

carcinogenic effects 

Statins Statin drugs influence TLR4-mediated cytokine expression 

through a Rho-protein feedback mechanism 

Amyloid-β 42 peptide The peptide hallmark of Alzheimer's pathogenesis, appears to 

activate TLR4 directly and also through signals from damaged 

neurons (e.g. 4-hydroxynonenal) 

Extracellular matrix proteins 

(Biglycan, Fibrinogen, 

Fibronectin, Tenascin C) 
Negatively charged glycoproteins are reported to activate 

TLR4 signaling 

Fatty acids Fatty acids are reported to regulate TLR4 receptor 

dimerization and recruitment into lipid rafts 

Heat-shock proteins (HSP) 

60, 70, 90 

Released from dead or dying cells.  HSP60 mediates 

neurodegeneration via TLR4.  HSP90 may influence TLR4 

pain amplification.  LPS contamination is a common problem 

in HSP studies 

Polysaccharides Heparin sulfate and endogenous hyaluronic acid fragmentation 

products may activate dendritic cells and macrophages through 

TLR4 
a Table 1 was reproduced from the review by Buchanan, et al., 2010.  For complete references for 

each of the studies indicating the ligands’ activity at TLR4, please refer to the referenced article.  
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1.5.4.3 Cluster Differentiation Factor 14 (CD14) 

CD14 can be either a slightly smaller soluble molecule (sCD14) or membrane-

bound (mCD14), attaching to the membrane via a glycosylphosphatidylinositol (GPI) 

anchor (Haziot et al., 1988).  CD14 was identified as a pattern recognition receptor as it 

was found to respond to gram-negative, gram-positive, and mycobacteria with sCD14 

responsible for mediating the response for cells lacking mCD14 (Pugin et al., 1994).  

Despite the initial idea that CD14 is the LPS receptor—and it’s true, LPS can bind to it—

because it lacks a transmembrane and intracellular domain it cannot be solely responsible 

for intracellular signaling (Haziot et al., 1988).  Studies have shown that CD14, like TLR4, 

contains several leucine rich repeats (LRR) (Wright et al., 1990).  An amino-terminus 

hydrophobic pocket on CD14 binds the lipid chains of LPS while the area next to the pocket 

aids in LPS transfer from CD14 to the next protein in the receptor complex, myeloid 

differentiation factor 2 (Kim et al., 2005). 

 

1.5.4.4 TLR4 Receptor Dimerization 

MD-2 is necessary for TLR4 dimerization.  The TLR4/MD-2 dimer complexes with 

another TLR4/MD-2 dimer upon agonist ligand binding, creating a heteromer before 

initiation of intracellular signaling (Park et al., 2009).  The signaling cascade is believed to 

result from a conformational change that occurs after MD-2 binding (Akashi et al., 2000) 

and receptor complex dimerization, allowing TLR4 proteins to orient themselves such that 

the intracellular receptor domains are exposed, allowing recruitment of additional signaling 

molecules (Manalavan et al., 2011).  Without MD-2 mediated dimerization, TLR4 

activation does not occur (Gay et al., 2006).  Although other inhibitory mechanisms exist 
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(see Table 1), a common TLR4 antagonistic theme is for the ligand to bind to MD-2, 

thereby preventing receptor dimerization and subsequent activation (Park et al., 2011). 

 

1.5.4.5 The TLR4 Protein 

TLR4 is a type 1 transmembrane protein, with an extracellular domain for ligand 

binding, one transmembrane helical pass, and an intracellular domain for signaling 

(Manavalan et al., 2011; Gay et al., 2006).  It is primarily expressed on immune cells such 

as monocytes, macrophages, dendritic cells, T cells, T helper cells, B cells, (Medzhitov et 

al., 1997) and microglia (Kettenmann et al., 2011).  The extracellular portion of the 

receptor has a characteristic horseshoe shape resulting from the LRR domains (Kim et al., 

2007).  While TLR4 is primarily expressed on the cell membrane (Jiang et al., 2000), as 

this is necessary for LPS signaling, it can also be found in the Golgi apparatus, where it 

appears to be stored in unstimulated cells (Husebye et al., 2006).   

Shortly after activation (~40 minutes) TLR4 internalization then occurs via 

clathrin-coated pits; however, after prolonged LPS stimulation clathrin-independent 

mediated endocytosis occurs (Husebye et al., 2006).  TLR4 quickly and readily recycles 

back and forth between the plasma membrane and Golgi, along with colocalized CD14 

(Espevik et al., 2003) and LPS (Thieblemont and Wright, 1999).  However only aggregated 

LPS (LPS micelles bound to LBP that form in the absence of sCD14) is internalized with 

colocalized CD14 after LPS stimulation while monomeric LPS is internalized after binding 

to mCD14, but dissociates from mCD14 after endocytosis (Vasselon et al., 1999).  This 

suggests that MD-2 must also internalize and localize to the Golgi, but studies illustrating 

that LPS, CD14, MD-2, and TLR4 are all transported there simultaneously as a complex 
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have not been found.  Importantly, endocytosis of TLR4 may be necessary to attenuate 

signaling as it is required for ubiquitination and trafficking to the lysosome for degradation; 

however, it has been suggested that the TLR4 complex continues to signal intracellularly 

until it has been transferred to the luminal side of the endosome (Husebye et al., 2006).  

This receptor-mediated intracellular signaling may be important in the TRIF-dependent 

signaling cascade (Tanimura et al., 2008), which has delayed kinetics when compared to 

the MyD88-dependent pathway.  How these findings may contribute to TLR4 signaling 

and disease is unknown. 

 

1.5.4.6 The TIR Domain 

The intracellular domain of TLR4 has a high homology to that of the interleukin-1 

receptor (IL-1R) (Medzhitov et al., 1997).  The two immune receptors utilize the same 

adaptor proteins and signaling sequence, as is alluded to in the name of the Toll-interleukin 

receptor (TIR) domain.   

It is believed that a conformational change resulting from receptor oligomerization 

activates signaling by positioning the TIR domains such that they can interact and expose 

certain areas to recruit the appropriate adaptor molecules (Barton and Kagan, 2009).  

According to a computer model, the TIR interface is also believed to serve as a scaffold 

for assembly of the adaptor proteins (Miguel et al., 2007).  The TIR domains tend to vary 

in size, with conserved residues hiding in a hydrophobic core and non-conserved residues 

present at the first TIR-TIR interface likely determining adaptor recruitment specificity to 

activate the different signaling pathways (Xu et al., 2000), similar to T-cell activation 

(Mills 2011).  Two more TIR-TIR interfaces also interact:  the second one mediates the 



54 

 

receptor TIR domain with the TIR domain of the adaptor protein myeloid differentiation 

factor 88 (MyD88) and the third interface mediates the TLR4 TIR domain with the other 

adaptor molecules—this third one is important for signaling specificity (Xu et al., 2000).  

A protruding area of the TIR domain termed the BB loop is believed to be responsible for 

this specificity in adaptor protein interactions with the TIR domain (Miguel et al., 2007).  

The BB loop may also play a role in receptor dimerization (Gay et al., 2006).  In accordance 

for the requirement for ligand binding and receptor dimerization under normal conditions 

the TIR domains have a low affinity for each other.  This is exemplified in the absence of 

an agonist, when their association is only facilitated by receptor overexpression or ligand 

binding (Xu et al., 2000). 

 

1.5.4.7 The TIR Domain-Containing Adaptor Molecules 

The five TIR domain-containing adaptor molecules that interact with the TIR 

domain of TLR4 are MyD88, MyD88-adaptor like (Mal, also referred to as TIRAP), TIR-

domain-containing adaptor protein inducing interferon (IFN)-β (TRIF, also referred to as 

TICAM1), TRIF-related adaptor molecule (TRAM, also referred to as TICAM2), sterile 

α-and huntingtin-elongation-A subunit TOR (HEAT) (Ohnishi et al., 2009), and armadillo-

motif containing protein (SARM) (Watters et al., 2007).  All of these proteins promote 

TLR4 signaling except for SARM.  Little literature exists for SARM, except that it is a 

negative regulator to TLR4 TRIF-dependent signaling (Carty et al., 2006).   
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1.5.4.8 MyD88 

MyD88 lacks a transmembrane region, is highly conserved among species (e.g., 

81% amino acid homology between humans and mice (Bonnert et al., 1997)), and is a 

soluble protein that is recruited to the TIR domain of all TLRs except for TLR3 (Kawai 

and Akira, 2007).  Like TLR4, it has a TIR domain, a small intermediate domain (ID) 

(Watters et al., 2007), and also a death domain (DD) that is unique in that it does not appear 

to induce apoptosis, but rather directly upregulates transcription of IL-8 (Bonnert et al., 

1997).  In the cytoplasm, MyD88 exists as a dimer, interacting with itself via the ID and 

DD domains (Ohnishi et al., 2009).  Once recruited to the receptor, it is considered to be a 

“signaling adaptor” in that it functions to link activated TLR4 to the other proteins involved 

in the signaling pathway (Kagan and Medzhitov, 2006).  MyD88 also has three distinct 

sites, two of which are located on opposite sides of the molecule and are important for 

binding it to Mal via its TIR domain, although it does not directly associate with TLR4 

(Ohnishi et al., 2009).  MyD88 typically requires an association with Mal to initiate 

signaling; however, it can also act independently of Mal if it is attached to a 

phosphatidylinositol 4,5-bisphosphate (PIP2) dense region of the cell membrane (Kagan 

and Medzhitov, 2006).  Furthermore, MyD88 is also known to have a shorter splice variant 

with deletion of the ID, known as MyD88s, that acts as a negative regulator of NFκB 

activation by removing the domain responsible for phosphorylation of the next molecule 

in the signaling cascade, IL-1R-associated kinase (IRAK) (Janssens et al., 2002). 
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1.5.4.9 Mal 

Mal is an adaptor molecule that links TLR4 to MyD88 (Horng et al., 2001) via their 

TIR domains (Ohnishi et al., 2009).  Tyrosine phosphorylation of Mal is necessary for its 

signaling (Watters et al., 2007).  The TIR domain also is the interface for interaction 

between Mal and protein kinase C-δ (PKCδ), which potentiates signaling to MAPKs and 

NFκB (Watters et al., 2007).  Mal is found attached to the plasma membrane via PIP2, 

similar to MyD88 signaling in lieu of Mal, providing evidence for a possible 

phosphoinositide role in TLR4 signaling (Kagan and Medzhitov, 2006).  Despite the high 

sequence and signaling homology between IL-1R and TLR4, when comparing the two 

receptors, Mal is only used in TLR4 signaling as it is not required for IL-1R (Horng et al., 

2002).  Mal is additionally suggested to directly signal to TRAF6 via a putative TRAF6 

binding domain that is not found in MyD88 (Mansell et al., 2004).  This mechanism is 

believed to be at least partially responsible for the activation of MAP kinases JNK and 

P42/P44 as well as activate NFκB p65, perhaps potentiating the MyD88-induce pro-

inflammatory response (Mansell et al., 2004). 

 

1.5.4.10 TRIF 

TRIF is another TIR domain-containing adaptor molecule and is responsible for the 

TRIF-dependent signaling cascade.  TRIF is essential for interferon regulatory factor 3 

(IRF3) translocation to the nucleus and induction of interferon-inducible genes, such as 

IFNβ (Yamamoto et al., 2003a).  Although TRIF is more traditionally linked to a viral 

response via IRF3 in response to TLR3 ligands, a delayed pro-inflammatory cytokine 

profile mimicking that of MyD88-dependent signaling is also generated and this late phase 
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NFκB activation may somehow serve to stimulate transcription of the interferon-inducible 

chemokine gene, IP-10 (Kawai et al., 2001).  The NFκB-induced transcription of IP-10 is 

an example of redundant cytokine production between the MyD88-dependent and TRIF-

dependent signaling pathways. 

 

1.5.4.11 TRAM 

TRAM colocalizes with TLR4 on the plasma membrane and is also found in the 

Golgi apparatus (Rowe et al., 2006).  TRAM, like Mal, is an adaptor molecule connecting 

TLR4 to the signaling mediator, TRIF (Oshiumi et al., 2003).  However, unlike Mal, 

TRAM does not have to specifically associate with a PIP2 lipid domain (Kagan et al., 

2008).  While it colocalizes with TLR4, this may or may not be via a TIR-domain 

containing mechanism as there is conflicting research on how TRAM and TLR4 physically 

interact (Oshiumi et al., 2003; Kagan et al., 2008).  However, the BB loop in the TIR 

domain of TRAM has been determined as necessary for signaling via TRIF, (Rowe et al., 

2006), consistent with the role of the BB loop in the TIR domains of other proteins such as 

TLR4 (Miguel et al., 2007).  TRAM also undergoes myristoylation, a fatty acid 

modification, which targets it to the membrane where it can associate with the GPI-

anchored protein CD14, as CD14 has been identified as a requisite for TRAM-mediated 

signaling (Jiang et al., 2005; Rowe et al., 2006; Kagan et al., 2008).  TRAM and TRIF 

colocalize at the plasma membrane and transfer to the endosome/lysosome after 

stimulation (Tanimura et al., 2008).  TLR4 continues to signal via the TRIF-dependent 

pathway from endosomes, and curiously, does so mostly from this location when signaling 

through TRIF (Kagan et al., 2008).  Perhaps the association with CD14 is only necessary 
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for signaling at the plasma membrane, as the literature illustrates CD14 internalization then 

localization at the Golgi, not endosomal/lysosomal locations. 

 

1.5.5 The TLR4 Signaling Cascades 

Prior to the discussion on the signaling cascades, please note that while the research 

presented here focuses primarily on microglia, the studies elucidating the signaling 

pathways have mostly been performed in epithelial cells and macrophages. 

TLR4 signaling involves two different cascades:  the MyD88 dependent and the 

MyD88 independent—herein after referred to as the TRIF dependent—pathways.  Early 

TLR4 research identified that first of all, MyD88 quickly stimulated transcription of pro-

inflammatory cytokines via NFκB—just like it did when it associated with IL-1R—but it 

did not take long before researchers noticed that the same NFκB-induced transcription 

occurred in the absence of MyD88—albeit it with delayed kinetics (Kawai et al., 1999).  

Either a greater affinity between TLR4 and Mal (Miguel et al., 2007) or sequential 

signaling via MyD88 first then endosomal/lysosomal signaling via TRIF (Kagan et al., 

2008) are potential explanations for the different kinetics.  Furthermore, type 1 interferons 

could also be produced via TLR4, which occurs independent of MyD88 (Oshiumi et al., 

2003).  These observations led to the identification of the TRIF-dependent signaling 

pathway.  Both the MyD88-dependent pathway and the TRIF-dependent pathway are 

depicted in Figure 11. 
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1.5.5.1 The MyD88-Dependent Pathway 

After ligand binding and receptor complex formation the MyD88-dependent 

signaling pathway begins with membrane-bound Mal associating with TLR4 via their TIR 

domains (Horng et al., 2001).  MyD88 is then recruited to the TLR4-Mal complex, where 

it also interacts with a TIR domain of Mal (Ohnishi et al., 2009).  MyD88 then recruits a 

serine/threonine kinase IL-1 receptor-associated kinase (IRAK), typically IRAK4, via the 

DDs of the two proteins (Wesche et al., 1997a; Kawai and Akira, 2007).  IRAK has an N-

terminal DD, a kinase domain with 15 conserved kinase residues, and a C-terminus, 

allowing for multiple phosphorylation sites (Yamin and Miller, 1997). 

MyD88 has a high affinity for unphosphorylated IRAK4, which 

autophosphorylates at least three times after recruitment by MyD88 (Wesche et al,. 1997a; 

Yamin and Miller, 1997).  IRAK then phosphorylates IRAK1 (Watters et al., 2007), which 

in turn phosphorylates and mediates tumor necrosis factor receptor-associated factor 6 

(TRAF6) and transforming growth factor-β-activated kinase binding protein 2 (TAB2) 

movement from the membrane to the cytosol (Qian et al., 2001).  TAB2 connects TRAF6 

to TAK1 (Dauphinee and Karsan, 2006).  TRAF6 is necessary for production of pro-

inflammatory cytokines (Tanimura et al., 2008).       

 

 



60 

 

 

 

 

 

 

 

Figure 11. Signaling Pathways of TLR4. Figure was adapted from Horng et 

al., 2001; Ohnishi et al., 2009; Wesche et al., 1997a; Kawai and Akira, 2007; 

Yamin and Miller, 1997; Watters et al., 2007; Qian et al., 2001; Dauphinee 

and Karsan, 2006; Deng et al., 2000; Adhikari et al., 2007; Wang et al., 2001; 

Napetschnig and Wu, 2013; Shibuya et al., 1996; Shim et al., 2005; Guha and 

Mackman, 2001; Srivastava and Ramana, 2009; Manavalan et al., 2010; Gao 

et al., 2013; Perkins, 2006; Hoffmann et al., 2006; Miguel et al., 2007; Kagan 

et al., 2008; Oshiumi et al., 2003; Lu et al., 2008; Cusson-Hermance et al., 

2005; Tanimura et al., 2008; Oganesyan et al., 2006; Guo and Cheng, 2007; 

Fitzgerald et al., 2003, Hemmi et al., 2004; Vivarelli et al., 2004 and Bauerfeld 

et al., 2012. (Legend of functional domains is in box at left) 
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TRAF6 also has a RNG domain with E3 ubiquitin ligase activity (Kawai and Akira, 

2007) and is K63 polyubiquinated via UEV1A-mediated Ubc13 ubiquitination (Deng et 

al., 2000).  K63 ubiquitination results from an optimal structure allowing a ‘donor’ 

ubiquitin covalently linked to Ubc13 to be transferred to a UEV1A ubiquitin ‘acceptor site 

at K63 (Hofmann and Pickart, 1999).  K63 ubiquitination serves a signaling function and 

does not target the protein for proteasomal degradation (Adhikari et al., 2007).  The K63 

chain present on TRAF6 yields TAK1 activation, via an unknown mechanism, allowing 

TAK1 to autophosphorylate inhibitory κB kinase (IKK) β, thereby activating the IKK 

complex (Wang et al., 2001; Napetschnig and Wu, 2013).  TAB1 in another protein that 

associates with TAB2 and TAK1 and enhances TAK1 kinase activity (Shibuya et al., 

1996).  TAK1 is the point at which the pathway can diverge into either NFκB- and/or 

mitogen activated protein kinase (MAPK)-dependent transcriptional activation. 

 

1.5.5.2 MAPK Activation 

In the MAPK pathway branch, TAK1 phosphorylates MAPKs such as mitogen 

activated kinase kinase 6 (MKK6) to activate Jun N-terminal kinase (JNK) and p38 kinase 

(Want et al., 2001).  JNK activation activates the transcription factors c-Jun, ATF-2 (c-Jun 

and ATF-2 comprise the AP-1 complex (Shim et al., 2005)), and ETS domain-containing 

protein, Elk-1, while p38 phosphorylates the transcription factors activating transcription 

factor 2 (ATF-2), Elk-1, C/EBP homologous protein (CHOP), myocyte-specific enhancer 

factor 2C (MEF2C),  Sap1a, MNK1/2, map kinase-activated protein kinase 2 (MK2), 

MSK1, and PRAK either directly or indirectly (Guha and Mackman, 2001).  The 
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extracellular signal-regulated kinase (ERK 1/2) is also activated leading to the activation 

of the transcription factor Elk-1 in monocytes (Guha and Mackman, 2001). 

 

1.5.5.3 NFκB Activation 

In the NFκB pathway branch, after TAK1 autophosphorylates in the presence of 

TAB1, it activates the IKK complex (Napetschnig and Wu, 2013), which consists of IKKα, 

IKKβ, and IKKγ (IKKγ is a scaffolding protein, also known as NFκB essential modulator, 

NEMO) (Srivastava and Ramana, 2009).  This kinase complex phosphorylates the 

inhibitory κB (IκB) protein IκBα that binds to the NFκB dimer and maintains its (primarily) 

cytoplasmic residency (Manavalan et al., 2010).  In actuality, despite an apparent 

cytoplasmic steady-state location, these complexes travel back and forth between the 

nucleus and the cytoplasm because only the nuclear localization signal (NLS) for p65 is 

hidden by the IκBα protein while the NLS and nuclear export sequence (NES) for p50 

remains exposed (Hayden and Ghosh, 2008).  This has been specifically shown for NFκB 

p50:p65 dimers, which are involved in TLR4 signaling as are measured in LPS-induced 

microglial activation (Gao et al., 2013).  Once IκBα is phosphorylated on a conserved 

serine residue by IKKβ in the IKK complex, it is K48-linked polyubiquitinated by an E3 

ubiquitin ligase complex and quickly targeted for proteosomal degradation (Perkins, 2006) 

thereby releasing the NFκB p50 and p65 transcription factors.  It has been found that at 

least p65 requires activation via phosphorylation in the cytoplasm prior to translocation to 

the nucleus (Guha and Mackman, 2001) where it binds to the κB consensus sequence sites 

located in the promoter region of genes and initiates transcription (Hoffman et al., 2006) 

of pro-inflammatory cytokines such as IL-1β and TNFα (Gao et al., 2013). Under typical 
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circumstances this is regulated via additional transcription of IκB proteins and targeting of 

the DNA-bound dimers as well as other posttranslational modifications that decrease the 

affinity of the dimers for transcriptional coactivators, thereby terminating the response 

(Hayden and Ghosh, 2008). 

 

1.5.5.4 TRIF-Dependent Pathway 

As mentioned above, the TRIF-dependent pathway generates a slower response to 

agonist binding.  This is potentially due to a lower affinity of TRAM for the receptor dimer 

because it is not situated as close to the receptor as Mal (Miguel et al., 2007).  Supporting 

this theory is that after the TLR4-MyD88-Mal complex is internalized and myD88-Mal is 

removed from the receptor, the TIR domain is exposed for the lower affinity TRAM to 

bind to the TIR domain of TLR4—most likely on the early endosomes resulting from the 

endocytosed receptor complex (Kagan et al., 2008), since the two adaptor proteins likely 

bind sequentially to the same TIR domain (Miguel et al., 2007).  In summary, membrane 

localized TRAM binds to the TIR domain of TLR4, recruiting TRIF to the complex 

(Oshiumi et al., 2003).  Then the C-terminus of TRIF interacts with the serine/threonine 

kinase receptor-interacting protein 1 (RIP1) via its Rip homotypic interaction motif 

(RHIM) (Lu et al., 2008).  RIP1 then auotphosphorylates followed by K63-linked 

polyubiquitination, which is recognized by TAB2 in the TAK1/TAB1/TAB2 complex 

(Cusson-Hermance et al., 2005), after which the pathway mimics the MyD88-dependent 

cascade to NFκB and MAPK activation via TAK1 phosphorylation of MKK and IKKβ, 

mediating late phase MAPK and NFκB activation, respectively (Lu et al., 2008). 
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While the TRIF-dependent pathway can lead to pro-inflammatory cytokine 

production, it is more traditionally associated with the production of Type 1 interferons.  In 

this cascade, TRIF and TRAM recruit TRAF3 (Tanimura et al., 2008), which is required 

for induction of Type 1 interferons (Oganesyan et al., 2006).  TRAF3 then interacts with 

the non-canonical IKK members, TANK-binding kinase 1 (TBK1, aka NFκB activating 

kinase or TRAF2 associated kinase) and inducible IκB kinase (IKKi, aka IKKε), which 

interact with the TRAF family member-associated NFκB activator, TANK (Guo and 

Cheng, 2007).  IKKi and/or TBK1 then, either via direct or indirect mechanisms, 

phosphorylate and activate the transcription factor IRF3, which homodimerizes and 

translocates to the nucleus (Fitzgerald et al., 2003) to induce transcriptional activation of 

the IFNβ gene and IFN-induced genes by binding to IFN-stimulated response elements 

(ISRE)/IRF-binding elements (Hemmi et al., 2004). 

 

1.5.5.5 Other TLR4 Intracellular Effects 

Other cytosolic effects that can also occur via TLR4 include PI3 kinase activation.  

PI3 kinases can be activated via LPS stimulation, which then phosphorylates lipids such as 

phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, and 

then goes on to activate Akt (Dauphinee and Karsan, 2006), also known as protein kinase 

B (PKB).  Akt also can be activated by associating with RIP1 via TAK1, activating the PI3 

kinases to phosphorylate Akt and aid in cell survival and proliferation (Vivarelli et al., 

2004).  Activation of both the PI3 kinase and Akt pathways via LPS-stimulated TLR4 has 

been found to increase the pro-inflammatory cytokines TNFα and IL-1, reactive oxygen 
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species, and nitric oxide in murine macrophages, likely by decreasing phosphatase activity, 

thereby maintaining signal kinase activity (Bauerfeld et al., 2012). 

 

1.5.6 Interleukin-1 

The interleukin family of cytokines was first described in the 1970’s (Gery and 

Handschumacher, 1974), with the associated membrane-bound receptor’s identification 

occurring about a decade later (Dower et al., 1985).  As the area was just in its infancy, the 

nomenclature was highly varied with the cytokine currently identified as interleukin-1 (IL-

1) studied under the names of mitogenic protein (MP), helper peak-1 (HP-1), T cell –

replacing factor III (TRF-III), T cell-replacing factorMɸ (TRFM), B cell-activating actor 

(BAF), B cell differentiation factor (BDF), and more commonly, lymphocyte-activating 

factor (LAF).  Fortunately, after the Second International Lymphokine Workshop in 1979 

several scientists agreed that all of these terms described one factor that seemed to primarily 

communicate between leukocytes and although other biological activities had also been 

recognized and acknowledged, the term Interleukin for ‘between leukocytes,’ was 

proposed with interleukin-1 being the first and encompassing the seven aforementioned 

factors into one term (No Authors Listed, 1979; Dinarello, 1984).  

 

1.5.6.1 Interleukin-1α and Interleukin-1β 

IL-1 is a generic term for the two cytokine agonists for the interleukin-1 receptor 

(IL-R), IL-1α, and IL-1β (Sims, 2002).  IL-1α and IL-1β were shown to bind to the same 

receptor via radioligand binding studies, which further identified a high affinity of the 

cytokines for the receptor (albeit IL-1α has a lower affinity than IL-1β), a low number of 
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receptors present per cell, and merely a picomolar concentration needed to elicit a response 

(Matsushima et al., 1986; Kilian et al., 1986).  This efficient combination for biological 

activity highlights the evolutionarily conserved importance of IL-1 in host defense.  

However, despite the fact that IL-1α and IL-1β bind to the same receptor and elicit the 

same response (Kilian et al., 1986), they only share about 27% homology (Gubler et al., 

1986).  The conserved regions shared by both molecules, primarily in their C-terminal 

domains, are responsible for IL-1 activity (March et al., 1985; Matsushima et al., 1986).  

Both IL-1 proteins have molecular weights of 15,000-17,000 daltons (Gery and 

Handschumacer, 1974; Mizel, 1979) after they are proteolytically cleaved from the larger 

precursor proteins, proIL-1α and proIL-1β (March et al., 1985).  The IL-1β converting 

enzyme (ICE) is responsible for cleaving IL-1β into its active form, while other proteases 

process IL-1α (Dinarello, 1998).  IL-1α and IL-1β also differ in that IL-1α tends to remain 

intracellular while IL-1β is found in circulation after initiation of the immune response 

(Dinarello, 1985).  This is thought to be because IL-1β acts as a hormone in that it induces 

fever, fibrosis, etc., while IL-1α may function more on an autocrine level communicating 

between macrophages and lymphocytes (Lepe-Zuniga et al., 1985).  A membrane-bound 

form of IL-1 has also been identified that may be important for specific T-cell activation 

(Kurt-Jones et al., 1985).  Several cells and cell lined produce and respond to IL-1, such as 

monocytes, macrophages, keratinocytes, epithelial cells, astrocytes, and microglia 

(Kettenmann et al., 2011; Dinarello, 1984). 
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1.5.6.2 Biological Activity of IL-1 

IL-1 is a pro-inflammatory cytokine that has several biological actions.  Under 

normal circumstances IL-1 does not tend to circulate; however, concentrations of IL-1 are 

elevated in times of infection or inflammation (Dinarello, 1984).  Prior to the 1979 

conference, IL-1 was often referred to as lymphocyte-activating factor, or LAF, due to its 

mitogenic activity in stimulating T-cells by initiating IL-2 synthesis and release (Gery et 

al., 1972).  IL-1 also induces specific neutrophil degranulation that is dependent on calcium 

and magnesium, leading to the release of lactoferrin—which sequesters iron in serum—

from neutrophils (Klempner et al., 1978).  This explains infection- and inflammatory-

induced anemia.  IL-1 also contributes to fibroblast proliferation in graft-vs-host disease 

and other fibrous conditions (Schmidt et al., 1982).  The peripheral roles of IL-1 are not 

limited to those mentioned here. 

In the CNS, IL-1 increases the synthesis of prostaglandin E2 in the hypothalamus, 

thereby increasing the temperature set point in the host resulting in fever (Dinarello, 1984).  

As a result, IL-1 is recognized as a pyrogen.  IL-1 has also been found to induce slow-wave 

sleep; however, despite the fact that the same cytokine produces sleep and fever, co-

administration of an anti-pyrogenic and IL-1 suppresses fever but not the increase in slow-

wave sleep associated with IL-1 (Krieger et al., 1984).  IL-1 in the brain, with activated 

microglia as a likely source (Yao et al., 1992), contributes to astroglial proliferation after 

injury (Giulian and Lachma, 1985).  Interestingly, activated microglia primarily produce 

IL-1α (Yao et al., 1992).  Despite this, IL-1β is a microglial activator and is directly 

associated with Alzheimer’s disease.  IL-1β-activated microglia phagocytose amyloid 

plaques in Alzheimer’s but an IL-1β sustained upregulation of p38 MAPK results in 
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excessive tau phosphorylation in a mouse model (Ghosh et al., 2013), suggesting that IL-

1β may have a Jekyll and Hyde role in Alzheimer’s disease.  In Parkinson’s disease, IL-1 

is a likely microglia activator in both the nigrostriatal system and the olfactory bulb, where 

the disease first manifests prior to motor dysfunction, as shown in MPTP-treated mice and 

in the post-mortem brains of Parkinson’s patients (Vroon et al., 2007).  However, because 

microglia are still activated in an IL-1 knockout mouse model of Parkinson’s, it may have 

a differential regulation on microglia in different brain regions (Vroon et al., 2007) or have 

more prominent impacts in disease initiation than in disease progression.  As is 

demonstrated by its roles in several varying conditions, IL-1 is clearly an important 

cytokine in both the immune response and in the pathology of disease. 

 

1.5.7 The IL-1 Receptors:  Type I and Type II IL-1R 

TLR4 and the interleukin 1 receptor (IL-1R) share cytoplasmic domains and a high 

sequence homology (Medzhitov et al., 1997).  While the agonist ligand for IL-1R, the 

cytokine IL-1, was described in the 1970’s to be important to innate immunity before the 

identification of hTLR4 by Medzhitov et al., in 1997, IL-1R is thought to be an 

evolutionarily newer protein in comparison as it more closely connects innate to adaptive 

immunity by contributing to T helper cell and B cell proliferation and is only found in 

vertebrates (Boraschi and Tagliabue, 2006; Martin and Wesche, 2002).  The IL-1R genes 

likely resulted from gene duplication events (McMahan et al., 1991) that occurred when 

birds and mammals diverged (Sims et al., 1994). 

IL-1R was identified in 1985 with a molecular weight of ~80,000 daltons (Dower 

et al., 1985).  Soon after it was discovered that both IL-1α and IL-1β bind to the same 
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receptor (Matsushima et al., 1986; Kilian et al., 1986).  As was mentioned above, IL-1 

activity is found in a variety of cells, mostly of lymphatic origin, but it has also been 

identified in the brain.  While IL-1R is expressed throughout the brain, the highest 

concentrations tend to be associated with groups of neurons such as those in the olfactory 

bulb, the granule cells of the dentate gyrus, the pyramidal cells in the hippocampus, and 

neurons in the oculomotor nucleus; however, differing patterns imply a likelihood that not 

all neurons associate with IL-1R (Farrar et al., 1987; Farrar et al., 1988).  The high levels 

of IL-1R in the olfactory bulb support the work of Vroon et al. suggesting that IL-1 

participates in the early stages of Parkinson’s disease. 

A second IL-1R receptor exists, termed Type II IL-1R—the first is commonly 

referred to in the literature as Type I IL-1R, or simply IL-1R.  These receptors are members 

of the immunoglobulin-like domain-containing (Ig) family of receptors (Sims, 2002).  

However, only the Type I IL-1R has the highly conserved cytoplasmic TIR domain (Gabay 

et al., 2010).  They both have an extracellular portion responsible for ligand binding that 

has three Ig domains, a single transmembrane pass, and a cytoplasmic portion that differs 

between the Type I and Type II receptors (McMahan et al., 1991).  While Type I IL-1R 

has a cytoplasmic domain of ~215 amino acids, the Type II IL-1R consists of only 29 amino 

acids (McMahan et al., 1991), lacks a TIR domain (Gabay et al., 2010), and does not signal 

to NFκB (Stylianou et al., 1992).  Type II IL-1R exists as both membrane-bound and 

soluble forms and functions as a “decoy receptor” in that it sequesters extracellular IL-1 as 

a way to regulate levels of the circulating cytokine (Colotta et al., 1993).  Its high affinity 

for IL-1β and low affinity for IL-1α and the endogenous antagonist IL-1Ra carefully helps 

balance the plasma concentration of IL-1β, underscoring the necessity to control IL-1β 
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plasma expression (Boraschi and Tagliabue, 2006).  Recombinant soluble Type II IL-1R 

has been used in at least one phase 1 human clinical trial and was shown to be effective in 

inhibiting the late-phase response to allergens in volunteers (Sims et al., 1994). 

Both IL-1 receptors bind IL-1α, IL-1β, and the endogenous antagonist for the 

receptors, IL-1Ra despite a low homology between Type I and Type II IL-1R in their ligand 

binding domains of 28% (McMahan et al., 1991).  The crystal structure of Type I IL-1R 

bound to IL-1β has been solved.  It suggests that van der Waals interactions between side 

chains of the ligand and the receptor are responsible for a large portion of the binding 

energy associated with the complex (Vigers et al., 1997).  Crystal structure analysis of IL-

1R complexed with IL-1Ra shows that the first two Ig domains are rigidly connected while 

the second and third Ig domains have flexible linders, with IL-1Ra binding in between 

domains 1 and 2, which are very similar (Sims et al., 1988).  These two domains likely 

function as a single portion of the molecule (Schreuder et al., 1997).  Furthermore, while 

domains 1 and 3 are also similar, domains 2 and 3 are very different (Sims et al., 1988).  

Domain 3 is necessary for agonist binding and, overall, polar interactions between IL-1R 

and IL-1Ra likely contribute to their strong association (Schreuder et al., 1997). 

 

1.5.7.1 The Interleukin 1 Receptor Accessory Protein 

The interleukin 1 receptor accessory protein (IL-1RAcP) serves positive and 

negative regulatory roles for IL-1R.  It is structurally similar to IL-1R with three conserved 

Ig domains, a cytoplasmic portion that is only 25% homologous to the receptor, and a 

protein kinase C acceptor site (KSRRL) with unknown function (Greenfeder et al., 1995).  

This protein maintains high levels in the brain regardless of the presence of inflammatory 
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mediators (Greenfeder et al., 1995).  It has been suggested that IL-1RAcP envelops the IL-

1R:IL-1 complex, not directly binding to IL-1 or IL-1R, but by interacting with a few sites 

at the cytokine-receptor interface (Boraschi and Tagliabue, 2006).  This IL-1RAcP 

interaction with IL-1R enhances the affinity ofIL-1 for the receptor and may be required 

for the receptor to elicit a full signal (Wesche et al., 1997b), fulfilling its more popular role 

as a positive regulator for IL-1R.  A soluble splice variant of IL-1RAcP (sIL-1RAcP) can 

inactivate IL-1β bound to IL-1R and also increase the affinity of both IL-1α and IL-1β for 

Type II IL-1R, further regulating IL-1 activity (Gabay et al., 2010).  Another isoform of 

IL-1RAcP has been identified only in the CNS and is referred to as IL-1RAcPb.  This 

isoform may provide an additional, untraditional negative regulatory function in that it does 

not either directly antagonize or sequester IL-1 but rather inhibits signal adaptor 

recruitment of MyD88 and IRAK, thereby greatly altering and diminishing the signal 

(Smith et al., 2009).  Gene transcription is not completely eradicated though, as low 

transcription levels of interleukins were detected at questionable significance (Smith et al., 

2009). 

 

1.5.8 Interleukin-1 Signal Transduction 

Figure 12 illustrates the signal transduction pathway for IL-1R.  Signaling via IL-

1R generally only occurs via Type I IL-1R (Stylianou et al., 1992) and is virtually identical 

to that of the MyD88-dependent pathway in TLR4.  The primary difference between 

signaling via IL-1R vs. TLR4 is that the receptor complex is much smaller and a few 

proteins are different.  It begins with IL-1 binding to IL-1R, which then recruits IL-1RAcP 

to establish the high affinity complex (Brikos  et al., 2007).  IL-1R and IL-1RAcP may 
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interact with each other, presumably via their TIR domains (Martin and Weshce, 2002) but 

may just slightly connect at the cytokine-receptor interface as mentioned in Section 5.4.6.  

MyD88 and IRAK4 are recruited to the receptor complex and stably associate with it while 

IRAK1 also associates with the complex via MyD88 but this association is transient (Cao 

et al., 1996; Brikos et al., 2007).  IRAK2 may also briefly associate with the receptor 

complex as it coprecipitates with IL-1R and MyD88, although not simultaneously (Muzio 

et al., 1997), perhaps serving a brief structural or recruitment purpose.  Because MyD88 

has a high affinity for unphosphorylated IRAK4 (Wesche et al., 1997a), that association is 

stronger.  IRAK4 then autophosphorylates (Yamin and Miller, 1997) before 

phosphorylating IRAK1 (Brikos et al., 2007), after which IRAK4 is proteolytically 

degraded (Yamin and Miller, 1997).  It is possible that IRAK1 is inhibited by the protein 

Tollip until the receptor is activated, thereby dissociating Tollip from IRAK1 (Martin and 

Wesche, 2002).  Regardless, after IRAK1 is phosphorylated by IRAK4, IRAK1 recruits 

TRAF6 and TAB2 from the membrane to the cytosol (Qian et al., 2001) as separate 

proteins.  TRAF6 then K63 polyubiquitinates via UEV1A-mediated Ubc13 ubiquitination 

(Deng et al., 2000), which acts as a signal that is recognized by TAK1 (part of the 

TAK1/TAB1/TAB2 complex), which becomes activated via an unknown mechanism, and 

autophosphorylates itself before phosphorylating IKKβ (Wang et al., 2001; Napetschnig 

and Wu, 2013; Martin and Wesche, 2002).  It is a this point that the NFκB and MAP kinase 

pathways bifurcate and continue to signal as described in Sections 5.5.2 and 5.5.3. 
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Figure 12. Signaling Pathways of IL-1R. Figure was 

adapted from Sims et al., 1988; Vigers et al., 1997; 

Greenfeder et al., 1995; Boraschi and Tagliabue, 

2006; Stylianou et al., 1992; Brikos et al., 2007; 

Martin and Wesche, 2002; Cao et al., 1996; Muzio et 

al., 1997; Wesche et al., 1997a; Yamin and Miller, 

1997; Qian et al., 2001; Deng et al., 2000; Wang et 

al., 2001; Napetschnig and Wu, 2013; Akhikari et al., 

2007; Shibuya et al., 1996; Shim et al., 2005; Guha 

and Mackman, 2001; Srivastava and Ramana, 2009; 

Manavalan et al., 2010; Gao et al., 2013; Perkins, 

2006; and Hoffmann et al., 2006. Legend is shown in 

box at right. 
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1.5.8.1 Other Intracellular Events via IL-1R 

As is the case for TLR4, IL-1R activation has been implicated in activating PI3 

kinases, leading to activation of Akt (Marin and Wesche, 2002).  Additionally, at least one 

study in primary murine astroglia indicate that IL-1β also activates PKC, leading to the 

release of phospholipase A2 and increased prostaglandin E2 production (Molina-Hlgado et 

al., 2000).  More importantly, as was the initially-thought signaling cascade, IL-1R can 

also cause an increase in adenylate cyclase activity and cAMP (O’Neill et al., 1990a).  The 

intriguing aspect of this is that while sensitivity to pertussis toxin is traditionally associated 

with inhibitory G-proteins, in the case of IL-1R a pertussis toxin-sensitive G-protein is 

responsible for the observed increases in adenylate cyclase activity and cAMP (O’Neill et 

al., 1990a; Chedid et al., 1989).  This initial observation regarding the intracellular activity 

of IL-1R is a potential link between the G-protein coupled receptor MOR to the immune 

receptors TLR4 and IL-1R. 
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SECTION 1.6 

OPIOID NEUROIMMUNE CROSSTALK 

As mentioned at the beginning of this document, the observations that opioid use 

directly affects the immune system have been made for over one hundred years.  Recent 

advances in science and technology are finally allowing scientists to investigate for opioid-

immune effects.  Each sub-category in this section briefly highlights some of these 

possibilities. 

 

1.6.1 Opioid Receptors are Expressed and Regulated in Immune Cells 

The finding that opioid receptors are expressed in both peripheral immune cells, 

such as T and B lymphocytes, monocytes/macrophages (Chuang et al., 1995), and in 

immune cells of the CNS such as microglia and astrocytes (Kettenmann et al., 2011; 

Ruzicka et al., 1996) supports the hypothesis for a molecular mechanism in opioid 

immunomodulation.   What is interesting is that this appears to be a direct exogenous drug 

effect, as some opioid receptors—such as µ3—present on peripheral immune cells and 

neurons and readily bind exogenously-administered opioids but have a low affinity for 

endogenous opioids (Makman, 1994).  This indicates that the endogenous opioids do not 

necessarily have the same detrimental effects on the immune system that drugs like 

morphine do, which makes sense as those with healthy immune systems also have 

endogenous opioids circulating.  Additionally, while the µ3 opioid receptor present on 

inactive thymocytes has a relatively low affinity for morphine, exposure of the cells to IL-

1 enhances morphine binding (Bidlack et al., 2006)—indicating a direct link between 
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opioid expression and immune activity via IL-1.  This is further exemplified in the CNS, 

where treatment of SK-N-SH neuroblastoma cells with IL-1β increases MOR expression; 

however, concomitant treatment with the IL-1R antagonist IL-1Ra completely inhibited 

this indicating that IL-1R activity is modulating MOR expression (Mohan et al., 2010). 

 

1.6.2 Opioids Modulate Immune Activity via NFκB 

Pioneering research in opioid immunomodulation found that morphine dose-

dependently affected TNFα and IL-6 production in macrophages as low doses increased 

and high doses decreased synthesis of these cytokines (Roy et al., 1998).  This occurred 

via NFκB and because the low dose of morphine was reversed by naloxone it is likely 

mediated via an opioid receptor; however, the inhibitory effects of the high dose could not 

be reversed by naloxone indicating that a different receptor must be mediating those effects 

(Roy et al., 1998).  Recent work out of our laboratory and the independent laboratories of 

Linda Watkins and Mark Hutchinson suggests that opioid treatment affects the activity of 

the immune receptor TLR4.  This research has found that opioid treatment in a reporter 

cell system (HEK-BlueTM-hTLR4) activates the TLR4 signaling cascade, as measured by 

increases in NFκB activity (Stevens et al., 2013; Hutchinson et al., 2010).  More 

prominently, the opioids morphine and fentanyl produced a 50-80% inhibition of LPS-

activated TLR4 signaling, suggesting that there may be a dual regulatory role for opioid-

induced immunomodulation (Stevens et al., 2013).  Because TLR4 and IL-1R signal to 

NFκB (Marin and Wesche, 2002) and they are both expressed in microglia (Kettenmann et 

al., 2011), the possibility that opioids regulate expression of these receptors is heightened 
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given that opioids regulate TLR4 and IL-1R in a neuroblastoma cell line (Stevens et al., 

2013; Mohan et al., 2010). 

 

1.6.3 Morphine and Methadone Differentially Modulate the Immune System 

The immunomodulatory effects of morphine and other opioids have been observed 

for both the peripheral (McCarthy et al., 2001) and CNS (Hutchinson et al., 2011) immune 

systems.  Morphine is generally accepted as being immunosuppressive (Brown et al., 1974; 

Gavériaux-Ruff et al., 1998; Budd, 2006) and is known to increase susceptibility to 

opportunistic infections (Roy et al., 2011).  Methadone, although also an opioid, is known 

to rescue immune function in heroin addicts (Sacerdote et al., 2008).  This could be because 

of the normalization of natural killer cell activity resulting from the long half-life of 

methadone (Kreek, 1990) and/or other unknown mechanisms.  The fact that these two 

drugs possess similar analgesic effects yet have opposing immunologic actions indicates 

that the two drugs likely crosstalk with the immune system differently. 

 

1.6.4 IL-1R Interacts with G-Proteins 

As was introduced in Section 5.8.1, the early research into IL-1R signaling 

identified the involvement of G-proteins as it activates pertussis toxin-sensitive G-proteins, 

but IL-1R only contains one transmembrane pass instead of seven like a traditional GPCR 

(Chedid et al., 1989).  As MOR also signals via pertussis toxin-sensitive Gi proteins, the 

possibility that they could share some intracellular signaling molecules increases the 
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opportunistic probability that crosstalk between the two receptors exists.  While the 

sensitivity to pertussis toxin implies that inhibitory Gi proteins are involved, it has also 

been found that IL-1 increases the activity of cAMP and DAG in certain or stimulated cells 

(O’Neill et al., 1990a).  This is contrary to MOR, which decreases cAMP.  As these 

findings oppose traditional Gi-protein signaling, such as that in MOR, the likelihood that 

these events occur via an indirect mechanism becomes greater.  The cells may have to share 

a pool of G-proteins.  Other unknown intracellular effects could also affect the activity of 

them to generate non-traditional responses.  While the generally accepted signaling cascade 

for IL-1R does not involve G-proteins, the fact that under certain conditions G-proteins can 

become activated via IL-1R (O’Neill et al., 1990b) provides further evience for possible 

crosstalk between MOR and IL-1R. 

 

1.6.5 MOR, TLR4, and IL-1R are All Recruited to and Signal from Lipid Rafts 

Lipid rafts are membrane microdomains comprised of cholesterol and 

sphingolipids that have been found to be important gathering domains for receptor 

localization and for signaling scaffolds to form and initiate an intracellular signaling 

cascade (Simons and Toomre, 2000).  MOR preferentially localizes in a lipid raft in the 

absence of agonist and remains there during G-protein signaling upon morphine 

stimulation; however, etorphine binding causes MOR to move to non-raft domains and 

recruits β-arrestins to signal (Zheng et al., 2008).  This localized membrane association 

may therefore contribute to the phenomenon of ligand bias (Zheng et al., 2008), where 

different agonist ligands at the same receptor generate different responses. 
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TLR4 also is recruited to and signals from lipid rafts.  TLR4 only dimerizes and 

initiates the signaling cascade after recruitment into the lipid raft; however, while LPS and 

saturated fatty acids initiate TLR4 lipid raft recruitment the polyunsaturated fatty acid 

docosahexaenoic acid (DHA, aka Omega-3) disrupts lipid raft formation and subsequent 

signaling as the adaptor molecules are also recruited to the raft (Wong et al., 2009).  This 

indicates that different membrane lipid components may regulate TLR4 signaling.  

Additionally, both TLR and IL-1R are recruited into lipid raft domains of astrocytes after 

LPS or IL-1β treatment (Blanco et al., 2008), providing evidence that even in the CNS 

these microdomains are important in initiating the innate immune response.  Most 

importantly, all three of the receptors—MOR, TLR4, and IL-1R—are recruited to the lipid 

raft upon agonist binding (the exception being MOR’s association with non-lipid 

membrane portions after etorphine treatment (Zheng et al., 2008)).  This means that these 

three receptors may be in physical proximity, creating an opportunity for receptor-receptor 

interactions between these proteins.  Additional research is needed to determine whether 

or not they are all present in the same lipid raft. 

 

1.6.6 MOR, TLR4, and IL-1R All Homo-and/or Heterodimerize 

  The concept of receptor heteromerization has taken years to come to acceptance in 

the scientific community.  The idea that receptors do not function solely as monomers but 

can form dimers with another of the same protein to form a homomer or dimers with a 

different protein to form a heteromer is becoming widely accepted (Ferré et al., 2009).  

MOR, TLR4, and IL-1R all form homo- and/or heteromers.  For example, MOR can form 

a MOR-MOR homomer or a MOR-DOR heteromer (van Rijn et al., 2010).  The responses 
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of these dimers is not necessarily the same as it is for the monomer as in the case of the 

MOR-DOR heteromer research indicates that MOR is recycled back to the membrane 

while DOR is degraded (van Rijn et al., 2010).  Of particular interest is the heteromer 

consisting of MOR and the chemokine receptor CCR5.  Treatment of Chinese hamster 

ovary (CHO) cells with either the MOR agonist DAMGO or the CCR5 agonist RANTES 

(CCL5) induced cross-desensitization, indicating that the pharmacokinetics of one receptor 

can influence the other (Chen et al., 2004).  It is important to note that in the case of the 

MOR-CCR5 heteromer both of the receptors are GPCRs.  However, both MOR and CCR5 

interact with Gi proteins and since they are likely sharing an intracellular store (Chen et al., 

2004), a receptor-receptor interaction would produce more efficient use of the proteins for 

signaling.  Furthermore, interactions between different classes of molecules has also been 

identified.  It is well documented that opioids affect lymphocyte chemotaxis and other 

immune functions via indirect crosstalk mechanisms (Zheng and Oppenheim, 2005; 

McCarthy et al., 2001).  The MOR-CCR5 heteromer is a prime example that receptor 

oligomerization can extend beyond heteromers that have the same general function and 

more importantly, that MOR can dimerize with an immune receptor.   

TLR4, as discussed in Section 5.4.4, requires receptor dimerization for induction 

of the signaling cascade.  IL-1R also forms a heterodimer receptor complex as it interacts 

both extracellularly and intracellularly with IL-1RAcP (Martin and Wesche, 2002).  Type 

I IL-1R also forms aggregate clusters upon IL-1 stimulation in CHO-K1 cells, indicating 

that direct receptor-receptor interactions likely occur (Guo et al., 1995).  This is likely a 

required, but not independently responsible step, for signal transduction to occur via IL-1R 

(Guo et al., 1995).  While direct and simultaneous interactions between MOR, TLR4, and 
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IL-1R may be unlikely, the fact that all three of these receptors oligomerize at least to some 

extent indicates that receptor-receptor interactions among these proteins remains a distinct 

possibility. 

 

 

SECTION 1.7 

SUMMARY 

Research in opioid and immune receptor functions continues to indicate that MOR, 

TLR4, and even IL-1R are not functionally mutually exclusive.  Opioid 

immunomodulation is likely occurring, at minimum, via TLR4 and the vast similarities 

between TLR4 and IL-1R indicate that IL-1R may also be involved.  Expression and 

activity of these proteins may help explain some of these findings.  While much of the 

literature has focused on the peripheral immune system, it is becoming increasingly clear 

that similar immunologic activities via microglia and astrocytes are also in the CNS.  As 

Section 6 discusses the commonalities between MOR, TLR4, and IL-1R, the possibility 

for these receptors to interact at the plasma membrane in an as of yet unidentified an 

unconventional manner warrants investigation. 

There is clear evidence described throughout this document indicating that MOR, 

TLR4, and IL-1R all have a common link:  opioids.  The quest remains as to what extent, 

how, where, and why opioids influence these immune receptors and to identify potential 

receptor interactions between all three.  The drugs morphine and methadone are commonly 

used in today’s culture—both in medical practice and illicit use on the streets.  As the July 

2012 DAWN report states, there were 72.6 heroin and 137.4 narcotic pain reliever 
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emergency department visits per population of 100,000 in 2012, and this is a growing trend.  

Routine morphine administration in emergency trauma and surgery, coupled with 

continued heroin use increases the likelihood for narcotics misuse.  Increases in methadone 

popularity for pain management and continued success with methadone in methadone 

maintenance therapy programs also contributes to these emergency visits.  Factor in the 

documented deleterious immunological effects of opioids and it quickly becomes an 

intellectual responsibility to experimentally elucidate potential answers to the mysteries 

surrounding neuroimmunomodulation and opioid drug use.   
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CHAPTER II 
 

 

METHODS 

2.1 Cell Culture 

2.1.1 Human Embryonic Kidney 293 (HEK-Blue™-hTLR4) cells are stably co-

transfected to overexpress hTLR4 and the accessory proteins CD14 and MD-2.  HEK-

Blue™-hTLR4 cells are also stably transfected with a secreted embryonic alkaline 

phosphatase (SEAP) reporter gene that renders a proprietary detection media blue upon 

NFκB p65 binding in the κB promoter region of the DNA, indicating that TLR4 has been 

activated.  This cell line has therefore been designed to study TLR4 activity by measuring 

the blue intensity of the detection media whereby greater absorbance values linearly 

correlate to the SEAP reporter gene activity.   

Once out of cryogenic storage, the cells are grown in growth media for two passages 

before being passaged at least once more into a selection media before being used in assays.  

Growth media consists of DMEM, 4.5 g/L glucose, 10% (v/v) fetal bovine serum (FBS), 

50 U/mL penicillin, 50 µg/mL streptomycin, 100 µg/mL Normocin™, and 2 mM L-

glutamine.  Selection media is comprised of the growth media supplemented with 1X HEK-

Blue™ Selection antibiotics, a proprietary solution.  Cells are fed or split every 2-3 days, 

until they’ve reached 70-80% confluency, and used in passages 20 and below.  The HEK-
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Blue™-hTLR4 cells, proprietary media, and antibiotics were all obtained from InvivoGen.  

LPS K12 was the chosen form of LPS for use in this cell line because the cells lack TLR2 

expression, which LPS K12 binds to as well as to TLR4.  This allowed for certainty that 

only TLR4 was being activated because LPS can stimulate TLR2 too.  LPS K12 is also 

more economical than TLR4 specific LPS, so it was used whenever possible. 

2.1.2 CHME-5 cells are a human microglial cell line.  CHME-5 microglial cells 

were a gift from Marc Tardieu, Laboratoire de Neurovirologie et Neuroimmunologie, 

Université Paris-Sud, France.  They were maintained in Growth Media, which consists of 

DMEM, 11.5% FBS, and 1.1% of each L-glutamine, penicillin/streptomycin, and 

Amphotericin-B.  They were fed every 2-3 days with Growth Media and passaged once 

per week for either maintenance or to seed an experiment.  Treatments were given once the 

cells had reached 60-80% confluency at which time the Growth Media was replaced with 

serum free media.  Passages 20 and under were used for experiments.  LPS O111:B4 was 

used in this cell line because it is specific for TLR4.     

2.1.3 CHO-hMOR-pIRES are Chinese hamster ovary cells that were stably 

transfected to express the hMOR receptor.  The pIRESneo polycistronic expression vector 

(Clontech) method was used to insert hMOR into the cell line which was derived from a 

pcDNA3.1-hMOR construct (University of Missouri-Rolla cDNA Resource Center).  They 

were transfected in Dr. Stevens laboratory by Chris Brasel in 2007.  The vial taken out of 

cryogenic freezing was labeled C1.3 p14 6.3.7 indicating a passage of 14 and freezing date 

of June 3, 2007.  These cells were maintained in complete Growth Media which was made 

of F-12K growth media, 10% FBS, 100 U/mL penicillin/100 mg/mL streptomycin, and 
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600-800 µg/mL geneticin, also known as  G418 sulfate (Mediatech, Inc).  Passages under 

20 were used for a positive hMOR control. 

2.1.4 SK-N-MC cells are also a human neuorblastoma cell line that was given from 

Santa Cruz Biotechnology to be used a positive control for measuring hMOR.  They were 

shipped in a 1 mL vial and were already prepared for use therefore plating and Growth 

Media were not necessary. 

 

2.2 Drugs 

All drugs were obtained from commercial chemical suppliers.  Morphine sulfate 

salt pentahydrate, methadone hydrochloride, oxycodone hydrochloride, buprenorphrine 

hydrochloride, and (+)-naloxone hydrochloride were all obtained from Sigma Aldrich, 

USA.  LPS-EK (aka LPS K12) and ultra-pure biotin-LPS from E. coli O111:B4 were 

provided from Invivogen.  (-)-delta 9-THC was obtained from Cerilliant, USA in 1 mg/mL 

vials and stored in 1 mL of methanol.   

 

2.3 SEAP Reporter Assay 

The SEAP reporter assay uses the HEK-Blue™-hTLR4 cells, as these cells were 

designed for this assay.  SEAP is a GPI-anchored protein that is commonly used as a 

reporter.  In this system SEAP is fused to five NFκB and AP-1 promoter binding sites 

which are activated downstream of TLR4.  Once SEAP is activated, alkaline phosphatase 

is secreted into a proprietary detection media, turning it blue.  Darker shades of blue 
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indicate increased TLR4 activity and the absorbance is measured with a spectrophotometer.  

Cells were plated in detection media at a density of 50,000 cells/well in 96-well plates and 

immediately treated with drugs and/or LPS and incubated for 18 hours at 37°C.  The plates 

were then read at 592 nm. 

 

2.4 MTT Toxicity Assay 

3-[4,5 dimethylthiazol-2-y]-2,5 diphenyltetrazolium bromide (MTT) was used to 

determine overall toxicity in vitro by measuring formation of an insoluble blue formazan 

product.  Viable cells are able to convert MTT to formazan while non-viable cells are not.  

Adherent cells and non-adherent cells had to be treated differently in this assay.  The 

intensity of the blue solution created by the viable cells was directly proportional to cell 

viability (Riss 2013).  Toxicity was considered when a treatment created significant 

difference from control values as determined via a one-way ANOVA. 

 

2.4.1 MTT in HEK-Blue™-hTLR4 cells 

After the cells were treated according to experimental protocol (Section 2.3), a 0.5 

mg/mL sterile MTT in phosphate buffered saline (PBS) solution was added to each well at 

1/9th of the total volume in the well.  The cells were then incubated for 45 minutes at 37°C 

at which time the viable cells took up the MTT and converted it to formazan.  The contents 

of each well were then transferred to microcentrifuge tubes because the HEK-Blue™-

hTLR4 cells do not adhere to the bottom of the plates.  They were then centrifuged in an 
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Eppendorf 5417R centrifuge for 10 minutes at 5,974 rcf, 4°C.  The supernatant was 

aspirated and the pellet resuspended in 1 mL of dimethyl sulfoxide (DMSO), which was 

added in 500 µL increments because it was difficult to get the pellet to solubilize.  The 

DMSO solution was transferred to a new 24-well plate and spectrophotometrically read in 

a plate reader at an absorbance of 492 nm.   

 

2.4.2 MTT in CHME-5 Microglia 

After the cells were treated according to experimental protocol a 0.5 mg/mL sterile 

MTT in PBS solution was added to each well at 1/9th of the total volume in the well.  The 

cells were then incubated for 45 minutes at 37°C.  The media was then aspirated and the 

cells were solubilized with DMSO on a plate rocker for 15 minutes to release and solubilize 

the formazan product.  Because the CHME-5 microglia adhere to the plates, they did not 

need to be transferred to microcentrifuge tubes and centrifuged.  The lysing of the cells 

turned the DMSO solution blue from the formazan in the viable cells.  The optical 

absorbance was then read at 492 nm.   

 

2.5 Protein Extraction 

Whole cell lysates were collected from 6-well plates (unless otherwise noted) after 

drug treatment and corresponding incubation.  The cells were washed one time with 1 mL 

PBS in a sterile hood then incubated on ice for 30-45 minutes in 200 µL RIPA buffer 

supplemented with 10 µL/mL Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, MO) 
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which inhibits serine proteases, aminopeptidases, cysteine proteases, and acid proteases.  

The lysates were then collected in microcentrifuge tubes and vortexed before being  

centrifuged in an Eppendorf 5417R centrifuge for 10 minutes at 10,621 rcf, 4°C.  The 

supernatants were collected and stored at -80°C. 

 

2.6 BCA Protein Quantitation 

Total cell lysates were retrieved from the -80°C freezer and thawed on ice.  A 

bovine serum albumin (BSA) standard (Sigma Aldrich, St. Louis, MO)was prepared at 

concentrations of 2 - 16 µg/mL.  10 µL of each standard was pipetted in triplicate into a 

96-well plate.  Samples were diluted 1:6 then 10 µL was pipetted in triplicate into the plate.  

The volume of proprietary reagents A and B (ThermoFisher, Waltham, MA) was calculated 

according to the following equations: 

Reagent A:  (# wells)*(0.200 mL), then round up to the nearest whole number and add 2 

= volume of reagent A 

Reagent B:  (volume of reagent A)/50 = volume of reagent B 

The reagents were mixed together to obtain the working reagent. 

200 µL of the working reagent was pipetted into each well via a multichannel pipettor then 

the plate was incubated for 1 hour at 37°C/5% CO2.  Absorbance was immediately read on 

a spectrophotometer at 570 nm and these values were used to calculate mg/mL of protein. 
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2.7 Western Blot 

12% polyacrylamide gels were made 1-2 days prior to running the western blot.  

Whole cell lysate extracts were thawed on ice and 50 µg or 100 µg of protein per sample 

was pipetted into a reaction tube, as was determined by a BCA protein analysis (section 

2.6).  10 µL of loading dye containing sodium dodecyl sulfate (SDS) was added to the 

protein then the reactions were placed in a thermocycler for 15 minutes at 99°C.  The 

electrophoresis chambers were prepared and the gels inserted into conductive holders.  The 

chambers were filled with 1× Running Buffer before the combs creating the wells were 

removed and the samples loaded.  The gels were run at 100V for the first 10 minutes to get 

the protein through the stacking gel and then the voltage was increased to 150V for about 

an hour and a half.  Typically, the loading dye would run out of the gel by then but it took 

that much time to get cleaner and crisper bands. 

Sponges and filter paper were soaked in chilled 1× Transfer Buffer containing 

methanol for about 5-10 minutes prior to transferring the gels to polyvinyldifluoride 

(PVDF) membranes.  To activate the membranes, they were soaked for 20-30 seconds in 

methanol prior to assembling the transfer apparatus.  The gel and membrane were placed 

in the transfer apparatus such that the current flowed from negative to positive, allowing 

for the proteins to transfer from inside the gel and onto the PVDF membrane.  The chamber 

was completely filled with cold 1× Transfer Buffer with an ice pack also in the chamber.  

Ice was packed around the chamber and the transfer was done at 100V for one hour.  The 

membranes were then blocked in 5% milk in tris-buffered saline with Tween 20 (TBST) 

for two hours at room temperature on a rocker before primary antibodies were added. This 

was to minimize non-specific antibody binding.  TLR4 mouse monoclonal IgG1 (Santa 
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Cruz Biotechnology SC-293072), MOR-1 goat polyclonal IgG (Santa Cruz Biotechnology 

SC-7488), and IL-1R rabbit polyclonal IgG (Santa Cruz Biotechnology SC-688) were 

made at a 1:200 dilution while β-tubulin rabbit polyclonal IgG (Santa Cruz Biotechnology 

#SC9104) primary antibody was used at 1:500.  All antibodies were made in 5% milk in 

TBST.  Once the primary antibody was added, the membranes were incubated at 4°C 

overnight on a plate rocker.  The next morning they were placed on a rocker at room 

temperature for 30 minutes to facilitate any additional binding.  Six washes in TBST for 

ten minutes each were done at room temperature on the plate rocker before adding the 

secondary antibodies.  Rabbit anti-goat IgG-AP (Santa Cruz Biotechnology SC-2771) was 

used at 1:2000 dilution for MOR-1, anti-rabbit IgG AP-linked antibody (Cell Signaling 

#7054S) was used at 1:1000 for IL-1R and β-tubulin while anti-mouse IgG AP-linked 

antibody (Cell Signaling #7056S) was used at 1:1000 for TLR4.  Secondary antibodies 

were also made in 5% milk in TBST.  The membranes incubated with the secondary 

antibodies for two hours at room temperature on a plate rocker before being washed six 

times for ten minutes each in TBST.  Antibodies were saved and re-used up to 4 times 

before being discarded.  Membranes were stripped in Resore™ Western Blot Stripping 

Buffer (ThermoScientific, Rockford, IL) by decanting the secondary antibody then 

incubating the membrane for 15 minutes on a plate rocker at room temperature.  The 

membranes were stripped and re-probed up to 3 times.  β-tubulin was always used to 

normalize the bands.  The membranes were visualized in ECF substrate using a Blue2 (488) 

laser on a Typhoon Scanner then quantified using Image J software.    
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2.8 RNA Extraction 

RNA was isolated from 6-well plates (unless otherwise noted) in the results.  All 

working areas and equipment were thoroughly wiped down with RNase Zap (Life 

Technologies, Carlsbad, CA).  Cells were rinsed one time with 1 mL of PBS in the cell 

culture hood.  In the fume hood, cells were incubated for 5 minutes in 0.5 mL of Trizol 

(Life Technologies, Carlsbad, CA).  Lysates were collected in clear RNase-free 

microcentrifuge tubes.  100 µL of RNA only chloroform was added to each tube followed 

by a vortex and 10 minute incubation at room temp.  Tubes were centrifuged for 10 minutes 

at 10,621 rcf, 4°C then the top, clear layer was carefully removed and transferred to new 

RNase-free microcentrifuge tubes.  250 µL of RNase/DNase/protease free isopropanol was 

added to each tube after which they were inverted 10-15 times to mix with a 10 minute 

incubation at room temperature immediately following.  Next, they were centrifuged in an 

Eppendorf 5417R centrifuge for 15 minutes at 20,817 rcf, 4°C.  The supernatant was 

carefully pipetted out and discarded, leaving the RNA pellet.  The pellets were carefully 

washed once with 400 µL RNase Free 70% ethanol and then incubated for 10 minutes on 

ice with the lids open to dry the pellet and remove excess ethanol.  40 µL of RNase/DNase 

free water was pipetted into each tube then they were placed on a heat block for 10 minutes 

at 65°C with the lids closed to dissolve the pellet.  Samples were quickly vortexed and 

quick spun to collect all RNA at the bottom of the tubes.  They were placed on ice and the 

RNA was quantified on the nanodrop.  2 µg of RNA was calculated for each sample and 

pipetted into 200 µL RNase free microcentrifuge tubes with 1 µL of DNase buffer, 2 µL 

of DNase at 1 U/µL, and the difference up to 10 µL with RNase free water.  They were 

vortexed and quickly centrifuged then incubated for 15 minutes at room temperature.  1 µL 
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of 25 nM EDTA was then added to the samples to inactivate the DNase and the samples 

were vortexed and quickly centrifuged again before being placed in the thermocycler for 

10 minutes at 65°C.  Samples were stored at -20°C until cDNA was made. 

 

2.9 cDNA 

The 2 µg RNA after the samples had been DNase treated (section 2.8) were thawed 

on ice.  15 µL of RNase/DNase free water was added to each tube.  This increased the total 

volume to 26 µL.  6 µL of reaction mix 1 was then added to the tubes. 

Reaction Mix 1:  10 mM dNTP mix (Promega, Madison, WI) at 2 µL/tube 

+ 10x RT Random Hexamers (GeneLink™, Hawthorne, NY) at 4 µL/tube = 6 µL of mix 

1 per cDNA reaction 

 

Each tube was then vortexed and quickly centrifuged to mix.  Reactions were incubated 

in the thermocycler at 65°C for 5 minutes while reaction mix 2 was made. 

Reaction Mix 2:  10x RT Buffer (New England BioLabs, Ipswich MA) at 4 µL/tube  

+ rRNasin RNase Inhibitor (Promega, Madison, WI) 10,000 units at 40 units/ µL 

+ Reverse Transcriptase (Applied Biosystems, Foster City, CA) at 20 units/tube 

+ RNase/DNase free water at 2.75 µL/tube 

+RNase/DNase free water to increase the total volume per reaction to 8 µL 

 

8 µL of reaction mix 2 were pipetted into each reaction tube, then vortexed and quickly 

centrifuged again before placing the reactions in the thermocycler at 25°C for 15 minutes 
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followed by 42°C for one hour, followed by 95°C for 5 minutes.  Samples were stored at 

-20°C. 

 

2.10 RT Polymerase Chain Reaction (PCR) 

PCR amplification of genes of interest was accomplished individually.  Either 50 

ng or 100 ng of cDNA was amplified depending on the run.  The PCR reaction mixtures 

included 10 µL of 2x GoTaq Polymerase, 1 µL of sense primer, 1 µL of anti-sense primer, 

and 3 µL of nuclease free water.  All primers were obtained from Integrated DNA 

Technologies (IDT Coraville, IA) and primers used include TLR4, hMOR, IL-1R, 

GAPDH, and β-actin.  The reaction mix combined with the appropriate volume of cDNA 

template went in the thermocycler initially for 2 minutes at 95°C to denature the cDNA.  It 

then went through up to 35 cycles of 94°C for 15 seconds to melt it, 55°C to anneal, and 

72°C to extend before sitting for 5 minutes at the 72°C for a final extension time.  These 

samples were stored at -20°C if they were not immediately analyzed by gel electrophoresis. 

Electrophoresis of PCR products was performed in a 2% agarose gel.  500 mL 

solutions of 2% agarose were made by adding 10 g of agarose (MidSci, St. Louis, MO) to 

50 mL 10x Tris Borate EDTA (TBE) buffer and 450 mL of water.  This was heated in the 

microwave in 1 minute intervals until all of the agarose was completely dissolved and had 

boiled for about a minute.  Once liquefied, the agarose solution was left to cool for about 

15 minutes before 50 µL of 10 mg/mL ethidium bromide was added.  The gel was then 

poured into a gel cast with the combs inserted and allowed to polymerize for at least 30 

minutes.  The chamber was then filled with 1x TBE until it covered the gel.  A 100 kbp 
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ladder was loaded followed by the amplified samples.  Either GAPDH or β-actin was used 

as a loading control.  The gels were run at 150-170V for 20-30 minutes, or until a 2.5 cm-

3 cm band separation was detected.  The gels were imaged on a Kodak Molecular Imaging 

camera and software. 

 

2.11 Statistics 

CHME-5 data was analyzed using Statistica software (StatSoft, Inc., 2014).  Either 

a one-way or two way ANOVA was used to calculate statistical significance as appropriate.  

Significance was defined at p<0.05.  A Fisher’s least significant difference (LSD) post-hoc 

test was used to determine significant differences in the CHME-5 data.  All error bars are 

indicative of the standard error of the mean (SEM).  HEK-Blue™-hTLR4 data was analyzed 

using GraphPad Prism and also used either a one-way ANOVA or two-way ANOVA with 

significant differences being defined at p<0.05.  Post-hoc tests are detailed in the results 

section (Chapter III). 
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CHAPTER III 

 

 

RESULTS 

3.1 THC-Induced TLR4 Activity in HEK-Blue™-hTLR4 Cells 

 The first set of experiments performed in the laboratory involved the effect of (-)-

delta9-tetrahydrocannibinol (THC) on TLR4 activity.  Cells were plated at a density of 

50,000 cells/well in 96 well plates then treated with THC at concentrations ranging from 

0.00003-3 mM and LPS at concentrations from 0.001-1000 ng/mL immediately prior to a 

0-24 hour incubation at 37°C/5%CO2.  This was a quick, preliminary time-course study 

and was performed in duplicate; therefore, no statistics were performed.  Figure 13 

illustrates the gradual increase in TLR4 activity induced by LPS that begins at about 12 

hours and is maximized at around 24 hours.  Interestingly, THC in the presence of LPS 

appears to have an inhibitory effect on TLR4 activity, with the greatest effect at 0.3 mM.  

As Figure 14 indicates, the 3 mM treatment of THC was toxic to the cells either with or 

without any concentration of LPS but the methanol used to keep THC in solution was not.  

The asterisk indicating toxicity is relative to control values.  
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Figure 13.  Time course of LPS-induced TLR4 activity inhibited by THC in HEK-

Blue™-hTLR4 cells.  Cells were treated with 100 ng/mL LPS ± THC for 0-24 hours.  

Activity was determined via the SEAP reporter assay.  A dose dependent decrease in activity 

is most likely to occur at 24 hours.  Absorbance units (AU) are on the y-axis, N=2. 

 

A
U

 

 

  

  



97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  MTT Toxicity of THC ± LPS in HEK-Blue™hTLR4 Cells.  This assay was performed once to gain an idea of THC 

toxicity in the HEK-Blue™hTLR4 cells; therefore, toxicity was visually interpreted as opposed to being determined via one-way 

ANOVA.   *Presumed toxic doses of THC. 

0

20

40

60

80

100

120

140

L
P

S

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

0
.0

0
1
 n

g
/m

L

0
.1

 n
g

/m
L

1
0

 n
g
/m

L

THC 0 mM 0.00003 mM 0.0003 mM 0.003 mM 0.03 mM 0.3 mM 3 mM Methanol

C
el

l 
 V

ia
b

il
it

y

MTT Toxicity 

* 



98 

 

3.2 Opioid-Induced TLR4 Activity in LPS-Induced HEK-Blue™-hTLR4 Cells 

These experiments were designed to determine the effect of morphine, methadone, 

oxycodone, and buprenorphine on TLR4 activity using the HEK-Blue™-hTLR4 SEAP 

reporter assay.  LPS was also included both as a control and in simultaneous treatment with 

the given opioid.  The drugs chosen in this section include morphine and oxycodone, 

because they are drugs of choice for abuse, are known to be addictive and are 

immunosuppressive (Brown et al., 1974; Gavériaux-Ruff et al., 1998; Budd, 2006).  

Methadone and buprenorphine were also included because of their success in treating 

opioid addiction and the improved immune function associated with their use in treating 

addiction (Sacerdote et al., 2008).  Experiments were completed a minimum of three times 

in triplicate.  Figure 15b, 15c, and 15d illustrates that methadone (F5,342, p<0.001), 

buprenorphine (F5,342, p<0.001), and oxycodone (F5,331, p<0.001) all significantly inhibit 

LPS-induced activation of TLR4.  Morphine had no significant effect on TLR4 activity 

despite an apparent inhibitory trend with increasing concentrations of the drug (Figure 

15a).  This is consistent with previous data from this laboratory showing maximal TLR4 

activation with LPS only and a decrease in TLR4 activation with simultaneous treatment 

with morphine (Stevens et al., 2013).  The Stevens et al. study found statistical significance 

in this inhibition whereas the current one did not.  The inhibition is further observed by 

decreases in Emax, as shown in Tables 2-5. 



99 

 

 

  
Figure 15.  Opioid inhibition of LPS-induced TLR4 activation in HEK-Blue™hTLR4 Cells.  Cells were treated for 18 hours with 

LPS ± drug.  a. Methadone significantly inhibits LPS-induced TLR4 activation at 10 µM (p<0.05), 33 and 100 µM (p<0.001).  b. 

Buprenorphine significantly inhibits LPS-induced TLR4 activation at 10, 33, and 100 µM (p<0.001).  c. Morphine has no significant 

effect on LPS activation of TLR4.  d. Oxycodone significantly inhibits LPS-induced activation of TLR4 at 33 µM (p<0.05), and 100 

µM (p<0.001). (N=3 in triplicate, analyzed via 2-way ANOVA to determine any drug-LPS interactions followed by a Bonferroni post 

hoc test to identify those interactions.  Data points represent mean values +/- SEM. 

  This was colorimetrically measured by the activation of NFκB, upon which 

releases the blue alkaline phosphatase into the culture media in the presence of a proprietary 

detection media.  Note that while all four drugs do have inhibitory trends, as illustrated by 

the decreases in Emax, they inhibit LPS-induced TLR4 activation to different degrees.  

Buprenorphine has the greatest effect at 33 µM, followed by oxycodone and methadone at 

the same dose.  Tables 2-5 highlight the EC50, Emax, and 95% Emax confidence intervals for 

the four drugs in the presence of LPS.  The EC50 for morphine and methadone are very 

close to each other at 10 µM and 33 µM, which were the doses highlighted in subsequent 

experiments. 

 

b. 
a. 

c. d. 
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 EC50 

EC50 

(nM) Emax 

95%  Confidence 

Interval 

LPS 

Only 

2.26E-

10 22.6 1.603 1.525-1.681 

1 µM 

2.39E-

10 23.9 1.486 1.394-1.579 

3 µM 

2.64E-

10 26.4 1.447 1.352-1.542 

10 µM 

1.98E-

10 19.8 1.332 1.229-1.434* 

33 µM 

2.49E-

10 24.9 1.174 1.105-1.243*** 

100 µM 

2.06E-

10 20.6 0.312 0.252-0.371*** 

 

  EC50 

EC50 

(nM) Emax 

95% Confidence 

Interval 

LPS 

Only 

1.61E-

10 16.1 1.387 1.314-1.460 

1 µM 

3.15E-

10 31.5 1.389 1.268-1.509 

3 µM 

3.06E-

10 30.6 1.327 1.212-1.443 

10 µM 

3.27E-

10 32.7 1.086 1.004-1.168*** 

33 µM 

6.34E-

10 63.4 0.042 0.353-0.487*** 

100 µM 

1.25E-

10 12.5 0.091 0.078-0.105*** 

 

 EC50 

EC50 

(nM) Emax 

Emax 95% 

Confidence 

Interval 

LPS 

Only 1.77E-10 17.7 1.675 1.542-1.809 

1 µM 2.29E-10 22.9 1.648 1.471-1.824 

3 µM 2.41E-10 24.1 1.612 1.420-1.804 

10 µM 1.91E-10 19.1 1.656 1.470-1.842 

33 µM 2.72E-10 27.2 1.458 1.296-1.621 

100 

µM 2.82E-10 28.2 1.419 1.269-1.570 

  EC50 

EC50 

(nM) Emax 

Emax 95%  

Confidence 

Interval 

LPS 

Only 1.34E-10 13.4 1.494 1.386-1.601 

1 µM 1.69E-10 16.9 1.429 1.280-1.577 

3 µM 1.88E-10 18.8 1.378 1.236-1.519 

10 µM 1.47E-10 14.7 1.281 1.122-1.439 

33 µM 1.49E-10 14.9 1.034 0.929-1.139* 

100 µM 7.35E-11 7.40 0.917 

0.779-

1.055*** 

Table 2.  EC50 and Emax values for TLR4 Activation in HEK-Blue™ hTLR4 Cells.  Tabular representation of Figure 

15. Cells were treated for 18 hours with LPS ± drug.  a. Methadone significantly inhibits LPS-induced TLR4 activation 

at 10 µM (p<0.05), 33 and 100 µM (p<0.001).  b. Buprenorphine significantly inhibits LPS-induced TLR4 activation at 

10, 33, and 100 µM (p<0.001).  c. Morphine has no significant effect on LPS activation of TLR4.  d. Oxycodone 

significantly inhibits LPS-induced activation of TLR4 at 33 µM (p<0.05), and 100 µM (p<0.001). N=3 in triplicate, 

analyzed via 2-way ANOVA with Bonferroni post hoc test.  Data points represent mean values +/- SEM. 

b. Buprenorphine EC50 and Emax values for TLR4  

Activation in HEK-Blue™hTLR4 Cells. 

c. Morphine EC50 and Emax values for TLR4 

Activation.      
d. Oxycodone EC50 and Emax values for TLR4 

Activation. 

a. Methadone EC50 and Emax values for TLR4 

Activation in HEK-Blue™hTLR4 Cells. 
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3.3 MTT Toxicity in HEK-Blue™-hTLR4 Cells 

In MTT toxicity studies, a one-way ANOVA found that methadone (F5,30=4.551, 

p<0.01) and buprenorphine (F5,30=9.098, p<0.01) were both toxic at the highest dose of 

100 µM (Figure 16a and 16b).  This explains the 100 µM “inhibitory effect” of LPS-

induced TLR4 activation as a toxic phenomenon for these two drugs.  Morphine and 

oxycodone had no observed toxicity (Figure 16c and 16d).  According to a one-way 

ANOVA LPS however, had significantly different effects at the three highest doses when 

compared to control (F6,35=10.13, p<0.01) (Figure 16e).   This indicates that some toxicity 

may be occurring at the doses of 1, 10, and 100 ng/mL; however, it was presumed to be 

even across all treatment groups therefore the doses were continued to be used in this study. 

Together, Figures 15 and 16 indicate that at certain doses, methadone, buprenorphine, and 

oxycodone are all inhibitors of LPS-induced TLR4 activation. 
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Figure 16.  MTT Toxicity of select opioids and 

LPS on HEK-Blue™-hTLR4 cells.   a. Morphine 

is not toxic at any dose.      b. Methadone is toxic at 
100 µM (P<0.01).  c. Oxycodone has no associated 

toxicity.   d. Buprenorphine is toxic at 100 µM 

(P<0.01).  e. LPS is toxic at 1, 10 and 100 ng/mL 
(P<0.01). (N=3 in duplicate, analyzed via 1-way 

ANOVA with Dunnett’s Multiple Comparison test.  

Data points represent mean values plus SEM.) 

a. b. 

c. 
 d. 

e. 
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a. b. 

c. d. 

3.4 Opioid-Induced Inhibition of TLR4 Activity in HEK-Blue™-hTLR4 Cells 

 

 

In Figure 17, the effect of these opioids on non-LPS stimulated TLR4 is illustrated.  

Morphine at 33 and 100 µM (F5,57=2.978, p<0.05); methadone at 1 and 3 µM (F5,57=13.69, 

p<0.01); buprenorphine at 1, 3 and 33 µM (F5,57=29.39, p<0.05); all independently inhibit 

TLR4 activity according to a one-way ANOVA indicating a drug effect on TLR4 activity.  

The significant difference for 100 µM methadone and buprenorphine is due to toxicity and 

is therefore not considered to affect TLR4 activity (Figure 17a, 17b and 17c).  Oxycodone 

treatment has no significant effect on TLR4 activity (Figure 17d). 

 

 

 

 

Figure 17.  Opioid effect 

on non- LPS-stimulated 

TLR4 activity.                

a. Morphine significantly 

inhibits TLR4 activation 
at 33 and 100 µM  with no 

LPS stimulation (P<0.05).    

b. Methadone 
significantly inhibits 

TLR4 activation at 1, 3, 

and 100 µM (P<0.01). c. 

Oxycodone has no 

significant effect on 
TLR4 activity.           

d. Buprenorphine 
significantly inhibits 
TLR4 activation at 3 µM 

(P<0.05), 1, 33 and 100 

µM (P<0.01).  (N=3 in 
triplicate, analyzed via 1-

way ANOVA with 

Dunnett’s Multiple 
Comparison test.  Data 

points represent mean 

values plus SEM.) 
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3.5 Methadone-Induced 6- and 18-Hour hMOR Protein Expression in HEK-Blue™-   

hTLR4   Cells 

This set of experiments was designed to focus on the relative expression levels of 

hMOR in response to methadone ± LPS treatment.  Methadone was selected to identify 

changes in transcript because of the immune rescue that has been observed in those on 

MMT (Sacerdote et al., 2008).  TLR4 was not investigated because it is overexpressed in 

this cell line; however, it was used as an additional positive control when looking at the 

mRNA (Figure 19).  Both mRNA and whole cell lysate extractions were analyzed for 

comparison; however, only the whole cell lysate is shown here because of difficulties in 

getting the RT-PCR to work.  Troubleshooting efforts included increasing the 

concentration of cDNA for hMOR from 50 ng (5 µL) to 100 ng (10 µL) per reaction.  

Making new heavily concentrated cDNA allowed for further increases in cDNA 

concentration by up to 400 ng to be added per reaction in an attempt to get hMOR to 

amplify without altering the total reaction volume.  This yielded a decent melting curve for 

hMOR but still no amplification occurred until 29-30 cycles indicating that the primers 

were good but something else might be interfering with the reaction.  It is possible that the 

hMOR transcript was too low to readily detect.  It was at this point that it was decided to 

focus on hMOR protein.  
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hMOR 

β-tubulin 

 

            

 

 

 

 

 

Figure 18 shows that there is no statistical difference in hMOR protein expression 

after either 6 or 18 hours of methadone exposure with or without LPS.  The LPS control 

appears to have a lower hMOR protein expression than all of the groups at both time points 

but a two-way ANOVA testing the potential for interactions between methadone and LPS 

did not detect statistical significance.  This was despite the apparent trend of increasing 

protein expression with increasing concentrations of methadone.  It is possible that a more 

sensitive and quantitative technique may detect a difference; however, the data presented 

here indicates that regardless of methadone and/or LPS treatment there is no change in 

hMOR protein expression in this cell line.   
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Figure 18.  hMOR Western Blots of 6h and 18h Methadone ± LPS Treatments in HEK-Blue™-hTLR4 Cells.  a. Six hour 

quantification of the data, N=4.  b. Eighteen hour quantification of the data, N=5.  Representative western blots with 

corresponding β-tubulin loading controls are shown beneath each graph.  A two-way ANOVA run on each data set did not 

detect a main LPS effect or an LPS-methadone interaction.   Arrows point to 50 kDa protein. 

Methadone (10 µM)               -          +           -          -           +          - 
Methadone (33 µM)               -          -           +          -            -          +            
LPS (100 ng/mL)                   -          -            -          +          +          + 

Methadone (10 µM)           -          +           -           -           +           - 

Methadone (33 µM)           -          -           +           -           -           +            

LPS (100 ng/mL)               -          -            -          +           +          + 

a. b. 
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3.6 Message Levels of hMOR Transcript in the Presence or Absence of Methadone  

      in HEK-Blue™-hTLR4 Cells. 

 

 

Figures 19a and 19b illustrate a preliminary run (N=1) highlighting the potential effect of 

methadone and/or LPS treatment on hMOR mRNA.  Either methadone and/or LPS 

remained on the cells for 18 hours.  This time point was chosen because it is the incubation 

time recommended prior to reading the absorbance when determining TLR4 activation as 

in the SEAP assay.  hMOR transcript appears to be upregulated in response to LPS or 100 

µM methadone but the bands are light and additional runs are needed before a conclusion 

can be made.  The low intensity bands may be due to the 18 hour time point, as Figure 17 

suggests a relatively greater protein presence than the mRNA at the same time. 

Figure 19a.  End point Polymerase Chain Reaction (PCR) 

of TLR4 (top), hMOR (middle), and GAPDH (bottom) in 

HEK-Blue™-hTLR4 cells with methadone and/or LPS 

treatment for 18 hours. 

Methadone  10 

µM 

Methadone 100 
µM 

LPS 100 ng/mL 

     -     -     +     -    -     +                                                    

       -     +     -     -    +     -                          

       -     -      -     +    +   +            

TLR4 

hMOR 

GAPDH 

Lane        1      2     3    4     5     6 
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3.7 Detecting hMOR 

hMOR started out relatively easy to detect in the HEK-Blue™-hTLR4 cell line.  The 

CHME-5 cell line is a different story.  Many attempts to optimize the detection of hMOR 

were made; however, conclusive results were not achieved.  Technical support from the 

vendor, Santa Cruz Biotechnology, did not lend any success in this endeavor as Figure 20 

illustrates the lack of hMOR protein expression in the SK-N-MC positive control cell lysate 

that the vendor provided.  This immediately led to the notion that the antibody may have 

gone bad.  This section highlights the struggles faced with this protein, using every 

available method to troubleshoot it.  In order to maintain some consistency, the primary 

hMOR antibody was always used at a 1:200 dilution.  All other western blot conditions 

were maintained as described in Section 2.7 unless otherwise noted in this section.  
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Figure 19b.  Relative hMOR mRNA levels in HEK-Blue™-hTLR4 cells after 

methadone ± LPS treatment.  Cells were treated with LPS (100 ng/mL) and/or 

methadone at the doses indicated on the graph for 18 hours. N=1   
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110 kDa 

  

 

 

As hMOR was detectable in the HEK-Blue™-hTLR4 cell line but not readily seen 

in the CHME-5 microglia, the CHME-5s were treated with 10 µM of the opioid antagonist 

naloxone.  Naloxone upregulates hMOR (Unterwald, 2011; Unterwald 1995); therefore, 

treatment with naloxone would theoretically upregulate protein expression of the receptor 

for further analysis.  Cells were treated for 1 or 18 hours in this attempt to upregulate 

hMOR.  Figure 21 illustrates that this was unsuccessful.  Similarly, there was not a 

significant effect on TLR4 at either time point; however, TLR4 remained detectable 

(Figure 22).   

   

  

 

   

  

 

50 kDa 

100 kDa 50 kDa 

50 kDa 

50 kDa 

50 kDa 

Control      Naloxone 1 hr      Naloxone 18 hr     

Figure 21.  hMOR Western blot of CHME-5 microglia 

treated with 10 µM naloxone.  β-tubulin controls are shown 

below. 

Figure 22.  TLR4 Western blot of CHME-5 

microglia treated with 10 µM naloxone.  β-tubulin 

controls are shown below. 

Control        Naloxone 1 hr     Naloxone 18 hr    

Figure 20.  hMOR Western Blot of SK-N-MC 

Positive Control Cell Lysate.  100 µg of protein 

was loaded into the gel.  β-tubulin loading control 

is shown beneath.  N=3 

50 kDa 

50 kDa 
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Figure 23 graphically depicts the apparent inability of naloxone treatment to 

upregulate hMOR protein expression.  While TLR4 is robustly expressed in this cell line, 

hMOR is not and does not even appear to respond to naloxone.  As microglia have been 

shown to express hMOR (Kettenmann et al., 2011) and the initially proposed project 

intended to look at the interaction between TLR4 and hMOR, every attempt to study the 

potential interaction was made.   

 

In order to investigate the possibility that the hMOR antibody had gone bad, the 

CHO-hMOR-pIRES cell line was used as another positive control.  C. Brasel stably 

transfected this cell line to express hMOR (Brasel et al., 2008); therefore, if the antibody 

is still functional then hMOR should be detected.  As is illustrated in Figure 24, hMOR 

was not detected in the transfected cell line with any of the opioids used.  50 µg of CHO-

hMOR-pIRES was loaded into lane 1. 
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Figure 23.  TLR4 and 

hMOR protein 

expression in naloxone 

treated CHME-5 

microglia.  Qualitative 
representation receptor 

expression. Control and 18 

hr experiments were 
repeated for an N=3, the 1 

hr was repeated twice, 

contributing to the large 
amount of error.  Cells 

were treated with 10 µM 

naloxone.  Receptor 
protein/β-tubulin is shown 

on the y-axis.  Data are 

presented ± SEM. 
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Because the antibody did not detect hMOR in the transfected line, a couple of 

potential explanations arise.  First of all, the transfection could no longer be effective after 

being in cryogenic storage for 7 years (date on vial: 06.03.2007, date taken out:  

06.23.2014).  However, this is not very likely to happen as the purpose of a stable 

transfection is to incorporate the gene of interest (in this case, hMOR) into the genome so 

that the next generations of cells also express the gene.  The second, and more likely 

explanation, is again, that the antibody has degraded.  IgG aggregates can form over time 

in antibodies.  These aggregates are too large to bind to the protein in question, rendering 

the antibody ineffective.  Because this antibody has worked a couple of years before both 

in the HEK-Blue-hTLR4™ cell line and in another investigator’s research using the same 

CHME-5 cell line (Figure 16), the probability that this is the case is reasonable.  Economic 

factors prohibited purchase of a new hMOR antibody which is why every available effort 

was made to optimize the antibody currently available.  

CHO     Control     3         3         10         10         33          33   µM 

   
CHO   Control     3          3          10        10         33         33   µM 

   

CHO    Control      3         3        10          10         33         33   µM 

   
CHO   Control     3          3         10       10         33          33   µM 

   

Figure 24.  hMOR western blots in CHME-5 microglia and CHO-pIRES cell lines.  CHO-

pIRES and control cells were not treated with any dose of opioid.  Opioid doses range from 3-33 

µM.  Treatments lasted 18 hours.  No hMOR protein was detected.  β-tubulin controls are shown 

beneath each blot.  Arrows indicate 50 kDa protein. 

a. Morphine b. Methadone 

 c.      Oxycodone d.    Buprenorphine 
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To test the possibility that the antibody had degraded and large IgG aggregrates 

were inhibiting binding to the positive controls, the primary antibody was quick spun for 

10-15 seconds immediately prior to being added to the membrane.  This was to pull down 

any aggregates that may have formed; however, if this was done for too long then all or 

most of the IgGs might pull down which would inactivate the antibody.  The primary 

antibody was added at a ratio of 1:200 then incubated on a plate rocker at 4°C for 4 days.  

This extended incubation time was in an attempt to maximize protein-antibody binding to 

compensate for any IgGs pulled down and/or if too many IgGs had already aggregated for 

the antibody to bind regardless of centrifugation and incubation time.  The secondary 

antibody was added after the 4 day incubation and the western blot was completed from 

this point according to Section 2.7.  This extended effort to isolate the cause for the blank 

hMOR membranes (Figure 24) confirmed the ability of naloxone to upregulate the protein 

when compared to control; however, the bands are light indicating low expression levels 

(Figure 25).   

 

 

 

 

 

 

 

 Sample:       CHO      C1         C2         C3       N1A    N18A   N1B    N18B   N18C 

Figure 25a.  hMOR Western blot of centrifuged and extended incubation time of CHO-hMOR-pIRES and 

CHME-5 microglia under control and 10 µM naloxone treatment at 1 and 18 hours.  All samples other than CHO 

are CHME-5 microglia.  50 µg of protein was loaded into each well. Faint bands were visualized in naloxone-treated 

CHME-5 cells at 50 kDa.  Faint bands were also visualized at 50 kDa and 70 kDa in the CHO-hMOR-pIRES cells.    

β-tubulin loading controls are shown beneath. 

 

CHO- CHO-hMOR-pIRES 
Cells 

C1- Control Run 1 

C2- Control Run 2 
C3- Control Run 3 

N1A- 1 hr. Naloxone Run A 

N18A- 18 hr. Naloxone Run A 
N1B- 1 hr. Naloxone Run B 

N18B- 18 hr. Naloxone Run B 

N18C- 18 hr. Naloxone Run C 

 

70 kDa 

50 kDa 

50 kDa 
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This data is inconclusive as to whether or not hMOR is expressed in the CHME-5 

microglia.   hMOR protein expression in the CHO-hMOR-pIRES cell line does not appear 

to have robust expression of the protein either.  Furthermore, naloxone treatment appears 

to upregulate hMOR as was previously hypothesized but additional western blots are 

necessary to confirm this.  The naloxone bands are darker than the control bands in Figure 

25a, indicating more protein, but as is illustrated in Figure 25b it was not statistically 

significant.  These experiments were not all performed at an N=3 due to time restrictions 

on the project.  Only the control and naloxone 18 hour runs could have statistics run making 

it possible that with more replicates significance might exist.  The others were not further 

replicated because they were simply trial runs to see if hMOR could be detected in an 

hMOR control.  All other data compares control to 18 hour treatments.  The CHO-hMOR-

pIRES cells primarily have two bands, one at 50 kDa and one at 70 kDa.  According to the 

manufacturer of the antibody, it recognizes 16 different isomers so these two bands are 

most likely both isomers of hMOR that are represented in the cell line.  The paper that 
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hMOR Protein Expression

Figure 25b.  Quantification of hMOR western blot in 25a.  The 1 hour 

runs were duplicated.  Receptor protein/β-tubulin is shown on the y-axis.  

The 18 hour runs were repeated for N=1-3.  
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described the transfection of and used this cell line did not perform a western blot for 

comparison (Brasel et al., 2008).   

 

 

The immune receptors TLR4 and IL-1R were readily identifiable but hMOR was 

more difficult to detect and definitive data as to the presence of hMOR protein these cell 

lines is lacking.  Given a fresh antibody it is believed that the protein would be better 

detected.  The HEK-Blue™-hTLR4 reportedly does not express hMOR (Hutchinson MR 

et al. 2010); however, (Figure 16) shows that it can be found in this cell line.  If the fresh 

antibody is able to detect hMOR in a cell line that allegedly does not express it, it is 

reasonable to entertain the concept that fresh antibody may more reliably detect hMOR in 

the CHO-hMOR-pIRES and CHME-5 microglial cell lines. 
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Figure 26.  Qualitative receptor comparison of CHME-5 microglia to CHO-hMOR-

pIRES cells.  Cells were untreated and extracted to determine what proteins are present in 

the cell lines.  The CHME-5 microglia and CHO-hMOR pIRES cells have comparable 

expression of TLR4 and IL-1R while the CHO-hMOR pIRES line more abundantly 

expresses hMOR.  Receptor protein/β-tubulin is shown on the y-axis.   
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3.8 Receptor Expression in CHME-5 Microglia 

 

 

 

This experiment was a pilot run to determine which receptors are expressed in the 

CHME-5 microglia.  Despite the relative greater abundance of IL-1R compared to TLR4 

in Figure 27, TLR4 was chosen for further analysis because the western blot was more 

specific.  Only one band was visible for TLR4 whereas more than one band could be seen 

for IL-1R.  These were likely isomers of the receptor.  The band shown in Figure 27 is the 

most solid band and is at the expected weight. 

Characterizing the receptors present in this cell line was a difficult task because of 

hMOR (Section 3.5) but ultimately TLR4 and IL-1R protein is expressed but inconclusive 

results regarding hMOR protein expression leaves that to be determined. 
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*Figure 27. CHME-5 Receptor Characterization.  CHME-5 cells were plated 

but not treated prior to extraction.  Protein expression was determined via 

western blot. The corresponding β-tubulin control is shown beneath each image.  

Receptor protein/β-tubulin is shown on the y-axis.  Error bars represent ± SEM. 

*The western blots presented here were run and quantified after troubleshooting 

the problems in getting the hMOR primary antibody to work. 

110 kDa 

50 kDa 

60 kDa 

50 kDa 
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3.9 Pilot Dose-Responses 

This set of experiments was done to determine an optimal dose of the drugs 

morphine and methadone to achieve maximal hMOR and TLR4 protein expression.  As 

such, western blots were performed and analyzed to determine their relative expression in 

the presence of 3-33 µM morphine or methadone or LPS at 0.01-100 ng/mL.  Different 

antibody concentrations and amounts of protein were added in an attempt to optimize both 

loading and drug concentration. 

 

 

 

 

 

 

 

As can be seen in Figure 28, the hMOR response is inconsistent.  These three runs 

were plated, treated, and whole cell lysates were extracted on separate days.  Protein in 

Figures 28a and 29a were loaded at 100 µg and the primary antibody was used at a 1:200 

dilution for hMOR because of past issues at trying to detect the hMOR protein; however, 

virtually none was detected despite the high amount of protein loaded and antibody used.  

The relative quantities of protein loaded can be see when comparing Figures 28a, which 

a. 

Morphine (µM)       0             3           10          33            0              0             0                        0             3           10           33           0            0             0 

 

Methadone (µM)     0             0            0            0             3             10           33                       0             0            0             0            3           10           33 

b. 

Figure 28.  hMOR western blot of morphine and methadone pilot dose response in CHME-5 

microglia.  Cells were treated for 18 hours with 3-33 µM of drug.  Faint bands can be seen in b at 50 

kDa whereas virtually nothing is visualized in a.  β-tubulin control shown beneath.  100 µg of 

protein was loaded into a; 50 µg of protein was loaded into b.  Images were contrast optimized with 

Adobe Photoshop.  Arrows indicate 50 kDa protein.  
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Morphine (µM)         0              3          10         33           0             0            0                                            0             3           10          33          0            0             0 

Methadone (µM)      0              0          0            0            3            10          33                                           0             0            0            0           3           10           33    

50 kDa   50 kDa 

110 kDa 110 kDa 

shows no hMOR protein and 29a, in which the TLR4 protein is beginning to smear and the 

bands are much thicker than those in Figure 29b.   Because of this failed attempt to identify 

the protein, the blots in Figure 34b were run on the same day and loaded with 50 µg of 

protein with fresh antibody prepared for each membrane at a 1:2000 dilution.  Considering 

that this is a dilute mix of antibody, it still does not make sense that one membrane would 

show the protein while the other does not.  Also eliminating the dilute antibody solution as 

the explanation for not detecting the protein is the fact that in Figure 28a the primary 

antibody was at a 1:200 dilution, with the blot run on a different day, and the protein was 

still only present as an extremely faint band at 50 kDa.  Figure 28b illustrates a slight 

amount of hMOR protein at 50 kDa, with the most in the control lysate, while Figure 28a 

does not have any indication of hMOR protein at the same weight in either control or 

treated cells.  The same membranes were stripped and then probed for TLR4 in Figure 29 

which suggests that TLR4 protein is constitutively expressed in the CHME-5 microglia 

given the robust control bands in the first lane.   

 

 

 

 

 

Figure 29.  TLR4 western blot of morphine and methadone pilot dose responses in CHME-5 

microglia. Cells were treated with 3-33 µM of drug for 18 hours. β-tubulin control shown beneath.  100 

µg of protein was loaded into a; 50 µg of protein was loaded into b.  100 µg saturated the system while 

50 µg yielded more distinct bands. 

a. b. 
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50 kDa 

These images and the corresponding β-tubulin controls eliminate the possibility of 

a poor gel to membrane transfer process.  If the protein had not properly transferred to the 

membrane then neither TLR4 nor β-tubulin would have been detected.  This indicates that 

while hMOR may be present in the CHME-5 microglia, it is not easily detectible using the 

current methods.   

 

 

 

 

 

Figure 30 illustrates the relative abundancies of hMOR and TLR4 protein in 

response to LPS.  The membrane was first probed for hMOR (Figure 30a), then stripped 

and tested for TLR4 (Figure 30b), then stripped a third time to normalize for β-tubulin 

expression.  Multiple attempts at different loading concentrations and antibody dilutions 

for hMOR were made to optimize the doses for morphine, methadone, and LPS but as can 

be seen in Figures 28-30 there is virtually no change in either hMOR or TLR4 protein 

expression in response to these treatments.  No statistical analysis was performed on this 

pilot dose-response as no attempt was successful in detecting a change in protein 

expression in either receptor investigated.  It is possible that another endpoint in a more 

sensitive assay, such as an ELISA, would have identified changes in protein expression to 

LPS:O111B4 (ng/mL)           0               0.01            10              100             LPS:O111B4 (ng/mL)          0              0.01            10             100     

Figure 30.  Western blot of hMOR (a.) and TLR4 (b.) in a pilot dose-response run to 

LPS:O111B4 (0-100 ng/mL) in CHME-5 microglial cells.  Cells were treated for 18 hours. 50 µg 

of protein was loaded into the gel.  hMOR could not be seen (a) but TLR4 was visible (b).  There did 

not appear to be a change in protein expression in response to dose. 

100 kDa 

50 kDa 

50 kDa 

a. b. 
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Control 

Morphine 

Methadone 

Oxycodone 

Buprenorphine 

determine optimal doses.  Instead, subsequent assays incorporated all of the doses of the 

opioids and the highest dose of 100 ng/mL LPS, which is frequently seen in the literature.  

 

3.10 MTT Toxicity of Opioids in CHME-5 Microglia 

As is observed in Figure 31, no toxicity is associated with any of the concentrations 

used in this study.  Although buprenorphine appears to be slightly toxic, it was not 

statistically significant (p=0.07) according to a one-way ANOVA.   
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Figure 31.  MTT Toxicity of opioids in 

CHME-5 microglia. MTT absorbance at 

492 nm.  Cells were treated with opioids 

(3-33 µM) for 18 hours.  Error bars 

represent ± SEM.  One-way ANOVA 

indicated no significance. N=3 
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Additionally, no toxicity is associated with the combined treatment of morphine, 

methadone, oxycodone or buprenorphine with LPS (Figure 32). 

 

3.11 TLR4 Expression in Response to Opioids in CHME-5 Microglia  

In the experiments investigating the effects of the individual opioids on TLR4 

protein expression the cells were treated with the drug then incubated at 37°C for 18 hours 

prior to whole cell lysate extraction.  In the experiments with LPS the CHME-5 microglia 

were treated with the opioid and LPS simultaneously then incubated at 37°C for 18 hours.  

The concentration of LPS remained constant in all experiments at 100 ng/mL.  All of the 

experiments in this section were repeated for an N=4 in duplicate. 
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Figure 32.  MTT Toxicity of opioids in the presence of LPS in CHME-5 microglia.  MTT absorbance 

at 492 nm.  *LPS was used at 100 ng/mL LPS O111:B4 in every treatment except control.  Opioid treatment 

from 3-33 µM was given with the LPS for 18 hours.  Error bars represent ± SEM.  Data were analyzed via 

a two-way ANOVA which found no significant differences. 
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50 kDa 

 3.11.1 Morphine 

   

 

 

 

 

Morphine had no significant influence on TLR4 protein expression in the microglial 

cell line (Figure 33).  A one-way ANOVA was conducted to compare the effect of 

morphine on TLR4 protein expression in the presence of LPS and it was determined that 

morphine at 3 and 10 µM significantly upregulated TLR4 protein expression when 

simultaneously treated with LPS (F4,64=2.62, p<0.05) (Figure 34).  The subsequent 

decrease observed at 33 µM indicates that morphine may have a ceiling effect at doses 

above 10 µM. All experimental conditions were compared to control.     

 

 

0

0.2

0.4

0.6

0.8

1

1.2

Control 3 µM 10 µM 33 µM

T
L

R
4

/β
-t

u
b

u
li

n
 (

A
U

)

TLR4 Protein Expression:

Morphine

0

0.2

0.4

0.6

0.8

1

1.2

Control LPS 3 µM 10 µM 33 µM

T
L

R
4

/β
-t

u
b

u
li

n
 (

A
U

)

TLR4 Protein Expression:

Morphine + LPS

*

Figure 33.  Morphine effect on TLR4 protein 

expression in CHME-5 microglia.  Cells were 

treated for 18 hours with morphine, 3-33 µM.  
TLR4 western blot and β-tubulin normalization is 

below. Data analyzed via one-way ANOVA. N=4 

Figure 34.  Morphine + LPS effect on TLR4 protein 

expression in CHME-5 microglia.  Cells were treated for 

18 hours with 100 ng/mL LPS and 3-33 µM morphine. 
TLR4 western blot and β-tubulin normalization is shown 

below.  Data analyzed via one-way ANOVA with a 

Fisher’s LSD post-hoc test.  (*p<0.05) N=4 

* 

110 kDa 100 kDa 

kDa 

50 kDa 

Control      3         3         10        10         33          33    (µ M) Control    LPS       3         3        10      10       33        33     (µM) 
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100 kDa 100 kDa 

50 kDa 50 kDa 

3.11.2 Methadone 

  

   

. 

 

 

A one-way ANOVA was again conducted to compare the effect of methadone on 

TLR4 protein expression and found that methadone significantly upregulated TLR4 protein 

expression at 3 and 10 µM (F3,48=6.65, p<0.01) (Figure 35).  It was additionally found that 

in the presence of LPS methadone at 10 and 33 µM significantly downregulated TLR4 

protein expression (F4,61=4.40, p<0.01) (Figure 36).  This indicates that LPS is having a 

main effect on TLR4 protein expression in the presence of methadone. 
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Figure 36.  Methadone + LPS induced TLR4 

protein expression in CHME-5 microglia.  Cells 
were treated for 18 hours with 100 ng/mL LPS and 

3-33 µM meethadone. TLR4 western blot and β-

tubulin normalization is shown below.  Data 
analyzed via one-way ANOVA with a Fisher’s LSD 

post-hoc test.  (**p<0.01)  N=4 

Figure 35. Methadone induced TLR4 protein 

expression in CHME-5 microglia. Cells were treated for 

18 hours with 3-33 µM methadone. TLR4 western blot 
and β-tubulin normalization is shown below.   Data 

analyzed via one-way ANOVA with a Fisher’s LSD post-

hoc test.  (*p<0.05)  N=4  

* 

Control     3           3           10        10          33         33   (µM) Control   LPS       3         3         10      10        33        33     (µM) 



122 

 

100 kDa 
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100 kDa 

3.11.3 Oxycodone 

  

 

  

 

 

No concentration of oxycodone either with or without 100 ng/mL LPS affected 

TLR4 protein expression in the CHME-5 microglia (Figures 37 and 38).  This indicates 

that oxycodone has no effect on TLR4 protein expression in this cell line. 
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Figure 37.  Oxycodone induced TLR4 protein 

expression in CHME-5 microglia. Cells were treated 
for 18 hours with 3-33 µM oxycodone. TLR4 western 

blot and β-tubulin normalization is shown below.  Data 

analyzed via one-way ANOVA. N=4 

Figure 38.  Oxycodone + LPS induced TLR4 

protein expression in CHME- microglia. Cells 
were treated for 18 hours with 100 ng/mL LPS and 3-

33 µM oxycodone. TLR4 western blot and β-tubulin 

normalization is shown below. Data analyzed via 
one-way ANOVA.  N=4   

Control      3          3          10         10          33          33   (µM) Control    LPS     3         3        10       10       33         33     (µM) 
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3.11.4 Buprenorphine 

   

 

 

 

As with oxycodone, no concentration of buprenorphine either with or without 100 

ng/mL LPS significantly changed TLR4 protein expression in the CHME-5 microglial cell 

line (Figures 39 and 40). 
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Figure 39.  Buprenorphine induced TLR4 protein 

expression in CHME-5 microglia.  Cells were treated 
for 18 hours with 3-33 µM buprenorphine. TLR4 

western blot and β-tubulin normalization is shown 

below.  Data analyzed via one-way ANOVA.  N=4 

Figure 40. Buprenorphine + LPS induced TLR4 

protein expression in CHME-5 microglia.  Cells 

were treated for 18 hours with 100 ng/mL LPS and 3-
33 µM buprenorphine. TLR4 western blot and β-

tubulin normalization is shown below.  Data analyzed 

via one-way ANOVA. N=4   

Control         3            3           10          10          33          33   (µM) Control     LPS        3         3         10       10       33        33    (µM) 
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3.11.5 Drug Comparison 

   

    

 

When comparing the opioids used in this research to each other it can be seen in 

Figure 41b that methadone upregulates TLR4 protein expression and is the only drug that 

significantly affects TLR4 in this microglial cell line (F3,48=6.65, p<0.01).  Figures 41a, 

41c, and 41d indicate that there is no difference between any of the opioids or doses when 

compared to control TLR4 levels.   
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Figure 41.  Opioid comparison of TLR4 protein expression in CHME-5 microglia.  Cells were treated with the 

opioid for 18 hours at concentrations of 3-33 µM.  Methadone upregulated TLR4 protein expression at 3 µM and 10 
µM (*p<0.05).  Analyzed via one-way ANOVA with Fisher’s LSD post-hoc.   
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When simultaneously comparing the opioid data, a more significant effect of 

methadone at 3 µM and 10 µM was detected (F3,48=6.65, p<0.01) (Figure 42).  Methadone 

is the only opioid which independently and significantly regulates TLR4 protein expression 

in the CHME-5 microglia.   
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Figure 42.  Simultaneous opioid comparison of TLR4 

protein expression in CHME-5 microglia.  This graph is 
a compilation of the Figure 41 for visual comparison on 

one graph.  Cells were treated with the opioid for 18 hours 

at concentrations of 3-33 µM.  Methadone upregulated 
TLR4 protein expression at 3 µM and 10 µM (*p<0.05).  

Each drug group was individually analyzed via one-way 

ANOVA with Fisher’s LSD post-hoc.       
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3.11.6 Opioid with LPS Comparison 

   

   

 

When comparing the opioids used in this research under simultaneous LPS 

treatment, it can be seen in Figure 43a and 43b that both morphine and methadone 

significantly affect TLR4 protein expression in this microglial cell line.  However, they 

have opposite effects in that morphine with LPS upregulates the protein expression while 

methadone downregulates it.  Neither oxycodone nor buprenorphine (Figures 43c and 43d) 

have any significant effect when in the presence of LPS when compared to control 

expression levels. 
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Figure 43.  Opioid comparison of TLR4 protein expression in the presence of LPS in CHME-5 microglia. Cells 

were treated with 100 ng/mL LPS and the opioid for 18 hours at concentrations of 3-33 µM.  Morphine + LPS 

upregulated TLR4 protein expression at 3 µM and 10 µM (F4,64=2.62, p<0.05) while methadone + LPS downregulated it 

at 10 µM and 33 µM (F3,48=6.65, p<0.01).  Analyzed via one-way ANOVA with Fisher’s LSD post-hoc.   
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When visually comparing all of the LPS treatments to control it is seen that TLR4 

protein expression is upregulated in the case of morphine at 3 and 10 µM (F4,64=2.62, 

p<0.05) while methadone downregulated the protein (F3,48=6.65, p<0.01).     
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Figure 44.   Simultaneous opioid with LPS 

comparison of TLR4 protein expression. This 

graph is a compilation of the Figure 43 for visual 
comparison on one graph.  Cells were treated with the 

opioid at concentrations of 3-33 µM + 100 ng/mL 

LPS for 18 hours.   Morphine + LPS upregulated 
TLR4 protein expression at 3 and 10 µM (F4,64=2.62, 

p<0.05) while methadone + LPS downregulated it at 

10 µM and 33 µM (F3,48=6.65, p<0.01).  Each drug 
group was individually analyzed via one-way 

ANOVA with Fisher’s LSD post-hoc.   

LPS Control 
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3.11.7 Comparison of Opioid and Opioid with LPS Treatments 

 

   

 

 

 

Figure 45 is a complete compilation of all of the data for the CHME-5 microglia.   

It provides a direct relative comparison of TLR4 protein expression of all groups 

individually tested.  It simultaneously represents Figures 33-40.  It illustrates that 

morphine at 3 and 10 µM with LPS upregulates TLR4 (F4,64=2.62, p<0.05).  Methadone 

treatment alone also upregulates TLR4 at 3 and 10 µM (F3,48=6.65, p<0.01).  These were 

the only upregulatory effects detected.  This compilation of the individual drug 

comparisons, which were analyzed via individual group one-way ANOVAs as indicated in 

Figures 33-40, does indicate a main LPS effect in methadone treated CHME-5 microglia 
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Figure 45.  Means of TLR4 protein expression in  

opioid ± LPS treated CHME-5 microglia.  This graph 

is a visual representation of all of the CHME-5 TLR4 
protein expression graphs.  Cells were treated with 100 

ng/mL LPS ± the opioid for 18 hours at concentrations 

of 3-33 µM.  Morphine + LPS upregulated TLR4 protein 

expression at 3 and 10 µM (F4,64=2.62, p<0.05) while 

methadone + LPS downregulated it at 3 and 10 µM 
(F3,48=6.65, p<0.01).  Methadone alone upregulated 

TLR4 protein expression at 10 and 33 µM (F3,48=6.65, 

p<0.01).  Data were analyzed in independent drug 
groups (opioid only or opioid + LPS) via a one-way 

ANOVA with a Fisher’s LSD post-hoc test.   
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at 10 µM.  At 10 µM methadone upregulated TLR4 protein expression while at the same 

dose in the presence of LPS TLR4 protein expression was downregulated.  

Oxycodone and buprenorphine overall appear to decrease TLR4 protein expression 

but no treatments were significant.  Methadone is the only opioid that independently 

upregulated TLR4 protein expression (Figure 45).  The downregulatory effect of LPS in 

the methadone treated cells and upregulatory effect of LPS in morphine treatments suggests 

that LPS is a main effect in this system regarding TLR4 protein expression.  LPS treatment 

alone did not have an effect when compared to control.   

 

3.12  PCR Based Sequencing of TLR4 Primers 

While PCR was not a large portion of this project, it did encompass designing 

primers for TLR4.  The band for TLR4 was very crisp in end-point PCR and having the 

sequence verified for the laboratory was helpful for future experiments.  Control CHME-5 

mRNA extract was used to make cDNA then combined and concentrated to 100 ng to run 

the gel.  This was to ensure enough material to send out for sequencing.  The sequences 

from each primer are shown in Figure 47.  Running the sequences through BLAST yielded 

positive alignment with TLR4.  Because the PCR gel was clean and crisp (Figure 46), the 

gel did not have to be extracted.  30 µL of 7.5 ng/mL PCR product and 10 µL of each 

primer at 5 pmole/µL was sent to Stillwater for the sequencing. 
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Forward Sequence:  H06_SDhTLR4-TLR4F.seq 

GAATTGGTTTTGGCAGCTATAGCTTCTTCGTTTCCCAGAACTGCAGGTGCTGGATTTATCCAGGTGTGAAATCCAGA 

CAATTGAAGATGGGGCATATCAGAGCCTAAACCACCTCTTAAAGCCTAGCCACCTCTCCTCTAATACTCCGAACTGA 

GTTCTGGGACATGAAGAGCTATACTTCTAATTGCCTCAGGGATTAAAGCTCGGTCGGTTTTC 

 

Reverse Sequence:  A07_SDhTLR4-TLR4R.seq 

GCAGTTGGTAGTGTCTGGATTGACACCTGGATAAATCCAGCACCTGCAGTTCTGGGAAACTGAAGAAGCTATAGCTG 

CCTAGATGCCTCAGGGGATTAAAGCTCAGGTCCAGGTTAGGAAGCTCAGGTCCAGGTTAGGTTAACCCCAACGGAAT 

CGGGACCTGAACCAGCTGGCCCCAAGAGCCTCCGCCTCAAGCCC 

Figure 46.  TLR4 PCR gel.   

Untreated CHME-5 microglial cells 

were run on a 2% agarose gel.  The 

sample was concentrated to 7.5 ng/mL 

and sent for sequencing with the 

primers used in this experiment. 

Figure 47.  TLR4 forward and reverse sequences.  The sequences shown above were returned after sending the samples 

to a laboratory at Oklahoma State University in Stillwater, OK for analysis.  BLAST alignment confirmed their specificity 

for TLR4. 
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CHAPTER IV 
 

 

DISCUSSION 

Because TLR4 is critical to both the peripheral and central innate immune systems, 

it is maintained under strict regulation.  When the appropriate stimuli are elicited under 

normal conditions, primarily acute inflammation or infection, a healthy immune  response 

results (Carty and Bowie, 2011).  In these individuals TLR4 is tightly regulated, always 

primed and ready to respond to pathogenic insult leading to TLR4 activation of the immune 

system.  In other situations, continued pro-inflammatory cytokine production can lead to 

tissue damage and sepsis as well as other chronic inflammatory conditions such as auto-

immune disease (Biswas and Lopez-Collazo, 2009).  Once the pathogen is cleared, the 

agonist for TLR4 is no longer present; therefore, TLR4 stops signaling.  However, 

endotoxin tolerance can cause TLR4 to stop signaling in times of continued agonist 

exposure (Banerjee et al., 2013).  The exact mechanism for this is unknown.  As immune 

compromise has been identified with opioid use (McCarthy et al., 2001; Hutchinson et al., 

2011), it is important to investigate the possibility that TLR4 is involved.   

Further illustrating the importance of TLR4 regulation is that some genetic 

mutations in the TLR4 transcript negatively affect otherwise healthy persons. In the TLR4 

genetic mutations Asp299Gly and Thr399Ile (Lorenz et al., 2002), the protein either does 

not respond at all or minimally responds to the conserved pathogen associated molecular
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patterns on TLR4 ligands and these otherwise healthy people are rendered increasingly 

susceptible to opportunistic infections (Roy et al., 2011).  Either in these genetically 

induced hyporesponsive situations or when TLR4 expression and/or activity are altered for 

extended periods of time pathogenesis of some type is likely to ensue.  An example of this 

is in sepsis where the aforementioned mutations are linked to greater susceptibility to 

infection and death from septic shock (Lorenz et al., 2002).  Sepsis is a condition that can 

be described by excessive transcription and release of proinflammatory cytokines such as 

IL-1 and TNFα which leads to multiple accompanying symptoms such as fever and 

tachycardia (Bone, 1991).  LPS mimics sepsis in experimental models and because LPS is 

a potent agonist for TLR4 (Chow et al., 1999), this receptor is a primary contributor to the 

deadly infection.  As mentioned above, opioids also increase susceptibility to infection 

(Roy et al,. 2011) thereby compounding immunosuppression when being used by those 

with hyporesponsive TLR4 function.   

On the other hand, an increase in TLR4 protein expression and activity may be a 

root cause for some chronic inflammatory conditions.  Increased activation of TLR4 by 

LPS has been directly shown to contribute to neurodegeneration as TLR4 mutant mice 

were immune to the deleterious neurodegenerative effects of LPS (Lehnardt et al., 2003).  

The link between increased TLR4 expression and neurodegeneration has also been 

analyzed via microarray analysis, which indicates that TLR4 and MyD88 gene expression 

is increased in the hippocampus of aging and Alzheimer’s disease populations (Cribbs et 

al., 2012).  Additionally, increased expression of TLR4 has been found in both microglia 

and astrocytes near lesions caused by multiple sclerosis (MS) and other neurodegenerative 

conditions (Bsibsi et al., 2002).  As TLR4 is linked to microglial activation (Jack et al., 
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2005), upregulation of TLR4 protein expression in a microglial cell line identified in this 

research may contribute to neurodegeneration if an individual is under simultaneous 

morphine treatment (Section 4.1.1).   

Further exacerbating and linking surgery to TLR4 activity is the finding that 

morphine causes gram-negative (and other) bacterial overgrowth in the intestines of rats 

having undergone central venous and subcutaneous infusion lines (Kueppers et al., 1993).  

Additionally, when morphine is given, it acts as a chemoattractant for the gut bacteria P. 

aeruginosa (Babrowski et al., 2012).  P. aeruginosa is beneficial for intestinal mucous in 

healthy conditions; however, morphine exposure switches the bacteria to suppress the 

intestinal mucous in mice via an unknown mechanism (Babrowski, et al., 2012).  While 

these studies did not directly address TLR4, P. aeruginosa is a gram-negative bacterial 

ligand for TLR4 (Table 1), making it possible to consider that TLR4 overactivation during 

and after surgery may occur as the two TLR4 ligands, bacteria and morphine, migrate 

together.  Additionally, recent evidence has identified non-canonical opioid-TLR4 

interactions (Stevens et al., 2013) which further implies that the findings of morphine as a 

chemoattractant for P. aeruginosa may be TLR4 mediated.          

 As far as the central nervous system is concerned, cranial and spinal surgeries may 

further expose TLR4-expressing microglia to bacteria, although the risk may be lower than 

previously thought (McClelland III and Hall 2007; Dashti et al., 2008; Shiono et al., 2012).   

Microglia are the cells with the highest expression of toll-like receptors and as microglia 

are the primary immune surveyors of the CNS they are instrumental in host CNS immune 

defense (Carty and Bowie, 2011). When the microglia withdraw their long ramifications 

and activate in response to a stimulus, there is an increase of proinflammatory cytokine 
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release mediated by TLR4 (Hines et al., 2013).  Additionally, as glial activation is also 

linked to the development of pain and even hyperalgesia (Watkins et al., 2001), this could 

be a non-dopaminergic stimulus leading to abuse as illicit users of opioids typically become 

addicted via dopaminergic reinforcement (Koob and Volkow, 2010).  In the situation that 

Watkins et al, 2001 describes, the drugs prescribed to control the pain may also contribute 

to the pain, resulting in a cyclical pattern of use that could quickly form from trying to 

control the pain.  Given the many implications of changes in TLR4 expression and 

activation, it can be seen that TLR4 regulation has both beneficial and detrimental 

implications.  The greater understanding of some of the opioid-mediated changes in TLR4 

protein expression identified in this research has implications to help better understand 

several neuropathologies. 

 

4.1 THC-Induced TLR4 Activity in HEK-Blue™-hTLR4 Cells 

 This initial preliminary experiment was primarily done in order to gain familiarity 

with the HEK-Blue™-hTLR4 cells and the SEAP assay.  The HEK-Blue™-hTLR4 cells 

overexpress TLR4 and are an excellent way to study TLR4 activity via activation of SEAP 

upon NFκB activation.   Because THC was already in the laboratory and the investigator 

has a great interest in natural products, the idea that THC might influence TLR4 activity 

became an ideal means to satisfy both goals. 

THC is the active compound in marijuana and has both medicinal and recreational 

properties.  In the past few years some states have approved the use of marijuana for 

medical purposes and on January 1, 2014, Colorado set the national stage and began 
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allowing legal sales of it for recreational use (Steinmetz, 2013).  Research has also shown 

that cannabis has anti-inflammatory properties that are at least in part due to THC (Gertch 

et al., 2008).  However, as with most issues in science and inflammation, other research 

has shown that chronic marijuana use may contribute to microglial-induced inflammation 

in the brain and cognitive dysfunction (Cutando et al., 2013).   

Because TLR4 is an important receptor in inflammation, a In the 24-hour time 

course, the gradual increase in TLR4 activity induced by both LPS and LPS + THC as was 

expected because LPS is a TLR4 agonist (Buchanan et al., 2010).  This indicates that in 

the presence of THC, earlier timepoints have no effect on LPS-induced TLR4 activity; 

however, after 24 hours the THC appears to inhibit LPS-induced activity dose-dependently.  

This THC-induced inhibition of TLR4 activity indicates that THC may be modulating 

TLR4 after continued treatment.  THC could be interacting with CD14 or MD-2 in a 

manner similar to the natural products curcumin and paclitaxel (Taxol) (Table 1).  THC is 

also a large organic molecule and may be sterically hindering the LPS-TLR4 interaction.  

Because the THC and LPS were not toxic to the cells, the inhibition of TLR4 activity is 

not likely attributable to toxicity.   

 Other variables might also be involved in this interaction, such as dose and chronic 

versus acute use.  The apparent dose-dependent decrease in TLR4 activity at 24 hours 

supports this notion. Individuals undergoing chronic marijuana use tend to present with 

slower cognitive and reaction skills to which neuroinflamation may contribute (Cutando et 

al., 2013).  This may be at least partially due to a decrease in TLR4 activity.  Additionally, 

users who frequently smoke cannabis likely have higher concentrations of THC in their 

system as THC is a lipophilic compound and is stored in adipose tissue (Rawitch et al., 
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1979).  As a greater inhibition is observed at higher doses of THC, the decrease in TLR4 

activity at these doses may indicate a suppressed immune function.  Further research into 

the effects of THC on TLR4 activity, expression, and mechanism of action would assist in 

determining specific causes for THC-induced inhibition of TLR4 activity.   

 

4.2 Opioid- TLR4 Activity in LPS-Induced HEK-Blue™-hTLR4 Cells 

 The inhibition of LPS-induced TLR4 activity may be explained by a potential 

opioid binding pocket associated with TLR4 as is suggested by Stevens et al, 2013.  This 

is further indicated by the finding that the opioids by themselves tend to inhibit TLR4 

activity when compared to unstimulated cells.  This inhibition may have similar possible 

mechanisms to that postulated for THC such as steric hindrance or interaction with the 

accessory proteins CD14 or MD-2 but because previous work in this lab indicates a specific 

binding area for opioids to TLR4 it is also possible that ligand bias may be contributing to 

the decrease in TLR4 activity which may help explain why the different opioids inhibit 

TLR4 activity to different degrees.  This could result in an intracellular signaling event that 

could inhibit TLR4 such as inhibition of NFκB.  By inhibiting NFκB, activation of TLR4 

would not allow for NFκB p65 translocaction into the nucleus to induce transcription of 

pro-inflammatory cytokines.  While these are merely speculative mechanisms, additional 

research is needed to actually determine how TLR4 activity is being inhibited in this cell 

line. 

The activity associated with the unstimulated cells indicates that TLR4 may have 

constituitive activity.  Whether or not this is associated with the overexpression of TLR4 

in the HEK-Blue™-hTLR4 cells is unclear but remains a distinct possibility as TLR4 is 
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capable of self-activation via physical contact with the TIR domains when overexpressed 

(Xu et al., 2000).  In this data, the morphine, methadone, and buprenorphine all inhibited 

TLR4 activity while oxycodone had no effect.  Together, this data indicates that opioids 

inhibit TLR4 both in the presence and absence of LPS which may help explain the 

phenomenon of opioid-induced immunosuppression.  If TLR4 is inhibited by the opioids, 

then by definition it would not be able to respond to any pathogenic invasion.  The fact that 

oxycodone did not affect TLR4 activity indicates that it may be a better choice for pain 

control as it leaves the protein in a position to respond to pathogens.         

 

4.3 Methadone-Induced 6- and 18-Hour hMOR Protein Expression in HEK-Blue™- 

hTLR4 Cells. 

  

While both hMOR protein and RNA were isolated, only the protein was studied 

due to the difficulties in getting the RT-PCR to work that were addressed in Section 3.3.  

However, the western blot data indicates that with increasing doses of methadone the trend 

is an increase in hMOR expression either with or without LPS (Figure 16).  Because this 

cell line overexpresses TLR4, any changes in TLR4 expression would not be detected.  The 

changes in hMOR expression were interesting because the literature is inconclusive 

regarding methadone-induced hMOR expression and indicates that methadone 

downregulates hMOR in human neonatal mononuclear cells (Chavez-Valdez et al., 2013) 

while another study found that methadone increased hMOR expression in peripheral blood 

lymphocytes (Vousooghi et al., 2009).  These discrepancies could be due to the different 

cell types and ages (neonatal cells versus adult cells) that were investigated.  An increase 

in hMOR expression from methadone may initially provide an increase in analgesia but as 
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was reviewed in Sections 1.1.2 and 1.2.4, tolerance is likely to occur.    The fact that the 

studies aforementioned are in disagreement indicates that further research needs to be done 

in this area; however, in conjunction with the current study all cells discussed are immune 

cells and this reaffirms opioid-immune interactions. 

 

4.4 MTT Toxicity in HEK-Blue™-hTLR4 Cells 

 In the HEK-Blue™-hTLR4 cell line, the majority of the doses of drugs used are not 

toxic to the cells.  The highest doses of methadone and buprenorphine were toxic as were 

higher doses of LPS; however, even higher doses are used in the literature (Shanmugam et 

al., 2012) even in the HEK-Blue™-hTLR4 cell line (Hutchinson et al., 2010a; Stevens et 

al., 2013).  Overexpression of TLR4 in this ell line might also contribute to these toxic 

results as LPS-induced activation of TLR4 may overstimulate the cells.   

 

 

4.5 Opioid-Induced Effect on TLR4 Activity in HEK-Blue™-hTLR4 Cells 

When the opioids were the only treatment on the cells, the same inhibitory trend 

was seen as when the cells were simultaneously treated with LPS.  Despite toxicity of the 

highest doses of methadone and buprenorphine, the higher doses of morphine and the lower 

doses of methadone and buprenorphine inhibited TLR4.  The difference in the doses of 

morphine and methadone is intriguing because the two drugs have opposite 

immunomodulatory effects as was discussed in Section 1.6.3.  Morphine is considered to 

be immunosuppressive (Brown et al., 2011; Magazine et al., 1996, Gavériaux-Ruff et al., 

1998; Budd, 2006) while methadone restores the immune function of opioid abusers 
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(Sacerdote et al., 2008).  Perhaps the high doses of heroin used during abuse are partially 

to blame and the decrease in TLR4 activity is responsible for their increased susceptibility 

to opportunistic infections (Roy et al., 2011).  Knowing that in MMT programs higher 

beginning doses of methadone or buprenorphine are required to help abstain from opioid 

abuse due to opioid tolerance (Section 1.2.4) (Modesto-Lowe et al., 2010), this data 

suggests that methadone and buprenorphine may help modulate TLR4 activity at high 

doses by not having a significant impact on TLR4 activity whereas morphine does at the 

same doses.  More research would need to be done on TLR4 activity in patients in MMT 

programs in order to identify more specific reasons for immune rescue in maintenance 

therapy programs. 

 

4.6 Message Levels of hMOR Transcript in the Presence or Absence of Methadone in 

HEK-Blue™-hTLR4 Cells 

 

 The endpoint PCR shows that despite the Hutchinson et al., 2010a article stating 

that the HEK-Blue™-hTLR4 cell line does not express hMOR, there does appear to be an 

upregulation of hMOR mRNA by methadone either with or without LPS.  Granted hMOR 

is not highly expressed, but it is observed.  When comparing hMOR to TLR4 transcript in 

this cell line, one is visually incapable of detecting a difference in the relative abundancies 

of TLR4 because TLR4 is over expressed in this system. This means that the likelihood of 

the opioids directly interacting with TLR4 is high; however, this illustrates that a potential 

role of hMOR in these experiments cannot be completely excluded.   

 

4.7 Detecting hMOR 

 What quickly became perplexing is the difficulty encountered when it pertained to 
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detecting hMOR, both at the mRNA and protein level (the issues with the mRNA and 

troubleshooting attempts were addressed in Section 3.3).  As is seen in Figure 17, hMOR 

protein is present in the HEK-Blue™-hTLR4 cell line.  However, at one point hMOR ceased 

showing up on the western blots.  A positive control, SK-N-MC cell lysate, was ordered 

from Sigma Aldrich to test whether or not the antibody had quit working (Figure 20).  The 

antibody did not detect any hMOR in the positive control.  Furthermore, attempts to 

upregulate the protein by using an hMOR antagonist (naloxone) also apparently failed to 

upregulate the protein to detectable levels.  It was quickly suspected that the antibody may 

have degraded as TLR4 was still visible on the blot and the β-tubulin loading controls 

confirm that the western blot gel was run and transferred correctly to the membranes.  An 

additional positive control that was available in the lab, the CHO-hMOR-pIRES cell line 

which was stably transfected to express hMOR, also yielded negative results regarding 

hMOR protein expression.   As is seen in Figure 24, no opioid treatment in the CHME-5 

microglia nor the control CHO-hMOR-pIRES cells were showing any hMOR.  Again, the 

β-tubulin present shows that the western blots were performed correctly.  Finally, as a last 

attempt to prove that the antibody was the cause for the unsuccessful hMOR western blots, 

the primary antibody was quickly pulse-spun down (about 10 seconds) prior to being added 

to the membranes.  This was to pull down any IgG aggregates that might have formed and 

inhibit the antibody from binding to any protein on the membrane.  A second and 

simultaneous change was in the length of time that the primary antibody was incubated 

with the membrane at 4°C.  Instead of overnight, this incubation period was increased to 4 

days in an attempt to maximize antibody binding affinity to the protein.  While faint hMOR 

bands were detectable in the CHO-hMOR-pIRES cells and the naloxone treated CHME-5 
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cells, it cannot be ascertained as to whether or not hMOR is truly present in these cell lines 

(Figure 25).  Furthermore, the issues in obtaining a positive control lends doubt as to 

hMOR protein expression in these cell lines.  Knowing that the western blot technique was 

successful with a positive β-tubulin loading control suggests that the antibody was the issue 

in these assays.   

The hMOR bands apparently observed at around 70 kDa and 50 kDa in the positive 

control CHO-hMOR-pIRES cells are likely due to two different isomers present in that cell 

line.  According to the manufacturer, the antibody used can detect up to 16 different 

isomers of hMOR and considering that the CHO-hMOR-pIRES cells were transfected, it’s 

possible that the transfected template for hMOR was different than one already present.   

When comparing receptor expression of the two cell lines they have comparable protein 

expression of TLR4 and IL-1R but the control CHO-hMOR-pIRES cells appear to express 

more hMOR than the control CHME-5 microglia.   

 

4.8 Receptor Expression in CHME-5 Microglia 

 The CHME-5 microglia are a human microglial cell line that has been transformed 

to be immortal.  They were established and transfected in France in 1995 using the SV40 

large T antigen (Janabi et al., 1995).  Even after transformation, the cells maintained the 

characteristics of primary human microglia (Janabi et al., 1995).  The CHME-5 cells have 

also been referred to as CHME-3 although it is the same cell line.  They are ideal to study 

the effects of drugs in microglial cell culture as they reproduce quickly and are easy to 

maintain.  Few studies have been conducted to characterize these cells but they have been 

shown to produce IL-6, IL-1β, and TNFα in the presence of up to 1µg/mL LPS (Atanassov 
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et al., 1995; Lindberg et al., 2005) and upon ammonium acetate treatment—which also 

caused TNFα and IL-1β secretion but IL-1β to a lesser extent (Atanassov et al., 1995).  

Interestingly, treatement with 1 µM morphine has also stimulated IL-6 secretion as well as 

upregulated TLR 2, 4, and 9 mRNA expression (Dutta et al., 2012); however, morphine-

induced upregulation of TLR4 protein in the current study using the same cell line was 

only found to be significant in the simultaneous presence of LPS (Figures 33 and 34).  

Stimulation with a human coronavirus OC43 failed to produce mRNA for TNFα, monocyte 

chemoattractant protein-1 (MCP-1) or IL-6 (Edwards et al., 2000).  The CHME-5 

microglia were also found to present the antigens KIM-7, EBM-11, OKM-1, 25F9, and the 

Fc receptors CD16 and CD32 similar to macrophages (Macouillard-Poulletier de Gannes 

et al., 1998).  The CHME-5 microglia respond well to heat shock as evidenced by 

upregulation of the heat shock protein hsp70 (Macouillard-Poulletier de Gannes et al., 

1998).  Despite their similarity to macrophages, they have not been shown to successfully 

phagocytose cellular debris (Janabi et al., 1995; Macouillard-Poulletier de Gannes et al., 

1998).        

Given the lack of literature on the CHME-5 microglia little characterization has 

been done and none on the protein expression of immune and opioid receptors.  This, 

combined with the high cost and low availability of primary microglia makes the CHME-

5 cells ideal to investigate microglial effects of opioids and characterize the presence or 

absence of certain receptors (e.g., hMOR) in a human microglial cell line.  This will aid 

other scientists in determining whether or not this is a good model for their area of research, 

especially if they aim to use a human cell line in opioid neuro-immune interactions.   

Therefore, untreated CHME-5 cells were probed for TLR4, hMOR, and IL-1R.  
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Because microglia are the immune surveyors of the CNS (Matyszak, 1998) and there is a 

definite opioid-immune interaction (Roy et al., 2011), it was hypothesized that TLR4, 

hMOR, and IL-1R would all be present in the CHME-5 cell line.  This was correct for 

TLR4 and IL-1R; however as was highlighted in Section 4.7, the presence of hMOR cannot 

be determined based on the data collected.  This indicates that the CHME-5 microglia make 

an excellent candidate for investigating CNS immune function but might not be the best 

choice for investigating opioid receptor-mediated activities.  Further characterization of 

receptor expression will help identify additional uses for this cell line. 

 

4.9 Pilot Dose-Responses 

 A pilot dose-response experiment was run in an attempt to identify the optimal 

doses of opioids and LPS for use in subsequent experiments using the CHME-5 microglial 

cell line.  As was determined in Section 4.7, hMOR protein expression is not a viable 

endpoint to quantify.   Western blots were stripped and probed for TLR4, which was more 

robustly present (Figure 29).  Unfortunately, copious amounts of TLR4 protein made this 

difficult to quantify and was not found to have a dose-response after methadone or 

morphine treatment.  Ultimately, neither the expression endpoint of hMOR nor TLR4 was 

useful in identifying an optimal opioid dose.  Differences in the amount of protein at 

different doses could not be detected.  Furthermore, LPS-treated CHME-5 microglia did 

not show a difference in protein expression of hMOR or TLR4 either (Figure 30).  As a 

result, in order to be able to better compare CHME-5 opioid data with the previous 

experiments done in the HEK-Blue™-hTLR4 cell line, the same doses from the HEK-

Blue™-hTLR4 experiments were used in the CHME-5 cells.  A different endpoint or more 
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quantitative method may have yielded better results.  For example, the quantative western 

blot using the Protein Simple Simon machine to try to better measure the proteins or 

performing an ELISA to measure NF-κB activation might have been a better option.  

Alternatively, there might not be a dose response to the opioids used in this study.  This is 

something that could be investigated further. 

     

4.10 MTT Toxicity of Opioids in CHME-5 Microglia 

 In order to verify that the treatments given to the CHME-5 microglia were not toxic, 

an MTT toxicity assay revealed that doses were not toxic.  This was true for both the opioid 

treatments when they were made independently of LPS and when simultaneous treatment 

with LPS was given.  These findings allowed for the interpretation of the data to be truly 

representative of the drugs’ effects that will be addressed in Section 4.11. 

 

4.11 TLR4 Expression in Response to Opioids in CHME-5 Microglia 

 As the following discussion highlights, select opioids modulate TLR4 protein 

expression both independently and in the presence of the endotoxin LPS. 

 

4.11.1 Morphine 

 Although morphine has been shown to activate and upregulate TLR4 in some 

studies, it did not affect this protein in the CHME-5 microglia; however, in the presence of 

LPS, upregulation of TLR4 protein expression indicates that when in the presence of an 

infection (simulation by the bacterial endotoxin LPS) morphine may cause the protein 
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expression to be induced, allowing for the opportunity to overactivate.  While this 

experiment did not measure TLR4 or microglial activity, LPS is a well-known agonist for 

TLR4, upon which overactivation can lead to inflammation resulting from excessive 

cytokine production (Biswas and Lopez-Collazo 2009).  For example, experiments in the 

HEK-Blue™-hTLR4 cells showed that TLR4 activity is increased by LPS (Figure 15); 

however, even in this system when the opioids were included with LPS, the maximum 

activity of LPS alone appeared to decrease although statistical significance was not 

achieved when morphine was included in the experiment.  While this is not in complete 

agreement with the work of the Wang lab, in collaboration with the laboratories of M. 

Hutchinson and L. Watkins, their work indicates that morphine activates TLR4 by 

interacting with MD-2 (Wang et al., 2012).  The work of Stevens et al. (2013) also indicates 

that morphine potentially activates TLR4 but any increase in activity was minimal and the 

interaction was not necessarily at MD-2.  Despite the exact site of activation and ligand 

binding, and while morphine alone did not change TLR4 protein expression in the CHME-

5 microglia, TLR4 is upregulated by morphine with LPS may indicate that in this human 

microglial cell line the two treatments potentiate each other to generate a greater expression 

of TLR4.  This could lead to a potential associative scenario that increased TLR4 

expression could be indicative of increased TLR4 activity because there is more protein 

present.  Evidence is now beginning to accumulate indicating that TLR4 may be 

responsible for microglial activation (Sun et al., 2015).  Microglial activation leads to the 

synthesis of Aβ-amyloid precursor protein (APP) and as excess APP is associated with 

Alzheimer’s disease, active microglia may contribute to this pathogenesis (Banati et al., 

1993).  While it is unknown whether or not the TLR4 in the CHME-5 microglia are active, 
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it remains a possibility that should be investigated.  Therefore, the upregulation of TLR4 

that occurs with methadone and morphine in the presence of LPS could be the genesis of 

impaired CNS immunity if it is verified that the upregulated TLR4 is indeed active.  

Coupled with LPS, the increase in TLR4 protein expression may contribute to a greater 

incidence of opportunistic infection in those on opioids (Roy et al., 2011) if the protein is 

verified to be active after the treatments of morphine + LPS or methadone.  While this 

experiment cannot corroborate these possibilities, it could help explain some of the 

immunological and proinflammatory effects of morphine, specifically in the case of 

opportunistic infection (Roy et al., 2011).         

  

4.11.2 Methadone 

It has been known for several years that methadone modulates and even rescues 

immune function in opioid abuse (Kreek 1990, Zajícová et al., 2004, Sacerdote et al., 

2008).  Methadone had the most pronounced effect on TLR4 protein expression in this set 

of experiments.  The significant upregulation of TLR4 protein expression by methadone 

and drastic downregulation in the presence of LPS has several implications. This data 

supports the research done in 1995 by Thomas et al., which highlighted differences in 

immunomodulation by diacetylmorphine, aka heroin, and methadone.  It was found that 

IL-6 production by murine macrophages was decreased after methadone and LPS 

treatment.  Additionally, in human whole blood samples isolating peripheral blood 

mononuclear cells (PBMCs), methadone was similarly found to decrease IL-6 levels after 

stimulation by a monoclonal antibody (Boland et al., 2013).  Because TLR4 activation and 
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signaling leads to transcription of IL-6, it is reasonable to consider that like in the CHME-

5 microglia, TLR4 downregulation might be at least partially responsible for the cytokine 

decrease identified in the Boland et al., study.  In a rat model, TLR4 mRNA 

downregulation was also found to ease pain associated with bone cancer (Lan et al., 2010), 

but it is not clear whether or not there was less protein.  Taken together, the TLR4 

downregulation by methadone in the presence of LPS identified in this research may 

explain cytokine decreases identified in previous studies.  Alternatively, it may also 

increase the likelihood for infection due to the lack of TLR4 protein ready to respond, 

especially if LPS is already present in the system. 

 The upregulation of TLR4 by methadone is seemingly contradictory to the negative 

effects of increased TLR4 expression discussed in Section 4.  As methadone has been 

shown to rescue immune function of opioid dependent individuals (Sacerdote et al, 2008), 

it seems more logical to think that methadone would downregulate the protein.  It does 

downregulate TLR4 with LPS present but perhaps methadone is acting at a different part 

of the TLR4 protein complex that could initiate a different response.  A co-

immunoprecipitation experiment could identify which proteins, if any, are interacting.  If 

this is the case then once LPS is simultaneously present the LPS may work with the 

methadone to inhibit TLR4 expression.  Or perhaps methadone is inhibiting LPS as was 

indicated in the HEK-Blue™-hTLR4 experiments described in Section 4.2. This is 

intriguing as they are both referred to as agonists at TLR4 (Hutchinson et al., 2010a) but 

once they are combined, they diminish its expression.  This is the opposite of the combined 

upregulation of TLR4 by morphine and LPS discussed in Section 4.11.1.  This could be 

structurally based as morphine is a larger molecule than methadone.  This indicates that 
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opioids might be having a more pronounced effect on TLR4 protein regulation because 

despite LPS being constant, the opioid is the variable contributing to opposing regulatory 

effects.  The possible explanations for the differences between morphine and methadone 

in the presence of LPS will have to be further investigated. 

 

4.11.3 Oxycodone 

Oxycodone had no significant effect on TLR4 protein expression even in the 

presence of LPS.  While oxycodone may suppress the immune system-particularly in cases 

of abuse-as a general rule it is not considered to be an immunosuppressant.  This is 

corroborated by a study of infection in human cancer patients given either morphine or 

oxycodone for pain that found the only relationship between the drugs is that those given 

morphine were significantly more likely to develop infections than those who were given 

oxycodone (Suzuki et al., 2013).  In comparison with the morphine data in Section 4.11.1, 

morphine in the presence of LPS upregulates TLR4 protein expression and perhaps this is 

in part the reason that the morphine treated patients were more susceptible to infection.  

Because cancer patients are already immunocompromised, it’s possible that the 

unresponsiveness of TLR4 protein expression to oxycodone with or without LPS may 

partially explain the fewer infections in the oxycodone treated patients.  While the study 

did not investigate specific cytokine profiles or TLR4 activation, the lack of effect that 

oxycodone had on TLR4 protein expression may contribute to the safer immune profile 

associated with this drug.    
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4.11.4 Buprenorphine 

Like methadone, buprenorphine is used to treat opioid dependency and has also 

been shown to rescue immune function in opioid abusers (Sacerdote et al., 2008).  The 

downregulation of TLR4 protein expression in the presence of LPS identified in this 

research supports these findings.  As buprenorphine is considered to be a safe drug based 

on its pharmacology, such as a ceiling effect on respiratory depression (Pergolizzi et al., 

2010) and virtually no effect on the immune system (Canneti et al., 2013), the lack of effect 

of buprenorphine on TLR4 protein expression is not surprising.  This research corroborates 

the aforementioned studies and provides a possible explanation for the safer immune 

profile of buprenorphine by not affecting TLR4 protein expression.  

 

4.11.5 Opioid Comparison (Compilation of Sections 3.11.5-3.11.7) 

 When simultaneously comparing morphine, methadone, oxycodone, and 

buprenorphine it is quite obvious that morphine and methadone elicit the greatest effects 

on TLR4 protein expression (Figure 45).  More interestingly is the dynamic opposite effect 

that morphine and methadone both have in the presence of LPS.  This could explain some 

differences in opioid-induced immunomodulation. While all four of the drugs used in this 

study are opioids, they all have unique stuructures, pharmacokinetics, and 

pharmacodynamics as addressed in Section 1.1.  It is possible that this is a reason for the 

differences in TLR4 regulation. The difference that LPS has in regulating TLR4 when 

combined with the different opioids may also be attributable to the physical and 
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pharmacological properties of the drugs.  How they interact with the protein has yet to be 

determined but could occur directly at TLR4, CD14, MD-2, or even during intracellular 

signaling.  It’s possible that the opioids may interact with LPS itself or that there may be a 

TLR4-hMOR interaction.  Additional research is necessary to determine which, if any, 

interaction is occurring.   

The upregulation of TLR4 by methadone was not expected.  Methadone was 

expected to downregulate the protein because of the immunologic rescue effect that it has 

on drug abusers (Riss et al., 2012).  The immune rescue associated with methadone led to 

the idea that TLR4 is downregulated in opioid use because without a TLR4 response there 

would be very little to no reaction to infection (Roy et al., 2011).  While there is no 

evidence that excessive TLR4 protein expression is deleterious, it is known that excessive 

TLR4 activation can lead to detrimental effects such as sepsis (Biswas and Lopez-Collazo, 

2009); therefore, additional research needs to be done to determine if the increases in TLR4 

protein expression identified in this study are active or not.  While there are generally 

positive effects associated with less TLR4 as discussed in Section 4, the fact that 

methadone upregulated the protein was surprising.  Perhaps this is unique to the CHME-5 

microglia as they are an immortalized cell line and may respond differently to the same 

stimuli than normal cells.     

This experiment also was not mimicking chronic drug abuse; therefore, the initial 

effect of methadone on TLR4 protein expression might be to upregulate it.  If the cells were 

chronically treated with morphine prior to methadone exposure the results might be very 

different.  What is even more surprising is that when the microglia were simultaneously 

treated with methadone and LPS the protein expression was significantly decreased at all 
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concentrations of methadone.  Because this data of methadone with LPS illustrates the 

downregulation of TLR4 protein expression and LPS is a well characterized TLR4 agonist 

(Chow et al., 1999), this treatment was expected to upregulate it—but it did the opposite.  

Likewise, morphine appeared to upregulate TLR4 protein expression, but with LPS it was 

downreglated.  Why would morphine and LPS upregulate TLR4 but methadone and LPS 

downregulate it?  The two drugs are having different interactions with the receptor but 

exactly what that interaction is remains to be determined.  Additionally, the 18 hour 

treatment might contribute to this as at 18 hours of sole LPS treatment did not alter TLR4 

protein expression when compared to control (Figure 45).  The effect of LPS may have 

been moot at this point.  However, as heroin abusers are more likely to succumb to 

infection, both because of lifestyle (Kaushik et al., 2011) and opioid use (Roy et al., 2011), 

the inclusion of LPS in the treatment is a more realistic model.     

 The lack of change in TLR4 potein expression from oxycodone and buprenorphine 

treatments was not surprising as these two drugs are not considered to have as much of an 

immunosuppressive effect (Suzuki et al., 2012, Pergolizzi et al., 2010).  The question 

remains as to why?  All opioids used in this study were used at the same concentration, yet 

they varied in the results.  While morphine and methadone are potent MOR agonists (Volpe 

et al., 2011), oxycodone has less potency at MOR and more at KOR but very similar 

analgesic potency (Kalso 2005, Volpe et al., 2011, Pöyhiä and Seppälä 1994) and 

buprenorphine is a relatively potent agonist at MOR, but is also a KOR and ORL-1 agonist 

(Greenwald et al., 2007, Compton et al., 2006, Yamamoto et al., 2006).  No 

pharmacokinetic studies have yet been done on these drugs at TLR4 as their non-canonical 

interaction with this receptor has only recently been identified (Stevens et al., 2013, Wang 
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et al., 2012, Hutchinson et al., 2010) and the lack of hMOR in the CHME-5 microglia 

further corroborates these findings.  Additionally, it is possible that these drugs have 

varying agonist potencies at TLR4.  Again, varying molecular structures may also have an 

effect on how and where they interact with TLR4.  These potential interactions could also 

affect how the drugs regulate TLR4 because opioids have been shown to modulate immune 

activity via NFκB (Hutchinson et al., 2010).  More research needs to be done in order to 

determine these possibilities.   

 

4.12 PCR Based Sequencing TLR4 Primers 

 TLR4 was readily and reliably detectable in the CHME-5 cells.  Because of this, 

the cell line was ideal to use to sequence the TLR4 primers desgned in the lab.  Therefore, 

CHME-5 microglial RNA extracts were used to sequence the amplicons.  The primer 

sequences received for TLR4 were short, but this allowed for certainty in the TLR4 

product.  A BLAST analysis confirmed alignment with TLR4, thereby verifying the 

primers for future use.    
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CHAPTER V 

 

CONCLUSION 

 As opioids continue to be used and abused, the effects that they have on the immune 

system remain a necessary investigation.  This research found that the TLR4 

overexpressing HEK-Blue™-hTLR4 cells are an excellent means to study TLR4 activity.  

The cells grow quickly and the SEAP assay is straightforward.  Using this cell line, it was 

determined that TLR4 activity is decreased by opioids with or without simultaneous LPS 

treatment.  This finding of opioid-induced inhibition of LPS-stimulated TLR4 activity 

supports recent literature that opioids have non-canonical interactions via TLR4 (Stevens 

et al., 2013) and further supports the Davis et al 2015 study which found that the opioid 

antagonist β-funaltrexamine inhibits NF-κB signaling in astrocytes.  The very low amounts 

of hMOR detected in this cell line are not believed to be interacting in this system but 

additional research using an opioid antagonist to ensure that hMOR is not signaling would 

affirm this hypothesis.      

 Further investigating TLR4 in neuro-immune interactions, the use of CHME-5 

micoglial cells were found to robustly express TLR4 and IL-1R protein expression.  hMOR 

protein expression in this cell line could not be determined because a positive control band 

could not readily be established.  However, this is the first time that the CHME-5 microglia 
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have been characterized to identify immune and opioid receptor protein expression.  This 

research provides novel information regarding a transformed human microglial cell line.  

Further studies to confirm the lack of hMOR are needed but the data found in this research 

concludes that the CHME-5 microglia are ideal to study non-canonical neuro-immune 

interactions and protein expression because they lack hMOR protein expression. 

Additionally, this characterization of the CHME-5 microglia contributes to the 

scientific community because primary human microglia are very expensive and relatively 

difficult to obtain and culture.  This research provides data for those aiming to study human 

microglia at a more economical cost—especially given recent budget cuts to the National 

Institutes of Health and decreased funding for research.  Rodent, primarily murine, 

microglial cell lines have been readily studied in the literature and are not directly 

applicable to humans.  While the CHME-5 are not primary microglia, they do provide a 

solid preliminary foundation to apply for funding to obtain primary human microglia for 

research.      

 Given these findings, in the absence of hMOR the opioids morphine and methadone 

were found to significantly upregulate TLR4 protein expression in the CHME-5 microglial 

cells.  When in the presence of LPS, methadone downregulated TLR4 protein levels.  The 

downregulation of protein expression induced by methadone and LPS could be a 

synergistic effect of the two treatments.    Neither oxycodone nor buprenorphine had a great 

impact on TLR4 protein expression with or without LPS.  Whether or not this is 

neuroprotective or a not remains to be determined.  These data support the work of Davis 

et al., Stevens et al., Wang et al., and Hutchinson et al., suggesting that there is an opioid-

TLR4 interaction.  While this study did not evaluate opioid-induced TLR4 activity in 
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microglia, the protein reglation of TLR4 via opioids indicates that there is more occurring 

than previously thought.  The structurally different opioids in opioid-induced regulation of 

TLR4 provides potential pharmacological targets to minimize opioid-induced 

immunosuppression.  It is also possible that the different opioids produce different cytokine 

profiles by themselves and/or in the presence of LPS that could be attributable to potential 

ligand bias.  As TLR4 is associated with microglial activation and microglial activation is 

associated with apoptosis (Sun et al., 2015), keeping TLR4 tightly regulated may also 

contribute to neuroprotection.  Determining if and how TLR4 is activated, as well as to 

what extent, will also help identify specific ligands for this purpose.  

 In summary, this is the first research to document receptor protein characterization 

and opioid neuroimmune interactions in a human microglial cell line.  While this data is 

novel, a few items remain to be addressed.  Further studying the TLR4 pathway in these 

cells would add insight into whether or not the protein identified in this research is active. 

Additionally, looking at the RNA that was collected would verify whether the changes in 

expression are regulated via transcript or perhaps the protein is being released from 

intracellular stores in the situations where TLR4 is upregulated.  This additional 

information will help pinpoint additional molecular targets other than the TLR4 receptor 

itself in order to pharmacologically regulate it to the advantage of the individual.   
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