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Date of Degree: July, 2015

Title of Study: HUMAN MOTION ANALYSIS: FROM GAIT MODELING TO
SHAPE REPRESENTATION AND POSE ESTIMATION

Major Field: ELECTRICAL ENGINEERING

Abstract: This dissertation presents a series of fundamental approaches to the human
motion analysis from three perspectives, i.e., manifold learning-based gait motion
modeling, articulated shape representation and efficient pose estimation. Firstly,
a new joint gait-pose manifold (JGPM) learning algorithm is proposed to jointly
optimize the gait and pose variables simultaneously. To enhance the representability
and flexibility for complex motion modeling, we also propose a multi-layer JGPM that
is capable of dealing with a variety of walking styles and various strides. We resort to
a topologically-constrained Gaussian process latent variable model (GPLVM) to learn
the multi-layer JGPM where two new techniques are introduced to facilitate model
learning. First is training data diversification that creates a set of simulated motion
data with different strides under limited data. Second is the topology-aware local
learning that is to speed up model learning by taking advantage of the local topological
structure. We demonstrate the effectiveness of our approach by synthesizing the high-
quality motions from the multi-layer model. The experimental results show that the
multi-layer JGPM outperforms several existing GPLVM-based models in terms of the
overall performance of motion modeling.

On the other hand, to achieve efficient human pose estimation from a single depth
sensor, we develop a generalized Gaussian kernel correlation (GKC)-based framework
which supports not only body shape modeling, but also articulated pose tracking.
We first generalize GKC from the univariate Gaussian to the multivariate one and
derive a unified GKC function that provides a continuous and differentiable similar-
ity measure between a template and an observation, both of which are represented
by a collection of univariate and/or multivariate Gaussian kernels. Then, to facili-
tate the data matching and accommodate articulated body deformation, we embed
a quaternion-based articulated skeleton into a collection of multivariate Gaussians-
based template model and develop an articulated GKC (AGKC) which supports
subject-specific shape modeling and articulated pose tracking for both the full-body
and hand. Our tracking algorithm is simple yet effective and computationally efficient.
We evaluate our algorithm on two benchmark depth datasets. The experimental re-
sults are promising and competitive when compared with state-of-the-art algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Automatic analysis of human motion is a highly active research topic in the field of

computer vision and machine learning due to its wide promising applications, such as

surveillance, 3D character animation, biomechanics, robotics, and human-computer

interaction (HCI), etc. A few examples are shown in Fig. 1.1. The applications of

smart surveillance cover many classical problems for security purposes, like automati-

cally detecting and tracking human motion, access control, people counting, activities

analysis and gait recognition. Different with the traditional surveillance system which

can only record video and provide “after” evidences, a smart surveillance system with

the help of intelligent human motion analysis algorithms, can automatically detect

specific events and alarm at real-time. Some examples of the smart surveillance sys-

tem are illustrated in Fig. 1.1 (a).

In the traditional character animation, we have to record all the motions of a

character and embed a virtual human shape or avatar with the recorded motion

to generate a animation sequence. However, the task of animating characters can

be simplified by using a generative human motion model. In other words, given a

motion prior model, plausible poses and motions can be simulated automatically as

shown in Fig. 1.1 (b). In biomechanics and medical field, the motion analysis of

body parts can help to automatically diagnose orthopedic patients according to some

biomechanics data, like body joint angles or the pattern of central of mass, as shown

in Fig. 1.1 (c). It can also facilitate in sports to optimize athletic performance or
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Figure 1.1: A few applications of human motion analysis. (a) Visual Surveillance[1, 2],

(b) Character Animation [3, 4],(c) Biomechanics [5],(d) Humanoid Robot [6], (e)

Kinect Sensor for HCI [7].

to identify motions that may cause injury or strain. In manufacturing industry, the

human motion analysis can be used to control robots or to train the humanoid robots

for executing some complicated tasks, as shown in Fig. 1.1 (d). In human-computer

interaction (HCI), the estimated motion or pose parameters can be the inputs of

computer or video games. Kinect sensor from the Microsoft is a typical example to

illustrate that human motion analysis can be employed in the HCI field as shown in

Fig. 1.1 (e).

Human motion analysis usually relies on accurate motion capture techniques to

collect the human kinematical data. However, there is no one motion capture system

can handle all kinds of the human motion with high accuracy in any environment.

Especially in video-based posture estimation, due to the high-dimensionality and vari-

ability of the motion data as well as the ambiguity from 2D imaging, it is challenging

to reconstruct the optimal 3D posture in a high dimensional parameter space. In

order to estimate the articulated human motion more accurately and robustly, a mo-
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tion model learned from a large-scale training dataset is often used as a statistical

prior to constrain the posture search in the solution space. On the other hand, the

recent launch of low-cost RGBD sensors (e.g. Kinect) has triggered a large amount

of research on human pose estimation. Since depth sensors can measure the depth

information and provide a 2.5D depth image at real-time, they have effectively sim-

plified the task of foreground / background substraction and significantly reduced

pose ambiguities in monocular human pose estimation. Fig. 1.2 shows (a) two ver-

sions of Kinect sensors, (b) the 2.5D depth map captured by Kinect V2 and (c) its

corresponding 3D point cloud reconstructed from the depth map.

Figure 1.2: (a) Kinect sensors [8, 9], (b) The 2.5D depth map captured by Kinect

V2,(c) The corresponding 3D point cloud.

In this research, we focus on the human motion analysis from three aspects, i.e.,

gait modeling, articulated shape representation and efficient articulated pose esti-

mation. Gait is defined as “a manner of walking” in the Webster’s New Collegiate

Dictionary. Through finding human walking pattern, gait analysis assess all kinds

of underling bio-mechanical characteristics, by which the walking ability of humans

can be evaluated. This research can be extended and lead to a few unique applica-

tions, such as medical diagnostics, rehabilitation medicine, biometric identification,

sport training and fall-risk assessment etc., shown in Fig. 1.3. The key technique of

video-based gait analysis is gait modeling from existing motion data. Particularly,
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Figure 1.3: Applications of human gait analysis. (a) Rehabilitation [10], (b) Gait

Identification [11], (c) Fall-risk Assessment [12].

we learn a statistical representative low dimensional motion prior from a series of

high dimensional gait data to constrain the motion reconstruction in the solution

space. Then, this statistical prior model can be employed in video-based gait estima-

tion, computation of center of mass (COM) of body, motion filtering and animation

synthesis.

The second aspect in this research is articulated shape representation. A good

shape model not only captures shape variability accurately, but also facilitates the

pose estimation effectively and efficiently. One of the most widely used shape mod-

els is the mesh surface which can depict the object precisely. Good mesh models,

which are usually collected by one or multiple high-cost 3D scanners, are difficult

to be accessed and even harder to be specified for each subject. Also, when using

detailed mesh models for human pose estimation, there always involves a relatively

high computational load and the real-time performance can hardly be achieved only

using CPU, even if the pose estimation is based on the depth sensor. Moreover, the

complicated deformation and blending between mesh surface and the skeleton has to

be considered when to have an articulated shape model. These challenges motivate us

to develop a simple yet effective parametric shape representation which can support

efficient articulated pose estimation. Also, this general shape representation can be

easily deformed to match a subject-specific body shape.
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The third aspect is efficient articulated pose estimation from monocular depth

sensor, which has become a highly active research topic in the computer vision field

due to its simplicity for use, low-cost, high efficiency and robustness for the human

motion analysis. Many interesting applications based on the motion capture from

depth sensors have released, such as natural body controller in video games, home

rehabilitation solution for stroke victims and virtual clothes fitting, which are shown

in Fig. 1.4.

Figure 1.4: Applications based on the motion capture from depth sensors. (a) Body

controller in video games [13] (b) Home rehabilitation solution for stroke victims [14],

(c) virtual clothes fitting [15].

Currently, most of the methods rely on a large scale database for training model or

detailed mesh model or both of them. They usually require the acceleration from GPU

to achieve the real-time performance, which limits their implementation in mobile

device and small embedded system. The current limitations inspire us to develop an

efficient and accurate motion capture system from a single depth sensor without using

any database nor mesh model. We address the articulated pose estimation through

a novel generalized Gaussian kernel correlation function, that is the pose parameters

(joint angles between two body segments) are estimated by maximizing a continuous

and differentiable Gaussian kernel correlation function with additional constraints.

This efficient pose estimation can be extended to hand motion and further support

dynamic motion analysis in all kinds of applications, such as biomechanics, medical
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diagnostics and sport training.

1.2 Research Background

Human motion analysis relies on an accurate motion capture (Mocap) system to col-

lect the kinematic motion data represented by Euler angles or 3D positions of the

body joints. Nowadays, three kinds of motion capture techniques are most widely

used, i.e., marker-based Mocap, markerless Mocap and inertial sensor-based Mocap.

While the marker-based Mocap is the golden standard in the industry field, the mark-

erless Mocap becomes an active research topic recently and has great potential and

promising applications. The selection of a particular Mocap system depends on the

requirements and environment of applications.

1.2.1 Marker-based Mocap

The marker-based motion capture system is normally stepped in a laboratory en-

vironment. It includes multiple calibrated cameras, a set of markers attached on

human body and advanced post-processing software, as shown in Fig. 1.5. When a

person performs a series of movements, cameras record and extract the position of

each marker in 2D images and the body configuration can be recovered through in-

verse kinematics (IK) algorithms. The well-known commercial marker-based Mocap

system includes Vicon [32] and OptiTrack [33], etc.. The marker-based Mocap system

is the most commonly used approach in the industry field due to its high accuracy and

robustness. However, it has a few limitations, such as high-cost equipments, specific

environment, time consuming preparation and marker attachment, which causes the

infeasibility in many applications.
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Figure 1.5: Illustration of the marker-based Mocap. (a) Camera setup in OptiTrack

[16] (b) Motion capture and animation demo [17].

1.2.2 Markerless Mocap

Markerless Mocap utilize one or more color cameras to directly calculate the body

joint positions from a sequence of images. The markerless motion capture technique

allows non-invasive human movement measurement in a natural environment without

any marker attachment. Eliminating markers can expand the applicability of human

motion capture techniques, considerably reduce the preparation time, and enable

simple and accurate motion measurement and assessment in all kinds of applications.

Currently, the main markerless Mocap method is the video-based human motion

estimation with monocular camera or multiple camera studio. Using one or multiple

color cameras for the motion capture has been implemented in a specific laboratory

environment. However, it requires complex background substraction procedure and

high computation load, making it difficult to run in real-time. Also, the existing

ambiguity problem from the 2D images makes the system not accurate and robust for

practical usage. Nowadays, the depth sensor-based Mocap is more and more popular

due to its low cost and high performance. Since depth sensors can measure the

depth information and provide a 2.5D depth image at real-time, they have effectively

simplified the task of foreground / background substraction and significantly reduced
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pose ambiguities in monocular human pose estimation.

1.2.3 Inertial Sensor-based Mocap

Inertial sensors can measure the 3D rotation angles at body joints when they are

mounted near a set of body joints. Then the collected joint angles can reconstruct

the full body skeleton through a set of conversion of coordination systems along a

chain structure. Compared with the marker and markerless Mocap system, inertial

sensor-based Mocap is more accurate on the measurement of joint angle, meanwhile

it is not constrained by the application environment. However, inertial sensors-based

Mocap is more expensive, which impedes its wide applications. A full body inertial

sensor-based Mocap system which includes 17 inertial units is shown in Fig. 1.6.

Figure 1.6: (a) Inertial sensors-based Mocap system [18], (b) Real inertial units from

Xsens [19].

1.3 Research Objectives and Challenges

Due to the passionate requirement from all kinds of applications of human motion

analysis, our general research goal is to improve the performance of the markerless

Mocap system either from monocular color camera or from a single depth sensor.

To achieve this general goal, we mainly have three specific objectives which will be
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presented from three perspectives, i.e., human motion modeling, body shape repre-

sentation and efficient articulated pose estimation.

1.3.1 Human Motion Modeling

In video-based posture estimation, due to the high-dimensionality and variability

of the motion data as well as the ambiguity from 2D imaging, it is challenging to

reconstruct the optimal 3D posture in a high dimensional parametric space. Most

methods rely on a prior motion model learned from training data to constrain the

search in the solution space. In this research, one of our goals is to learn a powerful

and representative human gait prior model which can support a more accurate walking

motion estimation for different individuals and different motion types.

The 3D kinematical motion data is parameterized by the Euler angles or 3D

positions of a set of body joints with the global 3D translation at the hip joint. For

example, in our human motion modeling, gait kinematics of a body configuration

is represented by a 59 dimensional vector (including 18 joints, each of which has 1-

3 DOFs, and a 3D global translation at the hip joint). Obviously, there are high

redundancy, high complexity and non-linearity in these high dimensional kinematical

motion data. Therefore, the non-linear dimension reduction (NLDR) technique is

necessary for dealing with the high dimensional kinematical data to achieve a compact

representation as a statistical prior. Hence, we have the first research objective.

Objective 1: To learn a probabilistic non-linear low dimensional human

gait model which can represent the walking motion from different subjects

effectively and accurately.

To deal with more walking styles not only from different individuals, but also with

different strides, our second goal is to explore and exploit a new latent structure for

more complex gait modeling, while no additional training data are used.

Objective 2: To enrich the capability of motion representation of the
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gait model by using a multi-layer structure in the latent space.

CMU Mocap dataset [34] is a standard human motion library. One challenge is

that the human walking styles are very limited in CMU dataset and the model learned

from this library is not diversified to represent various walking styles in reality. An-

other challenge is that the non-linear dimensional reduction-based learning process is

computationally expensive and cannot be scaled up to a large scale training dataset.

To this end, we first aim to diversify the walking styles artificially using the original

limited CMU motion library. Second, we should have a new fast learning algorithm

where a multi-layer low dimensional structure is designed to handle large-scale en-

riched training dataset. Then, we should employ an effective validation methods to

evaluate the multi-layer model and compared with the single-layer model.

Once we have an effective motion model to constrain and refine the motion data

from Mocap system, we can use it as a prior to obtain more accurate and robust

motion data from video-based Mocap system. This research can lead to a practical

and low-cost gait analysis technology for many real-world applications where tradi-

tional motion capture may be challenging through existing technology, such as in the

hospital, nursing home or outdoor environment.

1.3.2 Articulated Shape Representation

A subject-specific body shape model is critical for accurate pose estimation. One

challenge in the generative-based pose estimation is how to represent the body shape

which not only can capture shape variability accurately, but is able to facilitate the

data matching efficiently. To this end, our another goal in this research is to develop

a simple yet effective parametric shape representation which can support efficient

articulated pose estimation. Also, this general shape representation should be easily

deformed to match a subject-specific body shape.

Objective 3: To represent the articulated body shape model using a set
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of parametric models and to specify the shape model for different subjects.

1.3.3 Efficient Articulated Pose Estimation

Although the depth sensor has significantly simplify the task of human pose esti-

mation, there still exists some challenges. First, most of the approaches rely on a

large scale training dataset for retrieval or training a detector or predict model. In

these methods, the pose estimation results are largely determined by the quantity of

training data. However, collecting large scale training dataset is high-cost and time

consuming and it is not available in many practical applications. Meanwhile, some

other requirements, i.e., time-consuming training process, expensive hardware and

complicated raw training data pre-processing hinder the development of this group

methods. The second challenge is the computational complexity is still very high, due

to the involved detailed mesh model and the inefficient energy function that is hard

to be optimized. Most methods have to employ the GPU acceleration to achieve the

real-time performance, which limits their applications on some mobile devices.

In this research, one of our goals on the depth sensor-based human pose estima-

tion is to develop a fast and accurate Mocap system using a single depth sensor.

Different with other state-of-the-arts methods, we aim to achieve the comparable

accuracy and efficiency without any helps from database, detailed mesh model and

GPU acceleration.

Objective 4: To develop an efficient and accurate articulated pose track-

ing from a single depth sensor by using a general parametric shape model.

There are several key challenges in this task. First, how to define an advanced

energy function to support the efficient parameters estimation. Second, how to repre-

sent the transformation between body segments to construct the articulated skeleton.

Third, how to augment the basic energy function with more constrains for the system

accuracy and robustness. These questions guide our research in the pose estimation
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parts and will be answered in the following Chapter 5, 6, 7.

1.4 Our Approaches

1.4.1 JGPM for Human Gait Modeling

Various non-linear dimension reduction (NLDR) approaches have been proposed for

motion modeling, like GPLVM, GPDM and LL-GPDM. In [23], a two-step learning

process was proposed to learn a torus-like low dimensional structure as a prior to

constrain the human motion. In this research, inspired by the original JGPM, we

introduce a new JGPM learning algorithm that is able to jointly optimize the gait

and pose variables simultaneously, leading to a much compact parameter set and a

straightforward procedure. Then, in order to compare our motion model with other

state-of-the-art algorithms, we employ a validation technique and test all methods in

terms of two motion analysis tasks, i.e., interpolation (to explain a unknown motion

data) and filtering (to filter noisy Mocap data).

1.4.2 Multi-layer JGPM for Human Gait Modeling

To further enhance the representative capability of JGPM, we propose a new multi-

layer JGPM that is capable of dealing with a variety of walking styles and various

strides. Also, we can learn the model efficiently only from limited training data.

Two new ideas are proposed. The first one is training data diversification that cre-

ates a series of simulated training gaits with different strides from a limited training

dataset. This idea is inspired by several bio-mechanical experiments [35, 36, 37, 38],

which reported that the human gait is left-right symmetrical and there exists certain

proportional relation between limbs swinging to keep energy efficiency. The second

one is topology-aware local learning that extends the stochastic gradient descent al-

gorithm in [39] by only involving local neighbors according to the topology prior for

model learning. Furthermore, we discuss two topological priors for coupling the pose
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and gait manifolds in the latent space, cylindrical and toroidal, to examine their

effectiveness and suitability for human motion modeling.

1.4.3 Articulated Shape Representation via Gaussian Kernels

To facilitate the template matching efficiently and represent the body shape in a

simpler way, we first embed an articulated skeleton into a collection of multivariate

Gaussian kernels where quaternion-based 3D rotations are involved to represent the

transformation between two body segments along the skeleton. Then, based on our

generalized Gaussian kernel correlation in Chapter 5, a segment-scaled articulated

Gaussian kernel correlation is proposed to balance the effect of each segment in the

articulated structure. Using the segment-scaled articulated Gaussian kernel correla-

tion as an energy function, we propose an effective and efficient subject-specific shape

modeling method, where a LLE-based topology constraint is involved as a regulariza-

tion term. With this subject-specific shape modeling algorithm, the motion capture

system could achieve more accurate pose estimation results for better motion analysis.

1.4.4 Articulated Pose Tracking

We formulate the articulated pose estimation problem as an optimization problem

by defining a continuous and differentiable energy function based on our new gener-

alized Gaussian kernel correlation which is a similarity metric. Therefore, the pose

parameters (joint rotations) can be estimated by maximizing the similarity between

the template and an observation. Due to the continuity and differentiability, our

objective function for the articulated pose tracking can be efficiently optimized by

gradient-based optimizers. In this research, we also augment the objective function

for pose tracking with three additional constraints, i.e., visibility term, intersection

penalty term and continuity term. Their derivatives have been explicitly derived

to implement the fast gradient-based optimization. Moreover, we develop a failure

13



detection and recovery strategy to enhance the pose tracking with more robustness.

1.5 Our Contributions

In this research, we have two contributions on human gait modeling.

• First, different with torus-like JGPM, we present a new JGPM learning algo-

rithm that is able to jointly optimize four variables simultaneously and the latent

space is learned well in one-step process, leading to a much compact parameter

set while sustaining a comparable performance with torus-like JGPM.

• Second, we propose a multi-layer JGPM to enhance the capability of motion rep-

resentation, especially for the walking motion with wide motion ranges. To over-

come the limitation of GPLVM-based learning for large-scale training dataset,

we develop a neighborhood-based local learning strategy to handle huge training

data which include all kinds of walking styles. The experiment results demon-

strate the rationality and superiority of our proposed algorithm. This research

has great potential in the applications of markerless motion capture system for

gait analysis, motion tracking as well as character animation.

There are mainly three contributions on articulated pose estimation and shape

representation.

• First, we extend the Gaussian kernel correlation function from the univariate

case to the multivariate one in n dimensional space, along with a unified and

differentiable similarity measure between any sum of univariate Gaussian kernels

(SoG) and sum of multivariate Gaussian kernels (GSoG) combinations.

• Second, we present an articulated kernel correlation function for shape modeling

and pose estimation where the tree-structured template is represented by a few

multivariate Gaussian kernels along with a skeleton controlled by quaternion-

based rotations.
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• Third, we propose an efficient and robust sequential pose tracking algorithm by

introducing three constraints (visibility, continuity and self-intersection) which

is successfully applied to pose estimation of both body and hand from a single

depth sensor.

1.6 Outline

This dissertation is organized as shown in Fig. 1.7. The summary of each chapter is

briefly presented as follows.

• In Chapter 1, the motivation and significance of this research are presented.

• In Chapter 2, currently available works and methods for motion modeling and

articulated pose estimation from a single depth sensor are reviewed and cate-

gorized.

• In Chapter 3, we propose a new joint gait pose manifold (JGPM) learning

method and compare with other state-of-the-art algorithms.

• In Chapter 4, we provide the details of our multi-layer JGPM learning method

and give the experimental results.

• In Chapter 5, we derive a generalized Gaussian kernel correlation function which

extends the univariate Gaussian case to the multivariate one.

• In Chapter 6, we embed an articulated skeleton into a collection of Gaussian

kernels to represent a shape model, and develop a subject-specific shape model-

ing method based on our proposed segment-scaled articulated Gaussian kernel

correlation.

• In Chapter 7, we work on the articulated pose estimation from one depth sensor

and our experimental results are shown.
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• In chapter 8, we conclude our work and state our future work.

Figure 1.7: The outline of this dissertation.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Human Motion Modeling

There exists a large body of research on human motion modeling. In early work,

graphic models were used to represent the spatial and temporal priors of body parts

[40, 41, 42]. An alternative is physics-based models which incorporate various kine-

matic/dynamic/physical constraints of body movements [43, 44, 45, 46, 47]. Recently,

there are more and more non-linear dimensional reduction (NLDR)-based approaches,

which try to explore the low dimensional intrinsic structure of human motion data.

In this section, we provide a brief review of human motion modeling from a NLDR (or

manifold learning) perspective with respect to three groups: geometrically-inspired,

latent variable model-based and hybrid algorithms.

2.1.1 Geometrically-inspired Algorithms

The methods in this group seek to preserve the local geometrical neighborhood among

high dimensional data in the low dimensional latent space through some unsupervised

methods, such as Isometric Feature Mapping (Isomap) [48] and Local Linear Embed-

ding (LLE) [22] that was applied successfully for human motion estimation without

any initialization or prior constraints [49, 50]. However, Isomap and LLE provide

neither a probability distribution over the latent space nor the mapping from the

low dimensional latent space to the high dimensional data space. Given known topol-

ogy, [51] developed a supervised topology preserving method for embedding data on a

torus, where a separate mapping function (i.e., RBF-based mapping in [50]) is needed
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by which the visual data can be associated with the kinematic data for video-based

pose estimation.

2.1.2 Latent Variable Model-based Algorithms

The methods in this group apply the Gaussian Process (GP)-based approaches to

provide a probability distribution over the latent space along with non-linear mapping

function, such as GPLVM [52]. Many GPLVM variants have been proposed specially

for human motion modeling, e.g., Back Constrained GPLVM (BC-GPLVM) [53],

Gaussian Process Dynamic Model (GPDM) [54], Scaled GPLVM (S-GPLVM)[55]

and Balanced GPDM (B-GPDM) [56]. Their relationship is shown in Fig. 2.1.

BC-GPLVM smoothes the trajectory of original GPLVM in the latent space by

introducing a smooth mapping from the data space to the latent space. GPDM in-

corporate a temporal dynamical model in the latent space to smooth and regularize

motion trajectories. Then, Balanced-GPDM improves the GPDM through balanc-

ing the influence of data reconstruction and the latent dynamics. Generally, these

GPLVMs only involve one explicit factor in the latent space, i.e., pose. One excep-

Figure 2.1: The road map of GPLVM and its variants.
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tion is a multi-factor GP-based human motion model which was proposed in [57]. It

incorporated multiple independent factors (i.e. identity, gait and state of motion)

which are defined in different latent spaces for complex motion modeling.

2.1.3 Hybrid Algorithms

To preserve the geometrical neighborhood of latent structure, meanwhile to com-

ply with the intrinsic data effect, the hybrid methods are developed. In [58], a

topologically-constrained GPDM (LL-GPDM) was proposed to merge the pose man-

ifolds from “walking” and “running” into the same cylindrical manifold structure by

incorporating a LLE-based topology constraint into GPDM learning. The gait man-

ifold was introduced in [59] to represent the variability of different gait styles which

is learned by combining an idea similar to Isomap and non-linear tensor decomposi-

tion. The pose and gait manifold are assumed to be independent in [59]. To capture

their coupling effect, a joint gait-pose manifold (JGPM) was proposed in [23, 60] by

extending the LL-GPDM algorithm with a toroidal topological prior. It was shown

that JGPM does improve video-based motion estimation results over the one in [59],

and it also outperforms existing GP-based algorithms in terms of motion interpola-

tion/reconstruction for normal human gaits. Still, JGPM may not be applicable to

more complex gaits with various strides. Also, just like traditional GPLVM-based

models, learning JGPM is computationally expensive and may not be scaled-up to

a large training dataset with more subjects and various walking strides, which may

limit its practical use.

2.1.4 Relationship with Our Research

Fig. 2.2 shows the taxonomy of manifold learning-based human motion modeling and

their relationship with our research represented in red. In this research, inspired by

the original JGPM in [23], we propose a new one-step JGPM learning algorithm that
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Figure 2.2: Taxonomy of manifold learning-based human motion modeling and their

relationship with our research shown in red.

is able to jointly optimize the gait and pose variables simultaneously, leading to a

much compact parameter set and a straightforward procedure. Also, to overcome the

limitations of previous work in [23, 60], we develop a multi-layer JGPM, leading to a

more representative model that is capable of dealing with a variety of walking styles

with various strides. In our multi-layer JGPM, we introduce training data diversi-

fication to create more simulated training gaits and topology-aware local learning to

make model learning more scalable and efficient. These two ideas could be applied

to other problems where a general and powerful manifold model is desirable to deal

with multiple latent factors of the data.

2.2 Overview of Articulated Pose Estimation

Recently, the launch of low-cost RGB-D sensors (e.g., Kinect) has further triggered

a large amount of research on the articulated pose estimation due to the additional

depth information and easy foreground/background segmentation. The existing al-

gorithms can be roughly categorized into three groups, i.e., discriminative, generative

20



Figure 2.3: Taxonomy of articulated pose estimation from a single depth sensor.

and hybrid ones, as shown in Fig. 2.3. We compare most of the state-of-the-art

algorithms reported so far in Table 2.1. Also, we will review the point set regis-

tration algorithms and the articulated shape representation, both of which are very

fundamental and critical for the efficient pose estimation.

2.2.1 Discriminative Approaches

Discriminative approaches detect features in the depth image and then reconstruct

a pose by either search in a database or directly predict the human body parts. For

example, in [61], the body parts and their orientation were detected by identifying

salient point of the human body. In [20], a random forest classifier was trained

from a large scale dataset to label depth pixels into predefined human body parts,

leading to a fast pose reconstruction. The procedure of this algorithm is shown in

Fig. 2.4. Similarly, a regression forest based predictor was proposed in [62], which

can predict the body joint positions directly. Also, similar discriminative approaches

were proposed in [63, 64] for hand pose estimation.

While the discriminative methods can reconstruct the pose efficiently without

initialization and they also can handle the large variation of body shape, the low

accuracy of these methods limit their development in some applications, such as bio-

mechanical, medical diagnose, etc. Additionally, most approaches in this group rely
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Figure 2.4: The algorithm procedure in [20]. (a) The illustration of training data.

(b) The learning of random forest. (c) The inference of each depth pixel and the pose

estimation results.

on a large scale dataset for training or retrieval, which is not available in many practi-

cal applications. Meanwhile, some other requirements, i.e., time-consuming training

process, expensive hardware and complicated raw training data pre-processing hinder

the development of this group methods.

2.2.2 Generative Approaches

Generative methods aim to estimate the parameters of a template model to best

match the observed depth data. Most generative methods seek the explicit corre-

spondence and then iteratively update the pose and correspondence, as show in Fig.

2.5 generated by [21]. Currently, the Iterative Closest Point (ICP) [65] and its vari-

ants, such as Articulated ICP [66], Non-rigid ICP [67] are the main methods for

exploiting the correspondence. In [31], the author extended the ICP by modeling

a “free space” constraint and proposed a tracking algorithm based on a Maximum
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a Posterior (MAP) inference. The author in [68] used both depth and edge infor-

mation to guide the tracker also within the ICP framework. Since estimating the

correspondence is still challenging with noisy input and fast changing complex pose,

these methods are prone to the local minima, leading to tracking failures. Without

the explicit correspondence, a Gaussian Mixture Model (GMM)-based registration

algorithm that is embedded with an articulated skeleton model was developed for

human pose estimation using the Expectation-Maximization (EM) algorithm [28]. In

[69], a discrepancy function was proposed for 3D articulated hand tracking which

is optimized by a variant of Particle Swarm Optimization (PSO). This method was

further extended in [70, 71].

Figure 2.5: The pose estimation using generative approach in [21]. (a) The initial

mesh template and observed point cloud, (b) the correspondence between the tem-

plate and observation, (c) the estimated result.

While most of the generative approaches are capable to achieve higher accuracy

compared with discriminative methods, they require a good initial pose to start the

tracking; also they require a detailed mesh model or a geometrical body model con-

structed by point cloud. The computation complexity is very high in the generative

methods, as they require hundreds of objective function evaluation during the alter-

native iteration between the optimization and correspondence seeking.
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To capture human motion efficiently from multi-view 2D images, a shape model

based on the sum of Gaussians (SoG) (i.e., the univariate SoG) was developed in

[72]. This simple yet effective shape representation provides a (nearly) differentiable

model-to-image similarity function, allowing fast pose estimation. SoG was also used

in [73, 74, 29] for both human and hand pose estimation. In our early work [30], a

generalized SoG model (GSoG) (i.e., the multivariate SoG) was proposed, where it

encapsulated fewer anisotropic Gaussians for human shape modeling, and a similarity

function between GSoG and SoG was defined in the 3D space. Sharing a similar spirit,

a sum of anisotropic Gaussians (SAG) model was developed in [75] for hand pose

estimation, where the similarity is measured by the projected overlap in 2D images.

Both GSoG and SAG have improved the performance of pose estimation compared

with the original SoG methods.

2.2.3 Hybrid Approaches

It is intuitive to take advantage of the complementary nature of the discriminative

and generative approaches which involve querying or training data and useful data-

driven detectors to assist the model-based optimization process. The hybrid methods

have shown impressing results in [24, 21, 25, 76]. Ganapathi et al. [24] used body

part detector [61] to benefit their ICP-based tracker. Baak et al. [21] detected five

geodesic extrema to perform a Nearest-Neighbor search to locate an analogous pose

as a competitor against the tracking result. Helton et al. [77] extended [21] by

obtaining a personalized body shape for more accurate tracker. Similarly, Ye et al.

[25] first looked up a database with the PCA of the normalized depth image to find

a good initialization, and then it manipulated a deformable mesh model by seeking

correspondence for accurate pose estimation. Wei et al. [78] combined the ICP-based

tracking with the random forest classifier, the same algorithm with [20], to achieve

tracking failure recovery. Most methods in this group are time-consuming and few of
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them can perform real-time without the help of GPU. Here, we summary the features

of most of the state-of-the-art approaches in Table 2.1.

2.2.4 Registration in Generative Approaches

Since the point set registration is the key technique in the generative approaches,

we briefly review some registration methods which are highly related to our re-

search. According to how the template and the target are matched, registration

approaches can be classified into two major categories, i.e., correspondence-based

and correspondence-free, which are shown in Fig. 2.6. The algorithms in the first

category iteratively estimate the correspondences and the underlying transformation,

such as the Iterative Closest Point (ICP) [65] and the Maximum Likelihood-based

density estimation [79, 80, 81, 82]. When there are noise or outliers in the observa-

tion, the correspondence-based methods are prone to trap into poor local minima. To

be robust to the noisy / outliers, the algorithms in the second group directly optimize

an energy function without involving correspondences, including density alignment

[83] and kernel correlation [84]. Different with the density alignment whose energy

function is a discrepancy measure using L2 distance, kernel correlation (KC) was first

presented as a similarity measure in[85] and it was used for point set registration in

[84], where both the template and the scene are modeled by kernels and their registra-

tion is achieved by maximizing a KC-based similarity measure. KC was also applied

to the stereo vision-based modeling in [86].

When the kernel function is a Gaussian, there are two unique benefits for regis-

tration, i.e., robustness and efficient optimization. First, as stated in [83], Gaussian

kernel correlation (GKC) in rigid registration is equivalent to the robust L2 dis-

tance between two Gaussian mixture models (GMMs). Similarly, it was stated in

[86] that GKC is equivalent to a distance measure between two data sets in the

M-estimator [87]. Second, different from the Maximum Likelihood-based registra-
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Table 2.1: Comparison of the state-of-the-art pose estimation algorithms

Method Database Mesh Accuracy Efficiency CPU/

GPU

Ganapathi et al. Hybrid Yes Yes 100mm 6 fps GPU

CVPR 2010[24]

Baak et al. Hybrid Yes Yes 62mm 60-100fps CPU

ICCV 2011[21]

Shotton et al. Discriminative Yes Yes NA 50 fps CPU

CVPR 2011[20] 200 fps GPU

Ye et al. Hybrid Yes Yes 38mm 0.025 fps CPU

ICCV 2011[25]

Ganapathi et al. Generative No Yes NA 125 fps CPU

ECCV 2012[31]

Taylor et al. Hybrid Yes Yes 37mm 120 fps CPU

CVPR 2012[26]

Wei et al. Hybrid Yes No NA 30 fps GPU

2012 [78]

Kurmankh et al. Generative No No NA 5 fps CPU

2013 [73]

Helton et al. Hybrid Yes Yes 60mm NA CPU

3DV 2013 [77]

Ye et al. Generative No Yes 34mm 30 fps GPU

CVPR 2014[28]

Ding et al. Generative No No 56mm 5 fps CPU

ISVC 2014[29]

Ding et al. Generative No No 41mm 25 fps CPU

WACV 2015[30]
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Figure 2.6: The classification of registration algorithms in generative approaches.

tion using Expectation-Maximization (EM) [80, 81, 82], the closed-form expression of

GKC supports a direct gradient-based optimization which is more efficient and robust.

However, existing GKC mainly considers the case of univariate (isotropic) Gaussian

with two exceptions (to the best of our knowledge). First, SoG was extended to sum

of anisotropic Gaussians (SAG) in [75] where the similarity function was evaluated in

the projected 2D image space. Our previous work [30] studied anisotropic Gaussians

in 3D space and derived a similarity measure between the template and target, rep-

resented by multivariate and univariate Gaussians, respectively. Both of works has

their own limitation, which inspires our work in this dissertation.

2.2.5 Articulated Shape Representation

A good shape model not only captures shape variability accurately, but also facilitates

the data matching efficiently. One of the most widely used shape models is the mesh

surface which can depict the object precisely, but it usually involves a relatively high

computational load and GPU-based implementation is often necessary for real-time

processing [88, 28, 89]. Some other methods use a collection of geometric primitives,

like spheres, cylinders or ellipsoids to render the object surface which is compared

to the observed shape cues for matching [90, 91, 31, 78, 71]. On the other hand,
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statistical parametric shape representations become more and more popular. Early

work in [92] relied on simple 2D blobs. In [93], 230 implicit ellipsoidal metaballs

constituted a body representation to simulate muscles and fat tissues. Moreover,

a set of isotropic Gaussian components [72, 29, 74] and anisotropic ones [30, 75]

are also employed to represent the humanoid body or hand. Compared with the

mesh surface and geometric primitives representations, statistical parametric models

are normally simpler with a lower computational load. It is worth noting that the

geometric representation and parametric one are closely related but different on the

way how the model is involved to compute the cost function during optimization.

The category of human shape representation is shown in Fig. 2.7.

Figure 2.7: The category of human shape representation.

Although many 2D/3D shape representations have been proposed for rigid/non-

rigid objects, to the best of our knowledge only a few shape representations are

amenable to the articulated structure, due to the requirement of an underlying kine-

matic skeleton. In [28, 88], the detailed mesh model is able to be deformed by the

twist-based transformation around the controlling joints for articulated pose estima-

tion. While this method could achieve accurate results with a high computational

load during the template matching, the complex blending between mesh and bones

has to be considered. In [31], an articulated geometric representation was used to es-

timate the human pose by an improved ICP. As a parametric model, the SoG-based
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model was straightforwardly embedded into a human skeleton in [72], and it was

further used in [73, 29, 74] for the articulated human/hand pose estimation.

In this research, we embed a kinematical skeleton into Gaussian kernels and pro-

vide a more general parametric shape representation, which can be composed by a

collection of univariate Gaussian kernels or multivariate ones or even the mixture of

both. The general shape representation has some important advantages. First, it

enables a continuous similarity measure with analytic gradients for efficient optimiza-

tion. Second, its computational complexity is lower considering that fewer Gaussian

kernels are involved. Third, it has better flexibility and adaptability for shape model-

ing by well approximating the elongated limb segments, blocky torso, and the rounded

head. Last but not least, it allows a small variance along the depth direction to match

the relatively flat point cloud data captured by a single depth sensor.

2.2.6 Relationship with Our Research

In this research, we provide a unified framework which generalizes all SoG-based ap-

proaches from the perspective of Kernel Correlation-based registration [84]. Specif-

ically, we extend the Gaussian kernel correlation (GKC) from the univariate case to

the multivariate one and derive a general similarity function between two collections

of arbitrary Gaussian kernels, that is our unified framework is able to handle any

pairwise comparison, including SoG↔SoG, SoG↔GSoG, GSoG↔GSoG, and even

(SoG+GSoG)↔(SoG+GSoG). The last two new cases offer great flexibility and gen-

erality for articulated registration. We also embed a kinematic skeleton into the

Gaussian kernels, leading to a simple yet effective shape representation and a tree-

structured articulated GKC (AGKC) controlled by a group of quaternion-based rota-

tions. Given the input point set represented by Gaussian kernels, pose parameters can

be estimated by maximizing the AGKC between the shape template and the input

data. Compared with the state-of-the-art generative approaches, our pose estima-
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tion is simpler and more efficient with comparable accuracy due to the benefits from

our AGKC-based objective function and fewer computational complexity. Compared

with the discriminative and hybrid methods, our pose estimation does not use any

database for training or querying, and our framework is general and applicable to the

pose estimation of other structures with complex articulation, like hand or articulated

mechanical parts.
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CHAPTER 3

JOINT GAIT-POSE MANIFOLD LEARNING (JGPM)

3.1 Introduction

Human motion modeling is an active research topic in the field of computer vision

and machine learning due to its wide applications, including video-based posture es-

timation for motion analysis, surveillance, and computer animation, robotics, etc.

In video-based posture estimation, due to the high-dimensionality and variability of

the motion data as well as the ambiguity from 2D imaging, it is challenging to recon-

struct the optimal 3D posture in a high dimensional space. Comprehensive reviews on

video-based human motion estimation and analysis are provided in previous surveys

[94, 95, 96]. Most methods rely on a prior motion model learned from training data to

constrain the search in the solution space [97, 98, 99, 100, 101]. In computer graphics

animation, a good motion model is useful to synthesize various realistic poses of dif-

ferent motion types without specifying all of animation frames or degrees of freedom

of a character [102, 103, 104] or to control the nonrigid deformation of skin and cloth

[105]. In this chapter, we are interested in developing a probabilistic manifold-based

motion modeling framework that is able to deal with a variety of walking styles from

different individuals. We also adopt a set of metrics to compare the proposed motion

model with existing ones in terms of the performance of motion modeling using a

validation technique proposed in [106].

It is commonly believed that human motion data from a specific activity lie on

a low dimensional manifold [107]. Recently, various nonlinear dimensionality re-

duction (NLDR) or manifold learning algorithms were proposed to learn a compact

31



low-dimensional motion prior to constrain the solution space for robust and accurate

pose estimation. For example, Local Linear Embedding (LLE) [22] and Isometric

Feature Mapping (Isomap) [48] were applied in [49], [50] for human motion modeling,

where the local geometrical neighborhood among the high dimensional motion data

is preserved in the low dimensional latent space. However, LLE and Isomap provide

neither a probability distribution over the latent space nor a low-dimensional to high-

dimensional mapping function. Some probabilistic NLDR methods, such as Gaussian

Process Latent Variable Model (GPLVM) [52] and its variants [53, 54, 102, 56, 58]

were developed for human motion modeling which provide a low-dimensional latent

space along with a probabilistic mapping.

In NLDR-based human motion modeling, the term of pose manifold was often

used to represent the sequential and cyclic pattern of human gait motion. The idea of

gait manifold was introduced in [59] to represent the variability of different walking

styles from multiple individuals, where dual gait generative models were proposed

for motion modeling, one for visual data and one for kinematic data. The pose

and gait manifolds are used independently to integrate two generative models for

video-based motion estimation. To capture the coupling effect between pose and gait

manifolds, a joint gait-pose manifold (JGPM) was proposed in [23], where a toroidal

structure was employed to unify the pose and gait variables into one latent space and

a two-step learning process was involved. Significant improvements were observed in

[23] over that in [59], showing the benefit of joint modeling of pose and gait in the

same manifold structure. Moreover, it was shown in [106] that JGPM shows promise

compared with other GPLVM-based models in terms of the performance of motion

modeling including motion interpolation, reconstruction, filtering and recognition.

In this research, inspired by the original JGPM in [23], we propose a new one-step

JGPM learning algorithm that is able to jointly optimize the gait and pose variables

simultaneously, leading to a much compact parameter set and a straightforward proce-
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dure. Also, we employ a validation technique [106] to compare our proposed method

with other state-of-the-art methods in terms of the motion modeling performance,

which reveals that our method sustains a comparable performance with the original

JGPM and still be superior to other existing GPLVM-based learning methods.

3.2 Preliminary

Given high dimensional observations, the key issue of human motion modeling is how

to represent the high dimensional data by a general and compact low dimensional

manifold. In this section, we introduce the preliminary background of our research,

including Local Linear Embedding (LLE), Gaussian Process Latent Variable Model

(GPLVM), Gaussian Process Dynamic Model (GPDM), Topologically-constrained

GPDM (LL-GPDM) and the original JGPM.

3.2.1 Local Linear Embedding (LLE)

LLE [22] seek to maintain the local geometrical or linear proximity among the high

dimensional data in the low dimensional manifold. One assumption of LLE is that

each high dimensional data point and its neighbors lie on a locally linear patch on the

low dimensional data manifold. In order to obtain the local geometry of these patches

in low dimensional space, linear coefficients that reconstruct each high dimensional

data point from its neighbors would be computed to characterize the local geometry.

The work procedure could be concluded in three steps, which are illustrated in Fig.

3.1:

1. The K nearest neighbors ηi = {y1, · · · ,yj, · · · ,yK} of each point yi are com-

puted in terms of Euclidean distance in the high dimensional space using dij =

∥yi − yj∥2;

2. The weight matrix W that best reconstruct each data point from its neighbors
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is obtained by minimizing Φ(W) =
∑N

i=1 ∥yi −
∑

j∈ηi wijyj∥2, where wij is an

element of W;

3. Each latent points xi that is best reconstructed by its neighbors according to

the corresponding weights wij is computed by minimizing Φ(x1, · · · ,xN) =∑N
i=1 ∥xi −

∑
j∈ηi wijxj∥2;

Figure 3.1: Algorithm flow of LLE [22].

In LLE, the two minimizations can be computed in a closed form. Particularly,

computing the weight wij can be done by solving the following equation,

K∑
k=1,k ̸=j

Ckjwij = 1 (3.1)

where k, j are the indexes of two neighbors of yi and Ckj = (yi−yk)
T (yi−yj). After

the weight matrix is calculated, each latent point xi can be obtained straightforwardly.

In this way, LLE achieves the task of finding a topology through interconnections

between points in the high dimensional space. However, the mapping between low

dimensional points and high dimensional data can not be developed in the LLE.
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3.2.2 GPLVM, GPDM and LL-GPDM

We first briefly review GPLVM, GPDM and LL-GPDM whose details can be found

in [52, 54, 58]. GPLVM is a probabilistic manifold learning algorithm that can

represent input data Y with a latent space X and can learn a low-dimensional to

high-dimensional Gaussian process mapping. Let Y = [y1, ...,yN ]
T (yi ∈ RD) rep-

resent the high dimensional data in which each row is a single training datum and

X = [x1, ...,xN ]
T (xi ∈ Rd) are corresponding latent points. GPLVM involves a

likelihood function of the data given latent positions

p(Y|X,β) = 1√
(2π)ND|K|

exp

(
−1

2
tr
(
K−1YYT

))
, (3.2)

where K is a N ×N covariance matrix whose entries are defined by the kernel func-

tion, K(i, j) = k(xi,xj). The radial basis function (RBF) is often used as a kernel

function. β denotes the kernel hyperparameters. GPLVM is learned by maximizing

the likelihood in (3.2).

Considering the sequential nature of human motion data, GPDM [54] augments

GPLVM by defining a GPLVM-based latent dynamical model p(X|α) as

p(X|α) =
p(x1)√

(2π(N−1)D|KX |)
exp

(
−1

2
tr
(
K−1

X X2:NX
T
2:N

))
, (3.3)

whereX2:N = [x2, ...,xN ]
T , andKX is the (N−1)×(N − 1) kernel matrix constructed

from X1:N−1 = [x1, ...,xN−1]
T and α is the kernel hyperparameters for KX . GPDM

incorporate a dynamic model as a prior into the latent space, leading to a smooth

trajectory in the latent space which enables to interpolate or predict new motion

data more accurately. It is worth noting that in both GPLVM and GPDM, the

computation of inverse K−1 limits the scalability of this algorithm due to the fact

that the computational complexity ofK−1 grows cubically with the number of training

data.

To model different motion activities (“walking” and “runing”) in the same latent

space, LL-GPDM [58] incorporates a LLE energy function p(X|W) in GPDM to
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encourage a cylinder-shaped latent structure. Specifically, a predefined topological

constraint is involved based on a neighborhood relationship learned via LLE. W is a

weight matrix derived from the LLE, and LL-GPDM is learned by maximizing the

posterior that is defined as

p(X,α,β|Y,W) ∝ p(Y|X,β)p(X|α)p(α)p(β)p(X|W), (3.4)

where p(X|W) is involved as a topology prior, p(α) and p(β) are prior models for

hyperparameters. LL-GPDM formulates a topological constraint and imposes it into

GPDM framework. Although multiple motion types are embedded into one latent

space, only one variable, i.e., pose, can be explicitly characterized. It is conceivable

that an additional topology prior to order these pose manifolds may be helpful to

reveal the underlying data structure across all walking/running cycles.

3.2.3 Original JGPM

Given a set of gait motion data from different individuals, the pose and gait are two

essential variables for motion modeling. To unify the pose and gait variables into

one latent structure, a joint gait-pose manifold (JGPM) was proposed in [23]. Due

to the cyclic nature of the walking motion, the pose variable has a circular manifold.

Since human gaits can not have huge dissimilarity, the author in [23] assume that the

gait manifold is also a closed-loop structure. Consequently, a toroidal structure was

employed as a topology constraint for the manifold learning, where a big horizontal

circular shape in the torus represents a pose-specific gait manifold and a small vertical

circular shape is a gait-specific pose manifold, as shown in Fig. 3.2.

In [23], three versions of JGPM with different levels of constraint were proposed,

i.e., torus-based (JGPM-I), torus-constrained (JGPM-II) and torus-like (JGPM-III).

JGPM-I employed an ideal and rigid torus structure and its learning process becomes

a regression, where a two-way RBF mapping is involved. The manifold structure in

JGPM-I cannot be adjusted because there is no consideration of the influence from

36



Pose

ManifoldGait

Manifold

Gait 1

Gait 4

Gait 3

Gait 2

Gait 5

Figure 3.2: A toroidal structure for JGPM where the vertical and horizontal circles

represent pose and gait manifolds, respectively [23].

training data. The JGPM-II still conform to an ideal torus. Initialized by a torus

structure, JGPM-II optimized two angular variables which represent the pose and

gait variable respectively so that an optimal latent space can be achieved. However,

the JGPM-II still too rigid to reflect the underlying data structure.

JGPM-III encourages the manifold as a torus-like structure in 3D latent space

through a two-step Gaussian Process-based learning, by which the JGPM can bal-

ance the effects from the rigid topology constraint and the intrinsic data-driven struc-

ture. The first step is to learn the pose manifold for each gait separately via GPDM,

resulting in a set of local pose models. Then, these local pose models are aligned

together to form a torus-like structure by GPLVM that optimizes a set of rigid trans-

forms (including rotation and translation parameters) according to the gait manifold

topology among all training gaits. Although the torus-like JGPM has more freedom

to reflect the intrinsic data structure, the two-step GP learning process is computa-

tionally expensive and not straightforward. Moreover, the pose and gait variables are

optimized separately in two latent spaces. In this research, we consider the coupling

effect between pose and gait manifold and optimize these two manifolds in one latent

space simultaneously.

37



3.3 Proposed JGPM

In this section, we propose a new JGPM learning algorithm by jointly optimizing

four variables in the same latent space. Then, we employ a validation technique [106]

to compare our propose JGPM with existing GP-based learning methods in terms of

their capability of motion interpolation and filtering.

3.3.1 Toroidal Topology

In [23], a toroidal structure was used to learn JGPM. Specifically, a latent point on

the torus surface belongs to a pose manifold for a specific gait (a vertical circle),

meanwhile, it also belongs to a gait manifold at a specific pose (a horizontal circle).

In the polar coordinate system, a torus can be parameterized by four variables p, g ∈

[0, 2π) and R, r, which represent two angular variables pose, gait, as well as two radius

values of the horizontal and vertical circles respectively. Hence, each latent point on

the torus surface can be uniquely defined by x(p, g, R, r) = [t
(p,g,R,r)
x , t

(p,g,R,r)
y , t

(p,g,R,r)
z ]T

as

t(p,g,R,r)
x = (R + r cos(p)) cos(g),

t(p,g,R,r)
y = (R + r cos(p)) sin(g), (3.5)

t(p,g,R,r)
z = r sin(p).

The four torus-related variables are shown in Fig. 3.3, where each latent point

x(p, g, R, r) corresponds to a high dimensional data point y(i,j) which is the Euler

angles of all body joints in the ith pose and jth gait. The topology of JGPM can be

determined by the same method used in [23], and all latent points are initialized to

be uniformly distributed on the torus surface along both angular variables. Next, we

will integrate this toroidal topology constraint into a GPLVM-based energy function

and develop a one step learning algorithm.
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Figure 3.3: The illustration of pose, gait, R and r variables on JGPM.

3.3.2 One-step JGPM Learning

Extended from LL-GPDM [58], we develop a one-step learning algorithm for JGPM,

where both gait and pose variables are involved. With the help of the constructed

toroidal topology above and LLE, we can incorporate a specific prior into a GPLVM-

based learning framework. Different from the original LLE, where the local linear

neighborhood of high dimensional data was preserved in the low dimensional manifold,

we aim to maintain the neighborhood of a specific low dimensional structure so that

the manifold could resemble our prior. To this end, instead of finding the K nearest

neighbors in the high dimensional data, we first define a set of adjacent points ηi =

{x1, · · · ,xj} for each latent point xi on the torus. In this work, we select 10 nearest

neighbors for each latent point as shown in Fig. 3.4. Then, to apply the toroidal

topology, we construct the covariance matrix in LLE based on the prior structure and

corresponding neighboring relationship. Given a latent point xi = [tx(i), ty(i), tz(i)]
T

and its any two neighbors xj,xk, the corresponding covariance matrix element Ci(j, k)
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Figure 3.4: 10 Nearest Neighbors of each point on the surface of torus.

in each dimension is specified as

Cx
i (j, k) = (tx(i)− tx(j))

T (tx(i)− tx(k)),

Cy
i (j, k) = (ty(i)− ty(j))

T (ty(i)− ty(k)), (3.6)

Cz
i (j, k) = (tz(i)− tz(j))

T (tz(i)− tz(k)),

Then the weight matrix W in each dimension can be computed by solving the fol-

lowing equations

K∑
k=1,k ̸=j

Cx
i (j, k)w

x
ij = 1,

K∑
k=1,k ̸=j

Cy
i (j, k)w

y
ij = 1, (3.7)

K∑
k=1,k ̸=j

Cz
i (j, k)w

z
ij = 1,

where Cx
i (i, j), C

y
i (i, j), C

z
i (i, j) are defined in (3.6). Note that the weights W should

be different for each dimension according to their corresponding covariances. Given

the weight matrix W, we have the LLE energy function p(X|W) as

p(X|W) =
1

Z
exp{− 1

σ2

N∑
i=1

∥xi −
∑
xj∈ηi

wijxj∥2}, (3.8)
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where xi represents the ith latent point, ηi is the collection of all neighbors of xi, wij

is an element of the weight matrix W, σ2 is a scaling term and Z is a normalization

term.

During the learning process, p(X|W) is defined as the topology prior that en-

courages latent points distributed as a toroidal structure. In other words, p(X|W)

is larger when the latent points are closer to their prior distribution specified in W.

Then the learning process is to maximize the following posterior probability in terms

of Π = {p1, g1, R1, r1}, · · · , {pN , gN , RN , rN}, which represent the parameters of all

the latent points,

Π̂ = argmax
Π

p(Y|X(Π),β)p(X(Π)|α)p(α)p(β)p(X(Π)|W) (3.9)

where the first four terms are defined in GPDM, i.e., p(Y|X(Π),β) is the likelihood

function, p(X(Π)|α) is the dynamic prior, p(α) and p(β) are the hyperparameters

for prior models.

We use the scaled conjugated gradient (SCG) optimization method to optimize the

variables and other hyperparameters. Using this one-step GPLVM-based learning, we

can obtain a new structure-guided JGPM, where latent points do not exactly conform

to the ideal torus so that it can balance the intrinsic data structure with the topology

constraint, and which is similar to the torus-like JGPM in [23] with a much lower

complexity and higher training efficiency.

3.3.3 GPLVM-based Motion Model Validation

Given a set of noise-free training data, a GPLVM-based motion model learns a latent

space including a prior motion model and a mapping between latent points and the

high dimensional motion data. The well-trained motion model has the capability to

explain the high dimensional motion data or to interpolation new motion data from

a latent point. For example, a noisy input can be “projected” into the noise-free
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latent space to find the best explanation that leads to a filtered motion sequence.

The better model we learn, the more accurate filtering it has. Therefore, all GPLVM

algorithms can be evaluated in the same way to compare their capability of handling

various motion analysis tasks, including interpolation, reconstruction, filtering, and

recognition. Specifically, interpolation is to synthesize a new motion sequence for an

unknown subject (not from the training subjects); reconstruction is to recover full-

body motion from partial one; filtering is to denoise noisy motion data from either a

new unknown subject and a known training subject, and recognition is to recognize

the identity from the underlying noisy motion data. Given a noisy input motion

sequence {k1, · · · ,kT}, our goal is to estimate the latent points {x1, · · · ,xT} and

their corresponding kinematics {y1, · · · ,yT} that maximizes the posterior probability

defined as

p(yt,xt|kt) ∝ p(kt|yt)p(yt|xt,MGP )p(xt|MGP ), (3.10)

where MGP is the learnt model. The first term p(kt|yt) in equation (3.10) is the

likelihood that measures the dissimilarity between testing and estimated kinematics

using

p(kt|yt) = exp(−f(kt,yt)

σ2
), (3.11)

where σ2 controls the sensitivity of evaluation and f(�) is a dissimilarity measurement

that indicates the degree of mis-match between two sets of motion data. According to

[52, 54], the second term p(yt|xt,MGP ) represents the likelihood of the corresponding

kinematics given a latent position, and it is defined as a Gaussian function of xt, that

is, N (yt|µY (xt), σ
2
Y (xt)) where,

µY (xt) = YTK−1
Y kY (xt), (3.12)

σ2
Y (xt) = kY (xt,xt)− kY (xt)

TK−1
Y kY (xt), (3.13)

The third term p(xt|MGP ) is the prior probability of latent position xt given the

learnt latent space. This term could be a dynamic prior. For example, in the GPDM,
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p(xt|MGP ) is defined as a Gaussian model N (xt|µX(xt−1, σ
2
X(xt−1)I) to characterize

the dynamic model. More details of model validation techniques can be founded in

[106]. This validation process is applied to all the GPLVM-based motion modeling

algorithms in the following experiments.

3.4 Experimental Results

In this section, we report our experimental results in two parts. First, we compare

five existing GPLVM-based algorithms, i.e., (1) GPLVM [52], (2)BC-GPLVM [53],

(3) GPDM [54], (4) SB-GPDM [55, 56], (5) LL-GPDM [58] and the original JGPMs

[23] with our proposed JGPM qualitatively through visualizing their latent space.

Second, we perform motion model validation to compare them quantitatively in terms

of a series motion analysis tasks. We implemented these GPLVM-based algorithms

and the validation methods in Matlab with the reference code provided by Dr. Neil

Lawrence.1

3.4.1 Experiment Setting

We chose 20 walking sequences (performed by 16 subjects) from the CMU Mocap Li-

brary [34] as the original training data, each of which contains 30 poses downsampled

from about 130 frames in one walking cycle. Each pose is composed by 18 joints,

including lower/upper back, neck, left/right femur, tibia, foot, humerus, radius, wrist

and thorax, as well as head. The reason we chose 30 poses in one walking cycle is that

involving more poses dramatically increases the computational complexity during the

learning process, and more sparse training data could corrupt the smoothness in the

latent space which is essential for the meaningful and realistic motion synthesis.

1http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/software.html
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3.4.2 Latent Space Comparison

We compare eight GPLVM-based models by showing the volumetric representation of

their latent spaces in Fig. 3.5 where the color variation indicates the prediction con-

fidence. Ideally speaking, a low dimensional latent space should reflect the intrinsic

data structure in an intuitive and meaningful way, and a well-organized, smooth and

compact manifold structure is usually preferred for human motion modeling. Since

the GPLVM and BC-GPLVM were not originally designed for sequential data, their

latent spaces were not very organized and smooth. Although GPDM and SB-GPDM

integrate a dynamic latent model and show more meaningful motion trajectories, they

still cannot to collectively represent multiple gaits in a unified way. LL-GPDM has

a relatively well-defined cylinder-shaped manifold structure, where it only represent

the pose manifold explicitly and treats the motion type variable implicitly. Among

JGPMs, both JGPM-I and JGPM-II have an ideal torus while the former one in-

volves a deterministic mapping relationship and the latter one is a probabilistic GP

model. As we expected, the latent spaces of our new JGPM is much more organized

and smoother. Deriving from ideal structures, the positions of latent points in the

proposed JGPM are changed during the learning process to better reflect the high

dimensional data and their neighboring relationship. Additionally, larger prediction

confidence exists along the structure surface, implying better capability of motion

interpolation and pose estimation. By comparing the new JGPM with the cylinder-

shape latent structure of LL-GPDM, JGPM provides a better organized manifold

structure to reflect both the commonality and variability of multiple gaits.

3.4.3 Quantitative Comparison

We quantitatively evaluate and compare nine advanced GPLVM-based algorithms in

terms of the capability of unknown data representation (interpolation) and noisy data

filtering through the model validation process mentioned in 3.3.3. We use the same
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Figure 3.5: Volumetric visualization of prediction confidence variances in latent

spaces; warmer colors, (i.e., red) depict lower variance.

kinematic training data as employed in the latent space comparison, including 20 dif-

ferent gaits from CMU Mocap Library. To collect the testing data, we selected 20 new

motion sequences, among which ten are from known subjects (the same with train-

ing subjects, but from different walking cycles) and the other ten are from unknown

subjects.

Motion Interpolation: To examine the data representation / synthesis capa-

bility, we chose ten unknown subjects as the test data and employed the validation

method to interpolate new motion sequences from each of trained motion model. We

computed the averaged 3D joint position errors (mm) between the estimated results

and ground truth ones. The interpolation results are illustrated in Fig. 3.6. It is

shown that the new JGPM provides the best performance that is comparable to the

JGPM-III. BC-GPLVM, GPDM and B-GPDM are better than GPLVM due to the

back-constraints or dynamic model involved. Because of the topology constraints,

LL-GPDM further improves the results, but it is still surpassed by JGPM-II, JGPM-

III and the proposed JGPM, showing the advantage of coupling the pose and gait

variables into one manifold.

Motion Filtering: We used all 20 test sequences (10 unknown subjects and 10
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Figure 3.6: Comparison results of motion extrapolation, (1) GPLVM, (2) BC-

GPLVM, (3) GPDM, (4) B-GPDM, (5) LL-GPDM, (6) JGPM-I, (7) JGPM-II, (8)

JGPM-III, (9) the proposed JGPM.

known ones) to generate three types of noisy ones by adding different additive white

Gaussian noise (AWGN), whose variances are 5%, 10% and 15% of frame-wise joint

angle variation in a walking cycle. Then, we employ each trained model to filter the

noisy motion data by the validation method. To verify the filtering effect, we visualize

the results of our JGPM by stick man, as shown in Fig. 3.7, where we can observed

that the estimated (filtered) results are closer to the original test skeleton (ground

truth) than the noisy data.

Also, we show the filtering results of all trained models for known and unknown

subjects respectively in Fig. 3.9 and 3.10, where we can observe that the proposed

JGPM obtain the most competitive results for both known and unknown subjects.

3.5 Discussion

We have presented a new JGPM for human motion modeling that unifies the gait

and pose variables into one latent structure. Compared with the original JGPM

which is learned by a two-step learning process, a more straightforward one-step
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Figure 3.7: Visualization of the stick man for filtering experiment. The green points

is the original test data; the red points represent the noisy data (noise level 10%) and

the blue points is the filtering results.

GPLVM-based learning algorithm is developed in this chapter. Also, since less hy-

perparameters are involved, the computational complexity is considerably reduced,

which makes it possible for large scale learning. Experimental results show that our

proposed JGPM has the superior performance for motion interpolation and filtering

compared with the existing GPLVM-based algorithms as well as the original JGPM-I

and JGPM-II and it is comparable with JGPM-III in the numerical results.

One may doubt the validity the toroidal manifold prior for learning JGPM. Al-

though the circular ordered nature of the pose manifold is easy to understand, that

of the gait manifold is rather heuristic and driven by a few practical considerations.

First, all human gaits are alike with, and a closed gait manifold is more plausible

than an open one which implies some very dissimilar gaits. Second, a closed struc-

ture is preferred to provide a uniform neighborhood distribution and a continuous

latent space which facilitate the learning and inference process. Third, the circular

structure is a heuristic simplification that eases the learning and inference with the

least number of free-parameters. Particularly, a “shortest-closed-path” technique was

proposed in [23] to order all training gaits according their pair-wise similarities, lead-

ing to a smooth gait manifold where the similar gaits are clustered together while

the dissimilar ones are separated. In summary, JGPM balances the toroidal mani-
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fold prior and the intrinsic data structure, leading to a physically meaningful latent

space as shown in Fig. 3.3 (a), where the manifold deviates from the ideal toroidal

structure after learning. To further reflect its capability of reflecting the inherent

data structure, Fig. 3.3 (b) compares the radii of all the pose manifolds with the

dynamic variation of each individual gait along the gait manifold. It is observed that

the radii of pose manifolds are highly related to the dynamic variation of correspond-

ing gaits and they also show a smooth transition and the expected clustering effect

along the gait manifold. we will compare the closed “toroidal” structure with an open

“cylindrical” structure in Chapter 4.

(a) (b)

Figure 3.8: (a) The illustration of a trained JGPM in the 3D latent space. Each blue

point represents one training sample. (b) The comparison of pose manifold radii and

the corresponding gait dynamic variation.
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Figure 3.9: Comparison results of noisy filtering for known subjects, (1) GPLVM, (2)

BC-GPLVM, (3) GPDM, (4) B-GPDM, (5) LL-GPDM, (6) JGPM-I, (7) JGPM-II,

(8) JGPM-III, (9) the proposed JGPM.
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Figure 3.10: Comparison results of noisy filtering for unknown subjects, (1) GPLVM,

(2) BC-GPLVM, (3) GPDM, (4) B-GPDM, (5) LL-GPDM, (6) JGPM-I, (7) JGPM-

II, (8) JGPM-III, (9) the proposed JGPM.
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CHAPTER 4

MULTI-LAYER JGPM

4.1 Introduction

In this chapter, we aim to develop a probabilistic manifold-based motion modeling

framework that is able to deal with more walking styles not only from different in-

dividuals, but also with different strides while using the same training dataset with

JGPM. Although it was shown in Chapter 3 that our new JGPM achieves promis-

ing results compared with other GPLVM-based models in terms of the performance

on motion interpolation and noisy motion filtering, JGPM may not be applicable

to complex gaits with different strides due to the limited training data. Also, just

like traditional GPLVM algorithms, learning JGPM is computationally expensive and

cannot be scaled up to a large training dataset. In this chapter, we propose a new

multi-layer manifold model [108, 109] that is capable of dealing with a variety of

walking styles and various strides. Also, we aim to learn the model efficiently from

limited training data.

Two new ideas are proposed. The first one is training data diversification that cre-

ates a series of simulated training gaits with different strides from a limited training

dataset. This idea is inspired by several bio-mechanical experiments [35, 36, 37, 38],

which reported that the human gait is left-right symmetrical and there exists certain

proportional relation between limbs swinging to keep energy efficiency. The second

one is topology-aware local learning that extends the stochastic gradient descent al-

gorithm in [39] by only involving local neighbors according to the topology prior for

model learning. Furthermore, we discuss two topological priors for coupling the pose
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and gait manifolds in the latent space, cylindrical and toroidal, to examine their effec-

tiveness and suitability for human motion modeling. The experiments demonstrate

that our proposed both multi-layer JGPMs have great flexibility and capability of

representing a wide ranges of gaits with very different strides compared with the sin-

gle layer JGPM and other GPLVM-based methods. Moreover, it is interesting to find

that the toroidal prior is slightly better than the cylindrical one in our study. We

believe it is mainly due to the fact that the closed nature of the toroidal structure

supports a uniform neighborhood structure along the manifold which in turn facili-

tates learning and inference. It is worth noting that our motion modeling algorithm

is not limited to human gait data only, but it could also be applied to other kinds of

data, like hand-written digits and face expression.

4.2 Multi-layer JGPM

4.2.1 Motivation

Fig. 4.1 shows a latent space with two circular-shaped concentric manifolds learned

by GPLVM from a dataset of two rotated hand-written digit series with different sizes.

This example shows a simple two-layer structure in the latent space, which inspires us

to introduce a multi-layer manifold structure for human motion modeling. It is easy

to view Fig. 4.1 from the perspective of Principal Component Analysis (PCA). The

two image subsets that have the same rotated digits at two different scales should

have similar eigenvectors used to span the low dimensional space. The radius of the

circular-shaped manifold is represented by the magnitude of the data projection on

the first two eigenvectors, and it is proportional to the standard deviation of the high

dimensional data. In this work, we will explore this multi-layer manifold learning idea

in the context of complex human gait modeling, where our objective is to enhance

the representativeness and diversity of the motion model.
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Figure 4.1: Two approximately circular manifold of the rotated digits dataset are

learned by GPLVM in a 2D latent space. The inner and outer circular structure

(green and red) represent the smaller and larger rotated digits, respectively.

4.2.2 Training Data Diversification

Intuitively, including more diverse walking styles as the training data is helpful to

enhance the flexibility of general motion modeling. However, it may not be practical

to collect a large motion dataset from many subjects, and it would be practically

useful if we can generate more simulated motion data from a limited training set.

Given a set of body joints defined by a skeleton model, human motion data are

usually represented by the 3D positions or 3D Euler angles at each joint. Especially,

the latter representation can directly reflect the motion range of each body segment

during a gait. Inspired by some biomechanics evidences [35, 36, 37, 38], it is intriguing

to use multiple scaling factors to diversify the training data by adjusting the standard

deviation while maintaining the mean of Euler angles at each joint, by which a multi-

layer manifold could be learned to represent a variety of walking styles with diverse

motion ranges.

One major assumption behind this motion scaling idea is that a new gait can be

approximated by a training gait by scaling the dynamic range of Euler angles at each

joint. Although this assumption is worth further scrutiny, we will take this idea to

diversify the original training data in order to learn a more flexible motion model.

Let y
(k)
u,v represents a 3D Euler angle vector including three rotations, i.e., pitch, yaw
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and roll, where u, v denote uth pose in vth gait sequence and k is the bone joint index.

The new simulated motion data y
(k)
u′,v′ is generated by

y
(k)
u′,v′ =

1

n

n∑
u=1

y(k)
u,v + s ·

(
y(k)
u,v −

1

n

n∑
u=1

y(k)
u,v

)
, (4.1)

where n is the number of poses in a gait sequence and s is the scaling factor. In

practice, it was found that a scaling factor between (0.3-1.5) can lead to a realistic

looking gait. Fig. 4.2 (top three rows) shows two motion scaling examples, where

two scalars, 1.25 and 0.5, are used to create two scaled gait sequences, and the

corresponding 2D latent spaces generated by Back Constraint GPLVM [53] and PCA

are shown in Fig. 4.2 (a) and (b). The two latent spaces reveal some interesting

relationship between the motion ranges and the radii of pose manifolds, i.e., a wider

motion range results in a larger radius of the learned pose manifold, vice versa. As

shown by latter experiments, this simple yet effective way can multiply a limited

training dataset with more diversity and variability.

4.2.3 Multi-layer Structures

While the toroidal and cylindrical structures are two heuristic designed prior, they

are simple yet physically meaningful, and helpful to organize the latent space, which

makes the inference more accurate. Correspondingly, we introduce a three-layer

toroidal and a three-layer cylindrical structure as shown in Fig. 4.3 (a) and (b) as new

topology priors to initialize the multi-layer JGPMs. The outer layer represents the

motion data which have a larger range (e.g. scalar 1.25); those with a smaller range

(e.g. scalar 0.4) are embedded into the inner layer; the middle layer represents the

original motion data. Hence, every initial point indexed by (p, g, s) on the toroidal
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Figure 4.2: Illustration of the scaled motion and two latent spaces generated by

GPLVM with back constraint and PCA respectively.

structure can be uniquely defined by a 3D coordinate [t
(p,g,s)
x , t

(p,g,s)
y , t

(p,g,s)
z ]T as

t(p,g,s)x = (R + r(s) cos(α)) cos(β),

t(p,g,s)y = (R + r(s) cos(α)) sin(β), (4.2)

t(p,g,s)z = r(s) sin(α),

where p, g, s are the indexes of pose, gait and scale; α and β are two angular values

corresponding pose p of gait g. R and r(s)(s = 1, 2, 3) are the radii of one horizontal

(along the gait manifold) and three vertical circles (along three pose manifolds). In

cylindrical structure, the gait manifold is a open-loop line structure. Similarly, every
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initial point is defined by a 3D coordinate [t
(p,g,s)
x , t

(p,g,s)
y , t

(p,g,s)
z ]T as

t(p,g,s)x = r(s) cos(α),

t(p,g,s)y = δ · g, (4.3)

t(p,g,s)z = r(s) sin(α),

Different with toroidal structure, the coordinate t
(p,g,s)
y is represented by δ (the interval

of two adjacent gaits) multiplying the index of gait g. Empirically, the interval is

defined as 0.5 for example considering the radius of middle layer circle is 1. For the

convenience in the subsequent section, without special statement, we will not show

the equations of cylindrical structure version separately due to its similarity with the

toroidal structure version.

This three-layer structure will be used to initialize the multi-layer JGPM. The gait

topology of each layer (the ordering relationship of all training gaits, i.e., g variable) is

computed by classical traveling salesman problem in the close-loop toroidal structure

or by shortest path problem in the open-loop cylindrical structure, respectively. We

re-order the training gait according to the gait topology to make sure similar training

gaits are close to each other, vice versa.

One thing worthy discussing is the comparison of toroidal and cylindrical struc-

ture, both of which capture the essential variables for the human motion modeling,

i.e., pose and gait. The differences between the two latent structures are the pattern

of gait variable. Toroidal structure utilities a close-loop structure considering the

intrinsic similarity among all human gaits, that is none of two gaits are extremely dif-

ferent. On the other hand, the structure prior of gait manifold could not be limited

to closed-loop. We further test the open-loop cylindrical structure and its corre-

sponding cylindrical JGPM. Observed from our experimental results in Section 4.4,

the toroidal JGPM achieves slightly better performance than the cylindrical JGPM.

The main reason could be the absence of training gaits and the limited neighborhood
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Figure 4.3: (a) A three-layer torodial structure as a topology prior. (b) A three-layer

torodial structure as a topology prior.

configuration at the two ends of the cylindrical structure, which have some effects on

the model learning. On the contrary, the toroidal structure does not confront the two

limitations above due to its close-loop property. Additionally, the toroidal structure

could be more suitable for the video-based motion estimation through sampling in

the trained latent space.

4.2.4 LLE-based Topology Constraint

After constructing the multi-layer structures, we need to incorporate these specific

topology priors into a GPLVM-based learning framework. It is worth mentioning first

that the topology constraints method is suitable for both toroidal and cylindrical
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Figure 4.4: Neighborhood configurations in the topology constraint for a reference

point (red cross) on (a) inner layer (b) middle layer (c) outer layer. Different colors

mean the neighbors are from different layers.

structure. Different from the original LLE method, where the local neighborhood

relationship of input data was preserved in the manifold, our aim is to maintain

the neighborhood of a specific latent structure so that the learned manifold could

resemble our topology prior. Therefore, instead of finding the K nearest neighbors

in the data, we first define a set of adjacent points {xj}j∈ηi for each point xi, where

ηi is the collection of all neighbors for the ith point. To preserve both the topological

structure within a layer and across layers, ηi should include some within-layer and

cross-layer neighbors. Specifically, for a given point xi, ηi = {ϕ(i)
1···m, ψ

(i)
1···n} which

store the indexes of m within-layer and n cross-layer neighbors. The basic principle

of neighbor selection is that we expect to have a stronger within-layer constraint than

the cross-layer one, i.e., m > n. Fig. 4.4 shows an example of neighbors collection

for one reference point.

In LLE, the definition of covariance Cjk = (yi − yj)
T (yi − yk) with j, k ∈ ηi

is used to compute the wight matrix W in high dimensional space. To reflect the

prior knowledge, i.e., the multi-layer toroidal/cylindrical topology, we specify a unique

covariance matrix for each latent dimension using the coordinates of latent points in
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(4.2):

Cx
jk =

(
t(pi,gi,si)x − t(pj ,gj ,sj)x

)T (
t(pi,gi,si)x − t(pk,gk,sk)x

)
,

Cy
jk =

(
t(pi,gi,si)y − t(pj ,gj ,sj)y

)T (
t(pi,gi,si)y − t(pk,gk,sk)y

)
, (4.4)

Cz
jk =

(
t(pi,gi,si)z − t(pj ,gj ,sj)z

)T (
t(pi,gi,si)z − t(pk,gk,sk)z

)
,

where j, k ∈ ηi. (pi, gi, si), (pj, gj, sj), and (pk, gk, sk) are indexes of xi, xj and xk,

respectively, from which we can find the 3D coordinates of three points according

to (4.2). To compute wi in each dimension, i.e., {w(τ)
i |τ ∈ (x, y, z)}, we solve the

following equations:

∑
k

Cx
jkw

x
j = 1,∑

k

Cy
jkw

y
j = 1, (4.5)∑

k

Cz
jkw

z
j = 1,

where Cx
jk, C

y
jk, C

z
jk are defined in (4.4), and then normalize the weight vector . Given

the whole weight matrix W, which is comprised by w
(τ)
i , where i = 1, ..., N and

τ ∈ (x, y, z), the LLE energy function p(X|W) is defined as

p(X|W) ∝
∏

τ∈(x,y,z)

exp{− 1

σ2

N∑
i=1

∥x(τ)
i −

∑
j∈ηi

w
(τ)
ij x

(τ)
j ∥2}, (4.6)

where x
(τ)
i represents a coordinate of xi along dimension τ , w

(τ)
ij is an element of w

(τ)
i

and σ represents a scaling term. Using the energy function above, we can incorporate

the topology constraint into the LL-GPDM learning framework defined in (3.4) to

encourage the manifold to resemble the topological prior.

4.3 Topology-aware Local Learning

Traditional GPLVM-based learning algorithms struggle to learn a model from a large-

scale dataset, because the computation complexity grows cubically with the number
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of training samples. Here we seek to a fast and effective GPLVM-based local learn-

ing algorithm for the diversified training data, which is termed as Topology-aware

Local Learning. This Topology-aware Local Learning is general to various topology

structures, including toroidal and cylindrical structure.

GPLVM is learned by maximizing the likelihood in (3.2), which is equivalent to

minimize the negative log likelihood

L = −lnp(Y|X, β)

= −DN
2

ln(2π)− D

2
ln|K| − 1

2
tr
(
K−1YYT

)
, (4.7)

To minimize L, the gradient of L with respect to X is computed as

∂L
∂X

=
∂L
∂K

· ∂K
∂X

= −
(
K−1YYTK−1 −DK−1

)
· ∂K
∂X

, (4.8)

where K is the N × N kernel matrix, where N is the number of training data. The

computation complexity of K−1 is O(N3), which considerably limits the application

of GPLVM for large-scale training dataset. The main idea of existing sparsification

techniques [110, 111, 112, 113] is to reduce the dimensionality of the kernel matrix

K. Inspired by [39], where a stochastic gradient descent algorithm for the GPLVM

was proposed, we develop a similar strategy to iteratively approximate the gradient

by using a small number of local samples, which supports efficient multi-layer JGPM

learning.

Compared with the standard GPLVM algorithm, where all the training samples

are taken into account at the same time to compute the gradient, our local learning

algorithm involves only a small number of training examples at one time to approx-

imate the gradient locally. First, a reference point xl is selected randomly and a

neighborhood XL centered at xl is defined. Then, all the points in the neighborhood

XL are used to compute the local gradient for updating the latent variable X locally

and the kernel parameters. The local gradient can be represented only by the points
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within the neighborhood

∂L
∂XL

= −
(
K−1

L YLY
T
LK

−1
L −DK−1

L

)
· ∂KL

∂XL

, (4.9)

where KL is the kernel matrix for XL, YL is the corresponding motion data in the

neighborhood andD is the dimensionality of motion data. Because the dimensionality

of KL is small, the computation cost is rather low. Different with [39], there are two

special treatments for the local learning in this work. The first one is the integration

of our multi-layer topology into the GPLVM-based learning framework, and the other

is topology-based neighborhood selection. To incorporate the topology constraints,

we use p(XL|WL) from the LLE energy function in (4.6) to express the local topology

constraint, where WL is the corresponding weight matrix of latent points within the

neighborhood. Every time we randomly choose a latent point as the reference point

and repeat the above local gradient operation to optimize one patch of the model with

respect to the maximum a posteriori probability (MAP). The posteriori probability

is defined as

p(XL,α,β|YL,WL) ∝ p(YL|XL,β)p(XL|α)p(α)p(β)p(XL|WL). (4.10)

In each iteration, the computational complexity is O(M3) for the local learning

process, compared with O(N3) for the original full learning, where M (the number

of local neighbors)is far less than N (the number of training data). After sufficient

iterations, all the latent points may have been updated many times and the multi-layer

JGPM is optimized. Next, we will further discuss our treatment for the neighborhood

selection.

In [39], a neighborhood selection strategy of subsampling k neighbors from a larger

neighborhood was suggested for allowing sufficient coverage of the latent space. As

pointed by the authors, this method may not maintain the neighborhood configu-

ration. In our case, this subsampling method is not suitable as it may interrupt

the continuity of latent variables and the layered structure in the multi-layer JGPM.
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Thus we have two special considerations for neighborhood selection. First, both

within-layer and cross-layer neighbors are involved during the learning process rather

than learning each layer separately. Second, because of the given toroidal/cylindrical

structure, we can pre-compute a set of neighbors to have sufficient coverage of the

latent space, at the same time, to avoid the situation that the gradient estimations

are too local to capture the global structure of the latent space. Note that this neigh-

borhood selection for the local learning is different with the neighborhood choosing

for the LLE-based topology constraint in Sec. 4.2.4.

Figure 4.5: Topology-aware neighbor selection for local learning at three locations (a,

b, c) in the middle layer: a reference point (in red cross) and its neighbors (in green,

magenta and cyan).

To have a trade-off between a sufficient coverage in the latent space and a rea-

sonable computational load, we select no more than 10% of the total training data

points according to the Euclidean distance given the multi-layer structures to de-

termine the neighborhood for each reference point. This topology-based neighbor

selection will lead to a topology-aware local learning process that ensures the learned

manifold structure complies with the topological prior. Fig. 4.5 exhibits that for a

exemplificative point (in red cross) in the middle layer, neighbors (in green, magenta

and cyan) with different pose/gait/scaling indexes are included in its neighborhood.

This reveals that both the within-layer and cross-layer constraints are involved during

the topology-aware local learning.
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4.4 Experimental Results

In this section, we evaluate the proposed multi-layer JGPMs by comparing it with

the single-layer JGPM introduced in Chapter 3 and LL-GPDM [58] in terms of three

aspects, i.e., latent space illustration, quantitative model validation and qualitative

motion synthesis.

4.4.1 Experiment Setting

We chose 20 walking sequences from the CMU Mocap Library [34] as the original

training data, each of which contains 30 poses downsampled from one walking cycle.

Without loss of generality, we consider two scaling factors (0.4 and 1.25) to triple the

size of training data according to the training data diversification as defined in (4.1).

Then we have 60 gaits (scaled from 20) and each gait includes 30 poses, that is there

are 1800 data points in the three-layer JGPM.

For the LLE-based topology constraints, considering the computation complexity,

we select 16 (10 from within-layer and 6 from cross-layer) neighbors for a reference

point as shown in Fig. 4.4. For a point on the middle layer, 3 cross-layer neighbors

are selected from each of the outer and inner layers. For a point on the outer layer,

6 cross-layer neighbors are from the middle layer only, while for a point on the inner

layer, 6 cross-layer neighbors are from the middle layer only. In topology-aware local

learning, we select 120 nearest neighbors for each reference point.

4.4.2 Latent Space Illustration

First, we compared the multi-layer JGPM with JGPM and LL-GPDM by illustrating

the volumetric representation of their latent space in Fig. 4.6, where the color indi-

cates the prediction confidence (the warmer colors, the higher confidence of motion

reconstruction). LL-GPDM has a cylinder-like latent structure, but it only represents

the pose manifold explicitly and treats the gait variable implicitly. Both JGPM and

62



multi-layer JGPM achieved a smooth, compact and physically meaningful latent space

that is expected for the human motion modeling. From the cross-section view, it is

obvious that multi-layer JGPM has larger high-confidence areas than the other two,

implying its more general motion modeling capability. It is expected that multi-layer

JGPM is more flexible and robust for motion synthesis and pose estimation. Next, we

will evaluate the multi-layer JGPM in terms of motion interpolation, reconstruction

and filtering, where both the “toroidal” and “cylindrical” versions are considered to

shed some light on the selection of the topology prior for manifold learning.

Figure 4.6: Volumetric visualization of prediction confidence in latent spaces; warmer

colors, (i.e., red) depict higher confidence of motion reconstruction. (a) LL-GPDM

(b) JGPM (c) multi-layer JGPM.

4.4.3 Quantitative Performance

To verify the advantage of the proposed multi-layer JGPM, we quantitatively compare

it with the single-layer JGPM and LL-GPDM in terms of three specific tasks, i.e.

motion interpolation, motion reconstruction and motion filtering, by employing the

same model validation technique used in Chapter 3. The objective of interpolation is

to synthesize a new motion sequence from unknown subjects (not from the training

subjects), that of reconstruction is to recover the full-body motion from partial-body

motion (some joints are missing), and that of filtering is to denoise noisy motion data
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from unknown subjects. These experiments help us comprehensively understand the

performance of various modeling algorithms.

Motion Interpolation:

We chose twenty walking sequences which are different with the training data from

the CMU Mocap Library as our original unknown test data for motion interpolation.

Each test sequence has 30 poses downsampled from one walking cycle. Then, as de-

fined in (4.1), we generated four sets of simulated motion data by using four scalars

1.25, 0.667, 0.5 and 0.4, which represent a series of motion ranges. We notice scalars

0.667 and 0.5 are different with those (0.4 and 1.25) used for training data diversifi-

cation. In addition, we also acquired two sets of real long stride sequences from CMU

Mocap dataset (Subject No.7, trail No.11 and Subject No.8, trail No.5). We used a

validation method described in [106], by which new motion data were interpolated to

represent the unknown test data from a GPLVM-based motion model, and we applied

this method to all models. We computed the averaged 3D joint position errors (mm)

between the estimated motions and ground truth ones. The interpolation results are

illustrated in Fig. 4.7.

s=1.25 s=1 s=0.667 s=0.5 s=0.4 stride
0

10

20

30

40

50

60

70

80

Scaling factor

E
rr

or
 (

m
m

)

Interpolation Comparison

 

 
multi−layer toroidal JGPM
multi−layer cylindrical JGPM
single−layer JGPM
LL−GPDM

Figure 4.7: Comparison of interpolation results.
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It is shown that the multi-layer JGPMs (toroidal and cylindrical) are more ac-

curate than the original JGPM and LL-GPDM to represent the unknown data, es-

pecially when the motion data with larger or smaller scaling factors, which implies

the superior representative capability and flexibility of multi-layer JGPM. Fig. 4.8

visualizes the motion interpolation results of some simulated test data using stick

man, where the red points represent the ground-truth and the blue points are the

interpolation results. Also, Fig. 4.9 shows the interpolation results of real stride

motion sequence. Obviously, the multi-layer JGPM has better performance.

Figure 4.8: Motion interpolation results, where the red and blue points represent the

ground-truth and estimated results respectively.

Figure 4.9: Motion interpolation results of the real stride sequences, where the red

and blue points represent the ground-truth and estimated results respectively.
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Motion Reconstruction:

In this paper, we term motion reconstruction as a missing data recovering problem.

We studied three reconstruction cases, i.e., missing the left arm (3 joints), missing

the left leg (3 joints) and missing the left-side body(6 joints). We utilized the same

test data with motion interpolation and similar model validation algorithm to recover

the full-body motions (17 joints) from four different learned models respectively. We

then computed the averaged 3D joint position errors (mm) between the reconstructed

motions and ground truth ones. The reconstruction results are depicted in Fig. 4.10.

It is still demonstrated that the multi-layer JGPM (toroidal and cylindrical) provides

better performance than the original JGPM and LL-GPDM to recover the full-body

motion from partial data, especially when the motion data with larger or smaller

scaling factors.
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Figure 4.10: Missing body part interpolation results using multi-layer JGPM (toroidal

and cylindrical), the original JGPM and LL-GPDM.

Motion Filtering A better motion model should provide better noise filtering re-

sults. In this experiment, we utilized the same unknown test data as we used in the

previous experiments to compare the filtering performance of all motion models. For

each scaled dataset and stride motion, three noisy motion datasets were generated

by adding additive white Gaussian noise (AWGN) at three levels (5%, 10% and 15%)

with respect to the standard deviation of each joint angle. The filtering process was

repeated by five times using five sets of random noise and then we obtained the mean
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Figure 4.11: Noisy subjects filtering results using multi-layer JGPM (toroidal and

cylindrical), the original JGPM and LL-GPDM.

errors for each noise level. Fig.4.11 shows that the multi-layer JGPM (toroidal and

cylindrical) is more accurate (less errors) and robust (less standard deviations) than

JGPM to filter the unknown motion data in all three noise level as well as all the

motion ranges. It is interesting to find that not only for the scaled and real stride mo-

tion sequences, but also for the original unscaled motion data (s = 1), the proposed

multi-layer JGPM demonstrate significant advantages.

4.4.4 Motion Synthesis via Latent Space Sampling

To further evaluate the multi-layer JGPM and original JGPM models, we can sample

their latent spaces along certain trajectory and visualize the reconstructed motion

data accordingly. In this experiment, we used three sampling trajectories, i.e., a hori-

zonal straight line, a large circular spiral outside and a small circular spiral inside,

as shown in Fig. 4.12. For the first trajectory, we expect there should be a gradual

motion range increase under the same pose. For the latter two trajectories, we expect

to see two walking sequences with two extreme motion ranges. As shown in Fig. 4.12,

the original JGPM offer limited capability to synthesize humanoid walking motion

with different styles, especially very large or small motion ranges. The distortion

becomes more severe when samples are away from the learned manifold structure.

Compared with JGPM, the multi-layer JGPM has great flexibility to synthesize hu-
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manoid walking motion with various styles.

4.5 Discussion

In this paper, we have proposed multi-layer joint gait-pose manifolds (JGPM) in

order to enhance the representability and the flexibility of the human motion model.

We mainly focus on human gait motion that embraces a variety of walking styles.

There are also some limitations of our proposed algorithm, which will guide our

future research. First, our proposed model is limited to motions that share some

similar pattern that is important to learn a smooth manifold. Second, we assume

the full body motion dyanmics could be scaled by only one scalar, which may lead

to some systematic error. It is possible different scalars are needed at different body

segments. However, without the exact anthropometric measuring and biomechanics

evidence, it is challenging to find the segment-specific scaling factors. These two

limitations could be mitigated by constructing a hierarchical model [114], where our

proposed multi-layer JGPM is learned on many different motion types/styles and

connected through a multi-level latent model or by building a part-level model [115]

to represent the motion of different human segments. Also, to further speed up the

learning procedure, some other sparsification methods [110, 111, 112, 113] designed for

lager datasets or incremental learning [116, 117] which is suitable for fast sequentially

online learning could be integrated with our topology-aware local learning algorithm.

Although our modeling method is designed for a specific type of motion, i.e., gait, the

multi-layer latent structure as well as the two key techniques are general and could

potentially apply to other human motion types or other dataset, like face expression

and handwriting.
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Figure 4.12: Motion synthesis by sampling JGPM (left) and the multi-layer JGPM

(right).
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CHAPTER 5

GAUSSIAN KERNEL CORRELATION (GKC)

5.1 Introduction

Registration which aims to transform different data sets into one coordinate system

is one of the fundamental research topics in the field of computer vision and image

processing. There are many applications of registration, e.g., medical imaging, brain

mapping, image stitching, 3D reconstruction, augmented reality, etc. In this research,

we mainly focus on the articulated pose estimation, especially for the human body and

hand pose estimation using a registration method, i.e., generalized Gaussian kernel

correlation (GKC).

According to how the template and the target are matched, registration ap-

proaches can be classified into two major categories, i.e., correspondence-based and

correspondence-free. The algorithms in the first category iteratively estimate the cor-

respondences and the underlying transformation, such as the Iterative Closest Point

(ICP) [65] and the Maximum Likelihood-based density estimation [79, 80, 81, 82].

The algorithms in the second group directly optimize an energy function without in-

volving correspondences, including density alignment [83] and kernel correlation [84].

Different with the density alignment whose energy function is a discrepancy measure

using L2 distance, kernel correlation was proposed as a similarity measure in[85, 84]

and was used for point set registration. In KC-based registration, both the tem-

plate and the observation are modeled by kernels and their registration is achieved

by maximizing their similarity. The kernel correlation was also applied to the stereo

vision-based modeling in [86].
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When the kernel function is a Gaussian, there are two unique benefits for regis-

tration, i.e., robustness and efficient optimization. First, since the statistical benefits

of Gaussian, Gaussian KC (GKC) is as robust as the M-estimator [87], as mentioned

in [86]. Second, different from the Maximum Likelihood-based registration using

Expectation-Maximization (EM) [80, 81, 82], the closed-form expression of GKC

supports a direct gradient-based optimization which is more efficient and robust.

However, existing GKC mainly considers the case of univariate (isotropic) Gaussian

only with two exceptions (to the best of our knowledge). First, Sum of univariate

Gaussians (SoG) was extended to sum of anisotropic Gaussians (SAG) in [75] where

the similarity function was evaluated in the projected 2D image space. Our previous

work [30] studied anisotropic Gaussians in 3D space and derived a similarity mea-

sure between the template and target, represented by multivariate and univariate

Gaussians, respectively. In this work, we generalize both approaches by developing

a n-dimensional Gaussian KC function which supports a unified similarity measure

between two collections of arbitrary univariate / multivariate Gaussian kernels.

5.2 Univariate Gaussian Kernel Correlation

Given two Gaussians centered at points µ1,µ2 ∈ Rn, their kernel correlation is defined

as the integral of the product of two Gaussian kernels over the n dimensional space

[84],

KC(µ1,µ2) =

∫
Rn

G(x,µ1) ·G′(x,µ2)dx, (5.1)

where x ∈ Rn, and G(x,µ1), G
′(x,µ2) represent the Gaussian kernels centered at

the data point µ1,µ2, respectively. Different from [84], where the Gaussian kernel

has a standard univariate Gaussian distribution form, we employ an non-normalized

Gaussian kernel defined in [118],

G(u)(x,µ) = exp(−||x− µ||2

2σ2
), (5.2)
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where (u) represents “univariate” and σ2 is the variance. The non-normalized Gaus-

sian kernel can lead to a more controllable and meaningful kernel correlation between

two Gaussians with large differences in variance, because the non-normalized G and

G′ have a similar scale even if their variances σ1, σ2 are largely distinct, as shown in

Fig. 5.1. This features allows us to use large variance in the template to reduce the

number of Gaussian kernels, even if the variances of Gaussian kernels are very small

in the observed point cloud.

Figure 5.1: The comparison of normalized (left) and non-normalized (right) Gaussian

kernels with the same variances σ1, σ2.

Plugging (5.2) in (5.1), it is straightforward to have the kernel correlation of two

(non-normalized) univariate Gaussians at µ1 and µ2,

UKC(µ1,µ2)=

(
2π

σ2
1σ

2
2

σ2
1 + σ2

2

)n
2

exp

(
−||µ1 − µ2||2

2(σ2
1 + σ2

2)

)
. (5.3)

This equation is to measure the similarity between two univariate Gaussians.

When two Gaussians are close to each other and have similar variances, their similarity

becomes larger; otherwise, it becomes smaller.

5.3 Multivariate Gaussian Kernel Correlation

In this section, we generalize the original Gaussian kernel correlation in [84] from two

aspects. First, we extend the univariate Gaussian to the multivariate one and derive

a unified GKC function between two Gaussians in n dimensional space. Second,
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we provide a more general kernel correlation between two collections of Gaussian

kernels, both of which can be composed by univariate/multivariate Gaussian kernels

(Fig. 5.3 (a-c)) or even the mixed model (Fig. 5.3 (d)).

If the variance σ2 is extended to the covariance matrix Σ, we have the non-

normalized multivariate Gaussian kernel form,

G(m)(x,µ) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (5.4)

Obviously, when Σ is a diagonal matrix and the diagonal entries are identical, the

equation (5.4) will degenerate to (5.2). We illustrate the geometrical expression of

multivariate Gaussian in 3D space, as shown in Fig. 5.2.

Figure 5.2: The geometrical expression of univariate and multivariate Gaussian in 3D

space.

Now, we re-write (5.1) using (5.4) to derive the generalized Gaussian kernel cor-

relation, which is not as straightforward as (5.3). The proof of the unified Gaussian

kernel correlation in (5.5) is listed below. Given two non-normalized Gaussian kernels

centered at two points µ1,µ2,

G
(m)
1 (x,µ1) = exp

(
−1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)
G

(m)
2 (x,µ2) = exp

(
−1

2
(x− µ2)

TΣ−1
2 (x− µ2)

)
,

we aim to derive their kernel correlation KCm(µ1,µ2) which is represented as,

MKC(µ1,µ2) =

∫
Rn

G
(m)
1 (x,µ1) ·G(m)

2 (x,µ2)dx.
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We re-write G
(m)
1 (x,µ1) and G

(m)
2 (x,µ2) in canonical notation as,

G
(m)
1 (x,µ1) = exp

(
−1

2
xTΣ−1

1 x+ (Σ−1
1 µ1)

Tx− 1

2
µT

1Σ
−1
1 µ1

)
G

(m)
2 (x,µ2) = exp

(
−1

2
xTΣ−1

2 x+ (Σ−1
2 µ2)

Tx− 1

2
µT

2Σ
−1
2 µ2

)
Therefore,

G
(m)
1 ·G(m)

2 = exp
(
− 1

2
xT (Σ−1

1 + Σ−1
2 )x+ (Σ−1

1 µ1 + Σ−1
2 µ2)

Tx

−1

2
µT

1Σ
−1
1 µ1 −

1

2
µT

2Σ
−1
2 µ2

)
= exp

(
− 1

2
xT (Σ−1

1 + Σ−1
2 )x+

(
(Σ−1

1 + Σ−1
2 )µ∗)T x

−1

2
µ∗T (Σ−1

1 + Σ−1
2 )µ∗ +

1

2
µ∗T (Σ−1

1 + Σ−1
2 )µ∗

−1

2
µT

1Σ
−1
1 µ1 −

1

2
µT

2Σ
−1
2 µ2

)
= exp

(
− 1

2
(x− µ∗)T (Σ−1

1 + Σ−1
2 )(x− µ∗)

)
· exp

(
− 1

2

(
µT

1Σ
−1
1 µ1 − µ∗T (Σ−1

1 + Σ−1
2 )µ∗

+µT
2Σ

−1
2 µ2

))
,

where

µ∗ = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 µ1 + Σ−1

2 µ2)

= Σ1(Σ1 + Σ2)
−1µ2 + Σ2(Σ1 + Σ2)

−1µ1.

Then, we have

G
(m)
1 ·G(m)

2 = exp
(
− 1

2
(x− µ∗)T (Σ−1

1 + Σ−1
2 )(x− µ∗)

)
· exp

(
−1

2
(µ1−µ2)

T (Σ1+Σ2)
−1(µ1−µ2)

)
,

According to the Gaussian integral∫
Rn

exp(−1

2
xTΣx)dx =

√
(2π)n

|Σ|
,
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we have,

MKC(µ1,µ2) =

∫
Rn

exp
(
− 1

2
(x− µ∗)T (Σ−1

1 + Σ−1
2 )(x− µ∗)

)
· exp

(
−1

2
(µ1−µ2)

T (Σ1+Σ2)
−1(µ1−µ2)

)
dx

=

√
(2π)n

|Σ−1
1 + Σ−1

2 |
·

exp

(
−1

2
(µ1−µ2)

T (Σ1+Σ2)
−1(µ1−µ2)

)
.

Finally, we have the kernel correlation of two n dimensional multivariate Gaussian

kernels which are centered at points µ1,µ2 and modeled by the covariance matrices

Σ1,Σ2 respectively,

MKC(µ1,µ2) =

√
(2π)n

|Σ−1
1 + Σ−1

2 |
·

exp

(
−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)

)
. (5.5)

Different from statistical correlation to represent the proximity of two distributions in

the statistics, our kernel correlation, where the non-normalized Gaussian kernels are

involved, is defined as a kind of energy to measure the similarity of two parametrical

models. In other words, the energy becomes larger as the two kernel models become

closer and more similar to each other.

5.4 Generalized GKC for Two Collections of Gaussian Kernels

Several Gaussian kernels which are centered at a set of points Ω = {µ1, · · · ,µm} can

be combined as a sum of Gaussian kernels K,

K =
m∑
i=1

G(x,µi). (5.6)
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Given two collections of Gaussian kernelsKA andKB composed byM andN Gaussian

kernels respectively, their kernel correlation is defined as,

MKC(KA,KB)=

∫
Rn

M∑
i=1

N∑
j=1

G(x,µ
(A)
i )G′(x,µ

(B)
j )dx

=
M∑
i=1

N∑
j=1

MKC(µ
(A)
i ,µ

(B)
j ), (5.7)

where MKC(µ
(A)
i ,µ

(B)
j ) has been derived in (5.5). It worth noting that KA and KB

can be composed by univariate Gaussians (Fig. 5.3 (a)), multivariate ones (Fig. 5.3 (b,c))

or mixed ones (Fig. 5.3 (d)). Consequently, we obtain a unified kernel correlation func-

tion in (5.7) to evaluate the similarity between any pairwise combination of univariate

and multivariate SoG models, as shown in Fig. 5.3. When the covariance matrices in

KB degenerate to variances in the 3D space, the degenerated equation (5.7) will be

equivalent to the SoG↔GSoG similarity in [30]. Further, if the covariance matrices

in KA degrade to variances in 3D, the equation (5.7) will become the SoG↔SoG sim-

ilarity in [29, 73, 74]. Both degenerations imply that our kernel correlation functions

in (5.5) and (5.7) generalize all the previous SoG-based methods.

Figure 5.3: The illustration of the sum of Gaussian kernels KA (red) and KB (green)

in 3D with four cases: (a) SoG-SoG, (b) SoG-GSoG, (c) GSoG-GSoG, (d) mixed

model-mixed model.
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5.5 Discussion

The derived equation 5.5 is partially coincident with the formulation of the multi-

variate mean integrated squared error (MISE) in [119]. However, there is no explicit

formulation derivation provided. Since we use non-normalized Gaussian kernels, the

main difference between our generalized GKC and their MISE is the coefficient before

the exponential function. Their MISE of two distributions has statistical meaning,

but our GKC emphasizes a concept of energy to measure the similarity. This gener-

alized GKC provides us a fundamental tool for us to construct our subject-specific

shape modeling and articulated pose estimation algorithms, which will be presented

in the next two chapters.
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CHAPTER 6

ARTICULATED GKC FOR SHAPE MODELING

6.1 Introduction

A good shape model not only captures shape variability accurately, but also facilitates

the data matching efficiently for pose tracking. In this chapter, we first embed an

articulated skeleton into a collection of Gaussian kernels where quaternion-based 3D

rotations are involved to represent the transformation between two segments along

the skeleton. Then, based on the generalized GKC in equation (5.7), a segment-scaled

articulated Gaussian kernel correlation (AGKC) is proposed to balance the effect of

each segment in the articulated structure. Using the segment-scaled AGKC as an

energy function, we propose an effective and efficient subject-specific shape modeling

method, where a LLE-based topology constraint is developed as a regularization term.

6.2 Articulated Shape Modeling with Gaussian Kernels

In this work, we use the full-body human and hands as examples to present the

Gaussian kernels-based articulated shape model, as shown in Fig. 6.1. For the task of

human pose estimation, the body template comprises a kinematic skeleton (Fig. 6.1

(a)) and a Gaussian kernel-based shape model KA. Fig. 6.1 (c) and (d) exhibit

the univariate and multivariate Gaussians represented body shape models and their

volumetric density comparison in the projected 2D image. The shape models for

hand and their volumetric density comparison are shown in Fig. 6.1 (e) and (f). We

can observe that the density map of multivariate Gaussians has a more distinct and
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smooth silhouette than that of univariate Gaussians, revealing two major benefits of

using multivariate ones to approximate an articulated object. First, the smooth and

continuous density of multivariate Gaussians facilitates the optimizer to achieve more

accurate pose estimation results. Second, the anatomical landmarks (i.e. body/finger

joints) have clear definitions in the multivariate case. Our previous study in [30] has

also shown the better flexibility and adaptability of multivariate Gaussians for shape

modeling.

In the following, our discussion is mainly focused on the human model which is

also applicable to hands and other articulated objects. We denote K̃A as a standard

T-pose template as shown in Fig. 6.1 (d). The kinematic skeleton is constructed by

a tree-structured chain, as illustrated in Fig. 6.2.

Each rigid body segment has its local coordinate system that can be transformed

to the world coordinate system via a 4× 4 transformation matrix Tl,

Tl = Tpar(l)Rl, (6.1)

where Rl denotes the local transformation from body segment Sl to its parent par(Sl).

Since each segment is attached on its corresponding body joint marked as red stars

in Fig. 6.1 (a), the index l is used in both the body joint and its associated segment.

In this work, each joint in the body has 3 degrees of freedom (DoF) rotation, and the

joints marked with the red circles and stars in the hand model (Fig. 6.1 (b)) have 1

DoF and 3 DoF rotation, respectively. If l is the root joint (the hip joint), Troot is

the global transformation of the whole body. Given a transformation matrix Tl, the

center of kth Gaussian kernel in the segment Sl at the T-pose µ̃l,k can be transferred

to its corresponding position in the world coordination,

µl,k = Tlµ̃l,k. (6.2)

Accordingly, the local transformation R at each body joint and Troot define a specific

pose. Since the translation between two segments is pre-defined, only the rotation
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Figure 6.1: (a) and (b) show the skeletons of human and hand respectively. (c) and

(d) illustrate the univariate and multivariate Gaussians represented body models and

their volumetric density comparison in the projected 2D image. (e) and (f) are the

hand shape model and their volumetric density in 2D. To obtain the density map,

the variance of each univariate Gaussian has been manually optimized to depict a

decent color map. Obviously, the silhouette of multivariate Gaussians is more distinct,

compact and smooth than that of univariate ones.
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Figure 6.2: The illustration of a kinematical chain structure and the coordination

transformation from the child segment to its parent segment, i.e., S3 → S2 via R2

and S2 → S1 via R1.

is to be estimated in each R. In this work, we express a 3D joint rotation as a

normalized quaternion due to its continuity which can facilitate the gradient-based

optimization. Here, we have L joints (L = 10, marked as red stars in Fig. 6.1 (a)),

each of which allows a 3 DoF rotation represented by a quaternion vector of four

elements. Also, there is a global translation at the hip (root) joint. As a result, we

totally have 43 parameters/dimensions in a full-body pose represented by Θ. In the

hand model, since 1 DoF rotation is controlled by two elements of a quaternion, there

are totally 47 pose parameters. Similar to (6.2), given the body model at T-pose K̃A,

the deformed model under pose Θ is,

KA = K̃A(Θ)

=
M∑
i=1

G(x, µ̃
(A)
i (Θ)). (6.3)

Consequently, the Gaussian kernels are embedded into an articulated skeleton and

controlled by the quaternion-based pose variableΘ. This articulated Gaussian kernel-

based shape representation is general and can be applied to any other articulated

shape models. Re-writing (5.7) using (6.3), we explicitly obtain the articulated Gaus-
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sian kernel correlation as,

MKC(K̃A(Θ),KB) =
M∑
i=1

N∑
j=1

MKC(µ̃
(A)
i (Θ),µ

(B)
j ), (6.4)

where MKC(µ̃
(A)
i (Θ),µ

(B)
j ) can be calculated in (5.5). As a similarity measure, the

analytical representation of our articulated kernel correlation in (6.4) become the main

part of our objective function. As a result, the problem of articulated pose estimation

is converted to finding the optimal Θ by which the deformed template K̃A(Θ) has

the maximum kernel correlation with KB, i.e., Gaussian Kernel-based representation

of an observed point cloud. Next, we further propose a new segment-scaled Gaussian

kernel correlation to balance the effect of each segment in an articulated structure.

6.3 Segment-scaled Gaussian Kernel Correlation

The Gaussian kernel correlation MKC(K̃A(Θ),KB) can be evaluated according to

(6.4) and (5.5). In practice, we found that the kernel correlation from larger seg-

ments (e.g. torso in the human body or palm in the hand) could dominate the energy

function, overshadowing contributions from small segments. This bias may trap the

optimizer in a wrong local minimum, since the gradient direction is also mostly af-

fected by the large segments. To balance the energy contributions from different seg-

ments, we further upgrade (6.4) to balance the influence of each articulated segment,

referred as “segment-scaled Kernel Correlation”. Specifically, the kernel correlation

from body segment Sl is weighted by a coefficient 1
ωl

as,

sMKC(K̃A(Θ),KB) =
L∑
l=1

1

ωl

Kl∑
k=1

N∑
j=1

MKC(µ̃
(A)
l,k (Θ),µ

(B)
j ), (6.5)

where Kl is the number of Gaussian kernels in the segment Sl (totally we have L

segments with the equality K1 + · · ·+Kl + · · ·+KL =M), and 1
ωl

means the weight

of the corresponding segment Sl. Without loss of generality, we calculate ωl as the
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integral of all the Gaussian kernels in the segment Sl,

ωl =

∫
Rn

Kl∑
k=1

G(x, µ̃k)dx

=

Kl∑
k=1

√
(2π)n

|Σ−1
k |

, (6.6)

where ωl denotes the volumetric measure of the segment Sl. In other words, the larger

body segment, the greater value of ωl, and the smaller weight it has. In this way, we

balance the contribution of each body segment for the holistic kernel correlation using

a given subject-specific body shape. Meanwhile, the value of ωl can be calculated off-

line without affecting the online performance.

6.4 Subject-specific Shape Model Learning

We propose an efficient two-step approach to estimate the subject-specific shape

model that is represented by a multivariate SoG along with a certain-sized skele-

ton. We first use an auxiliary univariate SoG model (order 57) for skeleton/shape

learning, and then we convert it to the final shape model of a lower order multi-

variate SoG (order 13) which will be used for pose estimation and tracking. This

approach effectively reduces the space of SoG parameters and still takes advantage

of the multivariate SoG for shape modeling.

In this first step, we choose one template pose which has a clear articulated struc-

ture to support accurate estimation of bone length and body shape for each new

subject, as shown in Fig. 6.3. We want to loose the rigid body constraints and to

allow free movement of each Gaussian kernel for better adapting to the observation

under a “neutral” pose when the subject’s four limbs are fully stretched. A set of

SoG parameters (totally 57× 4 = 228), Π, which defines the location and variance of

each univariate Gaussian is optimized by maximizing the KC function defined (6.5).

However, some Gaussian kernels from different body parts could be blended near

joints, as shown in Fig. 6.3 (b). To avoid this problem, we augment a Local Linear
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Embedding (LLE)-based topology constraint [22] which aims to preserve the articu-

lated structure in the SoG-based shape representation. The new objective function

for the subject-specific shape modeling is defined as:

Π̂ = argmin
Π

{
− UKC(K̃A(Π),KB) + λ

M∑
i=1

||µi −
∑
j∈τi

wijµj||2
}
, (6.7)

where µi is the mean of the ith Gaussian in the body model; τi represents the K

nearest neighbors (K = 4 in this work) of the ith Gaussian; wij is the LLE weight;

λ controls the weight of the LLE term. This objective function can be optimized by

an nonlinear optimizer, like Quasi-Newton [120]. The details of the gradient of the

energy function in each dimensionality can be referred to the derived expression in

the Chapter 7.4. The subject-specific SoG-based body model is shown in Fig. 6.3 (c),

where it is straightforward to calculate the limb lengths.

In the second step, we map each Gaussian kernel in the univariate SoG to a cor-

responding body segment and then compute the covariance matrix of each Gaussian

kernel in the multivariate SoG using a pre-defined relationship. For example, six

Gaussian kernels on the top-left part of the torso can be mapped to one anisotropic

Gaussian in the corresponding position in the multivariate SoG-based model. Given

this mapping, we use the mean of the six univariate Gaussians as the mean of the

corresponding multivariate Gaussian and we employ PCA to estimate the covariance

matrix using the first three eigenvectors and associated eigenvalues. The estimated

subject-specific shape model are shown in Fig. 6.3 (d). This two-step shape learning

method can also be used in hand modeling.

6.5 Discussion

There are two issues to be discussed in this chapter. First, while our simple shape

model has significantly reduced the number of involving Gaussians to achieve fast

computation, our articulated shape model could be a little coarse for some complex
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Figure 6.3: Subject-specific shape estimation. (a) Observation, (b) Estimated SoG

model without LLE topology constraint. (c) Estimated SoG model with the LLE

topology constraint. (d) Final multivariate SoG model mapped from (c).

poses or serious self-occlusions. In those situation, a detailed shape model is required

for higher accuracy and robustness. Second, instead of directly learning the shape

parameters of the multivariate Gaussian kernels, we use an auxiliary univariate SoG

model and estimate the shape parameters in a two-step approach. While this method

is easy to implement, the estimated shape parameters could not be as accurate as

using the direct estimation method. Without considering the efficiency, we could

also use some other global optimization methods to learn the subject-specific model,

like Particle Swarm Optimization (PSO), which could be easier and more robust to

estimate the parameters in multivariate Gaussian kernels. These two issues will guide

our future work.
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CHAPTER 7

POSE TRACKING BY ARTICULATED GKC

7.1 Introduction

Articulated human/hand pose tracking is one of the fundamental research topics in

the field of computer vision and machine learning due to their wide applications and

related technologies, such as Human Computer Interaction (HCI), Robotics, Com-

puter Animation and Biomechanics. Recently, the launch of low-cost RGB-D sensors

(e.g., Kinect) has further triggered a large amount of research due to the additional

depth information and easy foreground/background segmentation. In this research,

we propose an efficient and robust sequential pose tracking algorithm by introduc-

ing three constraints (visibility, continuity and self-intersection) which is successfully

applied to pose tracking of both body and hand from a single depth sensor. In this

chapter, we first develop a Octree-based method to represent the point cloud data as a

collection of univariate Gaussian kernels. Then, we introduce our objective function,

followed by its gradient-based optimization. Moreover, we develop a failure detection

and recovery strategy to encourage robust and smooth pose tracking.

Our algorithm is simple and efficient and can run at about 10 FPS on a i7 desktop

PC without GPU acceleration. We evaluate our articulated pose tracking algorithm

on two depth benchmark datasets, i.e., (body) [24] and (hand) [76], which shows that

the accuracy of pose estimation is competitive compared to the best results reported

so far [26, 25, 28].
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7.2 Point Cloud Representation

In the framework of kernel correlation-based registration, both the template and

the observation are represented by a sum (combination) of kernels. In the previous

chapter, we have built a simple yet effective shape model represented by multivariate

Gaussian kernels. Here, we aim to convert the raw point cloud data into a set of

Gaussian kernels, by which the similarity between our template and the observation

can be directly measured by our derived AGKC, which is defined in (6.5) and (5.5).

The simplest way is just down sampling the original point cloud data and assign a

Gaussian kernel with an identical variance at each point. However, large amounts

of noise and outlier of the raw data will be involved, leading to poor pose tracking

results. In this research, our idea is to cluster the 3D points into many small pieces

and each cluster of points can be approximated by a isotropic Gaussian so that the

observed point cloud is robustly represented by a SoG-based model. Inspired by the

Quad-tree which aims to cluster the image pixels with a similar color in [72], we

novelly exploit an Octree to directly partition the point cloud in the 3D space.

An Octree is a tree data structure in which each internal node has exactly eight

children. It is a useful shape representation tool to partition a 3D space by recursively

subdividing it into eight octants. We illustrate the comparison of Quad-tree and

Octree for partitioning in Fig. 7.1.

Figure 7.1: (a) Quad-tree partition in 2D. (b) Octree partition in 3D.

Here, we develop our own partition metric, i.e., if points in a Octree node has a

large standard deviation along the depth direction (greater than a threshold ηdepth),

we divide the node into eight sub-nodes, up to a maximum Octree level nlevel. Then,
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points in each leaf node cube (illustrated as adjacent points in the same color in

Fig. 7.2 (b)) are represented by an isotropic (univariate) Gaussian Gj centered at the

mean of the points with the variance σ2
j that is set to be the square of half-length of

a side of the cube. Consequently, we obtain a compact and noise-reduced univariate

SoG representation KB of a point cloud as shown in Fig. 7.2 (c). It is noted that the

number of Gaussian kernels in the observation is obviously smaller than the number

of points in the raw data, which indicates the computational complexity is reduced

significantly. Next, we will exploit the AGKC defined in (6.5) and (5.5) to build our

objective function and its optimization for pose tracking.

Figure 7.2: An illustration of a SoG-based representation of point cloud data. (a)

the raw point cloud. (b) the partition results (adjacent points in the same color

have similar depth). (c) The observation represented by a sum of isotropic Gaussian

kernels.

7.3 Objective Function

The goal of the pose tracking algorithm is to estimate the pose parameters Θ at time

t from an observed point cloud by minimizing an objective function and utilizing

previous pose information. The system framework includes two parts, i.e., initial-

ization for shape modeling which has been introduced in previous chapter and pose
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Figure 7.3: We estimate a SoG-bsaed subject-specific body model during initializa-

tion. Given a new frame for tracking, we first segment the target by converting

the depth map into a point cloud that is further represented by a SoG using Octree.

Then, the body model is fitted into the observation by minimizing the given objective

function to estimate the underlying articulated pose parameters.

tracking, as shown in Fig. 7.3. We define our objective function that includes the

similarity term that is AGKC sMKC(K̃A(Θ),KB) defined in (6.5) and (5.5), and

three additional constraints. The first is a visibility detection term V is to cope with

the incomplete data problem from self-occlusion; The second one is an intersection

penalty Eint(Θ) to discourage the intersection of two body segments; The third one

is a continuity term Econ(Θ) to enforce a smooth pose transition during sequential

tracking. Then pose estimation is formulated as an optimization problem with the

following objective function:

Θ̂ = argmin
Θ

{
−

L∑
l=1

1

ωl

Kl∑
k=1

N∑
j=1

MKC(µ̃
(A)
l,k (Θ),µ

(B)
j )

·V is(l, k) + ηEint(Θ) + γEcon(Θ)

}
, (7.1)

where the first term is the negative of sMKC in (6.5); Eint(Θ) and Econ(Θ) are the

intersection and continuity term respectively; λ, γ are the weights to balance the last

two terms, and V is(l, k) is the visibility of the kth Gaussian in the segment Sl, defined
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as,

V is(l, k) =

{
0 if the Gaussian is invisible,

1 otherwise.
(7.2)

In the following, we will introduce each term in details.

7.3.1 Similarity Term

The most important part of our objective function is the similarity term that is just

the kernel correlation function defined in (6.5) and (5.5). As mentioned before, we

address the pose tracking problem by maximizing the similarity between the tem-

plate and the observation through the AGKC. It is noted that maximizing the kernel

correlation function is equivalent to minimizing its negative. Consequently, we have

the similarity term as,

Esim = −
L∑
l=1

1

ωl

Kl∑
k=1

N∑
j=1

MKC(µ̃
(A)
l,k (Θ),µ

(B)
j ), (7.3)

where Kl is the number of Gaussian kernels in the segment Sl (totally we have L

segments with the equality K1 + · · ·+Kl + · · ·+KL =M), and 1
ωl

means the weight

of the corresponding segment Sl. More details can be found in Chapter 6.3.

7.3.2 Visibility Detection Term

Due to the monocular depth sensor configuration, there exists self-occlusion problem,

shown as an example in Fig. 7.4 (a), where the body turned around almost 90 degree

and only half of the body can be seen. Obviously, the full body template model can

not match well with the incomplete point cloud. To address the incomplete data

problem like Fig. 7.4 (a), we develop a simple visibility detection term to identify and

exclude the invisible Gaussian kernels from the subject shape model.

Our idea is that a large overlap among multiple Gaussians in the projected image

plane may indicate an occlusion. To compute the overlap area analytically, we again

use the auxiliary univariate SoG (the one used in the first-step shape learning in
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Figure 7.4: (a) Incomplete point cloud. (b) Two examples of auxiliary SoG body

models and their orthographic projections, where the red circles denote the occluded

components, and the yellow and green ones are remained. (c) Overlaps on the 2D

projection plane.

Chapter 6.4) for occlusion handling. Similar to [27], we use the pose in previous

frame to deform the template and compute the projected overlap area under an

assumption that previous pose should close to the current one. First, each Gaussian

of the template model under the previous pose is orthographically projected to the 2D

image plane along the depth direction, resulting in a set of circles whose radii are set

to be the square root of the corresponding variances. Then, we compute the overlap

area between every two circles. As shown in Fig. 7.4 (c), if the overlap area of any

pairwise circles is larger than a percentage ϵ (e.g. ϵ = 1
3
) of the area of the smaller

one, we declare an occlusion. The Gaussian kernel which is closer to the camera is

remained, otherwise, it is occluded. Then, we map the auxiliary SoG model to the

multivariate SoG model with the pre-defined mapping, which has been used for shape

modeling in Chapter 6.4. Finally, we count the number of occluded circles in each

body segment to decide its visibility. If 3 of 4 Gaussian kernels are invisible, the

corresponding segment is excluded during optimization.

It is worth mentioning that the visibility detection will be triggered only when

the body is not face to the camera and has turned around a large relative angle with
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camera, e.g. ±50 degree. The relative angle between the body and the camera is the

estimated pitch angle of the torso (we assume the body exactly faces to the camera

at the initialization).

7.3.3 Intersection Penalty Term

In previous SoG-based methods [73, 74, 29], to avoid the situation that two or more

body segments intersect with each other so that a Gaussian in the observation makes

multiple contributions to the similarity measure, an artificial clamping function was

used to constrain the similarity of each Gaussian kernel in KB,

Esim(Θ) =
∑
j∈KB

min

(( ∑
i∈KA

Eij(Θ)
)
, ωEjj

)
, (7.4)

where Eij is the similarity between the ith Gaussian in KA and the jth Gaussian in

KB; Ejj is the similarity of a Gaussian with itself in KB, ω is a constant to weight Ejj.

More details can be found in [72, 30]. However, this clamping operation introduces

some discontinuity so that the objective function is not differentiable everywhere,

which may hinder the performance of the gradient-based optimizer. In this research,

we develop an intersection penalty term to replace the artificial clamping function

which is naturally deduced from the proposed GKC framework in equation (6.4).

The idea is that two separated body segments in KA are treated as a template Ks1

and a target Ks2, and then their KC can be used to measure the degree of their

intersection,

E ′
int(Θ) =MKC(K̃s1(Θ), K̃s2(Θ)). (7.5)

When two segments intersect each other, their KC becomes large, resulting a larger

intersection penalty. In practice, we consider five self-intersection cases, i.e., head-

torso, forearm-arm, upper limb-torso, shank-thigh and lower limb-torso, as shown in

Fig. 7.5. Eint(Θ) which is the sum of KC measures of the five cases can be considered

as a soft constraint which preserves the continuity and differentiability of the objective
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function.

Figure 7.5: The illustration and definition of body segments in the self-intersection

term.

7.3.4 Continuity Term

To encourage smooth sequential tracking, we augment the objective function with a

continuity term as follows,

Econ(Θ
(t)) =

D∑
d=1

[(
Θ

(t)
d −Θ

(t−1)
d

)
−
(
Θ

(t−1)
d −Θ

(t−2)
d

)]2
, (7.6)

where Θ(t) is the present pose and Θ(t−1),Θ(t−2) are the previous two poses; d rep-

resents the dimension index in Θ. The continuity term penalizes the current pose to

have a large deviation from previous frames, ensuring relatively smooth and continu-

ous pose estimation. Since the objective is continuous and differentiable, we can use

the efficient gradient-based optimization methods to estimate the pose parameters. In

the next section, we will provide more details on the optimization and the derivative

of the objective function.
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7.4 Gradient-based Optimization

Due to the differentiable AGKC function and the computational benefits of quaternion-

based rotation representation, we can explicitly derive the derivative of the objective

function E with respect to Θ and employ a gradient-based optimizer. Different with

a variant of steepest descent used in [72, 73], we employ a Quasi-Newton method

(L-BFGS [120]) because of its faster convergence. For simplicity of notification, we

ignore the visibility detection term in (7.1) without changing the derivatives (the vis-

ibility detection term can not be ignored in the implement). We has the following

form:

∂E(Θ)

∂Θ
= −∂sMKC(K̃A(Θ),KB)

∂Θ

+λ
∂Eint(Θ)

∂Θ
+ γ

∂Econ(Θ)

∂Θ

= −
L∑
l=1

1

ωl

Kl∑
k=1

N∑
j=1

MKC(µ̃
(A)
l,k (Θ),µ

(B)
j )

∂Θ

+λ
∂Eint(Θ)

∂Θ
+ γ

∂Econ(Θ)

∂Θ
. (7.7)

We denote r = [r1, r2, r3, r4]
T as an un-normalized quaternion, which is normalized

to p = [x, y, z, w]T according to p = r
∥r∥ . We represent the pose Θ as [t, r(1), . . . , r(L)],

where t = [t1, t2, t3] ∈ R3 defines a global translation, L is the number of joints

to be estimated, and each normalized quaternion p(l) from r(l) ∈ R4 defines the

relative rotation of the lth joint. Defined in (5.5), µl,k = [a, b, c]T is the center of

kth Gaussian kernel in the segment Sl which is transformed from its local coordinate

µ̃l,k through transformation Tl in (6.2) and the corresponding covariance matrix Σl,k

is approximated and updated from the previous pose under an assumption that is

adjacent poses should be close to each other. We explicitly represent every pairwise

kernel correlation using equation (5.5) and take derivative with respect to each pose
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parameter,

∂MKC

∂tn
=
∂MKC

∂µl,k

∂µl,k

∂tn
, (n = 1, 2, 3) (7.8)

∂MKC

∂r
(l)
m

=
∂MKC

∂µl,k

∂µl,k

∂r
(l)
m

, (m = 1, · · · , 4) (7.9)

Then, every derivative of the pairwise kernel correlation will be sum over to obtain

the gradient vector. In the following, we explicitly write the derivative in terms of

each pose parameter. First, we consider
∂MKC(µ̃i(Θ),µj)

∂t
, where µ̃i(Θ) = µi.

According to the chain rule, we have,

∂MKCij

∂t1
=
∂MKCij

∂µi

· ∂µi

∂t1
(7.10)

=

[
∂MKCij

∂a

∂MKCij

∂b

∂MKCij

∂c

]
∂a
∂t1

∂b
∂t1

∂c
∂t1

 , (7.11)

Since the covariance matrixes Σ1 and Σ2 in equation (5.5) are the symmetric matrix,

we can obtain:

∂MKCij

∂a
= −MKC(µ̃i(Θ),µj)) · (µ̃i(Θ)− µj)(Σi + Σj)

−1[1 0 0]T , (7.12)

∂MKCij

∂b
= −MKC(µ̃i(Θ),µj)) · (µ̃i(Θ)− µj)(Σi + Σj)

−1[0 1 0]T , (7.13)

∂MKCij

∂c
= −MKC(µ̃i(Θ),µj)) · (µ̃i(Θ)− µj)(Σi + Σj)

−1[0 0 1]T , (7.14)

Also, we can derive 
∂a
∂t1

∂b
∂t1

∂c
∂t1

 =
∂(R · µ̃i + t)

∂t1

= [1 0 0]T , (7.15)

where R is the rotation that transfer the µ̃i at its local coordinate to the global

coordinate. Consequently, we have
∂MKCij

∂t1
=

∂MKCij

∂a
, which can be calculated in
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equation (7.12). In the same way, we can derive
∂MKCij

∂t2
=

∂MKCij

∂b
and

∂MKCij

∂t3
=

∂MKCij

∂c
, which can be calculated in (7.13) and (7.14), respectively.

Next, we consider the gradient on the non-normalized quaternion
∂MKCij

∂r
. Simi-

larly, using the chain rule, we have:

∂MKCij

∂r1
=
∂MKCij

∂µi

· ∂µi

∂r1
(7.16)

=

[
∂MKCij

∂a

∂MKCij

∂b

∂MKCij

∂c

]
∂a
∂r1

∂b
∂r1

∂c
∂r1

 , (7.17)

where
∂MKCij

∂a
,
∂MKCij

∂b
and

∂MKCij

∂c
have been derived in (7.12), (7.13) and (7.14). We

know that the center of a Gaussian at T-pose in the local coordinate µ̃i is converted

to the global (world) coordinate through a series of rotation matrixes. Here, we use

R to represent those rotation matrixes for simplicity. Therefore, we have:


∂a
∂r1

∂b
∂r1

∂c
∂r1

 =
∂R

∂p

∂p

∂r1
· µ̃i

T

=

[
∂R

∂x

∂R

∂y

∂R

∂z

∂R

∂w

]


∂x
∂r1

∂y
∂r1

∂z
∂r1

∂w
∂r1


· µ̃i

T , (7.18)

where p = [x, y, z, w]T is the normalized quaternion according to p = r
∥r∥ . Since

the conversion formulation between rotation matrix and quaternion is given, it is

straightforward to calculate ∂R
∂x
, ∂R
∂y
, ∂R
∂z
, ∂R
∂w

. For example,
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∂R

∂x
=


0 2y 2z

2y −4x −2w

2z 2w −4x

 , (7.19)

In general, we have the derivative of the normalization terms ∂pm
∂rj

as,

∂pm
∂rj

=
δmj

∥r∥
− rmrj

∥r∥ 3
2

, (7.20)

where δmj = 1 when m = j, otherwise, δmj = 0.

As a result, we can calculate
∂MKCij

∂r1
, · · · , ∂MKCij

∂r4
for one non-normalized quater-

nion. It is similar to derive the other set of quaternion. Only one difference is the

definition of the rotation matrix R in (7.18), where R is constructed by the father

rotation matrix multiplying the current rotation matrix.

Since Eint(Θ) is naturally deduced from the GKC, the derivative of Eint(Θ) can

also be calculated by a similar way according to (7.8), (7.9). Since Econ(Θ
(t)) in (7.6)

is a standard quadratic form, we have its gradient expression directly as:

∂Econ(Θ
(t))

∂Θ
(t)
d

= 2
[(

Θ
(t)
d −Θ

(t−1)
d

)
−
(
Θ

(t−1)
d −Θ

(t−2)
d

)]
, (7.21)

where d = 1, . . . , D is the index in the pose parameter vector.

After obtaining the derivative of each pairwise GKC, we sum up over the deriva-

tives of all the pairwise in each dimensionality of Θ to compose the pose vector. By

now, we have prepared well all the required derivative expression for the gradient-

based optimization.

In the Quasi-Newton optimization, the initialization of Θ(t) in each frame is the

estimated pose in the previous frame and the pose in the first frame is assumed to

be close to a standard T-pose facing to the camera, similar to the treatment in many

other algorithms.
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7.5 Failure Detection and Recovery

Although gradient-based local optimization is effective in most cases, it is still pos-

sible to be stuck at local minima and cannot be recovered automatically, especially

when there is a dramatic fast articulated pose change or significant self-occlusion.

To cope with this problem, we incorporate Particle Swarm Optimization (PSO) with

gradient-based search to balance the effectiveness and efficiency when exploring the

high-dimensional parameter space [121, 122, 123]. To reduce the computational load,

some data-driven detectors will be helpful to provide a good initialization and nar-

row the search space. In [76], some finger detectors are used to effectively combine

gradient-based ICP and sampling-based PSO for real-time articulated hand track-

ing. Similar ideas can be incorporated in our tracking framework where Gaussian

KC-based optimization is treated as the local optimizer and PSO is used for global

search. Additional detectors are necessary to support real-time performance of the

hybrid global-local optimization which are beyond the scope of this research.

The hybrid optimization with PSO and AGKC is only necessary when a tracking

failure is detected. We evaluate the average KC for all N univariate Gaussian kernels

in the observation (KB) by checking the following condition:

1

N
sMKC(K̃A(Θ),KB) < ηfail, (7.22)

where sMKC(·) is defined in (6.5) and ηfail is a threshold. When (7.22) is true, it

indicates that a number of Gaussian kernels in KB are not aligned or explained by

the deformed shape template KA. Then the local-global optimization scheme will be

triggered for failure recovery, where PSO is involved to allow the global PSO sampling

along with the local gradient-based AGKC optimization.
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7.6 Experimental results

In this section, we will evaluate our articulated pose tracking algorithm on two bench-

mark datasets, i.e., human body [24] 1 and hand [76] 2, both of which are captured

by a single depth sensor. We will validate the effectiveness of different constrains and

compare with state-of-the-art approaches quantitatively and qualitatively. Also, we

will comprehensively analysis the algorithm efficiency and the failure detection and

recovery strategy.

7.6.1 Experimental Setup

Testing Database: We first use the depth benchmark dataset SMMC-10 [24] to

evaluate our algorithm for human pose tracking and compare it with a series of state-

of-the-art methods. The SMMC-10 dataset consists of 28 depth sequences, which

include various human motion types. The ground truth data are the 3D marker po-

sitions which are recorded by an optical tracker. The significant noise and outliers in

this depth dataset makes it challenging yet proper for evaluating algorithm robust-

ness and accuracy. Secondly, we also use the benchmark dataset in [76] to test our

algorithm for articulated hand tracking. This dataset is reported as one of the most

challenging ones due to the fast hand motion and considerable self-occlusion. Perfor-

mance evaluation on the first dataset is both quantitative and qualitative to validate

the efficacy and efficiency of our algorithm for human pose tracking, while that of

the second one is mainly qualitative to demonstrate the potential of the proposed

framework for a different articulated structure.

Evaluation Metrics: We adopt two metrics for performance evaluation of human

pose estimation. One evaluation metric is to directly measure the averaged error of

the Euclidean distance between the ground-truth markers and estimated ones over

1Available at: http://ai.stanford.edu/ varung/
2Available at: http://research.microsoft.com/en-us/um/people/yichenw/handtracking/index.html
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all markers across all frames,

ē =
1

Nf

1

Nm

Nf∑
k=1

Nm∑
i=1

∥pki − vdisp
i − p̂ki∥, (7.23)

where Nf and Nm are the number of frames and markers, respectively; pki and

p̂ki are the ground-truth location of the ith marker and the estimated one in the

kth frame, respectively; vdisp
i is the displacement vector of the ith marker. Because

the marker definitions across different body models are different, the inherent and

constant displacement vdisp should be subtracted from the error, as a routine in most

methods. In this paper, we manually chose 40 frames with ground truth in the #6

Sequence for the calculation of vdisp. To make vdisp independent at any pose, we

project each markers on the centerline of its corresponding segment and compute an

offset vdisp in the local coordinate system for each segment individually. The other

evaluation metric is the percentage of correctly estimated joints whose Euclidean

distance errors are less than 10cm.

Algorithm Parameters: Some empirical parameters we used for human pose track-

ing throughout our experiments are listed in Table 7.1. In Octree partitioning, the

threshold ηdepth and maximum Octree level nlevel are set to be 20mm and 6, re-

spectively. The weights η and γ in the objective function (7.1), and weight λ for

LLE-based topology constrain in shape modeling (6.7) are set to be 0.001, 0.2 and

0.05, respectively. The threshold in failure detection (7.22) is set to be 9.

7.6.2 Effectiveness of the Constrains

To exhibit the effect of each regularization term introduced in the objective function,

we conduct five experiments on the SMMC-10 dataset, where the continuity, visi-

bility detection and intersection penalty terms as well as the subject-specific shape

model are incorporated successively. Their corresponding tracking errors are shown

in Fig. 7.6 (a), which shows that the tracking accuracy gradually improves with the
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Table 7.1: Parameter settings and their description

Parameter Description Value

ηdepth a threshold to subdivide a Octree node 20 mm

nlevel maximum Octree level 6

η a weight for self-intersection penalty

in the objective function (7.1) 0.001

γ a weight for continuity term in the objective function (7.1) 0.2

λ a weight for LLE-based topology constrain

in the shape modeling (6.7) 0.05

ϵ a percentage to determine the occlusion

in the visibility detection 1
3

ηfail a threshold in failure detection (7.22) 9

addition of each of the three terms as well as the subject-specific shape model. Es-

pecially, in Sequences 24-27 where the occlusion problem is serious, the visibility and

intersection terms make a significant contribution. It is also interesting to find that

the continuity term has a a slight negative effect in Sequence 25 (Karate) due to its

too strong penalty on the fast motion. However, the other terms and the shape model

are able to improve the accuracy. Fig. 7.6 (b) and (c) illustrate the tracking error of

the left elbow in Sequence 24 and that of the left knee in Sequence 27 respectively.

It is clear that using additional terms (in red) achieves much smaller errors than the

case without them (in blue). We visually compare the effect of the additional terms

in Fig. 7.7, where it is observed that the results using additional terms (in green) are

more accurate.

7.6.3 Accuracy Comparison

In Fig. 7.8 and Fig. 7.9, our algorithm is evaluated against the state-of-the-art meth-

ods in terms of two metrics. Failure recovery is only needed for Sequence 24, 25 and
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Figure 7.6: The effect of different terms in pose tracking. “Sim”, “Con”, “Vis”,

“Int” and “Mod” denote the kernel correlation, continuity, visibility, intersection

penalty terms and the subject-specific model, respectively. (a) The improvements over

different sequences. (b) The improvement over the left elbow in Sequence 24. (c) The

improvement over the left knee in Sequence 27.

Figure 7.7: The visual comparison of the effect of the additional terms. (a) Results

with the additional terms and subject-specific model. (b) Results only with the kernel

correlation. (c) Two results are merged together for comparison (the one from (a) in

green and the one from (b) in red).

27, and our approach achieves the average error 3.56cm on the SMMC-10 dataset

and it is close to the best results so far (around 3.4 ∼ 3.6cm) [25, 26, 28] where a

102



Figure 7.8: The accuracy comparison with the state-of-the-art methods, i.e., Ganap-

athi et al. [24], Baak et al. [21], Ye et al. [25], Taylor et al. [26], Helten et al. [27],

Ye et al. [28], Ding et al. [29] and Ding et al. [30] in distance error (cm). Except

our previous works [29, 30] and this research, all the others use both a large scale

database and a mesh model or either of them. Since no individual result of each

sequence is reported in [28], we only show its average result.

database or a detailed mesh model or both are involved. If no failure detection and

recovery are involved with real-time performance for all sequences, the average error

is 3.71cm. Moreover, we notice that our results are better than the original SoG

algorithm (reported in [29]) and [27] where additional inertial sensors were used. It

also outperforms our early GSoG method [30], which is mainly due to the proposed

segment-scaled AGKC and the differentiable intersection penalty term. Compared

with most other methods, our algorithm is simpler with lower complexity. Further-

more, we compare the precision of joint estimation (Metric II) in Fig. 7.9. It shows

that our algorithm is still comparable with the best algorithms [28, 31].

7.6.4 Efficiency Analysis

In all generative methods for pose estimation, the computational complexity is ex-

pressed as O(MN), where M is the number of vertices in a surface model and N is

the number of points in the observation point set. Due to the multivariate SoG body

shape representation and Octree-based point cloud representation, M and N in our
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Figure 7.9: The precision comparison with the state-of-the-art methods, i.e., Ganap-

athi et al. [24], Shotten et al. [20], Ganapathi et al. [31], Ye et al. [28], Ding et al.

[29] and Ding et al. [30].

approach are much less than those in most methods andM in the multivariate SoG is

only about a quarter of that in the standard SoG-based shape model, leading to a low

computational cost. We implement our tracking algorithm in C++ with the L-BFGS

optimization library [124]. Currently, the efficiency is evaluated on a PC without

GPU acceleration. We allow maximum 30 iterations in the first frame (similar to

a standard T-pose) and then 15 iterations in the following frames, and we ignore

the computation time of background segmentation using a depth threshold and the

Octree partitioning which is very efficient. We can achieve about 10 ∼ 15 frames per

second without the code optimization for human pose tracking. If the hybrid local-

global optimizer is employed in three sequences (#24, 25, 27), the computational

cost is increased due to PSO-based failure recovery, leading to a lower frame rate. In

this work, we used 10 particles and 20 generations in the PSO-assisted local-global

optimizer to test the effectiveness of the failure detection and recovery. However, it

is possible to keep the real-time performance if our algorithm can be integrated with

some data-driven detectors as those used in [76] to initialize and reduce the search

space. Due to the collective nature of AGKC and PSO, our pose tracking algorithm

(with failure recovery) is compatible with GPU-based parallel computing for further

acceleration.
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7.6.5 Failure Detection and Recovery

We track the average AGKC value in each frame according to (7.22) to detect a

failure. The average AGKC in some exemplary sequences are shown in Fig. 7.10. We

can observe that the values of average AGKC in most sequences are relatively smooth

and higher than the threshold ηfail, which indicates that no failures are detected. On

the other hand, the values of average AGKC in Sequence 24 and 27 dramatically

decrease at some frames and are lower than the threshold ηfail, which implies there

exist tracking failures.

Figure 7.10: The average AGKC in some exemplary sequences.

In our experiment, only three SMMC-10 sequences (#24, #25 and #27) has a

couple of detected failures. However, most hand sequences require failure recovery

due to fast motion change and complex self-occlusion. Fig. 7.11 shows the average

AGKC with/without the failure recovery in Sequence #25 of SMMC-10 and Sequence

#1 of hand motion. As shown in Fig. 7.11 (a) and (b), pose estimation fails from

frame #174, where its average AGKC value drops below the threshold (ηfail = 9).

Then, the recovery is triggered in the following frames, until the average AGKC value
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becomes larger than ηfail. Without failure recovery, the pose tracker could be trapped

in local minima in the following frames, as shown in the red curve in Fig 7.11 (b). On

the other hand, Fig 7.11 (c) visualizes the recovered pose estimation result in frame

200. The similar results for a hand sequence are shown in Fig 7.11 (d,e,f), where the

failure is detected in frame 74 and a good recovery is obtained at frame 97.

Figure 7.11: Two illustrations of failure detection and recovery in the human and

hand motion. (a) and (d) The human/hand pose tracking failures are detected. (b)

and (e) The values of average KC with (blue line) and without (red line) the failure

recovery. (c) and (f) The recovered human pose in frame 200, and the comparison of

hand poses (with/without recovery) in frame 97.

While most tracking failures can be successfully recovered for full-body pose track-

ing, the current hybrid optimization strategy is still not ready to handle complicated

hand motion yet. The main reason is that AGKC has too many local minima in hand

tracking, which deuterates when there are fast articulated pose changes and complex

self-occlusion problems. A more advanced failure detector [125] could be helpful to

106



reduce false alarms. More importantly, some finger detectors similar to that used in

[76] could mitigate this problem by reducing the search space and providing a better

initialization.

7.7 Discussion

Some pose estimation results of SMMC-10 sequences are shown in Fig. 7.14. While

the estimated poses are accurate in most frames for all sequences, and the failure

recovery is only triggered in a couple of frames in three sequences, our tracker may

still fail in a few frames of some sequences, as shown in the last row of Fig. 7.14. We

also evaluate our algorithm on several sequences from the hand dataset and compare

with the ground truth qualitatively in Fig. 7.12. Since the hand motion is rapidly

changing and highly articulated, there exists significant self-occlusion in most hand

sequences. Failure detection and recovery are required for most hand sequences.

Although the hybrid optimizer shows promising results in our experiments, it may

still fail in some frames of highly complex articulated motion. Some hand tracking

failures are shown in Fig. 7.13.

There are two possible reasons which will guide our future research. First, the vis-

ibility term in the objective function may not be accurate since it is determined from

the previous frame and used an approximate orthographic projection, especially in the

case of fast motion or changing camera view. We could address this by incorporating

the predicted pose into the visibility term or employing some other powerful visibil-

ity detection techniques. Second, there are still many local minima in the objective

function mainly due to the self-occlusion problems, and a better optimizer is needed

to take advantage of the differentiability of AGKC. PSO is effectively but costly, and

it must be confined to a small search space. Integrating additional pose detector or

other bottom-up features could improve initialization and narrow the search space

which are the two main keys to efficient and effective optimization in articulated pose
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tracking of the full-body and hands.

Figure 7.12: The illustrations of some articulated hand tracking results.

Figure 7.13: Examples of hand pose tracking failure.
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Figure 7.14: The illustrations of some human pose tracking results and some tracking

failure examples from all motion sequences.
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CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

This dissertation presented a series of approaches for human motion analysis from

three perspectives, i.e., manifold learning-based gait motion modeling, articulated

body shape representation and efficient articulated pose estimation. Firstly, we have

presented a new JGPM learning algorithm that is able to jointly optimize the gait and

pose variables simultaneously for gait modeling. Compared with the original JGPM

which is learned by a two-step learning process, a more straightforward one-step

GPLVM-based learning algorithm is developed. Also, since less hyper-parameters

are involved, the computational complexity is considerably reduced, which makes it

possible for large scale learning. Experimental results show that our proposed JGPM

has the superior performance for motion interpolation and filtering compared with

the existing GPLVM-based algorithms as well as the original JGPM-I and JGPM-II

and it is comparable with JGPM-III in the numerical results.

Also, we have proposed a multi-layer JGPM in order to enhance the representabil-

ity and flexibility of the single layer JGPM for more complex gait motion modeling.

There are two key techniques to make the multi-layer JGPM computational feasible,

i.e., training data diversification and topology-aware local learning. The first tech-

nique is simple yet effective to generate a rich set of simulated training motion with

different walking styles, which allows us to learn a more powerful model without in-

creasing the size of the original training data. This data diversification technique

naturally supports a multi-layer toroidal or cylindrical structure as the topological
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prior for manifold learning. The second technique enables that the model learning

can be implemented efficiently and effectively on a larger training dataset and the

resultant manifold is compliant with the topological prior both locally and globally.

We demonstrate the effectiveness of our approach by synthesizing the high-quality

motions from the multi-layer model. The experimental results show that the multi-

layer JGPM outperforms several existing GPLVM-based models in terms of motion

interpolation, reconstruction and filtering.

On the other hand, to achieve human pose estimation from a single depth sensor,

we have developed a novel generative method, i.e., articulated Gaussian kernel cor-

relation (AGKC)-based shape model for pose tracking. First, We have extended the

Gaussian kernel correlation from the univariate Gaussian to the multivariate one and

developed a generalized Gaussian KC (GKC) framework that provides a continuous

and differentiable similarity measure between a template and an observation, both

of which are represented by a collection of univariate and/or multivariate Gaussians.

Second, to accommodate articulated body deformation, we embed a quaternion-based

articulated skeleton into a multivariate SoG-based shape model and further develop

an AGKC function to measure the similarity between the template and the observa-

tion. Consequently, articulated pose parameters are estimated by maximizing AGKC

under three additional constraints, i.e., visibility, intersection penalty and continuity.

A simple yet effective failure detection and recovery strategy has been implemented to

enhance the robustness and smoothness of pose tracking. Also, the new AGKC func-

tion naturally supports a subject-specific shape modeling with a LLE-based topology

constraint. We have evaluated our proposed tracker on two public depth datasets, and

the experimental results are encouraging and promising compared with the state-of-

the-art algorithms, especially considering its simplicity and efficiency. Our algorithm

can achieve fast and accurate human pose estimation with competitive accuracy and

precision, and the proposed GKC and AGKC functions can also be applied to other
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articulated structures, like hand.

8.2 Future Research

Our future research will focus on the two issues, i.e., accurately shape modeling and

advanced articulated pose tracking. We will discuss each of them in detail in the

following.

• How to develop a more accurate shape modeling algorithm?

In current research, we use a general template which is composed by 13 mul-

tivariate Gaussian kernels to represent the body shape and we have developed

a subject-specific shape modeling algorithm to capture the variances between

different subjects. While it is effective and efficient for pose tracking in most of

our experiments, it may be limited to handle a subject with loosely fit clothing

or with significant articulated deformation. The main reason is our rough shape

model cannot handle the complicated non-rigid deformation on the surface of

the human body. Also, the shape model is too coarse to accurately determine

which body segment is visible or not. We believe that a more detailed and

parametric body model is still needed to handle those challenging problems.

In our future research, we will employ a more detailed body shape which is

represented by many small univariate/multivariate Gaussian kernels, by which

the subject-specific body shape can be depicted more accurately using our

shape modeling algorithm. Also, we will construct a topology-based relationship

among the Gaussian kernels on each body segment via a parametric mapping

function, so that the Gaussian kernels on each body segment will not share the

same transformation, but have their own ones. Specifically, we want to exploit

an additional soft (non-rigid) transformation on each body segment. During

pose tracking, we hope to estimate the transformation between two adjacent
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Gaussians that are on the same body segment. In this way, the pose parame-

ters and the frame-specific shape deformation can be optimized simultaneously.

There are mainly two challenges. First, since hundreds of additional param-

eters are involved, a high performance optimization method is necessary for

effective pose and shape estimation. Second, the computational complexity will

dramatically increase. Some efficient approximation methods and GPU accel-

eration could be required to sustain the efficiency. Both challenges will guide

our future research.

• How to develop a more accurate, robust and efficient pose tracking algorithm?

In current research, while we enhance the similarity measure between the tem-

plate and an observation with three additional constraints, and we also have a

simple failure detection and recovery strategy, our tracker may still fail in some

frames, especially for the complex hand motion. The first reason is the visibility

detection term may not be accurate since it is determined from the previous

frame and used an approximate orthographic projection. Second, there are still

many local minima in the objective function mainly due to the self-occlusion

and self-intersection problems. To solve the problem of visibility detection, we

will incorporate a prediction strategy to provide a pose that is more close to the

current one for the visibility detector. Also, replacing the current projection-

based visibility detection, we will employ some other powerful visibility detec-

tion techniques in the future, such as the Hidden Point Removal in [126]. To

solve the problem of poor local minima, a better optimizer is required to take

advantage of our differentiable AGKC function. The local-global optimization

strategy is effective but costly, and it must be confined to a small search space.

In our future research, we will integrate an additional pose detector or other

bottom-up data-driven methods to improve the initialization and narrow down

the search space. Moreover, we will explore a more advanced failure detector
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to adapt to different application environment, like the technique used in [125].

To further improve the accuracy and robustness of the Mocap system, we could

employ the inertial sensors which can provide accurate rotation angle informa-

tion to complement the limitation of monocular depth sensor-based methods,

especially for self-occlusion handing and pose estimation from the side-view ob-

servation. In our future research, a sensor fusion framework could be developed

to recover more accurate and robust pose estimation from the results of a depth

sensor and inertial sensors.
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