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Abstract: Two significant challenges the cattle industry is facing are respiratory disease 

and infertility.  The type I interferon (IFN) pathway plays a pivotal role in both disease 

and pregnancy. The type I IFN pathway is interrupted by viral infection which reduces 

production of interferon stimulated genes (ISG). Interferon-tau (IFNT) is the pregnancy 

recognition signal in ruminants, which acts through the type I IFN pathway to activate 

ISG. Thus, understanding IFN and immune function could improve production 

efficiency. Studies described herein evaluate type I IFN and immune responses to bovine 

respiratory disease and pregnancy recognition in cattle. 

 

The first experiment evaluated activation of the type I IFN pathway after infecting calves 

with bovine viral diarrhea virus type 1b (BVDV1b) and Mannheimia haemolytica (MH). 

Steady-state mRNA levels of MX1, ISG15, and RTP4 were determined in peripheral 

blood leukocytes prior to BVDV1b exposure (d -4), prior to MH challenge (0 h), 12 h and 

24 h after MH challenge. A significant time effect (P < 0.05) for all ISG was detected. At 

0 h, ISG15 levels increased 44-fold and remained elevated over 60-fold for 12 h and 24 h 

(P < 0.01). Likewise, RTP4 and MX1 increased at 12 h (P < 0.05) after BVDV challenge. 

Data suggests that the type I IFN pathway remains active after challenge with BVDV1b 

and MH. 

 

The second experiment evaluated pregnancy rates after intrauterine, autologous transfer 

of IFNT-primed immune cells. Peripheral blood mononuclear cells were cultured 

overnight with 500 U/mL of IFNT, followed by autologous intrauterine transfer 

(IMMUNE; n = 97) on d 4 after estrus; controls received intrauterine infusion of saline 

(CONT; n = 82). On d 7, serum samples were collected for hormone analysis and 

embryos were transferred to all animals. Progesterone concentrations were similar for 

IMMUNE (4.1 ± 0.33 ng/mL) and CONT (3.7 ± 0.33 ng/mL) and were not different 

between pregnant and open cows (P > 0.20). Pregnancy rate for IMMUNE was 77% 

(75/97) compared with 57% (47/82) for CONT (P < 0.01). Results indicate that 

progesterone concentrations did not differ between groups and transfer of autologous 

IFNT-primed PBMC improved pregnancy rates after embryo transfer.  
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CHAPTER I 
 

 

INTRODUCTION 

 

The population of the world is predicted to dramatically increase in the next 35 

years, increasing the global demand for meat and animal products by 70% by the year 

2050 (Alexandratos and Bruinsma, 2012). Due to limitations in land space, the increase 

in food production will need to be driven by new technologies. Currently, two of the 

largest issues that decrease production efficiency in livestock operations are respiratory 

disease and infertility. Thus, these issues are ideal targets for investigation to increase 

production efficiency. The interferon (IFN) pathway is a key modulator in respiratory 

disease and infertility; aberrations in IFN signaling could contribute to disease 

susceptibility and reduced reproductive rates. Interferons are immune-derived cytokines 

which regulate immune responses to pathogens and to pregnancy in domestic ruminants. 

Advances in our understanding of the IFN pathway and immune function could improve 

upon challenges associated with infertility and disease in domestic livestock production. 

Bovine respiratory disease complex (BRDC) is typically composed of viral and 

bacterial pathogens affecting the respiratory tracts of calves. The two most common 

pathogens in Oklahoma are bovine viral diarrhea virus (BVDV) and Mannheimia  
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haemolytica (Fulton et al., 2002). Bovine viral diarrhea virus is a single stranded RNA 

virus, member of the Pestivirus genus, family Flaviviridae (Meyers and Thiel, 1996). 

Bovine viral diarrhea virus is separated into BVDV1a, BVDV1b and BVDV2 (Ridpath et 

al., 1994; Ridpath and Bolin, 1998). Calves can become infected with BVDV while still 

in utero; producing either transiently infected (TI) or persistently infected (PI) calves. If 

the dam is infected between 30 and 120 d of gestation with BVDV, calves are considered 

PI, and are unable to mount an immune response to BVDV (Bognar, 1972; Kahrs, 1973; 

McClurkin et al., 1984; Stokstad and Løken, 2002). If calves are infected after 120 d of 

gestation they are considered TI and are able to produce an immune response in utero 

(Bognar, 1972; Kahrs, 1973; McClurkin et al., 1984; Stokstad and Løken, 2002). There 

are two biotypes that produce BVDV, noncytopathic (ncp) and cytopathic (cp), 

depending on the virus’ ability to cause cytopathogenicity, or pathological changes in the 

cell. Persistently infected calves can only be produced by ncp-BVDV, which is a lifelong 

disease causing calves to constantly shed the virus through nasal discharge and coughing 

(Dubovi, 1994).  This is how BVDV is maintained and spread in the cattle population. In 

2011, an estimated 16.2% of cattle in the United States were affected by respiratory 

disease, with 87.5% of the 16.2% being treated for the disease (NAHMS, 2011). Bovine 

respiratory disease is responsible for an estimated $800 to 900 million dollar loss each 

year, costing producers $23.60 per case, due to decreased feed efficiency, medicine costs, 

and death (Chirase and Green, 2000, NAHMS, 2011). 

Another major problem the cattle industry is facing is infertility and subfertility. 

Cattle exhibit high fertilization rates, estimated at over 90%, but the rate of pregnancies 

carried to term can be as low as 40% (McMillan, 1998). A major cost and contributing 
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factor to failure in reproductive efficiency in both natural service and either artificial 

insemination or embryo transfer is the low rates of embryonic survival. Embryonic 

mortality is the losses that occur during the early embryonic period, extending from 

conception to differentiation, which is approximately 45 d (Committee on Bovine 

Reproductive Nomenclature, 1971), and most embryonic mortality can be attributed to 

inadequate endometrial receptivity (Hansen and Block, 2004). Early embryonic loss 

results in fewer calves being born, slower genetic progress, and a significant economic 

loss to the cattle industry (Dunne et al., 2000).  Improving endometrial receptivity, 

decreasing embryonic loss, and increasing pregnancy rates, all work to improve the 

genetic selection, decrease production costs, increase reproductive efficiency, and 

ultimately increase production efficiency to feed the increasing population.  

Reproductive technologies have evolved from natural mating to AI to embryo 

transfer (ET). Embryo transfer has become a large international business, as well as a tool 

to improve genetics and specific characteristics in cattle (Wu, 2012). Currently, AI has 

improved genetic selection but it is limited to single generation contributions at a time. 

Artificial insemination can be useful in breeding one superior bull to several superior 

females, but only one progeny is produced per superior female. Embryo transfer provides 

the opportunity to produce several progeny from one superior female and one or more 

superior males. There are an estimated 14,000 to 250,000 eggs produced in female cattle 

(Ireland et al., 2008; Machado et al., 2006; Suthar and Shah, 2009). Using ET 

technology, as many as 1,000 oocytes have been collected and 100 offspring have been 

produced by one cow in a year (Ireland et al., 2008; Machado et al., 2006; Suthar and 

Shah, 2009). This greatly increases the rate of genetic change in the cattle industry. 
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The use of reproductive technologies in the United States is still relatively low in 

the beef industry. There are several limiting factors stopping producers from 

implementing reproductive technologies, including labor, time, cost, lack of facilities, or 

degree of difficulty (NAHMS, 2007). In the United States, 37.7% of producers cited 

labor and time as the number one reason they do not use AI (NAHMS, 2007). In beef 

operations with greater than 200 cows, only 19.3% use estrus synchronization, 19.8% use 

AI, and 5.0% use ET (NAHMS, 2007). Use of these technologies is even less for all herd 

sizes in the United States at 7.9% use estrus synchronization, 7.6% use AI, and 1.6% use 

ET (NAHMS, 2007). It is conceivable that if reproductive rates were increased when 

utilizing reproductive technologies, then broader adoption of reproductive technology 

would be observed because there would be more return on time, labor, and facility 

investment for livestock producers. The increase and development of reproductive 

technologies will greatly increase the genetic improvement of cattle herds, as well as 

bridge the gap between the rise in global population and the need to increase food 

production.  

Improving reproductive technology would increase genetic change, improve 

economically important traits of production animals, and increase production efficiency. 

There is a major opportunity for improving reproduction technology in order to meet 

future food demands. Type I interferon (IFN) activation, production, and signaling 

impacts both BRDC and fertility rates in cattle. The type I IFN pathway is active in both 

disease and pregnancy, though the functions and effects are different. Continued research 

into type I IFN signaling and effects could provide new opportunities for new technology 

to address BRDC rates and infertility.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

ESTROUS CYCLE 

 Bovine are a polyestrous animal entering estrus every 21 d with two distinct 

phases, the follicular phase and the luteal phase. The start of the estrous cycle is 

identified by estrus, or standing heat. Estrus lasts on average 15 h in cattle and marks the 

period of sexual receptivity by the female. Estrus is preceded by the follicular phase 

where follicles undergo two or three waves of growth and atresia to produce one 

dominant follicle for ovulation. Follicle stimulating hormone (FSH) and luteinizing 

hormone (LH) provide the necessary mechanisms by which follicular recruitment, 

selection, and dominance occurs via a negative feedback loop on the hypothalamic-

pituitary-gonadal axis. The release of these hormones from the anterior pituitary is 

governed by the decapeptide, gonadotropin releasing hormone (GnRH) produced in the 

hypothalamus. The arcuate nuclei, also known as the tonic center, are responsible for the 

pulsatile release of GnRH (Clarke and Cummins, 1982). The preoptic area, or surge 

center, is responsible for the preovulatory surge of LH (Swanson and Hafs, 1971). Under 

the influence of FSH, follicles grow until one reaches dominance. The granulosa and 
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theca cells of the dominant follicle secrete estradiol and inhibin, which in turn work to 

decrease FSH production and increase LH secretion for luteolysis. Granulosa and theca 

cells in the follicle work together to produce the steroid hormone estrogen (E2). Theca 

cells produce the androgens, androstenedione and testosterone from cholesterol, but lack 

the necessary enzymes to produce E2. Androgens diffuse across the basement membrane 

to the granulosa cells and are converted to estrogens by the enzyme aromatase (Fortune 

and Quirk, 1988). Follicle stimulating hormone stimulates the production of inhibin from 

granulosa cells, which feeds back to the anterior pituitary to decrease the amount of FSH 

produced. Rising concentrations of E2 cause a preovulatory surge of LH, inducing the 

follicle to rupture and release the oocyte. This rupture causes a subsequent cascade of 

events called luteinization to ultimately produce the corpus luteum (CL). The CL is a 

highly vascular structure that produces the hormone progesterone (P4) and marks the 

beginning of the luteal phase of estrus (reviewed by McCracken et al., 1999).  

During luteinization, theca and granulosa cells restructure to form luteal cells and 

the steroidogenic pathway is reprogrammed to primarily produce P4. In ruminants’ 

granulosa cells are differentiated into large luteal cells (LLC) and theca cells become 

small luteal cells (SLC) under the influence of LH. The SLC and LLC compose about 

30% of the CL, with endothelial cells comprising about 50% (O’Shea et al., 1989; Lei et 

al., 1991). Progesterone is produced primarily from the LLC in the CL to act on the 

hypothalamus and anterior pituitary to block the pulsatile release of GnRH. This restricts 

the secretion of LH, E2, and FSH to low frequency high amplitude amounts. Progesterone 

remains elevated for the duration of the luteal phase, and decreases about 48 to 60 h 

before ovulation (Baird, 1978). Progesterone, binding to progesterone receptors (PR) 
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blocks expression of both the estrogen receptors (ER) and oxytocin receptors (OTR) in 

the endometrium, thus preventing the increase of these hormones (McCracken et al., 

1984). Progesterone down regulates its own receptor in the endometrial luminal epithelial 

(LE) and superficial ductal glandular epithelium (sGE) due to continual exposure to P4 

(Spencer et al., 1995a, b). The down regulation of P4 effectively releases the block on the 

ER and OTR expression, allowing a return to estrus and follicular growth. Exogenous E2 

will cause luteolysis in ewes when administered between d 9 to 12 (Hawk and Bolt, 

1970). When E2 is administered between d 1 and 6, it is ineffective in causing a return to 

estrus by luteolysis (Hawk and Bolt, 1970). In sheep, this correlates with P4 down 

regulating its own receptor at 8 to 10 d after ovulation and the up regulation of both the 

ER and OTR (Spencer et al., 1995a, b).  

 

 During the luteal phase, the CL undergoes a natural progression reaching full 

maturity and maximal P4 production, to regression, or luteolysis and a marked decrease in 

P4 production. Regression of the CL is caused by pulsatile secretions of the luteolytic 

hormone prostaglandin F2α (PGF2α). To cause regression of the CL, ruminants must be 

exposed to 5 to 8 pulses of PGF2α within a 24 h period, thus causing luteolysis and a 

return to estrus (McCracken et al., 1970; Nancarrow et al., 1973; Peterson et al., 1975). 

Endometrial-derived PGF2α binds to receptors on luteal cells and initiates a signaling 

cascade that terminates P4 production causing cellular death in the CL (reviewed by 

Silvia et al., 1991). Prostaglandin F2α production is driven by luteal derived oxytocin 

(OT). Oxytocin binds OTR in luminal epithelium cells and stimulates the release of 

PGF2α by activating the phosphatidyl inositol-diacylglycerol protein kinase C second 
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messenger system (Silvia and Homanics, 1988; Silvia and Raw 1993; Tysseling et al., 

1998). Low pulses of PGF2α stimulate the release of OT from luteal cells in the CL, 

which feeds back to increase the release of PGF2α (McCracken et al., 1984). Release of 

PGF2α is dependent on the presence of OTR in the endometrium. Increasing PGF2α 

production eventually causes regression of the CL. Estrogen concentrations from the 

dominant follicle increase simulating the transcription and translation of OTR in the 

luminal epithelium (McCracken et al., 1984). Oxytocin binds OTR to stimulate the 

release of PGF2α which drives both structural and functional regression of the CL 

(McCracken et al., 1984).  

 

PREGNANCY RECOGNITION AND MAINTENANCE  

 

Progesterone 

Progesterone is essential for the continuation of pregnancy, and is necessary for 

implantation, placentation, and embryonic development. Progesterone acts on the 

endometrium to encourage functions necessary for conceptus growth and development 

(reviewed by Brook et al., 2014). In bovine, administration of PGF2α lowered serum 

concentrations of P4 and significantly decreased conceptus length on d 14 of gestation 

(Forde et al., 2011). The lack of conceptus growth in a low P4 environment shows the 

importance of adequate P4 concentration in pregnancy for functional growth and 

development of the conceptus. Cows ovariectomized between d 48 and 268 of pregnancy 

resulted in abortion of all fetuses (Estergreen et al., 1967), indicating that placental 

production of P4 is not sufficient to sustain pregnancy. Ewes treated with the PR 
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antagonist RU486, significantly lowered blastocysts survival rate (Satterfield et al., 

2006). It is clear that P4 has an effect on the conceptus in early pregnancy and is required 

for sustaining pregnancy.  

  

Interferon-tau 

For pregnancy to be established and maintained the attenuation of the regression 

of the CL is vital for continued secretion of P4. In cows, timing of conceptus entrance in 

the uterus in relation to luteal maintenance has been established to be between d 15 and 

17 of pregnancy (Humbolt and Porta, 1984; Northey and French, 1980; Thatcher et al., 

1984). This critical period calls for communication between the embryo and the recipient 

or dam. In essence, a signal must be sent to the dam to signal pregnancy to abrogate 

rejection of the conceptus and stimulate changes for growth and maintenance. Though the 

exact substance was unknown at the time, it was found that administering embryonic 

tissue or homogenates extended the lifespan of the CL. Cows with embryos removed at d 

17, 18, or 19, exhibited longer interestrus intervals, while those with embryos removed at 

d 13 or 15 had on average 21 d interestrus periods (Northey and French, 1980), 

indicating, that embryos affect the return to cyclicity. When conceptuses were removed 

on d 9 or 14 after conception, the length of the estrous cycle is not affected (Humbolt and 

Porta, 1984). When embryos were removed at 16 d post conception estrus was prolonged 

by 7 d (Humbolt and Porta, 1984).  An increase in P4 and delayed regression of the CL 

occurred when homogenates of the embryos collected at d 17 or 18 were transferred to 

the uterine horn ipsilateral of the CL of non-pregnant cows (Northey and French, 1980). 

These data indicate that embryos secrete a substance that affects the CL and the 
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continuation of the release of P4, suggesting that d 16 or older conceptuses exhibit 

antiluteolytic properties.  

In sheep, trophoblastin, was identified as an antiluteolytic compound by 

intrauterine injection of homogenates from the embryo. Similar to studies in cattle, 

injections of extracts from trophoblasts extended the life of the CL in ovine, suggesting a 

complementary effect between the conceptus and the endometrium (Martal et al., 1979). 

A major secretory protein, identified as ovine trophoblast protein-1(oTP-1) in ovine, and 

bovine trophoblast protein-1(bTP-1) in bovine, is released by the unattached sheep 

conceptus between d 13 and 21 (Godkin et al., 1982; Imakawa et al., 1987). Ovine 

trophoblast protein-1 and bTP-1 have a molecular weight of about 17,000 (Godkin et al., 

1982; Imakawa et al., 1987). These proteins are structurally related to type I IFN, such as 

IFNα, IFNβ, IFNε, and were later renamed interferon-tau (IFNT; Imakawa et al., 1987; 

Roberts et al., 1992b). Interferon-tau is secreted by the conceptus between d 10 and 25, 

with maximum secretion on d 14 to 16 in sheep and 16 to 19 in bovine (Helmer et al., 

1987).  Once IFNT had been identified as the pregnancy recognition signal in ruminants, 

subsequent work focused on mechanisms by which IFNT rescues the CL and maintains 

pregnancy.  

Release of P4 did not change in luteal tissue from non-pregnant cows incubated 

with recombinant bovine IFNα, indicating that IFNT acts elsewhere in the endocrine 

system and not on the CL directly to promote P4 production (Barros et al., 1992). To 

determine where conceptus proteins exhibit their effect, endometrial tissues from cyclic 

cows were incubated with conceptus secretory proteins, or bTP-1 (Helmer et al., 1989). 

Endometrial produced PGF2α is reduced by both conceptus secreted proteins and bTP-
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1(Helmer et al., 1989). Danet-Desnoyers and others (1994) tested the effects of IFNT and 

OT on epithelial and stromal cells from the endometrium of cyclic cows 15 d post estrus. 

When epithelial cells were incubated with IFNT, with or without OT, PGF2α production 

was decreased (Danet-Desnoyers et al., 1994). When OT was added PGF2α production 

was increased, but was still significantly lower than controls (Danet-Desnoyers et al., 

1994). Stromal cell production of PGF2α was not affected by IFNT or by OT treatments, 

indicating that the major source of PGF2α comes from the luminal epithelial cells (Danet-

Desnoyers et al., 1994). Oxytocin receptors appear around d 14 of non-pregnant ewes, 

and decrease as P4 increased during early luteal phase (Wathes and Hamon, 1993; 

Stevenson et al., 1994).  The reduction of OTR is through a paracrine fashion involving 

several hormones and mechanisms. Interferon arrests the development of luteolytic 

mechanisms by acting on the endometrial epithelia to suppress transcription of the 

estrogen receptor and the oxytocin receptor, which are responsive to estrogen, in turn 

inhibiting the secretion of oxytocin (Beard and Lamming, 1994; Burgess et al., 1990; 

Spencer et al., 1995a, b). All of these mechanisms work synergistically to maintain and 

continue pregnancy and highlighted IFNT’s role in successful pregnancy.  

 

TYPE I INTERFERON PATHWAY 

 Interferon-tau belongs to the type I IFN family that includes IFNα, IFNβ, and 

IFNΩ (Interferon Nomenclature, 1980). Interferons are signaling proteins belonging to 

the cytokine class that has antiviral and growth inhibitory effects (Isaacs and 

Lindenmann, 1957). The type I IFN pathway is activated when a virus invades the host 

animal.  This invasion activates a signal transduction pathway that triggers transcription 
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of genes. These genes, known as interferon stimulated genes (ISG), assist the host animal 

to produce an antiviral response (Randall and Goodbourn, 2008). Type I IFN bind a 

common type I IFN receptor with two subunits, IFNAR1 and IFNAR2 located on the cell 

surface (Pestka et al., 1987). Upon binding to the type I IFN receptor, activation of the 

classic Janus activated kinas (JAK) signal transducer and activator of transcription 

(STAT), is initiated to signal a downstream cascade of events including induction of ISG 

(Binelli et al, 2001). The subunit IFNAR1is associated with the tyrosine kinase 2 (TYK2) 

and IFNAR2 is associated with JAK (Platanias, 2005). Both are ligand dependent, 

causing a rearrangement and dimerization of IFNAR1 and IFNAR2 followed by 

autophosphorylation (Platanias, 2005). Autophosphorylation of TYK2 and JAK activates 

the many STATs associated with type I IFN pathway including STAT1, STAT2, STAT3, 

and STAT5 (Darnell, 1997; Stark et al., 1998). Depending on the IFN, two STAT 

molecules are phosphorylated and dimerize with interferon regulatory factor-9 (IFR9) to 

form the complex IFN-stimulated gene factor-3 (ISGF3; Darnell, 1997; Stark et al., 

1998). Interferon stimulated gene factor-3 binds to specific elements known as IFN-

stimulated response elements (ISRE) that are present in certain ISG thereby initiating 

transcription of the genes (Platanians, 2005). Interestingly, type I IFN are generally 

induced by pathogens entering the host, causing an immune reaction, but IFNT 

represented a new class of IFN that is not pathogen induced (Martal et al., 1998). Instead 

IFNT is temporally secreted by the conceptus to signal pregnancy making it a cytokine as 

well as a reproductive paracrine hormone. 

 

INTERFERON SIGNALING IN THE UTERUS 
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 There are several genes in the endometrium, CL, and blood that are differentially 

expressed between pregnant and non-pregnant ruminants; many of these have been 

identified to be related to IFNT. Several ISG have been identified, though their roles in 

pregnancy have not yet been elucidated. The ISG that are upregulated in response to 

IFNT are hypothesized to regulate endometrium receptivity, differentiation, and 

conceptus elongation and implantation (Bazer et al., 2009; Hansen et al., 1999; Hansen et 

al., 2010). Genes such as, 2’5’-oligoadenylate synthetase (OAS-1), MX dynamin-like 

GTPase 1 (MX1), and MX dynamin-like GTPase 2 (MX2) have an increased expression 

due to stimulation by IFNT (Ott et al., 1998; Schmitt et al., 1993). This is in agreement 

with other studies that found a 15-kDa ISG in the uterus in relation to pregnancy 

(Johnson et al., 1999). In sheep, ISG15 ubiquitin-like modifier (ISG15) is expressed in the 

LE on d 10 or 11, as well as in the stratum compactum stroma and glandular epithelium 

(GE) on d 13 and 14 of pregnancy (Johnson et al., 1999). Interferon stimulated genes are 

also expressed in the CL during pregnancy. Receptor (chemosensory) transporter 

protein-4 (RTP4), ISG15, MX1, and OAS have all been found in response to IFNT 

injections or in early pregnancy in the CL (Gifford et al., 2008; Oliveira et al., 2008; 

Spencer et al., 1999). These ISG are activated through the type I IFN pathway, much like 

a virus activates the pathway, but with some key differences. The type I IFN pathway is 

activated by IFNT, produced by the conceptus. The interferon regulatory factors are 

temporally and spatially regulated by IFNT during early pregnancy in the uterus. The 

interferon regulatory factors-1 and -2 (IRF1, IRF2) can only be found in the luminal 

epithelial (LE) and the sGE (Spencer et al., 1998). The expression of STAT1 and STAT2 

as well as IRF9 were not detected in the LE and sGE during early pregnancy, but the 
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IRF2 protein expression is increased in the LE and sGE in response to IFNT (Choi et al., 

2001). This suggests that IFNT is utilizing an unknown mechanism to up regulate 

expression of ISG, other than the STAT1, STAT2, and IRF9 pathway. 

Recent work has brought to light the interactions of IFNT, prostaglandins (PG) 

and cortisol in the uterus during early pregnancy. The conceptus produces more PG than 

the endometrium when comparing cyclic to pregnant cattle (Lewis, 1989). The continual 

release of PG appears to help regulate growth and development of the conceptus. 

Receptors for PG are found in all cell types of the endometrium, indicating paracrine, 

autocrine, and potential intracrine effects on the endometrium to improve conceptus 

growth and elongation (Dorniak et al., 2011). For PG production to occur, the rate 

limiting enzyme cyclooxygenase 2 (COX-2) otherwise known as prostaglandin-

endoperoxide synthase 2 (PTGS2) must be produced by the LE, sGE, and the conceptus 

(Kim et al., 2003; Ulbrich et al., 2009). In ovine, COX-2 is increased in pregnant ewes, 

with maximal production on d 12, but continued to be high through d 16 (Kim et al., 

2003). The conceptus secretes COX-2 from d 8 to 17, with a maximum increase between 

d 14 and 16, declining after to become undetectable after d 25 (Charpigny et al., 1997). 

Prostaglandins are essential for conceptus growth, elongation, and implantation. Heifers 

that were injected with meloxicam (MEL), an inhibitor of COX-2, on d 15 after 

insemination, had reduced pregnancy rates compared to those heifers that were untreated 

(Erdem and Guzeloglu, 2010) indicating that PG has positive effects on the establishment 

of pregnancy. 

 Progesterone induces transcription of many genes that are involved with 

elongation and implantation of the conceptus. Genes include: hydroxysteroid (11-beta) 
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dehydrogenase 1 (HSD11B1), lectin, galactoside-binding, soluble, 15 (LGALS15), and 

solute carrier family 5 (sodium/glucose cotransporter) member 1 (SLC5A1; Satterfield et 

al., 2009).  Relative to conceptus growth, HSD11B1 is involved with biologically 

activating cortisol in the endometrium and is implicated in conceptus elongation (Dorniak 

et al., 2012). Inhibiting COX-2 with MEL decreases the amount of cortisol and 

HSD11B1 found in the uterine lumen and endometrium (Dorniak et al., 2012). Infusing 

IFNT into the endometrium increases the amount of HSD11B1 and cortisol, but this 

effect is lowered when a combination of IFNT and MEL is infused (Dorniak et al., 2012). 

Inhibiting PG and the corresponding decrease of cortisol and HSD11B1 in the lumen and 

endometrium is indicative of uterine and conceptus interactions to release cortisol. It also 

indicates that IFNT can affect the release of cortisol, but inhibiting PG diminishes this 

effect. Infusing ewes with cortisol increased HSD11B1 and COX-2 activity, while 

inhibiting HSD11B1 by infusing PG915275, decreased cortisol (Dorniak et al., 2013). 

When cortisol and PG915275 were co-infused, COX-2 was diminished, IFNT increased 

HSD11B1 and cortisol, but PG915275 had no affect this increase (Dorniak et al., 2013). 

Furthermore, when ewes were infused with PG915275 conceptus length was severely 

inhibited and caused a reduction in several P4 induced genes such as HSD11B1 and 

LGALS15 (Dorniak et al., 2013). Infusion of IFNT and PG915275 rescued this inhibition 

on conceptus growth (Dorniak et al., 2013). These studies exhibit the regulatory effects of 

IFNT on conceptus growth and elongation as well as the effects that cortisol, IFNT, and 

PG have on the uterine endometrium and conceptus.   

There is more PGF2α secreted after pregnancy than during the estrous cycle; yet 

this does not cause luteolysis because the CL is sensitive to pulses of PGF2α rather than 
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basal concentrations. Pregnant sheep CL are actually exposed to a higher concentration of 

PGF2α than cyclic sheep on d 13 of pregnancy than d 13 of the estrous cycle (Silvia et al., 

1991). Pregnant sheep required a higher dose of PGF2α than non-pregnant sheep, at 6 and 

10 mg/58 kg of body weight and 4 mg/58 kg of body weight, respectively, to cause 

luteolysis (Silvia and Niswender, 1984) indicating a resistance to PGF2α by the CL. This 

was further confirmed by examining the pattern of P4 over time in response to PGF2α. 

Results indicated that the CL develops resistance to PGF2α between d 10 and 12, and this 

continues to d 16 in sheep (Silvia and Niswender, 1986). The decrease in sensitivity 

could be explained by the escaping of IFNT from the uterus. Using a bioassay for type I 

IFN, Olivier and others discovered that type I IFN is released from the uterus of pregnant 

sheep through the uterine vein (Oliveira, et al., 2008). In addition, Gifford et al. (2008) 

observed that ISG were increased in the CL during early pregnancy. Building on this 

premise, it was speculated that infusion of IFNT would extend the life of the CL in 

ruminants. Non pregnant ewes were fitted with osmotic pumps to secrete recombinant 

oIFNT into the uterine vein for 72 h and then challenged with an injection of PGF2α 24 h 

after pump installation (Antoniazzi et al., 2013). Progesterone levels were sustained in 

ewes receiving IFNT and challenged with PGF2α, indicating that IFNT decreases the 

CL’s sensitivity to PGF2α.  

 

IMMUNE MODULATION DURING EARLY PREGNANCY 

The conceptus is a foreign body that should be attacked by the maternal immune 

system, but this does not happen. Medawar (1953) first described the immunological 

significance of the pregnant mother being able to tolerate an allogeneic conceptus. The 
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conceptus relies upon the uterus to secrete products that will help implantation, and to 

create a suitable environment for growth and development. It is thought that the uterus 

and conceptus secrete cytokines during implantation, which are involved in the maternal 

cross talk between the fetus and the dam, and help to form collaborative relationships 

between the trophoblast, uterus and immune cells (Wegmann et al., 1993; Bai et al., 

2012). T helper cells, active in immunoregulation, in one way can be classified as Th1 or 

Th2 based on the cytokine profile they induce. The Th1 response is associated with the 

inflammatory cytokines interleukin (IL) 2 and IFN-γ while Th2 response is associated 

with production of IL-4, IL-5, IL-6, IL-10 and IL-13 (reviewed by Saito et al., 2010). The 

Th1 profile is associated with a cell-mediated immunity, and Th2 profile is more of a 

humoral, anti-body response. To prevent immunological attack on the embryo, there is a 

shift from a Th1 immune response to a Th2 response. Early work suggested that IL-2, 

TNF-α, and IFN-γ, which are all Th1 associated cytokines, are deleterious to pregnancies 

in mice, causing abortion (Chaouat et al., 1990). Natural killer cells (NK) were found to 

cause fetal reabsorption in mice, and injection of anti-NK antibodies reduced the number 

of fetal adsorptions (Gendron and Baines, 1987). During pregnancy there is a shift 

towards Th2 cytokines release from the maternal-fetal interface; IL-3, IL-4, IL-5 and IL-

10 cytokines are all found during each trimester of pregnancy (Lin et al., 1993). In late 

secretory phase of the menstrual cycle and early pregnancy, lymphocytes increase in 

number but do not exhibit classic T cell or natural killer cell markers (Bulmer et al., 

1984, 1985). In early pregnancy leukocyte populations increased from 8.2% to 31.7% 

with over 75% of the leukocytes being CD56+ cells (Bulmer et al., 1991). This shift from 
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Th1 to Th2 cytokine profiles is considered essential for pregnancy maintenance and 

preventing rejection of the conceptus (Wegmann et al., 1993).  

 

SYSTEMIC ACTIVATION 

While there are uterine specific changes in the immune system during pregnancy, 

there is also a systemic response to pregnancy. CD4+ and CD25+ are regulatory T-cells 

involved in preventing autoimmunity, and are implicated in suppressing immunological 

rejection of the conceptus (reviewed by Shevach, 2002).  Cows in the stages of early 

pregnancy had greater populations of lymphocytes that were CD4+ and CD25+ in the 

peripheral blood when compared to non-pregnant cows (Oliveria and Hansen, 2008). In 

pregnant women the concentration of CD4+ and CD25+ cells more than doubled when 

compared to non-pregnant women (Somerset et al., 2004). Pregnant women exhibited 

greater serum concentrations of IL-4 and IL-10, both Th2 type responses, and decreased 

concentrations of IL-2 and IFN- γ, Th1 type responses, when compared to non-pregnant 

women (Marzi et al., 1996). These studies also indicate that there is a shift in the immune 

cell population and a shift from Th1 to Th2, indicating that immune cells assist in 

pregnancy maintenance.  The antiviral protein, MX1, is up-regulated in pregnant ewes in 

peripheral blood mononuclear cells (PBMC) within 24 to 48 h of the IFN signal (Yankey 

et al., 2001). Peripheral blood leukocytes (PBL) from pregnant cattle showed MX2, 

ISG15, and MX1 to by increased as early as d 16, 18, and 20, respectively (Gifford et al,. 

2007). These studies indicate that IFN is activating genes throughout the body, and is not 

limited to the reproductive organs. Though the functions of these genes are not yet 
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known, it can be speculated that they are important to pregnancy function and 

maintenance.  

Systemic activation of immune the system during pregnancy appears to be 

important for maternal physiological adaptations to pregnancy. Fujiwara and others 

(1993) postulated that PBMCs play a role in CL P4 production by carrying information 

through blood circulation from the embryo to the CL. To test this theory they cultured 

luteal cells from pregnant and non-pregnant women with PBMCs isolated from the 

follicular phase, luteal phase, and early pregnancy of pregnant and non-pregnant women. 

Progesterone production was enhanced in luteal cells derived from both pregnant and 

non-pregnant women when cultured with PBMCs (Hashii et al., 1998). This effect was 

more significant in the cultures where PBMCs were derived from women in the early 

stages of pregnancy or those in the luteal phase (Hashii et al., 1998). There was a slight 

increase in P4, but not significant, production by PBMCs derived from non-pregnant 

women (Hashii et al., 1998). This suggests that factors during pregnancy alter immune 

cells to aid in CL function and maintenance. The increase in P4 caused by PBMCs 

suggests that they are involved in transmitting the presence of the embryo to the CL to 

facilitate CL transformation and the continual secretion of P4. 

 

IMMUNE SYSTEM REGULATES ENDOMETRIAL RECEPTIVITY 

The immune system also plays an active role in preparing receptivity of the 

uterine endometrium. Immune cells assist in P4 production, which is vital to pregnancy, 

but without a receptive environment in which to attach pregnancy is impossible. Priming 

of the endometrial immune system is important for pregnancy recognition and conceptus 
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growth. One of the first priming events associated with reproduction is exposure of the 

endometrium to seminal plasma which is speculated to facilitate endometrial receptivity. 

Removal of accessory glands from male mice influences the percentage of pregnancies. 

When male mice with surgically removed seminal vesicles were mated with female mice, 

the number of pregnancies was reduced drastically, and the mean size of the pups was 

smaller than control groups (Pang et al., 1979; Peitz and Olds-Clarke, 1986). The lack of 

seminal vesicle fluid decreases the number of pregnancies in mice, potentially 

demonstrating the need for seminal fluid and uterine interaction in pregnancy. Seminal 

fluid’s main function was traditionally thought to be the transport of sperm and fluids for 

sperm protection, but recent evidence shows that seminal fluid plays a role in the uterine 

immune response. There is an inflammatory response in human cervical and vaginal 

epithelial cell lines to seminal fluid, with cytokine-cytokine receptor interaction being the 

most prevalent of interactions. An increase in IL-6, IL-1α, IL-1β and interferon ε 1 genes 

was found when ectocervical epithelial were exposed to seminal fluid (Sharkey et al., 

2007). There is a shift in the Th2 response in the para-aortic lymph nodes (LN) and 

mensenteric LN when mated with intact males, vasectomized males, or seminal vesicle-

excised (SVX) males. The population of CD4+ and CD25+ cells increased 44% in the 

para-aortic LN compared to female mice in estrous, and there was no increase in the cell 

populations when mice were mated with vasectomized males or SVX males (Robertson 

et al., 2009). This suggests that the seminal fluid may be involved in shifting the uterine 

immune system to Th2 and away from Th1 response and assist in modulating the uterine 

environment to protect against the rejection of the allogenic conceptus.     
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Using splenocytes from pregnant and pseudopregnant mice, Takabatake and 

others (1997) were able to alter the implantation window and improve the implantation 

rates in this altered window in mice. Splenocytes were recovered from pregnant mice on 

d 4 and d 8 and administered by injection through the caudal vein on d 2 of 

pseudopregnancy to recipient mice that received embryos from donor mice (Takabatake 

et al., 1997). In pseudopregnant mice with no injection of splenocytes the receptive phase 

or implantation of the embryos was not seen until d 3 (Takabatake et al., 1997). In mice 

injected with splenocytes from either d 4 or d 8 pregnant donor mice significant 

implantation was seen on d 2 (Takabatake et al., 1997). Interestingly, splenocytes from 

the d 4 pregnant donor mice were more effective than those taken from d 8 pregnant mice 

in changing the implantation period to d 2 (Takabatake et al., 1997). This suggests that 

the presence of the embryo before implantation signals changes in the immune cells and 

endometrium differentiation. The change in implantation rate and the d of implantation 

suggests that immune cells facilitate endometrium differentiation and receptivity. 

Systemic activation of maternal PBMC during early pregnancy is important for 

regulating uterine receptivity. The attachment of BeWo-cell spheroids, a human 

choriocarcinoma cell line, to endometrial epithelial cells (ECC) derived from human uteri 

was increased after co-culturing the ECC with PBMCs (Kosaka et al., 2003). Based on 

previous findings Yoshioka and others (2006) developed a novel approach to treat 

women with multiple in vitro fertilization (IVF) failures. Based on the observations that 

the immune system supports endometrial differentiation and embryo implantation, they 

developed an approach to utilize autologous PBMCs in repeated IVF failure patients 

(Yoskioka et al., 2006). Patients who had four or more IVF failures were separated into 
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control, receiving no immune cells, and those that received immune cells. Peripheral 

blood mononuclear cells were collected on d of oocyte retrieval and cultured with human 

chronic gonadotropin (hCG) for two d. The d before ET, fresh PBMCs were isolated and 

combined with the PBMCs from culture; the total cells were administered to the uterus of 

patients. All patients received no more than three fresh embryos of good quality. There 

was a significant difference in pregnancy between the women who received PBMCs and 

those who did not with pregnancy rates of 41.2% and 11.1%, respectively (Yoshioka et 

al., 2006). Live births and implantation rates were higher for the treated group compared 

to the non-treated group with 35.3% and 23.4% compared to 5.5% and 4.1%, respectfully 

(Yoshioka et al., 2006). This study showed that PBMCs had a positive effect on 

pregnancy for women with four or more IVF failures. Furthermore, Okitsu and others 

(2011) again demonstrated the beneficial effects of PBMCs on pregnancy when using 

embryos that were frozen and then thawed for ET. Using frozen thawed embryos, and 

PBMCs that were freshly isolated and not cultured with hCG, Okitsu and others, (2011) 

evaluated pregnancy rates in patients with a minimum of one IVF failure. Pregnancy rates 

did not differ significantly between treated and non-treated women, though, when 

pregnancy rates were broken down by the number of failed IVF attempts a difference was 

revealed (Okitsu et al., 2011). Women with three or more failed IVF attempts differed in 

pregnancy and implantation rates between the PBMC treated group and the non-treated 

group with rates of 42.1% and 25%, respectively, for the treated group and 16.7% and 

9.38%, respectively, for the non-treated group (Okitsu et al., 2001). It is interesting to 

speculate that the lack of difference in pregnancy rates overall may be due to the lack of 
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culturing with hCG, or due to embryos being frozen and thawed, but more studies will be 

needed to test this theory.  

Embryo transfer has been used by the cattle industry to capitalize on superior 

genetics, using eggs and sperm from high quality, valuable animals, to produce offspring 

that are genetically superior, higher quality, and of high value. Superovulation and IVF 

programs in cattle have made it possible to increase the number of viable high value 

embryos available for transfer. It is extremely important to producers who utilize embryo 

transfer to achieve high pregnancy rates in cattle to ultimately produce as many 

genetically superior calves as possible. Currently, pregnancy rates to embryo transfer in 

cattle have only reached a high of 70% (Hasler, 2007). In relation to the cattle industry 

and embryo transfer, only one study thus far has evaluated the effects of administering 

PBMCs into the uterine cavity before embryo transfer and the subsequent effects on 

pregnancy. Considering that humans and ruminants have similar mechanisms to establish 

pregnancy it is not unreasonable to consider that PBMCs would improve pregnancy rates 

in embryo transfer cattle. 

Modeled after the experiment done by Yoshioka and others (2006), bovine 

PBMCs were isolated from heifers at d 3 of estrous cycle, cultured overnight, and 

administered to the uterine horn ipsilateral to the CL on d 4 of estrus, 3 d before ET 

(Ideta et al., 2010). Pregnancy rates for the PBMC treated group significantly differed 

from the non-treated group with 79.5% pregnant and 62.5% pregnant, respectfully (Ideta 

et al., 2010). These results indicate that PBMCs aid in pregnancy and implantation, 

possibly by changing endometrial receptivity for embryo invasion. Peripheral blood 

mononuclear cells could be eliciting these changes by priming the endometrial immune 
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system and recruiting cytokines to aid in endometrial differentiation, receptivity and 

embryo development (Ideta et al., 2010). This study is in agreement with those that were 

conducted in humans, though a key difference is the lack of priming cells with the 

maternal recognition signal, IFNT.  

 

CONCLUSION 

To establish pregnancy, IFNT must be secreted to stop luteolysis and allow the 

continued secretion of P4. The uterine environment must become modulated as to not 

reject the allogenic conceptus. Interferon-tau activates ISG in PBMC and the shift from a 

Th1 to a Th2 immune response aids in changing of the uterine environment. Previous 

work shows that the benefit of adding PBMC to increase pregnancy rates in cattle, but 

there is a lack of priming the cells. We speculate that priming the PBMC with IFNT will 

mimic uterine immune modulation and increase pregnancy rates in embryo transfer cattle. 
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CHAPTER III 
 

 

TYPE I INTERFERON RESPONSE IN COPPER DEFICIENT CALVES EXPERIMENTALLY 

INFECTED WITH BOVINE VIRAL DIARRHEA VIRUS TYPE 1B AND MANNHEIMIA 

HAEMOLYTICA 
 

 

ABSTRACT 

Bovine respiratory disease complex (BRDC) is a major health issue facing the feedlot 

industry and is the leading cause of morbidity and mortality in feedlot cattle. The genome 

of bovine viral diarrhea virus (BVDV), a common agent in BRDC, contains an amino 

terminus protease (Npro) that inhibits the type I interferon (IFN) response in vitro, but in 

vivo work indicates that the type I IFN response is activated during BVDV infection. 

Dietary mineral status has been implicated in BRDC susceptibility in calves during 

shipping, but little is known regarding mineral supplementation and the IFN response. To 

determine if mineral deficiency or natural exposure to BVDV1b inhibits IFN signaling in 

vivo, Cu deficient (n = 6) or control (n = 6) calves were infected with BVDV1b and 

Mannheimia haemolytica (MH). Steady-state mRNA levels of MX1, ISG15, and RTP4 

were determined in peripheral blood leukocytes prior to BVDV1b exposure (d -4), prior 

to MH challenge (0 h), and 12 h and 24 h after MH challenge. Fold change relative to the 

average of d -4 values was calculated. No mineral effects were detected (P > 0.10) so 

mineral deficient and supplemented groups were pooled.  A significant time effect (P < 
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0.05) for all interferon stimulated genes was detected. At 0 h, ISG15 levels increased 44-

fold and remained elevated over 60-fold for 12 h and 24 h (P < 0.01). Likewise, RTP4 

and MX1 increased at 12 h (P < 0.05) after BRD challenge. Data suggests that regardless 

of mineral status, the type I interferon pathway remains active after being challenged with 

BVDV1b and MH in vivo. 

 

Introduction 

 

Bovine respiratory disease complex (BRDC) is a major health and economic issue 

for feedlots in the United States. Bovine respiratory disease is responsible for roughly 

$800 to 900 million dollars in lost revenue each year due to decreased feed efficiency, 

medicinal costs, and death (Chirase and Green, 2000). In 2011, an estimated 16.2% of all 

feedlot cattle in the United States were affected by respiratory disease, and 87.5% of 

those animals required treatment for the disease (NAHMS, 2011). Treatment costs for 

BRDC have increased to approximately $23.60 per case which is double the cost 

observed in 1999 (NAHMS, 2011). Bovine respiratory disease typically results from a 

co-infection of both viral and bacterial pathogens. Common viral agents include bovine 

viral diarrhea virus type 1 and 2 , parainfluenza type 3, and infectious bovine 

rhinotracheitis, bacterial agents include, Mannheimia haemolytica, Pasturella multocida, 

and Haemophilus (Ellis, 2001) In Oklahoma, bovine viral diarrhea virus (BVDV) and 
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Mannheimia haemolytica are the two most common pathogens in BRDC cases (Fulton et 

al., 2002).  

Viral infections activate the type I IFN pathway which in turn stimulates 

transcription of interferon stimulated genes (ISG; Randall and Goodbourn, 2008). Host 

pattern-recognition receptors (PRR) identify pathogen-associated molecular patterns 

(PAMPS) and stimulate innate immune activation and IFN production. Multiple PRR 

exist and are found in various cellular domains leading to a variety of pathways that can 

stimulate IFN production, but these pathways appear to converge at interferon regulatory 

factors- (IRF) 3 and -7 (reviewed by McNab et al., 2015). Work utilizing in vitro models 

demonstrates that BVDV prevents binding of IRF-3 to DNA, thus inhibiting type I IFN 

production (Baigent et al., 2002). Hilton et al. (2006) demonstrated that the NPro protein 

of BVDV blocks induction of IFN-β by degrading IRF-3. Collectively, these results 

suggest that BVDV can disrupt the type I IFN pathway, thereby reducing the production 

of IFN, but these works were conducted strictly in vitro only. Conversely, studies which 

expose cattle in vivo to laboratory cultured BVDV appear to maintain type I IFN 

production (Henningson et al., 2009; Palomares et al., 2013). 

Bovine respiratory disease complex is most often observed in cattle being 

shipped, and studies have suggested that mineral supplementation can alleviate rates of 

BRDC in shipped cattle. For example, calves fed organic trace mineral supplements were 

found to have higher concentrations of eosinophils, suggesting that they would be better 

able to cope with an inflammatory response (Stanton et al., 2001). Furthermore, addition 
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of organic trace minerals to diets in feedlot cattle decreased the percentage of sick 

animals that needed second treatment of antibiotics for bovine respiratory disease 

(Kegley et al., 2012). This may indicate that while mineral status does not affect rate of 

morbidity, mineral deficiency potentially impairs the innate immune response. However, 

the effects of dietary minerals status on the type I IFN response have not been evaluated.  

The objectives of the current study were to evaluate the type I IFN response in 

calves exposed to BVDV via exposure to a persistently infected (PI) calf and determine 

the effects of copper deficiency on type I IFN activation during viral exposure. 

 

Materials and Methods 

 

Animals 

All procedures for this experiment were approved by the Oklahoma State 

University Institutional Animal Care and Use Committee (Animal Care and Use Protocol 

AG-12-5). 

 Twelve bull calves were selected from an Angus based commercial cow herd. 

Calves were individually tagged, surgically castrated, and vaccinated (Covexin 8; Merck 

Animal Health, Summit, NJ) for clostridial pathogens at the ranch of origin 80 d prior to 

the start of the experiment. Blood samples from all calves were seronegative to BVDV at 

80 d and 24 d prior to the start of the experiment. All calves were tested for persistent 

infection of BVDV by immunohistochemical analysis (Oklahoma Animal Disease and 
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Diagnostic Laboratory, Stillwater, OK). Eleven d prior to the start of the experiment, 

calves were vaccinated for clostridial pathogens, infectious bovine keratoconjunctivitis 

(Autogenous Bacterin; Newport Laboratories, Worthington, MN) and viral pathogens, 

excluding BVDV, (Inforce; Zoetis, Florham Park, NJ). Calves were also treated for 

internal and external parasites (Ivermax Plus; Norbrook Laboratories, Lenexa, KS). 

Tilmicosin phosphate (300 mg per mL) was administered at the rate of 1.5 mL per 45.4 

kg of BW (Micotil; Elanco Animal Health, Indianapolis, IN) and every calf was given a 

fly tag (Corathon; Bayer, Shawnee Mission, KS). Calves were then transported to the 

Animal Science Equine Center at Oklahoma State University for a 6-d weaning period.  

After weaning, calves were transported to the Nutrition and Physiology Research 

Center (NPRC) at Oklahoma State University 5 d prior to the initiation of the experiment. 

Upon arrival calves were weighed, and, using BW and initial antibody titers to BVDV 

and MH, calves were allocated to experimental treatments of control (CONT) or copper 

deficient (CuDef). For 5 d calves were placed in individual metabolic stanchions with 

automatic waters and individual feed troughs to allow for adaptation. Calves were then 

randomly assigned to individual 3.05 x 3.66 m slatted floor pens for 42 d (d -46 of 

experiment; d 0 = MH challenge) with access to automatic water bowls and individual 

feed bunks. During the 42-d period prior to BRDC challenge, calves were individually 

fed diets that were not mineral supplemented or mineral supplemented (described below).  

The BVDV and MH challenge was conducted as described by Burciaga-Robles et 

al. (2010) with minor modifications. Briefly, pre-BVDV peripheral blood leukocyte 
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(PBL) samples were collected on d -4 (d 0 = MH challenge), calves were comingled in a 

common pasture for 4 d with a persistently infected (PI) animal (Burciaga-Robles et al., 

2010). On d 0 calves were gathered and placed in metabolic stanchions and pre-MH 

challenge PBL samples were taken. All calves received 10 mL of a solution containing 6 

x 10
9
 CFU of MH serotype 1 that was reconstituted and grown prior to the challenge as 

described by Mosier et al. (1998). Mannheimia haemolytica was delivered via 

intratracheal bronchoalveolar by a licensed veterinarian (Dowling et al., 2002).  

 

Diet 

 

Prior to weaning, calves received no mineral supplementation. Upon arriving at 

the Horse Unit at OSU, calves were given ad libitum access to water, Bermuda grass hay, 

and a common receiving ration. After the calves were transported to the NPRC and 

placed in stanchions, Bermuda grass hay was removed, but the calves were still allowed 

ad libitum access to water and the common receiving ration. On d -46, a common dry 

supplement was formulated to meet or exceed NRC (2000) nutrient requirements except 

for Cu. Calves received this ration ad libitum, for the duration of the experiment, along 

with ad libitum access to water. Calves were either mineral supplemented or non mineral 

supplemented. The CONT calves received a ground corn top dress daily containing a 

common mineral supplement. The CuDef calves received a top dress of only ground corn 

daily, with no mineral supplementation. During the 4 d of the BVDV challenge, calves 
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were gathered at 0700 h each morning and sorted into their respective treatments and 

individually fed. Each calf received 11.3 kg of the common ration and their individual top 

dress. Non mineral supplementation resulted in CuDef calves becoming deficient in Cu 

only.  

 

Clinical Scores and Rectal Temperatures 

 

 Rectal temperatures and clinical scores were documented for each calf at h 0 (at 

MH challenge), 2, 4, 6, 12, 18, and 24. Rectal temperatures were taken using a digital 

thermometer (GLA M-500; Agricultural electronics, San Luis Obispo, CA). All calves 

were monitored by trained personnel for clinical signs of BRDC and were based on 

criteria from the DART™ system (Pharmacia Upjohn Animal Health, Kalamazoo, MI) 

with some modifications as described by Step and others, (2008). Scores were assigned 

for each calf from 0 to 4 based where 1 = mild clinical signs; 2 = moderate clinical signs; 

3 = severe clinical signs; 4 = moribund animals. 

 

Total RNA Isolation and cDNA synthesis  

 

Blood samples were collected at d -4, d 0 (equivalent to 0 h), 12 h and 24 h, and 

PBL were isolated and frozen at -80 
ᵒ
C in 1 mL of TRIzol reagent (Life Technologies, 

Carlsbad, CA) according to procedures described by Gifford et al. (2007). Total mRNA 
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was isolated according to manufacturer’s recommendations, and the integrity of RNA 

was assessed by gel visualization of 18S and 28S ribosomal RNA.  The purity and 

quantity of RNA was determined using a NanoDrop, ND 1000 Spectophometer (Thermo 

Fisher Scientific, Wilmington, DE, USA). After isolation, 2 μg of mRNA was treated 

with DNase I Amplification Grade (Life Technologies) according to manufacturer’s 

recommendation. Then cDNA was reversed transcribed from 2 μg of RNA using 1 μL of 

Superscript II Reverse Transcriptase (Life Technologies). 

 

Quantitative real time PCR  

 

Quantitative real time PCR (qRT-PCR) was used for analysis of three known 

interferon stimulated genes (ISG), MX dynamin-like GTPase 1 (MX1), ISG15 ubiquitin-

like modifier, (ISG15) and receptor (chemosensory) transporter protein-4 (RTP4). Each 

cDNA sample was analyzed by qPCR utilizing primers and according to procedures 

reported by Gifford et al., (2007). Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), peptidylprolyl isomerase A  (Ppia), and beta-actin were tested for stability 

using geNorm (Biogazell qbasePLUS2, Zwijnaarde, Belgium) and PPIA was selected. 

 

Statistical Analysis 
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 Fold-change of ISG mRNA abundance in PBL was calculated using the ΔΔCT 

method (Kubista et al., 2006). Fold-change for each gene was the dependent variable and 

was tested against treatment, time, and treatment x time using the MIXED procedure of 

SAS (Ver 9.2; SAS Institute). Significance level for all studies was set at P < 0.10. Steers 

served as the experimental units and was tested against time for clinical scores and 

temperature using the GLIMMIX procedure of SAS. 

 

Results 

 

Clinical severity (CS) scores were documented for all animals and a significant 

time effect was noted (P < 0.01) with scores peaking at about 1.1, 18 h after MH 

challenge (Fig. 1). By 48 h after MH challenge, most calves returned to a CS of 0, and by 

d 7 all CS were 0. Body temperatures rose after MH challenge to peak at just over 40 
ᵒ
C 

12 h after MH challenge and all calves returned to below 39.5 
ᵒ
C by 24 h after challenge 

(P < 0.01; Fig. 2).  

There was no effect of Cu deficiency on the production of ISG, nor was there a 

mineral by time effect, so data was pooled for all animals (P > 0.10).  There was a 

significant effect of time (P < 0.05) for all ISG evaluated. At 0 h, ISG15 levels increased 

44-fold compared to d -4 and remained elevated over 60-fold for both 12 h and 24 h (P < 

0.01; Fig. 3).  Receptor (chemosensory) transporter protein-4 increased (P < 0.05) after 

BRD challenge and was 6-fold greater than d -4 samples at 12 h (Fig. 4).  Likewise, MX1 
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also increased (P < 0.05) after BRD challenge with a 12-fold greater change than d -4 at 

12 h (Fig. 5).  

 

Discussion 

 

Animals entering a feedlot are subjected to a range of environmental stressors 

including movement, comingling with sick animals, dehydration, short-term loss of 

appetite, and diet changes. Dietary minerals can impact immune function in cattle and 

mineral deficiency could potentially predispose animals to illness. Ten d after challenge 

with infectious bovine rhinotracheitis virus, Serum antibody titers for infectious bovine 

rhinotracheitis virus were greater on d 10, and remained higher on d 14 and 17 in calves 

that were Cu deficient when compared to Cu adequate calves (Stabel et al., 1993). 

Immunoglobulin M levels tended to be higher in Cu adequate calves than in Cu deficient 

calves and the Cu dependent enzyme, superoxide dismutase, activity was reduced in Cu 

deficient calves (Stabel et al., 1993). Serum immunoglobulin production, as well as 

Brucella abortus antibody titers, was reduced in Cu deficient calves challenged with 

Brucella abortus (Cerone et al., 1995). These studies suggest that Cu deficiency impedes 

the immune function of calves by delaying the antibody response, decreasing 

immunoglobulin levels, and decreasing Cu dependent enzymes for anti-inflammatory 

response. Additionally, the number of B lymphocytes was markedly reduced and 

monocytes were increased in Cu deficient calves, indicating that Cu status can impact 



51 
 

immune cell populations (Cerone et al., 1998). In calves that were Cu deficient a marked 

decrease in activity and phagocytosis of neutrophils was observed (Cerone et al., 1998). 

These studies indicate an impaired immune function in Cu deficient calves. However, in 

the current experiment Cu status had no effect on the IFN response in BVDV challenged 

calves. 

Bovine viral diarrhea virus is a single stranded RNA virus, member of the 

Pestivirus genus, family Flaviviridae (Meyers and Thiel, 1996). Using a portion of the 5’ 

untranslated region of BVDV isolates, by phylogenic analysis and PCR , BVDV was 

separated into BVDV1 with two sub genotypes, BVDV1a,  BVDV1b and BVDV2 

(Ridpath et al., 1994; Ridpath and Bolin, 1998). Calves can become infected with BDVD 

while still in utero. If the dam is infected between 30 and 120 d of gestation with BVDV, 

calves are considered persistently infected (PI) with BVDV (McClurkin et al., 1984; 

Stokstad and Løken, 2002). Persistently infected animals have lifelong infection and 

constantly shed the virus thereby maintaining and spreading the virus in the cattle 

population (McClurkin et al., 1984; Stokstad and Løken, 2002). If calves are infected 

after 120 d of gestation they are considered transiently infected (TI) and are able to 

produce an immune response (Bognar, 1972; Kahrs, 1973; McClurkin et al., 1984; 

Stokstad and Løken, 2002). 

Interferons are among the first cytokines released in response to viral pathogens 

and function to combat viral infections by viral growth-inhibitory properties (Platanias, 

2005). It is thought that BVDV evades the host immune response by interrupting the type 
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I interferon pathway. Non cytopathic-BVDV targets IRF-3, preventing it from binding to 

DNA, which in turn blocks the induction of IFN-β (Baigent et al., 2002). The amino 

terminus protease (NPro) of the BVDV genome targets IRF-3 for polyubiquitination and 

proteasomal degradation (Hilton et al., 2006) thus preventing release of IFNα and IFNβ.  

However, in vivo work suggested that the type I IFN production is maintained after 

BVDV infection. Work by Henningson and others (2009) evaluated the type I IFN 

pathway in calves challenged with either an NPro intact BVDV or an NPro deleted 

BVDV. Interestingly, it was observed that the NPro deleted BVDV caused an earlier up 

regulation of interferon concentrations than the NPro intact BVDV, with increased IFN 

concentrations d 3 to 4 and d 5 after virus challenge, respectively (Henningson et al., 

2009). In the current study, ISG increase as early as 4 d after co-mingling with a PI calf 

which also indicates that the type I IFN pathway is recruited early after BVDV exposure. 

Calves that are transiently or persistently infected with BVDV2, also exhibit an increase 

in expression of IFNα/β after viral exposure (Charleston et al., 2002; Brackenbury et al., 

2005). Interferon stimulated genes, ISG15, 2’5’ oligoadenylate synthetase-1 (OAS-1), ds 

RNA dependent protein kinase (PKR),  and MX dynamin-like GTPase 2 (MX2) levels 

increased in PI and TI cattle fetuses, as well as a PI steers infected with BVDV2 

(Shoemaker et al., 2009). Due to the variability of the genetics and virulence of BVDV 

strains, it has been suggested that the differences in strains could cause a difference in 

immunosuppression, and subsequent effects on the type I IFN pathway (Palomares et al., 

2013). Calves that were inoculated by intranasal aerosolization with a low virulence type 
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1a non-cytopathicBVDV or a high virulence type 2 non-cytopathic BVDV showed 

increased MX1, ISG15, OAS-1, and PKR in the spleen and trachea-bronchial lymph nodes 

indicating that the strain of BVDV does not change the effect on the type I IFN pathway 

(Palomares et al., 2013). In the U.S. feedlot industry, initial exposure to BVDV primarily 

comes from contact with PI animals. The current study attempted to mimic conditions of 

natural exposure found in shipment of cattle to the feedlot. Similar to other in vivo 

studies, a pronounced type I IFN response was observed with increased levels of ISG 

within 4 d after BVDV exposure. Of particular interest, is the up regulation of ISG at or 

before d 0, MH challenge, suggests that BVDV alone causes a type I IFN response.  

 

Conclusions 

 

 Though several studies have implicated mineral supplementation with immune 

function, mineral status did not appear to affect type I IFN signaling. Consistent with 

other in vivo work, calves exposed to a calf that was persistently infected with BVDV 

exhibited a rapid and robust type I IFN response. The observation of increased type I IFN 

activity is in contradiction to in vitro work which suggests BVDV impairs the type I IFN 

response. However, animals in the current experiment had relatively low clinical scores 

and it is possible that more severe cases of BRDC which involve BVDV could impair the 

type I IFN response.   
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FIGURE 3.1 Clinical scores for the first 24 h after calves exposed to a Bovine viral 

diarrhea virus type 1b PI calf on d -4 and subsequently challenged with Mannheimia 

haemolytica (MH) at 0 h. Steers were monitored and recorded by trained personnel using 

the subjective criteria as follows: depression, abnormal appetite, and respiratory signs. 

Calves were given a score between 0 and 4 depending on the clinical signs and the 

severity of the signs. Time is in reference to the MH challenge at 0 h. Scores increased 

after 0 h to peak at 18 h before decreasing to a score of 0 by d 7. Scores were relatively 

low, but significant time effect was noted (P < 0.01). Mineral status was not significant 

(P = 0.87). 
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FIGURE 3.1 

FIGURE 3.2 Rectal temperatures of the calves for the first 24 h, following exposure to a 

calf persistently infected with bovine viral diarrhea virus type 1b and subsequent 

Mannheimia haemolytica (MH) challenge. Temperatures were taken by digital 

thermometer. Time is in reference to the MH challenge at 0 h. There is an increase in 

temperature after the challenge, peaking at 12 h before decreasing to an average temp of 

39.5 ᵒC at 24 h. There was a significant time interaction (P < 0.01) but mineral status was 

not significant (P = 0.66). 
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FIGURE 3.2 

FIGURE 3.3 Interferon stimulated gene ISG15 ubiquitin-like modifier (ISG15), in 

response to calves exposed to a Bovine viral diarrhea virus type 1b PI calf and 

subsequent Mannheimia haemolytica (MH) infection. There was no effect of treatment so 

mineral supplement and mineral deficient were pooled. ISG15 fold changes are relative to 

the average of d -4, and were was calculated using the ΔΔCt method. Time is relative to 

the MH challenge at 0 h. There was a marked increase in fold changes with maximum 

induction at 12 h. Fold changes stayed above 60 fold difference for 12 h and 24 h. Time 

was a significant factor (P < 0.05).  
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FIGURE 3.3 

FIGURE 3.4 Interferon stimulated gene Receptor (chemosensory) transporter protein 4 

(RTP4), in response to calves exposed to a Bovine viral diarrhea virus type 1b PI calf and 

subsequent Mannheimia haemolytica (MH) infection. There was no effect of treatment so 

mineral supplement and mineral deficient were pooled. RTP4 fold changes are relative to 

the average of d -4, and were was calculated using the ΔΔCt method. Time is relative to 

the MH challenge at 0h. The greatest fold increase was at 12 h, with a 6 fold greater 

change compared to d -4. Time was a significant factor at (P < 0.05). 
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FIGURE 3.4 

FIGURE 3.5 Interferon stimulated gene MX dynamin-like GTPase 1 (MX), in response to 

calves exposed to a Bovine viral diarrhea virus type 1b PI calf and subsequent 

Mannheimia haemolytica (MH) infection. There was no effect of treatment so mineral 

supplement and mineral deficient were pooled. MX1 fold changes are relative to the 

average of d -4, and were was calculated using the ΔΔCt method. Time is relative to the 

MH challenge at 0 h. MX1 had the greatest change at 12 h with a fold difference of 12 

causing a significant time effect to be observed (P < 0.05).   
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FIGURE 3.5 
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CHAPTER IV 
 

 

INTRAUTERINE TRANSFER OF AUTOLOGOUS INTERFERON TAU-PRIMED 

PERIPHERAL BLOOD MONONUCLEAR CELLS INCREASES PREGNANCY RATES 

AFTER EMBRYO TRANSFER IN CATTLE  

 

 

ABSTRACT 

Early embryo loss costs livestock producers billions of dollars annually. As food 

production expands to meet future demand, reproductive efficiency of food animals will 

become even more important. Reproductive technologies are a valuable tool to rapidly 

expand the use of genetics from superior animals, but fertilization failure and embryonic 

loss limits successful implementation of progressive reproductive strategies.  Interferon-

tau (IFNT) is the pregnancy recognition signal in ruminants and up regulates interferon-

stimulated genes (ISG) in the endometrium, corpus luteum, and peripheral immune cells 

during early pregnancy. To understand mechanisms of pregnancy loss, much work has 

focused on conceptus-endometrial interactions. However, there is an increasing body of 

evidence demonstrating that IFNT affects maternal peripheral blood immune cells and 

that these immune cells play an active role in establishing and maintaining pregnancy. In 

women and cattle, transfer of autologous immune cells to the uterus increases pregnancy 

rates. The current experiment tested the hypothesis that, intrauterine transfer of 

autologous, IFNT-primed, peripheral blood mononuclear cells (PBMC) will improve 
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pregnancy rates in cattle. Blood samples were collected at d 3 and PBMC were isolated 

utilizing Histopaque 1077 according to manufacturer’s recommendation. Twenty to 40 

million cells were cultured overnight in the presence of 500 U/mL of IFNT followed by 

autologous intrauterine transfer (IMMUNE; n = 97) on d 4; controls received intrauterine 

infusion of saline (CONT; n = 82). On d 7, serum samples were collected for hormone 

analysis and embryos were transferred to all animals. Pregnancy was determined on d 30 

by transrectal ultrasonography, and progesterone quantified by RIA. Progesterone 

concentrations were similar for IMMUNE (4.1 ± 0.33 ng/mL) and CONT (3.7 ± 0.33 

ng/mL) and were not different between pregnant and open cows (P > 0.2). Pregnancy rate 

for IMMUNE was 77% (75/97) compared with 57% (47/82) for CONT (P < 0.001). 

Results indicate that progesterone concentrations at d 7 did not differ between treatment 

groups and transfer of autologous IFNT-primed PBMC improved pregnancy rates after 

embryo transfer. These results illustrate that priming the maternal immune system 

resulted in enhanced pregnancy rates supporting the concept that immune function at the 

fetal-maternal interface affects pregnancy outcome.
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INTRODUCTION 

 

Global meat demand is expected to increase dramatically in the next 35 years, increasing 

the demand for food by 70% by the year 2050 (Alexandratos and Bruinsma, 2012). This increase 

will need to be driven by new technologies in agricultural production systems. Advances in 

reproductive technologies can assist in capitalizing on superior animal genetics in the cattle 

industry to improve genetic improvement speed. Reproductive technologies have advanced from 

natural service to artificial insemination (AI), embryo transfer (ET), sexed semen, in vitro 

fertilization techniques, and cloning (Wu, 2012). Currently, the use of these techniques is limited 

in the United States with time and labor being the number one reason for not implementing these 

technologies (NAHMS, 2007). Improving the use of these technologies in the United States can 

improve the rate of genetic improvement to meet future food demands. A major issue facing the 

cattle industry, infertility and subfertility is slowing reproductive efficiency and increasing costs. 

With future increasing pressure on livestock industries to become even more efficient, 

subfertility and infertility could become even more costly. Livestock exhibit high fertilization 

rates, estimated at over 90%, but early embryo loss remains a challenge for efficient livestock 

production (McMillan, 1998). This loss could be attributed to inadequate endometrial receptivity 

(Hansen and Block, 2004). Because early pregnancy loss significantly contributes to subfertility, 

reducing early embryonic mortality will increase profitability and sustainability of livestock 

enterprises. 

Pregnancy requires continued secretion of progesterone (P4) by the corpus luteum (CL). 

To continue P4 secretion the regression of the CL must be prevented. For this to occur a signal 

from the conceptus must be sent to the dam to communicate pregnancy. In ruminants, interferon-



73 
 

tau (IFNT) is the pregnancy recognition signal which blocks luteolytic pulses of prostaglandin-

F2α (PGF2α; reviewed by Spencer and Bazer, 2004). To prepare the uterine environment for 

pregnancy, IFNT initiates complex signaling events that induce changes in the endometrium for 

adequate growth and maintenance of the conceptus (Bazer et al., 2010). Interferon-tau acts both 

locally in the uterus and systemically. A connection between the maternal immune system and 

IFNT has been demonstrated. Pregnancy increases interferon stimulated genes (ISG) in 

circulating immune cells in sheep (Yankey et al., 2001) and cattle (Han et al., 2006; Gifford et 

al., 2007). Interferon-tau was detected in uterine venous blood (Oliveira et al., 2008) suggesting 

that it is responsible for increased ISG in circulating immune cells (Bott et al., 2010). The 

physiological significance of systemic responses to early pregnancy is unclear. 

The conceptus is an allogenic body that should be rejected by the maternal immune 

system, but the maternal immune system is modulated to accept the conceptus. Immune adaption 

to pregnancy is not limited to suppressing immune response to the allogenic conceptus, but 

immune cells may play an active role in establishing pregnancy (Kosaka et al., 2003). Fujiwara 

et al, (1993) postulated that peripheral blood mononuclear cells (PBMC) play a role in 

establishing and maintaining pregnancy. Women undergoing embryo transfer (ET) techniques 

exhibited increased pregnancy rates when human chorionic gonadotropin, the human pregnancy 

recognition signal, primed PBMC were transferred to the uterus prior to ET (Yoshioka et al., 

2006).  Similar results were found in pregnancy rates in cattle receiving ET, but the cells were 

not primed with IFNT (Ideta et al., 2010a). The objective of this study was to evaluate pregnancy 

rates in cattle that receive autologous, IFNT-primed intrauterine immune cells prior to ET. We 

hypothesize that intrauterine administration of immune cells will increase pregnancy rates in 

cattle undergoing ET. 
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MATERIAL AND METHODS 

Animals 

 

All procedures were approved by Oklahoma State University Animal Care and Use 

Committee (protocol AG-14-28). Experiments were conducted at the Kiamichi Link Ranch, 

Finley, OK. One hundred twenty one Angus cows were used as embryo recipients. All recipient 

cattle were heat synchronized using a CIDR protocol. With respect to estrus (d 0), the CIDR 

(Zoetis, 1.38 g) was inserted at d -9 and removed at d -2; prostaglandin (Zoetis, 6 mL, 5 mg/mL) 

injection was administered i.m. Presence of healthy CL was confirmed by palpation, and freshly 

collected (n = 105) or in vitro fertilization derived (n = 16) embryos were randomly assigned to 

cows that received intrauterine administration of saline (CONT; n = 50) or intrauterine transfer 

of autologous IFNT-primed PBMC (IMMUNE; n = 71). Details of PBMC isolation and 

administration are described below. Embryos were transferred by a professional embryologist to 

the uterine horn ipsilateral to the CL on d 7, and blood samples were collected and serum stored 

frozen for P4 analysis. Pregnancy was confirmed by transrectal ultrasonography at d 30. 

For donor cows, a CIDR (Zoetis, 1.38 g) was inserted at d -12 with respect to estrus. 

Decreasing injections of FSH (Bioniche Animal Health, 400 mg/mL) were administered between 

d -8 and d -2.  Either Estrumate or Lutalyse (Merck Animal Health, 2.3 mL, 250 mg/mL; Zoetis, 

6 mL, 5 mg/mL) was given on d -3 and d -4; CIDR was removed d -4. Cows were inseminated, 

12 to 16 h after the onset of estrus with 2 units of semen. A second service was conducted at 20 

to 24 h with 1 unit of semen and an option of a third service at 30 to 36 h if cows displayed 

standing heat at the second service. 
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Peripheral Blood Mononuclear Cell Isolation and Culture 

 

Peripheral blood mononuclear cells were isolated and treated with 500 U/ml IFNT, which 

approximates concentrations measured in the uterine vein of early pregnant cows (Oliveira et al., 

2008). For isolation, 20 mL of blood was collected into EDTA tubes for PBMC isolation. Blood 

was mixed with 20 mL of RPMI 1640 (Sigma Aldrich, St. Louis, MO) medium and gently 

layered over 10 mL of Histopaque 1077 (Sigma Aldrich, St. Louis, MO). Tubes were centrifuged 

at 500 x g for 45 min at room temperature and PBMC collected. Cells were then subjected to red 

blood cell lysis (150 mM NH4Cl, 10 mM NaHCO3, 1mM EDTA, pH 7) for 2 to 5 min at 25
o 
C 

depending on red blood cell contamination. After lysis, cells were washed with 20 mL of RPMI 

1640, pelleted by centrifugation at 300 x g for 7 min. The resulting cell pellet was resuspended in 

12 mL of RPMI 1640 containing 5% penicillin/streptomyocin (Gibco, Grand Island, NY) and 

10% fetal bovine serum (Gibco, Grand Island, NY), with 500 U/mL IFNT (gift from Dr. Fuller 

Bazer, Texas A&M University, College Station, TX), and cultured in T75 flasks (Thermo Fisher 

Scientific, Waltham, MA) overnight at 35
o 
C. To ensure culture conditions stimulated ISG, 

PBMC were collected and cultured as described above. Ten million PBMC were collected into 1 

mL of Trizol (Life Technologies, Carlsbad, CA) before and after culture for 24 h with or without 

500 U/mL of IFNT. Total RNA was extracted according to manufacturer’s recommendation. 

Steady-state mRNA abundance of interferon stimulated gene-15 (ISG15) was analyzed utilizing 

qPCR as previously described and validated (Gifford et al., 2007). 

Three d after estrus, PBMC were isolated and cultured in the presence of IFNT as 

described above. After approximately 24 h of culture, 20 to 40 million PBMC were centrifuged 
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at 300 x g for 7 min at 4
o
C, washed with 9% saline solution, and resuspended in 450 uL of saline 

and drawn into ¼ cc artificial insemination (AI) straws and kept at room temperature for 

intrauterine transfer. Cells were then administered by AI equipment to the uterine body. On d 7, 

palpitation of the ovaries was performed to determine presence of CL. A non-surgical embryo 

transfer catheter was inserted transcervical and the embryo deposited in the ipsilateral horn to the 

CL. 

 

Data Analysis 

 

Fold change in ISG15 mRNA abundance in immune cells after culture with IFNT for 24 

h was calculated using the ΔΔCT method (Kubista et al., 2006). Effects of IFNT treatment on 

ISG relative fold change were analyzed using the MIXED procedure in SAS (Ver 9.2; SAS 

Institute). Immune cell transfer experiments were conducted four separate times over two years, 

with each time considered a replicate and cow considered experimental unit. Pregnancy data was 

analyzed using generalized linear mixed models methods where replicate was random effect and 

treatment was fixed effect. Progesterone concentrations were determined by RIA and were 

analyzed using the GLM procedures in SAS. Significance level for all studies was set at P < 

0.10.  

 

RESULTS AND DISCUSSION 

 

As the global population increases, the demand for meat and other animal products will 

also increase. With the increase in global population driving the need for greater food production 
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(Alexandratos and Bruinsma, 2012), the production increase will need to be largely driven by 

new technologies that increase production efficiency. Reproductive technologies are tools that 

can rapidly expand genetics from superior animals, but successful implementation of 

reproductive technologies can be limited by early embryo loss (Looney et al., 2006). The 

negative economic impacts of early embryo loss are not limited to production practices that 

utilize reproductive technologies. Early embryonic loss also causes significant economic and 

productivity losses in current animal production operations that do not utilize reproductive 

technologies (Disken and Morris, 2008). Thus, reducing embryo loss would increase profitability 

and sustainability of current livestock operations as well as increasing the use of reproductive 

technologies to help meet the future global demand for animal products by expanding the use of 

superior genetics. 

Progesterone is absolutely required for pregnancy; thus, pregnancy recognition requires 

rescue of the CL by the conceptus. Trophoblast cells of the conceptus secrete IFNT with 

maximal secretion on d 14 to 16 in sheep and 16 to 19 in cattle (Bartol et al., 1985; Bazer et al., 

1997). In the uterus, IFNT upregulates ISG in the endometrium, and numerous ISG were shown 

to be spatially and temporally regulated in the endometrium during early pregnancy (Ott et al., 

1998; Johnson et al., 1999; Hansen et al., 2003). Interferon stimulated gene-15 is expressed in 

the luminal epithelium of sheep on d 10 or 11, as well as in the stratum compactum stroma and 

glandular epithelium on d 13 and 14 of pregnancy (Johnson et al., 1999). Myxovirus resistance 1 

(MX1; Ott et al., 1998) and 2’5’-oligoadenylate synthetase (OAS-1; Schmitt et al., 1993), are also 

increased in response to pregnancy and IFNT. Regulation of ISG is hypothesized to be important 

for endometrial receptivity, conceptus elongation, and implantation (Bazer et al., 2009; Hansen 

et al., 2010; Ott and Gifford, 2010). Although it is clear that conceptus signaling blocks 
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luteolytic pulses of PGF2α to sustain P4 production by the CL, work by Oliveira and others, 

(2008) also demonstrated that IFNT escapes the uterus and exogenous IFNT directly protects the 

CL from PGF2α (Antoniazzi et al., 2013). Interestingly, work by Atkins and others, (2013) 

demonstrated that P4 concentrations at d 7, which is before the embryo secretes IFNT, impact 

subsequent fertility. In the current experiment, intrauterine transfer of autologous IFNT-primed 

immune cells did not affect P4 concentrations. For IMMUNE cows, P4 concentrations averaged 

4.1 ± 0.33 ng/mL compared with 3.7 ± 0.26 ng/mL for CONT (P > 0.3; Fig. 4.1). Moreover, 

when treatments were pooled, there was no difference in P4 concentrations between pregnant 

(4.0 ng/mL) and open cows (3.6 ng/mL) at d 7 (P > 0.2, Fig. 4.2) indicating that P4 concentration 

at d 7 is not an indicator of subsequent fertility after ET. 

Medawar (1953) first described the immunological significance of the pregnant mother 

being able to tolerate an allogeneic conceptus without rejection. It is thought that the uterus and 

conceptus secrete cytokines during implantation, which are involved in the maternal cross talk 

between the fetus and the dam, and help to form collaborative relationships between the 

trophoblast, uterus and immune cells (Wegmann et al., 1993; Bai et al., 2012). The uterus 

undergoes changes, or a priming, to help prevent attack of the fetus and ensure a receptive 

environment for growth and development. One of the first priming events associated with 

reproduction is exposure of the endometrium to seminal plasma which is speculated to facilitate 

endometrial receptivity. Of 317 genes measured in human cervical and vaginal epithelial cell 

lines, an increase in IL-6, IL-1α, IL-1β and interferon ε 1 genes was found when cells were 

exposed to seminal fluid (Sharkey et al., 2007). The population of CD4+ and CD25+ cells 

increased 44% in the para-aortic lymph nodes of female mice mated to intact males, compared to 

female mice in estrous, and no increase in the cell populations when female mice were mated 
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with vasectomized males or SVX males (Robertson et al., 2009). This suggests that the seminal 

fluid may be involved in shifting the uterine immune system to one of Th2 from one of Th1 

response. This response assists in modulating the uterine environment to protect against the 

rejection of the allogenic conceptus. 

To prevent immunological attack on the embryo there is a shift from a Th1 immune 

response to a Th2 response in the uterus. Early work suggested that IL-2, TNF-α, and IFN-γ, 

which are all Th1 associated cytokines, are deleterious to pregnancies in mice, causing abortion 

(Chaouat et al., 1990). During pregnancy there is a shift towards Th2 cytokines release from the 

maternal-fetal interface, IL-3, IL-4, IL-5 and IL-10 cytokines are all found during each trimester 

of pregnancy (Lin et al., 1993). In early pregnancy leukocyte populations increased from 8.2% to 

31.7% with over 75% of the leukocytes being CD56+ cells (Bulmer et al., 1991). This shift from 

Th1 to Th2 cytokine profiles is essential for pregnancy maintenance and stopping rejection of the 

conceptus (Wegmann et al., 1993). 

While there are specific changes in the immune system within the endometrium during 

pregnancy, there is also a systemic response to pregnancy. CD4+ and CD25+ are regulatory T-

cells involved in preventing autoimmunity, and are implicated in suppression of rejection of the 

conceptus (reviewed by Shevach, 2002). Cows in early stages of pregnancy had higher 

populations of lymphocytes that were CD4+ and CD25+ in the peripheral blood when compared 

to non-pregnant cows (Oliveria and Hansen, 2008). In pregnant women the concentration of 

CD4+ and CD25+ cells more than doubled when compared to non-pregnant women (Somerset et 

al., 2004). Pregnant women exhibited higher concentrations of IL-4 and IL-10, and decreased 

concentrations of IL-2 and IFN-γ, when compared to non-pregnant women (Marzi et al., 1996). 

This indicates the systemic change of immune profiles from one of Th1 to a Th2 profile. The 
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IFNT that escapes the uterus likely modulates the maternal systemic immune function. Yankey 

and others, (2001) first showed that the ISG, MX1, was up-regulated in peripheral blood 

leukocytes of pregnant ewes within 24 to 48 h of the onset of IFNT signaling. Expression of 

MX2 was also increased as early as d 16 and, ISG15, and MX1 were increased at d 18 and d 20 in 

peripheral blood leukocytes of pregnant cattle (Gifford et al., 2007). Although the functional 

significance of systemic immune activation is unclear, it is reasonable to speculate that conceptus 

regulation of the maternal immune system, both in the uterus and systemically, is an important 

adaptation for the mother to tolerate the allogenic conceptus. 

There is a growing body of evidence to suggest that the maternal immune system plays 

an active role in establishing pregnancy. Attachment of BeWo-cell spheroids to endometrial 

epithelial cells (ECC) derived from human uteri was increased after co-culturing the ECC with 

PBMC (Kosaka et al., 2003), suggesting that PBMC aid in regulating endometrial receptivity. 

Pregnancy rates were increased in women when human chorionic gonadotropin-primed PBMC 

were combined with fresh PBMC and administered to the uterus 1 d prior to fresh ET (Yoshioka 

et al., 2006). In ET using frozen/thawed embryos and patients with 3 or more failed IVF 

sessions, fresh PBMC that were administered to the uterus 2 d before ET resulted in an increase 

in pregnancy rates (Okitsu et al., 2011). Similar to the experiment done by Yoshioka et al., 

(2006), when bovine PBMC were isolated from Holstein heifers at d 3 of the estrous cycle, 

cultured overnight, and administered to the uterine horn ipsilateral to the CL on d 4 of estrus, 

pregnancy rates by 17% for the PBMC treated group (Ideta et al., 2010a). However, Ideta et al., 

(2010a), did not culture the PBMC with IFNT. The current experiment expanded on previous 

results by treating PBMC with IFNT at concentrations observed in maternal circulation during 

early pregnancy. Treating PBMC with 500 U/mL increased (P < 0.01; Fig. 4.3) ISG15 mRNA 
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abundance 250-fold above non-treated PBMC indicating that IFNT activates the type I IFN 

pathway in cultured PBMC. Intrauterine transfer of autologous IFNT-primed immune cells 

increased pregnancy rates in beef cattle undergoing ET procedures (Fig. 4.4). For IMMUNE 

cows, pregnancy rate was 77% (75/97) compared with 57% (47/82) for CONT (P < 0.001). 

Though the study was replicated four times there was zero variance between replicates. Data 

demonstrate that priming the maternal immune system resulted in enhanced pregnancy rates 

supporting the concept that immune function at the fetal-maternal interface affects pregnancy 

outcome. Interestingly, PBMC have been implicated in improving endometrial environment to 

promote conceptus development. Ideta and others (2010b) demonstrated that intrauterine 

administration of PBMC improves conceptus develop at d 15 of pregnancy in comparison to the 

control group. It is conceivable that improving the endometrial environment and early conceptus 

development could potentially improve development throughout pregnancy and translate into 

higher birth weights. This study evaluated the difference in birth weights of calves between 

IMMUNE and CONT cows and found no difference (P > 0.6; Fig. 4.5), suggesting that though 

there may be an early increase in development this does not continue.  

Reproductive technologies have great potential for improving genetics, economics, and 

production efficiency. Both conventional and intensive reproductive management practices are 

affected by high rates of embryo loss. Results from the current study indicate that transfer of 

autologous interferon-tau-primed peripheral blood mononuclear cells increased success rates for 

embryo transfer indicating that maternal immune system plays a pivotal role in establishing 

pregnancy in cattle.  Additionally, priming the maternal immune system during early pregnancy 

might be a method to decrease embryonic loss in domestic livestock. 
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FIGURE 4.1 Serum progesterone at d 7 in cattle receiving autologous intrauterine transfer of 

Interferon-tau-primed immune cells (IMMUNE) or saline (CONT) on d 4 (d 0 = estrus). 

Intrauterine immune cell transfer did not influence progesterone concentrations (P > 0.3). 
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FIGURE 4.1 

 

FIGURE 4.2 Serum progesterone at d 7 (d 0 = estrus) in cattle receiving an embryo and were 

subsequently diagnosed as open (OPEN) or pregnant (PREG) by transrectal ultrasonography on 

d 30. Day 7 progesterone concentrations were not indicative of subsequent fertility and were 

similar (P > 0.2) in open and pregnant cows.  
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FIGURE 4.2 
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FIGURE 4.3 Interferon stimulated gene-15 (ISG15), after treatment of peripheral blood 

mononuclear cells with Interferon-tau. Peripheral blood mononuclear cells from 6 feedlot steers 

were cultured with 500 U/mL interferon-tau overnight to evaluate the type I interferon pathway 

activation in response to interferon treatment. A sample was taken before culture (BC) and again 

after culture (AC) with interferon-tau. Steady-state mRNA levels of ISG15, a known target of the 

type I interferon pathway, were evaluated using qRT-PCR and fold change was calculated by the 

ΔΔCT method. Culture with interferon-tau increased (P < 0.05) ISG15 levels over 250-fold. 
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FIGURE 4.3 
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FIGURE 4.4 Pregnancy rates of IMMUNE (n = 97) and CONT (n = 82) cows. IMMUNE cows 

received an intrauterine transfer of autologous peripheral blood mononuclear cells d 4 of estrus. 

CONT cows received an intrauterine transfer of saline solution. There was a significant 

difference in pregnancy rates between IMMUN and CONT (P < 0.001). 
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FIGURE 4.4 
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FIGURE 4.5 Birth weights of calves from CONT cows (n = 34) and IMMUNE cows (n = 40). 

IMMUNE cows received an intrauterine transfer of autologous peripheral blood mononuclear 

cells d 4 of estrus. CONT cows received an intrauterine transfer of saline solution. No difference 

in birth weights was found between CONT and IMMUNE P > 0.6. 
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CHAPTER V 
 

 

SUMMARY AND CONCLUSION 

 

The global population is expected to increase dramatically in the next 35 years, 

increasing the demand for food production. Meeting the increased demand for food will 

need to be driven by new technologies in agricultural production systems. Infertility and 

respiratory disease are two of the most economically important issues that limit 

production efficiency in today’s livestock operations. The type I interferon (IFN) 

pathway is a key modulator in disease and infertility. Disruptions in the type I IFN 

signaling pathway could contribute to increased disease susceptibility and reduced 

reproductive rates. Investigation of the type I IFN pathway and its function in pregnancy 

and disease could reduce the losses associated with infertility and disease in the cattle 

industry. 

 

Respiratory disease is one of the largest issues that feedlots are facing in the 

United States. Bovine viral diarrhea virus (BVDV) and Mannheimia haemolytica (MH) 

are two common pathogens of respiratory disease. The type I IFN pathway is activated 

when a viral pathogen enters the host body, and activation of the type I IFN pathway 

induces transcription of interferon stimulated genes (ISG). Bovine viral diarrhea virus is 
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thought to disrupt the type I IFN pathway, thus reducing transcription of ISG 

thereby circumventing the animal’s immune system. Work in vitro has demonstrated a 

reduction in the production of IFN and ISG upon challenge with BVDV or proteins of the 

BVDV genome, but, work in vivo suggests that ISG are not reduced. Cattle that are 

shipped are often subject to short-term fasting, stress, and exposure to sick animals. 

Mineral supplementation or mineral deficiencies are thought to impact an animal’s 

susceptibility to disease; however, little is known regarding mineral status and the IFN 

response. The purpose of study 1 was to evaluate the effects of BVDV and MH challenge 

in control and Cu deficient calves. Three known ISG were evaluated in response to 

BVDV and MH challenge. Times points ranged from BVDV exposure to 24 h after MH 

challenge. Results from study 1 demonstrated an increase in ISG shortly after BVDV 

exposure, regardless of Cu status. Results indicate that the type I interferon pathway is 

activated in response to BVDV.   

Infertility and subfertility are a major problem for the cattle industry. Advances in 

reproductive technologies could increase production and the rate of genetic improvement. 

Most reproductive losses can be attributed to early embryonic loss from inadequate 

endometrial receptivity. Reducing embryonic loss can increase production and 

profitability in the cattle industry. Interferon-tau, a type I IFN, is the pregnancy 

recognition signal in ruminants. A connection between the immune system and IFNT has 

been identified, both within the uterus as well as systemically. In cattle and sheep, IFNT 

escapes the uterus and increases ISG in peripheral blood mononuclear cells (PBMC). 

Administering human chorionic gonadotropin, the pregnancy recognition signal in 

humans, primed PBMC intrauterine before embryo transfer has been found to increase 
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pregnancy rates in humans. Similar experiments in cattle demonstrated increased 

pregnancy rates in response to intrauterine transfer of PBMC, but these studies did not 

prime the cells with IFNT. Study 2 was preformed to evaluate the effects on pregnancy 

rates when IFNT-primed PBMC were transferred intrauterine before embryo transfer. 

Results indicate that PBMC have a positive effect on pregnancy rates, with an increase in 

pregnancies when compared to control cows. Progesterone (P4) is essential for pregnancy 

establishment and maintenance, and work in the literature suggests that P4 concentrations 

7 d after estrus influence subsequent pregnancy rates. The current study also evaluated 

the effects of pregnancy and P4 concentrations 7 d after estrus. There was no difference 

between pregnant and non-pregnant in control or experimental cows, indicating that P4 

concentrations at d 7 do not influence pregnancy status. It has been demonstrated that 

intrauterine transfer of PBMC increases the development and size of the conceptus, but 

studies have not evaluated if the development continues throughout pregnancy to birth. 

This study evaluated the effects of intrauterine transfer of IFNT-primed PBMC on calf 

weights at birth. There was also no difference in birth weights between the control and 

experimental calves, indicating that, though there might be early enhancement of 

conceptus growth, this does not continue to birth.  

Greater understanding of the type I IFN pathway and immune responses to 

pregnancy and disease can provide new insight into physiological responses to the most 

economically important challenges facing livestock industries.  Understanding disease 

pathways can lead to new treatments or early diagnosis of infections. Increasing 

pregnancy rates will increase reproductive efficiency, profits, and improve genetic 

improvement speed. Results from the current experiment demonstrated that the type I 
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IFN pathway is activated during bovine respiratory disease which indicates IFN is an 

important innate immune response to combat respiratory disease. Interferon therapies or 

identification of animals with deficient IFN responses could provide mechanisms to 

reduce bovine respiratory disease in US cattle herds. Furthermore, in experiment 2, IFN-

treated peripheral immune cells primed the maternal endometrium making a more 

receptive uterine environment and led to increased pregnancy rates. Intrauterine transfer 

of peripheral immune cells could provide a novel method to increase pregnancy rates 

following the use of reproductive technology in the livestock industry. If pregnancy rates 

could be increased when utilizing reproductive technology, producers might be more 

willing to adopt these technologies. Broader use of reproductive technology would allow 

the U.S. cattle industry to be more competitive on the global market by accelerating 

genetic progress of traits important for both economic viability and production 

sustainability. 
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