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efficient animals to lower input costs and to select for the animals with the highest 

carcass quality traits to increase revenue. This study used ultra-high-density single 

nucleotide polymorphism (SNP) data to evaluate genetic merit for these traits in beef 

cattle. To find a more economical method for producers to select for feed efficiency 

independent of average daily gain (ADG), this study analyzed whether predicted dry 

matter intake (pDMI) phenotypes could be utilized as an indicator trait for efficiency. A 

genome-wide association study (GWAS) was performed to identify genomic regions that 

are important to predicting genetic merit in feed efficiency traits. A subset of the largest 

effect SNPs for each trait were compared to large effect SNP regions of other phenotypes 

to identify regions of the genome that impact feed efficiency but are independent of gain. 

The largest effect SNPs were analyzed to identify genes and biological pathways that 

could be directly linked to these regions. Carcass traits were analyzed using the same 

procedure. The direct genomic value (DGV) accuracies for ADG, dry matter intake 

(DMI), pDMI, and residual feed intake (RFI) ranged from 0.27 to 0.51. There were seven 

QTL regions in common between pDMI and DMI that were independent of ADG QTL 
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CHAPTER I 
 

 

LITERATURE REVIEW 

INTRODUCTION 

In the beef cattle industry, one of the main goals of producers is to yield the greatest 

amount of product possible while controlling costs. One way this goal is achieved is by selecting 

for animals that are feed efficient. Since feed costs are a large part of the expenses of raising 

cattle (Archer et al., 1999; Anderson et al., 2005), decreasing monetary inputs while maximizing 

outputs is critical to increasing profitability and sustainability of beef cattle operations.  

Utilizing genetics to help select for more efficient animals is a feasible and economical 

method for producers to employ. A study by Jenkins and Ferrell (1994) compared different 

breeds of cattle and showed there is evidence for a genetic component of feed efficiency.  To 

develop genetic selection tools for feed efficiency, feed intake data on large populations of 

animals must be obtained. Since feed intake data is difficult and expensive to measure, finding 

the genomic regions responsible for feed efficiency may provide an opportunity to utilize 

genomic selection methodologies to improve feed efficiency on a large scale while minimizing 

phenotyping costs for producers.  One major challenge to this approach is assembling vast 

repositories of feed efficiency phenotypes, which could be alleviated by identifying suitable 

indicator traits for actual feed intake data.   

FEED EFFICIENCY- PAST, PRESENT, AND FUTURE 

In the beef cattle industry, an important goal for producers is to yield the greatest amount 
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of product possible while minimizing input costs. One way this goal is achieved is selecting for 

animals that are feed efficient, because feed costs are a large part of the expenses of raising cattle 

(Archer et al., 1999; Anderson et al., 2005). Decreasing monetary inputs while maximizing 

product outputs is critical to increasing profitability and sustainability of beef cattle operations. In 

the past, selection decisions in the beef cattle industry have been based largely on increasing 

outputs, such as weaning weight or rib eye area, in order to increase income. The other option 

was to reduce input costs. Since feed costs are a majority of the input costs for producers, being 

able to decrease the intake of animals without decreasing production levels would be a practical 

way to improve profits. The most effective way to do this is to focus on both input traits and 

output traits (like feed intake and average daily gain (ADG)) simultaneously to increase the 

efficiency of production. 

Utilizing genetics to help select for more efficient animals is a feasible and economical 

method for producers to employ. To develop genetic selection tools for feed efficiency, feed 

intake data on large populations of animals must be obtained. Because feed intake data is difficult 

and expensive to measure, identifying the genomic regions responsible for feed efficiency may 

provide a more economical method for producers to utilize in order to decrease their feed input 

costs.  

 

Background of feed efficiency 

Selection for feed efficiency involves identifying animals that eat less feed than other 

animals that have similar or greater levels of productivity. Feed efficient animals need less feed 

for growth and maintenance, which reduces feed costs. Since feed can account for up to 70% of 

total input costs (Moore et al., 2006), even small improvements in feed efficiency can 

dramatically impact profitability. 

One factor that is responsible for differences in feed efficiency in beef cattle is the breed 

of the animal (Archer et al., 1999). Frisch and Vercoe (1984) showed that Hereford x Shorthorn 
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bulls needed 20% more feed than Brahman bulls to be able to maintain their body condition. This 

variation can be explained by differences in biological mechanisms, such as digestion efficiency, 

microbial populations in the rumen, activity level, and heat dissipation (Veerkamp et al., 2013).  

 

Traditional methods of selecting for feed efficiency 

 Feed efficiency is a difficult trait to measure and evaluate for a variety of reasons, 

including expense and level of technology necessary to measure exact feed intake values for 

individual animals. The process of measuring feed intakes is even more challenging when cattle 

are in a grazing environment because dry matter intake values are even more difficult to 

accurately measure in such an environment. Since measuring traits for feed efficiency can be 

costly and difficult, some possible solutions are to identify phenotypes that can be used as 

indicator traits for feed efficiency genetic evaluation and to utilize genomics to maximize the 

return on phenotyping of animals. 

Some researchers define feed efficiency as the ratio of feed inputs to production outputs. 

Feed efficiency is not something that can be measured directly, but it can be inferred from 

measuring feed intake and weight gain. Dry matter intake (DMI) is a component trait of 

efficiency that represents system inputs. Average daily gain (ADG), or the amount of daily gain 

achieved by an animal during a specific feeding period, is another important part of the feed 

efficiency equation.  

Many traditional measures of feed efficiency are based on ADG. For example, feed:gain 

ratio (F:G), also known as feed conversion ratio (FCR), is calculated as the ratio of daily DMI to 

body weight. While calculating FCR for feed efficiency is useful, it is only a gross measurement; 

therefore, FCR does not specify between feed consumed for growth and maintenance 

requirements (Carstens and Tedeschi, 2006). A trait very similar to this one, gain:feed ratio (G:F), 

has also been used and is calculated as the ratio of weight gain to feed consumption (Koch et al., 

1963). When FCR and G:F is used for selection decisions, emphasis will be placed on ADG, 
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which can lead to larger animals (Archer et al., 1999). This increase in mature size can lead to 

greater production costs in the cowherd due to higher feed requirements within the system. 

Another ratio trait used to calculate feed efficiency is referred to as maintenance efficiency. It is 

the ratio of feed consumed that is used for maintenance per unit of metabolic body weight 

(BW0.75) (Carstens and Tedeschi, 2006). Maintenance efficiency is calculated as the actual intake 

of an animal minus the predicted intake that an animal requires for growth per unit of metabolic 

body weight (Carstens and Tedeschi, 2006). In addition to this trait, partial efficiency of growth 

(PEG) is another ratio trait that is used to predict feed efficiency. This method involves 

calculating average daily gain (ADG) per unit of feed partitioned for growth requirements 

(Carstens and Tedeschi, 2006). Using PEG may be a valuable alternative to FCR because it is 

more strongly correlated with feed intake than FCR is. Because selecting for feed efficiency 

utilizing ratios based on growth can lead to an increase in mature cow size and, therefore, an 

increase in the amount of feed required for maintenance and growth, it is important to identify 

selection tools that allow producers to select for genetic variation in feed intake that is not linked 

to gain through pleiotropy. 

 Koch et al. (1963) was the first to suggest calculating feed efficiency as residual feed 

intake (RFI). The RFI is expressed as the deviation from the animal’s predicted feed intake and is 

calculated as follows: 

RFI =ADMI - eDMI 

eDMI = b0 + b1ADG + b2MMWT0.75 

The calculation for RFI involves subtracting the expected dry matter intake (eDMI) from 

the observed dry matter intake (ADMI). The expected feed intake values are calculated from a 

regression of feed intake on ADG and metabolic mid-weight (MMWT). Residual feed intake is a 

ratio trait that is useful because the calculation used to derive the value forces it to be independent 

of average daily gain. Although since it is a ratio trait, an animal that eats less feed and gains less 

can have the same RFI as an animal that eats more and gains more. An animal with a negative 
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RFI is considered more efficient because they consume less feed than was predicted. RFI uses an 

animal’s weight and growth rate to account for maintenance and growth requirements separately 

(Carstens and Tedeschi, 2006). Accounting for these requirements separately allows RFI to be a 

trait that is phenotypically independent of growth rate (Kennedy et al., 1993).  

There are conflicting views between scientists on the use of calculating RFI to predict 

feed efficiency. Arthur et al. (2001a) suggests that it is one of the most effective ways to express 

feed efficiency because it is a better alternative to ratio traits and it is strongly correlated with 

feed conversion ratio. Because of the correlation between RFI and its component traits, there is 

likely to be no new genetic information gained from focusing on RFI that is not gained from 

selection on the component traits alone. A trait similar to RFI is residual body weight gain (RG) 

which regresses ADG on feed intake and body weight to identify animals that do not require to be 

on feed for as long while still having a feed intake value that is less than other animals (Berry and 

Crowley, 2012). An animal with a higher RG grows faster than other animals but it is not 

associated with feed intake values (Berry and Crowley, 2012). The most important difference 

between RFI and RG is that RG is not phenotypically independent of ADG since ADG can be an 

important trait to consider when selecting for feed efficiency. The same selection responses in 

feed efficiency are likely to be seen by focusing on the component traits of feed intake, gain, and 

body weight which is why the use of a selection index may be the best approach for selection of 

feed efficiency. Although there are many options used to estimate feed efficiency, there is 

currently no universally-accepted method.  

Feed efficiency prediction models 

In an attempt to alleviate the need to collect individual-animal feed intake data, 

simulation models have been created that can estimate the predicted DMI of cattle. One such 

model is the Cornell/Cattle Value Discovery System (CVDS), which allocates feed fed to groups 

of animals to individual animals based on growth, body weight, and carcass measurements 

(Tedeschi and Fox, 2006; Tedeschi et al., 2006). Fox et al. (2004) demonstrated that CVDS 
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under-predicted intake by only 2%. Another study reported that DMI of steers was under-

predicted by 0.91% while heifers were over-predicted by 0.89% (Fox et al., 2001). Another 

similar model, the Decision Evaluator for the Cattle Industry (DECI), is able to predict DMI 

(pDMI) required for an animal to reach a certain performance level (Williams et al., 2006). 

Williams et al. (2006) compared DECI and CVDS to test the accuracy of these two models in 

predicting individual DMI. The heritability of DMI for CVDS and DECI were almost equal at 

0.32 and 0.33, respectively. When observed daily DMI values were compared to model-predicted 

values, CVDS under-predicted DMI by 3.4% on average while DECI over-predicted DMI by 

0.4% on average. In addition, the phenotypic correlations for observed DMI with predicted DMI 

using CVDS and DECI were 0.785 and 0.798, respectively. The genetic correlations for observed 

DMI with predicted DMI using CVDS and DECI were 0.95 ± 0.07 and 0.96 ± 0.07, respectively 

(Williams et al., 2006). These results indicate that both models could be useful to predict DMI for 

genetic evaluation of feed efficiency. Ration, gain information, and carcass information is 

routinely collected in the feedlot sector, and model-predicted intakes could provide a 

methodology to incorporate these pen data into individual-animal evaluation systems. 

 

Heritability and genetic and phenotypic correlations between feed efficiency phenotypes 

Indicator traits that are most likely to be effective for selecting for feed efficiency are 

traits that have at least a moderate heritability. Genetic variation exists for DMI, RFI, and ADG, 

which is necessary for developing selection tools for feed efficiency, and estimates of heritability 

for these traits are moderate and indicate that genetic improvement is possible (Table 1). Another 

important aspect of the genetics of indicator traits when selecting for feed efficiency is the genetic 

correlations of the traits. The presence of genetic correlations indicates that pleiotropy exists and 

may cause correlated responses to selection. Phenotypic correlations for RFI and DMI range from 

0.58 to 0.72, and genotypic correlations range from 0.59 to 0.79 (Arthur et al., 2001a; Crowley et 

al., 2010; Herd and Bishop, 2000; Arthur et al., 2001b). These correlations are moderate to high 
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because the calculation of RFI uses DMI.  Phenotypic correlations for RFI and ADG range from -

0.06 to 0.09, and the genotypic correlations range from -0.10 to 0.01 (Arthur et al., 2001a; 

Crowley et al., 2010; Herd and Bishop, 2000; Arthur et al., 2001b) signifying that these two traits 

are independent of each other. The correlation between RFI and ADG is expected to be zero 

because RFI is phenotypically independent of gain due to its inclusion in the regression model to 

estimate expected intake. The phenotypic correlations for ADG and DMI range from 0.38 to 0.47, 

and the genotypic correlations range from 0.39 to 0.55 (Arthur et al., 2001a; Crowley et al., 2010; 

Arthur et al., 2001b) which is a low to moderate positive correlation signifying that as DMI 

increases, ADG often increases as well. The phenotypic correlation between observed DMI and 

predicted DMI was found to be 0.785 and the genetic correlation was 0.95 ± 0.07 (Williams et al., 

2006), as previously mentioned. Because the genetic correlation is very high, predicted DMI is a 

good candidate for an indicator trait for feed intake.  

 

Utilizing genomic information to better select for feed efficiency 

The use of direct genomic values (DGV) are especially useful for traits that are 

traditionally difficult to measure. These traits may be difficult to measure because of the expense, 

such as feed intake, or because of the practicality of obtaining the measurement, such as disease 

resistance. The DGVs are calculated as the sum of the individual marker effects identified in QTL 

studies (Weber et al., 2012).  In order for a DGV to be calculated, a training population which 

possesses dense phenotype and genotype data is used to generate genomic prediction equations. 

In research studies, these predictions are then evaluated in a validation population that has also 

been phenotyped and genotyped to determine the accuracy of the predictions. The DGVs can also 

be utilized by breed associations to generate genomic-enhanced EPDs for producers to evaluate 

the genetic potential of an animal in their breeding program. When DGV are utilized within the 

industry, they are typically trained utilizing all of the available information/animals, so the un-

phenotyped population where DGV are utilized is referred to as an implementation population. 
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There are many QTL regions identified in the literature for RFI, ADG, and DMI. In some 

cases, the genomic regions overlap (Rolf et al., 2012; Barendse et al., 2007; Nkrumah et al., 

2007b). However, there is often low concordance of QTL regions between studies (Saatchi et al., 

2014). Some possible reasons for this are that different cattle populations experience different 

genotype x environment interactions (Sherman et al., 2010), QTL may be specific to a particular 

breed or population, or an association may be spurious.  Saatchi et al. (2014) suggested that 

another reason why QTL studies tend to be population-specific is due to differences between 

breeds, including differences in linkage disequilibrium between breeds. Before extrapolating the 

results of one QTL study across different cattle breeds, and even within breeds, the QTL need to 

be validated in independent populations. 

QTL studies which have been completed have been critical in identifying important 

regions of the genome related to traits of interest. These studies have increased the efficiency of 

SNP technology and have advanced the understanding of the genes responsible for the traits of 

interest. Although identifying QTL regions is important to understand the biological 

underpinnings of a trait, genomic selection processes are transforming to examine all the variation 

in the entire genome simultaneously.   

 

CARCASS QUALITY TRAITS 

Selecting for carcass traits in beef cattle 

 Superior carcass merit contributes to consumer satisfaction with the beef-eating 

experience, and is an important suite of traits for genetic improvement. Some of these critical 

carcass traits are rib eye area (REA), hot carcass weight (HCW), back fat thickness (BFAT), yield 

grade (YG), and marbling score (MARB). Ultrasound measurement of carcass traits contributes 

to genetic evaluation on young animals and those that will not have their own phenotype 

available for carcass traits, such as bulls and replacement females. However, these measures can 

vary from carcass data that is obtained at an abattoir because the ultrasound data is typically 
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collected before the animal is finished (Drake, 2004). The comparison of the ultrasound data and 

the data collected at slaughter can vary between traits and between sexes, but overall the 

correlations between the two data types were moderate to high indicating ultrasound scanning can 

provide important information for genetic improvement (Reverter et al., 2000).  

Yield grade is estimated based on expected retail yield of a carcass (Drake, 2004). The 

YG is calculated based on BFAT, the kidney, pelvic, and heart fat percentage, HCW, and REA. 

The BFAT trait is important because there should be an adequate layer of fat to prevent the 

carcass from drying out, but there should not be too much fat so as to take away from the amount 

of meat that can be obtained from each carcass (Drake, 2004). Marbling score is a measure of 

intramuscular fat and is important in determining the quality grade of carcasses.   

It is important for beef producers to be able to produce a consistent, quality product that fits 

consumer demands and all of these traits interact and contribute towards the eating experience a 

consumer encounters.  

 

Breed Effects for Carcass Traits 

 Breed effects are an important consideration in the study of carcass traits (Retallick et al., 

2013). Some general relationships between carcass traits in different breeds can guide producers 

in breed selection decisions, most notably when utilizing breed complementarity in crossbreeding 

systems. Angus and Hereford cattle have the greatest BFAT and Angus have the greatest 

marbling score when compared to Pinzgauer and Brahman (Crouse et al., 1989). According to the 

2006 Germplasm Evaluation Program Report No. 23, Angus and Hereford had higher marbling 

scores than Brangus and Beefmaster, but Beefmaster had a higher BFAT than Hereford. This is a 

trend that has remained fairly constant over the years with similar results reported in the 1974 

Germplasm Evaluation Progress Report No. 1 (United States Department of Agriculture- 

Agricultural Research Service), which shows that Hereford and Angus are above the average of 

all breeds tested for both BFAT and marbling score. In contrast, Charolais, Brahman, and 
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Limousin cattle have been reported to have the lowest BFAT and marbling scores (Marshall, 

1994). Angus cattle have been found to have less desirable YGs compared to other breeds, 

possibly due to high fat levels in the carcasses (Retallick et al, 2013). This statement is confirmed 

by the Germplasm Evaluation Progress Report No. 1 and No. 23, which lists Angus as having the 

highest YG of any other breed listed in almost every comparison. The breeds with the highest 

HCW are Simmental, who also had the highest REA, and Charolais, who also have the highest 

growth rate of any other breed (Marshall, 1994; Schenkel et al., 2004; Gregory et al., 1995). 

British breeds tend to have greater marbling scores and BFAT than Continental breeds (Johnson 

et al., 1988). British and Continental breeds also tend to have a heavier HCW than Brahman-type 

breeds with Continental breeds being the heaviest (Johnson et al., 1988). One large issue that 

producers of Brahman-type cattle breeds face is decreased tenderness and lower marbling scores. 

While many producers who focus on carcass traits may avoid these breeds all together, having an 

animal with a portion of Brahman in their genetic background is important for other critical traits 

such as their ability to cope with high temperatures (Crouse et al., 1989; Marshall, 1994).  

 In addition to breed differences, there are also sex differences in carcass traits between 

heifers, steers and bulls. For example, heifers generally have a lower HCW than bulls or steers, 

because heifers are typically smaller than steers and bulls (Hassen et al., 1999). Generally, bulls 

are leaner than steers (Johnson et al., 1988; Hassen et al., 1999). Steers have a higher back fat 

thickness and marbling score than bulls, but bulls have a higher REA than both steers and heifers. 

(Johnson et al., 1988; Hassen et al., 1999). It is important to keep these differences in mind when 

doing genetic analyses on carcass traits and comparing the results between sexes.  

 

 

 

Differences in carcass quality among animals due to genetics 
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 Genetic and phenotypic correlations between carcass traits are important tools that allow 

identification of unfavorable responses in performance due to the selection of correlated traits. 

Genetic correlations between marbling score (MARB) and REA range from -0.02 to 0.44 with 

phenotypic correlations from -0.05 to 0.12 (Riley et al., 2002; Gregory et al., 1995). These 

correlations tend to be zero or negative, which indicates these traits are often not dependent on 

each other or as one increases the other decreases. Genetic correlations for REA and HCW varied 

from 0.52 to 0.66 with phenotypic correlations from 0.40 to 0.44 (Riley et al., 2002; Gregory et 

al., 1995). These correlations indicate a favorable relationship between REA and HCW which 

could enhance selection for both traits. For YG and MARB, genetic correlations range from 0.31 

to 0.45 with phenotypic correlations from 0.26 to 0.40 (Riley et al., 2002; Gregory et al., 1995). 

These moderate correlations are what would be expected because the more fat on a carcass, the 

higher the YG. In addition, MARB and HCW had genetic correlations ranging from 0.31 to 0.39 

with phenotypic correlations ranging from 0.13 to 0.17 (Riley et al., 2002; Gregory et al., 1995). 

The genetic correlations indicate that as HCW increases, MARB tends to increase concomitantly. 

The genetic correlations for BFAT and REA ranged from -0.14 to 0.02 and phenotypic 

correlations from -0.06 to 0.13 (Robinson and Oddy, 2004; Riley et al., 2002; Gregory et al., 

1995), which indicates these traits have an unfavorable relationship. Furthermore, the genetic 

correlation for YG and HCW ranged from 0.25 to 0.56 with a phenotypic correlation ranging 

from 0.30 to 0.48 (Wheeler et al., 2005; Riley et al., 2002). The same study found the genetic 

correlation of YG and REA to be -0.26 and a phenotypic correlation of -0.30 (Riley et al., 2002). 

This negative correlation is what would be expected since YG is calculated by subtracting the 

REA, so a larger REA would result in a lower YG. The genetic correlations for BFAT with YG 

and BFAT with HCW were 0.93 and 0.60, respectively, and the phenotypic correlations were 

0.81 and 0.43, respectively (Riley et al., 2002). The correlations for BFAT and YG are very high 

because BFAT is utilized in calculation of YG. The higher the amount of backfat, the higher the 

YG will be. In addition, the high correlation between BFAT and HCW suggests that an animal 
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with more fat will have a heavier carcass. Lastly, the genetic correlation for MARB and BFAT 

range from 0.44 to 0.56 and phenotypic correlations range from 0.25 to 0.30 (Gregory et al., 

1995; Riley et al., 2002). Heritabilities for carcass quality traits are generally high. Literature 

estimates for a variety of carcass traits are summarized in Table 2. The trait with the highest 

heritability is MARB (Mao et al., 2013), while the trait with the lowest heritability estimate is 

BFAT (Mao et al., 2013). 

 

Genetic Selection for Carcass Quality 

Throughout the genome, single base pair changes, also known as single nucleotide 

polymorphisms (SNP), are responsible for a portion of the variation that is observed in 

phenotypes. A genome-wide association study (GWAS) examines the effect each of these SNPs 

has on the overall phenotype and can identify quantitative trait loci (QTL) regions that 

presumably harbor causal mutations. Currently, as many as 770,000 SNPs can be tested 

simultaneously utilizing bead arrays, which provides dense coverage (approximately 1 SNP per 

3900 base pairs) in the genome for fine-scale QTL mapping (Pryce et al., 2012; Pryce et al., 

2014). While carcass trait QTL regions are very useful for understanding the biological processes 

behind carcass performance and validating SNP associations utilizing biological information, 

genomic selection for carcass traits will be more useful than single-marker approaches for most 

traits. Identifying QTL regions and development of genomic selection models can be 

accomplished concomitantly, which enables genomic selection approaches while simultaneously 

providing information on biological processes and pathways that contribute to variation in 

phenotype. The use of genomics also allows for the calculation of a direct genomic value (DGV) 

which gives producers an idea of how an animal will perform for a specific trait. The accuracy of 

a DGV calculates the correlation between the actual and predicted genetic ability of an animal 

(Saatchi et al., 2011). For example, the DGV accuracies for HCW, BFAT, MARB, and REA have 

been estimated at 0.471, 0.603, 0.690, 0.601, respectively (Saatchi et al., 2011). 
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Genome-wide association studies allow for the identification of QTL regions linked to 

carcass traits by looking at the predicted SNP effects. A study by Yuan et al. (2013) found that 

diacylglycerol O-acyltransferase (DGAT1), which is a critical gene in the formation of 

triglyceride synthesis, could be a candidate gene for fat-related carcass traits in beef cattle, such 

as MARB and BFAT.  In addition, another study found that SNPs within the gene family MYOD, 

which is important for muscle development, had a significant association with HCW (Bhuiyan et 

al., 2009). A study by Marques et al. (2009) found two candidate genes that have associations 

with BFAT and MARB. The two genes, 2,4 dienoyl CoA reductase 1 (DECR1) and core binding 

factor (CBFA2T1), have been previously associated with lipid metabolism in other species. The 

number of candidate genes will continue to increase as additional studies are performed and 

validated in independent populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Literature estimates of heritability (± SE) of dry matter intake (DMI), residual feed 

intake (RFI), and average daily gain (ADG) 
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 DMI  RFI ADG Breed* 

Archer et al. 

(2002) 
0.28 0.23 0.33 AN, HP, & SP 

Arthur et al. 

(2001a) 
0.39 ± 0.03 0.38 ± 0.06 0.28 ± 0.04 AN 

Arthur et al. 

(2001b) 
0.48 ± 0.06 0.43 ± 0.06 0.41 ± 0.06 CH 

Barendse et al. 

(2007) 
---- 0.26 ± 0.07 ---- 

AN, BR, BE, HP, MG, 

SG, & SP 

Bolormaa et al. 

(2011) 
0.16 ± 0.13 0.18 ± 0.13 0.24 ± 0.14 AN, MG, SP, & HP 

Bouquet et al. 

(2010) 
0.48 0.45 ---- LM 

Crowley et al. 

(2010) 
0.49 ± 0.06 0.45 ± 0.06 0.30 ± 0.06 

AN, CH, HP, LM, & 

SM 

Herd and Bishop 

(2000) 
0.31 ± 0.08 0.16 ± 0.08 0.38 ± 0.10 HE 

Koch et al. (1963) 0.64 ± 0.12 0.28 ± 0.11 ---- HP, AN, SP 

Lu et al. (2013) 0.28 ± 0.04 0.22 ± 0.05 0.29 ± 0.06 AN, CH, PI, & XB 

MacNeil et al. 

(1991) 
---- ---- 0.38 ± 0.16 

AN, HP, SM, PZ, & 

RP  

Mao et al. (2013) 
0.54 ± 0.13 

0.39 ± 0.10 

0.68 ± 0.14 

0.47 ± 0.12 

0.54 ± 0.13 

0.38 ± 0.12 

CH 

AN 

Mujibi et al. (2011) 0.41 ± 0.12 0.29 ± 0.12 0.28 ± 0.11 AN, CH, HP, & XB 

Nkrumah et al. 

(2007b) 
0.54 ± 0.15 0.21 ± 0.12 0.59 ± 0.17 AN, CH, HP, & XB 

Robinson & Oddy 

(2004) 
0.27 ± 0.06 0.18 ± 0.06 ---- 

BR, BE, SG, AN, HP, 

MG, & SP 

Rolf et al. (2010) 0.16 0.21 0.00 AN 

Rolfe et al. (2011) 0.40 0.52 0.26 
HP, AN, SM, CH, LM, 

GV 

Saatchi et al. 

(2014) 

0.35 

0.35 

0.41 

0.27 

0.49 

0.21 

0.45 

0.32 

0.30 

0.19 

0.27 

0.23 

XB 

AN 

HP 

SM & AN 

Schenkel et al. 

(2004) 
0.44 ± 0.06 0.38 ± 0.07 0.35 ± 0.03 CH, LM, SM, HP, AN 

Williams et al. 

(2006)  
0.27 ± 0.12 ---- 0.35 ± 0.13 HP, AN, & SP 

*Breed abbreviations: AN- Angus; CH- Charolais; HP- Hereford; LM- Limousin; SM- 

Simmental; SP- Shorthorn; RP- Red Poll; PZ- Pinzgauer; BR- Brahman; SG- Santa Gertrudis; 

BE- Belmont Red; MG- Murray Grey; PI- Piedmontese; GV- Gelbvieh; XB- Beef crossbreeds 
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CHAPTER II 
 

 

COMPARISON OF ACTUAL VERSUS PREDICTED FEED INTAKE PHENOTYPES FOR 

GENETIC EVALUATION OF FEED EFFICIENCY IN BEEF CATTLE 

 

Abstract 

 Feed efficiency is expensive to measure in beef cattle because of the technology it 

requires to measure individual animal dry matter intakes (DMI). However, genetic correlations 

between predicted DMI (pDMI), which utilizes pen feed intake, and actual DMI indicate that 

pDMI may be useful as an indicator trait for genetic evaluation. Therefore, the objective of this 

study is to evaluate whether quantitative trait loci (QTL) mapping approaches identify the same 

regions of the genome for pDMI and DMI. Because average daily gain (ADG) is a primary driver 

of the prediction models and residual feed intake (RFI) is a popular metric for feed efficiency, the 

overlap of pDMI and DMI QTL regions with QTL for ADG and RFI will also be evaluated. To 

achieve these objectives, individual animal feed intake, weight, and carcass data was obtained on 

849 Hereford steers and heifers fed within a GrowSafe (GrowSafe Systems Ltd.) feed intake 

system. The Cattle Value Discovery System (CVDS) growth and carcass data model was utilized 

to obtain pDMI from DMI pooled within pens and reallocated to individual animals. Phenotypic 

correlations were 0.64 (P < 0.0001) and 0.56 (P < 0.001) between pDMI and DMI and pDMI and 

ADG, respectively. Phenotypic correlations for RFI and ADG were zero (P > 0.35), as expected, 

and 0.38 (P < 0.001) and -0.08 (P < 0.02) between RFI and DMI and RFI and pDMI, 

respectively. Genotypes were assayed using the Illumina BovineHD Beadchip assay. After 

filtering for quality control, a final dataset of 648,625 single nucleotide polymorphisms (SNP)
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was available for analysis. The SNP effects for RFI, ADG, pDMI, and DMI were estimated 

utilizing a BayesB0 model in GenSel. The 5-SNP windows surrounding the 100 largest SNP 

effects for each phenotype were compared to determine overlap between QTL regions. Seven of 

the QTL regions in common between pDMI and DMI were independent of ADG QTL regions. A 

pathway analysis of genes found in the top 50 QTL regions identified pathways implicated in 

human obesity. These results show that there is concordance between genomic regions for pDMI 

and feed intake and efficiency traits independent of the model drivers (ADG).  

 

Introduction 

An important goal of beef cattle producers is to increase the efficiency of production by 

either decreasing input costs or increasing outputs, such as pounds of product produced. Feed 

costs are a logical input to reduce because feed can contribute up to 70% of total production costs 

(Moore et al., 2006). One way to decrease feed costs is to raise cattle that are feed efficient. An 

animal that is feed efficient will eat less feed than other animals but will still gain weight at the 

same level or even faster compared to other animals with the same feed resources because they 

are more metabolically efficient. 

In the past, selection for efficiency has largely involved selecting for increased outputs, 

including average daily gain (ADG), because of the ease of phenotype collection. Gain:feed and 

feed:gain ratio, or feed conversion ratio (FCR), which are ratios of daily dry matter intake 

(typically calculated based on pen feed intake) and body weight, have historically been popular 

metrics for feed efficiency. As with selecting for ADG directly, selection for FCR focuses on 

weight gain (Archer et al., 1999). Although improvement in feed efficiency was achieved by 

selecting for gain, selecting for ADG often leads to a larger mature size (Archer et al., 1999). 

Residual feed intake (RFI) expresses an animal’s deviation from a predicted intake of the 

animal based on gain and weight (Koch et al., 1963). Residual feed intake has gained popularity 

because it is phenotypically independent of growth rate (Kennedy et al., 1993). One drawback 
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includes the fact that RFI is a ratio trait, which can be misleading because an animal that eats less 

feed and gains less weight can have a similar RFI to an animal that eats more and gains more. 

Another drawback of RFI is that it is not genetically independent of its component traits 

(Kennedy et al., 1993). Another drawback to using RFI is that it requires individual animal feed 

intake values which can be expensive to collect. The reason genomic selection approaches for 

feed efficiency are desirable in the beef cattle industry is because it allows for the expansion of 

data collected in smaller discovery populations to be extrapolated effectively to populations that 

do not have phenotype data. This approach is particularly effective in traits that are expensive to 

measure on large herds of animals. 

A multitude of studies have identified quantitative trait loci (QTL) regions linked to feed 

efficiency (i.e. Rolf et al., 2012; Saatchi et al., 2014; Barendse et al., 2007; Nkrumah et al., 

2007a). While the identification of these QTL are critical, animal breeding and selection practices 

have also focused on genomic selection approaches, such as the estimation of direct genomic 

values (DGV) (Weber et al., 2012; Saatchi et al., 2013a). However, the development of DGV 

concomitantly enables the identification of QTLs for those traits. DGVs are especially useful for 

measuring traits, such as feed efficiency, that are traditionally difficult to measure due to cost and 

the labor it requires (Weber et al., 2012).  

Feed efficiency evaluation in beef cattle is hampered by the fact that dry matter intake 

(DMI) phenotypes are expensive to collect and, although it is expanding rapidly, there is limited 

infrastructure for the collection of this data on a large scale. The development of a cost-effective 

indicator trait, such as predicted feed intake values based on animal performance and pen intake 

data, could enhance the ability of the industry to utilize already-existing data to supplement feed 

efficiency evaluations. These models, such as the Cattle Value Discovery System (CVDS), 

already exist and have been characterized in the literature. The CVDS program was first 

published by Fox and Black (1984) with later modifications detailed in Fox et al. (1988), Fox et 

al. (1992), Tylutki et al. (1994), and Fox and Tylutki (1998). The CVDS system predicts 
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individual DMI values for cattle by allocating pen fed intake data to individual animals based on 

each animal’s performance. Fox et al. (2004) reported that CVDS predictions were only 2% lower 

than the actual intakes. In addition, another study discovered that CVDS under-predicted the 

intake of steers by only -0.91% and over-predicted for heifers by 0.89% (Fox et al., 2001).  

An indicator trait for genetic evaluation should ideally be less expensive to measure, and 

exhibit a high genetic correlation with the trait of economic interest. Williams et al. (2006) 

reported phenotypic correlations for pDMI and DMI of approximately 0.785.  However, the 

genetic correlation was considerably higher at 0.95 ± 0.07, as seen in Table 3. These results 

suggest that pDMI may be useful in supplementing actual DMI for genetic evaluation. The 

purpose of this study was to generate DGV predictions for a variety of feed efficiency related 

phenotypes in Hereford cattle and utilize the resulting QTL regions to evaluate concordance rates 

between predicted feed intake and other feed efficiency traits.   

 

Materials and Methods 

Animals and phenotypic data 

Phenotypic records for a total of 870 Hereford steers and heifers fed between 2009 and 

2011 were obtained, which were a subset of records from Saatchi et al. (2014). A total of 8 

contemporary groups were formed based on calving season, calving year, number of days on 

feed, and sex, ranging in size from 31 to 205 animals. In addition, since sex was an identifying 

characteristic for assigning contemporary groups, one animal was in a contemporary group by 

itself so this animal was removed.  

Feed intake records were collected using a GrowSafe System (Airdrie, Alberta, Canada) 

which can measure individual feed intakes on large numbers of pen-fed animals. Additional 

phenotypes that were collected included bi-weekly body weights, birth weight (BW), weaning 

weight (WW), yearling weight (YW), metabolic mid-weight (MMWT), and average daily gain 
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(ADG). Table 4 indicates each growth phenotype and how many records there were for each trait. 

Residual feed intake was calculated as follows: 

RFI =ADMI - eDMI 

eDMI = b0 + b1ADG + b2MMWT0.75 

The calculation for RFI involves subtracting the expected dry matter intake (eDMI) from 

the average dry matter intake (ADMI). The expected feed intake is calculated from a regression 

of ADG and MMWT. Descriptive statistics for feed efficiency traits are provided in Table 4. 

Carcass data was also collected, including hot carcass weight (HCW), marbling score 

(MARB), rib eye area (REA), back fat thickness (BFAT), and yield grade (YG) and is 

summarized in Table 5. 

The phenotypic correlations and correlations between SNP effects for each trait were 

calculated using SAS© software, version 9.3 of the SAS System for Windows (SAS Institute Inc., 

Cary, NC, USA).  

 

Predicted Feed Intakes 

Growth and carcass data were utilized to calculate pDMI within CVDS. The “Individual 

Management” application within the program was used to allocate pen feed intake data to 

individual animals. All default settings for this program were used. This program utilizes pen feed 

intake records, ration information, periodic body weights, YG, HCW, BFAT, MARB, and REA 

data to predict the dry matter intake required for an animal to achieve the their specified level of 

performance. Specific ration information was unavailable for these animals, so a standard feedlot 

ration fed at the Willard Sparks Beef Research Center (Oklahoma State University, Stillwater, 

Oklahoma) was utilized. This ration, on a dry matter basis, consisted of approximately 17% 

cracked corn grain, 22% prairie hay, 43.5% sweet bran, 13% distiller’s grain, and 4.5% B-273 

supplement. Depending on the contemporary group of the animals, they were either on feed for 

70, 71, or 140 days.  
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Genotypic data 

All animals with genetic information (n=849) was genotyped using the Illumina Bovine 

HD BeadChip (770K) (Illumina Inc., San Diego, CA; Rincon et al., 2011). Animals which were 

in single-animal contemporary groups, or that did not possess both phenotypes and genotyped 

were excluded from further analysis.  The dataset was filtered for extreme deviations from Hardy-

Weinberg Equilibrium (HWE) and for a minor allele frequency (MAF) < 0.01. The missing 

genotypes in the dataset were imputed using BEAGLE (Browning and Browning, 2009). Files 

were filtered for marker heterozygosity (HETA) if the value was greater than 0.40. The data was 

also filtered for Kleinfelter males, call rate and incorrect chromosome assignment. After all 

filtering was complete, 648,625 SNPs were available for analysis on 849 animals. 

 

Data analysis 

Direct Genomic Value (DGV) Predictions 

DGV were predicted utilizing a Bayesian framework implemented within  GENSEL 

(Fernando and Garrick, 2009), which was accessed through the iPlant Collaborative website 

(Goff et al., 2011). Because the genomic architecture of pDMI is unknown, a BayesB analysis 

was utilized due to its ability to estimate allele substitution effect-specific variances rather than 

the common variances utilized in BayesC analyses. However, BayesB analyses are particularly 

sensitive to the starting values (Rolf et al., 2015), so BayesC analyses where π = 0.95 were 

utilized to estimate variance components to be utilized in subsequent BayesB analyses. Starting 

values for all BayesC analyses were the average of literature estimates of genetic and residual 

variance components, and are reported in Table 6. No previous literature estimates for the 

variance components of pDMI were found, so the variance components for actual DMI were also 

used for pDMI.  

BayesB analyses where π = 0 were utilized to generate DGV, and a five-fold cross 

validation was used to ensure that reported DGV accuracies for each animal were generated when 
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they were independent of the training population. Training and validation populations for the 

cross validation were created by randomly allocating animals from each contemporary group to 

one of five populations to ensure an equal representation of each contemporary group in each 

training and validation group so that accurate estimates of contemporary group effects would be 

produced in each training run. Any animals remaining after initial assignment to contemporary 

groups (numbers not divisible by five) were combined, and randomly assigned to one of the five 

populations irrespective of their contemporary group.  

Training populations were formed as a combination of four of the five groups, and the 

validation group was specified as the one remaining population so that all animals received an 

independent prediction and accuracy, as seen in Table 7. Accuracies and correlations for all five 

analyses are also reported in Table 7. Correlations are between the direct genomic value (DGV) 

and the phenotype, as de-regressed breeding values were not available for analysis in this 

population. In addition, realized accuracy for each trait was calculated as 
�ĝ,�
√�� to account for the 

fact that phenotypes, rather than de-regressed breeding values, were utilized for the calculation of 

the correlations (Rolf et al., 2015). 

 The additive genetic and residual variance components obtained from the BayesC 

results, as seen in Table 8, were utilized as starting values for all BayesB analyses. Each trait was 

analyzed in GENSEL using 60,000 Markov chain Monte Carlo (MCMC) iterations with a burn-in 

value of 1,000.  

Fixed effects in this analysis consisted of the phenotypic means and contemporary group, 

therefore, the model for the Bayes B0 analysis was: 

�	 = � + 
� +��	��� + �	
�

���
 

where: 

yi= feed efficiency phenotypes for each trait, 
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µ= sample mean, 

X= matrix corresponding to fixed effects vector b,  

b= vector of fixed effects for contemporary groups and phenotypic mean, 

k= number of genetic markers in the analysis, 

zij= allelic state (AA=-10, AB=0, BB=10) of animal i at marker j, 

uj= random effect for marker j, and 

ei= residual effect. 

 

Genome-wide association study 

Development of DGV has the added benefit of simultaneously providing results for 

genome-wide association analyses. If SNPs were within 250,000 base pairs of each other, they 

were collapsed together. Then the SNP windows were collapsed together if the minimum or 

maximum genomic position of one SNP overlapped with the position of another SNP window 

until the top 100 regions were identified. The average size of each SNP window was 22,000 with 

a SNP density of approximately one SNP per 4,317 base pairs.  Regions comprised of five-SNP 

windows around the top 100 largest effect SNP regions were compared between traits to identify 

the concordance rate between pDMI and the other feed efficiency traits in the analysis. Using 

such a small window size is a highly conservative approach for assessing the concordance rate, 

and the actual concordance rate would likely be higher if larger regions, such as those that 

approximate the range of linkage disequilibrium within the genome, were utilized. The 50 largest 

effect SNP regions were retained for further analysis. The top 50 largest effect SNPs were also 

compared to results found in the CattleQTLdb (release 26; Hu et al., 2013; Hu et al., 2010; Hu 

and Reecy, 2007; Hu et al., 2005) to identify whether the QTL regions identified in this study 

could be validated independently through the scientific literature.  

 

Pathway analysis 
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The top 50 SNP regions with the largest effect for each trait were used for gene 

annotation clustering analyses. The 50 SNP regions with the largest effect were identified and a 

500 Kb window was again formed around each SNP so that each SNP within 250 Kb on either 

side of the primary SNP of interest was included in the list. This list was then imported into 

Ensembl to identify genes within these regions (Cunningham et al., 2015). These lists of genes for 

each trait were then utilized for Functional Annotation Clustering within the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) version 6.7 (Huang et al., 2009a, 

Huang et al., 2009b) to group these SNPs based on their biological function. The use of DAVID 

also allows for the identification of SNPs involved in gene pathways through utilization of the 

KEGG pathway database in an effort to identify pathways that are critical for feed efficiency. 

Because of the range of linkage disequilibrium in the bovine genome (McKay et al. 

2007), 500 kb windows were formed around the top 25 SNPs with the largest effect for each trait. 

Twenty-five SNPs rather than 50 were utilized due to the SNP density and the amount of 

information that can be visualized within a gene network.  All SNPs within these windows and 

their effects for each trait were analyzed with a Partial Correlation and Information Theory 

(PCIT) algorithm (Koesterke et al., 2014; Reverter and Chan, 2008) developed at Iowa State 

University and implemented within the Texas Advanced Computing Center (TACC) at the 

University of Texas. The PCIT algorithm utilizes the SNP effect information and calculates direct 

and partial correlations between various SNPs in the model to evaluate their association with one 

another (Watson-Haigh et al., 2010). These partial correlations can then be visualized in the 

Cytoscape software which allows for the visualization of gene networks (Shannon et al., 2003). 

 

 

 

Results and Discussion 

Phenotypic correlations 
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A plot of observed and predicted DMI is presented in Figure 1.  The phenotypic 

correlation found in this study (0.64), as reported in Table 9,  was lower than previous literature 

estimates (0.785; Williams et al. 2006). One possible explanation for the lower correlation is the 

lack of availability of ration information for the pDMI predictions. The phenotypic correlation for 

RFI and DMI was also lower in this study (0.38) compared to previous estimates of 0.602 (Arthur 

et al., 2001b), 0.72 (Arthur et al., 2001a), and 0.70 (Herd and Bishop, 2000). The correlation 

between RFI and ADG was not different from zero (0.03; P < 0.357) as expected due to the 

properties of the calculation of RFI. The correlations for pDMI with ADG and RFI were 0.57 and 

-0.08, respectively.  

 

Heritabilities 

Heritabilities for each trait are reported in Table 10. The trait with the highest heritability 

was DMI (0.40), which is intermediate to previous literature estimates (0.27 to 0.64; Robinson 

and Oddy, 2004; Koch et al., 1963). Literature estimates of the heritability for RFI range from 

0.16 to 0.68 (Herd and Bishop, 2000; Mao et al., 2013), which is also consistent with our 

heritability estimate of 0.38. However, the heritability estimate for ADG in this study (0.20) was 

lower than previous literature estimates which ranged from 0.28 to 0.59 (Mujibi et al., 2011; 

Nkrumah et al., 2007b), possibly because intense selection has been placed on gain. The 

heritability estimate for pDMI in this study was 0.23 which is slightly lower than the only other 

literature estimate of pDMI (0.32; Williams et al., 2006).  

 

Direct Genomic Values 

DGV correlations for all traits are provided in Table 10 and were 0.22, 0.13, 0.32 and 

0.28 for ADG, pDMI, DMI, and RFI, respectively. The range of correlations and accuracies for 

each training and validation analysis can be seen in Table 8. The analyses on pDMI brought the 

range down and increased the variation because it is a prediction and so it was not as accurate as 
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the actual observations. The correlations for ADG and RFI were lower than previous literature 

estimates (0.414 and 0.402, respectively; Mujibi et al., 2011) while DMI was higher than 

previous estimates (0.27; Mujibi et al., 2011). A possible explanation as to why ADG and RFI 

correlations were lower than previous estimates could be due to a difference in breed since the 

study by Mujibi et al. (2011) used crossbred animals with only a subset of the animals having a 

proportion of Hereford lineage. The calculated DGV realized accuracies for ADG, pDMI, DMI, 

and RFI were 0.49, 0.27, 0.51, and 0.46, respectively. These accuracies, provided in Table 10, are 

moderate to high given the sample size compared with other studies (Rolf et al., 2010; Pryce et 

al., 2012) although pDMI did exhibit the lowest accuracy. This study utilized different breeds 

compared to studies by Rolf et al. (2010), which used Angus, and Pryce et al. (2012), which used 

Holstein. In addition, the sample size for this study was smaller which is important because the 

variation in the phenotype would not be as noticeable in the results of a large sample size since all 

of the other records average out the outliers. 

 

Association Analyses 

 Manhattan plots for each of the phenotypes are provided in Figures 2, 3, 4, and 5 for 

ADG, DMI, pDMI, and RFI, respectively. Overall, the SNP effects for ADG were universally 

small and tended to follow the infinitesimal model. Plots for pDMI followed this same trend, but 

RFI and DMI had SNPs that had similar effect sizes, and the largest effect SNPs were not 

substantially larger than other SNPs, unlike in pDMI and ADG. The correlations between the 

SNP effects between traits were calculated and can be seen in Table 11. The correlation was 

highest for ADG and pDMI with a correlation of 0.7583, which is not surprising since ADG is 

used to calculate the value for pDMI. The correlations were lowest between ADG with RFI and 

pDMI with RFI, which had correlations of 0.054 and 0.0623, respectively. These correlations 

indicate there were different regions of the genome that were responsible for the phenotypes. The 
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low correlation between ADG and RFI is what would be expected since RFI is independent of 

gain. 

The QTLs validated for the top 50 largest effect SNP regions for each trait are reported in 

Table 12. For ADG, two QTLs could be validated from a study that included 698 Angus cattle 

(Rolf et al., 2012). One of these QTLs was found within a 2 Mb region of chromosome 10 

(27,034,490 to 29,073,969 bp). Within this region there are coding regions for the olfactory 

receptor gene, lysophosphatidylcholine acyltransferase 4 (LPCAT4), ribonucleoprotein homolog 

(NOP10). According to Ensembl, the NOP10 gene has been associated with liver and gut 

development in zebrafish. The top 50 SNP effect regions for pDMI had two SNP regions that 

matched with previous QTLs detailed in the Cattle QTLdb (Nkrumah et al., 2007b; Veerkamp et 

al., 2012). One of the QTLs was on chromosome 15 at 14,318,486 to 14,440,400 bp and was 

identified by Nkrumah et al. (2007b), but there were no genes found to be associated with this 

region. A region on chromosome 3 at location 85,304,450 to 86,538,180 bp in Holstein cattle was 

also validated in our study (Veerkamp et al. 2012). In addition, QTLs for DMI were validated in 

this study. The QTL that was found for DMI was the same QTL that was found for pDMI, as was 

previously mentioned, on chromosome 15 (Nkrumah et al., 2007b). The QTLs for DMI which 

were validated in the literature include regions on chromosomes 2 and 22 (Martinez et al., 2010; 

Lu et al., 2013). A study by Sherman et al. (2009) identified two QTL for RFI on chromosome 3 

at 68,923,918 to 69,125,116 bp in crossbred beef cattle that were also identified in this study. In 

addition, two different QTLs in this study matched with QTLs identified for RFI in a study by 

Nkrumah et al. (2007b) located on chromosomes 8 and 19. Furthermore, two associations were 

discovered by Lu et al. (2013) who identified the same area of the genome as in this study for RFI 

on chromosome 22 at chromosome position 51,303,323 to 51,388,333 bp. Besides the genes 

identified for QTL regions for ADG, no other QTL regions were found to have genes associated 

with these genome regions. 
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Concordance between Genomic Regions 

 Concordance rates between the top 100 QTL regions for all feed efficiency traits are 

reported in Table 13. The concordance rates between the traits are important because two traits 

that exhibit a large genetic correlation should share a large number of QTL regions. The largest 

effect SNP for ADG can be seen in Figure 2 as a peak on chromosome 8 at 764,159 bp with an 

effect size of 0.000333. This same peak is also identified for pDMI, as can be seen in Figure 4. 

Closer inspection of these specific regions, as seen in Figures 6 and 7, reveals that the SNPs in the 

peaks are the same between the two traits. The SNPs denoted with a circle identify SNPs within 

the same SNP window on chromosome 8 for both traits. The same SNPs are identified in Figures 

8 and 9 for DMI and RFI, respectively. Another large-effect SNP region for ADG was on 

chromosome 7 centered at a genomic position of 93,206,020 bp with an effect size of 0.000213, 

as seen represented by a triangle in Figure 6 and for other traits in Figures 7, 8, and 9 for pDMI, 

DMI, and RFI, respectively. Overall, this SNP region also seems to have a large effect among all 

of the traits that were tested with the lowest effect listed for this SNP being 0.00006 for RFI. This 

also happens to be the largest effect SNP for pDMI with an effect size of 0.00206, as seen in 

Figure 4. The largest effect SNP region for RFI was on chromosome 13 centered at a genomic 

position of 27,686,629 with an effect size of 0.000158, although it was not in the top 100 SNP 

regions for any other trait. The largest effect SNP for DMI (Figure 3) was on chromosome 3 

centralized at a genome position of 70,094,743. This SNP region also has a large effect for pDMI 

which can be seen in Figures 10 and 11 (denoted by a triangle). Another large effect SNP that 

was common between DMI and pDMI was located on chromosome 3 (Figures 10 and 11; 

designated by a circle).  

  The concordance rate was highest between pDMI and ADG, likely because the CVDS 

model is largely driven by weight gain. The lowest concordance rate was between ADG and RFI 

(2%), which is expected because the calculation for RFI forces the trait to be phenotypically 

independent of gain. The concordance rates for RFI with pDMI and DMI were 6% and 15%, 
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respectively. Sixteen regions were in common between ADG, pDMI, and DMI, indicating that 

some of the variation in these traits is shared. Residual feed intake has the lowest concordance 

rate when compared with all of the other feed efficiency traits. In addition, the concordance rates 

for DMI compared to ADG and pDMI was 19% and 26%, respectively. While the concordance 

rate for DMI and pDMI was not as high as the genetic correlations suggested, the approach 

utilized was very conservative. Compared to the concordance between all of the traits in this 

study, pDMI and DMI do show considerable overlap, which indicates that it’s utility as an 

indicator trait should be explored further. Seven of the regions in common between pDMI and 

DMI are not shared with ADG, which indicates that although pDMI does exhibit significant 

overlap with ADG, it also identifies some regions that are independent of gain. Because of this, it 

is possible that pDMI could be utilized in selection decisions, provided that the component traits 

are well understood and efforts to mitigate increases in mature size were in place to prevent 

increases in maintenance costs within the herd. 

   

Gene network Analyses 

 The 25 largest-effect SNP regions for each trait and all the SNPs within 250,000 base 

pairs on either side of that SNP were analyzed through PCIT and the results were viewed in 

Cytoscape (Figure 12). The cluster was very large with 206,583 edges (correlations) and 8,024 

nodes (SNPs). The clustering coefficient for the network was 0.450 and the average number of 

neighbors, which is the number of correlations a SNP has to other SNPs, was 51.49. The network 

density (0.006), was very close to 0 which indicates that most of the nodes were isolated and did 

not group strongly with each other, although no nodes were completely isolated. This data 

suggests that many of the nodes are associated with one another, due to a high average number of 

neighbors, but few nodes are densely clustered together. 

Annotation clusters obtained from DAVID were considered significant with an 

enrichment score of 1.3, and were considered suggestive if the enrichment score was 1. Enriched 
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clusters are summarized in Table 14.  The majority of genes in the enriched cluster associated 

with pDMI were a type of Rho guanine nucleotide exchange factor (ARHGEF). None of the 

genes had phenotypes identified in cattle, but the International Mouse Phenotyping Consortium 

(Brown and Moore, 2012) discovered ARHGEF4 has a link to decreased body weight in mice. In 

addition, ARHGEF11 has been associated with insulin resistance in humans (Ma et al., 2007). 

The other significant gene cluster was related to RFI and it had an enrichment score of 1.56. 

Some of the genes that were included in this cluster were insulin, insulin-like growth factor-2, 

gastric inhibitory peptide, cathepsin D, and TIMP metallopeptidase inhibitor-2. It is known that 

insulin is important in the absorption of glucose and improper absorption of glucose can lead to 

obesity in humans (Guilherme et al., 2008). In addition, the gastric inhibitory peptide (GIP) and 

TIMP metallopeptidase inhibitor-2 (TIMP2) genes in this cluster have also been linked to 

diabetes and obesity in mice and humans (Miyawaki et al., 2002; Jaworski et al., 2011). Another 

cluster that fell just short of the suggestive threshold (enrichment score of 0.99) was related to 

ADG and also included ARHGEF11. A cluster related to DMI had an enrichment score of only 

0.77, but it was worth looking into because it contained the suppressor of cytokine signaling-3 

gene (SOC3) which has been associated with leptin sensitivity in humans and mice, which can 

lead to obesity if the gene is not functioning properly (Howard et al., 2004). While the link 

between these genes and weight gain in cattle has not been directly identified, the function of 

these orthologous genes in other species provides evidence of their likely importance for feed 

efficiency and its component traits in beef cattle. 

 In addition to gene clustering, DAVID also allowed for the identification of genes that 

were involved in important pathways within the KEGG database. Overall, the pathways that were 

identified were not enriched and are not likely to have a critical part in a biological pathway that 

would have a direct impact on any of the phenotypes. An enriched KEGG pathway is one that has 

a P-value less than 0.05. For example, a pathway that was identified for ADG was the regulation 

of the actin cytoskeleton. The genes fibroblast growth factor-23 and fibroblast growth factor-6 
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were identified in the actin cytoskeleton pathway which was suggestive of being enriched (P < 

0.075) and can be denoted by the red stars in Figure 13. In addition, a pathway identified for 

pDMI was related to O-glycan biosynthesis which has been shown to be important in immune 

function and lipid metabolism (Tian et al., 2009; Figure 14). The other phenotype that had a 

connection to a KEGG pathway was DMI which is linked to ubiquitin mediated proteolysis. 

Ubiquitins are critical in a variety of functions, including targeting proteins responsible for 

growth modulation (Ciechanover et al., 2000). The genes that are associated with this pathway 

are represented by red stars in Figure 15. 

 

 

Conclusion 

Realized accuracies for feed efficiency traits (ADG, RFI, pDMI, and DMI) ranged from 0.27 

to 0.51. The GWAS analysis also identified regions of the genome important for predicting 

genetic merit in these traits, and identified biological pathways in which these genes are involved.  

Concordance rates for regions of the genome that are important in the prediction of pDMI were 

moderate, and they were lower than the genetic correlations between pDMI and DMI would have 

suggested.  Concordance between pDMI and ADG were especially high, likely due to the fact 

that ADG is one of the main drivers of the CVDS model.  It is possible that pDMI phenotypes 

could be utilized to enhance DMI information for genetic evaluation, provided that care is taken 

to ensure that selection emphasis is placed on DMI-related variation rather than gain to prevent 

unwanted increases in mature size. 
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Supplementary Materials 

 

 

Figure 1- Phenotype plot for DMI vs pDMI data with an R² value (coefficient of determination) 

and a line of best fit 

R² = 0.3889
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Figure 6- Selected concordance region (chromosomes 7 and 8) for ADG SNP Effects 
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Figure 7- Selected concordance region (chromosomes 7 and 8) for pDMI SNP Effects 
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Figure 8- Selected concordance region (chromosomes 7 and 8) for DMI SNP Effects 
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Figure 9- Selected concordance region (chromosomes 7 and 8) for RFI SNP Effects 
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Figure 10- Selected concordance region (centered on chromosome 3) for DMI SNP Effects 
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Figure 11- Selected concordance region (centered on chromosome 3) for pDMI SNP Effects 
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Figure 14. KEGG pathway for mucin type O-glycan biosynthesis from clustering analysis for 

predicted dry matter intake. Red stars indicate the genes in our study that were identified in 

this pathway. 
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Figure 15. KEGG pathway for ubiquitin mediated proteolysis from clustering analysis for dry 

matter intake. Red stars indicate the genes in our study that were identified in this pathway. 
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Table 3- Literature estimates of phenotypic and genetic correlations* for dry matter intake (DMI), 

predicted dry matter intake (pDMI), average daily gain (ADG), and residual feed intake (RFI) 

Trait DMI pDMI ADG RFI 

DMI 1.0 0.7851 0.472 0.6022 

pDMI 0.95 ± 0.071 1.0 0.901 -- 

ADG 0.39 ± 0.082 0.90 ± 0.061 1.0 0.01(ns)2 

RFI 0.79±0.042 -- -0.10±0.132 1.0 

 *Phenotypic correlations are above the diagonal, genotypic correlations are below the 

diagonal.  
1Williams et al., 2006. 2Arthur et al., 2001. (ns = not significant) 
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Table 4- Growth phenotypes collected and number of records, minimum, maximum, mean, and 

standard deviation for Hereford cattle* 

Phenotype BW WW YW DMI ADG MMWT RFI 

Number 

of 

Records 

820 824 844 846 849 849 846 

Minimum 27 107 203 6.54 0.51 57 -3.73 

Maximum 51 280 745 16.53 3.06 140 3.50 

Mean 38.1 189.6 342.6 12.41 2.11 106.6 0.26 

Standard 

Deviation 
3.98 27.36 73.5 1.42 0.30 15.44 1.00 

*BW- birth weight; WW- weaning weight; YW- yearling weight; DMI- dry matter intake; 

ADG- average daily gain; MMWT- metabolic mid-weight; RFI- residual feed intake 
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Table 5- Carcass phenotypes collected and number of records, minimum, maximum, mean, and 

standard deviation for Hereford cattle* 

Phenotype HCW MARB REA BFAT YG 

Number of 

Records 
849 849 840 836 775 

Minimum 238 410 48.4 0 1.85 

Maximum 498 870 109.4 3 5.81 

Mean 407.1 562.4 85.8 1.51 3.72 

Standard 

Deviation 
36.00 75.24 8.51 0.45 0.64 

*HCW- hot carcass weight; MARB- marbling score; REA- rib eye area; BFAT- backfat 

thickness; YG- yield grade 
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Table 6- Previous literature estimates of residual (σ²e) and genetic (σ²a) variance components and 

the average of each used in the BayesC95 analysis for Hereford cattle* 

Phenotype Source 1 Source 2 Source 3 Average 

ADG (kg/d) 

σ²e= 0.0195 

σ²a= 0.0076 

Arthur et al. 

(2001a) 

σ²e= 0.013 

σ²a=0.008 

Herd et al. 

(2000) 

σ²e=0.0115 

σ²a= 0.008 

Arthur et al. 

(2001b) 

σ²e= 0.015 

σ²a= 0.008 

DMI (kg) 

σ²e= 1.117 

σ²a= 0.843 

Nkrumah et al. 

(2007) 

σ²e= 1.191 

σ²a= 1.399 

Herd et al. 

(2000) 

σ²e= 1.71 

σ²a= 0.64 

Robinson & 

Oddy (2004) 

σ²e= 1.34 

σ²a= 0.96 

RFI (kg/d) 

σ²e= 0.628 

σ²a= 0.139 

Robinson & 

Oddy (2004) 

σ²e= 0.608 

σ²a= 0.162 

Nkrumah et al. 

(2007) 

σ²e= 0.363 

σ²a= 0.274 

Arthur et al. 

(2001b) 

σ²e= 0.533 

σ²a= 0.19 

pDMI (kg) 

σ²e= 1.117 

σ²a= 0.843 

Nkrumah et al. 

(2007) 

σ²e= 1.191  

σ²a= 1.399 

Herd et al. 

(2000) 

σ²e= 1.71 

σ²a= 0 

Robinson & 

Oddy (2004) 

σ²e= 1.34  

σ²a= 0.96 

*DMI- dry matter intake; ADG- average daily gain; MMWT- metabolic mid-weight; 

RFI- residual feed intake 
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Table 7- Structure for analyses using randomized training and validation populations 

with range of DGV realized accuracies and correlations from GenSel GWAS analysis 

Analysis # Randomly Assigned  Populations Accuracy 

1 Validation Training Training Training Training 0.31-0.50 

2 Training Validation Training Training Training 0.35-0.63 

3 Training Training Validation Training Training 0.33-0.51 

4 Training Training Training Validation Training 0.10-0.56 

5 Training Training Training Training Validation 0.28-0.72 

Correlation 0.15-0.32 0.17-0.39 0.16-0.26 0.05-0.35 0.13-0.45  
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Table 8- Residual (σ²e) and genetic (σ²a) variance starting values for BayesB0 

GWAS analysis in GenSel* 

Trait σ²e σ²a 

ADG (kg/d) 0.0522 0.0126 

DMI (kg) 0.960 0.643 

RFI (kg/d) 0.43 0.26 

pDMI (kg) 1.96 0.572 

*DMI- dry matter intake; ADG- average daily gain; MMWT- metabolic mid-weight; RFI- 

residual feed intake 
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Table 9- Phenotypic correlations for dry matter intake (DMI), predicted dry matter intake 

(pDMI), average daily gain (ADG), and residual feed intake (RFI) in Hereford cattle  

 pDMI DMI ADG RFI 

pDMI n=832* 0.64a 0.57a -0.08b 

DMI -- n=846* 0.49a 0.38a 

ADG -- -- n=849* 0.03ns 

RFI -- -- -- N=846* 
aP<.001   bP<.05   ns=not significant 

*Number of animals in each analysis. 
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Table 10- Heritabilities, correlations and accuracies, and final residual (σ²e) and genetic (σ²a) 

variance values from BayesB0 analysis for the feed efficiency phenotypes from GWAS analysis 

in GenSel* 

 ADG pDMI DMI RFI 

Heritability 0.20 0.23 0.40 0.38 

Average Correlation 0.22 0.13 0.32 0.28 

Average Accuracy 0.49 0.27 0.51 0.46 

σ²e 0.052 1.95 0.947 0.435 

σ²a 0.136 0.610 0.657 0.249 

*DMI- dry matter intake; ADG- average daily gain; MMWT- metabolic mid-weight; RFI- 

residual feed intake 
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Table 11- Correlations* of SNP effects between dry matter intake (DMI), predicted dry matter 

intake (pDMI), average daily gain (ADG), and residual feed intake (RFI) from ultra-high-density 

SNP data used in GWAS analysis 

 ADG pDMI DMI RFI 

ADG 1.0 0.7583 0.3363 0.0540 

pDMI <0.0001 1.0 0.4177 0.0623 

DMI <0.0001 <0.0001 1.0 0.4632 

RFI <0.0001 <0.0001 <0.0001 1.0 

*Correlations are above the diagonal, P-values for the correlations are below the diagonal 
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Table 12- Comparison of QTL results from this study to previously published studies for dry 

matter intake (DMI), predicted dry matter intake (pDMI), average daily gain (ADG), and residual 

feed intake (RFI) 

Trait QTL ID Chr Position 

(Mbp) 

Association 

or Linkage 

Validation Source 

ADG 

20941-

20944 

10 27.0-29.1 Association Rolf et al. (2012) 

20981 10 27.0-29.1 Association Rolf et al. (2012) 

pDMI 
22646 3 85.3-86.5 Association Veerkamp et al. (2012) 

4368 15 14.3-14.4 Linkage Nkrumah et al. (2007) 

DMI 
11872 2 3.6-3.9 Association Martinez et al. (2010) 

4368 15 14.3-14.4 Linkage Nkrumah et al. (2007) 

RFI 

5322-

5333 

3 68.9-69.1 Linkage Sherman et al. (2009) 

4355-

4356 

8 40.1-40.3 Linkage Nkrumah et al. (2007) 

4453 19 41.3-41.4 Linkage Nkrumah et al. (2007) 

23912 22 51.3-51.4 Association Lu et al. (2013) 

23913 22 51.3-51.4 Association Lu et al. (2013) 
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Table 13- Concordance rates* of genome regions between dry matter intake (DMI), predicted dry 

matter intake (pDMI), average daily gain (ADG), and residual feed intake (RFI) from ultra-high-

density SNP data used in GWAS analysis 

 ADG pDMI DMI RFI 

ADG 1 50% 19% 2% 

pDMI -- 1 26% 6% 

DMI -- -- 1 15% 

RFI -- -- -- 1 

*Percentage of concordant regions out of 100 regions total 
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CHAPTER III 
 

 

GENOME-WIDE ASSOCIATION ANALYSIS OF CARCASS TRAITS IN HEREFORD 

CATTLE USING ULTRA-HIGH DENSITY SNP DATA 

Abstract 

 While ultrasound technology is useful for genetic evaluation of carcass traits, genomic 

technologies promise another avenue for genetic improvement. The objective of this study was to 

use ultra-high density single nucleotide polymorphism (SNP) data to develop direct genomic 

values (DGV) for carcass traits and identify genomic regions critical for predicting carcass merit 

in beef cattle. Carcass data was collected on a population of Hereford cattle (n=849) and animals 

were genotyped on the Illumina BovineHD Beadchip, which assays 770,000 SNPs within the 

genome. The DGVs were estimated and a genome-wide association study (GWAS) was 

performed using GenSel to identify regions of the genome important for prediction of genetic 

merit in carcass quality. The largest effect SNPs were examined to identify genes and biological 

pathways associated with carcass merit. The DGV realized accuracies for the carcass traits varied 

from 0.47 to 0.60 with heritabilities ranging from 0.44 to 0.72. A total of five QTL regions were 

independently validated within the literature. Many genes were identified within these regions 

that could be looked at further for possibly being included as candidate genes for some of the 

carcass phenotypes. 
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Introduction 

 Carcass traits play an important role in the breeding objectives of cattle producers and 

contribute to the consumer beef eating experience. The gold standard for genetic evaluation of 

carcass traits is individual-animal carcass data collected at harvest.  However, ultrasound data can 

function as an indicator trait and thus contribute towards genetic evaluation because collection of 

actual carcass data can often be difficult when producers do not retain ownership of their calves. 

However, ultrasound data can vary from the actual data that is obtained at an abattoir because the 

ultrasound data is typically collected before the animal is fed a finishing diet (Drake, 2004). 

 Carcass traits generally have a moderate to high heritability which makes selection for 

carcass traits very effective. Expected progeny differences (EPD) have been the foundation for 

selection for carcass quality for decades. More recently, incorporation of genomic data has 

provided the opportunity to make even faster progress through the utilization of genomic-

enhanced EPDs. Since carcass traits can only be measured post-mortem, the prediction of genetic 

merit for potential parents is critical for a successful breeding program. Several quantitative trait 

loci (QTL) studies have identified regions of the genome that are critical for carcass quality 

(Stone et al., 1999; Casas et al., 2000; Casas et al., 2001; Casas et al., 2003; Casas et al., 2004; 

Kim et al., 2003; Abe et al., 2008; Gutierrez-Gil et al., 2009; Morris et al., 2009; McClure et al., 

2010; Esmailizadeh et al., 2011; Nalaila et al., 2012; Peters et al., 2012; Lu et al., 2013; Abo-

Ismail et al., 2014).   

 The objective of this study is to utilize ultra-high density single nucleotide polymorphism 

(SNP) data to predict direct genomic values (DGV) on a large population of Hereford steers and 

identify and validate QTL regions for a variety of carcass traits. In addition, these QTL regions 

will be evaluated to identify new candidate genes that are linked to carcass traits and identify 

biological pathways related to the traits of interest. 
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Materials and Methods 

Animals and phenotypic data 

A total of 870 Hereford steers and heifers were fed a feedlot ration between 2009 and 

2011. Our study population is a subset of animals from Saatchi et al. (2014). The animals were 

divided into 8 contemporary groups ranging in size from 31 to 205 animals and were formed 

based on calving season and year, number of days on feed, and sex. The number of days on feed 

was either 70, 71, or 140 days. 

Phenotypic records for a variety of carcass traits were obtained, including hot carcass 

weight (HCW), marbling score (MARB), rib eye area (REA), back fat thickness (BFAT), and 

yield grade (YG).  Summary statistics for phenotypic records are provided in Table 15.  

 

Genotypic data 

All of the animals (n=850) were genotyped using the Illumina Bovine HD BeadChip 

(770K) (Illumina Inc., San Diego, CA; Rincon et al., 2011). One animal was in a contemporary 

group consisting of only themselves so that animal was excluded from further analyses. Filtering 

of the dataset removed any data that was an extreme deviation from Hardy-Weinberg Equilibrium 

(HWE). In addition, the data was filtered for a minor allele frequency (MAF) < 0.01. The dataset 

was also filtered for call rate, marker heterozygosity (HETA) greater than 0.40, and incorrect 

chromosome assignment. Any genotypes that were missing in the dataset were imputed using 

BEAGLE (Browning and Browning, 2009). Upon the completion of data filtering, there were 

648,625 SNPs available for analysis on 849 animals. 

 

Data analysis 

Direct Genomic Value (DGV) Predictions 

The GENSEL application (Fernando and Garrick, 2009) implemented via the iPlant 

Collaborative website (Goff et al., 2011), was employed to derive DGV predictions using a 



Kimberly Branham 

63 

 

Bayesian framework. Because BayesC utilizes only a single common variance for each allele 

substitution effect, a BayesB analysis was used.  While BayesB analyses are useful because of 

their ability to handle large effects SNPs better than a BayesC analysis since a BayesB does not 

regress towards the mean. BayesB are also sensitive to starting values for the variances as noted 

in Rolf et al. (2015). Due to this issue, BayesC analyses where π = 0.95 were run initially to 

estimate variance components that were then used in subsequent BayesB analyses.  A list of 

previous literature estimates of genetic and residual variance components was created and the 

average of these variances were calculated, as seen in Table 16. The average variances were used 

as the starting values for all BayesC analyses. Analyses were run for 60,000 Markov chain Monte 

Carlo (MCMC) iterations with a burn-in of 1,000. 

Since animals were placed into contemporary groups and the mean was not previously 

adjusted before the analysis, the model for the Bayes B0 analysis was: 

�	 = � + 
� +��	��� + �	
�

���
 

where: 

yi= feed efficiency phenotypes for each trait, 

µ= sample mean, 

X= matrix corresponding to fixed effects vector b,  

b= vector of fixed effects for contemporary groups and phenotypic mean, 

k= number of genetic markers in the analysis, 

zij= allelic state (AA=-10, AB=0, BB=10) of animal i at marker j, 

uj= random effect for marker j, and 

ei= residual effect. 

 

The means of the posterior distributions for the genetic and residual variance components 

obtained from the BayesC results, as seen in Table 17, were utilized for BayesB analyses where π 
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= 0. The BayesB analyses were utilized to generate DGVs using a five-fold cross validation. 

Training and validation populations were created to ensure that predictions could be made in a 

training population and the DGV accuracies could be calculated for each animal independently 

from the training group in a validation group. Training and validation populations were formed 

by randomly assigning animals within each contemporary group for each trait into one of five 

groups. This random assignment ensures that each contemporary group is equally represented 

across the populations. If there was not enough animals to evenly fill each contemporary group 

(groups not divisible by five), then these animals were grouped together and re-randomized to 

then be randomly allocated to one of the five groups. 

A classic cross-validation approach was used, whereby four of the groups were used as 

the training population with the fifth group being used as the validation population, as seen in 

Table 18. Correlations were calculated between the DGV and the phenotype, because de-

regressed breeding values were not available for analysis in this population. In addition, the 

realized accuracy for each trait was calculated as 
�ĝ,�
√�� which accounts for the fact that environment 

is included in the phenotype, but not the DGV (Rolf et al., 2015). 

 

Genome-wide association study 

In the process of estimating DGV, useful information regarding the distribution of SNP 

effects in the genome is obtained, which allows one to simultaneously perform a genome-wide 

association analysis. Windows were formed around the top 50 SNP regions by collapsing SNPs 

within the range of linkage disequilibrium (LD; +/250,000 base pairs (bp) of the largest-effect 

SNP within that region) to compare to previous literature estimates using the CattleQTLdb 

(release 26; Hu et al., 2013; Hu et al., 2010; Hu and Reecy, 2007; Hu et al., 2005). The 

CattleQTLdb allows for the comparison of SNP regions in this study to see if they validate QTL 

regions that have been found in other studies.  
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Biological network analysis 

Gene annotation clustering analyses were completed for the top 50 largest-effect SNP 

regions. A 500 Kb window was formed centered around the top 50 SNP. The Ensembl browser 

(release 80; Cunningham et al., 2015) was utilized to obtain gene identifiers for coding regions 

within these windows. The list of resulting genes were  imported into the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID; version 6.7; Huang et al., 2009a; 

Huang et al., 2009b) for Functional Annotation Clustering, groups genes based on their 

involvement in biological pathways. The Functional Annotation Clustering tool makes it possible 

to identify genomic regions from association analyses that are critical in KEGG (Kyoto 

Encyclopedia of Genes and Genomes) biological pathways database.  

 

Results and Discussion 

Heritabilities 

Heritabilities for each carcass trait are provided in Table 19. The trait with the highest 

heritability was MARB (0.72), which is within the bounds of previous literature estimates (0.31 

to 0.74; Cundiff et al., 1971; Mao et al., 2013). The heritability for REA (0.52) agreed with 

previous literature estimates which range from 0.22 to 0.64 (Gregory et al., 1995; Mao et al., 

2013). In addition, literature estimates of the heritability for HCW range from 0.23 to 0.56 

(Gregory et al., 1995; Cundiff et al., 1971), which is consistent with our estimate of 0.47. The 

heritability estimate for YG (0.46) was slightly lower than previous literature estimates (0.58 and 

0.71; Nkrumah et al., 2007b; Riley et al., 2002), but fewer estimates exist for YG within the 

literature. Backfat thickness had the lowest heritability (0.44), but was consistent with previous 

literature estimates (0.17 to 0.63; Mao et al., 2013; Riley et al., 2002). 
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Direct Genomic Values 

 The DGV correlations for all carcass traits are provided in Table 19 and were 0.34, 0.41, 

0.43, 0.34, and 0.35 for BFAT, HCW, MARB, REA, and YG, respectively. The DGV 

correlations for all of the traits in this study were substantially lower than the study by Saatchi et 

al. (2011), with correlations ranging from 0.68 to 0.80 for these same traits. The correlations in 

this study are likely smaller than estimates from Saatchi (2011) because this study had 

substantially fewer animals than the study by Saatchi et al. (2011), which had 3668 animals. 

While these correlations are smaller than previous literature estimates, the carcass correlations are 

higher than feed efficiency correlations that have been reported in a study by Mujibi et al. (2011) 

which consisted of a similar population size (n=728), possibly because carcass traits have higher 

heritabilities than feed efficiency phenotypes. Calculated DGV realized accuracies for BFAT, 

HCW, MARB, REA, and YG were 0.51, 0.60, 0.51, 0.47, and 0.52, respectively, and are reported 

in Table 19. A study by Saatchi et al. (2013b), which also looked at Hereford cattle but had a 

larger population size (n=1081), estimated DGV accuracies that were slightly lower for BFAT, 

MARB, and REA. In addition, another study estimated DGV accuracies that were both higher 

and lower than some of the traits in this study with accuracies for BFAT, HCW, MARB, and 

REA of 0.603, 0.471, 0.690, and 0.60, respectively (Saatchi et al., 2011). Comparing the results 

of this study with Saatchi et al. (2011), BFAT, MARB, and REA were higher in the other study, 

but HCW was higher in our study. The reason the accuracies in Saatchi et al. (2011) were more 

similar to this study compared to our very low correlations compared to their study is due to the 

differences in heritability between the studies, and they used deregressed breeding values instead 

of phenotype values like our study. Differences in correlations and DGV accuracies can be seen 

between our study and other studies based on the number of animals in the population, the 

heritability values, and whether deregressed breeding values were available for the analysis. 
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Association analyses 

 Manhattan plots for each phenotype are provided in Figures 16, 17, 18, 19, and 20 for 

BFAT, HCW, MARB, REA, and YG, respectively. Many of the phenotypes had SNPs with large 

peaks, indicating large effect SNPs. One trait which had a large effect SNP was REA which had 

an effect size of 0.30 that was located on chromosome 7 at 93,172,661 to 93,221,590 bp. There 

were no bovine genes annotated within this region, but according to the UCSC Genome Browser 

there was a human gene (LUCAT1) related to lung cancer and mouse long non-coding RNA 

found in this region. In addition, there were large effect SNPs for REA on chromosome X 

(3,500,270 to 3,520,961 bp) and chromosome 17 (64,626,684 to 64,639,054 bp), but neither of 

these regions had genes within these areas for bovine. The region on chromosome X that was 

identified had no bovine genes identified in this region, but in mice there is a gene in this region 

related to a kinase anchor protein (AKAP17B) which is involved in functions related to cyclic 

compound binding (NCBI BioSystems Database; Geer et al., 2010). In addition, the region on 

chromosome 17 was associated with transforming growth factor beta-1 (TGFB1I1) in mice which 

is related to the regulation of actin cytoskeleton (NCBI BioSystems Database; Geer et al., 2010). 

Since this was a region for REA and the gene has known functions related to tissue development, 

TGFB1I1 is a gene that could possibly explain variation of REA in cattle. A SNP on chromosome 

29 at position 49,350,297 to 49,377,731 bp had an effect of 0.001466 and is within the coding 

region for cyclin-dependent kinase inhibitor 1C (CDKN1C) and solute carrier family 22 

(SLC22A18) in bovine. CDKN1C has functions related to endochondral ossification, or bone 

formation, in bovine. The phenotype with the next highest SNP effect (0.18) was HCW, located 

on chromosome 7 at 93,222,309 to 93,229,001 bp. While there were no genes identified in this 

region, upstream at position 93,240,416 to 93,253,094 bp is the bovine gene arrestin domain 

containing 3 (ARRDC3) which has functions related to metal ion binding. Other large effect 

SNPs for HCW were located on chromosomes 8 (2,937,703 to 2,987,221 bp) and chromosome X 

(133,326,608 to 133,331,145 bp). There were no genes in this region on chromosome 8, but 
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upstream of this region there was a region at 3,816,704 to 5,330,615 bp for the bovine gene 

polypeptide N-acetylgalactosaminyltransferase-like 6 (GALNTL6), which has functions related 

to macromolecule glycosylation (NCBI BioSystems Database; Geer et al., 2010). The previously 

mentioned region on chromosome X has no known associated genes in this region for bovine, but 

the gene NHS for Nance-Horan syndrome, which causes cataracts and dental problems, has been 

found in this region for humans, mice, and rats. One of the highest effect SNPs for BFAT was on 

chromosomes 8 (6475070 to 6488197 bp), which has an association with the centrosomal protein-

44 (CEP44) gene in humans which is responsible for microtubule organization in cells (NCBI 

BioSystems Database; Geer et al., 2010). In addition, another region for BFAT was on 

chromosome 11 (4,511,327 to 4,520,723 bp), and this region has an association to REV1 in 

humans, mice, and rats. According to the NCBI Reference Sequence Database (RefSeq Release 

70; Tatusova et al., 2014), REV1 is a protein that contains a BRCT domain and acts as a recruiter 

for DNA polymerases. A large effect region for BFAT at chromosome 19 (36,610,816 to 

36,621,137 bp) is in a gene coding region for ankyrin repeat domain 40 (ANKRD40) in bovine 

which has functions related to protein binding. In addition, there was also a large effect SNP for 

YG on chromosome 8 (7,437,831 to 7,449,420 bp) which had a gene in this region for farnesyl-

diphosphate farnesyltransferase-1 (FDFT1). This gene codes for a protein which is responsible 

for steroid biosynthesis (NCBI BioSystems Database; Geer et al., 2010). Since steroids play a 

critical role in the body for a variety of different processes, such as bovine growth hormone (GH) 

and its effect on muscle anabolism (Liu et al., 2013), this gene could be a critical gene in the 

variation that is seen in the YG phenotype. For example, a study by  discovered that cattle 

implanted with the steroids trenbolone acetate and estradiol had Lastly, the largest effect SNP for 

MARB was 0.035 on chromosome 11 at position 47,863,101 to 47,899,487 bp. This SNP is in a 

genome region that codes for an uncharacterized protein and lysine-rich coiled-coil 1 (KRCC1), 

which has functions related to the regulation of mitochondrial degradation (NCBI BioSystems 
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Database; Geer et al., 2010), which could be critical to fat content due to the mitochondria’s 

function as an energy supplier for the cell. 

 The top 50 largest-effect 500 Kbp regions were compared to QTLs identified in previous 

studies, which are summarized in Table 20. An association study completed by Kim et al. (2013) 

identified the same QTL as this study for BFAT on chromosome 1. The QTL region that was 

validated had several genes within it, such as U6 spliceosomal RNA (U6), ATP synthase H+ 

transporting, mitochondrial F1 complex (ATP5O), transmembrane protein 50B (TMEM50B), and 

DNAJ HSP40 homolog (DNAJC28). ATP5O has functions related to oxidative phosphorylation 

and in metabolism in general (NCBI BioSystems Database; Geer et al., 2010). Because of 

ATP5O’s functions, this could be a plausible gene for the variation that is seen since metabolism 

is a critical aspect in weight loss and weight gain. The genes U6, TMEM50B, and DNAJC28 

generally have intracellular functions within the cytoplasm (NCBI BioSystems Database; Geer et 

al., 2010), and are not obvious candidates for having direct impact on BFAT. In addition, there 

were multiple regions on chromosome 7 and 8 for HCW that were validated utilizing previous 

studies. These QTL IDs from the database (24625, 24626, 24627, and 10817) are located where 

the previously mentioned large peaks were for HCW on chromosomes 7 and 8, around 93.0 to 

93.9 Mbp and 1.13 to 4.78 Mbp, respectively. There are several genes within the QTL region on 

chromosome 8 including chloride channel 3 (CLCN3), GrpE-like 2, and 

acetylgalactosaminyltransferase-like 6 (GALNTL6). These genes have functions related to 

transmembrane transport, mitochondrial protein import, and biosynthesis of the N-glycan 

precursor, respectively (NCBI BioSystems Database; Geer et al., 2010). In addition, an 

association study completed by Tong et al. (2014) identified a QTL on chromosome 5 for MARB 

that was validated in this study, and a bovine gene for solute carrier family 38 (SLC38A2) is in 

this region. This gene codes for proteins with functions related to endochondral ossification, 

similar to the CDKN1C discussed previously. Lastly, the largest peak on chromosome 7 for REA 

was consistent with QTL identified by Saatchi et al. (2014). Although it is important to note that 
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the study by Saatchi et al. (2014) used the same dataset as this study, and this study was not an 

independent validation. Bovine genes related to microRNA-2464 (MIR2464) and arrestin domain 

containing 3 (ARRDC3) reside within this region of the genome, which has functions related to 

heat generation and biological regulation (NCBI BioSystems Database; Geer et al., 2010). 

 

Biological network analyses 

 Functional annotation clusters obtained from DAVID were considered significant if they 

had an enrichment score of 1.3 and were considered suggestive if the enrichment score was 1.0 

(Huang et al., 2009b). Enriched clusters are summarized in Table 21. One of the significant 

clusters was for YG, with an enrichment score of 1.82. This cluster consisted of genes, such as 

cathepsin B, that are critical to peptidase activity. Another significant cluster for YG had genes 

with links to cation binding and zinc ion binding, which involves the interaction and binding of 

positively charged atoms. The highest scoring cluster was for MARB, which had a score of 3.26 

and contained fibroblast growth factor receptor binding and interleukin-1 receptor antagonist 

activity. The genes that were identified in this cluster for MARB were two different members of 

the interleukin-1 family which is very closely associated to the innate immune response 

(Dinarello, 2009). DAVID also has the ability to identify genes that are in biological pathways on 

the KEGG Pathway Database (Kanehisa and Goto, 2000; Kanehisa et al., 2014). A pathway 

identified for MARB was primary immunodeficiency, seen in Figure 21, and antigen processing 

and presentation, as seen in Figure 22. A pathway is considered enriched if it has a P-value less 

than 0.05, and is suggestive of enrichment if P < 0.10. The pathway for primary 

immunodeficiency was significantly enriched (P < 0.044) while the antigen processing and 

presentation was only suggestive (P < 0.091). The red stars in Figures 21 and 22 indicate genes in 

pathways that were within the top 50 largest effect 500 Kbp regions. Furthermore, there was a 

suggestive cluster with a score of 1.09 for REA that had genes related to ion channel activity and 

ion transport. Ion transport is a function that could be critical to REA because of the importance 
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of calcium transport in muscle tissue. 

 

Conclusion 

 Realized accuracies for a variety of carcass quality traits (BFAT, HCW, MARB, REA, 

and YG) were estimated and ranged from 0.47 to 0.60 and correlations ranged from 0.34 to 0.43. 

A GWAS analysis was also performed and regions of the genome important for predicting 

genetic merit for carcass traits were identified. In addition, this information was used to identify 

biological pathways that are associated with these genome regions and identify candidate genes 

that may harbor causal mutations. Additionally, five QTL regions identified in this study were 

validated utilizing results from the scientific literature. The regions identified in this study should 

be examined further utilizing imputed full sequence data to determine if any harbor causal 

mutations for these phenotypes, which should dramatically increase power of DGV predictions 

for these traits. 
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Table 15- Data for hot carcass weight (HCW), marbling score (MARB), rib eye area (REA), 

backfat thickness (BFAT), and yield grade (YG) collected on Hereford cattle fed for 70, 71, and 

140 days and number of records, minimum, maximum, mean, and standard deviation 

Phenotype HCW MARB REA BFAT YG 

Number of 

Records 
849 849 840 836 775 

Minimum 238 410 48.4 0 1.85 

Maximum 498 870 109.4 3 5.81 

Mean 407.1 562.4 85.8 1.51 3.72 

Standard 

Deviation 
36.00 75.24 8.51 0.45 0.64 
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Table 16- Previous literature estimates of residual (σ²e) and genetic (σ²a) variance components and 

the average of each used in the BayesC95 analysis for the GenSel analysis* 

Phenotype Source 1 Source 2 Source 3 Average 

BFAT 

(mm) 

σ²e= 4.14 

σ²a=3.06 

Robinson & 

Oddy (2004) 

σ²e= 4.09 

σ²a=3.49 

Crews & Kemp 

(2001) 

σ²e=5.98 σ²a= 2.32 

Davis & Simmen 

(2000) 

σ²e=4.73 

σ²a= 2.96 

HCW (kg) 

σ²e= 445 σ²a= 

273 

Crews & Kemp 

(2001) 

σ²e= 538 σ²a= 

253 

Davis & 

Simmen (2000) 

σ²e= 385 σ²a= 385 

Splan et al. (1998) 

σ²e= 456 

σ²a= 304 

 MARB 

σ²e= 1556 σ²a= 

1207 

Riley et al. 

(2002) 

σ²e= 1324 σ²a= 

1755 

Wheeler et al. 

(2001) 

---- 
σ²e= 1440 

σ²a= 1481 

REA 

(cm2) 

σ²e= 23.28 σ²a= 

8.61 

Arthur et al. 

(2001a) 

σ²e= 16.71  σ²a= 

31.58 

Wheeler et al. 

(2001) 

σ²e= 21.43 σ²a= 

16.82 

Riley et al. (2002) 

σ²e= 20.47  

σ²a= 19.00 

YG 

σ²e= 0.144 σ²a= 

0.096 

Davis & 

Simmen (2000) 

σ²e= 0.080 σ²a= 

0.197 

Riley et al. 

(2002) 

σ²e= 0.045 σ²a= 

0.303 

Wheeler et al. 

(2001) 

σ²e= 0.090  

σ²a= 0.199 

*HCW- hot carcass weight; MARB- marbling score; REA- rib eye area; BFAT- backfat 

thickness; YG- yield grade 
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Table 17- Residual (σ²e) and genetic (σ²a) variance starting values for BayesB0 

analysis in the GenSel analysis* 

Trait σ²e σ²a 

BFAT (mm) 0.165 0.078 

HCW (kg) 704 546 

MARB 1030 4228 

REA (cm2) 29.6 30.0 

YG 0.212 0.180 

*HCW- hot carcass weight; MARB- marbling score; REA- rib eye area; BFAT- backfat 

thickness; YG- yield grade 
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Table 18- Structure for analyses using randomized training and validation populations with DGV 

correlation and realized accuracy ranges from the analyses 

Analysis # Randomly Assigned  Populations Accuracy 

1 Validation Training Training Training Training 0.35-0.73 

2 Training Validation Training Training Training 0.33-0.61 

3 Training Training Validation Training Training 0.17-0.64 

4 Training Training Training Validation Training 0.38-0.68 

5 Training Training Training Training Validation 0.54-0.63 

Correlation 0.25-0.50 0.22-0.45 0.12-0.38 0.26-0.45 0.36-0.49  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kimberly Branham 

83 

 

 

Table 19- Heritabilities, correlations and accuracies, and final residual (σ²e) and genetic (σ²a) 

variance values from BayesB0 analysis for hot carcass weight (HCW), marbling score 

(MARB), rib eye area (REA), backfat thickness (BFAT), and yield grade (YG)  

 BFAT HCW MARB REA YG 

Heritability 0.44 0.47 0.72 0.52 0.46 

Average 

Correlation 
0.34 0.41 0.43 0.34 0.35 

Average 

Accuracy 
0.51 0.60 0.51 0.47 0.52 

σ²e 0.0989 666.5 1518.5 29.0 0.213 

σ²a 0.0783 602.7 3820.8 31.0 0.181 
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Table 20- Carcass QTLs externally validated utilizing previously published studies* 

Trait 
QTL ID 

Chr Position 

(Mbp) 

Association or 

Linkage  

Validation Source 

BFAT 1317 1 0.50-1.80 Association Kim et al. (2013) 

HCW 

24625-

24627 

7 93.0-93.9 Association Saatchi et al. (2014)1 

10817 8 1.13-4.78 Linkage McClure et al. (2010) 

MARB 28698 5 34.2-34.4 Association Tong et al. (2014) 

REA 

24699-

24702 

7 93.0-93.9 Association Saatchi et al. (2014)1 

*HCW- hot carcass weight; MARB- marbling score; REA- rib eye area; BFAT- backfat 

thickness; YG- yield grade; Chr- chromosome number 
1 This study used the same dataset as this study, but this study was not an independent 

validation. 
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