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Abstract:  This work attempts to explore an alternative surveillance method through the 

usage of a microphone array.  Most of the current audio based surveillance work focuses 

on the detection of a single sound source.  For any future real world applications it is very 

plausible that multiple sound sources will occur simultaneously at some point in time.  In 

this work a method of detecting and localizing multiple sound sources is presented. Three 

state-of-the-art techniques are given that put together allow the system to estimate the 

approximate location of one or multiple sound sources, separate the sounds, and then 

properly identify the sounds. 
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CHAPTER I  

 

INTRODUCTION 

Surveillance systems at one point in time were considered to be a high tech luxury item, but have 

now become a commonly featured component within a lot of households.  There are many 

reasons that people decide to buy security systems.  Crime and home invasions are generally a 

fear shared by most consumers.  The use of a surveillance system can make the user feel safe, 

making it much easier to sleep at night knowing that no one has entered their home or personal 

space.  Surveillance systems also tend to discourage potential criminals from attempting a 

robbery.  If a robbery or some other crime does occur information the surveillance system 

provides can be used as evidence against the perpetrator.  Other advantages today’s security 

systems provide allow the user to stay informed about their property while they are away.  In 

today’s world security systems can communicate and be controlled through the usage of a smart 

phone letting the user know all their doors are indeed locked or that no one is on inside the 

premises.   

Although there are plenty of different security monitoring techniques out there the use of 

microphone arrays for the purposes of security monitoring can help revolutionize the security 

industry by either giving more options to the user/customer, or by increasing the performance of a 

current security monitoring method.   The use of audio as a surveillance method could either to 

aid a current system in recognizing the surrounding environment or be a stand-alone system.  This 
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work uses audio for surveillance, by mimicking some of the abilities we have as humans to 

determine the locations of different sound sources and identify those sources.   

Improving surveillance applications is becoming increasingly important in both the private and 

public sectors, but it is important to understand that there is no perfect system.  Current 

surveillance applications can feel intrusive to the owner, while other surveillance applications just 

cannot collect enough information about the surrounding environment to truly fit the needs of the 

user.  For example motion detector based systems do not feedback any information about the 

environment, except the fact that there is movement in the vicinity of the detector. [1]  There are 

motion detector systems that can be used in the homes of people who have pets if their pets are 

small, but most of these systems limit the user to one pet.  By having more than one pet or a very 

large pet they can be make themselves susceptible to a higher false alarm rate. This leaves motion 

detector based systems at a disadvantage, at least on their own, for people who have house 

animals, and expect there to be some movement in the home while they are away.  Camera based 

systems can also have their disadvantages. [1]  For example the placement of the cameras can 

possibly leave blind spots that could leave the user more vulnerable. 

Surveillance systems often bring up the issue of privacy.  The use of cameras as a security 

monitoring method might be socially acceptable in some locations, but in places such as a 

bedroom or bathroom cameras might not be considered socially acceptable.  In [1] the issue of 

privacy and what is considered a socially acceptable security monitoring method inside a 

bedroom or bathroom is discussed.  In this work they opt to use microphones instead of cameras 

or motion detectors in order to monitor the activities of daily living for the elderly.  Motion 

sensors could only acquire a limited range of information pertained to movement within the 

room, and cameras are considered socially unacceptable in the given environment.  This shows 

that in order to appeal to the general community multiple security monitoring methods are 
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necessary, and that microphone array based security monitoring does have its place in today’s 

security market.     

Microphone arrays could be used in order to sound an alarm if a burglar is present, or ignore 

sounds that naturally occur in the surrounding environment.  This feature is useful since most 

users would want to set up their system in an environment where a very diverse range of sounds 

could naturally occur.  For instance if the system were to be set up inside of a home the user may 

have a pet, and it would be undesirable for the system to sound an alarm because of sounds the 

pet made.  There also might be a fan or an A/C unit that is loud enough to trigger the microphone 

array.  In most cases these types of sounds should not trigger the alarm, and need to be 

categorized as a naturally occurring sound. 

A security monitoring method that utilizes microphone arrays is proposed in [2] that can detect, 

and identify a single sound source.  The method proposed in [2] divides an audio segment into 

frames, and estimates the pitch within each frame in order to determine if that frame is speech or 

non-speech.  In the case that a frame is considered non-speech, further classification uses a time 

delay neural network as a classifier. 

This thesis will cover the usage of three different state-of-the-art techniques that are used to make 

up this security monitoring system.  The first technique is a localization algorithm that allows the 

system to determine a direction of arrival of a specific sound source or of multiple sound sources.  

The next technique utilizes the Frost Beamforming algorithm which allows the system to extract 

the sound from a specific sound source in the presence of other interfering sound sources.  The 

final technique covered will be an audio recognition algorithm used to classify the sound sources 

in the presence of the microphone array.  Each chapter will have sections covering these three 

topics.  Chapter 2 will consist of a review of the principles of microphone array based security 

monitoring.  Chapter 3 will contain the methodology used to complete the system, and Chapters 4 

and 5 will consist of the results and conclusion respectively. 
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1.1 Sound Source Localization 

In this work a uniform circular microphone array is used in order to perform sound source 

localization.  In [3] the multiple sound source localization problem is solved by performing a 

single source localization technique on selected received time frequency (TF) points.  The TF 

points are selected based off a power ratio based selection process that determines the 

active/inactive points within the received signal at each microphone.  In a reverberant 

environment this allows for the selection of TF points that are more likely related only to the 

direct path between the microphone array and the sound source. 

1.2 Beamforming 

Beamforming is a spatial filtering technique that in this case is used to control the directionality 

of the received signal at the microphone array.  This is a useful tool since it allows for the 

reception of a single sound source in a given look direction, while reducing the signal power from 

interfering sound sources.  In this work the frost beamformer is used due to its ability to reduce 

the power from interfering sound sources by continuously learning the statistics of the noise 

arriving from directions other than the assigned look direction.  Frost’s Beamformer is made up 

of an array containing M sensors, and J filter taps per sensor.  Each filter tap has a weight that is 

updated using the Constrained Least Mean Square Algorithm, in order to minimize the power of 

the output signal while satisfying a constraint. 

1.3 Audio Recognition 

In order to perform the audio recognition it is important to look into the extraction of different 

audio features in order to keep the feature vector size as small as possible, while still maintaining 

a highly precise algorithm.  In this work we explore the extraction of Mel-Frequency Cepstral 

Coefficients, Zero Crossing Rates, Spectral Flatness, and Short Time Energy as features.  A 

Gaussian Mixture Model (GMM) is used as a classifier for its unique ability to form sharp 

approximations to arbitrary distributions. 
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CHAPTER II  

 

PRINCIPLES OF AUDIO BASED SECURITY MONITORING 

2.1 Audio Surveillance 

This work attempts to cover the use of audio as a viable surveillance method.  Surveillance 

systems of all types attempt to give the user peace of mind, allowing them extra protection 

against burglars, and unwanted intrusions.  The use of audio as a surveillance method is not a new 

topic.  In [4] microphones are placed throughout a room and a subspace based signal 

enhancement method is used by applying the Karhunen-Loeve transform (KLT).  Audio 

recognition is later performed by extracting Independent Component Analysis (ICA) transformed 

Mel-Frequency Cepstral Coefficients (MFCCs), while using the Hidden Markov Model (HMM) 

as a classifier.  The complication this method presents is that practically multiple sound sources 

can be present at the same time.  There can also be sounds that are considered acceptable from 

specific locations that might not be acceptable coming from another location.  A more detailed 

audio surveillance method needs to be explored that can determine the locations of multiple 

sound sources, and classify them. 

Another audio surveillance method proposed in [2] attempts to solve the localization problem 

along with the classification problem.  A sound source in [2] is localized, and a technique called

beamforming is used in order to enhance the audio signal from the sound source.  The sound 

source is then classified using a Time Delay Neural Network (TDNN), along with Mel-Frequency 

Cepstral Coefficients (MFCCs) Power Spectrum (PS), and the Magnitude Distribution (MD) as 



6 

 

extracted features.  The work outlined in [2] can handle a single sound source, but another 

method still needs to be proposed for handling multiple sound sources. 

2.2 Audio Recognition 

The primary focus of an audio based surveillance system is the ability to properly identify 

different sounds.  This is generally done through the use of some audio recognition algorithm.  

Some of these algorithms are more tailored for speech applications, while others are more tailored 

to handle non-speech sounds.  This work primarily focuses on recognizing and identifying non-

speech sounds.  In order to recognize an acoustic signal certain features from that signal first need 

to be extracted.  A number of features considered in the literature can be categorized as Temporal 

Features, Perceptual Features, Energy Features, or Spectral Features. [5]  A list of the different 

types of features are shown below.  The extracted features are generally used to make up a 

Gaussian Mixture Model (GMM).  The GMM is then used as a classifier for its unique abilities to 

form sharp approximations to arbitrarily shaped densities.   

 Temporal Features:  Zero-Crossing Rate (ZCR) 

 Perceptual Features:  Mel-Frequency Cepstral Coefficients (MFCCs) 

 Energy Features:  Short Time Energy (STE) 

 Spectral Features:  Spectral Flatness Measure (SFM) 

Temporal Features such as ZCRs have been utilized for both speech and audio recognition.  The 

work performed in [6] attempts to use ZCRs and STEs as a feature for determining voice and 

unvoiced portions of a signal.  If the ZCR is high and the STE is low for a given audio frame, it is 

determined that the frame contains an unvoiced portion of the signal, while if the ZCR is low and 

the STE is high, it is considered a voiced portion of the signal.  Using ZCRs and STE to 

determine a voiced/unvoiced portion of an audio signal based off a threshold is useful if speech is 

the known incoming audio signal.  This could decrease the amount of processing for speech 
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recognition.  However, as a way of detecting speech versus other sounds this method is not 

sufficient. 

In [7] an interesting approach is used in order to explore the use of an audio based surveillance 

system for both scream and gunshot detection.  The work performed in [7] describes a system that 

has the ability to automatically detect audio events in a public place such as screams or gunshots.  

The system utilized the GMM as a classifier, and the classifier was trained using ZCRs, spectral 

moments, spectral flatness, MFCCs, spectral slope, spectral decrease, spectral roll-off, and 

correlation based features.  The precision and the false rejection rate are used in order to optimize 

the size of the final feature vector.  The problem with this method is that the results show the 

optimum feature set being quite large which can increase the computational cost, making it 

unsuitable for as a real time system.   

2.3 Audio Localization 

Although audio recognition for most is probably considered the most important aspect of an audio 

based surveillance system, having the ability to determine the locations of a single or multiple 

sound sources can be equally important.  In order to do this a microphone array is required.  In [7] 

a localization algorithm is presented that utilizes a T-shaped array composed of 4 microphones, 

where the center microphone is considered the reference sensor.  The Generalized Cross 

Correlation (GCC) method is used for estimating the time delays between the reference 

microphone and other microphones.  The minimization of the spherical error function [8] is used 

in order to estimate the source location.  This makes this localization algorithm different from 

most since it does not require the far field hypothesis.   

The objective of this work is to eventually be able to place the microphone array based security 

system inside of a reflective/reverberant environment.  In many outdoor situations reflections are 

not really an issue but inside of an indoor environment there can be multiple paths the signal can 

take, that can cause false DOA estimates.  The two localization algorithms outlined in [9], and [3] 
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have been tested inside of a reflective/reverberant environment.  Both [9] and [3] have introduced 

modern methods used for calculating Direction of Arrivals (DOA) from one or multiple sound 

sources to a circular microphone array.  These techniques for sound source localization both 

assume the far field model, and both search for TF points where there is one dominant source. 

Those TF points along with the single sound source localization algorithm outlined in [10] are 

used to estimate a DOA.  The main difference between these two methods come from how they 

select the proper TF points to be used for DOA estimation.   

In [9], single source TF zones are calculated through a correlation coefficient method, and the TF 

points with the largest power are selected for DOA estimation.  The problem with this method is 

that it is hard to assume the sparseness of the received signals in the TF domain inside of a 

reverberant environment.  TF points from the direct path can be highly correlated with TF points 

coming from a reflected path leading to the selection of bad TF points.  In [3] it is assumed that 

the direct path from a sound source to the microphone array is the shortest path.  This leads to the 

detection of the active/inactive portions of the incoming signals for DOA estimation.  In [3], the 

active/inactive portions of the incoming signals are determined from the power ratio between 

adjacent TF points in time.  The inactive portions of the incoming signal should have a lower 

power while the active portions should have a larger power.  The idea is that boundary points are 

more likely to be sparse TF points. 

2.4 Beamforming Based Audio Separation 

Most environments that the microphone array could be placed in would be considered noisy 

environments where the desired signal is distorted by one or many competing interfering signals.  

To handle this issue there is a need to properly separate source signals from interfering signals 

before performing audio recognition.  Beamforming is a type of spatial filtering, which filters out 

interfering signals, and focuses on signals coming from a specific look direction.  In [11] it is 

shown that most beamformers can be categorized as either a deterministic beamformer, or a 
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statistically optimum beamformer.  The deterministic beamformer does not depend on the 

incoming microphone signal, and has a set desired response.  The statistically optimum 

beamformer is designed based on the properties of the incoming signal or interfering signals.  

This category of beamformer usually optimizes some function that makes the beamformer 

optimum for a specific purpose. 

The simplest type of beamformer is the Delay and Sum beamformer.  This beamformer fits into 

the deterministic class of beamformer.  Figure 1 shows a Delay and Sum Beamformer with M 

microphones/sensors, each having a stage.  Each signal is delayed based off of the time difference 

between each microphone and reference at a specified look angle.  The goal is that the portion of 

the signal that comes from the specified look angle will add up constructively while the noise and 

interference will not. 

T1
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T3 1/M

x1

x2

xM
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^ s

θs

 

Figure 1: Delay and Sum Beamformer 

There are some issues with this method.  The Delay and Sum Beamformer does not perform well 

in a reverberant environment, and does not perform well in the presence of interfering sound 
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sources.  This method works best if there is a single sound source and the goal is to increase the 

signal to interference ratio of the received signal from a specific look angle, and just decrease the 

noise power.  Other methods must be explored in order to handle the presence of interfering 

sound sources. 

The Frost Beamformer outlined in [12] falls into the category of a statistically optimum 

beamformer for its abilities to adapt based on the statistics of an incoming signal.  This 

beamformer utilizes the Constrained Least Mean Squares algorithm in order to minimize the total 

output power while fix the power in a specific look-direction.  The beamformer has M sensors 

and J filter taps for each sensor.  (See Figure 32 in Ch. III) 

The General Side Lobe Canceller (GSC) outlined in [13] can be described as an alternative 

approach to Frost’s adaptive beamforming algorithm outlined in [12].  The GSC is formed by a 

fixed beamformer, a blocking matrix, and an adaptive noise canceller.  This method works well 

with narrowband signals, such as those encountered in communications, or radar based 

applications.  The reason for this lies with the design of the fixed beamformer used with the GSC.  

The design of this fixed beamformer in typical applications utilizes filter weights that are chosen 

based on the array beamwidth, and average sidelobe level [13] [14].  This can be problematic 

when dealing with an acoustic signal since the beamwidth and sidelobe levels are frequency 

dependent.   

2.5 Circular vs. Linear Microphone Array Geometry 

Beamforming is a technique that has been around for some time.  For instance the frost 

beamformer used in this work was originally proposed back in 1972 by Otis Lamont Frost.  

Acoustic beamforming does present some unique challenges that might not be as prevalent when 

dealing with narrowband signals such as in the communications sense.  The array geometry plays 

a vital role that relates to the system’s ability to properly extract a source signal from a given look 

direction.   In [15] both the linear and circular microphone array topologies are compared, by 
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their respective beam patterns and by their overall performance after extracting audio from some 

sound source.  The beamformer used in [15] is a simple delay and sum beamformer used for a 

single sound source, but the use of a more complex adaptive beamformer could have increased 

their performance.  It is shown that the beam patterns of the linear array tend to produce some 

ambiguity lobes which can decrease the system’s ability to properly extract sounds within a 

specific frequency range.  The circular microphone topology often presents one main lobe with 

several side lobes.  Both topologies though tend to have worse performance when extracting 

sources that consist of primarily low frequencies.  
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CHAPTER III  

 

SURVEILLANCE SYSTEM DESIGN 

3.1 System Overview: 

Localization of 

Sound Sources

Beamforming / 

Spatial Filtering

Audio Recognition 

on Separated Audio

Sound 

Source

Sound 

Source

Sound 

Source

Sound 

Source

 
Figure 2: Security Monitoring Top Level Block Diagram 

The Security Monitoring System that is being proposed consists of three major blocks.  The 

Localization block determines DOAs to all the sound sources, and that DOA is used in order to 

open up a Beamformer for each look direction.  The output of the beamformer at a specific look 

direction theoretically should contain only the portion of the signal coming from the observed 

sound source.  The beamformer output(s) are then sent through the audio recognition algorithm.  

Figure 2 above shows the Security Monitoring Top Level Diagram.  This chapter will cover the 

details within each block of the proposed system.
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3.2 Design of the Circular Array 

In Chapter II the Linear vs. Circular microphone array geometries were reviewed.  The frequency 

response of the microphone array can be different based on the array geometry and it is important 

to understand how the frequency response changes based on the design of the microphone array, 

and the frequency of the received signal.  Since this research primarily focuses on acoustic 

signals, it is best to have an array design that can be representative over a broad frequency 

spectrum.  The response of a receiving aperture, such as a microphone array is inherently 

directional due to the amount of signal seen by the array at various DOAs.  The response of the 

microphone array based on the DOA and the frequency of the source signal is known as the 

directivity pattern [16].  Looking at the directivity pattern for different array geometries can aid in 

the decision of the type of array geometry to use.  The Directivity pattern for both the Linear 

Array and the Circular Array are shown in Figure 4 and Figure 5.  The Linear Array offers a more 

simplistic geometry than the Circular Array, but the linear array starts getting ambiguity lobes 

earlier than the Circular array as the received signal frequency is increased.  Both of the 

compared array geometries are shown in Figure 3. 

m1 m2 m3 m4 m5 m6 m7 m8

d=4.59cm d=4.59cm d=4.59cm d=4.59cm d=4.59cm d=4.59cm d=4.59cm

m1

m7
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m3

m2m4

m8m6

d=4.59cm

d=4.59cmd=4.59cm

d=4.59cm

d=4.59cm

d=4.59cm d=4.59cm

d=4.59cm

r = 6cm

Microphone 

Linear Array 

Geometry

Circular Array 

Geometry

 

Figure 3: Linear vs. Circular Array Geometries 



14 

 

  

  

Figure 4: Uniform Linear Array Directivity Pattern @200Hz, 5000Hz, 8000Hz, and 10000Hz 
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Figure 5: Uniform Circular Array Directivity Pattern @200Hz, 5000Hz, 10000Hz, and 17000Hz 
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3.3 Audio Recognition: 

The block diagram shown in Figure 6 below describes the different stages of the audio 

recognition algorithm presented in this work.  The audio from the microphone is buffered in 1s 

increments and the entire contents of the buffer are then sent into the audio recognition algorithm.  

The first stage is the framing stage.  The audio here is broken up into different frames usually 

between 10ms-30ms for this kind of application.  In this case each frame is 20ms.  The next stage 

is the feature extraction state.  In this stage features are extracted from the framed audio signals.  

This work explores the use of Mel-Frequency Cepstral Coefficients, Zero-Crossing Rates, Short 

Time Energy, and Spectral Flatness as possible features.  All of these features were not used in 

the final implementation of the audio recognition algorithm, but they all were explored through 

the use of a feature selection algorithm, that determined the final feature vector.   

 

Figure 6: Audio Recognition Block Diagram 

Before audio class recognition can occur, training must first be done for each class of expected 

sound.  In this case examples of a sound class might be footsteps, or the sound of breaking glass.  

The training takes the extracted features, and uses that data to learn a Gaussian Mixture Model for 

each class.  This information is then saved into a Database.  During the Classification stage, 
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(usually done during real-time use) the extracted features are compared with the different models 

from the database, and this comparison then leads to a decision/detection of an audio class. 

3.3.1 Framing: 

Framing is an important process, and is the first block for this audio recognition system.  An 

incoming audio signal is cut into small frames usually ranging from 10-30ms. [17]  The 

importance of this comes from the fact that we want to extract some features from an incoming 

audio signal while the signal is not stationary.  If a frame size is too large, the signal just changes 

too much throughout the frame to obtain reliable features.  If the frame size is too small, the 

signal just does not contain enough samples to obtain reliable information.  After the signal has 

been broken up into frames different features can be extracted from each of the frames.  Figure 7 

shows a depiction of the framing process. 
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Figure 7:  Depiction of Framing 
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3.3.2 Audio Slicing: 

As we know in a room there is going to be some ambient noise that can affect the signal we are 

trying to recognize.  Audio slicing attempts to take out the portions of the signal that are going to 

be most affected by the ambient noise from the room.  Performing audio recognition from an 

input sound requires that different features be extracted from that input signal, but when the 

signal power drops into a range that can be highly affected by ambient noise the information that 

is extracted becomes less useful.  Audio Slicing takes these portions of the signal out, while 

keeping the integrity or useful information from the signal intact.   

The reason we can say that all the useful information from the signal is kept intact, is due to the 

way features are calculated.  The audio signals are split into small frames, and features are 

calculated for each individual frame.  Audio Slicing takes out all of the low power frames by 

creating a power threshold based on audio from the room, or the ambient noise in the room.  

Essentially this is a way of finding the noise floor for the room, and when the signal power drops 

near this level frames start getting deleted from the original input signal.  Since frames are being 

deleted from the original signal, this process also reduced processing during the training and 

recognition sections. 
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𝑃𝑥 =
1

𝑁
∑ |𝑥(𝑛)|2

𝑁

𝑛=1
 ( 1 ) 

 

𝑃𝑥(𝑑𝐵𝑊) = 10 ∗ 𝑙𝑜𝑔10(𝑃𝑥) ( 2 ) 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑑𝐵𝑊) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑥(𝑑𝐵𝑊)) + 𝑎𝑏𝑠 (𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑥(𝑑𝐵𝑊))) ∗  𝛼,         0 < 𝛼 < 1 ( 3 ) 

 

In order to obtain a good threshold the average power is taken from each individual frame using ( 

1 ).  These values are then converted to decibel watts using ( 2 ).  The median power level in 

decibel watts is calculated from the ambient noise audio signal and used as seen in ( 3 ), where α 

is a threshold adjustment factor.  The threshold adjustment factor is used if it is desired to 

increase the threshold by some percentage above the median power level. 

Once the median power threshold has been obtained from an ambient noise audio sample, when 

obtaining either training audio, or audio to be recognized there is now a basis to determine which 

frames are to be deleted.  The audio slicing is used on both the training, and recognition sections.  

An example of the audio slicing being used on a glass breaking training signal can be seen in the 

figures below. 
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Figure 8: Original Glass Breaking 

 

Figure 9: Sliced Glass Breaking 
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Figure 10: Glass Breaking after Slicing and Re-Combine 

Figure 8 is an example of a glass breaking training signal before the audio slicing has been 

applied.  It shows graphs of the signal and the average signal power in each frame.  The green 

line shown is where the median power threshold was determined from ( 3 ).  Figure 9 shows the 

sliced glass breaking signal with all of the deleted frames.  From looking back at Figure 8 it can 

be seen that all the frames below the green threshold line were deleted leaving only the higher 

power portions, or the more useful portions of the signal intact.  Figure 10 shows the new glass 

breaking training audio signal after the audio slicing and frames re-combined.  This figure shows 

the average power taken in each frame to show that the average power never drops below the 

power threshold obtained from ( 3 ).  It can also be seen that the glass breaking training signal 

length went from being around 180 seconds down to a little more than 60 seconds in this 

example. 
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3.3.3 Audio Features and Feature Selection 

3.3.3.1 Mel-Frequency Cepstral Coefficients (MFCCs) 

Mel-Frequency Cepstral Coefficients (MFCCs) are commonly used in audio recognition based 

applications, and since they were introduced by Davis and Mermelstein back in the 1980’s they 

have been considered as one of the best features used for audio recognition.  Some aspects of 

MFCCs are modeled in the same manner as human hearing, so in order to fully understand 

MFCCs it is important to have a basic understanding of the human ear. [18] 

There is an organ in the human ear called the cochlea that transforms sound waves into electrical 

information the brain can recognize.  Inside the cochlea there are around 20,000 to 30,000 reed-

like fibers.  These fibers each vibrate at different frequencies, so when a sound wave reaches the 

human ear different fibers vibrate based off of the frequency of the sound. [19]  The vibration of 

these fibers are not linear with our interpretation of frequency in Hz.  This is where the Mel-Scale 

becomes important, since the Mel-Scale was developed primarily to linearize our interpretation of 

frequency.  Humans are better at determining small changes in pitch at lower frequencies than at 

higher frequencies.  The Mel Scale was developed by testing human hearing, and their perception 

of pitches to be equal in distance from one another.  Eq. ( 4 ) converts frequency in Hz to the mel-

scale.  Since the mel-scale was developed by testing the human auditory system, there is not one 

single equation used for converting frequency to the mel-scale, but eq. ( 4 ) is the most commonly 

used equation.  Figure 11 shows a plot of the frequency in Hz versus the Mel-Scale based off of 

eq. ( 4 ). [20]  Eq. ( 5 ) converts the frequency in Mels back to Hz. 
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Figure 11: Mel Scale vs. Hertz Scale 

𝑚𝑒𝑙 = 2595 ∗ 𝑙𝑜𝑔10(1 +
𝑓

700
) ( 4 ) 

 

𝑓(𝐻𝑧) =  700 ∗ (10
𝑚𝑒𝑙
2595 − 1) ( 5 ) 

 

 

Mel-Frequency Cepstral Coefficients (MFCCs) make up a Mel-Frequency Cepstrum (MFC).  The 

MFC is the short term power spectrum based on a linear cosine transform of a log magnitude 

spectrum on a mel-scale of frequency.  Figure 12 shows a flow chart describing how the MFCCs 

are calculated. 



24 

 

 

Figure 12: Mel-Frequency Cepstral Coefficients Flow Chart 

Mel-Frequency Cepstral Coefficients are calculated for every audio frame.  The signal is sent 

through a low pass filter in order to alleviate any noise outside of the human hearing range.  The 

magnitude spectrum is calculated for each frame by taking the absolute value of the Fast Fourier 

Transform.  The magnitude spectrum contains more information than can be used for the purpose 

of audio recognition, so instead of using the magnitude spectrum directly we want to see how 

much energy exists in various frequency regions.  The way this is done is partially based on 

human hearing.  We want to take the magnitude spectrum and multiply it by the Mel-Frequency 

Filter Bank.  This filter bank is a group of triangularly shaped filters that are evenly spaced on the 

Mel-Scale.  An example of the Mel-Frequency Filter Bank can be seen in Figure 13.  As the 
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frequency increases the filters start to get wider because they are evenly spaced on the mel-scale.  

If the scale is changed back to frequency in Hz that graph looks like that seen in Figure 13.  

Typical filter-bank parameters can be seen here in Table 1. 

Typical Filter-bank Parameters 

Overlap 50% 

Number of Filters in Mel bank 24-30 

Number of Cepstral Coefficients to retain ≈  (# filters)/2 

Table 1: Typical Filter-bank Parameters 

 

Figure 13: Mel-Frequency Filter-bank 

Once all the energies have been calculated from all the various frequency regions, the log of these 

energies needs to be calculated.  The reasoning behind taking the log of these energies is that we 

as humans do not perceive loudness on a linear scale.  Taking the log of these energies makes our 

features more similar to what humans actually hear.  Since the filter-banks overlap the filter-bank 

energies are strongly correlated.  The discrete cosine transform de-correlates these energies.  The 

equation for the discrete cosine transform can be seen in eq. ( 6 ). [21]  The mj represents the 

energy in the jth filter-bank, N describes the number of filters, and ci represents the coefficient.  
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After taking the DCT the first coefficient should be discarded because this coefficient is 

proportional to the distance from the microphone.  Leaving the first coefficient will most likely 

yield unwanted results if sound sources are at different distances from the microphone.  An 

example of MFCCs can be seen in Figure 14. 

𝑐𝑖 = √
2

𝑁
∗ ∑𝑚𝑗 ∗ 𝑐𝑜𝑠 (

𝜋

𝑁

𝑁

𝑗=1

(𝑗 −
1

2
) ∗ 𝑖),          𝑖 = 1… . . …𝑁 ( 6 ) 

 

Figure 14:  MFCCs 

 

3.3.3.2 Zero Crossing Rates (ZCR) and Short Time Energy (STE) 

Zero crossing Rates are often extracted for the purpose of Audio Recognition, and can be a key 

feature used for classifying sounds.  They are a measure of the number of times that the algebraic 

sign of the signal changes, or the number of times the amplitude of the signal crosses zero.   An 

example of a zero crossing can be seen in Figure 15.  The short time average zero crossing rate is 
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defined in eq. ( 7 ). [6]  The average of 𝑍𝑛 is taken within every frame, and those averages can be 

used for audio classification.  An example of the Zero crossing rate for every frame can be seen 

for the sound of footsteps in Figure 16, and for the sound of a fan in Figure 17. 

 

Figure 15:  Zero Crossing 
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𝑍𝑛 = ∑ |𝑠𝑔𝑛[𝑥(𝑚)] − 𝑠𝑔𝑛[𝑥(𝑚 − 1)]|𝑤(𝑛 − 𝑚)

∞

𝑚=−∞

 ( 7 ) 

 

𝑠𝑔𝑛[𝑥(𝑛)] =  {
1,   𝑥(𝑛) ≥ 0
−1,   𝑥(𝑛) < 0

 ( 8 ) 

 

𝑤(𝑛) =  {
1

2𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 9 ) 

 

 

Figure 16: Zero Crossing Rates for Footsteps 
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Figure 17: Zero Crossing Rates for a Fan 

 For speech processing Zero Crossing Rate along with Short Time Energy are commonly used to 

determine which frames of an audio signal contain speech.  For our purpose we want to explore 

the use of Zero Crossing Rates and Short Time Energy as extracted features for audio recognition.  

Just as with the other extracted features the Short Time Energy needs to be calculated for each 

individual frame.  The equation used to obtain the short-time energy can be seen in eq.( 10 ) 

where eq. ( 9 ) represents the window used. [6]  Figure 18 shows the short time energy for the 

sound keys. 

𝐸𝑛 = ∑ [𝑥(𝑚)𝑤(𝑛 − 𝑚)]2
∞

𝑚=−∞

 ( 10 ) 
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Figure 18: Short Time Energy of Keys 

 

3.3.3.3 Spectral Flatness Measure (SFM) 

Spectral Flatness is a useful feature in digital signal processing that is used to characterize the 

tonality of an audio signal.  This means that the Spectral Flatness Measure (SMF) can be 

considered as a useful feature for audio recognition, because it can determine how tonal a signal 

is versus how noise-like.  SFMs are determined from the power spectral density of an audio 

signal.  Signals that have a similar amount of power in all spectral bands will produce a spectral 

flatness of approximately 1.  As we know white noise should have a flat power spectral density so 

white noise should produce a spectral flatness of about 1, where a pure tone should produce a 

spectral flatness of approximately 0.  Spectral Flatness is defined as the ratio of the geometric 
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mean to the arithmetic mean, which can be seen in eq. ( 11 ). [22]  Figure 19 shows the spectral 

flatness measure by frame for the sound of jingling keys.  Figure 20 shows the spectral flatness 

measure for the same sound of jingling keys, with some added noise.  By looking at Figure 19 

and Figure 20 it can be seen that by adding noise, the spectral flatness measure was increased, 

indicating that the signal was more noise-like.   

 

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =

√∏ 𝑥(𝑛)𝑁−1
𝑛=0

𝑁

∑ 𝑥(𝑛)𝑁−1
𝑛=0

𝑁

=
𝑒𝑥𝑝 (

1
𝑁

∑ 𝑙𝑛[𝑥(𝑛)]𝑁−1
𝑛=0 )

1
𝑁

∑ 𝑥(𝑛)𝑁−1
𝑛=0

 ( 11 ) 

 

 

Figure 19:  Spectral Flatness Measure of Keys 
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Figure 20:  Spectral Flatness Measure of Keys with Added Noise 

3.3.3.4 Feature Selection: 

Feature selection algorithms are widely used in order to improve the speed and accuracy of 

different systems.  Increasing the feature vector size more than necessary can sometimes be 

computationally expensive.  As the size of a feature vector increases, it becomes more likely that 

specific features will contain redundant information that can even hurt performance.  Feature 

selection algorithms determine a subset of features from within a full set of features that can 

optimize performance.  The feature selection algorithm proposed in this work attempts to 

decrease the number of features used for classification, while statistically maintaining the 

maximum performance.  This is done by combining the Sequential Forward Selection (SFS) 

method which is the simplest greedy method, with hypothesis testing for the difference between 

proportions. 
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3.3.3.4.1 Sequential Forward Selection (SFS): 

Sequential Forward Selection is often used for its simplicity and speed.  The SFS algorithm is 

considered a bottom up search procedure, because it starts with an empty feature vector, or 

feature set, and continually adds features based on some objective function.  In this work the 

objective function is based on the precision of the audio recognition algorithm.  After each 

iteration of the SFS algorithm new features are selected from the remaining available features, or 

features that have not been chosen in the past.  The new chosen feature to add should maximize 

the objective function within each iteration. [23]   

For this algorithm we will assume that the set 𝑻 = {𝑡1, 𝑡2, … , 𝑡𝑁} contains all the possible 

features, where N is the total number of possible features.  Let the set 𝑮𝒊 denote the selected 

features, and 𝐽(∙) represents the objective function. 

Steps for Sequential Forward Selection: 

1. Start with empty set 𝑮𝟎 = {𝜙},    𝑖 =  0 

2. Update 𝑖 = 𝑖 + 1 

3. 𝑘∗ = max[𝐽({𝑮𝒊−𝟏, 𝑇𝑘})], 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1, … , 𝑁;   𝑇𝑘 ∉ 𝑮;    𝑮𝒊 = {𝑮𝑖−1, 𝑇𝑘∗} 

4. Repeat steps 2 & 3 until 𝑖 = 𝑁 

The SFS algorithm performs best when the total number of features is small.  As the feature size 

gets very large the area covered or the number of combinations analyzed becomes narrower.  This 

is due to the fact that if the SFS algorithm is close to the full set, most features have already been 

chosen.  When using the original SFS algorithm there is another step that decides the final feature 

set to be the max[𝐽(𝑮)], which would make the final feature set equal the set that had the largest 

precision from G.  In this work the goal is to reduce the number of features to be as small as 

possible, so instead of choosing the final feature set to be the feature set with the highest 
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precision, we perform a hypothesis test for the difference between proportions to determine 

statistical significance between proportions.  

3.3.3.4.2 Hypothesis testing for difference between proportions: 

Hypothesis testing allows us to make some conclusion about a hypothesis.  In the previous 

section the objective function is based on precision values for each set of features. In this case we 

want to test whether or not there is a significant difference between two proportions, or whether 

or not there is a significant difference between two precision values for two sets of feature 

vectors.  A significant difference determines whether or not we can attribute the difference seen 

to some random variations, or to the difference in the feature vector.  For hypothesis testing a null 

hypothesis, and an alternative hypothesis must clearly be defined.  The null hypothesis usually 

represents the status quo, and is not rejected unless the results strongly imply that the null 

hypothesis is false.  The alternative hypothesis contradicts the null hypothesis, and is accepted in 

the case that the null hypothesis is rejected.  Eq. ( 12 ) shows the null and alternative hypotheses 

that are used in this work.  It is important to understand that to prove the two proportions are 

statistically different, a two-tailed test must be performed at a chosen significance level.  The 

significance level expresses how sure someone might be in the data.  For instance a 1% 

significance level makes it much more unlikely that the alternative hypothesis will be accepted 

than a 5% significance level.  The steps for performing a two tailed hypothesis test are shown 

below. [24] 

𝐻0: 𝑝1 − 𝑝2 = 0 
 

𝐻𝑎: 𝑝1 − 𝑝2  ≠ 0 

( 12 ) 

(Null and Alternative Hypothesis) 

Steps for Two Tailed Hypothesis Testing: 

1. Define the null hypothesis H0 and alternative hypothesis Ha. 

2. Assume that H0 is true. 
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3. Compute the test statistic. 

4. Compute the z-score for a chosen significance level. 

5. Determine if 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 > 𝑧𝑠𝑐𝑜𝑟𝑒 𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 <  −𝑧𝑠𝑐𝑜𝑟𝑒 

6. If step 5 is true then the Null Hypothesis gets rejected and we accept the alternative 

hypothesis. 

�̂�1 =
𝑋1

𝑛1
,   �̂�2 =

𝑋2

𝑛2
,   �̂� =

𝑛1�̂�1 + 𝑛2 �̂�2

𝑛1 + 𝑛2
 

(Sample Proportions) 

( 13 ) 

 

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
�̂�1 − �̂�2

√�̂�(1 − �̂�) (
1
𝑛1

+
1
𝑛2

)

 

(Test Statistic) 

( 14 ) 

 

Eq. ( 13 ) and ( 14 ) are used to determine the value for the test statistic.  The sample proportion 

�̂�1 are determined by the number of successes 𝑋1divided by the total number of samples 𝑛1.  The 

same is also done for the second sample proportion. 

3.3.3.4.3 Combining SFS and Hypothesis Testing: 

As the feature size increases it becomes more likely that the system will have redundant 

information that can even hurt performance.  The Feature Selection algorithm proposed utilizes 

the SFS method, and hypothesis testing to determine significance.  The Sequential Forward 

Search algorithm needs to be applied, and the set 𝑮𝒊, needs to be determined for the chosen or 

selected features.  The precision and the selected features for each 𝑮𝒊 should be known.  The 

feature subset  𝑮𝒊 that has the maximum precision from the entire SFS process, determines the 

starting point for the hypothesis testing.  This means that if the feature vector that has the 

maximum precision has 2 features, and feature vector that has more than two features can 

immediately be discarded.   
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Feature Selection Steps after SFS: 

1. Find Max Precision and the corresponding feature subset 𝑮𝒊. 

2. Look for  𝑮𝒋 s.t. 𝑗 < 𝑖 

3. If the feature subset with the maximum precision has just one feature choose, this feature 

subset. 

4. When computing significant differences between precisions always compare set with one 

less feature at each iteration.  (Unless there is only one feature in feature vector with max 

precision).   

3.3.4 Gaussian Mixture Model (GMM) 

GMMs have a unique ability to form sharp approximations to arbitrarily shaped densities, which 

allows an audio recognition systems to have the ability to train to different sound classes, based 

off of feature extracted training data.  These Mixture Models are gaining increased attention in 

the audio recognition area for their use as a classifier.  Generally for the purpose of audio 

recognition a GMM is made for each individual audio class, and this collection of GMMs makes 

up a database.  This is a useful feature, because if new sound classes need to be added in the 

future, this can be done easily without having to re-train the entire database.  A new model for the 

new sound class would just need to be added to the database.  When new data needs to be 

classified, it can be compared to all the different GMMs in the database, and the model that has 

the highest likelihood of representing the data is chosen as the correct audio class.  

The Gaussian Mixture Model is a probabilistic model that can be used to represent a 

subpopulation, from an overall population.  It can generally be described as a summation of K, 

different Gaussian density components in order to represent some data X, where 𝑿 =

{𝑥1, 𝑥2, … , 𝑥𝑁}, with a set of N observations.  The Gaussian densities can each be described by 

their different means μ, and variances σ2.  A one-dimensional example of a GMM with K=8 

mixtures, fit to some data can be seen in Figure 21. 
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Figure 21:  1-Dim GMM Example [25] 

3.3.4.1 1-Dimensional GMM Representation: 

Since a Gaussian mixture model is made up of a summation of Gaussians, each Gaussian can be 

described by ( 15 ) where j represents each individual component. 

𝑔(𝑥|𝜇𝑗 , 𝜎𝑗) =
1

√2𝜋𝜎𝑗
2

𝑒
−
(𝑥𝑖−𝜇𝑗)

2

2𝜎𝑗
2

,     𝑗 = 1…𝐾 ( 15 ) 

 

The model parameters 𝜇𝑗  and 𝜎𝑗 can be represented as 𝜃𝑗 , and 𝜃𝑗  needs to be determined for each 

Gaussian component. This is generally done by performing an Expectation Maximization 

Algorithm.  The aim is to optimize the parameters of each Gaussian component to best fit the 

training data.  The EM algorithm is an iterative process that constantly revaluates an E-Step or 

expectation step, and an M-Step, or maximization step, until the likelihood function is maximized.  

The EM Algorithm can be summarized into these simple steps [26]: 

1. Initialize Parameters to starting Values. 

2. Evaluate the likelihood values obtained from the initialized parameters. 

3. Evaluate the Posterior Probabilities. 

4. Use the Posterior Probabilities to estimate the new parameters and calculate the likelihood. 
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5. Re-evaluate the likelihood and repeat steps 3 and 4 until the likelihood converges. 

The initial parameters can be chosen randomly.  After the initial parameters have been selected the 

likelihood should be calculated, and used to get the posteriors pi.  The evaluation of the posterior 

probabilities is considered the E-Step.  The posteriors are then used to estimate the new parameters 

(means and variances) from ( 20 ) and ( 21 ).  The evaluation of the posteriors, the estimation of 

the new parameters, and the calculation of the new likelihoods are considered the M-Step.  These 

two steps are repeated iteratively until the likelihood value meets some convergence threshold.  

Once the likelihood has converged and been maximized, the parameters for the new model are then 

finalized.    

𝑃(𝑥𝑖|𝜃𝑗) =
1

√2𝜋𝜎𝑗
2
𝑒

−
(𝑥𝑖−𝜇𝑗)

2

2𝜎𝑗
2

,     𝑗 = 1… . 𝐾      

 (Likelihood) 

( 16 ) 

 

𝑝𝑖,𝑗 = 𝑃(𝜃𝑗|𝑥𝑖) =
𝑃(𝑥𝑖|𝜃𝑗)𝑃(𝜃𝑗)

𝑃(𝑥𝑖)
 

(Posterior) 

 

( 17 ) 

 

𝛼𝑗 =  
∑ 𝑝𝑖,𝑗

𝑛
𝑖=1

𝑛
 

(Prior for component j) 

( 18 ) 

𝑃(𝑥𝑖) =  ∑𝑃(𝑥𝑖|𝜃𝑗)𝑃(𝜃𝑗)

𝐾

𝑗=1

 

(Total Probability for P(xi)) 

( 19 ) 

 

𝜇𝑗 =
∑ 𝑝𝑖,𝑗𝑥𝑖

𝑛
𝑖=1

∑ 𝑝𝑖,𝑗
𝑛
𝑖=1

 

(Mean of component j) 

( 20 ) 
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𝜎𝑗
2 =

∑ 𝑝𝑖,𝑗 ∗ (𝑥𝑖 − 𝜇𝑗)
𝑛
𝑖=1

2

∑ 𝑝𝑖,𝑗
𝑛
𝑖=1

 

(Variance of Component j) 

( 21 ) 

 

3.3.4.2 Multi-Dimensional GMM Representation: 

Once the 1-dimensional GMM is understood, it is fairly simple to produce a multi-dimensional 

GMM using the same basic principles from the 1-dimensional case.  First, all the equations from 

the 1-dimensional case need to be reconstructed in order to handle multiple dimensions.  The 

process for maximizing the likelihood, or adjusting the parameters to best fit the data is done the 

same way as it was in the 1-dimensional case, but with the new equations seen in eq. ( 22 ) 

through eq. ( 25 ). 

𝑃(𝜃𝑗|𝑥𝑖⃑⃑  ⃑) =
𝑃(𝑥𝑖⃑⃑  ⃑|𝜃𝑗)𝑃(𝜃𝑗)

∑ 𝑃(𝑥𝑖⃑⃑  ⃑|𝜃𝑗
𝑇)𝑃(𝜃𝑗

𝑇)𝐾
𝑗=1

 

(Posteriors) 

( 22 ) 

 

𝜇𝑗,𝑟 = ∑
𝑃(𝜃𝑗|𝑥𝑖⃑⃑  ⃑)

𝑛𝑃(𝜃𝑗)

𝑁

𝑖=1

𝑥𝑖,𝑟 

(Mean of component j,r) 

( 23 ) 

 

(∑𝜃)𝑟,𝑘 = ∑
𝑃(𝜃𝑗|𝑥𝑖⃑⃑  ⃑)

𝑛𝑃(𝜃𝑗)

𝑁

𝑖=1

(𝑥𝑖,𝑟 − 𝜇𝑗,𝑟)(𝑥𝑖,𝑘 − 𝜇𝑗,𝑘) 

(Covariance Matrix) 

( 24 ) 
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𝑃(𝑥𝑖⃑⃑  ⃑|𝜃) =
1

√2𝜋|∑𝜃|
𝑒𝑥𝑝 (−

1

2
∑ ∑(𝑥𝑖,𝑟 − 𝜇𝑗,𝑟)

𝑑

𝑘=1

𝑑

𝑟=1

(∑𝜃
−1)(𝑥𝑖,𝑘 − 𝜇𝑗,𝑘)) 

(Likelihood) 

( 25 ) 

 

Because it can be more computationally difficult to determine the necessary parameters in 

multiple dimensions using the method above, it can be helpful to introduce the log-likelihood.  

Using the log-likelihood function can make the maximum likelihood estimation calculations 

analytically easier.  The Log-likelihood function can be seen in ( 26 ).  If we say that 𝐿(𝜃) are the 

parameters that are used to estimate the expectation, and 𝐿(𝜃𝑡) are the new parameters after each 

iteration 𝐿(𝜃𝑡) should be greater than 𝐿(𝜃(𝑡−1)).  Unlike some other clustering algorithms the 

GMM does not have a set point to stop iterating.  A good stopping criteria that is most commonly 

used is a check to see if the Log-Likelihood has converged.  Once it has converged the parameters 

are considered optimal. 

𝐿(𝑂|𝑋) = 𝑙𝑜𝑔 ∏𝑝(𝑥𝑖|𝑂) =  ∑𝑙𝑜𝑔 (∑𝛼𝑗𝑔𝑗(𝑥𝑖|

𝐾

𝑗=1

𝜃𝑗))

𝑁

𝑖=1

 

𝑁

𝑖=1

 

(Log-Likelihood) 

( 26 ) 

 

3.3.4.3 Graphical Example of GMM: 

During the training phase of the audio recognition system a different Gaussian Mixture Model is 

made for each type of audio class.  This section examines an example of how this data can be 

clustered, and shows how the EM algorithm fit the parameters of the GMM to the training data 

presented.  Figure 22 shows a 2-dimensional view of how MFCC1 and MFCC2 are clustered for 

door sounds, keys, and the natural sound of the room.  From the figure it can be seen that for this 

example the data is separated into distinct clusters.  This is a feature that the GMMs are good at 

exploiting.  During the recognition portion of the audio recognition algorithm when new data 
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comes into the system the goal is to recognize how the new data is clustered and make a 

comparison to the previous models created.  This is why it is so important during training to 

accurately create a model that fits to the training data. 

 

Figure 22:  2-D Feature Vector using MFCC1 and MFCC2 

Figure 23 shows how well the EM algorithm fit a mixture of 2 Gaussians to the training data for 

door audio.  From looking at the figure it can be seen that the model accurately approximates the 

distribution of the training data.   
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Figure 23:  Gaussian Mixture Model of Door Audio 

3.3.4.4 Audio Recognition using a GMM as a Classifier: 

Figure 23 showed how well the EM algorithm fit 2 Gaussian mixtures to training data for door 

audio.  A Gaussian Mixture Model like this is created for every audio class, and when new audio 

data is present the new audio data is compared to each of the different models from every sound 

class.  The Log-Likelihood 𝐿(𝑂|𝑋) is calculated for every audio class.  The GMM that best fits 

the data is then chosen as the recognized sound class.  Figure 24  shows a graphical example of 

how this comparison is performed, and an audio class is selected. 
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Figure 24:  Audio Class Selection 
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3.4 Localization: 

3.4.1 Problem Description: 
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Figure 25: Microphone Array Configuration 

𝑋𝑚(𝑘, 𝑓) =  ∑ 𝐻𝑚,𝑛(𝑓)𝑆𝑛(𝑘, 𝑓) + 𝑁𝑚(𝑘, 𝑓),    𝑚 = 1,… ,𝑀

𝑁

𝑛=1

 ( 28 ) 

A uniform circular microphone array is used for the purpose of environmental audio signal 

collection.  The microphone array configuration can be seen in  

𝑥𝑚(𝑡) =  ∑ ∑ ℎ𝑚𝑛(𝜏𝑙)𝑠𝑛(𝑡 − 𝜏𝑙) + 𝑛𝑚(𝑡), 𝑚 = 1,… ,𝑀,                 

𝐿𝑚,𝑛

𝑙=1

𝑁

𝑛=1

 ( 27 ) 
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Figure 25.  The circular microphone array is used compared to a linear microphone array due to its 

ability to overcome the ambiguities seen from linear microphone arrays.   This circular array 

contains M microphones.  The distance l is the distance between any two adjacent microphones, 

and the radius r is the distance from the center of the microphone array to any of the 

microphones.  The distance 𝑙 = 2𝑟sin (
α

2
) can easily be found where, 𝛼 =

2𝜋

𝑀
.  The mixture 𝑥𝑚(𝑡) 

seen on microphone m is represented by the equation below. 

𝑛𝑚 is additive white Gaussian noise seen at microphone m.  𝑠𝑛 is the observed sound source 

where n = 1, ..., N.  hmn is the Room Impulse Response (RIR) between microphone m and source 

n.  𝜏𝑙 is the time delay of the significant paths, and Lmn is the length of the RIR. 

3.4.2 DOA Estimation: 

The problem description shows that there can be any number of sound sources, with M mixed 

signals received by the microphones.  The goal is to be able to use each signal 𝑥𝑚(𝑡) in order to 

determine a Direction of Arrival (DOA) from a specific sound source to the microphone array. 

𝑞𝑚(𝑘, 𝑓) =
|𝑋𝑚(𝑘, 𝑓)|2

|𝑋𝑚(𝑘 − 1, 𝑓)|2
, 𝑓𝑜𝑟 𝑚 = 1, … ,𝑀 ( 29 ) 

 

𝑞(𝑘, 𝑓) =
∑ 𝑞𝑚(𝑘, 𝑓)𝑀

𝑚=1

𝑀
 ( 30 ) 

In [3], the TF points are chosen by looking for the boundary of active/inactive portions of the 

signal through the usage of the power ratio described in ( 29 ).  The average power ratio over all 

microphones is shown in ( 30 ).  A high q(k, f) generally represents an inactive to active 

boundary point.  This will likely allow for the selection of TF points that relate to the direct path 

from a sound source to the microphone array.  The top p% of TF points that relate to the highest 

𝑥𝑚(𝑡) =   𝑛 = 1𝑁 𝑙 = 1𝐿𝑚,𝑛ℎ𝑚𝑛(𝜏𝑙)𝑠𝑛(𝑡 − 𝜏𝑙) + 𝑛𝑚(𝑡, 𝑚 =

1, … ,𝑀,                 ) 

( 27 ) 
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average power ratio are chosen in order to reduce the computation time, while still maintaining 

accuracy.  The median of the average power ratios is taken as a threshold 𝜀 for simplicity. 

Using this method the objective is to select TF points that can be used along with a single source 

localization algorithm.  Single source localization is performed by taking the circular integrated 

cross spectrum (CICS) outlined in [10], and defined as, 

𝐶𝐼𝐶𝑆(𝑘,𝑓)(𝜃) = ∑
𝑋𝑚(𝑘, 𝑓)𝑋𝑚+1

∗ (𝑘, 𝑓)

|𝑋𝑚(𝑘, 𝑓)𝑋𝑚+1
∗ (𝑘, 𝑓)|

𝐺𝑚→1
(𝑓)

(𝜃)

𝑀−1

𝑚=1

 ( 31 ) 

where 

𝐺𝑚→1
(𝑓)

(𝜃) = 𝑒
−𝑗2𝜋𝑓(𝜏1,2(𝜃)−𝜏𝑚,𝑚+1(𝜃))

. ( 32 ) 

Eq. ( 31 ) is a function of  𝜃 which is dependent on both the locations of the microphones and the 

relative time delay between each microphone.  The time delay between two adjacent microphones 

m and m+1 for a source at a specific DOA 𝜃, can be represented by eq. ( 33 ), where c is the 

velocity of sound in air. 

𝜏𝑚,𝑚+1(𝜃) =  𝑡𝑚,𝑛(𝜃) − 𝑡𝑚+1,𝑛(𝜃) =
𝑙 𝑠𝑖𝑛 (𝜋 − 𝜃 + (𝑚 −

1
2
)𝛼)

𝑐
 

( 33 ) 

The angle that maximizes the magnitude of eq. ( 31 ) is considered the DOA estimate 𝜃(𝑘, 𝑓).  

This relation is shown in eq. ( 34 ).  Figure 26 shows the Circular Integrated Cross Spectrum vs. 

the Direction of Arrival, with a true DOA at 160 degrees.  
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𝜃(𝑘, 𝑓) = 𝑎𝑟𝑔 𝑚𝑎𝑥
0<𝜃<2𝜋

|𝐶𝐼𝐶𝑆(𝑘,𝑓)(𝜃)| ( 34 ) 

 

Figure 26:  Circular Integrated Cross Spectrum (CICS) vs. DOA 

Multiple estimates are taken and used to build a histogram to find the final estimate within a 1 

second timer interval.  In this work the number of sound sources is assumed known a priori, 

allowing for the final estimate(s) to equal the N highest peaks in the histogram where N is the 

number of sound sources.  An example of this can be seen in Figure 27 where the three highest 

peaks are clearly defined and represent the three DOA estimates.  The true DOAs used to make 

Figure 27 were 10, 120, and 280 degrees. 
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Figure 27: Histogram of DOA Estimates with true DOAs at 10, 120, & 280 degrees 

The precision of the localization algorithm can be increased by adding extra sensor arrays that 

each independently produce their own estimates.  Adding multiple circular arrays at different 

radiuses can help show peaks in the histogram that are not prevalent previously due to the 

frequency response of the microphone array at a specific radius.  Figure 28 shows the histogram 

of DOA estimates from the array with a radius of 2cm.  The sounds source at 185 degrees is very 

prominent, but the sounds source at 20 degrees is obscure.  Figure 29 and Figure 30 both show a 

prominent curve at 20 degrees and at 185.  By fusing all the estimates from each array into one 

histogram both of the sources can be seen very well as is shown in Figure 31.  The maximum 

peaks are used as the final DOA estimates.  
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Figure 28: DOA estimates from r=2cm Array 

 

Figure 29: DOA estimates from r=4cm Array 
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Figure 30:  DOA estimates from r=6cm Array 

 

Figure 31: DOA estimates from all Arrays 
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3.5 Frost Beamformer: 

The Frost Beamformer in this work uses the Constrained LMS (Least Mean Squares) algorithm in 

order to optimize or adjust an array of microphones to focus on a signal from a given look 

direction.  The beamformer consists of M microphones, and J filter taps.  The look direction 

frequency response is determined from J constraints, so the minimization of the total non-look-

direction power, can be completed so long as the signal voltages on the taps is uncorrelated with 

the noise at these taps.  The desired scenario in fact would be that the noise voltages are 

uncorrelated amongst themselves, while uncorrelated with the signal voltages.   Minimizing the 

total output power from the array breaks down to minimizing either the noise power or the power 

from interfering signals.  Increasing the number of filter taps increases the number of filter 

weights.  Non-look-direction noise waveforms most likely will not produce the same voltages on 

all the taps in a column while signals coming from the look direction should produce similar 

voltages on all the taps in a column.  There are two ways this beamformer is able to eliminate 

noise from a non-look-direction.  The adaptive array can reduce the weight on any set of taps that 

contains a large amount of uncorrelated noise or interferer power.  Increasing the amount of taps 

will increase the adaptability of the beamformer, by providing an increased reduction in non-look 

direction signal power.  Second this design will also add the voltages from the taps coherently at 

the output, while noise signals should add up destructively at the output.  This is done in a similar 

fashion as what was discussed with the delay and sum beamformer.  The filter weights from the 

frost beamformer are used to minimize the total output power from the array.  The algorithm is 

able to maintain a given frequency response in a given look direction while minimizing the output 

noise power due to a relation between the frequency response and the filter weights. 

This section will first focus on some of the basic notation, and then will focus on the LMS weight 

vector and show how the optimum weight vector is determined. 



52 

 

 

Figure 32: (a) Frost Beamformer Framework (b) The equivalent Frost Beamformer Framework for signals 

coming from the look direction 

To start the discussion on the frost beamformer let us first define some needed terms.  The noisy 

input signal from the M microphones are formed by both the clean source signal s(t) and the some 

added noise n(t).  The sampled signal at each tap is represented by X[n] and the vector W consists 

of all of the filter weights.  The vector F contains the constrained impulse response, and the 

matrix C is used for constraint formulation.  The vector of tap voltages can be written as, 

𝑋𝑇[𝑛] ≜ [ 𝑥1[𝑛], 𝑥2[𝑛], … , 𝑥𝑀𝐽[𝑛] ] ( 35 ) 

The vector weights at each tap can be written as, 

𝑊𝑇  ≜ [ 𝑤1, 𝑤2, … , 𝑤𝑀𝐽 ] ( 36 ) 

There is a constraint that all the weights on a given jth column of taps will sum to a chosen fi.  

These constraints allow the beamformer to be tuned to match a specific frequency response.  This 

is especially useful for communications purposes where the received signal should be within 
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some frequency range.  The beamformer could match the necessary frequency response needed to 

alleviate noise at the output.  For the purposes of an audio signal, the received signal will not be a 

narrow band signal as is described above.  The signal intended to be classified is a broadband 

audio signal so the frequency response of the filter should be all pass and linear phase 

(distortionless).  This will be important for the audio recognition algorithm.  More about this will 

be explained in detail in the next section.  The requirement for the constraints can be expressed 

by, 

𝑐𝑗
𝑇𝑊 = 𝑓𝑗             𝑗 = 1, 2,… , 𝐽 ( 37 ) 

 

The full constraints matrix C can be defined as, 

𝐶 ≜ [ 𝑐1  ∙  ∙  𝑐𝑗  ∙  ∙  𝑐𝐽  ] 
( 38 ) 

 

where C is a (MJ – J) dimensional matrix. 

 

( 39 ) 

The vector F is J dimensional and is composed of equivalent tapped delay line filter weights from 

Figure 32.  F can be described by,  

F  = [𝑓1  𝑓2  𝑓3  ⋯  𝑓𝐽] ( 40 ) 

and the constraints can be shown by, 
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𝐶𝑇𝑊 = F. ( 41 ) 

3.5.1 Optimizing the Weight Vector 

In [12], it is explained that since the look direction frequency response is fixed by the relation 

shown in eq. ( 41 ), the minimization of the power from interfering sources is the same as 

minimizing the total output power which can be represented by, 

𝐸[𝑦2[𝑛]] = 𝐸[𝑊𝑇𝑋[𝑛]𝑋𝑇[𝑛]𝑊] = 𝑊𝑇𝑅𝑥𝑥𝑊 ( 42 ) 

where Rxxis the autocorrelation matrix.  The optimization problem and constraints are 

represented by, 

𝑚𝑖𝑛
𝑊

𝑊𝑇𝑅𝑥𝑥𝑊  ( 43 ) 

s.t. 

𝐶𝑇𝑊 = F ( 44 ) 

The Lagrange Multipliers method is used in order to obtain the Wiener solution for Wopt.  Wopt is 

then represented by, 

𝑊𝑜𝑝𝑡 = 𝑅𝑥𝑥
−1𝐶[𝐶𝑇𝑅𝑥𝑥

−1𝐶]−1F. ( 45 ) 

The adaptive LMS algorithm, [12] is given by 

𝑊[0] = 𝐹 

𝑊[𝑛 + 1] = 𝑃[𝑊[𝑛] −  𝜇𝑦[𝑛]𝑋[𝑛]] + 𝐹 

 
( 46 ) 

 

where the projection matrix P and the vector F can be represented as  

𝐹 ≜ 𝐶(𝐶𝑇𝐶)−1F ( 47 ) 

𝑃 ≜ 𝐼 − 𝐶(𝐶𝑇𝐶)−1𝐶𝑇 ( 48 ) 

and the output 𝑦[𝑛] can be represented as, 
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𝑦[𝑛] = 𝑋[𝑛]𝑇𝑊[𝑛]. ( 49 ) 

The choice of 𝜇 from ( 46 ) effects the ability of the system to converge, and the amount of time it 

takes for the weights to converge.  Since 𝜇 is considered the step size, optimally it should be 

chosen to be as large as possible while still meeting all convergence criteria.  Doing this should 

decrease convergence time.  Griffiths [13], shows that ( 50 ) can be calculated and used to 

determine an upper bound for the step size. 

0 <  𝜇 <
2

3𝑡𝑟(𝑅𝑥𝑥)
 ( 50 ) 
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CHAPTER IV  

 

SIMULATION RESULTS 

4.1 Audio Recognition 

In this section different experiments were performed to determine how well the audio recognition 

algorithm worked with real audio samples.  This led to the creation of an audio library that 

consisted of 1169 audio samples that were recorded from 7 different sound classes.  The 7 

different sound classes represented the sounds of footsteps, chair sliding, a fan, keys, door 

knocking, glass breaking, and the room when quiet.  The audio recognition algorithm was tested 

in both the no noise case, and with added white noise.  In the case where noise was added, a SNR 

degredation test was performed where the SNR was taken from 50dB down to 0dB. 

4.1.1 Training: 

In the training phase as we know a GMM needs to be created for all of the different sounds 

classes.  In this experiment all 7 different sound classes were trained to without noise and again 

with noise.  This led to the creation of 14 different GMMs or sound classes that mapped to only 7 

different sounds.  So for every sound class, there is a clean model and a noisy model.  The noisy 

training sounds used for the noisy models had the SNR randomly varied uniformly between 50dB 

and 0dB.  The training database stayed the same for all the experiments performed. 

4.1.2 Performance: 

The performance of the audio recognition algorithm is measured by three conditions, the 

precision, false rejection rate, and the false detection rate.  The precision is a measure of the 

number of events that were correctly detected and classified, to the total number of events that 
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were detected.  The false rejection rate measures the number of events that were not detected 

when there was an event to detect, and the false detection rate measures the number of times an 

event was detected when there was no actual event.  The performance equations can be seen in     

( 51 ) through ( 53 ). [7] 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 ( 51 ) 

 

𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 No Event 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡𝑠 𝑡𝑜 𝐷𝑒𝑡𝑒𝑐𝑡
 ( 52 ) 

 

𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑡ℎ𝑒 𝑅𝑜𝑜𝑚

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑜𝑚 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 ( 53 ) 

 

4.1.3 Feature Extraction/Selection: 

The features that were investigated for feature extraction were Mel-Frequency Cepstral 

Coefficients, Zero Crossing Rates, Spectral Flatness, and Short Time Energy.  There were 15 

different combinations of these features from which the feature selection process could possibly 

choose from.  The feature selection algorithm was used in order to determine the feature vector 

that required the least amount of features that statistically maximized the precision of the audio 

recognition algorithm.  The feature selection algorithm determined that MFCCs were the most 

relevant of all the extracted features from the precisions.  Figure 33 shows all the different 

combinations of features that could be placed in the final feature vector, and all the precisions 

found during the feature selection process.  All of the boxes in yellow are the features that were 

chosen after each iteration of the SFS algorithm.  The hypothesis testing portion of the feature 

selection algorithm used a significance level of 5% in order to determine if the difference 

between proportions were significant.  MFCCs were determined to be the most significant 
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feature.  The precision values seen in Figure 33 were calculated with no added noise to the testing 

samples.  The features were selected based off of the audio samples without added noise, and that 

set of features was later tested with noise during the SNR degredation test.   

 

Figure 33:  Precision of Feature Vectors 

4.1.4 SNR Degredation Performance: 

The SNR degredation performance test added noise to all of the testing audio samples to meet 

specific SNR values ranging from 0-50dB.  This experiment was meant to test the performance of 

the algorithm in the presence of a noisy environment.  The results of the SNR degredation test can 

be seen in Figure 33 through Figure 36.  These results represent the precision, false rejection rate, 

and false detection rate of the audio recognition algorithm at different SNR’s ranging from 0-

50dB.  In order to get a more broken down view of the performance of the algorithm a confusion 

matrix was created at every SNR seen in the figures below.  The confusion matrix shows the 

expected output versus the detected output.  All of the performance metrics proposed in this paper 

can be calculated from the confusion matrix.  The confusion matrix for 50dB testing samples, and 

0dB testing samples can be seen in Table 2 and Table 3 respectively. 
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Figure 34: Precision vs. SNR 

 

Figure 35: Rejection Rate vs. SNR 

(dB) 

(dB) 
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Figure 36: False Detection Rate vs. SNR 

 

Table 2: Confusion Matrix with 50dB Testing Samples 

Detected

Expected Chair Footsteps Fan Room Keys Door Glass

Chair 159 0 0 0 0 0 10

Footsteps 3 167 0 1 0 0 2

Fan 0 0 164 0 0 0 3

Room 5 0 3 166 0 0 2

Keys 0 0 0 0 165 0 4

Door 0 0 0 0 0 167 6

Glass 0 0 0 0 2 0 140

Confusion Matrix
50dB Testing Samples

(dB) 
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Table 3: Confusion Matrix with 0dB Testing Samples 

 

 

 

 

4.2 Simulation 

The following tests performed in the rest of this Chapter were based on the simulated mixed 

signals seen on each microphone.  Simulating a signal coming from a specific Direction of 

Arrival (DOA) can be done since for a sound source the approximate time difference between 

microphones can be calculated, and the phase of the signal can be compensated to match this 

effect.  Doing this will simulate a sound coming from a specific direction, but will be more 

characteristic of an outdoor environment. 

4.3 Localization 

The localization algorithm was tested from the testing library with 1000 different sounds 

representative of all of the sound classes except for the room sounds.  These sounds were then 

mixed on each microphone and given a simulated DOA.  Testing of the localization algorithm 

allowed for the setting of the number of array used in order to perform DOA estimation.  The 

RMSE (Root Mean Square Error), and the Median Error (ME), were the statistics used in order to 

Detected

Expected Chair Footsteps Fan Room Keys Door Glass

Chair 154 0 0 0 0 0 1

Footsteps 0 0 0 0 0 0 0

Fan 0 0 167 0 0 0 0

Room 2 1 0 122 0 0 0

Keys 11 166 0 45 0 104 5

Door 0 0 0 0 0 1 1

Glass 0 0 0 0 167 62 160

Confusion Matrix
0dB Testing Samples
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establish the performance of the localization algorithm.  The ME was used along with the RMSE 

in order to give a better understanding about the distribution of the error in the estimates.   K is 

the total number of samples and N is the number of sound sources.  Before looking at the results 

in this section it is important to know that the resolution of the localization algorithm is set to 0.5 

degrees.  This is due to the fact that the Circular Integrated Cross Spectrum needs to be calculated 

from 0 to 360 degrees to come up with estimates, and a resolution of 0.5 degrees was chosen.   

𝑅𝑀𝑆𝐸 =  √∑ ∑
(𝜃𝑛,𝑘 − 𝜃𝑛,𝑘)

2

𝑁 ∙ 𝐾

𝑁

𝑛=1

𝐾

𝑘=1
 ( 54 ) 

 

𝑀𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜃𝑛,𝑘 − 𝜃𝑛,𝑘) ( 55 ) 

It was determined that increasing the number of arrays decreased the RMSE.  The median error 

stayed pretty constant but the number of outlier estimates were decreased by forming a single set 

of estimates from multiple arrays.  The downside to increasing the number of arrays is that there 

is extra processing cost, so the goal is not to increase the number of arrays to be too large.  After 

increasing the number of arrays past 3 the RMSE didn’t decrease by a significant amount so the 

number of arrays were set to 3.  Table 4 shows the results of the RMSE and the median error as 

the number of arrays were increased.  The median error stayed constant at 2 degrees while the 

RMSE with 3 arrays dropped to 10.65 degrees.  The reason the median error happens to be a nice 

round number is due to the resolution of the localization algorithm.   

 

Table 4: Number of Arrays vs. Error with 2 Sound Sources 

number of arrays radius(cm) RMSE median error

1 2 18.5538 2

2 2,4 12.1281 2

3 2,4,6 10.6511 2

2 sound sources (20º,160º)
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The number of sources does affect the accuracy of the localization algorithm.  After the number 

of arrays for the localization had been set to three, a test was performed in order to determine how 

increasing the number of sources affected the RMSE and the ME.  It can be seen in Table 5 that 

the RMSE goes from 2 degrees with one sound source up to 40.66 degrees with 3 sound sources, 

but the median error only jumps to 2.5 degrees.  When there are multiple sound sources the fan 

sounds seem to sometimes cause large errors in the localization.  These errors do not occur that 

often, but the errors are large enough to pull the RMSE to a larger value.  The RMSE along with 

the ME can be used to help form an idea of how the errors are distributed.  If the fan sounds are 

taken completely out of the test, the RMSE is much lower.  The distribution of the Localization 

Error can be seen in Figure 37. 

 

Table 5:  Root Mean Square Error / Median Error as Sources Increase 

Sources DOA RMSE ME

1 160º 2 2

2 20º, 160º 10.6511 2

3 20º, 160º, 250º 40.6631 2.5

RMSE/ME vs. Number of Sources
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Figure 37:  Histogram of Localization Error with three sound sources 

4.4 Beamforming: 

Since the objective of the frost beamformer was to allow the system to be able to handle multiple 

sound sources, the testing library consisting of 1000 different sounds was used along with the 

audio recognition algorithm to determine the performance of the beamformer.  Each sound was 

randomly selected at a specific DOA, and sent through the audio recognition algorithm.  For 

example if there were 2 sound sources the test would go through 1000 iterations where any sound 

from the testing library could be selected for a specific DOA, and the same for the second DOA.  

No sound that was previously selected would be selected again and the test would run until all 

sounds have been exhausted in each look direction.   

Testing determined that MFCCs did not hold up that well as a stand-alone feature in the presence 

of interfering sound sources.  In order to determine the feature set that would hold up best in the 

presence of interfering signals the feature selection algorithm outlined in Chapter 3 was used with 

2 sound sources, 8 microphones, 10 taps, and a radius of 12cm.  The feature selection chart can be 

seen in Table 6.  The most significant feature subset was the {SFM, ZCR, MFCCs}.  Short Time 
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Energy was left from testing in this section due to its poor performance from the audio 

recognition section. 

Audio Recognition 

10 Taps 10º&160º  

SFM ZCR MFCCs 

Precision 

(%) 

0 0 1 70.9 

0 1 0 61.85 

0 1 1 75.45 

1 0 0 47.25 

1 0 1 76.85 

1 1 0   

1 1 1 79.8 
Table 6: Precision of Feature Vector with 2 sound sources, r=12cm, and 10 filter taps 

The frost beamformer structure has some criteria that needs to be defined such as the number of 

microphones, the number of taps, and the radius of the microphone array.  From looking at the 

directivity patterns, the best response seems to come from using 8 microphones with a radius of 

6cm.  In order to test this the number of microphones was set to be either 4 or 8.  The radius of 

the array was incrementally increased and the precision of the algorithm was recorded.  The 

number of taps were set to 10 and later increased after the number of microphones and the radius 

of the array was set.  This was done to reduce computational time as the experiment was 

performed, and the number of taps could later be increased until the performance no longer 

increased significantly.  The number of microphones and the radius that yielded the best precision 

was 8mics, with a radius of 6cm.  From above it can be seen that a radius of 12cm was used in 

order to determine the final feature vector to be used.  The reason this radius did not get tested 

more is because the beamwidth at this radius was too small and doesn’t allow for enough 

variability in the estimated DOA.  Increasing the radius decreases the beamwidth, while 

increasing the number of microphones decreases the sidelobes. 
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Table 7: Microphones vs. Radius Precision 

Since the incoming signal is not a narrowband signal it can be a little difficult to come up with an 

exact optimum radius or number of microphones.  This is due to the fact that the beam patterns 

are frequency dependent.  One way a design can be chosen is by having some knowledge of the 

frequency characteristics of the expected signal.  Knowing this information can aid in the design 

by looking at beam patterns at various frequencies that are representative of the incoming 

expected signal.  After looking at the beam patterns for the different microphone/radius choices it 

was determined that having 8 microphones with a radius of 6cm would be effective for the 

beamformer.  This coincides with the results seen from Table 7. 

The number of taps used for the system were incrementally increased until the precision of the 

system stabilized or did not increase by a significant amount.  This is how the number of filter 

taps were determined.  At this point the radius and the number of microphones had already been 

set, the goal was to increase the number filter taps and push the performance/precision as high as 

possible. 

Number of Microphones num taps radius(cm) precision w/true doa

4 10 2 67.750%

4 10 4 70.20%

4 10 6 67.20%

4 10 8 73.40%

8 10 2 70.45%

8 10 4 73.00%

8 10 6 73.70%

8 10 8 73.20%
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Figure 38:  Precision vs. Number of Filter Taps 

4.4.1  Separation Results: 

The purpose of the beamformer as used in this work is to be able to separate out a single sound 

source in the presence of interfering sound sources, while maintaining the characteristics of the 

original source.  Figure 39 shows the two individual signals before they were mixed together, and 

the mixed signal.  Since there are two different sound sources two different beamformers can be 

opened up to focus on both of the look directions.  The mixed signal is sent through the 

beamformer, and the beamformer outputs are shown below for both the Glass Breaking and Chair 

signals.  By inspection there is a strong resemblance between the beamformer output and the 

original signals before they were mixed.  Figure 40 shows the filter weights as they were updated 

over time.  Table 8 shows the DOA for each signal and the SIR(dB) at the output of each 

beamformer focused in the specified look direction. 
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Figure 39: Beamformer input/output for Glass Breaking and Chair Sounds at 160 & 20 degrees respectively 

 

Mixed Signal (Glass/Chair) 

Signal DOA SIR(dB) 

Glass Breaking 160 25.2494 

Chair 20 77.7312 
Table 8: Mixed Signal Glass/Chair 

 

 



69 

 

 

Figure 40:  Filter Weights vs. Time (Glass/Chair) 
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Figure 41: Beamformer input/output for Glass Breaking, Chair Sounds, and Keys at 160, 20, and 240 

degrees respectively 

 

Mixed Signal (Glass/Chair/Keys) 

Signal DOA SIR(dB) 

Glass 160 24.7429 

Chair 20 37.5086 

Keys 240 15.0457 
Table 9: Mixed Signal (Glass/Chair/Keys) 

The beamformer can potentially be used to perform sound source localization by performing a 

360 degree power scan.  The 360 degree power scan could keep track of the received signal 

power after each iteration.  The same as how the highest peaks were used in the localization 

algorithm from this work the highest peaks in the 360 degree scan can be selected as the DOA to 

specific sound sources.  There would be an extreme cost to performing sound source localization 
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this way.  The computational cost compared to the localization algorithm used in this work would 

be much higher.  An example of a 360 degree scan can be seen in Figure 42 below. 

 

Figure 42: 360 Degree Power Scan Glass/Keys at 20 and 160 degrees 

4.5 Beamforming and Audio Recognition Results 

In this section both the number of sound sources, and the true Direction of Arrival for each sound 

source is assumed to be known a priori.  This gives an understanding of the results with no 

localization error.  The Audio Recognition feature set uses the SFM, ZCR, and MFCCs.  A 

thousand sounds were randomly selected at each DOA and the precision of the test is recorded in 

Table 10. 
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Beamforming and Audio Recognition Results 

Number of Sound Sources DOA Precision (%) 

1 160º 97.6 

1 300º 97.6 

2 20º, 185º 84.4 

2 50º, 190º 83.85 

3 20º, 160º, 240º 70.533 

3 50º, 190º, 300º 70.7333 
Table 10:  Beamforming and Audio Recognition Results 

 

 
Table 11: Confusion Matrix Source at 160 Degrees 

 

 
Table 12: Confusion Matrix Source at 20 and 185 Degrees 

 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 161 0 0 0 0 7

Footsteps 6 167 0 0 0 0

Fan 0 0 167 0 0 1

Keys 0 0 0 166 0 5

Door 0 0 0 0 167 5

Glass 0 0 0 0 0 148

Confusion Matrix
DOA: 160º 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 304 0 2 0 0 33

Footsteps 29 255 8 0 53 2

Fan 0 0 323 0 0 1

Keys 0 0 0 323 0 30

Door 0 79 0 11 278 62

Glass 0 0 0 0 2 205

DOA: 20º, 185º 

Confusion Matrix
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Table 13: Confusion Matrix Sources at 50, 190, and 300 Degrees 

 

4.6 Full System Results 

In this section the results of the full system, or all of the blocks working together are shown.  The 

testing in this section as in previous sections assumes the number of sound sources is known a 

priori.  In Table 15 the full system test results are shown.  The system is tested with one, two, and 

three sources.  The DOAs shown in the table are the true DOAs.  During the testing the DOA to 

each sound source is estimated, and a beamformer is opened up in each of the resulting look 

directions.  The outputs from each of the opened beamformers are sent through the audio 

recognition algorithm for classification.  In future work a source counting method should be 

implemented to make the system into a more practical application.  In practice it is not likely that 

the number of sound sources are going to be known to the system beforehand.  The Final System 

Specifications can be seen in Table 14.   

Final System Specifications 

Feature Set SFM, ZCR, MFCCs  

Number of Localization Arrays 3 

Radius of Localization Arrays 2cm, 4cm, 6cm 

Radius of Beamformer Array 2cm 

Number of Taps 50 

Number of Microphones 8 
Table 14: Final System Specifications 

The Final System Specifications can be seen in Table 14.  In order to get more accurate audio 

classification even in the presence of small localization errors the beamformer radius needed to be 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 433 0 1 0 0 73

Footsteps 66 379 20 1 227 11

Fan 0 0 479 0 0 0

Keys 0 0 0 404 0 92

Door 0 120 0 95 271 169

Glass 1 0 0 0 2 156

Confusion Matrix
DOA: 50º, 190º, 300º 
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reduced.  Decreasing the beamformer radius increases beamwidth allowing for more variability in 

the estimated DOA from the true DOA.  The Confusion Matrices from the Full System Test can 

be seen in Table 16 through Table 18. 

Full System Test 

Number of Sound Sources DOA Precision (%) 

1 160º 97.4 

1 300º 97.5 

2 20º, 185º 78.10 

2 50º, 190º 82.85 

3 20º, 160º, 240º 60.70 

3 50º, 190º, 300º 62.10 
Table 15: Full System Test Results 

 

 
Table 16: Full System Confusion Matrix DOA at 160 Degrees 

 

 
Table 17: Full System Confusion Matrix DOA at 50 and 190 Degrees 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 162 0 0 0 0 9

Footsteps 5 166 0 0 0 0

Fan 0 0 167 0 0 1

Keys 0 0 0 167 0 5

Door 0 0 0 0 167 5

Glass 0 0 0 0 0 146

Confusion Matrix
DOA: 160º 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 305 0 0 4 0 53

Footsteps 28 308 2 0 95 14

Fan 0 0 332 0 0 1

Keys 0 0 0 318 0 60

Door 0 26 0 11 237 48

Glass 0 0 0 0 1 157

Confusion Matrix
DOA: 50º, 190º 
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Table 18: Full System Confusion Matrix DOA at 20, 160 and 240 Degrees 

 

4.7 GUI Development 

A Graphical User Interface is useful since it adds appeal, and makes it much easier for people to 

grasp the main points from the work that has been done.  A GUI was created for handling a single 

sound source that showed the Recognized Audio Class, and showed the Direction of Arrival from 

the sound source to the array.  The single sound source GUI can be seen in Figure 43. 

 

Figure 43:  Single Source Graphical User Interface 

Since the GUI that was created to handle a single sound source did not have the ability to handle 

multiple sound sources, an update was made that allowed for the detection and display of up to 

three different sound sources along with their corresponding DOAs.  The GUI for handling 

Detected

Expected Chair Footsteps Fan Keys Door Glass

Chair 386 37 1 18 14 143

Footsteps 103 369 89 9 274 69

Fan 8 49 407 12 32 9

Keys 0 11 0 391 3 91

Door 2 33 2 63 174 95

Glass 0 2 0 7 3 94

Confusion Matrix
DOA: 20º, 160º, 240º 
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multiple sound sources can be seen in Figure 44.  Utilizing the frost beamformer for the purpose 

of spatial filtering uses up a lot of processing power, and currently takes much longer than one 

second to separate the sounds coming from a specific look direction.  Future work needs to be 

done to speed up the frost beamformer.  MATLAB offers a function that allows .mat files to be 

converted into c code.  Doing this for the entire system should greatly increase the speed of the 

localization, separation, and detection.  Once this is done a GUI already exists that can handle up 

to three sound sources. 

 

Figure 44: Multiple Sound Source Graphical User Interface 

 

For those who are interested there is a link below to some videos through different stages of 

testing.  Some of the videos are performed in real time, while others are based on simulations.  

There should be a brief description of each video explaining the test being performed. 

https://www.linkedin.com/pub/blair-baldridge/b1/a2a/2b2  
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CHAPTER V  

 

CONCLUSION 

 

In this work it was shown that microphone array based security monitoring can be achieved even 

in the presence of multiple sound sources.  In the case that there is only one sound source audio 

recognition can be performed with just a single microphone, but in reality it is very possible that 

multiple sounds can appear at the same time.  It is also very possible that a sound might be 

considered normal from a specific location, but not from another location.  This leads to the need 

for a system that can separate simultaneously appearing sound sources, determine their location, 

and classify them.  In order to do this a microphone array is required.  Most of the work that is 

currently being done in the acoustic based security monitoring field is focused around 

classification, and recognizing the surrounding sound.  Very little work has been done that 

outlines the ability of these types of systems to handle the classification of simultaneously 

appearing sound sources. 

In this work there are three components to the microphone array based security monitoring 

method that is being proposed.  Audio recognition is the primary component of any acoustic 

based security monitoring system.  There has to be some ability to classify different sounds 

sources.  Since it is also important to separate the sound sources before the audio is classified, a 

localization algorithm along with the frost beamformer were respectively set as precursors to the 

audio recognition algorithm.   
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Each of the individual blocks of the proposed method work well both individually and together as 

a whole system.  The localization algorithm with a single source is able to maintain a RMSE 

(Root Mean Square Error) of around 2 degrees with a single sound source, and up to around 40 

degrees with a 3 sound sources.  The ME (Median Error) for a single sound source is around 2 

degrees and for three sound sources only jumps to 2.5 degrees.  The beamformer is able to 

separate individual sound sources from interfering signals while maintaining a high SIR (Signal 

to Interference Ratio).  The audio recognition algorithm for a single source used only the MFCCs 

as the extracted features.  This led to a precision of around 97.07%.  Later test results showed that 

MFCCs did not hold up as well as expected in the presence of interfering sound sources.  This led 

to the feature selection process being done again, but this time in the presence of interfering 

sound sources.  From this it was determined that SFMs, ZCRs, and MFCCs, were the best feature 

set to use.  The overall system with all of the blocks put together results in a precision of 97.5% 

for a single sound source, 82.85% for two sound sources, and 60.70% for three sound sources.  

The original radius that was going to be used for the full system was going to be 6cm.  In the end 

after testing was done having a radius of 6cm did not allow for enough variability from the true 

DOA.  In order to solve this problem the radius of the array was changed to 2cm to increase 

beamwidth. 

The precision from the above results show that it is very possible to create a microphone array 

security monitoring system.  Future work should focus on adding the idea of sensor fusion, to 

increase the precision of the system even more.  Imagine a room with multiple sensors scattered 

throughout in a grid pattern.  If every sensor knows the location of the other sensors an exact 

distance can be calculated to a specific sound source along with a Direction of Arrival.  Another 

benefit would be that based off of the localization specific sensors can be chosen to perform the 

beamforming, and audio recognition that are closer to the sound source.  The set of chosen 

sensors could then decide on the audio class based on multiple sensors versus the single system. 
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Future work should also focus on optimizing the beamformer array geometry based on the Power 

Spectral Density (PSD) of the incoming signal.  The beamformers performance at high and low 

frequencies partially depends on the radius of the circular array.  If there are multiple circular 

arrays at different radiuses it may be possible to actively change which circular array is used for 

beamforming based off of the incoming signals PSD.   

This work should just be considered a starting point.  Microphone Arrays have applications in 

many different fields such as Robotics, or Smart Home Design.  In the robotics field there are 

security monitoring methods that can be improved by the use of the suggested system.  A robot 

can be used to possibly investigate and be steered towards specific sound sources.  As people 

become more interested in smart homes and interconnecting all of their electronic devices, a need 

of a system that can properly recognize the surrounding environment becomes more prevalent.  

This is to show that microphone arrays have future not only in security monitoring, but in other 

highly advantageous applications as well. 
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