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CHAPTER 1

Introduction and Main Results

1.1 Overview of Main Topics

There are many forms of representation of a function by series or integrals. For

example, a function f analytic in a disk {z : |z − a| < R} of the complex plane can

be represented by its Taylor series

f(z) =
∞∑
k=0

ak (z − a)k .

A 2π-periodic function f of a real variable from the L2[0, 2π] space can be written as

its Fourier series

f(x) =
∞∑

k=−∞

cke
ikx. (1.1)

In addition to power and trigonometric systems, there are many other orthogonal

systems that can serve as bases for other expansions.

Let us note that the series on the right-hand side of (1.1) converges in L2-norm to

f . An immediate question is if it converges at least a.e. to the generating function f .

In 1966, L. Carleson [19] gave a positive answer to this question. In 1967, R. Hunt

[48] generalized this result for functions from Lp-spaces, p > 1.

Note that if f ∈ Lp[0, 2π], p ≥ 1, its Fourier coefficients

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx

are well defined. However, when p = 1, the Carleson-Hunt type result is not valid.

Moreover, in 1926, A. N. Kolmogorov constructed an example of a function from L1

whose Fourier series diverges everywhere [53].
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The same questions could be asked about convergence of the Fourier series in

norm. And the answer is: When 1 < p <∞, the partial sums
∑
|k|≤N cke

ikx converge

to f in Lp as N →∞. For p = 1,∞, norm convergence fails. For p = 1, an example

is again due to A. N. Kolmogorov.

Thus to approximate a periodic function from L1 by trigonometric polynomials,

we need a modification of the Fourier sums. Various methods of summation work

here. For example, it is known that if f ∈ Lp for 1 ≤ p <∞, then the Abel-Poisson

means
∑

k∈Z e
−2π|k|tcke

2πikx converge to f in Lp-norm as t → 0+. Another example

is the Bochner-Riesz means
∑
|k|<R

(
1− k2

R2

)α
cke

2πikx, α > 0, which converge to f as

R→∞. It is also known that for a continuous function f , convergence of the above

means is uniform. These summation methods are examples of Fourier multipliers.

Multipliers of Fourier series and integrals have been investigated and widely used

since 1923, when they were introduced by M. Fekete [30]. The idea is to introduce

some multiplicative factors λn into the Fourier series, i.e., to consider a modified

Fourier series

Λf ∼
∑
n∈Z

cnλne
2πinx

that has better properties than the original one. This approach has been success-

fully applied to problems of approximation theory, differential equations, numerical

analysis, etc., provided Λ defines a bounded linear operator on the corresponding

function space. The first effective sufficient condition for boundedness of Λ in Lp (T),

p ∈ (1,∞), and its applications, were found by J. Marcinkiewicz [62]. Later, for the

non-periodic case of multipliers of Fourier integrals, these conditions were obtained

by S. G. Michlin [63, 64] and L. Hörmander [45] (see also [85, Ch. IV]). The most in-

vestigated cases are p = 1, 2,∞, which is not a surprise. Employing the Riesz-Thorin

theorem, it is easy to transfer such results to the case p ∈ (1,∞). These results and

techniques became classical and are well described, e.g., in [86].

For p ∈ (0, 1), Lp (T) spaces are only pre-normed, and there are no linear continu-
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ous functionals, and no Fourier series in these spaces. This is the reason for considering

the Hp (D) spaces of functions analytic in the unit disk D = {z ∈ C : |z| < 1} and

having their boundary values in Lp (T). Namely, Hp (D) consists of all functions f

holomorphic in D, such that

‖f‖Hp :=

 supr∈[0,1)

(
1

2π

∫ 2π

0
|f (reit)|p dt

)1/p

, p ∈ (0,∞),

supz∈D |f(z)| , p =∞,
(1.2)

is finite. We often write Hp for Hp (D).

Any function f ∈ Hp (D), p > 0, has the Taylor series expansion in D. If p ≥ 1,

then the Taylor series coincides with the Fourier series of the non-tangential (or radial)

limit values of f on the unit circle. For 0 < p < 1, one can consider multipliers of

Taylor series instead of Fourier series. One special case of these multipliers, namely,

the Hadamard product of two functions, is considered in Chapter 2.

The disseration is structured as follows. In Section 1.2 and Chapter 2, we investi-

gate the Hadamard product of two analytic or harmonic functions as a linear operator

acting between Hardy spaces (Hp to Hq), with p, q ≥ 1. We also obtain estimates

for the norm of this operator in Bergman spaces of analytic or harmonic functions,

as well as consider the case of the operator acting from Hardy to Bergman spaces.

For the Hadamard product operator acting from Hp to Hp with p < 1, the esti-

mates like those obtained in Theorem 1.2.1 are not valid. In fact, dependence on p

becomes crucial (see Theorem 2.2.1 in Section 2.2), and the constants blow up when

p approaches 0. Since this is unavoidable for analytic functions, we restrict our atten-

tion to polynomials. In Section 1.3 and Chapter 3 we obtain estimates for the Mahler

measure of the Hadamard product of two polynomials (Mahler measure is a limiting

case for the Hp-pre-norms when p → 0+). A sharp estimate we obtain is also used

to get corresponding estimates in Hp-norm/pre-norm. The aforementioned estimates

are also used for proving some sharp inequalities. For example, estimates for the odd

and even parts of a polynomial in Hp pre-norm (p < 1) are derived in Section 3.2.
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In Section 1.4 and Chapter 4, we study multipliers of Fourier integrals acting

between the Hardy spaces Hp (TΓ) and Hq (TΓ), where 0 < p ≤ q ≤ 1 and TΓ ⊂ Cn

is a tube over an open cone Γ ⊂ Rn (for precise definitions, see Section 1.4). We

obain efficient sufficient conditions for the multipliers, which in some cases are also

necessary. One of the most interesting cases is that of radial kernels. In particular,

we obtain the critical index for the Bochner-Riesz means of Fourier integrals, i.e., the

index when they define a bounded linear operator from Hp (TΓ) to Hq (TΓ).

Note that for p ≥ 1, there is no difference between multipliers in Hp and in Lp since

these spaces could be identified. Moreover, for p ≥ 1, the conditions for multipliers

of Fourier integrals and Fourier series are the same in view of the well-known result

due to K. de Leeuw.

Despite the fact that the conditions we obtained work for 0 < p ≤ q ≤ 1, it is

possible to derive more general results, for 0 < p ≤ q ≤ ∞, using a proper ”scaling

of powers”. Such a technique is used in Section 4.3, where we obtain Bernstein-type

and Nikol’skĭı-type inequalities for entire functions of exponential type.

Section 1.5 and Chapter 5 are devoted to the Riesz decomposition for super-

polyharmonic functions in Rn. This decomposition generalizes the one recently dis-

covered by K. Kitaura and Y. Mizuta [52] for super-biharmonic functions.

As a general principle, Sections 1.2 – 1.5 contain the main definitions and some

of the main results. Detailed explanations, other results, proofs, and more historical

references are postponed to the forthcoming chapters.

The main results of the dissertation are published in [99, 100, 101, 102], and also

[103], which is submitted for consideration for publication and had been still under

consideration at the time of the thesis preparation.
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1.2 Hadamard Product in Hardy and Bergman Spaces

The Hadamard Product, or the Hadamard Convolution, of two harmonic functions f

and g in D:

f
(
reiθ
)

=
∞∑

n=−∞

anr
|n|einθ, g

(
reiθ
)

=
∞∑

n=−∞

bnr
|n|einθ, r ∈ [0, 1), θ ∈ R,

is defined by

(f ∗ g)
(
reiθ
)

=
∞∑

n=−∞

anbnr
|n|einθ, r ∈ [0, 1), θ ∈ R. (1.3)

If we fix one of the functions, say, f , we can consider the Hadamard product as

a linear operator f∗ on a space of harmonic (or analytic) functions in D. Thus, one

can think about it as a coefficient multiplier that introduces coefficients an into the

series decomposition of g:

f∗ :
∞∑

n=−∞

bnr
|n|einθ 7→

∞∑
n=−∞

anbnr
|n|einθ.

There are many results devoted to coefficient multipliers in various function spaces

(see e.g., [26, 107, 94], [27, Ch. 3, § 3.4]). We restrict our attention to the case when

the an’s are taken from the Fourier series of f .

As usual, hp = hp (D) denotes the Harmonic Hardy Space, i.e., the set of all

functions f harmonic in D, such that

‖f‖hp :=

 supr∈[0,1)

(
1

2π

∫ 2π

0
|f (reit)|p dt

)1/p

, p ∈ (0,∞),

supz∈D |f(z)| , p =∞,
(1.4)

is finite. Let us note that the holomorphic Hardy space Hp is a subset of hp in view

of (1.2). We also consider Hardy spaces in a disk of an arbitrary radius R > 0:

DR := {z ∈ C : |z| < R} .

The corresponding Hardy spaces Hp (DR), p ∈ (0,∞], consist of all functions f holo-

morphic in DR, such that

‖f‖Hp(DR) :=

 supr∈[0,R)

(
1

2π

∫ 2π

0
|f (reit)|p dt

)1/p

, p ∈ (0,∞),

supz∈DR |f(z)| , p =∞,
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is finite. We will use them in Section 2.2.

Following [27], for 0 < p < ∞, the Bergman Space Ap = Ap (D) consists of all

functions f analytic in D, for which

‖f‖Ap =

(∫
D
|f(z)|p dσ(z)

)1/p

=

(
1

π

∫ 2π

0

∫ 1

0

∣∣f (reiθ)∣∣p r dr dθ)1/p

<∞. (1.5)

(Here and in the sequel, dσ(z) denotes the Lebesgue area measure in D normalized

by the condition σ(D) = 1.)

The Harmonic Bergman Spaces ap = ap (D) consist of functions f harmonic in D,

such that ‖f‖ap given by the same expression as in (1.5) is finite (see [6, Ch. 8]).

If T is a bounded linear operator mapping a space X into a space Y (normed or

pre-normed), we will use the notation T ∈ L (X, Y ).

The results of this section (and Chapter 2) were motivated by Theorem 4.2.6 of

the monograph [82] by T. Sheil-Small, which states that if F is any harmonic function

in D, then the Hadamard product operator F∗ it defines has the operator norm

‖F∗‖h∞→h∞ = ‖F‖h1 . (1.6)

In fact, the operator F∗ of h1 into h1 also has the same norm (see Theorem 1.2.1 (c)

below). However, if we replace the harmonic Hardy space h∞, or h1, by their holo-

morphic visa-vis, H∞, and H1, respectively, then (1.6) is no longer true (see Propo-

sition 1.2.1).

The following theorem is a generalization of Theorem 4.2.6 from [82].

Theorem 1.2.1 (a) For 1 ≤ p ≤ q ≤ ∞, and F ∈ hq/p (D), the operator F∗ ∈

L (hp, hq) with the norm at most ‖F‖hq/p (assuming q/p = 1 if p = q =∞). Moreover,

for any function g harmonic in D, and r ∈ [0, 1),(
1

2π

∫ 2π

0

∣∣(F ∗ g)
(
reit
)∣∣q dt)1/q

≤

‖F‖hq/p
(

1

2π

∫ 2π

0

∣∣g (reit)∣∣p dt)1/p

, 1 ≤ p ≤ q <∞, (1.7)

6



max
θ∈R

∣∣(F ∗ g)
(
reiθ
)∣∣ ≤ ‖F‖h∞ ( 1

2π

∫ 2π

0

∣∣g (reit)∣∣p dt)1/p

, 1 ≤ p <∞, (1.8)

and

max
θ∈R

∣∣(F ∗ g)
(
reiθ
)∣∣ ≤ ‖F‖h1 max

θ∈R

∣∣g (reiθ)∣∣ . (1.9)

(b) If F is a positive harmonic function, and F∗ ∈ L (hp, hp) for some p ∈ [1,∞],

then F ∈ h1 (D), and

‖F‖h1 = ‖F∗‖hp→hp .

Thus, F∗ ∈ L (hp, hp) for all p ∈ [1,∞], and the operator norm does not depend on

p.

(c) If F ∈ h1 (D) then

‖F ∗ ‖h1→h1 = ‖F ∗ ‖h∞→h∞ = ‖F‖h1 .

Remark 1.2.1 If p ≥ q then Hölder’s inequality implies hp ⊂ hq, and ‖f‖hq ≤ ‖f‖hp.

Thus, Theorem 1.2.1 applied with p = q yields ‖F ∗ g‖hq ≤ ‖F ∗ g‖hp ≤ ‖F‖h1‖g‖hp,

whence ‖F ∗ ‖hp→hq ≤ ‖F‖h1. For a positive harmonic F , and g(z) ≡ 1, the mean-

value property implies ‖F ∗ g‖hq = F (0) = ‖F‖h1. Hence, ‖F ∗ ‖hp→hq = ‖F‖h1 in

this case. Considering aforementioned, the only interesting case is when p ≤ q.

Parts (a) and (b) of Theorem 1.2.1 could be restated for holomorphic function g

to give estimates of F∗ acting from Hp to Hq (and, in fact, for p = q = 1 the result

follows immediately from the estimate for q-means proven by M. Pavlović in [72]).

However, Part (c) has no holomorphic analogue because of the following result:

Proposition 1.2.1 For any M > 0, there exists a function F ∈ H1 (D) such that

‖F∗‖Hp→Hp = 1, ∀p ∈ [1,∞],

but ‖F‖H1 > M .

Other results of Chapter 2 deal with the Hadamard product operator in Bergman

spaces, and from Hardy to Bergman spaces.
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1.3 Mahler Measure of the Hadamard Product of Two Polynomials

The estimates of the previous section become more specific if we consider polynomials

instead of general analytic or harmonic functions. As we already mentioned, an

estimate of the form

‖F∗‖Hp→Hp ≤ C

where C does not depend on p < 1 is not valid. The reason is that the operator

F∗ becomes unbounded as an operator on the ”space of Mahler measure” H0 (see

below), which is a limiting case for Hp as p→ 0+. Considering polynomials helps to

explain the reason for this, and to obtain some unexpected inequalities.

For a function f holomorphic in the unit disk D, its Mahler Measure is defined

by

‖f‖H0 := exp

(
sup
r∈[0,1)

1

2π

∫ 2π

0

ln
∣∣f (reit)∣∣ dt) .

Note that if f ∈ Hp0 (D), for some p0 > 0, then ‖f‖H0 = limp→0+ ‖f‖Hp .

For n ∈ Z+, let Cn[z] denote the set of all polynomials in the complex variable z

with complex coefficients of degree at most n.

So, for a polynomial P ∈ Cn[z], we have

‖P‖H0 := exp

(
1

2π

∫ 2π

0

ln
∣∣P (eit)∣∣ dt) .

The Mahler measure has proven to be an efficient tool in obtaining sharp inequalities

for polynomials. For example, K. Mahler [60] proved that if P (z) =
∑n

k=0 akz
k, then

|ak| ≤
(
n
k

)
‖P‖H0 . Obtaining Bernstein’s inequality in Hardy spaces Hp:

‖P ′‖Hp ≤ n ‖P‖Hp ,

had been a difficult problem for p < 1 (see, e.g. [50, 90]). In an important paper

[17], N. G. de Bruijn and T. A. Springer proved that if deg(P ) ≤ n, then ‖P ′‖H0 ≤

n ‖P‖H0 . This was a corollary of a much more powerful result ([17, Theorem 7]),
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which is also a cornerstone for our considerations. For more historical remarks, see

Chapter 3.

It is clear that ‖ · ‖H0 is not a norm or even a pre-norm (the triangle inequality

fails even in a weak form). However, it has an important multiplicative property

‖PQ‖H0 = ‖P‖H0‖Q‖H0 . (1.10)

Furthermore, if P (0) 6= 0 and has zeros {αk}, then Jensen’s formula implies that

‖P‖H0 =
|P (0)|∏
|αk|<1

|αk|
.

Using the multiplicative property (1.10) for a polynomial P (z) =
∑n

k=0 akz
k of degree

exactly n, we obtain

‖P‖H0 = |an|
∏
|αk|>1

αk. (1.11)

(As usual, if a product is empty, we assume its value is 1.)

In [17], N. G. de Bruijn and T. A. Springer obtained several sharp results on

a different kind of product of two polynomials – the Schur-Szegő product. This

product is well studied because it enjoys a very powerful apolarity property, that is

not available for the Hadamard product. Fortunately, it is possible to reduce the

Hadamard product to the Schur-Szegő product and obtain the sharp estimates we

need.

The Schur-Szegő Product of R(z) =
n∑
k=0

(
n
k

)
rkz

k and W (z) =
n∑
k=0

(
n
k

)
wkz

k is

given by

(R ∗S W ) (z) :=
n∑
k=0

(
n

k

)
rkwkz

k.

Note that

(R ∗S W ) (z) = (R ∗W ∗ L) (z),

where L(z) =
∑n

k=0

(
n
k

)−1
zk.

It follows immediately from [17, Theorem 7] that for two polynomials R and W ,

‖R ∗S W‖H0 ≤ ‖R‖H0‖W‖H0 . (1.12)

9



Clearly, this inequality is sharp. Taking, for example, W0(z) = (1 + z)n =∑n
k=0

(
n
k

)
zk, we obtain ‖R ∗S W0‖H0 = ‖R‖H0‖W0‖H0 , for any polynomial R ∈ Cn[z].

Using the proof of [17, Theorem 7], V. V. Arestov [3] obtained sharp estimates

for the Schur-Szegő product in more general spaces. In particular, they are valid in

any Hp, p ∈ [0,∞]. Specifically, [3, Theorem 1] implies that for any two polynomials

R,W ∈ Cn[z],

‖R ∗S W‖Hp ≤ ‖R‖H0 ‖W‖Hp , 0 ≤ p ≤ ∞. (1.13)

Using (1.13), we obtained a sharp estimate for the Hadamard product. The main

result of Chapter 3 is given by the following statement.

Theorem 1.3.1 (a) For any polynomials P and Q of degree at most n with complex

coefficients, the following estimate holds:

‖P ∗Q‖Hp ≤ ‖Θn‖H0 ‖P‖H0 ‖Q‖Hp , 0 ≤ p ≤ ∞, (1.14)

where

Θn(z) :=
n∑
k=0

(
n

k

)2

zk.

For p = 0, equality in (1.14) is achievable, e.g., taking P (z) = Q(z) = (1 + z)n.

(b) ‖Θn‖H0 ≤ 4n, for every n ∈ N, and

lim
n→∞

‖Θn‖1/n

H0 = exp

(
4G

π

)
≈ 3.20991230072 · · · , (1.15)

where G is Catalan’s constant and G =
∑∞

m=0
(−1)m

(2m+1)2 ≈ 0.915965594177219 · · · .

Moreover, there is an absolute constant a > 0 such that∣∣∣∣ln ‖Θn‖1/n

H0 −
4G

π

∣∣∣∣ ≤ a
ln2 n

n
, n ≥ 2. (1.16)

It is an interesting fact that the constant in (1.15) has already appeared in some

sharp estimates unrelated to the Hadamard product. For example, P. B. Borwein

considered factoring polynomials on [−1, 1] into products of polynomials of smaller

degrees, and got the same constant in the estimate of the product of uniform norms
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of two factors [11, Corollary 1]. Later, I. E. Pritsker [74] considered the problem of

the best constant ME in the inequality

m∏
k=1

‖pk‖C(E) ≤ (ME)n ‖p‖C(E) ,

where pk’s are some complex polynomials, p(z) =
∏m

k=1 pk(z), and n = deg(p). It was

shown in [74, § 3.2] (see also [75]) that for E = [−1, 1], ME is exactly the constant

we obtained in (1.15).

1.4 Multipliers of Fourier Integrals

Multipliers of Fourier integrals have the same motivation as multipliers of Fourier

series. Now, the multiplicative factor is some Lebesgue measurable function. For a

function f with Fourier transform f̂ , we can consider the linear operator defined in

the following way

Fϕ [f ] (x) =

∫
Rn
ϕ (t) f̂ (t) e2πi(x,t) dt,

where (x, t) denotes the usual inner product of two vectors in Rn.

Owing to the K. de Leeuw theorem [56], the case of multipliers for Fourier integrals

in Lp (Rn), p ∈ [1,∞], may be reduced to the case of multipliers of Fourier series in

Lp (Tn). A detailed explanation of this fact and related results could be found in [86,

Ch. VII, § 3].

For p ∈ (0, 1), the situation is quite different. We need to investigate the multi-

pliers for Fourier integrals separately. Moreover, as in the case of series’ multipliers,

one needs to study the Hardy spaces Hp instead of Lp. For the univariate case, it is

Hp in the upper half-plane. Several useful sufficient conditions for such multipliers

were obtained by A. A. Soljanik in [84]. They were also successfully applied to ob-

taining several two-sided estimates of approximation of a function by some means of

its Fourier integrals.
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Several efficient conditions for multipliers of Fourier series in Hp spaces in polydisk

Dm, and their applications to various problems of approximation theory, were obtained

by R. M. Trigub in [94]. Later, the results of [94] were extended to the case of Hp

spaces in the Reinhardt domains by Vit. V. Volchkov [105]. We will also use some

crucial ideas of the proofs of [94].

Let B be an open set in Rn, n ∈ N. Following [86, Chapter III], the tube with

base B is

TB = {z ∈ Cn, z = x+ iy : x ∈ Rn, y ∈ B} .

Despite the fact that this definition is related to an open set B, we will also use

the same notation for not necessarily open B when proving some technical results in

Section 4.1. We will also use the notation Eo for the interior of a set E.

A nonempty open set Γ ⊂ Rn is called an open cone in Rn if 0 /∈ Γ and whenever

x, y ∈ Γ and α, β > 0, the linear combination αx + βy ∈ Γ. The closure of an open

cone is called a closed cone.

For any open cone Γ, the set

Γ∗ = {x ∈ Rn : (x, t) ≥ 0, ∀t ∈ Γ}

is closed. If Γ∗ has nonempty interior, then it is a closed cone, and Γ is called a

regular cone. The closed cone Γ∗ is called the cone dual to Γ.

It is obvious that in the univariate case, the only possible open cones are (0,∞) and

(−∞, 0), which are also regular. Their dual cones are [0,∞) and (−∞, 0], respectively.

For n = 2, open cones are sectors of angular measure at most π. If the angle is strictly

less than π, then we have a regular cone.

A holomorphic in TB function belongs to the Hardy space Hp (TB), p ∈ (0,∞], if

‖f‖Hp := ‖f‖Hp(TB) :=

 supy∈B
(∫

Rn |f (x+ iy)|p dx
)1/p

, p ∈ (0,∞) ,

supz∈TB |f (z)| , p =∞,
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is finite. It is clear that the latter expression defines a norm in Hp (TB) for p ∈ [1,∞],

and a pre-norm for p ∈ (0, 1).

We will also use the following notation fy (·) := f (·+ iy), y ∈ B. Using it, we have

‖g‖Hp(TB) = supy∈B ‖fy‖p, where ‖·‖p is a standard norm (or pre-norm) in Lp (Rn).

Since the general case of an arbitrary open set B is too cumbersome and heavily

dependent on the geometry of B even for H2 (TB) (see, e.g., [86, Ch. III, § 2]), it is

reasonable to restrict the investigation to the case of an open cone Γ.

If f ∈ L1 (Rn), its Fourier transform is defined by

f̂ (ξ) =

∫
Rn
f (t) e−2πi(ξ,t) dt, ξ ∈ Rn.

We will also use the following notation f̃ (ξ) := f̂ (−ξ).

For a function from Hp (TΓ), p ∈ [1,∞), its Fourier transform may be defined as

an Lp Fourier transform of a limit function, the existence of which is guaranteed by

Theorem 5.6 in [86, Ch. III, § 5]. For p < 1 and a general cone, it does not work,

and we need to consider the limit function using tempered distributions. First of all,

we need the following statement, which follows from the proof of [86, Ch. III, § 2,

Lemma 2.12].

Lemma 1.4.1 ([95, Lemma 1]) Let Γ be an open cone in Rn, p ∈ (0,∞], and

q ∈ [p,∞]. If f ∈ Hp (TΓ), then for any δ ∈ Γ, we have fδ ∈ Hq (TΓ) and

‖fδ‖Hq ≤
(

Ωn

Ω2n

) 1
p
− 1
q

D
−n( 1

p
− 1
q )

δ,Γ ‖f‖Hp ,

where Ωm is the volume of the unit ball in Rm, i.e., Ωm = πm/2/Γ (m/2 + 1), and

Dδ,Γ = dist (δ,Rn \ Γ).

The following result is in fact a modification of Lemma 4 from [29].

Theorem 1.4.1 ([95, Th. 1]) Let Γ be an open cone in Rn, p ∈ (0, 1], and f ∈

Hp (TΓ). Then the limit limt→0,t∈Γ f (x+ it) exists in the sense of tempered distri-

butions, i.e., there exists a tempered distribution L, such that for any test function

13



ϕ,

lim
t→0,t∈Γ

∫
Rn
f (x+ it)ϕ(x) dx = L (ϕ) .

Moreover, the Fourier transform of the tempered distribution L is a regular tempered

distribution generated by an ordinary function given by the formula (the right-hand

side does not depend on δ ∈ Γ):

f̂0 (ξ) = e2π(ξ,δ)f̂δ (ξ) , ξ ∈ Rn,

where f̂δ is the classical Fourier transform of the function fδ (x).

Lemma 1.4.1 implies fδ ∈ L1 (Rn), which means that f̂0 is well-defined. Let us

also note that for p = 1, our f̂0 coincides with the classical Fourier transform of the

limit function f (x) = limζ→0, ζ∈Γ fζ (x).

Therefore, the following definition of the Fourier transform is justified.

Definition 1.4.1 The Fourier transform of a function f ∈ Hp (TΓ), p ∈ (0, 1], is

defined by

f̂ (ξ) = e2π(ξ,δ)f̂δ (ξ) , ξ ∈ Rn (δ ∈ Γ − arbitrary). (1.17)

Furthermore, if f ∈ Hp (TΓ) for some p ∈ (0, 1], then the following inversion

formula holds true (see [95])

f (z) =

∫
Γ∗
f̂ (t) e2πi(z,t) dt, z ∈ TΓ. (1.18)

Therefore, for any p ∈ (0, 1], the space Hp (TΓ) contains nonzero functions if and

only if the cone Γ is regular (in fact, this is true for p ∈ (0,∞) since f ∈ Hp implies

(f)[p]+1 ∈ Hs with s = p/ ([p] + 1) ∈ (0, 1]). So, we will investigate only the case of a

regular cone.

Since there are no nontrivial translation-invariant linear bounded operators from

Hp (TΓ) to Hq (TΓ), p > q (see [96, Theorem 2]), we also assume p ≤ q.
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Definition 1.4.2 Let Γ be a regular cone in Rn, n ∈ N. A Lebesgue measurable

function ϕ : Γ∗ → C is called a multiplier from Hp (TΓ) to Hq (TΓ) (notation: ϕ ∈

Mp,q (TΓ)), 0 < p ≤ q ≤ 1, if for any function f ∈ Hp (TΓ), the function ϕf̂ coincides

almost everywhere on Γ∗ with the Fourier transform of a function Fϕ [f ] ∈ Hq (TΓ),

and

‖ϕ‖Mp,q(TΓ) := sup
‖f‖Hp 6=0

‖Fϕ [f ]‖Hq

‖f‖Hp

<∞.

It follows immediately from (1.18) that the function Fϕ [f ] is defined uniquely as

Fϕ [f ] (z) =

∫
Γ∗
ϕ (t) f̂ (t) e2πi(z,t) dt, z ∈ TΓ.

Our first theorem in this section deals with the case of a compactly supported

multiplier only. In fact, the most popular kernels are radial and compactly supported.

Our theorem is sharp in this case (see Theorems 4.2.1 and 4.2.2 in Chapter 4).

Theorem 1.4.2 Let Γ be a regular cone in Rn, n ∈ N. Assume that a function

ϕ ∈ C (Rn) satisfies suppϕ ⊂ [−σ, σ]n for some σ > 0. If ϕ̂ ∈ Lq (Rn) for some

q ∈ (0, 1], then ϕ ∈Mp,q (TΓ) for any p ∈ (0, q], and

‖ϕ‖Mp,q(TΓ) ≤
γ (n, p, q)

(Vn (Γ))1/p−1
σn(1/p−1) ‖ϕ̂‖q , (1.19)

where

γ (n, p, q) = 2n(
2
p

+ 1
q
−2)

(
π
n
2 nn(

1
2

+ 1
q )

Γ
(
n
2

+ 1
) ) 1

p
−1( ∞∑

m=0

1

(m!)q

) 1
q

.

Here and in the sequel, by γ, we denote some positive constants depending only on

the parameters in parentheses. The following geometric characteristics of the cone Γ

is also used throughout the thesis:

Vn (Γ) =
1

n!
max



∣∣∣∣∣∣∣∣∣∣
det


a11 . . . an1

...
. . .

...

a1n . . . ann


∣∣∣∣∣∣∣∣∣∣

: a1, . . . , an ∈ Γ, |a1| = · · · = |an| = 1


(1.20)
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(here akl denotes the l-th component of the vector ak). Geometrically, Vn (Γ) is the

maximum possible volume of a simplex that could be built on n unit vectors contained

in Γ.

It is worth noting that the requirement ϕ̂ ∈ Lq (Rn) is essential and in some cases

is also necessary (see Theorems 4.2.1 and 4.2.2 in Chapter 4).

It is also possible to avoid the restriction that ϕ has to be compactly supported.

We can require some smoothness instead. Using the method from [94], we can decom-

pose our function into a sum of compactly supported functions whose Fourier trans-

forms are in Lq (Rn). Owing to the Local Property of a multiplier (Lemma 4.2.1),

this approach seems very natural. The result is given by the following statement

Theorem 1.4.3 Let Γ be a regular cone in Rn, n ∈ N, and q ∈ (0, 1].

(a) If ϕ ∈ Cr (Rn) for some natural r > n
(

1
q
− 1

2

)
, and for some p ∈ (0, q],

α, β ≥ 0, the inequalities

|ϕ (x)| ≤ A

1 + |x|α
;

n∑
j=1

∣∣∣∣∂rϕ∂xrj (x)

∣∣∣∣ ≤ B

1 + |x|β
, ∀x ∈ Rn,

min {β − α− r, 0}+
2qrα

n (2− q)
− 2rq

2− q

(
1

p
− 1

q

)
> 0,

hold true, then ϕ ∈Mp,q (TΓ), and

‖ϕ‖Mp,q(TΓ) ≤
γ (n, p, q, r, α, β)

(Vn (Γ))1/p−1
(A+B) .

In particular, if α = β > n
(

1
p
− 1

2

)
, then ϕ ∈Mp,q (TΓ).

(b) Suppose that ϕ ∈ Cs (Rn) for s =
[
n
q
− n+1

2

]
, and suppϕ ⊂ [−1, 1]n. If

max
j=1,...,n

sup
tj 6=0

sup
x∈Rn

∣∣∣∂sϕ∂xsj
(x1, . . . , xn)− ∂sϕ

∂xsj
(x1, . . . , xj−1, xj + tj, xj+1, . . . , xn)

∣∣∣
|tj|α

<∞,

for some α > n
q
− n+1

2
− s, and for any j = 1, . . . , n, the segment [−1, 1] could be

split into finite number of segments (bounded with regard to the rest of variables) such

that, on any of these segments, the real and imaginary parts of ∂sϕ
∂xsj

(as functions of

xj) are convex or concave, then ϕ ∈Mp,q (TΓ) for any p ∈ (0, q].
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Recent work of Y. Heo, F. Nazarov and A. Seeger [42, 43] is devoted to Fourier

multipliers in Lp (Rn), p ≥ 1, and Lorentz spaces. The main results of their articles

are efficient estimates for the norms of Fourier multipliers from Lp to Lp and to

Lorentz spaces Lp,ν . The authors deal with general radial kernels. One of the most

popular applications of these results is the Bochner-Riesz means.

Employing the above results, we answer the question: When the Bochner-Riesz

means of the Fourier integral

Rr,α
h (f ; z) =

∫
|x|≤1/h

f̂ (x)
(
1− h2r |x|2r

)α
e2πi(z,x) dx, z ∈ TΓ,

define a bounded linear operator from Hp (TΓ) to Hq (TΓ)?

Let us note that in Lp, with 1 ≤ p ≤ ∞, the Bochner-Riesz means are investi-

gated well (see, e.g., [20], [57], [21, Ch. 5], or [86, Ch. IV, § 4; Ch. VII, § 5]). For

approximation of functions in Hp spaces, 0 < p ≤ 1, by their Bochner-Riesz means

see, e.g., [84, § 3], [94, § 2], [95, § 4]. In our case, the following statement holds true.

Proposition 1.4.1 Let Γ be a regular cone in Rn, n ∈ N. Assume α > 0, r ∈ N,

and 0 < p ≤ q ≤ 1. The function

ϕr,α (x) :=


(
1− |x|2r

)α
, |x| ≤ 1,

0, |x| > 1,

belongs to Mp,q (TΓ) if and only if

α >
n

q
− n+ 1

2
.

It may seem surprising, that the critical index does not depend on p. However,

this is easily justified by Theorem 4.2.2.

It is interesting to find the critical index for Bochner-Riesz means for the case of

fractional powers r. Unfortunately, the proof of Proposition 1.4.1 does not work since

in that case, ϕr,α looses its smoothness at the origin.
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To show that the obtained sufficient conditions are relatively sharp, we provide

careful investigation of the local behavior of multipliers. Special attention is paid to

compactly supported radial functions. One of the tools here is non-increasing rear-

rangements. In particular, we prove Lemma 4.1.7 that generalizes the following well-

known equality
∫
Rn |f (x)|p dx =

∫∞
0

(f ∗ (t))p dt, where f ∗ denotes the non-increasing

rearrangement of f . Another auxiliary result – Nikol’skĭı type inequality given by

Proposition 4.1.1 – is of an independent interest.

Moreover, in Chapter 4, we obtain Bernstein and Nikol’skĭı type inequalities for

entire functions of exponential type belonging to a Hardy spaceHp (TΓ) (see Theorems

4.3.2 and 4.3.3).

1.5 Riesz Decomposition for m-Superharmonic Functions in Rn

We complete the thesis with a result on Riesz Decomposition for super-polyharmonic

functions. Despite the fact that some books on Potential Theory do not emphasize

this, such type of problems have strong relation to Harmonic Analysis. Let us start

with the classical Laplacian ∆f =
∑n

j=1
∂2

∂x2
j
f . If the function f is sufficiently smooth,

then the Fourier transform of ∆f is ∆̂f (y) = −4π2 |y|2 f̂(x). Furthermore, for m ∈ N,

∆̂mf (y) =
(
−4π2

)m |y|2m f̂(y). (1.21)

It is also known (see, e.g., [55, Ch. 1, § 1, Formula (1.1.1)]) that for n ≥ 2 and

α < n/2,

|̂x|α−n (y) =
π
n
2
−αΓ

(
α
2

)
Γ
(
n−α

2

) |y|−α . (1.22)

Relations (1.21) and (1.22) suggest two important ideas. The first one is to replace

2m (or m) in (1.21) by a fractional α. To make this idea suitable for a wide range

of functions f , it is also conceivable to consider (1.21) in distributional sense. This

leads us to the notion of distributional Laplacian
∫
f(x) (−∆)m ϕ (x) dx (see below).
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The second idea is that if f̂ could be written in the form

f̂ (y) = cm,n ((−∆)m f)̂(y) ̂|x|2m−n (y) ,

where

cm,n :=
Γ
(
n
2
−m

)
4mπ

n
2 Γ (m)

,

then f must be the convolution of cm,n |x|2m−n and (−∆)m f (or a measure related

to (−∆)m f). This idea (even with fractional α instead of 2m) is developed in [55,

Ch. 1]. In fact, this motivation is a good starting point for considering the Riesz

decomposition from the point of view of Harmonic Analysis.

In this section, we will assume 2m < n, and hence1

cm,n =

(
2m−1(m− 1)!σn

m−1∏
j=0

(n− 2m+ 2j)

)−1

, (1.23)

where σn is the surface measure of the unit sphere in Rn, i.e.,

σn =
2πn/2

Γ
(
n
2

) .
There are several equivalent definitions of a superharmonic function on an open

subset Ω ⊂ Rn (see, e.g., [40, Ch. 2], [4, Ch. 3], [46, Ch. III]). Let us mention the

most popular two.

Definition 1.5.1 ([4, § 3.1]) A function s : Ω → [−∞,∞) is called subharmonic

on Ω if:

(i) s is upper semicontinuous on Ω,

(ii) s(x) ≤ M(s;x, r) whenever the closure of a ball B(x, r) centered at x and of

radius r is contained in Ω; here, M(s;x, r) denote the normalized spherical means of

s over the spheres S (x, r) of radius r centered at x:

M(s;x, r) =
1

σnrn−1

∫
S(x,r)

f(y) dσ(y),

1In fact, equality (1.22) is valid for α = 2m < n+1
2 . Nevertheless, we will use formula (1.23) as

the definition of cm,n for 2m < n.
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where dσ is the surface measure in Rn;

(iii) s 6≡ −∞ on each component of Ω.

(Note that the last condition is sometimes omitted.)

Definition 1.5.2 ([46, § 3.2]) A function s : Ω→ [−∞,∞) is called subharmonic

on Ω if:

(i) s is upper semicontinuous on Ω,

(ii) for every compact subset K of Ω and every every continuous function h on K

which is harmonic in the interior of K, if the inequality s ≤ h holds on ∂K, it holds

in K.

A function u : Ω → (−∞,+∞] is called superharmonic on Ω if −u is subharmonic

on Ω. The set of functions subharmonic on Ω is denoted by S (Ω), and the class of

superharmonic functions by SH (Ω).

Let us note that if s ∈ C2 (Ω), then it is subharmonic if and only if its Laplacian

∆s is non-negative in Ω. Moreover, for an arbitrary s ∈ S (Ω), and an open subset ω

such that ω ⊂ Ω, there exists a decreasing sequence of functions sk ∈ S(ω) ∩ C∞(ω)

convergent to s pointwise on ω (see, e.g., [4, Th. 3.3.3]). In fact, the sequence sk is

constructed explicitly as a convolution of s and some fixed smooth function. This

result and Green’s formula suggest to consider Laplacian in the distributional sense

to give an equivalent definition of a subharmonic function.

For an open set Ω ⊂ Rn, we use C0 (Ω) to denote the vector space (over R) of all

real-valued functions continuous on Ω and having compact support in Ω. Further-

more, C∞0 (Ω) := C0 (Ω) ∩ C∞ (Ω). 2

2Some textbooks, e.g., [31] use another notation, namely, Cc (Ω) and C∞
c (Ω), respectively. The

ones with index 0 are used to denote corresponding spaces of functions vanishing at infinity, not

necessarily compactly supported. However books on Potential Theory use C0 (Ω) and C∞
0 (Ω), as

we do.

20



Definition 1.5.3 ([4, § 4.3]) Let Ω be an open subset of Rn. If u : Ω→ [−∞,+∞]

is locally integrable on Ω, then the linear functional

Lu(ϕ) :=

∫
Ω

u(x)∆ϕ(x) dx, ϕ ∈ C∞0 (Ω) , (1.24)

is called the distributional Laplacian of u.

Using Green’s formula, it is easy to conclude (see, e.g., [4, § 4.3]) that if u ∈ C2 (Ω),

then Lu(ϕ) =
∫

Ω
ϕ(x)∆u(x) dx. Furthermore, if s ∈ S (Ω), then Ls is a positive linear

functional on C∞0 (Ω), and there is a unique measure µs on Ω, such that

a−1
n Ls(ϕ) =

∫
ω

ϕ(x) dµs(x), ϕ ∈ C∞0 (Ω) ,

where an = σn max{1, n− 2}. The measure µs is called the Riesz measure associated

with s. For a superharmonic function u, the Riesz measure is defined to be the

one associated with the subharmonic function −u. In both cases, Riesz measure is a

non-negative measure. This measure characterizes a subharmonic (or superharmonic)

function. Namely, if u, v ∈ S (Ω), (or SH (Ω)) are such that Lu = Lv on C∞0 (Ω),

then u− v is harmonic in Ω (see, e.g., [40, Ch. 3, Lemma 3.7]).

The Riesz Decomposition Theorem in various forms and for various underlying

sets could be found in any book on Potential Theory (see, e.g., [4, Th. 4.4.1]). We

cite it from [40, Ch. 3, Th. 3.9] (see Theorem 1.5.1 below). The classical definition

of the potential of a finite and compactly supported Borel measure µ in Rn, n ≥ 2, is

given by (see, e.g., [4, Ch. 4, § 4.2])

Uµ(x) =

∫
Rn
K(x− y) dµ(y),

where

K(x) =

 − log |x|, n = 2,

|x|2−n, n ≥ 3.

We will also consider potentials with slightly different kernels, and the measure µ

does not have to be finite or compactly supported.
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Theorem 1.5.1 (Riesz Decomposition Theorem, ’Local Version‘) Let u be

superharmonic in a domain D ⊂ Rn, n ≥ 2, and u 6≡ ∞. Then there exists a

unique Borel measure µ in D, such that for any compact subset E ⊂ D,

u(x) =

∫
E

K(x− y) dµ(y) + hE(x),

where hE is harmonic in the interior of E.

There are several versions of the Riesz Decomposition Theorem for functions su-

perharmonic in a ball, half-space, etc. (see, e.g., [4, Ch. 4, § 4.4]). However, we are

interested in generalizations of the following global type of result (see, e.g., [55, Ch. I,

§ 5, Ths. 1.24 and 1.25]).

Theorem 1.5.2 (Riesz Decomposition Theorem, ’Global Version‘) Suppose

u is superharmonic in Rn, n ≥ 3. Then, there is a harmonic function h in Rn

such that

u(x) = c1,n

∫
Rn
K2 (x− y) dµu(y) + h(x),

if and only if

lim
r→∞

M (r, u) > −∞.

Here and in what follows we use the following notations.

For a measurable function g, the spherical mean over the sphere S(0, r) of radius

r > 0 centered at the origin is defined by

M(r, g) =
1

σnrn−1

∫
S(0,r)

g(x) dσ(x),

The Riesz Kernels are given by:

Kα(x) := |x|α−n , α > 0.

As a corollary of Theorem 1.5.2, one can obtain (see [4, Cor. 4.4.2]) that if u is

superharmonic in Rn, n ≥ 3, u ≥ 0, and u 6≡ ∞, then

u(x) = c1,n

∫
Rn
K2 (x− y) dµu(y) + c, x ∈ Rn,
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where c is a non-negative constant.

We are interested in a generalization of the Riesz Decomposition Theorem for m-

superharmonic functions (see Definition 1.5.5 below). Recently, for m = 2 (superbi-

harmonic functions) the generalization we are looking for was obtained by K. Kitaura

and Y. Mizuta [52]. Let us introduce precise definitions first.

Definition 1.5.4 Let Ω be an open subset of Rn, n ≥ 2. A function u : Ω → R is

called m−harmonic (m ∈ N), or polyharmonic of order m, in Ω if u ∈ C2m (Ω), and

∆mu ≡ 0 in Ω. The set of all functions m-harmonic in Ω is denoted by Hm (Ω).

Polyharmonic functions have many interesting properties. The monograph [5] is an

excellent source of information about them.

Definition 1.5.5 Let Ω be an open subset of Rn, n ≥ 2. A function u : Ω →

(−∞,∞] is called m-superharmonic if

(i) u is locally integrable on Ω (with respect to the Lebesgue measure in Rn);

(ii) u is lower semicontinuous in Ω;

(iii) µu := (−∆)m u is a positive Radon measure in Ω in the sense of distributions,

i.e., ∫
Ω

ϕ(x) dµu(x) =

∫
Ω

u(x) (−∆)m ϕ(x) dx ≥ 0, ∀ϕ ∈ C∞0 (Ω) , ϕ ≥ 0;

(iv) For every point x ∈ Ω,

u (x) = lim
r→0+

1

m (B (x, r))

∫
B(x,r)

u (t) dt,

where B (x, r) denotes the open ball centered at x and of radius r, and m denotes its

Lebesgue measure, i.e., m (B (x, r)) = rnπn/2/Γ (n/2 + 1).3

The class of all m-superharmonic functions in Ω is denoted by SHm (Ω). If m = 2,

we have the class of super-biharmonic functions.

3Note that this condition is weaker than the requirement on x to be the Lebesgue point of u.
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The generalization of Theorem 1.5.2 for super-biharmonic functions in Rn is given

by the following result.

Theorem 1.5.3 (K. Kitaura, Y. Mizuta [52, Theorem 1.2]) Let n ≥ 5, u ∈

SH2 (Rn), and µu = ∆2u. Then M(2r, u) − 4M(r, u) is bounded when r > 1 if and

only if u is of the form

u(x) = c2,n

∫
Rn
K4(x− y) dµu(y) + h(x),

where h ∈ H2 (Rn), and ∫
Rn

(1 + |y|)4−n dµu(y) <∞.

Moreover, in [52], the authors consider the case of lower dimensions too. However,

they use some modification of the Riesz kernels in the latter case.

The main point is that the possibility for a superbiharmonic function to possess

a Riesz decomposition is given in terms of boundedness of a linear combination of

spherical means. For the m-superharmonic case, the appropriate linear combination

of spherical means is more complicated. It is defined in Proposition 1.5.1 below.

Let us mention another generalization of Theorem 1.5.2 obtained by N. S. Landkof

[55, Chap. 1, § 6].

Definition 1.5.6 A function u : Rn → [0,∞] is called α-superharmonic in Rn (here

0 < α < 2) if

(i) u 6≡ ∞;

(ii) u is lower semicontinuous in Rn;

(iii) u satisfies the condition ∫
|x|>1

|u(x)|
|x|n+α dx <∞;

(iv) For any x ∈ Rn,

ε(r)
α ∗ u(x) = ε(r)

αx (u) ≤ u(x), r > 0,
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where

ε(r)
α (x) :=

 0, |x| < r,

Γ(n2 )
π
n
2 +1 sin

(
πα
2

)
rα
(
|x|2 − r2

)−α
2 |x|−n , |x| > r,

and

ε(r)
α (u) :=

∫
Rn
u(x)ε(r)

α (x) dx.

It is interesting (see [55, Ch. I, § 6, Formula (1.6.1)]) that∫
Rn
Kα (x− y) ε(r)

α (x) dx ≤ Kα (x) , |x| < 1,

and ∫
Rn
Kα (x− y) ε(r)

α (x) dx = Kα (x) , |x| ≥ 1.

Let also

A (n, α) := πα−
n
2

Γ
(
n−α

2

)
Γ
(
α
2

) .

The following result gives the Riesz decomposition for α-superharmonic functions.

Theorem 1.5.4 ([55, Ch. 1, § 6, Th. 1.30]) Assume that u is α-superharmonic

in Rn, n ≥ 3. Then u(x) has a unique decomposition in the form

u(x) = Uµ
α (x) + A = A (n, α)

∫
Rn
Kα (x− y) dµ(y) + A,

where µ is a positive Borel measure in Rn, which is finite on every compact subset

K ⊂ Rn, and the constant A ≥ 0. Furthermore, if u is α-harmonic in some open

subset Ω ⊂ Rn, then µ (Ω) = 0.

(f is called α-harmonic at the point x0 if it is continuous in a neighborhood of x0,

satisfies condition (iii) of Definition 1.5.6, and for sufficiently small r

f (x0) = ε(r)
α ∗ f (x0) = ε(r)

αx0
(f) .

If f is α-harmonic at each point of Ω, it is called α-superharmonic in Ω.)

Unfortunately, powerful tools developed in [55, Ch. 1] to prove Theorem 1.5.4

seem to be applicable only for 0 < α < 2. We will use another approach (closer to the
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work of K. Kitaura and Y. Mizuta [52]) to get the result for α = 2m < n, m ∈ N. We

start with the proposition that helps to find a linear combination of spherical means

whose boundedness is necessary for the Riesz decomposition of u.

Proposition 1.5.1 Let m ∈ N, m ≥ 2, and let αm,1 = 1. Then there are unique real

constants αm,2, . . . , αm,m such that for every polynomial of the form

Fm(r) :=
m−1∑
k=0

akr
2k,

we have
m∑
j=1

αm,jFm
(
2m−jr

)
= a0

m∑
j=1

αm,j, r ∈ R. (1.25)

The constants are given by

αm,k+1 = (−1)k+m−1
2

(m−2)4
m
2

(m−1)−(m−k−1)

∏
1≤l<j≤m−1

(θm,j,k − θm,l,k)∏
1≤l<j≤m−1

(4j − 4l)
, (1.26)

where

θm,j,k =

 4m−j, 1 ≤ j ≤ k,

4m−1−j, k + 1 ≤ j ≤ m− 1,
1 ≤ k ≤ m− 1.

To formulate the main result of this section (and Chapter 5), we need to introduce

the class R of functions ϕ ∈ C∞0 (Rn) satisfying:

(i) ϕ(x) ≡ 1 in B (0, 1) (as usual, B (0, r) denotes the ball in Rn of radius r

centered at the origin);

(ii) suppϕ ⊂ B (0, 2);

(iii) 0 ≤ ϕ(x) ≤ 1, x ∈ Rn.

Such functions are often used for regularization purposes.

Our main result is given by the following theorem.

Theorem 1.5.5 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), µu = (−∆)m u, and ϕ ∈ R

is chosen arbitrarily. Furthermore, let αm,j be the absolute constants from Proposi-
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tion 1.5.1. Then

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞ and sup
r>1

∫
1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt <∞

(1.27)

if and only if ∫
Rn

(1 + |y|)2m−n dµu(y) <∞, (1.28)

and u is of the form

u(x) = cm,n

∫
Rn
K2m(x− y) dµu(y) + h(x), (1.29)

where h ∈ Hm (Rn).

Note that (1.28) is the condition for existence of the potential in (1.29). Fur-

thermore, the normalizing coefficients cm,n are chosen so that cm,n (−∆)mK2m is the

delta-function δ0 (see [41] and [32, § 3]).

Comparing Theorems 1.5.3 and 1.5.5, one can observe that the first condition in

(1.27) for m = 2 is exactly the condition on the boundsdness of M (2r, u)− 4M (r, u)

used in Theorem 1.5.3. The second one is an extra condition. However, for m = 2,

the second condition in (1.27) follows from the first one. This seems to be false for

m ≥ 3.

Moreover, for the case 2m ≥ n, one needs to consider different kernels. For

example, K. Kitaura and Y. Mizuta [52] considered special kernels wich are products

of the Riesz kernels and ln 1
|x| . It was shown that if u ∈ SH2 (Rn) and n ≤ 4, then

the linear combination of spherical means M (2r, u)− 4M (r, u) is bounded on r > 1

if and only if u ∈ H2 (Rn). The authors investigate the case for each n between 2 and

4 separately. The Riesz decomposition for superharmonic functions in Rn (m = 1) is

also proven in [52].

The following corollary gives an easy to use sufficient condition for an m-super-

harmonic function to have the representation (1.29).
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Corollary 1.5.1 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), µu = (−∆)m u. If

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞,
and one of the conditions

(a) supr>1
1
rn

∫
r≤|x|≤2r

|u(x)|p dt <∞, for some p ∈ [1,∞);

(b) u(x)

|x|n/p ∈ L
p (Rn \B(0, 1)) , for some p ∈ [1,∞],

is satisfied, then (1.28) and (1.29) hold.

Open Problem. It would be interesting to generalize Theorem 1.5.5 to the case

of α-superharmonic functions in Rn, α > 2. We have already mentioned a formula

for spherical means of Riesz kernels obtained in [16], which could be a good starting

point. Although it is unclear what should be a condition replacing the boundedness

of the linear combination of spherical means
∑m

j=1 αm,jM (2m−jr, u) in the case of a

fractional power of Laplacian α/2 instead of m.

28



CHAPTER 2

Estimates for the Hadamard Product on Hardy and Bergman Spaces

In Section 1.2, we gave the necessary definitions and stated the norm boundedness

problem for the Hadamard product operator. Let us outline some references related

to coefficient multipliers and to the Hadamard product.

P. L. Duren and A. L. Shields [26] obtained several conditions for multipliers of

Hp (0 < p < 1) into lq (p ≤ q ≤ ∞), and into Hq (1 ≤ q ≤ ∞). They also discovered

that these multipliers, in the majority of cases, are the same as multipliers of larger

spaces Bp into lq and Hq, respectively. Their conditions are often given in terms of

asymptotics of the integral means.

In [18], J. Caveny discovered interesting relations between inclusions of functions

in some Hardy spaces and boundedness of their Hadamard product.

Since there exist very convenient convolution representations for the Hadamard

product (the first one was obtained by J. Hadamard in [39]), it is possible to estimate

the Hadamard product operator norm in terms of integral norms of the functions

involved. Moreover, these relations are useful for obtaining several beautiful integral

representations and unexpected relations (see, e.g., [15, 73]).

Let us also note that the coefficient multipliers fromHp toHq (including exponents

below 1) were also investigated by P. L. Duren in [23]. In contrast to [26] cited above,

the conditions are given in terms of estimates of the growth of the multiplier sequence

{λn}. Other effective sufficient (and some necessary) conditions for multipliers of Hp

in a polydisc with p ∈ (0, 1], given in terms of growth of λn, were obtained by

R. M. Trigub in [94]. More general questions of characterization of linear functionals
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in these spaces are considered by P. L. Duren, B. W. Romberg and A. L. Shields

in [25].

Several efficient results about general coefficient multipliers in Bergman spaces Ap

were obtained by D. Vukotić in [107]. The conditions are given in terms of asymptotics

of the sequence {an} defining the multiplier, convergence of some weighted series, as

well as in terms of asymptotics of weighted partial sums like
∑N

n=1 n
2q/p−q|an|q.

As we already mentioned in Section 1.2, we consider the Hadamard product op-

erator acting in Hardy spaces Hp (D) of analytic, or hp (D) of harmonic functions, as

well as Bergman spaces ap (D), or Ap (D). In particular, the case of an operator acting

from Hp to Hq with arbitrary exponents p and q is studied. We do not require the ex-

ponents to be conjugate since the technique we use does not involve Hausdorff-Young

inequalities.

2.1 Hadamard Product in Hardy Spaces

Lemma 2.1.1 Let (X,G, µ) be a measure space with positive measure µ, and f, g :

X → [0,∞). If g is µ-measurable and f ∈ L1 (X,µ), then for any p ∈ [1,∞), the

following inequality holds true(∫
X

fg dµ

)
≤
(∫

X

fgp dµ

)1/p(∫
X

f dµ

)1−1/p

. (2.1)

In particular, for any Lebesgue measurable set E ⊂ R, if f ∈ L1(E), then for any

function g, Lebesgue measurable on E,∫
E

|f(t)||g(t)| dt ≤
(∫

E

|f(t)||g(t)|p dt
)1/p(∫

E

|f(t)| dt
)1−1/p

, p ∈ [1,∞). (2.2)

Proof. Assume that fg ∈ L1 (X,µ). Let us consider the following measure

ν(Ω) =

∫
Ω

|f | dµ =

∫
Ω

f dµ, Ω ∈ G.

Then (X,G, ν) is also a measure space, and
∫
X
g dν =

∫
X
fg dµ.
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If
∫
X
f dµ = 1, Jensen’s inequality applied with a convex function ϕ(t) = |t|p and

the measure space (X,G, ν) implies(∫
X

fg dµ

)p
=

∣∣∣∣∫
X

g dν

∣∣∣∣p ≤ ∫
X

|g|p dν =

∫
X

fgp dµ,

since f and g are both non-negative.

If
∫
X
f dµ =: a 6= 1, applying the last inequality to f/a, we get (2.1).

Now, let
∫
X
fg dµ =∞. Since g is µ-measurable, the set A := {x ∈ X : g(x) > 1}

is µ-measurable. Using the fact that f, g ≥ 0, we obtain∫
X

fg dµ ≤
∫
X\A

f dµ+

∫
A

fgp dµ ≤
∫
X

f dµ+

∫
X

fgp dµ.

Since f ∈ L1 (X,µ), this implies
∫
X
fgp dµ =∞. Thus, (2.1) holds. �

Proof of Theorem 1.2.1. It is shown in [82, Ch. 4, § 4.1.2, formula (4.8)] that if f and

g are harmonic in D, then

(f ∗ g)
(
reiθ
)

=
1

2π

∫ 2π

0

f
( r
R
ei(θ−t)

)
g
(
Reit

)
dt, 0 ≤ r < R < 1, θ ∈ R. (2.3)

Moreover, if g is harmonic in D, this formula is valid with R = 1. It is also clear that

f ∗ g = g ∗ f .

(a) Employing (2.3), we have

I :=
1

2π

∫ 2π

0

∣∣(F ∗ g)
(
reiθ
)∣∣q dθ =

1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ 2π

0

F
( r
R
ei(θ−t)

)
g
(
Reit

)
dt

∣∣∣∣q dθ, 0 ≤ r < R < 1.

Applying (2.2) to f(t) := F
(
r
R
ei(θ−t)

)
and g (Reit) with E = [0, 2π], and considering

2π-periodicity of f , we obtain

I ≤ 1

(2π)q+1

(∫ 2π

0

∣∣∣F ( r
R
eit
)∣∣∣ dt)q−q/p×

∫ 2π

0

(∫ 2π

0

∣∣∣F ( r
R
ei(θ−t)

)∣∣∣ ∣∣g (Reit)∣∣p dt)q/p dθ.
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Minkowski’s integral inequality with the power q/p ≥ 1 applied to the second factor

yields

I ≤
(

1

2π

∫ 2π

0

∣∣∣F ( r
R
eit
)∣∣∣ dt)q−q/p×(

1

2π

∫ 2π

0

∣∣∣F ( r
R
eiθ
)∣∣∣q/p dθ)( 1

2π

∫ 2π

0

∣∣g (Reit)∣∣p dt)q/p .
Since | · |q/p is convex, applying Jensen’s inequality to the first integral, we obtain

I ≤
(

1

2π

∫ 2π

0

∣∣∣F ( r
R
eit
)∣∣∣q/p dt)p( 1

2π

∫ 2π

0

∣∣g (Reit)∣∣p dt)q/p .
Hence, for any 0 ≤ r < R < 1,

1

2π

∫ 2π

0

∣∣(F ∗ g)
(
reit
)∣∣q dt ≤ ‖F‖q

hq/p

(
1

2π

∫ 2π

0

∣∣g (Reit)∣∣p dt)q/p .
Since F ∗ g is continuous in DR, passing to the limit as r → R−, we get(

1

2π

∫ 2π

0

∣∣(F ∗ g)
(
Reit

)∣∣q dt)1/q

≤ ‖F‖hq/p
(

1

2π

∫ 2π

0

∣∣g (Reit)∣∣p dt)1/p

,

for any 0 < R < 1.

For R = 0, the estimate follows from (1.3) and subgarmonicity of |g|p.

To get (1.8), we use (2.3) and Jensen’s inequality.

For p = q =∞, inequality (1.9) follows from (2.3) immediately.

Thus, F∗ ∈ L (hp, hq) for any 1 ≤ p ≤ q ≤ ∞, and

‖F ∗ g‖hq ≤ ‖F‖hq/p‖g‖hp , g ∈ hp (D) .

(b) Let us take g0(z) ≡ 1. Then, (F ∗ g0) (z) = F (0), z ∈ D. So,

‖F ∗ g0‖hp = |F (0)| , p ∈ [1,∞].

If for some p ∈ [1,∞], F∗ ∈ L (hp, hp), then the mean value property implies

‖F ∗ ‖hp→hp ≥ |F (0)| =
∣∣∣∣ 1

2π

∫ 2π

0

F
(
reit
)
dt

∣∣∣∣ , r ∈ [0, 1).

Taking supr∈[0,1) in this inequality, and considering that F ≥ 0, we conclude by

part (a) that ‖F ∗ ‖hp→hp = ‖F‖h1 .

32



(c) For R ∈ (0, 1), let us take gR
(
reiθ
)

:= PRr(θ) =
∑∞

n=−∞ (Rr)|n| einθ, the

Poisson kernel. It is harmonic in D, and ‖gR‖h1 = 1. Moreover, F ∗ gR(z) = F (Rz),

z ∈ D. Thus,

sup
‖g‖h1=1

‖F ∗ g‖h1 ≥ sup
R∈(0,1)

‖F ∗ gR‖h1 = sup
R∈(0,1)

‖F (R·)‖h1 = ‖F‖h1 .

Part (a) now implies ‖F ∗ ‖h1→h1 = ‖F‖h1 .

For p =∞, let us take G defined on the unit circle by

G
(
eit
)

=

 F (e−it)/ |F (e−it)| , F (e−it) 6= 0

1, F (e−it) = 0,
t ∈ R,

where F (eit) is the function of boundary values of F (it exists and belongs to

L1 [0, 2π]; see, e.g., [24, Ch. 2, Th. 2.2, 2.6]). Therefore, G ∈ L∞ (T). Hence (see, e.g.,

[44, Ch. 3, Corollary on p. 38]), its Poisson integral

G
(
reit
)

:=
1

2π

∫ 2π

0

G
(
eiθ
)
Pr (t− θ) dθ, r ∈ [0, 1), θ ∈ [0, 2π),

is harmonic in D, converges to G (eit) as r → 1− for almost all t, and

‖G‖h∞ = ‖G‖L∞(T) = 1 ≡
∣∣G (eit)∣∣ . (2.4)

Let us fix r ∈ [0, 1), and take a sequence {Rn}∞n=1 such that Rn ∈ (r, 1) for any n,

and Rn → 1 as n→∞. Applying (2.3) with θ = 0, we obtain

(F ∗G) (r) =
1

2π

∫ 2π

0

F

(
r

Rn

e−it
)
G
(
Rne

it
)
dt, n ∈ N. (2.5)

Now, the triangle inequality and (2.4) yield∣∣∣∣∫ 2π

0

F

(
r

Rn

e−it
)
G
(
Rne

it
)
dt−

∫ 2π

0

F
(
re−it

)
G
(
eit
)
dt

∣∣∣∣ ≤∫ 2π

0

∣∣∣∣F ( r

Rn

e−it
)
− F

(
re−it

)∣∣∣∣ dt+

∫ 2π

0

∣∣F (re−it)∣∣ ∣∣G (Rne
it
)
− G

(
eit
)∣∣ dt.

Clearly, F
(

r
Rn
e−it
)

converges to F (re−it) uniformly on t ∈ [0, 2π] as n → ∞,

whence the first integral converges to 0. Relation (2.4) also yields∣∣F (re−it)∣∣ ∣∣G (Rne
it
)
− G

(
eit
)∣∣ ≤ 2

∣∣F (re−it)∣∣ ∈ L1 [0, 2π] .
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Since G (Rne
it) → G (eit) a.e., the Lebesgue Dominated Convergence Theorem

implies that the second integral also converges to 0 as n→∞.

Thus, passing to the limit in (2.5) as n→∞, we conclude

(F ∗G) (r) =
1

2π

∫ 2π

0

F
(
re−it

)
G
(
eit
)
dt, r ∈ [0, 1). (2.6)

Now, let us take a sequence {rn}∞n=1, such that rn ∈ [0, 1) for any n, and rn → 1 as

n→∞. Then, let us denote

fn(t) :=
1

2π
F
(
rne
−it)G (eit) , f(t) :=

1

2π

∣∣F (e−it)∣∣ .
Clearly, fn, f ∈ L1 [0, 2π], and fn(t)→ f(t) a.e. on [0, 2π]. Since |G (eit)| ≡ 1,

lim
n→∞

∫ 2π

0

|fn(t)| dt = lim
n→∞

1

2π

∫ 2π

0

∣∣F (rne−it)∣∣ dt = ‖F‖h1

=
1

2π

∫ 2π

0

∣∣F (e−it)∣∣ dt =

∫ 2π

0

|f(t)| dt.

This implies that limn→∞ ‖fn − f‖L1[0,2π] = 0. Now, we may pass to the limit as

r → 1− in (2.6) and obtain

lim
r→1−

(F ∗G) (r) =
1

2π

∫ 2π

0

∣∣F (e−it)∣∣ dt = ‖F‖h1 .

Hence ‖F ∗ G‖h∞ ≥ lim infr→1− |(F ∗G) (r)| = ‖F‖h1 = ‖F‖h1‖G‖h∞ . Therefore,

‖F ∗ ‖h∞→h∞ ≥ ‖F‖h1 , and part (a) implies ‖F ∗ ‖h∞→h∞ = ‖F‖h1 . �

Proof of Proposition 1.2.1. Let us consider the following sequence of functions:

Fm(z) = Fm
(
reiθ
)

=
∞∑
n=0

(
m

m+ 1

)n
rneinθ =

1

1− mz
m+1

, z ∈ D, m ∈ N.

If g is holomorphic in D with the Taylor expansion g
(
reiθ
)

=
∑∞

n=0 bnr
neinθ, then,

according to (1.3),

(Fm ∗ g)
(
reiθ
)

=
∞∑
n=0

(
m

m+ 1

)n
bnr

neinθ = g

(
m

m+ 1
reiθ
)
, r ∈ [0, 1), θ ∈ R. (2.7)

It is easy to see that (sharpness could be verified on g(z) ≡ 1)

‖Fm ∗ ‖Hp→Hp = 1, m ∈ N, p ∈ [1,∞]. (2.8)
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If the sequence {‖Fm‖H1}∞m=1 were bounded, then since

lim
m→∞

Fm(z) =
1

1− z
, z ∈ D,

Fatou’s lemma would imply

1

2π

∫ 2π

0

∣∣∣∣ 1

1− eiθ

∣∣∣∣ dθ ≤ lim inf
m→∞

1

2π

∫ 2π

0

∣∣Fm (eiθ)∣∣ dθ <∞.
But the integral on the left-hand side is divergent.

Therefore, for an arbitrary M > 0, there exists mM ∈ N such that ‖FmM‖H1 > M .

At the same time, equalities (2.8) are valid for any m ∈ N, and the statement follows

with F = FmM . �

Using the proof of [108, Ch. 8, § 8.1, Th. 8.1.5] or applying the M. Riesz Theorem

on the norm of conjugate harmonic function (see, e.g., [36, Ch. III, § 2, Th. 2.3])

directly, we get that if p ∈ (1,∞), and A is a linear operator defined on hp (D) that

vanishes on anti-analytic functions g with g(0) = 0 and the restriction of A to Hp (D)

belongs to L (Hp, Hp), then

‖A‖hp→hp ≤ C (p) ‖A‖Hp→Hp .

(Note that this statement is not true for p = 1 or p =∞. For example, consider the

operator F∗ with F(z) =
∑∞

n=0 z
n = 1

1−z .)

Thus, if we take the function FmM from Proposition 1.2.1, then FmM∗ satisfies

the conditions of the last statement. Moreover, ‖FmM∗‖Hp→Hp = 1. Multiplying by

corresponding constant (depending of p), one can easily deduce

Corollary 2.1.1 For any M > 0, and any p ∈ (1,∞), there exists an analytic in D

function G such that

‖G∗‖hp→hp = 1,

but ‖G‖h1 = ‖G‖H1 > M .
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2.2 Hadamard Product from Hp (D) to Hq (D) with Arbitrary p, q ∈ (0,∞]

As we already noticed in Section 1.3, the estimates similar to those obtained in

Theorem 1.2.1 are impossible when p < 1. The results of the present section give

some estimates for the latter case, however they are not sharp.

Let us remind that we use the following notation:

DR := {z ∈ C : |z| < R} , R > 0.

Jensen’s inequality could be easily applied to show that if f ∈ Hp (D) for some

p ∈ (0,∞], then f ∈ Hq (D), for any q ∈ [0, p), and

‖f‖Hq(D) ≤ ‖f‖Hp(D) .

We need an inverse inequality of some kind given by the following lemma.

Lemma 2.2.1 If f ∈ Hp (D2), for some p ∈ (0,∞), then f ∈ H∞ (D), and

‖f‖H∞(D) ≤ 41/p ‖f‖Hp(D2) .

Proof. Take an arbitrary z0 ∈ D, z0 6= 0, and let R := |z0|. Since f is holomorphic in

D2, |f (z)|p is subharmonic there, for any p ∈ (0,∞). Using the submean property,

for any ρ ∈ (0, 2−R), we obtain

|f (z0)|p ≤ 1

πρ2

∫
D(z0,ρ)

|f (z)|p dA ≤ 1

πρ2

∫
R−ρ≤|z|≤R+ρ

|f (z)|p dA =

1

πρ2

∫ R+ρ

R−ρ

(∫ 2π

0

∣∣f (teiϕ)∣∣p dϕ) t dt =
2

ρ2

∫ R+ρ

R−ρ

(
1

2π

∫ 2π

0

∣∣f (teiϕ)∣∣p dϕ) t dt =

≤ 2

ρ2
‖f‖pHp(D2)

∫ R+ρ

R−ρ
t dt =

4R

ρ
‖f‖pHp(D2) . (2.9)

Taking ρ = R. we obtain

|f (z0)|p ≤ 4 ‖f‖pHp(D2) .

For z0 = 0, the submean property yields

|f (z0)|p ≤ ‖f‖pHp(D) ≤ ‖f‖
p
Hp(D2)
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immediately. Thus, for any z0 ∈ D,

|f (z0)| ≤ 41/p ‖f‖Hp(D2) . (2.10)

�

Note. It is clear from the proof, that (2.10) is true for any z0 ∈ D. Indeed, (2.9)

is obviously true for R = 1 and any ρ ∈ (0, R), because we only need D (z0, ρ) ⊂ D2

that is the case for such ρ. Passing to the limit as ρ→ 1−, we obtain

|f (z)| ≤ 41/p ‖f‖Hp(D2) , z ∈ D. (2.11)

Thus,

‖f‖Hp(D) ≤ ‖f‖H∞(D) ≤ 41/p ‖f‖Hp(D2) .

Lemma 2.2.2 If f ∈ Hp (D2), for some p ∈ (0,∞), then for any q ∈ (p,∞], f ∈

Hq (D), and

‖f‖Hq(D) ≤ 4
1
p
− 1
q ‖f‖

1− p
q

Hp(D2) ‖f‖
p
q

Hp(D) ≤ 4
1
p
− 1
q ‖f‖Hp(D2) (2.12)

Proof. If q =∞, this is just Lemma 2.2.1. For q ∈ (p,∞), using Lemma 2.2.1, we get

1

2π

∫ 2π

0

∣∣f (teiϕ)∣∣q dϕ ≤ sup
z∈D
|f (z)|q−p 1

2π

∫ 2π

0

∣∣f (teiϕ)∣∣p dϕ
≤ 4

q
p
−1 ‖f‖q−pHp(D2) ‖f‖

p
Hp(D) , t ∈ (0, 1) .

Taking power 1/q and passing to supt∈(0,1), we get

‖f‖Hq(D) ≤ 4
1
p
− 1
q ‖f‖

1− p
q

Hp(D2) ‖f‖
p
q

Hp(D) .

The last inequality in (2.12) is obvious. �

Theorem 2.2.1 If F ∈ H1 (D2), then for any p, q ∈ (0,∞] and g ∈ Hp (D), F ∗ g ∈

Hq (D), and

‖F ∗ g‖Hq(D) ≤ 41/p ‖F‖H1(D2) ‖g‖Hp(D) . (2.13)
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Proof. Consider the following functions:

G (z) := g
(z

2

)
, F (z) := F (2z) .

Since g ∈ Hp (D), we deduce (for the case 0 < p <∞).

1

2π
sup
t∈(0,2)

∫ 2π

0

∣∣G (teiϕ)∣∣p dϕ =
1

2π
sup
t∈(0,2)

∫ 2π

0

∣∣∣∣g( t2eiϕ
)∣∣∣∣p dϕ

=
1

2π
sup
t∈(0,1)

∫ 2π

0

∣∣g (teiϕ)∣∣p dϕ = ‖g‖pHp(D) .

Thus, G ∈ Hp (D2), and

‖G‖Hp(D2) = ‖g‖Hp(D) . (2.14)

For p =∞, this relation is just trivial.

The same consideration shows that F ∈ H1 (D), and

‖F‖H1(D) = ‖F‖H1(D2) . (2.15)

Since F and g are holomorphic in D, we could consider their Taylor series expan-

sions in D

F
(
reiθ
)

=
∞∑
n=0

anr
neinθ, g

(
reiθ
)

=
∞∑
n=0

bnr
neinθ.

But then

F
(
reiθ
)

=
∞∑
n=0

an2nrneinθ, G
(
reiθ
)

=
∞∑
n=0

bn2−nrneinθ.

Now, using (1.3) for convolutions F ∗ g and F ∗ G, we get

(F ∗ G)
(
reiθ
)

=
∞∑
n=0

an2nbn2−nrneinθ = (f ∗ g)
(
reiθ
)
.

Assume q <∞. Since G is harmonic in D2, whence in D, we can apply (2.3) with

R = 1, and obtain

1

2π

∫ 2π

0

∣∣(F ∗ g)
(
reiθ
)∣∣q dθ =

1

2π

∫ 2π

0

∣∣(F ∗ G)
(
reiθ
)∣∣q dθ

=
1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ 2π

0

F
(
rei(θ−t)

)
G
(
eit
)
dt

∣∣∣∣q dθ.
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Changing variables θ− t = u and considering 2π-periodicity of the functions involved,

we can proceed

=
1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ θ

θ−2π

F
(
reiu

)
G
(
ei(θ−u)

)
du

∣∣∣∣q dθ
=

1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ 2π

0

F
(
reiu

)
G
(
ei(θ−u)

)
du

∣∣∣∣q dθ
≤ 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

∣∣F (reiu)∣∣ ∣∣G (ei(θ−u)
)∣∣ du)q dθ.

Applying inequality (2.11) to G, and considering relations (2.14) and (2.15), we obtain

1

2π

∫ 2π

0

∣∣(F ∗ g)
(
reiθ
)∣∣q dθ ≤ 4q/p ‖G‖qHp(D2)

1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

∣∣F (reiu)∣∣ du)q dt
≤ 4q/p ‖G‖qHp(D2) ‖F‖

q
H1(D) = 4q/p ‖g‖qHp(D) ‖F‖

q
H1(D2) .

Passing to supr∈(0,1) and taking power 1/q of both sides, we obtain (2.13).

For q =∞, using (2.3) with R = 1 and the triangle inequality, we conclude

∣∣(F ∗ g)
(
reiθ
)∣∣ ≤ 1

2π

∫ 2π

0

∣∣F (rei(θ−t))∣∣ ∣∣G (eit)∣∣ dt.
Applying (2.11) to G, and considering (2.14) and (2.15), we get

∣∣(F ∗ g)
(
reiθ
)∣∣ ≤ 41/p ‖G‖Hp(D2)

1

2π

∫ 2π

0

∣∣F (rei(θ−t))∣∣ dt
≤ 41/p ‖G‖Hp(D2) ‖F‖H1(D) = 41/p ‖g‖Hp(D) ‖F‖H1(D2) , r ∈ [0, 1), θ ∈ R,

which completes the proof. �

2.3 Hadamard Product in Bergman Spaces

The following statement is a generalization of Theorem 1.2.1 for the norm of harmonic

Bergman spaces ap.

Theorem 2.3.1 (a) Let F ∈ h1 (D). For any p ∈ [1,∞), the operator F∗ ∈ L (ap, ap)

with the norm at most ‖F‖h1, and for any g harmonic in D and R ∈ [0, 1), we have(∫
DR
|(F ∗ g) (z)|p dσ(z)

)1/p

≤ ‖F‖h1

(∫
DR
|g(z)|p dσ(z)

)1/p
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≤ ‖F‖h1R2/p

(∫
D
|g(z)|p dσ(z)

)1/p

. (2.16)

(b) If F is a positive harmonic function, and F∗ ∈ L (ap, ap) for some p ∈ [1,∞),

then F ∈ h1 (D), and

‖F‖h1 = ‖F∗‖ap→ap .

Thus, F∗ ∈ L (ap, ap) for any p ∈ [1,∞), and the operator norm does not depend on

p.

The same result holds for the case of holomorphic Bergman spaces. Unfortunately,

as in the case of Hardy spaces, the estimate of the norm of F∗ operator by ‖F‖h1 is

not sharp in general. The details are outlined in the following statement.

Proposition 2.3.1 For any M > 0, there exists a function F ∈ H1 (D) such that

‖F∗‖Ap→Ap = 1, ∀p ∈ [1,∞),

but ‖F‖H1 > M .

Proofs of Theorem 2.3.1 and Proposition 2.3.1 are similar to the proofs of Theo-

rem 1.2.1 and Proposition 1.2.1, respectively, so, we will omit them.

Despite the fact that there are relations between Hardy and Bergman spaces (see,

e.g., [27, Ch. 3, § 3.2]), the form of Theorem 2.3.1 may seem artificial, since the norm

in h1 is involved in the estimate. To make it more natural, we will consider a different

Hadamard-type product.

If f and g are two analytic functions in D with Taylor expansions

f (z) =
∞∑
n=0

anz
n, g (z) =

∞∑
n=0

bnz
n, z ∈ D,

the operator ? is defined by

(f ? g) (z) =
∞∑
n=0

anbn
n+ 1

zn, z ∈ D. (2.17)

40



Clearly, this operator is well-defined since the series in the right-hand side converges

in D. It is also obvious that

(f ? g) (z) = (g ? f) (z) .

The following statement is an analogue of (2.3) for Bergman spaces.

Lemma 2.3.1 Let f and g be holomorphic in D. Then, for 0 < R < 1,

(f ? g) (z) =

∫
D
f

(
zζ

R

)
g (Rζ) dσ(ζ), z ∈ DR, (2.18)

i.e., for 0 ≤ r < R < 1, and θ ∈ R,

(f ? g)
(
reiθ
)

=
1

π

∫ 2π

0

∫ 1

0

f
(rρ
R
ei(θ−t)

)
g
(
Rρeit

)
ρ dρ dt. (2.19)

If g is holomorphic in D, then (2.18) and (2.19) are valid with 0 < R ≤ 1.

Proof. Let us fix an arbitrary r ∈ [0, R). For any n ∈ N, the orthogonality of

exponentials on [0, 2π] implies

1

π

∫ 2π

0

∫ 1

0

(
n∑
k=0

ak

(rρ
R

)k
eik(θ−t)

)(
n∑
k=0

bkR
kρkeikt

)
ρ dρ dt =

2
n∑
k=0

(
eikθakbkr

k

∫ 1

0

ρ2k+1 dt

)
=

n∑
k=0

akbk
k + 1

rkeikθ.

Since the series
∑n

k=0 ak (rρ/R)k eik(θ−t) and
∑n

k=0 bkR
kρkeit converge absolutely and

uniformly on (ρ, t) ∈ [0, 1]× [0, 2π], we can pass to the limit as n→∞ to obtain

1

π

∫ 2π

0

∫ 1

0

f
(rρ
R
ei(θ−t)

)
g
(
Rρeit

)
ρ dρ dt =

∞∑
k=0

akbk
k + 1

rkeikθ = (f ? g)
(
reiθ
)
.

�

Using Lemma 2.3.1 instead of the integral representation for the Hadamard prod-

uct given by (2.3), one can prove the following theorem by repeating arguments from

the proof of Theorem 1.2.1
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Theorem 2.3.2 Let F ∈ A1 (D). For any p ∈ [1,∞), the operator F? ∈ L (Ap, Ap)

with the norm at most ‖F‖A1, and for any g holomorphic in D and R ∈ [0, 1), we

have (∫
DR
|(F ? g) (z)|p dσ(z)

)1/p

≤ ‖F‖A1

(∫
DR
|g(z)|p dσ(z)

)1/p

≤ ‖F‖A1R2/p

(∫
D
|g(z)|p dσ(z)

)1/p

. (2.20)

Remark 2.3.1 It is easy to see that if F ∈ A1, then the operator F? ∈ L (Hp, Hp),

and

‖F?‖Hp→Hp ≤ ‖F‖A1 .

Now, we return to the Hadamard product. Let us note that if F is holomorphic

in D, and has Maclauren series expansion F (z) =
∑∞

k=0 akz
k, then

F(z) := (zF (z))′ =
∞∑
k=0

ak(k + 1)zk, z ∈ D.

From (1.3) and (2.17), for an arbitrary g holomorphic in D, we get

(F ∗ g)(z) = (F ? g)(z), z ∈ D.

Thus, the following statement follows from Theorem 2.3.2 immediately.

Corollary 2.3.1 Let F be such that F(z) := (zF (z))′ ∈ A1 (D). Then, for any

p ∈ [1,∞), F∗ ∈ L (Ap, Ap), and

‖F∗‖Ap→Ap ≤ ‖F‖A1 .

The following statement gives a norm estimate for multipliers of Hardy into

Bergman spaces in terms of integral norms of the generating function.

Theorem 2.3.3 (a) Let 1 ≤ p ≤ q <∞, and F ∈ aq (D). Then, for any g harmonic

in D, and 0 ≤ R < 1, the following estimate holds true(∫
DR
|(F ∗ g) (z)|q dσ(z)

)1/q

≤ ‖F‖aqR2/q

(
1

2π

∫ 2π

0

∣∣g (Reit)∣∣p dt)1/p

. (2.21)
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In particular, F∗ ∈ L (hp, aq), and F∗ ∈ L (Hp, Aq) with

‖F∗‖hp→aq ≤ ‖F‖aq , ‖F∗‖Hp→Aq ≤ ‖F‖aq . (2.22)

(b) When q = p, the requirement F ∈ aq (D) should be weakened to F ∈ a1 (D),

and the norm ‖F‖aq should be replaced by ‖F‖a1 in (2.22). Moreover, if F is a positive

harmonic function, and F∗ ∈ L (hp, ap), for some p ∈ [1,∞), then F ∈ a1 (D), and

‖F‖a1 = ‖F∗‖hp→ap for any p ∈ [1,∞).

Proof. Choosing R1 ∈ (R, 1), and applying (2.3), we get

I :=

∫
DR
|(F ∗ g) (z)|q dσ(z) =

1

π

∫ 2π

0

∫ R

0

∣∣∣∣ 1

2π

∫ 2π

0

F

(
r

R1

ei(θ−t)
)
g
(
R1e

it
)
dt

∣∣∣∣q r dr dθ.
Note that if p ∈ [1,∞), and G ∈ Lp[0, 2π], then Hölder’s inequality implies

1

2π

∫ 2π

0

|G(u)| du ≤
(

1

2π

∫ 2π

0

|G(u)|p du
)1/p

.

Applying this inequality to G(t) = F
(

r
R1
ei(θ−t)

)
g (R1e

it), and using Minkowski’s

integral inequality with the power q/p > 1, we conclude

I ≤ 1

π

∫ 2π

0

∫ R

0

(
1

2π

∫ 2π

0

∣∣∣∣F ( r

R1

ei(θ−t)
)∣∣∣∣p ∣∣g (R1e

it
)∣∣p dt)q/p r dr dθ

≤ 1

π(2π)q/p

(∫ 2π

0

(∫ 2π

0

∫ R

0

∣∣∣∣F ( r

R1

ei(θ−t)
)∣∣∣∣q ∣∣g (R1e

it
)∣∣q r dr dθ)p/q dt)q/p

=
1

π(2π)q/p

(∫ 2π

0

∣∣g (R1e
it
)∣∣p dt)q/p ∫ 2π

0

∫ R

0

∣∣∣∣F ( r

R1

eiθ
)∣∣∣∣q r dr dθ.

Changing variable r/R1 = ρ in the last integral, we deduce

I ≤
(

1

2π

∫ 2π

0

∣∣g (R1e
it
)∣∣p dt)q/pR2

1

1

π

∫ 2π

0

∫ 1

0

∣∣F (ρeiθ)∣∣q ρ dρ dθ.
Passing to the limit as R1 → R+ gives (2.21). Now, estimates (2.22) follow immedi-

ately.
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For Part (b), we can apply the Minkowski’s inequality with power q to∫ 2π

0

∫ R

0

(∫ 2π

0

∣∣∣∣F ( r

R1

ei(θ−t)
)∣∣∣∣ ∣∣g (R1e

it
)∣∣ dt)q r dr dθ,

and repeat the same estimates.

To get the last statement, we need to repeat the reasoning from the proof of The-

orem 1.2.1 (b) using the mean value property F (0) =
∫
D F (z) dσ(z), which implies

F (0) = ‖F‖a1 in our case. �
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CHAPTER 3

Mahler Measure of the Hadamard Product of Two Polynomials

As we already mentioned in Section 1.3, the Mahler measure is an efficient tool in

obtaining sharp inequalities for polynomials. Bernstein’s inequality in Hardy spaces

Hp (D):

‖P ′‖Hp ≤ n ‖P‖Hp ,

for p < 1 has an interesting history. As we already noticed, for p = 0, it is an

immediate corollary of [17, Theorem 7] published in 1947. However, K. Mahler proved

the same inequality in [61] (published in 1961) using another method. V. V. Arestov

obtained the Bernstein inequality ‖P ′‖Hp ≤ n ‖P‖Hp , p ∈ (0, 1), in [2], and then

gave a much simpler proof in [3]. The latter approach was based on the proof of [17,

Theorem 7]. See Example 3.2 below for details and a reverse Bernstein inequality.

In [76], I. E. Pritsker obtained several sharp estimates for the Mahler measure,

which imply corresponding estimates in Hp-norm immediately. In particular, he

answered the question of what happens to the Mahler measure of a polynomial after

removing a specific power term. The article also contains an extended survey of the

results in this area.

Other applications of the Mahler measure are in Number Theory. For example,

if a monic polynomial Q with complex coefficients is cyclotomic, then ‖Q‖H0 = 1.

An exciting open question is about the smallest possible Mahler measure of an irre-

ducible non-cyclotomic polynomial with integer coefficients – the Lehmer conjecture

[58]. Moreover, the Mahler measure is related to the theory of Salem-Vijayaraghavan

numbers (see [12]). For more relations, history, and applications of the Mahler mea-
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sure, see the survey article [83] by C. Smyth.

There is an interesting analog of the Mahler measure – the areal Mahler mea-

sure introduced by I. E. Pritsker in [77]. It has the same close relation to Bergman

spaces as the standard Mahler measure has to Hardy spaces, and allows to obtain

many interesting inequalities for Bergman spaces as well as to establish several useful

relations between norms of polynomials in Hardy and Bergman spaces.

We will restrict our attention to the Mahler measure of the Hadamard product of

two polynomials, and employ V. V. Arestov’s result [3] to get estimates in Hp-norm

(or pre-norm) for this product.

3.1 Estimates for the Norm of the Hadamard Product Operator

Let {λn,k}nk=0 be a finite sequence of complex numbers. For two polynomials P (z) =∑n
k=0 akz

k and Q(z) =
∑n

k=0 bkz
k, consider the following coefficient multiplier

Λn[P,Q](z) :=
n∑
k=0

λn,kakbkz
k.

We may fix P and consider Λn as a linear operator acting on Q.

The following lemma follows from (1.13), and may be useful for obtaining sharp

estimates for various coefficient multipliers.

Lemma 3.1.1 For an arbitrary polynomial P (z) =
∑n

k=0 akz
k with complex coeffi-

cients, and a finite sequence {λn,k}nk=0, define

Pλ(z) :=
n∑
k=0

(
n

k

)
λn,kakz

k.

(a) For every p ∈ [0,∞],

‖Λn[P,Q]‖Hp ≤ ‖Pλ‖H0 ‖Q‖Hp .

(b) We have

sup
deg(Q)≤n,‖Q‖H0=1

‖Λn[P,Q]‖H0 = ‖Pλ‖H0 . (3.1)

The supremum is achievable, e.g., taking Q(z) = α(1 + βz)n, where |α| = |β| = 1.
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Proof. For (a), expressing Q as

Q(z) =
n∑
k=0

bkz
k =

n∑
k=0

(
n

k

)
bk(
n
k

)zk,
we notice that Λn[P,Q](z) = (Pλ ∗S Q) (z). Therefore, estimate (1.13) implies

‖Λn[P,Q]‖Hp ≤ ‖Pλ‖H0 ‖Q‖Hp , 0 ≤ p ≤ ∞.

For (b), it is also immediate that if Q(z) = α(1 + βz)n and |α| = |β| = 1, then

‖Q‖H0 = 1, and Λn[P,Q](z) = αPλ (βz). Using (1.11), we also obtain ‖Λn[P,Q]‖H0 =

‖Pλ‖H0 . �

Let us also note that the weighted Hadamard product could be useful for problems

on Bombieri norms considered, e.g., in [7, 8, 13, 14]. There are relations between the

Mahler measure and Bombieri norms. For instance, B. Beauzamy [7, Proposition 4]

proved that for a polynomial P (z) =
∑n

k=0 akz
k of degree n, its Bombieri norm

[P ]2 :=

(
n∑
k=0

1

(nk)
|ak|2

)1/2

can be estimated as

(
n

bn/2c

)−1/2

‖P‖H0 ≤ [P ]2 ≤ 2n/2 ‖P‖H0 .

(Here and in the sequel, bαc denotes the integer part, or the floor, of α.)

Proof of Theorem 1.3.1. (a) The statement follows from Lemma 3.1.1 applied with

λn,k = 1, by using estimate (1.12). Alternatively, one can notice that (P ∗Q) (z) =

(Θn ∗S P ∗S Q) (z) and apply (1.13) twice. Since the operation ∗S is associative, we

may apply (1.13) in various ways, and get a bit more:

‖P ∗Q‖Hp ≤

min {‖Θn‖H0 ‖P‖H0 ‖Q‖Hp , ‖Θn‖H0 ‖P‖Hp ‖Q‖H0 , ‖Θn‖Hp ‖P‖H0 ‖Q‖H0} .

(b) It is shown in [82, Ch. 4, § 4.1.2] that if f is harmonic in D and g is harmonic

in D, then

(f ∗ g)
(
reiθ
)

=
1

2π

∫ 2π

0

f
(
rei(θ−t)

)
g
(
eit
)
dt, r ∈ [0, 1), θ ∈ R. (3.2)
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Since, Θn(z) = (1 + z)n ∗ (1 + z)n, the integral representation (3.2) yields

∣∣Θn

(
reiθ
)∣∣ =

1

2π

∣∣∣∣∫ 2π

0

(
1 + rei(θ−t)

)n (
1 + eit

)n
dt

∣∣∣∣ ≤ 4n,

whence ‖Θn‖H0 ≤ ‖Θn‖H∞ ≤ 4n.

Let us note that the Legendre polynomial Pn(x) has the following representation

(see, e.g., [1, 22.3.1 and 22.5.35]):

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k. (3.3)

So, we get

Pn(x) =
1

2n
(x− 1)n

n∑
k=0

(
n

k

)2(
x+ 1

x− 1

)k
=

1

2n
(x− 1)nΘn

(
x+ 1

x− 1

)
.

Thus, if we change the variable to z = (x+ 1)/(x− 1), we obtain

Θn(z) = (z − 1)nPn

(
z + 1

z − 1

)
. (3.4)

Since all the zeros of Pn are simple and belong to [−1, 1], and (x+1)/(x−1) maps

(−∞,−1) onto (0, 1) and (−1, 0) onto (−1, 0), equality (3.4) implies:

(i) All zeros of Θn are simple;

(ii) All zeros of Θn belong to (−∞, 0);

(iii) If Θn (z0) = 0, then Θn (1/z0) = 0.

Since Θn is a monic polynomial, we obtain that ‖Θn‖H0 =
∏
|γk|≥1 |γk|, where γk

are the zeros of Θn. Hence,

‖Θn‖H0 =
∏

αk∈[0,1)

∣∣∣∣αk + 1

αk − 1

∣∣∣∣ , (3.5)

where αk are the zeros of the Legendre polynomial Pn.

Let us express Pn as the product of its linear terms:

Pn(x) = an

n∏
k=1

(x− αk) .
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It follows from (3.3) that

Pn(1) = 1, an =
1

2n

n∑
k=0

(
n

k

)2

=
Θn(1)

2n
.

Therefore,
n∏
k=1

|αk − 1| = |Pn(1)|
|an|

=
2n

Θn(1)
. (3.6)

Since all the zeros of Pn are simple and symmetric about the origin, we deduce from

(3.5) and (3.6) that

‖Θn‖H0 =
∏

αk∈[0,1)

(∣∣∣∣αk + 1

αk − 1

∣∣∣∣ ∣∣∣∣−αk − 1

−αk − 1

∣∣∣∣) =

∏
αk∈[0,1)

|αk + 1|2

n∏
k=1

|αk − 1|

=
Θn(1)

2n

∏
αk∈[0,1)

|αk + 1|2 . (3.7)

Let τn be the counting measure for the roots of Pn, assigning the value 1/n to

each root, i.e.,

τn ([a, b)) =
number of zeros of Pn in [a, b)

n
,

and let

f(x) :=

 0, x ∈ [−1, 0],

ln |x+ 1| , x ∈ [0, 1].

Then, ∫
[−1,1]

f(x) dτn(x) =
1

n

∑
αk∈[0,1)

ln |αk + 1| .

Therefore, (3.7) yields

ln ‖Θn‖1/n

H0 =
ln (Θn(1))

n
− ln 2 +

2

n

∑
αk∈[0,1)

ln |αk + 1| =

ln (Θn(1))

n
− ln 2 + 2

∫
[−1,1]

f(x) dτn(x). (3.8)

Applying the formula

n∑
k=0

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
, r + s ≥ n
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(see, e.g., [1, 24.1.1]) with r = s = n, we conclude that

Θn(1) =

(
2n

n

)
=

Γ(2n+ 1)

(Γ(n+ 1))2 =
2nΓ(2n)

(Γ(n+ 1))2 .

Using the duplication formula for the Gamma function [1, 6.1.18], we get

Θn(1) =
2n (2π)−1/2 22n−1/2Γ(n)Γ

(
n+ 1

2

)
(Γ(n+ 1))2 =

4nΓ
(
n+ 1

2

)
√
πΓ(n+ 1)

. (3.9)

There are several representations of Catalan’s constant. One of them is

G = 2

∫ π/4

0

ln (2 cosu) du =
π

2
ln 2 + 2

∫ π/4

0

ln (cosu) du.

Using the substitution x = cos (2u), it is easy to show that∫ 1

0

ln(1 + x)

π
√

1− x2
dx =

2G

π
− ln 2

2
.

Applying (3.8) and (3.9), we now obtain

ln ‖Θn‖1/n

H0 −
4G

π
= ln ‖Θn‖1/n

H0 − ln 2− 2

∫ 1

0

ln (x+ 1)

π
√

1− x2
dx =

1

n
ln

(
Γ
(
n+ 1

2

)
√
πΓ(n+ 1)

)
+ 2

(∫
[−1,1]

f(x) dτn(x)−
∫

[−1,1]

f(x) dµ(x)

)
, (3.10)

where

dµ(x) =
dx

π
√

1− x2

is the equilibrium measure on [−1, 1].

It is well-known that the polynomials Pn are orthogonal on [−1, 1] with respect

to the Lebesgue measure, ‖Pn‖L2[−1,1] =
√

2
2n+1

, and ‖Pn‖C[−1,1] = 1 (see, e.g., [1,

22.2.1 and 22.14.7]). Hence, the polynomials Qn(z) :=
√
n+ 1

2
Pn(z) are orthonormal

on [−1, 1], and have the same zeros as Pn. Applying H.-P. Blatt’s discrepancy result

[9, Corollary 1], we deduce that there exists an absolute constant c > 0 such that

|(τn − µ) ([a, b])| ≤ c
lnn

n

(
ln ‖Qn‖C[−1,1] + lnn

)
≤ 2c

ln2 n

n
(3.11)

for any interval [a, b] ⊂ [−1, 1] and any n ≥ 2.
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Since

Γ

(
n+

1

2

)
=

1 · 2 · 3 · · · · · (2n− 1)

2n
√
π

(see, e.g., [1, 6.1.12]), it is clear that

1

n
≤

Γ
(
n+ 1

2

)
√
πΓ(n+ 1)

≤ 1.

Therefore, from (3.10) and (3.11), we obtain∣∣∣∣ln ‖Θn‖1/n

H0 −
4G

π

∣∣∣∣ ≤ lnn

n
+ 4 max

x∈[−1,1]
|f(x)| c ln2 n

n
=

lnn

n
+ 4c ln 2

ln2 n

n
, n ≥ 2.

This proves (1.16). Now (1.15) follows immediately. �

3.2 Examples

Example 3.1. (Bernstein’s Inequality) As an illustration, we can deduce Bernstein’s

inequality from Lemma 3.1.1. Let Q(z) =
∑n

k=0 bkz
k, n ∈ N. Then,

Q′(z) =
1

z

n∑
k=1

kbkz
k =

(P ∗Q) (z)

z
,

where P (z) :=
∑n

k=0 kz
k. Using the multiplicative property (1.10) of the Mahler

measure, we get ‖Q′‖H0 = ‖P ∗Q‖H0 . Futhermore, in view of Lemma 3.1.1,

Pλ(z) =
n∑
k=0

(
n

k

)
kzk = z

d

dz
(1 + z)n = zn(1 + z)n−1.

Using the multiplicative property again, we get ‖Pλ‖H0 = ‖z‖H0 n ‖1 + z‖n−1
H0 = n.

Finally, applying Lemma 3.1.1, we obtain

‖Q′‖Hp ≤ n ‖Q‖Hp , 0 ≤ p ≤ ∞.

The sharpness is verified on Q(z) = zn.

There is also reverse Bernstein Inequality (see [87] and also [76]). If Q(0) = 0,

then

Q(z) =
n∑
k=1

1

k
kbkz

k = z

(
n−1∑
k=0

zk

k + 1
∗Q′(z)

)
.
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Lemma 3.1.1 implies

‖Q‖H0 ≤

∥∥∥∥∥
n−1∑
k=0

(
n− 1

k

)
zk

k + 1

∥∥∥∥∥
H0

‖Q′‖H0 . (3.12)

Now

n−1∑
k=0

(
n− 1

k

)
zk

k + 1
=

1

nz

n−1∑
k=0

(
n

k + 1

)
zk+1 =

1

nz

n∑
k=1

(
n

k

)
zk =

(1 + z)n − 1

nz
.

As is shown in [87],

An := ‖(1 + z)n − 1‖H0 =
∏

π/6<k<5π/6

2 sin
πk

n
≈ (1.4)n.

Hence, (3.12) implies

‖Q‖H0 ≤
An
n
‖Q′‖H0 .

Equality is attained, e.g., for Q(z) = (1 + z)n − 1.

Example 3.2. Let us take λn,k =
(
n
k

)−2
. This, in fact, corresponds to the Schur-

Szegő product of P ∗S Q and
∑n

k=0 z
k. Lemma 3.1.1 implies

‖Λn[P,Q]‖Hp ≤

∥∥∥∥∥P (z) ∗S
n∑
k=0

zk

∥∥∥∥∥
H0

‖Q‖Hp , 0 ≤ p ≤ ∞. (3.13)

Since
∑n

k=0 z
k = (zn+1 − 1) /(z − 1), the multiplicative property (1.10) immediately

implies
∥∥∑n

k=0 z
k
∥∥
H0 = 1. Now, applying (1.12) to the first term in the right hand

side of (3.13), we deduce

‖Λn[P,Q]‖Hp ≤ ‖P‖H0 ‖Q‖Hp , 0 ≤ p ≤ ∞. (3.14)

For P (z) = Q(z) = (1 + z)n, the last inequality becomes an equality.

Using induction on m, it is easy to see that (3.14) holds for λn,k =
(
n
k

)−m
with

any m ∈ N (see [76, Corollary 1.6]).

Other interesting examples of coefficient multipliers used to obtain sharp poly-

nomial inequalities could be found in, e.g., [76, 88, 89]. They essentially use the
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de Bruijn-Springer-Arestov inequalities. However, if we look at the Schur-Szegő prod-

uct of P (z) =
∑n

k=0 akz
k and Q(z) =

∑n
k=0 bkz

k,

(P ∗S Q) (z) =
n∑
k=0

akbk(
n
k

) zk,
we may notice that the binomial coefficients in the denominator may introduce com-

putational difficulties. In this case, our Theorem 1.3.1 should be more useful.

Example 3.3. (The Odd and Even Parts of a Polynomial) It is often easier to

obtain some result under the assumption that a function is even, or odd, and then

consider the general case. Thus, it is useful to have a good estimate for the norm

of the even and odd parts of the function. The triangle inequality in Hp, p ∈ (0, 1),

gives only ‖(f(z) + f(−z)) /2‖Hp ≤ 21/p−1 ‖f‖Hp . In H0, there is no general triangle

inequality. Nevertheless, Lemma 3.1.1 and Theorem 1.3.1 allow us to obtain some

sharp estimates for polynomials.

Let Q(z) =
∑n

k=0 bkz
k ∈ Cn[z]. For its even part, we have

Q(z) +Q(−z)

2
=

bn/2c∑
k=0

b2kz
2k = (P ∗Q) (z), (3.15)

where P (z) =
∑bn/2c

k=0 z2k = z2(bn/2c+1)−1
z2−1

. Since ‖P‖H0 = 1, Theorem 1.3.1 and the

triangle inequality in Hp for p ≥ 1 imply

∥∥∥∥Q(z) +Q(−z)

2

∥∥∥∥
Hp

≤

 ‖Θn‖H0 ‖Q‖Hp , 0 ≤ p < 1,

‖Q‖Hp , 1 ≤ p ≤ ∞.

This estimate may be good enough, since we know sharp asymptotics for ‖Θn‖H0

given by Theorem 1.3.1. However, if we need a sharper estimate, we can employ

Lemma 3.1.1 directly, and get the following statement.

Proposition 3.2.1 Let n ∈ N and Q ∈ Cn[z]. Then,∥∥∥∥Q(z) +Q(−z)

2

∥∥∥∥
Hp

≤ αn ‖Q‖Hp , 0 ≤ p < 1, (3.16)
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where

αn :=


∏

0≤j≤n−2
4

cot2
(
π
2n

+ πj
n

)
, if n is even,

n
∏

1≤j≤n
4

cot2
(
πj
n

)
, if n is odd.

and ∥∥∥∥Q(z)−Q(−z)

2

∥∥∥∥
Hp

≤ βn ‖Q‖Hp , 0 ≤ p < 1, (3.17)

where

βn :=


n

∏
n
4
≤j≤ 3n

4
, j 6=n

2

∣∣tan
(
πj
n

)∣∣ , if n is even,

∏
n
4
≤j≤ 3n

4

∣∣tan
(
πj
n

)∣∣ , if n is odd.

For p = 0, estimates (3.16) and (3.17) become equalities for, e.g., Q(z) = (1+z)n.

Proof. Considering (3.15), to obtain (3.16), we may apply Lemma 3.1.1 with

Pλ(z) =

bn/2c∑
k=0

(
n

2k

)
z2k =

(1 + z)n + (1− z)n

2
.

Now, we need to find ‖Pλ‖H0 . Using (1.11), we get

‖Pλ‖H0 =


∏
|γj |≥1

|γj| , if n is even,

n
∏
|γj |≥1

|γj| , if n is odd,
(3.18)

where γj’s are the zeros of (1 + z)n + (1− z)n (counting multiplicities).

If n is even, then γj’s are the solutions of the equation(
z + 1

z − 1

)n
= −1,

i.e.,

γj + 1

γj − 1
= exp

(
i
(π + 2πj)

n

)
, j = 0, . . . , n− 1.

Thus, we obtain

γj =
exp

(
i (π+2πj)

n

)
+ 1

exp
(
i (π+2πj)

n

)
− 1

= −i cot

(
π

2n
+
πj

n

)
, j = 0, . . . , n− 1.
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Since also |γn−1−j| = |γj|, we have from (3.18) that

‖Pλ‖H0 =
∏

0≤j≤n−2
4

cot2

(
π

2n
+
πj

n

)
. (3.19)

If n is odd, γj’s satisfy the equation

γj + 1

γj − 1
= exp

(
i
2πj

n

)
, j = 1, . . . , n− 1.

Hence

γj =
exp

(
i2πj
n

)
+ 1

exp
(
i2πj
n

)
− 1

= −i cot

(
πj

n

)
, j = 1, . . . , n− 1,

and (3.18) implies

‖Pλ‖H0 = n
∏

1≤j≤n
4
, 3n

4
≤j≤n−1

∣∣∣∣cot

(
πj

n

)∣∣∣∣ = n
∏

1≤j≤n
4

cot2

(
πj

n

)
. (3.20)

Using (3.19), (3.20) and Lemma 3.1.1, we get (3.16).

Estimate (3.17) follows essentially in the same way. First of all, note that if

Q(z) =
∑n

k=0 bkz
k, then in notations of Lemma 3.1.1, we obtain

Q(z)−Q(−z)

2
=

bn−1
2
c∑

k=0

b2k+1z
2k+1 = Λn [R,Q] (z), (3.21)

where

R(z) :=

bn−1
2
c∑

k=0

z2k+1, Rλ(z) =

bn−1
2
c∑

k=0

(
n

2k + 1

)
z2k+1 =

(1 + z)n − (1− z)n

2
.

Now, from Lemma 3.1.1 and (3.21) we conclude that∥∥∥∥Q(z)−Q(−z)

2

∥∥∥∥
Hp

≤ ‖Rλ‖H0 ‖Q‖Hp , p ∈ [0,∞]. (3.22)

Note that the leading coefficient of Rλ is 1 when n is odd, and it is equal to n

when n is even. Hence, (1.11) implies

‖Rλ‖H0 =


n
∏
|δj |≥1

|δj| , if n is even,

∏
|δj |≥1

|δj| , if n is odd,
(3.23)
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where δj are the zeros of (1 + z)n− (1− z)n (counting multiplicities). In other words,

δj’s are solutions of one of the equations

1 + δj
1− δj

= exp

(
i
2πj

n

)
, j = 0, . . . , n− 1.

Each of these equations has a solution if and only if j 6= n/2. It is unique and given

by

δj =
exp

(
i2πj
n

)
− 1

exp
(
i2πj
n

)
+ 1

, j = 0, . . . , n− 1, j 6= n

2
.

Using Euler’s formula for the exponential, it is easy to see that

|δj|2 =

∣∣cos
(

2πj
n

)
+ i sin

(
2πj
n

)
− 1
∣∣2∣∣cos

(
2πj
n

)
+ i sin

(
2πj
n

)
+ 1
∣∣2 =

1− cos
(

2πj
n

)
1 + cos

(
2πj
n

) = tan2

(
πj

n

)
.

Thus,

|δj| =
∣∣∣∣tan

(
πj

n

)∣∣∣∣ , j = 0, . . . , n− 1, j 6= n

2
. (3.24)

Clearly |δj| ≥ 1 if and only if n
4
≤ j ≤ 3n

4
.

Thus, from (3.23) and (3.24), we obtain

‖Rλ‖H0 =


n

∏
n
4
≤j≤ 3n

4
, j 6=n

2

∣∣tan
(
πj
n

)∣∣ , if n is even,

∏
n
4
≤j≤ 3n

4

∣∣tan
(
πj
n

)∣∣ , if n is odd.

Finally, (3.22) implies (3.17). �
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CHAPTER 4

Fourier Multipliers in Hardy Spaces in Tubes over Open Cones

Our main results on multipliers of Fourier integrals in Hardy spaces were formulated

in Section 1.4 (see Theorems 1.4.2, 1.4.3, and Proposition 1.4.1). For definitions and

historical remarks, please also see Section 1.4. We will start the chapter with the

basic properties of multipliers.

1) ‖ϕ+ ψ‖qMp,q(TΓ) ≤ ‖ϕ‖
q
Mp,q(TΓ) + ‖ψ‖qMp,q(TΓ) .

2) If p ≤ q ≤ r, then ‖ϕψ‖Mp,r(TΓ) ≤ ‖ϕ‖Mp,q(TΓ) ‖ψ‖Mq,r(TΓ) .

3) For any real number α > 0, ‖ϕ (α·)‖Mp,q(TΓ) = αn(1/q−1/p) ‖ϕ‖Mp,q(TΓ) .

4) Local Property. If for any point of Γ∗, including the point at infinity, there

exists a neighborhood in which ϕ : Γ∗ → C coincides with a function fromMp,q (TΓ),

then ϕ ∈Mp,q (TΓ).

Properties 1)–3) easily follow from Definition 1.4.2, while the Local Property will

be proven later in Lemma 4.2.1. Moreover, Property 1) can also be extended to the

case of an infinite sum. The precise statement is given in Proposition 4.2.1.

4.1 Some Auxiliary Results

For two vectors a, b ∈ Rn such that a = (a1, . . . , an), b = (b1, . . . , bn), and −∞ < aj <

bj <∞, we will consider the open and closed rectangles in Rn:

(a, b)n :=
n∏
j=1

(aj, bj) , [a, b]n :=
n∏
j=1

[aj, bj] .

We will also use the following notation

V(a, b) := {ν = (ν1, . . . , νn) ∈ Rn : νj = aj or bj, j = 1, . . . , n} .
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For p ∈ (0,∞], let us consider the p-th means of a function f : TB → C:

mp (f, y) := ‖f (·+ iy)‖p =


(∫

Rn |f (x+ iy)|p dx
)1/p

, p ∈ (0,∞) ,

supx∈Rn |f (x+ iy)| , p =∞,
y ∈ B.

We will need several statements of Hadamard three-lines-theorem type.

Lemmas 4.1.2 – 4.1.3 below are obtained through personal communications with

Professor David C. Ullrich.

For an arbitrary set E ⊂ Rn, let us denote A (E) as the set of all functions

continuous and bounded in E, and holomorphic in its interior, Eo. SH (E) denotes

the set of all functions continuous and bounded in E, and plurisubharmonic in Eo.

Further, we will consider harmonic, subharmonic and plurisubharmonic functions in

Cn assuming that they are so, as functions of two independent variables:

u (z) = u (x+ iy) = u (x, y) , z = x+ iy, x, y ∈ Rn.

The following lemma is the Three-Lines Theorem for subharmonic functions. The

proof could be found, e.g., in [81, Ch. 2, § 2.3, Corollary 2.3.6].

Lemma 4.1.1 Suppose that u is continuous in T[0,1], subharmonic in T(0,1), and for

some C ∈ R and α ∈ [0, π),

u (x+ iy) ≤ Ceα|x|, x ∈ R, y ∈ [0, 1] . (4.1)

Then,

u (z) ≤ max

(
sup
t∈R

u (t) , sup
t∈R

u (t+ i)

)
, z ∈ T[0,1].

Note. The function u (x, y) = eπx sin (πy) shows that Lemma 4.1.1 fails for α = π.

We need a multivariate analog of this lemma.

Lemma 4.1.2 Suppose that B is a convex set in Rn with nonempty interior. Assume

that u is continuous, plurisubharmonic and bounded above in TB. For y0, y1 ∈ B and

t ∈ [0, 1], set yt := (1− t) y0 + ty1. Then,

sup
x∈Rn

u (x+ iyt) ≤ max

(
sup
x∈Rn

u (x+ iy0) , sup
x∈Rn

u (x+ iy1)

)
.
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Proof. Fix x0 ∈ Rn and for s+ it ∈ T[0,1] define

F (s+ it) = u (x0 + iy0 + (s+ it) (y1 − y0)) = u (x0 + s (y1 − y0) + iyt) .

It is obvious that F is continuous and bounded above in T[0,1]. Furthermore, if

y0, y1 ∈ Bo, then F is subharmonic in T[0,1]. If one (or both) of y0, y1 belongs to

∂B, then (considering that B is convex) there exist sequences {y0,j}∞j=1 and {y1,j}∞j=1

such that

lim
j→∞

yk,j = yk, yk,j ∈ Bo, k = 0, 1.

Since u is continuous in TB, the functions

Fj (s+ it) := u (x0 + iy0,j + (s+ it) (y1,j − y0,j))

converge to F uniformly on any compact subset of T[0,1]. This implies that F is

subharmonic in T(0,1).

Applying Lemma 4.1.1 to F , we get

u (x0 + iyt) = F (it) ≤ max

(
sup
s∈R

F (s) , sup
s∈R

F (s+ i)

)

≤ max

(
sup
x∈Rn

u (x+ iy0) , sup
x∈Rn

u (x+ iy1)

)
.

Since x0 ∈ Rn was chosen arbitrarily, the lemma is proven. �

Lemma 4.1.3 Suppose that B is a convex set in Rn with nonempty interior. For

y0, y1 ∈ B and t ∈ [0, 1] set yt := (1− t) y0 + ty1. If f ∈ A (TB), then

mp (f, yt) ≤ max (mp (f, y0) ,mp (f, y1)) , p ∈ (0,∞] .

Proof. Let us first suppose p ∈ (0,∞). For 0 < N <∞, define

uN (z) =

∫
{s∈Rn: |s|<N}

|f (z + s)|p ds.

It is clear that uN (x+ iy) ≤ (mp (f, y))p, for any x ∈ Rn, y ∈ B. Now f ∈ A (TB)

implies that |f |p is subharmonic in TB, and hence uN is plurisubharmonic (in fact,
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uN is subharmonic in TBo – see, e.g., [81, Ch. 2, § 2.4, Th. 2.4.8]). Since f is bounded

in TB, uN is also bounded there. As soon as f is also continuous in TB, employing

the Lebesgue Dominated Convergence Theorem, it is clear that uN is continuous in

TB. Using Lemma 4.1.2, we get

uN (iyt) ≤ max

(
sup
x∈Rn

uN (x+ iy0) , sup
x∈Rn

uN (x+ iy1)

)
≤ max ((mp (f, y0))p , (mp (f, y1))p) .

Since (mp (f, yt))
p = limN→∞ uN (iyt), we are done.

For p =∞, we should apply Lemma 4.1.2 to the function u (z) := |f (z)|. �

Note. Lemma 4.1.3 and hence previous statements cannot be considered new. It

was mentioned in [86, Ch. III, § 6.1] that if f ∈ Hp (TB), then log ‖f (·+ iy)‖p is a

convex function of y ∈ B. However, this source contains no references on the proof of

this fact. This is the reason of why the lemma is proven here. Note that other results

of such type for holomorphic and subharmonic functions could be found in [4, Ch. 3,

§ 3.5].

Now, we easily obtain

Corollary 4.1.1 Suppose that B is a convex set in Rn with nonempty interior, and

f ∈ A (TB). If K is a convex hull of a set E ⊂ B, then

sup
y∈K

mp (f, y) = sup
y∈E

mp (f, y) , p ∈ (0,∞] .

Lemma 4.1.4 Suppose that B is a convex set in Rn with nonempty interior, and

f ∈ A (TB). If K is a convex hull of a set E ⊂ B, then for any y0 ∈ Ko and any p

and q such that 0 < p ≤ q ≤ ∞,

mq (f, y0) ≤

(
n!

π
n
2 Γ
(
n
2

+ 1
)

(dist (y0, ∂K))n

) 1
p
− 1
q

sup
y∈E

mp (f, y) . (4.2)
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Proof. For q = p, the statement is just Corollary 4.1.1. Since p =∞ implies q =∞,

whence p = q again, we will consider the case 0 < p < q ≤ ∞. We will also

suppose that the supremum in the right-hand side of (4.2) is finite, and that Ko 6= ∅.

Otherwise, the statement is void.

Let us fix y0 ∈ K0. We can use the approach of [86, Ch. III, § 2, Lemma 2.12].

Let us fix an arbitrary x0 in Rn and let ε := dist (y0, ∂K) > 0. Then, Bn (y0, ε) ⊂ Ko

(here Bn (y0, ε) is the ball in Rn with the center at y0 and of radius ε). If Ωm denotes

the volume of the unit ball in Rm, then using the subharmonicity of |f |p, we get

|f (x0 + iy0)|p ≤ 1

ε2nΩ2n

∫
B2n(x0,y0,ε)

|f (x+ it)|p dx dt

≤ 1

ε2nΩ2n

∫
TBn(y0,ε)

|f (x+ it)|p dx dt. (4.3)

Corollary 4.1.1 justifies changing the order of integration in (4.3), and we obtain

|f (x0 + iy0)|p ≤ (maxy∈Emp (f, y))p

ε2nΩ2n

∫
Bn(y0,ε)

dt =
(maxy∈Emp (f, y))p Ωn

εnΩ2n

.

Since x0 ∈ Rn was taken arbitrarily, we get

m∞ (f, y0) ≤
(

Ωn

εnΩ2n

) 1
p

sup
y∈E

mp (f, y) .

Now, for q > p, using the last inequality, we have

mq (f, y0) ≤ (m∞ (f, y0))
q−p
q

(∫
Rn
|f (x+ iy0)|p dx

) 1
q

≤
(

Ωn

εnΩ2n

) 1
p
− 1
q

sup
y∈E

mp (f, y) .

Since ε = dist (y0, ∂K), and Ωm = πm/2

Γ(m/2+1)
, inequality (4.2) follows immediately. �

Applying Lemma 4.1.4 to B = [a, b]n and E = V(a, b), we obtain

Corollary 4.1.2 Assume f is holomorphic in T(a,b)n as well as bounded and contin-

uous in T[a,b]n. Then, for any 0 < p ≤ q ≤ ∞, the following inequality folds

sup
y∈(a,b)n

‖f (·+ iy)‖q

≤

(
n!

π
n
2 Γ
(
n
2

+ 1
)

(minj=1,...,n (min (yj − aj, bj − aj)))n

) 1
p
− 1
q

max
ν∈V(a,b)

‖f (·+ iν)‖p .
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Let us return to Vn (Γ) introduced in Section 1.4 (see (1.20)). As soon as the

set
{

(x1, . . . , xn) ∈ Rn2
: xj ∈ Γ, |xj| = 1, ∀j = 1, . . . , n

}
is compact in Rn2

, then the

maximum in (1.20) is attained on some set of vectors e1, . . . , en. Since Γ is also open

and nonempty, then Vn (Γ) > 0. Although the set of vectors e1, . . . , en may not be

unique, let us fix one such set e := {e1, . . . , en}. We will consider only this fixed set

in the following argument. Consider the linear map

Ψe :=


e11 . . . en1

...
. . .

...

e1n . . . enn

 ,

and denote Γe := Ψe

((
Rn

+

)o)
(here Rn

+ is the first octant in Rn, as usual, i.e., Rn
+ =

{x = (x1, . . . , xn) ∈ Rn : xj ≥ 0, ∀j = 1, . . . , n}). Since |det Ψe| = n!Vn (Γ) > 0, this

map is a bijection of Rn onto Rn,
(
Rn

+

)o
onto Γe, and Rn

+ onto Γe. It is also clear that

Γe ⊂ Γ, and it is also an open cone.

Let us denote a translation of a cone Γ by a vector ζ by Γζ := {x+ ζ : x ∈ Γ}.

Lemma 4.1.5 Let Γ be an open cone in Rn, n ∈ N. Assume that r and R are some

points in
(
Rn

+

)o
such that rj < Rj, ∀j = 1, . . . , n. If a function F is holomorphic

in TΨe((r,R)n)
as well as bounded and continuous in TΨe([r,R]n)

, then for any y ∈

Ψe ((r, R)n), and for any p and q such that 0 < p ≤ q ≤ ∞, the following inequality

holds true

‖F (·+ iy)) ‖q

≤

 1

π
n
2 Γ
(
n
2

+ 1
)
Vn (Γ)

(
minj=1,...,n

(
min

(
(Ψ−1

e y)j − rj, Rj − (Ψ−1
e y)j

)))n
 1

p
− 1
q

× max
ν∈V(r,R)

‖F (·+ iΨeν)‖p . (4.4)

To prove the lemma, we only need to apply Corollary 4.1.2 to the function G (z) =

F (Ψez) , with a = r, b = R, y = Ψ−1
e y, and get back to F .
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Lemma 4.1.6 Let Γ be a regular cone in Rn, n ∈ N, and ϕ : Γ∗ → C be a Lebesgue

measurable function. Assume that there exists a Lebesgue measurable function ϕ∗ :

Rn → C such that

(i) ϕ∗ (x) = ϕ (x) almost everywhere on Γ∗;

(ii) ϕ∗ (·) e2π(δ,·) ∈ L1 (Rn), for some δ ∈ Γ.

Then, for any function f , belonging to Hp (TΓ) with some p ∈ (0, 1], the following

equality holds true

Mϕ (f ;x) :=

∫
Γ∗
ϕ (t) f̂ (t) e2πi(x,t) dt =

∫
Rn
f (x+ t+ iδ) ϕ̂∗ (t+ iδ) dt, x ∈ Rn.

(4.5)

Proof. Let us fix an arbitrary x ∈ Rn. Since ϕ∗ = ϕ a.e. on Γ∗, and supp f̂ ⊂ Γ∗,

then

Mϕ (f ;x) =

∫
Rn
ϕ∗ (t) f̂ (t) e2πi(x,t) dt.

As soon as ϕ∗ (·) e2π(δ,·) ∈ L1 (Rn), and fδ ∈ L1 (Rn) (as we already noticed), using

Tonelli’s theorem, it is easy to see that the function G (t, u) := ϕ∗ (t) e2π(δ,t)fδ (u)

belongs to L1 (Rn × Rn). Therefore the function G (t, u) := G (t, u) e−2πi(u−x,t) is also

there. Furthermore, let us write the Fourier transform (see Definition 1.4.1) of f with

our δ:

f̂ (t) = e2π(δ,t)f̂δ (t) = e2π(δ,t)

∫
Rn
fδ (u) e−2πi(u,t) du, t ∈ Rn.

An application of Fubini’s theorem to G shows that ϕ∗f̂ ∈ L1 (Rn), and allows us to

change the order of integration in the equation below:

Mϕ (f ;x) =

∫
Rn

(
ϕ∗ (t) e−2πi(−x+iδ,t)

∫
Rn
fδ (u) e−2πi(u,t) du

)
dt

=

∫
Rn

(
fδ (u)

∫
Rn
ϕ∗ (t) e−2πi(u−x+iδ,t) dt

)
du =

∫
Rn
fδ (u) ϕ̂∗ (u− x+ iδ) du

=

∫
Rn
fδ (t+ x) ϕ̂∗ (t+ iδ) dt =

∫
Rn
f (t+ x+ iδ) ϕ̂∗ (t+ iδ) dt.

Since x ∈ Rn was chosen arbitrarily, (4.5) holds. �
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In the univariate case, (4.5) was proven in [84, Proof of Proposition 1].

Following [85, Appendix B.2], for a Lebesgue measurable function h on Rn, we

will consider its distribution function

λh (α) := m {x ∈ Rn : |h (x)| > α} , α ≥ 0,

with m – the Lebesgue measure on Rn, as well as the non-increasing rearrangement

of h given by

h∗ (t) := inf {α : λh (α) ≤ t} , t ≥ 0.

As shown in [85, Appendix B.2], both functions λh and h∗ are non-negative, non-

increasing and right continuous. Moreover, h and h∗ have the same distribution

function, and ∫
Rn
|h (x)|p dx =

∫ ∞
0

(h∗ (t))p dt, p ∈ (0,∞) . (4.6)

For a function ϕ ∈ L2 (Rn), let us denote

aσ (ϕ)2 := inf
{
‖ϕ− ψ‖2 : ψ ∈ L2 (Rn) ,m

(
supp ψ̂

)
≤ σ

}
.

Since the Fourier transform is a unitary operator on L2 (Rn), then ‖ϕ− ψ‖2 =∥∥∥ϕ̂− ψ̂∥∥∥
2
, whence

aσ (ϕ)2 = inf

{(∫
Rn\E

|ϕ̂ (x)|2 dx
) 1

2

: m (E) ≤ σ

}

≤

∫
Rn\

[
−σ1/n

2
,σ

1/n

2

]
n

|ϕ̂ (x)|2 dx

 1
2

. (4.7)

We also need a refined version of (4.6) that is given by the following statement.

Although I am not sure, to the best of my knowledge, this result is new.

Lemma 4.1.7 Let f ∈ Lp (Rn) for some p ∈ (0,∞), and f ∗ be its non-increasing

rearrangement. Then, for any σ > 0,

sup
E:m(E)≤σ

∫
E

|f (x)|p dx =

∫ σ

0

(f ∗ (t))p dt. (4.8)
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Proof. Let us take an arbitrary measurable set E so that m (E) ≤ σ, and consider

h (x) := f (x)χE (x), where χE is the indicator of E. Obviously, h∗ (t) ≤ f ∗ (t), t ≥ 0.

It is also clear that λh (α) ≤ σ, for any α ≥ 0. Hence, h∗ (t) = 0, t ≥ σ. Now, from

(4.6) we obtain ∫
E

|f (x)|p dx =

∫
Rn
|h (x)|p dx =

∫ ∞
0

(h∗ (t))p dt

=

∫ σ

0

(h∗ (t))p dt ≤
∫ σ

0

(f ∗ (t))p dt. (4.9)

Since E was chosen arbitrarily with the only requirement m (E) ≤ σ, then

sup
E:m(E)≤σ

∫
E

|f (x)|p dx ≤
∫ σ

0

(f ∗ (t))p dt. (4.10)

Let us construct a set on which the supremum is attended. First, assume that f

is bounded. Define

A := sup {α : m ({x ∈ Rn : |f (x)| ≥ α}) ≥ σ} .

If A = 0, then m (Bm) < σ for each Bm := {x ∈ Rn : |f (x)| ≥ 1/m}, m ∈ N. Hence,

m (supp f) = m

(
∞⋃
m=1

Bm

)
= lim

m→∞
m (Bm) ≤ σ.

Thus, we could take E = supp f , so that (4.9) becomes an equality, and (4.8) follows

immediately.

Now, we will consider the case A > 0. Let us denote

Mf := ess sup
x∈Rn

|f (x)| = inf {a : m ({x ∈ Rn : |f (x)| > a}) = 0} .

It is clear that A ≤Mf , and if

m ({x ∈ Rn : |f (x)| = Mf}) < σ, (4.11)

then A < Mf .

Let us denote

Uα := {x ∈ Rn : |f (x)| ≥ α} , α > 0, ŨA :=
⋃

α∈(A,Mf ]

Uα = {x ∈ Rn : |f (x)| > A} .
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Then α1 > α2 implies Uα1 ⊂ Uα2 , and all Uα’s are Lebesgue measurable. Since

A = sup {α : m (Uα) ≥ σ}, then α > A implies m (Uα) < σ. Therefore, using the

continuity of Lebesgue measure from below, we get m
(
ŨA
)
≤ σ.

Since m
(
ŨA
)
≤ σ and m (UA) ≥ σ, we can use the continuity of Lebesgue measure

to choose a Lebesgue measurable set E so that ŨA ⊂ E ⊂ UA, and m (E) = σ.

If requirement (4.11) is not satisfied, then take E to be any subset of UMf
with

m (E) = σ.

Let us consider g := fχE, and take an arbitrary α ≥ A (remember that A > 0).

Then

λf (α) = λg (α) , α ≥ A. (4.12)

Also note that λf (α) = λg (α) = 0, α > Mf . Moreover, from the definition of A, we

get

λf (α) = m ({x ∈ Rn : |f (x)| > α}) ≥ m ({x ∈ Rn : |f (x)| ≥ A}) ≥ σ, α < A.

(4.13)

Since ŨA ⊂ E ⊂ UA, then for any α ∈ (0, A), x ∈ E implies |g (x)| = |f (x)| ≥ A > α.

From another side, if |g (x)| > α then |f (x)| > α. Hence, x ∈ ŨA ⊂ E. Thus,

{x ∈ Rn : |g (x)| > α} = E, 0 < α < A.

Therefore,

λg (α) = m (E) = σ, 0 < α < A. (4.14)

Considering (4.12), (4.13) and (4.14), for t ∈ [0, σ), we obtain

g∗ (t) = inf {α : λg (α) ≤ t} = (4.14) = inf {α : α ≥ A, λg (α) ≤ t} = (4.12)

= inf {α : α ≥ A, λf (α) ≤ t} = (4.13) = inf {α : λf (α) ≤ t} = f ∗ (t) . (4.15)

Since also λg (α) ≤ m (supp g) = σ, for any α ≥ 0, then g∗ (t) = 0 when t ≥ σ. Now,
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using (4.15) and (4.6), we get∫
E

|f (x)|p dx =

∫
Rn
|g (x)|p dx =

∫ ∞
0

(g∗ (t))p dt

=

∫ σ

0

(g∗ (t))p dt =

∫ σ

0

(f ∗ (t))p dt.

Hence,

sup
E:m(E)≤σ

∫
E

|f (x)|p dx ≥
∫ σ

0

(f ∗ (t))p dt,

which completes the proof for a bounded function f .

Let us get rid of this restriction. Since f ∈ Lp (Rn), then

m ({x ∈ Rn : |f (x)| > f ∗ (ε)}) ≤ ε, ε > 0. (4.16)

Let us consider functions

f(ε) (x) := min (|f (x)| , f ∗ (ε)} , x ∈ Rn, ε > 0.

Clearly, they are in Lp (Rn) and also bounded. Moreover, (4.16) implies that f(ε)

coincides with |f | everywhere except some set of Lebesgue measure not more than ε.

Since for any α > 0,

{x ∈ Rn : |f (x)| > α} ⊂
{
x ∈ Rn : f(ε) (x) > α

}
∪
{
x ∈ Rn : |f (x)| > f(ε) (x)

}
,

then λf (α) ≤ λf(ε)
(α) + ε. Hence,

f ∗ (t) = inf {α : λf (α) ≤ t} ≤ inf
{
α : λf(ε)

(α) ≤ t− ε
}

= f ∗(ε) (t− ε) , t ≥ ε.

Thus, applying (4.8) to the bounded function f(ε), and considering that f ∗ ≥ 0,∣∣f(ε)

∣∣ ≤ |f |, we get∫ σ

ε

(f ∗ (t))p dt ≤
∫ σ+ε

ε

(f ∗ (t))p dt =

∫ σ+ε

ε

(
f ∗(ε) (t− ε)

)p
dt =

∫ σ

0

(
f ∗(ε) (t)

)p
dt

= sup
E:m(E)≤σ

∫
E

∣∣f(ε) (x)
∣∣p dx ≤ sup

E:m(E)≤σ

∫
E

|f (x)|p dx. (4.17)
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Applying Fatou’s lemma, we can pass to the limit as ε→ 0+ to conclude∫ σ

0

(f ∗ (t))p dt ≤ sup
E:m(E)≤σ

∫
E

|f (x)|p dx.

Since the inverse inequality (4.10) was obtained without any assumption on bound-

edness of f , this completes the proof. �

The next result follows immediately from the previous lemma, (4.7), and (4.6).

Corollary 4.1.3 If f ∈ L2 (Rn), then

aσ (f)2 =

(∫ ∞
σ

(
f̂ ∗ (t)

)2

dt

) 1
2

, σ ≥ 0.

Note that this statement is contained in [92, Proof of Theorem 2]. However, the

source does not contain its detailed proof.

Corollary 4.1.4 Let f ∈ L2 (Rn). Then, for any p ∈ (0,∞), the following inequality

holds true ∫
Rn

∣∣∣f̂ (x)
∣∣∣p dx ≤ 2

∫ ∞
0

(
aσ (f)2√

σ

)p
dσ.

Proof. The reasoning of this proof is the same as used in the proof of Theorem 2 in

[92] just mentioned.

Since f ∈ L2 (Rn), then f̂ also belongs to the same space. Applying (4.7), Corol-

lary 4.1.3, and considering that f̂ ∗ is non-increasing and non-negative, we get

f̂ ∗ (2t) ≤ 1√
t

(∫ 2t

t

(
f̂ ∗ (u)

)2

du

) 1
2

≤ 1√
t

(∫ ∞
t

(
f̂ ∗ (u)

)2

du

) 1
2

=
at (f)2√

t
, t > 0.

Therefore, (4.6) implies∫
Rn

∣∣∣f̂ (x)
∣∣∣p dx =

∫ ∞
0

(
f̂ ∗ (t)

)p
dt = 2

∫ ∞
0

(
f̂ ∗ (2σ)

)p
dσ ≤ 2

∫ ∞
0

(
aσ (f)2√

σ

)p
dσ

that completes the proof. �

We also need a Nikol’skĭı type inequality in a pointwise form. Unfortunately, it

is not true without additional assumptions. The following statement is one of such

‘constrained’ forms.
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Proposition 4.1.1 Assume ϕ ∈ Cr (Rn), r, n ∈ N, and there exist non-increasing

functions F,G : R+ → R+ such that for some j = 1, . . . , n,

|ϕ (x)| ≤ F (|x|) ,
∣∣∣∣∂rϕ∂xrj (x)

∣∣∣∣ ≤ G (|x|) , x ∈ Rn.

Then ∣∣∣∣∣∂kϕ∂xkj
(x)

∣∣∣∣∣ ≤
(
C0r

k

)k
(F (|x|))1− k

r (G (|x)|)
k
r , x ∈ Rn, k = 1, . . . , r − 1,

where C0 is an absolute constant.

Proof. Suppose g ∈ Cr (R), and for some a, b ≥ 0,

|g (x)| ≤ F
(√

a+ x2
)
,
∣∣g(r) (x)

∣∣ ≤ G
(√

b+ x2
)
, x ∈ R. (4.18)

Then, fixing some x ≥ 0 and applying the Nikol’skĭı type inequality on R+ (see, e.g.,

[91, Chapter 3, § 3.10.2, Estimate (9)]) to the function h (t) := g (t+ x), we obtain

sup
t≥x

∣∣g(k) (t)
∣∣ = sup

t≥0

∣∣h(k) (t)
∣∣ ≤ (C0r

k

)k (
sup
t≥0
|h (t)|

)1− k
r
(

sup
t≥0

∣∣h(r) (t)
∣∣) k

r

=

(
C0r

k

)k (
sup
t≥x

F
(√

a+ t2
))1− k

r
(

sup
t≥x

G
(√

b+ t2
)) k

r

.

Since F and G are non-increasing, then F
(√

a+ x2
)

and G
(√

b+ x2
)

are non-

increasing on R+, whence, for x ≥ 0,

∣∣g(k) (x)
∣∣ ≤ (C0r

k

)k (
F
(√

a+ x2
))1− k

r
(
G
(√

b+ x2
)) k

r
. (4.19)

If x < 0, then considering G (t) := g (−t), we deduce that (4.19) holds for x ∈ R.

Now, take any x = (x1, . . . , xn) ∈ Rn, and consider

g (t) := ϕ (x1, . . . , xj−1, t, xj+1, . . . , xn) .

Applying (4.19) to this function with a = b =
∑

l=1,...,n; l 6=j x
2
l , we get∣∣∣∣∣∂kϕ∂xkj

(x1, . . . , xj−1, t, xj+1, . . . , xn)

∣∣∣∣∣ =
∣∣g(k) (t)

∣∣
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≤
(
C0r

k

)k (
F
(√

x2
1 + · · ·+ x2

j−1 + t2 + x2
j+1 + · · ·+ x2

n

))1− k
r

×
(
G
(√

x2
1 + · · ·+ x2

j−1 + t2 + x2
j+1 + · · ·+ x2

n

)) k
r

, t ∈ R.

Taking t = xj completes the proof. �

Corollary 4.1.5 Assume ϕ ∈ Cr (Rn), r, n ∈ N. If for some non-negative α, β, A

and B, the following growth estimates

|ϕ (x)| ≤ A

1 + |x|α
;

∣∣∣∣∂rϕ∂xrj (x)

∣∣∣∣ ≤ B

1 + |x|β
, x ∈ Rn, j = 1, . . . , n,

are satisfied, then for k = 1, . . . , r − 1,∣∣∣∣∣∂kϕ∂xkj
(x)

∣∣∣∣∣ ≤
(
C0r

k

)k (
A

1 + |x|α
)1− k

r

(
B

1 + |x|β

) k
r

, x ∈ Rn, (4.20)

where C0 is an absolute constant.

Note that (4.20) is used in [94, Proof of Theorem 3b], but its justification is absent

there.

Equipped with these statements, we can proceed to the proofs of the main results

of this chapter (and Section 1.4).

4.2 Conditions for Fourier Multipliers

4.2.1 Multipliers with Compactly Supported Kernel

The goal of this subsection is to prove Theorem 1.4.2. First, we need Proposition 4.2.2,

which is rather technical, but it can be used for obtaining various conditions for

Fourier multipliers. Let us start with a generalization of the basic Property 1) of a

multiplier given by the following statement.

Proposition 4.2.1 Let Γ be a regular cone in Rn, n ∈ N, 0 < p ≤ q ≤ 1, and

let {ϕm}∞m=1 be a sequence of Fourier multipliers, ϕm ∈ Mp,q (TΓ). Assume that∑∞
m=1 |ϕm| ∈ L∞ (Γ∗) and ϕ (x) =

∑∞
m=1 ϕm (x) almost everywhere on Γ∗.
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If
∑∞

m=1 ‖ϕm‖
q
Mp,q(TΓ) <∞ then ϕ ∈Mp,q (TΓ), and

‖ϕ‖Mp,q(TΓ) ≤

(
∞∑
m=1

‖ϕm‖qMp,q(TΓ)

) 1
q

.

Proof. Since
∑∞

m=1 ϕm (x) converges to ϕ almost everywhere, and the Lebesgue mea-

sure in Rn is complete, then ϕ is measurable. Let us take an arbitrary f ∈ Hp (TΓ)

and fix an arbitrary y ∈ Γ. Then, since the inversion formula (1.18) is true, we have

f̂ (t) e−2π(y,t) ∈ L1 (Rn). Using the assumption that
∑∞

m=1 |ϕm| ∈ L∞ (Γ∗), we can

apply the Lebesgue Dominated Convergence Theorem to derive

∞∑
m=1

∫
Γ∗
ϕm (t) f̂ (t) e2πi(x+iy,t) dt =

∫
Γ∗
ϕ (t) f̂ (t) e2πi(x+iy,t) dt

= Fϕ [f ] (x+ iy) , x ∈ Rn. (4.21)

Again, since ϕ ∈ L∞ (Γ∗) and f̂ (t) e−2π(y,t) ∈ L1 (Rn), then the Lebesgue Dom-

inated Convergence Theorem implies Fϕ [f ] (·+ iy) is continuous on Rn, whence

Lebesgue measurable.

Since all ϕm’s belong to Mp,q (TΓ), then |Fϕm [f ] (·+ iy)|q ∈ L1 (Rn), for any m.

As soon as

∞∑
m=1

∫
Rn
|Fϕm [f ] (x+ iy)|q dx ≤

∞∑
m=1

‖ϕm‖qMp,q(TΓ) ‖f‖
q
Hp <∞,

the Dominated Convergence Theorem implies that the series
∑∞

m=1 |Fϕm [f ] (x+ iy)|q

converges almost everywhere on Rn to a function from L1 (Rn) (see, e.g., [31, Ch. 2,

§ 2.3, Theorem 2.25]).

Using the triangle inequality for the power q, (4.21) implies

∞∑
m=1

|Fϕm [f ] (x+ iy)|q ≥

∣∣∣∣∣
∞∑
m=1

Fϕm [f ] (x+ iy)

∣∣∣∣∣
q

= |Fϕ [f ] (x+ iy)|q ,

and we immediately conclude that |Fϕ [f ] (·+ iy)|q ∈ L1 (Rn), and

‖Fϕ [f ] (·+ iy)‖qq ≤
∞∑
m=1

‖ϕm‖qMp,q(TΓ) ‖f‖
q
Hp .

Passing to supy∈Γ in the last inequality, we get the statement. �

71



Proposition 4.2.2 Let Γ be a regular cone in Rn, n ∈ N. Assume f ∈ Hp (TΓ)

for some p ∈ (0, 1], and ϕ (·) e2πα
√
n|·| ∈ L1 (Rn), for some α > 0. Then, for any

q ∈ [p, 1], and r, R ∈ Rn
+ such that 0 < rj < Rj, j = 1, . . . , n, and |R| ≤ α, the

following inequality holds

‖Mϕ (f)‖Hq ≤ 2n(
1
p

+ 1
q
−1)

(
1

π
n
2 Γ
(
n
2

+ 1
)
Vn (Γ) (minj=1,...,n (Rj − rj))n

) 1
p
−1

× max
ν∈V(r,R)

‖ϕ̂ (·+ iΨeν)‖q ‖f‖Hp . (4.22)

Proof. For any y ∈ [r, R]n, (Ψey)j =
∑n

k=1 ekjyk. Since e1, . . . , en are unit vectors,

and y ∈ [r, R]n ⊂ Rn
+, applying Cauchy-Schwartz inequality, we get

|Ψey| ≤
√
n |y| ≤

√
n |R| ≤

√
nα. (4.23)

As soon as ϕ (·) e2πα
√
n|·| ∈ L1 (Rn), the function

ϕ̂ (Ψe (x+ iy)) =

∫
Rn
ϕ (t) e2π(Ψey,t)e−2πi(Ψex,t) dt

is holomorphic in T(r,R)n as well as continuous and bounded in T[r,R]n . Since Ψe is

a nonsingular linear transformation, ϕ̂ is holomorphic in TΨe((r,R)n)
, continuous and

bounded in TΨe([r,R]n)
.

We will also use the fact that if f ∈ Hp (TΓ) for some p, then, for any w ∈ Γ,

fw ∈ Hp0 (TΓ) with any p0 ∈ [p,∞] (see Lemma 1.4.1). Hence, fw ∈ Hp (TΓ), and

using the definition of Fourier transform (1.17) with δ = w, we have

Mϕ (f ;x+ iw) =

∫
Γ∗
ϕ (t) f̂ (t) e2πi(x+iw,t) dt =

∫
Γ∗
ϕ (t) f̂ (t) e−2π(w,t)e2πi(x,t) dt

=

∫
Γ∗
ϕ (t) f̂w (t) e2πi(x,t) dt = Mϕ (fw;x) , x ∈ Rn. (4.24)

Let us choose an arbitrary ρ ∈ (r, R)n. Then, (4.23) and Cauchy-Schwarz inequal-

ity imply

|ϕ (t)| e2π(Ψeρ,t) ≤ |ϕ (t)| e2π|Ψeρ||t| ≤ |ϕ (t)| e2π
√
nα|t| ∈ L1 (Rn) .
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Using (4.24) and applying Lemma 4.1.6 with δ = Ψeρ and ϕ∗ = ϕ to the function fw,

we conclude

Mϕ (f ;x+ iw) =

∫
Γ∗
fw (x+ u+ iΨeρ) ϕ̂ (u+ iΨeρ) du, x ∈ Rn.

In the following, we will suppose that the maximum on the right-hand side of (4.22)

is finite (otherwise, (4.22) is trivial). Under this assumption, we have that

‖Mϕ (f ; ·+ iw)‖qq =

∫
Rn
‖gΨeρ (w, x; ·)‖q1 dx,

where g (w, x; ·) := fw (x+ ·) ϕ̂ (·) (recall that gβ (z) = g (z + iβ)). If we consider this

function as a function of the last argument with fixed x and w, then it obviously

satisfies the conditions of Lemma 4.1.5. Applying this statement with q = 1, p = p,

f (·) = g (w, x; ·), we continue our estimates with

‖Mϕ (f ; ·+ iw)‖qq ≤ Θ

∫
Rn

max
ν∈V(r,R)

‖g (w, x; ·+ iΨeν)‖qp dx,

where

Θ :=

(
1

π
n
2 Γ
(
n
2

+ 1
)
Vn (Γ) (minj=1,...,n (min (ρj − rj, Rj − ρj)))n

) q
p
−q

.

Now, let us note that if F1, . . . , FN ∈ L+(X,µ), then∫
X

max
j=1,...,N

Fj dµ ≤
∫
X

(F1 + · · ·+ FN) dµ ≤ N max
j=1,...,N

∫
X

Fj dµ.

Using this fact and changing variables (x+ u = t), we get

‖Mϕ (f ; ·+ iw)‖qq ≤ 2nΘ max
ν∈V(r,R)

∫
Rn

(∫
Rn
|fw (t+ iΨeν) ϕ̂ (t− x+ iΨeν)|p dt

)q/p
dx.

(4.25)

Since q/p > 1, we can employ Minkovskii’s integral inequality and obtain:

‖Mϕ (f ; ·+ iw)‖qq

≤ 2nΘ max
ν∈V(r,R)

(∫
Rn
|fw (t+ iΨeν)|p

(∫
Rn
|ϕ̂ (t− x+ iΨeν)|q dx

)p/q
dt

)q/p
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= 2nΘ max
ν∈V(r,R)

‖ϕ̂ (·+ iΨeν)‖qq ‖fw (·+ iΨeν)‖qp ≤ 2nΘ max
ν∈V(r,R)

‖ϕ̂ (·+ iΨeν)‖qq ‖f‖
q
Hp .

Since, the maximum in the right-hand side is assumed finite, taking supw∈Γ, we have

‖Mϕ (f)‖Hq ≤ 2n/q

(
1

π
n
2 Γ
(
n
2

+ 1
)
Vn (Γ) (minj=1,...,n (min (ρj − rj, Rj − ρj)))n

) 1
p
−1

× max
ν∈V(r,R)

‖ϕ̂ (·+ iΨeν)‖q ‖f‖Hp .

Since the left hand side of this inequality does not depend on ρ, we could take ρ =

1
2

(r +R), and the last inequality yields (4.22). �

Following [86, Ch. III, § 4], a convex, compact and symmetric with respect to the

origin set K ⊂ Rn with nonempty interior is called a symmetric body. Its polar set is

defined by K∗ = {t ∈ Rn : (x, t) ≤ 1, ∀x ∈ K}. Let us also set

‖z‖ := sup
t∈K∗
|(z, t)| = sup

t∈K∗
|(z1t1 + · · ·+ zntn)| .

Note that K∗ is again a symmetric body, and (K∗)∗ = K (see, e.g., [86, Ch. III, § 4,

Lemma 4.7]).

It is said that an entire function f defined in Cn is of exponential type K, where

K is a symmetric body, if for any ε > 0 there exists a constant Aε > 0 such that

|f (z)| ≤ Aεe
2π(1+ε)‖z‖, ∀z ∈ Cn.

The class of all entire functions of exponential type K is denoted by E (K).

Proof of Theorem 1.4.2. Since ϕ is compactly supported on convex body K :=

[−σ, σ]n = [−σ, σ] × · · · × [−σ, σ], then, according to the multivariate Paley-Wiener

theorem [86, Ch. III, § 4, Th. 4.9],

ϕ̂ (z) =

∫
[−σ,σ]n

ϕ (t) e−2π(z,t) dt

is a function of E (K∗) class. Therefore,

|ϕ̂ (z)| ≤ Aεe
2π(1+ε)‖z‖, (4.26)
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where ‖z‖ = supy∈K |z1y1 + . . . znyn|. If we fix all the other variables except j-th,

then, clearly, the function

Φj (ξ) := ϕ̂ (z1, . . . , zj−1, ξ, zj+1, . . . , zn)

is a univariate entire function of exponential type 2πσ.

Applying Bernstein inequality in Lp-metric (for p ∈ (0, 1), the result is due to

Q. I. Rahman and G. Schmeisser [78, Corollary 1]), we get∥∥∥∥ ∂ϕ̂∂xj (z1, . . . , zj−1, ·, zj+1, . . . , zn)

∥∥∥∥
Lq(R)

=
∥∥Φ′j

∥∥
Lq(R)

≤ 2πσ ‖Φj‖Lq(R) .

Thus, ∫
Rn−1

(∫
R

∣∣∣∣ ∂ϕ̂∂xj
∣∣∣∣q dxj) dx1 . . . dxj−1dxj+1 . . . dxn ≤ (2πσ)q ‖ϕ̂‖qq <∞.

Applying Tonelli’s theorem, we obtain that ∂ϕ̂
∂xj
∈ Lq (Rn), and∥∥∥∥ ∂ϕ̂∂xj

∥∥∥∥
q

≤ 2πσ ‖ϕ̂‖q , j = 1, . . . , n. (4.27)

Expanding exponential to the Taylor series, we have

e2π(y,t) =
∞∑
m=0

(2π)m

m!

(
n∑
j=1

yjtj

)m

, y, t ∈ Rn.

The following equality could be easily checked by induction(
n∑
j=1

yj
∂

∂xj

)m {
e−2πi(x,t)

}
im =

(
n∑
j=1

yjtj

)m

e−2πi(x,t) (2π)m . (4.28)

Now,

ϕ̂ (x+ iy) =

∫
[−σ,σ]n

ϕ (t)
∞∑
m=0

(2π)m

m!

(
n∑
j=1

yjtj

)m

e−2πi(x,t) dt. (4.29)

Since ∣∣∣∣∣(2π)m

m!

(
n∑
j=1

yjtj

)m∣∣∣∣∣ ≤ (2π)m σm |y|m nm/2

m!
, t ∈ [−σ, σ]n ,

the series on the right hand side of (4.29) converges uniformly (with respect to t) and

absolutely on [−σ, σ]n. Since ϕ ∈ L1 ([−σ, σ]n), applying the Lebesgue Dominated
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Convergence Theorem, we can put the integral sign inside the series. Thus, using

(4.28), we get

ϕ̂ (x+ iy) =
∞∑
m=0

im

m!

∫
[−σ,σ]n

ϕ (t)

(
n∑
j=1

yj
∂

∂xj

)m {
e−2πi(x,t)

}
dt.

Since ϕ ∈ C (Rn) and is compactly supported, then |t|k ϕ (t) ∈ L1 (Rn), for any k ∈ N,

and we can take the differentiation operators outside of the integral. Hence,

ϕ̂ (x+ iy) =
∞∑
m=0

im

m!

(
n∑
j=1

yj
∂

∂xj

)m

ϕ̂ (x) . (4.30)

Now, (4.27) implies∫
Rn

∣∣∣∣∣
(

n∑
j=1

yj
∂

∂xj

)
ϕ̂ (x)

∣∣∣∣∣
q

dx ≤
n∑
j=1

|yj|q
∫
Rn

∣∣∣∣ ∂∂xj ϕ̂ (x)

∣∣∣∣q dx ≤ (2πσ)q
n∑
j=1

|yj|q ‖ϕ̂‖qq .

Hence, by induction,∫
Rn

∣∣∣∣∣
(

n∑
j=1

yj
∂

∂xj

)m

ϕ̂ (x)

∣∣∣∣∣
q

dx ≤ (2πσ)mq
(

n∑
j=1

|yj|q
)m

‖ϕ̂‖qq . (4.31)

From (4.30), we obtain

|ϕ̂ (x+ iy)|q ≤
∞∑
m=0

1

(m!)q

∣∣∣∣∣
(

n∑
j=1

yj
∂

∂xj

)m

ϕ̂ (x)

∣∣∣∣∣
q

. (4.32)

Considering (4.31),

∞∑
m=0

∫
Rn

1

(m!)q

∣∣∣∣∣
(

n∑
j=1

yj
∂

∂xj

)m

ϕ̂ (x)

∣∣∣∣∣
q

dx ≤
∞∑
m=0

(2πσ)mq

(m!)q

(
n∑
j=1

|yj|q
)m

‖ϕ̂‖qq <∞.

Therefore, the series on the right-hand side of (4.32) converges to a function from

L1 (Rn), and its L1-norm is (see [31, Ch. 2, § 2.3, Theorem 2.25])

∞∑
m=0

∫
Rn

1

(m!)q

∣∣∣∣∣
(

n∑
j=1

yj
∂

∂xj

)m

ϕ̂ (x)

∣∣∣∣∣
q

dx.

Now, (4.32) implies that ϕ̂ (·+ iy) ∈ Lq (Rn), and

‖ϕ̂ (·+ iy)‖q ≤

(
∞∑
m=0

(2πσ)mq

(m!)q

(
n∑
j=1

|yj|q
)m) 1

q

‖ϕ̂‖q , y ∈ Rn. (4.33)
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Take

τ := 2πσn
1
2

+ 1
q , R :=

(
1

τ
, . . . ,

1

τ

)
, r :=

( ε
τ
, . . . ,

ε

τ

)
, (4.34)

where ε (0, 1). If ν ∈ V (r, R), then∣∣∣(Ψeν)j

∣∣∣ ≤ √n
τ

=
1

2πσn
1
q

.

Using (4.33) with y = Ψeν, we get

‖ϕ̂ (·+ iΨeν)‖q ≤

(
∞∑
m=0

1

(m!)q

)1/q

‖ϕ̂‖q .

Having applied Proposition 4.2.2 with r and R as in (4.34), we obtain

‖Mϕ (f)‖Hq ≤ 2n(
1
p

+ 1
q
−1)


(

2πσn
1
2

+ 1
q

)n
πn/2Γ

(
n
2

+ 1
)
Vn (Γ) (1− ε)n


1
p
−1(

∞∑
m=0

1

(m!)q

) 1
q

‖f‖Hp .

Passing to the limit as ε→ 0+ completes the proof. �

It is clear that if ϕ ∈ C∞ (Rn) and is compactly supported, then it belongs to

the Schwartz space J . Applying Theorem 3.2 from [86, Ch. 1, § 3], we get ϕ̂ ∈

J . Integrating in polar coordinates, we conclude ϕ̂ ∈ Lq (Rn), for any p ∈ (0,∞].

Applying Theorem 1.4.2, we easily deduce

Corollary 4.2.1 Let Γ be a regular cone in Rn, n ∈ N. If ϕ ∈ C∞ (Rn) and is

compactly supported, then ϕ ∈Mp,q (TΓ), for any 0 < p ≤ q ≤ 1.

4.2.2 Local Property

The following lemma was mentioned as one of the basic multiplier’s properties. Now,

we are ready to present its proof.

Lemma 4.2.1 (Local Property) Let Γ be a regular cone in Rn, n ∈ N, and let

0 < p ≤ q ≤ 1. Assume a function ϕ : Γ∗ → C has the following property: for any

point t ∈ Γ∗, including the point at infinity, there exists a neighborhood Vt such that,

in Vt ∩ Γ∗, ϕ coincides with some function ϕt ∈Mp,q (TΓ). Then ϕ ∈Mp,q (TΓ).
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Proof. Without any loss of generality, we will consider that Vt’s are open balls Vt =

Bn (t, rt) = {x ∈ Rn : |x− t| < rt} of radius rt > 0, and V∞ := {x ∈ Rn : |x| > r∞}.

Since Γ∗ \ V∞ is a compact in Rn, there exists a finite subcover of Γ∗ \ V∞ by

Vt’s, i.e., Γ∗ \ V∞ ⊂ ∪mk=1Vtk . For simplicity, let us denote Vtm+1 := V∞. Then,

Γ∗ ⊂ ∪m+1
k=1 Vtk .

Using, e.g., [67, Ch. 1, § 1.2, Th. 1.2.3], it is clear that there exists a partition

of unity subordinate to the open covering {Vtk}
m+1
k=1 that is a family of C∞-functions{

ζ(tk)

}m+1

k=1
such that

0 ≤ ζ(tk) ≤ 1, supp ζ(tk) ⊂ Vtk , k = 1, . . . ,m+ 1,

the family
{

supp ζ(tk)

}
is locally finite, and

m+1∑
k=1

ζ(tk) (x) = 1, ∀x ∈ Γ∗. (4.35)

It is clear that ζ(∞) = ζ(tm+1) is equal to 1 on Γ∗ \∪mk=1Vtk . Hence, η(∞) := 1− ζ(∞)

is also from C∞ (Rn) class, and

η(∞) (x) = 0, ∀x ∈ Γ∗ \
m⋃
k=1

Vtk .

Since η(∞) is compactly supported, Corollary 4.2.1 implies η(∞) ∈Mp,p (TΓ).

As soon as supp ζ(tk) ⊂ Vtk and ϕ = ϕ(tk) on Vtk , for k = 1, . . . ,m+ 1, we have

ζ(tk) (x)ϕ (x) = ζ(tk) (x)ϕ(tk) (x) , x ∈ Γ∗, k = 1, . . . ,m+ 1.

Multiplying (4.35) by ϕ (x), we get

ϕ (x) =
m+1∑
k=1

ζ(tk) (x)ϕ(tk) (x) , x ∈ Γ∗. (4.36)

This implies that ϕ is Lebesgue measurable, since all ϕ(tk) are multipliers, whence

measurable, and ζ(tk) are continuous.

Since functions ζ(tk) are infinitely differentiable on Rn and compactly supported

for any k = 1, . . . ,m, Corollary 4.2.1 implies that ζ(tk) ∈ Mp,p (TΓ). Hence, using

Property 2) of a multiplier, ζ(tk)ϕ(tk) ∈Mp,q (TΓ).
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Now, ϕ(∞)ζ(∞) = ϕ(∞) − ϕ(∞)η(∞) ∈ Mp,q (TΓ), because η(∞) ∈ Mp,p (TΓ) and

ϕ(∞) ∈Mp,q (TΓ).

Thus all the summands in (4.36) belong to Mp,q (TΓ), whence ϕ ∈Mp,q (TΓ). �

4.2.3 Necessary Conditions

The Local Property of a multiplier and Theorem 1.4.2 allow us to get efficient neces-

sary conditions and even criteria for a function to be a multiplier. These conditions

are especially usefull for radial functions. In particular, we can easily obtain the criti-

cal index for Bochner-Riesz means (Proposition 1.4.1). The key point is the condition

ϕ̂ ∈ Lq, which is illustrated by the following statement.

Theorem 4.2.1 Let Γ be a regular cone in Rn, n ∈ N, and let ϕ ∈ C (Γ∗). If

ϕ ∈ Mp,q (TΓ) for some 0 < p ≤ q ≤ 1, then for any point x ∈ (Γ∗)o, and its every

bounded neighborhood Vx such that Vx ⊂ (Γ∗)o, the function ϕ coincides in Vx with a

compactly supported continuous function whose Fourier transform belongs to Lq (Rn).

To prove Theorem 4.2.1, we need a couple of lemmas that may be of independent

interest.

Lemma 4.2.2 Let Γ be a regular cone in Rn, n ∈ N, ϕ ∈ L1
loc (Γ∗), and 0 < p ≤

q ≤ 1. If ϕ ∈ Mp,q (TΓ), and ψ is a compactly supported function such that ψ̃ (·) =

ψ̂ (−·) ∈ Hp (TΓ), then ϕ̂ψ ∈ Lq (Rn).

Proof. Let us consider the function

g (z) :=

∫
Γ∗
ϕ (t)ψ (t) e2πi(z,t) dt, z ∈ TΓ. (4.37)

Since ψ̃ (·) ∈ Hp (TΓ), the inversion formula implies suppψ ⊂ Γ∗. As soon as ϕ ∈

Mp,q (TΓ), we also deduce

‖g‖Hq ≤ ‖ϕ‖Mp,q(TΓ)

∥∥∥ψ̃∥∥∥
Hp
. (4.38)
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Since ϕ ∈ L1
loc (Γ∗), and ψ is continuous and compactly supported, then ϕψ ∈

L1 (Γ∗). Moreover,
∣∣e2πi(z,t)

∣∣ ≤ 1, for z ∈ TΓ, t ∈ Rn. Hence, applying the Lebesgue

Dominated Convergence Theorem, we obtain from (4.37) that

ϕ̂ψ (−x) = g (x) := lim
y→0, y∈Γ

g (x+ iy) =

∫
Γ∗
ϕ (t)ψ (t) e2πi(x,t) dt, x ∈ Rn.

Note that |g (x)|q is also Lebesgue measurable on Rn as a limit of Lebesgue measurable

functions |g (x+ iy)|q. Hence, using Fatou’s Lemma and (4.38), we get∥∥∥ϕ̂ψ∥∥∥
q
≤ lim inf

y→0, y∈Γ
‖g (·+ iy)‖q ≤ ‖ϕ‖Mp,q(TΓ)

∥∥∥ψ̃∥∥∥
Hp

<∞.

�

Lemma 4.2.3 Let Γ be a regular cone in Rn, n ∈ N, ϕ ∈ L1
loc (Γ∗), and 0 < p ≤ q ≤

1. If ϕ ∈ Mp,q (TΓ), and ψ ∈ C∞ (Rn) is compactly supported with suppψ ⊂ (Γ∗)o,

then ϕ̂ψ ∈ Lq (Rn).

Proof. Let us consider

ψ̃ (z) = ψ̃ (x+ iy) =

∫
Rn
ψ (t) e−2π(y,t)e2πi(x,t) dt, z = x+ iy ∈ TΓ. (4.39)

We need to prove that ψ̃ ∈ Hp (TΓ). Since ψ ∈ L2 (Rn) and is compactly supported,

the Paley-Wiener Theorem implies that ψ̃ is an entire function of exponential type.

Since ψ is compactly supported, then it is clear that for any y ∈ Γ, x ∈ Rn, we have

ψ (·) e−2π(y,·)e2πi(x,·) ∈ L1 (Rn). According to Fubini’s theorem, we can choose the

order of integration in (4.39) as we need.

If g ∈ C∞ (Rn) and is compactly supported, then Lebesgue integral is, in fact, Rie-

mann integral, and using integration by parts in the iterated integrals, and applying

Leibnitz differentiation formula, we arrive at∫
Rn
g (t) e−2π(y,t)e2πi(x,t) dt

=
ik

(2π)k xkj

k∑
l=0

(
k

l

)
(−2πyj)

k−l
∫

supp g

(
∂l

∂tlj
g (t)

)
e−2π(y,t)e2πi(x,t) dt. (4.40)
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Since suppψ ⊂ (Γ∗)o, then for any t ∈ suppψ and y ∈ Γ we have (y, t) > 0. As

soon as suppψ is compact, then inf
{

(y, t) | y ∈ Γ, |y| = 1, t ∈ suppψ
}

is attained at

some couple, y0 and t0. Therefore,

a := min {(y, t) | y ∈ Γ, |y| = 1, t ∈ suppψ} = (y0, t0) > 0,

whence

(y, t) ≥ a |y| , y ∈ Γ, t ∈ suppψ.

Applying standard calculus to the function h (ξ) := ξme−2πaξ, m ∈ Z+, we deduce

that h (ξ) ≤ mm

(2πa)m
e−m on (0,∞). Thus, for y ∈ Γ, t ∈ suppψ, we have

|yj|m e−2π(y,t) ≤ |y|m e−2πa|y| ≤ γ1 (m, a) :=


mm

(2πa)m
e−m, m ∈ N,

1, m = 0.

Now, applying (4.40) to ψ (·+ iy), and considering the last estimate, we obtain∣∣∣ψ̃ (x+ iy)
∣∣∣ ≤ γ2 (n, k, ψ)

|xj|k
, xj 6= 0, y ∈ Γ, (4.41)

where

γ2 (n, k, ψ) :=
1

(2π)k

k∑
l=0

(
k

l

)
(2π)k−l γ1 (k − l, a)

∫
suppψ

∣∣∣∣∣ ∂l∂tljψ (t)

∣∣∣∣∣ dt <∞
does not depend on x and y.

Using Hölder’s inequality, we also have

|x|2m =

(
n∑
j=1

x2
j

)m

≤
n∑
j=1

x2m
j

(
n∑
j=1

1

)1− 1
m

= n1− 1
m

n∑
j=1

x2m
j , m ∈ N.

Hence, from (4.41), we clearly get

|x|2m
∣∣∣ψ̃ (x+ iy)

∣∣∣ ≤ n1− 1
m

n∑
j=1

x2m
j

∣∣∣ψ̃ (x+ iy)
∣∣∣ ≤ n1− 1

m

n∑
j=1

γ2 (n, 2m,ψ)

= n2− 1
mγ2 (n, 2m,ψ) , x ∈ Rn, y ∈ Γ, m ∈ N. (4.42)

It is also obvious that∣∣∣ψ̃ (x+ iy)
∣∣∣ ≤ ‖ψ‖1 <∞, x ∈ Rn, y ∈ Γ. (4.43)
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Integrating in polar coordinates and considering (4.42) and (4.43), we easily de-

duce that ψ̃ ∈ Hp (TΓ). Finally, Lemma 4.2.2 implies that ϕ̂ψ ∈ Lq (Rn). �

Proof of Theorem 4.2.1. Let us take an arbitrary x ∈ (Γ∗)o and its bounded

neighborhood Vx such that Vx ⊂ (Γ∗)o. Consider a function ψ(x) with the following

properties:

1). ψ(x) ∈ C∞ (Rn);

2). ψ(x) is compactly supported and suppψ(x) ⊂ (Γ∗)o;

3). ψ(x) ≡ 1 on Vx.

To prove that it is possible, let us first note that since Rn is a normal topological

space, there exists an open set U such that Vx ⊂ U ⊂ U ⊂ (Γ∗)o. Then, [67,

Ch. 1, § 1.2, Corollary 1.2.6] guarantees the existence of a function ψ(x) with desired

properties.

Now, the function

G (t) := ϕ (t)ψ(x) (t)

is continuous, compactly supported and coincides with ϕ on Vx. Moreover, according

to Lemma 4.2.3, Ĝ ∈ Lq (Rn), which completes the proof. �

As we can see, the requirement on the Fourier transform of a multiplier to be

in Lq (Rn) is essential. If our kernel is radial and compactly supported, then the

requirement ϕ̂ ∈ Lq is crucial. Moreover, using the Local Property (Lemma 4.2.1), it

is often easier to show that a radial function is a multiplier, and then conclude that

its Fourier transform is in Lq (see, e.g., Corollary 4.2.3). Such an approach is justified

by the following theorem.

Theorem 4.2.2 Let ϕ : Rn → C, n ∈ N, be a continuous compactly supported

radial function. Assume that in some neighborhood of the origin, ϕ coincides with a

continuous compactly supported function whose Fourier transform belongs to Lq (Rn),

for some q ∈ (0, 1]. If ϕ ∈ Mp,q (TΓ), for some regular cone Γ and p ∈ (0, q], then
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ϕ̂ ∈ Lq (Rn).

To prove this theorem, we need the following statement.

Lemma 4.2.4 Let ψ ∈ C∞ (Rn), n ∈ N, and is compactly supported. Assume that

ϕ ∈ C (Rn), is also compactly supported and ϕ̂ ∈ Lq (Rn), for some q ∈ (0, 1]. Then,

ψ̂ϕ ∈ Lq (Rn).

Proof. Since ψ is compactly supported, then there exists R > 0 such that suppψ ⊂

B (0, R). Take a := (R, . . . , R) ∈
(
Rn

+

)o
. Then the function

τaψ (x) = ψ (x− a) , x ∈ Rn,

also belongs to C∞ (Rn)-class, and supp τaψ ⊂
(
Rn

+

)o
. Obviously, τaϕ is also contin-

uous and compactly supported.

Since ϕ ∈ L1 (Rn), using the property of the Fourier transform of a translation,

we get τ̂aϕ (x) = e−2πi(a,x)ϕ̂ (x), and hence ‖τ̂aϕ‖q = ‖ϕ̂‖q <∞.

According to Theorem 1.4.2, τhϕ ∈ Mp,q

(
T(Rn+)

o

)
, for any p ∈ (0, q]. Now,

Lemma 4.2.3 applied to τaϕ, τaψ and the cone
(
Rn

+

)o
implies ̂τa (ψϕ) ∈ Lq (Rn).

Hence ψ̂ϕ ∈ Lq (Rn). �

Proof of Theorem 4.2.2. Let us take an arbitrary x ∈ Rn, x 6= 0. Since (Γ∗)o 6= ∅,

there exists a rotation T such that Tx ∈ (Γ∗)o.

Since ϕ ∈ Mp,q (TΓ), according to Theorem 4.2.1, in any closed ball B (Tx, r) ⊂

(Γ∗)o, the function ϕ coincides with some continuous compactly supported ϕ(Tx) such

that ϕ̂(Tx) ∈ Lq (Rn).

Since T is a rotation, then T maps B (x, r) onto B (Tx, r), and considering that

ϕ is radial and T preserves the norm in Rn, we have

ϕ (ξ) = ϕ (Tξ) = ϕ(Tx) (Tξ) , ξ ∈ B (x, r) .

Since Fourier transform commutes with rotation,
(
ϕ(Tx) ◦ T

)̂
∈ Lq (Rn). Thus,

in some open ball B (t, r) of any point t ∈ Rn (the condition on the origin is given
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explicitly in the theorem), ϕ coincides with some function ϕ(t) that is continuous,

compactly supported and with ϕ̂(t) ∈ Lq (Rn).

Since suppϕ is a compact set in Rn, we can choose a finite number of the balls

under consideration so that

suppϕ ⊂
m⋃
k=0

B (tk, rk) .

Let us denote Bk := B (tk, rk), k = 0, . . . ,m, and let Bm+1 := Rn \ suppϕ. Thus,

∪m+1
k=0 Bk is an open covering of Rn.

According to [67, Ch. 1, § 1.2, Th. 1.2.3], for the open set ∪mk=0Bk, there exists a

partition of unity subordinate to {Bk}m+1
k=0 that is a family of C∞-functions

{
ζ(k)

}m+1

k=0

such that

0 ≤ ζ(k) ≤ 1, supp ζ(k) ⊂ Bk, k = 0, . . . ,m+ 1,

the family
{

supp ζ(k)

}
is locally finite, and

m+1∑
k=0

ζ(k) (x) = 1, x ∈
m⋃
k=0

Bk.

Multiplying both sides by ϕ (x) and considering that supp ζ(m+1) ⊂ Bm+1, and ϕ ≡ 0

in Bm+1, we obtain

ϕ (x) =
m∑
k=0

ζ(k) (x)ϕ (x) =
m∑
k=0

ζ(k) (x)ϕ(tk) (x) , x ∈ Rn. (4.44)

Lemma 4.2.4 implies ̂ζ(k)ϕ(tk) ∈ Lq (Rn), k = 0, . . . ,m. Hence, (4.44) yields ϕ̂ ∈

Lq (Rn). �

From Theorems 1.4.2 and 4.2.2, we easily obtain

Corollary 4.2.2 Let ϕ : Rn → C, n ∈ N, be a continuous compactly supported radial

function. Assume that in some neighborhood of the origin, ϕ belongs to C∞ (Rn)-class.

Then, for any 0 < p ≤ q ≤ 1 and any regular cone Γ ⊂ Rn, ϕ ∈ Mp,q (TΓ) if and

only if ϕ̂ ∈ Lq (Rn).
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4.2.4 Sufficient Conditions Involving Growth of Partial Derivatives

Proof of Theorem 1.4.3. Our proof is very similar to [94, Proof of Theorem 3].

Proof of (b). It is clear that ϕ ∈ L2 (Rn). If K :=
[
−σ1/n

2
, σ

1/n

2

]
n
, then the estimate

(4.7), Paley-Wiener’s and Plancherel’s theorems imply that

inf {‖ϕ− ψ‖2 : ψ ∈ E (K∗)} = inf
{∥∥∥ϕ̂− ψ̂∥∥∥

2
: ψ ∈ E (K∗)

}
≥ aσ (ϕ)2 .

Applying the direct theorem on approximation by entire functions of exponential

type [71, Ch. 5, § 5.2, Theorem 5.2.4 (see Estimate (5))], we obtain

aσ (ϕ)2 ≤
γ0 (s, n)

σs/n
max
j=1,...,n

ω2

(
∂sϕ

∂xsj
;

1

σ1/n

)
2,j

, (4.45)

where ω2 (g, h)2,j denotes the partial (on j-th variable) modulus of smoothness of g

with the step h in L2 (Rn)-norm.

Lemma 6 from [93] asserts that if g is bounded and piecewise convex function

on Rn, then for any h > 0 and p ≥ 1, ‖∆2
hg‖p ≤ Mh1/pω (g;h)∞, where ∆2

hg is the

forward difference of second order and step h (i.e., ∆2
hg (x) = g (x+ 2h)−2g (x+ h)+

g (x)), and where M depends only on the number of points dividing the intervals on

which g is convex. In fact, the proof of this lemma only requires g to be convex or

concave on each of the intervals, i.e., it may be convex on some of them and concave

on the others.

Under our assumptions, we can apply the lemma with p = 2, and obtain

ω2

(
∂sϕ

∂xsj
;h

)
2,j

≤Mh
1
2ω

(
∂sϕ

∂xsj
;h

)
∞
≤MCh

1
2

+α,

where

C := max
j=1,...,n

sup
tj 6=0

sup
x∈Rn

∣∣∣∂sϕ∂xsj
(x1, . . . , xn)− ∂sϕ

∂xsj
(x1, . . . , xj−1, xj + tj, xj+1, . . . , xn)

∣∣∣
|tj|α

<∞,

which is finite according to the assumption of our theorem. Therefore, (4.45) implies∫ ∞
1

(
aσ (ϕ)2√

σ

)q
dσ ≤ (γ0 (s, n)MC)q

∫ ∞
1

(
1

σs/nσ(α+1/2)/nσ1/2

)q
dσ.
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Since α > n
q
− n+1

2
− s, then s/n + (α + 1/2) /n + 1/2 > 1/q and the last integral is

finite. Also considering that aσ (ϕ)2 ≤ ‖ϕ‖2, and applying Corollary 4.1.4, we obtain

‖ϕ̂‖qq ≤ 2

∫ 1

0

‖ϕ‖q2
σq/2

dσ + 2

∫ ∞
1

(
aσ (ϕ)2√

σ

)q
dσ

≤ 2 ‖ϕ‖q2
1

1− q/2
+ 2 (γ0 (s, n)MC)q

∫ ∞
1

(
1

σs/nσ(α+1/2)/nσ1/2

)q
dσ <∞.

Now, application of Theorem 1.4.2 completes the proof.

Proof of (a). Let us show that if ϕ and all ∂rϕ
∂xrj

, j = 1, . . . , n, belong to L2 (Rn)

with some r > n
(

1
q
− 1

2

)
, then there exists some constant γ1 (r, q, n) such that

‖ϕ̂‖qq ≤ γ1 (r, q, n) ‖ϕ‖q−
n
r (1− q

2)
2 max

j=1,...,n

∥∥∥∥∂rϕ∂xrj
∥∥∥∥nr (1− q

2)

2

. (4.46)

Indeed, (4.45) implies aσ (ϕ)2 ≤
4γ0(r,n)

σr/n
maxj=1,...,n

∥∥∥∂rϕ∂xrj

∥∥∥
2
. Choosing σ0 so that

‖ϕ‖2 σ
r/n
0 = maxj=1,...,n

∥∥∥∂rϕ∂xrj

∥∥∥
2
, applying the last inequality, employing the condi-

tion r > n
(

1
q
− 1

2

)
, i.e., q

(
1
2

+ r
n

)
> 1, and considering that aσ (ϕ)2 ≤ ‖ϕ‖2, we

get∫ ∞
0

(
aσ (ϕ)2√

σ

)q
dσ ≤ ‖ϕ‖q2

∫ σ0

0

dσ

σq/2
+ (4γ0 (r, n))q max

j=1,...,n

∥∥∥∥∂rϕ∂xrj
∥∥∥∥q

2

∫ ∞
σ0

dσ

σq/2+rq/n

=

(
1

1− q
2

+
(4γ0 (r, n))q

q
2

+ rq
n
− 1

)
‖ϕ‖q−

n
r (1− q

2)
2 max

j=1,...,n

∥∥∥∥∂rϕ∂xrj
∥∥∥∥nr (1− q

2)

2

.

Now, Corollary 4.1.4 implies (4.46) immediately with

γ1 (r, q, n) := 2

(
1

1− q
2

+
(4γ0 (r, n))q

q
2

+ rq
n
− 1

)
.

Let us consider the following partition of unity. Take an arbitrary function h(0) ∈

C∞ (R) satisfying the following three conditions: (i) h(0) (t) = 0 for t ≤ −1/2; (ii)∥∥h(0)

∥∥
∞ = 1; (iii) h(0) (t) +h(0) (−t) ≡ 1, i.e., h(0)−1/2 is odd. For ν ∈ N, we also set

h(ν) (t) := h(0)

(
t+ 1

2ν−1
− 3

2

)
h(0)

(
3

2
− t+ 1

2ν

)
.

It is clear that supph(ν) ⊂ [2ν−1 − 1, 2ν+1 − 1]. Using the Leibnitz differentiation

formula, we get∣∣∣h(s)
(ν) (t)

∣∣∣ ≤ 3s

2νs
max
k=0,...,s

∥∥∥h(k)
(0)

∥∥∥2

∞
, ν ∈ N, s ∈ Z+, t ∈ R. (4.47)
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Let us also observe that

h(0)

(
1

2
− t
)

+
∞∑
ν=1

h(ν) (t) = 1, t ≥ 0. (4.48)

Therefore, considering ϕ(0) (x) := ϕ (x)h(0)

(
1
2
− |x|2

)
, ϕ(ν) (x) := ϕ (x)h(ν)

(
|x|2
)

x ∈ Rn, ν ∈ N, we obtain the following decomposition

ϕ (x) =
∞∑
ν=0

ϕ(ν) (x) , x ∈ Rn. (4.49)

Obviously,

suppϕ(ν) ⊂
{
x ∈ Rn : 2ν−1 − 1 ≤ |x|2 ≤ 2ν+1 − 1

}
, ν ∈ N, suppϕ(0) ⊂ B (0, 1).

(4.50)

It is also clear that the series in (4.49) converges absolutely (for any x, it is a finite

sum) to |ϕ (x)| that is bounded on Rn since ϕ is continuous and compactly supported.

If all the ϕ(ν) belong to Mp,q (TΓ), then Proposition 4.2.1 implies

‖ϕ‖qMp,q(TΓ) ≤
∞∑
ν=0

∥∥ϕ(ν)

∥∥q
Mp,q(TΓ)

, (4.51)

whereas the series in the right-hand side of this inequality converges. To prove that,

we need to estimate the norms
∥∥ϕ̂(ν)

∥∥
q
.

Note that if a ≥ 0, ν ∈ N, and x ∈ suppϕ(ν), then (4.51) yields

|x|a ≥
(
2ν−1 − 1

)a/2 ≥ (2ν−2
)a/2

= 2−a
(√

2
)νa

.

Since also suppϕ(0) ⊂ B (0, 1), we obtain that

1 + |x|a ≥ 2−a
(√

2
)νa

, ν ∈ Z+, x ∈ suppϕ(ν). (4.52)

Since α ≥ 0, the condition on the growth of ϕ yields |ϕ (x)| ≤ A
1+|x|α ≤

A

2−α(
√

2)
να .

Using (4.50), we also get

m
(
suppϕ(ν)

)
=


π
n
2

Γ(n2 +1)

(
(2ν+1 − 1)

n
2 − (2ν−1 − 1)

n
2

)
, ν ∈ N,

π
n
2

Γ(n2 +1)
, ν = 0

≤ 2
νn
2

2
n
2 π

n
2

Γ
(
n
2

+ 1
) .

(4.53)
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Hence, for ν ∈ Z+,

∥∥ϕ(ν)

∥∥
2
≤ max

x∈suppϕ(ν)

|ϕ (x)|
(
m
(
suppϕ(ν)

)) 1
2
∥∥h(ν)

∥∥
∞

≤
(√

2
)n

2 π
n
4

2−α
(
Γ
(
n
2

+ 1
)) 1

2

A(√
2
)να (√2

) νn
2
. (4.54)

Applying the Faá di Bruno’s formula for derivatives of a composition (see, e.g.,

[51] or [47]), we have

∂s

∂xsj

(
h(ν)

(
|x|2
))

=
∑

k1+2k2=s; k1,k2∈Z+

s!

k1!k2!
h

(k1+k2)
(ν)

(
|x|2
)

(2xj)
k1 .

Since h(ν)

(
|x|2
)
≡ 0 when |x| ≥

(√
2
)ν+1 ≥

√
2ν+1 − 1, considering also (4.47), we

get ∣∣∣∣ ∂s∂xsj (h(ν)

(
|x|2
))∣∣∣∣ ≤ γ2

(
s, h(0)

)(√
2
)νs , x ∈ Rn, ν ∈ Z+, (4.55)

where

γ2

(
s, h(0)

)
:= max

l=0,...,s

∥∥∥h(l)
(0)

∥∥∥2

∞

∑
k1+2k2=s; k1,k2∈Z+

s!

k1!k2!
3(k1+k2)

(
2
√

2
)k1

.

Applying the Leibnitz rule for differentiation of a product, from (4.55), we derive that

for any r, ν ∈ Z+, j = 1, . . . , n,

∣∣∣∣ ∂r∂xrj ϕ(ν) (x)

∣∣∣∣ ≤ 2r max
k=0,...,r


∣∣∣ ∂k
∂xkj

ϕ (x)
∣∣∣ γ2

(
r − k, h(0)

)
(√

2
)ν(r−k)

 , x ∈ Rn.

Now, Corollary 4.1.5 implies

∣∣∣∣ ∂r∂xrj ϕ(ν) (x)

∣∣∣∣ ≤ 2r max
k=0,...,r

( A

1 + |x|α
)1− k

r

(
B

1 + |x|β

) k
r γ2

(
r − k, h(0)

)(√
2
)ν(r−k)


×max

(
max

k=1,...,r−1

(
C0r

k

)k
, 1

)
, x ∈ Rn, r, ν ∈ Z+, j = 1, . . . , n.

Using (4.52), the last inequality, and

max
k=0,...,r

1(√
2
)να(1−k/r)+νβk/r+ν(r−k)

≤ 1(√
2
)ν(α+r)

+
1(√
2
)νβ ,
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it is easy to conclude that∣∣∣∣ ∂r∂xrj ϕ(ν) (x)

∣∣∣∣ ≤ γ3

(
α, β, r, h(0)

)
(A+B)

(
1(√

2
)ν(α+r)

+
1(√
2
)νβ
)
, x ∈ Rn,

where r, ν ∈ Z+, j = 1, . . . , n, and

γ3

(
α, β, r, h(0)

)
:= 2r

(
2α + 2β

)
max

(
max

k=1,...,r−1

(
C0r

k

)k
, 1

)
max
k=0,...,r

γ2

(
k, h(0)

)
.

Similarly to (4.54), considering (4.53), for any ν ∈ Z+ and j = 1, . . . , n, we obtain∥∥∥∥ ∂r∂xrj ϕ(ν)

∥∥∥∥
2

≤ γ3

(
α, β, r, h(0)

) (√
2
)n

2 π
n
4(

Γ
(
n
2

+ 1
)) 1

2

(A+B)

×

(
1(√

2
)ν(α+r)

+
1(√
2
)νβ
)(√

2
) νn

2
. (4.56)

From (4.46), (4.54) and (4.56), we get

∥∥ϕ̂(ν)

∥∥q
q
≤ γ4

(
α, β, n, r, q, h(0)

)
(A+B)q

(√
2
) νnq

2
−ναq

×

(
1(√
2
)νr +

1(√
2
)ν(β−α)

)n
r (1− q

2)

,

where

γ4

(
α, β, n, r, q, h(0)

)
:= γ1 (r, q, n)

(
γ3

(
α, β, r, h(0)

))n
r (1− q

2)

×

 (√
2
)n

2 π
n
4√

Γ
(
n
2

+ 1
)
q

2α(q−
n
r (1− q

2)).

Applying Theorem 1.4.2 with σ =
√

2ν+1 − 1, we obtain that ϕ(ν) ∈Mp,q (TΓ), and

∥∥ϕ(ν)

∥∥q
Mp,q(TΓ)

≤ γ5 (n, p, q)

(Vn (Γ))q(
1
p
−1)

(√
2ν+1 − 1

)nq( 1
p
−1) ∥∥ϕ̂(ν)

∥∥q
q

≤
γ5 (n, p, q) γ4

(
α, β, n, r, q, h(0)

) (√
2
)nq( 1

p
−1)

(Vn (Γ))q(
1
p
−1)

(A+B)q
(√

2
) νnq

p
−ναq−νn

×

(
1 +

1(√
2
)ν(β−α−r)

)n
r (1− q

2)

,
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where γ5 is the constant from the estimate in Theorem 1.4.2. Since the series

∞∑
ν=0

(√
2
) νnq

p
−ναq−νn

(
1 +

1(√
2
)ν(β−α−r)

)n
r (1− q

2)

(4.57)

converges if and only if

min (β − α− r, 0) >
2rq

2− q

(
1

p
− 1

q

)
− 2qrα

n (2− q)
,

considering (4.51) and fixing some h(0) satisfying aforementioned conditions, we con-

clude that ϕ ∈Mp,q (TΓ), and

‖ϕ‖Mp,q(TΓ) ≤
γ (n, p, q, r, α, β)

(Vn (Γ))
1
p
−1

(A+B) ,

with

γ (n, p, q, r, α, β) :=
(√

2
)n( 1

p
−1)
(
γ5 (n, p, q) γ4

(
α, β, n, r, q, h(0)

)
×

∞∑
ν=0

(√
2
) νnq

p
−ναq−νn

(
1 +

1(√
2
)ν(β−α−r)

)n
r (1− q

2)


1
q

.

�

4.2.5 Bochner-Riesz Means

Applying Theorem 1.4.3 (b), it is easy to show that the Bocher-Riesz means of the

Fourier integral belongs to Mp,q (TΓ) under the assumptions of Proposition 1.4.1.

However, we will give more elegant proof of this statement based only on Theo-

rem 4.2.2 and some known estimates.

Proof of Proposition 1.4.1. Let us show that for any r ∈ N, the function

ϕr,α (x) :=
(
1− |x|2r

)α
+

=


(
1− |x|2r

)α
, |x| ≤ 1,

0, |x| > 1,

belongs toMp,q (TΓ) if and only if ϕ2,α ∈Mp,q (TΓ). Indeed, the formula for geometric

progression yields (
1− |x|2r

)
+

=
(
1− |x|2

)
+

r−1∑
j=0

|x|2j . (4.58)
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Having taken some h ∈ C∞ (Rn) so that h ≡ 1 in B (0, 1) and h ≡ 0 outside of B (0, 2)

(such a function exists due to [67, Ch. 1, § 1.2, Corollary 1.2.6]), the equation (4.58)

implies that

ϕr,α (x) = ϕ2,α (x) ζ (x) , x ∈ Rn,

where

ζ (x) :=

(
r−1∑
j=0

|x|2j
)α

h (x) .

Obviously, ζ ∈ C∞ (Rn) and is compactly supported. According to Corollary 4.2.1,

ζ ∈ Mp,p (TΓ), for any 0 < p ≤ 1, and any regular cone Γ ⊂ Rn. If ϕ2,α ∈ Mp,q (TΓ),

then Property 2) of a multiplier yields ϕr,α ∈Mp,q (TΓ).

From another side, (4.58) also implies

ϕ2,α (x) = ϕr,α (x) η (x) , x ∈ Rn,

where

η (x) :=

(
r−1∑
j=0

|x|2j
)−α

h (x) .

Using the same reasonings, ϕr,α ∈Mp,q (TΓ) implies ϕ2,α ∈Mp,q (TΓ).

Now, since ϕ2,α is radial and belongs to C∞ (B (0, 1)), then, according to Corol-

lary 4.2.2, ϕ2,α ∈Mp,q (TΓ) if and only if its Fourier transform belongs to Lq (Rn).

As shown in [38, Appendix B.5], for any α > 0,

ϕ̂2,α (t) =
Γ (α + 1)

πα |t|n/2+α
Jn/2+α (2π |t|) ,

where Jν is the Bessel function. An asymptotic behavior of Jν is also well-known.

Lemma 3.11 from [86, Ch. IV, § 3] asserts that

Jν (s) =

√
2

πs
cos
(
s− πν

2
− π

4

)
+O

(
1

s3/2

)
, s→∞.

Thus,

ϕ̂2,α (t) =
Γ (α + 1)

πα+1 |t|n/2+α+1/2
cos
(

2π |t| − πn

4
− πα

2
− π

4

)
+ O

(
1

|t|n/2+α+3/2

)
, |t| → ∞.

91



Therefore, it is clear that ϕ̂2,α ∈ Lq (Rn) if and only if n/2 + α + 1/2 > n/q. �

The following statement follows immediately from Proposition 1.4.1 and Corol-

lary 4.2.2.

Corollary 4.2.3 Let α > 0, r, n ∈ N, and q ∈ (0, 1]. The Fourier transform of the

function ϕr,α (x) =
(
1− |x|2r

)α
+

belongs to Lq (Rn) if and only if α > n
q
− n+1

2
.

4.3 Bernstein and Nikol’skĭı Type Inequalities for Entire Functions of

Exponential Type

Univariate Bernstein type inequalities for entire functions of exponential type σ are

extremely useful tools of Approximation Theory. Usually, they have the following

form

‖f ′‖ ≤ σ ‖f‖ .

Initially formulated by S. N. Bernstein for trigonometric polynomials in uniform

norms, the inequality have been obtained for many other normed and pre-normed

spaces as well. We have already discussed such type of inequalities in Hp (D) spaces

in Section 1.3 and Chapter 3 (see Example 3.2 in Section 3.2).

In Lp (R), p ≥ 1, the Bernstein inequality can be found in the classical monograph

by R. Boas [10, Ch. 11, § 11.3, Theorem 11.3.3]. For p ∈ (0, 1), the result is due to

Q. Rahman and G. Schmeisser [78, Corollary 1]. There are also multivariate analogs.

For example, in [33], M. Ganzburg obtained an estimate for the norm (4.59) of the

gradient of an entire function. The estimate is given in terms of a supremum-norm

of the function. There are more Bernstein-type inequalities in his paper [34]. One of

them establishes a Bernstein type inequality for trigonometric polynomials in more

general setup than Lp-norm (p ≥ 1). Another interesting Bernstein type inequality for

star-like domains in Rn was obtained by A. Kroó in [54]. There are several Bernstein

type inequalities for entire functions of exponential type satisfying some additional
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assumptions (see, e.g., [80, 37]).

The proof of the original Bernstein inequality has its own history, and new results

on this subject have still been appearing. For example, P. Nevai [68] recently proved

that the Schur inequality stating that for any algebraic polynomial P of degree at

most m− 1,

‖P‖C[−1,1] ≤ m
∥∥∥√1− (·)2P (·)

∥∥∥
C[−1,1]

,

and the Bernstein inequality for trigonometric polynomials are equivalent in the sense

that they could be easily obtained from each other. Moreover, [68] contains an inter-

esting story and references on the history of the Bernstein inequality.

Our Theorem 4.3.2 establishes a Bernstein type inequality for entire functions of

exponential type, which belong to Hardy spaces Hp (TΓ) in tubes over open cones.

The precise definitions and the result are given in Section 4.3.1.

Another family of inequalities heavily used not only in Approximation Theory, but

also in virtually every area of classical Analysis, is Nikol’skĭı type inequalities. An

alternative name is ”Different Metrics Inequalities”. The idea is to compare norms of

a function (or its derivatives) in different spaces usually under additional assumptions

on the function (see, e.g., [69, 70, 28, 22, 65], just to name a few). Very powerful

Nikolskĭı (and Berstein) type inequalities were obtained by I. I. Ibragimov [49]. In [35,

Sect. 5.3], M. Ganzburg obtained some Nikol’skĭı type estimates for entire functions

of exponential type in several variables. Another interesting subject where Nikol’skĭı

type inequalities in Lp or in Hp could be useful is Nikol’slĭı constants (see the article

by E. Levin and D. Lubinsky [59]).

Our Theorem 4.3.3 establishes a Nikol’skĭı type inequality for entire functions of

exponential type belonging to Hardy spaces in tubes.

Finally, let us note that Theorems 4.3.2 and 4.3.3 in a weaker form were announced

in [98] and published in a virtually unavailable author’s paper [97]. For example, the

Bernstein type estimate was obtained using the Fourier multipliers approach, which,
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in particular, brought an additional multiplicative constant in the right-hand side.

The direct proof we give below allows us to obtain a better estimate.

4.3.1 Definitions and Main Results

Following [86, Ch. III, § 4], we remind some notions on multivariate entire functions

of exponential type.

A set K ⊂ Rn is called a symmetric body if it is convex, compact, symmetric with

respect to the origin, and has a nonempty interior. In fact, any symmetric body is a

closed unit ball with respect to some norm. Its polar set is defined by

K∗ = {t ∈ Rn : (x, t) ≤ 1, ∀x ∈ K} ,

where (x, t) denotes the usual inner product of two vectors in Rn.

Note that if K ⊂ Rn is convex, closed, and 0 ∈ K, then K∗∗ = (K∗)∗ = K (see

[86, Ch. III, § 4, Lemma 4.7]). It is also clear that if K is a symmetric body, so is

K∗.

For z = (z1, . . . , zn) ∈ Cn, let us also set

‖z‖ := sup
t∈K∗
|z1t1 + · · ·+ zntn| . (4.59)

An entire function f defined in Cn is of exponential type K, where K is a symmetric

body, if for any ε > 0 there exists a constant Aε > 0 such that

|f (z)| ≤ Aεe
2π(1+ε)‖z‖, ∀z ∈ Cn. (4.60)

The class of all entire functions of exponential type K is denoted by E (K). One of the

most interesting results of L2 theory for these functions is the Paley-Wiener theorem

that describes the support of the Fourier transform of a function from L2 (Rn)∩E (K∗).

Let us recall the multivariate version of this theorem.

Theorem 4.3.1 (E. M. Stein, G. Weiss [86, Ch. III, § 4, Th. 4.9]) Suppose

F ∈ L2 (Rn). Then F is the Fourier transform of a function vanishing outside a

symmetric body K if and only if F is the restriction to Rn of a function in E (K∗).
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Let us note that considering aforementioned relations about K∗∗, Theorem 4.3.1

holds true with K and K∗ switched.

For a multi-index k = (k1, . . . , kn), kj ∈ N ∪ {0}, we denote |k| =
∑n

j=1 kj, and

for a function f : Cn → C, we let

Dkf =
∂|k|f

∂zk1
1 . . . ∂zknn

.

The following theorem establishes a Bernstein type inequality for entire functions

of exponential type K in Hp-norm (or pre-norm).

Theorem 4.3.2 Let Γ be a regular cone in Rn, n ∈ N, p ∈ (0,∞), and let K be a

symmetric body in Rn. Then, for any function f ∈ E (K) ∩ Hp (TΓ) and any multi-

index k = (k1, . . . , kn), the following inequality holds

∥∥Dkf
∥∥
Hp ≤ (2π)|k|

n∏
j=1

σ
kj
j ‖f‖Hp , (4.61)

where σj := maxt∈K∗∩Γ∗ |tj|, j = 1, . . . , n.

It is easy to see that Hp (TΓ) spaces are not included one into another. Thus, the

inequalities comparing the Hp norms for different exponents p do not exist. However,

if we require that the functions involved belong to E (K), then the following Nikol’skĭı

type inequality holds true.

Theorem 4.3.3 Let Γ be a regular cone in Rn, n ∈ N, and K be a symmetric body

in Rn. If a function f belongs to the class E (K)∩Hp (TΓ) for some p ∈ (0,∞), then

it also belongs to Hq (TΓ) for any q ∈ (p,∞], and

‖f‖Hq ≤ dp/2en(1/p−1/q) (m (K∗ ∩ Γ∗))1/p−1/q ‖f‖Hp . (4.62)

Here m denotes the Lebesgue measure in Rn, and dae denotes the ceiling of a real

number a, i.e., dae = min {m ∈ Z : m ≥ a}.
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4.3.2 Proofs of Bernstein and Nikolskĭı Type Inequalities

Proof of Theorem 4.3.2. Let us fix an arbitrary δ ∈ Γ. If p ∈ (0, 1] and f ∈ Hp (TΓ),

then fδ ∈ L1 (Rn) ∩ L2 (Rn) ∩ H2 (TΓ) (see Lemma 1.4.1). It is also clear that fδ ∈

E (K). According to Theorem 4.3.1, supp f̂δ ⊂ K∗. But since f ∈ Hp (TΓ) for some

p ∈ (0, 1], we have that supp f̂δ ⊂ Γ∗. Hence, supp f̂δ ⊂ K∗ ∩ Γ∗ ⊂ Ω, where

Ω := [−σ1, σ1]× · · · × [−σn, σn]

is again a symmetric body. According to Theorem 4.3.1, fδ ∈ E (Ω∗).

Now, let us consider the case p ∈ (1,∞). Take r := [p] + 1, where [p] denotes the

integer part of p, and consider the function

g (z) := (f (z))r , z ∈ Cn.

It is clear that g ∈ Hp/r (TΓ) and p/r ∈ (0, 1). Moreover, f ∈ E (K) implies g ∈

E
(

1
r
K
)
.

Let us note that for any r > 0,

rK∗ =

(
1

r
K

)∗
.

Indeed,

rK∗ = {rt : (x, t) ≤ 1, ∀x ∈ K} =

{
t :

(
x,

1

r
t

)
≤ 1, ∀x ∈ K

}

=

{
t :

(
1

r
x, t

)
≤ 1, ∀x ∈ K

}
=

{
t : (x, t) ≤ 1, ∀x ∈ 1

r
K

}
=

(
1

r
K

)∗
.

Since now gδ ∈ L1 (Rn)∩L2 (Rn)∩H2 (TΓ), Theorem 4.3.1 implies that supp ĝδ ⊂(
1
r
K
)∗ ∩ Γ∗ = rK∗ ∩ Γ∗ ⊂ rΩ. And hence, gδ ∈ E ((rΩ)∗). But then, for any ε > 0,

there exists Aε such that

|fδ (z)| = |gδ (z)|
1
r ≤ A

1
r
ε e

2π(1+ε) supt∈rΩ|z1 t1r +···+zn tnr |

= A
1
r
ε e

2π(1+ε) supt∈Ω|z1t1+···+zntn|.
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Thus, we obtain that fδ ∈ E (Ω∗) for any p ∈ (0,∞) and any fixed δ ∈ Γ.

Let us consider the function of one complex variable ζ,

F (ζ) := fδ (z1, . . . , zj−1, ζ, zj+1, . . . , zn)

with all zk’s fixed (k = 1, . . . , n, k 6= j). Since fδ ∈ E (Ω∗), then for any ε > 0, there

exists a constant Aε such that

|F (ζ)| ≤ Aεe
2π(1+ε) supt∈Ω(|∑k=1,n,k 6=j zktk|+|ζtj |) ≤

Aεe
2π(1+ε)

∑
k=1,n,k 6=j |zk|σke2πσj(1+ε)|ζ|.

Since F is a function of only ζ, it means that it is an entire function of exponential

type at most 2πσj. Applying the Bernstein inequality in Lp (R) (for p ≥ 1, see, e.g.,

[10, Ch. 11, § 11.3, Theorem 11.3.3]; for p ∈ (0, 1) – [78, Corollary 1]), we obtain

‖F ′‖p ≤ 2πσj ‖F‖p . (4.63)

But the derivative of an entire function of exponential type is also an entire function

of the same type (see, e.g., [10, Ch. 2, § 2.4, Theorem 2.4.1]). Thus, applying (4.63)

kj times and considering that zk’s, k 6= j, are arbitrary, we get the inequality∫
R

∣∣∣∣∣
(
∂kj

∂z
kj
j

fδ

)
(x1, . . . , xn)

∣∣∣∣∣
p

dxj =

∥∥∥∥ dkjdζkj
F
∥∥∥∥p
p

≤

(2πσj)
kjp ‖F‖pp = (2πσj)

kjp

∫
R
|fδ (x1, . . . , xn)|p dxj

that holds true for any x1, . . . , xj−1, xj+1, . . . , xn ∈ R. Since fδ ∈ Lp (Rn), applying

Tonelli-Fubini’s theorem, we conclude that ∂kj

∂z
kj
j

fδ ∈ Lp (Rn), and∥∥∥∥∥ ∂kj∂z
kj
j

fδ

∥∥∥∥∥
p

≤ (2πσj)
kj ‖fδ‖p ≤ (2πσj)

kj ‖f‖Hp <∞.

Since

(
∂kj

∂z
kj
j

fδ

)
(x) =

(
∂kj

∂z
kj
j

f

)
(x+ iδ) , and δ ∈ Γ was taken arbitrarily, passing to

supδ∈Γ in the last inequality, we obtain∥∥∥∥∥ ∂kj∂z
kj
j

f

∥∥∥∥∥
Hp

≤ (2πσj)
kj ‖f‖Hp . (4.64)

97



It is also clear that in the multivariate case, partial differentiation in any vari-

able preserves the function in the same class E (Ω∗). Thus, applying (4.64) when

differentiating with respect to other variables, we get (4.61). �

Note. The constant (2π)|k| in (4.61) is nothing else but a consequence of the

definition of an entire function of exponential type in several variables given in [86,

Ch. III, § 4]. For a classical univariate entire function of exponential type at most

σ (the definition does not contain 2π in the exponent) belonging to Hp space in the

upper half-plane, inequality (4.61) will have the following form

∥∥f (k)
∥∥
Hp ≤ σk ‖f‖Hp .

Proof of Theorem 4.3.3. Step 1: q =∞, p = 2. Since f ∈ H2 (TΓ), Theorem 3.1

from [86, Ch. III, § 3] implies that

f (z) =

∫
Γ∗
e2πi(z,t)F (t) dt, z ∈ TΓ, (4.65)

where F ∈ L2 (Γ∗), and

‖f‖H2 =

(∫
Γ∗
|F (t)|2 dt

)1/2

. (4.66)

Since f ∈ E (K), then clearly fδ ∈ E (K), for any δ ∈ Γ. Hence, fδ (x) is a re-

striction on Rn of a function from the class E (K), and fδ ∈ L2 (Rn). According to

Theorem 4.3.1, fδ is a Fourier transform of a function F vanishing outside K∗, i.e.,

f (x+ iδ) = fδ (x) =

∫
K∗
e−2πi(x,t)F (t) dt =

∫
K∗
e2πi(x,t)F (−t) dt. (4.67)

From (4.65) and (4.67) we have that

f (x+ iδ) =

∫
Γ∗
e2πi(x,t)e−2π(δ,t)F (t) dt =

∫
K∗
e2πi(x,t)F (−t) dt, x ∈ Rn.

Hence,

e−2π(δ,t)F (t)χΓ∗ (t) = F (−t)χK∗ (t) ,
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for a.e. t ∈ Rn. Since Γ is a regular cone, K∗∩Γ∗ has a non-empty interior. Therefore,

the last equality implies

F (−t) = e−2π(δ,t)F (t)χK∗∩Γ∗ (t) ,

for a.e. t ∈ Rn. Thus, from (4.67), we get

f (x+ iδ) =

∫
K∗∩Γ∗

e2πi(x,t)e−2π(δ,t)F (t) dt, x ∈ Rn.

Since (δ, t) ≥ 0 for any δ ∈ Γ, t ∈ Γ∗ by the definition of the conjugate cone, using

the Cauchy-Schwartz inequality and (4.66), we obtain

‖fδ‖∞ ≤
(∫

K∗∩Γ∗

∣∣e−2π(δ,t)F (t)
∣∣2 dt)1/2

(m (K∗ ∩ Γ∗))1/2

≤ ‖f‖H2 (m (K∗ ∩ Γ∗))1/2 , y ∈ Γ.

Passing to supδ∈Γ in the last inequality, we have

‖f‖H∞ ≤ ‖f‖H2 (m (K∗ ∩ Γ∗))1/2 . (4.68)

Step 2: p ∈ (0,∞), q = ∞. Let us denote r := dp/2e. Then p ≤ 2r < p + 2.

Consider the following function

g (z) :=
(
f
(z
r

))r
, z ∈ Cn.

Since f ∈ E (K), then for any ε > 0 there exists a constant Aε such that

|f (z)| ≤ Aεe
2π(1+ε) supt∈K∗ |z1t1+···+zntn|, z ∈ Cn.

Hence

|g (z)| ≤ Arεe
2π(1+ε) supt∈K∗ |z1t1+···+zntn|, z ∈ Cn.

Since ε > 0 was chosen arbitrarily, this implies g ∈ E (K). It is also clear that for

any ζ ∈ Γ, gζ ∈ E (K). Furthermore, f ∈ Hp (TΓ) implies fζ/r ∈ H∞ (TΓ) (see

Lemma 1.4.1), and for an arbitrary y ∈ Γ, we have

‖gζ (·+ iy)‖2 =

(∫
Rn

∣∣∣∣f (x+ iζ + iy

r

)∣∣∣∣2r dx
)1/2
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≤
∥∥∥∥f (·+ i

ζ

r
+ i

y

r

)∥∥∥∥ 2r−p
2

∞

(∫
Rn

∣∣∣∣f (xr + i
ζ + y

r

)∣∣∣∣p dx)1/2

≤
∥∥fζ/r∥∥r−p/2H∞

rn/2 ‖f‖p/2Hp .

Since y ∈ Γ was chosen arbitrarily, we conclude that gζ ∈ H2 (TΓ), and

‖gζ‖H2 ≤ rn/2
∥∥fζ/r∥∥r−p/2H∞

‖f‖p/2Hp .

From (4.68), we now deduce

‖gζ‖H∞ ≤ (m (K∗ ∩ Γ∗))1/2 rn/2
∥∥fζ/r∥∥r−p/2H∞

‖f‖p/2Hp .

From the definition of g, we have ‖gζ‖H∞ =
∥∥fζ/r∥∥rH∞ . If f 6≡ 0 (in which case, the

statement is trivial), then the last inequality implies

∥∥fζ/r∥∥p/2H∞
≤ (m (K∗ ∩ Γ∗))1/2 rn/2 ‖f‖p/2Hp .

Since ζ ∈ Γ was chosen arbitrarily, taking the supζ∈Γ, we obtain

‖f‖H∞ ≤ (m (K∗ ∩ Γ∗))1/p rn/p ‖f‖Hp . (4.69)

Step 3. If q ∈ (p,∞), then

‖f‖qHq ≤ ‖f‖q−pH∞ ‖f‖
p
Hp ,

whence, (4.62) follows from (4.69) immediately. �

Note that the function (p/2 + 1)1/p is strictly decreasing on (0,∞). Indeed,

(p/2 + 1)1/p = eh(p), where

h(p) :=
ln (p/2 + 1)

p
.

The function h(p) is strictly decreasing on (0,∞), which can easily be proven using

elementary Calculus.

Hence, (p/2 + 1)1/p ≤
√

2, for any p ∈ [2,∞), and thus

dp/2en(1/p−1/q) ≤
(p

2
+ 1
)n
p (1− p

q ) ≤ 2
n
2 (1− p

q ), 2 ≤ p < q.

This leads us to the following corollary.
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Corollary 4.3.1 Let Γ be a regular cone in Rn, n ∈ N, and K be a symmetric body

in Rn. If a function f belongs to the class E (K)∩Hp (TΓ) for some p ∈ (0,∞), then

it also belongs to Hq (TΓ) for any q ∈ (p,∞], and

‖f‖Hq ≤ 2
n
2 (1− p

q ) (m (K∗ ∩ Γ∗))1/p−1/q ‖f‖Hp .

Here m denotes the Lebesgue measure in Rn.

Further Remarks

It is interesting to know if inequalities (4.61) and (4.62) are sharp. If p = ∞, Γ is

the interior of the first octant Rn
+ = {(x1, . . . , xn) ∈ Rn : xj ≥ 0, j = 1, . . . , n}, and

K =
∏n

j=1

[
−2π

τj
, 2π
τj

]
, the Bernstein inequality has the form

∥∥Dkf
∥∥
H∞
≤

n∏
j=1

τ
kj
j ‖f‖H∞ ,

which is obviously sharp. The equality is achieved, for example, on f (z) =
∏n

j=1 e
iτjzj .

If p <∞, then the problem of sharpness is open even in the univariate case. Let

us cite one of the results due to Q. I. Rahman and Q. M. Tariq.

Theorem 4.3.4 ([80, Th. 3]) Let f be an entire function of exponential type τ sat-

isfying the condition f (z) = eiτzf (−z). Furthermore, let f belong to L2 on the real

axis. Then ∫ ∞
−∞
|f ′ (x)|2 dx ≤ τ 2

2

∫ ∞
−∞
|f ′ (x)|2 dx. (4.70)

The coefficient τ 2/2 of
∫∞
−∞ |f (x)|2 dx in (4.70) cannot be replaced by a smaller num-

ber.

Note that for p = ∞, the condition f (z) = eiτzf (−z) does not help to decrease the

constant, i.e., the constant τ in the inequality

sup
x∈R
|f ′ (x)| ≤ τ sup

x∈R
|f (x)|
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is sharp (see [79]). The problem of the smallest possible constant for other p’s is

stated in [80] as open.

Despite the fact that we do not claim sharpness of the constant in (4.62), it is an

improvement of the result of I. I. Ibragimov [49]. It deals with functions from the

class W
(p)
σ of entire functions of exponential type σ having finite Lp norm on the real

axis. Its multivariate analog W
(p)
σ1,...,σn is, in our notations, E (K) ∩ Lp (Rn), where

K =
∏n

j=1

[
−2π
σj
, 2π
σj

]
. The following estimate was obtained.

Theorem 4.3.5 ([49, Th. 1*]) If f (z1, . . . , zn) ∈ W
(p)
σ1,...,σn and 1 ≤ p < q ≤ ∞,

then

‖f (x1, . . . , xn)‖q ≤


n∏
j=1

(σj
π

) 1
p
− 1
q ‖f (x1, . . . , xn)‖p , 1 ≤ p ≤ 2,

n∏
j=1

(pσj
π

) 1
p
− 1
q ‖f (x1, . . . , xn)‖p , p > 2,

(4.71)

where ‖f (x1, . . . , xn)‖pp =
∫∞
−∞ . . .

∫∞
−∞ |f (x1, . . . , xn)|p dx1 . . . dxn.

For K =
∏n

j=1

[
−2π
σj
, 2π
σj

]
and Γ being the interior of Rn

+, our Theorem 4.3.3 yields

‖f‖Hq ≤
n∏
j=1

(
dp/2e σj

2π

) 1
p
− 1
q ‖f‖Hp ,

which is better than (4.71) and is valid for any 0 < p < q ≤ ∞. However, the class

W
(p)
σ1,...,σn is larger than E (K) ∩Hp (TΓ).
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CHAPTER 5

Riesz Decomposition for Poly-Superharmonic Functions in Rn

The proof of Theorem 1.5.5 follows, in general, the idea of the proof of [52, Th. 1.2].

But the general case of m-superharmonic functions is more complicated, whence we

need to develop appropriate tools first. This is done in Sections 5.1 and 5.3.

5.1 Lemmas on Riesz Kernels

We will assume that x, y are vectors in Rn, m,n, L ∈ N, n ≥ 2, and that 2m < n or

2m− n is a positive odd integer.

Following [52], we consider the generalized Riesz kernels

K2m,L(x, y) :=


K2m(x− y), |y| < 1,

K2m(x− y)−
∑
|ν|≤L

xν

ν!
(DνK2m) (−y), |y| ≥ 1,

L ∈ Z+.

Let us recall that for a multi-index ν = (ν1, . . . , νn), νj ∈ Z+,

xν = xν1
1 · · · · ·xνnn , ν! = ν1! · · · · ·νn!, |ν| = ν1 + · · ·+ νn, Dνf(x) =

∂|ν|f

∂xν1
1 . . . ∂xνnn

.

We will also use ∆x to denote the n-dimentional Laplace operator applied with respect

to the variable x ∈ Rn.

Lemma 5.1.1 If 2m < n or 2m− n is a positive odd integer, then

∆xK2m(x) = (2m− n)(2m− 2)K2(m−1)(x), (5.1)

∆xK2m,2(m−1)(x, y) = (2m− n)(2m− 2)K2(m−1),2(m−2)(x, y). (5.2)
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Proof. Since 2m < n or 2m− n is a positive odd integer, then

∂

∂xj

(
|x|2m−n

)
=

∂

∂xj

((
x2

1 + · · ·+ x2
n

)m−n/2)
= (2m− n)xj

(
x2

1 + · · ·+ x2
n

)m−n/2−1

and

∂2

∂x2
j

(
|x|2m−n

)
= (2m− n)

((
x2

1 + · · ·+ x2
n

)m−n/2−1

+ x2
j(2m− n− 2)

(
x2

1 + · · ·+ x2
n

)m−n/2−2
)
. (5.3)

Hence

∆x

(
|x|2m−n

)
= (2m− n)

(
n|x|2m−n−2 + (2m− n− 2)|x|2m−n−2

)
= (2m− n)(2m− 2)|x|2m−n−2.

This gives (5.1). Now, for |y| ≥ 1, we get

∂

∂xj

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)



=
∑

|ν|≤2m−2

 1

ν!
(DνK2m) (−y)νjx

νj−1
∏

k=1,n, k 6=j

xνkk

 .

Therefore,

∂2

∂x2
j

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)


=

∑
|ν|≤2m−2

 1

ν!
(DνK2m) (−y)νj(νj − 1)xνj−2

∏
k=1,n, k 6=j

xνkk


=

∑
ν1+···+νn≤2(m−1), νj≥2

xν1
1

ν1!
. . .

x
νj−1

j−1

νj−1!

x
νj−2
j

(νj − 2)!

x
νj+1

j+1

νj+1!
. . .

xνnn
νn!

(Dν1...νnK2m) (−y).

Replacing the multi-index ν by ν̃ = (ν̃1, . . . , ν̃n) with

ν̃k =

 νk, k 6= j,

νj − 2, k = j,
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we obtain

∂2

∂x2
j

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)

 =
∑

|ν̃|≤2(m−2)

xν̃

ν̃!

(
Dν̃1...ν̃j−1(ν̃j+2)ν̃j+1...ν̃nK2m

)
(−y).

(5.4)

From (5.3), it is clear that

(
Dν̃1...ν̃j−1(ν̃j+2)ν̃j+1...ν̃nK2m

)
(−y) = Dν̃

(
∂2

∂y2
j

K2m

)
(−y)

= (2m− n)Dν̃
(
K2(m−1) + y2

j (2m− n− 2)K2(m−2)

)
(−y).

Setting ν := ν̃ on the right-hand side of (5.4), we see that

∂2

∂x2
j

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)


= (2m− n)

∑
|ν|≤2(m−2)

xν

ν!

(
DνK2(m−1)

)
(−y)

+ (2m− n)(2m− n− 2)
∑

|ν|≤2(m−2)

xν

ν!

(
Dν
(
y2
jK2(m−2)

))
(−y).

Taking the sum over j = 1, . . . , n, we deduce

∆x

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)


= (2m− n)n

∑
|ν|≤2(m−2)

xν

ν!

(
DνK2(m−1)

)
(−y)

+ (2m− n)(2m− n− 2)
∑

|ν|≤2(m−2)

xν

ν!

(
DνK2(m−1)

)
(−y)

= (2m− n)(2m− 2)
∑

|ν|≤2(m−2)

xν

ν!

(
DνK2(m−1)

)
(−y). (5.5)

Thus, considering (5.1), we obtain (5.2). �

Corollary 5.1.1 If 2m < n or 2m−n is a positive odd integer, then for any k ∈ Z+

∆k
xK2m(x) = cm,n,kK2(m−k)(x), (5.6)

and

∆k
xK2m,2(m−1)(x, y) = cm,n,kK2(m−k),2(m−k−1)(x, y), (5.7)
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where

cm,n,k :=


1, k = 0,

2k
k−1∏
j=0

((2(m− j)− n) (m− j − 1)) , 1 ≤ k ≤ m− 1,

0, k ≥ m.

In particular, K2m(x) and K2m,2(m−1)(x, y) (with y as a parameter) are m-harmonic

functions in Rn \ {0}.

Proof. Formulas (5.6) and (5.7) just follow from Lemma 5.1.1. Let us check the

‘boundary case’, k = m. Clearly,

∆m
x K2m,2(m−1)(x, y) = ∆x

(
∆m−1
x K2m,2(m−1)

)
(x, y) = cm,n,m−1∆xK2,0(x, y).

Now,

K2,0(x, y) =

 K2(x− y), |y| < 1,

K2(x− y)−K2(−y), |y| ≥ 1.

Thus, ∆xK2,0(x, y) = ∆xK2(x− y). Furthermore,

∂

∂xj
K2(x) =

(
1− n

2

)
2xj
(
x2

1 + · · ·+ x2
n

)−n/2
,

∂2

∂x2
j

K2(x) = (2− n)
((
x2

1 + · · ·+ x2
n

)−n/2 − nx2
j

(
x2

1 + · · ·+ x2
n

)−n/2−1
)
.

Hence,

∆xK2(x) = (2− n)
(
n
(
x2

1 + · · ·+ x2
n

)−n/2 − n (x2
1 + · · ·+ x2

n

)−n/2)
= 0.

Thus,

∆m
x K2m,2(m−1)(x, y) = 0.

�

Lemma 5.1.2 If 2m < n or 2m− n is a positive odd integer, then for any r > 0,

M (r,K2m (· − y)) =


Γ
(
n
2

)m−1∑
k=0

(
|y|
2

)2k
cm,n,k

k!Γ(n2 +k)
r2(m−k)−n, |y| ≤ r,

Γ
(
n
2

)m−1∑
k=0

(
r
2

)2k cm,n,k

k!Γ(n2 +k)
|y|2(m−k)−n, |y| > r,
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where cm,n,k are defined in Corollary 5.1.1.

Moreover, for any y 6= 0 and r > 0,

1

σnrn−1

∫
S(0,r)

∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y) dσ(x)

= Γ
(n

2

)m−1∑
k=0

(r
2

)2k cm,n,k

k!Γ
(
k + n

2

) |y|2(m−k)−n. (5.8)

Proof. We will use formula (7.11) from [106, Ch. 1.7]:∫
B(0,r)

f(x+ y) dx =
m−1∑
k=0

πn/2r2k+n
(
∆kf

)
(y)

22kk!Γ
(
k + n

2
+ 1
) , (5.9)

which is valid for any function f ∈ C2m (U)∩Hm (U) for some domain U , y ∈ U , and

any r ∈ (0, dist (y, ∂U)).

Assume |y| > r. Applying (5.9) with f = K2m, U = Rn \ {0}, and using Corol-

lary 5.1.1, we get∫
B(0,r)

K2m(x− y) dx =
m−1∑
k=0

πn/2r2k+ncm,n,kK2(m−k)(−y)

22kk!Γ
(
k + n

2
+ 1
)

=
m−1∑
k=0

πn/2r2k+ncm,n,k|y|2(m−k)−n

22kk!Γ
(
k + n

2
+ 1
) . (5.10)

If we fix y and let r < |y| be arbitrary, then differentiating the last equality with

respect to r, we obtain

M (r,K2m (· − y)) =
Γ
(
n
2

)
2πn/2rn−1

m−1∑
k=0

πn/2(2k + n)r2k+n−1cm,n,k|y|2(m−k)−n

22kk!Γ
(
k + n

2
+ 1
)

= Γ
(n

2

)m−1∑
k=0

r2kcm,n,k|y|2(m−k)−n

22kk!Γ
(
k + n

2

) . (5.11)

Now, let 0 < |y| < r. We cannot apply the above approach since we have a

singularity in B(0, r). To get rid of it, we will use the reflection technique as in

Kelvin transform, described in [4, Ch. 1, § 1.6]. For w 6= 0, we will consider its

inverse with respect to the unit sphere S(0, 1):

w∗ :=
1

|w|2
w.
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If x ∈ S(0, 1), and y 6= 0, then

|y| |x− y∗| = |x− y|. (5.12)

Indeed,

|y|2 |x− y∗|2 = |y|2
(
|x|2 + |y∗|2 − 2x · y∗

)
= |y|2

(
1 +

1

|y|2
− 2x · y
|y|2

)
= |y|2 + 1− 2x · y = |y|2 + |x|2 − 2x · y = |x− y|2.

Changing variable w = x/r, we obtain

M (r,K2m (· − y)) =
1

σn

∫
S(0,1)

|rw−y|2m−n dσ(w) =
r2m−n

σn

∫
S(0,1)

∣∣∣x− y

r

∣∣∣2m−n dσ(x).

Using (5.12), we get

M (r,K2m (· − y)) =
|y|2m−n

σn

∫
S(0,1)

∣∣∣x− (y
r

)∗∣∣∣2m−n dσ(x)

= |y|2m−nM
(

1, K2m

(
· −
(y
r

)∗))
.

Since
∣∣(y
r

)∗∣∣ = r
|y| > 1, we can apply (5.11) with r = 1 to get

M (r,K2m (· − y)) = |y|2m−nΓ
(n

2

)m−1∑
k=0

cm,n,k

22kk!Γ
(
k + n

2

) ( r

|y|

)2(m−k)−n

= Γ
(n

2

)m−1∑
k=0

(
|y|
2

)2k
cm,n,k

k!Γ
(
k + n

2

)r2(m−k)−n. (5.13)

For |y| = r, let yl :=
(
1 + 1

l

)
y, l ∈ N. Note that |x − y| < |x− yl| provided |x| = r.

Indeed, since |x| = |y| = r > 0, we get

|x− yl|2 = |x|2 +

(
1 +

1

l

)2

|y|2 − 2

(
1 +

1

l

)
x · y

= |x− y|2 +
2

l

(
r2 − x · y

)
+

1

l2
r2 > |x− y|2.

Thus, if 2m < n, we obtain |x− yl|2m−n ≤ |x− y|2m−n. Considering that the function

|x−y|2m−n (as a function of x) is in L1 (S (0, r)), we can apply the Lebesgue Dominated

Convergence Theorem to get

M (r,K2m (· − y)) = lim
l→∞

M (r,K2m (· − yl)) .
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If 2m − n ≥ 0, then |x− yl|2m−n converges to |x− y|2m−n uniformly on S(0, r), and

the last equality obviously justified. Therefore, in either case, applying (5.11) with

y = yl, we deduce that

M (r,K2m (· − y)) = lim
l→∞

Γ
(n

2

)m−1∑
k=0

r2kcm,n,k|yl|2(m−k)−n

22kk!Γ
(
k + n

2

)
= Γ

(n
2

)m−1∑
k=0

r2kcm,n,k|y|2(m−k)−n

22kk!Γ
(
k + n

2

) = Γ
(n

2

)m−1∑
k=0

(
|y|
2

)2k
cm,n,k

k!Γ
(
n
2

+ k
)r2(m−k)−n, y 6= 0.

If y = 0, then (5.13) is obvious.

To obtain (5.8), we should use (5.5) to conclude that

∆k
x

 ∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y)

 = cm,n,k
∑

|ν|≤2(m−k−1)

xν

ν!

(
DνK2(m−k)

)
(−y),

and then apply (5.9) with U = Rn, y = 0, f(x) =
∑

|ν|≤2m−2

xν

ν!
(DνK2m) (−y), where y

is considered as a constant. Thus, we get∫
B(0,r)

∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y) dx =

m−1∑
k=0

πn/2r2k+ncm,n,k

22kk!Γ
(
k + n

2
+ 1
) |y|2(m−k)−n.

This equality is valid for any y 6= 0 and r > 0. Differentiating with respect to r, we

obtain

1

σnrn−1

∫
S(0,r)

∑
|ν|≤2m−2

xν

ν!
(DνK2m) (−y) dσ(x) = Γ

(n
2

)m−1∑
k=0

r2kcm,n,k

4kk!Γ
(
k + n

2

) |y|2(m−k)−n.

�

Note. There is even more general result on spherical means of the Riesz kernels

due to J. S. Brauchart, P. D. Dragnev, E. B. Saff [16, Th. 2]. Their statement covers

fractional powers of |x − y|, but the answer is given in terms of a hypergeometric

function, which makes it more complicated to apply in our proofs.

Lemma 5.1.3 If 2m < n or 2m− n is a positive odd integer, then for any R > 0,∫
B(0,R)

K2m (x− y) dx
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=


2πn/2

m−1∑
k=0

cm,n,k

4kk!Γ(n2 +k)

(
|y|2m

(
1

2k+n
− 1

2(m−k)

)
+ |y|2kR2(m−k)

2(m−k)

)
, |y| ≤ R,

πn/2
m−1∑
k=0

cm,n,k

4kk!Γ(n2 +k+1)
|y|2(m−k)−nR2k+n, |y| > R,

where cm,n,k are as in Corollary 5.1.1.

Proof. If |y| ≤ R, then using Lemma 5.1.2, we get∫
B(0,R)

K2m (x− y) dx =

∫ R

0

(∫
S(0,r)

K2m (x− y) dσ(x)

)
dr

=

∫ R

0

σnr
n−1M (r,K2m (· − y)) dr

= σnΓ
(n

2

)m−1∑
k=0

cm,n,k

4kk!Γ
(
n
2

+ k
) (|y|2(m−k)−n

∫ |y|
0

r2k+n−1 dr + |y|2k
∫ R

|y|
r2(m−k)−1 dr

)

= 2πn/2
m−1∑
k=0

cm,n,k

4kk!Γ
(
n
2

+ k
) ( |y|2m

2k + n
+ |y|2kR

2(m−k) − |y|2(m−k)

2(m− k)

)

= 2πn/2
m−1∑
k=0

cm,n,k

4kk!Γ
(
n
2

+ k
) (|y|2m( 1

2k + n
− 1

2(m− k)

)
+
|y|2kR2(m−k)

2(m− k)

)
.

For |y| > R, the statement is just (5.10). �

5.2 Proof of Proposition 1.5.1

Proof of Proposition 1.5.1. Note that for αm,1 = 1 and any αm,j, j ≥ 2, we have

m∑
j=1

αm,jFm
(
2m−jr

)
=

m−1∑
k=0

ak4
(m−1)kr2k +

m−1∑
k=0

αm,2ak4
(m−2)kr2k + · · ·+

m−1∑
k=0

αm,makr
2k

=
m−1∑
k=0

akr
2k
(
4(m−1)k + αm,24(m−2)k + · · ·+ αm,m

)
=

m−1∑
k=0

akr
2k

(
4(m−1)k +

m∑
j=2

4(m−j)kαm,j

)
. (5.14)

Let us show that there is the only set of αm,2, . . . , αm,m, such that

4(m−1)k +
m∑
j=2

4(m−j)kαm,j = 0, k = 1, . . . ,m− 1,
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which is equivalent to (1.25) holding for every r and a0, . . . , am. As we will also see,

these αm,j’s satisfy (1.26).

We can rewrite the last system as

m∑
j=2

4(m−j)kαm,j = −4(m−1)k, k = 1, . . . ,m− 1. (5.15)

This is a linear system of (m− 1) equations for (m− 1) unknowns, whose matrix is

4m−2 4m−3 . . . 4m−1−j . . . 4 1 −4m−1

42(m−2) 42(m−3) . . . 42(m−1−j) . . . 42 1 −42(m−1)

...
... . . .

... . . .
...

...
...

4l(m−2) 4l(m−3) . . . 4l(m−1−j) . . . 4l 1 −4l(m−1)

...
... . . .

... . . .
...

...
...

4(m−1)(m−2) 4(m−1)(m−3) . . . 4(m−1)(m−1−j) . . . 4m−1 1 −4(m−1)(m−1)


.

(5.16)

To evaluate the main determinant of this matrix, let us make a reflection in

horizontal direction, so that the last column becomes first, next to the last becomes

second, etc.:

A :=



1 4 . . . 4j−1 . . . 4m−3 4m−2

1 42 . . . 42(j−1) . . . 42(m−3) 42(m−2)

...
... . . .

... . . .
...

...

1 4l . . . 4l(j−1) . . . 4l(m−3) 4l(m−2)

...
... . . .

... . . .
...

...

1 4m−1 . . . 4(m−1)(j−1) . . . 4(m−1)(m−3) 4(m−1)(m−2)


.

The main determinant D of the system (5.16) and the determinant of A are related

by

D = (−1)
m−1

2
(m−2) det(A),

and the matrix A is a Vandermonde matrix, whose determinant is well known. Thus,
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we obtain

D = (−1)
m−1

2
(m−2)

∏
1≤l<j≤m−1

(
4j − 4l

)
. (5.17)

Since D 6= 0, the system (5.15) has a solution αm,2, . . . , αm,m, and this solution is

unique.

Now, for k = 1, . . . ,m − 1, let us evaluate the determinant of the left-hand side

of the matrix in (5.16) with k-th column replaced by the right-hand side of (5.16):

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4m−2 . . . 4m−k −4m−1 4m−k−2 . . . 4 1

42(m−2) . . . 42(m−k) −42(m−1) 42(m−k−2) . . . 42 1

... . . .
...

...
... . . .

...
...

4l(m−2) . . . 4l(m−k) −4l(m−1) 4l(m−k−2) . . . 4l 1

... . . .
...

...
... . . .

...
...

4(m−1)(m−2) . . . 4(m−1)(m−k) −4(m−1)(m−1) 4(m−1)(m−k−2) . . . 4m−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Multiplying the k-th column by −1 and then each column by the reciprocal of its

first entry (i.e., multiplying j-th column by the reciprocal of (1, j)-entry), we get

Dk = −4m−2 . . . 4m−k4m−14m−k−2 . . . 4

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 1 . . . 1 1

4m−2 . . . 4m−k 4m−1 4m−k−2 . . . 4 1

... . . .
...

...
... . . .

...
...

4(l−1)(m−2) . . . 4(l−1)(m−k) 4(l−1)(m−1) 4(l−1)(m−k−2) . . . 4l−1 1

... . . .
...

...
... . . .

...
...

4(m−2)(m−2) . . . 4(m−2)(m−k) 4(m−2)(m−1) 4(m−2)(m−k−2) . . . 4m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since also the determinant of a transposed matrix is the same as the determinant of
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the initial one, taking transpose, we obtain

Dk = −4
m
2

(m−1)−(m−k−1) ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 4m−2 . . . 4(j−1)(m−2) . . . 4(m−2)(m−2)

1 4m−3 . . . 4(j−1)(m−3) . . . 4(m−3)(m−2)

...
... . . .

... . . .
...

1 4m−k . . . 4(j−1)(m−k) . . . 4(m−k)(m−2)

1 4m−1 . . . 4(j−1)(m−1) . . . 4(m−1)(m−2)

1 4m−k−2 . . . 4(j−1)(m−k−2) . . . 4(m−k−2)(m−2)

...
... . . .

... . . .
...

1 1 . . . 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Moving the k-th row to the first place, we conclude

Dk = (−1)k4
m
2

(m−1)−(m−k−1)×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 4m−1 . . . 4(j−1)(m−1) . . . 4(m−1)(m−2)

1 4m−2 . . . 4(j−1)(m−2) . . . 4(m−2)(m−2)

...
... . . .

... . . .
...

1 4m−k . . . 4(j−1)(m−k) . . . 4(m−k)(m−2)

1 4m−k−2 . . . 4(j−1)(m−k−2) . . . 4(m−k−2)(m−2)

...
... . . .

... . . .
...

1 1 . . . 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Applying the formula for a Vandermonde determinant, we deduce

Dk = (−1)k4
m
2

(m−1)−(m−k−1)
∏

1≤l<j≤m−1

(θm,j,k − θm,l,k) . (5.18)

Finally, using Kramer’s rule, αm,k+1 = Dk
D

, k = 1, . . . ,m − 1, whence (1.26) follows

immediately from (5.17) and (5.18).

Conversely, if αm,2, . . . , αm,m satisfy (5.15), representation (5.14) yields

m∑
j=1

αm,jFm
(
2m−jr

)
= a0

(
1 +

m∑
j=2

αm,j

)
= a0

m∑
j=1

αm,j.

�
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Note. We can give an explicit representation in (1.25) for some values of m:

m = 2 : F2(2r)− 4F2(r) = −3a0;

m = 3 : F3(4r)− 20F3(2r) + 64F3(r) = 45a0;

m = 4 : F4(8r)− 84F4(4r) + 1344F4(2r)− 4096F4(r) = −2835a0.

5.3 Spherical Means of m-Superharmonic Functions

The key ingredient to the proof of Theorem 1.5.5 is the following formula for spherical

means.

Lemma 5.3.1 Let u ∈ SHm (Rn), and let µu = (−∆)m u. Then for r > 1,

M(r, u) =

∫
B(0,r)

f(r, y) dµu(y) +
m−1∑
k=0

akr
2k,

where ak’s are constants independent of r,

f(r, y) = cm,nΓ
(n

2

)


m−1∑
k=0

(
|y|
2

)2k
cm,n,k

k!Γ(n2 +k)
r2(m−k)−n, |y| < 1,

m−1∑
k=0

cm,n,k

4kk!Γ(n2 +k)

(
|y|2kr2(m−k)−n − r2k|y|2(m−k)−n) 1 ≤ |y| < r,

0, |y| ≥ r,

cm,n,k are as in Corollary 5.1.1, and and cm,n are given by (1.23), so that

cm,n (−∆)mK2m,L (·, y) = δy. (5.19)

Proof. It follows from the Riesz decomposition that (see [32, Representation (3.1)])

if v ∈ SHm (Rn), then

v(x) = cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dµv(y) + hR(x), x ∈ B (0, R) ,

where hR ∈ Hm (B(0, R)). (For (5.19), see [32, § 3].) Indeed, let us consider the

following positive linear functional on C∞0 (B(0, R)):

Lp(ϕ) :=

∫
B(0,R)

p(x) (−∆)m ϕ(x) dx, ϕ ∈ C∞0 (B(0, R)) ,
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where

p(x) := cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dµv(y).

Using Fubini’s theorem and (5.19), we have

Lp(ϕ) =

∫
B(0,R)

(
cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dµv(y)

)
(−∆)m ϕ(x) dx

=

∫
B(0,R)

(
cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) (−∆)m ϕ(x) dx

)
dµv(y)

=

∫
B(0,R)

ϕ(y) dµv(y) = Lv(ϕ).

This implies that for a.e. x ∈ B (0, R), v(x) − p(x) coincides with a function from

Hm (B(0, R)). Let us call it hR(x). Thus, v(x) = p(x) + hR(x) a.e.

Note that two m-superharmonic functions, which are equal a.e., are equal iden-

tically. This follows from Property (iv) in Definition 1.5.5 (the definition of m-

superharmonic function).

Now, we conclude that v(x) = p(x) + hR(x) everywhere in B (0, R).

Therefore, since u ∈ SHm (Rn), then for any r2 > r1 > 0

u(x) = cm,n

∫
B(0,rj)

K2m,2(m−1)(x, y) dµu(y) + hrj(x), x ∈ B (0, rj) , j = 1, 2,

(5.20)

where hrj ∈ Hm (B (0, rj)).

Let us fix two arbitrary r1 and r2 (assume r1 < r2), and take an arbitrary r with

1 < r < r1 < r2. Integrating the last equality over the sphere of radius r, we obtain

M(r, u) =
cm,n
σnrn−1

∫
S(0,r)

∫
B(0,rj)

K2m,2(m−1)(x, y) dµu(y) dσ(x)

+
1

σnrn−1

∫
S(0,r)

hrj(x) dσ(x). (5.21)

Since hrj ∈ Hm (Rn), the Almansi expansion (see, e.g., [5, Ch. I, Prop. 1.3]) implies

that there exist functions g0,j, . . . , gm−1,j harmonic in B (0, rj), such that

hrj(x) =
m−1∑
k=0

|x|2kgk,j(x), x ∈ B (0, rj) . (5.22)
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The mean-value property for harmonic functions yields

1

σnrn−1

∫
S(0,r)

hrj(x) dσ(x) =
m−1∑
k=0

r2kgk,j(0). (5.23)

Changing the order of integration in the first summand of (5.21) using Fubini’s the-

orem, we get

cm,n
σnrn−1

∫
S(0,r)

∫
B(0,rj)

K2m,2(m−1)(x, y) dµu(y) dσ(x)

= cm,n

∫
B(0,rj)

M
(
r,K2m,2(m−1)(·, y)

)
dµu(y).

From Lemma 5.1.2, we conclude immediately that

cm,nM
(
r,K2m,2(m−1) (·, y)

)
= f(r, y), r > 0.

From (5.21), (5.23) and the last equality, we obtain

M(r, u) =

∫
B(0,rj)

f(r, y) dµu(y) +
m−1∑
k=0

r2kgk,j(0).

Since f(r, y) = 0 when |y| > r, the last equality can be rewritten as

M(r, u)−
∫
B(0,r)

f(r, y) dµu(y) =
m−1∑
k=0

r2kgk,j(0). (5.24)

Since the left-hand side is independent of j ∈ {1, 2}, so is the right-hand side. But,

for each j ∈ {1, 2}, the expression in the right-hand side is a polynomial in r. Thus,

we conclude that

m−1∑
k=0

r2kgk,1(0) =
m−1∑
k=0

r2kgk,2(0), r ∈ (1, r1).

This immediately implies that the coefficients of this polynomial do not depend on j.

So, taking any r1 > 1, we may denote

ak := gk,1(0), k = 0, . . . ,m− 1, (5.25)

and rewrite (5.24) as

M(r, u) =

∫
B(0,r)

f(r, y) dµu(y) +
m−1∑
k=0

akr
2k.

�
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It is clear that if h ∈ Hm (Rn), then µh is a zero measure. Thus, for any r > 1,

M (r, h) =
m−1∑
k=0

akr
2k,

and
m∑
j=1

αm,jM
(
2m−jr, h

)
= a0

m∑
j=1

αm,j = h(0)
m∑
j=1

αm,j.

Corollary 5.3.1 Let u ∈ SHm (Rn), 2m < n, and let µu = (−∆)m u. Then for any

r > 1,

m∑
j=1

αm,jM
(
2m−jr, u

)
=

∫
B(0,r)

(
m∑
j=1

αm,jf
(
2m−jr, y

))
dµu(y)

+
m−1∑
ν=1

∫
B(0,2νr)\B(0,2ν−1r)

(
m−ν∑
j=1

αm,jf
(
2m−jr, y

))
dµu(y) + a0

m∑
j=1

αm,j, (5.26)

where f(r, y) is defined in Lemma 5.3.1, αm,1 = 1, αm,2, . . . , αm,m are given by (1.26)

in Proposition 1.5.1, and a0 is from Lemma 5.3.1.

Furthermore, if u(0) 6=∞, then

a0 = u(0)− cm,n
∫
B(0,1)

|y|2m−n dµu(y), (5.27)

where cm,n are given by (1.23).

Proof. Since f(R, y) = 0 when |y| ≥ R, then representation (5.26) follows immedi-

ately from Lemma 5.3.1 and Proposition 1.5.1.

To get a0, we need to refer to the proof of Lemma 5.3.1. Using (5.20) with some

r1 > 1, we conclude that

u(0) = cm,n

∫
B(0,r1)

K2m,2(m−1)(0, y) dµu(y) + hr1(0).

Since

K2m,2(m−1)(0, y) =

 |y|
2m−n, |y| < 1

0, |y| ≥ 1,
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we obtain

u(0) = cm,n

∫
B(0,1)

|y|2m−n dµu(y) + hr1(0).

Now, (5.27) follows from (5.22) and (5.25). �

Note. It is clear that if h ∈ Hm (Rn), then µh is a zero measure. Moreover, using

the same reasoning as in the proof of Lemma 5.3.1, we obtain that for any r > 0,

M (r, h) =
∑m−1

k=0 akr
2k. Therefore, Proposition 1.5.1 and (5.27) imply

m∑
j=1

αm,jM
(
2m−jr, h

)
= h(0)

m∑
j=1

αm,j, r > 0. (5.28)

5.4 Proof of the Riesz Decomposition

Lemma 5.4.1 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), µu = (−∆)m u, k = 0, . . . ,m−

1, and

sup
r>1

r2m−nµu (B(0, r)) <∞. (5.29)

Let also 1 ≤ a ≤ b and

c1(b, r,m, n, k) :=

∫
B(0,br)\B(0,1)

|y|2kr2(m−k)−n dµu(y),

c2(a, b, r,m, n, k) :=

∫
B(0,br)\B(0,ar)

|y|2kr2(m−k)−n dµu(y),

c3(a, b, r,m, n, k) :=

∫
B(0,br)\B(0,ar)

|y|2(m−k)−nr2k dµu(y).

Then

sup
r>1
|c1(b, r,m, n, k)| <∞, sup

r>1
|c2(a, b, r,m, n, k)| <∞, sup

r>1
|c3(a, b, r,m, n, k)| <∞.

Proof. It is clear that for any k = 0, . . . ,m− 1,

|y|2kr2(m−k)−n ≤ b2kr2m−n, y ∈ B(0, br);

|y|2(m−k)−nr2k ≤ a2(m−k)−nr2m−n, y ∈ Rn \B(0, ar).
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Therefore, the statement follows from (5.29) immediately. For example,

c1 (b, r,m, n, k) ≤ b2kr2m−n
∫
B(0,br)

dµu(y)

= b−2(m−k)+n (br)2m−n
∫
B(0,br)

dµu(y) ≤ b−2(m−k)+n sup
r>1

(
r2m−n

∫
B(0,r)

dµu(y)

)
.

�

Lemma 5.4.2 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), and µu = (−∆)m u. Further-

more, let αm,j be the absolute constants from Proposition 1.5.1. If

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞ and sup
r>1

∣∣r2m−nµu (B(0, r))
∣∣ <∞,

then

sup
r>1

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y) <∞.

Proof. Corollary 5.3.1 implies that

m∑
j=1

αm,jM
(
2m−jr, u

)
=

∫
B(0,r)

(
m∑
j=1

αm,jf
(
2m−jr, y

))
dµu(y)

+
m−1∑
l=1

∫
B(0,2lr)\B(0,2l−1r)

(
m−l∑
j=1

αm,jf
(
2m−jr, y

))
dµu(y) + a0

m∑
j=1

αm,j.

Let us denote

βm,n,k := Γ
(n

2

) cm,n,k

4kk!Γ
(
n
2

+ k
) , (5.30)

where cm,n,k are defined in Corollary 5.1.1, i.e.

βm,n,k :=


1, k = 0,

Γ(n2 )
2kk!Γ(n2 +k)

k−1∏
j=0

((2(m− j)− n) (m− j − 1)) , 1 ≤ k ≤ m− 1,

0, k ≥ m.

Let us also remind that according to Proposition 1.5.1, αm,1 = 1 and

αm,k = (−1)k+m
2

(m−3)4
m
2

(m−1)−(m−k)

∏
1≤l<j≤m−1

(θm,j,k−1 − θm,l,k−1)∏
1≤l<j≤m−1

(4j − 4l)
,
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where

θm,j,k−1 =

 4m−j, 1 ≤ j ≤ k − 1,

4m−1−j, k ≤ j ≤ m− 1,
2 ≤ k ≤ m.

Using the representation of f(r, y) given by Lemma 5.3.1, we get

m∑
j=1

αm,jM
(
2m−jr, u

)
=

∫
B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

+

∫
B(0,r)\B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

−
∫

B(0,r)\B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k
(
2m−jr

)2k |y|2(m−k)−n

)
dµu(y)

+
m−1∑
l=1

∫
B(0,2lr)\B(0,2l−1r)

(
m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

−
m−1∑
l=1

∫
B(0,2lr)\B(0,2l−1r)

(
m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k
(
2m−jr

)2k |y|2(m−k)−n

)
dµu(y)

+ a0

m∑
j=1

αm,j. (5.31)

Now,
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k
(
2m−jr

)2k |y|2(m−k)−n

=
m−1∑
k=0

βm,n,kr
2k|y|2(m−k)−n

(
m∑
j=1

αm,j4
(m−j)k

)
.

According to (5.15),
∑m

j=1 αm,j4
(m−j)k = 0, k = 1, . . . ,m− 1. Hence,

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k
(
2m−jr

)2k |y|2(m−k)−n = |y|2m−n
m∑
j=1

αm,j. (5.32)
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Using (5.32), the linear combination of means (5.31) can be rewritten as

m∑
j=1

αm,jM
(
2m−jr, u

)
=

∫
B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

+

∫
B(0,r)\B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

−
m∑
j=1

αm,j

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y)

+
m−1∑
l=1

∫
B(0,2lr)\B(0,2l−1−1r)

(
m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

−
m−1∑
l=1

∫
B(0,2lr)\B(0,2l−1r)

(
m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k
(
2m−jr

)2k |y|2(m−k)−n

)
dµu(y)

+ a0

m∑
j=1

αm,j. (5.33)

It is easy to see that∣∣∣∣∣∣∣
∫

B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

∣∣∣∣∣∣∣
≤ r2m−nµu (B(0, 1))

m∑
j=1

|αm,j|
m−1∑
k=0

|βm,n,k|
(
2m−j

)2(m−k)−n → 0, r →∞.

Hence

c0 (r,m, n, k) :=

∫
B(0,1)

(
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−jr

)2(m−k)−n
)
dµu(y)

is bounded as a function of r for r > 1.
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In terms of Lemma 5.4.1, we can rewrite (5.33) as

m∑
j=1

αm,jM
(
2m−jr, u

)
= c0 (r,m, n, k)

+
m∑
j=1

αm,j

m−1∑
k=0

βm,n,k2
(m−j)(2(m−k)−n)c1 (1, r,m, n, k)

−
m∑
j=1

αm,j

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y)

+
m−1∑
l=1

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k2
(m−j)(2(m−k)−n)c2

(
2l−1, 2l, r,m, n, k

)
−

m−1∑
l=1

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k4
k(m−j)c3

(
2l−1, 2l, r,m, n, k

)
+ a0

m∑
j=1

αm,j.

Thus, Lemma 5.4.1 and boundedness of c0 (r,m, n, k) imply that

m∑
j=1

αm,jM
(
2m−jr, u

)
= c (r,m, n, k)−

m∑
j=1

αm,j

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y),

where supr>1 |c (r,m, n, k)| <∞.

It is clear from (1.26) that for any fixed m, αm,j’s alternate in sign and grow in

absolute value when j increases. Hence
∑m

j=1 αm,j 6= 0. Therefore, the condition

supr>1

∣∣∣∑m
j=1 αm,jM (2m−jr, u)

∣∣∣ <∞ implies that

sup
r>1

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y) <∞.

�

Lemma 5.4.3 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), and µu = (−∆)m u. Further-

more, let αm,j be the absolute constants from Proposition 1.5.1. If

sup

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞ and sup
r>1

r2m−nµu (B(0, r)) <∞,

then ∫
Rn

(1 + |y|)2m−n dµu(y) <∞.
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Proof. It is clear that∫
B(0,1)

(1 + |y|)2m−n dµu(y) ≤ µu (B(0, 1)) <∞. (5.34)

Furthermore,

sup
r>1

∫
B(0,r)\B(0,1)

(1 + |y|)2m−n dµu(y) ≤ sup
r>1

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y). (5.35)

The last expression is finite because of Lemma 5.4.2, whence the statement follows

from (5.34) and (5.35). �

Theorem 5.4.1 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), and µu = (−∆)m u. Fur-

thermore, let αm,j be the absolute constants from Proposition 1.5.1. The conditions

sup

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞ and sup
r>1

r2m−nµu (B(0, r)) <∞,

hold if and only if ∫
Rn

(1 + |y|)2m−n dµu(y) <∞, (5.36)

and u is of the form

u(x) = cm,n

∫
Rn
K2m(x− y) dµu(y) + h(x), x ∈ Rn, (5.37)

where h ∈ Hm (Rn), and cm,n are given by (1.23).

Proof. Suppose that

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞, and sup
r>1

(
r2m−n

∫
B(0,r)

dµu(y)

)
<∞.

Consider the following function

Uµu
2m(x) :=

∫
Rn
|x− y|2m−n dµu(y).

Let us show that Uµu
2m is locally integrable in Rn. Indeed, let us choose an arbitrary

R > 0, and show that∫
Rn

(∫
B(0,R)

|x− y|2m−n dx
)
dµu(y) <∞.
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It follows from Lemma 5.1.3 that
∫
B(0,R)

|x− y|2m−n dx is continuous on Rn, and

∫
B(0,R)

|x− y|2m−n dx ≤


R2m2πn/2

m−1∑
k=0

|cm,n,k|
4kk!Γ(n2 +k)

(
2

2(m−k)
− 1

2k+n

)
, |y| < R,

|y|2m−nRnπn/2
m−1∑
k=0

|cm,n,k|
4kk!Γ(n2 +k+1)

, |y| > R.

Lemma 5.4.3 also implies that∫
Rn

(1 + |y|)2m−n dµu(y) <∞.

Hence, for any R > 0,∫
Rn

(∫
B(0,R)

|x− y|2m−n dx
)
dµu(y) <∞. (5.38)

Now, Tonelli-Fubini’s Theorem yields that Uµu
2m ∈ L1

loc (Rn). In particular, we have

that Uµu
2m(x) 6=∞ a.e. (in the Lebesgue measure sense) in Rn.

Theorem 1.2 of [66, Ch. 2, § 2.1] implies that Uµu
2m is lower semicontinuous on Rn.

Furthermore, if ϕ ∈ C∞0 (Rn), then considering (5.38) and using Fubini-Tonelli’s

theorem, we conclude∫
Rn
Uµu

2m(x) (−∆)m ϕ(x) dx

=

∫
Rn

(∫
Rn
|x− y|2m−n dµu(y)

)
(−∆)m ϕ(x) dx

=

∫
Rn

(∫
Rn
|x− y|2m−n (−∆)m ϕ(x) dx

)
dµu(y) ≥ 0. (5.39)

(Since | ·−y|2m−n ∈ SHm (Rn), the internal integral is nonnegative for any y.) Let us

also note that the final integral is always finite because of (5.38). Hence, (−∆)m Uµu
2m

is a positive measure on Rn.

Moreover, since the Riesz kernel | · −y|2m−n ≥ 0 is superharmonic in Rn and

Uµu
2m 6≡ ∞, we have that Uµu

2m is superharmonic in Rn (see [55, Ch. I, § 2, Th. 1.2]).

But then it follows from lower semicontinuity and superharmonicity that

Uµu
2m (x) = lim

r→0+

1

m (B (x, r))

∫
B(x,r)

Uµu
2m (t) dt, x ∈ Rn
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(see, e.g., [55, Ch. I, § 2, Formula (1.2.4)]).

Thus, we conclude that Uµu
2m ∈ SHm (Rn).

Furthermore, since cm,n (−∆)mK2m = δ0 (see [41] and [32, § 3]), we have that

cm,n (−∆)mK2m (· − y) = δy.

Hence, we may proceed with (5.39), and obtain

cm,n

∫
Rn
Uµu

2m(x) (−∆)m ϕ(x) dx =

∫
Rn
ϕ(y) dµu(y) =

∫
Rn
u(x) (−∆)m ϕ(x) dx.

Thus, we have two functions, Uµu
2m and u, from the class SHm (Rn), such that the

relation (−∆)m [cm,nU
µu
2m] = (−∆)m u holds in distributional sense. Using the same

reasoning as in the proof of Lemma 5.3.1, we conclude that h := u − cm,nU
µu
2m ∈

Hm (Rn). Thus, (5.37) follows.

Conversely, let u ∈ SHm (Rn) be of the form (5.37), where µu satisfies∫
Rn

(1 + |y|)2m−n dµu(y) <∞.

Then, applying Tonelli-Fubini’s Theorem, and Lemma 5.1.2, we obtain

M (r, Uµu
2m) =

1

σnrn−1

∫
S(0,r)

(∫
Rn
|x− y|2m−n dµu(y)

)
dx

=

∫
Rn
M (r,K2m (· − y)) dµu(y)

=

∫
B(0,r)

Γ
(n

2

)m−1∑
k=0

(
|y|
2

)2k
cm,n,k

k!Γ
(
n
2

+ k
)r2(m−k)−n dµu(y)

+

∫
Rn\B(0,r)

Γ
(n

2

)m−1∑
k=0

(r
2

)2k cm,n,k

k!Γ
(
n
2

+ k
) |y|2(m−k)−n dµu(y)

≤ r2m−n
m−1∑
k=0

|βm,n,k|
∫
B(0,r)

dµu(y)

+
m−1∑
k=0

|βm,n,k|
∫
Rn\B(0,r)

|y|2m−n dµu(y), (5.40)

where βm,n,k are defined in (5.30). Now, if r > 1, we get∫
B(0,r)\B(0,1)

r2m−n dµu(y) ≤
∫
B(0,r)\B(0,1)

|y|2m−n dµu(y).
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Hence,

r2m−n
∫
B(0,r)

dµu(y) ≤ r2m−nµu (B(0, 1)) +

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y),

and (5.40) implies

M (r, Uµu
2m) ≤

(
r2m−nµu (B(0, 1)) +

∫
Rn\B(0,1)

|y|2m−n dµu(y)

)m−1∑
k=0

|βm,n,k| .

Since
∫
Rn (1 + |y|)2m−n dµu(y) <∞, we conclude that

sup
r>1

M (r, Uµu
2m) ≤

(
µu (B(0, 1)) + 2n−2m

∫
Rn

(1 + |y|)2m−n dµu(y)

)m−1∑
k=0

|βm,n,k| <∞.

This yields

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, Uµu

2m

)∣∣∣∣∣ <∞. (5.41)

Now, from (5.37), (5.41) and (5.28), we deduce that

sup
r>1

∣∣∣∣∣
m∑
j=1

αm,jM
(
2m−jr, u

)∣∣∣∣∣ <∞.
Finally, for any r > 1 we have

0 ≤ r2m−n
∫
B(0,r)

dµu(y) ≤
∫
B(0,1)

dµu(y) +

∫
B(0,r)\B(0,1)

|y|2m−n dµu(y)

= µu (B(0, 1)) + 2n−2m

∫
B(0,r)\B(0,1)

(|y|+ |y|)2m−n dµu(y)

≤ µu (B(0, 1)) + 2n−2m

∫
B(0,r)\B(0,1)

(1 + |y|)2m−n dµu(y)

≤ µu (B(0, 1)) + 2n−2m

∫
Rn

(1 + |y|)2m−n dµu(y) <∞.

�

To prove Theorem 1.5.5, it remains to replace the condition

sup
r>1

r2m−nµu (B(0, r)) <∞

by another one that should be easy to check having a particular function u ∈

SHm (Rn). The replacement is given by the following lemma.
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Lemma 5.4.4 Let m,n ∈ N, 2m < n, u ∈ SHm (Rn), and µu = (−∆)m u. The

following are equivalent:

(a) sup
r>1

r2m−nµu (B(0, r)) <∞;

(b) sup
r>1

∫
1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt <∞, for some ϕ ∈ R;

(c) sup
r>1

∫
1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt <∞, for any ϕ ∈ R.

Proof. Since u ∈ SHm (Rn), it is locally integrable, and dµu(x) is a positive Borel

measure on Rn. Take any ϕ ∈ R, r > 0, and let Φ(x) := ϕ(x/r). Since Φ ∈ C∞c (Rn),

we obtain

µu (B(0, r)) =

∫
B(0,r)

Φ(x) dµu(x) ≤
∫
B(0,2r)

Φ(x) dµu(x)

=

∫
Rn
u(x) (−∆)m Φ(x) dx = r−2m

∫
Rn
u(x) [(−∆)m ϕ]

(x
r

)
dx

= r−2m

∫
r≤|x|≤2r

u(x) [(−∆)m ϕ]
(x
r

)
dx.

Making the substitution t := x/r in the last integral, we get

r2m−nµu (B(0, r)) ≤
∫

1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt, r > 0. (5.42)

Analogously, since 0 ≤ Φ(x) ≤ 1,

µu (B(0, 2r)) ≥
∫
B(0,2r)

Φ(x) dµu(x) = r−2m

∫
r≤|x|≤2r

u(x) [(−∆)m ϕ]
(x
r

)
dx.

Making the substitution t := x/r in the last integral, we arrive at

(2r)2m−n µu (B(0, 2r)) ≥ 22m−n
∫

1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt, r > 0. (5.43)

Now, assume (a) holds. Taking an arbitrary ϕ ∈ R, we conclude from (5.43) that

sup
r>1/2

∫
1≤|t|≤2

u(rt) (−∆)m ϕ(t) dt ≤ sup
r>1

r2m−nµu (B(0, r)) <∞,

which implies (c), and then, trivially, (b).

If (b) holds with some ϕ ∈ R, then (5.42) yields (a) immediately. �
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Thus, Theorem 1.5.5 follows from Theorem 5.4.1 and Lemma 5.4.4.

Furthermore, we may use (5.42) to get easy-to-check sufficient conditions on u to

have Riesz representation (1.28).

Proof of Corollary 1.5.1. Applying Hölder’s inequality to the right-hand side of

(5.42), we have that for any p ∈ [1,∞) and q, such that 1/p+ 1/q = 1,

r2m−nµu (B(0, r)) ≤ ‖(−∆)m ϕ‖Lq(B(0,2)\B(0,1))

(∫
1≤|t|≤2

|u(rt)|p dt
)1/p

= ‖(−∆)m ϕ‖Lq(B(0,2)\B(0,1))

(
1

rn

∫
r≤|x|≤2r

|u(x)|p dt
)1/p

≤ 2n/p ‖(−∆)m ϕ‖Lq(B(0,2)\B(0,1))

(∫
r≤|x|≤2r

|u(x)|p

|x|n
dt

)1/p

≤ 2n/p ‖(−∆)m ϕ‖Lq(B(0,2)\B(0,1))

(∫
|x|≥1

|u(x)|p

|x|n
dt

)1/p

.

If p =∞, then clearly,

r2m−nµu (B(0, r)) ≤ ‖(−∆)m ϕ‖L1(B(0,2)\B(0,1)) ess sup
r≤|x|≤2r

|u(x)| .

Thus, if either condition, (a) or (b) is satisfied, then supr>1 r
2m−nµu (B(0, r)) <∞.

Applying Theorem 5.4.1, we get representation (1.28), and relation (1.29). �
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