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CHAPTER 1
Introduction and Main Results

1.1 Overview of Main Topics

There are many forms of representation of a function by series or integrals. For
example, a function f analytic in a disk {z : |z — a| < R} of the complex plane can

be represented by its Taylor series

A 27-periodic function f of a real variable from the L?[0, 27| space can be written as

its Fourier series
[oe)

fz) = Z cpe®?. (1.1)

k=—o00

In addition to power and trigonometric systems, there are many other orthogonal
systems that can serve as bases for other expansions.

Let us note that the series on the right-hand side of (1.1) converges in L?-norm to
f. An immediate question is if it converges at least a.e. to the generating function f.
In 1966, L. Carleson [19] gave a positive answer to this question. In 1967, R. Hunt
[48] generalized this result for functions from LP-spaces, p > 1.

Note that if f € L?[0,2x], p > 1, its Fourier coefficients

1 21 i
cr = %/0 flz)e ™ dx

are well defined. However, when p = 1, the Carleson-Hunt type result is not valid.
Moreover, in 1926, A. N. Kolmogorov constructed an example of a function from L!

whose Fourier series diverges everywhere [53].



The same questions could be asked about convergence of the Fourier series in
norm. And the answer is: When 1 < p < oo, the partial sums ZI k<N cpe’*® converge
to fin LP as N — oo. For p = 1, 00, norm convergence fails. For p = 1, an example
is again due to A. N. Kolmogorov.

Thus to approximate a periodic function from L' by trigonometric polynomials,
we need a modification of the Fourier sums. Various methods of summation work
here. For example, it is known that if f € L? for 1 < p < oo, then the Abel-Poisson

means Y, e 2 Hle ek converge to f in LP-norm as t — 0+. Another example

is the Bochner-Riesz means >~ _p (1 - E—i)a cpe?™** o > 0, which converge to f as
R — o0. It is also known that for a continuous function f, convergence of the above
means is uniform. These summation methods are examples of Fourier multipliers.
Multipliers of Fourier series and integrals have been investigated and widely used
since 1923, when they were introduced by M. Fekete [30]. The idea is to introduce

some multiplicative factors A, into the Fourier series, i.e., to consider a modified

Fourier series

Af ~ Z Cn)\n627rinx

nez
that has better properties than the original one. This approach has been success-

fully applied to problems of approximation theory, differential equations, numerical
analysis, etc., provided A defines a bounded linear operator on the corresponding
function space. The first effective sufficient condition for boundedness of A in L? (T),
p € (1,00), and its applications, were found by J. Marcinkiewicz [62]. Later, for the
non-periodic case of multipliers of Fourier integrals, these conditions were obtained
by S. G. Michlin [63, 64] and L. Hérmander [45] (see also [85, Ch. IV]). The most in-
vestigated cases are p = 1, 2, oo, which is not a surprise. Employing the Riesz-Thorin
theorem, it is easy to transfer such results to the case p € (1,00). These results and
techniques became classical and are well described, e.g., in [86].

For p € (0,1), L? (T) spaces are only pre-normed, and there are no linear continu-



ous functionals, and no Fourier series in these spaces. This is the reason for considering
the H? (D) spaces of functions analytic in the unit disk D = {2z € C: |z| < 1} and
having their boundary values in L? (T). Namely, H? (D) consists of all functions f

holomorphic in D, such that

2w i 1/p
SUPre(o,1) (% fo |f (Tet)’p dt) , p€(0,00),

Susz]D) |f(Z)| ) b =00,

1l o = (1.2)

is finite. We often write H? for H? (D).

Any function f € H? (D), p > 0, has the Taylor series expansion in D. If p > 1,
then the Taylor series coincides with the Fourier series of the non-tangential (or radial)
limit values of f on the unit circle. For 0 < p < 1, one can consider multipliers of
Taylor series instead of Fourier series. One special case of these multipliers, namely,
the Hadamard product of two functions, is considered in Chapter 2.

The disseration is structured as follows. In Section 1.2 and Chapter 2, we investi-
gate the Hadamard product of two analytic or harmonic functions as a linear operator
acting between Hardy spaces (H? to H?), with p,q > 1. We also obtain estimates
for the norm of this operator in Bergman spaces of analytic or harmonic functions,
as well as consider the case of the operator acting from Hardy to Bergman spaces.

For the Hadamard product operator acting from H? to H? with p < 1, the esti-
mates like those obtained in Theorem 1.2.1 are not valid. In fact, dependence on p
becomes crucial (see Theorem 2.2.1 in Section 2.2), and the constants blow up when
p approaches 0. Since this is unavoidable for analytic functions, we restrict our atten-
tion to polynomials. In Section 1.3 and Chapter 3 we obtain estimates for the Mahler
measure of the Hadamard product of two polynomials (Mahler measure is a limiting
case for the HP-pre-norms when p — 0+4). A sharp estimate we obtain is also used
to get corresponding estimates in HP-norm/pre-norm. The aforementioned estimates
are also used for proving some sharp inequalities. For example, estimates for the odd

and even parts of a polynomial in H? pre-norm (p < 1) are derived in Section 3.2.



In Section 1.4 and Chapter 4, we study multipliers of Fourier integrals acting
between the Hardy spaces H? (1t) and HY9(Tt), where 0 < p < ¢ < 1 and 1t C C"
is a tube over an open cone I' C R™ (for precise definitions, see Section 1.4). We
obain efficient sufficient conditions for the multipliers, which in some cases are also
necessary. One of the most interesting cases is that of radial kernels. In particular,
we obtain the critical index for the Bochner-Riesz means of Fourier integrals, i.e., the
index when they define a bounded linear operator from H? (1t) to H? (1r).

Note that for p > 1, there is no difference between multipliers in H? and in L? since
these spaces could be identified. Moreover, for p > 1, the conditions for multipliers
of Fourier integrals and Fourier series are the same in view of the well-known result
due to K. de Leeuw.

Despite the fact that the conditions we obtained work for 0 < p < ¢ < 1, it is
possible to derive more general results, for 0 < p < ¢ < oo, using a proper ”scaling
of powers”. Such a technique is used in Section 4.3, where we obtain Bernstein-type
and Nikol’skii-type inequalities for entire functions of exponential type.

Section 1.5 and Chapter 5 are devoted to the Riesz decomposition for super-
polyharmonic functions in R™. This decomposition generalizes the one recently dis-
covered by K. Kitaura and Y. Mizuta [52] for super-biharmonic functions.

As a general principle, Sections 1.2 — 1.5 contain the main definitions and some
of the main results. Detailed explanations, other results, proofs, and more historical
references are postponed to the forthcoming chapters.

The main results of the dissertation are published in [99, 100, 101, 102], and also
[103], which is submitted for consideration for publication and had been still under

consideration at the time of the thesis preparation.



1.2 Hadamard Product in Hardy and Bergman Spaces

The Hadamard Product, or the Hadamard Convolution, of two harmonic functions f

and ¢ in D
f (re®) = i aprem g (re'?) = i barle™ 1€ (0,1), 0 € R,
is defined by o o
(f xg) (re) = i anbpr™e™® 1 e0,1), 6 € R. (1.3)

If we fix one of the functions, say, f, we can consider the Hadamard product as
a linear operator f* on a space of harmonic (or analytic) functions in D). Thus, one
can think about it as a coefficient multiplier that introduces coefficients a,, into the

series decomposition of g:

oo o0
IEE g b,r™em? E anbyr!™e™.

n=—o00 n=-—o00

There are many results devoted to coefficient multipliers in various function spaces
(see e.g., [26, 107, 94], [27, Ch. 3, § 3.4]). We restrict our attention to the case when
the a,,’s are taken from the Fourier series of f.

As usual, h? = h? (D) denotes the Harmonic Hardy Space, i.e., the set of all

functions f harmonic in I, such that

. 1/p
1 27 it)|P
subeo (2 Sy 1f (e dt) , p e (0,00),
1Nl = (1.4)

SUP,ep |f(2)| ) b =00,

is finite. Let us note that the holomorphic Hardy space H? is a subset of AP in view

of (1.2). We also consider Hardy spaces in a disk of an arbitrary radius R > 0:
Dr:={z€C:|z| < R}.

The corresponding Hardy spaces H? (Dg), p € (0, 00|, consist of all functions f holo-

morphic in Dg, such that

27 i 1/p
s (o Jo " 1 (e dt) ", p € (0,00),

SUD.echp ’f(Zﬂ ) p =00,

1 ez o) =



is finite. We will use them in Section 2.2.
Following [27], for 0 < p < oo, the Bergman Space AP = AP (D) consists of all

functions f analytic in D, for which

i1 = ([ 1500 da<z>)w -2 [iseenypraran) RIS

(Here and in the sequel, do(z) denotes the Lebesgue area measure in ) normalized
by the condition ¢(D) = 1.)

The Harmonic Bergman Spaces a” = aP (D) consist of functions f harmonic in D,
such that || f||le» given by the same expression as in (1.5) is finite (see [6, Ch. §]).

If T is a bounded linear operator mapping a space X into a space Y (normed or
pre-normed), we will use the notation 7" € £ (X,Y).

The results of this section (and Chapter 2) were motivated by Theorem 4.2.6 of
the monograph [82] by T. Sheil-Small, which states that if £ is any harmonic function

in D, then the Hadamard product operator F'x it defines has the operator norm
[ oo oo = ([l (1.6)

In fact, the operator F'x of h! into h! also has the same norm (see Theorem 1.2.1 (c)
below). However, if we replace the harmonic Hardy space h>, or h', by their holo-
morphic visa-vis, H>*, and H*, respectively, then (1.6) is no longer true (see Propo-
sition 1.2.1).

The following theorem is a generalization of Theorem 4.2.6 from [82].

Theorem 1.2.1 (a) For 1 < p < q < oo, and F € h?/? (D), the operator Fx €
L (hP, h?) with the norm at most || F|| e (assuming q/p =1 if p = q = o0). Moreover,

for any function g harmonic in D, and r € [0, 1),

(i /0 T1F e g) (re)" dt) e

1 21 ] 1/p
Pl (5 [ lae)f at) o 1<p<a<s )
0



] 1 2m ) 1/p
rgleaﬂgd(F * g) (reza)‘ < || F||nee (%/o g (re”)‘p dt) , 1<p<oo, (1.8)

and
i0 i0
IglgRXKF*g) (re’)| < ||F|jm rgleaig(‘g (re’)] . (1.9)
(b) If F is a positive harmonic function, and Fx € L (hP, h?) for some p € [1, o],
then F € h' (D), and
[E = (] o -

Thus, Fx € L (h?,h?) for all p € [1,00], and the operator norm does not depend on
p.
(¢c) If F € h* (D) then

LE sl smt = [ [lnoe e = [[F [

Remark 1.2.1 Ifp > q then Holder’s inequality implies h? C h4, and || f||na < ||.f]|ne-
Thus, Theorem 1.2.1 applied with p = q yields ||F * gllpa < ||F * g||lpe < [|F||n2|g]ne,
whence ||F % ||pp—pa < [|[F||n. For a positive harmonic F, and g(z) = 1, the mean-
value property implies ||F * g||lpa = F(0) = ||F||n1. Hence, |F * ||pp—ne = |[|[Fln in

this case. Considering aforementioned, the only interesting case is when p < q.

Parts (a) and (b) of Theorem 1.2.1 could be restated for holomorphic function g
to give estimates of Fx acting from H? to H? (and, in fact, for p = ¢ = 1 the result
follows immediately from the estimate for g-means proven by M. Pavlovi¢ in [72]).

However, Part (c¢) has no holomorphic analogue because of the following result:

Proposition 1.2.1 For any M > 0, there exists a function F € H' (D) such that
1F 5l grospr = 1, Vp € [1,00],

but || F|| g > M.

Other results of Chapter 2 deal with the Hadamard product operator in Bergman

spaces, and from Hardy to Bergman spaces.



1.3 Mahler Measure of the Hadamard Product of Two Polynomials

The estimates of the previous section become more specific if we consider polynomials
instead of general analytic or harmonic functions. As we already mentioned, an
estimate of the form

E*] o prp < C

where C' does not depend on p < 1 is not valid. The reason is that the operator
Fx becomes unbounded as an operator on the "space of Mahler measure” H° (see
below), which is a limiting case for H? as p — 0+. Considering polynomials helps to
explain the reason for this, and to obtain some unexpected inequalities.

For a function f holomorphic in the unit disk D, its Mahler Measure is defined
by

2w

[l = exp ( sup o= [ | f (re") dt) |

r€[0,1) 27 Jo

Note that if f € H? (D), for some py > 0, then || ]| o = im0+ || f]l 0
For n € Z, let C,[z] denote the set of all polynomials in the complex variable z
with complex coefficients of degree at most n.

So, for a polynomial P € C,[z], we have

1 21 ;
| P|[ o := exp (%/0 In |P (e")] dt> :

The Mahler measure has proven to be an efficient tool in obtaining sharp inequalities
for polynomials. For example, K. Mahler [60] proved that if P(z) = >_}_, az*, then

ar] < (1) || P]| 0. Obtaining Bernstein’s inequality in Hardy spaces H?:
k H
1P o < 10| Pl o

had been a difficult problem for p < 1 (see, e.g. [50, 90]). In an important paper
[17], N. G. de Bruijn and T. A. Springer proved that if deg(P) < n, then ||P’|| ;0 <

n||P|lgo. This was a corollary of a much more powerful result ([17, Theorem 7]),



which is also a cornerstone for our considerations. For more historical remarks, see
Chapter 3.
It is clear that || - ||go is not a norm or even a pre-norm (the triangle inequality

fails even in a weak form). However, it has an important multiplicative property

PRl e = 1P|l aol|Qll ro- (1.10)

Furthermore, if P(0) # 0 and has zeros {ay}, then Jensen’s formula implies that

|P(0)]
[T faxl

|ak|<1

[Pl o =

Using the multiplicative property (1.10) for a polynomial P(z) = >_,_, axz" of degree
exactly n, we obtain

IPmo = lan| J] o (1.11)

o] >1

(As usual, if a product is empty, we assume its value is 1.)

In [17], N. G. de Bruijn and T. A. Springer obtained several sharp results on
a different kind of product of two polynomials — the Schur-Szeg6é product. This
product is well studied because it enjoys a very powerful apolarity property, that is
not available for the Hadamard product. Fortunately, it is possible to reduce the

Hadamard product to the Schur-Szegé product and obtain the sharp estimates we

need.
The Schur-Szegd Product of R(z) = Y (})re2® and W(z) = Y (})wyz® is
k=0 k=0
given by
(Rxs W) (2) := <Z) rRwEz".
k=0
Note that

(Rxs W) (2) = (R« W x L) (2),

where L(z) =Y _, (Z’)_lzk.

It follows immediately from [17, Theorem 7] that for two polynomials R and W,

[Rxs Wl go < B oW ][ o- (1.12)



Clearly, this inequality is sharp. Taking, for example, Wy(z) = (1 4+ 2)" =
>oreo (1)2F, we obtain || R s Wo || 70 = || R|| 10 [|Wol| 0, for any polynomial R € C,[2].
Using the proof of [17, Theorem 7], V. V. Arestov [3] obtained sharp estimates
for the Schur-Szeg6 product in more general spaces. In particular, they are valid in
any H?, p € [0, 00]. Specifically, [3, Theorem 1] implies that for any two polynomials

R,W € C,[z],
1B %5 Wil < IRl o [W e, 0<p < 0. (1.13)

Using (1.13), we obtained a sharp estimate for the Hadamard product. The main

result of Chapter 3 is given by the following statement.

Theorem 1.3.1 (a) For any polynomials P and Q) of degree at most n with complex

coefficients, the following estimate holds:

1P * Qllar < Onllgo 1Pl go 1@l g, 0 < p <00, (1.14)

(%@y:k;<2f&.

For p =0, equality in (1.14) is achievable, e.g., taking P(z) = Q(z) = (1 + z)".

where

(0) |On|| o < 47, for every n € N, and

n 4G
lim [|©,[|} = exp( ) ~ 3.20991230072 - - , (1.15)
n—o0 T
where G is Catalan’s constant and G =Y~ TJEUQ ~ 0.915965594177219 -

Moreover, there is an absolute constant a > 0 such that

4G In’n

‘n@wm——-ga n>2. (1.16)
s n

It is an interesting fact that the constant in (1.15) has already appeared in some
sharp estimates unrelated to the Hadamard product. For example, P. B. Borwein
considered factoring polynomials on [—1, 1] into products of polynomials of smaller

degrees, and got the same constant in the estimate of the product of uniform norms

10



of two factors [11, Corollary 1]. Later, I. E. Pritsker [74] considered the problem of
the best constant Mg in the inequality

H ||Pk||C(E) < (Mg)" HpHC(E) )

k=1
where pj’s are some complex polynomials, p(z) = [}, pr(2), and n = deg(p). It was
shown in [74, § 3.2] (see also [75]) that for F = [—1,1], M is exactly the constant

we obtained in (1.15).

1.4 Multipliers of Fourier Integrals

Multipliers of Fourier integrals have the same motivation as multipliers of Fourier
series. Now, the multiplicative factor is some Lebesgue measurable function. For a
function f with Fourier transform ]?, we can consider the linear operator defined in
the following way

R = [ e®F e
where (x,t) denotes the usual inner product of two vectors in R”.

Owing to the K. de Leeuw theorem [56], the case of multipliers for Fourier integrals
in L? (R"), p € [1, 00}, may be reduced to the case of multipliers of Fourier series in
LP (T™). A detailed explanation of this fact and related results could be found in [86,
Ch. VII, § 3].

For p € (0, 1), the situation is quite different. We need to investigate the multi-
pliers for Fourier integrals separately. Moreover, as in the case of series’ multipliers,
one needs to study the Hardy spaces H? instead of LP. For the univariate case, it is
H? in the upper half-plane. Several useful sufficient conditions for such multipliers
were obtained by A. A. Soljanik in [84]. They were also successfully applied to ob-
taining several two-sided estimates of approximation of a function by some means of

its Fourier integrals.
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Several efficient conditions for multipliers of Fourier series in H? spaces in polydisk
D™ and their applications to various problems of approximation theory, were obtained
by R. M. Trigub in [94]. Later, the results of [94] were extended to the case of H?
spaces in the Reinhardt domains by Vit. V. Volchkov [105]. We will also use some
crucial ideas of the proofs of [94].

Let B be an open set in R", n € N. Following [86, Chapter III|, the tube with
base B is

Tp={2€C',z=x+iy: x € R",y € B}.

Despite the fact that this definition is related to an open set B, we will also use
the same notation for not necessarily open B when proving some technical results in
Section 4.1. We will also use the notation E° for the interior of a set E.

A nonempty open set I' C R” is called an open cone in R™ if 0 ¢ T' and whenever
x,y € I' and o, f > 0, the linear combination ax 4+ Sy € I'. The closure of an open
cone is called a closed cone.

For any open cone I', the set
I"={zxeR": (z,t) >0,Vt €'}

is closed. If I'* has nonempty interior, then it is a closed cone, and I' is called a
reqular cone. The closed cone I'* is called the cone dual to I'.

It is obvious that in the univariate case, the only possible open cones are (0, c0) and
(—00,0), which are also regular. Their dual cones are [0, 00) and (—o0, 0], respectively.
For n = 2, open cones are sectors of angular measure at most 7. If the angle is strictly
less than 7, then we have a regular cone.

A holomorphic in T function belongs to the Hardy space H? (Ts), p € (0, 00], if

subyep (fin I (2 + iy)|” dz)"", p e (0,00),

I e = 1 o) =
SUPzeTy |f (Z)| ’ p =00

12



is finite. It is clear that the latter expression defines a norm in H? (Tg) for p € [1, o¢],
and a pre-norm for p € (0,1).
We will also use the following notation f, (-) :== f (- +iy), y € B. Using it, we have
9]l 5o (1) = suPyes || fyll,» where [|-|| ) is a standard norm (or pre-norm) in L? (R").
Since the general case of an arbitrary open set B is too cumbersome and heavily
dependent on the geometry of B even for H? (T) (see, e.g., [86, Ch. III, § 2]), it is
reasonable to restrict the investigation to the case of an open cone I'.

If f e L' (R"), its Fourier transform is defined by

~

f© =1 f)e?™EDat ¢ ecR™
Rn

We will also use the following notation f(f) = f(—f).

For a function from H? (Tt), p € [1,00), its Fourier transform may be defined as
an LP Fourier transform of a limit function, the existence of which is guaranteed by
Theorem 5.6 in [86, Ch. III, § 5]. For p < 1 and a general cone, it does not work,
and we need to consider the limit function using tempered distributions. First of all,
we need the following statement, which follows from the proof of [86, Ch. III, § 2,

Lemma 2.12].

Lemma 1.4.1 ([95, Lemma 1]) Let I be an open cone in R", p € (0,00], and
q € [p,o0]. If f € HP (Tr), then for any 6 € T', we have fs € H?(Tr) and

O,
< -
Il < ()

where Q,, is the volume of the unit ball in R™, i.e., Qp = 7™/2/T (m/2+ 1), and

1 1

Do £l

==
Q=

Dsr = dist (5, R" \ T).
The following result is in fact a modification of Lemma 4 from [29].

Theorem 1.4.1 ([95, Th. 1]) Let T be an open cone in R™, p € (0,1], and f €
HP (Tr). Then the limit limy_,oer f (x +it) exists in the sense of tempered distri-

butions, i.e., there exists a tempered distribution L, such that for any test function
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¥,
lim f(x+it)p(x)dr = L(p).

t—0,tel’ R™
Moreover, the Fourier transform of the tempered distribution L is a reqular tempered
distribution generated by an ordinary function given by the formula (the right-hand

side does not depend on § € I'):

~

fo (&) = €N fs (), €eRY

where J?(g is the classical Fourier transform of the function fs(x).

Lemma 1.4.1 implies f5 € L' (R"), which means that fo is well-defined. Let us
also note that for p = 1, our ]?0 coincides with the classical Fourier transform of the
limit function f (z) = lim¢_o cer fe ().

Therefore, the following definition of the Fourier transform is justified.

Definition 1.4.1 The Fourier transform of a function f € H? (1Tr), p € (0,1], is
defined by
f(f) = ", &), £eR" (el — arbitrary). (1.17)

Furthermore, if f € HP? (1t) for some p € (0,1], then the following inversion

formula holds true (see [95])

f(z)= /r ]?(t) MEN dt 2 € Ty, (1.18)

Therefore, for any p € (0,1], the space H? (Tr) contains nonzero functions if and
only if the cone I is regular (in fact, this is true for p € (0, 00) since f € HP implies
()P e H* with s = p/ ([p] + 1) € (0,1]). So, we will investigate only the case of a
regular cone.

Since there are no nontrivial translation-invariant linear bounded operators from

HP (Tr) to HY (1), p > q (see [96, Theorem 2]), we also assume p < g.

14



Definition 1.4.2 Let I' be a regular cone in R", n € N. A Lebesque measurable
function ¢ : I'" — C is called a multiplier from H? (Ir) to H?(Tr) (notation: ¢ €
M, (I1)), 0 < p < q <1, if for any function f € HP (1t), the function gpf coincides
almost everywhere on I'* with the Fourier transform of a function F,[f] € H? (1),

and

£ [l 7o

el = sup T <
Mol o 1 F Lo

It follows immediately from (1.18) that the function F, [f] is defined uniquely as

BANG = [ e®F 00 a et

Our first theorem in this section deals with the case of a compactly supported
multiplier only. In fact, the most popular kernels are radial and compactly supported.

Our theorem is sharp in this case (see Theorems 4.2.1 and 4.2.2 in Chapter 4).

Theorem 1.4.2 Let I' be a regular cone in R™, n € N. Assume that a function
p € C(R™) satisfies suppp C [—o,0]" for some o > 0. If g € L1(R"™) for some

q € (0,1], then p € M,,, (Tv) for any p € (0,q|, and

YD Q) a1y~
1l < 1 e 131, (1.19)

where

=0

1 1
nop l+l) 1 00 q
n(2+1-2) 7r2n(2 a 1
v(n,p,q) =2 G+3 _ — ] .
rGy)  \&wr
Here and in the sequel, by =, we denote some positive constants depending only on

the parameters in parentheses. The following geometric characteristics of the cone I'

is also used throughout the thesis:

aip ... Qp1

1 —
Vn(F):ﬁmaX det | : : Say,..a, €0 lag| = =la,| =1

A1y - Qpp

(1.20)
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(here ay; denotes the I-th component of the vector ay). Geometrically, V,, (I') is the
maximum possible volume of a simplex that could be built on n unit vectors contained
inT.

It is worth noting that the requirement @ € L9 (R") is essential and in some cases
is also necessary (see Theorems 4.2.1 and 4.2.2 in Chapter 4).

It is also possible to avoid the restriction that ¢ has to be compactly supported.
We can require some smoothness instead. Using the method from [94], we can decom-
pose our function into a sum of compactly supported functions whose Fourier trans-
forms are in L9 (R™). Owing to the Local Property of a multiplier (Lemma 4.2.1),

this approach seems very natural. The result is given by the following statement

Theorem 1.4.3 Let T be a reqular cone in R™, n € N, and ¢q € (0, 1],
(a) If p € C"(R™) for some natural r > n G — %), and for some p € (0,q],

a, B >0, the inequalities

A "o ‘ B
)| < ——; — ()| < ———, VzeR"
P < e S ] <
_ 2qra 2rq (1 1>
min {8 —a—r,0} + - - ——1]>0,
{ a 2-q) 2-q\p q
hold true, then ¢ € M, , (It), and
v (n,p,q,7, 0, B)
||90||Mp,q(TF) < (A+ B).

(Vi (D)

In particular, if « = 3 >n ( — %), then ¢ € M, , (Ir).

1
P
(b) Suppose that p € C* (R™) for s = [2 - "—H], and supp ¢ C [—1,1]". If

q 2
d%p d%p
e (-rla ce >$n) - oz} (xla ey Lj—1,T5 + tj7$j+17 B 7'1.”)
Max sup sup .z < 00,
J=1,em 420 zeRP It
n n+1 s
for some o > T TS and for any j = 1,...,n, the segment [—1,1] could be

split into finite number of segments (bounded with regard to the rest of variables) such

%
8:vj.

that, on any of these segments, the real and imaginary parts of (as functions of

x;) are convex or concave, then ¢ € M, ,(It) for any p € (0,q].
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Recent work of Y. Heo, F. Nazarov and A. Seeger [42, 43] is devoted to Fourier
multipliers in L? (R™), p > 1, and Lorentz spaces. The main results of their articles
are efficient estimates for the norms of Fourier multipliers from L” to LP and to
Lorentz spaces LP*. The authors deal with general radial kernels. One of the most
popular applications of these results is the Bochner-Riesz means.

Employing the above results, we answer the question: When the Bochner-Riesz
means of the Fourier integral

Ry (f;2) = / f(x) (1—n* |x|2T)a 2 o 2 e Ty,
|z|<1/h
define a bounded linear operator from H? (Tt) to H? (1r)?

Let us note that in LP, with 1 < p < oo, the Bochner-Riesz means are investi-
gated well (see, e.g., [20], [57], [21, Ch. 5], or [86, Ch. IV, § 4; Ch. VII, § 5]). For
approximation of functions in H? spaces, 0 < p < 1, by their Bochner-Riesz means

see, e.g., [84, § 3], [94, § 2|, [95, § 4]. In our case, the following statement holds true.

Proposition 1.4.1 Let I' be a reqular cone in R™, n € N. Assume a > 0, r € N,

and 0 < p < q < 1. The function

(1 - ‘x|27‘)°" ‘:IZ" < 17
Pr.a (z) =
0, lz| > 1,

belongs to M, , (Tr) if and only if

n n+1
o> — — )
q

2

It may seem surprising, that the critical index does not depend on p. However,
this is easily justified by Theorem 4.2.2.

It is interesting to find the critical index for Bochner-Riesz means for the case of
fractional powers r. Unfortunately, the proof of Proposition 1.4.1 does not work since

in that case, ¢, looses its smoothness at the origin.
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To show that the obtained sufficient conditions are relatively sharp, we provide
careful investigation of the local behavior of multipliers. Special attention is paid to
compactly supported radial functions. One of the tools here is non-increasing rear-
rangements. In particular, we prove Lemma 4.1.7 that generalizes the following well-
known equality [o, |f (z)[ dz = fooo (f*(t))" dt, where f* denotes the non-increasing
rearrangement of f. Another auxiliary result — Nikol’skii type inequality given by
Proposition 4.1.1 — is of an independent interest.

Moreover, in Chapter 4, we obtain Bernstein and Nikol’skii type inequalities for
entire functions of exponential type belonging to a Hardy space H? (1t) (see Theorems

4.3.2 and 4.3.3).

1.5 Riesz Decomposition for m-Superharmonic Functions in R"

We complete the thesis with a result on Riesz Decomposition for super-polyharmonic
functions. Despite the fact that some books on Potential Theory do not emphasize
this, such type of problems have strong relation to Harmonic Analysis. Let us start
with the classical Laplacian A f = Z?Zl a% f. If the function f is sufficiently smooth,

then the Fourier transform of Af is 5} (y) = —4n? \y[Z f(x) Furthermore, for m € N,

A (y) = (—47)" [y Fly). (1.21)

It is also known (see, e.g., [55, Ch. 1, § 1, Formula (1.1.1)]) that for n > 2 and

a < n/2,
=y T

2

ly| ™. (1.22)

Relations (1.21) and (1.22) suggest two important ideas. The first one is to replace
2m (or m) in (1.21) by a fractional a. To make this idea suitable for a wide range
of functions f, it is also conceivable to consider (1.21) in distributional sense. This

leads us to the notion of distributional Laplacian [ f(z) (—A)™ ¢ (z) dz (see below).
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The second idea is that if fcould be written in the form

—

F () = Con (A" £ (W) 27" (1),

where

_rGE-m
" 4mpsD (m)’

2m—n

Cm,n

then f must be the convolution of ¢, |z| and (—A)" f (or a measure related
to (—A)™ f). This idea (even with fractional « instead of 2m) is developed in [55,
Ch. 1]. In fact, this motivation is a good starting point for considering the Riesz

decomposition from the point of view of Harmonic Analysis.

In this section, we will assume 2m < n, and hence!

m—1 -1
Crnn = <2m1(m —lo, H (n—2m + 2j)> , (1.23)
=0

where o, is the surface measure of the unit sphere in R", i.e.,

27Tn/2
Op — aN
r(3)

There are several equivalent definitions of a superharmonic function on an open
subset 2 C R™ (see, e.g., [40, Ch. 2], [4, Ch. 3], [46, Ch. III]). Let us mention the

most popular two.

Definition 1.5.1 ([4, § 3.1]) A function s : Q — [—00,00) is called subharmonic
on ) if:

(i) s is upper semicontinuous on 2,

(i1) s(z) < M(s;x,r) whenever the closure of a ball B(z,r) centered at x and of
radius v is contained in §); here, M (s;x,r) denote the normalized spherical means of
s over the spheres S (x,r) of radius r centered at x:

1
pp /S - f(y)do(y),

'In fact, equality (1.22) is valid for @ = 2m < 241, Nevertheless, we will use formula (1.23) as

M(s;x,r) =

the definition of ¢, , for 2m < n.
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where do is the surface measure in R™;

(11i) s £ —o0 on each component of €.
(Note that the last condition is sometimes omitted.)

Definition 1.5.2 ([46, § 3.2]) A function s: Q — [—00,00) is called subharmonic
on § if:

(i) s is upper semicontinuous on €2,

(i) for every compact subset K of Q0 and every every continuous function h on K
which is harmonic in the interior of K, if the inequality s < h holds on 0K, it holds

m K.

A function u : Q — (—o0, +00] is called superharmonic on € if —u is subharmonic
on Q. The set of functions subharmonic on € is denoted by S (£2), and the class of
superharmonic functions by SH (£2).

Let us note that if s € C? (2), then it is subharmonic if and only if its Laplacian
As is non-negative in ). Moreover, for an arbitrary s € S (Q2), and an open subset w
such that w C €, there exists a decreasing sequence of functions s € S(w) N C*>(w)
convergent to s pointwise on w (see, e.g., [4, Th. 3.3.3]). In fact, the sequence s is
constructed explicitly as a convolution of s and some fixed smooth function. This
result and Green’s formula suggest to consider Laplacian in the distributional sense
to give an equivalent definition of a subharmonic function.

For an open set 2 C R™, we use Cj (2) to denote the vector space (over R) of all

real-valued functions continuous on €2 and having compact support in 2. Further-

more, C5° () := Cy () NC>= (). 2

2Some textbooks, e.g., [31] use another notation, namely, C. (Q2) and C2° (€2), respectively. The
ones with index 0 are used to denote corresponding spaces of functions vanishing at infinity, not
necessarily compactly supported. However books on Potential Theory use Cj (£2) and C° (92), as

we do.
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Definition 1.5.3 ([4, § 4.3]) Let Q be an open subset of R™. If u: Q — [—00, +0]

is locally integrable on ), then the linear functional

L,(p) = /Qu(x)Aw(x) dr, ¢eC5 (), (1.24)
is called the distributional Laplacian of u.

Using Green’s formula, it is easy to conclude (see, e.g., [4, § 4.3]) that if u € C? (Q2),
then L,(¢) = [, ¢(x)Au(x) dz. Furthermore, if s € S (2), then L, is a positive linear

functional on C§° (€2), and there is a unique measure s on 2, such that

0 L) = / (@) dpa(x), € C5° (),

where a,, = 0, max{1,n — 2}. The measure p, is called the Riesz measure associated
with s. For a superharmonic function u, the Riesz measure is defined to be the
one associated with the subharmonic function —u. In both cases, Riesz measure is a
non-negative measure. This measure characterizes a subharmonic (or superharmonic)
function. Namely, if u,v € S (), (or SH (2)) are such that L, = L, on C§° (),
then u — v is harmonic in Q (see, e.g., [40, Ch. 3, Lemma 3.7]).

The Riesz Decomposition Theorem in various forms and for various underlying
sets could be found in any book on Potential Theory (see, e.g., [4, Th. 4.4.1]). We
cite it from [40, Ch. 3, Th. 3.9] (see Theorem 1.5.1 below). The classical definition
of the potential of a finite and compactly supported Borel measure pin R"*, n > 2, is

given by (see, e.g., [4, Ch. 4, § 4.2])

Utz) = | K(x—y)du(y),
Rn
where
—logl|x|, n =2,
(o) = gzl
|z|>", n>3.

We will also consider potentials with slightly different kernels, and the measure u

does not have to be finite or compactly supported.
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Theorem 1.5.1 (Riesz Decomposition Theorem, 'Local Version‘) Let u be
superharmonic in a domain D C R™, n > 2, and u #Z oo. Then there exists a

unique Borel measure v in D, such that for any compact subset E C D,

u(w) = [ Ko=) duly) + hilo),
E
where hg is harmonic in the interior of E.

There are several versions of the Riesz Decomposition Theorem for functions su-
perharmonic in a ball, half-space, etc. (see, e.g., [4, Ch. 4, § 4.4]). However, we are
interested in generalizations of the following global type of result (see, e.g., [55, Ch. I,
§ 5, Ths. 1.24 and 1.25)).

Theorem 1.5.2 (Riesz Decomposition Theorem, ’Global Version*) Suppose
u 18 superharmonic in R™, n > 3. Then, there is a harmonic function h in R"

such that

u(z) = c1p . Ky (x —y) duu(y) + h(z),

if and only iof

lim M (r,u) > —o0.

r—00
Here and in what follows we use the following notations.
For a measurable function g, the spherical mean over the sphere S(0,r) of radius
r > 0 centered at the origin is defined by

: /
g(x)do(z),
e CLLE

M(r,g) =
The Riesz Kernels are given by:
Ky (z) = |z|*", a>0.

As a corollary of Theorem 1.5.2, one can obtain (see [4, Cor. 4.4.2]) that if u is

superharmonic in R", n > 3, u > 0, and u # oo, then

u(r) =cip | Ko(x—y) duu(y) +c, xR,

Rn
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where ¢ is a non-negative constant.

We are interested in a generalization of the Riesz Decomposition Theorem for m-
superharmonic functions (see Definition 1.5.5 below). Recently, for m = 2 (superbi-
harmonic functions) the generalization we are looking for was obtained by K. Kitaura

and Y. Mizuta [52]. Let us introduce precise definitions first.

Definition 1.5.4 Let ) be an open subset of R", n > 2. A function u : 2 — R 1is
called m — harmonic (m € N), or polyharmonic of order m, in Q if u € C*™ (Q), and

A"y =0 in Q. The set of all functions m-harmonic in § is denoted by H™ (2).

Polyharmonic functions have many interesting properties. The monograph [5] is an

excellent source of information about them.

Definition 1.5.5 Let Q be an open subset of R", n > 2. A function u : Q —
(—o00, 00| is called m-superharmonic if

(i) w is locally integrable on ) (with respect to the Lebesgue measure in R™);

(i) u is lower semicontinuous in €);

(iii) pu, == (—A)" w is a positive Radon measure in Q in the sense of distributions,

i.e.,

/ (@) dytu(z) = / u(e) (=A)" p(x)dr > 0, Vg € CF (), = 0
Q Q

(iv) For every point x € €2,

1
) = ) T SO
where B (z,r) denotes the open ball centered at x and of radius r, and m denotes its
Lebesgue measure, i.c., m (B (z,r)) = r"7™?/T' (n/2 +1).3
The class of all m-superharmonic functions in € is denoted by SH™ (Q). If m = 2,

we have the class of super-biharmonic functions.

3Note that this condition is weaker than the requirement on z to be the Lebesgue point of w.
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The generalization of Theorem 1.5.2 for super-biharmonic functions in R™ is given

by the following result.

Theorem 1.5.3 (K. Kitaura, Y. Mizuta [52, Theorem 1.2]) Let n > 5, u €
SH?(R™), and i, = A*u. Then M(2r,u) — 4M (r,u) is bounded when v > 1 if and

only if u is of the form

where h € H? (R"), and

[ @)™ duato) < o

Moreover, in [52], the authors consider the case of lower dimensions too. However,
they use some modification of the Riesz kernels in the latter case.

The main point is that the possibility for a superbiharmonic function to possess
a Riesz decomposition is given in terms of boundedness of a linear combination of
spherical means. For the m-superharmonic case, the appropriate linear combination
of spherical means is more complicated. It is defined in Proposition 1.5.1 below.

Let us mention another generalization of Theorem 1.5.2 obtained by N. S. Landkof

[55, Chap. 1, § 6].

Definition 1.5.6 A function u: R™ — [0, 00| is called a-superharmonic in R™ (here

0<a<?2)if
(i) u # 00;

(i1) u is lower semicontinuous in R";

/ ‘u(i)o'l dx < 00
2l>1 |2

(111) u satisfies the condition

(iv) For any x € R",

e su(z) =) (u) <u(x), r>0,
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where

0 lz| <7

(r) . ) ’
e"(z) =

) r(3) sin (%) 7 (|x\2 — 7’2)7% lz|™, x| >

W%+1 2 ) )

and

)
S
=
S~—

I
T
=y

S
N~—

)
S
—~
8

Y

(=

It is interesting (see [55, Ch. I, § 6, Formula (1.6.1)]) that

Ko (z—y) e (z)de < K, (), |z| <1,
Rn

and
Ko (x—9) e (2)de = K, (z), |z|>1.
Rn
Let also
L (5)
r(3)

The following result gives the Riesz decomposition for a-superharmonic functions.

vl

A(n,a) =71

Theorem 1.5.4 ([55, Ch. 1, § 6, Th. 1.30]) Assume that u is a-superharmonic

in R, n > 3. Then u(x) has a unique decomposition in the form

u(@) =UL(z) + A=An,0) | Ko(z—y)du(y) + A,

RTL
where p is a positive Borel measure in R™, which is finite on every compact subset
K C R", and the constant A > 0. Furthermore, if u is a-harmonic in some open

subset 2 C R™, then 1 (2) = 0.

(f is called a-harmonic at the point z; if it is continuous in a neighborhood of x,

satisfies condition (iii) of Definition 1.5.6, and for sufficiently small r

[ (x0) = 5((;) * f (w0) = 5((30 (f)-

If f is a-harmonic at each point of 2, it is called a-superharmonic in 2.)
Unfortunately, powerful tools developed in [55, Ch. 1] to prove Theorem 1.5.4

seem to be applicable only for 0 < o < 2. We will use another approach (closer to the
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work of K. Kitaura and Y. Mizuta [52]) to get the result for « = 2m < n, m € N. We
start with the proposition that helps to find a linear combination of spherical means

whose boundedness is necessary for the Riesz decomposition of w.

Proposition 1.5.1 Letm € N, m > 2, and let o, 1 = 1. Then there are unique real

constants G2, . . ., Qum.m Such that for every polynomial of the form
m—1
Fm(r) = Z akrzka
k=0
we have
D O iFn (277r) = a0y amy, TER (1.25)
J=1 Jj=1

The constants are given by

H <9m,j,k - gm,l,k)

. — (1)t (m=2) 4B (m—1)—(m—k—1) LSl<jsm 1 '
U k41 ( ) H (4] _ 41) )

1<i<j<m—1

(1.26)

where

gm=i 1< j <k,
Hm,j,k: 1§k§m—1
gn-l=i k4 1<j<m—1,

To formulate the main result of this section (and Chapter 5), we need to introduce
the class R of functions ¢ € C§° (R") satisfying:

(i) ¢(z) = 1 in B(0,1) (as usual, B (0,r) denotes the ball in R" of radius r
centered at the origin);

(ii) supp ¢ € B (0, 2);

(i) 0 < p(z) < 1,z € R™.

Such functions are often used for regularization purposes.

Our main result is given by the following theorem.

Theorem 1.5.5 Let m,n € N, 2m < n, u € SH™ (R"), p, = (—A)"u, and p € R

is chosen arbitrarily. Furthermore, let o, ; be the absolute constants from Proposi-
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tion 1.5.1. Then

Z M (277, u)

sup < oo and sup/ u(rt) (—A)" o(t) dt < oo
r>1 |4 r>1 J 1<)t <2
(1.27)
if and only if
[ @)™ duaty) < o, (1.28)
and u is of the form

where h € H™ (R™).

Note that (1.28) is the condition for existence of the potential in (1.29). Fur-
thermore, the normalizing coefficients ¢, ,, are chosen so that ¢, , (—A)™ Ky, is the
delta-function &y (see [41] and [32, § 3]).

Comparing Theorems 1.5.3 and 1.5.5, one can observe that the first condition in
(1.27) for m = 2 is exactly the condition on the boundsdness of M (2r,u) —4M (r,u)
used in Theorem 1.5.3. The second one is an extra condition. However, for m = 2,
the second condition in (1.27) follows from the first one. This seems to be false for
m > 3.

Moreover, for the case 2m > n, one needs to consider different kernels. For
example, K. Kitaura and Y. Mizuta [52] considered special kernels wich are products
of the Riesz kernels and In ﬁ It was shown that if u € SH*(R") and n < 4, then
the linear combination of spherical means M (2r,u) — 4M (r,u) is bounded on r > 1
if and only if u € H? (R"). The authors investigate the case for each n between 2 and
4 separately. The Riesz decomposition for superharmonic functions in R™ (m = 1) is
also proven in [52].

The following corollary gives an easy to use sufficient condition for an m-super-

harmonic function to have the representation (1.29).
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Corollary 1.5.1 Let m,n € N, 2m < n, u € SH™ (R"), p, = (—A)" u. If

m

ililla ;am’j]\/[ (Qm’jr, u) < 00,

and one of the conditions

(a) sup,sy == [ Ju(@)]” dt < oo, for somep € [1,00);
r<|z|<2r

(b) 2o e p(R"\ B(0,1)), for some p € [1, 0],

ERE

is satisfied, then (1.28) and (1.29) hold.

Open Problem. It would be interesting to generalize Theorem 1.5.5 to the case
of a-superharmonic functions in R”, a > 2. We have already mentioned a formula
for spherical means of Riesz kernels obtained in [16], which could be a good starting
point. Although it is unclear what should be a condition replacing the boundedness
of the linear combination of spherical means 7" | o, ;M (27777, u) in the case of a

fractional power of Laplacian «//2 instead of m.

28



CHAPTER 2

Estimates for the Hadamard Product on Hardy and Bergman Spaces

In Section 1.2, we gave the necessary definitions and stated the norm boundedness
problem for the Hadamard product operator. Let us outline some references related
to coefficient multipliers and to the Hadamard product.

P. L. Duren and A. L. Shields [26] obtained several conditions for multipliers of
H? (0 <p<1)into l? (p < ¢ < o0), and into H? (1 < g < 00). They also discovered
that these multipliers, in the majority of cases, are the same as multipliers of larger
spaces BP into [9 and HY, respectively. Their conditions are often given in terms of
asymptotics of the integral means.

In [18], J. Caveny discovered interesting relations between inclusions of functions
in some Hardy spaces and boundedness of their Hadamard product.

Since there exist very convenient convolution representations for the Hadamard
product (the first one was obtained by J. Hadamard in [39]), it is possible to estimate
the Hadamard product operator norm in terms of integral norms of the functions
involved. Moreover, these relations are useful for obtaining several beautiful integral
representations and unexpected relations (see, e.g., [15, 73]).

Let us also note that the coefficient multipliers from H? to H? (including exponents
below 1) were also investigated by P. L. Duren in [23]. In contrast to [26] cited above,
the conditions are given in terms of estimates of the growth of the multiplier sequence
{A\.}. Other effective sufficient (and some necessary) conditions for multipliers of H?
in a polydisc with p € (0,1], given in terms of growth of \,, were obtained by

R. M. Trigub in [94]. More general questions of characterization of linear functionals
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in these spaces are considered by P. L. Duren, B. W. Romberg and A. L. Shields
in [25].

Several efficient results about general coefficient multipliers in Bergman spaces A
were obtained by D. Vukoti¢ in [107]. The conditions are given in terms of asymptotics
of the sequence {a,} defining the multiplier, convergence of some weighted series, as
well as in terms of asymptotics of weighted partial sums like SV n24/P=4|q,, |9,

As we already mentioned in Section 1.2, we consider the Hadamard product op-
erator acting in Hardy spaces H? (D) of analytic, or h* (D) of harmonic functions, as
well as Bergman spaces a? (D), or A? (D). In particular, the case of an operator acting
from HP? to H? with arbitrary exponents p and ¢ is studied. We do not require the ex-

ponents to be conjugate since the technique we use does not involve Hausdorff-Young

inequalities.

2.1 Hadamard Product in Hardy Spaces

Lemma 2.1.1 Let (X,®, ) be a measure space with positive measure p, and f,g :
X — [0,00). If g is p-measurable and f € L' (X, p), then for any p € [1,00), the

following inequality holds true

(me&s(éjfmow(éfwfqe (2.1)

In particular, for any Lebesque measurable set E C R, if f € LY (E), then for any

function g, Lebesque measurable on F,

[1rwlsord < ([ |f(t)||g(t>|”dt>1/p (f If(t)|dt)11/p, pell o). (22

Proof. Assume that fg € L' (X, ). Let us consider the following measure

o) = [ Ifldu= [ fau. 0ce.

Then (X, &, v) is also a measure space, and fX gdv = fX fagdu.
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If [ fdp =1, Jensen’s inequality applied with a convex function ¢(t) = [t and

p
S/ IglpdV=/ fg? du,
X X

If [\ fdu=:a#1, applying the last inequality to f/a, we get (2.1).

the measure space (X, ®,v) implies

(4] - o

since f and g are both non-negative.

Now, let [, fgdu = co. Since g is u-measurable, the set A := {z € X : g(z) > 1}

is p-measurable. Using the fact that f, g > 0, we obtain

/ngduﬁ/X\Afdqu/Afg”dué/dewr/xfgpdu.

Since f € L' (X, ), this implies [, f¢”du = oo. Thus, (2.1) holds. O

Proof of Theorem 1.2.1. It is shown in [82, Ch. 4, § 4.1.2, formula (4.8)] that if f and

g are harmonic in D, then

2
(f % g) (re') = %/ f (%ei(e_t)) g(Re') dt, 0<r<R<10€cR (23)
0

Moreover, if g is harmonic in D, this formula is valid with R = 1. It is also clear that
frg=gxf.
(a) Employing (2.3), we have
1 2m

I::% i [(F % g) (rei9)|qd9:

2m
— i/ F (ie’w’t» g (Re”) dt
2r Jo |27 J R

Applying (2.2) to f(t) := F (£€'®Y) and g (Re") with E = [0,27], and considering

1 27 q
dd, 0<r<R<1.

2m-periodicity of f, we obtain

1 2 ro q9—q/p
I < W </0 F (Ee ) dt) X
2m 2 ro ' q/p
F(—=¢'0-0 Re™) [P dt) de.
L[ 1 G2 1o (et
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Minkowski’s integral inequality with the power ¢/p > 1 applied to the second factor

1 2m ro, q—a/p
1 2 T a/p 1 2 o p q/p

Since | - |97 is convex, applying Jensen’s inequality to the first integral, we obtain

1 2 ro, a/p P 2 i q/p

Hence, for any 0 <r < R < 1,
1

1 2m g 2m ) q/p
i it
o [ 1) ) dt§||F||Zq/p(g [ o (e dt) |

Since F * g is continuous in Dy, passing to the limit as » — R—, we get

1 2 q 1/q 1 2 , 1/p
‘ it
(%/0 |(F * g) (R@ t>| dt) < ||FHh‘Z/P (%/0 ‘g (Re )’ dt) ,

forany 0 < R < 1.

yields

For R = 0, the estimate follows from (1.3) and subgarmonicity of |g|.
To get (1.8), we use (2.3) and Jensen’s inequality.
For p = ¢ = oo, inequality (1.9) follows from (2.3) immediately.

Thus, F'x € L (h?, h?) for any 1 < p < ¢ < oo, and
1% gllna < [[Ellparollgllne, g € B (D).
(b) Let us take go(z) = 1. Then, (F * gy) (z) = F(0), z € D. So,
1% gollnr = [F(O)],  p € [1,00].

If for some p € [1,00|, Fx € L (h?, h?), then the mean value property implies

1

27
L it
5 /0 F (re ) dt

Taking sup,¢jo ;) in this inequality, and considering that F' > 0, we conclude by

1E s Nl n > |F(0)] = , relon).

part (a) that ||F * ||pe—ne = || F||n1-
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¢) For R € (0,1), let us take gg (re?®) = Pp.(0) = °°°_ (Rr)"einf the
(c) (0, 1), g o ,

Poisson kernel. It is harmonic in D, and ||gg||s1 = 1. Moreover, F * gr(z) = F(Rz),

z € D. Thus,

sup |[F'x gl > sup [|[F xgglln = sup ||[F(R)||n = || F||n:-
0,1) RE(0,1)

llgll,1=1 Re(

Part (a) now implies || F * ||p1p = || F||p1-

For p = oo, let us take G defined on the unit circle by

G- | TEVIFCL Fem g
1, F(e ™) =0,
where F (e) is the function of boundary values of F (it exists and belongs to
L'[0,27]; see, e.g., [24, Ch. 2, Th. 2.2, 2.6]). Therefore, G € L*>° (T). Hence (see, e.g.,
[44, Ch. 3, Corollary on p. 38]), its Poisson integral

2m
G (re") ::% /0 G (") P, (t—0) db, re0,1),0¢€0,2n),

is harmonic in D, converges to G (e"*) as r — 1— for almost all ¢, and
Gl = Gl = 1= |G (1)) (2.4)

Let us fix r € [0, 1), and take a sequence {R, }, -, such that R, € (r,1) for any n,

and R, — 1 as n — oo. Applying (2.3) with § = 0, we obtain

(FxG)(r)= % /0% F (Rine—it> G (R,e") dt, neN. (2.5)

Now, the triangle inequality and (2.4) yield

2 2
/ F<Le“>G(Rne”) it— [P (e 6 () ] <
0 Rn 0

/27r F L —it | F( —it)
. Rne re

Clearly, F( r e‘“) converges to F (re~") uniformly on ¢ € [0,27] as n — oo,

i+ | TIF (re )| |G (Bue) — G ()] d.

R,

whence the first integral converges to 0. Relation (2.4) also yields
|F (re”™)| |G (Rue™) — G (e")| < 2|F (re™™)| € L' [0,27].
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Since G (R,e) — G (e") a.e., the Lebesgue Dominated Convergence Theorem
implies that the second integral also converges to 0 as n — oo.
Thus, passing to the limit in (2.5) as n — oo, we conclude

(FxQ)(r)= %/0 ' F(re )G (e") dt, rel0,1). (2.6)

Now, let us take a sequence {r,} -, such that r, € [0,1) for any n, and r, — 1 as
n — o0o. Then, let us denote

1

Fult) = 5 F (rae™) G (1), f(0) = % F ()]

Clearly, f., f € L'[0,2n], and f,(t) — f(t) a.e. on [0,27]. Since |G (e™)| =1,

2 2m
lim |fu(®)] dt = lim QL/ |F (rpe™™)| dt = [|F ||
0

n—oo [ n—oo 27

1 2 L B 27
=5/ | F (e )}dt_/o |f(t)] dt.

This implies that lim, o0 || fo — fllf1jp2, = 0. Now, we may pass to the limit as

r — 1— in (2.6) and obtain

lim (FG)(r) = —

2
_ L —it _ N
i (PG 0) = 5 [ 17 ()] de = 1
Hence [|F % G||p > liminf, 1 [(F'xG) (r)| = ||F||pr = [|F||nt||G]|ne. Therefore,
[ |lnee e > [[Fl[n1, and part (a) implies || Fx [[poe spoe = [[F'l|p1. O

Proof of Proposition 1.2.1. Let us consider the following sequence of functions:

Fn(2) = Fp (re?) = Z (L> ren? — ;mz, zeD, meN.

m+1 1_m+1

n=0
If g is holomorphic in D with the Taylor expansion g (re®) = >">°  b,r"e™’, then,

according to (1.3),

(Fm *g) (reig) = Z <mL—|—1> borte™ = g < m ei9> ,r€0,1),0 eR. (2.7)

r
m+1

n=0

It is easy to see that (sharpness could be verified on g(z) = 1)
1 Fm # lrsme =1, m €N, p €[1,00]. (2.8)
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If the sequence {||F| 1}, were bounded, then since

lim F,,(2) = !

m—00 1—2z2

, zeD,

Fatou’s lemma would imply

1 [ 1

1 — e

m—r0o0

27
df < liminfi/ ‘Fm (ei9)| df < oo.
2 Jo

27 Jo

But the integral on the left-hand side is divergent.

Therefore, for an arbitrary M > 0, there exists my; € N such that || F,,, || ;1 > M.
At the same time, equalities (2.8) are valid for any m € N, and the statement follows
with F = F,,,. U

Using the proof of [108, Ch. 8, § 8.1, Th. 8.1.5] or applying the M. Riesz Theorem
on the norm of conjugate harmonic function (see, e.g., [36, Ch. III, § 2, Th. 2.3])
directly, we get that if p € (1,00), and A is a linear operator defined on h? (D) that
vanishes on anti-analytic functions g with ¢g(0) = 0 and the restriction of A to H? (D)
belongs to £ (H?, H?), then

||A||hp_>hp S O (p) ||A||HP—>HP .

(Note that this statement is not true for p =1 or p = co. For example, consider the

operator Fx with F(z) =Y > (2" = =)
Thus, if we take the function F,,,, from Proposition 1.2.1, then F,,,, * satisfies
the conditions of the last statement. Moreover, ||F,,,, *| 4 = 1. Multiplying by

corresponding constant (depending of p), one can easily deduce

Corollary 2.1.1 For any M > 0, and any p € (1,00), there exists an analytic in D

function G such that
1G* N o o = 1,

but |Gl = G|l > M.
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2.2 Hadamard Product from H? (D) to H? (D) with Arbitrary p,q € (0, c0]

As we already noticed in Section 1.3, the estimates similar to those obtained in
Theorem 1.2.1 are impossible when p < 1. The results of the present section give
some estimates for the latter case, however they are not sharp.

Let us remind that we use the following notation:
Dr:={2€C: |z| <R}, R>0.

Jensen’s inequality could be easily applied to show that if f € H? (D) for some
€ (0,00], then f € H? (D), for any ¢ € [0,p), and

1l sy < 11 v )

We need an inverse inequality of some kind given by the following lemma.

Lemma 2.2.1 If f € H? (Dy), for some p € (0,00), then f € H*® (D), and

1 ey < 477 1F ooy -

Proof. Take an arbitrary zy € D, zy # 0, and let R := |z|. Since f is holomorphic in
Dy, |f ()" is subharmonic there, for any p € (0,00). Using the submean property,

for any p € (0,2 — R), we obtain

1 1
o)l < — FEP dA< — )P dA =
mp? D(z0,p) mp? R—p<|z|<R+p
1 R+p 2 ) » 2 R+p 1 27 . »
— f(te” dgo)tdt:— (—/ f(te” d(p)idt:
= ([ e LG e
2 R+p
ST . / i = uqup o (2.9)
—pP

Taking p = R. we obtain
[ (20)I” < 41|/ ey -

For zy = 0, the submean property yields

f Gl < 1 @) < 11z o,)
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immediately. Thus, for any 2z, € D,

Lf (o)l < 42 (1 1l oy - (2.10)

Note. It is clear from the proof, that (2.10) is true for any z, € D. Indeed, (2.9)

is obviously true for R = 1 and any p € (0, R), because we only need D (zg, p) C Dy

that is the case for such p. Passing to the limit as p — 1—, we obtain

f ) <A oy 2 €D (2.11)

Thus,
1A oy < Moy < 4771 oo -

Lemma 2.2.2 If f € H? (Dy), for some p € (0,00), then for any q € (p,o0|, [ €

H*(D), and
1_1 1-£ z 1_1
||f||Hq(]D>) <d4roa ||fHHp(D2) ||f||Hp(]D>) < 4v ||f||Hp(D2) (2.12)

Proof. 1f ¢ = oo, this is just Lemma 2.2.1. For g € (p, 00), using Lemma 2.2.1, we get

1 27 ] 1 2 .
o [l de < swlr I o [ e dp
0

27 z€D
a_1 —
4 o 1 @y - £ € (0,1).

IN

Taking power 1/¢g and passing to SUPye(0,1); We get

1_1 1-2 H
1 ey < 4777 1F N o) 11 | oy -
The last inequality in (2.12) is obvious. O
Theorem 2.2.1 If F € H' (D), then for any p,q € (0,00] and g € H? (D), F* g €

H*(D), and
[ gHHq(]D) < 4l HFHHl(]D)Q) ||9”HP(]D>) : (2.13)
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Proof. Consider the following functions:

z

G(2):=g <§) . F(2):=F(22).

Since g € H? (D), we deduce (for the case 0 < p < 0).

1 27 . » 1 2 t )
— sup / !g (te?)[" dp = — sup / gl =€
) Jo 0 2

p

de

2 t€(0,2 27 t€(0,2)
= s [Tl () do = Lol
2 te(0,1) Jo ®)
Thus, G € H? (Dy), and
||g||HP(]D)2) = HgHHP(]D))' (2.14)

For p = oo, this relation is just trivial.

The same consideration shows that F € H' (D), and

‘|F|’H1(D) = HF”Hl(]D)g)' (2.15)

Since F' and g are holomorphic in D, we could consider their Taylor series expan-

sions in D
F (rew) = Z anr"eme, g (reie) = Z b, e,
n=0 n=0
But then
F (7’6"9) = Z an2"7’"em9, g (rew) = Z b, 2 e
n=0 n=0

Now, using (1.3) for convolutions F' x g and F x G, we get
(F*G) (rew) = ZanQ”bnT"r”eme =(fxg) (Tew) .
n=0

Assume ¢ < oo. Since G is harmonic in Dy, whence in D, we can apply (2.3) with

R =1, and obtain

1 2 ) 1 2w )
> [(F xg) (re®)|" do = 7 [(F+G) (re”)|" df
’ 1 02ﬂ' 1 21 ) ) q
- s / F (rd®0) G () dt| do.
0 0
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Changing variables # —t = u and considering 27-periodicity of the functions involved,

we can proceed

1 27 1 0 ) i(0—u)
= 3 i o 97%]:(7“@ )g( ) du db
1 2 1 2w ) " q
L[ o af

< i u i/ ‘]—"re Hg( 9“|du d9
- 27 ), 2m '

Applying inequality (2.11) to G, and considering relations (2.14) and (2.15), we obtain

1 2 1 y 1 2w 1 2 ) q
— F ! df < 497 — F(re™)| d dt
o [l e i < o, b [ (o [ (e )

< 10 1510y = 497 gl 1 -

Passing to sup,¢( 1) and taking power 1/q of both sides, we obtain (2.13).
For ¢ = oo, using (2.3) with R = 1 and the triangle inequality, we conclude

(Feg) ()] < 3= [ 17 ()] Jo ()]

27
Applying (2.11) to G, and considering (2.14) and (2.15), we get

‘ 1 27 )
’(F*g) (reze)} < 41/10 HQHHP(DQ) %/0 |f (rel(ﬁft))‘ dt

<A 1G o o 1F s 0y = 22 19 o) | F oy 7€ 10,1), 0 € R,

which completes the proof. [

2.3 Hadamard Product in Bergman Spaces

The following statement is a generalization of Theorem 1.2.1 for the norm of harmonic

Bergman spaces a”.

Theorem 2.3.1 (a) Let F' € h' (D). For anyp € [1,00), the operator Fx € L (a?, a?)

with the norm at most || F||p1, and for any g harmonic in D and R € [0,1), we have

(/DR [(Fxg)(2)" da(z))l/p < ||F || (/DR o(2)? dO'(Z))l/p
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1/p
<1Fha e (Lo do) 2.16)
D
(b) If F is a positive harmonic function, and Fx € L (a?,aP) for some p € [1,00),
then F € h' (D), and
[Ellnr = [ F]]

aP—aP *
Thus, Fx € L (a?,aP) for any p € [1,00), and the operator norm does not depend on

p.

The same result holds for the case of holomorphic Bergman spaces. Unfortunately,
as in the case of Hardy spaces, the estimate of the norm of F'x operator by || F||;: is

not sharp in general. The details are outlined in the following statement.

Proposition 2.3.1 For any M > 0, there exists a function F € H' (D) such that
| F#] gp 00 = 1, Vp € [1,00),
but || F||gr > M.

Proofs of Theorem 2.3.1 and Proposition 2.3.1 are similar to the proofs of Theo-
rem 1.2.1 and Proposition 1.2.1, respectively, so, we will omit them.

Despite the fact that there are relations between Hardy and Bergman spaces (see,
e.g., [27, Ch. 3, § 3.2]), the form of Theorem 2.3.1 may seem artificial, since the norm
in A' is involved in the estimate. To make it more natural, we will consider a different
Hadamard-type product.

If f and g are two analytic functions in D with Taylor expansions

f(z)= ianz”, g(z)= ibnz”, z €D,
n=0 n=0

the operator x is defined by

anbn
n+1

(f*g)(z) = Z 2", ze€D. (2.17)

n=0

40



Clearly, this operator is well-defined since the series in the right-hand side converges

in D. It is also obvious that

(fx9)(2) = (9% f)(2).
The following statement is an analogue of (2.3) for Bergman spaces.

Lemma 2.3.1 Let f and g be holomorphic in D. Then, for 0 < R < 1,

G @)= [ 1(%)gr0) ds(c). zeDn 219

e, forO<r< R<1,andf e R,

r
(f*9)( / / IP gito- t (Rpe ") pdpdt. (2.19)
If g is holomorphic in D, then (2.18) and (2.19) are valid with 0 < R < 1.

Proof. Let us fix an arbitrary r € [0, R). For any n € N, the orthogonality of

exponentials on [0, 27] implies

1/271'/1 z":a (Q)keik(g_t) zn:b Rkpkeikt pdpdt:
TJo Jo \}5 AR k=0 '

n

n 1
22 ik, bk / 2k+1 gy ROk rkgikd
- (6 Q0T ; P k (&

Since the series S.1_, ax (rp/R)* e®*0=9 and S°r_ b Rkpk “ converge absolutely and

uniformly on (p,t) € [0, 1] x [0, 27], we can pass to the limit as n — oo to obtain

/ / 1”/0 Gt (Rp€>pdpdt Ooak_bkksz (f*g)( )

k+1

Using Lemma 2.3.1 instead of the integral representation for the Hadamard prod-
uct given by (2.3), one can prove the following theorem by repeating arguments from

the proof of Theorem 1.2.1
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Theorem 2.3.2 Let F € A (D). For any p € [1,00), the operator Fx € L (AP, AP)

with the norm at most ||F|| a1, and for any g holomorphic in D and R € [0,1), we

</DR [(F*g) ()" da(z))l/p < |1F|Lo </DR o dg(z))yp

< ||F |l B*” (/D lg(2)I” d0(2)>1/p~ (2.20)

have

Remark 2.3.1 [t is easy to see that if F € Al, then the operator Fx € L (HP, HP),
and

1 oo < NE N a1 -

Now, we return to the Hadamard product. Let us note that if F' is holomorphic

in D, and has Maclauren series expansion F(z) = >, axz", then

F(2) = (2F(2)) = Z ap(k+1)2", 2z e€D.

k=0

From (1.3) and (2.17), for an arbitrary g holomorphic in D, we get
(Fxg)(z) = (Fxg)(z), zeDb.
Thus, the following statement follows from Theorem 2.3.2 immediately.

Corollary 2.3.1 Let F be such that F(z) := (2F(2)) € A" (D). Then, for any
p € [l,00), Fx € L(AP, AP), and

HF*||AP—>A;D S ||f|lA1

The following statement gives a norm estimate for multipliers of Hardy into

Bergman spaces in terms of integral norms of the generating function.

Theorem 2.3.3 (a) Let 1 < p < g < oo, and F € a? (D). Then, for any g harmonic

in D, and 0 < R < 1, the following estimate holds true
1/q 1 2 ‘ 1/p
(/ |(F *g) (2)]* da(z)) < ||F||aqR2/q (—/ |g (Re’t) }p dt) . (2.21)
Dg 21 Jo
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In particular, Fx € L (h?,a?), and Fx € L (H?, A?) with
a0 < N g s I1E* ] oy 0 < NE o - (2.22)

(b) When q = p, the requirement F € a? (D) should be weakened to F € a' (D),
and the norm || F||qe should be replaced by || F||,1 in (2.22). Moreover, if F' is a positive
harmonic function, and Fx € L (h?,a?), for some p € [1,00), then F € a' (D), and

[Ellar = 1] o yqr for any p € [1,00).
Proof. Choosing R; € (R, 1), and applying (2.3), we get
e [ 1F g (I o) -
Dgr

[ G otner

Note that if p € [1,00), and G € L?[0, 27|, then Hélder’s inequality implies

1 2m 1 2m 1/p
— <|=— b .
o, |G(u)| du < (27r/0 |G (u)] du)

Applying this inequality to G(t) = F ( rei0- t) g (Rie™), and using Minkowski’s

q

rdrdf.

integral inequality with the power ¢/p > 1, we conclude
27 R 27 p

I < l/ / i/ F L gito—t)
q ‘ p/a a/p

(2 pCRT (/ ( ( —t>> (Rie™)|"rdr d&) dt>

7

1 2 » 2 0 q

() o) dt) )

Changing variable r/R; = p in the last integral, we deduce

1 2 - a/p ,1 o pl .y
1< (g [Clotmeya) wmiE [C IR Gen] pdpas

Passing to the limit as Ry — R+ gives (2.21). Now, estimates (2.22) follow immedi-

a/p
g (Rie")|” dt) rdr df

rdrdo.

ately.
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For Part (b), we can apply the Minkowski’s inequality with power ¢ to

[

and repeat the same estimates.

q
a (RLei(e_t)) }g (Rle“)} dt) rdrdf,
1

To get the last statement, we need to repeat the reasoning from the proof of The-

orem 1.2.1 (b) using the mean value property F(0) = [, F (z) do(z), which implies

F(0) = ||F|4: in our case. OJ
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CHAPTER 3

Mahler Measure of the Hadamard Product of Two Polynomials

As we already mentioned in Section 1.3, the Mahler measure is an efficient tool in
obtaining sharp inequalities for polynomials. Bernstein’s inequality in Hardy spaces
H? (D):

1P o < 71 Pll g

for p < 1 has an interesting history. As we already noticed, for p = 0, it is an
immediate corollary of [17, Theorem 7] published in 1947. However, K. Mahler proved
the same inequality in [61] (published in 1961) using another method. V. V. Arestov
obtained the Bernstein inequality ||P'||;, < n||Plly, p € (0,1), in [2], and then
gave a much simpler proof in [3]. The latter approach was based on the proof of [17,
Theorem 7]. See Example 3.2 below for details and a reverse Bernstein inequality.

In [76], I. E. Pritsker obtained several sharp estimates for the Mahler measure,
which imply corresponding estimates in HP-norm immediately. In particular, he
answered the question of what happens to the Mahler measure of a polynomial after
removing a specific power term. The article also contains an extended survey of the
results in this area.

Other applications of the Mahler measure are in Number Theory. For example,
if a monic polynomial @) with complex coefficients is cyclotomic, then ||Q] ;0 = 1.
An exciting open question is about the smallest possible Mahler measure of an irre-
ducible non-cyclotomic polynomial with integer coefficients — the Lehmer conjecture
[58]. Moreover, the Mahler measure is related to the theory of Salem-Vijayaraghavan

numbers (see [12]). For more relations, history, and applications of the Mahler mea-
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sure, see the survey article [83] by C. Smyth.

There is an interesting analog of the Mahler measure — the areal Mahler mea-
sure introduced by I. E. Pritsker in [77]. It has the same close relation to Bergman
spaces as the standard Mahler measure has to Hardy spaces, and allows to obtain
many interesting inequalities for Bergman spaces as well as to establish several useful
relations between norms of polynomials in Hardy and Bergman spaces.

We will restrict our attention to the Mahler measure of the Hadamard product of
two polynomials, and employ V. V. Arestov’s result [3] to get estimates in HP-norm

(or pre-norm) for this product.

3.1 Estimates for the Norm of the Hadamard Product Operator

Let {A\nx},_, be a finite sequence of complex numbers. For two polynomials P(z) =

o axz® and Q(z) = >_,_, brz", consider the following coefficient multiplier

An[Pv Q](Z) = Z /\n,kakbkzk-
k=0

We may fix P and consider A, as a linear operator acting on Q.
The following lemma follows from (1.13), and may be useful for obtaining sharp

estimates for various coefficient multipliers.

Lemma 3.1.1 For an arbitrary polynomial P(z) = > ,_, arz" with complex coeffi-

cients, and a finite sequence {An i}y _,, define

Py(z2) = zn: (Z) A ki 2"

k=0

(a) For every p € [0, 0],

”An[P> Q]HHP < HP)\HHO HQHHIU .

(b) We have

sup AP, Qo = 1Pl o - (3.1)
deg(Q)<n, Qo =1

The supremum is achievable, e.g., taking Q(z) = a(1 + Bz)", where |o| = |B] = 1.
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Proof. For (a), expressing ) as

Q)= ot = k:ﬂ (Z) % &

k=0 k

we notice that A, [P, Q](z) = (P *s Q) (). Therefore, estimate (1.13) implies

1AW LP, @l e < IPAll o 1Rl gz, 0 < p < 00

For (b), it is also immediate that if Q(z) = a(1l + 82)" and |o| = |8] = 1, then
Q7o = 1, and A, [P, Q](2) = aPy (B2). Using (1.11), we also obtain ||A,[P, Q]| ;o =
[PAll o &3

Let us also note that the weighted Hadamard product could be useful for problems
on Bombieri norms considered, e.g., in [7, 8, 13, 14]. There are relations between the
Mahler measure and Bombieri norms. For instance, B. Beauzamy [7, Proposition 4]

proved that for a polynomial P(z) = >/ _,az" of degree n, its Bombieri norm

n 1/2
[Py := (Z A |ak|2> can be estimated as
iz ()

o\ /2 »
(mm) 1P||y0 < [Ply < 22| Pl o -

(Here and in the sequel, || denotes the integer part, or the floor, of «.)

Proof of Theorem 1.3.1. (a) The statement follows from Lemma 3.1.1 applied with
Ak = 1, by using estimate (1.12). Alternatively, one can notice that (P Q) (z) =
(O, *s P x5 Q) (z) and apply (1.13) twice. Since the operation xg is associative, we

may apply (1.13) in various ways, and get a bit more:
1P+ Ql g <

min {[|On|| go [Pl go |Q1 o 5 Ol o 121l 1o QN g0 s Ol o 1P| 1o 1@ 0}

(b) It is shown in [82, Ch. 4, § 4.1.2] that if f is harmonic in D and ¢ is harmonic

in D, then
(fxg)(re?) = — /27r fre®)g(e") dt, ref0,1),0€R. (3.2)
T Jo
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Since, ©,,(z) = (1 + z)" % (1 + z)", the integral representation (3.2) yields

O (re?)| = 5-

2w
/ (14 e @0)" (14 6t)" dt| < 4m,
T 1Jo

whence [0, o < Ol < 47.
Let us note that the Legendre polynomial P,(x) has the following representation

(see, e.g., [1, 22.3.1 and 22.5.35]):

3

Po(z) = 2i (”> (z — 1)"*(z + 1) (3.3)

o

So, we get

Po(z) = 2%(93 _qy :0 (Z)Q (z—i)k _ Zin(x _1yre, (i h 1) |

Thus, if we change the variable to z = (z + 1)/(z — 1), we obtain

O,(2) = (= = 1)"P, (j i D . (3.4)

Since all the zeros of P, are simple and belong to [—1, 1], and (x+1)/(x —1) maps
(—o0, —1) onto (0,1) and (—1,0) onto (—1,0), equality (3.4) implies:

(i) All zeros of ©,, are simple;

(ii) All zeros of ©,, belong to (—o0,0);

(iii) If ©,, (z0) = 0, then ©,, (1/z) = 0.

Since ©, is a monic polynomial, we obtain that [[©,| 5o = [}, 51 [7], where 7

are the zeros of ©,,. Hence,

[O0nll go = H

OékE[O,l)

(3.5)

o+ 1
— 11’

where o, are the zeros of the Legendre polynomial P,.

Let us express P, as the product of its linear terms:

P,(z) = ay, H (x — ag) .



It follows from (3.3) that

Therefore,

Ilmw=u:”?”|: = (3.6)

Since all the zeros of P, are simple and symmetric about the origin, we deduce from

(3.5) and (3.6) that

[T Jax+1)
ap+1||—ap—1 ar€(0,1)
ak€[0,1) F F [T lax —1]
k=1
O,(1
_ ;) T low+17 (3.7)
ar€[0,1)

Let 7, be the counting measure for the roots of P,, assigning the value 1/n to

each root, i.e.,
number of zeros of P, in [a,b)

Tn([a’ b)) = n )
and let
0, x € [-1,0],
fz) =
Injz+1], xe€][0,1].
Then,

/ f(x)ah'n(x):l Z In|ag + 1].
(—1,1] n

Oéke[o,l)
Therefore, (3.7) yields
(0,1 2
1n||@n||go = w —In2+ - Z In|ag + 1| =
ake[071)
1 1
Eﬁﬁlﬁ_m2+2/ F(@) dra(z). (3.8)
n [_171]

Applying the formula

2062 = (0) oz

49



(see, e.g., [1, 24.1.1]) with r = s = n, we conclude that

0,(1) = (2”) _ I'(2n+1)  2nI'(2n)

T+ (C+1))"

n

Using the duplication formula for the Gamma function [1, 6.1.18], we get

2n (2m) 222020 ()T (4 3) 4T (n+4)
(T'(n+ 1)) CVrl(n+ 1)

0,(1) = (3.9)

There are several representations of Catalan’s constant. One of them is
/4 T /4
G—Z/ In (2 cosu) du—§1n2+2/ In (cosu) du.
0 0

Using the substitution « = cos (2u), it is easy to show that

/1 ln(1+x)d ~2G  In2
0

— dx )
V1 — 22 s 2

Applying (3.8) and (3.9), we now obtain

n 4G n "In(z+1
lmww%—~;:hw&mg—mz—z0;§fi%m:

Ly (o N
"1Qﬁw+n>”([m“”““ [ fwa@). @0

where

is the equilibrium measure on [—1, 1].

It is well-known that the polynomials P, are orthogonal on [—1, 1] with respect
to the Lebesgue measure, ||F[|2_ ;) = \/%, and || Poloy ) = 1 (see, eg., [,
22.2.1 and 22.14.7]). Hence, the polynomials Q,(z) := {/n + 3 P,(z) are orthonormal

n [—1,1], and have the same zeros as P,. Applying H.-P. Blatt’s discrepancy result

[9, Corollary 1], we deduce that there exists an absolute constant ¢ > 0 such that

2

Inn In“n

(7= 1) ([0, )] < = (10| Qullogr, +Inm) < 2

- (3.11)

for any interval [a,b] C [-1,1] and any n > 2.
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Since

F<n+%>:1'2'3”'2;1'<2"_1>\/%

(see, e.g., [1, 6.1.12]), it is clear that

1 _ I'(n+3)
- < <1
n = al(n+1) —
Therefore, from (3.10) and (3.11), we obtain
AG| 1 In’n 1 In”
ln||@n||}ﬁf— —| < 744 max |f(x)|c BTN gemot n’ n > 2.
T n z€[-1,1] n n n

This proves (1.16). Now (1.15) follows immediately. [

3.2 Examples

Example 3.1. (Bernstein’s Inequality) As an illustration, we can deduce Bernstein’s

inequality from Lemma 3.1.1. Let Q(z) = >_,_, bxz", n € N. Then,

ISE N

Q) -

. P
z
k=1
where P(z) := > ;_,kz*. Using the multiplicative property (1.10) of the Mahler

measure, we get ||Q'|| jo = || P * Q|| 0. Futhermore, in view of Lemma 3.1.1,

Py(2) = zn: (Z) ket = 2L (14 2" = (1 4 2)7 L

dz
k=0

Using the multiplicative property again, we get ||Prllgo = |2l g0 7 |1 4 2|[50" = 7.

Finally, applying Lemma 3.1.1, we obtain

1@y < nllQllg», 0 <p< oo

n

The sharpness is verified on Q(z) = 2".
There is also reverse Bernstein Inequality (see [87] and also [76]). If Q(0) = 0,

then

n n—1 k
Qz) = Z %kbkzk =z (Z kj— T * Q'(z)) .
k=1 k=0
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Lemma 3.1.1 implies

1@l o <

1R 4o (3.12)
HO

Now

n—1 n—1 n
n—1\ 2* 1 n w11 n\ . @(@+2)"—-1
(e s ()t e ()

k=0 k=1

As is shown in [87],

k
A=+ == [ 2sin’ ~ (14)"

n
7/6<k<5m/6

Hence, (3.12) implies
A
1Rl o < —= QN g0 -

Equality is attained, e.g., for Q(z) = (1 + 2)" — 1.

Example 3.2. Let us take A, = (Z) - This, in fact, corresponds to the Schur-

Szegé product of Pxg @ and Y ,_, 2%, Lemma 3.1.1 implies
P(z) *g Z 2
k=0

AL [P, @l o < 1Qll w0 <p < oo0. (3.13)

HO

Since Y, 2" = (2" — 1) /(z — 1), the multiplicative property (1.10) immediately
implies HZZ:O zkHHO = 1. Now, applying (1.12) to the first term in the right hand
side of (3.13), we deduce

1AW LP, Qo < NPl o 1Rl rp s 0 < p < 00, (3.14)

For P(z) = Q(z) = (1 + z)™, the last inequality becomes an equality.

—m

Using induction on m, it is easy to see that (3.14) holds for A, x = (}) with
any m € N (see [76, Corollary 1.6]).
Other interesting examples of coefficient multipliers used to obtain sharp poly-

nomial inequalities could be found in, e.g., [76, 88, 89]. They essentially use the
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de Bruijn-Springer-Arestov inequalities. However, if we look at the Schur-Szeg6 prod-

uct of P(2) = Y"1, arz® and Q(2) = >}, biz",

(PM¢D@)=§:%%%ﬁ

we may notice that the binomial coefficients in the denominator may introduce com-
putational difficulties. In this case, our Theorem 1.3.1 should be more useful.

Example 3.3. (The Odd and Even Parts of a Polynomial) It is often easier to
obtain some result under the assumption that a function is even, or odd, and then
consider the general case. Thus, it is useful to have a good estimate for the norm
of the even and odd parts of the function. The triangle inequality in H?, p € (0,1),
gives only [[(f(2) + f(=2)) /2|l o < 2YP7 1| f|l ;7o In HO, there is no general triangle
inequality. Nevertheless, Lemma 3.1.1 and Theorem 1.3.1 allow us to obtain some
sharp estimates for polynomials.

Let Q(z) = Y i_, k2" € C,[2]. For its even part, we have

[n/2]
A =3 b = (P Q) (315)

where P(z) = Sl p2k — 2001 Gince ||P||,;0 = 1, Theorem 1.3.1 and the

22—1

triangle inequality in H? for p > 1 imply

1Ol o 1@l o, 0<p <1,

e 1@l v 1<p<oo.

H@@+QF@

This estimate may be good enough, since we know sharp asymptotics for |0, zo
given by Theorem 1.3.1. However, if we need a sharper estimate, we can employ

Lemma 3.1.1 directly, and get the following statement.

Proposition 3.2.1 Letn € N and Q € C,[z]. Then,

<an |Qlly, 0<p<l, (3.16)
HP

H@@+QF@
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where

[T cot? (% + %) , if n is even,

o, = osisEEE
n [ cot® (%), if n is odd.
1<j<n
and
Q(z) — Q(—=
|2 sl 0sp<t (317)
2 1
where
n {tan (%)| , if n is even,
B, = << A
‘tan (%)| , if n is odd.
1<

Forp =0, estimates (3.16) and (3.17) become equalities for, e.g., Q(z) = (1+2)".

Proof. Considering (3.15), to obtain (3.16), we may apply Lemma 3.1.1 with

[n/2]
_ n ok (L+2)"+ (1 =2)"
Py(z)= ) (%)z = : :
k=0
Now, we need to find ||P||zo. Using (1.11), we get
IT Ivl, if nis even,
1P\l o = ! (3.18)
n [I |y, ifnisodd,
lvil=1

where 7;’s are the zeros of (1 + 2)" 4+ (1 — 2)" (counting multiplicities).

If n is even, then v;’s are the solutions of the equation
z+1\"
( + > N _17
z—1

41 21j
MZGXPGM), j=0,....,n—1.

ie.,

Thus, we obtain

exp <’l (7T+27rj)> +1

n

V= : =—icot(1+ﬂ), j=0,....n—1.
exp (Z (TF+27U)> -1 2n n

n
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Since also |vn,—1-;| = |7;], we have from (3.18) that

s ]
| Pl o = H cot? <% + ?j) : (3.19)

. on—2
0<j<ny?

If n is odd, ;’s satisfy the equation

Hence

and (3.18) implies
T 9
[1PAll o = n | 11 et (FJ)‘ =n ] cot? (%) : (3.20)

Using (3.19), (3.20) and Lemma 3.1.1, we get (3.16).

Estimate (3.17) follows essentially in the same way. First of all, note that if

Q(z) = Y j_, brz", then in notations of Lemma 3.1.1, we obtain

125+]
Q(Z) _2Q<_Z> _ Z b2k+122k+1 _ An [R, Q] (Z), (3.21>
k=0
where
R(z) == LRZQEJ L R() = Lnisj ( n >sz+1 (4= (1 =)
= , 5\ = = .
— — 2k +1 2

Now, from Lemma 3.1.1 and (3.21) we conclude that

R Y LY P/ P (322

HP

Note that the leading coefficient of R, is 1 when n is odd, and it is equal to n
when n is even. Hence, (1.11) implies

n [[ 10|, if n is even,
105121 (3.23)
IT 16;], if nis odd,

|651>1

1Bl o =
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where ¢; are the zeros of (14 2)" — (1 — 2)™ (counting multiplicities). In other words,

d;’s are solutions of one of the equations

Each of these equations has a solution if and only if j # n/2. It is unique and given
by

_exp ( QZ] ) -1
= exp ( 27r]) + 1

Using Euler’s formula for the exponential, it is easy to see that

ij,...,n—l,j;«ég.

|cos )+zsm(2n ) —1‘ 1—cos (Qﬂ)

|5j| - g = tan? (—‘7) )
‘cos (22) + isin (222) +1| 1+ cos (%£2) n
Thus,
|5j|:tan<ﬂ)’, j=0,...n—1,j#2. (3.24)
n 2
Clearly |0;| > 1 if and only if § < j < I”
Thus, from (3.23) and (3.24), we obtain
n I1 {tan (%)} , if n is even,
[Rall o =4 2587
‘tan (%)| , if n is odd.
<<

Finally, (3.22) implies (3.17). O
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CHAPTER 4
Fourier Multipliers in Hardy Spaces in Tubes over Open Cones

Our main results on multipliers of Fourier integrals in Hardy spaces were formulated
in Section 1.4 (see Theorems 1.4.2, 1.4.3, and Proposition 1.4.1). For definitions and
historical remarks, please also see Section 1.4. We will start the chapter with the
basic properties of multipliers.

D) Nl + ¥, . < Nl + 191, ) -
2) Ifp < q<r,then [[o¥ll v, ) < lellag, o) 1P at, , cap -
3) For any real number a > 0, || ()| oy, (1) = o"1/a=1/p) 1l a7 -
4) Local Property. If for any point of I'™*, including the point at infinity, there
exists a neighborhood in which ¢ : I'* — C coincides with a function from M, , (11),
then ¢ € M, , (1r).

Properties 1)-3) easily follow from Definition 1.4.2, while the Local Property will

be proven later in Lemma 4.2.1. Moreover, Property 1) can also be extended to the

case of an infinite sum. The precise statement is given in Proposition 4.2.1.

4.1 Some Auxiliary Results

For two vectors a, b € R" such that a = (ay,...,a,), b= (b1,...,b,), and —oo < a; <

b; < oo, we will consider the open and closed rectangles in R":

(a,b), =[] (a5 05),  [a,0], =] lay, b,

Jj=1 J=1

We will also use the following notation
V(a,b) ={v=(n,...,vn) ER": v;=qjorb;, j=1,...,n}.
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For p € (0, 00], let us consider the p-th means of a function f: T — C:

. L) dx). pe(0,00),
iy () = 1 (4 i), =4 e M @D peo0)

SUP,ern | f (x +iy)|, p = 00,

We will need several statements of Hadamard three-lines-theorem type.

Lemmas 4.1.2 — 4.1.3 below are obtained through personal communications with
Professor David C. Ullrich.

For an arbitrary set £ C R™, let us denote A (F) as the set of all functions
continuous and bounded in £, and holomorphic in its interior, E°. SH (FE) denotes
the set of all functions continuous and bounded in FE, and plurisubharmonic in E°.
Further, we will consider harmonic, subharmonic and plurisubharmonic functions in

C™ assuming that they are so, as functions of two independent variables:
uw(z)=u(r+iy) =u(r,y), z==x-+iy, v,y €R"
The following lemma is the Three-Lines Theorem for subharmonic functions. The

proof could be found, e.g., in [81, Ch. 2, § 2.3, Corollary 2.3.6].

Lemma 4.1.1 Suppose that u is continuous in Tjp 1), subharmonic in Toyy, and for

some C' € R and o € [0, 7),
u(z+iy) < Cel®l 2R, yel0,1]. (4.1)

Then,

u(z) < max (supu (t),supu(t + Z)) , 2 €T
teR teR

Note. The function u (z,y) = €™ sin (7y) shows that Lemma 4.1.1 fails for o = .

We need a multivariate analog of this lemma.

Lemma 4.1.2 Suppose that B is a conver set in R"™ with nonempty interior. Assume
that u is continuous, plurisubharmonic and bounded above in Tg. For yo,y, € B and

t€[0,1], set y, := (1 —t)yo +ty,. Then,

sup u (x + iy;) < max (Sup u(x +iyo) , sup u (x + zyl)) :
reR? rzeR? zeR?
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Proof. Fix zo € R" and for s + it € Tjp ;) define
F(s+it) =u(xo +iyo + (s +it) (y1 — yo)) = u (xo + 5 (y1 — Yo) + iys) -

It is obvious that F' is continuous and bounded above in Tjp;. Furthermore, if
Yo,¥1 € B°, then F' is subharmonic in Tjgy). If one (or both) of yo, y1 belongs to
OB, then (considering that B is convex) there exist sequences {yo;}7~; and {y1;}7~,
such that

hm Yej = Yk  Yk,j € BO7 k= 07 L.
J—00
Since u is continuous in Tz, the functions
Fi(s+1it) :=u(xo + 1Yo + (s +it) (y1; — Yo;))

converge to [’ uniformly on any compact subset of Tjp;). This implies that F' is
subharmonic in T{g ).

Applying Lemma 4.1.1 to F, we get

u(xo +iy) = F (it) < max <supF (s),sup F' (s + z))

seR seR
< max (Sup u (x4 iyo) , sup u (z + im)) :
rERM reR”

Since xy € R™ was chosen arbitrarily, the lemma is proven. [

Lemma 4.1.3 Suppose that B is a convexr set in R™ with nonempty interior. For

Yo,y1 € B and t € [0,1] set y, ;== (1 —t)yo +ty1. If f € A(Tg), then
mp<f7yt)Sma’x(mp(f7y0)7mp(f7yl))u pE(O,oo]
Proof. Let us first suppose p € (0,00). For 0 < N < 0o, define

uN(z):/ If (z + 9)|" ds.
{seR™: |s|<N}

It is clear that uy (z +iy) < (m, (f,y))", for any © € R", y € B. Now f € A(Tp)

implies that |f|” is subharmonic in T, and hence uy is plurisubharmonic (in fact,
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uy is subharmonic in Tgo — see, e.g., [81, Ch. 2, § 2.4, Th. 2.4.8]). Since f is bounded
in T, uy is also bounded there. As soon as f is also continuous in Tz, employing
the Lebesgue Dominated Convergence Theorem, it is clear that uy is continuous in
Tp. Using Lemma 4.1.2, we get

uy (1y;) < max (sup un (x4 1yo) , sup uy (z + zyl))
reR™ rER?

S max ((mp (fv yO))p ) (mp (f> yl))p) .

Since (my, (f,y:))" = limy 0 un (1Y), we are done.

For p = 0o, we should apply Lemma 4.1.2 to the function u (z) :=|f (z)]. O

Note. Lemma 4.1.3 and hence previous statements cannot be considered new. It
was mentioned in [86, Ch. III, § 6.1] that if f € H? (Tp), then log || f (- +iy)|, is a
convex function of y € B. However, this source contains no references on the proof of
this fact. This is the reason of why the lemma is proven here. Note that other results
of such type for holomorphic and subharmonic functions could be found in [4, Ch. 3,
§ 3.5].

Now, we easily obtain

Corollary 4.1.1 Suppose that B is a convex set in R™ with nonempty interior, and
feA(Tg). If K is a convex hull of a set E C B, then

Sup (f,y) = sup my (f:y), p€(0,00].
Lemma 4.1.4 Suppose that B is a convex set in R™ with nonempty interior, and
feA(Tg). If K is a convezx hull of a set E C B, then for any yo € K° and any p

and q such that 0 < p < q < o0,

n!
mq (f,90) < (ng (5 1) (dist (yo,é?K))"> ztele)mp (f,v)- (4.2)

S =
Q=
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Proof. For q = p, the statement is just Corollary 4.1.1. Since p = oo implies ¢ = oo,
whence p = ¢ again, we will consider the case 0 < p < ¢ < oco. We will also
suppose that the supremum in the right-hand side of (4.2) is finite, and that K° # (.
Otherwise, the statement is void.

Let us fix yo € K° We can use the approach of [86, Ch. III, § 2, Lemma 2.12].
Let us fix an arbitrary zo in R” and let € := dist (yo, 0K) > 0. Then, B, (yo,€) C K°
(here B, (yo,¢€) is the ball in R” with the center at y, and of radius ¢). If €2, denotes

the volume of the unit ball in R™, then using the subharmonicity of |f|”, we get

| 1 |
f @il < g / o+ it) dodt
€ 2n J Bap(20,Y0,€)
1 |
< /T f (z+ it) dudt. (4.3)

Bn(UO,E)

Corollary 4.1.1 justifies changing the order of integration in (4.3), and we obtain

1 (o + g < Lt L )" R (maxyen My (/,4))" .
Br(yo,e)

€2nQQn Eann

Since xy € R™ was taken arbitrarily, we get

moo(fayO) S ( Q'fl )psupmp(f>y)'

gnQZn yek

Now, for ¢ > p, using the last inequality, we have

([ imr ) < (Sg=)" s, (1.

yeE

SE
Q-

9—pP

mq (f7 yO) < (mOO (f? yO)) ¢

Since ¢ = dist (yo, 0K), and §2,,, = #ﬁrl), inequality (4.2) follows immediately. [J

Applying Lemma 4.1.4 to B = [a,b], and E = V(a,b), we obtain

Corollary 4.1.2 Assume [ is holomorphic in T(ay), as well as bounded and contin-

uous in Tiap),, . Then, for any 0 < p < q < oo, the following inequality folds

sup || f (- + iy,
y€(a,b)n

3 =
Q|

G 15 ¢+ )]
< . - - — max )| .
72T (% 4+ 1) (minj_q,., (min (y; — a;,b; — a;))) veV(a,b) P

.....
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Let us return to V,, (I') introduced in Section 1.4 (see (1.20)). As soon as the
set {(:cl, o xy) ERY x €T, || =1,V =1,... ,n} is compact in R™, then the
maximum in (1.20) is attained on some set of vectors ey, ..., e,. Since I is also open
and nonempty, then V,, (I') > 0. Although the set of vectors eq,...,e, may not be
unique, let us fix one such set e := {ey,...,e,}. We will consider only this fixed set

in the following argument. Consider the linear map

and denote I'® := ¥, ((Rﬁ)o) (here RY} is the first octant in R", as usual, i.e., R} =
{r=(21,...,2,) € R": 2; > 0,Vj=1,...,n}). Since |det V.| = n!V,, (I') > 0, this
map is a bijection of R™ onto R, (RCLF)O onto I', and R’} onto Te. It is also clear that
['* C T, and it is also an open cone.

Let us denote a translation of a cone I' by a vector ¢ by I'c :={x +(: x € I'}.

Lemma 4.1.5 Let I be an open cone in R™, n € N. Assume that r and R are some
points in (Rf‘r)o such that r; < R;, Vj = 1,...,n. If a function F' is holomorphic

m T\Ife((r,R)n) as well as bounded and continuous in T\pe( then for any y €

(Rl )’
U, ((r,R),), and for any p and q such that 0 < p < q < oo, the following inequality

holds true

1E (- +iy)) g

S
Q=

1

X max : | (-4 iV, v)

veV(r,R (44)

Hp :

To prove the lemma, we only need to apply Corollary 4.1.2 to the function G (z) =
F(V.2),witha=r, b= R, y= ¥y, and get back to F.
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Lemma 4.1.6 Let I be a regular cone in R", n € N, and ¢ : I'* — C be a Lebesgue
measurable function. Assume that there exists a Lebesque measurable function ¢*
R"™ — C such that

(i) ¢* (x) = p () almost everywhere on T'*;

(i3) o* (-) e*0) ¢ LY (R™), for some 6 € T.

Then, for any function f, belonging to H? (Tr) with some p € (0, 1], the following

equality holds true

M, (f;x) ::/ g&(t)f(t)ez’”(‘”’t)dt:/ fz+t+id) o (t+id0) dt, =€ R"
(4.5)

Proof. Let us fix an arbitrary z € R". Since ¢* = ¢ a.e. on I'*, and suppf c I
then

M (fi) = [ o @ F @y
As soon as * (-)e?@) ¢ L' (R"), and f5; € L' (R") (as we already noticed), using
Tonelli’s theorem, it is easy to see that the function G (t,u) = ©* (t) e* O f5 (u)
belongs to L' (R™ x R™). Therefore the function G (¢,u) := G (t,u) e 2™ “=24 is also
there. Furthermore, let us write the Fourier transform (see Definition 1.4.1) of f with

our o:

f (t) _ 627T(6’t)]/€; (t) — 2m(0) 7 (u) o 2mi(ust) du, tcR"
Rn

An application of Fubini’s theorem to G shows that gp*f € L' (R"), and allows us to

change the order of integration in the equation below:

Mgo (f,l‘) _ /n (QO* (t) 6—27ri(—ac+i57t) f ( ) —2mi(u,t) du) dt

= / ) (fa (u) / () e milumztidh) dt> du = fa( ) o (u—x +1i8) du

fs(t+x)p* (t+i6) dt = | f(t+x+id)p* (t+1id) dt.
R7 R™

Since € R™ was chosen arbitrarily, (4.5) holds. [
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In the univariate case, (4.5) was proven in [84, Proof of Proposition 1].
Following [85, Appendix B.2], for a Lebesgue measurable function h on R", we

will consider its distribution function
A (@) i=m{z e R": |h(z)| >a}, a>0,

with m — the Lebesgue measure on R”, as well as the non-increasing rearrangement
of h given by

h*(t) :=inf{a: A\ () <t}, t>0.
As shown in [85, Appendix B.2], both functions )\, and h* are non-negative, non-

increasing and right continuous. Moreover, h and h* have the same distribution

function, and

| (x)? dox = /OOO (h* ()P dt, pe (0,00). (4.6)

Rn

For a function ¢ € L? (R"), let us denote

ay (), = inf {||g0 — Y|y Y€ L* (R™),m (SUprZ) < 0'} )

Since the Fourier transform is a unitary operator on L? (R"), then |l — |, =

|e-9

, whence
2

o o)y = inf { ([ Jer )

o~ 2
S \/R;n |:_0-1/n Ul/ni| ‘(70(3:)| dx . (47)
\ 2

N

:m(F) Sa}

2
We also need a refined version of (4.6) that is given by the following statement.

Although I am not sure, to the best of my knowledge, this result is new.

Lemma 4.1.7 Let f € L? (R™) for some p € (0,00), and f* be its non-increasing

rearrangement. Then, for any o > 0,

sup /E @) dz = / (fF (0) dt. (48)

o
E:m(E)<c 0
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Proof. Let us take an arbitrary measurable set E so that m (E) < o, and consider
h(x):= f(x)xg (x), where xg is the indicator of E. Obviously, h* (t) < f*(t),t > 0.
It is also clear that A\, (o) < o, for any o > 0. Hence, h* (t) = 0, t > 0. Now, from

(4.6) we obtain

/E f@Pde = [ @ de= /O°°<h*<t>>p i

R

= [wrayas [ ¢ ora (49)

Since E was chosen arbitrarily with the only requirement m (E) < o, then

sup / @) de < / (f* (1)) dt. (4.10)

E:m(E)<o 0
Let us construct a set on which the supremum is attended. First, assume that f

is bounded. Define
A:=sup{a: m{zeR": |f(x)]|>a})>0}.
If A=0, then m (B,,) < o for each B, := {x € R": |f(x)] > 1/m}, m € N. Hence,

m (supp f) =m (U Bm) = lim m(B,,) <o.

m—00

Thus, we could take E = supp f, so that (4.9) becomes an equality, and (4.8) follows
immediately.

Now, we will consider the case A > 0. Let us denote

My =esssup|f (z)] =inf{a: m ({z € R" : |f (z)| > a}) =0}.

rER™
It is clear that A < My, and if

m({z €R": |f(z)] = M}}) < o, (4.11)

then A < Mjy.

Let us denote

Uy ={zeR": |f(x)]| >0}, a>0, Us= |J Us={zeR":[f(z)>A}.
aG(A,Mf]
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Then oy > ao implies U,, C U,,, and all U,’s are Lebesgue measurable. Since
A =sup{a: mU,) > o}, then o > A implies m (U,) < o. Therefore, using the
continuity of Lebesgue measure from below, we get m (ZI A) <o.

Since m (ﬁ A) < oand m (Ua) > o, we can use the continuity of Lebesgue measure
to choose a Lebesgue measurable set E so that Uy C E C Uy, and m (E) =o.

If requirement (4.11) is not satisfied, then take £ to be any subset of Uy, with
m(E) =o.

Let us consider g := fxg, and take an arbitrary o > A (remember that A > 0).
Then

Ar (@) =X (o), a>A. (4.12)

Also note that A\f (o) = Ay () =0, @ > My. Moreover, from the definition of A, we

get

Ap(@)=m({z eR": |f(2)] > a}) >m({z eR": [f(2)] > A}) 20, a<A
(4.13)
Since Uy C E C Uy, then for any a € (0, A), z € E implies |g (z)] = |f ()] > A > o

From another side, if |g ()| > o then |f (z)| > o. Hence, z € Uy C E. Thus,
{zeR": |g(x)|>a}=FE, 0<a<A

Therefore,

N(a)=m(E)=0, 0<a<A (4.14)

Considering (4.12), (4.13) and (4.14), for t € [0,0), we obtain
g (t) =inf{a: \j(a) <t} =(414) =inf{a: a> A N\, (o) <t} = (4.12)

=inf{a: a>A A\f(a) <t} =(413) =inf{a: A\f(a) <t} = f"(t). (4.15)

Since also A, (a) < m (supp g) = o, for any o > 0, then ¢g* (£) = 0 when ¢ > 0. Now,
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using (4.15) and (4.6), we get
Jr@ra = [ g@ra=["woras
= [waya= [ ¢wra
Hence,

sup / Faprde> [y

c
E:m(E)<o 0

which completes the proof for a bounded function f.

Let us get rid of this restriction. Since f € LP (R™), then
m{x eR": |f(z)]> f(e)}) <e e>0. (4.16)
Let us consider functions
fey (@) ==min(|f (2)|, f ()}, z€R", e>0.

Clearly, they are in L? (R") and also bounded. Moreover, (4.16) implies that f.)
coincides with |f| everywhere except some set of Lebesgue measure not more than e.

Since for any a > 0,
{zeR": |f(2)|>a} C{z €R": fi)(x) >a}U{z eR": |f(2)| > f) (2)},
then Ay (a) < Ay, (@) +e. Hence,
) =inf{a: A (a) <t} gmf{a: A, (@) gt—e} — [ (t—e), t>e

Thus, applying (4.8) to the bounded function f), and considering that f* > 0,

| fo | < |£1, we get

/ Ty < / Ty di = / T - e)) dt = / T (e () db
= s [o@P e sw [@ra. @

E:m(E)<o E:m(E)<o
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Applying Fatou’s lemma, we can pass to the limit as € — 0+ to conclude

[waras sw [ir@pra

E:m(E)<o
Since the inverse inequality (4.10) was obtained without any assumption on bound-
edness of f, this completes the proof. [

The next result follows immediately from the previous lemma, (4.7), and (4.6).

Corollary 4.1.3 If f € L? (R"), then

a0 (), = (/oo (f*(t)fdt)é, > 0.

Note that this statement is contained in [92, Proof of Theorem 2]. However, the

source does not contain its detailed proof.

Corollary 4.1.4 Let f € L? (R™). Then, for any p € (0,00), the following inequality

/n f(:c)]p dxgz/ooo <%\/§)?>de.

Proof. The reasoning of this proof is the same as used in the proof of Theorem 2 in

holds true

[92] just mentioned.
Since f € L*(R"), then f also belongs to the same space. Applying (4.7), Corol-

lary 4.1.3, and considering that f* is non-increasing and non-negative, we get

f*(2t)§% (/jt (f*(u)>2du); g% (/too (f*(u)>2du)é=&\/é)2, > 0.

Therefore, (4.6) implies

/n J?(x)‘p dx:/ooo (f*(t))p dt:2/ooO <f*(20)>p dggg/ooo (%\%)2)” do

that completes the proof. [

We also need a Nikol’skii type inequality in a pointwise form. Unfortunately, it
is not true without additional assumptions. The following statement is one of such

‘constrained’ forms.
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Proposition 4.1.1 Assume ¢ € C" (R"), r,n € N, and there erist non-increasing

functions F,G : R, — R, such that for some j=1,...,n,

el <P, |F2w)[ <00, ser
Then
k N . X
g_;g(x) S(%) (F (=) " (G(x)])r, zeREk=1,...,r—1,

where Cy is an absolute constant.

Proof. Suppose g € C" (R), and for some a,b > 0,

g(2)| < F (\/a T x2> L @) <@ <\/b n x2> , zeR. (418
Then, fixing some z > 0 and applying the Nikol’skii type inequality on R, (see, e.g.,
[91, Chapter 3, § 3.10.2, Estimate (9)]) to the function A (t) := g (t + x), we obtain

sl 0] = s 01 (F) g (gl )

() G tae) o)

k t>x t>x

Since F and G are non-increasing, then F (\/a—l—x?) and G (\/b—l—x2) are non-

increasing on R, whence, for z > 0,

Cor\ " -k &
(k) < (2o 2 v 2)\"
g (x)\_( ? ) (F (\/a+x>) <G (\/b+x>> . (4.19)
If x < 0, then considering G () := g (—t), we deduce that (4.19) holds for = € R.
Now, take any z = (1,...,x,) € R™, and consider

g(t) = (p(xl,...,:L’j,l,t,a:jﬂ,...,xn) .

Applying (4.19) to this function with a =b =37, ..o, we get

oFp

Sk (Tl T Ty, Ta)| = g® (1)
J
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1k

Cor\" :
(TOT) (F<\/x%+---+x?_1+t2+x?+1+--~—i—x%))

k

X (G<\/x%+---+x§_1+t2+x§+1+---+x3>)T, t € R.

IN

Taking ¢t = x; completes the proof. [

Corollary 4.1.5 Assume ¢ € C" (R"™), r,n € N. If for some non-negative o, 3, A
and B, the following growth estimates

A

< |2
1A+ |2

-
8a:j

lo () reR" j=1,...,n,

)| <

T 1+ ol
are satisfied, then fork=1,... r—1,

00r>k( A )1—ﬁ B\’
< _ —— |, zeR 4.20
—(k: 1+ |z 1+ |z|° (4.20)

where Cy is an absolute constant.

o
8_95;? (z)

Note that (4.20) is used in [94, Proof of Theorem 3b], but its justification is absent
there.
Equipped with these statements, we can proceed to the proofs of the main results

of this chapter (and Section 1.4).

4.2 Conditions for Fourier Multipliers

4.2.1 Multipliers with Compactly Supported Kernel

The goal of this subsection is to prove Theorem 1.4.2. First, we need Proposition 4.2.2,
which is rather technical, but it can be used for obtaining various conditions for
Fourier multipliers. Let us start with a generalization of the basic Property 1) of a

multiplier given by the following statement.

Proposition 4.2.1 Let I be a regular cone in R", n € N, 0 < p < q < 1, and
let {om} -, be a sequence of Fourier multipliers, p,, € M,,(Ir). Assume that

S L lem| € L (T*) and ¢ (z) =307 ¢m () almost everywhere on T'*.
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If > e lomlli, oy < 00 then o € Mo (T1), and

”SOHM,,’Q(TF) < <Z ||90m||3\4p,q(Tr)>
m=1

Proof. Since Y 7 ¢, (x) converges to ¢ almost everywhere, and the Lebesgue mea-

q

sure in R™ is complete, then ¢ is measurable. Let us take an arbitrary f € HP (1Ir)
and fix an arbitrary y € I'. Then, since the inversion formula (1.18) is true, we have
F(t)e >@b ¢ L1 (R"). Using the assumption that Yo lem| € L (I'*), we can

apply the Lebesgue Dominated Convergence Theorem to derive

Z/ o (8) [ (1) SO0 4t = / o (1) F (1) 2wttt gy
m=1 r= T*

= F,[f](x+iy), zeR" (4.21)

Again, since p € L® (') and f () e~2"®t) € L' (R"), then the Lebesgue Dom-
inated Convergence Theorem implies F,, [f] (-4 iy) is continuous on R", whence
Lebesgue measurable.

Since all ¢,,’s belong to M, , (Tt), then |F,, [f] (- +y)|? € L' (R"), for any m.
As soon as

/ B 1) (& i)l de < loulle oo |l < 0

m=1

the Dominated Convergence Theorem implies that the series > >_, |F,., [f] (z 4+ iy)|*
converges almost everywhere on R” to a function from L' (R") (see, e.g., [31, Ch. 2,

§ 2.3, Theorem 2.25]).

Using the triangle inequality for the power ¢, (4.21) implies

q

Y Fen [l @+iy)| = |F, [f](x +iy)|",

m=1

D NFe, [f](x i)t =

and we immediately conclude that |F, [f] (- +iy)|* € L' (R"), and

17 [+ i)l < Z 1 vt iy 11 o

Passing to sup,cr in the last inequality, we get the statement. [
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Proposition 4.2.2 Let T' be a regular cone in R", n € N. Assume f € HP (1)
for some p € (0,1], and o (-) >Vl ¢ LY (R™), for some a > 0. Then, for any
q € [p,1], and r,R € R such that 0 < r; < R;, j =1,...,n, and |R| < «, the

following inequality holds

i
1.1 1 P
M, (D, < on(3+5-1) _ , —
1Mo (Pl w2l (% + 1) Vo () (minj—y, , (R; —1j))
X 5(-+i0, .. 4.22
s 180+ i)l 11 (422
Proof. For any y € [r, R|,, (Vey); = > iy €k Since ey, ..., e, are unit vectors,

and y € [r, R], C R", applying Cauchy-Schwartz inequality, we get

Wey| < Virlyl < va|R| < via. (4.23)

As soon as ¢ () e?™vnll ¢ [1(R"), the function

P (U, (z+1iy)) = / o (1) e2m(Veut) =2mi(Vert) gy

n

is holomorphic in 7{, gr), as well as continuous and bounded in T}, g),. Since V¥, is
a nonsingular linear transformation, @ is holomorphic in Ty, ((R),)’ continuous and
bounded in T, (In8),)"

We will also use the fact that if f € H? (Tr) for some p, then, for any w € T,
fw € HP (Tr) with any py € [p, 00| (see Lemma 1.4.1). Hence, f,, € H? (Tt), and
using the definition of Fourier transform (1.17) with ¢ = w, we have

M (fiovin) = [ e@F @@ ia = [ o F@eoen
I r*

= /F @ (t) fu (t) @) gt = M, (fu;x), x€R™ (4.24)

Let us choose an arbitrary p € (r, R),. Then, (4.23) and Cauchy-Schwarz inequal-

ity imply

[ (1)] 400 < [ (1) 1Yol < [ (1) Vel € L1 (R").
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Using (4.24) and applying Lemma 4.1.6 with 6 = ¥.p and ¢* = ¢ to the function f,,

we conclude
M, (f;z+iw) :/ fol@+u+iVep)p(u+iVep) du, x€R"™
I‘*

In the following, we will suppose that the maximum on the right-hand side of (4.22)

is finite (otherwise, (4.22) is trivial). Under this assumption, we have that

1M, (f;- + i) 2 = / 9wy (w, 5 )||? de,

where g (w,z;-) :== f, (t + ) @ (+) (recall that gz (2) = g (z +i0)). If we consider this
function as a function of the last argument with fixed x and w, then it obviously
satisfies the conditions of Lemma 4.1.5. Applying this statement with ¢ = 1, p = p,

f()=g(w,z;-), we continue our estimates with

M, (f;-+w)||? <O v 7d
M (f; -+ iw)||? < e lg (w, ;- + V)|, dr,

where

Now, let us note that if Fy,..., Fy € LT(X, i), then

/ max Fd,u</(F1 -+ Fy) dp < N max /Fjdu.
X X NJx

Jj=1,.., 7=1,...,

Using this fact and changing variables (z + u = t), we get

a/p

1M, (f; - +iw)|] < 2"O IE?XR)/ ( |fw (E+ V)P (t —x +iP.p)P dt) de.
vel(r n Rn

(4.25)

Since ¢/p > 1, we can employ Minkovskii’s integral inequality and obtain:

1M, (f; - +iw)|?
q/p

veV(r,R)

p/q
<2"0 max ( | fuw (t+ 00 0)|° ( P (t — 2 +i¥.v)|? da:) dt)
Rr Rr
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_9n o - q : q n ~ . q q
=20 max (- + i)l llfu -+l <2°0 max 1+ W)/

Since, the maximum in the right-hand side is assumed finite, taking sup, ., we have

i
P

n/q 1
M (Dl =2 <w3r<g+1)vn<r><minj_1 ..... n<min<pj—m,Rj—pj>)>”>

% 5(-+140, .
Jax (|2 (-4 ier)lly 11l

Since the left hand side of this inequality does not depend on p, we could take p =

1 (r+ R), and the last inequality yields (4.22). O

Following [86, Ch. III, § 4], a convex, compact and symmetric with respect to the
origin set K C R™ with nonempty interior is called a symmetric body. Its polar set is

defined by K* = {t € R": (z,t) <1, Vz € K}. Let us also set

HZH ‘= Ssup |(th)’ = sup ’(thl + +Zntn)’ .
teK* teK*

Note that K* is again a symmetric body, and (K*)" = K (see, e.g., [86, Ch. III, § 4,
Lemma 4.7]).
It is said that an entire function f defined in C" is of ezponential type K, where

K is a symmetric body, if for any € > 0 there exists a constant A. > 0 such that
F(2)] < ATy e en,

The class of all entire functions of exponential type K is denoted by &£ (K).

Proof of Theorem 1.4.2. Since ¢ is compactly supported on convex body K :=
[—0o,0]" = [—0,0] X --+ X [—0,0], then, according to the multivariate Paley-Wiener

theorem [86, Ch. ITI, § 4, Th. 4.9],

(z) = / o (1) G0 gy
[_Uvg]n

is a function of £ (K*) class. Therefore,
12 (2)] < AcePmtiF)lElL (4.26)
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where [|z|| = sup,cg [2191 + ... 2pyn|. If we fix all the other variables except j-th,

then, clearly, the function

(I)j (5) = @(217 cee 7Zj717§7zj+17 .- -;Zn)

is a univariate entire function of exponential type 27o.
Applying Bernstein inequality in LP-metric (for p € (0, 1), the result is due to

Q. I. Rahman and G. Schmeisser [78, Corollary 1]), we get

>,

- /
oz, = [|@}

< 210 chj”Lq(R)
L4(R)

(2’1,...7Zj,1,',2j+1,...,2n) HL‘Z

Thus,

op |*
5’xj

[

Applying Tonelli’s theorem, we obtain that 8%% € L7(R"), and

i

Expanding exponential to the Taylor series, we have

SO ($50) " e

The following equality could be easily checked by induction

. a " — 7rz x, — 71'1 x m
(Zyja7> e~ 2mi@t) (Zy] ) e~ 2mi@h) (9™ (4.28)
j=1 J

d%j) dl’l e d$j,1dxj+1 Ce dl’n S (27T0')q H@Hg < Q.

0@ O
ai <2ro ||@ll,, j=1,...,n. (4.27)
ill'j q

m

Now,
o (x+iy) = /[ . @ (1) Z (2 m)' (Z y,t ) e~ 2mi@) . (4.29)
—0,0 m=0
Since

(2m)" o™ [y|" n/?
m)!

< , t€l—o,0]",

(2;)!7” (Z yﬁj)

J=1

the series on the right hand side of (4.29) converges uniformly (with respect to t) and

absolutely on [—o,0]". Since ¢ € L' ([—0,0]"), applying the Lebesgue Dominated
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Convergence Theorem, we can put the integral sign inside the series. Thus, using

(4.28), we get

(v +iy) Z m! / 00 ]" <Z_: vi 3xa> {6*2’”'(“)} o

Since € C (R™) and is compactly supported, then [¢|* ¢ () € L* (R?), for any k € N,

and we can take the differentiation operators outside of the integral. Hence,

o (v +iy) Z — <Z Yig > o (x). (4.30)

7j=1

Now, (4.27) implies

/ (Zyai) o]

Hence, by induction,

/ (Zyai)ma()

From (4.30), we obtain

0
T
- aszo( )

q n
dz < (2m0)" Y |ysl* 12115 -

Jj=1

dr <)y,
j=1

q

dr < (2m0)" (ZW) lelle. @31

(4.32)

Considering (4.31),

o0 1 n 8 mA © L " ~
| (Swa) o] o= 5 () v
m= Jj=1 m=0 =1

Therefore, the series on the right-hand side of (4.32) converges to a function from

mq

L' (R™), and its L'-norm is (see [31, Ch. 2, § 2.3, Theorem 2.25])

> 1 (& o\
Z:O/nw (Zlyjﬁ_xj> o (x)

Now, (4.32) implies that @ (- 4+ iy) € L9 (R"™), and

13 (- + )|, < (Z (2mo)” (Zw) )quauq, y € R". (4.33)

m=0

q

dz.
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Take
1 1
T = 27T0n%+%, R := (—,...,—) . Ti= (E,,E) , (4.34)

where € (0,1). If v € V (r, R), then

S
~

‘(\Ije’/)j

<

T
2mona

Using (4.33) with y = W.v, we get

oo 1/q
13 +iww)], < (Z ﬁ) =

m=0
Having applied Proposition 4.2.2 with r and R as in (4.34), we obtain

1 9 1

11 omontte) ’ <1 g
1M, (f)]] e < 2" ( ) (Z ) [Fi[

2T (24 1)V, (D) (1—¢)" (ml)?

m=0
Passing to the limit as ¢ — 0+ completes the proof. [J

It is clear that if ¢ € C*° (R") and is compactly supported, then it belongs to
the Schwartz space J. Applying Theorem 3.2 from [86, Ch. 1, § 3], we get @ €
J. Integrating in polar coordinates, we conclude ¢ € L?(R"), for any p € (0, 0.

Applying Theorem 1.4.2, we easily deduce

Corollary 4.2.1 Let T be a regular cone in R*, n € N. If ¢ € C*(R") and is

compactly supported, then ¢ € M, ,(Ir), for any 0 < p < ¢ < 1.

4.2.2 Local Property

The following lemma was mentioned as one of the basic multiplier’s properties. Now,

we are ready to present its proof.

Lemma 4.2.1 (Local Property) Let I' be a reqular cone in R", n € N, and let
0<p<gq<1. Assume a function @ : I'* — C has the following property: for any
point t € I, including the point at infinity, there exists a neighborhood V; such that,

in Ve NI, ¢ coincides with some function o, € My, (It). Then ¢ € M, , (Ir).
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Proof. Without any loss of generality, we will consider that V;’s are open balls V;, =
B, (t,ry) ={x € R": |z —t| < r} of radius r > 0, and Vo :={z € R" : 2] > reo}.
Since I'* \ V, is a compact in R", there exists a finite subcover of I'* \ V., by
Vs, 1e., T\ Voo C U, V,. For simplicity, let us denote V;, ,, := Vi. Then,
I c U,
Using, e.g., [67, Ch. 1, § 1.2, Th. 1.2.3], it is clear that there exists a partition
of unity subordinate to the open covering {V;, ;n:+11 that is a family of C'*°-functions

{C(tk)}zzl such that
OSC(tk)Sla SuppC(tk)ka, k:17"'7m+17

the family {supp C(tk)} is locally finite, and

m+1

> (@) =1, Voel™ (4.35)

k=1

It is clear that (o) = ((t,,,,) s equal to 1 on I'*\ U, V. Hence, (o) := 1 — ((o0)
is also from C'* (R") class, and

Mooy () =0, Vo el™\ U Vi -

k=1

Since 7)) is compactly supported, Corollary 4.2.1 implies 70y € My, (11).

As soon as supp () C V4, and ¢ = ¢,y on V,,, for k=1,...,m + 1, we have

Gty (@) 2 () = Gy () ey (), el k=1,..., m+ 1

Multiplying (4.35) by ¢ (x), we get

m—+1
This implies that ¢ is Lebesgue measurable, since all ¢,y are multipliers, whence
measurable, and () are continuous.
Since functions () are infinitely differentiable on R™ and compactly supported
for any £ = 1,...,m, Corollary 4.2.1 implies that (y,) € My, (Tr). Hence, using

Property 2) of a multiplier, ()¢, € Mpq (I1).
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NOW, P(o)((oe) = Ploe) = Ploo)lioe) € Mg (Tr), because 1) € My, (Tr) and
Ploc) € Mpg (I1).
Thus all the summands in (4.36) belong to M, , (T1), whence ¢ € M, , (1r). O

4.2.3 Necessary Conditions

The Local Property of a multiplier and Theorem 1.4.2 allow us to get efficient neces-
sary conditions and even criteria for a function to be a multiplier. These conditions
are especially usefull for radial functions. In particular, we can easily obtain the criti-
cal index for Bochner-Riesz means (Proposition 1.4.1). The key point is the condition

p € L%, which is illustrated by the following statement.

Theorem 4.2.1 Let I' be a regular cone in R", n € N, and let ¢ € C(I'*). If
© € My, (Tr) for some 0 < p < q < 1, then for any point x € (I*)°, and its every
bounded neighborhood V,, such that V, C (T*)°, the function ¢ coincides in V., with a

compactly supported continuous function whose Fourier transform belongs to L9 (R™).

To prove Theorem 4.2.1, we need a couple of lemmas that may be of independent

interest.

Lemma 4.2.2 Let T’ be a reqular cone in R", n € N, ¢ € L} _(T*), and 0 < p <

q <1 Ifoe M,,(Ir), and ¢ is a compactly supported function such that 15() =

) (=) € HP (Tv), then o € L9 (R™).
Proof. Let us consider the function

g(2):= /* o) (t)e¥™CED a2 e Ty (4.37)

Since v (-) € HP? (Tr), the inversion formula implies suppy C I'*. As soon as ¢ €

M, (T1), we also deduce

g

90 e < 1101l a1 (4.38)

Hp
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Since ¢ € L. (T'*), and 1 is continuous and compactly supported, then ¢ €

L* (T'*). Moreover, |e*™(=)

t € R™. Hence, applying the Lebesgue

Dominated Convergence Theorem, we obtain from (4.37) that

P (—a) = g(a) == lim_g(x+iy) = / o (1) (1) o dt, 3 e R™,

y—0,yel’
Note that |g (x)|? is also Lebesgue measurable on R™ as a limit of Lebesgue measurable

functions |g (x + iy)|?. Hence, using Fatou’s Lemma and (4.38), we get

|70, < mmint flg ¢+ )l < el

y—0,yel

g

Lemma 4.2.3 Let T be a reqular cone in R", n € N, p € L}, (T*), and 0 < p < ¢ <
1. If o € My, (Tr), and p € C*® (R™) is compactly supported with suppp C (I'*)?,
then @i € L1 (R™).

Proof. Let us consider

U (2) = (¢ +iy) = e, s —a iy €T (439)

We need to prove that 1; € H? (Tr). Since ¢ € L? (R™) and is compactly supported,
the Paley-Wiener Theorem implies that 1; is an entire function of exponential type.
Since v is compactly supported, then it is clear that for any y € I', x € R", we have
Y () e 2" W)e2mi@) ¢ [1(R"). According to Fubini’s theorem, we can choose the
order of integration in (4.39) as we need.
If g € C* (R™) and is compactly supported, then Lebesgue integral is, in fact, Rie-
mann integral, and using integration by parts in the iterated integrals, and applying

Leibnitz differentiation formula, we arrive at

/ q (t) 6727r(y,t)627ri(x,t) dt

ik k !
k Z ( ) —2my;)F! / (%g (t)) e~ 2w 2mi@t) gt (4.40)
$ = g



Since suppv C (I'*)°, then for any ¢ € suppv and y € T’ we have (y,t) > 0. As
soon as supp v is compact, then inf {(y,t) ly €T, |yl =1,t € supp w} is attained at

some couple, yo and ty. Therefore,

a:=min{(y,t) |y €T, |y| =1,¢t € supp¥} = (yo,%0) > 0,

whence
(y;t) >aly|, yel,tesuppd.

Applying standard calculus to the function h(£) := £me 2™ m € Z,, we deduce

that h (§) < %e‘m on (0,00). Thus, for y € I, t € supp v, we have

m™ —m
I I e P S €N,

1, m = 0.

Now, applying (4.40) to ¢ (- + iy), and considering the last estimate, we obtain

B i) < 2R 2oy, (1.41)
where
1 <[k _ o
Y2 (TL, kv¢) = (27T)k lz_; (l) (27T)k l,yl (k - la CL) / 8_753,¢) (t) dt < oo
- supp ¢

does not depend on z and y.

Using Holder’s inequality, we also have

n m n n 17%
= (S0) <Za (X)) ernn men
j=1 j=1 Jj=1

Hence, from (4.41), we clearly get

n

2" B ig)| < nt e | iy)| <0t R Y (n,2m,0)
=1 =1
= nQ’ifyg (n,2m,v), zeR", yel,meN. (4.42)
It is also obvious that

[0 (@ +iy)| < Il <oo, zeR" yerT. (4.43)
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Integrating in polar coordinates and considering (4.42) and (4.43), we easily de-

duce that ¢ € HP (Tr). Finally, Lemma 4.2.2 implies that g;z\b e L1(R"). O

Proof of Theorem 4.2.1. Let us take an arbitrary z € (I'*)? and its bounded
neighborhood V, such that V, C (I'*)°. Consider a function t,) with the following
properties:

D). Y € O (R");
2). () is compactly supported and supp ) C (I'™)%;
3). Y@ =1on V,.

To prove that it is possible, let us first note that since R™ is a normal topological
space, there exists an open set U such that V, ¢ U C U C (I'*)°. Then, [67,
Ch. 1, § 1.2, Corollary 1.2.6] guarantees the existence of a function ¢,y with desired

properties.

Now, the function

G (1) == ¢ (t) ) (1)

is continuous, compactly supported and coincides with ¢ on V,. Moreover, according
to Lemma 4.2.3, G € L (R"), which completes the proof. [J

As we can see, the requirement on the Fourier transform of a multiplier to be
in L7(R™) is essential. If our kernel is radial and compactly supported, then the
requirement @ € L7 is crucial. Moreover, using the Local Property (Lemma 4.2.1), it
is often easier to show that a radial function is a multiplier, and then conclude that
its Fourier transform is in LY (see, e.g., Corollary 4.2.3). Such an approach is justified

by the following theorem.

Theorem 4.2.2 Let ¢ : R* — C, n € N, be a continuous compactly supported
radial function. Assume that in some neighborhood of the origin, ¢ coincides with a
continuous compactly supported function whose Fourier transform belongs to L1 (R™),

for some q € (0,1]. If o € M, ,(1Ir), for some regular cone I' and p € (0,q|, then
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p € L1 (R™).
To prove this theorem, we need the following statement.

Lemma 4.2.4 Let i) € C*(R"), n € N, and is compactly supported. Assume that
v € C(R"™), is also compactly supported and @ € L (R™), for some q € (0,1]. Then,
b € L (R™).

Proof. Since 1) is compactly supported, then there exists R > 0 such that suppy C
B(0,R). Take a:= (R,...,R) € (R?)". Then the function

T (1) = ¢ (¢ —a), xeR",

also belongs to C* (R")-class, and supp 7,9 C (R’}r)o. Obviously, 7,¢ is also contin-
uous and compactly supported.

Since ¢ € L' (R"), using the property of the Fourier transform of a translation,
we get 7, () = e ?™(*0F (), and hence ||7,0[|, = [|]], < oc.

According to Theorem 1.4.2, 7,0 € M,, <T(R1)°>7 for any p € (0,q]. Now,

Lemma 4.2.3 applied to 7,0, 7,9 and the cone (]Ri)o implies 7, (Y¢) € L7 (R™).
Hence @ e L1(R"). O

Proof of Theorem 4.2.2. Let us take an arbitrary x € R", x # 0. Since (I'*)° # 0,
there exists a rotation T such that Tz € (T'™*)°.

Since ¢ € M, (Tr), according to Theorem 4.2.1, in any closed ball B (Tx,r) C
(I'*)?, the function ¢ coincides with some continuous compactly supported ¢z, such
that o7y € L9 (R™).

Since T' is a rotation, then 7" maps B (x,r) onto B (T'z,r), and considering that
@ is radial and 7" preserves the norm in R", we have

0 (&) = 0 (T€) = pa) (TE), € B(x,r).

Since Fourier transform commutes with rotation, (¢ o7) € L?(R"). Thus,

in some open ball B (t,r) of any point ¢ € R" (the condition on the origin is given
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explicitly in the theorem), ¢ coincides with some function ¢ that is continuous,
compactly supported and with @) € L7 (R").

Since supp ¢ is a compact set in R", we can choose a finite number of the balls
under consideration so that

supp ¢ C U B (ty,ry).
k=0

Let us denote By := B (tx,rx), k =0,...,m, and let B,,;1 := R" \ supp . Thus,
U By is an open covering of R™.

According to [67, Ch. 1, § 1.2, Th. 1.2.3], for the open set U}" By, there exists a
partition of unity subordinate to {Bk}zl: that is a family of C*°-functions {C m+1
such that

0<(w <1, supp{mu) C Bg, k=0,...,m+1,

the family {supp C(k)} is locally finite, and

m+1 m
ZC(k)(ZE)—l, WS UBk
k=0 k=0

Multiplying both sides by ¢ (x) and considering that supp (m+1) C Bt1, and ¢ =0
in B,,.1, we obtain
=> (w (@) Z Gy (2) oy (), z €R™ (4.44)
k=0
Lemma 4.2.4 implies C(k/-\tk € L1(R"), k = 0,...,m. Hence, (4.44) yields ¢ €
L1 (R™). O

From Theorems 1.4.2 and 4.2.2, we easily obtain

Corollary 4.2.2 Let p: R* — C, n € N, be a continuous compactly supported radial
function. Assume that in some neighborhood of the origin, ¢ belongs to C* (R™)-class.
Then, for any 0 < p < q < 1 and any regular cone I' C R™, ¢ € M, ,(Ir) if and
only if p € L1 (R™).
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4.2.4 Sufficient Conditions Involving Growth of Partial Derivatives

Proof of Theorem 1.4.3. Our proof is very similar to [94, Proof of Theorem 3].
. n L ogl/n s1/n .
Proof of (b). Tt is clear that p € L* (R"). If K := [—T, T} r then the estimate

(4.7), Paley-Wiener’s and Plancherel’s theorems imply that

inf {llp = vll,: v e (K} =inf {[g-F| v e ®)}>a (o).

Applying the direct theorem on approximation by entire functions of exponential

type [71, Ch. 5, § 5.2, Theorem 5.2.4 (see Estimate (5))], we obtain

Yo (s,1) Py 1
< — " ' m —_
a (), < T N <8:c§-’01/" 2j A

where ws (g, h), ; denotes the partial (on j-th variable) modulus of smoothness of g
with the step h in L? (R™)-norm.

Lemma 6 from [93] asserts that if g is bounded and piecewise convex function
on R”, then for any & > 0 and p > 1, [[Ajgll, < Mh'/Pw (g; ), where Afg is the
forward difference of second order and step h (i.e., A2g (z) = g (v + 2h) —2g (x + h)+
g (z)), and where M depends only on the number of points dividing the intervals on
which ¢ is convex. In fact, the proof of this lemma only requires g to be convex or
concave on each of the intervals, i.e., it may be convex on some of them and concave
on the others.

Under our assumptions, we can apply the lemma with p = 2, and obtain

0° 1 0* 1
ws (a Zn) < Mhiw(SZih) < MChite,
:UJ 2,7 J o}

where

9 _ % . Lt

oo (w1, @) = 52 (1, T, T, T, T)
C := max sup sup . = < 00,

Jj=1,...n t;7#0 zER" |t]|

which is finite according to the assumption of our theorem. Therefore, (4.45) implies

oo a, (90)2 q . [e’e] 1 q
/1 ( Nz ) do < (y0 (s,n) MC) L \o¥/nga+i/2)/ng1/2 do.
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Since o > 2 — 2l — s, then s/n + (a+1/2) /n+1/2 > 1/q and the last integral is

finite. Also considering that a, (¢), < ||¢ll,, and applying Corollary 4.1.4, we obtain

el > (as(©)y\*
~1q < 9 2d 2/ o 2 d
12l < /o go2 0T 1 Vo 7
q9__ - q
< 2||90||21_q/2+2(%(s,n)M0)/1 (Us/na(aﬂ/z)/nal/Q) do < oo.

Now, application of Theorem 1.4.2 completes the proof.

Proof of (a). Let us show that if ¢ and all 22, j = 1,...,n, belong to L? (R™)

Bzg ’
with some r > n (% — %), then there exists some constant v; (r, ¢, n) such that
N _n(1_4 or %(173)
1217 < o g ol 778 max 194 (1.46)
7j=1,..,n axj 9
Indeed, (4.45) implies a, (), < % max,—1,_n gTTf . Choosing o( so that
ill2

=1,..

g%f , applying the last inequality, employing the condi-
ill2

tion r > n <l - %), ie, ¢(2+Z) > 1, and considering that a, (), < [l¢ly, we

q n
Q/oo dO’
+4/2+rq/n
2700 0/
F(1-3)

2

get
J"p

:Ng
VRS
S

)
S
[;_/
~
=]

QL

Q

I

ot [ 27 4 (40 (r,m))" max
Pll2 0 71/2 Yo T, )

Jj=1,...,n

B ( 1 +(4%(r’””q) lolly 0

[ R

J"p

=1,...,

J
Now, Corollary 4.1.4 implies (4.46) immediately with

Ly ey

[

71 (T7Q7n) =2 <
Let us consider the following partition of unity. Take an arbitrary function h €
C> (R) satisfying the following three conditions: (i) hy (t) = 0 for t < —1/2; (ii)

Hh(o)Hoo = 1; (iii) A () + h) (—t) = 1, i.e., he) —1/2is odd. For v € N, we also set

t+1 3 3 t4+1
hay (t) izh(O)(2V_1—§) h(o) (5— o )

It is clear that supph(,) C [2¥7!' —1,2"*! —1]. Using the Leibnitz differentiation

formula, we get

33
’hgi)) (t)’ < s Juax

2
m hEIO?H , veN, seZ. teR. (4.47)
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Let us also observe that

1 [e.e]
h o) (5 — t) + Z Py (t)y=1, t>0. (4.48)
v=1

Therefore, considering ¢ (z) := ¢ (z) k) (3 — |:E]2), 0w (x) == ¢ (x) ha) (|x\2)

x € R", v € N, we obtain the following decomposition

p(x) =) ¢u(x), zeR™ (4.49)
v=0
Obviously,

supp ) C {z € R": 271 =1 < 2> < 2v+t — 1}, veN, suppypq) C B(0,1).
(4.50)
It is also clear that the series in (4.49) converges absolutely (for any x, it is a finite
sum) to | (z)| that is bounded on R" since ¢ is continuous and compactly supported.
If all the ¢,y belong to M,,, (1), then Proposition 4.2.1 implies

el s < D el (450

v=0

whereas the series in the right-hand side of this inequality converges. To prove that,
we need to estimate the norms H(p\(,,) Hq.

Note that if a > 0, v € N, and x € supp ¢(,), then (4.51) yields

’x|a Z (21/—1 - 1)“/2 Z (21/—2)“/2 —9-a <\/§)Va .

Since also supp ¢y C B (0, 1), we obtain that

14 |z|* >27° <\/§) . VEZLy, x €SUPD Q). (4.52)

A A
T S S (Ve

Since o > 0, the condition on the growth of ¢ yields |¢ (z)| <

Using (4.50), we also get

_n% 2V+1_1%_2V*1_1%>’ €N, n n
m (supp ¢()) = r(z+1) <( o ) g <op 20
(v) n — n .
3 I I'(2+1)
r(3+1)’
(4.53)
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Hence, for v € Z,

lewll, < max Jo(@)](m(suppew))? |ho)l

TESUPD P ()

(\/5)%77% A (\/§>”2”

s 4.54
2o (T (24 1)) (V2) o

Applying the Fad di Bruno’s formula for derivatives of a composition (see, e.g.,

[51] or [47]), we have

88 S! 1 2
gz (o (2F)) = > i (1) 2ap)"

J k1+2ko=s; k1,ka€Z 1

Since h,) (|:17|2) = 0 when |z| > (\/i)wrl > /2v+t1 — 1, considering also (4.47), we

get
o° 2 ‘ 72 (5, ho)
hz/ xz S—VS, fEGRn,VGZ, 4.55
where
_ o || 8! a(kaths h
Yo (s,h(o)) = zi%?.’fs h(o) N Z kl!k2!3(k +k2) (2\/§> .

k1+2ko=s; k1,ko€Z
Applying the Leibnitz rule for differentiation of a product, from (4.55), we derive that

forany r,v € Zy, j=1,...,n,

8’!’

-
ij

L) (z)] <

Now, Corollary 4.1.5 implies

a?"

Cor\"
xmax(krlnaxl(To> ,1), reR" rnveZ,,j=1,...,n.

Using (4.52), the last inequality, and

1 1 1
max < +

k=0,...,r (ﬂ)”a(lfk/THVBk/TwLV(T*k) - (\/é)l'(aﬂ“) (\/5)”5’
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it is easy to conclude that

ar

where r,v € Z,, 5 =1,...,n, and

......

a" (\/5)% 2
Zow| < w(@prh A+ B
Hawz””” , = o) P
1 1 vn
+ vz
X ((\/i)l/(oz—kfr) (\/5)1,5)( )
From (4.46), (4.54) and (4.56), we get
1Bwll; = alasBinria ) (A+B)* (\/§> S
1 1 %(1_%>
% 7 + 7
((\/5) (ﬁ)V(Ba)>
where
V4 (aaﬁana 4, h(O)) =N (7”, q, n) (73 (aaﬁara h(O)))%(l_é)
S (U Sk i )
I (2+1)

Applying Theorem 1.4.2 with o = v/2¥"! — 1, we obtain that ¢, € M, , (T1),

V5 (7,0, q) V na(3=1)
lew v,y < W (v2ri=1) 18wl

<m0 g ) F
(v, (D)6

1 1 .
§73 (Oé,ﬁ,?”,h(o)) (A+B>< \/— v(a+r) - v >7 reR )

(4.56)

and



where 5 is the constant from the estimate in Theorem 1.4.2. Since the series

0o vng %(1_%)
= —rogq—vn 1
> (v2) (1 + W) (4.57)

v=0
converges if and only if
2 1 1 2
min (f —a —1r,0) > i (— - —) — ﬂ,
p a) n(2-q

considering (4.51) and fixing some h(g) satisfying aforementioned conditions, we con-

clude that ¢ € M, , (1r), and

v (n,p,q,r 0, B)
ol < (A+B),
MP#](TF) (Vn (F))%_l

with

v (n,p,q,ra,B) = (\@)n(p

vng

e 0 yagun (1-9)\ @
<) () )

g

4.2.5 Bochner-Riesz Means

Applying Theorem 1.4.3 (b), it is easy to show that the Bocher-Riesz means of the
Fourier integral belongs to M, , (1r) under the assumptions of Proposition 1.4.1.
However, we will give more elegant proof of this statement based only on Theo-
rem 4.2.2 and some known estimates.

Proof of Proposition 1.4.1. Let us show that for any r € N, the function

e (1—=1[«™)", |2l <1,
Pra (@) = (1- |z |? )+ =
0, lz| > 1,

belongs to M,, , (1I1) if and only if ¢ , € M, , (T7). Indeed, the formula for geometric

progression yields
r—1

L=z, = (1= =), > |27 (4.58)

J=0
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Having taken some h € C' (R") so that h = 1in B (0, 1) and A = 0 outside of B (0, 2)
(such a function exists due to [67, Ch. 1, § 1.2, Corollary 1.2.6]), the equation (4.58)
implies that

Pra (T) = P20 (T)C(x), x€R",

where

() = (ij |x|2f) h).

=0
Obviously, ¢ € C* (R"™) and is compactly supported. According to Corollary 4.2.1,

¢ € M,, (Ir), for any 0 < p < 1, and any regular cone I' C R™. If ¢y, € M, , (11),
then Property 2) of a multiplier yields ¢, , € M, (1T).

From another side, (4.58) also implies

020 () = @ra(®)n(z), xR,

where .
1) = (Z |x|2j> ).

Using the same reasonings, ¢, € M, (Tr) implies @2, € M, (7).
Now, since ¢, is radial and belongs to C*° (B (0, 1)), then, according to Corol-
lary 4.2.2, @9, € M, , (Tr) if and only if its Fourier transform belongs to L? (R™).

As shown in [38, Appendix B.5], for any o > 0,

['(a+1)

S027OC (t) = WJTL/}HX (27T |t|) s

where .J, is the Bessel function. An asymptotic behavior of J, is also well-known.

Lemma 3.11 from [86, Ch. IV, § 3] asserts that
2 w7 1
J,(s) = ”ECOSG_?_Z) +O(m>, s — 00.

— I (O‘ + 1) ™m T T
©aa(t) = e |t|”/2+a+1/2 cos <27r it —— — — — = )

1
+ 0 <|t|n/2+a+3/2> ’ |t| — 00
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Therefore, it is clear that ¢s, € L7 (R") if and only if n/2+ a+1/2 > n/q. O
The following statement follows immediately from Proposition 1.4.1 and Corol-

lary 4.2.2.

Corollary 4.2.3 Let « > 0, r,n € N, and q € (0,1]. The Fourier transform of the

Junction o, (z) = (1 — |:U|2T)flr belongs to L (R") if and only if o > % — ol

4.3 Bernstein and Nikol’skii Type Inequalities for Entire Functions of

Exponential Type

Univariate Bernstein type inequalities for entire functions of exponential type o are
extremely useful tools of Approximation Theory. Usually, they have the following

form

1< allfll-

Initially formulated by S. N. Bernstein for trigonometric polynomials in uniform
norms, the inequality have been obtained for many other normed and pre-normed
spaces as well. We have already discussed such type of inequalities in H? (D) spaces
in Section 1.3 and Chapter 3 (see Example 3.2 in Section 3.2).

In L? (R), p > 1, the Bernstein inequality can be found in the classical monograph
by R. Boas [10, Ch. 11, § 11.3, Theorem 11.3.3]. For p € (0, 1), the result is due to
Q. Rahman and G. Schmeisser [78, Corollary 1]. There are also multivariate analogs.
For example, in [33], M. Ganzburg obtained an estimate for the norm (4.59) of the
gradient of an entire function. The estimate is given in terms of a supremum-norm
of the function. There are more Bernstein-type inequalities in his paper [34]. One of
them establishes a Bernstein type inequality for trigonometric polynomials in more
general setup than LP-norm (p > 1). Another interesting Bernstein type inequality for
star-like domains in R” was obtained by A. Kroé in [54]. There are several Bernstein

type inequalities for entire functions of exponential type satisfying some additional
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assumptions (see, e.g., [80, 37]).

The proof of the original Bernstein inequality has its own history, and new results
on this subject have still been appearing. For example, P. Nevai [68] recently proved
that the Schur inequality stating that for any algebraic polynomial P of degree at

most m — 1,
1Pllopr < m || VI= (PO

and the Bernstein inequality for trigonometric polynomials are equivalent in the sense

cl-1,1’

that they could be easily obtained from each other. Moreover, [68] contains an inter-
esting story and references on the history of the Bernstein inequality.

Our Theorem 4.3.2 establishes a Bernstein type inequality for entire functions of
exponential type, which belong to Hardy spaces H? (1T) in tubes over open cones.
The precise definitions and the result are given in Section 4.3.1.

Another family of inequalities heavily used not only in Approximation Theory, but
also in virtually every area of classical Analysis, is Nikol’skii type inequalities. An
alternative name is ” Different Metrics Inequalities”. The idea is to compare norms of
a function (or its derivatives) in different spaces usually under additional assumptions
on the function (see, e.g., [69, 70, 28, 22, 65], just to name a few). Very powerful
Nikolskii (and Berstein) type inequalities were obtained by I. I. Ibragimov [49]. In [35,
Sect. 5.3], M. Ganzburg obtained some Nikol’skii type estimates for entire functions
of exponential type in several variables. Another interesting subject where Nikol’skii
type inequalities in L” or in H? could be useful is Nikol’slii constants (see the article
by E. Levin and D. Lubinsky [59]).

Our Theorem 4.3.3 establishes a Nikol’skii type inequality for entire functions of
exponential type belonging to Hardy spaces in tubes.

Finally, let us note that Theorems 4.3.2 and 4.3.3 in a weaker form were announced
in [98] and published in a virtually unavailable author’s paper [97]. For example, the

Bernstein type estimate was obtained using the Fourier multipliers approach, which,

93



in particular, brought an additional multiplicative constant in the right-hand side.

The direct proof we give below allows us to obtain a better estimate.

4.3.1 Definitions and Main Results

Following [86, Ch. III, § 4], we remind some notions on multivariate entire functions
of exponential type.

A set K C R" is called a symmetric body if it is convex, compact, symmetric with
respect to the origin, and has a nonempty interior. In fact, any symmetric body is a

closed unit ball with respect to some norm. Its polar set is defined by
K={teR": (z,t) <1, Vx € K},

where (x,t) denotes the usual inner product of two vectors in R”.

Note that if K C R" is convex, closed, and 0 € K, then K** = (K*)" = K (see
[86, Ch. III, § 4, Lemma 4.7]). It is also clear that if K is a symmetric body, so is
K*.

For z = (21,...,2,) € C", let us also set

|2]| :== sup |z1t1 + - - + 2ptn| (4.59)
teK*

An entire function f defined in C" is of exponential type K, where K is a symmetric

body, if for any € > 0 there exists a constant A. > 0 such that
If (2)] < A2 09y e Cm, (4.60)

The class of all entire functions of exponential type K is denoted by £ (K). One of the
most interesting results of L? theory for these functions is the Paley-Wiener theorem
that describes the support of the Fourier transform of a function from L? (R")NE (K*).

Let us recall the multivariate version of this theorem.

Theorem 4.3.1 (E. M. Stein, G. Weiss [86, Ch. III, § 4, Th. 4.9]) Suppose
F € L*(R™). Then F is the Fourier transform of a function vanishing outside a

symmetric body K if and only if F is the restriction to R™ of a function in € (K*).
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Let us note that considering aforementioned relations about K**, Theorem 4.3.1
holds true with K and K™ switched.
For a multi-index k = (ki,...,k,), k; € NU {0}, we denote |k| = > 7 k;, and

for a function f: C* — C, we let

The following theorem establishes a Bernstein type inequality for entire functions

of exponential type K in HP-norm (or pre-norm).

Theorem 4.3.2 Let I" be a reqular cone in R", n € N, p € (0,00), and let K be a
symmetric body in R™. Then, for any function f € € (K)N HP (1) and any multi-

index k = (k1,..., k), the following inequality holds

1D*f || < O™ L 05 1 1l (4.61)
j=1

where 0; = maxiex+nr- |t;|, j=1,...,n.

It is easy to see that HP (11) spaces are not included one into another. Thus, the
inequalities comparing the H? norms for different exponents p do not exist. However,
if we require that the functions involved belong to £ (K), then the following Nikol’skii

type inequality holds true.

Theorem 4.3.3 Let I' be a reqular cone in R", n € N, and K be a symmetric body
in R™. If a function f belongs to the class € (K) N HP (Tr) for some p € (0,00), then

it also belongs to H (1t) for any q € (p, <], and
1F 110 < [p/21" 7719 (m (K AT PV (4.62)

Here m denotes the Lebesque measure in R™, and [a] denotes the ceiling of a real

number a, i.e., [a] =min{m € Z : m > a}.
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4.3.2 Proofs of Bernstein and Nikolskii Type Inequalities

Proof of Theorem 4.3.2. Let us fix an arbitrary § € I". If p € (0,1] and f € H? (1),
then f5; € L' (R™) N L? (R™") N H? (Tr) (see Lemma 1.4.1). Tt is also clear that f5 €
€ (K). According to Theorem 4.3.1, suppﬁ; C K*. But since f € HP (1r) for some

p € (0, 1], we have that supp]?(; C I'*. Hence, supp]/{; C K*NTI* C Q, where
Q= [—01,01] X -+ X [—0p, 04]

is again a symmetric body. According to Theorem 4.3.1, fs € £ (Q2%).
Now, let us consider the case p € (1,00). Take r := [p] + 1, where [p] denotes the

integer part of p, and consider the function

9(z):=(f(2))", zeC"

It is clear that ¢ € HP/" (Tr) and p/r € (0,1). Moreover, f € &£ (K) implies g €
E(LK).

r

Let us note that for any r > 0,

Indeed,

rK* = {rt: (x,t)gl,VxEK}:{t: (x,lt) SI,VxEK}
T

—{t: (lx,t) <1, VxEK}—{t: (x,t) <1, VxelK}— (1K> .
r T T

Since now g; € L' (R") N L? (R") N H? (Tr), Theorem 4.3.1 implies that supp g5 C
(LK) NI* =rK*NT* C rQ. And hence, gs € € ((rQ2)"). But then, for any > 0,

there exists A, such that

S =

1 t1 +
< Az (49 supero| s et

|15 ()] = 195 (2)|

1
o Ag 627r(1+s) supt69|z1t1+---+zntn|.
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Thus, we obtain that f5; € £ (Q*) for any p € (0,00) and any fixed § € T

Let us consider the function of one complex variable (,

F(C) = f(s (Zl,...,Zj_l,g, Zj_|_1,...,Zn)
with all z’s fixed (k=1,...,n, k # j). Since f5s € £ (Q2*), then for any £ > 0, there

exists a constant A, such that

IF (O] < As€27r(1+€) subreq (| potm gy 20tk HICt]) <

A2 (04+9) Simr s lklok 2705 (140)1C)

Since F is a function of only (, it means that it is an entire function of exponential
type at most 27o;. Applying the Bernstein inequality in L? (R) (for p > 1, see, e.g.,
[10, Ch. 11, § 11.3, Theorem 11.3.3]; for p € (0,1) — [78, Corollary 1]), we obtain

17, < 27a; [|F]], - (4.63)

But the derivative of an entire function of exponential type is also an entire function
of the same type (see, e.g., [10, Ch. 2, § 2.4, Theorem 2.4.1]). Thus, applying (4.63)

k; times and considering that z;’s, k # j, are arbitrary, we get the inequality

k
(;Zk f6> <$17---7$n)

(2ma))MP (| F|D = (2m0;)" P / |f5 (w1, ..o, 2,) [P dj
R

p

dr; =

p

el

that holds true for any z1,...,2;_1,%41,...,2, € R. Since f; € L? (R"), applying

Tonelli-Fubini’s theorem, we conclude that ;k,fj fs € LP (R™), and

Z.

ak
Since (;Z—ng) (x) = (ak,f. f) (x+1id), and § € I' was taken arbitrarily, passing to

k; kj
o —fs|| < 2moy)7 | fell, < (2m0y)™ ([ fll o < 00
Z
p

J
z.
8]

sup;cr in the last inequality, we obtain
ok

o5 < 270)" || fll o - (4.64)
J

HP
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It is also clear that in the multivariate case, partial differentiation in any vari-
able preserves the function in the same class € (2*). Thus, applying (4.64) when
differentiating with respect to other variables, we get (4.61). O

Note. The constant (27)* in (4.61) is nothing else but a consequence of the
definition of an entire function of exponential type in several variables given in [86,
Ch. 111, § 4]. For a classical univariate entire function of exponential type at most
o (the definition does not contain 27 in the exponent) belonging to H? space in the

upper half-plane, inequality (4.61) will have the following form

£ 0 < ™ 1 F e

Proof of Theorem 4.5.3. Step 1: ¢ = oo, p = 2. Since f € H? (1r), Theorem 3.1

from [86, Ch. III, § 3] implies that
f(z)= / MR (1) dt, 2 € Tr, (4.65)
F*

where F' € L?(T'*), and

1/2
= ([ 170 ) (4.66)

Since f € & (K), then clearly f5 € £(K), for any § € I'. Hence, fs5(x) is a re-
striction on R” of a function from the class € (K), and f5; € L* (R"). According to

Theorem 4.3.1, fs is a Fourier transform of a function F vanishing outside K*, i.e.,

f o +i6) = fy (z) = / e~2mE F (1) i — / FHEOF () dt. (4.67)

* *

From (4.65) and (4.67) we have that

f(x+i5):/

F*

e2mi@t) o =2m(00) o (t) dt = / 62”i(x’t).7:(—t) dt, xreR"

Hence,

e PTOOE (8) xr (1) = F (=) xxe- (1),
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for a.e. t € R™. Since I' is a regular cone, K*NI'* has a non-empty interior. Therefore,

the last equality implies
F(=t) = e COE () xgerrs (1)
for a.e. t € R™. Thus, from (4.67), we get
f(x+1i0) = / e2mi(@t) g=2m(00) o (t) dt, z € R"
K*nr*

Since (0,t) > 0 for any 6 € I', t € I'* by the definition of the conjugate cone, using

the Cauchy-Schwartz inequality and (4.66), we obtain

1/2
1 fslle < (/ |6_2”(‘5’”F(t)|2dt) (m (K* N T*))"Y?
K*NI'*

< |l (m (K= NT)2, yeT,

Passing to sups in the last inequality, we have
1F e < 11l ggz (m (K= OT*) M2 (4.68)

Step 2: p € (0,00), ¢ = co. Let us denote r := [p/2]. Then p < 2r < p+ 2.

Consider the following function
VA T
g(z) = (f (;)) , zeC".
Since f € £ (K), then for any € > 0 there exists a constant A. such that

£ (2)] € AetriFmmeatittantal | e Cn,

Hence

|g (Z)| < A;GQW(1+8) supteK*|21t1+~~-+zntn\’ » e Cn.

Since € > 0 was chosen arbitrarily, this implies g € £ (K). It is also clear that for

any ( € I', g € £(K). Furthermore, f € H? (Ir) implies f.), € H*> (It) (see

2r 1/2
da:)

Lemma 1.4.1), and for an arbitrary y € I', we have

lac (- + i)l = (/ p(eEs)
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2r—p

<G (LB Gl

< |\ Fesr 2 | £

1/2
d:v)

Since y € I was chosen arbitrarily, we conclude that g; € H? (Tr), and

gl g < 72 || fepel 22 N FIIEZ.

From (4.68), we now deduce

lgcll e < (m (K AT 202 | fp |52 | FIL2.

From the definition of g, we have ||g¢ ;. = ||f</r||;{oo. If f # 0 (in which case, the

statement is trivial), then the last inequality implies
| fesellige < (m (B AT 202 | £
Since ¢ € I' was chosen arbitrarily, taking the sup;cr, we obtain
1f oo < (m (K= QT DY | ] (4.69)
Step 3. If ¢ € (p, 00), then

1A < LA 1 Ve

whence, (4.62) follows from (4.69) immediately. [
Note that the function (p/2+ 1)"7 is strictly decreasing on (0,00). Indeed,

(p/2 + 1)"P = h®) | where
In(p/2+1)
—

h(p) ==

The function h(p) is strictly decreasing on (0, 00), which can easily be proven using
elementary Calculus.

Hence, (p/2 + 1)? < v/2, for any p € [2, 00), and thus

1-2 n
(p/z—‘n(l/P—l/‘I) < (2 i 1) (1-%) < 25( ’), 2<p<gq

This leads us to the following corollary.
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Corollary 4.3.1 Let I' be a reqular cone in R™, n € N, and K be a symmetric body
in R™. If a function f belongs to the class € (K) N HP (1It) for some p € (0,00), then

it also belongs to H? (1t) for any q € (p, <], and
1l < 28078 Gm (B D) P 1,

Here m denotes the Lebesque measure in R™.

Further Remarks

It is interesting to know if inequalities (4.61) and (4.62) are sharp. If p = oo, I' is
the interior of the first octant R} = {(z1,...,2,) €R": 2; >0, j=1,...,n}, and

K =TI}, [—2—“ 2—”], the Bernstein inequality has the form

L) .
T3 T

D" Fll e < TT 757 £ e -
j=1

n iTij

which is obviously sharp. The equality is achieved, for example, on f (z) =[] 1€
If p < oo, then the problem of sharpness is open even in the univariate case. Let

us cite one of the results due to Q. I. Rahman and Q. M. Tariq.

Theorem 4.3.4 ([80, Th. 3]) Let f be an entire function of exponential type T sat-
isfying the condition f(z) = e f (—z). Furthermore, let f belong to L* on the real

azris. Then
Oo 2 [ 2
[ rerass [P (4.70)
The coefficient 72/2 of [*_|f (z))* dx in (4.70) cannot be replaced by a smaller num-

ber.

Note that for p = oo, the condition f (z) = €™ f (—z) does not help to decrease the

constant, i.e., the constant 7 in the inequality

sup | f' (z)] < Tsup|f (z)]
z€R z€R
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is sharp (see [79]). The problem of the smallest possible constant for other p’s is
stated in [80] as open.

Despite the fact that we do not claim sharpness of the constant in (4.62), it is an
improvement of the result of I. I. Ibragimov [49]. It deals with functions from the
class W of entire functions of exponential type o having finite L norm on the real

.....

K = H?:l [—2—” 3—7;] The following estimate was obtained.

L)
aj

Theorem 4.3.5 ([49, Th. 1*]) If f(z1,...,2,) € W&,

then
n (1.1
,Hl (Z)r o \f (@, oz, 1<p<2
If @zl £ 700 Ly (4.71)
H(Wj)p q”f<x17 7:En)”p, p>2,
j=1

where || f (1, .. xn)ll) = [7 o S 1 f (e, @) day o day,.

. .
g5 05

For K = H?Zl [—2—” 2—”} and I being the interior of R’} , our Theorem 4.3.3 yields

1 s < T (1/2152)" " 11

7=1
which is better than (4.71) and is valid for any 0 < p < ¢ < co. However, the class

P is larger than € (K) N H? (Tt).
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CHAPTER 5

Riesz Decomposition for Poly-Superharmonic Functions in R”

The proof of Theorem 1.5.5 follows, in general, the idea of the proof of [52, Th. 1.2].
But the general case of m-superharmonic functions is more complicated, whence we

need to develop appropriate tools first. This is done in Sections 5.1 and 5.3.

5.1 Lemmas on Riesz Kernels

We will assume that x,y are vectors in R", m,n,L € N, n > 2, and that 2m < n or
2m — n is a positive odd integer.

Following [52], we consider the generalized Riesz kernels

Kom(z =), lyl <1,
Kom p(z,y) := Ko —y) — 5" % (DKo (—). [l > 1. LeZ,.
[vI<L
Let us recall that for a multi-index v = (v4,...,1,), v; € Zy,
=gt 2, vl=uplee. v, lv|=vi4+-+r, DVf(x) = ol f |
' Ozt ...0xun

We will also use A, to denote the n-dimentional Laplace operator applied with respect

to the variable z € R".

Lemma 5.1.1 If 2m < n or 2m — n is a positive odd integer, then
Ay Ko (x) = (2m — n)(2m — 2) Kym-_1) (), (5.1)

AJ:KQmQ(mfl) (23, y) = (2m - n)(zm - 2)K2(m71),2(m72) (.73, y) (52)
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Proof. Since 2m < n or 2m — n is a positive odd integer, then

a -n a m—n m—n/2—
g (1) = g (o)™ ) = m gy (o )"

n

and
02 m—n .
o (12P) = @m—n) (@344 a2)"
+ aem-n=-2) @i+ -+ ) (53)
Hence
Ay (loPm) = (@m = n) (o™ 4 (2m — 0 — 2)[omn2)

= (2m —n)(2m — 2)|x[" "2
This gives (5.1). Now, for |y| > 1, we get

S D0 ()

Lj
[v|<2m—2

1

= Y |0 R e [T
[v|<2m—2 ' k=1,n, k#j
Therefore,
0? v,
92 > 1 (D" Kon) (=)
7\ |v|<2m—2

= 3 | R ol e T et

lv|<2m—2 \ k=Tn, k#j
n vi-1 VT2 Vil v
_ Ty :Cj—l x] xj-i-l xnn (Dul...unK ) (_ )
= —‘ c. I N1 [ —| 2m Y).
V. Vi1 (I/j — ) Viy1: IZ%%

v+ <2(m—1),v;>2

Replacing the multi-index v by 7 = (7, ..., ,) with

- Vi, kj%])

vV =
Vj_27 k:j7
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we obtain

0? v, T (54 2) g1
g | 2 PR ()| = D (DRt ().
o\ v|<2m—2 [7|<2(m—2)

(5.4)

From (5.3), it is clear that

(Dﬁl...ﬁj_1(173'+2)’7j+1---5nKQm) (—y) = D" (—ZKQm) (—y)
dy;

= (2m — ”)DD (Kz(mq) + y?(2m -—n- 2)K2(m72)) (—y).
Setting v := © on the right-hand side of (5.4), we see that

0? o

= @em-n) Y. = (D"Kuw) (-y)

p|<2(m—2)
+ (2m—n)(2m—n—2) Z % (DY (4 Kam-2)) (=)
p<2(m—2)

Taking the sum over j = 1,...,n, we deduce

A DR ()

lv|<2m—2

= <2m — n)n Z % (DUK2(m—1)) (_y)
v|<a(m-—2)

x 14
+ (2m—n)(2m —n — 2) | K; ) i (D K2(m71)) (—v)

— Cm-n)m-2) ¥ %(D”Km—n) (—y). (5.5)

v|<2(m—2)

Thus, considering (5.1), we obtain (5.2). [J

Corollary 5.1.1 If2m < n or 2m —n is a positive odd integer, then for any k € Z,
AiKQm(x) - Cm,n,kKQ(m—k) (ZE), (56)

and

A]gzI<2m,2(m—1) (13, y) = Cm,n,kKQ(m—k),Q(m—k—l) (x7 y)a (57)
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where

1, k=0,
k=1
e =4 2V L (@M —j)—n)(m—j—1)), 1<k<m-—1,
=0
\0, kE>m

In particular, Koy (x) and Koy om-1)(2,y) (with y as a parameter) are m-harmonic

functions in R™\ {0}.

Proof. Formulas (5.6) and (5.7) just follow from Lemma 5.1.1. Let us check the

‘boundary case’, k = m. Clearly,
A?[{—2m,2(mfl) (xa y) = AJT (A;n_lKQmQ(mfl)) (.73, y) = Cm,n,m—leKQ,D(xa y)

Now,
Kz —y), lyl <1,
Ko(z —y) — Ka(—y), |yl = L.
Thus, A, Ksp(x,y) = Ay Ks(z —y). Furthermore,

0 (1= om (a2 g a2)

KQ,O(J:7 y) =

2
%Kz(x) =(2—-n) ((x% 4+ +xi)*n/2 _ gl (x% g j17721)771/271> .

J
Hence,

Ay K (x) = (2 —n) (n (234 + xi)fn/z —n (2} 4+ wi)*nﬂ) _0

Thus,
AZLKQm,Q(m—l) (I, y) =0.

O

Lemma 5.1.2 If 2m < n or 2m — n is a positive odd integer, then for any r > 0,

m—1 2k
n |yl Cm,n, m—k)—n
r) X (%) megre ™ bl
M (r, Ky (- =) = &

)Qk Cm,n,k |y|2(m—k)—n

k(3 +k) » lyl >



where Cp, i are defined in Corollary 5.1.1.

Moreover, for any y # 0 and r > 0,

1 v, .,
— Y LK) () de
n S0,7) yj<2m—2
m—1
n T\ 2k Cmn,k —k)—
= 1(5) X (5) m s e (5.8)
2/ = \2/ KT (k+3%)

Proof. We will use formula (7.11) from [106, Ch. 1.7]:

m—=1 __n/2 2k+n k

T4y A
/ ferpdr=S T ( nf) ()
BO) £ KEIT (k+2+1)

which is valid for any function f € C?™ (U)NH™ (U) for some domain U, y € U, and

(5.9)

any r € (0, dist (y, 0U)).
Assume |y| > r. Applying (5.9) with f = Ky,,, U = R™\ {0}, and using Corol-

lary 5.1.1, we get

m—1 /2y 2k+n,

Kom(z —y)dr = mon bk Kagm—r) (—y)
B(0,r) — 22K (k+ 2 +1)

m—1 _n/2 2k+n 2(m—k)—n
- Y Cmv"”“@ . (5.10)
e~ PREID (k+ 5 +1)

If we fix y and let r < |y| be arbitrary, then differentiating the last equality with

respect to r, we obtain

n m—1 n— m—k)—n
M Ko () = g (B S TR e
e LT 2HEIT (ki + 2 + 1)

2n/2pn—1

k=0
m—1 ok 2(m—k)—n
n 725 Cory kY|
- F(—) i S (5.11)
2 kz_% 22FEIT (k+ %)

Now, let 0 < |y| < r. We cannot apply the above approach since we have a
singularity in B(0,7). To get rid of it, we will use the reflection technique as in
Kelvin transform, described in [4, Ch. 1, § 1.6]. For w # 0, we will consider its

inverse with respect to the unit sphere S(0, 1):



If x € S(0,1), and y # 0, then
yllz —y*| = |z —yl. (5.12)

Indeed,

" . . 1 2x -y

Wiz =y P = 1yl (2 + ly |2—2x-y):|y|2<1+—2— )
>yl
P2+ 1 =20y =y + 2> — 22y = |z —y[*

Changing variable w = x/r, we obtain

1 2m—n r2m " Y Im—n
M(r,Kop (- —y)) = — [rw —y| do(w) = )x - = do(x).
On Js(0,1) On  J5(0,1) r
Using (5.12), we get
2m—n x|12m—n
MO Ko (=9) = L2 [ e (7 dote)
On 5(0,1) r

- e (1 (= (2)).

Since |(%)*‘ = ﬁ > 1, we can apply (5.11) with » = 1 to get
n m—1 c N r 2(m—k)—n
M (1, Kom (- =) = Iyl T () S (—>
2 Z 22REIT (k+ %) \y

- ( )Z (|y|> —k!;’&»”f g)ﬁ(m-k)—". (5.13)

k=0

For |y| =r, let y; := (1 + 1)y, | € N. Note that |z — y| < |z — y| provided |z| = r.

Indeed, since |z| = |y| =7 > 0, we get

) ) 1\° 1
lz =yl = |z[°+ 1+ ly|* —2 L+ )2y

2 1
= le—ylP+7 (" —wy) + 57 > e -y

|2mfn

Thus, if 2m < n, we obtain |z — y,|*" " < |z — y . Considering that the function

|z—y[*™™™ (as a function of x) isin L' (S (0,7)), we can apply the Lebesgue Dominated

Convergence Theorem to get

M(r, Kam (- = y)) = lim M (r, Kom (- = 32)
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If 2m —n > 0, then |z — | " converges to |z — y[*™ " uniformly on S(0,), and
the last equality obviously justified. Therefore, in either case, applying (5.11) with

y = y;, we deduce that

m—1

M K — 1 T T2kcm,n,k’yl
0

S

‘2(m—k)—n

= (3) mzl emnalf g (3) mzl (M)% Gy y 0.
2/ &= 2K (k + §) 2/ =\ 2) KT (5+Fk) B

If y =0, then (5.13) is obvious.

To obtain (5.8), we should use (5.5) to conclude that

ALY S (D Ean) (9) | =k D %(D”Kg(m_k)) (—y),

V.
[v|<2m—2 v|<2(m—k—1)

and then apply (5.9) withtf =R", y =0, f(z) = > L (D"Kap) (—y), where y
[v|<2m—2
is considered as a constant. Thus, we get

Juon 2

\1/|<2m 2

m—1 A/ 2p2k+n

v - Cm,n,k m—
(D"Kyp) (—y) dx = Z ST 1)| y|2m—k)—n

This equality is valid for any y # 0 and r > 0. Differentiating with respect to r, we

obtain

07“”1

v m—1 2k
T v n T Cm7nvk m—kK)—n
/ (Do) (=) dor(a) = T (5) 30 oo sy )
k

S(07) lmm , 2) £ 4RI (k+ %)

g

Note. There is even more general result on spherical means of the Riesz kernels
due to J. S. Brauchart, P. D. Dragnev, E. B. Saff [16, Th. 2]. Their statement covers
fractional powers of |z — y|, but the answer is given in terms of a hypergeometric

function, which makes it more complicated to apply in our proofs.

Lemma 5.1.3 If 2m < n or 2m — n is a positive odd integer, then for any R > 0,

/ Ko (x —y) do
B(0,R)
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m—1

n/2 Cmn, om 1 1 | ‘QkR2(m7k)
2"/ kzo 4kk!1“(%llk) <]y\ (2k+n - z(m_k)> + & S ) , |yl <R,

m—1
7Tn/2 I{;) ZMI‘?(%—n—;_kk—i_lﬂyP(mfk)fnRQkJrn’ |y| > R,

where Cp, i are as in Corollary 5.1.1.

Proof. 1f |y| < R, then using Lemma 5.1.2, we get

R
/ Koy (x —y) do = / ( Ko (x — 1) dcr(x)) dr
B(0,R) 0 5(0,r)

R
= / anr"’lM(r, Ko (- —y)) dr
0

— T (E) mzl Cmn.k |y’2(mfk)fn /Iyl r2k+n71 dr + ’y‘2k /R TQ(mfk)fl dr
N2) L 4REIT (3 + k) 0 v

m—1

— 271'”/2 Z Cmn.k |y‘2m n |y|2k R2(m—k) _ |y|2(m—k)
k=0 4EKID (g + k) 2k +n 2(m — k)

= 27”/25% | |2m 1 _ 1 n |y|2kR2(m_k)
Lo pr (2 7 \2k v 2(m— k) 2=k )

For |y| > R, the statement is just (5.10). O

5.2 Proof of Proposition 1.5.1

Proof of Proposition 1.5.1. Note that for o, = 1 and any oy, ;, j > 2, we have

—_

3

m—1

m m—1
> i (277r) = a AR N " pap AR Y " g™
=1 k=0 k=0

x>
[e=]

—_

3

_ CLkTQk (4(m—1)k + am724(m—2)k N ame)

B
Il
o

3
L

m

_ akr% <4(m—1)k + Z4(m—j)kam,j) ) (514)

0 j=2

B
Il

Let us show that there is the only set of a9, ..., Q4 m, such that

4(m_1)k_’_z4(m_])kam7] :O’ k: 17...,m_17
j=2
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which is equivalent to (1.25) holding for every r and ay, ..., a,;,. As we will also see,
these a,, ;’s satisfy (1.26).

We can rewrite the last system as

Z4(mfj)kam7j = —4m=Dk =1 m— 1. (5.15)

Jj=2

This is a linear system of (m — 1) equations for (m — 1) unknowns, whose matrix is

4m=2 4m=3 . gm=1=J e 4 1 —4m-t
42(m72) 42(m73) o 42(m717j) o 42 1 _42(m71)
4l(m72) 4l(mf3) o 4l(mflfj) o 4! 1 _4l(m71)
4(m71)(m72) 4(m71)(m73) o 4(m71)(m717j) o4qm—1l _4(m71)(m71)

(5.16)
To evaluate the main determinant of this matrix, let us make a reflection in

horizontal direction, so that the last column becomes first, next to the last becomes

second, etc.:
1 4 - 4i-1 - 4m—3 Am—2
142 .. 42h 0 42med) 42(m—2)
A=
] L L Y LU ) 4lm=2)
1 4m=1 . 4m=nG=1) o gme(m=3)  y(m-1)(m-2)

The main determinant D of the system (5.16) and the determinant of A are related
by
D = (=1)"z 2 det(A),

and the matrix A is a Vandermonde matrix, whose determinant is well known. Thus,
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we obtain

D=(-1n=m2 [ @ -4). (5.17)

1<I<j<m—1

Since D # 0, the system (5.15) has a solution a2, ..., Qmm, and this solution is
unique.

Now, for k = 1,...,m — 1, let us evaluate the determinant of the left-hand side

of the matrix in (5.16) with k-th column replaced by the right-hand side of (5.16):

gm—2 . gm—k —4m—1 gm—hk=2 o 4 1
42(m—2) o 42(m—k) _42(m—1) 42(m—k—2) . 42 1

Dk -
4l(m—2) o 4l(m—k) _4l(m—1) 4l(m—k—2) . 4l 1
JmDm=2) | gn-DenR) _gln-n-1) gom-D0m—k-2)  gm-1 ]

Multiplying the k-th column by —1 and then each column by the reciprocal of its

first entry (i.e., multiplying j-th column by the reciprocal of (1, j)-entry), we get

D), = —4m72  gmThgmoigmok=2 oy

1 o 1 1 1 e 1 1
4m=2 e gm—k gm—1 4m—k=2 e 4 1

X
4([—1)(m—2) o 4(l—1)(m—k) 4(1—1)(m—1) 4([—1)(m—k—2) Y et T |
4(m—2)(m—2) o 4(m—2)(m—k) 4(m—2)(m—1) 4(m—2)(m—k—2) o4m—2

Since also the determinant of a transposed matrix is the same as the determinant of
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the initial one, taking transpose, we obtain

I3

Dk — _4 (m—l)—(m—k—l)

4m—2

4m73

4m—k
4m—1

4m—k—2

AG-1)(m=2)

AG—D)(m=3)

AG=1)(m—F)
AG—1)(m—1)

A1) (m—k~2)

Moving the k-th row to the first place, we conclude

Dk _ (_1)k4%(m,1),(m,k,1) %

Applying the formula for a Vandermonde determinant, we deduce

Dk — (_1)k4%(m71)7(m7k71)

. . D
Finally, using Kramer’s rule, a1 = 5,

1

4m—1

4m72

4m7k

4m—k—2

1

immediately from (5.17) and (5.18).

Conversely, if a2, .. .

k=1,....m

AG=1)(m=1)

AG=1)(m=2)

AG-1)(m—k)

AG—1)(m—k~2)

1

H (em,j,k

1<i<j<m—1

- em,l,k) .

A(m=2)(m—2)

4(m73)(m72)

4(m—k) (m—2)
A(m—1)(m—2)

4(m—k—2) (m—2)

Jm=1)(m-2)

A(m—2)(m—2)

A(m—Fk)(m—2)

4(m—k—2)(m—2)

— 1, whence (1.26) follows

, Q. Satisfy (5.15), representation (5.14) yields

Zamj 2mJ —a0<1+2amj>—a02am?]
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Note. We can give an explicit representation in (1.25) for some values of m:

m =2 : F2(2r) —4F2(7’) = —3CLO;
m=3: F3(4r) — 20F5(2r) + 64F5(r) = 45a0;
m=4: Fy(8r)— 84F,(4r) + 1344F,(2r) — 4096 F,(r) = —2835ay.

5.3 Spherical Means of m-Superharmonic Functions

The key ingredient to the proof of Theorem 1.5.5 is the following formula for spherical

means.

Lemma 5.3.1 Let u € SH™ (R"), and let yu, = (—A)" u. Then forr > 1,

M(Tau):/B(o)f<Tydluu Zakr

where ay’s are constants independent of r,

f(ry) = cmnl’ (2)

; ok (|y‘2kr2(m—k)—n _ r2k’y|2(m—k)—n) 1< |yl <,

(4P (+k)

E W cnn | 2(met)—
2 <—> R (5 k) : lyl <1,
Z

0, ly| >,

\

Cmng are as in Corollary 5.1.1, and and ¢, ,, are given by (1.23), so that
Cmn (—A)" Ko 1, (-, ) = 6. (5.19)

Proof. 1t follows from the Riesz decomposition that (see [32, Representation (3.1)])
if v e SH™ (R™), then

o(2) = cmn / Komatmy (@) dpio(y) + hr(z), =€ B(0,R),
(0,R)

where hr € H™ (B(0,R)). (For (5.19), see [32, § 3].) Indeed, let us consider the

following positive linear functional on C§° (B(0, R)):



where
p(z) = cm,n/ sz,Q(m—n(%y) dpo(y).
B(0,R)

Using Fubini’s theorem and (5.19), we have
L) = [ (onn [ Kanaoy () da)) (A" p(o)ds
B(0,R) B(0,R)

-/ (m / Km,2<m1><a:,y><—A>%<x>dx) dina(y)
B(O,R) B(O,R)

- / o P ) = L)

This implies that for a.e. x € B (0, R), v(z) — p(x) coincides with a function from
H™(B(0,R)). Let us call it hg(z). Thus, v(z) = p(x) + hr(x) a.e.

Note that two m-superharmonic functions, which are equal a.e., are equal iden-
tically. This follows from Property (iv) in Definition 1.5.5 (the definition of m-
superharmonic function).

Now, we conclude that v(z) = p(z) + hr(z) everywhere in B (0, R).

Therefore, since u € SH™ (R"), then for any ro > 1 > 0

u(z) = cm’n/ Komam—-1)(z,y) dpu(y) + he(2), x€ B(0,1;), j=12,
o (5.20)
where h,, € H™ (B (0,r;)).
Let us fix two arbitrary r; and o (assume 7 < 75), and take an arbitrary r with

1 < r <r; <ry. Integrating the last equality over the sphere of radius r, we obtain

Cmn
M(r,u) = / / Kom am-1)(x,y) dpu(y) do(x)
S(0,r) J B(0,r;)

O'nT’n_l
1

O—nrnfl

+

/ h,,(v) do(z). (5.21)
S(0,r)

Since h,, € H™ (R"), the Almansi expansion (see, e.g., [5, Ch. I, Prop. 1.3]) implies

that there exist functions go ;, ..., gm—1,; harmonic in B (0, r;), such that

hy,(x) = 12[*gi (), =€ B(0,r;). (5.22)
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The mean-value property for harmonic functions yields

m—1

/S(O )hrj(x) do(z) = Z % gi.;(0). (5.23)

k=0

1

O'nTn_l

Changing the order of integration in the first summand of (5.21) using Fubini’s the-

orem, we get

Cm,n
1 / / K2m,2(m71) (.CE, y) dﬂu(y) dU(ﬂf)
S(0,r) 4 B(0,r;)

opr®

= Cm,n/ M (’l“, KQm,2(m71)('7y)) d,uu(y)
B(O 'I’j)

From Lemma 5.1.2, we conclude immediately that
cmanM (7, Ko agm—1) (y)) = f(r,y), r>0.
From (5.21), (5.23) and the last equality, we obtain
M(T,U):/ f(rydﬂu ZT gk]
B(0,r;)
Since f(r,y) = 0 when |y| > r, the last equality can be rewritten as
M (r,u) —/ )f(r L Y) dity (y Zr%gk] (5.24)
B(0,r

Since the left-hand side is independent of j € {1,2}, so is the right-hand side. But,
for each j € {1,2}, the expression in the right-hand side is a polynomial in r. Thus,

we conclude that

m—1 m—1
Zr2kgk71(0) = Z 1 g12(0), 1€ (1,m)).
k=0 k=0

This immediately implies that the coefficients of this polynomial do not depend on j.

So, taking any r; > 1, we may denote
ap = gx1(0), k=0,...,m—1, (5.25)

and rewrite (5.24) as

M(T,U)Z/ fry) dpu(y +Zakr
B(0,r)
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It is clear that if A € H™ (R™), then pu; is a zero measure. Thus, for any r > 1,

m—1

M (T7 h) = Z akr2ka

k=0

and

zm: Qi M (2m_jr, h) = ag zm: Oy = h(0) 2’”: Q. j-
j=1 j=1

j=1
Corollary 5.3.1 Let u € SH™ (R"), 2m < n, and let j, = (—A)" u. Then for any

r>1,

m

D M (27 u) = / ( i f (277, y)) dpa(y)
j:]- B(07T) 1

m—1
>

where f(r,y) is defined in Lemma 5.8.1, a1 = 1, Qo Qo are given by (1.26)

j=

D amif (277, y)) dp(y) + a0 Y, (5.26)
j=1

0,2vr)\B(0,2v—1r) ( j=1

in Proposition 1.5.1, and ag is from Lemma 5.53.1.

Furthermore, if u(0) # oo, then

a0 = u(0) = c / 1™ dya(9), (5.27)
B(0,1)

where ¢y, are given by (1.23).

Proof. Since f(R,y) = 0 when |y| > R, then representation (5.26) follows immedi-
ately from Lemma 5.3.1 and Proposition 1.5.1.
To get ag, we need to refer to the proof of Lemma 5.3.1. Using (5.20) with some

r1 > 1, we conclude that

U(O) = Cm,n /( : K2m,2(m—1)(07 y) dlvbu(y) + hm (0>
B(0,r1

Since

lyl*m 7yl < 1
KQm,2(m71) (0>y) =
07 |y| Z 17

117



we obtain

u(0) = e / 2™ dpa(y) + o, (0).
B(0,1)

Now, (5.27) follows from (5.22) and (5.25). O

Note. It is clear that if h € H™ (R"), then p, is a zero measure. Moreover, using
the same reasoning as in the proof of Lemma 5.3.1, we obtain that for any r» > 0,
M (r,h) = S apr?*. Therefore, Proposition 1.5.1 and (5.27) imply

k=0

Zam,jM (2, h) = h(0) Zam,j» r > 0. (5.28)
j=1 j=1

5.4 Proof of the Riesz Decomposition

Lemma 5.4.1 Letm,n € N, 2m <n,u € SH™ (R"), ptu = (—A)"u, k=0,...,m—

1, and
sup 2™ ", (B(0,7)) < o0. (5.29)
r>1
Let also 1 < a<b and
ci(b,r,m,n k) = / |y r2 7 dp, (y),
B(0,br)\B(0,1)

ca(a, b,r,m,n, k) ::/ |y |2 == d, (),
B(0,br)\B(0,ar)

es(a,byr,myn, k) = / |y|2(m_k)_"r2k Aty (y).
B(0,br)\B(0,ar)
Then
sup |c1(b,r,m,n, k)| < oo, sup|ca(a,b,r,m,n, k)| < oo, sup |es(a,b,r,m,n, k)| < oo.
r>1 r>1 r>1
Proof. 1t is clear that for any £k =0,...,m — 1,

‘y|2kr2(m—k)—n < kaTQm—n7 y € B(O,br),

|y|2(m7k)7nr2k < a2(m7k)fn,r2mfn ye R" \ B(O, CLT).

)
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Therefore, the statement follows from (5.29) immediately. For example,

c1 (byr,m,n, k) < b%r2m_"/ dpiy, ()

B(0,br)
— p2m—k)+n (br)zm_”/ dp (y) < b2 sup (T2m_"/ d,uu<y)> :
B(0,br) r>1 B(0,r)

g

Lemma 5.4.2 Let m,n € N, 2m < n, u € SH™ (R"), and p, = (—A)" w. Further-

more, let oy, ; be the absolute constants from Proposition 1.5.1. If

Z Qi j M 2m_j T, u)

<oo and sup|r* "u, (B(0,r))| < oo,
r>1

sup
r>1

then

sup / [y " dp(y) < oo
r>1 J B(0,r)\B(0,1)

Proof. Corollary 5.3.1 implies that

Zam,jM (2’"77'7", u) :/ ) (Z Qi f (2m7j7”7 Z/)) dp(y)

B(O,T jil
m—I
+ / Omif (277 y) | duu(y) +a Qi
P2 BN p SCRTICEE) R URTES L8
Let us denote
n Cm,n,k

ok =T (5) ot 5.30
P 2/ 4FEID (2 + k) (5.30)

where ¢, , 1, are defined in Corollary 5.1.1, i.e.

)
17 kZO,
p(ny k-l ' .
Bk = Wﬂ]}o(@(m—])—n)(m—j—l)), 1<k<m-—1,
KO7 k> m.

Let us also remind that according to Proposition 1.5.1, e, 1 = 1 and

H (em,j,kfl - em,l,kfl)

(_1)k+%(m—3)4%(m—1)—(m—k) 1<i<jsm—1

[ @w-4

1<i<j<m—1

Ak =
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where

4 1< <k-1,
Om jr—1 = 2<k<m.
4m—1—j’ /{S]Sm—l,

Using the representation of f(r,y) given by Lemma 5.3.1, we get

Z s M (2777, u)
j=1

Il
“\

+
(]
Q
3 ;
1M
sy
3
3
=
=
[\
a
o
3
s
3
=z
|
3
U
=
=
S

m—1 m—l m—1
m— 2(m—k)—n
+ ( O, j Bm n,k|y|2k (2 ]T) ( : dﬂu(y)
lle(o 217 )\B(0,2-1r) =1 h=0
m—1 m—l m—1 .
m— 2 m—k)—n
- < Oy, j ﬁm n,k (2 ]T) |y|2( ¥ ) dﬂu(:y)
lle(o 217 )\B(0,21-1r) =t h=0
+ ag Y oy (5.31)
j=1
Now,
m m—1 ok
Zam] Zﬁmnk (2m J ) ‘y’2(m*k)
j=1 k=0

= Zﬁmnkrzk‘ypm - <Z@ 4(m ) > :

According to (5.15), 7™, QA DF =0, k=1,...,m — 1. Hence,

m m—1 m
Z U j Z ﬁm,n,k (2m—jr)2k ’y‘Q(m—kz)—n — ’y|2m—n Zam,j' (532)
j=1 k=0 j=1
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Using (5.32), the linear combination of means (5.31) can be rewritten as

2 amgM (2r,u) = / (Z%Zﬁmnklm% (2" )CW )

J=1 B(0,1)

+ (ZamZﬁmmm% (2 )" )> )

B(0,,\B(0,1) =1

- > am, / Y™ dp(y)

J=1 B(0,r\B(0,1)

m—1 m—1 m—1
Jj=1 k=0

B(o,zlr)\B(o,Ql—l—lr)

m—I m—1
- (Z g Y B (27790) Iylz(’"’“)"> dp(y)
=1 k=0

+ ag ZOém’j. (533)

/ (Z Qg Y By (2m‘jr)2(m_k)_"> dpu(y)

m m—1
B(0,1)) Z |, Z | Bk (2m7j)2(m7k)7n — 0, r—oo0.
j=1 k=0

Hence

co (rym,n, k) : / (Zamj
B(0,1)

7j=1 k=0

m—1

m— 2(m—k)—n

is bounded as a function of r for r > 1.
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In terms of Lemma 5.4.1, we can rewrite (5.33) as

Zamij (2™ r,u) = co(r,m,n,k)

m

m—1
+ Z O 5 Z ﬁm,n,k2(m_j)(2(m_k)_n)cl (17 r,m,n, k)
j= =0

— Y o, / 2" djra(y)
j:

B(0, r)\B(O 1)

m—1m-—I
+ Z Zoz m.j Zﬁm”kz m=j)@2(m—k)=n) . (2l_1, 2L r,m,n, k)
=1 j=1
m—1m—I -
- Z am,j Z Bm,n,k4k(m_j)03 (2l—17 217 r,m,n, k)
=1 j=1 k=0
+ Qo Z O-/m,j'
7j=1

Thus, Lemma 5.4.1 and boundedness of ¢q (r,m,n, k) imply that

Zam’jM (2™ r,u) = c(r,m,n, k) Zam] / [y 2™ d g (y),
j=1

B(0,r)\B(0,1)

where sup,., |c(r,m,n, k)| < oco.
It is clear from (1.26) that for any fixed m, o, ;’s alternate in sign and grow in
absolute value when j increases. Hence » " ay,; # 0. Therefore, the condition

SUD,.~ 1 D gy Qg M (27, u)‘ < oo implies that

sup / Y[ dp(y) < oo.
r>1 J B(0,r)\B(0,1)

g

Lemma 5.4.3 Let m,n € N, 2m < n, u € SH™ (R"), and p, = (—A)" w. Further-

more, let oy, ; be the absolute constants from Proposition 1.5.1. If

Z o ;M (Zm_jr, u)
j=1

sup <oo and supr*™ ", (B(0,r)) < oo,

r>1

then

[ @ diny) < o
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Proof. 1t is clear that

/B(O , 0t )™ dpaa(y) < g (B(0,1)) < o0 (5.34)

Furthermore,

sup / (1 + [y)*™ " dyua(y) < sup / WP dua(y). (5.35)
B(0,r)\B(0,1) B(0,r)\B(0,1)

r>1 r>1
The last expression is finite because of Lemma 5.4.2, whence the statement follows

from (5.34) and (5.35). O

Theorem 5.4.1 Let m,n € N, 2m < n, u € SH™ (R"), and p, = (—A)" u. Fur-

thermore, let au,, j be the absolute constants from Proposition 1.5.1. The conditions

sup ]Zm;oszM (2™ 7r,u)| < oo and ililla 2™ ", (B(0, 7)) < oo,
hold if and only if
[ @ diy) < o (5.36)
and u is of the form
w(x) = cmm | Kom(z —y)du,(y) + h(z), xe€R", (5.37)

RTL

where h € H™ (R™), and ¢y, are given by (1.23).

Proof. Suppose that

Z M (2777, u)

J=1

sup
r>1

< oo, and sup <7“2m_"/ d,uu(y)> < 00.
r>1 B(0,r)

Consider the following function

Ube (x) = : 2 — y[P" " dp(y).

Let us show that U is locally integrable in R™. Indeed, let us choose an arbitrary

R > 0, and show that

/ (/ |z — g dw) dpiu(y) < oo.
n \JB(0,R)
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It follows from Lemma 5.1.3 that [ BO.R) |z — y”™ ™ dx is continuous on R”, and

m—1 ¢
R2m27Tn/2 Z | m’”’k| <2( 2 1 > , |y| < R,

4kklr(%+k) m—k)  2kin

[ st e
B(0,R) |y|2m—an7Tn/2 Z |Cm,n,k‘

TRD(2 k1)’ lyl > R.

Lemma 5.4.3 also implies that

[ @)™ duaty) < 0.

Hence, for any R > 0,

/ i ( /B o |z —y|* " dx) dpiy(y) < oo. (5.38)

Now, Tonelli-Fubini’s Theorem yields that UL € Lj,.(R™). In particular, we have
that UL (z) # oo a.e. (in the Lebesgue measure sense) in R”.
Theorem 1.2 of [66, Ch. 2, § 2.1] implies that US* is lower semicontinuous on R".

Furthermore, if ¢ € C§° (R"), then considering (5.38) and using Fubini-Tonelli’s

theorem, we conclude

[ Utale) (-8)" ole)

= [ ([ e ) -8y o) do

= [ ([ cars@an) dum zo. 639

(Since |- —y|*™™ € SH™ (R"), the internal integral is nonnegative for any y.) Let us
also note that the final integral is always finite because of (5.38). Hence, (—A)™ Us"
is a positive measure on R".

Moreover, since the Riesz kernel | - —y[*™ ™ > 0 is superharmonic in R" and
Ubv # oo, we have that US" is superharmonic in R" (see [55, Ch. I, § 2, Th. 1.2]).

But then it follows from lower semicontinuity and superharmonicity that
) 1
ube () = im ———— ube (t) dt, x€R"
B(z,r)
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(see, e.g., [55, Ch. I, § 2, Formula (1.2.4)]).
Thus, we conclude that U5* € SH™ (R™).

Furthermore, since ¢, (—A)™ Ko = 0g (see [41] and [32, § 3]), we have that
Conn (—A)" Koy (- —y) = 0,.

Hence, we may proceed with (5.39), and obtain

o [ UB(@) (-2 @) = [ @) dialy) = [ (o) (-2)" o) do

Thus, we have two functions, UL and w, from the class SH™ (R™), such that the
relation (—A)" [¢nnUs"] = (—=A)™ w holds in distributional sense. Using the same
reasoning as in the proof of Lemma 5.3.1, we conclude that h := u — ¢, , U5 €
H™ (R™). Thus, (5.37) follows.

Conversely, let u € SH™ (R") be of the form (5.37), where p,, satisfies

[ @)™ duaty) < .

Then, applying Tonelli-Fubini’s Theorem, and Lemma 5.1.2, we obtain

1 m—n
Mg = o [ (e an) ) ao

= M (7‘, Ko, ( - y)) dﬂu(?/)

R’l’l
m—1
|y) Cmnk’ 2( —k)—
= =) me Y T i (y)
/B(O,r) ()2%(2 kIT (2 +k;)
m—1
n r Cmn.k 2(m—k)—n
+/ (—) (—) —Iyl dp(y)
Rn\B(OT‘ 2 ZO 2 k'r )
< S [ o)
k=0 B(0,r)
m—1
+ 3 1B [y dpaa(y), (5.40)
k=0 R™\B(0,r)

where [, 1 are defined in (5.30). Now, if > 1, we get

/ " dp (y) < / ly[*™ " dp(y).
B(0,r)\B(0,1) B(0,r)\B(0,1)
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Hence,
r2m"/ dpa(y) < r?™ "y (B(0,1)) + / y)*" " dpa(y),
B(0,r) B(0,m)\B(0,1)
and (5.40) implies

1

|ﬁm,n,k’ .

3

MU < (P (BOD)+ [ )

"\B(0,1)

il
o

Since [i, (14 |y))*™ ™ duu(y) < 0o, we conclude that

-1

(1 + [y duu(y)) Bl < 00.
0

3

r>1

n

sup M (r,UL") < (/Lu (B(0,1)) + 2”2m/

i

This yields

sup Zam,jM (2™, Ujn) | < oo (5.41)
=1

r>1
j=

Now, from (5.37), (5.41) and (5.28), we deduce that

Z M (2777, u)

J=1

sup < 00.

r>1

Finally, for any » > 1 we have

0 < p2mn / diialy) < / diialy) + / Y2 ()
B(0,r) B(0,1) B(0,r)\B(0,1)

— 1 (B(0,1)) + 27727 / (] + [y)™™ " dpruly)

B(0,r)\B(0,1)

< ja (B(0, 1)) + 272 / (14 )™ dyraly)
B(0,r)\B(0,1)

< (B(0,1)) + 272" / (L4 )™ dpa(y) < oo.

]Rn
To prove Theorem 1.5.5, it remains to replace the condition
sup 72" " 1, (B(0,7)) < 00
r>1

by another one that should be easy to check having a particular function u €

SH™ (R™). The replacement is given by the following lemma.
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Lemma 5.4.4 Let myn € N, 2m < n, u € SH™(R"), and p, = (—A)"u. The

following are equivalent:

(@) supr®™ "y, (B(0,1)) < 00

r>1

(b) sup [ u(rt) (=A)"p(t)dt < oo, for some ¢ € R;
r>11<jt<2

() sup [ u(rt) (=A)"p(t)dt < oo, for any p € R.
r>1i<jt|<2

Proof. Since u € SH™ (R™), it is locally integrable, and dpu,(z) is a positive Borel
measure on R”. Take any ¢ € R, r > 0, and let ®(x) := ¢(x/r). Since & € C° (R"),

we obtain

o (B(0,7)) = /B L B dn(e) < / & (x) dpu(z)

B(0,2r)

m —2m m x
= [ u@ e = [ -yl (5) do
= 7“2’”/ w(@) [(=A)Y" o] () da.
i M A (T)
Making the substitution ¢ := z/r in the last integral, we get
P (B(0,7)) < / w(rt) (A" o(8) dt, 7> 0. (5.42)
1<[t<2

Analogously, since 0 < &(x) <1,

i (B(0,2r)) > /

B(0,2r)

O(x) dpy, () = rzm/

r<|z|<2r

u@) [(-8)" ¢ (%) da.

r

Making the substitution ¢ := x/r in the last integral, we arrive at

(22" 1 (B(0, 2r)) > 22m" / w(rt) (“A)" o) dt, r>0.  (5.43)

1<[t<2

Now, assume (a) holds. Taking an arbitrary ¢ € R, we conclude from (5.43) that

sup / u(rt) (=A)" p(t) dt < sapr*™ ", (B(0,7)) < oo,
1<[t|<2

r>1/2 r>1
which implies (c), and then, trivially, (b).

If (b) holds with some ¢ € R, then (5.42) yields (a) immediately. [
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Thus, Theorem 1.5.5 follows from Theorem 5.4.1 and Lemma 5.4.4.

Furthermore, we may use (5.42) to get easy-to-check sufficient conditions on u to
have Riesz representation (1.28).

Proof of Corollary 1.5.1. Applying Holder’s inequality to the right-hand side of

(5.42), we have that for any p € [1,00) and ¢, such that 1/p+1/q =1,

1/p
B(0,2)\B(0,1)) (/1<It|<2 lu(rt)” dt)

1 1/p
_ m p
= U= el mson) (55 [ W@l )

n m ’u(aj>|p l/p
<2 /p||(—A) SDHLq(W\B(o,I)) (/<| <2 Wdt

. " [u(@)” N
<2 /p||(_A> SOHLq(B(o,z)\B(o,l)) (/||>1 ER dt '

If p = o0, then clearly,

2, (B(0, 7)) < H(_A)mSOHLq(

TQmin,u’u (B(Ov T)) < H (_A)m (pHLl (W\B(O,l)) €SS sup \u(x)] :

r<|z|<2r
Thus, if either condition, (a) or (b) is satisfied, then sup,-; 7™ "u, (B(0,7)) < co.

Applying Theorem 5.4.1, we get representation (1.28), and relation (1.29). O
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