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CHAPTER 1

Introduction

In modern days, electronics and computer-based products are shaping the way of

human life in this planet. In the last 30 years, digital circuit technology has advanced

by giant leaps compared to other technologies largely because of scaling of transistors

as well as the emergence of different computer aided design tools and algorithms.

Digital circuits are built with logic elements. Logic elements are built with tiny

MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Transistors were

first invented in 1947 and the MOSFET was invented in 1952. The MOSFET was

the first electronic device consisting of three node where the voltage between two

nodes can be controlled by the voltage at the third node. The MOSFETs works as a

switching device and it is an ideal device to implement switching binary logic.

1.1 Circuit and system design

1.1.1 Design flow

Digital circuit design consists of several stages. The primary few stages deals with

optimization and conversion between several different logic level abstraction. These

steps are performed in the Front End of the design flow.

In the later stages the actual physical system is implemented on chip by following

physical design and verification steps which are collectively called the Back End of

design flow.

Figure 1.1 shows the basic front End and back End design flow. Digital circuit

design starts with the HDL code that describes the logic or netlist of connection. The

1



Figure 1.1: ASIC design flow

primary HDL code is then optimized with a logic optimizer. In the next stage, the

optimized logic is mapped to the standard cells. The output is called the technology-

mapped netlist or netlist in short. Netlist is the last abstraction level before building

the actual System on Chip(SOC).

In the back end flow , designers do necessary timing analysis and re-adjust timing

performance to ensure desired performance. In the next steps, the netlist is placed

and routed and large blocks, analog circuit, memory, power rail and IOs are placed

with floor-planning. Eventually, full-chip semiconductor layout is produced and sent

to fab to manufacture.

1.1.2 Electronic design automation (EDA)

EDA (Electronic Design Automation) tools are a type of software that is used in

electronic design. These design tasks are mostly computationally expensive and hence

efficient algorithm and data structures are necessary to efficiently model circuit in

many different kind of abstraction level. In the old days before CAD tools, integrated
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circuits were designed by hand, and manually laid out. In some advance situations

layout was generated using geometric software.

CAD algorithms and tools began to emerge during mid 1970s. During this era

the Design Automation Conference started its journey and the ground-breaking text

on VLSI system was published in 1980 called as ”Introduction to VLSI Systems”

by Carver Mead and Lynn Conway [3]. This text advocated for design automation

using programming language and also showed that chip design pattern consists of

a lot of repetitive modular design routines especially in the layout generation part.

The logic optimization algorithm evolved thoroughly over the next decades and open

more doors for automation.

Historians marks 1981 as the year when commercial EDA tools started their jour-

ney. Semiconductor companies like IBM, Hewlett Packard , Intel were the pioneers

and later companies like Cadence, Synopsys , Mentor Graphics dedicated themselves

only to EDA development.

1.1.3 Motivation for EDA tool design in academia

• VLSI CAD or EDA tools are around since 1970s.

• Many CAD ideas were generated in academia. Modern days well-known EDA

developer like Synopsys and Cadence also started their journey in academia.

• To solve many design problems without actually building the physical device.

• With the change in transistor sizes many new design challenges emerge. Need

proper modeling of new process technologies and integrate with existing tools.

• To facilitate developing new algorithm techniques to solve new problems.

• To automate design process of physical device used for other research.

3



1.1.4 Overview of path optimization using gate sizing

Modern digital circuit design usually starts with a circuit model written in a HDL

(Hardware Description Language). Then, the circuit model goes through logical op-

timization and converted to a structural level logic gate network model that is se-

mantically equivalent to the initial behavioral model through technology mapping

process. Logical equivalency does not ensure that the circuit will function properly,

because each logic element used in the network consists of practical transistors and

wires which are immune to several variables such as Process, Voltage, Temperature

(PVT) conditions etc. In order to maintain the correct logic levels at each logic gates

output and ensure timely signal propagation, designers usually use gate or transistor

sizing techniques.

In this dissertation, the author presented some novel techniques to size paths

for optimal delay by taking accurate branching effort into consideration. These tech-

niques solves branching in the context of proper load distribution and minimizes delay

by balancing each path from input to output. Chapter 5 and Chapter 6 have all the

details of these techniques.

1.1.5 Orientation of the thesis

This thesis consists of two major type of work. The first type is implementation

of modeling tools and algorithms that model the behavior of the circuit and helps

analyze the performance of the circuit under test. The second type of work are

the algorithms for path optimization. The rest of dissertation is organized in the

following order – Chapter 2 introduces OkCad tools collection. Then in the following

chapters the theories and algorithms behind the tool are explained (in Chapter 3 , 4

). In Chapter 5 the theories of Unified Logical Effort (ULE ) is revisited and ULE

is used as an aiding tool for path optimization. Chapter 6 , 7 give the details of

path optimization techniques developed for the work followed by experimental results

4



(Chapter 9 ) . Finally , Chapter 9 concludes the dissertation.
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CHAPTER 2

Ok CAD tools

2.1 Ok CAD tools

OkCAD tools is a collection of various synthesis, logic optimization and technology

mapping tools designed in JAVA. The collection has rich sets of algorithm to carry out

the tasks. Moreover, the tools are designed with a object oriented reusable software

architecture which provides a lot of flexibility for the end user to explore the existing

algorithms and contribute his/her own algorithm and integrate into the system quite

easily. In the subsequent sections each tools are described briefly.

2.1.1 Ok CAD tool flow

OkCad tool collection consists of several basic tools for modeling and analyzing cir-

cuits as shown in figure 2.1. In the heart of OkCad tool is LogicGraph, a package

written in Java. LogicGraph is basically a Directed Acyclic Graph (DAG) to repre-

sent the circuit schematic in program domain. The designs are imported from Verilog

RTL text. An ANTLR based parser is used to parse a subset of Verilog 2001 and

convert the HDL text to LogicGraphs.

The logic optimizer and equivalence checker is based on Binary Decision Diagram

(BDD) . A separate independent package was developed for the BDD package. The

technology mapping tool is based on structural matching of AIG or Nand-Inv of the

subject graph of the circuit and pattern graph from the standard library cell. Figure

2.2 shows a sample ROBDD derived from Verilog HDL and Figure 2.3 shows the

technology mapped LogicGraph of the same Verilog.

6



Figure 2.1: OK CAD tool flow

Figure 2.2: OkCAD tool with generated sample ROBDD

Figure 2.3: OkCAD tools with generated sample LogicGraph

7



Figure 2.4: ANTLR flow

2.1.2 ANTLR parser generator

ANTLR (ANother Tool for Language Recognition) is a efficient modern parser gen-

erator written in Java [4]. The tool takes EBNF (Extended Backus-Naur Form)

grammar of a language and generates parser for it in several different target language

such as Java, C++, Python, JavaScript , Perl, Objective-C etc.

ANTLR can generate lexer, parser, tree parser, and combined lexer-parser. The

generated parser can automatically generate abstract syntax trees which can be fur-

ther processed with tree parser. Unlike other parser generator ANTLR generates the

lexer, parser and tree-parser automatically and generates event-listener classes. This

classes are open and can be extended by the client to implement interpreter . The role

of the interpreter is to execute some tasks when certain language pattern in detected.

2.1.3 Verilog subset compiler

The compiler is an important and essential tool to build the primary data structure

from text form. In past , many kind of text form has been used such as PLA, BLIF,

BLIF MV etc. Although those formats are easier to understand they are not sufficient

to model real life complex circuits.

The compiler included in OkCAD is a Verilog subset compiler designed using state

of the art ANTLR 4 parser generator [4]. ANTLR 4 is powered by event driven and

8



Figure 2.5: Verilog parse tree generated by ANTLR 4 based Verilog compiler

listener based architecture which makes it easier to put the target language action

code separately. The compiler produces Logic Graphs (discussed later) as output.

Figure 2.5 shows the abstract syntax tree of a small sample of Verilog. Lexing and

parsing is performed from left to right and the parse tree is built bottom-up. ANTLR

also generates parse tree walker class and also provides listener classes.

Figure 2.5 shows a sample Verilog module and corresponding parse tree produced

by the OkCAD Verilog compiler. The major features of the compiler are listed below

• Full RTL / Structural Verilog.

• Partial support for behavioral (if-else , Case etc).

• Implemented Event driven pattern.

• Understands all kinds of Verilog number notations. Example : 4b1100, 16hffff

etc.

• Supports array indexing, mathematical expressions.

• Supports all RTL expression maintaining proper precedence.

• Supports module instantiation.

9



2.1.4 LogicGraph : digital circuit expressed as directed graph

The logic networks are represented using a graph data structure called ”Logic Graph”

which is basically a directed graph. The vertices represents different logic elements

like logic gates, flip-flop and edges represents connecting wires. Both vertices and

edges have the expected functional behavior of different logic gates and connecting

wires respectively.

The most useful features of Logic Graphs are described below

A Features in LogicGraph

• Modeled all primitive logic gates for any input.

• Event-driven simulation model.

• Circuit simulation with event based signal propagation through edges

• Static Timing Analysis (STA)

• Basic placement with simulated annealing (Metropolis algorithm)

B Graph algorithms integrated in LogicGraph

• Breadth-first traversal

• Depth-first traversal

• Topological order traversal

• Shortest-path computation

• Longest-path computation

• Cycle detection

10



2.2 Summary

OK CAD tools is a collection of basic data structures and algorithms to aid in model-

ing and analyzing circuits. It contains an ANTLR based Verilog compiler to convert

Verilog text to graph based data structure. There are separate packages for logic

compression, technology mapping and gate placement features. Basically, it is a plat-

form to implement and test new ideas and suitable for academic use. The collection

is written entirely in object oriented Java. Hence, it is efficient and platform inde-

pendent. It is extensively used to conduct most of the research work described in this

dissertation.
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CHAPTER 3

Binary decision diagram (BDD)

3.1 Logic optimization with reduced ordered binary decision diagram

(ROBDD) techniques

OkCAD is equipped with a logic optimizer based on Reduced Ordered Binary Decision

Diagram (ROBBD), a data structure that ensures a canonical representation of any

logic function for a particular variable order. ROBDD maintains a variable order and

hash-based data-structure named unique table to keep track of all the unique sub-

functions. Hash-based implementation also ensures fast amortized time for ROBDD

operation. in the subsequent the fundamentals of BDD theory and logic optimization

is discussed briefly. These theories and ideas are already implemented in the OkCAD

BDD package.

3.1.1 History and background

The original idea of Binary Decision Diagram came from Lee (1959) [5] and Akers

(1978) [6]. Later in 1986, Randal E Bryant at Carnegie Melon University extended

traditional BDD [7]. Bryant represented BDD with a defined variable order and

shaped BDD to a strong canonical form. This ordered BDD is called OBDD in short.

In the same paper Bryant also showed that by sharing redundant isomorphic sub-

graph the logic representation can be compressed. His proposed data structure is

now called a Reduced Ordered Binary Decision Diagram (ROBDD) [8], [9], a well-

defined data structure with strong canonical form. It is proven that two functions are

equivalent if and only if , the ROBDD’s for each function are isomorphic [9].
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In 1992, Brace, Rudell and Bryant [8] improved the notion of ROBDD with com-

plemented edge BDD. A complement edge indicates that the connected formula is to

be interpreted as the complement of the ordinary formula. In this way, complemented

functions share the same BDD and thus reduces the size of the overall ROBDD.

The Problem with ROBDD is that some function has exponential size ROBDD

for one variable order and linear size ROBDD for another variable order. Bolling and

Wegener showed that finding optimal variable order is NP-Complete [10]. Variable

order can be computed statically [11],[12],[13]. Static variable ordering works well

for many combinational functions that come from circuits we actually build but it

usually works does not do well for unstructured problems.

Friedman and Supowit found that permuting any top part of the variable order

has no effect on the nodes labeled by variables in the bottom part and vice verse [14].

Their work lead to researcher to investigate dynamic variable ordering methods. The

most popular method is a heuristic called sifting [15].

Many researcher used BDD for technology mapping for VLSI circuit as general.

Among them, some of the techniques were pruned and optimized properly to support

FPGA. In this regard the work of Mailhot and De Micheli [16],[17] is worth men-

tionable for their early work in this field. Later, Lehman et al.[18] used BDD for

logic optimization and then converted BDD to AIG network with choice node. Their

method of technology mapping takes all the optimization choices into consideration

through choice nodes.

3.1.2 Basic concepts

Although the underlying model of the decision diagram already studied by Lee (1959)

[5] and Akers (1978) [6], this kind of representation of switching function was not used

seriously until 1986. In 1986, by introducing some ingenious ordering restrictions to

BDD and providing sophisticated reduction mechanism, R. Bryant [7] substantially
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improved the model. Since then ROBDD became a useful data structure to represent

switching function with strong canonical form and became useful for robust model

checking, validation and technology mapping. These facts have been established by

the following variable properties

• ROBDD provides a strong canonical representation of switching function.

• ROBDD can be manipulated efficiently.

• For many practical switching function ROBDD representation are quite small.

• A ROBDD can represent an exponential number of paths with a linear number

of nodes.

• On a more abstract level, BDDs can be considered as a compressed represen-

tation of sets or relations. Unlike other compressed representations, the actual

operations are performed directly on that compressed representation, i.e. with-

out decompression.

Binary decision Diagram (BDD) is directed acyclic graph, in which each vertices

or node represents a Boolean function. Each vertex has one associated variable v.

Depending on Boolean value (TRUE or FALSE), the associated function is further

decomposed into two sub-functions which are independent of variable v and these sub-

functions becomes associated with child nodes of the current node. When v is TRUE

the true-child node is chosen and its associated function represents the resultant sub-

function. In the same way false child node is chosen when v is false. Thus the variable

v gives us a decision. Some ROBDD of basic functions are show in figure 3.1.

3.1.3 Shanon’s co-factor

The Shannon expansion theorem is an important idea in Boolean algebra. It paved the

way for Binary decision diagrams, Satisfiability solvers, and many other techniques
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Figure 3.1: BDD of basic functions

relevant for computer engineering and formal verification of digital circuits. Shanons

expansion is the fundamental mathematics of OBDD. Shanon co-factors are used in

ITE algorithm to build ROBDD. When OBDD nodes are spitted to child nodes, the

Boolean function associated with the node is decomposed and represented as sum

of sub-functions of the original. Shanon’s co-factors are also important in tautology

checking in formal verification. Shanons expansion is expressed in equation 3.1

f = x · fx̄ + x̄ · fx (3.1)

where fx and fx̄ are Shanon’s positive and negative co-factor respectively. The

positive co-factor of f with respect to variable x is the sub-function fxi=1 =

f(x1, ..., xi−1, 1, xi+1, ...xn). The negative co-factor of f with respect to variable

x is the sub-function fxi=1 = f(x1, ..., xi−1, 0, xi+1, ...xn). Shanon’s expansion is phys-

ically expressed in OBDD as in figure 3.2, where f1 = f(x1, ..., xi−1, 1, xi+1, ...xn) and

f0 = f(x1, ..., xi−1, 0, xi+1, ...xn)

3.1.4 ROBDD output function inversion

When a logic function is inverted in logic domain, logic 1 and logic 0 nodes swap in

the ROBDD domain. In figure 3.3 , ROBDD of AND function and NAND function
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Figure 3.2: Shanon’s expansion in OBDD

Figure 3.3: ROBDD function inversion

are shown. The only change in the ROBDDs is the logic ”1” and logic ”0” nodes

swapped their places. In other words, all incoming edges towards the logic ”1” node

is now directed to logic ”0” node and vice verse. With this manipulation property it

is easy to invert function in ROBDD domain by swapping constant logic nodes.

3.1.5 ROBDD input variable inversion

Figure 3.4 shows ROBDD of different flavors of NAND3 functions with inverted and

non-inverted inputs a, b and c. It is noticeable that when a input is inverted a

transition edges coming out of that corresponding variable’s BDD node is also gets
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Figure 3.4: ROBDD of different flavors of NAND3function

inverted. For example, in Figure 3.4 , the top left ROBDD denotes NAND3 of a,b,c

(all of them non-inverted) and in the next ROBDD (2nd row, left) only input c gets

inverted. The difference between these two BDD is only in the ”c” nodes. In the

first ROBDD, c node’s true edge goes to logic 1 and false edge goes to logic 0. In the

second ROBDD c nodes true edge goes to logic 0 and false edge goes to logic 1. Thus,

when inputs gets inverted in logic domain, edges gets inverted in ROBDD domain.

3.1.6 Ordering rules

A BDD with a specific variable order in all path provides strong canonical repre-

sentation of logic [7] , [9]. With a specific order, it is ensured that decision on one

particular variable will take place in the same level of nodes. In other words, Any

particular level of nodes is functionally independent of their parent level nodes. This

property allows all the nodes with same variable, same true-child and same false-child
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to be shared. During tautology checking the variables of the two function need to

be ordered. Theoretically, two BBD are tautological if and only if they have same

variable order and encounter same node functions in any chosen path from root to

leaves. The BDD ordering rules are

• No variable appears more than once along a path.

• In all paths variable appear in the same order.

Figure 3.5 shows the ordering rule.

3.1.7 Reduction rules

In 1986, Bryant [7] showed that, when BDD is ordered and reduced it offers a strong

canonical representation of logic. This form of BDD is called ROBDD which can

represent exponential number of paths in linear number of nodes and hence it is

useful for synthesis. There are three reduction rules which are discussed below.

A Reduction rule #1 : elimination of redundant leaves

At first, Boolean function is represented by Truth Table or Binary Decision Tree. The

first reduction step is to convert the Binary Decision Tree to OBDD by eliminating

all the redundant leaves. OBDD should have only two leaves, a constant 1 and a

constant 0. According to the first reduction rule, only one copy of the leaves are kept.

All the edges that went to redundant leaves are redirected to the surviving leaves.

Figure 3.6(a) shows rule #1.

Figure 3.5: Ordering rule
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(a) Reduction rule 1 : binary tree

to binary decision diagram

(b) Reduction rule 2 : merging rule (c) Reduc-

tion rule 3

:elimination rule

Figure 3.6: OBDD reduction rules

B Reduction rule #2 : merging rule

If two internal nodes are labeled by the same variable, their true-edges lead to the

same node and their false-edges lead to the same node, then one of the two nodes

is eliminated and all the incoming edges of the eliminated node is redirected to the

remaining one. Figure 3.6(b) shows rule #2, where there were two nodes labeled

”X1” pointing to the same X3 nodes through true and false edges. One of the node

is eliminated.

C Reduction rule #3 : elimination rule

If the true-edge and false-edge of a node v points to the same node u then v is

eliminated and all the incoming edges of v is redirected to u. Figure 3.6(c) shows rule

# 3, where the true edge and false edge of the X2 node is pointing to the same X3

node. Hence, the X2 node is eliminated.

3.1.8 BDD reduction example

Table 3.1 shows the truth table of a Boolean function and figure 3.7(a) shows the

Binary Decision Tree for the same function with a variable order X1 > X2 > X3.

BDD reduction rules are always applied bottom-up. Figure 3.7(b), 3.7(c) and 3.7(d)
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x1 x2 x3 f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 3.1: Truth table representation of a Boolean function

shows the three reduction steps mentioned above to form ROBDD.
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(a) Begin : binary tree of the function of table

3.1

(b) Step 1 : binary tree to binary decision diagram

(c) Step 2 : merging rule

(d) Step 3 : elimination rule

Figure 3.7: OBDD reduction example
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(a) Two seperate BDD for SUM and CARRY (b) Multi-rooted shared

ROBDD

Figure 3.8: ROBDD sharing example

3.1.9 ROBDD manipulation

In traditional commercial Electronic Design Automation (EDA) tools, BDDs are built

correctly on the fly. It is better to build it on the fly than to build a bad non-canonical

BDD and try to fix it later. The main concept is to create vertices or nodes selectively.

With the clever use of a hash table the already created unique nodes are stored and a

new node is created if it is not found in the hash table. The hash table is also called

a unique table.

In ROBDD if a node is found in the unique table, instead of creating new node

the old one is shared. As a result, same node can be shared by multiple parent nodes

under same root or multiple roots. Node sharing in ROBBD is the strongest feature

of ROBDD. It helps reducing the size of the BDD and in the long run produces

optimized circuits with heavily shared resources. For example , in Figure 3.8(a) and

Figure 3.8(b) it is shown how BDDs are shared and multi-rooted BDDs are formed.
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Figure 3.9: ITE analogy with 2:1 MUX in hardware

3.1.10 ITE algorithm

ITE algorithm is the core algorithm behind ROBDD manipulation. It is inconvenient

and inefficient to build a BDD and then order and reduce it. This algorithm helps to

incrementally build the ROBDD with correct order and reduction on the fly.

• ITE stands for IF THEN ELSE. In Boolean algebra, ITE(F,G,H) = F · G +

F̄ ·H

• In hardware ITE can be viewed as 2:1 MUX as shown in figure 3.9. In MUX,

signal G is selected when F is logic 1 and signal H is selected when F is logic 0.

In comparison, the node variable in ROBDD is analogous to selector signal F,

true child is analogous to signal G and false child is analogous to signal H.

• ITE applies Shannon’s expansion theorem on the fly when building ROBDD.

• ITE takes three BDD node as I,T and E and performs If Then Else operation

on the nodes and ultimately returns another BDD node.

• If the required node is found in unique table. then the found node from unique

table is sent. In this way, same node is shared.

• If terminal cases are met, trivial results are sent, otherwise Shannon co-factors

are computed and a new node is created in the unique table and that node is

sent.
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• Very useful, as it can be used to implement many other common logic such as

AND, OR, NOT etc. Table 3.2 shows a list of common logic function represented

in term of ite operator.

algorithm 1 shows the ITE algorithm and algorithm 2 shows the ”Find or

Create” algorithm used in Unique table.

Subset Expression Equivalent ite form

0 0 0

1 1 1

f f f

g g g

NOT (f) f̄ ite(f, 0, 1)

NOT (g) ḡ ite(g, 0, 1)

AND(f, g) f · g ite(f, g, 0)

f > g f · ḡ ite(f, ḡ, 0)

f < g f̄ · g ite(f, 0, g)

NOR(f, g) f̄ · ḡ ite(f, 0, ḡ)

OR(f, g) f + g ite(f, 1, g)

f ≥ g f + ḡ ite(f, 1, ḡ)

f ≤ g f̄ + g ite(f, g, 1)

NAND(f, g) f̄ + ḡ ite(f, ḡ, 1)

XOR(f, g) f ⊕ g ite(f, ḡ, g)

XNOR(f, g) f⊕̄g ite(f, g, ḡ)

Table 3.2: Boolean functions of two arguments and equivalent representation in terms

of the ITE operator
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Algorithm 1: ITE

input : Associated variable v, node loson, node hison

output: If the node already exists in the unique table then the pointer to the

existing node is returned otherwise a new node is created and stored

in unique table and a pointer to the new node is returned

ITE(node I, node T, node E)

begin

if (terminal case applies to I,T,E) then

return (immediately computed result for terminal conditions)

end

else if (Computation table has entry (I,T,E)) then

return (result node from computation table)

end

else

pick minimum variable x among roots of I,T,E

PosFactor = ITE (Ix, Tx, Ex)

NegFactor = ITE (Ix′ , Tx′ , Ex′)

R = FindOrCreate(x, PosFactor,NegFactor)

InsertToComputationTable(hashfunction(I, T, E), address)

return (R)

end

end

3.1.11 Variable ordering

The size of the ROBDD depends on the variable order. And finding optimal variable

order is NP-Complete [10]. Some exact variable ordering algorithm gives excellent

result but expensive in time. Sometimes complexity becomes exponential, specially

for functions that have few symmetric variable. FYI, symmetric variable are those set
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Algorithm 2: Find or create

input : Associated variable v, node loson, node hison

output: If the node already exists in the unique table then the pointer to the

existing node is returned otherwise a new node is created and stored

in unique table and a pointer to the new node is returned

FindORCreateNode(var v, node loson, node hison)

begin

if (v is actually a constant) then

if (if this constant does not already exist in unique table) then

put this constant in the unique table

return (pointer to constant)

end

end

else if (loson == hison) then

return (loson)

end

else if ((v,loson,hison) node already exists in unique table) then

return (lpointer to (v,loson,hison) node from unique table)

end

else

create new node = (v,loson, hison)

put this node in unique table

return (pointer to this node)

end

end

of variable that does not effect other variables or the ROBDD as a whole when they

change places among themselves. Figure 3.10 shows a example of variable ordering

complexity for good and bad variable order for the function a1 · b1 + a2 · b2 + a3 · b3
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Variable ordering algorithms are divided into two classes a) Static and b) Dynamic.

In static method, variable order is computed up-front based on the problem structure.

It works well for many combinational function that comes from circuits designers build

but does not work well for unstructured problems. Thats why, dynamic variable

ordering is preferable.

According to the Friedman theorem [14], permuting any top part of the variable

order has no effect on the nodes labeled by variables in the bottom part. Permuting

any bottom part of the variable order has no effect on the nodes labeled by variables

in the top part. In figure 3.11, two adjacent variable layer exchange using Friedman’s

theorem is shown.

Friedman’s theorem is the basis for the sift algorithm , a popular dynamic variable

ordering scheme first proposed by Rudell [15]. Later the idea was extended by taking

variable symmetry into consideration. This form of dynamic variable sifting is called

symmetric sifting and it is investigated by many researchers till today [19], [20], [21],

Figure 3.10: Complexity of variable ordering
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Figure 3.11: Adjacent variable exchange in ROBDD

[22].

3.2 OkBDD features

3.2.1 ROBDD data structure

OkBDD uses pointer based BDD nodes. The node is only 16 bit w.r.t 32-bit OS for

minimal basic function. There are 4 more Boolean flags ( another 4 byte) for graph

processing and visualization tasks. There is a BDD manager class called only ”BDD”

in the core BDD package. All the BDD formation and variable ordering algorithms

are associated with the BDD manager to keep the Node data structure lightweight.

OkBDD support dynamic variable ordering. The BDD variable can be declared any

time during runtime and ordering algorithm can be invoked anytime selectively. There

is a general variable ordering algorithm interface declared and user can use their own

implementation of algorithm. The OkBDD also implements separate unique tables

for each variable to make variable ordering efficient. The variable ordering problem is

nothing but a combinatorial optimization problem and the ordering interface provides

the facilities to use any other general optimization algorithm framework with minimal

effort. That means, user can use 3rd party optimization framework without knowing

any details about the ROBDD data structure.
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3.2.2 GraphStream visualization

OkBDD visualization is based on GraphStream [23], [24] - an open source dynamic

graph library that provides an easy way to represent dynamic evolving graph in

memory, in GUI and save it as popular graph format files. GraphStream provides

a framework to handle the evolution of graphs, that is the changes on values stored

on edges and nodes of a graph during time and also the ”topology” changes of the

graph that is the addition, removal and modification of nodes and edges during time.

As GraphStream can handle graph evolution, graphs are defined as a ”flow of graph

events”, instead of only a set of nodes, edges and eventually sets of values associated

to node and edges. Dynamic graphs events tells when a node, edge or associated

value appears, changes and disappears. GraphStream provides the ideal model, view

, controller paradigm (MVC). Here , the model is the ROBDD data structure, the view

is the visualization which runs on a separate thread and follows the evolving model

accurately. Controllers are separate Java classes that initiates the communication

between the model and view. Apart from visualization, GraphStream also provides

the facilities to save the ROBDD graphs as popular graph formats such as Dot,

GraphML, GML, TLP, NET, GEXF etc which allows the graphs to be analyzed by

other Graph processing and analysis tools.

3.3 Comparison and analysis

ROBDD formation and manipulation of ROBDD is memory and computation inten-

sive task. ROBDD operations create large amount of intermediate data, performs

hashing function frequently. Specially, memory management and garbage collection

is vital for processing ROBDDs in machine with limited memory. Most of the BDD

packages came out in 1995 to 2000 and at that time memory size was a huge con-

cern. Cache misses and page faults were frequent and degraded the performance and

decreased the usefulness of BDD packages.In modern days, memory size requirement
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is not a great issue but better memory access and utilization of spatial and temporal

locality will still boost-up performance. In summary, raw performance depends on

memory size, memory hierarchy and even OS. Also, many packages are not exhaus-

tive in their implementation and thus they remain lightweight.On the other hand,

packages like CUDD[25], CMU[26] offers more advanced functionality. In short, com-

paring different packages only by raw performance and completion time measurement

is misleading.

In 2003, Janssen from IBM TJ Watson Research center published a through report

on 13 BDD packages at that time [2]. In his own words, he investigated underlying

algorithmic and data structure principles that are at the core of each package’s im-

plementation and tried to relate the strength of various BDD packages with respect

to their usefulness in serious applications. Table 3.4 is adapted from Janssen’s paper

which shows how the packages faired with respect to the different criteria. We entered

our BDD package as the 14th entry in the table and compared according to the same

measures that were used for the previous 13 packages. Table 3.3 elaborates all the

measurement keys used in Table 3.4. It is worth to mention that, BDD node size can

be squeezed to as little as 8 byte but it will decrease the capacity of handling nodes

and variables as shown in the case of ABCD and StaticBDD. As OkBDD node uses

pointer-based referencing, the node size is expected to increase in 64 bit machines.

The authors wanted to extend the functionality of the package in future with bi-

decomposition algorithms and functionalities, cube manipulation and logic synthesis

oriented architecture.

3.4 Summary

Binary decision diagram is a powerful data structure to manipulate Boolean logic.

BDDs are frequently used for logic minimization and equivalence checking. In in-

dustry, BDDs are used in logic minimization , formal verification and test pattern
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Key Description

Package Name of the package

Lang. Programming language used

T Integer indices (I) or Pointer (P) based parent-sibling

relationship

R Depth-first traversal(D) / Breadth-first traversal(B)

M Presence of BDD manager

Nmax Max nodes that can be allocated assuming infinite mem-

ory

Size A single BDD node size for basic function

64 Indicates whether the node size will increase if ported

to 64 bit system

Vmax Max number of variables disregarding machine resources

P Indicates whether nodes are kept in separate unique ta-

bles per variable

GC Garbage collection scheme

CT Single (S) / Multiple (M) compute table

DVO Dynamic variable algorithm supported or not

Year Year of first release

Table 3.3: Measures for Table 3.4

generation. Its unique ability to represent logic in canonical form and representing

exponential amount of information in linear space made it a popular choice for both

industry and academia.
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CHAPTER 4

Technology mapping

4.1 The technology mapping problem

The technology mapping problem is in general a combinatorial optimization problem

with the goal of optimally transform a technology independent Boolean logic into

physical logic elements available through one particular technology.

In general the problem is defined as : given a set of gates L, called the library, and

a Boolean network G, let M be the set of Boolean networks constructed using gates

from L that are functionally equivalent to G. In this scenario, M is called the mapped

networks. The goal of mapping is to find a optimal mapped network that minimizes

some objective such as area. delay etc subject to certain constraints such as timing.

The general theory is applicable to both standard cells and look-up table (LUT)

based FPGAs. (A look-up table with k inputs, called a k-LUT is a configurable gate

that can implement any Boolean function of k variables.)

4.2 History and background

In the general terms, the mapping problem is intractable since it is hard to enumerate

either implicitly or explicitly the elements of M that optimizes the desired goal. The

first most significant algorithm was proposed by Keutzer [27]. He proposed a signifi-

cant simplification of the mapping problem by restricting the set of mapped networks

considered during mapping to be those networks that are structurally similar to [27].

As this approach depends on structural matching of network , this approach is defined
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as structural matching approach.

The main idea behind the structural mapping algorithm is a simple one. It is

assumed that the original Boolean network G already has a good structure. Mapping

is then done by a process of local re-writing. In this process, a single output sub-

network N of G is identified that is functionally equivalent to a gate g in L and replace

N by g.

The problem is, there are many ways to do this re-writing and finding the optimal

re-writing in polynomial time is tricky. Keutzer proved that for certain classes of

networks (trees) and for certain cost functions (delay in the constant-delay timing

model and area) it is possible to compute the optimally mapped network by a dynamic

programming algorithm.

For this to work, it is assumed that G has a good structure for the final network.

This is ensured by applying technology independent logic synthesis algorithms before

the technology mapping steps to the initial Boolean network entered by the circuit

designer to obtain G. Structural mapping is not expected to significantly change the

network structure of G, but merely to convert it in to a similar network built from

gates in L.

In Keutzers original work [27], the subject graph is first partitioned in to a forest

of trees. Each library gate is decomposed in to a tree of two input and gates and

inverters. These trees are called pattern graphs. A multi-input gate may lead to

multiple pattern graphs since the decomposition is not unique. A pattern graph (and

thereby an equivalent library gate) is matched at a node n by checking for structural

isomorphism using a tree matching algorithm.

Richard Rudell extended tree matching algorithm to the case where the pattern

graphs could be leaf DAGs [28]. This allowed non-tree gates such as multiplexers and

xors to be matched. He also observed that by replacing every wire in the subject

graph by a pair of inverters, and by adding a wire gate to the library (whose pattern
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consists of a pair of inverters in series), the set of matches is larger.

A radically new method to reduce structural bias was proposed by Lehman et

al. [18]. They observed that there are many different ways in which a subject graph

can be derived from a Boolean network. For example, a multi-input AND can be

decomposed in to a tree of 2-input AND gates in a variety of ways. However, in the

mapping algorithm described above, a decision has to be made a priori as to which

decomposition is to be used to generate the subject graph. Thus, certain matches

that would have been detected with a different decomposition are no longer detected.

A different approach was inspired by a solution in the FPGA domain. Kukimoto

extended the set of matches explored at a node by using a general DAG matching

procedure instead of tree matching [29]. Thus both the subject graph and the pattern

graphs are allowed to be general DAGs in Kukimotos extension. This significantly

increases the number of matches found at a node, especially when partitioning the

subject graph into a forest of trees would lead to many small trees which eventually

will result in many local optima but will be globally sub-optimal.

Mailhot and De Micheli initiated a different line of research with their proposal

for Boolean matching [30]. Keutzers work [27] (and later in Lehman et al. [18] and

Kukimoto [29] ) the actual process of matching a gate (or more precisely, its pattern

graph) with a sub-graph H rooted at a node n is through graph isomorphism. Since

a library gate, especially complex gates, have many possible decompositions into

pattern graphs, only a subset of all possible decompositions is used in practice. Now

if the sub-graph of the subject graph is not structurally identical to any one of the

decompositions of the library gate, a match may not be found, even though replacing

the H by the gate is valid. One can think of this as being a more local structural bias

as opposed to the global bias that we were so far concerned with.

Boolean matching addresses local structural bias by directly matching a gate with

the sub-graph H by comparing their Boolean functions. Thus, with Boolean matching
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there is no need for pattern graphs.

Kravets and Sakallah advanced their research in the line of constructive synthesis

algorithm proposed by [31] and subsequently improved by Mishchenko et al. [32]. In

these algorithms, the structure of the subject graph is not used at all instead the

subject graph is used to construct a representation of the Boolean functions (using

BDDs or truth-tables), and then a decomposition algorithm is applied to the functions

to obtain the mapped network. At first, this may seem like the answer to our original

technology mapping formulation. However, the chief conceptual drawback of these

algorithms is that they are committed to a specific decomposition scheme. Thus they

are not able to explore the full space of mapped solutions, i.e. M. Therefore, they

just introduce a structural bias of a different kind.

In FPGA mapping, local structural bias is not a problem since a k-LUT can

implement any function of k variables or less. The main challenge is to enumerate

the possible different sub-networks rooted at a node n in the subject graph that is

implementable by a k-LUT.

Cong and Ding presented a network flow based algorithm Flowmap that can iden-

tify a single sub-network rooted at a node n that minimizes depth [33].The limitation

of Flowmap is, it produces only one cut that minimizes depth. However, the network

flow based method that it uses to find the cut cannot be extended easily to handle

other cost functions. Cong and Ding explored further techniques to enumerate all

cuts [34]. This work was later improved by Pan and Lin who presented an elegant

algorithm to enumerate all cuts [35]. It is worth mentionable that Chen and Cong

adapted the algorithm proposed by Lehman et al [18] for FPGA mapping [36].
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Figure 4.1: Pattern graph of different logic elements of a typical standard library

4.3 Technology mapping using structural hashing and dynamic

programming

Technology mapping is the process of mapping logic independent circuit to technology

dependent circuit using resources available in the standard library. The idea is to

represent each logic elements in standard cell library with base function which will

produce circuit graph with base elements. This graphs are called pattern graphs.

The technology independent circuit is also represented by the same base function

and the resultant graph is called subject graph. In the last crucial stage, pattern

graphs are structurally matched with sub-graphs of subject graph. Subsequently,

the matched portion of subject graph is replaced with corresponding standard cell

of the matched pattern graph. Generally, there are multiple choices for matches

and the best overall match is found by dynamic programming based algorithm and

appropriate cost model.The cost model can be function of one or combination of more

than one factor such as delay, area, power etc .
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Figure 4.2: Asymmetric pattern graph example

Figure 4.3: AIG pattern variation of 4-input AND gate

4.3.1 Base function and pattern graph

The base function is the smallest subsets to represent circuit. Two types of base

functions are most frequently used namely 1) Inverter and 2-input AND 2) Inverter

and 2-input NAND. They produce AIG (AND-Invert Graph) and NAND2-Invert

pattern graphs respectively. Figure 4.1 shows an example of a typical standard cell

library and pattern graphs. The pattern graphs of Figure 4.1 are symmetric ie,

any path from primary input to primary output traverse through the same kind of

elements. Figure 4.2 shows an example of asymmetric pattern graph. Asymmetric

pattern graph has different structure when input orders are changed and hence all

different pattern should be tried in the matching algorithm. The logic gates with more

than 3-input usually have different pattern graph structures. For example, 4-input

AND gate can have two different structure as shown in figure 4.3.
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Algorithm 3: Pattern matching

input : Subject Graph Node *subject, Pattern Graph Node *pattern

output: Subject Graph Node *matchedNode

Match(node subject, node pattern)

begin

if (NodeType(pattern) == INPUT) then

return matchedNode

end

else if (subject == Leaf of Subject Graph) then

return null

end

else if (NodeType(pattern) != NodeType(subject)) then

return null

end

else if (NodeType(pattern) != NOT) then

return Match((child(subject), child(pattern))

end

else

return Match(left(subject), left(pattern)) && Match

(right(subject),right(pattern)) ||

Match

(left(subject),right(pattern))&&Match(right(subject), left(pattern))

end

end

4.3.2 Structural hashing and pattern matching

Algorithm 3 shows the pattern matching algorithm implemented in OkCAD. The

matching criteria is described below
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• Pattern graph’s leaf (Input) matches anything in subject graph

• Pattern graph’s Inverter matches inverter in subject graph

• Pattern graph’s And2/Nand2 matches And2/Nand2 in subject graph

4.3.3 Optimal covering with dynamic programming

Optimal graph covering is basically a form of the Knapsack optimization problem

where minimum cost is better solution. The Knapsack problem is a combinatorial

optimization problem where, given a set of items, each with a mass and a value,

determine the number of each item to include in a collection so that the total weight

is less than or equal to a given limit and the total value is as large as possible. This

kind of optimization problem can be efficiently solved by Dynamic Programming.

The DP based technology mapper in OkCAD does the following steps,

• Start dynamic programming from primary inputs to primary outputs

• Cost at the primary inputs are zero

• Traverse the DAG in topological order from inputs toward the outputs

• At each node V in the subject graph, try all the pattern graph in library, find

the best match (Lowest cost) and save the result for later use

• Start backtracking from primary outputs to primary inputs

• For each node pick the best match and re-factor out the matched pattern tree

out of the subject graph and replace it with the matched element from standard

library.

• Repeat the same on the remaining portion of the subject graph.
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4.3.4 Technology mapping features in OK CAD tools

OK CAD tools has a basic technology mapping tool. Standard library contains all

the pattern graph in AIG form. The library can contain different gates of same logic.

The key features of the technology mapping tool are

• Algorithm is an efficient dynamic programming algorithm (O(n)).

• It visits each node maximum once and the matching routine is a depth-first

search which goes max depth is equal to the max depth in the library pattern

graphs.

• Library supports AIG, Nand-Inv base function

• Library creates all possible combination of pattern graphs for each element in

the library.

• User can create new functions and add to the library (for research purposes).

4.4 Summary

Technology mapping process is one of the most complex process in EDA/CAD. Nowa-

days industrial standard library contains many different cells of the same function

with different architecture, area, speed etc. So, there are a lot of options available

and technology mapping algorithms should be smart enough to take all the factors

into consideration and produce the best mapping results under the given constraints.

Structural matching is one of the basic way to compare and map logic. AND-INVERT

graphs or NAND-INVERT graphs based matching is fast and produces good results

in a reasonable time. In this work, dynamic programming is used for the global opti-

mized technology mapping which runs in linear time and produces the exact optimized

solution according to the given cost function.
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CHAPTER 5

ULE : Unified logical effort

5.1 Background

In this section, the authors presents a brief overview of Logical Effort (LE) [37] and

its advance extension called Unified Logical Effort (ULE) [38]. Both LE and ULE

are simple back of envelope method to estimate delay and size logic gates for optimal

delay. As, ULE is the basis of this paper, ULE is discussed more elaborately. In

addition, it is explained how branch calculation is modeled in ULE and in the last

sub-section the load distribution problem is explained.

5.1.1 Logical effort

The method of Logical Effort was first proposed by Sutherland et al [37]. According

to logical effort , the delay of a logic gate model is estimated with a linear function

of the load being driven as

D = f + p = g ∗ h+ p = g ∗ cl
ci

+ p (5.1)

where g is the logical effort , h = cl
ci

is the electrical effort, f = gh is the effort delay

and p is the parasitic delay of the gate. Minimum delay is estimated as

D = NF
1
N + P (5.2)

where F = GH is referred to as path effort. P is the path parasitic delay and N is

the number of gates in the path. G is the path logical effort and expressed as the

product of all the gate logical effort. H is the path electrical effort and expressed as
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Figure 5.1: Logical Effort (LE) example

the product of all gate electrical effort. Minimum delay is achieved when F is equally

distributed to each gate on the path.

For example, in Figure 5.1 there are 4 logic gates – one inverter, two 2-input nand

gate and one 2-input nor gate. For this circuit , LE calculations are shown below,

path logical effort , G = 1 · 4
3
· 5

3
· 4

3
= 80

27

path electrical effort, H = 1000
10

= 100

path parasitic effort, P = 1 + 2 + 2 + 2 = 7

total path effort, F = G ∗H = 80
27
∗ 100 = 8000

27

stage effort, f̂ = (8000
27

)
1
4

optimal delay, D = 4 ∗ (8000
27

)
1
4 + 7

5.1.2 Unified logical effort

Although, Logical Effort (LE) is an amazing tool to estimate delays it has some draw-

backs. The optimization rules of Logical Effort only considers logic gates and does not

consider the interconnect wires. As the technology is scaling fast, the interconnect

is becoming a important factor to design high-speed low power circuits.The useful

LE rule that path delay is minimum when the efforts of each of the stages are equal

also becomes invalid in the presence of interconnects, because interconnect have fixed

capacitance which do not co-relate well with the capacitances of the logic gates which

follows a geometric progression when optimized.

Unified Logical Effort (ULE) proposed by Morgenshtein, Friedman et al [38], is a
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Figure 5.2: Practical logic path with logic gates and RC interconnect.

simple model that overcomes the drawbacks of original Logical Effort method. Unlike

LE, ULE can size logic gates for optimal delay in the presence of RC interconnect.

ULE treats a broad scope of design problems with a simple single analytic model.

combining logic and interconnect delay optimization.

In ULE, a typical practical circuit is represented with logic gates and RC inter-

connect as shown in figure 5.2. The RC interconnect is represented with a π-model

and Elmore delay model is used for delay estimation [39]. According to ULE, the

combined delay expression is,

Di = Ri · (Cpi + Cwi + Ci+1) +Rwi · (0.5 · Cwi + Ci+1) (5.3)

where Ri is the effective output resistance of the gate i, Cpi, is the parasitic output

capacitance of gate i, Cwi and Rwi, are the wire capacitance and resistance of segment

i respectively and Ci+1 is the input capacitance of the gate i.

By introducing the delay of a minimum-sized inverter as a technology constant

τ = R0.C0, the expression is rewritten as,

Di = τ · di = τ ·
[
Ri

R0

· (Cwi + Ci+1 + Cpi)

C0

]
+ τ ·

[
Rwi

R0 · C0

· (0.5 · Cwi + Ci+1)

] (5.4)

The rewritten expression is similar to [40], [41] and [42]. In ULE, the stage delay ,

normalized with a minimum inverter delay τ , is expressed in LE form as the following

expression,
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di = gi ·
(
hi +

Cwi
Ci

)
+
Rwi · (0.5 · Cwi + Ci+1)

τ
+ pi (5.5)

where gi = Ri·Ci

R0·C0
is the logical effort related to the gate topology , hi = Ci+1

Ci
is the

electrical effort of the gate, and pi =
Ri·Cpi

R0·C0
is the delay factor the parasitic impedance.

The scaling factor is denoted as xi. Expression Ci = C0 ·gi ·xi and Ri = R0/xi relates

gate resistance and gate capacitance respectively to the scaling factor.

ULE also defines capacitive interconnect effort as hw and resistive interconnect

effort as pw. hw and pw are expressed as

hwi =
Cwi
Ci

(5.6)

pwi =
Rwi · (0.5 · Cwi + Ci+1)

τ
(5.7)

Using 5.5, 5.6 and 5.7, the final expression of ULE delay for a single stage is

d = g · (h+ hw) + (p+ pw) (5.8)

The expression for N-stage logic path is,

d =
N∑
i=1

gi · (hi + hwi) + (pi + pwi) (5.9)

In case of short wire Rw can be neglected. also, when the wire impedance along the

logic path is negligible, the ULE delay expression reduces to original LE expression.

Condition for minimum delay and optimum sizing can be derived by using a 2-

stage logic path as shown in figure 5.2 and extending the result for general case. The

ULE expression for the total delay for the circuit in figure 5.2 is

d = gi · (hi + hwi) + (pi + pwi)

+ gi+1 ·
(
hi+1 + hwi+1

)
+
(
pi+1 + pwi+1

) (5.10)
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Putting Ci+1 = hi · Ci into 5.10 the delay can be expressed in terms of hi

d = gi ·
(
hi +

Cwi
Ci

)
+ pi +

Rwi · (0.5 · Cwi + hi · Ci)
R0 · C0

+ gi+1 ·
(
Ci+2 + Cwi+1

hi · Ci

)
+ pi+1 + pwi+1

(5.11)

The condition for optimal gate sizing is determined by equating the derivative of the

delay with respect to the gate size to zero (see [1] for detail derivation)(
gi +

Rwi · Ci
R0 · C0

)
· hi = gi+1 ·

(
hi+1 + hwi+1

)
(5.12)

The optimal condition of ULE 5.12 converges to gi · hi = gi+1 · hi+1, the original

LE equation for optimal condition, when wires are ignored , ie , when hwi = 0 and

Rwi = 0

Multiplying equation 5.12 by R0 · C0 and using the relationships hi = Ci+1

Ci
, Ci =

C0 · gi · xi, Ri = R0

xi
, the following simplified expression can be found

(Ri +Rwi) · Ci+1 = Ri+1 ·
(
Ci+2 + Cwi+1

)
(5.13)

The authors of ULE further developed the optimal condition for any gate i based

to the characteristic that the total delay is the sum of the upstream and downstream

delay components as shown below,

DCi
=
(
Ri−1 +Rwi−1

)
· Ci =

(
Ri−1 +Rwi−1

)
· C0 · gi · xi (5.14)

DRi
= Ri · (Ci+1 + Cwi

) =
R0

xi
· (Ci+1 + Cwi

) (5.15)

Di = DCi
+DRi

+ constant (5.16)

When the total delay is minimum , the sum of the differential of the delay com-

ponents with respect to the sizing factor xi is equaled to 0
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∂DCi

∂xi
=
(
Ri−1 +Rwi−1

)
· C0 · gi (5.17)

∂DRi

∂xi
= −R0

xi2
· (Ci+1 + Cwi

) (5.18)

∂Di

∂xi
=
∂DCi

∂xi
+
∂DRi

∂xi
= 0 (5.19)

After solving equation 5.19 , the optimal sizing factor xiopt is expressed as

xiopt =

√
R0(

Ri−1 +Rwi−1

) · (Ci+1 + Cwi
)

C0 · gi
(5.20)

A general optimum condition is derived by substituting xiopt into equation 5.13.

(
Ri−1 +Rwi−1

)
· Ci = Ri · (Ci+1 + Cwi

)

=
√

[
(
Ri−1 +Rwi−1

)
· C0 · gi] · [Ri · (Ci+1 + Cwi

)]

(5.21)

From Equation 5.21 it is evident that the minimum delay is achieved when the

downstream delay component (due to Ci) and the upstream delay component (due to

Ri) of an optimally sized gate are both equal to the geometric mean of the upstream

and downstream delays that would be obtained if the gate is arbitrarily sized. In

summary,

DRiopt
= DCiopt

= GM [DRi
, DCi

] (5.22)

The total delay Di is the summation of 4 delay components : the constant delays

0.5 · Rwi−1
Cwi−1

and 0.5 · Rwi
Cwi

and the variable delays DCi
=
(
Ri−1 +Rwi−1

)
· Ci

and DRi
= Ri · (Ci+1 + Cwi

) that are dependent on sizing factor xi.

In 1991, Vemuru et al showed that the drive ability of a gate is related to size of

the gate and can be represented by a ratio of input capacitance [43]. Equation 5.12
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can be rewritten to find an expression for the required input capacitance of each gate

as shown below

Ciopt =

√
gi

gi−1 +
Rwi−1 ·Ci−1

R0·C0

· Ci−1 · (Ci+1 + Cwi
)

=
√
Ci−1 · Ci+1︸ ︷︷ ︸

LE

·

√(
1 +

Cwi

Ci+1

)
︸ ︷︷ ︸
wire capacitance

·
√

gi

gi−1 +
Rwi−1 ·Ci−1

R0·C0︸ ︷︷ ︸
logical effort and wire resistance

(5.23)

It is worth to note that, the first of the resulting expressions described in Equation

5.23 is similar to the condition that was described in original Logical Effort model for

a path of identical gates [37]. The second part expresses the influence of interconnect

capacitance. When wire length is zero this part vanishes. The last part is related to

the influence due to wire resistance and the difference among the individual logical

efforts of neighboring gates. As a whole the expression illustrates the quadratic

relationship between the size of the neighboring gates. From, equation 5.23 it is

also evident that, if wire is ignored this ULE expression converges to the original

logical effort expression.

In order to simplify the solution of equation 5.23 the authors of ULE used a

relaxation method. They proposed an iterative calculation along the path while

applying the optimum conditions [1]. In this method, each capacitance along the

path is iteratively replaced by the capacitance determined from applying the optimum

expression to two neighboring logic gates.

Equation 5.23 is the single most important derivation in ULE method. This

expression can be used to calculate optimum sizing of logic gates in a logic path in

the presence of arbitrary RC interconnect. If the lengths of the wire segments of a

logic path is known , the wire capacitance can easily be calculated from the technology

data. In consequence, any logic path with RC interconnect can be properly sized for

optimal delay by iteratively solving for each input capacitance of the logic gates in
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Figure 5.3: Optimization with ULE for a chain of nine NAND gates with equal wire

segments in between for a variety of wire length. All the gate sizes are normalized

with respect to C0. Input capacitance of the first and the last gates are 10 · C0 and

100 · C0 respectively and H = 10.

the path using equation 5.23. The authors of ULE showed that, the result converges

to 95 percent of optimal after only 3 iteration.

Figure 5.3 and 5.4 were also included in the original ULE paper [38] and show

example logic chain sized by ULE. In the first example, the logic path contains 9
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Figure 5.4: The optimization with ULE for a chain of nine NAND gates with equal

wire segments in between for a variety of wire length. All the gate sizes are normalized

with respect to C0. Input capacitance of the first and the last gates are 10 · C0 and

10 · C0 respectively and H = 1.

identical logic gates separated by equal length RC wire segments of length L. A 65

nm technology used in this example. The input capacitance of the first and last logic

gates are 10 · C0 and 100 · C0. Several data-sets were plotted for different L in figure

5.3. Note that, the solutions range between two limits. For near zero wire length the
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solution converges to LE optimization and for long wires the gate sizes in the middle

stage of the path converges to a fixed value xopt ' 50 which matches with the repeater

insertion methods described in [44] and [45].

The second example is shown in Figure 5.4. In this example, the input capacitance

of the first and last logic gate is the same 10 ·C0, ie, H = 1. In this case, no scaling is

performed by ULE in the absence wires and converges to LE solution. And for long

wires, the gate sizes again converges to a fixed value.

5.1.3 ULE expressions for long wire segments

In the example in the previous sub-section it is already shown that, the gate sizing

optimization process converges to the scale factor xopt in case of long wire segments.

In the case of equal interconnect segments, the scale factor is independent of wire

length.

When long wires are assumed, Cwi
and Rwi−1

dominate the expression in equation

5.23. The authors of ULE paper derived the scale factor of a general gate for the case

of long wires

xiopt ≈

√
R0 · Cwi

Rwi−1
· C0 · gi

=

√
cw ·R0

rw · C0 · gi
·

√
Li
Li−1

(5.24)

using the relationships Cwi
= cw · Li and Rwi

= rw · Li, where rw and cw are the

resistance and capacitance of the wire per unit length and Li−1 and Li are the wire

lengths before and after the logic gate gi, respectively. Note that scale factor of gate

in the case of long wire segments depends only upon the ratio of the length of the

adjacent wire segments.

A general optimum condition is derived for the long wire case similar to equation

5.21

Rwi−1
· Ci = Ri · Cwi

=
√

[Rwi−1
· C0 · gi] · [R0 · Cwi

] (5.25)
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Equation 5.25 implies that the minimum delay is achieved when the downstream

and upstream delay components of an optimally sized gate are both equal to the

geometric mean of the upstream and downstream delays that would be obtained for

an arbitrary sized gate.

If all the wire segments are equal , () the capacitance and resistance of all the wire

segments are equal to Cw and Rw respectively), the scaling factor xopt is independent

of the wire length and expression in equation 5.24 reduces to

xiopt =

√
cw ·R0

rw · C0 · gi
(5.26)

This expression can be used as an extension of basic repeater sizing equation.

The advantage of this expression is that the size for any logic gate can be determined

according to original LE. For the special case of Inverter-based repeater insertion the

expression reduces further to

xiopt =

√
cw ·R0

rw · C0

(5.27)

Equation 5.27 agrees with the optimal scaling factor expression found for optimal

repeater insertion by Bakoglu et all [46] .

In addition, similar to equation 5.25 , the optimal sizing condition for repeater is

given below,

Rrep · Cw = Crep ·Rw (5.28)

So, using similar intuition as previously discussed for general case and long wire

segment case, the best sizing of a repeater is found when the delay component Rw ·Crep

due to the repeater capacitance is equal to the delay component Rrep ·Cw due to the

effective resistance of the repeater.
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5.1.4 Application of ULE to repeater insertion problems

The authors of ULE paper [38] showed two example of applications.

A Wire layout constraint

Given a wire of total length L consisting of two unequal wire segments of length L1

and L2 , the optimal size of the repeater located between the wire segments is

xrepopt =

√
cw ·R0

rw · C0

·
√
L2

L1

(5.29)

B Cell size constraint

Given a repeater of size xrep diving a wire of total length L into two wire segments,

the optimal wire segment lengths L1opt and L2opt = L− L1opt is calculated by

L2opt

L1opt

=
x2
rep

cw·R0

rw·C0

(5.30)

5.1.5 ULE method handling branch

ULE optimization expressions can be derived for more practical case where logic gates

in logic path contains branches or multiple fan-out. The multiple fan-out scenario can

be depicted by figure 5.5 which defines a theoretical framework for delay minimization

of circuits with side branches and multiple fan-out paths. The circuit shows the

general structure containing a side branch with RC interconnect and/or a fan-out

load with arbitrary capacitance.

Using similar method as in Equation 5.11, the ULE expression for total delay

containing branches and fan-outs is written as

53



d =gi ·
[
hi + hwi

+
Cb1i + Cf1i

Ci
+
Cb2i + Cf2i

Ci

]
+
Rwi

τ
× [0.5 · Cwi

+ hi · Ci + Cb2i + Cf2i ]

+ gi+1 ×
[
Cwi+1

+ Ci+2 + Cb1i+1
+ Cf1i+1

+ Cb2i+1
+ Cf2i+1

hi · Ci

]
+
Rwi+1

τ
×
[
0.5 · Cwi+1

+ Ci+2 + Cb2i+1
+ Cf2i+1

]
(5.31)

where τ = R0 · C0 is the minimum sized inverter delay. By the equating the

derivative of the delay with respect to the gate size to zero

(
gi +

Rwi
· Ci
τ

)
· hi = gi+1 ×

hi+1 + hwi+1
·
Cb1i+1

+ Cf1i+1
+ Cb2i+1

+ Cf2i+1

Ci+1︸ ︷︷ ︸
branches and fanouts


(5.32)

It should be noted that the branch wire resistance Rbi is not part of the optimum

condition since the resistance is not along the path where Elmore delay is calculated.

Also, in case of zero fanouts or branch interconnects this expression converges to

equation 5.12 .

Figure 5.5: ULE delay calculation with branching
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By following the similar iterative process of gate size shown previously , equation

5.23 can be re-written with more generalized form

Ci =

√
gi · Ci−1 · (Cwi

+ Ci+1 + Cb1i + Cf1i + Cb2i + Cf2i)

gi−1 +
Rwi−1 ·Ci−1

τ

=
√
Ci−1 · Ci+1 ×

√√√√√1 +
Cwi

Ci+1

+
Cb1i + Cf1i + Cb2i + Cf2i

Ci+1︸ ︷︷ ︸
branches and fanouts

×
√

gi

gi−1 +
Rwi−1 ·Ci−1

τ

(5.33)

Using (gi · τ) /Ci = Ri , optimum condition can be expressed as

(
Ri−1 +Rwi−1

)
· Ci = Ri ·

Cwi
+ Ci+1 ·

Cbf1︷ ︸︸ ︷
Cb1i+1

+ Cf1i+1
+

Cbf2︷ ︸︸ ︷
Cb2i+1

+ Cf2i+1︸ ︷︷ ︸
branches and fanouts

 (5.34)

The load on the side branches are represented by Cbf1 and Cbf2 . Note that side

branch resistance Rbf1 and Rbf2 do not effect the Elmore delay calculation of the

main path.

In summary, optimum expression in ULE can be expresses as,

CBF =
n∑
1

Cbn +
m∑
1

Cfm (5.35)

where n and m are the number of branch wires and fanout gates in a path stage,

respectively.

The general ULE conditions are summarized below,

(
gi +

Rwi
· Ci
τ

)
· hi = gi+1 ·

(
hi+1 + hwi+1

+
CBFi+1

Ci+1

)
(5.36)

Ci =
√
Ci−1 · Ci+1 ·

√
1 +

Cwi

Ci+1

+
CBFi

Ci+1

·
√

gi

gi−1 +
Rwi−1 ·Ci−1

τ

(5.37)
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(
Ri−1 +Rwi−1

)
· Ci = Ri · (Cwi

+ Ci+1 + CBFi
) (5.38)

Without the branches and fan-outs these equations converges to equations 5.12 ,

5.13 and 5.23 respectively. And eventually, if the wire capacitance is ignored then all

these equations will converge to the original logical effort expressions.

5.2 Summary

Unified logical effort (ULE) is the first model to integrate logical effort and Elmore

delay for wire. The model uses the π model to represent wires and Elmore delay

equations to estimate the delay. Moreover, the wire segment is bundled with the logic

that drive that wire and treated as a single stage unlike the LE model where only

the logic is considered as a stage and wires are ignored. In the absence of wire, ULE

equations converge to LE equation and in the presence of long wires the equations

converges to repeater insertion equations. ULE model produces better gate sizing

results in the presence of practical wire segments and 100 times faster than industrial

standard tool such as Analog Optimizer.
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CHAPTER 6

Path optimization using ULE

6.1 Background

In order to maintain the correct logic levels at each logic gates output and ensure

timely signal propagation, designers usually use gate or transistor sizing techniques.

In many application, performance directly depends on minimizing the critical path

delay often at the expense of power consumption and increase in delay in the non-

critical paths. In many other applications, the requirement is to balance the delay of

multiple paths. For example, decoders and parallel data-paths like parallel adders,

multipliers, etc. In these type of circuits, the computation is intended to be parallel

and finish at the same time and the performance is bounded by the maximum prop-

agation delay in any of the parallel paths. In the second type of application the goal

of the designers would be to ensure the proper balance of the circuit on all branch-

ing path as well as minimizing the overall maximum delay that bounds the limit of

performance. The work in this paper tries to address this problem as a whole rather

than treating them independently.

Balancing logic paths and fan-out optimization is not trivial task. The task has

two requirements – 1) Accurate delay estimation methodology that works for all kinds

of logic network having practical interconnect wires. 2) A methodology to calculate

the appropriate load distribution or branch effort efficiently.

Fortunately, requirement 1 is fulfilled by prior research work in the form of Unified

Logical Effort (ULE) [38]. In recent years many extensions of Logical Effort (LE) have

been proposed and among them ULE is the most accurate and versatile model that

57



overcomes many limitations of the original LE algorithm especially in the presence

of practical arbitrary wire segments. It should be noted that, both LE and ULE do

not address the load distribution or branch balancing problem with practical wire

segments. Although the original ULE paper highlights an introduction to branching,

it does not evaluate branching effort within the different fan-out paths, rather it

shows how to calculate delay through a path if the branching effort is already given.

Branching is commonly not utilized in other methods, mainly because it is dif-

ficult to calculate efficiently. However, some methods have attempted to compute

the LE within a circuit system utilizing a buffer chain that has multiple fan-out

nodes [47], [48] . This algorithm called LEOPARD utilizes a fan-out optimization al-

gorithm that finds the optimal number of buffers and their sizes in multiple fan-out.

But, their work is more related to buffer chain optimization to drive different loads.

More importantly, it does not compute the branching effort accurately.

It should be noted that, authors of [49] and [50] also discussed about the load

distribution/branching problem in their paper on technology mapping. But they tried

to solve the load distribution problem in the context of technology mapping rather

than optimal timing. They used Logical Effort (LE) methods for the delay estimation

and used the load distribution information to formulate better technology mapping.

The difference between their work and this papers work is 1) this dissertation proposes

an extension to the ULE method for delay estimation that works better for practical

circuits with RC interconnects and 2) the load distribution problem is solved in the

context of optimal gate sizing and optimal equal delay between the fan-out paths in

the presence of RC interconnect.

In a prior work, the authors of this paper [51], presented a technique to calcu-

late the capacitance distribution in multiple fan-out branches that will ensure equal

propagation delay in each fan-out path. The technique described in this paper is a

continuation of the prior work and proposes a technique to design for optimal critical
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Figure 6.1: Load distribution model

path delay in addition to the prior branch path balancing technique.

6.2 Load distribution and path optimization

6.2.1 Load distribution problem

In order to understand the load distribution problem, first consider the case shown

in Figure 6.1. A is some logic gate with its output driving two fan out paths of logic

blocks B and C. Eventually, block B and C will be driving the primary outputs.

In order to understand the load distribution problem one need to understand the

interaction between A , B and C assuming they are fan-out free region.

The optimal delay through logic block A directly depends on the load being driven

by A. That is, the load at output of A is nothing more than the input capacitance of

the logic blocks B and C. If this load is increased then it will make the logic gate A

slower and logic blocks B and C faster, and vice-verse.

In order for both the paths B and C to have the same delay the capacitance at

the input of these blocks should be equal if the number gates in the path and logic
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type of each gate in both the blocks are same. If the two path differs in number of

logic gates or type of logic gates equal capacitance distribution will result in different

propagation delay.

Given the optimum load at the output of logic block A, finding the right distribu-

tion of load to the input of the logic blocks B and C respectively will not only have

equal delay through both the logic paths but also optimal delay through the entire

circuit.

6.2.2 Path optimization problem

Path optimization consists of finding the optimal input capacitance of logic gates

that makes the circuit run faster without violating certain constraint. Intuitively, it

is the load distribution problem in multiple nested branch plus sizing the transistor

for optimal delay for individual paths. In most practical cases, it is not necessary to

solve for every branch. Rather, it is easier to solve for one critical path at a time and

removing the path from the problem after solving.

In Figure 6.2. A is some logic gate with its output driving multiple fan out paths

of purely combinational logic blocks. Eventually, the fan out paths will be driving

the primary outputs. As mentioned in the previous section, In order to understand

the load distribution problem one have to understand the interaction between A and

all the fan-out paths assuming they are fan-out free region.

The optimal delay through the common path and logic block A directly depends

on the load being driven by A. That is, the load at output of A is nothing more than

the input capacitance of all the fan-out paths. For this work, this load or capacitance

is termed as ”Budget capacitance” which will used in rest of the paper. And gate A

is termed as ”Branch Driver”.

If budget capacitance is increased then it will make the common path slower A

slower but will drive the branches faster, and vice-verse. So, the delay in critical path
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Figure 6.2: Practical logic network with arbitrary number of branch fan-out

can be minimized by making other paths slower and vice verse. So, it is evident that,

a circuit as shown in figure 6.2 will have the least delay when all the branches are

balanced.

In order for all the branch paths to have the same delay the capacitance at the

input of these paths should be equal if the number gates in the path and logic type of

each gate in both the blocks are same. If the the paths differs in number of logic gates

or type of logic gates equal capacitance distribution will result in different propagation

delay, which is the practical scenario in almost all the cases..

Given the optimum budget capacitance at the output of logic gate A, finding the

right distribution of load to the input of the branch paths will not only have equal

delay through the branch paths but also optimal delay through the entire circuit.

The authors of this paper proposed a balance algorithm 4 that distributes the

already known budget capacitance to multiple fanout paths [51]. That is basically

solving the 2nd part of the problem first. In this work, the author proposes a tech-

nique to whole problem together by finding the the optimal budget capacitance and

distributing it to to balance the fan-out paths for overall optimal delay from source

to any primary output loads.
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6.2.3 Calculating branching effort for equal delay for fan-out of two path

For the proposed algorithm to efficiently compute the branching effort, the problem

statement requires that there are two logic path (P1 and P2) having arbitrary number

of logic gates, arbitrary wire segments between the gates and at the the logic paths are

driving arbitrary output loads. The input capacitance (Cin) is given, which needs to

be divided between the paths (P1 and P2) in such a way that the propagation delay

D1 and D2 of path P1 and P2 respectively are equal and minimized. Algorithm 4

describes the methodology of this approach1

At first, the input capacitance is divided into n small pieces of capacitance, where

n is defined as the precision index and integer multiple power of 2. The bigger

the value of n, the smaller the unit of capacitance Cunit which is precisely Cin

n
or

Cin = n · Cunit. This Cunit is a significant expression and it expresses the smallest

unit of capacitance that the algorithm can distinguish. In other words, parameters n

and Cunit determines the precision.

At the beginning, half of input capacitance (which is precisely equal to n
2
· Cunit)

is assigned to P1 and the other half is assigned to P2. That means the distribution

factor is (0.5, 0.5). The delay D1 and D2 is then measured and if D1 is greater than

D2 than it is evident that path P1 needs larger input capacitance to drive the path.

Precisely, path P1 should get capacitance distribution in the range of 0.51 to 1.00.

Furthermore, the algorithm subsequently chooses the middle value of the desired

range, 100+50
2

= 0.75 for P1. And the remaining 0.25 is assigned to P2. In the same

way, if D1 < D2 a distribution of 0.25 and 0.75 is chosen, respectively, for path P1

and P2.

In the 2nd iteration, the delay D1 and D2 is measured again with the input

capacitance calculated from the distribution in the first iteration. If still D1 > D2,

1Equation 5.23 is utilized to calculate all the capacitors in each chain and Equation ?? is utilized

to calculate the delays on line 10 and 11 of Algorithm 1
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Figure 6.3: Single balancer with two logic path P1 and P2

algorithm chooses the upper half of the current range as the next range otherwise it

chooses the lower half. This process continues and the selection range is halved after

each iteration. As a result , the change in capacitance value is higher in initial phases.

but the change becomes smaller with each iteration. The algorithm terminates when

the difference between delay D1 and D2 becomes less than a threshold value. The

algorithm reaches a 1
2t

th precision in capacitance values after t iterations and the

smallest range after t iterations will be 1
2t
.Cin or 1

n
.Cin, where n is the precision index

that the algorithm started with.

The runtime of the algorithm is logarithmic in n or O(log2(n)) where n = precision

index = number of small unit capacitance (Cunit). Obviously, a smaller n will decrease

the precision and result in logarithmic decrease in processing time and vice verse. The

delays in each iterations are calculated using ULE method [38], which incorporates

optimal gate capacitance in the presence of practical RC wire capacitance.

6.2.4 Calculation method for multiple branching paths

Algorithm 4 can be used recursively to solve larger problem consisting more than 2

paths. The original balance algorithm can balance any two arbitrary logic paths. In

order to use the algorithm to solve larger problem with multiple path a hierarchi-

cal approach should be taken. The authors implemented an object-oriented software

implementation with a balancer class and path class. A balancer has an input ca-

pacitance budget and deals with precisely two logic path. Therefore, each balancer’s
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Figure 6.4: Hierarchical setup for solving branch with multiple path

goal is to distribute the budgeted input capacitance between the two paths in such

a way that the propagation delays of the two paths becomes the same. In order to

achieve its goal, the balancer chooses values of input capacitance C1 , C2 of path P1,

P2 respectively. A balancer object uses algorithm 4 to assign capacitance to the paths

in each step of algorithm and notes the average of the delays measured in two paths

until the delay difference in the paths becomes lower than the threshold value. The

threshold value is defined as a percentage of the average delay measured in each step

(for example, 0.001 % of the average delay measured). It should be noted that, the

number of iteration step in the algorithm is fixed for one runtime when the algorithm

is called for one branch and the number of step is equal to log2(n) where n is the

precision index. The complexity of the algorithm is O(log2(n)).

Figure 6.4 shows the hierarchical arrangement for 8 paths. At first, the paths

are grouped into groups of 2 and one primary level balancer is assigned for each

such group. In figure 6.4 P1,P2, ..... P8 are the logic paths and B11,B12,B13,B14 are

the primary level (level 1) balancer. Second level balancers (B21, B22) distributes

capacitance and equalize the group delay between the two primary level balancer.
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Algorithm 4: Balance algorithm using ULE

input : Reference Path (P1), Merging Path (P2), Precision index (n) ,Input Cap

(CIn) and Output Caps (Cout1, Cout2)

output: Capacitance distribution (C1, C2) that results in same propagation delay in

P1 and P2

/* Number of small cap = precision index = n = 2t , where t is any

positive integer. So, n is integer multiple power of 2. */

1

2 begin

3 StartPointer = 0

4 EndPointer = n

5 UnitCap = Cin/n

6 for 0 to log2(n) do

7 Selector = (StartPointer + EndPointer)/ 2

8 C1 = UnitCap * Selector

9 C2 = CIn- C1

10 D1 = ULEDelay (P1, C1, Cout1)

11 D2 = ULEDelay (P2, C2, Cout2)

12 if D1 >D2 then

13 StartPointer = Selector

14 end

15 else

16 EndPointer = Selector

17 end

18 end

19 return C1, C2

20 end
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The third level balancer does the same thing with second level balancers and so on.

The top most level always has only one balancer and it is the root.

In Figure 6.4, B31 is the root balancer and its capacitance budget is the entire

input capacitance that needs to be distributed among the 8 paths. At the beginning,

B31 will distribute half of the capacitance to B21 and B22 in the second level. Again,

B21 and B22 will assign their respective assigned capacitance between the primary

level balancers B11,B12,B13 and B14.

In this hierarchical approach, balancer balances every time a new budget capaci-

tance is assigned. So, each time the parent balancer changes capacitance distribution,

the children balancer re-evaluates with the new budget just assigned from the parent.

In worst case, if the parent runs k step , the children runs k ∗k steps. So, the runtime

for multiple paths solution depends on the height of the balancer tree. It is evident

that the height of the tree is log2(m) where m is the number of paths. Runtime for a

single balancer is O(log2(n)) where n is the precision index. Runtime for the hierar-

chical arrangement is O((log2n)log2m). For fan out of 8 paths , the worst case runtime

is O((log2n)3) or cubic. It is one of the limitation of the algorithm that for higher

fan-out branches the hierarchical arrangement slowly goes to exponential complex-

ity. For example, the complexity for 2-way branch is O(log2(n)), for 4-way branch

the complexity is O(log2(n))2, for 8-way branch the complexity is O(log2(n))3 and

so on. The algorithm 4 itself has logarithmic complexity but when the hierarchical

arrangement is not logarithmic. But on the bright side, it calculates the input capac-

itances distribution correctly (upto 7 digit decimal precision). Also, branches with

more than 8 fan-out is not practical and not good practice while designing complex

time sensitive circuit. These kind of branches are usually split into smaller fan-out

branches by inserting buffer. So, the algorithm described in this paper still provides a

practical tool to size all the gates in presence of interconnect and balance them with

great accuracy.
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6.3 Summary

In this chapter , load distribution problem is introduced. Load distribution problem

has 2 sub problem – 1) to determine the distribution of budget capacitance to the fan-

out branches , 2) to determine the optimal budget capacitance for overall minimal

delay. In this chapter, an efficient solution for the first sub problem is presented.

Algorithm 4 solves the capacitance distribution problem in logarithmic time for fan-

out of 2. Later, s hierarchical arrangement is also proposed in this chapter for fan-out

of more than 2.
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CHAPTER 7

Optimal budget capacitance

In Chapter 6 the term ”budget capacitance” has been introduced. Basically the

budget capacitance is defined as the total capacitance that must be distributed among

the fan-out input capacitance and must be driven by the branch driver. In Figure 6.2 ,

the gate that drives the branch is denoted as the branch driver A and the capacitance

driven by the branch driven is shown as the budget capacitance. Budget capacitance

determines how much load the upstream network should drive and how much input

capacitance should the downstream network have.

7.1 Calculation of optimal budget capacitance

7.1.1 Upper bound and lower bound of optimal budget capacitance

In section 6.2.3 and 6.2.4 , it is shown how to balance multiple branch fanout paths if

the total budget capacitance at branch is already given. But, in general, the budget

capacitance at branch is unknown because the branch might be driven by a upstream

path just like the scenario shown in figure 6.2 . From figure 6.2 it is evident that

optimal overall delay is the sum of common path delay (upstream) and the optimal

balanced branch path delay (downstream). In the previous sections , it is discussed

how to balance the downstream network with the balance algorithm which is detailed

in [51]. But the overall optimal delay depends on the budget capacitance chosen at

branch point. This budget capacitance determines how much load the common path

should see and how much input capacitance the individual branch paths should get

after balancing.
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Figure 7.1: Bounds of 5 point algorithm

In order to choose the budget capacitance one must consider finding the practical

upper bound and lower bound of the capacitance value. In order to do that , the

author proposes to size all possible path from input to output ignoring the other

branches. Figure 7.1 one such path is shown in red. In each iteration of sizing, the

calculated capacitance at branch point Cbi is recorded. So, for n number of branches

there will be n such Cbi . The next step is to determine the maximum and minimum

value , Cbupper and Cblower
respectively. It is evident that, all the sized path have

portion of the path common, ie, the part that starts at the source and ends at the

branch point. And all the paths are different after the branch point. So it is evident

that, the max value of Cbi is found on the slowest path with worst loading and

minimum value of Cbi is found on the fastest path.

From this observation it can be concluded that the total budget capacitance at

branch point can not be more than n ∗ Cbslowest
and hence it is the upper bound.

With similar arguments it can be showed that, the lower bound is n ∗Cbfastest . If the

budget capacitance higher than Cbupper then the downstream paths will be faster and

upstream path will be slower. And if the budget capacitance is lower than Cblower
it
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Algorithm 5: 5 point algorithm for budget capacitance calculation
input : Common Path (Pc) that starts at source and ends at the branch, Branching paths Pb1

, Pb2
, Pb3

......Pbn , Input

capacitance Cin, Output capacitance Cout1
, Cout2

, Cout3
, ...Coutn , number of iteration t

output: Total optimum capacitance at branch point Cbopt
and optimum individual capacitances Cb1

, Cb2
, Cb3

......Cbn that

results in same propagation delay through all branch from PI to PO, where Cbopt
= Cb1

+ Cb2
+ Cb3

+ ...... + Cbn

1 begin

/* First determine the upper limit Cbupper and lower limit Cblower
of branch capacitance Cb */

2

3 for i <- 1 to n) do

4 Pi = Pc + Pbi

/* Size Pi ignoring branch */

5 ULESize (Pi)

6 Cbi
<- Capacitance at branch point after sizing

7 end

8 n = fan out at branch point

9 Cbupper = n ∗max(Cb1
, Cb2

, Cb3
, ......, Cbn )

10 Cblower
= n ∗min(Cb1

, Cb2
, Cb3

, ......, Cbn )

11 for 1 to t do

12 CbH
=

Cbupper
+Cblower
2

13 CbQ1
=

Cblower
+CbH

2

14 CbQ2
=

CbH
+Cbupper

2

15 Dlower = ULEDelay(Cin, Cblower
) + Balance(Cblower

)

16 Dupper = ULEDelay(Cin, Cbupper ) + Balance(Cbupper )

17 DH = ULEDelay(Cin, CbH
) + Balance(CbH

)

18 DQ1 = ULEDelay(Cin, CbQ1
) + Balance(CbQ1

)

19 DQ2 = ULEDelay(Cin, CbQ2
) + Balance(CbQ2

)

20 if DQ1 <Dlower and DQ1 <DH then

21 Cbupper = CbH

22 end

23 else if DQ2 <DH and DQ2 <Dupper then

24 Cblower
= CbH

25 end

26 else

27 Cbupper = CbQ1

28 Cblower
= CbQ2

29 end

30 end

31 Cbopt
=

Cbupper
+Cblower
2

32 Dopt = ULEDelay(Cin, Cbopt
) + Balance(Cbopt

)

33 return Cbopt
, Dopt

34 end

will not be good enough to drive the branch. The optimal solution is somewhere in

between Cbupper and Cblower
. Algorithm 5 has two major parts. The first part finds

the upper bound and lower bound of the optimal budget capacitance.
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7.1.2 5-point algorithm

The nature of the budget capacitance Vs total delay is shown in figure 7.2 . When

the budget capacitance is low the downstream path delay is large and dominates the

overall delay. As the budget capacitance is increased the downstream path delay start

to decrease fast and upstream path delay starts ot increase slowly. As a result the

overall delay is decreased. This behavior of overall delay continues upto the optimal

minimum point and after that the overall delay start to increase again because of

faster increase in upstream path delay compared to the downstream path delay. It is

evident that, there is only one optimal minimum point for this curve and that point

also produces the optimal overall delay.

In section 7.1.1 , it was shown how to determine the upper and lower bound on

the budget capacitance of a branch. The bound values gives the search initial space

for the optimal solution. The second major part of algorithm 5 describes how to

reduce the search space in each step by calculating delays in 5 different points and

comparing them. At first, delays are calculated at the upper bound Cbupper and lower

bound Cblower
of the budget capacitance and they are Dupper and Dlower respectively.

The three more points are 1) half way point, 2) first quarter point and 3) third

quarter point between the upper and lower bound, ie,

CbH =
CbLower

+ CbUpper

2
(7.1)

CbQ1
=
CbLower

+ CbH
2

(7.2)

CbQ2
=
CbH + CbUpper

2
(7.3)

The corresponding delays for CbH , CbQ1
and CbQ2

are DH , DQ1, DQ2 respectively.

In the next steps, these 5 delays are compared to reduce the search space. From
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Figure 7.2: Delay vs budget capacitance

Figure 7.3: Case 1: optimal point lies between point 2, 4

the budget capacitance vs total delay curves (figure 7.2) if any three points C1 , C2 ,

C3 are taken such that the delays C1 , C2 , C3 corresponding to those point are either

ever increasing or ever decreasing then the optimal capacitance Copt can not reside

between C1 and C3 . In other words, optimal solution can exist in between C1 and

C3 if and only if delay at the mid point of the range D2 is smaller than both D1 and

D3.

There are three possible scenario to consider in order to reduce the search space
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Figure 7.4: Case 2: optimal point lies between point 1, 3

Figure 7.5: Case 3: optimal point lies between point 3, 5

and zeroing on the optimal delay point. Figure ?? shows the three possible cases. In

the first case, the optimal point lies between CbQ1
and CbQ2

points (figure 7.3). In the

2nd case, the optimal point lies between Cblower
and CbH points (figure 7.4). And in

the 3rd case, the optimal point lies between CbH and Cbupper points (figure 7.5).

By using this observation , the search space reduction decisions are made. If DQ1

is less then both Dlower and DH then the new upper bound of budget capacitance is

set to current CbH and algorithm goes to next iteration. If DQ3 is less then both DH
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Figure 7.6: Heuristic for solving multi-level branches in practical circuit

and Dupper then the new lower bound of budget capacitance is set to current CbH and

algorithm goes to next iteration. If however, neither of the above conditions are met,

the optimal point must reside in the middle portion ie, between CbQ1
and CbQ3

. In

the 3rd case, CbQ1 is set as the new lower bound and CbQ3
is set as the new upper

bound for the next iteration.

In each step of the algorithm, the search space is halved and the range between

upper and lower bound gets narrower. In each iteration , the mid-range point delay is

compared with that of the previous iteration. The algorithm stops when the difference

between calculated values is lower than a predefined threshold.

7.1.3 Multiple branch points

In practical circuit, there are multiple branch points in general. Solving multiple

branches together is complex problem. But fortunately, in most cases it is not neces-

sary to to size and optimize all the paths in the circuit . A good estimated sizing of the

critical path is important tough. Because branch calculations are usually dependent

on each other and that is why it is difficult to calculate actual branching effort effi-
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Algorithm 6: Heuristic for solving multi-level branches in practical circuit

input : Circuit with multi-level branches , Input caps (cini
) , Output loads

(cloadi)

output: Branching efforts (bi) , Gate input capacitance (ci)

1 begin

2 foreach branch bi of circuit in reverse topological order do

3 CommonPath = longest path from the source to the branch

4 cbudget = FivePointAlgorithm (CommonPath, Out Caps, bi)

5 Remove bi from the circuit

6 cbudget becomes the output load at branch point bi

7 end

8 return bi, ci

9 end

ciently. In order to avoid complexity of inter dependency between branches, heuristic

methods can be applied to reach near optimal solution to speed up computation.

The authors proposed a good heuristic that would take only the critical path and

all of its fanout and optimize the critical path applying all the techniques described

in the previous sections. In this approach, the circuit will be traversed in reverse

topological order from primary outputs towards the primary inputs and budget ca-

pacitance will be assigned to branches. For example, in figure 7.6 there are three

branches and they will be solved in the reverse topological order (Branch 1, 2, 3) .

Only one branch is processed at a time assuming the common path is the longest

path from the source to the branch. At this moment, other fanout branches of the

common path is ignored for simplicity. After assigning a budget capacitance , the

downstream portion of the branch is removed from the problem and the assigned

budget capacitance becomes the load capacitance for the remaining circuit. The
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technique is listed in algorithm 6.

For example, in figure 7.6 branch 1 is processed first. The common path for this

case is shown in red line starting from the source ending at branch 1 and in this

iteration other branches (2 , 3) are ignored . Basically, the common path and branch

1 forms a fork of logic path which is easy to solve with the 5 point algorithm described

in algorithm 5 .

7.2 Summary

In this chapter, several algorithms are documented and these algorithms are collec-

tively provide a solution for the load distribution problem in logic branch in the

presence of arbitrary wire and arbitrary number of logic gates on each fan-out paths.

The balancing algorithm (algorithm 4) distributes a given capacitance to the fan-out

branches and the 5-point algorithm (algorithm 5) finds the optimal budget capaci-

tance to minimize the delay of upstream and downstream network of a branch. These

two algorithm has logarithmic complexity. And the top level heuristic (algorithm 6

) provides a systematic way to solve all the branches in a circuit for only once. This

algorithm traverses branches in reverse topological order and uses balance algorithm

and 5-point algorithm on the branches to minimize the overall delay. The heuristic

has linear complexity.
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CHAPTER 8

Experiments and results

In the previous chapters, background and theoretical works was described. And in

chapter 5 Unified Logical Effort background was discussed. And chapter 6 contains

all the proposed research work regarding transistor sizing in the presence of arbitrary

interconnect and accurate branch effort calculation algorithms. In this chapter, all

the experimental setup and results are presented. These experiments were conducted

with help of Ok CAD tool collections which contains tools to accurately model and

analyze industrial standard circuits . These tools are based on Graph based data

structures and algorithms which are described in chapters 2 , 3 and 4 .

8.0.1 Experimental setups

Various tools from OkCAD tool collection were most for accurately model the indus-

trial standard circuits. The circuits under tests were classified in two types

• Randomly generated logic chain and branches to tests the accuracy and run-

time of algorithms that are used to accurately calculate branching effort and

solve the load distribution problem in branches.

• Industry standard data-path circuits to analyze the impact of transistor sizing

, accurate branching effort calculated by the higher level algorithms proposed

in this dissertation.

For the second type of test circuits few extra automation steps has been followed

to accurately generate higher level RTL code for different bit-size and different types

77



Figure 8.1: Tool/Algorithm flow for the experiments

of adder architectures. Verilog RTL code was generated using Perl scripts and the

generated scripts was modeled into LogicGraph data structure using a Verilog subset

parser (designed with ANTLR [4]) . For estimating practical wire lengths the gates

were placed using Metropolis Simulated Annealing Placement algorithm [52], [53] .

After placement, wire lengths were measured and included into the circuit model.

Figure 8.1 shows the steps of modeling the circuits in software. Next, the Metropolis

algorithm algorithm is briefly described.

8.0.2 Metropolis simulated annealing gate placement algorithm

In 1983 a modified version of Metropolis simulated annealing algorithm for gate place-

ment was proposed by Kirkpatrick et. all [52] and used in IBM. Later further analysis

was presented by Rutenbar [53] . This algorithm works very well for small to medium
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level circuits of gate counts less than 50K and regarded as one of the best solution for

gate placement even today. The maximum gate count for this work is around 3.5K

and hence this algorithm is acceptable solution for this work.

The objective of the algorithm is to place gates while minimizing the total wire

length. The gates are placed in a 2 dimensional grid where each cell contains one

gate and the cell location are represented with X, Y coordinates. Multi-point wire’s

length is estimated using Half Perimeter Wire Length (HPWL) . The definition of

HPWL is

HPWL = ∆X −∆Y (8.1)

where , ∆X = maximum X coordinates of all connected gates - minimum X

coordinates of all connected gates and ∆Y = maximum Y coordinates of all connected

gates - minimum Y coordinates of all connected gates.

Algorithm 7 describes the placement algorithm using Metropolis Simulated An-

nealing technique. At the beginning, all the gates are randomly placed in the 2D

space and each gate is assigned X,Y coordinates. Then total wire length of the cur-

rent placement is calculated using HPWL. In the main optimization loop, random

gates are swapped and changes in HPWL (∆L) is calculated. If ∆L is negative ie.

if the total wire length L is decreased , the current swap is accepted. Otherwise,

the algorithm finds a inferior solution. In simulated annealing solution, some inferior

solutions are randomly accepted in order to avoid getting stuck at local minima. If

all the inferior solutions are rejected there is a high probably of greedy algorithm

getting stuck in local minima. In simulated annealing, the acceptance of inferior so-

lution depends on a temperature cost function. In the initial period of the simulated

annealing the temperature parameter is high and as a result more inferior solutions

are accepted randomly. In the course of time, the inferior solution acceptance rate

decreases as the temperature parameter is decreased and more inferior solution gets
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Algorithm 7: Metropolis simulated annealing placement algorithm
input : Netlist with gate and wire connection information

output: Near optimal cell placement that results in minimum combined wire length

1 begin

/* Start with random initial placement */

2 foreach gate Gi in netlist do

3 Place Gi in unoccupied random location (x,y) in 2D grid

4 end

5 L = 0 /* total wire length */

/* Start with random initial placement */

6 foreach net Ni in netlist do

7 Place Gi in unoccupied random location (x,y) in 2D grid L = L + HPWL (Ni)

8 end

9 T = hot /* Temperature for simulated annealing */

10 Frozen = false

/* Optimization loop */

11 do

/* M = swaps per gate */

12 for (i = 0; i < M* Gate count ; i++ ) do

13 Swap random gates Gi and Gj

14 ∆L = Σ HPWL (net) after swap - ΣHPWL (net) before swap

15 if ∆L < 0 then

16 accept this swap

17 end

18 else

19 if uniformrandom() < e
−∆L

T then

20 accept this inferior swap

21 end

22 else

23 undo this inferior swap

24 end

25 end

26 end

27 if ΣHPWL (net) is decreasing for the last few iteration then

/* Cooling effect in simulated annealing. Decrease in temperature T results in less acceptance of inferior

results. */

28 T = 0.9*T

29 end

30 else

31 Frozen = true /* get out of the while loop */

32 end

33 while Frozen ==false

34 return final placement as best solution

35 end

rejected. In case, of rejection the swapped gates returns to their original coordinates.
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number of branch solved runtime (2-way branch) [ms] runtime (8-way branch [ms] )

1 4 66

10 6 395

100 26 3,907

1,000 129 39,100

10,000 1,010 390,700

Table 8.1: Runtime

Figure 8.2: Test 1 : Sizing logic chain of equal length but different type

8.1 Results

All the experiment was carried out with a 65 nm CMOS process as used in the original

ULE paper [38]. The process parameters are, Supply voltage 1.0 V, R0 = 8800 Ω ,

C0 = 0.74 fF. Intermediate wire rw = 1.0 Ω/µm and cw = 0.15 fF/µm. Global wire

rw = 0.04 Ω/µm and cw = 0.23 fF/µm.

8.1.1 Results branching effort calculations

The algorithm described in this paper can equalize branches with at least 7 digit

decimal precision. The precision can be increased at the expense of computation

time. Another huge advantage is, when the algorithm completes, the network is

already sized for optimal delay. Moreover, the algorithm works well with any kind

of logic path consisting of arbitrary logic gates, RC wire segments with different
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Figure 8.3: Sizing result of test 1

lengths and output loads. Several thousand random branching combinations and

path combinations were chosen to test the results and the results were accurately

verified. The algorithm was coded in Java and runs in just several milliseconds on a

3GHz iMac.

The algorithm was subsequently coded into a parser aided by ANTLR [? ] and

examples were coded in RTL Verilog to examine the impact branching has on their

circuit implementation. Examples from ISCAS-85 benchmarks were used to examine

the impact of the algorithm and to allow examination of the branching that goes

on within these combinational circuits [? ]. All benchmarks run efficiently within

the code and branching was computed less than 1 minute for all implementations,

which range from array multipliers to large decoders. It is important to note that the

algorithm works for both equal and unequal paths on multiple-sized branch legs.
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Figure 8.4: Test 2 : Branch consisting logic path of varying wire length

Figure 8.3 shows a specific example where two paths are balanced having the

same number of gates and driving the same amount output load for a 65nm process.

This example is for an optimal sizing result of two paths is for the circuit shown in

Figure 8.2. The loading is CLoad1 = CLoad1 = 100 · C0 and and the budgeted input

capacitance Cin = 10 ·C0. Path 1, consists only 2-input nor gate and Path 2 contains

only 2-input NAND gates. The same length wire is assumed between each gate (1

mm) for simplicity. From Figure 8.3 it is evident NOR gates are slower and harder

to drive (remember: g = 5/3NOR2 vs. g = 4/3NAND2). However, both the paths

produces the same kind of pattern which is a linear rise for the first few gates and

then a flat region with a value around 50 · C0 when the paths traverse through long

wires. Interestingly, Figure 8.3 shows Path 2 getting a bigger reflection and pushing

down the capacitance, as theory dictates. The length of wire segment in between

each element, L = 1 mm and can be easily modified. The estimated delays after the

algorithm completes is, D1 = 287.36055372931710 and D2 = 287.36055347487420.

Figure 8.4 shows a example of sizing two branch paths that have same number and

same type of gates just like the previous example in figure 8.2 but have different length

of wire in between the gates. And figure 8.3 shows the optimal sizing result after load

distribution in the same 65nm process. Estimated delays after load distribution , D1

= 114.23515777265783 and D2 = 114.23515773271560 The circuit under consideration

has nine 2-input NAND gates along Path 1 and nine 2-input NOR gates along path
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Figure 8.5: Sizing result of test 2

2. The wire length L starts with 0.3 mm and increases up to 1 mm near the load.

Also CLoad1 = CLoad1 = 100 · C0 and and budgeted input capacitance Cin = 10 · C0.

The third example circuit in figure 8.6 consists of two logic branch path consisting

of unequal number of gates. And figure 8.7 shows the optimal sizing result for this

example for the same 65nm process that was used before. The estimated delays after

load distribution , D1 = 255.28367622498365 and D2 = 255.28367620247857. The

circuit under consideration have seven 2-input NAND gates along Path 1 and nine

2-input NAND gates along path 2. The wire length L = 1 mm between each element.

Also CLoad1 = CLoad1 = 100 · C0 and and budgeted input capacitance Cin = 10 · C0.
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Figure 8.6: Test 3 : Branch consisting logic path of unequal number of gates

Figure 8.7: Sizing result of test 3

8.1.2 Data-paths under test

To analyze the performance and measure the quality of the results produced by the

algorithms of this dissertation , high speed parallel prefix tree adders circuits were

used. There are 3 basic architecture for parallel prefix tree adders – 1) Brent-Kung,

2) Skalansky and 3) Kogge-Stone as described by David Harris in his paper of parallel

prefix network [54],[68], [69], [70]. Although , the three architecture process in parallel,
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they differ in area, critical path length, maximum fan-out count and branching. The

Brent-Kung [68] architecture has the smallest area but a longer critical path because

of almost twice the logic level compared to the other two architecture. Skalansky

architecture [69] on the other hand has slightly larger area but it has a shorter critical

path. The drawback of this architecture is it has a large number of fan-out especially

near the output logic levels. Kogee-Stone architecture [70] has the same critical path

length but the maximum fan-out is limited to 2. But KS architecture usually have

very complex branching and wiring requirements.

8.1.3 Results of delay optimization with accurate branching for large

data-paths

In order to apply the ideas in this dissertation, industrial standard high-speed prefix

adders are applied to the algorithm, as shown in Table 8.2. Table 8.2 shows the

balancing and sizing result of parallel prefix tree adders of different bit sizes.

Each adder is generated in Verilog RTL from hand-made Perl scripts that can

generate different prefix adders given specific input arguments. Then, the Verilog

RTL text is converted to a DAG-like data structure (LogicGraph) where the vertices

represent gates and edges represents wires. The conversion is done using ANTLR [4]

based Verilog parser written in Java.

In order to estimate practical wire lengths it necessary to retrieve post placement

wire length. For this work, a Metropolis Simulated Annealing Placement Algorithm

is used to place the gates in a 2-dimensional grid and wire lengths are estimated from

the grid distance. The wire length information is also saved on the same circuit graph

model (DAG model) used to represent the circuit.

Then, the proposed algorithms were tested on the circuit graph model. Table 8.2

shows the balancing and sizing result of different parallel prefix tree adders of different

bit widths for two different electrical efforts. The adder architectures analyzed and
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Kogge-Stone Brent-Kung Skalansky Kogge-Stone Brent-Kung Skalansky

8 bit prefix adders H = 16 H = 64

delay in ps (LE only) 84.09 99.56 80.44 159.07 177.69 130.55

delay in ps (5-point + balance) 92.62 112.44 87.11 174.09 202.23 151.57

delay in ps (LE + RC) 112.02 130.28 108.37 186.99 208.41 158.47

gate count 70 52 55 70 52 55

branches solved 8 5 5 8 5 5

gates on critical path 10 11 10 10 11 10

algorithm runtime (ms) 351 451 434 331 538 481

16 bit prefix adders H = 16 H = 64

delay in ps (LE only) 121.37 139.48 98.72 190.97 232.39 161.15

delay in ps (5-point + balance) 127.24 156.07 120.90 216.41 267.77 184.56

delay in ps (LE + RC) 157.88 181.37 132.23 224.48 274.28 194.66

gate count 182 113 131 182 113 131

branches solved 14 9 9 14 9 9

gates on critical path 12 15 12 12 15 12

algorithm runtime (ms) 949 5,269 4,352 868 6,079 3,385

32 bit prefix adders H = 16 H = 64

delay in ps (LE only) 131.27 175.11 136.23 215.21 286.47 180.57

delay in ps (5-point + balance) 146.45 199.67 166.65 243.73 331.72 209.90

delay in ps (LE + RC) 168.37 228.18 175.33 254.31 339.53 219.67

gate count 454 238 307 454 238 307

branches solved 24 17 17 24 17 17

gates on critical path 14 19 14 14 19 14

algorithm runtime (ms) 4,836 11,010 8,867 7,093 9,521 8,885

64 bit prefix adders H = 16 H = 64

delay in ps (LE only) 157.20 217.61 175.28 266.53 355.39 221.87

delay in ps (5-point + balance) 179.79 249.90 211.53 300.46 407.41 248.24

delay in ps (LE + RC) 201.88 281.84 219.96 311.21 419.62 266.55

gate count 1,094 492 707 1,094 492 707

branches solved 42 33 33 42 33 33

gates on critical path 16 23 16 16 23 16

algorithm runtime (ms) 15,200 23,358 18,420 18,143 40,704 20,007

128 bit prefix adders H = 16 H = 64

delay in ps (LE only) 186.12 259.83 246.91 326.16 424.14 249.14

delay in ps (5-point + balance) 212.42 299.97 282.40 363.16 481.54 287.98

delay in ps (LE + RC) 236.39 335.24 297.18 376.43 499.55 299.41

gate count 2,566 1,000 1,603 2,566 1,000 1,603

branches solved 76 65 65 76 65 65

gates on critical path 18 27 18 18 27 18

algorithm runtime (ms) 37,485 58,243 37,349 43,458 44,709 37,600

Table 8.2: Algorithm simulation results for high-performance adders.
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compared in Table 8.2 are Kogge-Stone, Brent-Kung and Skalansky architectures.

Brent-Kung adders are very area-efficient, but its critical path contains double logic

levels compared to other architectures. The Skalansky architecture has the same logic

level as the Kogge-Stone architecture, but its branch fanout is the worst. Finally, the

Kogge-Stone architecture has minimal logic level and a max fanout of 2 , but the

wiring is complex. It should be noted that, Kogge-Stone adders are practically the

best adder architecture for operating on over 64 bit numbers. However, this adder

architecture usually has complex wiring and branching. So, for an efficient design

it is important to size all the gates considering practical wire lengths and accurate

branching effort.

From the analysis result shown in Table 8.2, each adder architecture was sized

using LE and the RC wire delay is calculated from the wire length using a π model and

technology data (wire capacitance per unit length). Using the traditional method,

gates are sized separately using LE and the RC wire delay is added to the gate

delay to get the total delay. Sizing is also shown for LE only (i.e., without RC

delay) to illustrate that LE is not accurate with wire delays. For comparison, each

adder architecture was balanced and sized using the 5-point algorithm (algorithm 5)

according to the heuristic described in this paper and delays on critical path were

calculated. In Table 8.2 , these delays obtained through these two methods (LE +

RC and ULE) are compared.

From the result, it is evident that, sizing only with Logical Effort (LE) always

overestimates the delay. The authors of ULE paper also reported the same trend

during their result comparison [1] . In the traditional approach, gates were sized

using LE and wire RC delay was estimated separately. Obviously, this results in

more delay, because when the gates are sized with LE techniques the wires are not

considered. On the other hand, the 5-point algorithm and the heuristic approach uses

ULE as a helping tool and produces better sizing result and delay is minimized in
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all cases. The results also confirms the practical trends – 1) Brent-Kung adders have

more delay (due to logic level) , 2) Skalansky adders perform really good when the

size of the operand is small and 3) Kogge-Stone adders are best for large operands.

8.2 Summary

In this chapter, the author proposed a novel technique to solve the load distribution

problem in logic fanout branch for overall optimal delay from the primary input to

the primary outputs. The 5-point algorithm proposed in this paper has logarithmic

complexity and it determines the optimal budget capacitance very efficiently. Along

with that, a heuristic algorithm is also proposed to use the 5-point algorithm to solve

for multiple branches in reverse topological order. The algorithms were tested on

high-speed parallel prefix tree adders and results were compared with the traditional

LE based method. The results confirms the fact that LE based method often over

estimates the delay. ULE based method in conjunction with balance algorithm [51]

and 5-point algorithm achieves better delays through critical path.
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CHAPTER 9

Conclusion

This research work conducted in the area of VLSI CAD and VLSI circuit optimization.

The specific goal of this work was to develop better transistor sizing and accurate

branch effort calculation techniques and using all these techniques build improved

model to analyze and optimize high-speed parallel data-paths such as prefix adders.

At the end of this work, most of the objective is met. Also, this work opened the

door for many future improvement ideas.

9.0.1 Research accomplished

A Algorithms

A few novel algorithms were proposed as part of this dissertation. The algorithms

are summarized below

Algorithm Runtime complexity Description

Branch Balance Algorithm O(log(n)) Solves branches with arbitrary number of gates and arbitrary wire capacitance.

5-point Algorithm O(log(n)) Solves complex fork branch and solves load distribution problem from branch.

Top level heuristic O(n) Solves multi-level branches in reverse topological order.

Table 9.1: Summary of algorithms

B Timing model

One of the objective of the work was to develop a better timing model to analyze

high-speed parallel data-paths. Using the LogicGraph package in OK CAD tools and

the sizing algorithms described above , a better timing model is proposed in this
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research work. The proposed model has the following benefits over the model that is

traditionally used

• The proposed model incorporates wire capacitance impacts

• The proposed model Incorporates accurate branching efforts and its impact

• Delays are more accurately measured in proposed model using ULE.

C Tools

Several robust software tools were developed for this work which are included in the

OK CAD tools collections. The main tools were developed in Java programming

language. The important tools are listed below,

• Compiler (EBNF Grammar, ANTLR parser)

• Logic Graph data structure collection

• General graph traversal algorithms.

• Transistor sizing (LE and ULE based)

• Load balancing (LE and ULE)

9.0.2 Future work

The proposed work is based on preliminary algorithms to size transistors, calculate

branching effort. The current software implementation is easy to scale and improve.

The current algorithms does not incorporate input ramping and velocity saturation

effects in the delay estimation techniques and can be included in the tools in future.

Another improvement will be a detail non-linear delay model for estimating node to

node delay in the graphs. The current timing model works well for parallel prefix

adders and in future it can be extended for other kind of data-paths and even for

general circuits.
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