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Abstract: In Roll-to-Roll (R2R) manufacturing, efficient transport of flexible mate-
rials (webs) on rollers requires simultaneous control of web speed and tension. Webs
experience disturbing forces during transport due to nonideal machine elements and
processes such as printing, coating, lamination, etc. Since rotating machine elements
are employed, these disturbances are in the form of periodic oscillations in web tension
and speed. Design of efficient model-based web tension and speed control systems
employing both feedback and feedforward actions that can adapt to changes in param-
eters and reject periodic disturbances were investigated in this research. Tools from
adaptive and robust control theory and singular perturbation method are utilized for
the design and analysis of these control systems.

Model reference and relay feedback based adaptive Proportional-Integral (PI) tension
control schemes were developed to regulate web tension; these schemes overcome the
tedious tuning procedures required for fixed gain PI schemes when process parame-
ters and conditions change. To directly control the roll speed when belt-pulley and
gear transmissions are employed, a control scheme that uses both motor and load
speed feedback is developed. In the presence of a compliant transmission system, it is
shown that using pure load speed feedback must be avoided as it results in an unsta-
ble system. In situations where linearization of the nonlinear web tension governing
equation is not possible due to changes in operating conditions, a nonlinear tension
regulator is designed via a solution method employed in the nonlinear servomech-
anism problem. The feedforward action is synthesized by considering a discretized
form of the tension governing equation in conjunction with adaptive estimation of
periodic disturbance parameters. It is also shown that interaction between different
subsystems of the R2R system may be minimized by employing feedforward action.
The strategy of utilizing the tension signal from the web tension zone downstream
of the driven roller is shown to result in minimization of propagation of disturbances
into further downstream tension zones. To evaluate and compare the performance of
the developed designs, experiments conducted on a large R2R platform for different
web materials and transport conditions are discussed. Implementation guidelines are
provided for ease of applying the designs to other industrial R2R machines.
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CHAPTER 1

Introduction

Many types of materials and consumer products are manufactured and processed by

transporting flexible materials on rollers. Any continuous, flexible strip material that

is considerably long compared to its width and considerably wide compared to its

thickness is referred to as a web. Web processing can be found in many industries to-

day, and it facilitates manufacturing of a variety of products from continuous, flexible

strip materials. Examples include paper, textiles, plastic films, thin metals, polymers,

and composites. Emerging and new consumer products such as flexible printed elec-

tronics, solar films, etc., are being manufactured using Roll-to-Roll (R2R) methods

to meet the growing market demand.

Web handling is the study of transport of webs on rollers through processing

machinery. Many times web materials need to pass through many consecutive pro-

cessing sections during manufacturing of a product, for example printing, coating,

drying, laminating, slitting, cleaning, etc. Web handling issues related to transport-

ing the web through processing machinery should be addressed for better quality and

increased quantity of finished products.

Web handling deals with a variety of challenges in the following areas: longitudinal

dynamics and tension control, lateral dynamics and control, guiding, mechanics of

winding and unwinding, wrinkling, air-web interaction, etc. Lateral and longitudinal

web dynamics play an important role in web tension control and ultimately the quality

of the finished product. The web behavior in the lateral direction (cross machine
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direction) and the longitudinal direction (transport or machine direction) is influenced

by characteristics of various mechanical components, modulus of web material, web

damping, web slippage, and web tension. Web guiding systems control the web

at the desired lateral position on the roller. The longitudinal dynamics is primarily

characterized by web tension and transport speed which play an important role in web

transport. There is a need to maintain web tension within a specified tolerance band

to ensure accurate and smooth operation. The growing market and cost competitive

environment demands for higher production rate and it is challenging for web handling

engineers to achieve highest possible line speed. At the same time, control of roller

speed at a desired reference is also important, as speed variations create undesired

strain in the web and disrupt process quality.

Any typical web transport line consists of mechanical and electrical components,

such as idle and driven rollers, unwind and rewind rolls, accumulator, guides, mas-

ter speed roller, motors, motor drives, tension sensing elements, such as load cells,

dancers, etc. These components are arranged in a particular manner to ensure trans-

port of the web through the processing machine. The unwind section contains the

roll that releases the material to the machine. An accumulator is used to store the

material during roll change without interrupting the process. A web guide controls

the lateral position of the web on the roller. The master speed roller sets the speed

for the entire web line. During processing, a driven roller is used to control web speed

as well as tension. Idle rollers are used to support the web. Web tension is measured

by load cells mounted on an idle roller or through a mechanism called a dancer. A

dancer is a device consisting of a roller and a mechanical platform which facilitates

motion of the axis of rotation of the roller. A dancer can be pendulum type or trans-

lational type depending on the motion of the axis of rotation of the roller, which is
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restrained by a force applied either by a pneumatic or hydraulic cylinder. This force

is typically twice the desired tension when the angle of web wrap on the dancer roller

is 180◦. Dancers can be used as a means to set tension or sense tension fluctuation in

web with its roller displacement. Once passing through various processes, the finished

web is rewound on a roll in the rewind section. Figure 1.1 shows a large experimental

platform called the Euclid Web Line (EWL) which is located in the Web Handling

Research Center (WHRC) at Oklahoma State University. The EWL mimics many

typical features of an industrial process line and consists of four sections: unwind,

master speed, process, and rewind.

Figure 1.1: Euclid web processing line

Due to widespread use of roll-to-roll manufacturing in many sectors and the chal-

lenges in various fields that facilitate R2R manufacturing, there has been an increased

3



interest in studying web processing systems from various key aspects, such as pro-

cess modeling, wrinkling, winding, control related issues, etc. Campbell [1], King [2],

Brandenburg [3], and Shelton [4] laid fundamental background for the study of lon-

gitudinal dynamics of a moving web. The model that considers entering web span

tension, was developed in King [2]. Brandenburg [3] and Shelton [4] assumed strain in

the web to be very small and derived the governing equation for web tension in a span

with the small strain assumption. An overview of the early research in longitudinal

and lateral dynamic behavior and tension control can be found in Young and Reid [5].

Decentralized control and adaptive control design based on state space approach and

its implementation for the web transport system is presented in Pagilla [6]. Tension

control in multi span web system was described by Wolfermann [7] and Schroder [8].

Non-ideal effects such as moisture change and temperature variation on web tension

were studied in Shin [9]. The focus of the current research is to develop accurate

and effective feedback and feedforward tension control strategies for longitudinal web

behavior to ensure efficient operation of web processing lines.

1.1 Motivation and Objectives

In R2Rmanufacturing of continuous materials, control of web tension is critical during

transport of the materials through many processes such as printing, coating, lami-

nation, etc. It plays an important role in ensuring the quality of the finished web

products. During transport, many processes may require transport under different op-

erating speeds and heating/cooling of the webs. Further, there are many process and

machine induced disturbances which the tension control systems must compensate

to achieve good tension regulation performance. Tension variations cause a variety

of product defects. For example, high web tension may result in wrinkles and tears

4



while low tension may cause web slack, loss of traction on rollers during transport,

and difficulty in guiding the webs on rollers. The consolidated effect of large web ten-

sion variations may result in disruption in production, diminishing product quality,

and machine hardware damage. Accurate and effective tension control strategies for

web handling systems are essential for efficient operation of web processing lines.

During transport, the web material undergoes a variety of dynamic conditions

and changing surroundings. Different processing sections may require different levels

of tension specifications. Hence, there is a need to develop adaptive and robust con-

trol techniques that provide desired performance under dynamic uncertainties during

transport, such as changing web material, speed, and surrounding environment.

A control system can be designed to satisfy many performance indices, such as

good transient responses, minimum steady state error, rejection of internal/external

disturbances and measurement noises. Control systems can be made effective by

designing both feedback and feedforward control actions as shown in Figure 1.2.

Reference
Plant

  Feedforward

Compensation

Feedback

Controller

Disturbance

  Feedforward

Compensation

Output

++

+
+

+

−

Figure 1.2: Control strategy employing both feedback and feedforward actions

Disturbances can be eliminated or attenuated by feedback. However, feedback

control fails to take action until a deviation occurs in the controlled variable. Also,

feedback control does not provide predictive action to compensate the effects of known

or measurable disturbances. Further, the feedback action is less sensitive to variations
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in the process model, whereas feedforward action can be dependent on the process

model and hence more sensitive. In certain situations it may not be possible to mea-

sure the controlled variable, in these situations feedforward control may be employed.

Feedforward action can be effectively used for disturbance rejection without knowing

the plant model. It can be used for both linear and nonlinear systems. By using

both feedback and feedforward actions one can improve the performance of a control

system. In this research, the main objective is to investigate various feedback control

schemes along with model based feedforward actions to regulate web tension as well

as to reject disturbances generated by processes and process machines.

Industrial web tension control systems typically employ a fixed gain Proportional-

Integral (PI) controller. The PI controller gains are tuned to give a stable response

for a given operating condition and material. This is typically done empirically on

the machine because analytical tuning of PI controllers is a challenging task due to

changing operating conditions and uncertainty in the knowledge of web material pa-

rameters and machine parameters. In practice, the PI tension controllers are tuned

on-site based on real-time observation of the tension response performance. When op-

erating conditions or material properties change, the fixed gain PI tension controllers

do not provide adequate performance or in some cases render the closed-loop tension

control system unstable. The better approach is to use an adaptive control scheme

that facilitates adjustment of controller parameters for such changing conditions. An

adaptive controller can modify closed-loop system behavior by compensating for the

changes in system parameters.

There are many approaches to design adaptive control schemes, such as gain

scheduling, self-tuning regulators, and model reference adaptive control [10,11]. The

direct and indirect adaptive schemes are promising but the design and implementa-

tion of those controllers are cumbersome and provide many difficulties for practicing
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engineers. For example, since many of these schemes are model based and the web

system dynamic model is rather involved, the designs are complicated and result in

a large number of estimated parameters. Simple adaptive control structures which

mimic most of the features of the fixed gain PI schemes are desirable. These schemes

can provide the automation to circumvent tuning under a wide variety of system

parameter changes, and yet provide the ease of design and implementation.

Previously in [12], direct and indirect model reference adaptive control (MRAC)

schemes for web tension control were considered. Although MRAC schemes are

promising, the number of estimated parameters depends on the order of the process

model. Control of web tension required estimation of six parameters, which could be

cumbersome for practicing engineers in an industrial setting. There is a need for a

simple adaptive scheme that resembles the implementation of an existing PI scheme.

An adaptive PI scheme investigated in this research is discussed in Chapter 2.

The use of gear transmissions is essential in many applications due to the demand

for speed reduction and variable torque transmission in many applications. For ex-

ample, in automobiles, the need for a transmission is a result of the characteristics

of the internal combustion engine. The transmission provides wide range of power

and torque throughout the vehicle operation. Higher levels of torque are needed for

starting of the engine or at low speed. On the other hand maximum power is needed

at high speed. This varying need is satisfactorily performed by a speed reduction

transmission system. In another application, in order to achieve high efficiency in

ship transportation, the steam turbine should operate at a relatively higher range of

its rotational speed. However, proper functioning of a propeller requires a relatively

low speed range. For this reason, a reduction gear is used, which reduces the high

speed motion of the steam turbine into low speed range required by the propeller.

Hence, a transmission is necessary. In some applications belt-pulley transmissions are
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employed in addition to a gear reduction system. Direct coupling for power transmis-

sion requires very accurate collinearity of the axes and takes considerable time and

cost to assemble the unit. In such a scenario, a belt driven transmission provides great

flexibility and small inaccuracies can be absorbed by the compliance in the belt. In

R2R systems, typically a belt-pulley transmission coupled with a gear box is employed

to transfer power from the motor shaft to the roll (load) shaft. The dynamics of the

transmission system due to belt compliance and gear backlash introduce undesired

web tension oscillations, especially during speed changes. The problem of load speed

regulation and tension regulation when such transmissions are employed is discussed

in Chapter 3.

In many situations of R2R manufacturing, the transient dynamic conditions due

to web speed changes necessitate the consideration of nonlinear governing equations

for the analysis and synthesis of control systems. Since many existing web tension

control schemes rely on the linearization of the nonlinear equations which are used to

either design linear or nonlinear adaptive controllers, tension transients due to speed

changes and process variations are not controlled well. The nonlinear servomecha-

nism web tension regulation problem is presented in Chapter 4. Existing work on the

design of tension control systems used for the linearized R2R systems can be found

in [13–16]. There is a need for a nonlinear tension control scheme that can simultane-

ously reject disturbances while providing improved tension regulation performance.

Many web transport systems have non-ideal effects such as backlash in mechanical

transmissions, out-of-round unwind/rewind rolls, eccentric rollers, and compliance in

power transmitting shafts. These non-ideal effects together with rotating machinery

generate periodic disturbances [17]. A nonlinear tension control scheme is expected to

suppress these machine/process induced disturbances. It is also expected to achieve

better steady state performance.
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An R2R manufacturing system is a large scale interconnected system with sub-

systems such as unwind, rewind, and process sections. Disturbance propagation from

upstream sections to downstream process sections may disrupt essential processes.

There is a need to minimize the undesired interaction between subsystems and re-

duce propagation of disturbances. Control strategies to minimize interaction and

disturbance propagation are discussed in Chapter 5.

The main goal of this research is to develop feedback and feedforward control

strategies for web transport systems which are efficient and easy to implement. The

following issues are addressed: develop efficient and easily implementable adaptive

control schemes; propose control strategies to improve tension regulation and attenu-

ate tension oscillations; develop control strategies to improve the performance of load

speed regulation and apply it to improve web tension response. A research roadmap

of this dissertation is provided in Figure 1.3.

Objective: Efficient and real-time implementable 

web tension control schemes

Feedback and Feedforward control strategies

Chapter 2: Adaptive PI 

control schemes

Chapter 3: Load speed 

control schemes

Chapter 4: Disturbance 

rejection with nonlinear 

tension output regulator

Chapter 5: Minimization of 

interaction and disturbance 

Figure 1.3: Research roadmap

1.2 Web Tension Control Schemes and Strategies

An R2R manufacturing system is a complex large-scale system which can be decom-

posed into a number of interconnected simpler subsystems. For large scale systems,

two types of control strategies are used in general: centralized control and decen-
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tralized control. Centralized control (shown in Figure 1.4) is complex in design and

needs to handle large amounts of data from all the subsystems, though it may provide

better performance. Also failure in any subsystem may disrupt the centralized system

and make the overall system unstable or out of operation. In one form of decentral-

ized control (shown in Figure 1.5), data related to neighboring subsystems is only

required to generate control action and the implementation is relatively straightfor-

ward compared to centralized control. This study is focused on such decentralized

control techniques. Different types of decentralized control schemes can be conceived

for R2R manufacturing systems.
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Figure 1.4: Centralized control scheme
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Figure 1.5: Decentralized control scheme

Two strategies are mainly used for web tension control: load-cell and dancer based

feedback control systems. In a load-cell based tension control scheme, web tension

measured by load cells mounted on idle rollers is used as feedback for the control
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system. In the dancer based scheme, displacement of the dancer (either linear or

rotational) due to web tension variations is sensed by a rotary variable differential

transducer and used as feedback for the control system.

The commonly used control schemes in R2R systems are a two loop tension control

scheme and a single loop pure speed control scheme. The two loop tension control

scheme has speed control in the inner loop and tension control in the outer loop. In

such a control system, there are two modes of control. One is the velocity mode,

in which the inner-loop provides speed regulation and the outer-loop provides a cor-

rection to the reference speed based on either tension feedback from a load-cell or

position feedback from a dancer. In the torque mode, the outer-loop provides a cor-

rection to the reference torque, based on tension feedback. The velocity mode and

torque mode control strategies are shown in Figures 1.6 and 1.7. Second, in single
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Figure 1.6: Cascaded loop control strategy: Velocity mode
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Figure 1.7: Cascaded loop control strategy: Torque mode

loop pure speed control, the roller speed is controlled with a single loop control strat-

egy. Figure 1.8 represents the speed control scheme for a driven roller which is under
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pure speed regulation.
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Figure 1.8: Single loop control strategy

Tension control is challenging at higher speeds and in the presence of web material

properties variations, machine component non-idealities, and disturbances such as out

of round roll, etc. The PI controller has been a mainstay in web control systems be-

cause of its simple structure. In recent years, there has been significant improvements

in drive hardware and software. The advances in drive technology are making it pos-

sible to implement modern control algorithms that provides better performance over

traditional PI controllers. Modern control algorithms can be designed to be robust

and adaptable to changing scenarios of web transport systems, such as changing web

material, transport speed, roll diameter, etc. Modern control algorithms also have the

potential to provide better disturbance rejection as well as compensate for non-ideal

effects.

1.3 Fixed Gain PI Control

A simple web transport system is considered in this section to discuss the web tension

and speed control problem, shown in Figure 1.5. A fixed gain PI controller (feedback

control scheme) is generally used to regulate tension and speed as shown in Figure 1.9.

Although the PI control scheme has a simple structure, it requires extensive tuning

to achieve the desired performance. Further, tuning must be performed every time

there is a change in material properties or operating conditions.
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Figure 1.9: PI web tension control strategy

The following industrial speed PI controller is typically used

Cv(s) =
kpv(s+ ωv)

s
(1.1)

where kpv is the proportional gain and ωv is the zero crossover frequency.

The web tension PI controller is given by

Ct(s) =
kpt(s+ ωt)

s
(1.2)

where kpt is the proportional gain and ωt is the zero crossover frequency. The outer

loop tension controller either gives a speed correction or a torque correction, based on

the structure of the control mode described in the previous section. The proportional

and integral gains are determined either by using tuning rules or empirical tuning.

1.4 Adaptive PI Control

An adaptive tension control scheme which is simple to design and easy to implement

is presented in Chapter 2. A self tuning regulator for web tension regulation is given

in [18]. A robust H∞ controller is designed and implemented in [19]. Linearization

of the web system dynamic model and development of a decentralized state feedback

control scheme are given in [15]. A state space reference model based adaptive control

technique is given in [16]; a special reference model is chosen based on the overall

dynamics of the large-scale R2R system. Model reference direct and indirect adaptive
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schemes for web tension control are investigated and implemented on an experimental

platform in [12]; the motivation for the design and development of simple adaptive

PI schemes came from this work. Application of fault tolerant control to a winding

machine is given in [20]. Tension control in the web is also critical in the presence of

key primitive elements used in R2R manufacturing such as accumulators [21,22] and

print cylinders.

An adaptive controller can modify closed loop system behavior by compensating

for the changes in system parameters. An adaptive controller has adjustable parame-

ters against the fixed gain parameters in traditional controllers and a mechanism for

adjusting the system parameters.

In the current study, a simple direct model reference adaptive PI (MRA-PI) con-

troller based on the gradient method is designed and implemented for the unwind

section of an R2R system. Controller gains are estimated by matching the plant per-

formance and desired characteristics provided by a reference model. The estimates

of the controller parameters are initialized by considering the stability of the nominal

closed-loop tension control system.

Another adaptive PI control scheme that could facilitate automatic initialization

of estimated parameters is investigated. This adaptive PI control algorithm is simple

and initialization of parameters does not require the knowledge of even nominal plant

parameters. There are several ways to initialize the estimated parameters. Astrom

and Hagglund [23] suggest the relay feedback technique to initialize the estimated

parameters. This technique is an alternative to the conventional continuous cycling

method used to generate sustained oscillations. The relay feedback method is known

to be effective in determining the ultimate gain and ultimate frequency (frequency at

which phase shift of plant is -180 degrees) of a system.

In the 1950’s, relays were generally used in amplifiers. In the 1980’s, there was
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renewed interest on this topic after Astrom and others [24] showed its application in

automatic tuning of a PID controller. Hagglund and Astrom [25] showed the applica-

tion of the relay technique in industrial adaptive controllers. There have been many

other efforts to extend the relay feedback technique to diverse applications. Lund and

Astrom [26] describe automatic initialization of robust self-tuning regulators. Hag-

glund and Tengvall [27] applied the technique to develop a PID auto-tuning procedure

to unsymmetrical processes with two different operating modes. Astrom and Hag-

glund [28] extended the relay auto-tuning method to general digital controllers. The

relay feedback technique was used in the design of phase-lead and phase-lag filters

for general frequency response compensation by Yang and Chen [29]. Li [30] and

Chiang [31] describe an approach to derive low-order transfer function models using

relay feedback. Palmor [32] developed auto tuners for advanced controllers like the

Smith-predictor controller which can be implemented for complex systems. Relay

feedback methods have been proposed for intelligent systems as integrated initializa-

tion and tuning modules by Astrom and Anton [33]. Balchen [34] proposed a method

to estimate the ultimate frequency online by injecting a small sinusoidal disturbance.

As proposed in Astrom [23], the ultimate frequency is initially evaluated offline by

injecting a relay oscillation in the system. The estimated offline ultimate frequency is

used to update the proportional and integral gains. The transfer function is estimated

by approximating the plant to the second order model. The proportional gain of the

controller is updated with the magnitude of the estimated transfer function at the

ultimate frequency. The online deviation to the initial value of the ultimate frequency

is estimated by injecting a sinusoidal disturbance of small magnitude and sufficiently

exciting signal in the reference tension. The integral gain is updated by estimated

online ultimate frequency. The algorithm is robust and adaptable to changes in the
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configuration of the web system with simplicity in design and implementation.

1.5 Load Speed Regulation

Mechanical transmissions are widely used in various industries where the mechanical

power is typically transmitted from motor shafts to load shafts by utilizing transmis-

sion systems. Control of load speed is essential in many applications. When rigid

transmissions are employed, there is no dynamics between the motor shaft and the

load shaft, and typically the motor shaft speed is controlled to control the speed of

the load shaft. However, due to the transmission dynamics, resulting from the com-

pliance of belt as well as long shafts in the transmission, regulating load shaft speed

is not the same as regulating motor shaft speed. In the presence of such a transmis-

sion, practicing engineers are often confronted with the question of whether to use (i)

motor speed feedback to control load speed as is done in conventional practice, or (ii)

use load speed feedback, or (iii) use a combination of motor and load speed feedback.

There is a large body of literature on the characteristics of belt drives and design

of mechanisms using belt drives. The disturbances generated by belt compliance,

gear backlash, shaft torsional compliance or external disturbances on load side must

be compensated to achieve desired load speed regulation performance. The motion

control system can be modeled as a multi-inertia system with springs and shaft ele-

ments [35]. The multi-inertia system can be simplified by considering a two-inertia

system, in which the first inertia represents the motor and the second inertia rep-

resents the load connected through a transmission system. A linear model with

backlash and belt compliance is presented in [36] and is considered in this work for

further analysis. A common controller that is employed for regulation of load speed

for a two-inertia elastic system is PI control [37]. PI control has the limitation on
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performance, especially in the presence of disturbances. In order to overcome these

limitations, a load torque observer is suggested in [38]. Though this technique is

useful in preventing limit cycles, load speed remained uncontrolled in the presence of

uncertainties. In [36], it is shown that only load speed feedback results in an unstable

system which is also discussed in this work and further analyzed. The simultaneous

feedback from motor and load speed feedback is first proposed in [39], which also

suggested application of a preload to close the backlash gap. The simulation study

showed that limit cycles are attenuated if the applied preload is smaller than backlash

gap. In [40], a two degree freedom fuzzy controller, consisting of a feedback fuzzy con-

troller and a feedforward acceleration compensator, is proposed to control a belt drive

precision positioning table. In [41], a robust motion control scheme for belt-driven

servomechanism is reported, but it fails to consider belt as interconnection between

load and motor side. Similarly, [42] considers torsional oscillations of an induction

machine in addition to saturation and hysteresis in the actuator, but compliance in

drive train is ignored.

1.6 Output Regulator and Disturbance Rejection

The fundamental problem of controlling a dynamic system in order to have its output

track a pre-specified signal or reject a disturbance is referred to in the control literature

as the servomechanism problem. This problem has many engineering applications.

For example, in robotics, the position of the robot end-effector is required to follow a

specified trajectory. In R2R manufacturing, the tension in the material is regulated

at a specified value while transporting the material on rollers through processing

machinery. There is a need to develop intelligent control algorithms for R2R systems

that can compensate for changes in process conditions as well as reject process and
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machine induced disturbances.

The linear servomechanism problem has been studied in [43–46]. The solution

to the servomechanism problem involves determination of two components of control

- feedforward and feedback. In the linear case, the solution can be obtained by

solving linear algebraic equations. In [47] the servomechanism problem for a class of

nonlinear systems is approached along the same lines as [44] and a method is provided

for computing the feedforward component of the control through the solution of a

constrained partial differential equation. Essentially, the partial differential equation

computes the center manifold of the equilibrium of an associated nonlinear system.

It is known that this partial differential equation may not have a unique solution. An

additional algebraic equation enforces the output to be zero when the state lies on

this manifold. An approximate solution to the nonlinear servomechanism problem

is provided in [48]. An inversion based approach via input-output linearization for

exact output tracking is provided in [49]. The work in [50] involves modifying the

output and making it track a modified trajectory, so that the original output tracks

the original trajectory if the modified output tracks the modified trajectory. The

approach adopted in this paper follows the work given in [51–53].

There are other available approximation methods in the literature, especially Tay-

lor series expansion and the neural network approach [54]; it mimics the approach for

the linear servomechanism problem and tries to approximate the partial differential-

algebraic equation which was originally obtained in [47]. However, this approach has

the following drawbacks: (1) one must solve a partial differential-algebraic equation

in contrast to the ordinary algebraic differential equation, (2) the partial differential-

algebraic equation is used to find the center manifold, which may not be unique [55],

and (3) a neural network approach requires basis functions, the choice of their number

as well as the functional forms is somewhat arbitrary. The presented work relies on
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numerical algorithms for ordinary differential-algebraic equations, which is a much

simpler proposition when compared to (1). The computation of center manifold is

circumvented as we are only interested in finding the feedforward control input. Fur-

ther, numerical analytical tools for ordinary differential-algebraic equations are better

developed than those for partial differential-algebraic equations. There is also a fuzzy

approach to output regulation problem which relies on approximating the drift vector

using a set of linear approximations and resembles the gain scheduled approach as

given in [56]; linear servomechanism tools are then used to get the feedforward control

action. This provides an approximation for the feedforward control action.

In the current research, a novel solution is considered for the nonlinear servomech-

anism problem and applied to tension control in R2R manufacturing. The proposed

scheme is capable of rejecting disturbance frequency components generated by non-

ideal R2R machine elements and by converting processes, such as lamination, printing,

coating, etc.

Implementation of the output regulator with only proportional feedback action

may lead to a steady state error. It is necessary to incorporate integral feedback action

to achieve zero steady-state error and improve desired steady-state performance. In

[57], it is shown that the system with integral feedback can deliver stable performance

in the presence of disturbances. An output regulator with integral action is designed

to eliminate the steady-state error in the tension signal.

1.7 Feedforward Control Action for Interaction Minimization

Decentralized control schemes provide a practical and efficient option to regulate the

system parameters that utilize only the state feedback of each subsystem without

depending on the other subsystems [6]. In the past, efforts were made to minimize
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interaction between subsystems of R2R system by designing filters along with ex-

isting PI control strategies [58]. The feedforward action can assist in decoupling of

subsystems in R2R systems. In order to mitigate the propagation of disturbances

into downstream subsections, use of downstream section web tension measurement as

feedback is suggested and experimental results are provided to verify this strategy.

1.8 Contributions

The contributions of this research are summarized in the following:

• Design and Implementation of a Model Reference Adaptive Proportional Inte-

gral (MRA-PI) Web Tension Control Scheme. A MRA-PI control scheme for

longitudinal web tension is designed by matching the system output with the

desired characteristics generated by a reference model. The controller param-

eters are adapted based on the mismatch between the reference model output

and the system output. To obtain initial estimates of the PI gains, the char-

acteristic equation of the closed-loop system is evaluated by considering the

nominal plant parameters. The initial PI gain estimates are obtained based on

closed-loop system stability. The MRA-PI control scheme is implemented on

the EWL for two different web materials, Tyvek and polyester. A comparison

between fixed gain PI and MRA-PI on tension response is presented. Guidelines

to implement the MRA-PI scheme for any R2R system are provided.

• Design and Implementation of an Adaptive PI Web Tension Control Scheme

Based on Automatic Controller Parameter Initialization. An adaptive PI regu-

lator is designed to regulate web tension (plant output) by automatically initial-

izing controller parameters. The relay feedback technique is used to compute

the plant ultimate frequency which is used to initialize controller parameters.
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The plant model is assumed to be a second order model and the plant param-

eters are estimated online. Once evaluated by relay feedback technique, the

ultimate frequency can be updated online if there are changes to the system.

The adaptive PI controller gains are automatically obtained based on the es-

timated plant parameters and ultimate frequency. The designed adaptive PI

controller is implemented on the EWL for two different web materials, Tyvek

and polyester. Implementation guidelines for any general R2R manufacturing

system are provided.

• Design and Implementation of a Load Speed Regulation Scheme for a Two In-

ertia System Coupled with a Belt-pulley and Gear-pair Transmission System.

Based on the model of the two inertias (motor and load) connected by a belt-

pulley and gear-pair transmission system, we have investigated the effect of

using either motor or load feedback to control the load speed by utilizing the

singular perturbation method. In each case, we consider a PI controller that

is typical in the industry for the feedback controller. The small parameter in

the singular perturbation method is proportional to the reciprocal of the square

root of the belt compliance. The singular perturbation analysis revealed that

the controller using pure load feedback results in an unstable system. There-

fore, use of pure load feedback must be avoided. To directly control the load

speed, we also proposed a control scheme that uses both the motor speed and

load speed feedback and show that such scheme results in a stable closed-loop

system. Since feedback action is not sufficient in rejecting periodic disturbances

that commonly act on the load, we also consider an adaptive feedforward com-

pensation action that is based on adaptive estimation of the coefficients of the

periodic disturbance as suggested in [59]. This adaptive feedforward action is
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suitable for this application because it preserves closed-loop stability achieved

with the feedback controller. Experiments were conducted to evaluate the per-

formance of the various control schemes on an industrial grade transmission

system that is common in R2R manufacturing.

• Design and Implementation of a Load Speed Regulation Scheme for Web Tension

Control. The two degree freedom load speed regulation scheme can be extended

to web tension control in R2R manufacturing. The proposed scheme is simple

and serves as an add-on feedforward control action to the existing web tension

scheme. The proposed control scheme can provide an effective tool to reject

periodic disturbances in the tension signal. The undesired frequencies generated

due to eccentric rollers, out-of-round rolls, changing material diameters can be

attenuated by a precise load speed regulation scheme on the driven material

roll. The proposed scheme is implemented on the rewind roll of the Euclid web

line and results show the rejection of the disturbance in tension signal.

• Design and Implementation of a Nonlinear Tension Output Regulator to Reject

Periodic Disturbances. A nonlinear tension output regulator is designed for

the web transport system in order to reject periodic disturbances generated by

non-ideal machine elements. The disturbances are considered to be the output

of a partially known exogenous system. The feedforward action is synthesized

by considering the solution of the web tension governing algebraic-differential

equations in conjunction with estimates of disturbance parameters (amplitude

and phase). The output regulator design is validated through experiments con-

ducted on the EWL by injecting a sinusoidal disturbance to the master speed

roller. Experimental results show that the designed regulator has the ability to

attenuate the disturbance. An output regulator with integral feedback action
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is also considered to obtain zero steady state error in the tension signal. The

output regulator is also capable of rejecting multiple frequency components. A

web tension observer is designed and web tension estimation is incorporated

into the output regulator design.

• Implementation of a Feedforward Action to Minimize Interaction and Avoid

Propagation of Disturbance between Subsystems in an R2R System. The imple-

mentation of feedforward action with downstream tension feedback along with

Perron root based interaction minimizing filters is investigated. The proposed

implementation helps to minimize tension disturbance propagation to down-

stream sections and minimize interactions between subsystems. The proposed

control strategy is validated through experiments on EWL in the rewind section.
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CHAPTER 2

Design and Implementation of Adaptive PI Tension Control Schemes

In this chapter, two adaptive Proportional-Integral (PI) control schemes are designed

and discussed for control of web tension. First, a direct model reference adaptive

PI (MRA-PI) controller based on the gradient method is developed. Controller gains

are estimated by matching the plant performance and desired characteristics provided

by a reference model. The estimates of the controller parameters are initialized by

considering the stability of the nominal closed-loop tension control system. The MRA-

PI controller is simple in design compared to the controllers designed using standard

MRAC methods since it has only two adjustable parameters compared to six.

Second, an indirect adaptive PI control scheme that would facilitate automatic ini-

tialization of estimated parameters based on relay feedback technique is investigated.

The indirect adaptive PI control algorithm is simple and initialization of controller

parameter estimates does not require the knowledge of nominal plant parameters.

The relay feedback technique, which utilizes sustained oscillations in the system, is

used to calculate the so called ultimate frequency of the system. The period of the

oscillations can be determined by measuring the time between zero-crossings of am-

plitude by measuring peak-to-peak values of the system output oscillations. Once the

process point corresponding to ultimate frequency is known, it is possible to design a

variety of control schemes which can be based on the information obtained through

that point.

In the current context, the proportional and integral gains of the adaptive PI
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control are initialized based on the ultimate frequency. The adaptation of controller

gains is facilitated by tracking the plant transfer function at ultimate frequency. An

algorithm to compute the estimate of ultimate frequency in real-time is considered to

account for its change due to plant parameter changes; the method given in [34] is em-

ployed where a small sinusoidal oscillation is introduced into the closed-loop tension

control system. The phase shift and amplitude of the system are calculated based on

the estimation of plant parameters and ultimate frequency. The amplitude magnitude

determines the proportional gain, while integral gain is updated with the estimated

ultimate frequency. The implementation of this type of adaptive PI algorithm is rela-

tively easy since only three parameters are estimated. Note that in both the adaptive

PI schemes, we are using some kind of a feedforward signal along with the feedback

action. In the case of a fixed gain PI controller, gains are typically tuned by compar-

ing the closed-loop speed transfer function characteristic equation with a standard

second-order characteristic equation with design parameters as the damping ratio and

natural frequency. These gains are further tuned in experimentation to obtain the

best possible performance. The two adaptive PI schemes together with an industrial

fixed gain PI tension control scheme are implemented on a large experimental R2R

platform containing multiple driven rollers and tension zones. The implementation

guidelines together with discussion of experimental results are provided.

The rest of the chapter is organized as follows. Governing equations for web

tension and transport speed are discussed in Section 2.1. The design of the MRA-PI

controller is presented in Section 2.2. In Section 2.3, design of an indirect adaptive

PI scheme based on the relay feedback technique is presented; estimation of plant

transfer function around the ultimate frequency is also discussed. The experimental

setup and guidelines to implement the MRA-PI and adaptive PI controller to any

general web line are provided in Section 2.4. The performance of the adaptive PI
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control schemes is presented through experimental results in Section 2.5.

2.1 Governing Equations for Web Tension and Transport Speed

A roll-to-roll system consists of key primitive elements such as material rolls, driven

and idle rolls, and web span (web between two adjacent rollers). A number of these

primitive elements are employed sequentially to construct an R2R system. The gov-

erning equation for these primitive elements are derived and composed as per the

configuration of the R2R system to develop a mathematical model that can describe

the transport behavior of webs. For example, a line sketch of an experimental R2R

platform is shown in Figure 2.1; the system consists of a number of driven and idle

rollers and web spans between unwind and rewind rolls.
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Figure 2.1: Line sketch of R2R experimental platform

The governing equation for web speed on a roller is obtained by considering the

angular motion of the roller and web wrap on that roller. And the governing equation

for web tension in a span is obtained by first applying conservation of mass to a control

volume encompassing the web between two adjacent rollers to obtain a governing

equation for web strain. Then, a constitutive law is used to relate web strain and

web tension. In this chapter, the material is assumed to be linearly elastic and a

linear relation is used via the modulus of elasticity of the material. The web material

is transported at low strain and satisfies the small strain assumption. A simple two

26



roller setup with adjacent web spans is provided in Figure 2.2 to illustrate a portion of

any R2R system and shows the nomenclature for presenting the governing equations

below. It is assumed that web is not slipping on the roller during transport, that is,

the peripheral velocity of the roller is assumed to be equal to the web velocity on the

roller.

In this setup, ti denotes web tension in the span between (i− 1)th and ith rollers,

vi is the web transport speed on the ith roller, and ωi is the angular velocity of the

ith roller. There has been significant reported work in the literature on modeling of

web transport behavior and we will simply list the governing equations here and refer

interested readers to the literature for more details.

ti−1 ti ti+1

vi−1 vi

ωi−1 ωi

Figure 2.2: Two roller setup

The governing equation for web tension in the ith span is given by

ṫi =
EAw

Li
(vi − vi−1) +

1

Li
(ti−1vi−1 − tivi) (2.1)

where E is the modulus of elasticity of the web material, Aw is the area of cross-

section of the web material, and Li is the span length. The governing equation for

web transport speed on the ith roller is given by

v̇i =
R2

i

Ji
(ti+1 − ti) +

Ri

Ji
niui −

bfi
Ji
vi (2.2)

where Ri is the radius of the ith roller, Ji is the inertia of the ith roller, ni is the gear

ratio, and bfi is the coefficient of viscous friction.
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The above governing equations can be linearized around reference values. To do

this, define the perturbations from references as △ti = ti − tr, △vi = vi − vr, and

△ui = ui − ueq, where ueq is the equilibrium control input. Therefore, the linearized

governing equations in the frequency domain are given by

Ti(s) =
EAw/Vr
τωis+ 1

(Vi(s)− Vi−1(s)) +
1

τωi−1s+ 1
Ti−1(s), (2.3)

Vi(s) =
R2

i

Jis+ bfi
(Ti+1(s)− Ti(s)) +

Ri

Jis+ bfi
niUi(s) (2.4)

where Ti(s) is the Laplace transform of △ti(t), that is, Ti(s) = L{△ti}, Vi(s) =

L{△vi}, Ui(s) = L{△ui}, and τωi = Li/vr is the span time constant, that is, the

time it takes for an element of material from entry to exit of that span. The term

containing Ti−1(s) in the tension governing equation appears due to transport of strain

from upstream spans to downstream spans. From these two governing equations one

can create a model for the entire R2R transport system by writing down web speed

on each roller and web tension in each span. Many idle rollers (non-driven) are

employed in addition to driven rollers to create web paths through processes and to

provide support for the web during transport. In the presence of a large number of

idle rollers the transport behavior model for the system is too cumbersome. Often

the notion of tension zone is employed in practice to simplify the models as the idle

rollers do not contribute much to the dynamics during steady state operation. The

idea is to designate the web between any two driven rollers as a tension zone and

consider each zone to be a web span. This simplifies the dynamic model significantly.

A simplified line sketch showing the tension zones and driven rollers is provided in

Figure 2.3; the rollers indicated as “LC” are mounted on load-cells to provide tension

feedback for tension control systems. The two driven rollers in the S-wrap section

are electronically slaved together and are under pure speed control; these are treated

as one driven roller (M1) in the simplified sketch and are typically referred to as the
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Master Speed Roller.
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Figure 2.3: Simplified line sketch of R2R experimental platform

2.2 Control Scheme I: Model Reference Adaptive Proportional Integral

(MRA-PI) Controller

In the MRA-PI control, the plant is parameterized in terms of the PI controller pa-

rameters and controller parameters are estimated online using parameter adaptation

laws. The goal is to find a parameter adjustment mechanism to achieve zero error

between the reference model output and the actual system output; tension is the

output for this application. For the speed loop we use an industrial PI scheme that is

implemented on the motor drive. The open loop transfer function for the speed loop

is given by

Gv(s) =
kv(s+ ωv)

s

1

ni−1Ji−1s
(2.5)

where kv is the proportional gain and ωv is the cutoff frequency. The closed-loop

transfer function for the inner velocity loop takes the form of

Gcv(s) =
(β0s+ β1)

s2 + β0s + β1
(2.6)

where β0 = kv/(ni−1Ji−1), β1 = β0ωv, ωv = β0/(4ζ
2), ζ is the damping ratio of the

system.
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The structure of the MRA-PI tension control scheme is shown in Figure 2.4. The

outer loop fixed gain PI web tension controller is replaced by the MRA-PI controller

as shown in Figure 2.4. The open loop transfer function from the velocity correction

(output of the tension controller) to the tension variation (output of Gp(s)) is GcvGp.

The closed-loop transfer function with the MRI-PI controller is given by

Gct(s) =
GtGcvGp

1 +GtGcvGp
(2.7)

where Gt is the MRA-PI transfer function.
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Figure 2.4: Model reference adaptive PI tension control strategy

The selection of the structure of the reference model is important. We choose a

structure for the reference model that is similar to the closed-loop system obtained

by using fixed gain PI controllers for the speed and tension loops. The relative degree

of this closed loop transfer function is two. We select a reference model with relative

degree two and having the same number of poles and zeros as the closed-loop transfer
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function resulting from the MRA-PI controller. This is given by

Gmt(s) =
km(as + z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
(2.8)

where the reference model parameters km, a, zi and pi are selected to provide the de-

sired performance through model simulations of the MRA-PI tension control scheme.

As it is typically done in model reference adaptive schemes, we develop parameter

adaptation laws for the tension controller PI gains by minimizing the loss function

corresponding to the model error emi = ti − tm. The MRA-PI controller has two

adjustable parameters, proportional and integral gains. Define the parameter vector

as θ = [kp ki]. The parameter adaptation law by using the gradient method is given

by

dθ

dt
= −γemi

∂emi

∂θ
(2.9)

where ∂emi/∂θ is the sensitivity of the model error to parameter θ. Since the reference

model output does not depend on the controller parameters, the sensitivity is given

by

∂emi

∂θ
=
∂(ti − tm)

∂θ
=
∂ti
∂θ
. (2.10)

Therefore, the resulting adaptation laws are

dkp
dt

= −γpemi
s(EAw/Vr)(β0s+ β1)

s(s2 + β0s+ β1)(τωis+ 1) + (kps+ ki)(EAw/Vr)(β0s+ β1)
, (2.11)

dki
dt

= −γiemi
(EAw/Vr)(β0s+ β1)

s(s2 + β0s+ β1)(τωis+ 1) + (kps + ki)(EAw/Vr)(β0s+ β1)
(2.12)

where γp and γi are adaptive gains. Since the system parameters are not known, the

above adaptation laws cannot be used. The following adaptation laws that utilize the

reference model structure and parameters are used instead:

dkp
dt

= −γpemi
kms(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
, (2.13)
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dki
dt

= −γiemi
km(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
. (2.14)

For online adaptation in real-time control, one requires good initialization for the

controller parameter estimates. We consider the closed-loop characteristic equation

with MRA-PI which is given by

s(s2 + β0s+ β1)(τωis+ 1) + (EAw/Vr)(β0s+ β1)(kps+ ki) = 0. (2.15)

To obtain constraints on the gains kp and ki which provide an idea on how to initialize

the estimated parameters, we consider the gains for which the roots of the character-

istic equation are in the open left half of the complex plane, which gives the following

constraints:

kp >
(1 + ωvτωi)

(EAw/Vr)
, (2.16)

ki > −
ωv

(EAw/Vr)
− kpωv. (2.17)

Note that the right hand side of these constraints themselves require the system pa-

rameters. We use nominal system parameters to initialize the estimated PI controller

parameters.

2.3 Control Scheme II: Indirect Adaptive PI Control Based on Relay

Feedback Technique

An indirect adaptive PI control scheme is described in this section which does not

require the knowledge of the nominal parameters of the model. The relay feedback

technique is first employed to find the amplitude of the plant and the frequency at

which the phase of the plant is -180 degrees. The parameters of the plant transfer

function are estimated first and a controller is selected to provide the required gain

and phase margins. The advantage of this indirect adaptive PI controller is that one
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can automatically initialize the controller parameters. This is particularly useful for

R2R manufacturing systems where it is sometimes difficult to determine the nominal

values of the plant parameters. We describe the method in the following.

Let P (s) be the transfer function of the plant to be controlled and C(s) be the

adaptive PI used to control the plant. The Nyquist plots of the plant and the open

loop system along with the controller and the plant are shown in Figure 2.5.
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Figure 2.5: Example Nyquist plot for a plant with and without compensator

In traditional frequency response based controller design, if we have knowledge

about the plant, one can obtain its frequency response and the controller can be

designed by shaping the frequency response to the desired. If the frequency response

of the plant is not known, one cannot use this approach. In such a scenario, if

the magnitude and frequency corresponding to point A of the frequency response

of P (s) are available, then the plant transfer function can be estimated (from the
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information of point A) which can be used to design the controller. Let C(s) be the

controller transfer function and B be the point on the Nyquist plot of the open loop

system (C(s)P (s)) with the desired specifications (gain margin and phase margin) as

indicated in Figure 2.5. The goal is to design the controller C(s) such that point A

corresponding to the plant transfer function can be moved to point B corresponding

to the open loop transfer function. In order to determine point B, the magnitude

of the plant transfer function and associated frequency at point A (ωA) need to be

identified. This frequency ωA is typically referred to in the literature as the ultimate

frequency.
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Figure 2.6: Relay feedback in tension outer loop

Relay feedback technique may be employed to obtain the ultimate frequency and

the magnitude of the plant transfer function at point A. The relay feedback technique

can be readily applied to an R2R system. Introduction of the relay into the outer

tension loop is shown in Figure 2.6. A relay with hysteresis is employed to avoid high

frequency switching of the standard relay. The relay logic is given by

If e ≥ δ, then d = + 5% of reference variable;

If e ≤ −δ, then d = − 5% of reference variable;

Else keep the previous output of relay;

where e = ti − tr is the tension error, δ is the relay hysteresis, and d is the relay

amplitude. The relay feedback method induces an oscillation in the controlled tension
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output which is used to identify the ultimate frequency and the plant amplitude at

that frequency.

The indirect adaptive PI control scheme is illustrated in Figure 2.7. The plant
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Figure 2.7: Indirect adaptive PI tension control strategy

Gp(s) is a combined representation of the tension dynamics and inner velocity closed-

loop transfer function whose frequency response can be represented as

Gp(jω) = αejφ (2.18)

where α is the amplitude and φ is the phase shift of the plant. Since the relative

degree of Gp(s) is two, this can be approximated by a second-order discrete model as

t̄i(t) = b1ū(t− T ) + b2ū(t− 2T ) (2.19)

where ū and t̄i are the filtered control input and process tension output, respectively;

b1 and b2 are the unknown parameters to be estimated; and T is the sampling period.

The parameters of Gp(jω) are estimated in real-time by using the least squares

method. In order to estimate the plant parameters, the control input and plant
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output are filtered using the band-pass filter

Gf (s) =
s

s2 + 2ζωfs+ ω2
f

, (2.20)

where ωf is the band pass filter frequency and can be chosen as the estimated ultimate

frequency. The ratio of the filtered output amplitude to the filtered input amplitude

is the plant magnitude α. The phase difference between the filtered output and input

signals is the phase φ. Based on this estimate of the plant transfer function the

indirect adaptive PI controller gains are given by

kp =
β1
α

(2.21a)

Ti =
β2
ωA

(2.21b)

where β1 and β2 are tunable gains. The indirect adaptive PI control law is given by

u = kp

(
1 +

1

Tis

)
(2.22)

The ultimate frequency is obtained by the relay feedback technique a priori and is

fixed for real-time estimation of the plant transfer function. If there are changes in the

plant such as changes in the material roll diameter, then the ultimate frequency found

a priori is no longer relevant. In the following we describe a method to automatically

estimate the ultimate frequency online using an algorithm provided in [34]. The

method is illustrated in Figure 2.8. The ultimate frequency is estimated by injecting

a small sinusoidal perturbation to the tension reference. The adaptation law for the

ultimate frequency is

ω̇ = γ cos(ωT )(u0 − ti) (2.23)

where γ is the estimation gain and u0 = tr + δuc is the perturbed reference.

The phase shift of the plant is calculated based on the estimated parameters as

φ = tan−1

(
b̂1 sin(ω̂T )

b̂1 cos(ω̂T ) + b̂2

)
− 2ω̂T (2.24)
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Figure 2.8: Online estimation of ultimate frequency

where b̂1 and b̂2 are estimated plant parameters and ω̂ is the estimated ultimate

frequency. The amplitude of the plant is calculated based on the estimated plant

parameters and the phase shift (2.24) as

α̂ =
b̂1 sin(ω̂T )

sin(2ω̂T + φ)
. (2.25)

The controller gains given in (2.21) now use the estimates ω̂ and α̂.

2.4 Experimental Platform and Procedure

A schematic of the R2R experimental setup used for experimentation is shown in

Figure 2.1. It is divided into four sections: unwind section, S-wrap section, pull-roll

section, and rewind section. The five driven rollers in the machine are powered by

AC motors, 15 HP (11.19 kW) for the unwind and rewind and 5 HP (3.76 kW) for

the three intermediate driven rollers. The S-wrap section, acts as the master speed

section, which sets the web speed in the machine. The two driven rollers in the S-wrap

section are under pure speed control. The unwind, pull-roll and rewind are under a

speed-based tension control scheme as shown in Figure 1.6. The cascaded control
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approach is common in industrial practice where the outer tension loop provides cor-

rection to the inner loop speed reference. The outer tension loop is implemented in

an external controller (for example, ControlLogix controller from Allen Bradley) and

the inner speed loop is implemented in the motor drive (for example, Powerflex 755

AC drive from Allen Bradley). Encoders on motor shafts provide angular position

feedback directly to the motor drives. The tension control algorithm is programmed

in RSLogix 5000 software (Rockwell Automation PLC software). The real-time ar-

chitecture used to run the R2R machine also includes analog/digital input/output

modules and network boards. All the real-time hardware components of the machine

are connected through a ControlNet communication network. The network is updated

every 5 ms (Network Update Time) and data is communicated to the network every

10 ms (Request Package Interval). The lateral guides, which control the web lat-

eral position, are controlled by dedicated controllers independent of the ControlLogix

real-time architecture.

The two adaptive PI control schemes presented in the previous two sections are

implemented for control of tension in the unwind section of the R2R experimental

platform. The tension feedback is obtained using load cells mounted on roller R8

shown in Figure 2.1. The reference web tension is 20 lbf (89 N). In the first set

of experiments, tension regulation experiments are carried out at the line speed of

100 FPM (0.51 m/s) for two web materials a polyester film and Tyvek (a polymer

material manufactured by Dupont). In the second set of experiments, the web line

is accelerated to 150 FPM (0.76 m/s) and 250 FPM (1.02 m/s), then decelerated

to 100 FPM (0.51 m/s), to evaluate the performance of the designed algorithms for

changing speeds. The nominal values of the key web material parameters are given

in Table 2.1.

For the MRA-PI control scheme, the reference model for the web tension system
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Parameter Numerical Values

Tyvek polyester

Modulus (E) 9.3×104 psi 4.6×105 psi

(641.2 N/mm2) (3171.6 N/mm2)

Width (w) 6 in (152.4 mm) 4.25 in (107.95 mm)

Thickness (hw) 0.005 in (0.127 mm) 0.0038 in (0.097 mm)

Table 2.1: Web material parameters

is selected based on model simulations (offline using MATLAB):

Gmt(s) =
15(1/1.2s+ 1)(1/50s+ 1)

(1/12s+ 1)(1/5s+ 1)(s+ 5)(s+ 3)
. (2.26)

The implementation of MRA-PI controller scheme is shown in Figure 2.9. In Fig-

ure 2.9, Fp(s) and Fi(s) are filters given by equations (2.13) and (2.14), respectively.
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Figure 2.9: Implementation of MRA-PI control
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For the indirect adaptive PI scheme based on automatic initialization, the initial

plant parameter values are chosen as b1 = 0.5 and b2 = 0.5. The proportional and

integral gain values are initialized with ultimate frequency obtained by relay feedback

experiment for Tyvek and polyester web materials. The adjustable parameters of

the controller are selected empirically based on the performance of the system as

β1 = 0.5 and β2 = 0.2. In the following we provide step-by-step guidelines for the

implementation of the two adaptive schemes.

Implementation Guidelines for MRA-PI Controller

Step 1: Select reference model parameters given in equation (2.8) based on the desired

tension loop performance.

Step 2: Choose initial controller parameter estimates that satisfy the stability con-

straint criteria. The lower limit on the controller parameters can be imposed

based on the constraint criteria.

Step 3: Estimate the controller gains online and generate controller output.

Step 4: The initial value of the proportional and integral gains may be increased in

steps until the desired response is achieved.

Step 5: If the estimated controller parameters drift, an upper limit can be imposed

on the estimates with suitable value that can be evaluated empirically or a

method to project the parameters into a bounded set can be employed.

Implementation Guidelines for Indirect Adaptive PI Controller

Step 1: Evaluate the plant ultimate frequency offline by injecting relay oscillations in

the system under tension but at zero speed.

Step 2: Initialize the integral gain with the ultimate frequency evaluated offline.
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Step 3: Initialize the second order plant parameters. Then initialize proportional gain

based on the ultimate frequency and plant parameters initial values.

Step 4: Filter the plant output and control input using the band pass filter at the

estimated ultimate frequency.

Step 5: Estimate the ultimate frequency and plant parameters online to account for

dynamic changes in the plant.

Step 6: Evaluate the phase shift and amplitude ratio of the plant based on the esti-

mated plant parameters and ultimate frequency.

Step 7: Select the adjustable controller parameters β1 and β2, and update the pro-

portional and integral gains based on the estimated amplitude and ultimate

frequency.

2.5 Experimental Results

The tension response with a well-tuned fixed gain PI controller at 100 FPM (0.51

m/s) for Tyvek and polyester web materials are shown in Figure 2.10. The standard

deviation is calculated for tension data in the steady-state and used as a performance

metric. The standard deviation values indicate that at steady-state the web tension

varies between ±0.51 lbf for Tyvek web and ±0.71 lbf for the polyester web. The

fixed speed PI controller gains are tuned based on a desired second-order characteristic

equation that has the damping ratio ξ = 1.1 and the natural frequency ω = 4 Hz.

The outer tension loop fixed PI gains are tuned based on the second-order closed-

loop speed dynamics and first-order tension transfer function. The tuning was further

fine-tuned empirically during experimentation. The following are tuned values for the

fixed gains of the tension PI controller: the proportional and integral gain values are
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25 and 0.5 for Tyvek and 39 and 0.75 for polyester material. Since the elastic modulus

of polyester material is larger than Tyvek material, larger proportional and integral

gains are needed for the polyester material for a similar performance as that of Tyvek.

The tension response with the MRA PI control scheme at 100 FPM (0.51 m/s) for

Tyvek and polyester web materials are shown in Figure 2.11. The same initial values

of the controller parameter estimates and design parameters are used for both web

materials. The standard deviation values for the web tension in the unwind section at

steady state vary between ±0.53 lbf for Tyvek web and ±0.66 lbf for polyester web;

these values are comparable or better than what is observed with a well-tuned fixed

gain PI controller. Further, the MRA-PI scheme does not require tuning if different

web materials are transported in the same R2R process line. This provides significant

benefits to many R2R industries as tedious tuning is not required when processing

different materials. The evolution of the estimates of controller parameters are shown

in Figures 2.12 through 2.13. Figure 2.14 shows the performance of the MRA-PI

algorithm to acceleration and deceleration of the web line at different speeds (AB:

100 FPM, BC: 150 FPM, CD: 250 FPM, and DE: 100 FPM) for the Tyvek web. The

controller gain estimates adapt to compensate for the speed changes.

In the implementation of the indirect adaptive PI controller, first the relay feed-

back is introduced at zero web speed and when the tension is at its reference value.

The relay amplitude is selected as 0.9, which is about 5% of the reference web ten-

sion of 20 lbf (89 N); this selection follows the guidance given on the selection of

relay amplitude in the literature. The hysteresis is selected to be 0.006, based on

the observation of the tension error fluctuation range. The relay feedback is given

for short period of time to obtain sustained oscillations. The tension response data

with oscillations is shown in Figure 2.15. A close-up view of the relay output and

the tension response for the Tyvek web is shown in Figure 2.16. The amplitude of
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tension oscillations measured is 0.9. The period of tension oscillations is 2.6 sec. So,

the frequency of tension oscillations (ultimate frequency) for Tyvek web is 2.42 rad/s.

A similar experiment is performed for the polyester web, which gave the frequency of

tension oscillations (ultimate frequency) to be 2.07 rad/s. Adaptive gains are initial-

ized with the ultimate frequency obtained by relay feedback technique as formulated

in equations (2.24), (2.25) and (2.21). Once the controller estimates are initialized,

non-zero speed experiments are performed to regulate tension.

The tension response with the indirect adaptive PI control scheme at 100 FPM

(0.51 m/s) for Tyvek and polyester web materials are shown in Figure 2.17. The

standard deviation values are ±0.54 lbf for Tyvek web and ±0.75 lbf for polyester web.

The evolution of the estimates of the controller parameters are shown in Figures 2.18

through 2.19. Figure 2.20 shows the performance of indirect adaptive PI algorithm to

the acceleration and deceleration of the line (AB: 100 FPM, BC: 150 FPM, CD: 250

FPM, and DE: 100 FPM) for Tyvek web. The controller gains adapt to compensate

for the changing speed.

Both the MRA-PI and indirect adaptive PI controllers provide similar or better

performance when compared to a well-tuned fixed gain PI controller. This perfor-

mance is achieved without the need for any changes in controller gain initial estimates

or design parameters when transporting different materials and during speed changes.

A fixed gain PI requires tuning of controller gains for each material as well as for differ-

ent speeds. Among the two adaptive PI schemes, the implementation of the indirect

adaptive PI scheme has several advantages over the MRA-PI scheme: (1) there is

no need for nominal plant parameters; (2) reference model is not required; (3) the

controller parameter estimates in indirect adaptive PI controller are automatically

initialized based on ultimate frequency which can be estimated online. For the indi-

rect adaptive PI scheme implementation, one has to implement the relay feedback to
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obtain the initial estimate of the ultimate frequency. This does not pose a problem

in R2R systems because in practice web tension of desired value is generated at zero

speed (typically called as tension-on) and then line speed is increased to the desired

value along a given acceleration profile. The relay feedback technique to obtain ini-

tial value of the ultimate frequency can be implemented in a straightforward fashion

during the tension-on phase of the system operation. Further, all steps of the indirect

adaptive PI scheme can be automated without the need for operator intervention.
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Figure 2.10: Tension response at 100 FPM with a well-tuned industrial PI controller;

Left: Tyvek; Right: polyester
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Tyvek web
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polyester web
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Figure 2.14: Tension response and gain adaptation with MRA-PI Controller for line

speed changes
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Figure 2.15: Tension response to relay feedback for Tyvek web
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Figure 2.16: Relay output and oscillating tension response for Tyvek web
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Figure 2.17: Tension response at 100 FPM with indirect adaptive PI controller
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CHAPTER 3

Load Speed Regulation in Compliant Mechanical Transmission Systems

with Application to Web Tension Control

A load and motor speed model which consider belt-pulley and gear pair power trans-

mission is considered in this chapter. In the given model, motor torque is considered

as input while speed of the driven roller (load speed) as the output of the system.

A simultaneous load and motor speed feedback control scheme is considered for ob-

taining better load speed regulation by attenuating disturbances. Further, in order

to reject periodic disturbance, an add-on adaptive feedforward (AFF) control action

along with motor and load speed feedback (two degree freedom control) is considered.

The proposed two degree freedom load speed regulation scheme is extended to

web tension control. It is expected to control the web tension to desired value by

regulating the load speed in the presence of disturbances. The proposed control

scheme is implemented to regulate the load speed in the presence of periodic dis-

turbances. The two-inertia system includes belt-pulley and gear pair transmission

elements which mimics most of power/torque transmission applications. This system

utilizes an AC motor, drive and control hardware used in industrial practice. Com-

parative experimental results with an existing industrial control scheme and proposed

control scheme are presented in frequency and time domain, and further discussions

are provided. The proposed load speed regulation scheme is further implemented in

the rewind section in order to investigate web tension control in the presence of dis-

turbances. Comparative experiments are performed with an existing control scheme
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and proposed control scheme and results are presented and discussed.

The remainder of the chapter is organized as follows. The model of the system

is described in Section 3.1. Sections 3.2 and 3.3 describe the motor speed feedback

only and load speed feedback only cases, respectively. A control scheme that utilizes

both motor and load speed feedback is discussed in Section 3.4. An add-on adaptive

feedforward compensation to reject load speed disturbances is discussed in Section

3.5. The proposed load speed regulation scheme is extended to web tension control

in Section 3.6. Section 3.7 provides a description of the experimental platform and a

comparison of the results with the various control schemes.

3.1 Model of the System

A schematic of the belt-pulley and gear transmission system connecting the motor

with the load is shown in Figure 3.1. In the schematic, Ji denotes the i
th roll inertia, bi

denotes the viscous friction coefficient, Ri denotes the radii of the pulleys and gears of

the ith transmission, θi denotes the angular displacements of the inertias, τm denotes

the motor torque, τL denotes the torque disturbance on the load, and Kb denotes the

stiffness of the belt.

To derive the governing equations for this system we consider the action of the belt

in transmitting power. For a given direction of rotation of the pulley, the belt has a

tight side and a slack side as shown in Figure 3.1. It is assumed that the transmission

of power is taking place on the tight side and the transport of the belt is taking place

on the slack side. Under this assumption, the net change in tension on the slack side

will be much smaller than that in the tight side and thus may be ignored. The tight

side of the belt can then be modeled as a spring with spring constant of Kb. For given

angular displacements θm and θL, the net elongation of the tight side of the belt can
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Figure 3.1: Schematic of a belt-pulley and gear-pair transmission system

be written as (RP1θm − GRRP2θL). Because of this elongation, the driving pulley

experiences a torque of (RP1θm−GRRP2θL)KbRP1 and the driven pulley experiences

a torque of (RP1θm−GRRP2θL)GRRP2Kb. Under the assumption that the inertias of

the pulleys and gears are much smaller than the motor and the load, the governing

equations of motion for the motor-side inertia and the load-side inertia are given

by [36]

Jmθ̈m + bmθ̇m +RP1Kb(RP1θm −GRRP2θL) = τm, (3.1a)

JLθ̈L + bLθ̇L −GRRP2Kb(RP1θm −GRRP2θL) = τL. (3.1b)

A block diagram representation of the system given by (3.1) is provided in Figure

3.2; note that this block diagram represents the open-loop system and the two “loops”

appearing in the block diagram represent the interconnections in (3.1). The open-
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Figure 3.2: Block diagram of the belt-pulley and gear transmission system; BR de-

notes the overall speed ratio, BR = (RP2/RP1)GR.

loop transfer functions from the motor torque signal τm to the motor speed ωm and

load speed ωL are given by

Gτmωm
(s) ,

ωm(s)

τm(s)
=
JLs

2 + bLs+G2
RR

2
P2Kb

D(s)
, (3.2a)

GτmωL
(s) ,

ωL(s)

τm(s)
=
GRRP1RP2Kb

D(s)
, (3.2b)

where

D(s) = JmJLs
3 + (bLJm + JLbm)s

2 + (KbJeq + bmbL)s

+Kbbeq, (3.3a)

Jeq = G2
RR

2
P2Jm +R2

P1JL, (3.3b)

beq = G2
RR

2
P2bm +R2

P1bL. (3.3c)

The goal is to control the load speed ωi. In the following we will discuss the closed-

loop control systems that consider three scenarios: (i) pure motor speed feedback, (ii)

pure load speed feedback, (iii) a combination of motor and load speed feedback.

3.2 Motor Speed Feedback Control Scheme

It is common to control load speed by using the measurement of motor speed ωm

as feedback. This control scheme is shown in Figure 3.3. The control structure is
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designed to regulate motor speed ωm to the reference ωrm, and thereby indirectly

regulate load speed ωL.
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Figure 3.3: Motor speed feedback control scheme

We consider the often used Proportional-Integral (PI) control action which is given

by

τm = Kpm(ωrm − ωm) +Kim

∫
(ωrm − ωm)dτ. (3.4)

With this control law, the closed-loop transfer function from ωrm to ωL is obtained

as

ωL(s)

ωrm(s)
=

(GRRP1RP2Kb/JmJL)(sKpm +Kim)

ψm(s)
, (3.5)

where

ψm(s) = s4 + c3s
3 + c2s

2 + c1s+ c0,

c3 =
(bmJL + JmbL +KpmJL)

JmJL
,

c2 =
(KbJeq + bmbL +KpmbL +KimJL)

JmJL
,

c1 =
(Kbbeq +G2

RR
2
P2KbKpm +KimbL)

JmJL
,

c0 =
G2

RR
2
P2KbKim

JmJL
.

(3.6)

Note the the coefficients c0 to c3 depend on the controller gains. We consider the

singular perturbation method for analyzing such a system with the small parameter
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equal to the reciprocal of the square root of the belt stiffness Kb. For conducting

singular perturbation analysis, we express the equations in the form

ẋ = A11x+ A12z, x(t0) = x0 (3.7a)

εż = A21x+ A22z, z(t0) = z0 (3.7b)

where x and z are the states of the slow and the fast subsystems, respectively, and

ε is the small parameter; for our system we will consider ε2 = 1/Kb. The elements

of the matrices Aij may depend on ε. However, to use the singular perturbation

method, the matrix A22 needs to be nonsingular [60] at ε = 0. A natural choice

of the state variables for the singular perturbation analysis is θm, θ̇m, θL and θ̇L.

However, with this choice of the state variables, the matrix A22 becomes singular at

ε = 0. To obtain a state-space representation in the form that would enable the

use of the singular perturbation method, we consider the following transformation of

variables [36] :

θc ,
Jmθm + JLGR(RP2/RP1)θL

Jm + JL
, (3.8a)

θs , θm −GR(RP2/RP1)θL. (3.8b)

The variable θc is a weighted average of angular displacements (θm and θL) referred to

the motor side and the variable θs is difference between the angular displacements (θm

and θL) referred to the motor side; transformations similar to these have been used

in prior studies of two inertia systems, see for example [61]. The idea of the weighted

average of the displacements arises naturally in the case of a translational system

wherein θc represents the position of the centroid of the masses. Now, choosing the

state variables as x = [θc, θ̇c]
⊤ and z = [θs/ε

2, θ̇s/ε]
⊤, the state space representation
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of the system is obtained in the form given by (3.7) where

A11 =



0 1

f1 f3


 , A12 =




0 0

ε2f21 + f22 εf4


 ,

A21 =



0 0

g1 g3


 , A22 =




0 1

ε2g21 + g22 εg4


 ,

(3.9)

f1 = −Kim/J0, f21 = −KimJL/J
2
0 ,

f22 = (G2
RR

2
P2 − R2

P1)/J0, f3 = −(Kpm + bm + bL)/J0,

f4 = (bLJm − bmJL −KpmJL)/J
2
0 ,

g1 = −Kim/Jm, g21 = −KimJ
2
L/(JmJLJ0),

g22 = −(R2
P1JL +G2

RR
2
P2Jm)/(JmJL),

g3 = (bLJm − bmJL −KpmJL)/(JmJL),

g4 = −(KpmJ
2
L + bmJ

2
L + bLJ

2
m)/(JmJLJ0),

where J0 = Jm + JL, and 1/ε2 = Kb. Notice that det(A22(ε)|ε=0) = −g22 6= 0,

thus satisfying the requirement of non-singularity of the matrix A22 at ε = 0. The

characteristic equation for the system given by (3.9) can be factored as [60]

ψm(s, ε) ≈
1

ε2
ψms(s, ε)ψmf(p, ε) = 0 (3.10)

with

ψms(s, ε) , det[sI2 − (A11 −A12L(ε))] (3.11a)

ψmf (p, ε) , det[pI2 − (A22 + εL(ε)A12)] (3.11b)

where ψms(s, ε) is the characteristic polynomial for the slow subsystem and ψmf (p, ε)

is the characteristic polynomial of the fast subsystem exhibited in the high-frequency

scale p = εs. The matrix L(ε) is obtained using the iterative scheme given in [60].
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Using the matrices given by equations (3.9), the slow and the fast characteristic

polynomials are obtained as

ψms(s, ε) ≈ s2 + α1s+ α0, (3.12a)

ψmf (p, ε) ≈ p2 + α′
1p+ α′

0 (3.12b)

where

α1 =
G2

RR
2
P2bm +R2

P1bL +G2
RR

2
P2Kpm

G2
RR

2
P2Jm +R2

P1JL
,

α0 =
G2

RR
2
P2Kim

G2
RR

2
P2Jm +R2

P1JL
,

α′
1 =

G2
RR

2
P2KpmJL

Jm(G2
RR

2
P2Jm +R2

P1JL)
ε,

α′
0 =

G2
RR

2
P2JL +R2

P1Jm
JmJL

.

(3.13)

Equation (3.12) indicates that both the fast and the slow subsystems are stable for

all Kpm, Kim > 0. The result is true even without the approximation introduced by

L(ε) as shown in [36].

3.3 Load Speed Feedback Control Scheme

One can employ the load speed feedback scheme shown in 3.4, where the measured

variable is ωL. This seems to have the advantage of directly controlling load speed

and attenuating the effect of the disturbance τL. The feedback law is given by

τm = KpL(ωrL − ωL) +KiL

∫
(ωrL − ωL)dτ, (3.14)

and the closed-loop transfer function from ωrL to ωL is obtained as

ωL(s)

ωrL(s)
=

(GRRP1RP2Kb/JmJL)(sKpL +KiL)

ψL(s)
(3.15)
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Figure 3.4: Load speed feedback control scheme

where

ψL(s) = s4 + d3s
3 + d2s

2 + d1s+ d0,

d3 =
(bmJL + JmbL)

JmJL
,

d2 =
(KbJeq + bmbL)

JmJL
,

d1 =
(Kbbeq +GRRP1RP2KbKpL)

JmJL
,

d0 =
GRRP1RP2KbKiL

JmJL
.

(3.16)

Singular perturbation analysis pertaining to this control scheme results in the

following slow and fast characteristic polynomials:

ψls(s, ε) ≈ s2 + β1s+ β0 (3.17a)

ψlf (p, ε) ≈ p2 − β ′
1p+ β ′

0 (3.17b)

where

β1 =
G2

RR
2
P2bm +R2

P1bL +GRRP2RP1KpL

G2
RR

2
P2Jm +R2

P1JL
,

β0 =
GRRP2RP1KiL

G2
RR

2
P2Jm +R2

P1JL
,

β ′
1 =

G2
RR

2
P2bm +R2

P1bL +G2
RR

2
P2KpL

G2
RR

2
P2Jm +R2

P1JL
ε,

β ′
0 =

G2
RR

2
P2JL +R2

P1Jm
JmJL

.

(3.18)
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Note that the slow subsystems are stable for all KpL, KiL > 0. However, the fast

subsystem is unstable for all KpL > 0 and KiL > 0. Also, note that the characteristic

polynomials given by equations (3.12b) and (3.17b) are identical when ε = 0. Thus,

analyzing the limiting case of an infinitely stiff belt, that is, ε = 0 will not reveal the

instability exhibited by (3.17b).

The load speed ωL can attain steady-state only when motor speed ωm attains

steady-state first. This is shown by the following differential equation,

JLω̈L + bLω̇L +R2
P2KbωL = RP1RP2Kbωm, (3.19)

which is obtained by differentiating (3.1b). Even when the motor speed ωm attains

steady-state, ωL continues to exhibit damped oscillations. Thus, by measuring only

ωL and using the control law given by (3.14), the damped oscillations of the load

speed cannot be distinguished from oscillations due to the motor speed fluctuations.

Therefore, the controller reacts also to the damped oscillations of the load speed,

hence avoiding ωm (and as a consequences also ωl) to settle to its steady-state value.

Thus, the control law given by (3.14) does not present a desirable situation.

3.4 Simultaneous Motor and Load Speed Feedback Control Scheme

In this scheme, the load speed control corrects directly the torque input to the system

as shown in Figure 3.5. The closed-loop transfer function from ωrL to ωL is given by

ωL(s)

ωrL(s)
=

αmLt

ψmLt(s)
(3.20)

where

αmLt(s) = a1s+ a0,

a1 =
(GRRP1RP2KbKpL +GRRP2Kpm/RP1)

JmJL
,

a0 =
(GRRP1RP2KbKiL +GRRP2Kim/RP1)

JmJL
.

(3.21)
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Figure 3.5: Simultaneous motor and load speed feedback scheme: Torque mode

ψmLt(s) = s4 + f3s
3 + f2s

2 + f1s+ f0,

f3 =
(bmJL + JmbL + JLKpm)

JmJL
,

f2 =
(KbJeq + bmbL +KpmbL + JLKim)

JmJL
,

f1 =
(Kbbeq +G2

RKbKpm +KimbL +GRRP1RP2KbKpL)

JmJL
,

f0 =
KimG

2
RR

2
P2Kb +GRRP1RP2KbKiL

JmJL
.

(3.22)

Note that the coefficients f0 to f3 depend on the gains of the control law. Sin-

gular perturbation analysis for this case results in the slow and fast characteristic

polynomials as

ψmls(s, ε) ≈ s2 + γ1s+ γ0 (3.23a)

ψmlf (p, ε) ≈ p2 + γ′1p+ γ′0 (3.23b)

where

γ1 =
G2

RR
2
P2bm +R2

P1bL +GRRP2RP1KpL +G2
RR

2
P2Kpm

G2
RR

2
P2Jm +R2

P1JL
,

γ0 =
G2

RR
2
P2Kim +GRRP2RP1KiL

G2
RR

2
P2Jm +R2

P1JL
,

γ′1 =
G2

RR
2
P2bm +R2

P1bL +G2
RR

2
P2KpL +G2

RR
2
P2Kpm(JL/Jm)

G2
RR

2
P2Jm +R2

P1JL
ε,

γ′0 =
G2

RR
2
P2JL +R2

P1Jm
JmJL

.

(3.24)
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Therefore, the slow and fast subsystems are stable for all positive controller gains.

Note that the outputs of both load speed and motor speed controller combine to form

a torque input to the motor; this is typically referred to as the torque mode in practice

when multiple loops such as this are employed. Another strategy is to use the output

of the load speed controller as the motor speed reference correction; a block diagram

of such a scheme is provided in Fig. A.1 in Appendix A. This strategy results in an

unstable system which is shown in Appendix A.

3.5 Adaptive Feedforward (AFF) Compensation to Reject Load

Disturbances

The use of feedforward compensation to reject known disturbances by direct cancela-

tion or unknown disturbances by their estimation has been known to be effective in

attenuating disturbances. We consider the rejection of periodic disturbances on the

load by using an adaptive feedforward action based on load speed error. The control

scheme that utilizes the feedforward action is shown in Figure 3.6. We use an adaptive
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Motor Speed Feedback
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Figure 3.6: Control scheme with feedback and feedforward compensation

feedforward algorithm given in [59] that is particularly applicable in this situation as

the feedforward action preserves the stability of the overall system with the feedback

controller with simultaneous motor and load speed feedback. The approach is briefly

discussed as applicable to this problem; the details are given in [59]. The idea is to
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estimate the amplitude and phase of the disturbance for a known frequency of the

disturbance. The disturbance can be expressed in the form

d = θ∗1 cos(ωt) + θ∗2 sin(ωt)

:= φ(t)w∗
0 (3.25)

where ω is a known frequency, θ∗1 and θ∗2 are unknown parameters. The adaptation

laws for the unknown parameters θ∗1 and θ∗2 are given by the following simple pseudo-

gradient algorithm:

θ̇1 = γe(t) cos(ωt), (3.26a)

θ̇2 = γe(t) sin(ωt), (3.26b)

where θ1 and θ1 are the parameter estimates, e(t) = ωrL −ωL is the load speed error,

and γ is the adaptation gain. Using the estimated parameters, the feedforward control

action is given by

uf = −θ1 cos(ωt)− θ2 sin(ωt). (3.27)

The estimation of the disturbance and its cancelation when the load speed error

contains a sinusoidal component with frequency ω may be intuitively explained as

follows. If the load speed error is e(t) = ē(t) + eθ1 sin(ωt), in the adaptive algorithm

the product e(t) sin(ωt) will generate a positive eθ1 sin
2(ωt) term. This will result in

a parameter drift which results in the attenuation of disturbance until it reaches its

nominal value. At this point the load speed error is free of the sinusoidal component

as the disturbance is compensated by feedforward control uf . With the compensation,

the product term e(t) sin(ωt) in the parameter adaptive law becomes zero and the

parameter estimates converge. Since the regressor vector φ(t) is persistently exciting,

the parameter vectors converge to zero. In fact, this adaptive feedforward action with
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estimation of disturbance parameters using the pseudo-gradient algorithm has been

shown to be equivalent to the use of the internal model of the disturbance in [59].

3.6 Web Tension Control

REWIND
t
2 
,L

2
t
3 
,L

3

v
2 v

3

Figure 3.7: Rewind section

Consider a rewind section as shown in Figure 3.7. This section is a part of R2R

system shown in Figure 2.3. The web span tension dynamics in the rewind section is

given by

ṫ3 =
EAw

L3
(v3 − v2) +

1

L3
(t2v2 − t3v3). (3.28)

The periodic torque disturbance is injected on the load side of the rewind roll by

employing a brake. The disturbance is expressed in the form of equation (4.63). The

injected disturbance affects the velocity v3 and as a consequences to web tension t3.

The relation between the web velocity v3 and web tension t3 can be seen through

equation (3.28). It is assumed that the velocity v2 is well regulated. The proposed

load speed regulation scheme is applied to rewind roll to regulate velocity v3 in the

presence of disturbance on load side and this control scheme is expected to regulate

web tension due to dynamics between velocity and tension.
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Figure 3.8: Load speed control scheme for web tension control
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Figure 3.9: Picture of the experimental platform. Top view: Load side. Bottom view:

Motor side.

3.7 Experiments

A picture of experimental setup is shown in Figure 3.9. It consists of an AC motor

shaft connected to the load shaft (roll) via a belt-pulley and gear-pair transmission.

A 15 HP (11.19 KW) AC motor with a rated speed of 1750 RPM is employed.
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The belt ratio (BR = (RP2/RP1)GR) for the transmission is 3.825. An encoder on

the motor shaft is employed to measure the motor shaft speed and a laser sensor

is used to measure the load shaft speed. The real-time hardware, including the

drives, controller, and communication network, was provided by Rockwell Automation

(Allen-Bradley). All the real-time hardware components of the machine are connected

through a ControlNet communication network. The network is updated every 5

ms (Network Update Time) and data is communicated to the network every 10 ms

(Request Package Interval). A brake is attached on the other side of the load shaft

to inject periodic torque disturbances; a magnetic clutch brake (Magpower GBC 90)

that can apply 26 lb-ft torque is used.

The PI controller gains for the motor speed loop were chosen to be Kpm = 15

and Kim = 3.09 and for the load speed loop to be KpL = 0.07 and KiL = 0.001. A

number of experiments were conducted at different reference speeds to evaluate the

performance of proposed control scheme. In each experiment, the brake provides an

external periodic disturbance torque of the form A + B sin(ωdt) (A = 2, B = 1.5).

The following disturbance frequencies were injected to evaluate the control schemes:

ωd = 0.05, 0.15, 0.25 Hz. These disturbances are typical of the disturbances that are

observed in roll-to-roll manufacturing machines where such transmission systems are

typically employed. The adaptation gain γ = 1 is chosen and the initial values of the

estimates are set to zero.

The proposed control scheme is extended to an R2R system and implemented in

the rewind section of experimental platform shown in Figure 2.1. The experiments

are performed at web speed reference of 150 FPM and 200 FPM, and web tension

reference of 20 lbf. A disturbance torque of the form A+B sin(ωdt) (A = 1.3, B = 1)

is applied using a brake attached on the load side. Disturbances of frequencies 0.25 Hz
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and 0.3 Hz are injected at 150 FPM and 200 FPM, respectively. The upstream pull

roll to the rewind section is under pure speed control. The proposed motor and load

speed feedback control scheme with adaptive feedforward is applied to the rewind roll

and compared with a commonly used motor speed feedback scheme. The tension and

velocity response real-time data are collected for each scenario.

Figure 3.10 shows the evolution of the load speed (reflected to the motor side) in

the presence of disturbance with frequency 0.25 Hz when the reference speed is 719

RPM with and without the use of the adaptive feedforward action. Figure 3.11 shows

the Fast Fourier Transform (FFT) of the load speed for the two cases. It is evident that

the control scheme with the AFF action (shown in Figure 3.6) can provide significantly

improved load speed regulation. Figure 3.12 control torque input corresponding to

the two cases, without and with adaptive feedforward compensation. It is evident

that the torque input is larger when the adaptive feedforward is employed. Table 3.1

shows the standard deviation of the load speed signal from its reference for the various

schemes. It is clear that the employing load speed feedback in addition to motor speed

feedback can improve performance. Further, use of the adaptive feedforward action

based on load speed feedback can significantly improve the regulation performance.

Table 3.1: Comparison of different control schemes

Disturbance Standard Deviation

Frequency Only Motor Motor + Load Motor + Load

Feedback Feedback Feedback + AFF

0.25 Hz 2.09 1.35 0.34

0.15 Hz 4.71 3.53 0.87

0.05 Hz 3.89 2.47 0.68

Figure 3.13 shows web tension response in the presence of disturbance with fre-
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Figure 3.10: Load speed response with 0.25 Hz torque disturbance. Top: Without

AFF. Bottom: With AFF

quency 0.25 Hz at 150 FPM. The control strategy that uses only motor speed was

unable to attenuate the disturbance which is reflected in the tension response (shown

in Figure 3.13(a)). The motor and load speed feedback control scheme attenuates

disturbance in tension response; however the attenuation is not significant (shown

in Figure 3.13(b)). The proposed control scheme with feedforward action rejects the

disturbance and regulates the tension to its desired value (shown in Figure 3.13(c)).
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Figure 3.11: FFT of load speed response with and without AFF

Figure 3.14 shows the FFT of the tension response with three separate control

schemes. The proposed control scheme attenuates the disturbance amplitude at 0.25

Hz significantly. Figure 3.15 shows corresponding load and motor speed response in

the presence of disturbance at 150 FPM. Similar results can be seen at 200 FPM

which are provided in Figures 3.16 to 3.18.
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Figure 3.15: Load speed and motor speed response at 150 FPM with 0.25 Hz distur-

bance; Top: only motor feedback, Middle: motor + load feedback, Bottom: motor +

load feedback + AFF
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Figure 3.16: Tension response at 200 FPM with 0.3 Hz disturbance; Top: only motor

feedback, Middle: motor + load feedback, Bottom: motor + load feedback + AFF
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Figure 3.17: FFT of tension response at 200 FPM with 0.3 Hz disturbance; Top: only

motor feedback, Middle: motor + load feedback, Bottom: motor + load feedback +

AFF
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Figure 3.18: Load speed and motor speed response at 200 FPM with 0.3 Hz distur-

bance; Top: only motor feedback, Middle: motor + load feedback, Bottom: motor +

load feedback + AFF
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CHAPTER 4

Output Regulation of Nonlinear Systems with Application to

Roll-to-Roll Manufacturing Systems

In this chapter, we consider the problem of regulating the output of the nonlinear sys-

tem to a specified reference in the presence of disturbances with application to R2R

manufacturing systems. We assume that the disturbances are sinusoidal functions of

known frequency, but their phase and amplitude are unknown. This is a reasonable

approximation in R2R manufacturing systems because the frequency of the disturbing

force due to out-of-round or eccentric rollers is known but the amplitude and phase

may not be known. The initial conditions for the exogenous system associated with

the disturbance are assumed to be unknown parameters and the amplitude and phase

of the disturbance are estimated. We use a gradient-based parameter estimation tech-

nique provided in [62], and the parameter estimates in conjunction with the solution

of the differential-algebraic equation help to determine the feedforward control com-

ponent. If the differential algebraic system of equations can be solved exactly and

if the initial conditions of the system are close to the “ideal” feedforward trajectory

of the system at the beginning, then the regulation error decays asymptotically. An

output regulator with integral feedback action is effective in eliminating steady state

error and is also developed in this work. The output regulator also has the ability to

reject multiple frequency components.

We design and implement the proposed scheme for control of web tension in a large

experimental R2R platform which can transport a variety of web materials. First the
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tension output regulator is applied in the unwind section. A velocity disturbance

is injected in the master speed roller and the output regulator is tested for distur-

bance rejection. Second the output regulator is applied in the pull roll and rewind

sections and investigated for disturbance rejection with integral action. The ability

of the output regulator to reject multiple frequency components is also investigated

in this chapter. Comparative experimental results with the nonlinear output regula-

tion scheme and an industrial PI scheme are presented and discussed. Experimental

results of the nonlinear output regulation scheme with integral feedback control and

its application to R2R manufacturing system are also presented and discussed.

The remainder of the chapter is organized as follows. The nonlinear system under

consideration, governing equations for web speed and web tension for a typical R2R

system, and the control objective are given in Section 4.1. The proposed solution

to the output regulation problem in the presence of periodic disturbances is given

in Section 4.2. The tension output regulator with integral feedback control action

is presented in Section 4.3. The ability of the tension output regulator to reject

multiple harmonics is discussed in Section 4.4. The effect of backlash in mechanical

transmissions on web tension is discussed in Section 4.5. Web tension observer design

is discussed in Section 4.6. Experimental setup, application of the output regulation

scheme to the R2R system, and experimental procedure are discussed in Section 4.7.

Comparative experimental results are presented and discussed in Section 4.8.

4.1 Problem Statement

We consider nonlinear systems of the form:

ẋ = f(x) + g1(x)d(t) + g2(x)u, (4.1a)

y = h(x). (4.1b)
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Equation (4.1a) describes the evolution of a nonlinear system with state x, defined

on a neighborhood X of the origin of Rn, and input to the system u(t) ∈ R
r ∀t ≥ 0.

The term d(t) represents a disturbing input to the system. The second equation

(4.1b) defines the output of the system y(t) ∈ R
m. Without loss of generality, we will

assume that f(0) = 0 and h(0) = 0, thus the system (4.1) has an equilibrium state

x = 0 when u(t) = 0, d(t) = 0. We will also assume that the functions f(x), g1(x)

and g2(x) are sufficiently smooth. Governing equations for many engineering and

manufacturing applications may be cast into the form given by (4.1). In the following

we discuss and present the governing equations for R2R manufacturing systems.

The governing equations for web speed on the roller and web tension for each

section of the R2R system shown in Figure 2.3 are given below [15]:

Unwind section:

v̇0 =
R2

0

J0
t1 −

bf0
J0
v0 +

R0

J0
n0u0 −

1

2π

(
hw
R2

0

−
2πρAwR

2
0

J0

)
v20 (4.2)

ṫ1 =
EAw

L1
(v1 − v0) +

1

L1
(t0v0 − t1v1) (4.3)

Master speed roller:

v̇1 =
R2

1

J1
(t2 − t1)−

bf1
J1
v1 +

R1

J1
n1u1. (4.4)

Process section:

v̇2 =
R2

2

J2
(t3 − t2)−

bf2
J2
v2 +

R2

J2
n2u2 (4.5)

ṫ2 =
EAw

L2

(v2 − v1) +
1

L2

(t1v1 − t2v2) (4.6)

Rewind section:

v̇3 = −
R2

3

J3
t3 −

bf3
J3
v3 +

R3

J3
n3u3 −

1

2π
(
hw
R2

3

+
2πρAwR

2
3

J3
)v23 (4.7)

ṫ3 =
EAw

L3
(v3 − v2) +

1

L3
(t2v2 − t3v3) (4.8)
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where hw is the web thickness, ρ is the density of the web material and rest of nomen-

clature are similar to given in equations (2.1) and (2.2). The governing equations

(4.2) to (4.8) can be extended to industrial R2R process machines which typically

contain many process sections between the master speed roll and the rewind roll.

There are many disturbing forces acting on the web which may be either due to ma-

chine imperfections or process induced. Since rotating machinery is employed, these

disturbing forces are periodic and appear as periodic oscillations in both measured

tension and speed signals. For example, machine and roller imperfections that cause

periodic disturbances include backlash and compliance in mechanical transmissions,

out-of-round material rolls, and eccentric driven and idle rollers. Process induced

disturbances include heating/cooling of the web required for processing the web and

air flow around the web. The fundamental frequency and its harmonics are known

for the R2R system since the rotating angular speed of the rollers are known. But

the magnitude and phase of these periodic disturbances are not known and must be

estimated online.

The control objective is to design controllers for each section to regulate web ten-

sion in the presence of these partially known periodic disturbances while transporting

the web at the desired speed. Each section of the R2R system can be cast into the

form of equations given by (4.1). The output is web tension and the input is the

motor torque.

4.2 Output Regulation and Disturbance Rejection

A state feedback and feedforward control is considered for the output regulation and

disturbance rejection problem,

u = uf −Kx(x− xf), (4.9)
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where Kx ∈ Rr×n. Here uf and xf are feedforward control and the associated state

when the feedforward control input alone is applied. In other words, uf and xf satisfy

the differential algebraic constraints (4.10a) and (4.10b). The problem now reduces

to the problem of finding uf and xf satisfying the following differential algebraic

equations.

ẋf = f(xf ) + g1(xf )d̂+ g2(xf)uf , (4.10a)

0 = h(xf). (4.10b)

where d̂ is the estimate of partially unknown disturbances. We first discuss a solution

procedure for solving these differential-algebraic system of equations (4.10) followed

by a method to attenuate the disturbances [53], [63].

4.2.1 Solution procedure for differential-algebraic system of equations

The function f(xf ) is approximated with the first two terms in the Taylor series

expansion of f(xf ). The time variable is discretized into N + 1 time instants as

tn (n = 0, 1, ...., N). The time steps are assumed to be uniform and each time step is

∆t := tn − tn−1. The state vector xf(t) at the time instant tn is denoted as

xf (t = tn) = x
(n)
f , n = 0, 1, ...., N. (4.11)

Using the backward difference formula ẋf (tn+1) may be discretized as

ẋf(tn+1) =
x
(n+1)
f − x

(n)
f

∆t
, (4.12)

and the equations (4.10a) and (4.10b) at time instant tn+1 can be written as

x
(n+1)
f − x

(n)
f

∆t
= f(x

(n+1)
f ) + g1(x

(n+1)
f )d̂+ g2(x

(n+1)
f )u

(n+1)
f , (4.13)

0 = h(x
(n+1)
f ). (4.14)
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Define variables z(n) and v(n) as:

z(n) := x
(n+1)
f − x

(n)
f , (4.15)

v(n) := u
(n+1)
f − u

(n)
f . (4.16)

If the time step ∆t were sufficiently small, the variables z(n) and v(n) may be assumed

to be << 1. The functions f(x
(n+1)
f ), g1(x

(n+1)
f ), and g2(x

(n+1)
f ) may be expanded

using the Taylor series as:

f(x
(n+1)
f ) = f(x

(n)
f + z(n)),

= f(x
(n)
f ) +

∂f

∂xf
(x

(n)
f ) z(n) +O(|z(n)|2),

g1(x
(n+1)
f ) = g1(x

(n)
f + z(n)),

= g1(x
(n)
f ) +

∂g1

∂xf
(x

(n)
f ) z(n) +O(|z(n)|2),

g2(x
(n+1)
f ) = g2(x

(n)
f + z(n)),

= g2(x
(n)
f ) +

∂g2

∂xf
(x

(n)
f ) z(n) +O(|z(n)|2).

Since z(n) << 1, the higher order terms in the Taylor series expansion O(|z(n)|2) may

be neglected. Then the function f(x
(n+1)
f ) + g1(x

(n+1)
f )d̂ + g2(x

(n+1)
f )u

(n+1)
f may be

approximated as

f(x
(n+1)
f ) + g1(x

(n+1)
f )d̂+ g2(x

(n+1)
f )u

(n+1)
f ≈ f(x

(n)
f ) + g1(x

(n)
f )d̂+ g2(x

(n)
f )u

(n)
f

+ g2(x
n
f )v

(n) +

[
∂f

∂xf

(x
(n)
f )+

∂g1

∂xf

(x
(n)
f )d̂+

∂g2

∂xf

(x
(n)
f )un

f

]
z(n). (4.17)

Similarly the function h(x
(n+1)
f ) may be approximated as

h(x
(n+1)
f ) ≈ h(x

(n)
f ) +

∂h

∂xf
(x

(n)
f ) z(n). (4.18)
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The equations (4.13), (4.14), (4.17) and (4.18) may be arranged as a system of linear

equations in terms of z(n) and v(n) as:

z(n) = ∆t
[
f(x

(n)
f ) + g1(x

(n)
f )d̂+ g2(x

(n)
f )u

(n)
f

]
+∆t

[
g2(x

n
f )v

(n)
]
+∆t

[
∂f

∂xf

(x
(n)
f )

+
∂g1

∂xf

(x
(n)
f )d̂+

∂g2

∂xf

(x
(n)
f )un

f

]
z(n), (4.19)

0 = h(x
(n)
f ) +

∂h

∂xf

(x
(n)
f )z(n). (4.20)

Given x
(n)
f , d̂ and u

(n)
f , the system of linear equations (4.19) and (4.20) can be solved

for z(n) and v(n). Then, xf(tn+1) and uf(tn+1) are given by

x
(n+1)
f = x

(n)
f + z(n), (4.21)

u
(n+1)
f = u

(n)
f + v(n). (4.22)

Thus, given xf (t0), d̂(t0), and uf (t0), we can compute xf(tn), uf(tn) for n = 1, ....N .

Note that this solution procedure is perfectly suitable for digital implementation of

controllers in industrial practice. The control input u(t) may then be obtained by

using (4.9) once uf (t) and xf (t) are computed as outlined above.

4.2.2 Attenuation of the effect of disturbances

The disturbance d(t) is considered to be the output of an exogenous linear system:

ẇ = Sw, d = Fw, w(0) = w∗
0. (4.23)

The state of the exogenous system w is defined on a neighborhood W of the origin

of Rs, S ∈ R
s×s and F ∈ R

1×s. In this case, one may not know w∗
0. The evolution

equation (4.1a) can be written as

ẋ = f(x) + g1(x)φ(t)w
∗
0 + g2(x)u, (4.24)
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where φ(t) = FeSt is a function of sinusoids. Assuming we have the measurements

of all the states, we can develop an estimate ŵ0 to estimate w∗
0 and thus obtain the

estimate of the disturbance signal.

Let λ > 0 be the bandwidth of the filter to be used in the identification scheme.

Let x represent the filtered values of the state x(t), i.e.,

ẋ+ λx = x. (4.25)

Similarly, let Wf
T represent the filtered value of g1(x)φ(t) and Wg represent the

filtered value of g2(x)u(t) as shown below:

ẆT
f + λWf

T = g1(x)φ(t), (4.26)

Ẇg + λWg = g2(x)u. (4.27)

Similarly, let f̄ represent the filtered value of f(x), i.e.,

˙̄f + λf̄ = f(x). (4.28)

The identifier is developed as shown below:

ẋ+ λx = f(x) + g1(x)φ(t)w
∗
0 + g2(x)u+ λx, (4.29)

x = f̄ + λx +Wf
Tw∗

0 +Wg. (4.30)

Define output estimation error eo as

eo := x− λx− f −Wg −Wf
T ŵ0, (4.31)

= Wf
T (w∗

0 − ŵ0). (4.32)

Then consider the following gradient adaptation law

˙̂w0 = γWfeo, γ > 0. (4.33)
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From the properties of a gradient parameter estimation scheme [62], one can conclude

that eo(t) → 0 asymptotically. However, it is not guaranteed that w∗
0 − ŵ0 → 0

asymptotically. We observed that it does converge for this problem because the

condition of persistence of excitation in terms of the number of frequency components

seems to be met [62]. The amplitude and phase information of a sinusoidal signal, say

θ1 cos(ωt)+ θ2 sin(ωt) can be inferred by the two constants θ1 and θ2. Hence, for each

sinusoidal component, one can at most have two constants and this is the condition for

persistence of excitation for identifying linear systems [62]. If the solution of equation

(4.33) eventually converges to w∗
0, the estimate of the disturbance can be accurately

obtained. Once an estimate of d(t) is known (via the estimate ŵ0), one can compute

the feedforward control (uf ) by solving the differential algebraic system as discussed

in subsection 4.2.1. Then the control as in equation (4.9) drives the states of the

system to an output zeroing manifold.

Let us express the functions f , and g2 as follows:

f(x) = Ax +A2(x), g2(x) = B +B1(x), (4.34)

where Ax is the linear part of f(x), A2(x) contains second and higher order terms of

f(x), B = g2(0), B1(x) contains linear and higher order terms of g2(x).

Theorem 4.2.1 Suppose the following assumptions hold:

A1: The matrix A− BKx is Hurwitz.

A2: All of the eigenvalues of the matrix S in equation (4.23) lie on the imaginary

axis, i.e., the disturbance (d(t)) is purely sinusoidal and w(t) ∈ W a neighborhood of

the origin of Rs.

A3: The estimate (ŵ0) converge to w∗
0 or we have the complete knowledge of the dis-

turbance.

Then with the control u, the output of the system (4.1) converges to zero, i.e., y → 0
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as t→ ∞, if uf satisfies equation (4.10).

Proof: With the control (4.9), the nonlinear system (4.1) yields the closed loop system

ẋ = f(x) + g1(x)Fw + g2(x)(uf −Kx(x− xf)). (4.35)

Linearizing the system around the origin x = 0, we get

ẋ = Ax+B(uf −Kx(x− xf )) + Cw, (4.36)

where A and B are as given in equation (4.34) and C is given by

C =

[
∂(g1F )

∂x

]

x=0

. (4.37)

Similarly linearizing the equation (4.10a) and using assumption A3, we can write:

ẋf = Axf +Buf + Cw. (4.38)

Let ξ = x− xf . Then,

ξ̇ = ẋ− ẋf

= (A− BKx)ξ, (4.39)

where Kx is selected such that (A−BKx) is Hurwitz and therefore the origin is locally

attractive equilibrium point, i.e., for x(0) and xf(0) sufficiently close to the origin,

(x(t)− xf (t)) → 0 as t→ ∞. (4.40)

By the continuity of h(x) and equation (4.53), for all x(0) and xf(0) sufficiently close

to 0,

h(x) → h(xf) = 0 as t→ ∞. (4.41)

Q.E.D.

Thus with an identifier as developed above and the control of the form (4.9), the

output of the system (4.1) can be zeroed or regulated at reference value.
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4.3 Output Regulator with Integral Feedback

In the preceding section, we considered only proportional action. In this section

we consider both proportional and integral actions for the output regulation and

disturbance regulation problems given by

u = uf −Kxp(x− xf)−Kxi

∫
(x− xf)dτ, (4.42)

where Kxp ∈ Rr×n and Kxi ∈ Rr×n. Let K = [Kxp Kxi]. Here uf and xf are feed-

forward control and the associated state when the feedforward control input alone is

applied. In other words, uf and xf satisfy the differential algebraic equations (4.10a)

and (4.10b). The disturbance d(t) is considered to be the output of an exogenous

linear system as in (4.23).

In addition to f and g2 expressed in equation (4.34), h(x) is expressed as follows:

h(x) = Cx +C1(x) (4.43)

where Cx is the linear part of h(x) and C1(x) contains the higher order terms of

h(x).

Theorem 4.3.1 Suppose the following assumptions hold:

A1: The matrix (A,B) is stabilizable.

A2: The matrix



A B

C 0


 is of full row rank n+m.

A3: All of the eigenvalues of the matrix S in equation (4.23) lie on the imaginary

axis, i.e., the disturbance d(t) is purely sinusoidal and w(t) ∈ W, a neighborhood of

the origin of Rs.

A4: The estimate ŵ0 converge to w∗
0 or we have the complete knowledge of the dis-

turbance.

Then with the control u as given by (4.42) , the output of the system (4.1) converges
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to zero, i.e., y → 0 as t→ ∞, if uf satisfies equation (4.10).

Proof: With the control (4.42), the nonlinear system (4.1) yields the closed loop

system

ẋ = f(x) + g1(x)Fw + g2(x)(uf −Kxp(x− xf )−Kxi

∫
(x− xf )dτ). (4.44)

Linearizing the system around the origin x = 0, we get

ẋ = Ax +Bu+ Ew, (4.45a)

y = Cx. (4.45b)

where A, B, and C are as given in equation (4.43) and E is given by

E =

[
∂(g1F )

∂x

]

x=0

. (4.46)

Similarly linearizing the equation (4.10a) and using assumption A4, we can write:

ẋf = Axf +Buf + Ew. (4.47)

Let ξ = x− xf . Then,

ξ̇ = Aξ +BuPI (4.48a)

y = Cξ. (4.48b)

where uPI is control input with proportional and integral actions.

Define z = [ξ̇ y]T , and v = u̇PI, Then

ż = Âz + B̂v. (4.49)

where Â =



A 0

C 0


, B̂ =



B

0


. Rank of matrix z lie in the space m+ n.
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The combined requirements ξ → 0 and y → 0 as t→ ∞ can be stated as: the origin

of the z space must be accessible from the entire space. A necessary and sufficient

condition for this to be possible is that the pair (Â, B̂) is stabilizable. It is shown

in [57] that this is equivalent to:

• The matrix (A,B) is stabilizable.

• The matrix



A B

C 0


 is full row rank, n+m.

A stable linear feedback control can be designed for the transformed system given

in equation (4.49) by various methods available for linear control systems design, such

as pole placement, optimal control, etc. The control law is of the form

v = Kz. (4.50)

where K = [Kxp K
′

xi] is gain matrix. Now after transformation to the original system

the control input is

uPI = Kxpξ +K
′

xi

∫
ydτ + c. (4.51)

where c is the initial condition and y = Cξ. The control law can be expressed as

uPI = Kxp(x− xf ) +Kxi

∫
(x− xf)dτ. (4.52)

This control law ensures that the output of the system converges to zero, i.e., y → 0

as t→ ∞. For x(0) and xf(0) sufficiently close to the origin, we have

(x(t)− xf (t)) → 0 as t→ ∞. (4.53)

By the continuity of h(x) and equation (4.53), for all x(0) and xf(0) sufficiently close

to the origin, we have

h(x) → h(xf) = 0 as t→ ∞. (4.54)

Q.E.D.

87



Thus with a disturbance identifier and the control of the form (4.42), the output of

the system (4.1) can be zeroed or regulated at a given reference value.

4.4 Disturbances with Multiple Frequency Components

In the preceding analysis we considered rejection of disturbance with only one fre-

quency component. The output regulator design is capable of rejecting multiple

frequency components. The disturbance identifier must be designed to estimate all

the parameters involved in disturbance signal that can be expressed as

d(t) = A1 sin(ω1t+ φ1) + . . .+ An sin(nω1t+ φn)

= A1 cos(φ1) sin(ω1t) + A1 sin(φ1) cos(ω1t) + . . .

+ An cos(φn) sin(nω1t) + An sin(φn) cos(nω1t) (4.55)

where A1,.....,An, and φ1,.....,φn are parameters to be estimated, and ω1 is the known

frequency of disturbance. The stability properties are not affected by the number

of frequency components if the persistent of excitation condition is satisfied and as-

sumption A4 is true.

4.5 Compensation of Transmission Backlash Effect on Web Tension

In any R2R machine, the process section typically contains many driven rollers in

addition to the unwind, the rewind, and the master speed roller. The imperfections

in the machine due to out-of-round material rolls, eccentric driven and idle rollers,

and backlash and compliance in mechanical transmissions may cause periodic tension

oscillations. Also processes such as heating or cooling of web and air flow around

the web induce disturbances. Due to the presence of rotating components, these

disturbing forces are periodic and appear as periodic oscillations in the measured
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tension and speed signals. In this section, rejection of disturbances due to backlash

on web tension is discussed using the output regulator.

The rewind section of the R2R process line shown in Figure 2.3 is considered.

Figure 4.1 shows a schematic of the rewind section including the transmission mech-

anism and the pull roll. In the rewind schematic shown in Figure 4.1, ωm is the
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Figure 4.1: Schematic of the rewind section

angular velocity of the motor shaft, ωL is the angular velocity of the load shaft, Kb

is the stiffness of the belt, RP1 and RP2 are the radii of the two pulleys, Rg1 and Rg2

are the radii of the two gears, ω is the angular velocity of the shaft connecting the

pulley to the gear, ∆ is half of the backlash width in mating gears, Rrw is the radius

of the rewind roll. Jm is the motor inertia, JL is the load inertia, θm is the motor

angular position, θL is the load angular position, and τm is the motor input torque.

The dynamic model that includes the backlash and compliance effect on the motor

speed and load speed of the rewind roll were studied in [36] and given in equations
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(4.56a) to (4.56d):

θ̇m = ωm, (4.56a)

ω̇m = −
KbR

2
P1

Jm
θm −

bm
Jm

ωm +
KbRP1α1

Jm
θL +

τm
Jm

−
RP1

Jm
φ(θm, θL), (4.56b)

θ̇L = ωL, (4.56c)

ω̇L =
KbRP1α1

JL
θm −

Kbα
2
1

JL
θL −

bL
JL
ωL +

τL
JL

+
α1

JL
φ(θm, θL). (4.56d)

where α1 = RP2(Rg2/Rg1), φ(θm, θL) is the term due to backlash effect, and the load

torque τL in these equations is due to web tension t3. The backlash and compliance

models are considered for the rewind section and incorporated into the tension and

web velocity dynamics given by equations (4.2) to (4.8).

4.6 Web Tension Estimation

In certain situations, such as in an oven where tension measurements from a roller

mounted on load cells are unreliable, it is beneficial to have a tension observer that

is capable of estimating tension and using it for feedback. In this section, the system

shown in Figure 2.3 is considered for the design of a tension observer. The particular

tension observer to estimate tension in a span requires downstream and upstream

roller velocities and tension measurements from the neighboring web spans. As an

example, tension observer for estimating tension in the pull roll tension zone, i.e.,

estimate of t2, is considered. The governing equations for web tension and roller

velocities for the pull roll section are given by equations (4.4) to (4.6). The state
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vector, input vector, and measurement vector is

X
T = [t2 v1 v2], (4.57a)

U
T = [u1 u2], (4.57b)

Y
T = [v1 v2]. (4.57c)

Let ze denote the estimate of web tension, i.e., ze = t̂2. Define an auxiliary variable

ζ given by

ζ = ze − LY. (4.58)

where L = [L1 L2] is the observer gain. Differentiating ζ we get

ζ̇ = że − LẎ

= F1(Y, ζ + LY)− LF2(Y, ζ + LY). (4.59)

where

F1(Y, ζ + LY) =
EA

L2

(v2 − v1) +
t1v1
L2

−
(Y, ζ + LY)v2

L2

F2(Y, ζ + LY) =




R2

1

J1
(ζ + LY− t1) +

R1

J1
n1u1

R2

2

J2
(t3 − ζ − LY) + R2

J2
n2u2


 (4.60)

The value of ζ is obtained using the equation (4.59). The tension estimation can be

obtained from

t̂2 = ζ + LY (4.61)

The estimated web tension t̂2 can be employed in the output regulator. The web

tension observer design is illustrated in Figure 4.2.

4.7 Experimental Setup and Procedure

The same R2R experimental setup that is used in Chapter 2 is considered. The

proposed output regulation scheme is implemented in the unwind section of the R2R
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Figure 4.2: Web tension observer design

machine. The tension control law for the unwind roll is given by:

u = uf −Kt1(t1 − tf ) (4.62)

where Kt1 is the gain matrix, t1 is the web tension in the unwind section, and tf is the

web tension when only feedforward control uf is applied. A schematic of the output

regulation tension control system is provided in Figure 4.3.
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Figure 4.3: Tension output regulator design

The first driven S-wrap roller (R9) is used to generate a sinusoidal disturbance in
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web speed of the form

d = θ1 cos(ωt) + θ2 sin(ωt)

:= φ(t)w∗
0 (4.63)

where ω is a known frequency, θ1 and θ2 are unknown parameters that represent the

initial conditions of the exogenous system given in equation (4.23); w∗
0 = [θ1 θ2]

T , and

φ(t) = [cos(ωt) sin(ωt)]. The disturbance parameters are estimated as discussed in

subsection 4.2.2 and are used to compute the feedforward control input uf .

A number of experiments are conducted at different web speeds to evaluate the

proposed output regulation scheme and the PI scheme used in industrial practice.

Two types of web materials are considered: a polymer material called Tyvek that is

used in building insulation, medical and commercial packaging and a generic polyester

material used in manufacturing of consumer products. The modulus, web width and

thickness for these materials are given in Table 2.1. The reference tension is 89 N (20

lbf).

A speed disturbance of frequency 0.25 Hz is injected using the driven roller R9

whose diameter is 305 mm (12 inches). There are also periodic disturbances in web

tension due to the eccentricity or out-of-roundness of the rollers in the experimental

machine; the effect of nonideal rollers is discussed in detail in [17] which used the

same experimental platform. Note that disturbance frequency is a function of the

line speed; once the line speed is known, one can compute the disturbance frequency.

Although we have shown results for 0.25 Hz, the proposed method also works for

other frequencies. The speed controller is a PI controller and it is implemented in

the motor drive; see Fig. 1.9. The speed loop bandwidth is about 4 Hz. In practice,

we are interested in rejecting low frequency tension disturbances in the range of 0 to

2 Hz. Most tension disturbances are in this range and anything beyond this range is
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filtered by the web tension dynamics as the web is transported on rollers from span

to span. The speed loop bandwidth is adequate enough for tracking the corrections

to the reference speed provided by the outer loop tension controller. The initial

estimates of the filter frequency λ and adaptation gain γ are obtained by performing

model simulations and tuned online. The following values are chosen: λ = 3000

and γ = 0.1. Several amplitudes of sinusoidal speed disturbances are injected at the

driven roller R9 to evaluate the robustness of the output regulator; the true values

and initial values of the estimates at different web speeds are given in Table 4.1.

Operating Speed True Parameters Initial Values

θ1ref θ2ref θ10 θ20

0.51 m/s (100 fpm) 0.013 0.004 0.004 0.013

0.76 m/s (150 fpm) 0.012 0.005 0.008 0.012

1.02 m/s (200 fpm) 0.003 0.015 0.011 0.005

Table 4.1: True and initial estimates of disturbance parameters

The output regulation scheme with integral feedback is implemented in the rewind

and pull roll sections of the R2R machine. The tension control law for these sections

is given by (4.42)

u = uf −Ktp(ti − tf )−Kti

∫
(ti − tf ) (4.64)

where Ktp is the proportional gain, Kti is the integral gain, ti is the web tension in

the ith span, and tf is the web tension when only feedforward control uf is applied.

The output regulator with integral feedback is implemented at web speed of 100

FPM and tension reference of 20 lbf. In output regulator design, the initial estimates

of the filter frequency λ and adaptation gain γ are obtained by performing model

simulations and tuned online. The following values are chosen: λ = 6000 and γ = 0.5.
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In another set of experiments, multiple frequency components which are present in

the tension signal are targeted. The output regulator is tested for robustness in terms

of rejecting more than one frequency components. The experiment is performed at

100 FPM and 20 lbf reference web tension in the pull roll section.

The drive system in the rewind section has an adjustable backlash (indicated as BL

in the Figure 4.4), which can be used to insert a known backlash between the driving

sprocket (labeled “1” in Figure 4.4) and the rewind shaft. In the current experiments,

backlash of 1.55 mm is introduced in the transmission system, in addition to the

existing backlash in the gear box. The disturbance frequency generated due to this

Motor

BL

AC

2

1

Roll
Rewind

Figure 4.4: Rewind drive system in R2R web line

introduced backlash is targeted for attenuation in this set of experiments performed

at 150 FPM and 20 lbf reference web tension. The output regulator is applied to the

pull roll to attenuate the disturbances.

The web tension observer is implemented in the pull roll section and used as web

tension feedback to regulate tension response in the pull roll section.
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4.8 Experimental Results

The tension regulation and disturbance rejection capability of the proposed output

regulation scheme and a well tuned industrial PI control scheme for polyester and

Tyvek web materials for web transport speed of 100 FPM, 150 FPM, and 250 FPM

are shown in Figures 4.5 and 4.6, respectively. The annotation in the plots correspond

to the performance of the following controllers with and without the presence of

disturbance:

• AB: PI controller with disturbance,

• BC: PI controller without disturbance,

• CD: Nonlinear tension regulator without disturbance,

• DE: Nonlinear tension regulator with disturbance.

The PI controller gains are tuned online for each material separately and different

PI gains are used for each material to obtain the best performance with and without

disturbance. For the output feedback scheme the same controller and parameter

estimation gains are used for both materials. It is clear from the tension response

plot (AB zone) that the PI scheme is not able to reject tension oscillations whereas

the output feedback scheme is able to largely attenuate the tension disturbances after

initial transients. The estimates of the disturbance parameters are also shown in

the Figures 4.5 and 4.6; the parameter estimates converge to the true values. The

average value of web tension with both the well-tuned PI and the output regulator are

around the the reference value of 89 N (20 lbf) with different line speeds. However,

the PI controller fails to attenuate the disturbance. The performance of the fixed

gain PI controller is expected since there is no separate mechanism to compensate
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for the disturbance. On the other hand, with the accurate estimation of disturbance

parameters, the output regulator is able to reject the partially known disturbance

(known frequency). It is noted that the two web materials (polyester and Tyvek)

have substantially different mechanical properties, that is, the modulus of polyester

is about 5 times that of Tyvek. The output regulation scheme with the same gains is

able to provide similar performance for both materials; this is not the case with the

PI scheme.

The tension regulation and disturbance rejection capability of the proposed output

regulation scheme with proportional and integral feedback are shown in Figures 4.7(a)

and 4.7(b), for the pull roll and rewind sections, respectively. The web tension is

regulated at 20 lbf at transport speed of 100 FPM for Tyvek web material.

The annotation in the plot (given in Figures 4.7(a) and 4.7(b)) correspond to the

performance of the following controllers with and without the presence of disturbance:

• FG: Nonlinear tension regulator with only proportional action and without dis-

turbance,

• GH: Nonlinear tension regulator with proportional and integral action and with-

out disturbance,

• HI: Nonlinear tension regulator with proportional and integral action and with

disturbance,

• IJ: PI controller without disturbance,

• JK: PI controller with disturbance.

The plot shown in Figure 4.8(a) is the FFT of web tension and 100 FPM at

reference tension of 20 lbf and the frequency components seen in the plot are due to
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nominal machine elements. The high amplitude frequencies are targeted by the output

regulator. The plot shown in Figure 4.8(b) indicates first high amplitude frequency

(0.53 Hz) is mitigated by output regulator. While, the plot shown in Figure 4.8(c)

attenuates two components, i.e. fundamental frequency and fourth harmonics (0.53

Hz and 2.12 Hz). The result indicates that output regulator is capable of rejecting

multiple frequencies.

The plot shown in Figure 4.9(a) is the FFT of web tension due to backlash of

1.55 mm that is introduced through the backlash device in the rewind transmission.

The plot shown in Figure 4.9(b) indicates the frequency at 3.17 Hz is generated by

introduction of backlash at 150 FPM. This high amplitude frequency was targeted

by the output regulator. The plot shown in Figure 4.9(c) indicates attenuation of

frequency amplitude at 3.17 Hz. Similar, results can be seen in Figure 4.10 through

the FFT of web tension at 250 FPM and reference tension of 20 lbf. The output

regulator is able to attenuate disturbances at 5.3 Hz. Note that the disturbance

frequency and amplitude change with speed and the same output regulator is capable

of attenuating the disturbances.

The plot shown in Figure 4.11 are the results of utilizing web tension observer

estimation in feedforward control action. The observer estimation used in replacement

of measurement. The tension estimate gives desired performance in (i) control scheme

with feedforward action by rejecting disturbance (BC zone) (ii) with only feedback

action it reflects the presence of disturbance (AB zone).
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Figure 4.5: Disturbance rejection and parameter estimation: polyester
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Figure 4.6: Disturbance rejection and parameter estimation: Tyvek
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Bottom: Rewind section
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CHAPTER 5

Minimization of Interaction and Disturbance Propagation

In R2R systems, decentralized controllers are often employed because of the struc-

ture of the system and their ease of implementation. Since the material is transported

from the unwind to the rewind through the process sections, the entire machine is

divided into several sections and decentralized controllers are utilized for each section

or subsystem. It is important to understand the mechanisms for transport behavior

from each section to other downstream sections, i.e., interaction between subsystems,

and how disturbances are propagated. Design of controllers that minimize distur-

bance propagation will aid in improving the processing of the material in the process

sections.

In this chapter, we will first investigate minimization of interaction between sub-

systems of R2R systems when decentralized feedback and feedforward controllers are

employed. In particular, we will consider a new interaction metric which is based on

the Perron root of an irreducible matrix. We will also investigate control strategies

that minimize disturbance propagation. To evaluate the proposed designs and recom-

mendation, we will show results of extensive experiments conducted on a large R2R

experimental platform.

The remainder of the chapter is organized as follows. The interaction minimiza-

tion procedure is discussed in Section 5.1. The feedforward control action to improve

performance and minimize disturbance propagation is discussed in Section 5.2. The

implementation strategy of feedforward action is discussed in Section 5.3. Experi-
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mental setup, application of the feedforward control action to the R2R system, and

experimental procedure are discussed in Section 5.4. Experimental results are pre-

sented and discussed in Section 5.5.

5.1 Interaction Minimization

In this section, we will first provide some mathematical preliminaries that will aid

in quantifying interaction between different sections of an R2R system and discuss

methods to minimize interaction by improving performance of each decentralized

control system using model-based feedback and feedforward algorithms such as the

output regulator discussed in the preceding chapter.

An n×n matrix A is said to be reducible when there exists a permutation matrix

P such that

P TAP =



X Y

0 Z




where X and Z are square matrices. A matrix that is not reducible is said to be

irreducible.

Given a number p ∈ [1,∞] and a diagonal matrix D , diag[d1, d2, . . . , dn] ∈ Cn×n

with di 6= 0 for all i = 1, . . . , n, the D-weighted Hölder lp norm on Cn is given by

||x||pD , ||Dx||p ,

(
n∑

i=1

|dixi|
p

)1/p

for all x ∈ Cn. (5.1)

The subordinate bound norm induced in Cn×n by the lp-norm on Cn is given by

||A||pD , sup
x 6=0

||Ax||pD
||x||pD

for all A ∈ Cn×n. (5.2)

The p-norm weighted D∗
p is optimal for p = 1 and p = ∞ in the sense that

||A(jω)||pD∗

p
= inf

D
||〈A(jω)〉||pD = pA(ω) (5.3)
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Let ρ(A) denote the spectral radius of A, σ(A) denote the set of eigenvalues of

A, for a vector x let x > 0 imply that all the elements of x are positive, and ‖ x ‖1

denote the one-norm of vector x. The following is the Perron-Frobenius theorem.

Theorem 5.1.1 (Perron-Frobenius Theorem [64]) If A ≥ 0 is irreducible, then

the following statements are true.

1. r = ρ(A) and r > 0 (r is called the Perron root)

2. r is a simple eigenvalue

3. There exists a vector x > 0 such that Ax = rx

4. The Perron vector is the unique vector defined by

Ap = rp, p > 0, and ||p||1 = 1, (5.4)

and, except for positive multiples of p, there are no other nonnegative eigenvector

of A, regardless of the eigenvalue.

5. The Collatz-Wielandt formula holds, i.e., r = maxx∈N f(x), where

f(x) = min
1≤i≤n, xi 6=0

[Ax]i
xi

and

N = {x|x ≥ 0 with x 6= 0}.

Let the R2R system dynamics be represented by the input-output relationship:

y(s) = G(s)u(s), where u is the input vector and y is the output vector. The off-

diagonal elements of the transfer function matrix G(s) specify the interaction between

subsystems. The goal is to design a decentralized controller for each subsystem such

that interaction is minimized in the closed-loop transfer function matrix. Let G be

represented as G = G + G̃ where G contains the diagonal part of G and G̃ contains

108



the off- diagonal part of G. The size of G̃ may be used to quantify interaction.

In particular, the effect of the off-diagonal elements and corresponding inputs on a

particular output may be evaluated by the size of the relative error matrix LH ,

G̃G
−1
. Interaction may be quantified by the size of relative error matrix LH . A D-

weighted induced Hölder l∞ norm of LH is used to quantify interaction. This norm

is equal to the Perron root and the Perron root based interaction metric (PRIM) for

the system G is defined as [58]

pLH
(ω) , P(〈LH(jω)〉) (5.5)

where P(〈LH(jω)〉) is the Perron root of the irreducible matrix 〈LH(jω)〉 at the

frequency ω. A smaller value of PRIM means less interaction. Note that PRIM

provides a form of the overall interaction in the multivariable system and does not

provide information about interaction between any two subsystems in the system.

In [58] it is discussed that if supω pLH
(ω) < 1, then there exists a decentralized pre-

filter that would ensure diagonal dominance (minimize interaction) at all frequencies

of the closed-loop system transfer matrix. The pre-filters are designed by fitting

transfer functions to the right Perron eigenvector of LH(ω).

The stabilization criteria for multivariable systems employing decentralized con-

trollers based on the size of the interaction measure and the diagonal part of the

closed-loop system transfer matrix can be found in [65]. Suppose for a rational trans-

fer function matrix G(s) the decentralized controller K stabilizes the diagonal part of

the transfer function matrix, G, i.e., the diagonal part of the closed-loop system H is

stable where H = GK(I + GK)−1, then condition for stability of the overall system

can be obtained from the following theorem.

Theorem 5.1.2 Assume G and G have the same number of unstable poles and H is
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stable. Then the closed-loop system H = GK(I +GK)−1 is stable if and only if

det[I + LHH ] 6= 0 ∀s ∈ DR (5.6)

where DR is the Nyquist contour (with appropriate indentations to avoid any open-

loop poles on the imaginary axis).

By using the small gain theorem, a sufficient condition for stability of the overall

system based on the above theorem is given by

||LH(jω)H(jω)|| < 1 ∀ω (5.7)

where ||(·)|| is any compatible induced norm of (·). The stability constraint based on

the Perron root of LH and the diagonal structure of H is given by

|hi(jω)| <
1

pLH
(ω)

∀i, ω. (5.8)

In the following two sections, we will show how performance of the decentralized con-

trol system can be improved by utilizing model-based feedforward and the particular

structure of feedforward compensation in tension control systems.

5.2 Performance Improvement of Decentralized Control Systems

The linearized governing equations for each section of the R2R system shown in

Figure 5.1 is given in the following equations which utilize the notation: Ji: driven

roller moment of inertia, Ri: driven roller radius, Vi: web velocity at the driven roller,

Ti: web span tensions, ni: gear ratio, Ui: torque input, bfi: viscous friction coefficient,

Li: span length, t0: wound on tension, vri : velocity reference, tri : tension reference,

Aw: the cross-sectional area of the web and E: the Young’s modulus of the web

material.
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Figure 5.1: Decentralized tension control structure for roll-to-roll systems with an

inner velocity loop and an outer tension loop

Unwind Section:

J0
R0
V̇0 = T1R0 − n0U0 −

bf0
R0

V0 (5.9a)

L1Ṫ1 = −T1vr1 + [AwE − tr1 ]V1 + [t0 − AwE]V0 (5.9b)

Lead and Follower Section:

J1
R1
V̇1 = (T2 − T1)R1 + n1U1 −

bf1
R1

V1 (5.10)

Pull Roll Section:

J2
R2
V̇2 = (T3 − T2)R2 + n2U2 −

bf2
R2

V2 (5.11a)

L2Ṫ2 = −T2vr2 + [AwE − tr2 ]V2 − [AwE − tr1 ]V1 + T1vr1 (5.11b)

Rewind Section:

J3
R3

V̇3 = −T3R3 + n3U3 −
bf3
R3

V3 (5.12a)

L3Ṫ3 = −T3vr3 + [AwE − tr3 ]V3 − [AwE − tr2 ]V2 + T2vr2 (5.12b)

The coupling between tension zones is evident from Equations (5.9)–(5.12) which

leads to interaction between tension zones. It can be seen through Theorem 5.1.2
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that when the interaction term LH = 0, any controller structure H̄ will satisfy the

stability criteria. It is shown in [58] that using the Perron vector the interaction in the

system can be minimized. When the interaction is small, the decentralized controller

should be designed such that the diagonal closed-loop system transfer function matrix

H̄ must be close to identity and should assure stability of the overall system. The

feedback and feedforward control structure aids in this regard which is discussed

below.

Consider one of the decentralized subsystems shown in Figure 5.2. Let yf denote

d

+

-

+
++

-

y
G

11

u
f

y
f

K
1

u

Figure 5.2: A subsystem with decentralized controller

the desired output, d denote the disturbance in the system, and u = (yf − y)K1 with

uf = 0 denote the feedback control input. The system output y is expressed as

y =
K1G11

1 +K1G11
yf +

G11

1 +K1G11
d (5.13)

Consider the control input u = uf − (yf − y)K1, where uf is the feedforward input

that gives desired output yf when applied to a known system model.

yf = G11m(uf + d̂) (5.14)

where G1m is the system model and d̂ is the disturbance estimate. With the feedback

and feedforward control input, the system output y can be expressed as

y =
−K1G11

1−K1G11
yf +

G11

1−K1G11
uf +

G11

1−K1G11
d (5.15)
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Substituting equation (5.14) into equation (5.15) we get

y =
−K1G11

1−K1G11
yf +

G11

G11m(1−K1G11)
yf −

G11

1−K1G11
d̂+

G11

1−K1G11
d (5.16)

This indicates that if G11 ≈ G11m the system output tracks the desired reference

and with perfect estimation the effect of the disturbance is reduced. Therefore, the

feedback and feedforward controller together with the prefilter designed using the

Perron interaction measure discussed in the preceding section will aid in improving

the performance of decentralized control systems and minimizing interaction between

subsystems.

5.3 Feedforward Implementation to Avoid Disturbance Propagation

In general, control schemes in R2R systems are implemented in the process sections

with feedback from the upstream zone as shown in Figure 5.1. The feedforward action

uf given by equation (5.14) contains disturbance estimation and is used to attenuate

the disturbance in a particular subsystem. However, this feedforward control action

uf also generates a disturbance in the neighboring downstream subsystem, that is, if

the feedforward action is implemented with tension measurement from the upstream

tension zone, it generates an estimate of disturbance in the downstream section and as

a result there is a possibility of disturbance propagation into the downstream sections.

The existing decentralized control scheme in the process sections is implemented as

shown in Fig. 5.3; the driven roller is controlled through feedback from upstream span

web tension t2. This feedback strategy is able to reject the disturbance and regulate

the tension in the upstream tension zone. However, the control action generated

by the driven roller induces disturbances into the downstream tension zone. Hence,

although the strategy is able to mitigate disturbances in the upstream tension zone,

it acts as a disturbance source to the adjoining downstream tension zone. This can
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Figure 5.3: Decentralized control with upstream tension feedback

be deduced from the tension and velocity dynamics corresponding to the section of

the web shown in Fig. 5.3 given by the following equations:

v̇1 =
R2

1

J1
(t2 − t1)−

bf1
J1
v1 +

R1

J1
n1u1, (5.17)

v̇2 =
R2

2

J2
(t3 − t2)−

bf2
J2
v2 +

R2

J2
n2u2, (5.18)

ṫ2 =
EAw

L2

(v2 − v1) +
1

L2

(t1v1 − t2v2), (5.19)

v̇3 = −
R2

3

J3
t3 −

bf3
J3
v3 +

R3

J3
n3u3, (5.20)

ṫ3 =
EAw

L3
(v3 − v2) +

1

L3
(t2v2 − t3v3). (5.21)

Now consider the disturbance generated at the roller with web velocity v1 as shown.

The feedback and feedforward control action is applied at driven roller M2 with

web velocity v2. The control action u2 has feedforward action uf2 in order to reject

periodic disturbances. The feedforward action is synthesized with the plant model

and disturbance estimation d̂. With tension feedback from upstream span t2, the

control action u2 can reject the disturbance by correcting the velocity v2. Since the
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velocity v2 is also input to the downstream span tension, the corrective action u2

generates disturbance in the downstream span tension t3. The interaction between

different subsystems propagates the disturbance further downstream affecting the

other processes.
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Figure 5.4: Decentralized control with downstream tension feedback

The proposed implementation of feedforward control action is shown in Figure

5.4. In the proposed scheme, web tension feedback is obtained from the downstream

span. Although this strategy creates disturbance in the upstream span (within ac-

ceptable limits), it is capable of mitigating the interaction and reducing propagation

of disturbances into downstream spans. This strategy is useful in reducing tension

disturbance propagation into critical downstream process sections.

5.4 Experimental Setup and Procedure

The same experimental platform shown in Figure 2.1 is utilized for experimentation to

verify the strategies discussed in the preceding sections. Web tension at its reference

value is maintained by regulating the speed of the driven roller in that zone. The

velocity correction provided by the outer tension loops influences the web tension
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Figure 5.5: Perron root interaction metric for the linearized model of the roll-to-roll

system

in the adjacent zone. Fig. 5.5 shows the PRIM with the three tension loop velocity

corrections as the inputs and the web tensions in the three zones as the outputs. From

the PRIM plot it is evident that interaction is dominant in the range of frequencies

between 10−4 Hz to 1 Hz and is minimal above 1 Hz. The magnitude of interaction is

close to 1 indicating that the velocity correction provided by the tension loop will have

almost the same influence on one other tension zone. Note that the PRIM provides

the worst case scenario for all the three tension zones and provides no information

about the effect of any particular input-output pair.

Experiments were conducted on the experimental R2R system to compare three

scenarios: (i) characterize the interaction in the actual system with feedback control

action, (ii) utilize Perron root based filters to minimize the interaction, and (iii) use

Perron root based filters and feedforward action to avoid propagation of disturbances.

To illustrate the effect of these strategies, velocity disturbances at the S-wrap section

were introduced to create tension disturbances in the unwind and pull roll tension

zones and the effect of these disturbances in the rewind section were observed to
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evaluate the interaction between these two zones. In the experiments, a six inch

wide polymer web (called Tyvek) was transported with a web speed of 150 feet per

minute (fpm) under a reference web tension of 20 pounds (lbf). A sinusoidal speed

disturbance of magnitude 5 fpm was introduced at the S-wrap driven rollers for a

duration of one minute; six distinct frequencies were considered from 0.01 to 1 Hz.

The feedforward control action was applied to the pull roll with both upstream and

downstream web tension feedback to evaluate the different strategies.

5.5 Experimental Results

Figure 5.6 shows the tension signals in the three tension zones when the web is trans-

ported in the forward direction (that is from the unwind to the rewind) and represents

scenario (i) stated in the preceding section. Note that the tension disturbances ob-

served in the unwind and the pull roll tension zones are due to the direct effect of the

S-wrap velocity disturbance. The interaction of the different zones and disturbance

propagation into downstream sections is evident from the tension signal measured

in the rewind tension zone. From the plots it is evident that the magnitude of in-

teraction is small above 0.25 Hz and increases with decreasing frequency. At low

frequencies the tension disturbance observed at the rewind section is as high as the

tension disturbances observed in the unwind and the pull roll sections as predicted

by the PRIM (see Fig. 5.5).

Figure 5.7 shows the experimental results with pre-filters and feedback control

action only; this represents scenario (ii). The results with the pre-filter show reduction

of interaction between zones and minimization of disturbance propagation into the

downstream tension zones.

Figure 5.8 shows the experimental results with pre-filters and feedforward action
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Figure 5.6: Tension measurement at the unwind, pull roll and rewind section with

sinusoidal velocity disturbances at the S-wrap section.

obtained by upstream zone tension measurement; this represents scenario (iii). Al-

though, the results with this strategy indicate rejection of disturbance in pull roll

section but it generates disturbance into the downstream rewind tension zone.

Figure 5.9 shows the experimental results with pre-filters and feedforward action

obtained by downstream zone tension measurement; this represents scenario (iii).

The results with this strategy indicate significant interaction reduction as well as

minimization of disturbance propagation into the downstream rewind tension zone.
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Figure 5.7: Interaction in the experimental platform with pre-filter; tension measure-

ment at the unwind, pull roll and rewind section.
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Figure 5.8: Interaction in the experimental platform with pre-filter and feedforward

action obtained by upstream zone tension feedback; tension measurement at the un-

wind, pull roll and rewind section.
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CHAPTER 6

Summary and Future Work

Design and analysis of efficient feedback and feedforward control strategies for con-

trolling web speed and tension was the focus of the research presented in the report. A

key objective of the research was also to select those control algorithms that are easy

to implement on commercial real-time hardware, provide significant improvement in

web speed and tension regulation performance, and provide the ability to minimize

propagation of disturbances. Typical control algorithms for web tension regulation

are described in Chapter 1 together with a discussion of various design strategies that

were developed in this research.

Fixed gain PI control schemes are often employed in industrial R2R systems which

typically do not provide adequate performance in the presence of plant uncertainties

and changes in process parameters, for example, changes in web material or web

speed. A model reference adaptive control scheme has been known to provide good

performance under a wide variety of plant and process uncertainties. However, the

implementation of an MRAC for the full system dynamic model is often cumbersome

from an implementation point of view as many parameters are estimated. Utilizing

the tools of the MRAC scheme, this dissertation focused on the design of a model

reference adaptive PI (MRA-PI) control schemes for web tension regulation which

is discussed in Chapter 2. The MRA-PI control scheme is simple in design and

implementation since it requires estimation of only two parameters, the proportional

and integral gains of the controller. The tuning effort required for obtaining the
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gains of the fixed gain PI controller are considerably reduced by using the proposed

MRA-PI controller. The parametric space for the two estimated gains in the MRA-

PI scheme can be obtained by requiring the closed-loop system to be stable; initial

parameter estimate values are chosen to satisfy the stability constraints.

Another adaptive PI control scheme based on an automatic initialization technique

is designed in the second part of Chapter 2. Relay feedback technique is used for

automatic initialization via determination of the ultimate frequency of the plant.

The ultimate frequency is estimated using the relay feedback technique and then

used to initialize the two adaptive PI controller parameter estimates. The ultimate

frequency is further estimated online to account for changes in the plant parameters.

Based on these estimations, the adaptive PI estimates are updated automatically.

The advantage of the adaptive PI over conventional fixed gain PI is that it does not

require knowledge of plant parameters and extensive tuning.

The problem of regulating the roll speed when the roll is connected to the motor

shaft via a compliant mechanical transmission system was considered in Chapter 3.

Since both web speed and tension are coupled, precise regulation of roll speed im-

proves tension regulation performance. This problem is important in many industries

where such transmission systems are employed, and practicing engineers often grap-

ple with the question of which strategy is better, that is, either use motor speed

feedback or roll speed feedback to regulate the roll speed. This problem was in-

vestigated in Chapter 3 via singular perturbation analysis and the associated small

parameter is selected as the square of the inverse of the coefficient of compliance in

the transmission. It is shown that pure load speed feedback is not stable and must be

avoided. To directly control the load speed, we have also considered a stable scheme

that utilizes both motor and load speed feedback. Since the feedback control action

is not sufficient to reject periodic load disturbances, we have also considered a suit-
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able adaptive feedforward algorithm that utilizes estimation of the disturbance and

provides compensation to reject the disturbance. Experiments were conducted on an

industrial grade transmission system to evaluate the control schemes and compare

their performance. Although we have used only belt compliance as the compliant

element in the transmission system, torsional compliance due to long shafts can also

be included and the analysis conclusions will remain the same. The scheme is also

applied for web transport and simultaneous regulation of roll speed and web tension.

The scheme provides desired web tension performance by rejecting disturbances in

the rewind section.

In Chapter 4, we have considered a solution to the nonlinear servomechanism

problem and its successful application to the regulation of web tension in R2R manu-

facturing systems. The existing methods require the solution of a constrained partial

differential equation, such as the one given in [47]. This method circumvents the

need to solve a constrained partial differential equation. The method of solving a

system of differential algebraic equations numerically provides a simple and imple-

mentable alternative that is quite attractive for R2R manufacturing. Although the

solution to the system of differential algebraic systems might not be unique, from

an engineering point of view, any solution which could get the desired output is all

that is needed. We have corroborated the method by conducting a variety of exper-

iments on the R2R experimental platform with different web materials and different

web speeds. The output regulator was effective in rejecting periodic disturbances in

tension. The output regulator also provides robust performance in terms of rejecting

multiple frequency components. Further, when web tension measurement is noisy or

it is not possible to obtain tension measurement, a simple web tension observer is

also designed and shown to provide satisfactory results.

The use of feedforward control action along with interaction minimizing filters is
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proposed with feedback from downstream tension zone in Chapter 5. The proposed

strategy was able to minimize the interaction as well reduce disturbance propagation

into downstream tension zones.

The work in this discussion focused on analysis and design of feedback and feed-

forward control schemes for web tension regulation in R2R manufacturing systems.

The following topics provide opportunities for expanding this work in the future:

• In the tension output regulator problem, the feedback action is based on fixed

gains in the controller and adaptive gains for feedforward action that estimates

disturbances. Adaptation of gains that are used in both feedback and feedfor-

ward actions which generates a stable closed-loop system may provide improved

results and can be considered as part of the future work.

• The tension output regulator was designed for each subsystem of the roll-to-roll

system by considering each subsystem as a single input single output nonlinear

system. Extending the approach to multivariable system employing decentral-

ized controllers is an important generalization and can be considered as a part

of the future work.

• The strategies discussed in the dissertation considered webs that are elastic and

with large modulus. Application of this work to low modulus webs that are

typically transported with large strains in the nonlinear regions of the stress

strain curve would be very useful as many consumer products are currently

being made with very thin materials.

• An important primitive element in almost all continuous R2R systems is the ac-

cumulator or the festoon. The strategies developed in this work can be extended

to unwinds and rewinds that employ a festoon.
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APPENDIX A

Speed Correction Based Simultaneous Motor and Load Speed Feedback

Control Scheme-appendix

The control scheme that utilizes both motor and load speed feedback discussed in

Section 3.4 considers the output of the load speed and motor speed controllers as

torque correction. There is also another control scheme that is employed in practice

where the outer load speed loop provides a speed reference correction to the inner

motor speed which is shown in Fig. A.1. In the following we show that such a control

scheme results in an unstable system, and thus must be avoided. For this analysis,

we employ a simple proportional control action for the load speed controller and a

PI controller for the motor speed loop. The closed-loop transfer function from ωrL to
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Figure A.1: Simultaneous motor and load speed feedback scheme: Speed mode

ωL for this strategy is obtained as

ωL(s)

ωrL(s)
=

(GRRP1RP2Kb/JmJL)αmLs

ψmLs(s)
(A.1)

where

αmLs(s) = KpmKpLs+KimKpL (A.2)
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ψmLs(s) = s4 + e3s
3 + e2s

2 + e1s+ e0,

e3 =
(bmJL + JmbL + JLKpm)

JmJL
,

e2 =
(KbJeq + bmbL + bLKpm + JLKim)

JmJL
,

e1 =
(Kbbeq +G2

RR
2
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,
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.

(A.3)

Singular perturbation analysis results in the following slow and fast characteristic

polynomials:

ψls(s, ε) ≈ s2 + δ1s+ δ0 (A.4a)

ψlf (p, ε) ≈ p2 − δ′1p+ δ′0 (A.4b)

where

δ1 =
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RR
2
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P1bL +G2
RR

2
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.

(A.5)

Note that the slow subsystem is stable for all Kpm, Kim, and KpL. However, the fast

subsystem is unstable for all KpL > 0. The instability of the system is also evident

from simple root locus analysis of the closed-loop characteristic with varying KpL,

which is shown in Figure A.2.
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Figure A.2: Root locus plot with varying KpL in speed mode
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